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EXECUTIVE SUMMARY 

Monitoring road surface conditions (RSC) during the winter season is crucial for transportation 

agencies responsible for conducting winter road maintenance (WRM) operations. This becomes 

particularly evident during winter weather events, such as snowstorms, where timely and 

effective snow clearing is essential to maintaining road safety and mobility. Accurate RSC 

information is vital not only for determining when and where WRM operations are needed but 

also for evaluating the effectiveness of various treatment methods and contractors. 

This project builds on our previous work, which was aimed at enhancing the application of road 

weather information systems (RWIS) to improve WRM operations. RWIS, available in both 

stationary and mobile forms, have gained popularity due to their ability to collect and 

disseminate critical road weather and surface data. However, highway agencies still rely on 

manual analysis of RWIS imagery by trained personnel, a process that is time-consuming and 

limited by the sparse distribution of RWIS stations and the infrequent deployment of mobile 

units. These limitations result in significant gaps in monitoring RSC across extensive highway 

networks. 

To address these challenges, earlier research developed convolutional neural networks (CNNs) to 

automatically classify RSC from dash camera imagery (or mobile imagery) and employed 

regression kriging (RK) to estimate RSC in unmonitored areas using limited point 

measurements. These methods were validated through real-world case studies, demonstrating 

their feasibility and robustness. 

In this project, several key advancements were made. The developed CNN models were tailored 

for stationary RWIS imagery, incorporating explainable artificial intelligence (XAI) techniques 

such as SHapley Additive exPlanations (SHAP) and class activation map (CAM)-based methods, 

including Grad-CAM, Grad-CAM++, and Score-CAM. As a result, these methods ensured the 

reliability and robustness of CNNs for both mobile and stationary imagery, enhancing the 

transparency and trustworthiness of the CNN models in real-world applications. 

Additionally, two distinct advanced deep learning (DL)-based computer vision techniques, 

namely, pix-to-pix generative adversarial networks (pix2pix GAN) and semantic segmentation 

(SS), were employed to automate the estimation of snow coverage ratios (SCR) from stationary 

RWIS imagery. These methods provided a more detailed understanding of snow coverage, 

thereby improving the precision of WRM decisions. 

The RK method was also revisited to better accommodate the variability of weather events by 

integrating a machine learning-based clustering algorithm. This improvement ensured that RK 

could accurately model the spatial variability of RSC across different weather scenarios, 

providing more reliable predictions. 

Furthermore, a novel geostatistical method, nested indicator kriging (NIK), was developed to 

handle the categorical nature of RSC data. This method uses CNN classification results to 
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interpolate conditions in unmonitored areas, addressing gaps in RSC monitoring across highway 

networks. 

These methods were rigorously tested using a comprehensive dataset from two major highways 

in Iowa, I-35 and I-80, spanning five years and encompassing more than 20,000 images. The 

results demonstrated high accuracy and reliability. The newly developed CNNs for RWIS 

imagery achieved an accuracy of up to 98.5%, with the SHAP and CAM-based methods 

confirming the trustworthiness of CNNs for automatic RSC recognition from both stationary and 

mobile RWIS imagery. The pix2pix GAN and SS techniques proved capable of estimating SCR 

by translating winter images to their summer counterparts and detecting drivable areas, achieving 

up to 99.3% accuracy in detecting drivable areas and a final accuracy for SCR estimation 

exceeding 93%. 

The revisited RK method, enhanced with a 𝐾-means clustering algorithm, provided robust RSC 

estimates across varied weather scenarios. Using road surface temperatures (RST) as a target 

variable, the RST estimation discrepancies were as low as 0.619°C for the entire study area. The 

findings also suggest that potential cost savings include the conservation of up to 10 RWIS 

stations, which can be further translated into reduced RWIS capital costs, fewer collisions, 

enhanced traffic mobility, and savings in maintenance materials. 

The novel NIK method successfully interpolated categorical RSC variables using CNN 

classification results, achieving accuracy rates ranging from 58.8% to 85.7%, with an average 

accuracy of 67.5% across the tested dataset. 

A web application was also developed to integrate the key methods as mentioned above, 

providing real-time monitoring, estimation, and historical data archiving for WRM operations. 

The advancements made in this project equip WRM decision-makers with powerful tools to 

implement maintenance activities more swiftly, efficiently, and cost-effectively. These 

innovations are expected to contribute to a safer, more mobile, and sustainable winter 

transportation system by mitigating the risks and costs associated with adverse winter weather 

conditions. 
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1 INTRODUCTION 

1.1 Background 

In countries with severe winter seasons, transportation agencies often face significant challenges 

in meeting the safety and mobility needs of road users. Inclement weather events, such as 

frequent snow, sleet, ice, and frost, result in high variance in road surface conditions (RSC) over 

space and time (Feng 2013, Kwon et al. 2013, Wang et al. 2018b, Wu et al. 2022b). Poor driving 

conditions as a result of inclement weather is something that municipalities must contend with, 

as it is a safety risk for road users. If proper precautions are not taken by municipalities, winter 

collisions become a constant problem that threatens the lives of motorists. 

Given the extensive record of winter incidents, transportation agencies strive to ensure that their 

roads are in the best condition possible by mobilizing various winter road maintenance (WRM) 

activities. These activities include plowing, deicing, and sanding operations, which mitigate the 

chances and severity of collisions by mechanically removing or preventing snow and ice 

accumulation, or by increasing traction with abrasives. However, due to the vast spatial distances 

covered by all highway networks and the uncertain nature of weather events it is often hard to 

monitor and predict the highly variable RSCs, making both public travel and WRM extremely 

challenging. To prevent or at least reduce the number of weather-related incidents, transportation 

agencies need to make timely and well-informed decisions on their various WRM activities. 

These operations are expensive, as they require a great deal of equipment, personnel, and 

finances to undertake. It is estimated that more than US $2.3 billion is spent annually on WRM 

by North American transportation authorities, with Canada spending CA $1 billion alone 

(Transport Association of Canada 2003, Usman et al. 2010). With real-time or near-future RSC 

information being made available, transportation authorities will be able to make informed 

decisions that not only improve the safety of roads but will also help find ways to minimize 

operational costs while maintaining a high level of service.  

To help support and facilitate WRM decisions, an advanced intelligent transportation systems 

(ITS) monitoring technology known as road weather information systems (RWIS) has been 

deployed throughout many road networks around the world. RWIS can be described as a 

combination of advanced technologies that collect, transmit, and disseminate road weather and 

surface condition information to data hubs where it is processed and made accessible to the 

general public. Road maintenance personnel have access to these data in near real-time and make 

use of them to effectively plan their WRM activities to shorten response times and reduce 

material usage (e.g., salt and sand). RWIS collect data using environmental sensor stations (ESS) 

and live-broadcast cameras to provide real-time and forecasted roadway-related weather and 

surface conditions. Implementation of this system not only enables cost-effective WRM but also 

aids motorists in making more informed decisions about their travel. For this reason, RWIS have 

been widely used in many places in the northern hemisphere. North America alone has more than 

3,000 RWIS stations currently in operation, and North American transportation authorities 

continue to expand their networks to improve their existing WRM services (Kwon et al. 2017, 

Kwon and Gu 2017). Generally, there are two types of RWIS, namely stationary and mobile. 
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Stationary RWIS stations, as depicted in Figure 1.1, are generally installed alongside the 

roadway, with the main purpose of closely monitoring weather/road surface conditions. Each 

station typically has the following components: cameras, road surface sensors, remote processing 

units (RPU), and communication hardware. Weather and road surface measurements collected 

by stationary RWIS often include, but are not limited to, air temperature, road surface 

temperature, dew point, wind speed and direction, and surface status imagery. 

 

Figure 1.1. Typical stationary RWIS station 

A mobile RWIS, on the other hand, as shown in Figure 1.2, is installed on a vehicle. These 

mobile stations are equipped with a similar suite of innovative sensors and dash cameras that 

allow them to collect weather and road surface data as they travel along the road. The data 

collected by mobile RWIS are sent via cellular communication to the maintenance center. In 

addition to the measurements that are often collected by the stationary RWIS, some mobile 

RWIS units can provide direct measurements of chemical concentration and pavement friction, 

which can help maintenance agencies utilize treatment methods that better match the actual 

weather/road surface conditions. 
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Figure 1.2. Mobile RWIS unit equipped with spectral road surface temperature sensor 

Due to different data collection mechanisms, stationary RWIS provide highly temporal but 

spatially limited coverage, while mobile RWIS provide spatially continuous but temporally 

discrete measurements. Regardless of their differences, both versions of RWIS are effective in 

collecting and disseminating weather and road condition information. Despite their many 

benefits, the main disadvantage of RWIS lies in their high installation and operation costs. A 

stationary RWIS station with basic functions costs more than CA $50,000 to install, and this 

does not include continuous maintenance costs and additional sensors that one might want 

(Buchanan and Gwartz 2005). Considering their high price tag, municipalities are thus only able 

to deploy RWIS to a limited number of locations, hampering their coverage and effectiveness. 

Additionally, the reliability of the point measurements collected diminishes as the distance 

between RWIS stations increases, resulting in an incomplete map of the surface conditions. 

Furthermore, contemporary RWIS are equipped with cameras that provide users with a direct 

view of the road segment; however, determining the RSC via these cameras is still done 

manually, which prevents the full utilization of these rich image-based road condition data. 

1.2 Current Practice of Winter Road Surface Condition Estimation 

To mitigate these limitations, several numerical models have been proposed previously in an 

attempt to quantify the spatial distribution of RSC and estimate snow coverage status on 

pavement. Sass (1992) developed a prediction model based on heat condition and the surface 

energy-balance models. Chapman et al. (2001) proposed a multiple regression model to 

demonstrate that up to 75% of the residual road surface temperature (RST) variation can be 

affected by surrounding geographical features using thermal mapping techniques. Sokol et al. 

(2017) applied an ensemble technique for RST forecasting using an energy-balance and heat 

conduction model where the results tend to underestimate the true values. Perchanok (2002) 

conducted a discriminant analysis using three friction measurements, namely, peak resistance 

(𝐹𝑝), the slip speed at which the peak resistance occurs (𝑉𝑐𝑟𝑖𝑡), and locked wheel resistance (𝐹60), 

to classify RSC into categories such as bare wet, bare dry, loose snow, packed snow, or slush. 

The analysis built a series of linear discriminant functions that could optimally discriminate 
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different RSC types. Though these prior studies helped provide some insights into how RSC 

varies over space, they suffered from one major limitation: the models were developed to 

provide only site-specific RSC information rather than for an entire segment of road. Having 

continuous RSC information over a road network is critical, not only for road users for improved 

safety but also for winter maintenance personnel who are responsible for maintaining a good 

level of service. 

Nevertheless, RSC estimation can be challenging, as an ongoing adverse weather event can 

abruptly change within a short distance and is constantly influenced by many external factors 

including geographical, topographical, and meteorological features. Likewise, the high degree of 

uncertainty and randomness associated with inclement weather events, along with their 

interactions on complex road networks, has made it extremely difficult to accurately estimate 

conditions between RWIS stations. 

In terms of estimating slipperiness or snow status on pavement, there are several methods 

available. One method is by obtaining RSC (e.g., snow coverage status, roughness) directly via a 

variety of sensors, such as optical sensors along the roadside and piezoelectric sensors within 

vehicle tires (Eichhorn and Roth 1992, Erdogan et al. 2010, Yuan et al. 2017). The limitation of 

this method is that the measurements may be unstable, as these sensors are highly susceptible to 

environmental and other external factors (e.g., wireless connectivity). Furthermore, installing 

such sensors is costly and requires manual processing by well-trained personnel. Another method 

is estimating RSC via numerical methods with auxiliary information as input (Yuan et al. 2017, 

Alonso et al. 2014, Bo et al. 2014, Wang et al. 2014). This kind of approach often faces struggles 

with estimation accuracy. For example, Alonso et al. (2014) proposed using tire noise to predict 

RSC but produced inaccurate results due to noise generated from external variables that did not 

pertain to the vehicle of interest.  

Another type of method is identifying RSC based on computer vision techniques (Bo et al. 2014, 

Carrillo et al. 2019, Jonsson et al. 2014, Liang et al. 2019, Wu et al. 2022c). Unlike the previous 

two methods, which require significant effort in maintenance and inspections and suffer from 

accuracy issues, computer vision techniques have low implementation costs, high estimation 

accuracy, and the potential to be fully automated. Computer vision itself is a form of machine 

learning (ML), and in recent years it has advanced gradually from traditional ML to deep 

learning (DL)-based methods, which allows for the consideration of more information in the 

RSC recognition process, resulting in higher estimation accuracy. Omer and Fu (2010) 

investigated the feasibility of classifying winter RSC using images collected from vehicle-

mounted cameras. Using red-green-blue (RGB) and gradient features as feature vectors, 400 

images were labeled as bare road, snowy road, or tracks. A support vector machine (SVM) 

model was trained using the extracted features, resulting in a classification accuracy of over 

80%. Kawai et al. (2012) proposed a distinction method for nighttime RSC images. They 

discussed the differences between image features extracted from dry, wet, and snowy road 

images under different lighting conditions. The 𝐾-nearest neighbor algorithm was then used for 

modeling, displaying an accuracy of 96.1% (dry), 89.4% (wet), and 95.6% (snowy), respectively. 

Jonsson et al. (2014) used an infrared camera equipped with a set of optical wavelength filters to 

obtain the brightness of each pixel as features. The images were primarily used to develop 

multivariate data models and for the classification of RSC in each pixel. The resulting imaging 
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system could reliably distinguish between dry, wet, icy, or snow-covered sections of the road 

surface. This system was a vast improvement over existing single-spot RSC classification 

systems. With the development of DL, some researchers used pretrained deep neural networks to 

classify the RSC images directly and have achieved results comparable to, if not better than, 

traditional ML algorithms (Carrillo et al. 2019). Researchers at Technische Universität 

Braunschweig in Germany created a mixed dataset of RSC images from KITTI (Geiger et al. 

2012), Robotcar Dataset (Maddern et al. 2017), and other sources (Nothdurft et al. 2011, Giusti 

et al. 2015, Smith et al. 2009), which were dry, wet, snowy, etc. They compared two model 

architectures: InceptionV3 and ResNet50 with long-term and short-term memory (LSTM) units 

added to improve model accuracy (Nolte et al. 2018). In summary, most of the current methods 

are developed to select or extract the features manually, such as texture, color, and brightness, 

before combining them to form a feature database. 

Although these developed models display high accuracy in labeling RSC, the important post-

process of providing information on hazards has not yet been sufficiently explored. In order for 

the public to become more aware of current road conditions and for maintenance authorities to 

make more informed decisions on WRM, the focus should also be on quantifying RSC hazard 

level (e.g., the snow coverage ratio [SCR]) on top of RSC recognition, which only generates a 

single predicted category. One recent study tackling this limitation is Yasuno et al. (2021), where 

a generative adversarial network (GAN) was adopted to translate snow-covered road images to 

images without snow. The model would then automatically calculate the snow hazard indicator 

using semantic segmentation (SS). However, the imagery dataset used in that study only 

contained 500 winter images, which may not be sufficient for developing DL models nor 

generating reliable snow hazard alerts. Additionally, winter bare road images may not accurately 

represent the actual road, even via manual inspection. 

1.3 Previous Efforts 

Acknowledging the limitations of previous studies and current practices in winter RSC 

estimation, we have developed a range of methods to address existing issues. To automate winter 

RSC estimation, we created a convolutional neural network (CNN) model that autonomously 

classifies RSC imagery collected by dash cameras from automated vehicle location (AVL) 

systems’ trucks into four categories: Bare, Partially Snow Covered, Fully Snow Covered, and 

Undefined. This model achieved an overall accuracy of approximately 95%. Additionally, image 

thresholding techniques were employed to convert classified images into numerical values (i.e., 

road surface index [RSI]) as surrogate measurements of road slipperiness (Wu et al. 2022c). 

To generate a comprehensive map of RSC, we implemented a geostatistical method called 

regression kriging (RK) to estimate RSC for all unmonitored highway areas. Both RSC and RSI 

were used to validate the accuracy of the RK method, demonstrating its feasibility and 

robustness. With as little as one point of measurement as input, the RK method successfully 

replicated the general RSC pattern along the highway stretch (Wu et al. 2022b). 

However, our previous studies have several limitations that need to be addressed. First, the study 

area was confined to a single stretch of highway (the southern quarter of I-35 in Iowa), raising 
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questions about the applicability of our methods to larger regions. Second, the CNN model was 

developed exclusively for dash camera images, making its effectiveness for RWIS fixed camera 

imagery (more commonly used by WRM authorities) uncertain. Additionally, whether the CNN 

model made correct classifications based on intuitive features remains unknown, necessitating an 

investigation into the model’s transparency and reliability. Furthermore, the direct inference of 

RSC for unmonitored areas via CNN classification results (i.e., the categorical variables) has not 

been explored. Third, the RK method was tested only on collected hourly event data (228 hourly 

events for RSC and 33 hourly events for RSI), so its effectiveness for new weather events 

remains unverified. Lastly, while we believe that our spatial mapping of RSC using RK has 

benefits for transportation safety, mobility, and sustainability, these potential benefits have not 

yet been quantified. 

1.4 Research Objectives 

Building on our previous efforts, this project aims to address the aforementioned limitations by 

developing highly transferable and universally applicable methodologies, models, and tools for 

visualizing and inferring RSC using data from RWIS and other road condition monitoring 

systems. Specifically, our research has the following major tasks: 

• Prepare and process a comprehensive training/testing dataset (e.g., RWIS and AVL road 

weather measurements) that covers a wide range of road, weather, and environmental 

conditions. 

• Test and improve the performance of alternative DL-based image classification models and 

determine the best model for real-time implementation for both stationary and mobile RWIS. 

• Analyze the internal classification process of CNN models via explainable artificial 

intelligence (XAI) techniques to understand how the accurate results arrive and how the 

CNNs adapt and refine their classifications with increased training samples.  

• Develop a novel geostatistical method, namely nested indicator kriging (NIK), to directly 

infer categorical RSC variables with DL classification results for all unmonitored areas along 

the highways. 

• Generate a numerical index, namely the SCR that can be used to quantitatively assess the 

efficiency of existing maintenance programs and the maintenance needs of specific road 

sections. 

• Revisit the continuous RSC spatial mapping method by characterizing winter weather events 

to make the previously developed RK method more universally applicable, and quantify the 

potential benefits derived from having spatially rich RSC estimates throughout the developed 

methods. 

• Implement a web-based application for visualizing the spatial mapping and image 

recognition solutions using real-world scenarios to demonstrate the application’s usage. 

This project utilizes datasets from two major highways, I-35 and I-80, within the state of Iowa, 

leveraging the substantial amount of archived stationary RWIS images, dash camera images (i.e., 

AVL), and geographic information system (GIS) data downloaded and processed during 

previous projects. The outcomes of this project will provide winter maintenance personnel with 

newfound knowledge and analytical tools, enabling them to better utilize available resources, 
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resulting in improved maintenance and enhancements to highway infrastructure, thereby 

promoting better winter safety, mobility, and sustainability. 

This report is structured as follows: The next chapter outlines the proposed methods for 

automatic RSC recognition using DL-based computer vision techniques and their validation 

through XAI approaches. It also details the development of the SCR. Additionally, the next 

chapter introduces methods for the newly developed spatial mapping of categorical RSC (i.e., the 

NIK) and the refined spatial mapping of continuous RSC (i.e., the refined RK) for unmonitored 

areas, along with an assessment of the potential benefits of the refined RK method. Subsequent 

chapters present the results of and discuss a real-world case study. Finally, the conclusion 

summarizes the main points of this report and suggests potential future research directions to 

build upon this work.
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2 PROPOSED METHODOLOGY 

Estimations of RSC have long been a focus for researchers, maintenance authorities, and 

policymakers. However, accurate estimations are challenging due to the inherent variability of 

road weather and surface conditions, particularly during inclement weather events. To address 

this challenge, we previously developed two advanced RSC modeling techniques: CNN (for 

mobile images) and RK (for continuous RSC variables). Despite these efforts, several limitations 

remain, including the recognition of stationary RWIS imagery, conversion to numerical 

performance/RSC indices, categorical RSC variable estimation, and characterization of weather 

events. 

Building on our prior work, this project introduces a new CNN model specifically designed for 

stationary RWIS imagery, enabling automatic recognition of general RSC at RWIS sites. To 

validate the accuracy and reliability of CNN predictions for both mobile (from the previous 

project) and stationary images, we employed two series of XAI techniques: SHapley Additive 

exPlanations (SHAP) and class activation map (CAM)-based methods. These techniques reveal 

the internal workings of CNN models by identifying the areas that are most influential in the 

models’ predictions. As mentioned above, a novel geostatistical method (i.e., NIK) was 

developed to directly estimate categorical RSC for all unmonitored areas with the input of CNN 

classification results. Additionally, to convert stationary RWIS imagery into a numerical index of 

pavement snow status (i.e., SCR), we developed and implemented two distinct DL models: 

pix2pix GAN and SS. To enhance our previously developed RK method for spatially mapping 

continuous RSC across unmonitored areas, we introduced an ML-based clustering method using 

the 𝐾-means algorithm. This method characterizes weather events based on similar RSC 

variation patterns. Subsequently, the RK method, including multiple linear regression (MLR) and 

semivariogram models, was applied to automatically map RSC spatially between RWIS stations. 

Finally, we analyzed the potential benefits of having spatially rich RSC information using this 

refined method, exemplified by the RST dataset. These developed methods not only offer novel 

approaches for accurately estimating winter RSC using existing infrastructure (i.e., RWIS) but 

also take a pioneering step in quantifying the benefits of refined RK methods. The overall 

workflow for this method is illustrated in Figure 2.1. Each process is detailed in the following 

sections, followed by a case study demonstrating a practical application of this methodology. 
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Figure 2.1. Workflow of introduced methods 

2.1 Automated Road Surface Conditions Recognition via Deep Learning 

2.1.1 The Idea 

Due to the numerous advantages of RWIS, this technology has become one of the most widely 

adopted methods for monitoring winter RSC by highway agencies and maintenance contractors 

(Boselly 2001). Among the various measurements RWIS can collect, imagery data are 

particularly critical, as it provides direct visual information on pavement conditions, especially 

snow coverage, which is essential for determining whether a road section requires immediate 

maintenance (Fay and Juneau 2007). However, recognizing winter RSC from these images 

remains a manual process performed by trained personnel. Given the extensive spatial coverage 

of RWIS networks and the volume of images collected daily (typically one image every 10 to 15 

minutes per camera), manual recognition is time-consuming and requires substantial manpower 

and financial resources. Since winter maintenance is highly time-sensitive, particularly during 

severe weather events, it is imperative to develop an automated method for RSC recognition 

using RWIS imagery (Carrillo et al. 2019, Wu and Kwon 2022). 

Previous studies, including our own, have proposed the use of CNNs, one of the most widely 

used DL-based computer vision techniques, to automate the image classification process, a 

technique that has demonstrated considerable effectiveness (Pan et al. 2019, Pan et al. 2020, 

Zhang 2021, Ozcan et al. 2019, Khan et al. 2019, Wu et al. 2022c). However, these studies 

primarily focused on mobile images (e.g., dash camera images) rather than fixed camera images, 

such as those collected by stationary RWIS cameras. The majority of studies targeting stationary 

images involve preprocessing steps like cropping pavement areas before inputting them into 
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classification models or are limited to a few camera sites with similar views where the pavement 

occupies the majority of the image (Khan and Ahmed 2022, Lyu and Huang 2018). To overcome 

these limitations, this research investigates the effectiveness of CNNs in classifying stationary 

RWIS images across the selected study area. 

Additionally, while CNNs can classify images into general RSC categories, this may not provide 

sufficient granularity for assessing finer differences in snow status or road slipperiness. In our 

previous project, we adopted an image thresholding technique to convert dash camera images 

into a numerical index known as the RSI (Wu et al. 2022c). Due to the more complex and varied 

configurations of stationary RWIS images, the same method cannot be directly applied here. 

Instead, we developed two distinct DL-based computer vision models, namely, pix2pix GAN 

and SS, to automatically convert stationary RWIS images into numerical indices, which can be 

used to quantify road conditions. The proposed framework is shown in Figure 2.2. First, the 

snow-covered RSC image (i.e., winter image) is translated into its dry (i.e., snow-free) condition 

(i.e., summer image) via pix2pix GAN (Step 1). Second, SS is used to automatically detect the 

drivable areas (i.e., the exposed pavement without snow cover obtained in the previous step) for 

winter and summer images, respectively (Step 2). Note that the SS models used for labeling 

summer and winter images are two separate models. Afterward, to obtain the SCR (numerical 

value) for assessing the snow hazard level associated with the input winter image, the drivable 

areas of the winter image are compared to those in its summer image (Step 3). The difference in 

the detected drivable areas between the winter and summer images is the pavement hidden under 

the snow. Details of each component involved in this approach are introduced in the following 

sections. 

 

Figure 2.2. Overview of proposed approach for snow coverage ratio estimation 
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The next subsection introduces all three DL-based computer vision models, details their 

architectures, and demonstrates their application to stationary RWIS RSC image recognition. 

Additionally, evaluation methods, including the use of XAI techniques, are discussed to assess 

model performance and reliability. 

2.1.2 Image Classification via CNN 

CNNs are a type of DL architecture inspired by the visual perception mechanisms in living 

organisms. They are particularly effective at image classification tasks due to their ability to 

automatically and adaptively learn spatial hierarchies of features (Gu et al. 2018). CNNs consist 

of multiple layers that mimic the neurons in the brain, each with learnable weights and biases. 

These layers include convolutional layers, pooling layers, and fully connected layers. Each 

neuron in a layer receives inputs, computes a weighted sum, applies a nonlinearity, and outputs a 

result (Alzubaidi et al. 2021). 

Convolutional layers apply a convolution operation to the input, passing the result to the next 

layer, mimicking the response of individual cortical neurons to visual stimuli (Lindsay 2021). 

Filters (or kernels) slide over the input data to produce feature maps, capturing local spatial 

patterns. The convolution operation helps in detecting edges, textures, and other visual features 

from the input images (Maggiori et al. 2016). Pooling layers then reduce the spatial dimensions 

of the feature maps, decreasing the number of parameters and the computational load. This 

process, known as subsampling or downsampling, provides spatial invariance (Akhtar and 

Ragavendran 2020). Among different pooling methods, maxpooling is commonly used, which 

selects the maximum value from a feature map region (Zafar et al. 2022). Fully connected layers, 

or dense layers, have full connections to all activations in the previous layer. These layers 

perform high-level reasoning by integrating the features learned by previous layers, making them 

essential for tasks like classification (Chartrand et al. 2017). 

Key components and processes in CNNs include activation functions, training, and 

regularization. Functions like rectified linear unit (ReLU) introduce nonlinearity into the 

network, enabling the modeling of complex patterns (Agarap 2018). CNNs are trained using 

backpropagation and optimization techniques like stochastic gradient descent to minimize a loss 

function (Bouvrie 2006). Techniques like dropout prevent overfitting by randomly setting a 

fraction of the input units to zero during training (Srivastava et al. 2014).  

CNNs require significantly less preprocessing compared to other algorithms, and their 

performance improves with larger training datasets. Their ability to identify predictive features 

from large structures and generate representative vectors makes them effective in various 

applications, including natural language processing (Wang and Gang 2018). The layered 

structure of CNNs has been a key factor in their success and widespread adoption (Elngar et al. 

2021). As shown in Figure 2.3, the CNN architecture designed for image classification in this 

study consists of a series of convolutional and maxpooling layers, followed by dense and dropout 

layers, ending with a softmax output layer. 
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Figure 2.3. Structural overview of CNN for image classification 

2.1.3 CNN Evaluation via XAI 

As previously mentioned, multiple XAI techniques, including CAM-based methods and SHAP, 

were employed to enhance the transparency of the CNN classification process, ensuring its 

reliability before implementation in real-world WRM operations. 

2.1.3.1 CAM 

CAM is a foundational technique in XAI that helps visualize the regions of an image that CNNs 

focus on during classification. This method, introduced by Zhou et al. (2016), uses saliency maps 

to highlight important areas in the input image, providing insights into the model’s decision-

making process. Building upon CAM, advanced methods such as Grad-CAM, Grad-CAM++, 

and Score-CAM have been developed to offer more precise and interpretable activation maps, 

further enhancing our understanding of CNN models. These three Grad-CAM based methods—

Grad-CAM, Grad-CAM++, and Score-CAM—were selected to provide a comprehensive and 

nuanced understanding of the decision-making process of CNNs. Grad-CAM offers a general 

overview of key regions, Grad-CAM++ improves localization accuracy, and Score-CAM 

enhances robustness by eliminating gradient dependence. Using all three methods ensures more 

accurate, reliable, and interpretable insights compared to relying on a single technique, and they 

serve as practical tools for model analysis and debugging, contributing to the development of 

more transparent and trustworthy AI systems. The saliency map 𝐿𝑖𝑗
𝑐  is generated to provide a 

visual explanation of these XAI techniques. For a particular class 𝑐, the saliency map is 

generated by the weighted summation of feature maps 𝐴𝑘 , with 𝑖 and 𝑗 indexed as width and 

height dimensions for the 𝑘-th feature map. Specifically, the saliency map is calculated using 

equation (2.1). 

𝐿𝑖𝑗
𝑐 = ∑ 𝜔𝑘

𝑐
𝑘 . 𝐴𝑘

𝑖𝑗 (0.1) 

Different weights 𝜔𝑘
𝑐 , calculated for each CAM technique, are used to generate saliency maps. 

These maps provide valuable information on how various regions of the input image contribute 

to the classification decision. As a result, they enhance model interpretability and trustworthiness 
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(Simonyan et al. 2013). Once the saliency map is produced, it is overlaid on the original image to 

visualize which parts of the image have been activated pixel-wise to make predictions. 

Grad-CAM. Grad-CAM generalizes the CAM technique and can be applied to various CNN 

architectures without requiring changes or retraining. It works with CNNs featuring fully 

connected layers, structured outputs like image captioning, and tasks involving multimodal 

inputs such as visual question answering (VQA). Grad-CAM is useful for top-performing models 

in image classification, captioning, and VQA, offering insights into model decisions and helping 

to understand model failures. By creating class-discriminative visualizations, Grad-CAM shows 

which parts of the image the model focuses on for its decisions (Selvaraju et al. 2017). 

As shown in equation (2.2), the weights 𝜔𝑘
𝑐  that Grad-CAM uses to generate the saliency maps 

are computed by normalizing the sum of the gradients of the class score 
𝜕𝑦𝑐

𝜕𝐴𝑘
𝑖𝑗

 (where 𝑦𝑐 is the 

class sore), with a factor of 𝑍, which represents the number of pixels in the feature map. In this 

context, 𝜔𝑘
𝑐  denotes the weight of the 𝑘-th feature map concerning the class (𝑐). 

𝜔𝑘
𝑐 =

1

𝑍
∑ ∑

𝜕𝑦𝑐

𝜕𝐴𝑘
𝑖𝑗

𝑗𝑖  (2.2) 

Grad-CAM++. Grad-CAM++ enhances the visual explanations provided by Grad-CAM, 

particularly for images with multiple instances of the same class and for more precise object 

localization. This improvement is achieved by utilizing a weighted combination of positive 

partial derivatives from the last convolutional layer’s feature maps concerning a specific class 

score (Chattopadhay et al. 2018). The weights 𝜔𝑘
𝑐  in Grad-CAM++ are computed using equation 

(2.3). 

𝜔𝑘
𝑐 = ∑ ∑ 𝛼𝑘𝑐

𝑖𝑗𝑅𝑒𝐿𝑈(
𝜕𝑌𝑐

𝜕𝐴𝑘
𝑖𝑗

)𝑗𝑖  (2.3) 

Here, 𝜔𝑘
𝑐  are the weights applied to the 𝑘-th feature map 𝐴𝑘  to generate the saliency map for 

class 𝑐. These weights are calculated by applying the ReLU function to the gradient of the class 

score 𝑌𝑐 concerning the 𝑘-th activation map 𝐴𝑘
𝑖𝑗, combined with pixel-wise weighting 

coefficients 𝛼𝑘𝑐
𝑖𝑗. The ReLU function ensures that only positive gradients are considered, which 

contributes to better localization of the regions of interest. The pixel-wise weighting coefficients 

𝛼𝑘𝑐
𝑖𝑗 are derived from the higher-order derivatives of the class score 𝑌𝑐 with respect to the 

feature map activations, as shown in equation (2.4). 

𝛼𝑘𝑐
𝑖𝑗 =

𝜕2𝑌𝑐

(𝜕𝐴𝑘
𝑖𝑗)

2

2
𝜕2𝑌𝑐

(𝜕𝐴𝑘
𝑖𝑗)

2+∑ ∑ 𝐴𝑘
𝑎𝑏𝑏𝑎 {

𝜕3𝑌𝑐

(𝜕𝐴𝑘
𝑖𝑗)

3}
 (2.4) 
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The terms ∑ ∑ 𝐴𝑘
𝑎𝑏𝑏𝑎  account for the contribution of all spatial locations in the feature map, 

𝜕2𝑌𝑐

(𝜕𝐴𝑘
𝑖𝑗)

2 represents the second-order partial derivative of the class score regarding the activation 

map, and 
𝜕3𝑌𝑐

(𝜕𝐴𝑘
𝑖𝑗)

3 represents the third-order partial derivative of the class score about the 

activation map. By incorporating these higher-order derivatives, Grad-CAM++ provides a more 

nuanced and precise weighting of the feature map activations, leading to better localization and 

interpretability of the model’s focus areas. An overview of Grad-CAM and Grad-CAM++ is 

shown in Figure 2.4. 

 

Figure 2.4. Overview of Grad-CAM and Grad-CAM++ 

Score-CAM. Score-CAM is a post hoc visual explanation method for CNNs that enhances 

model interpretability by visualizing the importance of input features without relying on gradient 

information. Unlike gradient-based methods, Score-CAM derives activation map weights based 

on the forward passing score on the target class, ensuring intuitively understandable and effective 

visual explanations. To determine the importance of each activation map, Score-CAM uses the 

channel-wise increase in confidence (CIC) denoted as ∆𝑆𝑘 in equation (2.5). 

∆𝑆𝑘 = 𝑓(𝑋 ∙ 𝐻𝑘 ) − 𝑓(𝑋) (2.5) 

In this equation, 𝑓(𝑋) is the baseline score function that evaluates the original input image and 

𝑓(𝑋 ∙ 𝐻𝑘) is the score obtained by the element-wise multiplication of the input image 𝑋 with the 

upsampled and normalized 𝑘-th activation map 𝐻𝑘 . This equation measures the change in the 

model’s output score when the input image is masked by the activation map, effectively 

quantifying the contribution of each activation map to the final prediction. Score-CAM then 

normalizes these changes in class scores using a softmax function to ensure the weights sum to 

one. 
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This normalization step shown in equation (2.6) guarantees that the importance weights of the 

activation maps are proportional and comparable, where 𝑗 indexes all activation maps during the 

normalization step to compute the final weights. The final saliency map is generated by linearly 

combining the normalized CIC scores with the corresponding activation maps. A ReLU function 

is applied to this linear combination to ensure that only positive contributions are considered, 

enhancing the clarity and precision of the visual explanation (Wang et al. 2020). As shown in 

Figure 2.5, the process begins with Phase 1, where activation maps are extracted. Each activation 

map functions as a mask on the original image, calculating its forward-passing score for the 

target class. In Phase 2, which is repeated four times, the final result is generated by linearly 

combining score-based weights with the activation maps. Both Phase 1 and Phase 2 employ the 

same CNN module as the feature extractor. 

𝜔𝑘 =
exp(∆𝑆𝑘)

∑ exp(∆𝑆𝑗)𝑗
 (2.6) 

 

Figure 2.5. Pipeline of Score-CAM 

While CAM-based methods provide valuable insights, their effectiveness hinges on the gradients 

derived from the target class score in relation to the feature maps of the tested convolutional 

layer (the final convolutional layer in this case). Consequently, they may overlook finer details 

inherent in earlier network layers. Additionally, there is a propensity in CAM-based methods to 

produce heatmaps that inadequately align with actual object boundaries (Draelos and Carin 

2020). In the domain of winter RSC recognition, this discrepancy can be amplified, as the 

absence of concrete objects (pavement is the most direct object in our case) makes precise 

localization challenging. As a result, there may be a risk of imprecise identification of crucial 

regions, impeding accurate assessment of the CNN’s performance in recognizing RSC. 
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Additionally, the heatmap visualization of CAM-based methods is designed to emphasize 

regions where the model’s activation is high. As a result, areas with low activations, which may 

be considered as negatively contributing, are not directly highlighted. 

2.1.3.2 SHAP 

To address the constraints inherent in CAM-based methods and provide a more thorough 

evaluation of CNN’s performance, SHAP was also employed in this study. SHAP is a theoretical 

game approach designed to provide explanations for the output of any ML model. The 

fundamental principle of SHAP is to explain the prediction for a specific instance by 

decomposing it into contributions from individual feature values. These feature values are treated 

as participants in a cooperative game, where the prediction serves as the game’s payout. In this 

cooperative game setting, Shapley values (SVs), defined as the marginal contribution of each 

variable value to a prediction across all subsets of features, offer a fair allocation of the payout 

among the feature values, thus providing insights into their relative importance. It is important to 

note that in this context, “feature value” refers to the numerical or categorical value associated 

with a specific feature within the instance. The SV measuring the contribution (feature 

importance) of the 𝑝-th feature can be defined as follows: 

𝑆𝑉 = ∑
|𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!
{𝐸[𝑓(𝑋)|𝑋𝑆∪𝑝 = 𝑥𝑆∪𝑝] − 𝐸[𝑓(𝑋)|𝑋𝑆 = 𝑥𝑆]}𝑆⊆𝐹\{𝑝}  (2.7) 

where 𝐹 is the entire set of features, 𝑆 denotes a subset, 𝑆 ∪ 𝑝 is the union of the subset 𝑆 and 

feature 𝑝, and 𝐸[𝑓(𝑋)|𝑋𝑆 = 𝑥𝑆] is the conditional expectation of model 𝑓 for the subset 𝑆. 

Further details regarding SHAP and SV can be found in Lundberg (2018). 

When SHAP is applied to CNN models, the game payout can be interpreted as the image 

classification accuracies, while each pixel value of an image represents an individual instance. In 

essence, SVs can be leveraged to ascertain the importance of pixels at a granular level when 

classifying images. As shown in Figure 2.6, the right-hand side showcases the SVs assigned to 

each pixel within that image. In this representation, red cells indicate a positive contribution to 

the prediction, while blue cells represent a negative contribution. The intensity of both red and 

blue cells corresponds to the level of importance assigned to each pixel. 
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Figure 2.6. Illustration of image area importance analysis 

Among all existing XAI techniques, SHAP stands out by leveraging SVs to equitably distribute 

the contribution of each feature (e.g., pixels of image data in this case) to the model’s output. 

This unique attribute, coupled with SHAP’s ability to offer consistent local and global 

interpretability for model outputs, has made it the preferred XAI technique for delving into and 

visualizing the rationale behind a CNN’s predictions for winter RSC based on imagery data 

(Burkart and Huber 2021, Haar et al. 2023, Kashifi 2024). 

By employing SHAP as the XAI method in this study, we aim to unravel the internal workings of 

CNN models for winter RSC prediction, gaining insights into the prediction process at the pixel-

level. Ultimately, the utilization of SHAP clarifies the underlying decision-making process and 

provides a comprehensive understanding of the factors influencing the predictions made by the 

CNN models. 

Building on the unique contributions of both Grad-CAM and SHAP, this study leverages the 

complementary strengths of visual and quantitative interpretability. The combined application of 

Grad-CAM’s intuitive visualizations and SHAP’s detailed feature contribution analysis enables a 

more holistic understanding of the CNN models. This dual approach harnesses both qualitative 

visual cues and quantitative data, enriching our insights into the model’s decision-making 

processes and justifying the use of both methodologies over relying on a single technique. 

2.1.4 Snow Coverage Ratio Estimation 

In addition to using CNNs to classify general RSC categories for RWIS imagery, this project 

also developed two distinct DL-based computer vision techniques to convert RWIS imagery into 

a numerical value, known as SCR, to quantify the snow hazard level of road sections. The 

overall approach is demonstrated in Figure 2.2. 

2.1.4.1 Pix2pix Winter-to-Summer Image Translation 

The first step involved in the proposed approach is to translate the winter images into their 

corresponding summer images. This translation can be done by using a DL algorithm, namely 
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pix2pix GAN. Pix2pix GAN was presented by Isola et al. (2017) and is a model designed for 

general-purpose image-to-image translation. Like all other types of GAN models, its architecture 

is comprised of a generator (𝐺) model for outputting new plausible synthetic images (i.e., 

fake/generated images) and a discriminator (𝐷) model that classifies images as either real (from 

the dataset) or fake (generated by 𝐺). The 𝐷 model is updated directly, whereas the 𝐺 model is 

updated via the 𝐷 model. As such, the two models are trained simultaneously in an adversarial 

process where 𝐺 seeks to fool the 𝐷, and the 𝐷 seeks to identify the counterfeit images. 

As the pix2pix model is developed specifically for image translation, its generation of the output 

image is conditional on its input (i.e., the source image 𝑥), hence the name conditional GAN 

(cGAN). cGAN learns a mapping from the input image (𝑥) and random noise vector (𝑧) to the 

target image (𝑦). The objective of a cGAN can be expressed as equation (2.8). 

𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) = 𝐸𝑥,𝑦[ 𝑙𝑜𝑔 𝑙𝑜𝑔 𝐷(𝑥, 𝑦) ] + 𝐸𝑥,𝑧[ 𝑙𝑜𝑔 𝑙𝑜𝑔 (1 − 𝐷(𝑥, 𝐺(𝑥, 𝑧)))] (2.8) 

where 𝐺 tries to minimize the objective against an adversarial 𝐷 that tries to maximize it, i.e., 

𝐺∗ = 𝑎𝑟𝑔𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) (2.9) 

Previous studies (Isola et al. 2017, Yang et al. 2021) also suggest mixing the GAN objective with 

a more traditional loss (e.g., 𝐿1 loss). The 𝐷’s job remains unchanged, but the 𝐺 is tasked with 

not only fooling the 𝐷 but also being near the ground truth output. 𝐿1 loss is typically chosen as 

it encourages less blurring than others (e.g., 𝐿2 loss). Equation (2.10) shows what the 𝐿1 loss 

function is. 

𝐿𝐿1(𝐺) = 𝐸𝑥,𝑦,𝑧[‖𝑦 − 𝐺(𝑥, 𝑧)‖1] (2.10) 

Then, by combining these functions, the final objective can be expressed as follows: 

𝐺∗ = 𝑎𝑟𝑔𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) + 𝜆𝐿𝐿1(𝐺) (2.11) 

The 𝐷 is provided with both a source image (𝑥, i.e., winter image) and the target image (𝑦, i.e., 

summer image). It must also determine whether the target is a plausible transformation of the 

source image. A high-level view of the pix2pix GAN architecture is shown in Figure 2.7. The 𝐺 

is trained via adversarial loss, which encourages the 𝐺 to generate plausible images 𝐺(𝑥) in the 

target domain. The 𝐺 is also updated via 𝐿1 loss measured between the generated image and the 

expected output image. This additional loss encourages the 𝐺 model to create plausible 

translations of the source image. 
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Figure 2.7. Overview of pix2pix GAN architecture 

The pix2pix GAN has been utilized in other studies on a wide range of image-to-image 

translation tasks such as converting maps to satellite photographs, converting black and white 

photographs to color, and converting sketches of products to product photographs (Ganguli et al. 

2019, Dong et al. 2017, Ghosh et al. 2019). 

2.1.4.2 Drivable Area Extraction using Semantic Segmentation 

With the implementation of pix2pix GAN, the winter images can be translated into their 

corresponding summer images. However, in order to obtain the SCR, the drivable areas need to 

be identified by comparing the exposed pavement between the images. For this purpose, another 

DL algorithm called SS was applied. SS aims to classify each pixel in an image and hence can be 

thought of as a classification problem per pixel (Wang et al. 2018a). Since this study is only 

interested in using SS to classify each pixel into drivable or nondrivable areas, a modified binary 

cross-entropy loss is applied here as the objective function (i.e., the loss function) for SS model 

development. Equation (2.12) depicts the loss function of SS. 

𝐿𝑆𝑆 = −
1

𝑛
∑ [𝑡𝑙𝑜𝑔 (𝑝𝑟𝑜𝑏) + (1 − 𝑡)𝑙𝑜𝑔 (1 − 𝑝𝑟𝑜𝑏) ]𝑛  (2.12) 

where 𝑛 is the total number of pixels within the segmented mask, 𝑡 is the ground truth label for 

drivable area (if drivable 𝑡 = 1, otherwise 0), and 𝑝𝑟𝑜𝑏 is the predicted probability for a pixel of 

being drivable area. 

There are generally two types of SS model architectures, namely fully convolutional network 

(FCN) and U-Net. Both share the core idea of “downsampling-upsampling” or “encoder-

decoder.” The encoder first reduces the spatial dimensions in every layer and increases the 

channels, aka downsampling. The decoder then increases the spatial dimensions while reducing 

the channels, a process that is known as upsampling. But before making a prediction, the spatial 

dimensions are restored for each pixel in the input image. Since U-Net is less computationally 

expensive and minimizes information loss, this study utilized a U-Net SS model to detect the 

drivable areas of the input images. A typical U-Net architecture is shown in Figure 2.8. 



20 

 

Figure 2.8. Typical U-Net architecture for semantic segmentation 

Three metrics are typically used to evaluate the performance of the SS models (model-segmented 

mask versus manually annotated mask). The first is overall pixel accuracy, defined as the 

percentage of pixels correctly classified in the validation dataset. The second is intersection-

over-union (IoU), also referred to as the Jaccard Index, which measures the number of pixels in 

common between the target mask (i.e., the manually annotated mask) and the prediction mask 

(i.e., the model-segmented mask) divided by the total number of pixels present across both 

masks. Similar to IoU but more sensitive to incorrect annotations is the third metric called the F1 

score or Dice coefficient. This metric is calculated by overlapping the areas between two masks 

divided by the total number of pixels. Equations (2.13) and (2.14) illustrate the computation 

procedures of 𝐼𝑜𝑈 and the F1 score, respectively. 

𝐼𝑜𝑈 =
𝑡𝑎𝑟𝑔𝑒𝑡∩𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑡𝑎𝑟𝑔𝑒𝑡∪𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
 (2.13) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2×(𝑡𝑎𝑟𝑔𝑒𝑡∩𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)

𝑡𝑎𝑟𝑔𝑒𝑡+𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
 (2.14) 

2.1.4.3 Road Surface Condition Recognition via Snow Coverage Ratio 

As illustrated in Figure 2.2, the final step is to calculate the SCR by comparing the input image 

and its corresponding translated summer image to determine the RSC from an input image (e.g., 

a winter image). During this process, a pixel-level comparison is utilized to calculate how much 

drivable areas in the segmented mask of the winter image and translated summer image overlap. 

For example, if pixels in 𝑤1, ℎ1 and 𝑤2, ℎ2 are classified as drivable areas in the summer image, 

while the winter image only classifies 𝑤1, ℎ1 as drivable areas, then the snow coverage ratio is 

1/2=50%. 
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2.2 Road Surface Conditions Spatial Mapping via Machine Learning and Geostatistics 

2.2.1 The Idea 

While DL-based computer vision techniques are effective for estimating RSC from both mobile 

and stationary imagery, they are inherently limited to point measurements. Given the vast 

expanse of the highway network, combined with the limited number of RWIS stations and the 

infrequent deployment of mobile sensors, many areas remain unmonitored, leaving RSC entirely 

unknown. To address this gap, we previously developed a geostatistical interpolation method 

known as RK to estimate RSC across the entire highway network using a limited number of 

point measurements (Wu et al. 2022b). Although RK can effectively infer RSC in unmonitored 

areas, it has some limitations: it is unable to handle categorical variables (such as CNN 

classification results from RWIS), and our previous RK models were tailored to specific weather 

events, making them challenging to apply to new, unanticipated weather scenarios. 

To overcome these challenges, we developed a novel NIK method, which directly uses CNN 

classification results to interpolate categorical RSC for all unmonitored areas along the highway 

network. To ensure the broader applicability of our RK models, we revisited and enhanced them 

by integrating an ML-based clustering algorithm (i.e., the 𝐾-means algorithm) to group similar 

weather events. For each cluster, we quantified the spatial structures using semivariograms, after 

which the RK method was applied to complete the interpolation for unmonitored areas. The 

following subsections elaborate on each component, including their evaluation methods and a 

quantification of the potential benefits of the refined RK method. 

2.2.2 Nested Indicator Kriging for Categorical Road Surface Conditions Estimation 

To generate a comprehensive map of real-time (categorical) RSC, NIK is employed to fill in the 

unmonitored areas using the generated RSC classification results from CNNs. Considering the 

larger spatial coverage and higher visibility of the road during nighttime, AVL image data are 

employed over RWIS image data to estimate conditions in unmonitored areas. Within the 

system, interpolation is applied as one of the last steps prior to final visualization, as shown in 

Figure 2.1. 

Since the variables of interest are categorical (i.e., the RSC), the spatial interpolation method 

indicator kriging (IK) is employed to estimate these variables at unmonitored points along the 

highways. IK, a geostatistical approach, operates similarly to ordinary kriging (OK), using the 

spatial correlation between data points to determine model values (Solow 1986, Arslan 2012). 

Equation (2.15) expresses how OK and IK estimate a point of interest using a set of observations 

(𝑛𝑜𝑏𝑠 in total) at known locations. 

�̂�(𝑝𝑜𝑖) = 𝑚(𝑝𝑜𝑖) + ∑ 𝜆𝑘𝑤[𝑍(
𝑛𝑜𝑏𝑠
𝑘𝑤=1 𝑝𝑜𝑖𝑘𝑤) − 𝑚(𝑝𝑜𝑖𝑘𝑤)] (2.15) 

where 𝑍 is the variable of interest (RSC in this case), �̂�(𝑝𝑜𝑖) is the estimated value at a location 

of interest. The terms 𝑚(𝑝𝑜𝑖) and 𝑚(𝑝𝑜𝑖𝑘𝑤) are the deterministic part or the expected values 
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(means) of the random variables 𝑍(𝑝𝑜𝑖) and 𝑍(𝑝𝑜𝑖𝑘𝑤), and 𝜆𝑘𝑤is a kriging weight determined 

by the spatial dependence structure of the residual. A semivariogram quantifies this spatial 

dependence, as shown in Figure 2.9. The nugget represents microscale variations, measurement 

errors, or spatial variability at smaller distances. The range indicates the maximum distance 

where data points are autocorrelated, and the sill represents the variance of the random field 

(Curran 1988). 

 
Adapted from Wu et al. 2022c 

Figure 2.9. Standard semivariogram  

IK is a well-known method for interpolating categorical values in a lot of applications (Smith et 

al. 1993, Diodato and Ceccarelli 2004, Delbari et al. 2016). Instead of assuming a normal 

distribution at each estimate location, the standard IK builds the cumulative distribution function 

(CDF) at each point based on the behavior and correlation structure of surrounding indicator-

transformed data points. To achieve this, IK requires a series of threshold values that span the 

range of data values in the set. These threshold values, known as IK cutoffs, are used to 

numerically construct the CDF for the estimation point. For each IK cutoff, data in the vicinity 

are transformed into binary values: 0 if the data exceed the threshold and 1 if they are below it. 

IK then estimates the probability that the estimation point is less than the threshold value, based 

on the transformed data and the correlation structure of the IK cutoffs. However, in our study, 

the CNN outputs categorical values (i.e., Bare, Partially Snow Covered, Fully Snow Covered), 

lacking continuous numerical values necessary for setting IK cutoffs. This means that these three 

RSC categories cannot be estimated within a single IK interpolation process. Recognizing the 

strengths and limitations of standard IK, we proposed a NIK method to directly predict multiple 

categorical variables. This approach involves feeding categorical variables into a nested 

structure, allowing for the estimation of more than two categories. 

As shown in equation (2.16) the indicator-transformed variable for each point 𝑘𝑤 is two-

dimensional, with each component being a binary variable based on the CNN prediction 

𝑍(𝑝𝑜𝑖𝑘𝑤), as shown in equations (2.17) and (2.18) Consequently, the NIK method employs two 

layers to estimate RSC for each unknown point. As shown in equation (2.19) the first layer uses 

standard IK to determine whether the unknown point is Bare conditions. If it is not, the second 

layer again employs standard IK to distinguish between Partially Snow Covered and Fully Snow 
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Covered conditions. This approach necessitates constructing two semivariograms for each 

estimation. 

𝐹(𝑍(𝑝𝑜𝑖𝑘𝑤)) = {𝐹1(𝑍(𝑝𝑜𝑖𝑘𝑤)), 𝐹2(𝑍(𝑝𝑜𝑖𝑘𝑤))} (2.16) 

𝐹1(𝑍(𝑝𝑜𝑖𝑘𝑤)) = {
0, 𝑍(𝑝𝑜𝑖𝑘𝑤) = 𝐵𝑎𝑟𝑒

1, 𝑍(𝑝𝑜𝑖𝑘𝑤) = 𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦 𝑜𝑟 𝐹𝑢𝑙𝑙𝑦 𝑆𝑛𝑜𝑤 𝐶𝑜𝑣𝑒𝑟𝑒𝑑
 (2.17) 

𝐹2(𝑍(𝑝𝑜𝑖𝑘𝑤)) = {
0, 𝑍(𝑝𝑜𝑖𝑘𝑤) = 𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦 𝑆𝑛𝑜𝑤 𝐶𝑜𝑣𝑒𝑟𝑒𝑑

1, 𝑍(𝑝𝑜𝑖𝑘𝑤) = 𝐹𝑢𝑙𝑙𝑦 𝑆𝑛𝑜𝑤 𝐶𝑜𝑣𝑒𝑟𝑒𝑑
 (2.18) 

𝑍(𝑥) = {

𝐵𝑎𝑟𝑒, 𝐹1̂(𝑍(𝑝𝑜𝑖)) < 0.5

𝑃𝑎𝑟𝑡𝑙𝑦, 𝐹1̂(𝑍(𝑝𝑜𝑖)) ≥ 0.5 & 𝐹2̂(𝑍(𝑝𝑜𝑖)) < 0.5 

𝐹𝑢𝑙𝑙, 𝐹1̂(𝑍(𝑝𝑜𝑖)) ≥ 0.5 & 𝐹2̂(𝑍(𝑝𝑜𝑖)) ≥ 0.5

 (2.19) 

2.2.3 Regression Kriging for Continuous Road Surface Conditions Estimation 

The NIK introduced in the previous section takes CNN classification results as model input to 

spatially map the categorical RSC along the highway network. However, RSC variables can also 

be continuous numbers, such as RST and RSI. In a previous study (Wu et al. 2022c), we 

developed and demonstrated the effectiveness of RK in estimating continuous RSC for 

unmonitored areas of the highway network. RK is another state-of-the-art geostatistical 

interpolation technique that combines regression modeling and OK interpolation to estimate the 

spatial variability of a target variable based on its spatial autocorrelation (Cressie 1988) across 

the study area. In other words, the main difference between RK and NIK or other kriging-based 

interpolation methods (e.g., OK) is that RK assumes the determinist part of the target variable 

has a trend with some external factors. In our previous studies, an MLR model was first 

calibrated to predict the trend parts (i.e., the deterministic components) of the variables at each 

unmonitored location. The detrended parts (i.e., the residuals or the stochastic components) 

obtained from the MLR were then interpolated using OK and preconstructed semivariograms to 

obtain a spatially continuous estimate of the residuals. This estimate was then added to the 

predicted values of the MLR to obtain the final RK estimate of the target variable at each 

unmonitored location in the study area. Equations of RK are shown in equation (2.20), more 

details can be found in (Wu et al. 2021, Wu et al. 2022b). 

�̂�(𝑝𝑜𝑖) = �̂�(𝑝𝑜𝑖) + �̂�(𝑝𝑜𝑖) = ∑ �̂�𝑙𝑖 ∙ 𝑞𝑙𝑖(𝑝𝑜𝑖) + ∑ 𝜆𝑘𝑤 ∙ 𝑒(𝑝𝑜𝑖𝑘𝑤)
𝑛𝑜𝑏𝑠
𝑘𝑤=1

𝑛𝑎𝑢𝑥
𝑙𝑖=0  (2.20) 

where �̂�(𝑝𝑜𝑖) is the fitted deterministic part (i.e., the trend part), �̂�(𝑝𝑜𝑖) is the interpolated 

residual (i.e., the detrended part), �̂�𝑙𝑖 are coefficients of the estimated drift model, �̂�0 is the 

estimated intercept, 𝑛𝑎𝑢𝑥 is the number of auxiliary variables, 𝜆𝑘𝑤  are kriging weights, and 

𝑒(𝑝𝑜𝑖𝑘𝑤) is the regression residual. The regression coefficients �̂�𝑙𝑖  can be determined by any 

appropriate fitting method (e.g., ordinary least squares [OLS]), or, optimally, by using 
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generalized least squares (GLS) to take the spatial correlation between individual observations 

into account (Cressie 2015). 

RK can be a useful technique to improve the accuracy of predictions for variables with complex 

spatial patterns and limited data. It does so by incorporating auxiliary information such as 

geographical and topographical attributes of the target variable and its spatial autocorrelation. 

However, as previously mentioned, the RSC spatial variation patterns are diverse within different 

weather events. Constructing an exclusive MLR and semivariogram for each weather event is not 

feasible. Therefore, a more generalized RK model that can be widely applied to all weather 

events is needed. This is the main reason weather event characterization is necessary. 

2.2.4 Weather Events Characterization via 𝐾-means Algorithm 

To characterize weather events, the 𝐾-means algorithm is employed in the proposed framework. 

𝐾-means is an unsupervised clustering algorithm used to group similar data points into 𝐾 

clusters. The algorithm starts by selecting 𝐾 random centroids, where 𝐾 is a user-defined 

parameter. It then iteratively assigns each data point to its closest centroid and recomputes the 

centroid of each cluster based on the data points assigned to it. This process is repeated until the 

algorithm converges and the centroids no longer move. The final result is 𝐾 clusters, where each 

cluster represents a group of data points with similar characteristics. The 𝐾-means algorithm is 

widely used in various fields such as data mining (Wu 2012), image processing (Zheng et al. 

2018), and pattern recognition (Peng et al. 2013).  

In our study, the 𝐾-means algorithm is used to cluster weather events by their associated RSC 

variation patterns. Figure 2.10 demonstrates the process using a two-cluster example (i.e., 𝐾=2). 

The RSC variation patterns representing weather events obtained from the RWIS stations are 

grouped. The red lines in the center of the clusters are the centroids, which are the representative 

RSC variation patterns associated with the weather events within a given cluster. To determine 

the centroids (i.e., the red lines), the 𝐾-means algorithm is set to minimize the distance (i.e., 

difference) between each pair of RSC values of the weather events (i.e., the RWIS point 

measurements) and their corresponding centroids (determined and assigned by the 𝐾-means 

algorithm). The objective function is shown in equation (2.21). 
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Figure 2.10. Demonstration of 𝑲-means algorithm for weather event characterization 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝐽 =  ∑ ∑ (‖𝑊𝐸𝑖 − 𝐶𝑘‖)2𝐾
𝑘=1

𝑛𝑤𝑒
𝑖=1  = ∑ ∑ ∑ (𝑊𝐸𝑖𝑗 − 𝐶𝑘𝑗)2𝐾

𝑘=1
𝑛𝑟𝑤𝑖𝑠
𝑗=1

𝑛𝑤𝑒
𝑖=1  (2.21) 

where 𝑊𝐸𝑖  is the 𝑖𝑡ℎ weather event represented by 𝑛𝑟𝑤𝑖𝑠 RWIS point measurements of RSC (i.e., 

𝑊𝐸𝑖 = {𝑅𝑆𝐶𝑖1, 𝑅𝑆𝐶𝑖2, … , 𝑅𝑆𝐶𝑖𝑛𝑟𝑤𝑖𝑠
}); 𝐶𝑘 is the centroid of the 𝑘𝑡ℎ cluster and consists of 𝑛𝑟𝑤𝑖𝑠 

𝑅𝑆𝐶 values; and ‖𝑊𝐸𝑖 − 𝐶𝑘‖ is the Euclidean distance between weather events, 𝑊𝐸𝑖, and its 

corresponding assigned centroid, 𝐶𝑘, iterated overall all 𝑛 weather events in the 𝑘𝑡ℎ cluster, for 

all 𝐾 clusters. This process is demonstrated in Figure 2.10 (i.e., 𝑊𝐸1, 𝐶𝑘 , and 𝑊𝐸2). 

 

Figure 2.11. Demonstration of benefits quantification process 
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When a new weather event occurs, its RSC variation pattern is compared with the centroids and 

subsequently assigned to the cluster with the highest similarity to its centroid. Afterwards, the 

MLR and the semivariogram models corresponding to that cluster are used to estimate the RSC 

values through the RK method. This process enables us to accurately estimate RSC values for 

new weather events using our developed models. 

2.2.5 Benefits Quantification 

As previously mentioned, this project not only refined the RK method for continuous RSC 

estimation but also aimed to explore the potential benefits of obtaining spatially rich RSC data 

from the refined RK method. To quantify these benefits in unmonitored areas where practical 

implementation has not yet occurred, we employed a simulation-based approach. This approach 

involved comparing the number of RWIS stations required under our proposed framework with 

those required by the existing practice (i.e., the naïve method). By analyzing the changing 

profiles of RSC monitoring levels relative to the number of RWIS stations, we can assess the 

advantages of our approach. The naïve method assumes that the nearest RWIS measurement 

represents each unmeasured location. For simplicity, we refer to the refined RK methods as the 

“RK method” in this report.  

As depicted in Figure 2.11, in striving for an equivalent RSC monitoring capability, we explicitly 

assumed that the actual number of RWIS stations used surpassed the theoretically required 

number (such a hypothesis can be verified through case-specific assessments, as demonstrated in 

the subsequent case study). This assumption suggests that implementing our proposed methods 

can potentially obviate the need for a certain number of RWIS stations. These avoided RWIS 

stations can be translated into reduced future investments or the possibility of retiring existing 

RWIS stations. Furthermore, the benefits extend beyond mere cost reduction. Utilizing our 

methods to estimate RSC in unmonitored areas ensures that the efficacy of the avoided RWIS 

stations persists. This, in turn, can lead to heightened traffic safety, improved mobility, and a 

more efficient utilization of maintenance materials.
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3 STUDY AREA AND DATA 

To assess the feasibility and robustness of our proposed methods, we conducted real-world case 

studies. This chapter outlines the study area and the data used with the corresponding results 

presented in Chapter 4. 

3.1 Study Area 

As noted earlier, this project expands the study area compared to the previous one. The selection 

of the study area takes into account various factors that may influence the spatial variability of 

RSC, including geographical, topographical, and traffic-related elements. Additionally, the 

selection process considers maintenance needs, as well as the cities and populations that can be 

served. The chosen study area consists of two major highways: I-35 and I-80 in Iowa, US. These 

highways intersect at Des Moines, with I-35 running from south to north and I-80 traveling from 

west to east, together covering approximately 845.7 km within Iowa. Given the significance of 

these highways to both the United States and the state of Iowa, the Iowa Department of 

Transportation (DOT) has made substantial efforts to monitor and improve the RSC along these 

routes. The described study area can be seen in Figure 3.1. 

 

Figure 3.1. Study area – I-35 and I-80 in Iowa 

3.2 Data Description and Integration 

3.2.1 Road Surface Temperatures and RSC Images 

Two data sources for RST and RSC imagery were utilized to develop and evaluate our proposed 

methods. The first source involved Iowa’s snowplow trucks, which are equipped with AVL 

systems and Global Positioning System (GPS) units to track the locations of the winter 

maintenance vehicle fleet. For simplicity, these data are referred to as “AVL data” throughout 
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this report. These AVL-equipped trucks also use standard and infrared thermometers to measure 

air temperature and RST every 10 seconds along the roadway. A vehicle-mounted dash camera 

captures one RSC image every 2 to 10 minutes. In total, 2,895,318 RST records and 24,270 RSC 

images were collected within the study area. 

To eliminate measurement errors and local random fluctuations in the AVL RST data, raw RST 

points were aggregated both spatially (every 500 m) and temporally (every hour) along the road 

segments. Additionally, to ensure sufficient spatial coverage, only hourly periods with over half 

of the total length of each highway and more than 50 aggregated data points per highway were 

retained for modeling (Olea 2006).  

The second data source was stationary RWIS stations located along the selected highways. For 

simplicity, these data are referred to as “RWIS data” throughout this report. These RWIS stations 

provide real-time weather-related information to support more informed decision-making for 

winter maintenance activities. The Iowa DOT has installed 25 RWIS stations (12 along I-35 and 

13 along I-80) on these highways, most of which are equipped with cameras (63 cameras in total, 

positioned at different angles) that offer live views and record images of road segments. These 

images help authorities make critical WRM decisions. 

Collectively, RWIS stations contributed to the collection of 2,075 RST records (within the same 

time frames as the AVL RST data) and 12,900 RSC images within the study area. The 

descriptive statistics of the hourly RST along the study area are shown in Table 3.1, while the 

RWIS images were manually labeled according to the classification scheme outlined in Table 

3.2, using a web-based labeling platform as shown in Figure 3.2. The AVL imagery used in this 

project remained consistent with that of the previous project and continued to be utilized. For 

more details on the AVL imagery, please refer to Wu et al. (2021). 

Table 3.1. Descriptive statistics of collected RST data 

Highway Minimum (℃) Mean (℃) Maximum (℃) Standard Deviation 

I-35 -17.78 -3.63 4.44 3.20 

I-80 -12.78 -2.67 3.33 2.89 
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Table 3.2. Definition of types of RSC regarding snow coverage 

Sample Image Description Four-Class Category 

 

The pavement cross section in all 

lanes is completely clear of snow. 
Bare 

 

The pavement cross section in all 

lanes is lightly covered with snow 

(5% to 50%). 

Lightly Snow 

Covered 

 

The pavement cross section in all 

lanes is moderately to heavily 

covered with snow (50% to 100%). 

Moderately to 

Heavily Snow 

Covered 

 

The pavement cross section cannot 

be identified. 
Undefined 

 

 

Figure 3.2. Web-based manual image classifier 

Labeled AVL images from the previous project, along with the CNNs developed based on them, 

were utilized to explore the internal workings of the CNNs using Grad-CAM and SHAP, 

specifically focusing on mobile images to assess their transparency and reliability. The newly 

labeled RWIS images were then used to train all-new CNNs and validate their accuracies. To 
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further investigate the transparency and reliability of the RWIS CNN models, three CAM-based 

XAI techniques were subsequently applied. 

Additionally, to evaluate the proposed approach for SCR estimation, RSC images captured by 63 

RWIS cameras in the study area were downloaded, annotated, and paired to develop two distinct 

DL-based models: pix2pix GAN and SS. The RWIS images used for these models covered seven 

winter months (February 2019, December 2019, January 2020, March 2020, January 2022, 

November 2023, and December 2023) and three summer months (June 2019, October 2019, and 

June 2023). More winter images were needed due to the inconsistent and highly variable snow 

cover conditions, whereas the RSC during the summer remained relatively unchanged. To 

develop the pix2pix GAN over 6,566 winter-summer images were paired, while to develop the 

SS model 3,460 images (2,814 wintertime, 646 summertime) were carefully annotated. During 

the image annotation process, only two labels were used: Drivable Areas (denoted as “road,” 

typically indicate exposed pavement) and Others (nondrivable areas, such as snowy areas, sky, 

trees, etc.). Figure 3.3 and Figure 3.4 depict examples of paired winter and summer images used 

for training pix2pix GAN as well as annotated masks of drivable areas for training the SS model. 

Source Image Target Image 

  

  

Figure 3.3. Examples of source and target images for pix2pix GAN training 
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Figure 3.4. Examples of annotated masks for SS training 

3.2.2 Digital Elevation Model 

To obtain the geographical and topographical features of the Iowa road network that is included 

in the study area, a digital elevation model (DEM) with a resolution of 3m data (128 GB) was 

downloaded from the Iowa Geospatial Data website (https://geodata.iowa.gov/) using a Python 

web crawler script. The elevation, slope, and aspect along the study area were then extracted 

from the DEM using ArcGIS 10.7 (Desktop, ESRI ArcGIS, 2011). The resulting map files for all 

topographical features have a size of 484 GB. The visualization of the DEM (elevation only) can 

be found in Figure 3.5. 

https://geodata.iowa.gov/
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Figure 3.5. Data preparation: DEM of I-35 and I-80 



33 

4 RESULTS AND DISCUSSION 

By using the collected data described above, case studies were conducted to demonstrate the 

feasibility, robustness, and reliability of each proposed method. This chapter presents and 

discusses the results. 

4.1 Automated Road Surface Conditions Recognition 

4.1.1 Mobile Images 

4.1.1.1 CNN-RSC 

The RSC image datasets used in this study were collected by Iowa’s AVL system. A total of 

10,395 images were collected and manually labeled into four categories: Bare, Partial Snow 

Coverage, Full Snow Coverage, and Undefined. Figure 4.1 provides examples of images 

representing each of these categories. 

 
Adapted from Wu and Kwon 2022 

Figure 4.1. Examples of AVL RSC images 

As documented in our previous report (Wu et al. 2021), a relatively simple architected CNN 

model was developed and is hereafter referred to as baseline9 (as it will appear in the following 

section). Utilizing the Tensorflow application programming interface (API) and Compute 

Canada with a 32G graphic processing unit (GPU), the design and evaluation of baseline9 were 

carefully carried out. Various configurations of layers, such as pooling layers, convolutional 

layers, and dropout layers, were extensively tested. Ultimately, the baseline9 model was 

 a e  a  ia   n      e a e

 u    n      e a e  n e ine 
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constructed with five convolutional layers (with ReLU activation functions), five maxpooling 

layers, and three dropout layers, each with a 50% dropout rate. Further details regarding the 

model can be found in Wu et al. (2022c). Figure 4.2 reveals the training and validation accuracy 

of this model, accompanied by a confusion matrix that highlights the validation accuracy for 

each RSC category. The obtained results affirm this CNN-based model’s exceptional 

performance in classifying RSC. 

 
Adapted from Wu et al. 2022c 

Figure 4.2. Model performance: (left) training accuracy and validation accuracy and 

(right) confusion matrix 

Nevertheless, questions concerning how the CNN model arrives at its predictions and whether 

the method is transferrable to other similar images or applications remain. These unknowns 

underline the necessity of investigating the internal prediction process of the model. Note that 

this study focuses solely on road conditions, and thus, the “Undefined” images that are too blurry 

for interpretation are exempt from the analysis. 

4.1.1.2 Localizing Important Regions via Grad-CAM 

As mentioned earlier, one of the key questions that needs to be answered is, How does the CNN 

model make its predictions based on the input images? More specifically, Are these predictions 

derived from learned image features or superficial similarities? 

Figure 4.3 illustrates visual examples showcasing CNN predictions (derived from baseline9). 

The Grad-CAM heatmaps are arranged in descending order of predicted probabilities (the 

prediction probability for each RSC is shown in Table 4.1), with colored regions indicating 

significant areas utilized by the CNN for prediction. The intensity of color reflects the 

importance attributed by the CNN. For example, in image P3 (Full Snow Coverage), the colored 

areas align predominantly with the snowy regions ahead of the truck, indicating full snow 

coverage RSC. Conversely, in P3 (Partial Snow Coverage), the colored areas cluster around 

irrelevant features such as wipers and surrounding regions with different coloration, suggesting 

partial snow coverage. However, the process by which the CNN determines the final prediction, 

such as choosing Full Snow Coverage over Partial Snow Coverage despite different highlighted 
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areas for the same image, remains unclear. Additionally, some Grad-CAM heatmaps exhibit 

inconsistencies. For instance, P2 (Partial Snow Coverage) lacks highlighted areas in the 

pavement but emphasizes the sky and truck head. A1 (Bare) highlights pavement but also 

irrelevant features like the truck head and surrounding areas. A3 (Full Snow Coverage) exhibits 

similar issues. These inconsistencies may arise from solely testing the last convolutional layer, 

leading to imprecise identification of important regions. Moreover, Grad-CAM (and other CAM-

based methods) fails to identify features negatively impacting CNN predictions. To address these 

limitations, another XAI technique, SHAP, was applied in this study. 

 

Figure 4.3. Examples of Grad-CAM for explaining CNN classifications 

Table 4.1. Examples of CNN classifications and Shapley values 

Image 
Bare Partial Full 

Prob. SSVs Prob. SSVs Prob. SSVs 

P1 100.0% 0.333 0.0% 0 0.0% 0 

P2 0.0% 0 100.0% 0.333 0.0% 0 

P3 0.0% -0.07 0.0% -0.031 100.0% 0.267 

A1 58.9% 0.145 41.1% 0.125 0.0% -0.025 

A2 40.5% 0.135 59.5% 0.198 0.0% 0 

A3 0.0% 0 40.6% 0.135 59.4% 0.198 

Note: Partial = Partial Snow Coverage; Full = Full Snow Coverage; Prob. = CNN prediction probability 
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4.1.1.3 Exploring Feature Contributions via SHAP 

Figure 4.4 provides SHAP-generated visual examples of the same images shown in Figure 4.3 

and their corresponding SVs. These colored images show particular image regions’ contribution 

to specific RSC categories: red pixels indicate positive contributions while blue pixels represent 

negative contributions. For example, image P1-Bare predominantly shows red in visible road 

areas, suggesting that the model correctly recognizes these regions with exposed pavement as 

bare RSC indicators. In contrast, some images, such as A1, exhibit ambiguous predictions (the 

prediction probability for each RSC is shown in Table 4.1) between categories like Bare and 

Partial Snow Coverage. This ambiguity may be attributed to the blending of features or the 

presence of characteristics that could be indicative of more than one category (for instance, the 

exposed pavement areas being red for the Bare prediction and blue for the Partial Snow 

Coverage prediction). Similarly, the shoulder lane with snow on top appears blue in the Bare 

prediction and red in the Partial Snow Coverage prediction. In these instances, the color coding 

reveals a complex interplay between different areas contributing to various predictions, thereby 

demonstrating the model’s deep understanding of the input and its ability to detect overlapping 

features for accurate classification. Overall, these examples demonstrate the CNN’s ability to 

detect meaningful features and interpret them correctly for accurate predictions. 

 

Figure 4.4. Examples of SHAP for explaining CNN classifications 

Table 4.1 presents the statistical summary of these examples. It can be observed that the 

categories predicted with the highest probability by the CNN model also have the largest sum of 
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SVs (SSVs), a trend consistent across all the images in our dataset (an illustration of SSVs can be 

found in Figure 4.5, in this case, 𝑚=1). The dominant predicted categories exhibit predominantly 

large SSVs, reinforcing the notion that the CNN model relies on meaningful features (i.e., the 

road areas) for its predictions. In instances of ambiguous predictions where two categories are 

both plausible, their SSVs are similar to each other. This finding further supports the argument 

that the CNN model makes predictions based on meaningful features. Given the advantages 

offered by SHAP over Grad-CAM, all of the following analyses were performed using SHAP. 

 

Figure 4.5. Illustration of SSVs and percentage of absolute Shapley values 

Impact of Image Areas. While the CNN model has demonstrated the ability to make 

meaningful predictions based on RSCs, some unexpected aspects of its predictions warrant 

further examination. Notably, some pixels in nonrelevant areas, such as the sky in image A1 (in 

Figure 4.4), have been found to contribute to the final predictions. This observation leads to a 

deeper investigation into where the CNN focuses its attention during the prediction process to 

ensure that the predictions are based on relevant features, particularly the road areas. 

In this study, the imagery utilized was obtained from dash cameras, which provided a consistent 

camera angle across the entire dataset. The upper part of the image typically represents the sky, 

the lower part represents the road areas, and the truck’s hood appears at the very bottom of the 

image. This consistent layout allows for a comparative analysis of the SVs assigned to different 

regions of the image. 

Figure 4.6Error! Reference source not found. visually illustrates this process. The left-hand s

ide of the figure displays a raw winter RSC image, while the right-hand side showcases the SVs 

assigned to each pixel within the image. To analyze the contributions of different image areas, 

colored border lines are introduced. Each line represents a specific proportion of the image 

included for analysis. For instance, the yellow line with “70%” annotated means that the analysis 

contains 70% of the image, starting from the yellow line and extending to the very bottom. 
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Figure 4.6. Illustration of image area importance analysis 

With the visualization process explained, Figure 4.6 illustrates the changing pattern of the SSVs 

(within the included areas) and the percentages of the absolute SSVs within the enclosed image 

areas relative to the entire image, referred to as percentage of absolute Shapley values (PASVs). 

As illustrated in Figure 4.5, PASVs aim to quantify the percentages of the absolute SSVs within 

the enclosed image areas relative to the entire image, thereby providing insight into the 

proportion of feature importance.  

According to Figure 4.7, as the evaluated proportion of the image increases from 50% to 100%, 

both the SSVs and the PASVs correspondingly increase. This observation aligns with our 

intuition that the higher the portion of the image evaluated, the more features get involved during 

the CNN’s prediction process. 

 

Figure 4.7. SHAP metrics at different included image proportions 

However, a significant finding emerges when the included image proportion surpasses 70%: both 

the SSVs and the PASVs exhibit marginal changes. This phenomenon can be attributed to the 

fact that the remaining 30% of the image predominantly consists of the sky and sometimes 

bridges (refer to Figure 4.1), which are not expected to influence the features. In addition, 

PASVs beyond 70% consistently surpass 90%, indicating that over 90% of the features utilized 

by the CNN for predictions are concentrated below the yellow 70% line, affirming that the 
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CNN’s focus on meaningful and relevant image regions leads to its effective predictive 

performance. 

Impact of Training Samples. The next step is to explore whether a CNN is able to evolve and 

improve its performance as the number of training samples increases. To investigate this, the 

training dataset, consisting of 9,354 images, was divided into nine batches, each containing 

slightly more images than the previous batch (1,000, 2,000, ..., 9,354).  

Training Process and Accuracy Trends. The same baseline CNN architecture mentioned 

earlier was trained using each batch (baseline1, baseline2, ..., baseline9), while the validation 

dataset (consisting of 1,041 images) remained the same for all. The overall trend is depicted in 

Figure 4.8. 

 

Figure 4.8. Evolving pattern of RSC classification accuracy versus training samples 

As shown in the figure, accuracies for individual RSC categories and overall accuracy generally 

increase as the training sample size grows. However, the Bare condition has the least 

improvement (88.9% to about 94.5%). Comparatively, other classes demonstrate more 

significant improvements (Partial Snow Coverage: 64.0% to about 90.5%, Full Snow Coverage: 

72.9% to about 96.2%, Overall: 80.9% to about 94.6%). This could be attributed to the 

observation that pixel values (i.e., the color) of the exposed pavement are much easier for the 

CNN to identify and comprehend. In contrast, identifying snowy regions on the road surface 

poses a much greater challenge, as their color can sometimes be the same as the sky and other 

irrelevant environmental features, like snow on the side of the road. These similarities make 

accurate classification more difficult, resulting in a steeper learning curve for these categories. 

Learning Dynamics and Model Evolution. The SHAP analysis also helped to further reinforce 

our findings and provided a direct view of how the CNN learns and improves with increasing 

training samples. Figure 4.9 presents an example that highlights this progression. Initially, when 

the CNN was trained with only 1,000 images (baseline1), it struggled to identify any meaningful 
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features in an image, resulting in a “blank” SHAP image and a predicted probability of 0%. 

However, as the number of training samples increased to 6,000 (baseline6), the CNN gradually 

became more adept at recognizing and utilizing relevant features. Despite this improvement, 

there were still certain challenges in accurately interpreting some parts of the driving lane (e.g., 

the blue pixels on the right of the driving lane). Additionally, some extraneous features, such as 

the shoulder lanes and trees, still influenced the prediction process, leading to a predicted 

probability of only 54.4%. In contrast, when the CNN model was trained with the entire dataset 

(baseline9), it successfully disregarded the unnecessary features and focused primarily on the 

driving lane (particularly the partially snowy areas). As a result, the predicted probability 

dramatically increased to 99.9%. 

 

Figure 4.9. Example of CNN evolving pattern using SHAP 

Correlations and Model Interpretation. Figure 4.10 illustrates the overall correlation between 

SSVs, PASVs, and RSC prediction accuracies. The results clearly indicate that both SSVs and 

PASVs exhibit positive correlations with RSC prediction accuracies. High PASVs indicate that 

the CNN recognizes the road areas (the included image area) as the primary features to make 

predictions on RSC. To assess the strength of these monotonical correlations, Spearman 

correlation values were calculated for all variables (Hauke and Kossowski 2011) as presented in 

Table 4.2. 

 

Figure 4.10. Correlation between SHAP metrics and classification accuracies 
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Table 4.2. Spearman correlation values between RSC categories and SHAP metrics 

RSC Category SSVs PASVs 

Bare 0.269 0.756* 

Partial Snow Coverage 0.917* 0.733* 

Full Snow Coverage 0.723* 0.252 

* This correlation is statistically significant in 95% confidence intervals. 

The results demonstrate that the Bare condition has a strong positive correlation with PASVs and 

a weak correlation with SSVs. This can be attributed to the same reason mentioned earlier: the 

pixel values of fully exposed pavement are easily identifiable and are thus prominent features for 

making accurate predictions. As a result, there is relatively little improvement in the prediction 

accuracies. As for PASVs, the results suggest that the CNN model gradually learns that the 

image’s upper part (i.e., the excluded 30%) is not necessary to consider when making 

predictions. 

On the other hand, the Full Snow Coverage condition exhibits a significant positive correlation 

with SSVs but not PASVs. This suggests that the CNN is initially able to capture the useful 

features (i.e., the road areas) effectively and progressively learns to assign greater importance to 

the “white” areas, which are indicative of snowy road surfaces, to make correct predictions. This 

is the reason behind the significant correlation observed in SSVs. 

By comparison, the Partial Snow Coverage condition shows significant correlations with both 

SSVs and PASVs, which intuitively makes sense. In this case, the CNN attempts to assign more 

importance to the features within the enclosed image area while simultaneously disregarding the 

excluded image area when making predictions. 

Overall, the SHAP analysis provides further evidence of the CNN model’s learning process and 

its ability to adapt based on the information gained from the training samples. The positive 

correlations between SSVs, PASVs, and prediction accuracies highlight the CNN model’s ability 

to capture relevant features and improve its performance over time. These findings contribute to 

a deeper understanding of the CNN model’s internal workings and its evolving prediction 

process. 

Impact of CNN Structures. From the previous findings, it has been established that the number 

of training samples influences the prediction capabilities of the CNN. However, another 

important question remains unanswered: Does the structure of the CNN model itself impact its 

prediction capabilities? To address this question, several well-known CNN models, namely 

VGG16 (Simonyan and Zisserman 2014), ResNet50 (He et al. 2016), and Xception (Chollet 

2017), were trained using the same training samples as baseline9 through transfer learning, 

where only the fully connected layer was trained. Subsequently, these models were compared 

using the same set of validation imagery (Shin et al. 2016). 
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Figure 4.11 illustrates the performance differences between the selected CNN architectures as 

well as their corresponding SSVs and PASVs. As depicted, the general trend of prediction 

accuracies aligns with the findings from the previous section, indicating positive correlations 

with both SSVs and PASVs. Although there are only minor performance differences (ranging 

from 93.2% to 95.3%) between the CNN models, it can be concluded that changing the CNN 

architecture impacts their learning capabilities.  

 

Figure 4.11. Comparison between CNN structures 

This insight underscores the sensitivity of CNN models to their structure design. However, it 

should also be noted that this sensitivity might fluctuate depending on dataset size and 

complexity. Therefore, further investigation is needed to verify if these observations hold true for 

larger datasets and more complex imagery. Pursuing additional research to explore the 

performance of different CNN structures in such scenarios will furnish a more comprehensive 

understanding of how architectural choices influence learning and prediction. 

4.1.2 Stationary Images 

4.1.2.1 Image Classification via Convolutional Neural Network 

CNN Structure. Based on the collected and labeled RWIS imagery data, a CNN-based image 

classification model for RSC recognition was developed from scratch. It employed four 

convolutional layers with increasing filter sizes (32, 64, 128, and 256 filters, respectively), each 

with a kernel size of 3×3 and ReLU activation. These layers progressively extract features of 

increasing complexity from the input images (Chen et al. 2016). Each convolutional layer was 

followed by a maxpooling layer with a pool size of 2×2 to reduce spatial dimensions and retain 

significant features, ensuring efficient feature extraction and dimensionality reduction 

(Arivalagan et al. 2023). Following the convolutional and pooling stages, the model included a 

flattening layer that transformed the 3D feature maps into a 1D feature vector. This vector was 

then fed into a dense layer with 128 units and ReLU activation, enabling the learning of complex 

patterns and relationships in the data. A dropout layer with a rate of 0.5 was incorporated to 

mitigate overfitting by randomly setting half of the input units to zero during training (Srivastava 
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et al. 2014). The final layer was a dense output layer with units equal to the number of classes 

(four in this study), utilizing the softmax activation function to produce a probability distribution 

over the classes, facilitating accurate classification. Figure 4.12 shows the proposed CNN 

architecture for our RWIS image classification model. The model was configured with the Adam 

optimizer and the categorical cross-entropy loss function while monitoring accuracy as a 

performance metric. 
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Figure 4.12. Proposed CNN architecture for RWIS image classification 
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Performance Evaluation and Comparison. Following the same training and validation (or 

testing) procedures as the AVL CNN model, we found that the overall performance, including 

accuracy, was satisfactory at 98.46% when considering all 16 cameras, as shown in Figure 4.13. 

Additionally, we examined the impact of increasing the number of cameras and images on the 

model’s performance by changing the training datasets. The results of this examination are 

detailed in Figure 4.14. The plot outlines the performance metrics for different numbers of 

cameras, ranging from 1 to 16, and their corresponding images used for testing, with key metrics 

including accuracy, F1 score (macro), and balanced accuracy. Accuracy can be calculated using 

equation (4.1), where 𝑛𝑐 represents the total number of classes (four in this study), 𝑇𝑃𝑐 denotes 

the number of true positives for class 𝑐 (instances correctly predicted as belonging to class 𝑐), 

and 𝐹𝑁𝑐 signifies the number of false negatives for class 𝑐 (instances that belong to class 𝑐 but 

were incorrectly predicted as belonging to another class). 

 

Figure 4.13. Normalized confusion matrix demonstrating overall model performance 

 

Figure 4.14. Impact of increasing number of cameras and images on performance 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝑃𝑐

𝑛𝑐
𝑐=1

∑ (𝑇𝑃𝑐+𝐹𝑁𝑐)
𝑛𝑐
𝑐=1

 (4.1) 

F1 score (macro) and balanced accuracy were utilized to address the unbalanced nature of the 

dataset. Balanced accuracy is a metric designed to evaluate classification algorithms, particularly 

in situations involving unbalanced datasets. It addresses two main issues that arise with 

conventional accuracy measurements: lack of meaningful confidence intervals and potential 

biases when dealing with unbalanced data (Brodersen et al. 2010). The formula for balanced 

accuracy is given by equation (4.2): 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑛𝑐
∑

𝑇𝑃𝑐

𝑇𝑃𝑐+𝐹𝑁𝑐

𝑛𝑐
𝑐=1  (4.2) 

Precision and recall are fundamental metrics used to evaluate the performance of a classification 

model. Precision for class 𝑐 is defined as the ratio of true positives to the sum of true positives 

and false positives, as shown in equation (4.3). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐 =
𝑇𝑃𝑐

𝑇𝑃𝑐+𝐹𝑃𝑐
 (4.3) 

Recall for class 𝑐 is the ratio of true positives to the sum of true positives and false negatives, as 

shown in equation (4.4). 

𝑅𝑒𝑐𝑎𝑙𝑙𝑐 =
𝑇𝑃𝑐

𝑇𝑃𝑐+𝐹𝑁𝑐
 (4.4) 

The F1 macro score is another useful metric for evaluating the performance of classifiers in 

multilabel settings, as it considers both precision and recall for each class, inherently favoring 

rare labels (Lipton et al. 2014). The F1 score for each class 𝐹1𝑐 is defined as the harmonic mean 

of precision and recall, combining both metrics into a single measure, as shown in equation (4.5). 

𝐹1𝑐 =
2∙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐∙𝑅𝑒𝑐𝑎𝑙𝑙𝑐

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐+𝑅𝑒𝑐𝑎𝑙𝑙𝑐
 (4.5) 

The F1 macro score is the unweighted mean of the F1 scores for each class, treating all classes 

equally. The formula for F1 macro is given by equation (4.6). 

𝐹1𝑀𝑎𝑐𝑟𝑜 =
1

𝑛𝑐
∑ 𝐹1𝑐

𝑛𝑐
𝑐=1  (4.6) 

Using different metrics provides a more comprehensive understanding of our RWIS CNN 

model’s performance compared to relying on a single metric. Figure 4.14 illustrates performance 

trends with varying numbers of images and cameras, showing a general improvement as both 

increase. The experiment achieved its highest accuracy of 98.46% using all 16 cameras, 

highlighting the benefits of diverse data sources. In this configuration, the F1 score (macro) and 
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Balanced accuracy were 97.19% and 96.28%, respectively. Intriguingly, the model with 14 

cameras outperformed this in balanced accuracy and F1 score (macro), achieving an F1 score 

(macro) of 97.48%, a balanced accuracy of 96.46%, and an accuracy of 98.21%. This 

counterintuitive result suggests that additional cameras with limited instances of minor classes, 

such as the “Moderately to Heavily Snow Covered” class, may have confused the model or 

reduced its discriminative power due to newly introduced orientations of these minor classes. 

This finding highlights the importance of both the quality and distribution of data sources, not 

just their quantity, in enhancing the CNN model’s performance for monitoring winter road 

surface conditions. Despite these nuances, the incremental improvements with more cameras 

underscore the overall value of data diversity and quantity in achieving robust and reliable model 

outcomes. 

RWIS CNN Reliability Investigation via CAM-based Methods. To explore and reveal the 

hidden aspects of our RWIS CNN model, we applied Grad-CAM, Grad-CAM++, and Score-

CAM to the testing images. SHAP was not applied here due to the ever-changing camera angles 

of RWIS cameras. CAM-based methods are usually employed to verify whether the model’s 

focus aligns with human recognition and does not primarily target irrelevant areas, such as the 

sky or trees, in this case. By aligning the CNN model’s decision-making process with human 

recognition, we aim to enhance the reliability of autonomous CNN-based RSC monitoring 

systems. The three CAM-based methods were applied to all of the testing images to calculate 

pixel-wise CAM scores for each technique. These scores were used to generate saliency maps 

with 50% transparency, integrating them equally with the original images. Manual masking was 

then applied to the main traffic lane, as illustrated in Figure 4.15, to refine our analysis and 

quantify each CAM technique’s attention. For consistent comparison, the image-wise CAM 

scores of each method were normalized to a scaled value of 1,000. This normalization process 

ensures consistent pixel-wise attention weight, facilitating human interpretation by providing a 

standardized measure of where the model concentrates its attention. 

 

 

Figure 4.15. Application of manual masking to images from cameras with consistent angles 

for enhanced evaluation of CAM techniques 
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The localized CAM score was calculated by summing the total CAM scores within the manually 

masked area (main pavement section) and dividing this sum by the normalized score of 1,000. 

The pavement area percentage was calculated by dividing the number of pixels in the masked 

area by the total number of pixels in the image. For instance, an image with a total of 430.1 

CAM scores inside the masked area results in a focus of 43.01%. For camera IDOT-030-01, the 

highlighted mask covered a total of 31,353 pixels. Dividing the 31,353 pixels by the total number 

of pixels in the image (299 x 299 = 89,401) results in a target area percentage of 35.07%. 

As depicted in Figure 4.16, there is a weak positive correlation (𝑅2 = 0.1477) between the 

average of the three localized CAM scores for each camera focusing on the pavement area and 

the percentage of the pavement within the image. Intuitively, camera angles with higher 

proportions of the main pavement section should have localized CAM scores concentrated in this 

area. While the trend generally indicates higher localized CAM scores corresponding to 

increased pavement area coverage, certain cameras, such as IDOT-047-00, IDOT-047-01, and 

IDOT-047-02, exhibit an even greater concentration on the pavement area. Conversely, other 

cameras, including IDOT-047-05 and IDOT-072-00, display the opposite behavior, with lower 

localized CAM scores relative to the percentage of pavement area. After excluding these five 

cameras, there is a strong positive correlation (𝑅2 = 0.8645) between the average of the three 

CAM scores for each camera focusing on the pavement area and the percentage of pavement 

within the image. 

 

Figure 4.16. Comparative analysis of Grad-CAM, Grad-CAM++, and Score-CAM in 

highlighted pavement areas across different camera angles 

This discrepancy can be further understood by visually examining the saliency maps generated, 

as shown in Figure 4.17. For instance, cameras IDOT-047-00, IDOT-047-01, and IDOT-047-02 

capture images of the same road from different angles, providing diverse features for the model 

to learn from and use in predictions, thereby enhancing its focus on the pavement area. In 

contrast, cameras IDOT-047-05 and IDOT-072-00 include complex bridge structures within their 

frames. This added complexity may cause the CNN model to struggle to accurately target the 
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primary area of interest, resulting in lower localized CAM scores despite significant pavement 

coverage. These observations highlight specific limitations of the CNN model when dealing with 

intricate structures in the image background, suggesting that additional training or alternative 

approaches may be necessary to improve its accuracy and reliability in such scenarios. 

IDOT-047-00 

  
IDOT-047-01 

  
IDOT-047-02 

  
IDOT-047-05 

  
IDOT-072-00 

  

Figure 4.17. Cameras exhibiting exceptionally high and low CAM scores with original and 

their Grad-CAM images 

The comparative analysis demonstrates that Grad-CAM, Grad-CAM++, and Score-CAM 

effectively visualize the localization of the CNN’s decision-making process in relation to 

pavement regions for RSC classification. As shown in Figure 4.18, Grad-CAM++ achieved an 

average localized CAM score of 20.86% on the pavement area, Grad-CAM achieved an average 

localized CAM score of 20.21%, and Score-CAM achieved an average localized CAM score of 
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20.95%, whereas the average pavement area across all camera angles was 17.70%. These results 

indicate that our proposed CNN model can effectively prioritize the pavement area for decision-

making, surpassing the baseline average pavement area and thereby enhancing the reliability of 

the decision-making process. 

 

Figure 4.18. Average localized CAM scores on pavement areas by Grad-CAM, Grad-

CAM++, and Score-CAM across all cameras 

Figure 4.19 provides examples of saliency maps produced by each CAM technique, comparing 

the various techniques. Key findings indicate that cameras capturing the same road from 

different angles produce higher localized CAM scores targeted toward the main pavement, which 

translates to better reliability that aligns with human interpretation. In contrast, cameras with 

complex structures yield lower localized CAM scores, revealing the limitations of CNNs in 

focusing solely on important areas. These results suggest the need for additional training with 

various angles to improve humanlike interpretation and for caution when dealing with structures 

such as bridges. Overall, adopting CAM techniques such as Grad-CAM, Grad-CAM++, and 

Score-CAM enhances the reliability and interpretability of CNNs for RSC monitoring. These 

methods provide accurate visual explanations, revealing that our model prioritizes the pavement 

area effectively. The integration of CAM techniques improves CNN transparency and ensures 

more effective deployment in winter road maintenance.
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Original Image Grad-CAM 

  

Grad-CAM++ Score-CAM 

  

Figure 4.19. Comparison of various class activation map techniques after normalization 

4.1.2.2 Snow Coverage Ratio Estimation 

In addition to using CNNs to classify RWIS imagery into general categorical variables, this 

project also developed pix2pix GAN and SS models to estimate SCR for each RWIS image. 

Winter-to-Summer Image Translation. The pix2pix GAN model was first utilized to translate 

the winter images (collected by RWIS cameras) into summer images. Much like all other ML or 

DL techniques, our dataset has 6,566 pairs of images split into a training (80%, 5,252 pairs) and 

validation dataset (20%, 1,314 pairs) for model development and performance evaluation, 

respectively (Park et al. 2018). Figure 3.3 depicts two examples of image pairs from the training 

dataset, and Figure 4.20 shows the training profile of the developed model. 



52 

 

Figure 4.20. Pix2pix GAN training profile 

As seen in Figure 4.20, the loss values generally decrease as the number of training epochs 

increases. After 20 epochs, the loss reduction became marginal. To evaluate the image 

translation performance of the developed pix2pix GAN model, images from the validation 

dataset were used to visually check if the model effectively translated the new images (not seen 

before by the model during training). As an example, Figure 4.21 depicts two sets of images 

from the validation dataset, where the source image is the input winter image, the target image is 

the source image’s paired summer image (same RWIS camera at the same angle), and the 

generated image is the fake summer image translated by the developed pix2pix GAN. Based on 

both Figure 4.20 and Figure 4.21, it can be concluded that the developed pix2pix GAN model 

was successful in translating the winter images to their corresponding summer images. These 

results can be used further for drivable area detection via SS with the proposed snow coverage 

ratio calculation procedure.
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Source Image Target Image Generated Image 

   

   

Figure 4.21. Examples of source, target, and generated images for validating pix2pix GAN 

Drivable Area Detection via Semantic Segmentation. The second DL model developed for 

SCR estimation was SS, which is aimed at identifying the drivable areas for each input RWIS 

image (both winter images and translated summer images). As mentioned earlier, to develop the 

SS model, over 3,460 images (2,814 wintertime, 646 summertime) were carefully annotated. 

Similar to the pix2pix GAN process, these images were also split into training (80%) and 

validation datasets (20%). During the image annotation process, only two labels were used: 

Drivable Areas (or road) and Others (background/nondrivable areas, such as snowy areas, sky, 

trees, etc.). 

It is important to note that two batches of RSC images were collected and annotated for SS 

model development. The first batch included 1,445 images (963 wintertime, 482 summertime) 

collected during February 2019, December 2019, January 2020, and March 2020 for winter 

images, and during June 2019 and October 2019 for summer (or bare condition) images. The 

second batch included 2,015 images (1,851 wintertime, 164 summertime) collected during 

January 2022, June 2023, November 2023, and December 2023. Due to the different winter and 

summer seasons, the camera angles varied between the two batches. In addition, the second 

batch was more evenly collected from different camera angles, with a deliberate selection 

process to avoid images containing confusing objects, such as large vehicles or trees, in the main 

parts of the images. Furthermore, all images in the second batch were manually classified into 
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Bare, Partially Snow Covered, and Fully Snow Covered conditions for a more comprehensive 

analysis and comparison. 

The first batch was primarily used to demonstrate the feasibility of our SCR estimation approach, 

particularly for the SS model, while the second batch was used for further validation and more 

detailed analysis. 

Figure 4.22 shows two examples of source images and their corresponding annotated images. 

These SS models were developed separately for winter and summer images using the first batch 

of imagery. Figure 4.22 also presents examples of the SS-detected drivable areas. Ultimately, the 

SS models perform very well in identifying drivable areas in both winter and summer 

environments.  

Figure 4.23 and Figure 4.24 show the training profiles of the two SS models. The training and 

validation loss values generally decreased during the training process, while the training and 

validation accuracies, including IoU score, F1 score, and overall pixel accuracy, all increased. By 

the end of the training process, the three metrics of the validation datasets for winter and summer 

models were 95.6%, 97.7%, 97.0%, and 95.2%, 97.4%, 97.1%, respectively.  

Source Image Annotated Mask Predicted Mask 

   

   

Figure 4.22. Examples of annotated images for developing semantic segmentation
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Figure 4.23. Semantic segmentation (winter model) training profile 

  

Figure 4.24. Semantic segmentation (summer model) training profile 

The same process was applied to the second batch of images. Given the similar accuracies of the 

winter and summer models and the smaller number of summer images in the second batch 

compared to the first, a single SS model was developed for the second batch, integrating both 

seasons. This model achieved an IoU score of 98.5%, an F1 score of 99.3%, and an overall pixel 

accuracy of 99.0%. 

Since the second batch of images was collected more evenly from different camera angles, the 

impact of training sample size and camera angles on SS model performance was investigated. 

The goal was to evaluate the sensitivity of the SS model to the size of the training sample and to 

determine whether the model could accurately detect drivable areas in images from previously 

unseen camera angles. 

To assess the impact of training samples, all images in the second batch were evenly shuffled 

and then split into training and validation datasets. The validation dataset consistently comprised 

the same 20% of the images, while the training dataset was incrementally expanded (to 50%, 

60%, 70%, and 80%) during the training process. 

To assess the impact of camera angles, a similar process was followed, but with a key difference: 

images from different camera angles were not mixed. The split between training and validation 
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datasets was strictly based on camera angles, meaning that no images from the same camera 

angle appeared in both the training and validation datasets. Furthermore, images added 

incrementally during training came from different camera angles than those already included. 

Figure 4.25 illustrates the effect of varying the number of training samples and camera angles on 

model performance. As shown, the SS model accuracy generally improves with more training 

samples and with greater diversity in camera angles. However, comparing the actual results 

reveals that camera angles have a more significant impact on SS model performance. It is more 

challenging for the model to accurately detect drivable areas in images from unseen camera 

angles, though the accuracy remains acceptable, with all results exceeding 85% when 80% of the 

images from different camera angles were included in training. 

These findings suggest that enhancing the SS model requires not only a larger number of training 

images but also a greater variety of images from different camera angles. 

  

Figure 4.25. Changing profiles of SS model performance based on different training 

samples (left) and camera angles (right) 

Road Surface Conditions Recognition. The last step in our proposed approach was calculating 

the snow coverage ratio after comparing the drivable areas in the input and pix2pix-translated 

images using the SS models. All paired images involved in the development of the pix2pix GAN 

models were utilized to evaluate the accuracy of the final output produced by the proposed 

approach (i.e., image translation followed by drivable area detection). The snow coverage ratios 

calculated using the SS-segmented source images and target images were considered as observed 

values (i.e., the ground truth). The ratios obtained via the same method using the source images 

and translated images were considered as the estimated results that required evaluation. 

Using the SS models developed based on the first batch of images (for SS development), Table 

4.3 compares the descriptive statistics of the observed and estimated snow coverage ratios of the 

1,314 pairs of images in the validation dataset. The mean absolute error (MAE, shown in 

0.96

0.965

0.97

0.975

0.98

0.985

0.99

50-20 60-20 70-20 80-20

A
cc

u
ra

cy

Training-Validation datasets split ratio

Changing profile of SS model 

performance based on training 

samples

mean val_iou_score mean val_f1-score

mean val_accuracy

0.7

0.75

0.8

0.85

0.9

0.95

50-20 60-20 70-20 80-20

A
cc

u
ra

cy

Training-Validation datasets split ratio

Changing profile of SS model 

performance based on camera 

angles

mean val_iou_score mean val_f1-score

mean val_accuracy



57 

equation (4.7)) and root mean square error (RMSE, shown in equation (4.8)) describe the 

closeness between the two datasets. Furthermore, a 𝑡-test was also conducted to evaluate whether 

the estimated values are statistically different from the observations. Results of the 𝑡-statistic and 

Pearson correlation values indicate that the estimated snow coverage ratios have a strong linear 

correlation with the observations.  

Table 4.3. Descriptive statistics of observed and estimated snow coverage ratios 

Statistics Observed Estimated 

Minimum 0 0.043 

Maximum 0.999 0.999 

Mean 0.627 0.624 

Standard Deviation 0.008 0.008 

Sample Variance 0.062 0.053 

MAE 0.047 

RMSE 0.086 

𝒕-statistic 1.306 (not significant) 

Pearson Correlation 0.938 

 

𝑀𝐴𝐸 =  
∑ |𝑉𝑖,𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑−𝑉𝑖,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑|𝑁

𝑖=1

𝑁
 (4.7) 

𝑅𝑀𝑆𝐸 =  √∑ (𝑉𝑖,𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑−𝑉𝑖,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)2𝑁
𝑖=1

𝑁
 (4.8) 

where 𝑉 is the variable that needs to be estimated (snow coverage ratio in this study), 𝑖 is the 

sequence number of the estimated/observed sample, and 𝑁 is the total number of samples that 

need to be estimated. 

Figure 4.26 shows two examples of the final outputs from the proposed approach. The input 

source images, our proposed method’s target outputs, are displayed in the “Target” row, and the 

real outputs generated from our proposed approach are shown in the “Generated” row. Based on 

the model performance results and depicted model output images, it is evident that the proposed 

method is feasible and shows great promise as an automated tool for estimating snow coverage 

ratios. However, the currently developed models still have room for improvement in image 

translation and drivable area detection. For example, the translated images should have fewer 

blurry regions, and the drivable areas should not include vegetation near the boundaries between 

the pavement and the external environment, especially in the winter images. 
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Figure 4.26. Examples of final outputs of proposed approach 

While the SS model developed using the second batch of images showed similar or even 

improved results and given that the RSC labels for the second batch were manually classified, a 

further analysis was conducted. This analysis compared the estimated SCRs with the manual 

classification labels of the second batch of images to verify that the estimated SCRs accurately 

reflect the actual snow coverage status of the road sections based solely on RWIS imagery. 

Figure 4.27 depicts histograms of the Bare and Partially Snow Covered condition images within 

the validation dataset along with their corresponding estimated SCRs. For the Fully Snow 

Covered condition, which contained only one image, the SCR was estimated at 0.987 (or 98.7%). 

  

Figure 4.27. Comparisons between estimated SCRs and RSC labels 

As shown, the median value of the estimated SCRs for Bare conditions was at 0.101 (or 10.1%), 

which is a reasonable estimation, considering that light snow on pavement, which does not affect 

traffic, would still be classified as Bare conditions. Additionally, white lane markings or light 
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reflections may be detected as nondrivable areas by SS, preventing the estimated SCR from 

being perfectly 0. Similarly, the median estimated SCR for Partially Snow Covered conditions, at 

0.442 (or 44.2%), also aligns with expectations. Although the number of Fully Snow Covered 

conditions in the annotated images is limited, the single result obtained is consistent with 

expectations. 

In conclusion, the estimated SCRs generated using the pix2pix GAN and SS models are 

generally reliable. However, there is potential for further improvement of these DL models, and 

incorporating additional datasets in the future could further validate and enhance the results. 

4.2 Spatial Mapping of Road Surface Conditions 

As noted earlier, this project also aimed to develop spatial interpolation methods for both 

categorical and continuous RSC variables to fill in gaps in unmonitored areas along the highway 

network. 

4.2.1 Categorical RSC Interpolation via NIK 

NIK was developed specifically to interpolate the categorical RSC variables by directly taking 

the CNN classification results as its input. To demonstrate its feasibility and robustness, AVL 

imagery data collected during winter seasons from 2009 to 2024 were converted into RSC 

variables via CNN and processed according to the procedures outlined in Wu et al. (2022b), Wu 

et al. (2022c), and Wu and Kwon (2024) for developing semivariograms and performing NIK 

interpolation. All CNN-classified imagery points were treated as ground truth and spatially 

aggregated every 500 m to minimize random classification errors, then temporally aggregated 

into hourly events. To ensure the quality of our developed models (i.e., the semivariograms and 

NIK interpolation results), qualified hourly weather events were selected based on sufficient 

spatial coverage and the number of each RSC category by AVL collected imagery points. 

Specifically, only events with imagery points covering at least half of each quarter (i.e., north I-

35, south I-35, west I-80, east I-80) of the study area and more than 30 for each RSC category in 

each highway quarter were included in the analysis. Ultimately, a total of 20 weather events were 

selected for further analysis. 

Following the procedures outlined in the methodology chapter, 40 semivariograms were 

constructed, and NIK was employed to cross-validate the estimation results using the leave-one-

out method (Wong 2015). The cross-validation accuracy of the first layer of NIK (i.e., Bare 

versus Partially Snow Covered and Fully Snow Covered) ranged from 58.4% to 98.9%, with an 

average accuracy of 73.5%. For the second layer (i.e., Partially Snow Covered versus Fully 

Snow Covered), accuracy ranged from 69.2% to 94.3%, averaging 86.0%. The overall accuracy, 

combining results from both layers (i.e., Bare versus Partially Snow Covered versus Fully Snow 

Covered), ranged from 58.8% to 85.7%, with an average accuracy of 67.5%. Some hourly events 

exhibited relatively low accuracy in either the first or second layer, which can be attributed to the 

lack of variety in RSC samples. When one RSC category predominates over the others, and/or 

their locations are not well-distributed, estimation becomes challenging. Another possible reason 

could be the CNN classification accuracy, as not all images used in this NIK interpolation were 
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validated with high accuracy for the CNN model. Inaccurate CNN classification results could 

lead to poor estimation performance. However, several hourly events demonstrated accurate 

estimation results, indicating that the proposed NIK is capable of providing accurate estimations 

for unmonitored areas. Figure 4.37 later in this chapter shows an example of a map of real-time 

RSC estimation via NIK. 

4.2.2 Continuous RSC Interpolation via the Refined RK 

In terms of continuous RSC interpolation, we employed our previously developed RK method. 

However, to make it more universally applicable, the RK method was refined by adding a 

weather characterization step before implementing the RK interpolation. 

Table 3.1 shows that the collected RST values exhibited significant differences, which could be 

attributed to the direction of the road (Olea 2006, Wu et al. 2022a). To account for the potential 

effect of road direction on the spatial variation of RSC within a highway network, and to obtain 

more accurate estimates of RSC for each highway, separate analyses for I-35 and I-80 were 

conducted. For each weather event, two MLRs and semivariograms were constructed, one for 

each highway. This approach was based on our own experimentation and previous research 

findings (Wu et al. 2022a). 

The 𝐾-means algorithm was run for a range of clusters (i.e., the number of weather events’ 

groups), and their corresponding inertia was calculated. Inertia gauges the effectiveness of 𝐾-

means clustering by measuring the sum of squared distances between each data point and its 

centroid within a cluster (Gupta et al. 1999). To determine the number of clusters (i.e., the 𝐾 

values), the change ratios of the inertia versus the number of clusters were also obtained; a 

change ratio nearing 0 indicates diminishing returns with additional clusters. Considering that 

more clusters imply more MLRs and semivariograms leading to less generalization of the 

clustered weather events, an additional consideration was introduced. To incorporate this into the 

determination of the 𝐾 values, a line representing the number of MLRs and semivariograms 

versus the number of clusters was also generated, which can be considered as a line of the “cost.” 

As depicted in Figure 4.28, all three lines share the same x-axis values, and their corresponding 

y-axis values were normalized between 0 and 1 to enforce equitable comparisons. Taking I-35 as 

an example, the inertia change ratio reveals diminishing returns at around 16, while the line of 

MLRs and semivariograms and the inertia line intersect at around 14. Thus, we selected 15 as the 

𝐾 value for I-35. Following a similar analysis, 16 was chosen as the 𝐾 value for I-80. These 

selections imply constructing 15 and 16 pairs of MLRs and semivariograms for I-35 and I-80, 

respectively. 
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Figure 4.28. 𝑲-means algorithm profiles 

Examples of grouped weather events (grey lines) with their centroids (red lines) are shown in 

Figure 4.29. All calibrated MLRs and semivariograms are outlined in Table 4.4. The significant 

variables of the MLR models remained the same as what we had found in our previous studies, 

and their signs of coefficients made intuitive sense (Wu et al. 2022b). Both latitude and elevation 

were found to have significant negative correlation with the RST values for most clusters, 

indicating that RSTs tend to decrease in higher and northern areas. Nevertheless, a comparison of 

the 𝑅2 value for each model revealed significant variations in the predictive capabilities of the 

MLR models. This variability implies that weather events within one cluster can be vastly 

different from those in others, underscoring the need for the application of kriging for further 

estimations to enhance the accuracy of our final estimates. The semivariogram parameters of 

each cluster were found to be different as well, lending further support to the conclusion that the 

spatial variation pattern of weather events is cluster specific. To ensure the accuracy of RST 

interpolated through RK for validation events, the MAE values were obtained by a cross-

validation process as defined in equation (4.7). These values were equal to 0.696℃ and 0.619℃, 

respectively, and were considered accurate estimates. 

 

Figure 4.29. Examples of grouped weather events 
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Table 4.4. Calibrated MLR and semivariogram models for all clusters 

  us e  ID 
I-35 I-80 

 i ni ican  Va iab es 𝑹𝟐 Nu  e  Ran e (m)  i    i ni ican  Va iab es 𝑹𝟐 Nu  e  Ran e (m)  i   

1 Latitude (-), Elevation (-) 18.4% 1.09 1.5E+05 1.61 Elevation (-) 67.2% 0.28 1.3E+05 7.22 

2 Latitude (-), Elevation (-) 74.3% 0.34 1.5E+05 0.60 Elevation (-) 17.3% 0.03 5.1E+04 0.72 

3 Latitude (-), Elevation (-) 84.2% 0.36 1.6E+05 0.62 Elevation (-) 13.8% 0.35 5.0E+04 1.45 

4 Latitude (-) 36.9% 0.00 4.9E+04 0.88 Elevation (-) 61.6% 0.00 6.0E+04 1.49 

5 Latitude (-) 14.5% 0.27 1.5E+05 0.85 Latitude (-), Elevation (-) 43.2% 0.62 1.8E+05 1.49 

6 Latitude (-) 35.6% 0.00 1.5E+05 4.98 Latitude (-), Elevation (-) 7.3% 0.13 1.7E+05 3.52 

7 Latitude (-), Elevation (-) 61.8% 0.12 3.9E+04 1.48 Elevation (-) 40.3% 2.47 2.2E+05 5.28 

8 Latitude (-), Elevation (-) 25.6% 1.71 8.2E+04 4.95 NA NA 0.00 5.7E+04 1.31 

9 Latitude (-), Elevation (-) 68.6% 0.18 3.9E+04 0.59 Latitude (-), Elevation (-) 8.6% 1.48 1.7E+05 3.80 

10 Latitude (-) 23.3% 0.04 3.8E+04 0.80 Elevation (-) 55.0% 0.00 1.3E+05 5.96 

11 Latitude (-) 56.7% 1.01 1.6E+05 2.18 NA NA 0.21 1.8E+05 0.41 

12 Latitude (-) 47.8% 1.18 3.9E+04 7.67 NA NA 0.17 4.6E+04 0.80 

13 Latitude (-) 23.7% 0.00 2.6E+04 15.84 Elevation (-) 53.0% 0.06 6.1E+04 1.09 

14 Latitude (-) 19.7% 8.58 1.4E+05 11.33 Latitude (-) 8.0% 0.57 2.3E+05 0.73 

15 Latitude (-) 11.3% 0.59 1.5E+05 3.90 Elevation (-) 51.0% 0.23 5.9E+04 1.49 

16      Elevation (-) 47.6% 0.82 7.9E+04 2.40 
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4.3 Benefits Quantification (RST as the Example) 

As mentioned before, one of the novel objectives of this study was to evaluate the potential 

benefits of having spatially rich RSC data (using our refined RK method), as this aspect has 

received little attention in previous research. Following the methodology outlined in the previous 

section, we computed the lowest, average, and highest MAE and weighted MAE (wMAE) 

values, defined in equation (4.9), for each possible RWIS station configuration, ranging from one 

to the total station count. Both the developed RK method and the assumed current practice naïve 

method were employed in this evaluation. Compared with MAE, wMAE introduces different 

weights to various RST ranges, providing a nuanced assessment of model performance (Hao and 

Li 2020, Cleger-Tamayo et al. 2012). Recognizing the sensitivity of WRM activities to RST 

around the freezing point (0℃), a sensitive range of -2℃ to 2℃ was selected, with a weight of 

100 assigned for subsequent comparisons and analysis. Note that the choice of sensitive ranges 

and their corresponding weight values can be adapted based on the priorities of different WRM 

authorities, such as municipal governments. 

𝑤𝑀𝐴𝐸 =
∑ 𝑤𝑧∗|𝑝𝑟𝑒𝑑𝑧−𝑡𝑟𝑢𝑒𝑧|𝑛

𝑧=1

∑ 𝑤𝑧
𝑛
𝑧=1

 (4.9) 

where 𝑤𝑧 is the weighted value adopted for different RST ranges in this study. Specifically, if 

𝑡𝑟𝑢𝑒𝑧 falls between -2℃ and 2℃, then 𝑤𝑧 = 100; otherwise, 𝑤𝑧= 1. 

The process of quantifying benefits involved an enumerative assessment of each possible 

combination of multiple RWIS stations (if more than one). For example, if the implementation 

allowed for only 2 RWIS stations, there would be 66 potential configurations for I-35 (2 out of 

12) and 78 for I-80 (2 out of 13), as illustrated in Figure 4.30. This exhaustive analysis enables 

us to demonstrate the most reliable results including both the accuracy of RK estimation and the 

quantified benefits. For larger networks with a greater number of RWIS stations, optimization 

methods such as heuristic algorithms can be employed to replace enumeration and expedite the 

computation process while maintaining accurate results (Gu et al. 2020, Kwon et al. 2017). 

 

Figure 4.30. Example of enumeration and evaluation process (two RWIS stations are 

allowed) 
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As previously mentioned, to assess the potential benefits of our developed methods, the lowest, 

average, and highest MAE and wMAE values were calculated for all possible configurations of 

RWIS stations on I-35 and I-80 using our RK method and the naïve method as a benchmark. As 

can be seen in Figure 4.31, all of the MAE and wMAE values obtained by the RK method are 

lower than those obtained by the naïve method, except for a few points in the lowest wMAE 

category of I-80. Additionally, the differences between the best and worst results obtained by the 

RK method are much smaller than those obtained by the naïve method, indicating that the RK 

method is capable of generating reliable results even if the RWIS configuration is not well 

designed. Furthermore, as the number of RWIS stations used in the estimation process increases 

(i.e., 10 or more), the differences between the RK and naïve methods, whether for better or 

worse results, tend to become less significant. This is because the density of RWIS stations is 

sufficient to cover larger areas, thereby reducing the sensitivity of the estimation method used. 

  

  

Figure 4.31. MAE and wMAE comparisons between RK and naïve method 

Following the proposed benefit quantification approach, a uniform target MAE and wMAE value 

was adopted as the criterion to obtain the expected savings of RWIS stations, as shown in Figure 

2.10. Specifically, we determined the difference in the number of needed RWIS stations between 

the lowest (w)MAE-RK and the highest (w)MAE-naïve as the maximum savings, the difference 

between the average (w)MAE-RK and the average (w)MAE-naïve as the average savings, and 

the difference between the highest (w)MAE-RK and the lowest (w)MAE-naïve as the minimum 

savings. For example, by setting a target MAE of 1℃ for I-35, the RK method could achieve this 

with as few as 2 RWIS stations (i.e., the best configuration), an average of 3 RWIS stations, or 

up to 7 RWIS stations (i.e., the worst configuration). In contrast, the naïve method required 3, 6, 

and 10 RWIS stations, respectively. Thus, the maximum, average, and minimum savings for this 

case were 8, 3, and 0, respectively. The aforementioned process was repeated for both highways 

using different criteria, and the expected RWIS savings are presented in Figure 4.32. 
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Figure 4.32. Expected savings of RWIS stations 

Figure 4.32 illustrates a general trend wherein the expected number of avoided RWIS stations 

gradually increases as the required criteria decrease from 3℃ to 1℃. However, if the selected 

criteria continue to decrease below 1℃ (e.g., 0.5℃), no further savings are realized. This aligns 

with our earlier explanation in Figure 4.31. Once the RWIS station density becomes high enough 

(higher criteria require denser RWIS networks), the RST monitoring or estimation capability 

tends to be less reliant on the adopted estimation model. In general, the number of RWIS stations 

avoided tends to increase with increased required monitoring capability (i.e., the required 

criteria). For this case study, the expected RWIS savings for both I-35 and I-80 peaked at 1℃, 

with a maximum of 7 (MAE)/10 (wMAE) and 7 (MAE)/9 (wMAE) avoided RWIS stations, and 

an average of 1 (MAE)/3 (wMAE) and 1 (MAE)/1 (wMAE) avoided RWIS stations, 

respectively. Furthermore, there are two additional research findings herein. First, as the weight 

value of the sensitive RST range increases from 1 (i.e., MAE) to 100 (i.e., wMAE), the number 

of avoided RWIS stations increases accordingly. This suggests that our developed RK method is 

capable of handling these sensitive values, and as the importance level of such a range 

intensifies, the advantage of employing the RK method to estimate RST becomes more 

pronounced. Second, in comparison to I-80 (an east-west highway), I-35 (a north-south highway) 

typically experiences larger RST variations due to latitude changes, making RST estimation 

more challenging. Consequently, the advantages of using the RK method become more apparent, 

as reflected in higher RWIS savings for I-35 compared to I-80. 

As previously highlighted, it is important to emphasize that translating potential savings from 

avoiding new RWIS station installations or retiring existing ones involves considering not only 

capital costs but also safety effectiveness, traffic mobility enhancement, and maintenance 

material savings associated with the avoided RWIS stations. For example, in a hypothetical 

scenario where the RK method enables 10 RWIS stations to prevent collisions equivalent to 15 

RWIS stations without RK, the overall savings encompass capital cost and collision prevention 

savings, along with potential benefits in traffic mobility and maintenance materials. Several prior 

studies (Veneziano et al. 2014, Lee et al. 2020, Sharma 2022) have quantified and/or 

summarized the costs and benefits of RWIS stations, indicating that the average annualized 

capital cost of each RWIS station is approximately US $21,038, while annual collision savings, 

mobility savings, and material usage savings can amount to around US $1,442,328, US 

$3,467,948, and US $17,415, respectively. In our case, given that our results suggest that up to 

10 RWIS stations can be avoided, the maximum potential savings per year could reach US 

$49,487,290. 
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4.4 Web Application Demonstration 

After all of the methods were validated, a web application integrating all the relevant developed 

models was developed. The web application serves as a comprehensive platform designed to 

empower WRM decision-makers with real-time RSC monitoring capabilities. Accessible through 

a web browser, the application caters to a wide range of users involved in WRM, providing them 

with a unified interface for critical assessment of the state of the road network. To directly 

interact with the developed web application and explore its functionalities firsthand, the website 

may be accessed here: https://vstfl.github.io/mapbox-rsi/. 

Upon accessing the application, users are greeted with an interactive interface consisting of a 

map and an information control panel, as illustrated in Figure 4.33. Through the information 

panel on the left, users can define the data that are visualized using several options, such as the 

toggling of a “real-time” mode. Users can select this option to either visualize data collected 

from a specific period in the past or to visualize data as it is collected in real time. Importantly, 

even in archived mode, queries can trigger the generation of new prediction data if they do not 

already exist for the specified query. Although the application is designed to be used in real-time 

mode to model the current state of the network and ongoing WRM operations, due to the 

seasonal nature of WRM operations, this section will instead illustrate its functionalities using 

queries within the archived mode. This facilitates the simulation of ongoing WRM operations 

irrespective of the current season. 

 

Figure 4.33. Initial state of interactive interface 

The next option available to the user is the toggling of the study area, which provides flexibility 

for both WRM users and for app development. The study area consists of I-80 and I-35 in Iowa, 

and the difference in visualized data between the study area and the full network can be seen in 

Figure 4.34. This functionality is particularly valuable for models, such as the RWIS CNN model 

and the NIK model, which are undergoing continuous development and refinement. This targeted 

approach is crucial during development, as it facilitates faster evaluation cycles. With a smaller 

study area, the computational and analytical demands associated with model training and 

https://vstfl.github.io/mapbox-rsi/
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analysis are significantly reduced. Subsequently, this translates to quicker turnaround times for 

testing and refining the models, leading to their improvement. 

  

Figure 4.34. Difference in visualized data between study area and full network 

The last option available to the user allows for the selection and submission of a query 

containing a specified date, time, and range of interest for RSC visualization. This functionality 

empowers users with granular control over the temporal scope of the data to be assessed. In real-

time mode, the time range determines the desired level of temporal proximity in the data to the 

present moment. Longer time windows provide a more holistic view of the network by capturing 

a broader range of RSC data points. However, this benefit comes at the potential cost of 

including outdated information, as newer RSC predictions may overlap older ones spatially. 

Conversely, shorter time windows offer a more accurate picture of the network’s current state, 

but they are also more susceptible to gaps in spatial data continuity. These relationships between 

time window size and data representation can be seen in Figure 4.35, with the first screenshot 

showcasing a window query of ±5 minutes for the entire network, while the second shows a 

larger time window query of ±30 minutes. 

 

Figure 4.35. Relationship between window size and spatiotemporal continuity 

The map serves as the centerpiece for data visualization and user interaction within the 

application. Following a query submission, the application layer generates and visualizes the 

requested RSC predictions on the map. The map can be traversed by zooming, panning, and 

rotating to assist in assessing the data. By hovering over a data point, users can quickly access a 
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preview of key details, such as the ID of the associated sensor, the image, the capture time, and 

the prediction estimations made by the CNN models in chart form. By clicking on a data point, 

users can then lock the hovered detail of a point into the panel for a more focused analysis. For 

RWIS data points, clicking on the displayed image also allows for viewing of the generated 

CAM image, revealing the regions of the image that were most influential in the model’s 

classification decision. These functionalities can be seen in Figure 4.36. This granular level of 

detail enables users to identify localized issues, gain a more nuanced understanding of RSC 

variations across the network, and validate the performance of the underlying CNN models. 

 

Figure 4.36. Example of interface interactivity 

As previously mentioned, a unique feature of this web application is its ability to generate a 

comprehensive map of real-time RSC estimation using NIK interpolation, an example of which 

is shown in Figure 4.37. It is important to note that NIK requires a certain number of data points 

(i.e., real-time CNN classification results) as input. For details, please refer to the relevant 

sections earlier in the report. In practice, if an hourly event lacks sufficient data for NIK 

interpolation, a simpler nearest neighbor (NN) interpolation method is used instead. This method 

estimates unmonitored points based on the closest AVL or RWIS observation, as illustrated in 

Figure 4.38. 

  

Figure 4.37. Pre- and post-NIK interpolation on a section of highway (2022-01-15) 
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Figure 4.38. Pre- and Post-NN interpolation on a section of highway (2019-01-12) 
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5 CONCLUSION AND RECOMMENDATIONS 

The monitoring and estimation of RSC during winter presents a complex challenge, demanding 

time-sensitive, accurate, and resource-intensive approaches. However, effective RSC monitoring 

is essential for optimizing WRM operations, ensuring public safety, and maintaining traffic 

mobility during adverse weather conditions. This project aimed to build on previous efforts by 

developing highly transferable methods to monitor and infer RSC using imagery and other data 

collected from existing mobile and stationary infrastructures. The methods developed herein, 

including multiple DL-based computer vision techniques, an ML method, geostatistics, and XAI 

techniques, were rigorously evaluated through real-world case studies on the selected highways 

(I-35 and I-80) in Iowa, US. Additionally, a web application was developed to integrate these 

methods, providing a practical tool for transportation agencies. 

One of the primary outcomes of this project was the validation of our previously developed CNN 

models for classifying mobile RSC images. By employing XAI techniques (i.e., Grad-CAM and 

SHAP) the project provided transparency in the decision-making processes of the CNNs, 

clarifying how these models interpret mobile winter RSC imagery. The analysis, which included 

over 10,000 images from Iowa, demonstrated that the CNNs effectively identify key features 

such as pavement areas. The research also highlighted the impact of training data volume and 

CNN architecture on model performance, revealing that increased training data enhances the 

model’s learning capacity. These findings are crucial for fostering trust in AI applications in 

RSC monitoring, as they deepen our understanding of CNNs and promote the development of 

transparent and reliable AI models. These advancements are particularly significant for 

enhancing winter transportation systems. 

Building on the success of the mobile RSC imagery analysis, this project also developed a CNN 

model tailored for stationary RSC imagery collected from RWIS stations. The performance of 

this CNN model was thoroughly evaluated across various camera angles and sample sizes, 

achieving high accuracy metrics, including a maximum accuracy of 98.5%, an F1 score of 

97.2%, and a balanced accuracy of 96.3%. To ensure the model’s reliability and transparency, 

XAI techniques including Grad-CAM, Grad-CAM++, and Score-CAM were employed. These 

methods revealed that the CNN effectively focused on relevant features, even amid complex 

backgrounds. However, the analysis also indicated that variations in camera angles could 

influence model performance. Direct angles that centered on primary pavement areas improved 

focus, while complex image structures presented challenges in isolating important elements, 

suggesting that additional training is needed in these scenarios. The comprehensive evaluation of 

this CNN model underscores the high potential of using stationary RWIS imagery for RSC 

classification, offering significant improvements in the efficiency and effectiveness of winter 

road maintenance operations. This, in turn, could lead to enhanced traffic safety during winter. 

In addition to monitoring RSC, this project aimed to estimate and differentiate the snow hazard 

levels at RWIS sites through imagery analysis. Two DL-based computer vision techniques, 

pix2pix GAN and SS, were employed to estimate SCR for each RWIS image. The case study 

results from the selected highways in Iowa indicated that both the SS and GAN models 

performed their tasks with a high degree of accuracy, providing reliable estimations of SCR. The 
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ability to quantify snow hazard levels through imagery is a significant advancement in WRM, 

enabling more precise and informed decision-making during winter events. 

Beyond site-specific RSC monitoring, this project addressed the challenge of estimating RSC for 

unmonitored areas along the highway network. To achieve this, a novel geostatistical 

interpolation method, known as NIK, was developed. NIK is capable of directly utilizing CNN 

classification results as input to estimate multiple categorical RSC variables for unmonitored 

areas. Based on the limited hourly events collected, this method showed promising results, 

demonstrating its potential to extend RSC coverage across large highway networks. 

Additionally, the project refined the previously developed RK method for continuous RSC 

estimation by incorporating the 𝐾-means algorithm to characterize various weather events. This 

refinement represents a significant stride towards improving the generalizability and accuracy of 

RSC estimations. The refined RK method maximizes the use of data from existing RWIS 

stations to bridge their large spatial gaps, providing a more comprehensive picture of RSC across 

the network. 

The potential savings derived from optimally placing RWIS stations and reducing traffic 

collisions were also quantified in the case study. The findings of the case study indicated that up 

to 10 RWIS stations could be conserved, translating into substantial monetary savings in RWIS 

capital costs, enhanced traffic mobility, and reduced maintenance material usage. These results 

highlight the significant cost-benefit potential of the methods developed in this project, offering 

transportation agencies valuable insights into optimizing their WRM operations. 

Moving forward, several avenues for future research are recommended to build on the findings 

of this project. First, to enhance the generalization of SCR estimation for RWIS imagery, it is 

essential to include a broader range of images with different camera angles and weather events in 

the model training process for both pix2pix GAN and SS models. While this project focused on 

evaluating the feasibility of these models, further development is needed to fine-tune their 

architectures, hyperparameters, and other settings to improve performance. Additionally, 

although the proposed approach has proven to be feasible and robust, the generated SCRs are 

currently site-specific point measurements. To maximize the return on RWIS investments and 

the proposed DL-based SCR estimation approach, spatial and temporal interpolation of these 

determined RSC measurements should be conducted for locations without RWIS stations or 

roadside cameras. This will ensure comprehensive RSC coverage across the highway network, 

leading to more effective WRM strategies. 

Second, to enhance the relevance and usefulness of the proposed geostatistical methods, future 

research should explore additional RSC variables, such as road friction and pavement snow 

status, when data become available. Expanding the scope of investigation to larger highway 

networks, different states and provinces, and a broader range of weather events will help verify 

and generalize the results obtained in this project. The comparison between RK and naïve RST 

estimation methods underscored the significance of RWIS station placement, particularly in low-

density areas. Therefore, further research should focus on optimizing RWIS station configuration 

and density, ensuring accurate RSC estimations and efficient resource allocation. 
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Moreover, future research should delve into the sensitive RST ranges (or criteria related to other 

RSC variables) and their respective weight values. This nuanced exploration will enable 

benchmarking of expected savings, ensuring that the developed methods align more closely with 

the practical needs of real-world scenarios. By addressing these areas, the research community 

can continue to advance the state of RSC monitoring and estimation, leading to safer and more 

efficient transportation systems during winter. 

In conclusion, the techniques presented in this report provide significant advancement in RSC 

monitoring and estimation. By expanding the spatial coverage of RSC, transportation agencies 

can perform WRM activities more efficiently, more cost-effectively, and with greater speed. 

These advancements will ultimately provide the general public with a higher level of service in 

terms of traffic safety and mobility during winter, contributing to safer and more reliable 

transportation systems.
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