Use of Ultra-High-Performance Concrete for Bridge Deck Overlays TR-683 March 2018

(2018) Use of Ultra-High-Performance Concrete for Bridge Deck Overlays TR-683 March 2018. Transportation, Department of

TR-683 Final Report Use of Ultra-High-Performance Concrete for Bridge Deck Overlays.pdf

File Size:7MB
TR-683_Tech Brief_Use of Ultra-High-Performance Concrete for Bridge Deck Overlays.pdf

File Size:998kB


A large number of bridges in the nation are rated as structurally deficient and require immediate retrofits or replacements that will impose a significant financial burden on bridge owners. A fast, cost-efficient, and reliable retrofit solution is needed to tackle this problem. Typical bridge deck deterioration starts with shrinkage cracks, and additional cracks may occur due to traffic loads and time-dependent effects, which are worsened by freeze-thaw cycles over time. These cracks then lead to water and chloride penetration into the concrete deck, causing rebar corrosion and further damage to the superstructure. A potential solution, suggested in a previous study, is to apply a thin layer of ultra-high-performance concrete (UHPC) on top of normal concrete (NC) bridge decks. Because UHPC has a higher tensile strength and low permeability, cracking as well as water and chloride ingression can be minimized, which in turn will extend the lifespan of the bridge. Moreover, UHPC is also deemed to have a higher fatigue resistance than NC. In this study, a new UHPC mix to accommodate surface crowning was developed by a material supplier and tested in the laboratory. Using this new mix, the thin UHPC overlay concept was successfully implemented on a county bridge in Iowa. The implementation involved state and county engineers, a local contractor, and a material supplier. The bridge overlay was periodically monitored, and thus far there have been no concerns regarding the performance of the UHPC overlay or the bond at the interface between the UHPC and NC layers. In addition to the field implementation, three concrete slabs with and without a UHPC overlay were tested in the laboratory. The results showed that a UHPC overlay in the positive moment region increased the strength by 18% while showing a more ductile response. In the negative moment region, although wire mesh was used, its effectiveness was not significant due to its small steel area. The effectiveness of the wire mesh could be improved by increasing the amount of steel area within the overlay, but its impact on the UHPC-NC interface bond needs to be evaluated.

Item Type: Departmental Report
Keywords: bridge deck overlays—concrete bridge decks—ultra-high-performance concrete
Subjects: Transportation > Pavements > Concrete
Transportation > Bridges and tunnels
ID Code: 27040
Deposited By: Hannah Gehring
Deposited On: 21 Mar 2018 19:51
Last Modified: 21 Mar 2018 19:51