DES MOINES RIVER BASIN

Iowa Water Quality Management Plan

The lowa Water Quality Commission approval of these plans is limited to the criteria and strategies described in the plans. Specific effluent limits, compliance schedules and discharger rankings must be considered tentative. New information, growth patterns, industrial development, grant funds and numerous other factors will require that the operation permits issued to each discharger reflect the most current information available and therefore they may vary from the values and the dates contained in the plans.

WATER QUALITY MANAGEMENT PLAN DES MOINES RIVER BÀSIN

July, 1976

PLANNING AND ANALYSIS SECTION WATER QUALITY MANAGEMENT DIVISION IOWA DEPARTMENT OF ENVIRONMENTAL QUALITY

ACKNOWLEDGMENT

We gratefully acknowledge the assistance of the many State and Federal agencies and individuals that have provided data, reviewed drafts, and helped in other ways during the formulation and preparation of this water quality management plan. We also acknowledge the work of Stanley Consultants, Inc. in the development of the preliminary waste load allocation studies used in this plan.

FOREWORD

Under section 455B.31, Code of Iowa, 1973, the Iowa Department of Environmental Quality (DEQ) is charged with the responsibility of protecting and maintaining surface and ground water quality throughout the State. To assist the Department in this task, this basin plan has been prepared to coordinate and direct the State's water quality management decisions on a river basin scale.

The national goal, established in the Federal Water Pollution Control Act Amendments of 1972, (the Act), provides for water quality suitable for the protection and propagation of fish and wildlife, as well as for recreational activities in all surface waters by July 1, 1983. The Amendments define basin planning (Section 303(e)) as a key element for the determination and implementation of the necessary requirements to achieve national water quality goals.

Six major river basins, as defined by the Department of Environmental Quality, are partially located in the State of Iowa. Basin boundary lines are drawn to separate hydrological drainage areas (Figure 1). Any minor deviation from this is done only to be consistent with the boundaries of the six Iowa Conservancy Districts, as established by Chapter 467D.3 of the Code of Iowa. This provides the most compatible use of data among different State agencies.

iii

IOWA RIVER BASINS

This basin plan is one of a series for the six major river basins in Iowa. These plans are supplemented by the <u>Supporting Document for Iowa Water Quality Management Plans</u> which contains general information of a supporting or background nature applicable to all six basins. The planning documents will be prepared by the Water Quality Management Division of DEQ. The planning information contained herein is part of a continuing planning process. Changes will occur since this plan describes a dynamic process. Basin plans will be reviewed at least every five years with interim revisions as significant changes occur.

This plan includes a determination of existing water quality, applicable standards, and significant point and nonpoint sources of pollution in the Des Moines River Basin. The plan then identifies and sets forth measures to correct the basin's water quality problems. Authority for this basin plan is derived from Section 455B.32, of the Code of Iowa.

This basin plan is specifically directed towards satisfying requirements of section 303(e) of the Federal Water Pollution Control Act, as amended; Public Law 92-500, 86 Statute 816 (1972); (33 United States Congress 1251 <u>et sequens</u>). The plan will serve local and regional governments as well as State and Federal agencies.

v

SCOPE

This basin plan addresses the Des Moines River Basin in Iowa from the Minnesota-Iowa State line to the confluence of the Des Moines River with the Mississippi River at Keokuk, Iowa. The Des Moines River Basin is composed of three major subbasins: The Upper Des Moines River Subbasin (Figure 2), the Raccoon River Subbasin (Figure 3), and the Lower Des Moines River Subbasin (Figure 4). Because it is a part of the same conservancy district, a small portion of the Blue Earth basin is also defined to be in the Des Moines basin (Figure 2).

The scope of this plan entails the study of the following items: (1) Water Quality Management Programs, (2) Existing Development Patterns and Basin Characteristics, (3) Existing Water Quality, (4) Inventories of all Point Sources of Wastewater Discharge, (5) Assessment of Nonpoint Pollution Sources, (6) Stream Segment Analyses and Waste Load Allocations, and (7) Assessment of Needs and Compliance Schedules. The detail of study of this document is as follows:

Chapter

I. Iowa's Water Quality Management Program

A synopsis of the basin planning process is presented along with a brief description of the DEQ's water quality management program and strategy.

II. Existing Development Patterns

Information concerning population, land use economics and recreational activities within the basin is presented.

vi

S

III. Basin Characteristics

The physical characteristics of the basin, including topography, climatology, physiography, geology, hydrogeology, hydrology, and ground water quality are discussed.

IV. Water Quality

Iowa Water Quality Standards and Stream Classifications are delineated. Available water quality data have been accumulated and evaluated to present the best possible picture of the recent history of basin water quality. Existing water quality is described and then compared with the Iowa Water Quality Standards.

V. Point Source Discharge Inventory

Available records have been reviewed to determine the location and characteristics of point source wastewater discharges. This information is tabulated and summarized.

VI. Waste Load Allocations and Rankings

The results of the waste load allocation analyses for the basin are listed. Waste load reductions for each point source waste dischargers are given. Segments are classified and ranked. Dischargers are ranked.

VII. Nonpoint Pollution Sources

The problems of nonpoint pollution sources are addressed. Combined sewer overflows, urban run-

х

offs, and rural sources of pollution from animal feeding operations and general agricultural activities are characterized. Based upon information extrapolated from other areas, the potential pollution from typical sources is identified.

VIII. Needs and Compliance Schedules

An evaluation of the needs for improved wastewater treatment in the basin is presented. A summary of the estimated costs associated with these needs is also given.

IX. Conclusions and Recommendations

Conclusions drawn from the plan are presented along with several recommendations that would aid in attaining the goal of improved water quality.

X. Review and Revision

The procedures for review and revision of this plan are briefly described.

TABLE OF CONTENTS

	Page
Title Page Acknowledgments Foreword Scope Table of Contents List of Tables List of Figures	i iii vi xii xiv xvii
Chapter	
I Iowa's Water Quality Management Program Water Quality Standards Implementation Strategy References	I- 1 I- 4 I-31
II Existing Development Patterns Political Subdivisions Population Projection Economics Recreational Activities References	II- 1 II- 1 II-12 II-17 II-33
<pre>III Basin Characteristics Lakes and Impoundments Physiographic Features General Climatology Surface Waters Hydrogeology Ground Water Quality References</pre>	III- 5 III- 5 III-18 III-20 III-34 III-39 III-41
<pre>IV Water Quality Sampling Locations Des Moines River East Fork Des Moines River West Fork Des Moines River North Raccoon River North, Middle and South Rivers References</pre>	IV- 8 IV-12 IV-27 IV-32 IV-44 IV-54 IV-56
V Point Source Discharge Inventory Municipal Semipublic Industrial Summary	V- 3 V- 4 V- 4 V- 5

TABLE OF CONTENTS (CONTINUED)

Chapt	er Page	
VI	Waste Load Allocations and Rankings Allocation Results Segment Classification Priority Rankings References	VI-16 VI-44 VI-50 VI-70
VII	Nonpoint Pollution Sources General Rural Runoff Animal Feeding Operations Urban Runoff References	VII- 1 VII- 8 VII-22 VII-24
VIII	Needs and Compliance Schedules Assessment of Needs References	VIII- 1 VIII-42
IX	Conclusions and Recommendations Conclusions Recommendations	IX- 1 IX- 4
Х	Review and Revision Public Hearing Procedure Water Quality Standards Review Basin Plan Revision Basin Plan Hearings	X- 1 X- 2 X- 2 X- 3

Glossary

LIST OF TABLES

Number		Page
II-l	Portions of Counties - The Des Moines River Basin	II- 2
II-2	Existing and Projected Populations	II- 6
II-3	Economic Profile of the Des Moines River Basin	II-13
II-4	Summary Economic Data for Selected Area Shown in Figure II-4	II-14
II-5	Existing and Proposed Recreation Facilities - UDMRS	II-20
II-6	Existing and Proposed Recreation Facilities - RRS	II - 25
II-7	Existing and Proposed Recreation Facilities - LDMRS	II-29
III-l	Drainage Areas of Streams in the Des Moines River Basin	III- 3
III-2	Des Moines River Basin - Lakes and Impoundments	III- 6
III-3	Annual Runoff and Indicators of Flow Variability for Selected Stations in the Des Moines River Basin	III-21
III-4	U.S.G.S. Gaging Station Information - UDMRS	III-25
III-5	U.S.G.S. Gaging Station Information - RRS	III-28
III-6	U.S.G.S. Gaging Station Information - LDMRS	III-31
III-7	Flow Comparisons	III-35
IV-1	Surface Water Classification - Des Moines River Basin	IV- 3
IV-2	Heavy Metals in the Des Moines River (Fort Dodge to Des Moines)	IV-14
NOTE:	UDMRS - Upper Des Moines River Subbasin RRS - Raccoon River Subbasin LDMRS - Lower Des Moines River Subbasin	

LIST OF TABLES (CONTINUED)

Number		Page
IV-3	Heavy Metals in the Des Moines River (Des Moines to Keokuk)	IV-14
IV-4	Pesticides in the Des Miones River	IV-15
IV-5	Heavy Metals in the East Fork Des Moines River	IV-29
IV-6	Heavy Metals in the West Fork Des Moines River	IV-34
IV-7	Water Quality Iowa-Minnesota Border 1967-1973	IV-43
IV-8	Heavy Metals in the North Raccoon River	IV-47
IV-9	Heavy Metals in the Main Stem Raccoon River	IV-47
IV-10	Pesticides in the Main Stem Raccoon River	IV-48
IV-11	Bacteriological Data - North Raccoon River	IV-53
V-1	Point Source Wastewater Discharges	v- 7
V-2	Discharge Inventory	V-22
V-3	Des Moines River Basin Point Source Wastewater Discharge Summary	V-68
V-4	Municipal Wastewater Treatment Facility Process Summary	v-70
V-5	Des Moines River Basin Municipal Wastewater Treatment Facility Process Summary	V-72
VI-l	Waste Load Allocations	VI- 2
VI-2	Stream Segment Ranking	VI-45
VI-3	Waste Load Reductions	VI-51
VI-4	Municipal Discharger Ranking	VI-61
VII-1	Land Use Classifications	VII- 2
VII-2	Estimated Annual Nutrient Load in the Des Moines River at Saylorville	VII- 4
VII-3	Estimated Nutrient Loadings from Nonpoint Sources	VII- 4

LIST OF TABLES (CONTINUED)

Number		Page
VII- 4	Runoff Control Measures Required - Des Moines River Basin	VII- 5
VII- 5	Unit Costs for Statewide Controls	VII- 6
VII- 6	Runoff Control Costs by Subbasin - Des Moines River Basin	VII- 7
VII- 7	Livestock Distribution by Subbasin - Des Moines River Basin	VII- 9
VII- 8	Animal Feeding Operations - UDMRS	VII-11
VII- 9	Animal Feeding Operations - RRS	VII-15
VII-10	Animal Feeding Operations - LDMRS	VII-18
VII-11	Livestock Treatment Cost	VII-21
VII-12	Urban Stormwater Treatment and/or Control Costs	VII-23
VIII- 1	Average Disposal Costs	VIII- 7
VIII- 2	Municipal Assessment of Needs and Schedule of Compliance	VIII-10
VIII- 3	Summary of Municipal Treatment Needs	VIII-34
VIII- 4	Treatment of Needs and Schedule of Compliance	VIII-37
VTTT- 5	Summary of Needs	VIII-41

LIST OF FIGURES

1

Number	2		Page
II-	1	Population Distribution - UDMRS	II- 3
II-	2	Population Distribution - RRS	II- 4
II-	3	Population Distribution - LDMRS	II- 5
II-	4	Data Base Area for Employment Statistics	II - 15
II-	5	Recreational Site Inventory - UDMRS	II-24
II-	6	Recreational Site Inventory - RRS	II-28
II-	7	Recreational Site Inventory - LDMRS	II-32
III-	1	Des Moines River Basin	III- 2
III-	2	Generalized Geologic Column for Iowa	III-13
III-	3	Glacial Geography of Iowa	III-14
III-	4	Major Soil Groups in the Des Moines River Basin	III-17
III-	5	U.S.G.S. Gaging Stations - UDMRS	III-27
III-	6	U.S.G.S. Gaging Stations - RRS	III-30
III-	7	U.S.G.S. Gaging Stations - LDMRS	III-33
IV-	1	Surface Water Classification - UDMRS	IV- 5
IV-	2	Surface Water Classification - RRS	IV- 6
IV-	3	Surface Water Classification - LDMRS	IV- 7
IV-	4	Selected Water Quality Sampling Locations - UDMRS	IV- 9
IV-	5	Selected Water Quality Sampling Locations - RRS	IV-10
IV-	6	Selected Water Quality Sampling Locations - LDMRS	IV-11
IV-	7	Turbidity Profiles for the Lower Des Moines River	IV-16
IV-	8	Temperature Profiles for the Lower Des Moines River	IV-18

Number		Page
IV- 9	Dissolved Oxygen Profiles for the Lower Des Moines River	IV-19
IV-10	Dissolved Oxygen Profiles for the Lower Des Moines River	IV-20
IV-11	Comparison of Biochemical Oxygen Demand in the Des Moines River - 1960's vs. 1970's	IV-21
IV-12	Comparison of Ammonia Nitrogen Concentrations in the Des Moines River - 1940's vs. 1960's vs. 1970's	s IV-22
IV-13	Comparison of Mean Biochemical Oxygen Demand Concentrations for the Des Moines River, 1940's vs. 1970's	IV-24
IV-14	Fecal Coliform Profiles for the Lower Des Moines River	IV-26
IV-15	East Des Moines River Basin Map	IV-28
IV-16	East Fork Des Moines River, Dissolved Oxygen Concentration	IV-30
IV-17	East Fork Des Moines River, Ammonia Nitrogen Concentration	IV-30
IV-18	East Fork Des Moines River, Fecal Coliform Count	IV-31
IV-19	West Des Moines River Basin Map	IV-33
IV-20	Mean Nitrate Nitrogen Concentrations in the West Fork Des Moines River, 1970-1974	IV-35
IV-21	Mean Turbidity Concentrations in the West Fork Des Moines River, 1970-1974	IV-36
IV-22	Mean Ammonia Nitrogen Concentrations in the West Fork Des Moines River, 1970-1974	IV-37
IV-23	Mean Biochemical Oxygen Demand in the West Fork Des Moines River, 1970-1974	IV-38
IV-24	Mean Fecal Coliform Concentrations in the West Fork Des Moines River, 1970-1974	IV-39
IV-25	West Fork Des Moines River, Dissolved Oxygen Concentrations	IV-41

-

Number		Page
IV-26	West Fork Des Moines River, Ammonia Nitrogen Concentrations	IV-41
IV-27	West Fork Des Moines River, Fecal Coliform Count	IV-43
IV-28	North Raccoon River Basin Map	IV-45
IV-29	North Raccoon River, Dissolved Oxygen Concentrations	IV-49
IV-30	North Raccoon River, Ammonia Nitrogen Concentrations	IV-49
IV-31	North Raccoon River, Dissolved Oxygen Concentrations	IV-50
IV-32	North Raccoon River, Ammonia Nitrogen Concentrations	IV-50
V- 1	Point Source Wastewater Dischargers - UDMRS	V-19
V- 2	Point Source Wastewater Dischargers - RRS	V-20
V- 3	Point Source Wastewater Dischargers - LDMRS	V-21
VI- 1	Dissolved Oxygen and Ammonia Nitrogen Concen tration Profiles, Summer Conditions, West Fork Des Moines River	- VI-17
VI- 2	Dissolved Oxygen and Ammonia Nitrogen Concentration Profiles, Summer Conditions, East Fork Des Moines River	VI-18
VI- 3	Dissolved Oxygen and Ammonia Nitrogen Concentration Profiles, Summer Conditions, Lotts Creek	VI-19
VI-4	Dissolved Oxygen and Ammonia Nitrogen Concentration Profiles, Summer Conditions, Boone River	VI-20
VI-5	Dissolved Oxygen and Ammonia Nitrogen Concentration Profiles, Summer Conditions, Main Stem Upper Des Moines River	VI-21
VI-6	Dissolved Oxygen and Ammonia Nitrogen Concentration Profiles, Winter Conditions, West Fork Des Moines River	VI-23

Number		Pages
VI- 7	Dissolved Oxygen and Ammonia Nitrogen Concentration Profiles, Winter Conditions, East Fork Des Moines River	VI-24
VI- 8	Dissolved Oxygen and Ammonia Nitrogen Concentration Profiles, Winter Conditions, Lotts Creek	VI-25
VI- 9	Dissolved Oxygen and Ammonia Nitrogen Concentration Profiles, Winter Conditions, Boone River	VI-26
VI-10	Dissolved Oxygen and Ammonia Nitrogen Concentration Profiles, Winter Conditions, Main Stem Upper Des Moines River	VI-27
VI-11	Dissolved Oxygen Concentration Profiles, Summer Conditions, South Raccoon River and Middle Raccoon River	VI-28
VI-12	Dissolved Oxygen Concentration Profiles, Summer Conditions, North Raccoon River and Raccoon River	VI-29
VI-13	Ammonia Nitrogen Concentration Profiles, Summer Conditions, South Raccoon River and Middle Raccoon River	VI-30
VI-14	Ammonia Nitrogen Concentration Profiles, Summer Conditions, North Raccoon River and Raccoon River	VI-31
VI-15	Dissolved Oxygen Concentration Profiles, Winter Conditions, South Raccoon River and Middle Raccoon River	VI-33
VI-16	Dissolved Oxygen Concentration Profiles, Winter Conditions, North Raccoon River and Middle Raccoon River	VI-34
VI-17	Ammonia Nitrogen Concentration Profiles, Winter Conditions, South Raccoon River and Middle Raccoon River	VI-35
VI-18	Ammonia Nitrogen Concentration Profiles, Winter Conditions, North Raccoon River and Raccoon River	VI-36

Number		Page
VI-19	Dissolved Oxygen and Ammonia Nitrogen Concentration Profiles, Summer Conditions, Des Moines River	VI-38
VI-20	Dissolved Oxygen and Ammonia Nitrogen Concentration Profiles, Summer Conditions, Beaver Creek	VI-39
VI-21	Dissolved Oxygen and Ammonia Nitrogen Concentration Profiles, Summer Conditions, Middle River	VI-40
VI-22	Dissolved Oxygen and Ammonia Nitrogen Concentration Profiles, Winter Conditions, Des Moines River	VI-41
VI-23	Dissolved Oxygen and Ammonia Nitrogen Concentration Profiles, Winter Conditions, Beaver Creek	VI-42
VI-24	Dissolved Oxygen and Ammonia Nitrogen Concentration Profiles, Winter Conditions, Middle River	VI-43
VI-25	Stream Segments, Upper Des Moines River Basin	VI-47
VI-26	Stream Segments, Raccoon River Basin	VI-48
VI-27	Stream Segments, Lower Des Moines River Basin	VI-49
VII- l	Animal Feeding Operations - UDMRS	VII-10
VII- 2	Animal Feeding Operations - RRS	VII-14
VTT- 3	Animal Feeding Operations - LDMRS	VII-17

CHAPTER I

IOWA'S WATER QUALITY MANAGEMENT PROGRAM

The main objective of water quality management is protection and enhancement of water resources to insure acceptable conditions for designated uses. The establishment of a realistic management program requires a comparison of existing water quality with the desired water quality.

The Iowa Water Quality Standards, as adopted by the Iowa Water Quality Commission, establish a baseline for desired water quality and stream uses. The National Water Quality Criteria, as proposed by the U.S. Environmental Protection Agency (EPA), provides an additional measure of desirable water quality.

WATER QUALITY STANDARDS

Iowa's Water Quality Standards and accompanying use classifications were established by the Water Quality Commission. They were adopted by the State on February 12, 1974 and approved by the U.S. Environmental Protection Agency on March 26, 1974. When a water quality standard is violated the water, according to law, is polluted and its quality must be improved.

Water Use Classifications

The Department of Environmental Quality has responsibility for establishment of water use classifications for the surface waters of the State. Assistance in this task has been

provided by the State Conservation Commission which has the major responsibility for fish and wildlife protection. Accordingly, the DEQ has defined four surface water-use classifications and has placed all surface waters of the State into one or more of these classifications. These classifications are:

Class A - Primary Contact Recreation; Class B - Wildlife, Secondary Contact Recreation and Aquatic Life (with subclasses for cold and warm waters); Class C - Potable Water Supply; and a General Water Quality Criteria. All surface waters are designated under the General Water Quality Criteria. In addition, many streams are also designated for one or more of the Class A, Class B, or Class C uses. Each of the use classifications imply specific water quality standards.

Surface Water Quality Standards

Iowa Water Quality Standards define the constituent levels which may be present in the surface waters of the State. Specific concentrations of various constituents which should not be violated are assigned to each water use, in order to protect the water for that particular use.

The water quality standards shall be met at all times when the flow of the receiving stream equals or exceeds the seven day, 1-in-10 year low flow (7Q10). Exceptions may be made for intermittent or extremely low flow streams. When intermittent streams are classified for aquatic life protection, the Water Quality Commission may waive the (7Q10) low

flow requirement and establish a minimum flow in lieu thereof. Such a waiver shall be granted by the Commission only when it has been determined that the aquatic resources of the receiving waters are of little significance at flows less than the established minimum.

The specific criteria which apply to A, B, C, or General classifications are detailed in Chapter II of the <u>Supporting</u> <u>Document For Iowa Water Quality Management Plans</u> (1).

Revision of Water Quality Standards

The Act requires that the State shall from time to time, but at least once every three years, hold public hearings to review water quality standards and, if appropriate, modify and adopt new standards.

Some of the most likely changes in the Standards will be revisions of the use classifications. Since the National water quality goal is swimmable-fishable waters by 1983, most anticipated changes will be to upgrade existing Class B waters to include the current Class A usage. There will also be cases of upgrading waters, to which only general criteria apply, Classes A and B. Other revisions that may take place are changes in the criteria of the current Water Quality Standards. Any revisions in the Standards will be subject to public hearings and approval by the EPA before they may become law.

IMPLEMENTATION STRATEGY

If a management plan is to be effective, it must include a strategy for implementation of its proposals. This section gives a brief description of the DEQ's strategy for the implementation of its basin plans.

Strategy Summary

In most cases, water quality violations are the result of man's activities. Typical sources of pollution can include municipal discharges, industrial discharges, and runoff or nonpoint discharges associated with agricultural practices. The solution to water pollution is to identify the contributing sources and either eliminate or control them to the extent necessary to assure that water quality standards will not be violated.

Waste load allocation studies are performed to estimate the quantities of pollutants which may be discharged to receiving waters without exceeding the limits allowed by the water quality standards. Through the use of the waste load allocations, effluent limitations are established for municipal and industrial wastewater point source discharges. Only point sources of pollution are addressed in the waste load allocations in the initial version of the basin plans. This is because point sources of pollution are easier to identify and control. Nonpoint sources of pollution will receive further considerations in subsequent revisions to the plans.

Regardless of what the waste load allocation study indicates, to be allowable, the Federal Water Pollution Control Act Amendments of 1972 (the Act), Public Law 92-500, requires publicly owned treatment plants to provide as a minimum, "secondary treatment", and industrial plants to provide, as a minimum, "best practicable control technology currently available" (B. P. T.) by July 1, 1977. The actual effluent limitations required under these degrees of treatment are described in Chapter VI.

The principal mechanism for attaining and maintaining compliance with the water quality standards is through the issuance of operation permits to all point sources of wastewater discharge. The permits contain either minimum allowable effluent limitations or limitations more stringent as necessary to assure compliance with water quality standards. Where existing sources are not in compliance with the effluent limitations, the operation permit will include an implementation schedule to assure compliance within a reasonable time period.

An additional step in the implementation of remedial measures to abate water pollution exists in the case of municipal wastewater treatment plants. Public Law 92-500, the Act, has established a program for assisting publicly owned waste treatment works with funding for improvements necessary to meet the goals of the Act. The DEQ, as the state water pollution control agency, has responsibility for administering

the program. The final step, then, in the DEQ's strategy for implementation of the plan is to allocate the federal funds available for improvement of Iowa municipal treatment facilities.

Monitoring and Surveillance

<u>Stream Sampling Station Network</u> - The present Iowa stream sampling station network is a series of sampling points distributed throughout the State. These are permanent stations, sampled at the same location and on a quarterly frequency. The samples are normally analyzed for the same parameters every quarter. The objective of the sampling network is to give a general indication of water quality. The network is effective for measuring trends of either improvement or degradation of water quality. Although only minimal assistance is obtained in the area of enforcement, the network provides some background data for planning and assessing the effectiveness of the program.

The present network consists of thirty-six (36) stations across Iowa, each sampled quarterly. Six of these stations are in the Des Moines River Basin. Five of the six stations are on the Des Moines River. The five stations are located at Humboldt, at Dakota City, at Des Moines, at the Ottumwa Water Works Intake, and at Alexandria Bridge near Keokuk. The one station on the Raccoon River is located at the Des Moines Water Treatment Plant intake. All stations are sampled by the State Hygienic Laboratory of the University of Iowa, under

contract to the DEQ. The State Hygienic Laboratory also does the analyses.

In order to be more effective as a trend indicator, the monitoring network should be expanded. To be most effective, stations should be located below major point source discharges, and at points on the stream of distinct change in characteristic. These locations would be at points of confluence of major tributaries, above and below impoundments, and at points of change of water quality standards designation.

Intensive Stream Water Quality Surveys- The limiting factor in the effectiveness of the stream sampling network is its inability to detect cause and effect relationships. The DEQ's water quality monitoring program therefore includes a complementary program of intensive stream water quality surveys. The intensive surveys are in-depth studies of water quality in a specific area or segment of a stream, over a finite time period. The purpose of the survey is to provide a detailed determination of the biological, physical, and chemical qualities of the stream water. Information obtained is used to determine the effects of a specific point source or combination of point sources upon the receiving stream. The surveys provide documentation for enforcement actions and determine the effectiveness of any corrective measures initiated. Such surveys are also used for evaluating priorities, verifying waste load allocations, and as aids for planning.

The bulk of the intensive surveys program is conducted by the State Hygienic Laboratory. The lab usually performs both sampling and sample analyses. Intensive surveys are also conducted by the DEQ staff to obtain answers to specific questions. For example, limited surveys are occasionally conducted by DEQ Regional staff in connection with point source discharge compliance inspections.

All survey data storage and analysis are performed using computer data processing. The stream water quality data is also stored in the U.S. Environmental Protection Agency computer storage system, STORET. The STORET system includes a variety of report and analysis formats for evaluating and using the data.

Point Source Discharge Self-Monitoring - The principal tool for the management of point source discharge monitoring and enforcement of effluent limitations is the State Operation Permit Program, in coordination with the National Pollutant Discharge Elimination System (NPDES Discharge Permit Program). The permits not only set discharge effluent limitations and prescribe compliance schedules for bringing about corrections, but also specify a program for effluent monitoring and recording by the permit holder.

Dischargers are currently required to report to the DEQ each month. Report contents are specified and are tailored to the

size and complexity of the plant and to the effluent limitations specified in the permit. Plant flows are required to be recorded as well as certain laboratory test results.

The self-monitoring reports are used as a screening mechanism to point out operation problems and existing or impending effluent limit violations. The reports are used as a guide to direct the DEQ resources to the needs for more detailed monitoring and possible enforcement action.

More importantly, however, the reports serve as an aid to the operator in evaluating his own operation. The requirements in effect mandate the availability of operational data which the operator can then use to improve his operation.

Another self-monitoring program is the State initiated Effluent Quality Analysis Program (EQAP). This is a program where the State Hygienic Laboratory mails specially prepared sample bottles to each discharger. The plant operator collects a sample at times and locations recommended by the DEQ, and mails the sample back to the State Hygienic Laboratory for analysis. Samples are analyzed monthly for biochemical oxygen demand (BOD) and, in some cases, ammonia. Other water quality parameters compatible with acid fixing can also be analyzed from the EQAP sample. Occasionally, heavy metal or phosphorus analyses are performed at the request of the DEQ.

<u>Plant Inspection</u> - The DEQ also conducts on-site plant inspections. The purpose of the inspection is to provide an in-depth analysis of the operation, maintenance, and effectiveness of the treatment plant. The inspections provide verification of self-monitoring reports and determination of whether the plant is in compliance with permit stipulations.

Influent and effluent samples are collected and analyzed when possible, but in many cases visual observations of the effluent by the inspector can satisfactorily make the determination. The inspection also includes an evaluation of the effects of the effluent on the receiving stream, occasionally by sampling, but more often by visual observation.

The advantage of the on-site inspection over the other monitoring programs is the opportunity to make cause and effect evaluations. The inspector can observe the raw waste load and the operation and maintenance factors which determine the efficiency and effectiveness of the treatment process.

The value of the inspections is twofold; first, they provide a valuable tool for evaluating permit compliance and documenting the need for enforcement actions, and secondly, and equally important, they provide a vehicle for assistance to the operator. The inspectors can provide counsel and advice to the local officials on meeting permit requirements as well as operation and maintenance methods to improve plant operation and efficiency.

Plant inspections are normally made by the DEQ regional staff. The regional staff make the inspections when minimal or no sampling is needed in conjunction with the inspection. Central office staff make inspections when intensive composite sampling is required. The number of inspections conducted each year is limited by the availability of fiscal and personnel resources. Approximately three to four hundred municipal and industrial inspections are made each year, along with a similar number of quick stop visits. All municipal and major industrial plants should be inspected each year. The number of inspections will be increased as staff is added to the Regional offices.

Waste Load Allocations

Waste load allocations have been made for point sources of wastewater discharge in order to maintain water quality standards. The scope of the allocations was limited to evaluation of effluent limitations necessary to meet the dissolved oxygen (DO) and ammonia-nitrogen (NH₃-N) standards, at the 7-day, 1-in-10 year low stream flow.

The DO and NH₃-N parameters were selected for evaluation because they are generally the most critical criteria of the water quality standards. Data from five years of municipal treatment plant effluent sampling are available on these parameters and are readily adaptable to data processing. Other criteria within the water quality standards can normally be met with secondary treatment.

It is recognized that other parameters could be considered in the waste load allocation analyses. An analysis of historical water quality data shows that other water quality criteria have been violated and that critical conditions may also exist for some parameters during high stream flow periods. Some other parameters of particular concern include heavy metals, toxic elements, fecal coliform and thermal discharges. Where standards violations are apparent for parameters other than DO and NH_3 -N they are studied on an individual basis and effluent limits incorporated into the operation permits. A more detailed waste load allocation analysis, however, will have to be left until subsequent revisions of this plan when additional data and information become available.

To predict the variation in DO and ammonia concentrations in the streams, a computer-based mathematical model was used. Input data for the model was developed from existing information and cursory field investigations of the streams. When necessary, conservative assumptions have been made that tend to assure a high degree of protection for water quality without necessitating unrealistically stringent effluent limitations. Future stream surveillance should help to verify particular constants and assumptions used, and improve the validity of the model. Based upon existing data prediction of the impact of different wastewater loads upon the DO and ammonia concentrations may be performed.

detailed discussion of the mathematical model, methodology, and assumptions used in the waste load allocation analysis is included in Chapter IV of the supporting document (1). The final allocations for the Des Moines River Basin are contained in Chapter VI of this report.

Permit System

The major mechanism by which the water quality management plan will be implemented is the wastewater construction and operation permit program conducted by the DEQ, under authority of Chapter 19, of the rules of the Department (1973 IDR). Any person intending to construct, modify or extend any wastewater disposal system in the State of Iowa must first obtain a construction permit from the Executive Director of DEQ. An operation permit is also required prior to the operation of any disposal system, or the discharge of sewage, industrial waste, or other wastes from any discharge source. Chapter 455B of the Code also has provisions included for correcting violations of any permit, rule, standard, or order issued under Part 1 of Division III of the Chapter.

<u>NPDES</u> - The Federal Water Pollution Control Act Amendments of 1972 (the Act) established a National Pollutant Discharge Elimination System (NPDES) permit program. Any person presently discharging wastewater to public waters is required to obtain an NPDES permit. Any person proposing a disposal system which will result in a wastewater discharge is required to apply for an NPDES permit at least 180 days before such discharge is to commence.
The Act also established a procedure whereby the EPA can delegate permit authority to those States that desire to administer the NPDES program. The State must demonstrate ability to conduct the program and must have adequate legal authority to enforce the permits. The DEQ is currently preparing a delegation request to the EPA for issuance of NPDES permits in Iowa.

<u>Operation Permits</u> - An operation permit is a legally enforceable document which specifies the type of waste water which may be discharged, as well as the allowable quantities, concentrations, and rates of discharge. As a minimum, the effluent limitations are equivalent to secondary treatment for municipalities or BPT for industries, but, more stringent limits may be required as needed to meet water quality standards.

The permits also contain self-monitoring and reporting provisions that require dischargers to monitor their effluents and report the results to the DEQ. The DEQ data processing system stores and reports the water quality and compliance schedule data in formats designed to point out violations and problem areas. Fiscal and personnel constraints limit the number of violations and problem areas that can be effectively pursued. Staff resources are, therefore, directed to those discharges which are determined to be of sufficient importance by the priority ranking formula.

Provisions of the State construction and operation permit program also require that certain agricultural operations also obtain a permit for wastewater disposal. This subject is discussed in Chapter VII. Industries which discharge their wastewater to municipal plants do not need an operation permit, but must follow certain pre-treatment standards as published by the EPA.

Operation permits are written for a maximum of five years, with renewal application required prior to expiration. A permit can be modified at any time if there is a violation of any terms or condition of the permit, a change in any condition that requires either a temporary or permanent reduction or elimination of the permitted discharge, or if it is found that the permit was obtained under any type of misrepresentation of fact.

Many dischargers are not currently treating their wastewaters to a sufficient degree to comply with the final effluent limitations of their permit. In these cases the permits are written with interim and final effluent limitations and legally enforceable compliance schedules. These compliance schedules usually specify a series of interim dates so as to assure steady progress on the remedial efforts.

Iowa water pollution control law provides for stiff penalties for violations of permits and other rules or standards. A large bulk of the DEQ compliance action work load is directed toward negotiating achievable timetables. Negotiations are aimed at identifying practical remedial measures. Legal enforcement actions follow only where negotiations are not effective.

Water Quality Management Deadlines

As already mentioned, this document will help to direct the water quality management strategies necessary to implement a remedial program needed to meet the goals of the Act. The Act and the DEQ specify several deadlines that must be met in the implementation of this management program. Several key dates which have been established both by the EPA and the DEQ for improving wastewater treatment to protect National and State water quality follow. These dates are used to establish implementation schedules for the remedial measures defined by this plan.

Date December 31, 1974

June 30, 1975

July 1, 1977

July 1, 1977

Action

National Pollutant Discharge Elimination System permits issued.

Section 303(e) basin plans completed.

Secondary treatment required for all publicly-owned treatment works.

Best practicable waste treatment technology for all industrial discharges.

July 1, 1977	More stringent effluent limits to meet Iowa water quality stan- dards
July 1, 1983	Best practicable waste treatment technology for all publicly-owned treatment works.
July 1, 1983	Best available technology for all industrial discharges.
July 1, 1985	Zero pollutant discharge.

Construction Grants

If all point source dischargers are to meet the effluent limitations imposed by the waste load allocations, considerable monetary expenditures will be required on behalf of municipalities and industries. Industrial dischargers must provide their own waste treatment financing. The Federal Water Pollution Control Act Amendments of 1972, under Title II -"Grants for Construction of Treatment Works" provide for federal grants for publicly owned waste water treatment facilities. Municipalities may apply to the EPA through the DEQ for federal grants of 75% of eligible costs of their wastewater treatment works improvements. Municipalities must then provide from other sources, the remaining 25% of the cost. Eligible project costs include those for treatment, interceptors, and collection facilities. Collection facilities have been assigned lowest priority.

In the past, federal funds allocated to Iowa had been sufficient to cover the grant funding of all needed treatment facilities, however, during the past two years the needs

have outgrown the availability of federal funds. Nationwide federal allotments for fiscal years 1974 and 1975 were \$3 billion and \$4 billion, respectively. Of the national allotment, Iowa's shares were \$34.7 million and \$39.3 million respectively. Current needs for the State for all eligible facilities excluding storm sewers, based on 1973 dollars is \$989,584,000, as contained in the 1974 "Needs Survey" for the State of Iowa. These needs will continue to increase as better information is developed through the waste load allocations and basin planning processes. Inflation is also having a significant influence on treatment facility costs.

Priorities for Funding - To receive grant funding a municipality must proceed through certain requirements. The DEQ is responsible for establishing an orderly priority process for the administration and obligation of federal grant funds. All municipalities are placed on the state discharge inventory and assigned a discharge priority. Should a municipality have a need for improvement or construction of wastewater treatment facilities and apply for federal grant funds, it is then placed in the construction grant priority listing according to its discharge priority rank. The construction grant priority list is revised annually. After determination of the available federal grant money for the year, the annual project list can be established based upon the number of projects from the priority list that can be funded.

Prior to adoption of the annual "priority list" and "project list" for each fiscal year, a public hearing is held where interested persons may comment on the proposed lists. Following consideration of public hearing comments the final lists are prepared and approved by the Water Quality Commission and the EPA.

Types of Grants - Once a municipality has been placed upon the "project list" and has been found to be eligible for grant funding, a three-step grant process in initiated in accordance with Federal Regulations 40 CFR 35, promulgated by EPA to implement Title II of the Federal Act.

Step one, known as the facility plan, contains an evaluation of the water pollution control problem; explores a number of alternatives to eliminate the problem; conducts a costeffectiveness study for each alternative; evaluates the environmental impact of each alternative; and finally, chooses the specific alternatives which seem to have the most environmental, economic, and social benefits. The facility plan must be submitted to the DEQ and the EPA for approval before the second step can be considered.

Step two covers the preparation of construction plans and specifications which are based on the alternative chosen in the facility plan. After approval of the plans and specifications by the DEQ and the EPA, step three, which is the actual construction of the required facilities, can be initiated. Grants are made to applicants for each of the three steps.

Before the facility planning (Step 1) process is begun, the DEQ will inform the applicant of the minimum quality of effluent which can be discharged to the receiving waters. The facility planning for a specific discharge is then directed at meeting these effluent limitations.

Priority System

Application of the waste load allocations and effluent limitations result in considerable needs to upgrade or expand existing wastewater treatment facilities. Although there is considerable expense involved to meet State and Federal water quality goals, the financial resources available each year for publicly owned facilities are limited. Not all needed projects can be funded at once. To solve this problem, a system of priorities has been established. This section describes a portion of the system proposed for use by the State of Iowa.

Stream Segment Priority Ranking - Each major river basin is first divided into various stream segments. Each stream segment consists of surface waters that have common hydrologic characteristics and natural, physical, chemical, and biological processes. In accordance with EPA guidelines, the stream segments must be classified either effluent limited (EL) or water quality limited (WQ).

Segment classification is a contributing factor in the determination of the segment ranking, discharger ranking, and

compliance scheduling. The two segment types are described as follows:

- 1. An effluent limited (EL) segment is any segment where it is known that water quality is meeting and will continue to meet standards, or where there is adequate demonstration that standards will be met after application of secondary treatment or BPT to all point discharges to the segment.
- 2. A water quality limited (WQ) segment is any segment where it is known that water quality does not currently meet applicable standards and it is not expected that standards would be met even after application of secondary treatment or BPT to all point discharges to the segment.

All segments are next ranked in order of abatement priority. The ranking methodology attempts to take into account: (1) severity of pollution problems, (2) population affected, (3) need for preservation of high quality waters, and (4) national priorities.

Two major concepts were considered necessary and sufficient to distinguish any segment from other segments of the basin. These are: (1) the degree of usefulness of the segment, assuming water quality standards are met, and (2) the number of discharges required to meet effluent limitations in order to bring the segment into compliance with water quality standards. These concepts, thus, form the basis of the ranking methodology.

I - 21

The specific formula used to calculate the total points for a segment is as follows:

TOTAL SEGMENT = $(0.5 + A + B_C + B_W + C + BC + AES + POP) \times SQ$ POINTS

- Where: A = 2 if the segment contains any designated class A waters and 0 otherwise.
 - $B_{c} = 2$ if the segment contains any designated class B cold waters and 0 otherwise.
 - $B_w = 1$ if the segment is designated as a class B warm waters and 0 otherwise.
 - C = 2 if the segment contains any designated class C waters and 0 otherwise.
 - BC = 1 if the segment is designated as being useful for either boating and/or canoeing and 0 otherwise.
 - AES = 1 if the segment is considered to include an area of significant aesthetic value and 0 otherwise.

within a 10 mile wide corridor adjacent to either side of the segment and at least one of the above terms (A, B_{C} , B_{W} , C, BC, or AES) is nonzero.

SQ = 6 if the segment is designated as water quality limited and more than four dischargers have a waste load allocation more stringent than secondary treatment.

- SQ = 5 if the segment is designated as water quality limited and three or four dischargers in the segment have a waste load allocation more stringent than secondary treatment.
- SQ = 4 if the segment is designated as water quality limited and one or two dischargers in the segment have a waste load allocation more stringent than secondary treatment.
- SQ = 3 if the segment is designated as effluent limited with water quality standards violated.
- SQ = 2.5 if the segment is designated as effluent limited with water quality standards met.
- SQ = 2 if the pollution load to the segment at low flow is contributed equally by point and nonpoint sources.
- SQ = 1 if the pollution load to the segment at low flow is predominantly from nonpoint sources.

The formula for total segment points contains two factors. The first factor allocates points for the degree of usefulness of the segment. It is felt that the population that uses, or would use, the waters of a segment are those most effected by any pollution problems in the segment and further, that this population increases in direct proportion to the potential usefulness of the segment.

The intent of allowing the points of terms A, B_C, B_W, C, BC, and AES, which designate specific water uses, is obvious.

The term POP is included to provide additional points when a segment has any of the above uses, since any usefulness is considered to be of somewhat greater value if a large population resides nearby. The constant term of .5 is included so the product of factors cannot be zero.

The second factor allocates a varying number of points based on whether the segment is designated as effluent limited or water quality limited. The highest level of points is given to segments which have a large number of discharges required to meet waste load allocations more stringent than secondary treatment or BPT to bring the segment into compliance with water quality standards. The scale of points for this factor basically gives an increasing amount of points in those areas where the greatest degree of point source pollution exists.

The total points for a segment are determined from a product of the points earned in each of the two factors. The formula was written in the form of a product so as to give low total points if either factor was low, and high points only if both factors are high. In this manner the formula weighs both the degree of usefulness of a segment and the severity of the pollution problem.

After the total points are determined for each segment in the basin, the segments are then ranked in decreasing order of points. The number one ranked segment is the segment receiving the most total points.

Following the segment ranking, abatement priority points are assigned to each segment. The abatement points are used as a factor in the municipal discharger ranking which is discussed later. The abatement priority points are determined as follows:

ABATEMENT PRIORITY = Total number of segments + 1 - Segment Rank POINTS in the basin

The selected stream segments, for the Des Moines Basin are detailed in Chapter VI. Total segment points and segment rank, are also presented in the chapter.

<u>Municipal Discharger Ranking Methodology</u> - In compliance with 40 CFR 130.43, which states that significant municipal dischargers shall be ranked to be subsequently used in establishing priorities and output estimates for municipal facilities construction, the following discharger ranking methodology has been promulgated for the basin plans. This ranking methodology is also in collaboration with current EPA Basin Plan Guidelines (Part IV, para. c) which states that significant municipal dischargers should be ranked in order of abatement priority.

This methodology ranks the municipal discharges in order of significance based on the following criteria:

 A means of indicating the relative magnitude of one discharger with respect to all other dischargers.

- A means of accounting for the present effluent quality of the dischargers.
- 3. A means of indicating the relative magnitude of the discharger in comparison to the capacity of the stream segment at the point of discharge.
- 4. A means of indicating the relative magnitude of the discharger in comparison to the total waste load of all other dischargers to the stream segment.
- 5. A means of comparison of the relative merit of the stream segment, to which the municipality discharges, to other segments in the basin.

To incorporate these criteria in the ranking methodology, the following factors were considered and evaluated. It should be noted that the numbering of the factors corresponds to that of the preceding criteria.

- Total pounds of BOD₅ and ammonia-N presently being discharged, using average reported flows.
- Discharger's present BOD₅ and ammonia-N concentrations as reported through EQAP.
- Discharger's present BOD₅ and ammonia-N waste load compared to the stream capacity.
- 4. Discharger's present BOD₅ and ammonia-N waste load compared to the total waste load from all dischargers to the stream segment.
- Stream segment abatement priority points into which the municipality discharges.

Sufficient data is readily available to assess the degree of significance of a municipal discharger in terms of factors 1, 2, and 3. Likewise the stream segment abatement priority points, as indicated in factor 5, has previously been determined, however, the selection and manipulation of required data needed to comply with factor 4 is considerably more difficult due to the non-coincidental cause and effect nature of certain discharged pollutant materials. Thus a blending of factors 3 and 4 was deemed the most feasible alternative. This was accomplished by comparing the discharger's present BOD₅ and ammonia-N waste load to the respective values allowed for the discharger under its waste load allocation. This comparison was felt reasonable and justified since the calculations performed in determining waste load allocations take into account both stream capacities and other discharger's waste loads.

This methodology thus ranks a discharge with respect to its relative share of the waste load to the segment, as well as to the waste load the discharger contributes at its present degree of treatment. This rationale also takes into account population equivalency in lieu of just the contributing population, the relative overloading of the stream segment as determined by waste load allocations analysis, and the relative ranking of the stream segments as determined by the segment ranking methodology.

The specific formula used to rank dischargers is as follows: $(A_1 + D_1) B_1 + (A_2 + D_2) B_2 + C = Discharger priority points.$

The discharger ranking formula consists of four elements which attempt to incorporate the criteria described above. The four elements are as follows:

Element A: Present Effluent Discharge;				
A ₁ =	60 50 40 30 20 10 1	if the present $BOD_5 =$	>60 mg/l 60-50.1 50-40.1 40-30.1 30-20.1 20-10.1 10- 0	
A ₂ =	60 50 40 30 20 10 1	if the present NH3-N =	>40 mg/l 40-30.1 30-23.1 23-15.1 15- 8.1 8- 2.1 2- 0	

This element uses the present average reported BOD₅ and ammonia-N values as representative effluent values, (where possible).

Element B: Degree of stream overloading;

1. BOD Overloading Factor:

$$1 - \frac{1bs. W.L.A.}{1bs. PRES} = B_1$$

where: lbs. W.L.A. is the total lbs/day of BOD₅ allowed, as determined by the waste load allocation lb. lbs. PRES is the average lbs/day of BOD₅

which is currently being discharged.

2. Ammonia-N Overloading Factor:

$$1 - \frac{1\text{bs. W.L.A.}}{1\text{bs. PRES}} = B_2$$

where: lbs. W.L.A. is the total lbs/day of NH₃-N allowed as determined by the waste load allocations.

lbs. PRES is the average lbs/day of

NH3-N which is currently being discharged.

Note: B_1 and B_2 are only allowed to vary from zero to 1.00 in this methodology. All other values are set equal to zero.

Element C: The segment abatement priority points are used for element C.

Element D: Total contributing lbs. of BOD₅ and NH₃-N:

D1	$= \begin{bmatrix} 0\\ 1\\ 3\\ 5\\ 7\\ 9\\ 12\\ 14\\ 16\\ 18\\ 21\\ 25 \end{bmatrix}$	if the present $BOD_5 = \begin{bmatrix} 1.5 \text{ or less} \\ 1.5-3 \\ 3-5 \\ 5-10 \\ 10-20 \\ 20-50 \\ 50-100 \\ 100-250 \\ 250-750 \\ 750-1500 \\ 1500-2500 \\ 2500 \text{ or more} \end{bmatrix}$	lbs.
D ₂	$= \begin{bmatrix} 0\\1\\3\\5\\7\\9\\12\\14\\16\\18\\21\\25 \end{bmatrix}$	if the present NH ₃ -N = $\begin{bmatrix} .75 \text{ or less} \\ .75- 1.5 \\ 1.5- 2.5 \\ 2.5- 5 \\ 5- 10 \\ 10- 25 \\ 25- 50 \\ 50- 125 \\ 125- 375 \\ 375- 750 \\ 750- 1250 \\ 1250 \text{ or more} \end{bmatrix}$	lbs.

This element takes into account the actual waste load which the stream receives, instead of a representation of the actual population.

The relative position of each discharger is determined by its total points as calculated by the discharger ranking formula. The dischargers are finally ranked in decreasing order of discharger priority points. The ranking of municipal dischargers in the Des Moines Basin, as well as the priority points for each discharger, are presented in Chapter VI.

REFERENCES

1. Supporting Document For Iowa Water Quality Management Plans, Iowa Department of Environmental Quality, Water Quality Management Division, Des Moines, Iowa, 1976.

CHAPTER II - EXISTING DEVELOPMENT PATTERNS

POLITICAL SUBDIVISIONS

The Des Moines River Basin includes thirty-nine counties or parts thereof, as listed in Table II-1. Two hundred and seventeen incorporated communities are included within the basin boundaries. The 1970 population of these incorporated municipalities totaled 731,092. Sixty cities had populations greater than 1,000. Nineteen cities had populations in excess of 5,000. Only one city had a population over 50,000 which was Des Moines with a population over 200,000. Figures II-1, II-2, and II-3 show the incorporated municipalities in the basin and Table II-2 summarizes their 1970 populations.

POPULATION PROJECTION

The Department of Environmental Quality has made population projections for cities within the Des Moines Basin for the year 1990, based on the projections of Taylor (1). For those individual municipal projections not estimated by Taylor, the 1990 population of the community was estimated by multiplying its 1970 population by the ratio of the projected 1990 county population to the 1970 county population. The population projections for 1990 that were used for this study are indicated in Table II-2.

TABLE II-1

PORTIONS OF COUNTIES THE DES MOINES RIVER BASIN

						
County		Percent Within Subbasin		County	Percent Within Subbasin	
Upper Des	Moines	Subbasin				
County						
Boone Calhoun Clay Dallas Emmet Greene Hamilton Hancock	44 44	82 2 3 23 96 8 32 39		Humboldt Kossuth Pocahontas Polk Webster Winnebago Wright	100 74 67 27 76 26 65	
Raccoon Su	ubbasin		-			
County			· .			
Audubon Buena Vis Calhoun Carroll Clay Dallas Greene Guthrie	ta	5 67 98 80 1 77 92 75		Madison Palo Alto Pocahontas Polk Sac Webster	1 1 32 13 49 24	
Lower Des	Moines	Subbasin				
County Adair Appanoose Clarke Davis Guthrie Jasper Jefferson Lucas Lee		34 10 66 38 25 11 9 67 35		Madison Mahaska Marion Monroe Polk Story Van Buren Wapello Warren	91 33 86 97 40 1 74 74 74 100	

FIGURE II-1 II-3

TABLE II-2

EXISTING AND PROJECTED POPULATIONS (AFTER TAYLOR (1))

TOWN	COUNTY	POP. 1970	POP. 1990
Ackworth	Warren	111	205
Adair	Adair	750	758
Adel	Dallas	2,418	3,318
Albert City	Buena Vista	683	723
Albia	Monroe	4,151	4,423
Algona	Kossuth	6,032	7,777
Allemen	Polk	183	236
Altoona	Polk	2,883	8,163
Ankeny	Polk	9,151	30,077
Arcadia	Carroll	414	451
Armstrong	Emmet	1,061	1,061
Auburn	Sac	329	347
Ayrshire	Palo Alto	243	243
Badger	Webster	465	540
Bagley	Guthrie	365	385
Bancroft	Kossuth	1,103	1,103
Barnum	Webster	147	171
Bayard	Guthrie	628	663
Beacon	Mahaska	431	443
Beaver	Boone	113	119
Berkley	Boone	56	59
Bevington	Madison	54	58
Blakesburg	Wapello	403	504
Bode	Humboldt	372	372
Bonaparte	Van Buren	547	562
Bondurant	Polk	462	605
Boone	Boone	12,468	15,071
Bouton	Dallas	160	219
Boxholm	Boone	242	256
Bradgate	Humboldt	130	130
Breda	Carroll	518	564
Britt	Hancock	2,069	2,263
Buffalo Center	Winnebago	1,118	1,148
Burt	Kossuth	608	608
Bussey	Marion	498	547
Callender Carlisle Carroll Casey Chillicothe	Webster Warren Carroll Guthrie Wapello	421 2,246 8,716 561 126 63,436	489 4,153 11,643 592 258 101,307

TOWN	COUNTY	POP. 1970	POP. 1990
Churdan	Greene	598	598
Clare	Webster	249	289
Clarion	Wright	2,972	3,189
Clive	Polk	3,005	7,066
Coon Rapids	Carroll	1,381	1,505
Corwith	Hancock	407	445
Cumming	Warren	189	286
Curlew	Palo Alto	95	95
Cylinder	Palo Alto	133	133
Dakota City	Humboldt	746	746
Dallas	Marion	438	481
Dallas Center	Dallas	1,128	1,547
Dana	Greene	118	118
Dawson	Dallas	232	318
Dayton	Webster	909	1,056
Dedham	Carroll	325	354
Des Moines	Polk	201,414	211,168
DeSoto	Dallas	572	600
Dexter	Dallas	652	894
Dolliver	Emmet	95	95
Donnellson	Lee	798	1,118
Duncombe	Webster	418	485
Eagle Grove	Wright	4,489	5,587
Earlham	Madison	974	1,045
East Peru	Madison	184	197
Eddyville	Wapello	970	1,212
Eldon	Wapello	1,319	1,649
Emmetsburg	Palo Alto	4,150	5,351
Estherville	Emmet	8,108	10,054
Farmington	Van Buren	800	823
Farnhamville	Calhoun	393	414
Fenton	Kossuth	403	403
Floris	Davis	145	145
Fonda	Pocahontas	980	1,034
Fort Dodge	Webster	31,263	40,134
Fraser	Boone	143	151
Gilmore City	Humboldt	766	766
Glidden	Carroll	964	1,050
Goldfield	Wright	722	722
Gowrie	Webster	1,225	1,423
Graettinger	Palo Alto	907	907

TOWN	COUNTY	POP. 1970	POP. 1990
Grand Junction Granger	Greene Dallas Dalk	967 661	967 906
Gruver Guthrie Center	Emmet Guthrie	135 1,834	1,182 135 1,935
Halbur	Carroll	235	256
Hamilton	Marion	186	204
Harcourt	Webster	305	354
Hardy	Humboldt	73	73
Hartford	Warren	582	881
Harvey	Marion	217	238
Havelock	Pocahontas	248	262
Humboldt	Humboldt	4,665	6,718
Indianola	Warren	8,976	14,486
Jamaica	Guthrie	271	286
Jefferson	Greene	4,735	5,926
Johnston	Polk	2,236	2,931
Jolley	Calhoun	112	118
Kanawha	Hancock	808	884
Keokuk	Lee	14,631	15,107
Keomah	Mahaska	58	62
Keosauqua	Van Buren	1,018	1,048
Kirkville	Wapello	222	278
Knierim	Calhoun	131	138
Knoxville	Marion	7,755	8,841
Lacona	Warren	424	784
Lake City	Calhoun	1,910	2,013
Lakeside	Buena Vista	353	373
Lake View	Sac	1,249	1,316
Lakota	Kossuth	385	385
Lanesboro	Carroll	203	221
Laurens	Pocahontas	1,792	1,891
Ledyard	Kossuth	240	240
Lehigh	Webster	739	858
Leighton	Mahaska	140	144
Libertyville	Jefferson	329	385
Lidderdale	Carroll	173	188
Linden	Dallas	278	381
Livermore	Humboldt	510	510
Lohrville	Calhoun	553	583

TABLE II-2 CONTINUED

TOWN	COUNTY	POP. 1970	POP. 1990	
Lone Rock	Kossuth	166	166	
Lovilia	Monroe	640	660	
Lucas	Lucas	247	262	
Luther	Boone	189	200	
Luverne	Kossuth	380	380	
Lytton	Sac	378	398	
Madrid	Boone	2,448	2,587	
Mallard	Palo Alto	384	384	
Manson	Calhoun	1,993	2,100	
Marathon	Buena Vista	447	473	
Martensdale	Warren	306	556	
Marysville	Marion	91	100	
Melcher	Marion	913	1,003	
Melrose	Monroe	192	198	
Menlo	Guthrie	391	413	
Milo	Warren	561	1,037	
Minburn	Dallas	378	519	
Mitchellville	Polk	1,341	1,758	
Monroe	Jasper	1,389	1,684	
Moorland	Webster	269	312	
Moravia	Appanoose	699	707	
Nemaha	Sac	117	123	
Newell	Buena Vista	877	928	
New Virginia	Warren	452	856	
Norwalk	Warren	1,745	3,227	
Ogden	Boone	1,661	1,755	
Osceola	Clarke	3,124	3,462	
Oskaloosa	Mahaska	11,224	12,575	
Otho	Webster	581	675	
Ottosen	Humboldt	93	93	
Ottumwa	Wapello	29,610	29,759	
Palmer	Pocahontas	264	278	
Panora	Guthrie	982	1,036	
Paton	Greene	329	329	
Patterson	Madison	120	129	
Pella	Marion	6,784	11,001	
Perry	Dallas	6,906	9,074	
Pilot Mound	Boone	214	226	
Pioneer	Humboldt	56	56	
Pleasant Hill	Polk	1,535	2,012	

TOWN	COUNTY	POP. 1970	POP. 1990
Pleasantville	Marion	1,297	1,425
Plover	Pocahontas	129	136
Pocahontas	Pocahontas	2,338	2,467
Polk City	Polk	715	937
Pomeroy	Calhoun	765	806
Prairie City	Jasper	1,141	1,383
Rake	Winnebago	324	333
Ralston	Carroll	129	141
Redfield	Dallas	921	1,263
Rembrandt	Buena Vista	250	264
Renwick	Humboldt	429	429
Rinard	Calhoun	88	93
Ringsted	Emmet	509	509
Rippey	Greene	270	308
Rockwell City	Calhoun	2,396	2,525
Rodman	Palo Alto	104	104
Rolfe	Pocahontas	767	809
Runnells	Polk	354	464
Rutland	Humboldt	215	215
Sac City	Sac	3,268	3,445
St. Charles	Madison	443	475
St. Marys	Warren	105	194
Sandyville	Warren	89	165
Scranton	Greene	751	751
Sheldahl	Polk	285	367
Slater	Story	1,094	1,589
Somers	Calhoun	197	208
Spring Hill	Warren	131	242
Storm Lake	Buena Vista	8,591	11,620
Stratford	Webster	710	824
Stuart	Adair	1,354	1,367
Swea City	Kossuth	774	774
Thor	Humboldt	212	212
Titonka	Kossuth	599	671
Truesdale	Buena Vista	132	140
Truro	Madison	359	385
Urbandale	Polk	14,434	41,800
Van Meter	Dallas	464	636
Varina	Pocahontas	140	148
Vincent	Webster	204	237

TOWN	COUNTY	POP. 1970	POP. 1990	
Wallingford	Emmet	245	249	
Waukee	Dallas	1,577	2,163	
Webster City	Hamilton	8,488	9,793	
Wesley	Kossuth	548	548	
West Bend	Kossuth	865	931	
West Des Moines	Polk	16,441	28,137	
Whittemore	Kossuth	658	658	
Willey	Carroll	72	78	
Williamson	Lucas	216	229	
Windsor Heights	Polk	6,303	9,060	
Winterset	Madison	3,654	4,442	
Woodburn	Clarke	186	201	
Woodward	Dallas	1,010	1,385	
Woolstock	Wright	222	222	
Yale	Guthrie	301	318	
Yetter	Calhoun	47	50	

ECONOMICS

Information for this section, was obtained from the <u>Upper</u> Mississippi River Comprehensive Basin Study (2).

A brief economic profile for the Des Moines Basin is given in Table II-3.

Labor Force

The labor force is expected to increase by 60 percent between 1960 and 2000 - less than the national change projected for the same period. The percent of population in the labor force reflects a relatively high proportion of men and low proportion of women.

Personal Income

Personal per capita income is expected to increase at about the same rate as the national average. As higher wage industries replace agriculture per capita income is expected to move close to the national level by the year 2020. Total personal income is expected to be somewhat less than the national average between 1960 and 2020.

Employment

As shown in Table II-4, civilian employment in a selected area, detailed in Figure II-4, which includes a major portion of the Des Moines, Skunk and Iowa-Cedar River Basins, is expected to reverse the decline of the 1950-60 period. In the period from 1960 to 2020, civilian employment will more than double from 490 thousand to 1.1 million. This rate of increase is less than the projected national average.

TABLE II-3

Year	Population, (thousands)			Pers	onal Incom	ie			
	Total		Nonfarm	Farm	Total Inc	come Per	Capita	Income	
					1960 Dollars	(Million)	Dolla	rs	
1960	845		653	192	1,78	6	2,11	4	
1980	1,112		971	141	4,130	0	3,71	3	
2000	1,472		1,363	109	9,21	2	6,25	8	
2020	1,946		1,850	96	19,020	6	9,77	,777	
				Employment,	(thousands)				
		Nonc	ommodity	Commodity	Manufactu	ring Nor	manufac	turing	
Year	<u>Total</u>	<u>Pro</u>	ducing ^a	<u>Producing^D</u>	Commodit	ies	Commodi	ties	
1960	303		196	107	47		60		
1980	404		301	103	51		52		
2000	-530		432	98	57		41		
2020	699		601	98	64		34		
	Employme	nt for	Selecte	d Manufacturin	ng Industries	by SIC ^d ,	(thousa	nds)	
	20	28	29	32 Stone	33 Primary	34, 35 E	abr Met		
Year	Food	Chem	Petrol	Clay,	Metals	& Nonele	ec Mach	Total	
	****		Prod	Glass			<u></u>	· · · · · · · · · · · · · · · · · · ·	
1960	12	1	(c)	4	1	12	2	30	
1980	12	1	(c)	4	1	14	ł	32	
2000	12	1	(c)	5	1	16	5	35	
			Output	(Value Added)	for Selected				
	Man	ufactu	ring Ind	ustries by SIG	C, million 19	60 dollars	3		
	20	28	291	324	33 Primary	34, 35 H	abr Met		
Year	Food	Chem	Petrol	Hyd Cemt	Metals	<u>& Nonele</u>	ec Mach	<u>Total</u>	
1060	106	22	Ref		10	1.00	, ,	20/	
1000	000	23 65		2C TT	12	1/2/		671	
T200	299	60		30	20	251	L	τ.(σ	

ECONOMIC PROFILE OF THE DES MOINES RIVER BASIN (2)

^aNoncommodity group includes the following SIC categories: 15-17 Construction; 40-49 Transportation, Communications, and Public Utilities; 50 Wholesale Trade; 52-59 Retail Trade; 60-67 Finance, Insurance, and Real Estate; 70-89 Services; and 91-93 Government.

^bCommodity group includes SIC categories: 01-09 Agriculture; 10-14 Mining; 19 Ordnance; 20 Food; 21 Tobacco; 22 Textiles; 23 Apparel; 24 Lumber; 25 Furniture; 26 Pulp and Paper; 27 Printing and Publishing; 28 Chemicals; 29 Petroleum Products; 30 Rubber and Plastics; 31 Leather Products; 32 Stone, Clay, and Glass; 33 Primary Metals; 34 Fabricated Metals; 35 Nonelectrical Machinery; 36 Electrical Equipment; 37 Transportation Equipment; 38 Instruments; and 39 Miscellaneous Manufacturing and Other Manufacturing.

^CLess than 500 employees.

dStandard Industrial Classification.

TABLE II-4

SUMMARY ECONOMIC DATA (2) FOR SELECTED AREA SHOWN IN FIGURE II-4.

Unit	1950	1960	1970	1980	1990	2000	2010	2020
Populationthousands	1,336	1,389	1,594	1,840	2,151	2,448	2,852	3,272
Studentsthousands	19	21	41	54	61	69	-	
Total, excluding studentsthousands	1,317	1,368	1,553	1,786	2,090	2,379		
Malethousands	655	669	754	874	1,028	1,174	-	-
Femalethousands	663	699	799	913	1,062	1,206	-	-
Total, 15-69 yrs. excl. students.thousands	870	831	952	1,100	1,257	1,437	-	
Malethousands	429	402	402	538	619	710	-	
Femalethousands	441	429	490	562	638	726		
Total, excluding rural farmthousands	933	1,052	1,298	1,580	1,928	2,256	2,672	3,105
Labor Force:								
Totalthousands		526	563	648	747	857	-	. - *
Malethousands		369	393	452	522	600	-	
Femalethousands	-	158	170	196	225	257	-	-
Labor Force Participation Rate:								
Total percent	-	60.3	59.1	58.9	59.5	59.7	-	-
Male percent	-	86.4	85.1	84.2	84.4	84.5		-
Female percent	-	35.3	34.6	34.8	35.3	35.4	-	-
Employment (jobs):								
Totalthousands	492	490	569	656	755	863	1,001	1,148
Exportthousands	232	227	250	272	293	318	-	-
Residentiarythousands	260	264	319	384	463	546	-	-
Total Employment (persons)thousands	-	-	541	623	717	820	_	- 1
Unemployment Rate percent	1.8	3.2	3.9	3.8	4.0	4.3	-	-
Personal Income:								
Total	\$ 2,377	2,855	4,480	6,696	9,914	14,672	21,862	31,249
Wages and salaries	\$ 1,727	1,903	2,984	4,466	6,622	9,830	-	-
Other income	\$ 650	953	1,496	2,230	3,291	4,842	-	
Per capita 1960 \$	1,780	2,055	2,810	3,639	4,609	5,992	7,666	9,550
Wages and salaries per employee 1960 \$	3,511	3,880	5,241	6,808	8,769	11,385	-	-

FIGURE 11-4 DATA BASE AREA FOR EMPLOYMENT STATISTICS

Employment in industries exporting their goods or services from the area decreased in the 1950's, but is expected to increase in future decades. Residentiary employment is expected to increase at about twice the rate of export employment in the basin between 1960 and 2000. By the turn of the century it is expected that there will be nearly two residentiary industry employees for every export industry worker. This is a substantial increase from the one to one ratio in 1950 and 1960.

Agriculture in 1950 was the largest employer in this area, engaging 60 percent more workers than its nearest rival, services. In the 1950-60 period, agricultural employment declined by onefifth, bringing it to a level of employment about the same as services. Agricultural employment is projected to decline further, while the other industries increase. Agriculture is expected to rank second in employment in the 1970's, fifth by the year 2000, and sixth by the year 2020. Agricultural employment will decrease from nearly one-third to one-twentieth of the region's workers between 1950 and 2020.

Manufacturing is expected to retain about one-seventh of the area's workers through the projected period. In the 1950-60 period, manufacturers of nonelectric machinery replaced the food manufacturing industry as the major manufacturing employer. Electrical equipment, the third largest manufacturing employer, experienced a rapid increase in the 1950's, and by 1980 it is expected to be the largest manufacturing industry in the area. Electronics manufacturers in the Des Moines

metropolitan area account for much of this employment. The one other industry employing a large and growing portion of manufacturing workers is the fabricated metals industry.

Mining employs few workers in the area and a significant increase is not expected. Retail trade employed about one-seventh of the total workers in the basin in 1960, and although the industry is expected to double its employment between 1960 and 2020, its share of regional employment will decline slightly. Services employment is expected to increase its 1960 level three and a half times by the year 2020, rising from 22 to 38 percent of total employment. Government, which is expected to increase by a factor of 6 during this interval, should rise from 4 to 11 percent of total employment. Finance, insurance, and real estate is also expected to increase its share of the basin's employment in the projected period, more than tripling its 1960 employment by 2020. Construction is expected to double in the same period. Wholesale trade and transportation-communications-public utilities are projected to grow slowly, the latter group having about the same number of employees in 2020 as in 1960. Both sectors are expected to represent an increasingly smaller share of the total employment force during the projected period.

RECREATIONAL ACTIVITIES

The Des Moines River Basin provides numerous water-related recreational activities. The following areas are suitable

for recreational sites.

- Hills with trees for nature observation, hiking, and camping.
- Lakes or streams for swimming, boating, waterskiing, and fishing.
- Flood plains and plateaus for organized sport activities.
- 4. A combination of the above for game habitats.

A common consideration of all available county and city plans was the concept of retaining land along rivers for conservancy belts. They are to be left in a natural state for recreational pursuits, such as hiking, and stream access.

From a recreational standpoint, water must be of sufficient quality to support the propagation of desirable forms of fish and wildlife. Iowa "Class B" warm water standards should be adequate to satisfy this requirement (see Chapter II, Supporting Document). In areas where human body contact with the water is permitted, "Class A" standards are required for public health reasons. Maintenance of either Class A or Class B standards are required to retain an aesthetically acceptable water condition.

Figures II-5, II-6, and II-7 show the locations of areas for boating activities in the Des Moines River Basin. In areas that allow power boats in excess of 10 horsepower, it is assumed that waterskiing and swimming would occur, and that Class A standards should apply even though they may not now
be in effect. Total or partial body contact with water would probably occur in areas not specifically designated. For example, body contact would generally occur in the canoeing regions, however, only those areas designated as body contact area need to meet Class A standards.

Figures II-5, II-6, and II-7 also show the location of existing and proposed recreational sites in the river basin. Average daily peak attendance at parks was assumed to be 3 percent of the total yearly attendance. Total yearly attendance figures were obtained from state and county parks records, when available, or from estimates by park personnel. All wildlife areas were assumed to have less than 500 persons per peak day.

High user densities at specific recreation sites along the Des Moines River and at certain lakes can impart a high pollution load on the nearby groundwater and surface water unless wastes are satisfactorily handled. Although many of the lakes are at present lightly developed, intense development will increase pollution potential. Proper planning of recreational and wastewater treatment facilities would reduce the adverse impact upon water quality.

TABLE II-5

EXISTING AND PROPOSED RECREATION FACILITIES (3)

EX	ISTING AND PROPO	SED RECREATIO	N FA	CILITIES	(3)	GUN CLUB	ACCESS		DURSE	G	SNI S	NG
NO.	NAME OF AREA	OWNERSHIP	USAGE *	ACRE TOTAL LAND AREA AREA	S WATER AREA	AR CHERY	BOATING	CAMPING	GOLF CO	HIKING	PICNICI	WWINS

• UPPER DES MOINES RIVER BASIN

	the second se		and the second se	100000000000000000000000000000000000000	and a second day of the second day in the second day of the second		-		-		-	 -	-
1	Del Rio Park	County	1	9									
2	Proposed Terrace Valley Park												
3	Bach Ranch	Private	1	159									
4	Iowa 4-H Camp	4-H	1	1008									
_5	Proposed boat launch	Corps of Engr	1					8			\downarrow		
6	Boy Scout Camp	Boy Scouts	1	527		_ _							
7	Proposed boat launch	Corps of Engr	1					8				8	
8	Game farm	Private	1	415									-
9	Campfire Girls Camp	Campfire Girls	1	92							1		
10	Lark Girls Ranch	Private	1	305									
11	Girl Scout Camp	Girl Scouts	1	229									
12	Holst Forest Preserve	State	1	313									
13	YMCA Camp	ҮМСА	1	350									
14	YWCA Camp	YWCA	1	138									
15	Morrison Church Camp	Church	1	238									
16	Lehigh Area	State	1	40				8	8				
17	Bells Mill Park	County	1	8									
18	Woodman Hollow Park	State	1	63						8			
19	Lizard Creek Area	State	1	102									
20	Woolstock Park	County	1	1									
21	Deer Creek Area	County	1	17									
22	Troy Park	County	1	1									
23	Humboldt Fish Hatchery	State	1	20									
24	Dakota City Access	State	1	6									
25	Des Moines River Access	County	1	1	-								
26	Center Township Park	County	1	6									
27	Bradgate Area	State	1	81									
28	Oakdale Park	County	1	20									

TABLE II-5 (CONT)

EXISTING AND PROPOSED RECREATION FACILITIES (3)

N	IAJO	R	A	: T I	VI	11	ES	
RCHERY/GUN CLUB	OATING ACCESS	AMPING	1 SHING	SOLF COURSE	IIKING TRAILS	HUNTING	DICNICKING	SNIW WING

NO. NAME OF AREA OWNERSHIP USAGE ACRES

• UPPER DES MOINES RIVER BASIN

				·				_		_			-	-	_
29	Pilot Creek Park	County	1	13_	1. 										
30	Feldman Park	County	1	3											
31	Proposed River Park	County		60- _100											_
32	Push Lake Park	State	1	_522	62	460					•				
33	Wildlife area	County	1	_ 23			_						1		
<u>34</u>	Steele Wildlife Area	County	1	41							•				
35	Proposed Boone Park	County		80							_	1			_
36	Eddies Wildlife Refuge	County	1	40			_				_				_
37	Silverlake Park	State	1	_694	17	677		1			∎				
<u>38</u>	Salton Park	County		15								<u> </u>			_
39	Proposed Pits Park	County													
40	Kearney Reserve	County	1	45							\square				
41	Proposed Lindsey Creek Area	County		20-30							_		L		
42	Buffalo Creek Wildlife Area	State	1	_380							•				
<u>43</u>	Grant Township Pk. Wildlife Area	County	1	33											
44	Union Slough Wildlife Refuge	Federal	1	2078											
45	12-Mile Lake Area	State	1	_290	0	290	_								
46	Wolden Recreation Area	County	:	- 59				<u> </u>							
47	Cunningham Slough Area	State	1	_361							_				
48	Cheever Lake Wildlife Area	State	1	_365	77	288				_					
49	Ryan Lake Area	State	1	_366.	0	366						\perp	B		
50	East Swan Lake Area	State	1	_775	Ö	775									
51	East Des Moines River Access	State	1	45			_		B				•		
52	4-Mile Lake Area	State	1	_237	24	213				_				\square	
53	Eagle Lake Wildlife Area	State	1	_278	11	266									
54	Grass Lake Area	State	1	171	0	171								Ŀ	
55	Prige Lake Area	State	1	137	0	137									

TABLE II-5 (CONT)

MAJOR ACTIVITIES

EXISTING AND PROPOSED RECREATION FACILITIES (3)

E	XISTING AND	PROPOSED	RECREATIO	N F	ACILI	TIES	(3)	/GUN CLUB	G ACCESS	9	G	TRAILS	SP	KING	SNI
NO.	NAME OF ARI	EA	OWNERSHIP	USAGE *	TOTAL	ACRES LAND AREA	WATER	ARCHER	BOATIN	CAMPIN	FISHIN	HIKING	HUNTI	PICNIC	SWIMN

• UPPER DES MOINES RIVER BASIN

56	Swag Lake (Burt Lake)	State		40		40										
57	Goose Lake	State		_224	113	111	-				8			B		
58	Iowa Lake Slough	State		126	88	38	_									
59	Schwab Marsh	State		265	225	40	-									
60	State Line Marsh	State		_147	147		_									
61	Seneca Access	State		36	36		_				8					
62	Kossuth County Park	County		120	67	53	_		8		8					
63	Michaelson's Slough	County		94	94		-									
64	Stinson Prairie	County		32	32		_							8		
65	Florence Park	County		52	52		_			8	8			8		
66	Grant Township Wildlife Area	County	1	33	12	21	_								8	
<u>67-a</u>	Saylorville Reservoir (4 Sites)	Corps of Engr.	4				-	8	B	8	8				8	
<u>67-b</u>		Corps of Engr.	4				-						8		8	8
<u>67-c</u>		Corps of Engr.	4				_			2			8			
<u>67-d</u>		Corps of Engr.	4				_								8	
68	Big Creek State Recreation Area	State/Federal	6	3,470		970	_		9							R
69	Jester Park	County	5	898			_	6		8	8	H	8			
70	Ledges Park	State	5	860			_	8	8	8	8		8		8	
71	Don Williams Park	County	4	598			8	8		8		8			8	8
72	Carlson Area	County	2	94			_									
73	Dolliver Memorial Park	State	3	572			_				8	8				
74	Brushy Creek Area	State	6	3002												
75	Briggs Woods Park	County	3	497						8	5					
76	J.F.K. Memorial Park	County	3	395			8			8			8			
77	Wall Lake Park	State	2	978	73	905							1			
78-a	Lizard Lake Area (3 Sites)	State	3	336	68	268							P	1	1	
<u>78-</u> b		State	-					8		8			1		1	
78-c		State	-										-	1	1	

		TABLE 11-5	(CONT)				_								
							-	MA.	IOR	A	TI			ES	-
E	KISTING AND PROPOSED	RECREATIO	N FA	CILIT	TIES	(3)	TYGUN CLUB	91	NG ALLESS	9N	COURSE	S TRAILS	NG	CKING	MING
NO.	NAME OF AREA	OWNERSHIP	USAGE	TOTAL		WATER	AR CHER	BOATIN	CAMPII	FISHI	GOLF	HIKING	HUNTI	PICNI	WIWS
١	JPPER DES MOINES RIVER BASIN	l											+		
79	F. A. Gotch Park	County	3	67			11	_							-
80	Bradgate Access	County	2	109				-	1	8				•	
<u>81-a</u>	Lake Cornelia Park (5 Sites)	County	2	59					8	8					
<u>81-b</u>	Eldridge Park	County	1	0.5					-						1
<u>81-c</u>	Elm Lake	State	1	466	3	463		-					-		_
<u>81-d</u>	Benton Wildlife Area	County	1	80				1						1	_
<u>81-e</u>	Walker Slough	County	1	25				1							
82	Morse Lake Area	State	2	172	64	108			-					-	
83	Whitmore Park	County	2	41				8							
84	A. A. Call Park	State	3	130										8	
85-a	5 Island Lake Area (2 Sites)	State	3	1110	165	945		-					1	1	
<u>85-b</u>	5 Island Wildlife Lake Area	State	-												_
86	Ellsworth Park	County	3	130				8				8			
87	Ingham Lake	State	3	1002	626	376			1 1	8					1
88	Proposed new county park	County	3	180- 200											
<u>89-a</u>	Tuttle Lake (3 Sites)	State	1	989	8	981							U		
89-b	Tuttle Lake Park	County	2	19				8							
89-c	Tuttle Lake Marsh	State	1	173											

*APPROXIMATE PROBABLE USAGE

Visitors Per Average Peak Day	Usage Class
0-500	1
501-1,000	2
1,001-5,000	3
5,001-10,000	4
10,001-15,000	5
Over-15,000	6

								M	JC) R	AC		VIT	IIE	S
E	XISTING AND PROPOSE	D RECREATIO	N FA	ĊILI	TIES	(3)	GUN CLUB		G ACCESS	0	5	OURSE	TRAILS		KING
NO.	NAME OF AREA	OWNERSHIP	USAGE *	TOTAL	ACRES LAND AREA	WATER AREA	ARCHERY	BOATING	BOATING	CAMPIN	FISHIN	GOLF C	HIKING	UTINDE	PICNIC
•	RACCOON RIVER BASIN						÷								
1	Walnut Woods	State	3	260	260					8			T	T	
2	Raccoon River Access	State		5	5						8		\downarrow		
3	Izaak Walton League	Private	1	1	1		_				8			1	
4	Proposed Johnson Property	County	1	300						8				1	
5	Saylor Recreation Area	County	1	30										1	
6	Earlham Bridge	State		9	5	4		8	8				. 1		
7	Pleasant Valley	State		145	145				-				1		
8	Spring Valley	State		9	8	1									
9	Dallas County Area	State		132	132								1		
10	Forest Park & Museum	County		5	5									1	
11	South Raccoon River Access	County		33	33								ſ	1	
12	Sportsmens Park	County		40	40	1									
13	Timberline Ranch	Private		40	40										
14	Des Moines West KOA	Private		20	20					8					
15	Prairie Village	Private		10	10										
16	Trail Mark	Private		5	5							i			
17	Bays Branch	State		797	510	287		8	8						
18	Lakin Slough	State		300	1 35	165							1	1	
19	Lennon Mills	State 🛴		21	21								1		
20	McCord Pond	State		112	62	50									1
21	Sheeder Prairie	State		25	25								1	1	1
22	Springbrook State Park	State	3	721	691	30		8				1			
23	Nation's Bridge Park	County		38	38										
24	Lake Panorama	Private		6500	5100	1400									
25	Dunbar Slough	State		507	237	270									
26	Goose Lake	State		456		456									
27	McMahon Access	State		287	282	5									
28	Rippey Access	State		31	29	2				T		T			

TABLE II-6

TABLE II-6 (CONT)

EXISTING AND PROPOSED RECREATION FACILITIES (3)

MA	JOR A	CTIV	TIES	
ARCHERY/GUN CLUB BOATING	BOATING ACCESS CAMPING FISHING	GOLF COURSE HIKING TRAILS	HUNTING PICNICKING	SWIMMING

Í				USAGE	ACRES	Ë	11	E	ĩã	Ŧ	L Z	E	z
	NO.	NAME OF AREA	OWNERSHIP	*	TOTAL LAND WATER AREA AREA AREA	ARCI	BOA	BOA	CAN	FIS	00	INH.	ы Ч
_													

• RACCOON RIVER BASIN (CONT.)

29	Snake Creek Marsh	State		240	240										I	
30	Henderson Park	County		39	35	4		1								
31	Hyde Park	County		57	53	4	_								1	
32	Oak Hill Park	State		5	. 5									\square	II.	
33	Seven Hill Forest	County		80	80											
34	Squirrel Hollow Park	County		56	54	2		1	1		1					
35	Raccoon River Bible Conference	Private	1				_		L		L					
36	Artesian Lake	State		42	20	22								•		
37	Carroll County Access	<u>State</u>		40	38	2					•					_
38	Swan Lake	State		508	378	1 30	_	-								1
39	Bennett Access Area	County		_40	38	2								•		
40	Dickson Timber	County		155	155				<u> </u>					•	1	L
41	Hobbs Access	County			9	2	_			8						L
42	Merritt Access	County		68	66	2				1						L
43	Middle Raccoon River Access	County		92	92					ŀ						L
44	Rickey Access	County		3	3									•		
45	Riverside Park	County		4	4											
46	North Twin Lake	State	:	569		569										
47	North Twin Lake Access	State		5	5											
48	Rainbow Bend Access	State		19	17	2								•		
49	South Twin Lake	State		600		600										
50	Towhead Lake	<u>State</u>		193	193							ŀ		•		
51	Camp Creek Area	County		8	8						 			•		
52	Featherstone Memorial Park	State		57	57		_		1		•	L		_		
53	Game Preserve	County		4	4									-		
54	Game Refuge	County	-	7	7		_							•		
55	Hickory Grove Park	County		29	29		-						\square	•	•	
56	Kelly Access	County		7	5	2	1_						Ш	•		

TABLE II-6 (CONT)

EXISTING AND PROPOSED RECREATION FACILITIES (3)

TING	AND	PROPOSED	RECREATIO	N FA	CILIT	TIES	(3)	//GUN CLUB	9	G ACCESS	U	OURSE	TRAILS	510	KING	SNI
NAME	OFAR	EA	OWNERSHIP	USAGE	TOTAL	ACRES	WATER	CHER	NITAC	NITAC	ISHIN	OLFC	IKING	INN	CINIC	A IW I
					AREA	AREA	AREA	A	B	a L	I LL	0	II	I	a .	2

MAJOR ACTIVITIES

CLUB

• RACCOON RIVER BASIN (CONT.)

NO.

57	Lake's End Access	County		5	5				1					
58	University Forty Park	County		40	40			1					8	
59	Wildlife Area	County	1	1	1									
60	Wildlife Area	County	1	1	1							8		
61	Wildlife Refuge	County	1	_1	1							8		
62	Wildlife Refuge	County	1	16	16					\downarrow				
63	Black Hawk Marsh	State		206	150	56								
64	Black Hawk Lake	State		957		957	8			8				
_65	Sac City Access	State		23	21	2	8			8				
_66	Lakeview Hatchery and Pits	State		156	156			1	1		\perp		8	
67	Black Hawk Lake State Park	State	4	267	267					8	8		8	8
68	Kiowa Marsh	State		40	40			-				8		
69	Tomahawk Marsh	State		39	39		\downarrow					8		
_70	Grant Park	County		98	93	5	\downarrow	1		8		Ц	8	
_71	Hagge Park	County		85	85		\downarrow						8	
72	Luback Forest	County		28	28									
73	Sunken Grove	State		371	371		1			\downarrow				
_74	Little Clear Lake Park	County		15	15							8	8	
75	Northwest Recreation Area	County		_16	16					8				
76	Bel Air Access	State		4	4			1	1					
77	Storm Lake Area	State	_	3097		3097			1			8		8
78	Storm Lake Shooting Area	State		276	12	264		4	1			8		
_79	Storm Lake Reserve	State		12	12			\downarrow						
80	Caseno Bay Marina	State		14	14			1	1					_
81	Assembly of God Bible Camp	Private	1											

*APPROXIMATE PROBABLE USAGE

Visitors Per Average Peak Day

Usage Class

0-500 501-1,000 1,001-5,000 5,001-10,000 10,001-15,000 Over 15,000 II-27

TABLE II-7

MAJOR ACTIVITIES

EXI	ISTING AND	PROPOSED	RECREATIO	N FA	CILI	TIES	(3)	/GUN CLUB	0 10000	G ALLESS	9	OURSE	070	KING	DNI
1				USACE		ACRES		HER	N	NIN	NH	0		NIC	WW
NO.	NAME OF AR	EA	OWNERSHIP	*	TOTAL	LAND	WATER	ARCI	BOA	CAN	FIS	105	AUH	PIC	S W
			.				Arrest and a second at								

• LOWER DES MOINES RIVER BASIN

1		1		1		1	 1	T	1	-	1	-	1	1	-
1	Lock & Dam #19	Federal													
2	Shimek State Forest Area	State		5878	5870	8		1							
3	Chatfield Park			80	80			1				1	1		
4	Croton Civil War Memorial Park	County		8	8										
5	Prices Creek	County		1	1										
6	Lake Koekuk Yacht Club	Private									Í				_
- 7	Southside Boat Club	Private													_
8	Howards Boat Landing	Private													_
9	Eldon Area	State		803	800	3				8		1			-
10	Lake Wapello	State	4	1168	881	287						8	1	8	
11	Stephens State Forest	State		646	646				8						_
12	Drakeville Park	County		12	12					8					_
13	Boy Scout Camp	Boy Scouts	1												_
14	Cliffland Access	State		20	20								8		
15	Camp Arrowhead, YMCA	YMCA	1												_
16	Izaak Walton League	Private													-
17	YM & YWCA	YM & YWCA	1		-				1						-
18	Stephens State Forest	State		11 30	1130				8	8					_
19	Moravia Recreation Area	County		1	1										-
20	Cottonwood Pits	State		55	35	20						1			-
21	Lahart Area	State		166	116	50		8		8		1			-
22	Miami Lake	State		606	464	142							1		
23	Stephen State Forest	State	_	804	804										
24	Carmade Park	County		44	44										
25	Hull Area	State		378	348	30						1	1		-
26	Oskaloosa YW & YMCA	YW & YMCA	1												-
27	Red Rock Reservoir	Corp of Engr.		27514	19564	7950				8		1	1		-
28	Red Rock Reservoir Easement	Private		29047	29047										

TABLE II-7 (CONT)

MAJOR ACTIVITIES

EXISTING AND PROPOSED RECREATION FACILITIES (3)

EJ	XISTING AND PROPOSEI	D RECREATIO	N FA	CILITIES (3)	Y/GUN CLUB	G ACCESS	10	COURSE TRAILS	NG	5 N C
NO.	NAME OF AREA	OWNERSHIP	USAGE *	ACRES TOTAL LAND WATER AREA AREA AREA	AR CHER BOAT IN	BOATIN	FISHI	BULKING	HUNTI	I WI MS

• LOWER DES MOINES RIVER BASIN (CONT.)

		1	1			1			1	- 1	1	1.1	-	ł.		1		1
_29	Red Rock Wildlife Mgt. Area	Federal			16235	15235	1000					ļ						
30	Elk Rock Park	Federal			1271	1271			1		Ī	1	1	-	ī	Ī	ī	•
_31	White Breast Park	Federal			300	300								T	Ţ	Τ	T	•
32	Wallashuck Park	Federal			300	300				T	T		T	T	T	T	T	'
_33	S. Overlook	Federal			50	50								T		Τ	T	
_34	North Overlook	Federal			50	50	_						Τ	1		T		•
35	Tailwater Area	Federal			350	350	×.				T		T	T	Ī			
36	Pella Area	State			276	266	10											
37	Roberts Creek County Park	Federa1			1535	1235	300						1					
38	Marion County Park	County			120	_ 113	7				1		Ī				ī	-
39	Wilcox Wildlife Area	County	1		600	600												_
40	Marion County Sportsmen Club	Private			20	15	2					1				1	•	
41	Izaak Walton League	Private																_
42	Boy Scout Camp	Boy Scouts	1		40	40												
43	Stephens State Forest	State			4762	4751	11				•						ı	_
_44	Red Haw Lake State Park	State	4		420	348	72	_				ļ	 		 	1		i
45	Williamson Pond	State		ľ	126	96	30		1			1	╝				<u> </u>	_
46	Freedom Bible Camp	Church	1										\downarrow			Ţ		_
47	Stephens Forest	State			380	380												_
48	Lake Ahquabi	State	6		774	644	130			•				1				1
49	Banner Area	State			_ 224	184	40		\downarrow							4	_	-
50	Hooper Area	State			323	319	4_					1		1		ŀ	┛	
51	Izaak Walton Grounds	Private	1								\downarrow		1			\downarrow	\perp	_
52	Four Mile Creek Greenbelt	County	1		61	61			+				\downarrow	\downarrow	\bot	ļ	\downarrow	_
53	Mally's Park	County	1		37	36	1	_	1	_	1		\downarrow	\downarrow		Ļ	· 	_
54	Thomas Mitchell Park	County			144	143	1_	_		\downarrow		Ļ	_	1	\downarrow	ŀ	<u> </u>	-
55	Yeader Creek Area	County			454	234	220	_				ļ	┛	\downarrow	\bot	Ŀ	ц	_
56	Proposed Johnson Property	County	1											ŀ	II.	Ŀ		

TABLE II-7 (CONT)

ACON	NG ACC NG ACC NG ACC NG COURS G TRAII ING	CLUB	ESS		S	
	NG NG NG CO	NN	ACO	URS	RAI	NG

EXISTING AND PROPOSED RECREATION FACILITIES (3)

NO. NAME OF AREA OWNERSHIP USAGE * ACRES TOTAL LAND WATER AREA AREA AREA	BOATING	CAMPIN FISHIN GOLF C HIKING	HUNTIN
--	---------	--------------------------------------	--------

• LOWER DES MOINES RIVER BASIN (CONT.)

57	Proposed Saylor Recreation Area	County	1											
58	Badger Creek Watershed	State		615	615							8		
59	Pammel State Park	State	3	281	281			8	8		H		8	
60	Meadow Lake	State		320	273	47				8			8	
61	Lacey-Keosauqua	State		1366							8			8

*APPROXIMATE PROBABLE USAGE

Visitors Per Average Peak Day

Usage Class

0-500	1
501-1,000	2
1,001-5,000	3
5,001-10,000	4
10,001-15,000	5
Over 15,000	6

REFERENCES

- J. R. Taylor, Provisional Projections of the Population of Iowa Counties and Cities: 1975 to 1990, Iowa State Department of Health, June 1972.
- 2. Upper Mississippi River Comprehensive Basin Study, vol. VIII, appendix P: Economic Base Study and Projections, prepared by the Economic Advisory Committee, Upper Mississippi River Basin Coordinating Committee, 1970.
- Outdoor Recreation in Iowa vol. V(b), Iowa Outdoor Recreation Guide, prepared by Planning and Coordination Section, Iowa Conservation Commission, July, 1972.

CHAPTER III - BASIN CHARACTERISTICS

The Des Moines River with its tributaries is the largest river in the State of Iowa, and the most westerly of the major rivers within the state which are directly tributary to the Mississippi River. Watersheds to the west of the Des Moines Basin drain into the Missouri River.

The Des Moines River rises in the glacial moraine area of Murray and Pipestone Counties, Minnesota, at an altitude of about 1,900 feet. It flows in a generally southeasterly direction for 535 miles and joins the Mississippi River just below Keokuk at an altitude of 476 feet (Fig. III-1). Numerous tributaries drain all or part of seven counties in Minnesota, 39 in Iowa, and one in Missouri. The total area drained is 14,540 square miles, of which 1,525 are in Minnesota, 12,925 are in Iowa, and 90 are in Missouri. The area drained in Iowa comprises 23 percent of the total area of the State. Table III-1 lists the area of watersheds drained by the river and its major tributaries.

The Blue Earth River has been included as part of the Des Moines River Basin to be consistent with Iowa Conservancy District boundaries.

The Blue Earth River drains parts of three Iowa counties: Worth, Winnebago and Kossuth. This area consists of the headwater portion of the basin. All streams flow in a general northward direction into Minnesota where they join the Blue Earth River, a tributary of the Minnesota River.

III-1

TABLE III-1

DRAINAGE AREAS OF STREAMS IN THE DES MOINES RIVER BASIN (1)

Stream	Area (Square Miles)	Method of Determi- nation
West Fork Des Moines Rive	r Basin	
West Fork Des Moines River, total area	2,308	b
East Fork Des Moines Rive	r Basin	
East Fork Des Moines River Above Mud Creek	. 358 . 74 . 166 . 1,315	b b b
Upper Des Moines River	Basin	
Des Moines River below confluence of east and west forks	. 3,623 . 437 . 906 . 372 es 6,245	b b c b a
Raccoon River Basi	n	
Raccoon River above Cedar Creek Cedar Creek	. 355 . 342 . 129 . 218 ce . 377 . 609 . 3,629	b b b c c c
Lower Des Moines River	Basin	
Des Moines River below Raccoon River at USGS gage 4855	9,879 121 400 558 41	a b d b

TABLE III-1 CONTINUED

	South River	• • • • • • •	• • • •	590	đ
	Whitebreast	Creek	• • • •	430	d
	Cedar Creek			423	đ
Des	Moines River	at USGS gage at (Ottumwa	13,374	а
Des	Moines River	, total area		14,467	đ

Explanation of symbols:

a - Water-Supply Papers of the U.S. Geological Survey
b - U.S. Geological Survey base map of Iowa; scale 1:500,000

- c Corps of Engineers report on Des Moines River, Iowa,
- 1930; 71st Cong. 3rd Sess. House Doc. 682, table 6.
- d Based on area listed for gaging station located near mouth and published in Water-Supply Papers of the U.S. Geological Survey.

The Blue Earth River Basin has a drainage area of 3,106 square miles, of which 337 are in Iowa. Only four incorporated Iowa communities lie within the boundaries of the Blue Earth basin. Of these, only one community has a comprehensive sewer system and treatment facility, and another has plans to construct a system.

The portion of the Blue Earth River Basin lying in Iowa amounts to only a small portion of the total basin drainage area and receives only one point source wastewater discharge. Since the Blue Earth River Basin lies mainly in Minnesota, no detailed analysis of the Iowa portion will be made in this report. Every effort will be made to coordinate with the Minnesota Pollution Control Agency in their planning for the basin.

LAKES AND IMPOUNDMENTS

Two major artificial impoundments are located on the Des Moines River. Red Rock Dam and Reservoir is located southeast of Des Moines in Marion County. Built as a major flood control project, the reservoir has a storage capacity of 1,830,000 acre-feet and regulates flow from an upstream drainage area of 12,323 square miles. The reservoir provides a conservation pool of 8,950 acres surface area for recreational purposes. The other major artificial impoundment, Saylorville Reservoir, is planned for completion in 1975. It will be located on the Des Moines River above Des Moines in West Central Polk County. It will have a storage capacity of 676,000 acre-feet and regulate flow from an upstream drainage area of 5,823 square miles. The reservoir is projected to provide a conservation pool with a 5,400 acrea surface area.

90 other smaller lakes, or impoundments, varying in size from approximately 1 to 1400 acres surface area, are also located in the Des Moines Basin. Of these, 31 are designated as Class A, 67 as Class B, and 10 as Class C (see Chapter III on water quality classifications). The lakes and impoundments in the basin are listed in Table III-2.

PHYSIOGRAPHIC FEATURES (1)

The physiographic features of the Des Moines River Basin are the result of an old erosional topography modified by several advances of continental glaciers within the past million years, and subsequent erosion.

III-5

TABLE III-2

Lake or Impoundment	County	Surface	Location*	Ownership	Type of Water	Surface Water		
			Location	<u>owner onip</u>		A	B	C
Meadow Lake	Adair	40	31-76-17	State	OSI		$\frac{z}{x}$	-
Don Williams Lake	Boone	160	32-85-27	С.С.В.	OSI	X	X	
Goldsmith	Buena Vista	35	35-93-19	Private	GP			
Pickerel Lake	Buena Vista	35	35-93-1	State	NL		X	
Storm Lake	Buena Vista	3,060	38-90-15	State	NL	Х	X	
City Pond	Calhoun	1	32-87-36	City	OSI		X	
North Twin Lake	Calhoun	569	32-88-7	State	NL	X	Х	
South Twin Lake	Calhoun	600	32-88-12	State	NL		Х	
Artesian Lake	Carroll	30	33-85-27	State	OSI		Х	
Swan Lake	Carroll	130	34-83-50	C.C.B.	NL	X	Х	
East Lake (Osceola)	Clarke	15	25-72-16	City	OSI		х	
Liberty Acres	Clarke	7	24-73-8	С.С.В.	OSI		х	
West Lake (Osceola)	Clarke	175	26-72-13	City	OSI	X	x	x
Drakesville Ponds	Davis	4	14-69-4	City	OSI		х	
Eldon Game Area	Davis	4	12-70-9	State	FP		х	
Lake Wapello	Davis	287	15-70-34	State	OSI	х	x	x

Lake or Impoundment	County	Surface Acres	Location*	Ownership	Type of Water	Surface Water Classification		
Christson Slough	Dickinson	158	35-100-13	State	NL	A	B	<u>C</u>
Swan Lake	Dickinson	371	35-100-23	State	NL		Х	
Cheever Lake	Emmet	282	34-99-20	State	NL			
Eagle Lake	Emmet	262	34-100-14	С.С.В.	NL			
Four-Mile Lake	Emmet	213	34-99-18	State	NL			
High Lake	Emmet	467	33-98-14	State	NL	X	Х	
Ingham Lake	Emmet	421	33-98-12	State	NL	Х	Х	
Iowa Lake	Emmet	3-8	31-98-12	State	NL		X	
Tuttle Lake	Emmet	981	32-100-14	State	NL	Х	X	
Twelve-Mile Lake	Emmet	290	34-98-21	State	NL		Х	
West Swan Lake	Emmet	1,038	32-99-29	State	NL			
Anderson Park	Greene							
County Board Lake	Greene		31-83-4	C.C.B.	GP		Х	
Dunbar Slough	Greene	200	32-83-29	State	OSI			
Goose Lake	Greene	456	31-84-1	State				
Spring Lake	Greene	49	30-84-25	C.C.B.	GP	x	х	

Lake or Impoundment	County	Surface	Location*	Ownership	Type of Water	Surface Water		
have of impoundment	<u>oouncy</u>	ACTO	<u>Hocacion</u>	<u>ownersnip</u>	hater	A	B	$\frac{1}{C}$
Bays Branch	Guthrie	270	30-80-22	State	OSI	<u> </u>	$\frac{2}{X}$	ž
Diamondhead Lake	Guthrie	440	30-78-11	Private				
Lake Panorama	Guthrie	1,400	31-80-23	Private	OnSI			
McCord Pond	Guthrie	50	32-81-8	State	OSI		·	
Springbrook Lake	Guthrie	27	31-81-33	State	OSI	х	Х	
East Twin Lake	Hancock	193	24-94-29	State	NL		X	
West Twin Lake	Hancock	109	24-94-30	State	NL		X	
Humboldt Impoundment	Humboldt		•	City	OnSI	х	X	
Burt Lake	Kossuth	46	30-100-9	State	NL		X	
Goose Lake	Kossuth	103	30-100-17	State	NL		X	
Lake Smith	Kossuth	53	29-96-36	C.C.B.	OSI	Х	x	
Union Slough	Kossuth		28-97-21	Federal	OSI			
Whittemore Pit	Kossuth	14	30-95-9	C.C.B.	GP		X	
Chatfield Lake	Lee	30	5-65-2	C.C.B.	OSI		X	
Shimek Forest Ponds	Lee	22	7-67-31	State	OSI		Х	
Ellis Lake	Lucas	110	21-72-27	City	OSI	х	Х	X

Lake or Impoundment	County	Surface Acres	Location*	Ownership	Type of Water	Surface Water Classification			
Morris Lake	Lucas	200	21-72-26	City	OSI	$\frac{\overline{A}}{\overline{X}}$	$\frac{B}{X}$	$\frac{C}{X}$	
Red Haw Lake	Lucas	72	21-71-28	State	OSI	X	Х	X	
Stephens Farm Ponds	Lucas	7	23-72-22	State	OSI		Х		
Stephens Farm Ponds	Lucas	10	23-72-28	State	OSI		Х		
Williamson Pond	Lucas	25	21-73-27	State	OSI		Х		
DeHal Lake	Marion	38	18-76-6	Private	OSI				
Knoxville Pond	Marion	7	20-75-12	С.С.В.	OSI		Х		
Pleasantville Pond	Marion	3	21-76-15	City	OSI		Х		
Red Rock Reservoir	Marion	8,950	18-76-30	Federal	OnSI	Х	X		
Roberts Creek Lake	Marion	300	19-76-4	C.C.B.	OSI	Х	Х.		
Tower Pond	Marion	7	18-76-31	C.C.B.	OSI		X		
Albia Reservoir	Monroe	80	17-72-9	City	OSI	Х	Х	Х	
Cottonwood Pits	Monroe	15	17-71-2	State	GP		X		
Lake Miami	Monroe	142	17-73-20	State & C.C.B.	OSI	Х	X		
Curlew Pit	Palo Alto	2	32-94-5	Private	GP				
Five Island Lake	Palo Alto	945	32-96-18	State	NL	Х	X		

Lake or Impoundment	County	Surface Acres	Location*	Ownership	Type of Water	Surface Water Classification		
Silver Lake	Palo Alto	638	34-95-20	State	NL	$\frac{\overline{A}}{\overline{X}}$	$\frac{B}{X}$	C
Fonda Reservoir	Pocahontas		34-90-22	City	OSI		x	
Lizard Lake	Pocahontas	268	34-91-22	State	NL		х	
Big Creek Reservoir	Polk	866	25-81-35	Federal	OSI	Х	X	
City Ponds	Polk			City		X	Х	
Dale Moffitt Reservoir	Polk	200	25-78-31	City	OSI	Х	х	X
Easter Lake	Polk	228	23-78-19	С.С.В.	OSI	X	X	
Grays Lake	Polk	100	25-78-8	City	ĢP	X	Х	X
Jester Park	Polk	3	25-80-10	C.C.B.	OSI	X	Х	
Saylorville Reservoir	Polk			Federal	OnSI	X	Х	
Arrowhead Lake	Sac	38	36-86-4	State	GP		X	
Black Hawk Lake	Sac	957	36-87-35	State	NL	Х	Х	
Hallet Pits	Sac		36-86-5	State	GP		Х	
Indian Lake	Van Buren		8-67-2	County	OSI			
Lacey Keosauqua	Van Buren	30	10-68-2	State	OSI	Х	х	X
Eldon Pond	Wapello	2	12-71-26	City	FP		X	

DES MOINES RIVER BASIN LAKES AND IMPOUNDMENTS

Lake or Impoundment	County	Surface Acres	Location* Ownership		Type of Water	Surface Water Classification			
Ottumwa Lagoon	Wapello	89	14-72-25	City	OSI	<u>A</u>	$\frac{B}{X}$	<u>C</u>	
Lake Ahquabi	Warren	140	24-75-14	State	OSI	Х	X	Х	
Banner Pits	Warren	12	24-77-30	State	GP		X		
Hooper Area Pond	Warren	13	24-75-26	State	OSI		Х		
Badger Lake	Webster	60	28-90-19	C.C.B.	OSI	Х	Х		
Dolliver Park Pond	Webster		28-89-15	State	GP				
Fort Dodge Pool	Webster		28-89-24	State	OnSI				
River Valley Reservoir	Webster		28-89-1	Private	OSI				
Clarion City Pond	Wright	10	23-91-6	City	GP				
Elm Lake	Wright	463	24-92-21	State	NL				
Lake Cornelia	Wright	273	24-92-16	State	NL	X	Х		
Wall Lake	Wright	935	24-90-14	State	NL				

*Range-Township-Section

**Type of Water -

FP--- Farm Pond GP--- Gravel Pit NL--- Natural Lake OnSI- On Stream Impoundment OSI-- Off Stream Impoundment CCB-- County Conservation Board During the millions of years prior to glaciation, a complex and varying thickness of sediments, now represented mostly by sandstone, shale, limestone, and dolomite, were deposited chiefly by shallow seas that intermittently covered the area. The Iowa Geological Survey (1) has prepared a sketch of the nature and approximate thickness of these deposits and indicated the geologic age of each (Fig. III-2). Subsequent to Cretaceous time, the consolidated rocks were eroded and differentially uplifted one or more times so that the topography just prior to glaciation consisted of moderate slopes and a rather well-developed drainage system.

Four major intervals of glaciation, including some minor readvances, separated by periods of erosion then modified the surface (Fig. III-3). Streams were diverted to new courses, some probably several times, and locally deep channels were cut into the bedrock surface. Deposits were laid down by the ice or by water and wind associated with each glaciation, and these were in turn more or less changed by subsequent periods of erosion and glaciation. The topography of the bedrock surface, the mantling effect of glacial deposits, and erosion during and subsequent to glaciation all contribute to the physiography of the Des Moines River Basin.

The basin is characterized by two topographic provinces which correspond and relate directly to the Wisconsin and Kansan drift areas. The topography of the first province is definitely youthful and, in this area, the Des Moines River Valley

III-12

FIGURE III-2

III-13

FIGURE III-3 GLACIAL GEOLOGY OF IOWA (1)

TII-14

displays all the characteristics of youth. In the second province, the topography is mature as is the development of the Des Moines River Valley. The transition between these provinces is abrupt.

The first topographic province is characterized by a wide and uniformly flat plain underlain by Wisconsin glacial drift where the time since glaciation is too brief for much erosion. Except for small areas adjacent to the major streams, the natural drainage consists of shallow trenches at the bottoms of wide sags. As the confluence of the east and west forks of the Des Moines River is approached, the sags grade into definite valleys and in Webster and Boone Counties the river flows in a deep and narrow gorge. Apparently the river flowed here prior to the advance of the Wisconsin ice, and the present gorge is re-excavated in part of the former valley.

The Des Moines River from the Wisconsin drift border near Des Moines to the end of its valley has been long at work and has produced the second topographic province--a vastly more mature landscape on the older Kansan drift surface. Below Des Moines, the river and its tributaries have not only widened their valleys but also by slope wash have rounded the valley slopes. The upland areas, therefore, are well dissected by these numerous tributary valleys so that flat land is almost completely restricted to the flood plains of the streams.

III-15

The soil types of the Des Moines River Basin are related to the glacial and associated deposits. The nature of the rock material at the surface determines in large measure the type and fertility of the soil because soils develop by mechanical and chemical weathering of this rock mantle. Throughout the area underlain by Wisconsin tills, an excellent youthful soil has developed. The area covered by the Wisconsin drift, however, is relatively flat, contains numerous shallow lakes and marshes, and is in places underlain by relatively impermeable materials which inhibit downward movement of water and necessitate extensive drainage measures. Here, the water should not be allowed to remain on the land because it prevents aeration of the soil, inhibits the growth of beneficial soil bacteria, keeps the soil cold, and retards the downward extension of plant root systems.

Topsoil in the portion of the basin mantled by Kansan drift varies locally in depth, extent, and fertility. This part of the basin has been subjected to a much longer interval of erosion and the resulting topography is more mature throughout. In this area of rolling hills artificial drainage is seldom needed. Protection of the topsoil and gullies from further erosion is of far greater concern. Figure III-4 shows the major soil groups of the basin.

The surface topography of the basin is being modified continually by erosion. However, changes are relatively slow, for the time schedule is one of geologic era rather than calendar year. It remains to be seen if man's efforts will materially

III-16

affect this geologic time table. Published records (U.S. Geological Survey, 1947) show that during the flood year 1947 the Des Moines River below the Raccoon River transported about six million tons of sediment, 54 percent of which was transported in the month of June alone and 9 percent in a single maximum day. Although this amount of sediment is equivalent to a layer 0.006 inch deep throughout the entire Des Moines Basin above Des Moines, it is believed that a major portion of the sediment came from the lower portion of the Raccoon River. Geologists have estimated that the annual rate of soil production through natural weathering processes is 0.001 inch. Since there is no way of determining what percentage of the measured sediment represented top soil and what percentage represented material scoured from the banks and beds of transporting streams, it is impossible to draw accurate quantitative conclusions regarding the soil loss this sediment load represented.

GENERAL CLIMATOLOGY (1)

Climatological records can be interpreted best by arbitrarily dividing the calendar-year into units corresponding to the growing seasons of the stable crops of the basin. The average winter season around Des Moines, comprising the period when normal daily mean temperatures are less than 40[°] and plant life is dormant, extends from November 14 to March 23. The spring and fall growing seasons for hardy crops include the periods from March 24 to May 10 and from October 3 to November 13 when the normal daily mean temperatures are above 40° and less than 59°. The summer season, when mean daily temperatures are 60° or higher and tender crops are grown, is considered to be from May 11 to October 2. The winter dormant season extends 130 days, the spring and fall growing seasons 48 to 42 days, respectively, and the summer growing season 145 days. These periods vary somewhat with location in the basin as the daily mean temperatures decrease generally northward in the basin.

Beginning with the spring growing season, the frequency and intensity of rainfall increase very markedly to a maximum in June. The average total precipitation of the three growing seasons is nearly 27 inches at Des Moines or about 85 percent of the average annual amount. The total for the summer growing season is nearly 19 inches or about 60 percent of the average annual amount. Thus, the major crops of the region nearly always receive the large amounts of moisture they need during their growing season. Annual snowfall averages about 31 inches.

Summer winds are variable, but commonly are from the southern quadrant, bringing moist air from the Gulf of Mexico resulting in precipitation which frequently takes the form of heavy thunderstorms. General droughts have been extremely rare, although summer storms may be so distributed that some areas temporarily receive inadequate moisture. A more complete discussion of the general climatology of Iowa is given in the Supporting Document (7).

SURFACE WATERS

Stream Flow

That portion of the original precipitation which flows across the land surface and escapes into artificial and natural drainage channels is often referred to as storm runoff. It is the runoff supplemented by discharge from groundwater sources that constitutes the flow observed in streams. Obviously, streamflow is highly correlated to precipitation, which varies from year to year and from area to area. Precipitation and streamflow also vary with time. While some years are in the normal range, others can be either wet or dry.

The average annual runoff in the basin ranges from about three inches in the extreme northwest to more than seven inches in the southeast (4). Runoff follows, in general, the pattern of the mean annual precipitation which ranges from about 28 to about 35 inches from the northwestern to the southeastern parts of the basin (7).

Although no definite cycles are apparent, runoff tends to be above, or below, average for periods longer than one year. The longest periods when runoff was above-average were the two six-year periods 1915-20 and 1942-47. The longest belowaverage period was the seven years from 1953 to 1959. Statistics on the extremes of annual runoff at selected stations in the basin are listed in Table III-3.

			Drainage	Drainage Mean		Annual runoff in inches					090**	
	Station Name	Period of Record	area sq.mi.	flow cfs.	Mean	Max.	Year	Min.	Year	Qmean	Qmean	
	E.F. Des Moines Riv. nr. Burt	1951-67	462	123	3.53	9.45	1965	.54	1956	16.9	.01	Ţ
	Lizard Cr. nr. Clare	1940-67	257	91.5	4.75	12.85	1951	.21	1956	22.5	.02	
3 K ¹⁴⁴	Boone Riv. nr. Webster City	1940-67	844	352	5.70	14.00	1951	.57	1956	10.7	.04	
	N. Raccoon Riv. nr. Sac City	1958-67	713	238	4.48	10.41	1962	.62	1968	16.1	.05	
	E.F. Hardin Cr. nr. Churdan	1952-67	24.0	7.9	4.48	9.81	1962	.32	1956	75.3	.01	
	Middle Riv. nr. Indianola	1940-67	503	242	6.52	18.31	1947	.48	1968	32.0	.03	
	South Riv. nr. Ackworth	1940-67	460	229	6.79	17.16	1947	.52	1956	34.4	.01	
	Cedar Cr. nr. Bussey	1947-67	374	191	6.92	14.70	1960	1.08	1954	32.9	.006	
	Sugar Cr. nr. Keokuk	1922-31, '58-67	105	66.2	8.55	17.61	1929	.88	1923	33.4	.002	

TABLE III-3

ANNUAL RUNOFF AND INDICATORS OF FLOW VARIABILITY FOR SELECTED STATIONS IN THE DES MOINES BASIN (4)

NOTE: Minimum annual annual runoff for period through 1968.

* - Q2.33 is mean annual flood; Qmean is mean flow.

** - Q90 is flow equaled or exceeded 90 percent of time; Qmean is mean flow.
The stations included in Table III-3 are predominantly those measuring the flow from drainage areas of moderate size, and those whose records included the drought of the mid-1950's. The smallest drainage areas are too sensitive to indicate hydrologic conditions; whereas large drainage areas, which integrate widespread meteorologic and physical regimes, are too insensitive to be truly representative of areal conditions.

Streamflow is characteristically variable. Knowledge of average flow alone, is insufficient for careful planning and management. In Iowa, it is common for peak flows to be 10,000 or more times the minimum flows. As an indicator of the variability of high flows, the ratio of the mean annual flood to the mean discharge for selected stations in the basin is listed in Table III-3. The mean annual flood is a fairly stable statistic which is unaffected, for the most part, by the chance occurrence of a very large flood. It is the peak flow that is equaled or exceeded once on an average of about every other year (recurrence interval, 2.33 years). The values for the ratio of the mean annual flood to the mean flow, for stations listed in Table III-3, varied from 10.7 to 75.3.

As an index of the variability of low flows, the ratio of the flow at the 90 percent duration level (Q90) to the mean flow is also listed in Table III-3. The variation of this ratio, from near zero to 0.05, is much less than that for the ratio defining high flows.

From this brief analysis, it is obvious that streamflow is highly variable. On the average, every other year a peak flow is reached that is about 30 or more times the mean flow. During 10 percent of the time, low flows are at or lower than about 3 percent of the mean flow.

Low Flow Characteristics

Water quality criteria of the State of Iowa must be met at all times when the flow of the stream equals or exceeds the statistical 7-day, 1-in-10 year low flow. Information on this flow and the physical characteristics of the stream are needed if the assimilative capacity is to be analyzed and allowable discharges determined.

The United States Geological Survey (USGS) maintains an extensive nationwide network of stream gaging stations. Stream flow is monitored continuously at some stations and periodically at others. By extrapolation of data from this established gage network and review of partial-record stations, additional flow information may be determined for streams where continuously recording gaging stations are not provided. Not all gages in a river basin are of the same period of record; therefore, published values of statistical flows such as Q90 (the flow equalled or exceeded 90% of the time) or the 7-day, 1-in-10 year low flow cannot be expected to correlate exactly at different gages.

Specific USGS gaging station locations are shown on Figures III-5, III-6, and III-7. Both partial-record and contin-

uous recording gaging stations are identified. Tables III-4, III-5, and III-6 list the specific station number, tributary drainage area above the station, and the 7-day, 1-in-10 year low flow, where available, for each station.

As indicated in the tables, insufficient data are available for identification of low flow at each gaging station. In order to conduct waste load allocation analysis, determination of 7-day, 1-in-10 year low flows was conducted for specific gaging stations. These values were obtained using the same procedure conducted by the USGS, but based upon less than 10 years of recorded data. For these reasons, verification of these values, as additional flow information is collected, is required.

The frequency of these extreme low flows is seasonal within the basin, i.e., due to the climatological and geological characteristics of the basin, low flows tend to occur either during August and September or during January and February of any given year. For this reason, analyses of critical conditions for defining waste load allocations must be conducted for both warm and cold water temperatures.

In general, low flows in the Des Moines River Basin are significantly less than the state average when results are reduced to the common basis of discharge per square mile. The low flows per square mile in the Middle Raccoon River and South Raccoon River are considerably higher than the state average as can be seen in Table III-7.

TABLE III-4

Station			Drainage		7Q10
No.	Stream	Location	Area(Mi ²)	(cfs)	(cfs/mi ²)
4765	W. Fk. Des Moines R.	Estherville	1,372.0	<0.1	
4765.5	Jack Cr.	Near Emmet Co. L	ine 74.8		
4766	Silver Cr.	Near Emmetsburg	61.8	0.3	0.0049
4766.5	Cylinder Cr.	Near Rodman	88.6	0.6	0.0068
4767	Prairie Cr.	Near West Bend	61.1		
4767.2	Beaver Cr.	Near Rolfe	62.2		
4767.4	Pilot Cr.	Near Rolfe	97.0		
4767.5 ¹	W. Fk. Des Moines R.	Near Humboldt	2,256.0		
4776	E. Fk. Des Moines R.	Near Dolliver	196.0		
4777	E. Fk. Des Moines R.	Near Swea City	314.0		
4778	Mud Cr.	Bancroft	68.1	<0.1	*
4780	E. Fk. Des Moines R.	Near Burt	462.0		
4780.5	Buffalo Cr.	Near Titonka	47.9	0.0	0.0000
4781	North Buffalo Cr.	Near Buffalo Cen	ter 62.5	<0.1	
4781.5	Black Cat Cr.	Near Lone Rock	58.2		
4782	Black Cat Cr.	Near Algona	112.0		
4783.5	Lotts Cr.	Near West Bend	66.2	0.4	0.0060
4784	Lotts Cr.	Livermore	165.0		
4790	E. Fk. Des Moines R.	Dakota City	1,308.0	9.2	0.0070
4796	Lizard Cr.	Near Palmer	66.4	<0.1	
4798	N. Br. Lizard Cr.	Near Havelock	79.4	<0.1	
4799	Lizard Cr.	Near Gilmore Cit	y 219.0		
4800	Lizard Cr.	Near Clare	257.0		
4801	S. Br. Lizard Cr.	Near Palmer	66.4		i d in s

U.S.G.S. GAGING STATION INFORMATION (5) (UPPER DES MOINES SUBBASIN)

III-25

TABLE III-4 (continued)

U.S.G.S. GAGING STATION INFORMATION (5) (UPPER DES MOINES SUBBASIN)

Station No.	Stream	Location	Drainage Area(Mi ²)	(cfs)	7Q10 (cfs/mi ²)
4803	S. Br. Lizard Cr.	Near Fort Dodge	154.0	<0.1	<u></u>
4805	Des Moines R.	Fort Dodge	4,190.0	27.0	0.0064
4806.2	Brushy Cr.	Near Homer	88.5		
4806.6	Boone R.	Near Kanawha	71.4		
4807	Boone R.	Near Renwick	134.0	<0.1	
4807.2	Prairie Cr.	Near Lu Verne	68.6	<0.1	1. 1. <u>1. 1. 1</u> . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
4807.6	Prairie Cr.	Near Renwick	118.0		
4808	Otter Cr.	Near Goldfield	75.5	<0.1	
4808.2	Boone R.	Near Goldfield	419.0		111 - <u>200</u>
4808.6	Eagle Cr.	Near Eagle Grove	62.8		<u> 1</u>
4809	Eagle Cr.	Near Woolstock	105.0		2011
4809.4	White Fox Cr.	Near Woolstock	62.0		48
4809.8	White Fox Cr.	Webster City	111.0		
4810	Boone R.	Near Webster City	844.0	3.6	0.0043
4813 ¹	Des Moines R.	Near Stratford (previously near B	5,452.0 Soone)	41.0	0.0075
4816	Big Cr.	Polk City	91.4		
4816.5 ¹	Des Moines R.	Near Saylorville	5,841.0		
4817	Beaver Cr.	Near Beaver	84.5	<0.1	
4818	Beaver Cr.	Near Berkley	175.0	<0.1	
4819	Beaver Cr.	Granger	314.0	<0.1	
4819.5 ¹	Beaver Cr.	Near Grimes	358.0		
4820	Des Moines R.	Des Moines	6,245.0	47.0	0.0075

1 Water Resources Data for Iowa, USGS, 1971

TABLE III-5

Station No.	Stream	Location	Drainage Area(Mi ²)	(cfs)	7Q10 (cfs/mi ²)
/821	N Raccoop R	Near Rembrandt	77 /		(010,
4021 0	N. Raccoon R.	Near Truce lele	164 0		
4021.2	N. Kaccoon K.	Near Truesdale	164.0		
4821.7	Big Cedar Cr.	Near Varina	80.0		
4821.8	Little Cedar Cr.	Near Fonda	83.5	<0.1	
4822	Big Cedar Cr.	Fonda	196.0	<0.1	
4822.2	Big Cedar Cr.	Sac City	342.0		
4823	N. Raccoon R.	Near Sac City	713.0		
4823.2	Indian Cr.	Near Lake View	90.2		
4823.6	Camp Cr.	Near Lytton	62.0	<0.1	
4823.8	Camp Cr.	Near Lake City	147.0		
4824	N. Raccoon R.	Near Lake City	1,003.0		
4824.1	Lake Cr.	Near Rockwell City	71.5		
4824.2	Lake Cr.	Near Lake City	128.0		
4824.4	Purgatory Cr.	Near Lanesboro	65.0		
4824.6	E. Cedar Cr.	Near Somers	62.4		
4824.8	Cedar Cr.	Near Churdan	151.0		
4825	N. Raccoon R.	Near Jefferson	1,619.0	12.0	0.0074
4827	Hardin Cr.	Near Churdan	74.0		
4830	E. Fk. Hardin Cr.	Near Churdan	24.0	0.0	0.0000
4830.5	Hardin Cr.	Near Jefferson	161.0	<0.1	
4831	W. Buttrick Cr.	Near Farnhamville	80.1		
4831.5	E. Buttrick Cr.	Near Grand Junction	n 79.6	<0.1	
4832	Buttrick Cr.	Near Grand Junction	n 202.0	<0.1	

U.S.G.S. GAGING STATION INFORMATION (5) (RACCOON SUBBASIN)

TABLE III-5 (continued)

U.S.G.S. GAGING STATION INFORMATION (5) (RACCOON SUBBASIN)

Station			Drainage		7Q10
No.	Stream	Location	Area(Mi ²)	(cfs)	(cfs/mi ²)
4832.5	Greenrier Cr.	Near Jamaica	65.8		
4833	N. Raccoon R.	Near Perry	2,169.0	16.0	0.0074
4833.1	S. Raccoon R.	Near Guthrie Center	77.2		
4833.2	Brushy Ford Cr.	Near Dedham	68.1		
4833.3	Brushy Ford Cr.	Near Guthrie Center	142.0		
4833.4	S. Raccoon R.	Near Monteith	267.0		
4833.5	Middle Raccoon R.	Near Carroll	74.3		
4833.6	Middle Raccoon R.	Near Glidden	138.0		
4833.8	Willow Cr.	Near Scranton	51.8	<0.1	
4834	Willow Cr.	Near Bayard	112.0		
4834.5	Middle Raccoon R.	Near Bayard	375.0		
4836	Middle Raccoon R.	Panora	440.0		
4836.2	Mosquito Cr.	Near Linden	67.4		
4836.4	Mosquito Cr.	Near Redfield	110.0		An res 1
4836.6	Middle Raccoon R.	Redfield	609.0		100
4840	S. Raccoon R.	Redfield	988.0	25.0	0.0253
4842	Panther Cr.	Near Adel	56.0		
4845	Raccoon	Van Beter	3,441.0	31.0	0.0090
4847	Walnut Cr.	West Des Moines	64.0		1000
4848 ¹	Walnut Cr.	Des Moines	80.9		1000

¹Water Resources Data for Iowa, USGS, 1972

FIGURE III-6

TABLE III-6

Station	na di santa na mini di superni na mangan da ngangan na mangan na mangan na m	alar dan dan dan dari dari dari dari dari dari dari dari	Drainage	Revenue de la presión de la	7010
No.	Stream	Location	Area(Mi ²)	(cfs)	(cfs/mi ²)
4855	Des Moines R.	Below Raccoon R. at Des Moines	9,879.0	82.00	0.0083
4856	Fourmile Cr.	Near Ankeny	59.3	0.00	0.0000
4856.4	Fourmile Cr.	Des Moines	92.7		
4856.5	Fourmile Cr.	Des Moines	95.9		
4857	North R.	Near Earlham	68.9		
4858.5	N. Br. North R.	Near Winterset	74.7		
4859	North R.	Near Winterset	203.0		
4860	North R.	Near Norwalk	349.0		
4861	Middle R.	Near Casey	72.8		
4861.5	Middle R.	Middle River	164.0		
4863	Clanton Cr.	East Peru	84.5		
4863.5	Clanton Cr.	Near Martensdale	159.0	<0.10	
4864	Middle R.	Martensdale	451.0		
4864.9	Middle R.	Near Indianola	503.0	1.40	0.0028
4867	South R.	Near New Virginia	65.4		
4869	Squaw Cr.	Near Jamison	60.8	0.00	0.0000
4871	Squaw Cr.	Near Indianola	134.0		
4872	South R.	Near Indianola	278.0		
4874	Otter Cr.	Near Norwood	102.0	0.00	0.0000
4874.5	Otter Cr.	Near Milo	155.0	<0.10	
4874.7	South R.	Near Ackworth	460.0	0.64	0.0014
4877	White Breast Cr.	Near Woodburn	82.9	0.00	0.0000
4878	White Breast Cr.	Lucas	128.0	0.00	0.0000

U.S.G.S. GAGING STATION INFORMATION (5) (LOWER DES MOINES SUBBASIN)

TABLE III-6 (continued)

U.S.G.S. GAGING STATION INFORMATION (5) (LOWER DES MOINES SUBBASIN)

Station			Drainage		7010
No.	Stream	Location	Area(Mi ²)	(cfs)	(cfs/mi ²)
4879	White Breast Cr.	Near Newbern	243.0	<0.10	
4879.8	White Breast Cr.	Near Dallas	342.0		
4880	White Breast Cr.	Near Knoxville	380.0	0.53	0.0014
4882	English Cr.	Near Knoxville	73.0	0.00	0.0000
4883	English Cr.	Near Harvey	108.0	0.00	0.0000
4885	Des Moines R.	Near Tracy	12,479.0	112.00	0.0090
4885.5	Cedar Cr.	Melrose	23.9	0.00	0.0000
4886	Cedar Cr.	Near Albia	102.0		
4887	Cedar Cr.	Near Lovilia	211.0	<0.10	
4888	N. Cedar Cr.	Near Lovilia	61.3	<u></u>	
4889	N. Cedar Cr.	Near Marysville	111.0	<0.10	
4890	Cedar Cr.	Near Bussey	374.0		
4893	N. Avery Cr.	Near Chillicothe	60.1	0.00	0.0000
4894	S. Avery Cr.	Near Chillicothe	51.6	0.00	0.0000
4895	Des Moines R.	Ottumwa	13,374.0	100.00	0.0075
4899	Soap Cr.	Near Ash Grove	97.3	0.00	0.0000
4901	Soap Cr.	Near Floris	243.0		·
4902	Lick Cr.	Kilbourn	82.7	0.00	0.0000
4903	Chequest Cr.	Near Troy	85.0	0.00	0.0000
4904	Chequest Cr.	Near Pittsburg	123.0	<0.10	
4905	Des Moines R.	Keosauqua	14,038.0	126.00	0.0090
4907	Sugar Cr.	Near Charleston	62.3	0.00	0.0000
4910	Sugar Cr.	Near Keokuk	105.0	0.00	0.0000

Low flow in the Des Moines River below Red Rock Dam has been regulated since the reservoir was first filled in April 1969. The Corps of Engineers' operating procedure calls for a minimum low flow of 300 cfs to be maintained at Ottumwa.

Low flows in the Des Moines River will also be influenced by Saylorville Dam in the near future. Data from the Corps of Engineers indicate the minimum discharge will be 200 cfs.

Table III-7 shows a comparison of averages from long-term continuously recording gaging stations within the basin to the average for 84 stations within the State of Iowa.

As with the daily flow data presented, the average 7-day, 1in-10 year low flow for the basin is considerably lower than that for the entire state. The 7-day, 1-in-10 year low flow for the Upper Des Moines Subbasin averages 0.0054 cfs/sq mi, while the State of Iowa averages 0.020 cfs/sq mi.

HYDROGEOLOGY (1, 4)

Of the principal aquifers, the highly productive ones can be divided into two categories on the basis of their recharge and water-yielding characteristics. In one category are the highly productive alluvial and shallow carbonate-rock aquifers directly underlying and in hydrologic connection with principal streams. In the other category are the deep, highly productive

TABLE III-7

FLOW COMPARISONS (5)

Flow, in cfs/sq mi, Equaled or Exceeded, for Percentage of Time Indicated in Column Headings						
	<u>50</u>	<u>90</u>	<u>95</u>	98	<u>99</u>	
State of Iowa Average	0.150	0.033	0.024	0.018	0.015	
Upper Des Moines R. (average all gages)	0.094	0.012	0.008	0.005	0.004	
North Raccoon R. nr Sac City (USGS 5-4823) North Raccoon R. nr. Jefferson (USGS	0.087	0.017	0.010	0.004	0.002	
5-4825) 5-4825)	0.130	0.020	0.014	0.009	0.007	
Middle Raccoon R. at Panora (USGS 5-4836)	0.180	0.061	0.050	0.043	0.039	
South Raccoon R. at Redfield (USGS 5-4840)	0.172	0.053	0.040	0.032	0.028	
Raccoon R. at Van Meter (USGS 5-4845)	0.142	0.027	0.018	0.012	0.009	
Des Moines R below Raccoon R. at Des Moines (USGS 5-4855)	0.177	0.027	0.016	0.012	0.010	

artesian aquifers in Iowa that are a considerable distance from recharge sources. These deeply buried aquifers act as conduits carrying water from outcrop areas miles or hundreds of miles to the areas of natural or artificial discharge.

Surficial Aquifers

Unconsolidated sediments varying in texture from nearly impermeable clay to highly permeable gravel are present throughout the Des Moines River Basin. Some of the unconsolidated sediments are very productive of water, and are major sources of water supply at several localities. Because of their nearsurface locations, mostly near rivers, they can be economically developed with relatively shallow wells and low pumping lifts, and are dependable sources of supply. These deposits are used widely for stock and domestic supplies.

Alluvial deposits underlying the flood plains and terraces of the Des Moines River and its major tributaries constitute productive aquifers that are currently and potentially important sources of water. These reservoirs are relatively small, but they have large storage characteristics and are recharged normally at rather frequent intervals. Recharge occurs from local precipitation and seepage from adjacent streams where withdrawals are large. Therefore they are dependent on surface water quality and quantity.

Sand and gravel deposits along the Des Moines River are capable of yielding more than 500 gpm to individual wells, and deposits along the tributaries and in some buried valleys are capable of yielding more than 40 gpm to individual wells. The largest single municipal supply in Iowa, at Des Moines, is obtained from sand and gravel along the Raccoon River.

Boone also develops its supply from deposits along the Des Moines River. Downstream from near Des Moines the sand and gravel are highly productive but are confined mostly to the immediate valley of the Des Moines River. Upstream from Des Moines, in the Western Lake section, the deposits are more widespread but many are only moderately productive of ground water.

Glacial drift consists principally of pebbly and sandy boulder clay containing lenticular or shoestring bodies of sorted sand and some poorly sorted sand and gravel. The drift thickness ranges from zero to 600 feet and averages about 200 feet. The producing zones are the sand bodies within or at the base of the drift. Wells may range from 15 to 20 feet to as deep as 400 feet or more. Generally, these wells yield only a few gallons per minute, but with favorable conditions and proper well design as much as 10 to 20 gpm may be obtained. Generally, the best deposits are found in the northern portion of the basin.

Bedrock Aquifers

Major portions of the Des Moines River are underlain by bedrock formations that can be depended on to yield moderate to large amounts of water to wells. Much of the area is underlain by more than one of these aquifers, separated by the relatively impermeable aquicludes. In such area the developer of groundwater may choose between the aquifers on the basis of depth, yield, pumping lift, water quality,

or other considerations. In most of the basin these aquifers are not heavily stressed; however, in a few small areas of concentrated pumping the water levels have declined noticeably but not alarmingly.

Although very small supplies may be obtained locally from most of the permeable beds, the important aquifers are the Dakota sandstone, lower Pennsylvanian sandstone, Mississippian limestone, Cedar Valley limestone, St. Peter sandstone, Jordan sandstone, and Dresbach sandstone (1).

The Dakota sandstone yields moderate to large quantities of water in the upper part of the basin. Pennsylvanian sandstone occurs beneath much of the basin, but commonly yields only small supplies because of the low permeability. Mississippian limestones, which include several distinct water-bearing beds, yield moderate supplies to wells in the northern part of the basin but only a few gallons per minute throughout the cental and southern portions. The Cedar Valley limestone is penetrated by a few wells, and yields small supplies of water. The St. Peter, Jordan, and Dresbach sandstones occur at considerable depth throughout the basin. They constitute large reservoirs that may be drawn upon heavily when the need arises. Throughout much of the basin, however, they occur so deeply buried that the cost of development is now prohibitive for many small towns and rural industry.

For further information a more detailed discussion of hydrogeology for the state is given in the Supporting Document (7).

GROUND WATER QUALITY (1, 4)

The mineral content of the groundwater, described by total dissolved solids and hardness, generally increases with increasing depth. Some alluvial aquifers will yield water with a hardness of from 150 to 200 mg/l, and water from some bedrock aquifers in areas where they yield highly mineralized water often will have a hardness in excess of 1,000 mg/l. These waters usually grade from calcium or calcium magnesium to the sodium type and from bicarbonate to sulfate or chloride type in areas where the dissolvedsolids content increases.

Generally, water containing less than 500 mg/l of dissolved solids can be found in the alluvial aquifers of the basin except in the area of the main stem of the Raccoon River where between 500 and 1000 mg/l is expected. Dissolved solids in the Dakota aquifer varies from less than 500 mg/l in the northern portions of the basin to greater than 1000 in the far northwestern corner. In the Mississippian aquifer dissolved solids range from less than 500 mg/l in the north central portion of the basin to greater than 2500 mg/l in the southwestern. In the far northeastern corner, dissolved solids in the Silurian-Devonian aquifer

are generally less than 500 mg/l but greater than 2500 mg/l over about the southern one third of the basin. In areas of the northeast and central east dissolved solids of less than 500 mg/l can be obtained from the Jordan aquifer but the concentration increases to greater than 2000 in the southwest corner of the basin.

Iron occurs in amounts (more than 0.3 mg/l) which can cause problems in some places in all aquifers. Iron in troublesome amounts is commonly found in water from the alluvial aquifers, in sand aquifers beneath the glacial drift, and in near-surface bedrock aquifers.

Nitrates in excess of acceptable concentrations have been found in many shallow wells. The occurrence of high nitrate concentrations is related more to improper well construction and location than to a particular region. Instances of properly constructed wells yielding high nitrate concentrations are, however, common in some alluvial aquifers.

Fluoride may be high in water taken from the Mississippian aquifer in central and southern portions of the basin.

For further information on ground water quality, a more detailed discussion is given in the Supporting Document (7).

REFERENCES

- 1. An Inventory of Water Resources and Water Problems, Des Moines River Basin, Iowa, prepared by the Iowa Natural Resources Council, 1953.
- 2. R. H. Shaw and P. J. Waite. <u>The Climate of Iowa III</u> <u>Monthly, Crop Season and Animal Temperature and Precipi-</u> <u>tation Normals for Iowa</u>, Agricultural and Home Economics <u>Experiment Station, Iowa State University of Science and</u> <u>Technology</u>, Ames, Iowa, April 1964.
- Ivan L. Burnmeister, <u>The Streamflow Data Program in Iowa</u> U.S. Department of Interior, <u>Geological Survey</u>, Water Resources Division, Iowa City, Iowa, 1970.
- 4. <u>Water Resources of Iowa</u>, Ed. Paul J. Horick, University Printing Service, Iowa City, Iowa, January 1970.
- 5. Low Flow Characteristics of Iowa Streams Through 1966, Albert J. Heinitz, prepared by the U.S. Geological Survey, Water Resources Division, in cooperation with the Iowa Natural Resources Council, State of Iowa, 1970.
- 6. Upper Mississippi River Comprehensive Basin Study, Vol. III, Appendix E: Ground Water and Geology, prepared by the Economic Advisory Committee, Upper Mississippi River Basin Coordinating Committee, 1970.
- 7. <u>Supporting Document for Iowa Water Quality Management</u> <u>Plans</u>, Iowa Department of Environmental Quality, Water Quality Management Division, Des Moines, Iowa.

CHAPTER IV - WATER QUALITY

The main objective of water quality management is to protect and enhance the water resources to ensure acceptable conditions for designated uses. Sound management first requires knowledge of the existing water quality.

Existing water quality for the Des Moines River Basin has been identified from available data. The data indicate some areas of degraded water quality.

It is the purpose of water quality standards to limit waste inputs to streams so that designated water uses will not be impaired.

The Iowa Water Quality Commission has classified streams into four classifications: A, B, C, and General. Class A Waters are those which are to be preserved for whole body contact. Class B Waters are those which are to be preserved for wildlife, aquatic life, and non-body contact recreation. Class C Waters are those which must be of a quality to meet requirements for use as a potable water supply. The General classification, which applies to all surface waters, provides for generally acceptable physical conditions and elimination of toxic substances. The <u>Supporting Document</u> for Iowa Water Quality Management Plans, lists the standards in detail for each class.

IV-1

In addition to material contamination, thermal discharges are important to water quality, since many life forms cannot adapt to a wide range of temperature. Temperature variation within a stream can result in different proportions of species and may even result in the disappearance of some forms and the appearance of others. Standards have been set for thermal discharges and streams have been further classified as to being "cold water" or "warm water".

Table IV-1, from the <u>Water Quality Standards</u>, Chapter 16, Iowa Departmental Rules, lists the classification of streams in the Des Moines River Basin, and Figure IV-1, IV-2, and IV-3 shows those streams classified A, B, or C.

The U.S. Environmental Protection Agency (EPA) has prepared a set of proposed criteria for water quality that differs in some instances from Iowa's standards. These are also presented in the Supporting Document. It is likely that Iowa's standards and EPA standards will become very nearly identical. Although the present standards may be different, their purposes are the same -- to manage water quality to meet the best interest of all users.

SAMPLING LOCATIONS

The evaluation of water quality in the Des Moines River Basin is based upon data collected by the DEQ, the State Health Department, the State Hygienic Laboratory, and Iowa State University. Some additional data are available from other State, local, and Federal agencies.

Table IV-1

SURFACE WATER CLASSIFICATION

DES MOINES RIVER BASIN

	Stream Segment	<u>A</u>	Classific <u>B</u> Warm <u>water</u>	cation <u>C</u>	
Α.	Mississippi River - Main Stem				
	line	Х	Х	X (Above) Ft. Mad: Burling	Keokuk ison ton &
1.	Des Moines River		Х	Davenpoi	ct.
	mouth to Bonaparte Dam Bonaparte Dam impoundment Bonaparte Dam impoundment to	Х	Х		
	Ottumwa power plant dam		Х		
	poundment Ottumwa power plant dam im-	Х	Х	X (Above)	Ottumwa
	poundment to Red Rock Dam		Х	•	
	Red Rock Reservoir Red Rock Reservoir to Des	Х	Х		
	Moines Center St. Dam Des Moines Center St. Dam		Х		
	to Interstate 80-35 to	Х	Х		
	Savlorville Dam		x		
	Savlorville Reservoir	x	x		
	Savlorville Reservoir to				
	upper dam at Ft. Dodge		Х		
	ment	Х	Х		
	ment to confl. of E & W Forks		Х		
	a. Sugar Cr. mouth to Lee Co. Road J72		Х		
	mouth to Davis Co. line		Х		
	mouth to Adair Co. line		х		

Table IV-1 (Cont.)

SURFACE WATER CLASSIFICATION

DES MOINES RIVER BASIN

	Stream Segment	Ā	Classific <u>B</u> Warm <u>Water</u>	ation <u>C</u>	
d.	Raccoon R.			· · · · · · · · · · · · · · · · · · ·	
	mouth to confl. of North				
	and South Raccoon Rivers		X	X	
	(1) North Raccoon R.			(Above	Des Moines)
	mouth to Buena Vista Co.	•	v		
·	(2) South Baccoon P		Λ		
	mouth to Highway 44		x		
	(a) Middle Raccoon R.		21		
	mouth to Lake				
	Panorama Dam		X	Х	
				(Above	Panora)
	Lake Panorama 🛛 🛛	Σ	X		
	Lake Panorama		. · · ·		
	to Carroll Co.				
	Road E 57		X		
e.	Beaver Cr.				
ح	mouth to Dallas Co. line		X		
I.	Big Cr. mouth to Big Cr. Dam		v		
	Big Cr impoundment	7	A V		
	Big Cr. impoundment	7	25		
	to Boone Co. line		X		
q.	Boone R.				
-	mouth to Hancock Co. line		X		
	(1) White Fox Cr.				
	mouth to Wright Co. line	3	Х		
h.	W. Fork Des Moines R.				
	fork to Minn. State line		Х		
	(1) Jack Cr.		37		
:	mouth to Swan Lake		X		
Ŧ.	E. FOIR DES MOINES R. fork to Tuttle Iske		x		
	(1) Lotte Cr		Δ		
	mouth to Highway 18		x		
	moutin to mayning 10		43		

IV-4

FIGURE IV-2

1

All sampling locations in the Upper Des Moines River, Raccoon, and Lower Des Moines Subbasins are shown on Figure IV-4, IV-5, and IV-6, respectively.

.... 1.... Luther Berkley STATE OF IOWA Madrid DEPARTMENT OF ENVIRONMENTAL QUALITY Sheldahl Bouton DES MOINES RIVER BASIN Woody BIG REEK LAKE Upper Des Moines Subbasin SAYLORVILLE Ankeny Granger SELECTED WATER QUALITY X 1 Grimes Œ SAMPLING LOCATIONS DES MOINES

FIGURE IV-5

DES MOINES RIVER

The most significant types of pollution appear to be physical degradation (related to erosion) and bacteria (below major municipalities). Dissolved oxygen and ammonia concentrations violate Iowa stream standards at times.

Data and Methods

Data collected between Boone and Tracy by Iowa State University provide perhaps the best data available in the State. Data have been collected on the Des Moines River above Des Moines since 1967 and below Des Moines since 1971. Data at other river stations are much less frequent but generally support the Iowa State University studies. For analysis purposes the river is divided into two segments:

The upper Des Moines River is the first segment and has its beginning at the confluence of the East and West Fork Des Moines near Humboldt and includes the river to Des Moines. This segment has a drainage area of 6,245 square miles.

The lower Des Moines River from Des Moines to the mouth near Keokuk has a drainage area of an additional 8,222 square miles including the largest tributary, the Raccoon River.

Water Quality Conditions

Harmful Substances - The majority of pesticide data collected on the Des Moines River has been collected in the upper seq-

IV-12

ment. Dieldrin has been found in all samples collected. The average concentration of 11 ng/1 (parts per trillion) is above the National Academy of Science recommended maximum concentration of 5 ng/1. The maximum concentration found was 50 ng/1. DDE was also found in nearly all samples. The average concentration of DDE was 123 ng/1 which is considerably above the recommended maximum of 6 ng/1. The maximum concentration of DDE found was 363 ng/1. Herbicides found include 2,4-D (50 ng/1) and atrazine (739 ng/1 average, 2500 ng/1 maximum).

Heavy metals found in the upper Des Moines River include barium, lead, manganese, zinc and selenium. No metals in the upper Des Moines were found in violation of Iowa Water Quality Standards. Lead, zinc, and copper have exceeded Iowa standards on the lower Des Moines. The sources of these heavy metals are unknown. Increased surveillance of heavy metals from point sources is recommended to aid in determining the sources.

TABLE IV-2

HEAVY METALS IN THE DES MOINES RIVER

		NUMBER OF	MEAN OF THOSE	
		SAMPLES WITH	WITH DETECTABLE	
	TOTAL	DETECTABLE	LEVELS	MAXIMUM
PARAMETER	SAMPLES	LEVELS	(µg/l)	(µg/1)
As	2	0		
Ba	4	2	150	200
Cd	4	0		
Cr	6	0		
Cu	4	0		
Pb	4	2	75	80
Mn	2	1	70	70
Hq	2	0		
Ni	2	0		
Aq	0	0		
Zn	4	4	71	160
Se	1	1	2	2

(FORT DODGE - DES MOINES)

TABLE IV-3

HEAVY METALS IN THE DES MOINES RIVER

(DES MOINES TO KEOKUK)

OTAL AMPLES 35 67	DETECTABLE LEVELS 0	LEVELS (µg/l)	MAXIMUM (µg/l)
AMPLES 35 67	LEVELS 0	(µg/l)	(µg/l)
35 67	0		
35 67	0		
67			
	50	262	900
76	1	30	30
81	4	22	40
76	19	35	100
76	26	308	3200
9	3	136	200
17	3	1.3	2
70	3	80	200
30	0		
76	61 .	125	1300
2	2	2.5	4
	76 9 17 70 30 76 2	76 26 9 3 17 3 70 3 30 0 76 61 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ΡΔΡΔΜΕΨΈΡ	TOTAL	NUMBER OF SAMPLES WITH DETECTABLE LEVELS	MEAN OF THOSE WITH DETECTABLE LEVELS	MAXIMUM
I MOMELDIC			(119/1)	(119/1)
Aldrin	4			
Chlordane	4			
DDD	4			
DDE	35	32	123	373
DDT	4			
Dieldrin	96	96	-11	50
Endrin Heptachlor	4			
Epoxide	4			
Lindane	4			
2, 4-D	4	2	50	50
2, 4, ⁵ 7	4			
DCB	2			
Atrazine Heptachlor	35 4	24	739	2500

PESTICIDES IN THE DES MOINES RIVER

<u>Physical Modification</u> - The major physical modification in the upper Des Moines River is turbidity. Wide fluctuations in turbidity occur depending on runoff conditions. Average turbidity is less than 50 JTU's, but maximum of 800 JTU's has been recorded. These levels are still below concentrations found in some Iowa streams, but may cause an impact on aquatic life. Saylorville Reservoir is currently under construction just north of the City of Des Moines. This will be the final receptacle for a large portion of the suspended solids carried downstream by the river. The reservoir will have the effect of improving the physical quality of the water moving on downstream toward Red Rock Reservoir and the mouth. Turbidity is also a major concern below Des Moines (Figure IV-7).

IV-15

Temperature violations have been found below the power plant at Des Moines (Figure IV-8), and are a potential problem at low flows at other locations on the river. Upon completion of Saylorville Reservoir, flow regulation will decrease the chance of extreme low flow conditions. This might result in fewer temperature problems downstream from the reservoir due to greater dilution.

Oxygen Depletion - Dissolved oxygen and ammonia concentrations have generally been satisfactory in recent years. Consideraable improvement in BOD and ammonia concentrations has taken place, particularly in the lower Des Moines River (Figures IV-11 - IV-12). A certain amount of this improvement is undoubtedly the result of high flows causing dilution. The most notable improvement can be shown at Ottumwa where high BOD and ammonia concentrations had been common for over thirty years until the John Morrell Packing Plant closed down.

Low dissolved oxygen levels are still a problem during low flow conditions (Figures IV-9 and IV-10). This is particularly true in the lower Des Moines below the City of Des Moines. Only one dissolved oxygen violation has been found in the upper Des Moines River. Fort Dodge is the main point source on the upper Des Moines. Surveys conducted in the lower Des Moines in 1970 showed dissolved oxygen violations below Des Moines, Iowa. This was the lowest flow period during

Dissolved Oxygen mg/1

COMPARISON OF BIOCHEMICAL OXYGEN DEMAND IN THE DES MOINES RIVER, 1960's vs 1970's FIGURE IV-11

RIVER, 1940's vs 1960's vs 1970's.

the last several years. Even during recent high flow periods the oxygen sag can be seen below Des Moines. While there have been few recent dissolved oxygen violations, the potential exists, during low flow, for violations on many streams of Iowa standards for dissolved oxygen.

Ammonia violations have occurred with equal frequency in both the upper and lower Des Moines since 1970. They have been more widespread than dissolved oxygen violations. In general ammonia concentrations have decreased in the Des Moines River during recent years. Again, dilution is a factor. The closing of the John Morrell plant at Ottumwa has also improved water quality. Des Moines continues to cause some ammonia violations in the lower Des Moines. The widely scattered nature of ammonia violations on the upper Des Moines suggests that nonpoint runoff is responsible for these high concentrations. All of the violations were well below point sources.

BOD concentrations in the upper Des Moines River are generally higher in the Lower Des Moines (Figure IV-13). BOD concentrations would be expected to increase slightly below the City of Des Moines due to the large point source. Instead concentrations decrease slightly below Des Moines. This must be the result of the large dilution volume of the Raccoon River which not only dilutes the City of Des Moines' discharge but lowers the BOD concentration of the Des Moines River (Figure IV-13). At low flows the Raccoon River pro-

vides a smaller percentage of total flow to the Des Moines River and has lesser dilutional effect. This, in part, is the reason dissolved oxygen problems are only seen at low flows. The BOD concentration also decreases slightly below Red Rock Reservoir. The reservoir has a cleansing effect and removes large amounts of turbidity and BOD from the river. A small peak in BOD is again found at Ottumwa. While much lower than previous years (Figure IV-12), it continues to affect stream quality, even at higher flows. No dissolved oxygen violations have been found below Ottumwa in recent years, but only limited sampling has taken place.

Health Hazards and Aesthetic Degradation - Fecal coliform concentrations are generally in excess of the 200/100 ml criteria established by the EPA. In spite of chlorination by major municipalities discharging to the river, concentrations increase markedly below discharges (Figure IV-14). This indicates violations of Iowa standards. Due to the high background concentrations from nonpoint sources, there is little improvement that will be produced by further lowering concentrations from point sources.

FIGURE IV-14

FECAL COLIFORM PROFILES FOR THE LOWER DES MOINES RIVER

EAST FORK DES MOINES RIVER

Water quality in the East Fork Des Moines River is generally better than in the West Fork Des Moines River. With few exceptions, dissolved oxygen and ammonia have not violated Iowa Water Quality Standards. The East Fork Des Moines River has fewer and smaller point source discharges than the West Fork. The only point source to show appreciable impact on the stream is Algona, the largest city on the East Fork.

Water Quality Conditions

Harmful Substances - Heavy metals found in the East Fork Des Moines River include barium, copper, lead, manganese, and zinc. The highest lead concentration has been only 0.07 mg/l which is below the 0.10 mg/l standard. Since there are no known point sources that contribute metals on the East Fork Des Moines River it is assumed that the metal concentrations found are the result of nonpoint sources.

<u>Physical Modification</u> - Turbidity, solids and temperature levels in the East Fork Des Moines River are similar to those found in the West Fork. There is no information to suggest that there is significant physical modification.

TABLE IV-5

PARAMETER	TOTAL SAMPLES	NUMBER OF SAMPLES WITH DETECTABLE LEVELS	MEAN OF THOSE WITH DETECTABLE LEVELS (ug/l)	MAXIMUM (ug/l)
As	11	0		
Ba	10	8	125	200
Cd	13	0		200
Cr	13	0		
Cu	13	1	10	10
Pb	13	2	65	70
Mn	8	5	308	570
Hg	0	0		
Ni	12	0		
Ag	7	0		
Zn	13	11	67	

HEAVY METALS IN THE EAST FORK DES MOINES RIVER

Oxygen Depletion - Dissolved oxygen concentrations have been adequate during most sampling periods. In January, 1970, samples collected at three locations all showed dissolved oxygen (DO) concentrations below 5.0 mg/l. It is difficult to determine what the cause of this low dissolved oxygen was since the DO at Armstrong near the Minnesota border was already 3 mg/l. The DO seemed to recover slightly by Algona, but decreased slightly again below Algona (Figure IV-16). On other occasions dissolved oxygen conditions have been very good. Only two dissolved oxygen violations, those noted above, and one ammonia violation have been found on the East Fork Des Moines River.

The oxygen and ammonia concentrations are much better than in previous periods. Data sufficient for comparison is

available only for the 1940's. During that 10 year period dissolved oxygen violations occurred in over 35% of the samples collected. Ammonia violations occurred in 8% of the samples. These figures are significantly higher than data for the past four years. Considerable improvement has occurred in the water quality of the East Fork Des Moines River since the 1940's.

Health Hazards and Aesthetic Degradation - Fecal coliform levels are low compared to the West Fork. This is due in part to the number of point sources, as well as the relatively small size of the municipalities. Fecal coliform concentrations do increase during runoff periods.

WEST FORK DES MOINES RIVER

Water quality in the West Fork Des Moines River is generally good. Exceptions to this occur during winter and low flow conditions when point sources cause a greater impact on the stream. Water quality is generally poorer below the communities of Estherville, Emmetsburg, and Humboldt.

Pollution Problems and Sources

Wastes from the three largest municipalities affect water quality along the West Fork Des Moines River. Serious problems with high ammonia concentrations and low dissolved oxygen levels exist during the winter and low flow periods. A significant bacteriological impact is also made by these point sources.

Nonpoint sources also affect stream quality. Various researchers have shown that during periods of storm runoff increases in the concentrations of phosphorus, nitrogen, dissolved solids, and fecal coliform counts occur even though additional dilution water is present. Although these trends seem to be indicated by existing data, no correlation between rainfall and changes in water quality parameters are possible due to the limited data available.

Water Quality Conditions

Harmful Substances - Heavy metals found in the West Fork Des Moines River include barium, copper, lead, manganese and zinc. Of these, only manganese exceeds recommended drinking

MINNESOTA

FIGURE IV-19 WEST DES MOINES RIVER BASIN

water standards. Manganese standards have been established by the EPA for surface water supplies. This level was exceeded in 85% of the samples collected in the West Fork. No municipalities use the West Fork as a surface water supply. Manganese is not toxic and would not be a health hazard. Lead concentrations in the West Fork have not exceeded Iowa Water Quality Standards in the samples analyzed. There are no known point sources of heavy metals on the West Fork. Manganese concentrations are therefore assumed to be due to nonpoint sources.

TABLE IV-6

PARAMETER	TOTAL SAMPLES	NUMBER OF SAMPLES WITH DETECTABLE LEVELS	MEAN OF THOSE WITH DETECTABLE LEVELS (µg/l)	MAXIMUM (µg/l)
7 -	11	0		
AS		0	144	200
Ba	11	9	144	200
Cd	12	0		
Cr	14	0		
Cu	12	2	10	10
Pb	12	4	65	130
Mn	7	6	283	510
На	2	0		
Ni	10	0		
Aq	6	0		
Zn	12	10	57	210

HEAVY METALS IN THE WEST FORK DES MOINES RIVER

RIVER, 1970-1974

1970-1974

<u>Physical Modification</u> - Turbidity and solids levels increase during storm runoff periods. Concentrations are typical of most Iowa streams during runoff and are not critical. In general, the physical condition of the West Fork is good.

<u>Oxygen Depletion</u> - Sampling on the West Fork Des Moines has been conducted at time of critical stream flows and during ice cover conditions in the past several years to determine violations of Iowa Water Quality Standards. Data in 1970 at a stream flow of 21 cfs showed dissolved oxygen concentrations below 5 mg/l at all stations along the river. One location showed a concentration below 4.0 mg/l, the minimum dissolved oxygen standard established by Iowa. Two locations below Estherville showed violations of the 2.0 mg/l ammonia standard.

Surveys conducted in 1972 and 1973 also showed dissolved oxygen and ammonia violations (Figure IV-25, Figure IV-26). On the basis of over 150 samples for dissolved oxygen and over 100 samples for ammonia since 1970, 12% have violated Iowa dissolved oxygen standards and 3% have violated Iowa ammonia standards.

While dissolved oxygen and ammonia concentrations are the most significant pollution problems on the West Fork there have been improvements. Comparisons with data collected in the 1940's indicate improvement not only in the average dissolved oxygen and ammonia concentrations, but also in

the percent violations for these parameters. Violations of dissolved oxygen and ammonia standards were 32% and 25% respectively for samples collected from 1940-1949. While no water quality standards existed at that time, current water quality standards were used for comparative purposes.

<u>Health Hazards and Aesthetic Degradation</u> - Fecal coliform counts generally exceed the 200/100 ml standard for contact recreation established by the EPA. Background levels found above Estherville are considerably above this level (Figure IV-26).

Peaks for fecal coliform occur below the major cities and can be found in both summer and winter. Runoff causes the general background level of fecal coliform to increase significantly.

TABLE IV-7

NUI WATER QUALITY PARAMETER DE	MBER OF TERMINATIONS	AVERAGE VALUE	HIGH VALUE	LOW VALUE
West Fork Des Moines River ¹				
Dissolved Oxygen (mg/l) 5-Day BOD (mg/l) pH (unit) Turbidity (JTU) Conductivity (micromho) Total Solids (mg/l) Total Non-filterable Solids (mg/l) Ammonia Nitrogen (mg/l-N) Nitrate Nitrogen (mg/l-N) Total Phosphorus (mg/l-P)	30 43 43 43 43 43 43 43 43 43	9.40 6.00 7.80 30.80 762.00 718.00 64.00 0.30 1.20 0.31	17.00 12.00 8.80 100.00 1,200.00 1,300.00 390.00 1.30 6.00 1.00	$3.80 \\ 1.50 \\ 7.30 \\ 0.04 \\ 210.00 \\ 65.00 \\ 3.00 \\ 0.05 \\ 0.02 \\ 0.10 \\ 0.10 \\ 0.01$

WATER QUALITY IOWA-MINNESOTA BORDER 1967-1973

¹Eight river miles north of Iowa-Minnesota border.

COLIFORM COUNT

NORTH RACCOON RIVER

Water quality in the North Raccoon River is by point source discharges with resulting low dissolved oxygen concentrations, high ammonia concentrations, and high fecal coliform concentrations. During winter and low flow conditions numerous violations of Iowa Water Quality Standards occur. Water quality is generally improved during average or above average flow.

Pollution Problems and Sources

Water quality of the North Raccoon River above the first point source, Storm Lake via Boyer Creek, is good. The City of Storm Lake, Hygrade Foods, Sac City, Jefferson, and Perry have a significant impact on stream quality. Normal reaeration at average flow conditions allows recovery below Storm Lake. During low flow or winter periods when reaeration decreases due to low velocity or ice cover the dissolved oxygen concentrations often violate Iowa standards. Ammonia concentrations also exceed Iowa standards over large areas during the winter. The extent to which nonpoint sources contribute nutrients is difficult to determine due to the overwhelming effect of the point sources. Point sources are the greatest problem on the North Raccoon River with respect to dissolved oxygen and ammonia.

Water Quality Conditions

Harmful Substances - No problems associated with harmful substances have been detected in the North Raccoon River.

FIGURE IV-28 NORTH RACCOON RIVER BASIN IV-45

Water samples for pesticides and metals have been taken more extensively at the Des Moines water supply intake on the main stem of the Raccoon River. Samples on the main stem of the Raccoon River show that lead and copper have exceeded Iowa standards.

Pesticide data for the main stem Raccoon River have generally been in excess of the National Academy of Science recommended maximum levels for DDE, DDT, and dieldrin. DDE concentrations average 48 ng/l in samples with detectable levels and reached a maximum concentration of 250 ng/l. Average concentrations of DDT and dieldrin in samples with detectable levels were 9 ng/l. Maximum concentrations were 23 and 41 ng/l respectively.

TABLE IV-8

PARAMETER	TOTAL SAMPLES	NUMBER OF SAMPLES WITH DETECTABLE LEVELS	MEAN OF THOS WITH DETECTA LEVELS (µg/1)	E BLE MAXIMUM (µg/l)
As	8	0	· ·	
Ba	9	9	170	200
Cđ	9	0		
Cr	21	0		
Cu	9	2	20	20
Pb	9	0		
Mn	4 • •	2	140	140
Hg	8	0		
Ni	1	0		
Ag	0	0		
Zn	9	6	23	30
				·····

HEAVY METALS IN THE NORTH RACCOON RIVER

TABLE IV-9

HEAVY METALS IN THE MAIN STEM RACCOON RIVER

PARAMETER	TOTAL SAMPLES	NUMBER OF SAMPLES WITH DETECTABLE LEVELS	MEAN OF THOSE WITH DETECTABLE LEVELS (µg/1)	MAXIMUM (µg/1)
As	0	0		
Ba	15	13	177	300
Cđ	16	0		
Cr	16	0		
Cu	16	2	25	40
Pb	16	4	95	290
Mn	1	0		-1
Hg	2	1	1.	1
Ni	15	2	30	40
Ag	· 1	0		
Zn	15	12	46	140

TABLE IV-10

PARAMETER	TOTAL SAMPLES	NUMBER OF SAMPLES WITH DETECTABLE LEVELS	MEAN OF THOSE WITH DETECTABLE LEVELS (ug/1)	MAXIMUM (ug/l)
DDE	24	10	48	250
DDT	17	9	9	23
Dieldrin	25	16	8.8	41
Atrazine	9	9	639	3300

PESTICIDES IN THE MAIN STEM RACCOON RIVER

Physical Modification - Turbidity, total solids, and temperature on the North Raccoon River are similar to other streams of the State. Limited data are not sufficient to determine the magnitude of nonpoint runoff regarding turbidity and solids. Turbidity concentrations during sampling periods have averaged approximately 30 JTU with a maximum of 110 JTU. Total solids concentrations have averaged approximately 650 mg/1 with a maximum of over 1100 mg/1. No temperature problems have been noted on the North Raccoon River.

Oxygen Depletion - Summer dissolved oxygen values ranged from 6.5 mg/l (85% saturation) to 15.5 mg/l (140% saturation), with August having the greatest change between stations. This change is probably the result of diurnal fluctuations rather than significant downstream changes (Figures IV-29 and IV-31). Winter concentrations have varied considerably. Samples collected in February, 1972, and February, 1974, show adequate dissolved oxygen. Winter samples collected in 1971 show numerous violations of Iowa standards. The high dissolved

oxygen values in 1974 were still only at 80% saturation. Samples collected in January, 1975, while still above Iowa standards, averaged only 50% saturation. Iowa Water Quality Standards have been violated in 8% of the dissolved oxygen and in 17% of the ammonia samples since 1970. Results over the last four years have shown general improvement in water quality in the North Raccoon River. Fewer violations of dissolved oxygen and ammonia standards have been found in the last year even under ice cover and at lower flows than previous surveys. While considerable improvement is still necessary, progress is being made. This is primarily attributable to better operation and/or smaller loading to the stream at Storm Lake. Hygrade Foods has discharged less waste during the last year. While this is unrelated to pollution control measures, it has had a significant impact in stream The discharges at Sac City, Perry, and Oscar Mayer quality. at Perry still have a visible impact. There has not been any demonstrable improvement below these discharges. Due to the lower level of pollutants coming from upstream, the water quality has improved even below the other dischargers. Further improvement will be dependent upon continued lower loadings from Storm Lake and Hygrade Foods, and expanded treatment at Sac City, Perry, Jerrerson, and Oscar Mayer at Perry.

<u>Health Hazards and Aesthetic Degradation</u> - Fecal coliform concentrations show no consistent patter in the North Raccoon River. This would be expected if nonpoint sources were the

major pollutant source. Point source effects can be seen but not consistently. Fecal coliform concentrations generally increase below Storm Lake, Sac City and Jefferson. Fecal coliform concentrations are generally higher in the summer than the winter. While there is little significant fluctuation in concentration, the recreation criteria established by the EPA of 200/100 ml is almost always exceeded.

Due to the lack of historical data for coliform bacteria in the North Raccoon River it is difficult to establish any trends over recent years.
TABLE IV-11

SAMPLING STATIONS	JUNE '74	Fecal Col JULY '74	liform per AUG '74	100 m1 FEB '74	JAN '75
Above Storm Lake	660	950	620	50	NS
Boyer Creek	33,000	2,100	4,000	NS	100
Below Storm Lake	1,200	680	560	1,400	160
Nemaha	590	950	690	1,200	10
Below Sac City	2,300	3,700	1,400	450	9,200
Lake City	2,200	NS	14,000	180	70
Above Jefferson	810	550	320	40	10
Below Jefferson	480	4,100	1,400	140	1,200
Above Perry	1,100	520	60	330	180
Below Perry	1,100	490	120	290	440
Adel	680	380	90	160	120
Van Meter	440	240	170	90	950

BACTERIOLOGICAL DATA - NORTH RACCOON RIVER

NS--Not sampled

NORTH, MIDDLE, AND SOUTH RIVERS

The North, Middle, and South Rivers drain over 1,500 square miles of land in south-central Iowa below the Raccoon River basin. The South River basin is the largest of the three draining 590 square miles, followed by the Middle River (558 sq. mi.) and the North River (400 sq. mi.). Approximately the lower half of all three of these rivers has been straightened and channelized. These rivers flow through rolling farm land for the most part, particularly in the North and Middle River basins. The largest cities in the basins are Winterset on the Middle River and Indianola between the Middle and South Rivers. The largest tributaries are Otter Creek and Squaw Creek on the South River, Clanton Creek on the Middle River, and North Branch North River.

<u>Harmful Substances</u> - No pesticide data were available on these rivers. The limited heavy metal data present indicated no problems with heavy metals. Concentrations for metals were near the limits of detection or below. Those metals found include barium, zinc, and lead.

<u>Physical Modification</u> - Turbidity is a problem in these rivers. Samples collected to date have been at high flows and high turbidity has been found. Average turbidities have been near 75 JTU's with maximum concentrations of 150 JTU. No temperature problems have been noted.

IV-54

Oxygen Depletion - Dissolved oxygen concentrations have been well above Iowa standards in samples collected to date. However, no samples have been collected under critical conditions of low flow or ice cover. Dissolved oxygen under high stream flow runoff conditions has been only near 75% saturation in samples collected in 1975. Samples collected in 1975 showed higher dissolved oxygen concentrations and lower COD concentrations in the North and South Rivers than in the Middle River.

Health Hazards and Aesthetic Degradation - Fecal coliform concentrations in all three rivers exceed Federal guidelines of 200/100 ml, particularly during high stream flows. However, fecal coliform appear to be significantly higher in the Middle River than in the North or South rivers.

<u>Summary</u> - In terms of fecal coliform, dissolved oxygen, and COD, samples collected in 1975 indicate poorer water quality in the Middle River than in the North or South rivers, with best water quality in the North River. All of these rivers have greatly improved water quality upstream of the channelized reaches. This is due not only to the lack of channelization but the smaller drainage area.

OTHER TRIBUTARIES

Available water quality data on other tributaries in the Des Moines Basin is sparse. Infrequent and random samplings combined with only minimal analyses make any significant evaluation of water quality on other streams in the Des Moines Basin impossible.

IV-55

REFERENCES

Information and data for this chapter were obtained from the federal water quality data storage system (STORET), the DEQ files, and the following sources:

An Inventory of Water Resources and Water Problems, Des Moines River Basin, Iowa, prepared by the Iowa Natural Resources Council, 1953.

Des Moines River (Fort Dodge to Des Moines), Limnology Study June-August 1973, State Hygienic Laboratory Report #74-19, University of Iowa, Iowa City, Iowa. January 16, 1974. 29 p.

Water Quality Survey of the Des Moines River, Des Moines, Iowa area. State Hygienic Laboratory Report #71-13. University of Iowa, Iowa City, Iowa. October 1, 1970. 28 p.

Des Moines River (Des Moines to Keokuk), Limnology Study July 1973-January 1974. State Hygienic Laboratory Report #74-35. University of Iowa, Iowa City, Iowa. April 25, 1974. 30 p.

Upper Des Moines (East & West Forks), Limnology Study June-August, 1973. State Hygienic Laboratory Report #74-11. University of Iowa, Iowa City, Iowa. 56 p.

Winter Water Quality of the North Raccoon River from Storm Lake to Van Meter, Iowa. State Hygienic Laboratory Report #71-41. University of Iowa, Iowa City, Iowa. March 26, 1971. 24 p.

Des Moines River (East and West Forks to Des Moines, Iowa) Winter Water Quality Study. State Hygienic Laboratory Report #75-1. University of Iowa, Iowa City, Iowa. July 25, 1974. 20 p.

West Fork Des Moines River Water Quality Survey, Estherville, Iowa Area. State Hygienic Laboratory Report #72-38. University of Iowa, Iowa City, Iowa. February 24, 1972. 25 p.

Investigation of the North Raccoon River Fish Kill Below Storm Lake, Iowa, April 9-11, 1972. State Hygienic Laboratory Report #72-53. University of Iowa, Iowa City, Iowa. April 27, 1972. 16 p.

Winter Water Quality of the North Raccoon River from Storm Lake to Van Meter, Iowa. State Hygienic Laboratory Report #72-49. University of Iowa, Iowa City, Iowa. April 27, 1972. 17 p.

North Raccoon River Limnology Study Report #75-21. State Hygienic Laboratory, University of Iowa, Iowa City, Iowa. March 24, 1975.

CHAPTER V - POINT SOURCE DISCHARGE INVENTORY

Municipal, industrial, and semipublic point sources of wastewater, as identified in the DEQ files as discharging to surface waters in the Des Moines River Basin, have been inventoried and tabulated. Agricultural and some nonpoint sources are inventoried in Chapter VII.

An alphabetical listing of municipal, industrial, and semipublic wastewater discharges appears in Table V-1. Also included in this table is information concerning the location of each discharge (by county and river mile), and an identification of the receiving stream for each discharge.

A coding system was used in Table V-1, which assigned a reference number to each discharge. Reference numbers for municipal sources are prefixed by "M", industrial sources by "I", and semipublic sources by "S", (all incorporated municipalities have been assigned reference numbers whether they have discharges or not). The reference numbers are used to identify specific existing discharges in Figures V-1, V-2 and V-3, which show the location of point source discharges in the Upper Des Moines, Raccoon, and Lower Des Moines subbasins, respectively. With few exceptions, reference numbers run in a consecutive downstream order beginning at the northern end of the basin.

Table V-1 also cross references information concerning the present characteristics of each discharge, the waste load

allocation for each discharge, and an estimate of the municipal cost involved in meeting the allocation.

Table V-2 identifies characteristics of each wastewater point discharge from municipal, semi-public, and industrial sources. Beginning with the upstream end of the Blue Earth River, dischargers are listed in order proceeding downstream to the Iowa-Minnesota State border. The tabulation then continues with the upstream end of the West Fork Des Moines River and lists dischargers in downstream order. For each tributary stream the point source furthest upstream is identified and the tabulation continues downstream to the main channel.

Table V-2 lists present design capacity, present average daily flow, BOD₅ and ammonia nitrogen effluent concentrations, type of treatment processes, method of sludge disposal, and comments, for each discharger. Treatment processes are identified only in general terms. Specific process descriptions can be obtained from the DEQ. The comments section may include information obtained by the DEQ personnel concerning existing operation, age of existing facilities, specific DEQ operation permit requirements, DEQ orders for additional treatment, or a delineation of proposed facilities.

A total of 133 municipal treatment facilities and three sanitary districts have been identified in the basin. In addition, 86 small communities presently without municipal collection or treatment systems are included in Tables V-1 and V-2.

MUNICIPAL

Municipal sewage flow and operational data for municipalities were extracted from the DEQ records. Average flow values contained in reports submitted by treatment plant operators have been used. Flow values shown in Table V-2 are the averages obtained for the last full year of record; in most instances 1973.

Most effluent quality data were collected from the DEQ's <u>Effluent Quality Analysis Program (EQAP)</u>. These data were supplemented by wastewater treatment facility operation reports. Data reported through EQAP are the results of tests conducted by the Iowa State Hygienic Laboratory on wastewater samples supplied by the individual dischargers. In most instances, no more than four BOD₅ values and two ammonia nitrogen values are reported each year. This is due to the fact that a significant portion of the facilities are lagoons that only discharge a few times each year. No samples are required when the facilities are not discharging.

The results of BOD_5 analyses performed by the Iowa State Hygienic Laboratory (reported in EQAP) are reported as being between 25 mg/l and 150 mg/l. For some communities a percentage of the values reported are 25 or "25-" mg/l. Values designated "25-" are less than 25 mg/l, but were assumed to be equal to 25 mg/l for this study. Thus, the actual average effluent BOD_5 concentration may in some cases be lower than

that obtained from EQAP information. The adequacy of the program will be reviewed since some dischargers are, or soon will be, required to provide BOD₅ removals to less than 25 mg/l. In some instances, due to a sparsity and scattering of data, engineering judgement was applied to arrive at representative values rather than taking strict averages of the available data.

SEMIPUBLIC

Information identifying semipublic treatment facilities in the study area was obtained from the DEQ files. Description of wastewater discharges from semipublic facilities was difficult due to the minimal surveillance provided. Quantitative and qualitative data were obtained from EQAP reports or design information from the DEQ files. Values in Table V-2 are based on both limited operational data and design characteristics, and may not accurately reflect present operating conditions.

INDUSTRIAL

Information on industries discharging wastewater to streams within the study area was obtained from the U.S. Army Corps of Engineers discharge permit applications (Discharge Permit Program, River and Harbors Act of 1899), the DEQ industrial files, and the National Pollutant Discharge Elimination System (NPDES) permit applications. Although these sources provide the best available discharge information, caution

must be exercised in its interpretation since it represents data that has been submitted by the individual industries with very little verification.

SUMMARY

The distribution of hydraulic and organic loads upon the streams in the Des Moines River Basin from municipal, industrial, and semipublic point sources, is summarized in Table V-3. The relatively small quantity of BOD₅ and ammonia-N discharged by industries and semipublic facilities compared to their flow is due to the following:

- Several quarries discharge large volumes of water, but add very little BOD₅ to the stream.
- Several industrial discharges consist only of cooling water; which adds negligible amounts of BOD₅ to the stream.
- Insufficient monitoring data exist for many of the semipublic and industrial facilities to detect actual quantities.

Table V-4 summarizes the various types of municipal wastewater treatment facilities, the number of facilities, and the population served, for each subbasin. Table V-5 is a summary of treatment types for the entire Des Moines River Basin.

None of the communities in the study area presently operate advanced waste treatment facilities, however, plans have

been approved for three advanced waste treatment facilities. The City of Emmetsburg has under construction a rotating biological disk facility designed to reduce BOD₅ to 10 mg/1 and ammonia-N to 2 mg/1. The City of Estherville has approved plans for polishing ponds and dual-media filters following secondary activated sludge treatment. The City of Fort Dodge has under construction a two stage trickling filter plant designed to reduce BOD₅ to 21 mg/1 and ammonia-N to 3 mg/1. In addition, this plant will subsequently be modified to meet a more stringent waste load allocation.

	Reference		River		Page Refe	rence	
Discharger <u>1</u> /	Number	County	Mile2/	Discharge To <u>3</u> /	Inventory	Needs	
MUNICIPAL					Chapter V	Chapter	VII
Ackworth	M-181	Warren		NEMTF	57	33	
Adair	M-164	Adair	111/180	S. Fork Middle River	53	27	
Adel	M-124	Dallas	/199	N. Raccoon River	45	13	
Albert City	M- 82	Buena Vista	184/199	Lateral 2	38	24	
Albia SW	M-205	Monroe	/114	Middle Creek	63	11	
Albia N	M-206	Monroe	/114	Miller Creek	63	11	
Algona	M- 30	Kossuth	42/329	E. Fork D.M. River	27	29	
Alleman	M-227	Polk	/191	Four Mile Creek	51	18	
Altoona	M-155	Polk	/191	Four Mile Creek	51	17	
Ankeny E	M-153	Polk	/191	Four Mile Creek	51	17	
Ankeny W	M-154-1	Polk	/205	Saylor Creek	38	11	
Ankeny Ind.	M-154-2	Polk	/210	Rock Creek D.M. River	36	10	
Arcadia	M-126	Carroll		NEMTF	45	31	
Armstrong	M- 22	Emmet	90/329	E. Fork D.M. River	25	29	
Auburn	M- 94	Sac		NEMTF	41	24	
Avrshire	M- 10	Palo Alto		NEMTF	24	22	
Badger	M- 38	Webster	/326	Badger Cr. to D.M. River	28	22	
Bagley	M-140	Guthrie	/199	Mosquito Creek	47	11	
Bancroft	M- 24	Kossuth	64/329	Mud Cr. to E. Fork D.M. River	26	11	
Barnum	M-43	Webster		NEMTF	29	23	
Bavard	M-137	Guthrie		NEMTF	47	28	
Beacon	M-202	Mahaska	/115	Muchakinock Creek	63	19	
Beaver	M- 72	Boone		NEMTF	37		
Berkley	M- 74	Boone		NEMTF	37		
Bevington	M-168	Madison		NEMTF	54		
Blakesburg	M-213	Wapello		NEMTF	65	26	
Bode	M- 33	Humboldt	/348	Trulner Creek	28	21	
Bonaparte	M-217	Van Buren		NEMTF	66	25	
Bondurant	M-175	Polk	/177	Mud Cr. To D.M. River	55	13	
Boone	M- 68	Boone	/251	Honey Cr. to D.M. River	35	12	
Bouton	M- 76	Dallas		NEMTF	37	31	
Boxholm	M- 66	Boone		NEMTF	35	18	
Bradgate	M- 18	Humboldt		NEMTF	25		
Breda	M-130	Carroll	122/199	Middle Raccoon	46	16	
Britt	M- 52	Hancock	/282	Middle Branch Boone River	32	14	
Buffalo Center	м – 3	Winnebago		DD7 to Blue Earth River	22	33	
Burt	M- 25	Kossuth	61/329	E. Fork D.M. River	26	19	
Bussev	M-200	Marion	/127	S. Coal Cr. to N. Coal Cr.	61	20	
Callendar	M-112	Webster	79/199	W. Butterick Creek	43	26	
Carlisle	M-163	Warren	15/186	N. River	29	32	
Carrol1	M-131	Carroll	112/199	Middle Raccoon	46	19	
Casey	M-165	Guthrie	111/180	Middle River	54	28	
Chillicothe	M-209	Wapello		NEMTF	63	20	
Churdan	M-111	Greene	80/199	Hardin Creek	43	26	
Clare	M- 42	Webster		NEMTF	29	23	
Clarion	M- 60	Wright	89/199	DD2 to Eagle Creek	33	11	
Clive	M-147	Polk		Des Moines STP	50		
Coon Rapids	M-134	Carrol1	94/199	Middle Raccoon River	46	27	
Corwith	M- 51	Hancock	89/282	Boone River	32	16	
Cumming	M-162	Warren	48/186	NEMTE	52	32	

TABLE V-1	
POINT SOURCE	
VASTEWATER DISCHARGES	

1	Reference	and the second second	River		Page R	eference
Discharger1/	Number	County	Mile2/	Discharge To <u>3</u> /	Invento	ry Needs
1 - 1 Z	Server Server				Chapter V	Chapter VIII
Curlew	M- 14	Hancock		NEMTF	25	
Cylinder	M- 11	Palo Alto		NEMTF	25	22
Dakota City	M- 36	Humboldt	5/329	E. Fork D.M. River	29	26
Dallas	M-194	Marion	/140	Tracy Cr. to English Cr.	61	20
Dallas Center	M-123	Dallas	6/199	Walnut Creek	50	22
Dana	M-116	Greene		NEMTF	45	
Dawson	M-120	Dallas		NEMTF	45	27
Davton	M- 64	Webster	/276	Skillet Cr. to D.M. River	45	15
Dedham	M-128	Carrol1	69/199	Brushy Creek	55	31
Des Moines	M-150	Polk	196	Des Moines River	52	10
Des Maines H H	M-151	Poll	/186	North Piwer	53	15
Des Moines n n	M-131	POIK	/100	North Kiver	55	15
Des Moines-C	M-222	POIK	/194	feader Cr. to D.M. River	52	17
Des Moines-B	M-223	POIK	/186	North River	54	31
DeSoto	M-144	Dallas	30/199	Bugler Creek	49	24
Dexter	M-158	Dallas	/186	N. Branch to N. River	53	29
Dolliver	M- 21	Boone		NEMTF	26	
Donnellson	M-219	Lee	/ 6	Sugar Creek	68	13
Duncombe	M- 50	Webster	69/199	Brushy Creek	32	23
Eagle Grove	M- 59	Wright	47/282	DD 94 to Boone River	34	10
Earlham	M-143	Madison	38/199	Bear Creek/S. Raccoon	48	19
East Peru	M-170	Madison		NEMTF	56	
Eddyville	M-207	Wapello	113	Des Moines River	64	12
Fldon	M-211	Wapello	80	Des Moines River	65	25
Emmotoburg	M_ Q	Palo Alto	48/329	W Fork D M River	25	11
Estherville	M- 5	Emmet	79/329	W. Fork D.M. River	24	10
	N 010	Ver Deres		NIEMTE		25
Farmington	M-210	Calhaun	90/100	Nemir Handin Crook	6/	25
Farnhamville	M-110	Calhoun	80/199	Hardin Creek	44	15
Fenton	M- 28	Kossuth		NEMIF	27	30
Floris	M-214	Davis	/8	NEMTE	66	10
Fonda	M- 91	Pocahontas	105/199	Cedar Creek	41	13
Fort Dodge	M- 45	Webster	314	Des Moines River	31	12
Fraser	M- 65	Boone		NEMTF	35	
Gilmore City	M- 41	Humboldt	/313	N. Branch Lizard Creek	30	21
Glidden	M-135	Carroll	63/199	Willow Creek	48	15
Goldfield	M- 57	Wright	61/282	Boone River	34	12
Gowrie	M-113	Webster	79/199	W. Butterick Creek	45	15
Graettinger	M- 8	Palo Alto	64/329	W. Fork D.M. River	24	15
Grand Junction	M-117	Greene	/206	W Beaver Creek	36	31
Granger	M- 77	Dallas	/206	Beaver Creek	38	29
Greenfield	5-161	Warren	18/186	North River	54	32
I Laza	D 101	wallen	10/100	North River		
Grimes	M- 78	Polk	/206	Beaver Creek	38	29
Gruver	M- 6	Emmet		NEMIF	24	22
Guthrie Center	M-125	Guthrie	13/199	5. Kaccoon kiver	46	30
Halbur	M-127	Carroll		NEMTF	46	31
Hamilton	M-199	Marion		NEMTF	62	20
Harcourt	M-114	Webster		NEMTF	45	27
Hardy	M- 35	Humboldt		NEMTF	29	
Hartford	M-228	Warren		NEMTF	56	28
Harvey	M-195	Marion		NEMTF	61	20
Havelock	M- 39	Pocahontas		NEMTF	30	23
					50	

Discharger1/	Reference	County	River Mile2/	Discharge To ³ /	Page Refe	rence	
Dibenarger	Tramb C1	ocurrey		production 102	Chapter V	Chapter	VIIT
Humboldt	M- 20	Humboldt	4/329	W. Fork D.M. River	26	21	
Indianola N	M-174	Warren	16/180	Middle River	56	19	
Indianola S	M-179	Warren	/176	South River	57	32	
IA Met. Sewer	S-160	Warren	12/186	North River	54		
Jamaica	M-118	Guthrie		NEMTF	45	27	
Jefferson	M-109	Greene	89/199	DD 132	44	14	
Johnston	M-224	Polk		NEMTE	38	29	
Jolley	M- 95	Calhoun		NEMTF	42		
Kanawha	M- 56	Hancock	/282	W. Otter Creek	33	14	
Keosauqua	M-216	Van Buren	51	Des Moines River	67	25	
Kirkville	M-208	Wapello		NEMTF	64	20	
Knierim	M-104	Calhoun		NEMTF	43		
Knoxville	M-191	Marion	/149	Competine Cr. To White	(0)		
Lacona	M-100	Harron	/1/9	Breast Cr. Mill Branch to White	60	17	
Lacona	11-190	wallen	/ 14)	Breast Cr.	60	33	
Lake City N	M-100	Calhoun	130/199	Lake Creek	43	20	
Lake City SW	M-101	Calhoun	130/199	Lime Creek	43	16	
Lakeside	M- 86	Buena Vista		NEMTF	40	25	
Lake View	M- 93	Sac	149/199	Indian Creek	42	14	
Lakota	M- 2	Kossuth		NEMTF	23	33	
Lanesboro	M-102	Carroll		NEMTF	43	24	
Laurens	M- 89	Pocahontas	105/199	Cedar Creek	41	12	
Ledyard	M- 1	Kossuth		NEMTF	23	33	
Lehigh	M- 48	Webster	295	Crooked Cr. to D.M. River	32	23	
Leighton	M-201	Mahaska		NEMTF	63		
Libertyville	M-215	Jefferson		NEMTF	67	26	
Lidderdale	M-132	Carroll	108/199	Storm Creek	47	28	
Linden	M-139	Dallas		NEMTF	48	28	
Livermore	M- 31	Humboldt	20/329	E. Fork D.M. River	28	30	
Lohrville	M-107	Calhoun	105/199	Cedar Creek	43	26	
Lone Rock	M- 29	Kossuth		NEMTF	28		
Lovilia	M-198	Monroe	/127	S. Coal Cr. to N. Coal Cr.	62	20	
Lucas	M-188	Lucas		NEMTF	60	33	
Luther	M- 69	Boone		NEMTF	36	18	
Luverne	M- 54	Kossuth		NEMTF	33	21	
Lytton	M- 96	Sac	135/199	Camp Creek	42	19	
Madrid	M- 70	Boone	/214	Little Creek	37	18	
Mallard	M- 15	Palo Alto		NEMTF	25	21	
Manson	M-103	Calhoun	105/199	Cedar Creek	43	24	
Marathon	M- 80	Buena Vista		NEMTF	39	25	
Martensdale	M-169	Warren	24/180	Middle River	55	27	
Marysville	M-197	Marion		NEMTF	62		
Melcher	M-193	Marion	/140	Tracy Cr. to English Cr.	61	16	
Melrose	M-196	Monroe		NEMTF	62		
Menlo	M-157	Guthrie		NEMTF	53	32	
Milo	M-180	Warren	/176	Otter Cr. to South River	58	32	
Minburn	M-122	Dallas	52/199	N. Raccoon River	46	26	
Mitchellville	M-184	Polk	/174	Camp Creek	58	17	
Monroe	M-225	Jasper	/154	Brush Creek to D.M. River	59	17	
Moorland	M- 44	Webster		NEMTF	31	23	
Moravia	M-212	Appanoose	/ 78	S. Soap to Soap Creek	66	25	

	Reference	····	River		Page Refe	rence	
Discharger <u>1</u> /	Number	County	Mile2/	Discharge To <u>3</u> /	Inventory	Needs	- 5.75
· · · · · · · · · · · · · · · · · · ·					Chapter V	Chapter	VIII
Nemaha	M- 88	Sac		NEMTF	41		
Newell	M- 92	Buena Vista	154/199	N. Raccoon River	42	30	
New Virginia	M-178	Warren	/176	Squaw Cr. to South River	57	32	
Norwalk	M-159	Warren	12/186	Iowa Metro Sewer	53	32	
Ogden	M- 73	Boone	/206	Beaver Creek	38	14	
0sceola	M-186-1	Clarke	/149	White Breast Creek	59	22	
Osceola	M-186-2	Clarke	/149	White Breast Creek	59	29	
Oskaloosa	M-203	Mahaska	/115	Little Muchakinock Creek	63	19	
Oskaloosa	M-204	Mahaska	/115	Little Muchakinock Creek	63	19	
Otho	M- 47	Webster	305	Dry Run to D.M. River	32	23	
Ottosen	M- 34	Humboldt		NEMTF	29		
Ottumwa	M-210	Wapello	97	Des Moines River	65	25	
Palmer	M-225	Pocahontas		NEMTF	30	23	
Panora	M-138	Guthrie	62/199	Middle Raccoon River	48	12	
Paton	M-115	Greene		NEMTF	45	27	
Patterson	M-167	Madison		NEMTF	55	28	
Pella	M-192	Marion	/140	Sents Creek	61	14	
Perry	M-121	Dallas	61/199	North Raccoon River	45	15	
Pilot Mound	M- 67	Boone		NEMTF	36	18	
Pioneer	M- 37	Humboldt		NEMTF	29		
Pleasant Hill	M-156	Polk	191	Des Moines River	53	17	
Plesantville	M-183	Marion	/157	Coal Cr. to South River	58	32	
Plover	M- 16	Pocahontas		NEMTF	25		
Pocahontas	M- 40	Pocahontas	34/313	Lizard Creek	30	16	
Polk City	M- 71	Polk	/214	Big Creek	37	13	
Pomeroy	M- 98	Calhoun	130/199	Lake Creek	43	23	
Prairie City	M-185	Jasper	/1.57	Calhoun Creek	59	11	
Rake	M- 4	Winnebago		NEMTF	23	33	
Ralston	M-136	Carroll		NEMTF	48		
Redfield	M-142	Dallas	46/199	Middle Raccoon River	49	30	
Rembrandt	M- 81	Buena Vista	196/199	N. Raccoon River	39	25	
Renwick	M- 55	Humboldt	67/282	DD 3,47 to Boone River	33	21	
Ringsted	M- 27	Emmet	49/329	Black Cat Creek	27	30	
Rinard	M-106	Calhoun	105/199	Cedar Creek	43	24	
Rippey	M-119	Greene	66/199	Snake Creek	45	26	
Rockwell City	M- 99	Calhoun	130/199	Lake Creek	43	13	
Rodman	M- 12	Palo Alto		NEMTF	25		
Rolfe	M- 17	Pocahontas	18/329	Pilot Cr. to W.F. D.M. River	25	15	
Runnells	M-176	Polk		NEMTF	57	18	
Rutland	M- 19	Humboldt		NEMTF	26	22	
Sac City	M- 87	Sac	156/199	North Raccoon River	41	12	
St. Charles	M-172	Madïson		NEMTF	56	28	
St. Marys	M-177	Warren		NEMTF	57		
Sandyville	M-182	Warren		NEMTF	58		
Savage S.D.	M- 46	Webster	310	Des Moines River	32	23	
Scranton	M-108	Greene	93/199	DD 171	44	16	
Sheldahl	M-221	Polk	/214	Big Creek	36	18	
Slater	M-152	Story	/191	Four Mile Creek	52	14	
Somers	M-105	Calhoun		NEMTF	43	24	
Spring Hill	M-173	Warren		NEMTF	56	28	
Storm Lake Storm Lake	M- 84	Buena Vista	174/199	Boyer Creek	40	11	
Hy-grade	M- 85	Buena Vista	174/199	Boyer Creek	40		
Stratford	M- 63	Webster	283	Dry Run to D.M. River	35	18	
Stuart	M-129	Adair	51/199	Long Branch Creek	46	30	
Swea City	M- 23	Kossuth	64/329	Mud Creek	26	30	

1/	Reference	1	River			
Discharger1/	Number	County	Mile ² /	Discharge To3/	Page Rei	erence
		H		Discharge 10-	Inventory	Needs
Thor	M-58	Humboldt		NEMTE	Chapter V	Chapter VIII
Titonka	M- 26	Kossuth	58/329	Buffalo Creek	34	21
Truro	M-171	Madison	/180	Hay Br Clanton Cr. to	27	19
Truesdale	M- 83	Buena Vista		NEMTE	56	27
Urbandale S.D	. M- 79	Polk	/206	Beaver Crock	40	All the second se
			, 200	beaver creek	38	29
Van Meter	M-145	Dallas	29/199	Raccoon River	10	
Varina	M- 90	Pocahontas		NEMTE	49	22
Vincent	M- 49	Webster	1286	Brushy Crook	41	
Wallingford	M- 7	Emmet	,200	NEMTE	32	24
Waukee	M-146	Dallas	18/199	Sugar Creek	24	22
		241140	10/199	Sugar Creek	50	22
Webster City	M- 62	Hamilton	24/282	Boopo Piwor		
Wesley	M- 53	Kossuth	24/202	NEMTE	35	12
West Bend	M- 13	Kossuth	51/320	Rediric Control In The	33	21
		Robbach	51/529	Prairie Cr. to W. Fork		-
West Des				D.M. River	25	16
Moines	M-148	Polk				
Whittemore	M- 32	Koccuth	20/220	10 Des Moines STP	51	
	11 52	ROSSULII	20/329	Lotts Creek	28 .	11
Willey	M-133	Corroll				
Williamson	M_180	Luca		NEMTF	47	
Windsor	11-109	Lucas		NEMTF	60	33
Heighte	M_1/0	De11-			× 14	
Winterest	M-166	POIK		To Des Moines STP	51	
Woodburn	M-100	Madison	55/180	Middle River	55	14
woodburn	M-10/	Clarke		NEMTF	60	33
Woodward	M 75	D 11				
Woolstool	M- /5	Dallas	/206	Beaver Creek	38	31
Valo	M- 61	Wright		NEMTF	34	21
Votton	M-141	Guthrie		NEMTF	48	28
recter	M- 97	Calhoun		NEMTF	42	
Semipublic						
Compublic						
Adel WTP	S- 51	Do1100	/100			
Algona WTP	S = 10	Vacanth	/199	North Raccoon River	45	
Argyle School	S-10/	Kossutn	42/329	E. Fork D.M. River	27	
Assembly of	5-104	Lee	10/ 6	Main Creek	67	
Cod	0 05					
Baparoft UTD	5- 25	Boone	233	Des Moines River	35	
Dancioit wir	5- 6	Kossuth	64/329	Mud Cr. to E. Fork	26	
				D.M. River	20	
Boone County						
Boone county	C 00					
Boone LITP	5- 22	Boone	/265	Poor Farm Cr. to D.M. River	34	
Boone wir	5- 24	Boone	/251	Honey Cr. to D.M. River	35	
BIILL WIP	5- 18	Hancock	/282	East Br. Boone River	32	
Garliele Manor	S- 11	Kossuth	41/329	East Fork D.M. River	27	
Carlisle WTP	S- 77	Warren	1/186	North River	53	
Comp Dodoo	0 22	D 11				
Camp Louge	5- 33	Polk	/206	Beaver Creek	26	
Camp Laurie	5- 21	Boone	242	Des Moines River	36	
Countral HS	5-105	Lee	10/ 6	Main Creek	35	
MUD A1r	0.00	-			6/	
rinr Countries V.	5- 26	Boone	235	Des Moines River	35	
MUDC	0 70					
rinr 5	5- 72	Polk	/191	Four Mile Creek	52	
					~	

Dischargor!/	Reference	County	River Milo2/	Discharge To3/	Page Refe	rence
Discharger	Number	county	MILE	Discharge 10_	Chapter V	VIII
Country Village	S- 37	Buena Vista	174/199	Boyer Creek	38	
Enterp.	S- 45	Buena Vista	93/199	DD 171	42	
WTP	S-50	Dallas	/199	N. Raccoon River	48	
Home	S-111	Dallas	/199	N. Raccoon River	44	
Country Club	S = 64	Dallas	6/199	Walnut Creek	48	
D.M. Water-						
works Diamondhead	S- 68	Dallas	/199	Raccoon River	49	
Lake Eagle Grove	S- 52	Dallas	51/199	Long Branch to S. Raccoon R.	45	
WTP	S- 19	Wright	/282	DD 94 to Boone River	32	
Eldon WTP	S- 99	Wapello	/ 80	Chippewa Creek	63	
Park	S-108	Marion	/155	Des Moines River	57	
Emmetsburg WTH	2 S- 2	Palo Alto	48/329	W. Fork D.M. River	23	
& Conf. Camp	S- 23	Boone	/265	Poor Farm Cr. to D.M. River	33	
WTP Farmhamville	S- 1	Emmet	79/329	W. Fork Des Moines River	23	
WTP First Contine	S- 47	Calhoun	80/199	Hardin Cr. to N. Raccoon River	42	
Co. Motel	S- 34	Polk	/206	Beaver Creek	36	
Fonda WTP For Dodge Mun	S- 40	Pocahontas	105/199	Cedar Cr. to N. Raccoon River	39	
Airport	S- 14	Webster	315	Des Moines River	29	
Fort Dodge WTI Fox Creek	P S- 15	Webster	316	Des Moines River	29	
Water Co. Giles High Ris	S- 61 se	Polk	18/199	Sugar Creek	48	
Motel	S- 62	Dallas	8/199	Jordan Creek	48	
Glidden WTP	S- 55	Carroll	108/199	Storm Cr. to Middle Raccoon Riv	v. 46	
Gowrie WTP	S- 48	Webster	78/199	Butterick Cr. to N. Raccoon Riv	v. 42	
Greenwood WTP	S- 70	Polk	/191	Four Mile Creek	50	
Hackerts MHP	S- 95	Mahaska	/115	Little Muchakinock Cr.	61	
Harmony Comm. H.S.	S-102	Van Buren	30	Des Moines River	65	
	a 00		(100	W:111 D:		
Hartford MHP	5- 80	Warren	/180	Middle River	/9	
Humboldt WTP	s- 5	Humboldt	4/329	W. Fork D.M. River	25	
I-805.5. #0011	R S- 78-A	Adair	/180	Middle River	54	
I-80N.S. #002	R S- 78-B	Adair	/180	Middle River	54	
& N.S. #012	R S- 84	Polk	/174	Camp Creek	57	
4 E.S. #018	R S-107	Polk	/191	Four Mile Creek	51	
1-805.S. #021	R S_ 50	Da1120	/100	Raccoon River	48	
I-35W.S. #031	R 3- 39	Dallas	/199	NACCOUN NIVEL	40	
& E.S. #032	R S- 86	Clarke	/149	White Breast Creek	58	
IA Promotional	1 S- 82	Clarke	/176	Squaw Cr. to S. River	56	

TABLE V-1	
POINT SOURCE	
WASTEWATER DISCHARGES	

	Reference		River ,		Page Refe	rence
Discharger1/	Number	County	Mile ² /	Discharge To <u>3</u> /	Inventory	Needs
		and the second		C	hapter V	VIII
Tostor Park	c 28	Poll	220	Des Moines River	36	
Jester raik	S- 20 C /6	Croone	80/100	DD 122 to N Passoon Piwer	43	
Jellerson WIP	5- 40	Greene	09/199	DD 132 LO N. Raccoon River	66	
Keosauqua WIP	5-101	van Buren	/252	Unnamed Iributary to D.M. Rive	r oo	
Knoxville Vete	rans		1		60	
Admin. Hos.	S- 90	Marion	/149	White Breast Creek	60	
Knoxville WTP	S- 88	Marion	/149	Competine Cr. to White Breast	Cr. 59	
KOA Campground	S- 67	Polk	/199	Raccoon River	50	
Kossuth Co.						
Park	S- 12	Kossuth	42/329	E. Fork Des Moines River	27	
Lake Panorama	S- 56	Guthrie	60/199	Middle Raccoon River	47	
Laurone LTP	S- 30	Pocabontac	105/109	Cedar Creek	40	
Laurens wir	3- 53	Commell	109/199	Storm Creek	46	
Lidderdale wir	5- 72	Carroll	100/199	Storm Creek		
			1		61	
Lovilia WTP	S- 93	Monroe	/12/	S. Coal Cr. to N. Coal Cr.	41	
Lytton WTP	S- 42	Sac	135/199	Camp Cr. to N. Raccoon Riv.	41	
MBZ MHP	S- 83	Clarke	/176	Squaw Cr. to South River	50	
Madison Co.Hon	nes- 75	Madison	/186	Cedar Cr. to North River	52	
Marion County						
Home	S- 91	Marion	/149	White Breast Creek	60	
nome			7 = 12			
Mol Ray MHP	5- 29	Polk	213	Des Moines River	38	
Menle LUTD	S- 29 S- 70	Cuthric	/190	Middle Piver	54	
Mento wir	5- 19	Gullite	/100	MIDDLE KIVEL		
Monroe County	~ ~ ~ /		12.02		61	
Park	S- 94	Monroe	/121	Bluff Creek	41	
Newell WTP	S- 41	Buena Vista	131/199	Prairie Cr. to N. Raccoon Riv.	41	
Natl. Crossroa	lds				10	
Campground	S- 65	Dallas	6/199	Walnut Creek	49	
Oak Lake Devel	S-106	Kossuth	52/329	E. Des Moines River	26	
Oak Park MHP	S- 16	Webster	311	Des Moines River	30	
Oakwood Hts	0 10		011			
MUD	S- 60	Polk	/101	Four Mile Creek	51	
	S- 09 C 07	Monion	/191	Poor Mainer Diver	64	
Ottumwa wiP	5- 97	Marion	91	Des Moines River	47	
Panora WIP	S- 57	Guthrie	60/199	Middle Raccoon River		
		38			60	
Pella WTP	S- 92	Marion	/141	Sents Creek	00	
Perry WTP	S- 49	Dallas	61/199	N. Raccoon River	44	
Prairie					1.0.2	
Village	S- 58	Dallas	28/199	Raccoon River	48	
R & R						
Camparound	S- 87	Clarko	/1/9	White Breast Cr	59	
Dallit Due MII		Uanalla	00	Des Maines Diver	64	
RADDIC KUN MAR	5- 90	waperio	90	Des Moines River		
Red Rock Lake	200 - Marina	U 00122 224			50	
View Sub.	S- 89	Marion	/149	Competine Cr. to White	59	
				Breast Creek	20	
Regency Manor	S- 35	Polk	/205	Wafley Creek	30	
Ringsted WTP	S- 8	Emmet	49/329	Black Cat Cr., E. Fork D.M. Ri	v. 26	
Roadrunner						
Campgrounds	S- 66	Dallas	6/199	Walnut Creek	50	
Rockwell City	5 55	Juliu	., _, .			
Homon's						
Defermeters	C / 2	Calhaun	120/100	Lake Great	42	
Reformatory	5- 45	Calhoun	130/199	Lake Creek		
					24	
Rolfe WTP	S- 4	Pocahontas	21/329	Pilot Cr. to W. Fork D.M. Rive	r 40	
Sac City WTP	S- 38	Sac	156/199	N. Raccoon River	40	
Saylorville La	ake					
Rec. Area	S- 30	Polk	211	Des Moines River	36	
Sentral Comm.						
School	5- 73	Polk	/191	Black Cat Creek	26	
S F Dolle Com	0 / 5	LOIN	1 2 2 2	sauch due of oth		
School	C_ 72	Poll	/101	Four Mile Cr. to D.M. Power	52	
SCHOOL	5- 13	POIK	/191	rour mile of. to D.M. Kover		

	Reference		River 2/		Page Refer	ence
Discharger1/	Number	County	Mile=/	Discharge To-	Inventory Chapter V	Needs
S.E.Polk H.S.	S- 81	Polk	/177	Mud Creek	55	VIII
School	s-109	Warren	/176	Otter Cr. to South River	57	
Company	S- 60	Polk	/199	Raccoon River	49	
St Park	S- 54	Cuthrie	75/100	Middle Raccoon River	47	
Storm Lake WTP	S- 36	Buena Vista	174/199	Boyer Creek	39	
Sundown Lake Development	S-100	Appanoose	/ 78	S. Soap Creek	65	
Sugar Valley Campground	S-103	Lee	/ 6	Sugar Creek	67	
Sunny Brook MHP	S- 71	Polk	/191	Four Mile Creek	51	
Thomas Mitchel	1	Delle	1176	Comp Grack	57	
Titonka WTP	S- 7	Kossuth	58/329	Buffalo Cr. to E. Fork D.M. 1	Riv. 26	
Town & Country						
MHP Twin Cedar	S- 32	Dallas	/206	Beaver Creek	37	
Comm. School Twin Lakes	S-110	Marion	/127	Coal Creek to D.M. River	61	
Travel Park	S- 44	Calhoun	130/199	Lake Creek	42	
MHP	S- 17	Webster	/286	DD 54 to D.M. River	32	
Water Dev. Co.	S- 76	Warren	/186	North River	53	
Webster City						
WTP	S- 20	Hamilton	/282	Boone River	34	
West Bend WTP	S- 3	Palo Alto	27/329	Prairie Cr. to W. Fork D.M. 1	Riv. 24	
Winterset WTP	S- 74	Madison	/186	Cedar Cr. to N. River	52	
Whittemore WTH Woodland Hills	° S- 13	Kossuth	20/329	Lotts Creek	27	
MHP	S- 96	Wapello	/ 98	Bear Creek	64	
Woodward State Institution	S- 27	Boone	/236	Preston Br. to D.M. River	35	
YMCA Boys	S- 31	Polk	210	Dec Meines Piver	36	
nome	3- 31	IOIK	210	Des normes kivel	50	
Industrial						
Anderson						
Quarry American Can	I- 7	Humboldt	11/329	W. Fork D.M. River	25	
Co. American Can	I- 22	Webster	314	Des Moines River	30	
Co. American Oil	I- 69	Polk	/205	Des Moines River	38	
Co. Armstrong	I- 66	Polk	6/199	Walnut Creek	49	
Rubber Co.	I- 70	Polk	1/197	Dean's Lake to D.M. River	50	
Beaver Valley						
Canning Co.	I- 43	Polk	/206	Little Beaver Creek	37	37
Bernhold Broth Frozen Foods Bituminous	er 3 I- 58	Kossuth	112/199	Middle Raccoon River	46	
Material & Supply Co.	I- 12	Carrol1	112/199	Middle Raccoon River	27	
Boone Valley	I- 35	Wright	47/282	DD 94 to Boone River	33	
Buena Vista	T EO	Buone Viete	121/100	Ducinia (n. t. N. Decom Di		
chuy. Gravel	1- 33	buena vista	121/123	rialite Cr. LO N. Raccoon Riv	v. 41	

	Reference	······································	River		Page Refe	rence
Discharger <u>1</u> /	Number	County	Mile2/	Discharge To <u>3</u> /	Inventory	Needs
D 1 + + C					Chapter V	VIII
Club	er I-110	Davis	/ 56	Chequest Creek	66	
Carlisle Sand & Gravel	I- 77	Warren	/186	North River	53	
ing Works	I- 59	Carroll	112/199	Middle Raccoon River	46	
Son	I- 88	Marion	/149	White Breast Creek	59	
Mfg.	I-101	Monroe	/114	Miller Creek	63	
Champlain Pet	•					
Co.	I- 85	Clarke	/149	White Breast Creek	58	
Truck Stop Chicago, Milw	I- 67 aukee,	Dallas	6/199	Walnut Creek	50	
St. Paul & Railroad Chicago, R.I.	Pacific I-104	Wapello	/ 98	Bear Creek	64	
& Pacific Railroad Clow, Coop,	I- 71	Polk	1/197	Dean's Lake	50	
Oskaloosa Plant No. 1	I-100	Mahaska	/115	Little Muchakinock	63	
Concrete Material Division Concrete	I- 82	Clarke	/176	Squaw Cr. to South River	56	
Material Division	I- 97	Mahaska	116	Des Moines River	62	
Coates Utilit Company Cook Inc.	I- 26 I- 11	Webster Kossuth	310 42/329	Des Moines River E. Fork D.M. River	31 27	
Corn Belt Pow Coop	ver I- 8	Humboldt	1/329	W. Fork D.M. River	28	
Culligan Wate Conditionin	er 1g I- 10	Kossuth	42/329	E. Fork D.M. River	27	
Culligan Wate Conditionin	er ng I- 23	Webster	312	Des Moines River	30	
Mfg.	I- 33	Webster	/295	Crooked Cr. to D.M. River	31	
Douds Stone, Douds Mine	Inc. I-109	Van Buren	/ 62	Des Moines River	65	
Douds Stone, Lewis Quarr	Inc. y I-111	Davis	/ 56	Chequest Creek	66	
Douds Stone,	Inc.					
Quarry Douds Stone,	I-113 Inc.	Van Buren	/ 65	Des Moines River	65	
Nedraw Quarry Emmetsburg	1-114	Van Buren	/ 62	Des Moines River	65	
Rendering Wks.	I- 5	Palo Alto	45/329	W. Fork D.M. River	24	
Estherville M Light Plant	lun. : I- 56	Emmet	81/329	W. Fork D.M. River	23	
Firestone Tir & Rubber	re I- 46	Polk	/205	Walfley Creek	38	

TABLE V-1 POINT SOURCE WASTEWATER DISCHARGES

••••••••••••••••••••••••••••••••••••••	Reference	· · · · · · · · · · · · · · · · · · ·	River	· · · · · · · · · · · · · · · · · · ·	Page Refe	rence
Discharger1/	Number	County	Mile2/	Discharge To <u>3</u> /	Inventory	Needs
<u></u>					Chapter V	VIII
Ford Motor Co.	. I- 47	Polk	/205	Closed	38	
Farmegg Prod.	I- 14	Webster	/322	Bass Cr. to D.M. River	28	
Farmland Ind.	I- 31	Webster	305	Des Moines River	31	. 37
Farner-Bocken	I- 60	Carrol1	112/199	Middle Raccoon River	46	
Fort Dodge						
Creamery	I- 21	Webster	314	Des Moines River	30	
Franklin Mfg.	I- 37	Hamilton	24/282	Boone River	34	
Frye Copy Sys.	. I- 72	Polk	/197	Dean's Lake to D.M. River	50	
Gendler Stone	I- 64	Dallas	35/199	Bear Creek	48	
Hallett Const.	. I- 2	Emmet	79/329	W. Fork D.M. River	23	
Hallett Const.	. I- 16	Pocahontas	/313	N. Branch Lizard Cr.	29	
Hormel & Co.	I- 20	Webster	314	Des Moines River	30	
George A.			•			
Hormel	I-105	Wapello	96	Des Moines River	64	27
IA Beef Proc.	I- 25	Webster	311	Des Moines River	30	57
Iowa Fund Inc. IA Industrial	. I- 44	Polk	/205	Walfley Creek	38	
Hydraulics Inc.	I- 18	Pocahontas	35/313	Lizard Creek	29	
IA Public						
Service IA Power &	I- 36	Wright	47/282	DD 94 to Boone River	33	
Light IA Public	I- 74	Polk	194	Des Moines River	51	
Service	I- 61	Carrol1	112/199	Middle Raccoon River	46	
Service	I- 48	Buena Vista	174/199	Boyer Creek	39	
A Elec. Light & Power	I- 57	Dallas	60/199	N. Raccoon River	45	
			-			
IA Southern	T 100		1 1		63	
Utilities	1-102	Monroe	/114	Miller Creek	0.0	
Kaser Const.	т оо	M-11 -	/225		63	
Vo.	I- 99	Manaska	/115	Little Muchakinock Creek	0.5	
Const.	T_ 01	Marion	/140	English Greek	60	
Kaser Const	1- 91	Hai 101	/140	English Creek		
Co.	T- 92	Marion	/1/10	Fnalish Crook	60	
Kaser Const	1)2	THE LOH		English Creek		
Co. Eddyvil	le					
Quarry	I- 96	Monroe	/116	Gray's Creek	62	
Vacan Canat				• ·		
Raser Const.	T 107	Van Burton	1 70	Charles Charles 1	65	
Vocor Const	1-107	van buren	/ /2	Scump Creek	05	
Co.	I-108	Van Buren	/ 68	Unnamed Tributary to		
				D.M. River	65	
Lacona 0il Co	. I- 86	Warren	/149	Mill Branch Cr. to White	FO	
				Breast Creek	29	
Land O' Lakes	I- 24	Webster	312	Des Moines River	30	
Lennox Ind.	I - 73	Polk	1/197	Dean's Lake to D.M. River	50	
Mahaska Bottl:	ing			· · · · · ·		
Company	ĭ- 98	Mahaska	/115	Little Muchakinock Creek	62	
Morrell & Co.	I- 3	Emmet	73/329	W. Fork D.M. River	23	
Martin Mariet	ta					
Corp. Eddyv:	il le					
Sand Plant Martin Mariet	I- 95 ta	Mahaska	117	Des Moines River	62	
Corp. Ottuma	a I-106	Wapello	93	Des Moines River	64	
Material Serv	. 1-103	Wapello	99	Des Moines River	63	

TABLE V-1
POINT SOURCE
WASTEWATER DISCHARGES

	Reference	-	River		Page Refe	rence
Discharger <u>1</u> /	Number	County	Mile2/	Discharge To <u>3</u> /	Inventory	Needs
					Chapter V	VIII
Midwest Lime-			1010		29	
stone	1- 15	Pocahontas	/313	Lizard Creek		
Meilera Ind.,	T 50	Deschantes	105/100	Coder Crook	40	37
Moradith Corn	1 - 52	Polle	$\frac{103}{199}$	Pagagon Piwer	50	
Mid-Continent	1- 00	TUIK	/199	Raccoon River		
Industries	T- 45	Polk	/205	Walfley Creek	38	
Natural	1 45	TOTH	1205	Halliey bleek		
Gypsum Co.	I- 29	Webster	/309	Gypsum Cr. to D.M. River	31	
Nielennan Fam	т 70	Adada	/190	Middle Diver	54	
Nickerson farm	1-70	Adall	/180	MIddle River		
Natural Cae						
Co.	T- 30	Webster	/312	Soldier Creek	31	
Northern IA	1 50	WEDSLEI	1312	border breek		
Natural Gas					1.00	
Co.	I- 63	Dallas	37/199	Panther Cr. to S. Raccoon Riv.	48	
Northern IA						
Natural Gas					10	
Co. Redfield	I- 62	Dallas	37/199	Panther Cr. to S. Raccoon Riv.	48	
Northern IA						
Natural Gas			1.2.2		33	
Co.	I- 34	Wright	/282	Boone River	55	
					44	
Osmundson Mfg.	I- 55	Dallas	61/199	N. Raccoon River		
Oscar Mayer	T F(D-11	(1/100	N. Deserve Diferent	45	37
& CO.	1- 30	Dallas	61/199	N. Kaccoon River		
rella Lime-	T_ 03	Mahacka	133	Des Moines River	61	
Porching	1- 95	Manaska	133	Des normes River		
Iltilities	T- 94	Marion	6/199	Walnut Creek	61	
P & M Stone Co	I- 6	Humboldt	14/329	W. Fork D.M. River	25	
			· · · · · · ·		2.0	
P & M Stone Co	I- 13	Humboldt	/329	E. Fork D.M. River	28	
Plaines Poultr	У				26	3-
Farm, Inc.	I- 41	Polk	/214	Little Creek to Big Creek	20	5.
Pocahontas					29	
Rendering Co) I- 17	Pocahontas	/313	Lizard Creek	25	
Sac County					40	
Road Gravel	I- 51	Sac	157/199	N. Raccoon River		
Sandler Built	T (0	7	1010		35	
Homes, Inc.	1- 40	Boone	/246	Honey Cr. to D.M. River		
E T Corcont						
Quarries			£			
Inc	T- 83	Clarke	/176	S. Squaw Cr. to South River	56	
E.I. Sargent	2 00		/			
Ouarries.						
Inc.	I- 75	Madison	/186	Cedar Cr. to North River	52	
E.I. Sargent						
Quarries					5%	
Inc.	I- 81	Polk	/180	Middle River	54	
Schildberg	1.1.1		and a		54	
Const.	I- 79	Adair	/180	Middle River	54	
Schildberg	T 00	N. 11	1100	Milli Dimm	54	
Const.	1- 80	Madison	/180	Middle River		

	Reference		River		Page Refer	rence
Discharger <u>1</u> /	Number	County	Mile2/	Discharge To <u>3</u> /	Inventory	Needs
					Chapter V	VIII
Schildberg					and the second second	
Const.	I- 76	Madison	/186	Cedar Cr. to North River	52	
Shriver-Van						
Horner	I- 54	Greene	89/199	DD 137 to North Raccoon River	43	
Skelly Oil	I- 65	Polk	6/199	Walnut Cr. to Raccoon River	49	
Stuckeys						
(I-35)	I- 84	Warren	/176	Squaw Cr. to South River	56	
Texaco Inc.	I- 4	Palo Alto	48/329	W. Fork D.M. River	23	
Triangle						
Quarries	I-112	Van Buren	/ 34	Indian Creek	66	
U.S. Gypsum Co	I- 27	Webster	310	Des Moines River	31	
Wadco Foods.						
Inc.	I- 1	Emmet	73/329	W. Fork D.M. River	23	
Weaver Const.						
Co. (Moberly						
Mine)	I- 39	Hamilton	/282	Boone River	34	
Webster City						
Mun. Light &						
Power	I- 38	Hamilton	23/282	Boone River	34	
Webster						
Processing	I- 28	Webster	309	Des Moines River	31	
Welp &						
McCarten	I- 19	Webster	7/313	S. Branch Lizard Creek	29	
Welp &						
McCarten						
(Griffeth						
Quarry)	I- 9	Humboldt	1/329	Indian Cr. to W. Fork D.M. Riv	ver 25	
Vermeer Mfg.						
Co.	I- 90	Marion	/141	Sents Creek	60	
Villas & Co.	I- 49	Buena Vista	174/199	Boyer Creek	39	
Vista Products	I- 50	Buena Vista	174/199	Boyer Creek	39	

2/

TABLE V-1 POINT SOURCE WASTEWATER DISCHARGES

1/ Some abbreviations used include:

H.S. = High School IA = Iowa M.H.P. = Mobile Home Park S.D. = Sanitary District WTP - Water Treatment Plant H.H. = Highland Hills

3/ Some abbreviations used include:

Br - Branch Cr. = Creek DD = Drainage Ditch D.M. = Des Moines NEMTF = No Existing Municipal Treatment Facility STP = Sewage Treatment Plant Where two numbers are given, the first number designates the distance of the discharger up the major tributary stream from the Des Moines River. Mile zero is at the confluence of the major tributary stream with the Des Moines. The second number designates the distance up the Des Moines River to where the major tributary stream joins the Des Moines River. Miles zero on the Des Moines is River as at its confluence with the Mississippi River. Mileage values increase, in both cases, going upstream. When only one number is listed, the discharger is directly into the main stem of the Des Moines River. The single number indicates the mileage up the Des Moines River to the point of discharger.

POINT SOURCE

Wastewater Discharges

FIGURE V-2 V-20

				Effluent		Treatment Type	Comments
	1970	Design	Flow (mgd)	BOD5	Ammonia-N	Sludge Disposal	
Discharger (Ref. No.)	Pop.	P.E.	Average/Design	(mg/1)/(1b/day)	(mg/1)/(1b/day)		
Blue Earth River							
West Fork Blue Earth							
Union Slough Outlet							
D.D. 80		e A					
Ledyard M-1	240					NEMTF	
Union Slough Outlet							
Lakota M-2	385					NEMTF	Past information indicates
							water pollution problem may exist from septic tank discharge.
Blue Earth River							
D.D. 7							
Buffalo Center M-3	1,118	1,250	.100/.165	35/29	8/7	Two Cell Lagoon Not Applicable	12.78 acres. Built in 1967
Blue Earth River							
Coon Creek							
D.D. 64							
Rake M-4	324					NEMTF	Waste stabilization pond planned. Grant application has been submitted.

Table	V-2	
DISCHARGE	INVENTORY	**

			Effluent			Treatment Type	Comments
Discharger (Ref. No.)	1970 Pop.	Design P.E.	Flow (mgd) Average/Design	$\frac{BOD_5}{(mg/1)/(1b/day)}$	Ammonia-N (mg/1)/(1b/day)	Sludge Disposal	
West Fork Des Moines River	• .						
Estherville Muni. Light							· .
Plant I-56		· `	.057/NA			None	Cooling water discharge
Wadco Foods I-1			0.30/NA	14/35	NA/NA		Discharges to Estherville STP
Hallett Const. Co. I-2		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	0.050/NA			Settling pond	Sand and gravel wash
Estherville WTP S-1		- 	.090/NA	5 		None	Backwash from softeners and filters.
Estherville M-5	8,108	91,200	2.025/4.84	135/2,280	33/557	<u>Trickling Filter</u> Disposal to Land	Advanced treatment plant under construction.
Morrell & Co. I-3	- 	2017 - 1 ⁹⁷	0.37/NA	150/463		Four Cell Lagoon Not Applicable	Total retention lagoon for boiler blow down, scald water and dehair water only, other
			2000 - 2000				wastes discharged to Esther- ville STP. To be abandoned.
<u>D.D. 60</u>	n an Na Antonio Na Antonio				an a		
Gruver M-6	135					NEMT'F	
West Fork Des Moines River							
Wallingford M-7	245			and the second sec		NEMTF	Preliminary Engineering report submitted October, 1969.
Graettinger M-8	907	1,343	0.185/0.246	35/54	2/3	<u>Two Cell Lagoon</u> Not Applicable	Constructed in 1968
Emmetsburg WTP S-2			NA/0.044			None	Iron and manganese filter back wash, discharge every other day.
Texaco, Inc. I-4				<u>-</u> -	n din series de la companya de la co	None	Storm water runoff from tank

				DISCHARGE INVERT	OKI		
	1070			Effluent		Treatment Type	Comments
Discharger (Ref. No.)	1970 Pop.	Design P.E.	Average/Design	$\frac{BOD_5}{(mg/1)/(1b/day)}$	$\frac{\text{Ammonia}-N}{(\text{mg}/1)/(1b/day)}$	Sludge Disposal	
Emmetsburg M-9	4,150	4,300	0.222/0.266	40/74	15/28	Trickling Filter Disposal to Land	Plant overloaded, consent order in effect. Plans have been approved.
Emmetsburg Rendering Works I-5		·	CLOS	SED			
Silver Creek							
Ayshire M-10	243		· ·			NEMTF	
Cylinder Creek							
Cylinder M-11	133					NEMTF	
Rodman M-12	104		·			NEMTF	
Prairie Creek							
West Bend WTP S-3			NA/0.010			None	Iron removal filter back- wash discharge once a week.
West Bend M-13	865	740	0.077/0.111	35/22	7/4	Imhoff Tank and <u>Trickling Filter</u> Open Drying Beds	Constructed during 1940's, plant in poor condition.
Beaver Creek							
Curlew M-14	95					NEMTF	
Mallard M-15	384	600	NA/0.054	NA	NA		3 cell lagoon to be construct-
							Design data given is for a New facility.
Pilot Creek							
Plover M-16	129					NEMTF	
Rolfe WTP S-4			0.02/NA		<u> </u>	None	рН 8.5
Rolfe M-17	767	900	0.032/0.085	40/11	10/3	Two Cell Lagoon Not Applicable	Plant put into operation in 1970.

Table	V-2
DISCHARGE	INVENTORY

				Effluent		Treatment Type	Comments
	1970	Design	Flow (mgd)	BOD5	Ammonia-N	Sludge Disposal	
Discharger (Ref. No.)	Pop.	P.E.	Average/Design	(mg/1)/(lb/day)	(mg/1)/(lb/day)		<u></u>
West Fork Des Moines River							
Bradgate M-18	130					NEMT F	
P & M Stone, Inc. (Bradgate Quarry) I-6			5.04/NA			Sedimentation basin	Basin for rock washing, also quarry dewatering Sec. 15 & 16, T92, R30, S.S. 160 mg/1.
Rutland M-19	215					NEMTF	
Welp & McCarten, Inc. (Anderson Quarry) I-7	-		1.00/NA			None	Quarry dewatering NE ¹ 4, Sec. 35, T92, R29, S.S. 38 mg/1.
Humboldt WTP S-5			0.010/NA			None	4 separate discharge lines, new facility being built.
Humboldt M-20 4,	665	5,600	0.683/0.929	20/114	8/46	Trickling Filter Wet Haul Farmland	Preliminary Engineering Report 1973
Indian Creek							
Welp & McCarten, Inc. (Griffith Quarry) I-9			1.0/NA			None	Quarry Dewatering, S.S. 26 mg/l
East Fork Des Moines River							-
Soldier Creek							
Dolliver M-21	95					NEMTF	
East Fork Des Moines River			na an a				
Armstrong M-22 1,	061	1,300	0.089/0.175	30/22	1/.7	Two Cell Lagoon Not Applicable	Plant placed in operation in 1966.
Mud Creek							
Swea City M-23	774	919	0.047/0.063	45/18	11/4	<u>Two Cell Lagoon</u> Not Applicable	Constructed in 1969

			Effluent			Treatment Type	Comments
	1970	Design	Flow (mgd) BOD- Ammonia-N			Sludge Disposal	ooning it do
Discharger (Ref. No.)	Pop.	P.E.	Average/Design	$\frac{1005}{(mg/1)/(1h/day)}$	$\frac{(mg/1)}{(1b/dav)}$		
				((
Bancroft WTP S-6			NA/NA			None	Iron and manganese back- wash
Bancroft M-24	1,103	1,320	0.099/0.169	80/66	22/18	Imhoff Tank, Sand Filter Open Drying Beds	Planned lagoon to replace existing plant-
East Fork Des Moines Rive	r						
Burt M-25	608	743	0.157/0.074	43/56	5/7	Two Cell Lagoon Not Applicable	Constructed in 1964
Buffalo Creek							
Titonka WTP S-7			0.09/NA			None	Softening and filter backwash
Titonka M-26	599	1,550	0.056/0.115	35/16	22/10	Trickling Filter <u>Single Cell Lagoon</u> None	6.75 acres
East Fork Des Moines Rive	r						
Oak Lake Development S-106	:			- 		NEMTF	One acre lagoon for 100 P.E planned Permit approved Feb 1973.
Black Cat Creek							
Ringsted WTP S-8			NA/NA			None	
Ringsted M-27	509	650	0.043/0.077	25/9	3/1	<u>Two Cell Lagoon</u> Not Applicable	Placed in operation in 1969
Sentral Community School S-9		60	NA/0.006	*** ***		Imhoff tank, Trick- ling Filter Unknown	Constructed in 1957
Fenton M-28	403					NEMT F	Preliminary Engineering Report submitted in 1967

Table V-2 DISCHARGE INVENTORY

1970 Discharger (Ref. No.) Pop.			Effluent			Treatment Type	Comments
	1970	Design	Flow (mgd)	BOD5	Ammonia-N	Sludge Disposal	
	P.E.	Average/Design	(mg/1)/(1b/day)	(mg/1)/(1b/day)			
Calmus Creek							
Lone Rock M-29	166		the second second			NEMTF	
East Fork Des Moines Rive	er						
Algona WTP S-10	-		0.03/NA	-		None	Filter backwash, flows occur 3 days/week
Algona M-30	6,032	8,900	0.552/0.655	40/184	8/37	Trickling Filter Disposal to Land	Constructed in 1954. Heavy Metals reported in effluent.
Culligan Water Conditioning I-10		-	0.01/0.05	-		None	Backwash from regeneration of softeners and exchange units.
Cook, Inc. I-11	-	=	NA/NA			None	Water used in cooling gas tanks dumped into storm sewer.
Bituminous Mat. & Supply Co. I-12		-	NA/NA			None	Zeolite softener backwash
Burr Oak Manor S-11	-		NA/0.015			Activated Sludge Unknown	
Kossuth County Par S-12	·k 		NA/0.002			Septic Tank & Tile Field Disposal to Land	
Livermore M-31	510	720	0.033/0.110	30/8	2/.6	Two Cell Lagoon	Placed in operation in 196
Lotts Creek						Not Applicable	
Whittemore WTP S-13			0.024/NA			None	Backwash from softeners & iron removal units.
Whittemore M-32	658	2,328	0.251/0.147	75/157	2/4	Trickling Filter Open Drying Beds	Plant constructed in 1960.

				Effluent		Treatment Type	Comments
	1970	Design	Flow (mgd)	BOD5	Ammonia-N	Sludge Disposal	
Discharger (Ref. No.)	Pop.	P.E.	Average/Design	(mg/1)/(1b/day)	(mg/1)/(1b/day)		
Trulner Creek							
Bode M-33	372	490	0.017/0.050	45/6	6/.9	Two Cell Lagoon Not Applicable	
Bloody Run Creek							
Ottosen M-34	93					NEMTF	
East Fork Des Moines River							
<u>D.D. 4</u>							
Hardy M-35	73					NEMTF	
East Fork Des Moines River							
P & M Stone, Inc. (Hodge Quarry) I-13			0.36/NA		 	Sedimentation Basin	Quarry dewatering NE4, Sec. 32, T92, R28.
Dakota City M-36	746	1,000	0.044/0.100	35/13	10/4	<u>Trickling</u> Filter Wet Haul to Farm	Constructed in 1958 land
Des Moines River							
Corn Belt Power Coop I-8			30.00/NA			None	Cooling water discharge only
Bass Creek							
Farmegg Production, Inc. I-14						One Cell Lagoon Not Applicable	Completed in 1970, complete retention lagoon
Deer Creek							
Pioneer M-37	56					NEMTF	
Badger Creek							
Badger M-38	465	450	0.032/0.045	35/9	10/3	<u>Two Cell Lagoon</u> Not Applicable	First cell completed in 1961, second cell constructed in 196

Table	v-2	
DISCHARGE	INVENTORY	

			Effluent			Treatment Type	Comments
1970Discharger (Ref. No.)Pop.	Design P.E.	Flow (mgd) Average/Design	BOD ₅ (mg/1)/(lb/day)	Ammonia-N (mg/1)/(1b/day)	Sludge Disposal		
Lizard Creek					·		
Pocahontas Rendering Co. I-17							Entire waste discharge to Municipal STP.
Iowa Industrial Hydraulics, Inc. I-1	 18						Going to Municipal STP
Pocahontas M-40 2	2,338	3,175	0.236/0.156	40/79	6/12	Trickling Filter Open Drying Beds	Built 1951, Preliminary repo being prepared for new plant
Midwest Limestone Co. I-15			.050/NA			None	Limestone quarry dewatering
North Branch Lizard Cre	eek						
Havelock M-39	248					NEMTF	
Hallett Const. I-16			1.5/NA			None	Quarry dewatering Sec. 36, T 92, R 31W.
D.D. 168							
Gilmore City M-41	766	1,000	0.087/0.100	30/22	6/4	<u>Two Cell Lagoon</u> Not Applicable	Constructed in 1959
Lizard Creek							
Clare M-42	249	300	NA/.030	NA	NA	Three Cell Lagoon Not Applicable	Under construction
South Branch Lizard Cre	eek						
Palmer M-225	246		, ,			NEMTF	
Barnum M-43	147					NEMTF	Preliminary report submitted
Welp & McCarten, Inc. I-19	•		.123/NA			Settling pond	Quarry dewatering, Fort Dodg

				Effluent		Treatment Type	Comments
	1970	Design	Flow (mgd)	BOD ₅	Ammonia-N	Sludge Disposal	
Discharger (Ref. No.)	Pop.	P.E.	Average/Design	(mg/1)/(1b/day)	(mg/1)/(1b/day)		
Spring Creek							
Moorland M-44	269					NEMTF	
Des Moines River							
Fort Dodge Muni. Airport S-14			.0085/NA			<u>One Cell Lagoon</u> Not Applicable	Total retention except durin wet weather.
Hormel & Co. I-20			.315/NA			None	Process and Sanitary Wastes to Municipal STP, Cooling water discharge to River.
Fort Dodge WTP S-15			0.150/NA			None	Filter backwash, S.S. 17 mg/
Fort Dodge Creamery I-21			0.200/NA	 ·			To Fort Dodge STP
American Can Co. I-2	2		0.02/NA			None	Cooling water discharge only
Fort Dodge M-45 31	,263	184,000	3.367/5.30	38/1,067	15/421	Two Stage Tricklin <u>Filter</u> Disposal to Farmla	g Plant expansion under const. _ nd
Oak Park MHP S-16			NA			Extended aeration/ Polishing pond Unknown	-
Culligan Water Conditioning I-23	. .		NA	• 		None	Direct discharge to backwash water.
Land O' Lakes I-24	 '		0.46/NA	15/58	2/7.7	None	Sewage and Process wastes to Municipal system, cooling water to stream.
IA Beef Processors I-25	<u></u>	 · ·	1.00/1.20	190/1,580	108/900	Anaerobic/Aerobic Lagoon System Not Applicable	Built in 1970, no discharge allowed when river flow is less than 40 cfs.

			Effluent			Treatment Type	Comments
19 Discharger (Ref. No.) Pop	1970	Design	Flow (mgd)	BOD5	Ammonia-N	Sludge Disposal	
	Pop.	P.E.	Average/Design	(mg/1)/(1b/day)	(mg/1)/(1b/day)		
Coats Utility Co. I-26	52	406	NA/0.0095			<u>One Cell Lagoon</u> Not Applicable	Built 1970, to handle Webster Co. Home and residential development.
Savage Sanitary Dist. M-46	522	522	NA/0.05	25/	10/	Aerated Lagoon Not Applicable	Built in 1968, redesigned in 1971 for total retention
U.S. Gypsum Co. I-27		-	.223/NA			None	Direct discharge to River.
Webster Processing Co. I-28	-		NA/0.05			One Cell Lagoon Not Applicable	Constructed in 1968
National Gypsum Co. I-29	-		.078/NA	-		None	Direct discharge to River
Otho M-47	581	440	0.057/0.044	35/17	3/1.4	<u>Two Cell Lagoon</u> Not Applicable	Constructed in 1966
Soldier Creek							
Northern Natural Gas Co. I-30	-	-	.090/NA	-		None	
Holiday Creek							
Farmland Industries I-31	-	-	0.60/NA	10/50	18/88	One Cell Lagoon Not Applicable	Max, discharge 100 lb/day ammonia
Crooked Creek							
Lehigh M-48	739	748	0.047/0.151	35/14	2/.8	Two Cell Lagoon Not Applicable	
Dickey Clay Mfg. I-3	3		0.054/NA			None	Will route sewage to Lehigh STP in the future.
Brushy Creek							
Vincent M-49	204	270	NA/0.027			Two Cell Lagoon Not Applicable	Completed in 1972
Duncombe M-50	418	400	0.022/0.034	30/5.5	2/.4	<u>Two Cell Lagoon</u> Not Applicable	Placed operation in 1967 3.44 acres

			Effluent			Treatment Type	Comments
	1970	Design	Flow (mgd)	BOD5	Ammonia-N	Sludge Disposal	
Discharger (Ref. No.)	Pop.	Ρ.Ε.	Average/Design	(mg/1)/(1b/day)	(mg/1)/(1b/day)		
D.D. 54							
Vista Acres MHP S-17			NA			Extended aeration w/polishing pond No Sludge Waste	
Boone River							
Corwith M-51	407	600	0.023/0.091	35/7	1/.2	Two Cell Lagoon Not Applicable	Constructed in 1971
Middle Branch Boone Rive	r						
Britt WTP S-18			0.229/NA			None	Filter backwash
Britt M-52	2,069	2,069	0.242/0.18	40/80	2/4	Trickling Filter Disposal to Land	Built in 1935, plant in poor condition, lagoon site has been approved.
Boone River							
Prairie Creek							
Wesley M-53	548					NEMTF	Preliminary Report submitted
Luverne M-54	380	430	NA/.043			NEMTF	Three cell lagoon facility
							issued. Parameters shown an design values.
Joint Drainage Ditch 3							
Renwick M-55	429	3,240	0.076/0.096	30/19	4/2.5	<u>Two</u> Cell Lagoon Not Applicable	Built 1962
Otter Creek							
W. Otter Creek							
Kanawha M-56	808	780	0.083/0.087	40/28	1/.7	Two Cell Lagoon	Waste stabilization lagoon

Table	v−2						
DISCHARGE	INVENTORY						
		Effluent				Treatment Type	Comments
--------------------------------------	-------	----------	----------------	-----------------	-----------------	---	--
	1970	Design	Flow (mgd)	BOD5	Ammonia-N	Sludge Disposal	
Discharger (Ref. No.)	Pop.	P.E.	Average/Design	(mg/1)/(1b/day)	(mg/1)/(1b/day)		
Boone River							
Goldfield M-57	722	3,900	0.024/0.219	50/10	4/.8	<u>Two Cell Lagoon</u> Not Applicable	Constructed in 1963, 34 acres Sec. 28, T 91, R 26
Northern Natural Gas Co. I-34		• •••	.0025/NA			None	
<u>D.D. 3</u>	,						
Thor M-58	212					NEMTF	Plans are being prepared for lagoon system.
D.D. 94							
Boone Valley Coop I-35			.155/NA			None	Cooling water discharge only. Sanitary and process wastes
·							to Eagle Grove STP.
Iowa Public Service I - 36			.016/NA			None	Cooling water discharge only.
Eagle Grove WIP S-19			.026/NA				Process water from lime treatment pH 11.
Eagle Grove M-59	4,489	4,180	0.652/0.504	52/283	20/109	Trickling Filter <u>Plant</u> Wet Haul to Farm- land	Plant is overloaded and frequent by-pass of raw sewage.
Eagle Creek							
D.D. 2	•						
Clarion M-60	2,472	3,000	0.261/0.145	60/131	16/35	Trickling Filter Plant	Built in 1934.
						Wet Haul to Farm- land	
Eagle Creek							
Woolstock M-61	222 `				-	NEMFF	Preliminary plans submitted for lagoon system in 1967.

V-33

			·	DISCHARGE INVENT	ORY		
Discharger (Ref. No.)	1970 Pop.	Design P.E.	Flow (mgd) Average/Design	Effluent BOD ₅ (mg/1)/(1b/day)	Ammonia-N (mg/l)/(lb/day)	<u>Treatment Type</u> Sludge Disposal	Comments
Boone River							
Webster City WTP S-20	 		.029/NA			Settling Basin	Lime-Soda Ash softening sludge
Webster City M-62	8,488	12,000	1.582/1.50	25/330	15/198	Trickling Filter <u>Plant</u> Disposal to Land	Expansion in 1963, 1973 preliminary report recommends further expansion.
Franklin Mfg. I-37		· . 	.46/NA	20/77	.8/3	Holding Lagoon	
Webster City Munici- pal Light & Power I-38			11.52/11.52			None	Cooling water only
Weaver Const. Co. (Moberly Mine) I-39			3.6/NA			None	Pumping surface water at mine surface
Des Moines River							
Stratford M-63	710	700	0.060/0.070	25/13	10/5	Extended Aeration Polishing Pond Unknown	Built in 1965, existing sewers have high infiltration
Skillet Creek							
Dayton M-64	909	900	0.150/0.084	40/50	6/7.5	<u>Trickling Filter</u> Wet Haul to Farm- land	Built in 1956 and in poor condition, under consent order for in-plant modifica-
Poor Farm Creek							
Boone Co. Home S-22			NA/0.008			One Cell Lagoon Not Applicable	Constructed in 1967
Episcopal Center & Conference Camp S-	-23	. 	NA/0.007			<u>Septic Tank</u> Unknown	Permit issued 1/18/73 to construct waste stabilization pond.
Des Moines River			۰.				
Fraser M-65	143					NEMTF	

Table V-2

Fraser -02

				Tffl.est			0
	1970	Design	Flow (mgd)	BOD5	Ammonia-N	Sludge Disposal	Comments
Discharger (Ref. No.)	Pop.	P.E.	Average/Design	(mg/1)/(1b/day)	(mg/1)/(1b/day)		
Bluff Creek							
Boxholm M-66	242					NEMTF	Final plans submitted 11/26/73 for waste stabilization lagoon.
Pilot Mound M-67	214	1000 au				NEMTF	Plans are prepared for lagoon
Honey Creek							
Boone WTP S-24			.064/NA			None	Backwash from iron and manganese filter.
Boone M-68	12,468	17,042	1.99/1.60	42/697	9/199	Trickling Filter <u>Plant</u> Wet Hauled to Land Fill	1958 rejuvenation of plant
Sandler Built Homes Inc. I-40							Discharges to City STP
Des Moines River							
Camp Laurie S-21			NA/.010				Permit issued to conduct lagoon 1969.
Assemblies of God S-25					• • • • • • • • • • • • • • • • • • •	One Cell Lagoon Not Applicable	Total retention
Luther M-69	189					NEMTF	
Country Air MHP S-26			` 			One Cell Lagoon Not Applicable	Total retention
Preston Branch			·				
Woodward State Inst. S-27			0.20/0.213	25/42	NA	<u>Trickling Filter</u> Wet Hauled to Farm- land	Built in 1967
Big Creek							
Sheldahl M-221	285	500	NA/.0375	NA	NA	NEMTF	Will go to Slater

				Effluent		Treatment Type	Comments
	1970	Design	Flow (mgd)	BOD ₅	Ammonia-N	Sludge Disposal	
Discharger (Ref. No.)	Pop.	P.E.	Average/Design	(mg/1)/(1b/day)	(mg/1)/(1b/day)		
Little Creek							
Madrid M-70	2,448	3,000	0.198/0.305	35/58	13/21	<u>Trickling Filter</u> Wet Haul to Farm- land	Built in 1967
Plains Poultry Farm Inc. I-41	-		0.011/.003	100/9		Five Cell Lagoon Not Applicable	Built in 1968
Big Creek							
Polk City M-71	700	800	0.070/0.080	40/33	13/7.6	Three Cell Lagoon Not Applicable	Constructed in 1963, addition al cell added in 1974.
Des Moines River							
Jester Park S-28			NA	45/NA		One Cell Lagoon Not Applicable	
Rock Creek							
Ankeny Ind. M-154-2	-	-	.130/NA	100/108		Three Cell Lagoon Not Applicable	Treatment of John Deere industrial wastes
Des Moines River							
Saylorville Lake Recreation Area S-3			NA/.30			Lagoon Not Applicable	Irrigation if necessary
YMCA Boys Home of Iowa S-31			NA	43/		One Cell Lagoon Not Applicable	
Camp Dodge S-33			0.060/NA	25/125	NA	Trickling Filter	To be abandoned. Discharge to Johnston STP when constructed
Beaver Creek						Land	
Grand Junction M-117	7 967	1,000	0.04/0.072	35/12	1/0.3	Imhoff Tank Trickling Filter	High sewer infiltration
Beaver M-72	113					NEMTF	

Table	e V-2
DISCHARGE	INVENTORY

				DISCHARGE INVENT	ORY		
				Effluent		Treatment Type	Comments
Discharger (Ref. No.)	1970 Pop.	Design P.E.	Flow (mgd) Average/Design	BOD5 (mg/1)/(1b/day)	Ammonia-N (mg/l)/(lb/day)	Sludge Disposal	· · · · · · · · · · · · · · · · · · ·
East Beaver Creek							
Ogden M-73	1,661	1,900	0.342/0.246	35/100	12/34	Trickling Filter Dry Haul to Farm- land	Constructed in 1958, high infiltration
Beaver Creek	,						
Berkley M-74		56				NEMTF	
Woodward M-75	1,010	965	0.084/0.0965	30/21	7/5	Two Cell Lagoon Not Applicable	8.52 acres
Bouton M-76	160					NEMTF	
Town & Country Inc. S-32	·* ·		NA/0.0065	, 		Single Cell Lagoon Not Applicable	.58 acres (M.H.P.)
Granger M-77	661	600	0.060/0.060	40/20	17/8.5	<u>Two Cell Lagoon</u> Not Applicable	Built in 1969, 6.0 acres
Grimes M-78	902	800	0.10/0.080	30/25	5/4.2	Trickling Filter None	New plant is under construction
Little Beaver Creek							
Beaver Valley Canning Co. I-43			0.063/NA	850/447		Lagoons, Spray Irrigation Not Applicable	To be connected to Grimes' new treatment plant when completed. Will continue to
Beaver Creek						х.	have cooling water discharge.
Johnston M-224	2,236					NEMTF	Individual septic tanks
Urbandale Sa. Sew. Dist. M-79	NA	4,800	0.30/0.43	26/65	- - -	<u>Trickling Filter</u> Wet Haul to Farm- land	Some wastes into Des Moines Sewer System
First Continental Co. Motel S-34			NA/0.025			Extended aeration, polish lagoon	To go to municipal as soon as possible

Table V-2 SCHARGE INVENTORY

				Effluent		Treatment Type	Comments
	1970	Design	Flow (mgd)	BOD5	Ammonia-N	Sludge Disposal	
Discharger (Ref. No.)	Pop.	P.E.	Average/Design	(mg/1)/(lb/day)	(mg/1)/(1b/day)		
Des Moines River							
Saylor Creek							
Ankeny W. M-154-1 2,	,451	3,100	0.517/0.404	35/151	20/86	<u>Trickling Filter</u> Wet Haul to Farm- land	
Mel Ray MHP S-29			NA.	45/		<u>Single Cell Lagoon</u> Not Applicable	
Walfley Creek		and the second		•		an a	
Iowa Fund I-44	- 		0.015/NA	80/10		One Cell Lagoon Not Applicable	
Mid Continent Industries I-45			0.050/NA	31/13	1/.4	Aerated Lagoons Not Applicable	
Firestone Tire & Rubber Co. I-46			1.270/NA	5/53	- 	Solids Settling Ponds Not Applicable	Cooling and process water only
Ford Motor Co. I-47			CLOSED		λ	•••	
American Can Co. I-69			0.202/NA			None	Cooling water discharge only. Sanitary and Process waters to STP.
Regency Manor MHP S-35			NA			One Cell Lagoon Not Applicable	
North Raccoon River							
Marathon M-80	447					NEMTF	
Rembrandt M-81	250	300	0.015/0.030	30/4	16/2.3	<u>Two Cell Lagoon</u> Not Applicable	
Lateral 2							
Albert City M-82	683	1,155	0.080/0.048	25/17	7/4.7	Covered Trickling Filter	Plant put into operation in 1951.

Table	e V-2
DISCHARGE	INVENTORY

V-38

Disposal to Land

			· · · · · · · · · · · · · · · · · · ·	Effluent		Treatment Type	Comments
	1970	Design	Flow (mgd)	BOD5	Ammonia-N	Sludge Disposal	
Discharger (Ref. No.)	Pop.	P.E.	Average/Design	(mg/1)/(1b/day)	(mg/1)/(1b/day)	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
North Raccoon River							
Poor Farm Creek							
Truesdale M-83	132					NEMTF	
Boyer Creek							
Storm Lake WTP S-36			.008/NA			Lagoon Land Disposal	Lime Sludge Discharge
IA Public Service I-48			0.1/NA	3/2.5		None	Cooling water discharge
Storm Lake M-84	6,876	46,000	1.516/2.40	40/506	13/164	Trickling Filter Open Drying Beds	New plant recommended
Storm Lake, Hygrade M-85	 ^	140,720	1.045/2.653	25/218	27/235	Anerobic/aerobic Lagoons Not Applicable	Controlled discharge, built 1966, D.T. = 163 days
Country Village MHP S-37			NA			One Cell Lagoon Not Applicable	Permit issued March 1972
Villas & Co., Inc. I-49			0.0986/NA	0		None	Defreeze water only. Sanitary and process wastes to Storm Lake STP.
Vista Products, Co. I-50			0.180/NA	28/42	2/3	None	Cooling water discharge only. Sanitary and process wastes to Storm Lake STP.
Lakeside M-86	353						Discharge to Storm Lake Hy-Grade

		Table	V-2
	DIS	CHARGE	INVENTORY

	1070	Dester		Effluent		Treatment Type	Comments
Discharger (Ref. No.) Pop. P.E.	P.E.	Average/Design		$\frac{\text{Ammonia}-N}{(mg/1)/(1b/day)}$	Sludge Disposal		
North Raccoon River							
Nemaha M-88	117					NEMTF	City and school served by individual septic tanks.
Sac City WTP S-38			.0055/NA			None	Filter backwash — Lime Soda Ash Sludge
Sac City M-87	3,268	3,400	0.270/0.220	40/90	11/25	Trickling Filter Unknown	Preliminary plans for new facility submitted in 1973.
Sac County Road Gravel I-51			.050/NA			None	Road gravel quarry dewatering
Cedar Creek							
Laurens WTP S-39			NA			None	Filter backwash
Laurens M-89	1,742	2,430	0.160/0.132	40/53	13/17	Trickling Filter Open Drying Beds	Constructed in 1953
Mefferd Industries I-52			NA			None	Discharge is from chrome rinse tanks, 350 mg/l
							hexavalent chrome in the discharge.
Varina M-90	140					NEMTF	
Fonda WTP S-40			NA			None	Iron Filter backwash
Fonda M-96	980	1,387	0.088/0.111	54/40	7/5	Imoff tank, trick- ling filter Open Drving Beds	
						-pen sijing seus	

Table	e V-2
DISCHARGE	INVENTORY

		Design		Effluent		Treatment Type	Comments
· .	1970		Flow (mgd)	BOD5	Ammonia-N	Sludge Disposal	
Discharger (Ref. No.)	Pop.	P.E.	Average/Design	(mg/1)/(1b/day)	(mg/1)/(1b/day)		
Prairie Creek	•						
Newell WTP S-41			NA			None	Iron filter backwash
Newell M-92	701	1,440	0.087/0.110	35/25	7/5	Imhoff tank, trick- ling filter Open Drying Beds	- Constructed in 1964
Buene Miete Co	,		2.0			Nono	Discharge and in 2 to 5
Gravel Pit I-53			2.0	-		None	years NE ¹ ₄ , Sec. 13, T90, R 35W.
Indian Creek							
Lake View M-93	1,249	3,220	0.218/0.280	25/45	NA	Two stage trickling filter	; Built in 1970
						Sludge Lagoon Dryin Beds	Ig
North Raccoon River				. •	· .		an a
Auburn M-94	329			· · · · · · · · · · · · · · · · · · ·	uiju qua Min	NEMTF	Under consent order. Centra
							collection system for septic tank effluent.
Camp Creek							
Jolley M-95	112					NEMTF	
Lytton WTP S-42			NA				To municipal lagoons
Lytton M-96	378	450	0.157/0.167	40/52	6/8	Aerated, 3 aerobic lagoons Not Applicable	Large dairy contributes to wasteload, 21.6 acres D.T. = 200 days.
Yetter M-97	47			<u></u>	- 1	NEMTF	

Table V-2 DISCHARGE INVENTORY

	· · · · · · · · · · · · · · · · · · ·		·					
					Effluent		Treatment Type	Comments
Dis	charger (Ref. No.)	1970 Pop.	Design P.E.	Flow (mgd) Average/Design	$\frac{BOD_5}{(mg/1)/(1b/day)}$	Ammonia-N (mg/l)/(lb/day)	Sludge Disposal	
2.20				interage, beergin	(mg/1//(10/dd/)	(mg/1)/(10/dd)/		
1	Lake Creek							·
	Pomeroy M-98	765	900	0.073/0.062	35/21	3/1.8	Two Cell Lagoon Not Applicable	
•••	Rockwell City M-99	2,396	4,300	0.264/0.288	30/66	16/35	Trickling Filter Open Drying Beds	High sewer infiltration
	Rockwell City Women Reformatory S-43	's		•007/NA	25/1.5	NA	One Cell Lagoon Not Applicable	.68 acres constructed 1961
	Lake City N. M-100	1,100	1,800	0.090/0.151	30/23	NA	Trickling Filter Open Drying Beds	
	Lake City S.W. M-10	L 810	NA	0.080/0.20	35/23	10/6.7	Imhoff tank, sand filter Open Drying Beds	New plant proposed
	Twin Lakes Travel Park S-44			NA				
Nort	n Raccoon River							
	Lanesboro M-102	203					NEMTF	
C	edar Creek						<u>^</u>	
	Manson M-103	1,993	2,156	0.110/0.190	35/32	11/10	Two Cell Lagoon Not Applicable	20.30 acres constructed 196
	Knierim M-104	131	·		· , · ,		NEMTF	
	Somers M-105	197	·				NEMTF	
	Rinard M-106	88	40	0.003/0.004	25/.6	NA second	Septic tank, sand filter Unknown	Only 30% of Rinard is on the City Septic tanks.
	Lohrville M-107	553	1,200	0.053/0.069	30/13	10/4	Imhoff tank, trick filter	ling Built in 1958

Disposal to L

			Effluent			Treatment Type	Comments
	1970	Design	Flow (mgd)	BOD ₅	Ammonia-N	Sludge Disposal	
Discharger (Ref. No.)	Pop.	P.E.	Average/Design	(mg/1)/(1b/day)	(mg/1)/(1b/day)		
<u>D.D. 171</u>							
Crossroads Enterprise S-45	-	40	NA/.004	NA	NA	Septic Tank, sand filter Unknown	
Scranton M-108	751	1,270	0.065/0.127	35/19	18/10	Imhoff tank, trick- ling filter Open Drying Beds	
D.D. 132							
Jefferson WTP S-4	•6	-	.100/NA	-		None	Backwash from lime softening, pH 8-11
Jefferson M-109 4	,735	6,192	0.485/0.360	40/162	13.5/55	Trickling Filter Disposal to Land	Preliminary plans have been prepared for plant expansion, included nitrification.
Shriver-Van Horme I-54	er 40	40	NA		-	Septic tank, tile <u>field</u> Unknown	Built in 1957
Hardin Creek							
Farnhamville WTP S-47	-	-	.0024/NA	-		None	(Sodium, Magnesium, Iron) backwash water
Farnhamville M-110	393	480	0.110/0.180	25/23	3/3	<u>Two Cell Lagoon</u> Not Applicable	3.8 acres
Churdan M-111	598	777	0.028/0.032	27/6	5/1.2	Two Cell Lagoon Not Applicable	5.78 acres, D.T. = 292 days
Butterick Creek							
Callendar M-112	421	600	0.020/0.050			Two Cell Lagoon Not Applicable	Lagoon expanded to P.E. of 600 due to be finished 1/31/3
Gowrie WTP S-48			NA			None	

5

				Effluent		Treatment Type	Comments
Discharger (Ref. No.)	1970 Pop.	Design P.E.	Flow (mgd) Average/Design	$\frac{BOD_5}{(mg/1)/(1b/day)}$	Ammonia-N (mg/1)/(lb/day)	Sludge Disposal	
Discharger (her, hor)	100.		incluge/ besign	(mg/1)/(10/day)	(mg/1)/(10/day)		
Gowrie M-113	1,225	2,050	0.188/0.185	26/41	5/8	Trickling Filter Wet Haul to Farm- land	Built 1965, high sewer infiltration
Harcourt M-114	305					NEMTF	Two cell lagoon in plannin stage
Paton M-115	329			je n e s	- 17 S	NEMTF	Two cell lagoon in plannin stage
Dana M-116	118					NEMTF	In planning stage
North Raccoon River			8 m i 1 i				
Jamaica M-118	271					NEMTF	
Snake Creek							
Rippey M-119	270	420	0.012/0.040	25/2,5	4/0.4	One Cell Lagoon Not Applicable	Constructed in 1969
North Raccoon River							
Dawson M-120	232					NEMTF	
Osmundson Mfg. Co. I-55			NA/.011			One Cell Lagoon Not Applicable	
Perry WTP S-49			NA			Two Cell Sludge Lagoon	Lime sludge and filter backwash
Perry M-121	6,906	12,600	1.052/1.545	35/307	8/70	Two stage trickling filter Dry Haul to Farm-	
						land	

Table	e V-2
DISCHARGE	INVENTORY

			Effluent				Treatment Type	Comments
	1970	Design	Flow (mgd)	BOD	Ammonia-N		Sludge Disposal	
Discharger (Ref. No.)	Pop.	P.E.	Average/Design	(mg/1)/(1b/day)	(mg/1)/(1b/day)			· · · · · · · · · · · · · · · · · · ·
Oscar Mayer Co. I-56			0.67/1.0	75/419	70/391		Anaerobic aerobic lagoons Not Applicable	Lagoons do not have storage capabilities
IA Electric Light & Power Co. 1-57	 · .			 - 	 - -		<u>an</u> en antier (194	Boiler blow down, cooling water and water softening wash water discharges to Perry STP.
Minburn M-122	378	400	.032/0.048	25/6.7	4/1.1		Two Cell Lagoon Not Applicable	5.2 acre
Dallas County Home S-111	NA	110	 			·	None	One Cell Lagoon for 110 P.E. was proposed in 1972, area = .935 acres
Adel WTP S-51			NA				None	Iron and brine wastes.
Adel M-124	2,419	2,800	0.400/0.224	30/100	11/37		<u>Trickling Filter</u> Dry Haul to Farm- land	Built in 1964 - Spiragester and trickling filter
South Raccoon River								
Guthrie Center M-125	1,834	4,392	0.186/0.286	35/54	13/20		Two Stage Trick- ling Filter Disposal to Land	Built in 1964
Brushy Creek								
Arcadia M-126	414						NEMTF	
Halbur M-127	235						NEMTF	
Dedham M-128	325	350	0.009/0.035	30/2.3	NA		Two Cell Lagoon Not Applicable	2.75 acres
South Raccoon River								
Long Branch	*			·			a a constante de la constante d	and the product of the second
Stuart M-129	1,354	1,500	.201/.150	25/42	13/22		Trickling Filter Dry Haul to Farm-	Built in 1967

Table V-2 DISCHARGE INVENTORY

			Effluent				Comments
		Design				Treatment Type	
Discharger (Ref No.)	1970 Pop		<u>Flow (mgd)</u>	$\frac{BOD_{5}}{(ma/1)/(1b/day)}$	$\frac{\text{Ammonla}-N}{(ma/1)/(1b/day)}$	Sludge Disposal	
Discharger (Ker. No.)	100.	r.E.	Average/Design	(mg/1)/(10/day)	(mg/1)/(10/day)		
Diamondhead Lake S-52	NA	700	.025/.094	25/5	1/.2	One Cell Lagoon Not Applicable	
Middle Raccoon River							
Breda M-130	518	500	0.065/0.055	40/22	6/3	Imhoff, Trickling Filter	Permit issued 6/4/73 to construct waste stabiliza-
						Unknown	tion lagoon, old plant to be demolished.
Carroll M-131	8,716	NA	0.805/1.200	27/181	10/67	<u>Trickling Filter</u> Disposal to Land	New plant under construction
Bernholt Brothers Frozen Food and Locker I-58						None	Discharge cooling water to storm sewer
Carroll Rendering Works I-59			NA/0.08			Anaerobic, aerobic <u>Lagoon System</u> Not Applicable	
Farner-Bocken Co. I-60	1000 a.u. 		.003/NA	 	 1	None	Cooling water discharge only Sanitary and process waters to Carroll STP.
IA Public Service Co. Carroll Station I-6 Storm Creek	• 1		,			Cooling Towers	Recycle Cooling water.
Lidderdale WTP S-53			NA			None	Iron in backwash water
Lidderdale M-132	173	360	.015/.036	NA	NA	<u>Two Cell Lagoon</u> Not Applicable	Completed in 1973
Middle Raccoon River							an a
Willey M-133	72			·		NEMTF	a sa an an an
Coon Rapids M-134	1,381	5,988	0.081/0.120	25/17	9/6	Trickling Filter Open Drying Beds	Constructed in 1942

V-46

			Effluent			Treatment Type	Comments
Discharger (Ref. No.)	1970 Pop.	Design	Flow (mgd) Average/Design	$\frac{BOD_5}{(mg/1)/(1b/day)}$	$\frac{\text{Ammonia}-N}{(mg/1)/(1b/day)}$	Sludge Disposal	
Discharger (Act: No.)	100.		inverage, bebigi	((mb/1//(10/ddy)		
Storm Creek							
Glidden WTP S-55		- 3	.003/NA			None	Zeolite backwash
Willow Creek							
Glidden M-135	964	1,100	0.062/0.088	50/26	10/5	Trickling Filter Open Drying Beds	Constructed in 1952
Ralston M-136	129					NEMTF	
Bayard M-137	628	-				NEMTF	Permit issued 2/1/73 to construct treatment facilit
Middle Raccoon River							
Springbrook State Park S - 54	_	,				Lagoon Not Applicable	Total retention
Lake Panorama S-56	-	-				×	Discharge to municipal lagoon when constructed
Panora WTP S-57		<u></u>	.01/NA			None	Coagulation sludge
Panora M-138	986	1,260	0.150/0.125	35/44	NA	Two Cell Lagoon Not Applicable	
Linden M-139	278		State State			NEMTF	
Mosquito Creek							
Bagley M-140	365	160	NA	NA	NA	Municipal septic tank primary only const, 1913 Unknown	Inadequate treatment facility
Yale M-141	301					NEMTF	

				Effluent		Treatment Type	Comments
	1970	Design	Flow (mgd)	BOD	Ammonia-N	Sludge Disposal	
Discharger (Ref. No.)	Pop.	P.E.	Average/Design	(mg/1)/(1b/day)	(mg/1)/(1b/day)		
South Raccoon River							
Redfield M-142	921	1,200	0.062/0.120	40/21	6/3.1	Two Cell Lagoon Not Applicable	Constructed in 1968
Northern IA Natural Gas Co., Redfield Compressor Station I-62			NA			Septic Tanks and tile field Unknown	Process wastes to I-63 Lagoon
Northern IA Natural Gas Co., Redfield Storage Area I-63			0.35/NA			Aerated Lagoon Not Applicable	Discharge only 28 days a year
Bear Creek							
Earlham M-143	974	841	0.236/0.093	30/59	4/8	<u>Two Cell Lagoon</u> Not Applicable	8.0 acres
Gendler Stone Products Co., Inc. I-64			0.024/NA			None	Quarry dewatering
Bugler Creek							
DeSoto M-144	572	467	.060/.047	31/16	NA	<u>Two Cell Lagoon</u> Not Applicable	Built in 1970
Raccoon River							
Van Meter M-145	464	445	0.033/0.045	50/14	10/2.8	<u>Two Cell Lagoon</u> Not Applicable	Built 1963, has seepage problems, operating only one cell
Prairie Village MHP S-58			NA	,		One Cell Lagoon Not Applicable	Lagoon is over sized, no discharge.
Iowa Hwy Comm. Rest Area S-59			.078/NA	NA	NA	One Cell Lagoon Not Applicable	

Table	V-2
DISCHARGE	INVENTORY

			Effluent			Treatment Type	Comments
Discharger (Ref. No.)	1970 Pop.	0 Design . P.E.	Flow (mgd) Average/Design	$\frac{BOD_5}{(mg/1)/(lb/day)}$	Ammonia-N (mg/l)/(lb/day)	Sludge Disposal	
Southwest Polk Water Co. S-60	-		.006/NA			None	Iron in backwash water
Sugar Creek							
Waukee M-146	1,577	3,000	NA/.300	25/NA	NA	Aerated, aerobic Lagoon Not Applicable	8.2 acres, aerators added in 1974.
Fox Creek Water Co. S-61	-	-	NA			None	Iron in backwash water
Jordan Creek							
Walter T. Giles High Rise Motel S-62	-	-	NA		-	<u>Two Cell Lagoon</u> Not Applicable	One cell aerated, to discharge to municipal in the future.
Walnut Creek							
Dallas Center WTP S-50	-	-	.009/NA			None	Softener, brime, iron constituents.
Dallas Center M-123	3 1,128	900	0.188/0.066	30/47	2/3.1	Imhoff tank, Trick- <u>ling Filter</u> Wet Haul to Farm- land	
Hinkson MHP S-63	-	-	.005/NA			Single Cell Lagoon Not Applicable	
Des Moines Golf & Country Club S-64	-		.05/NA	25/10		Aerated Lagoon Not Applicable	
National Crossroads Campground S—65	60 space	25	NA			One Cell Lagoon Not Applicable	NW4, NE4, S6, T78, R25W
Skelly Oil Co. I-65	- 7	-	.008/NA	25/1.7		Aerated Lagoon Not Applicable	Crossroads USA, Urbandale
American Oil Co. I-66			NA			Oil Seperator	Runoff to stream & possibl oil product spillage

le

				Effluent	Treatment Type Comments		
Discharger (Ref. No.)	1970 Pop.	Design P.E.	Flow (mgd) Average/Design	$\frac{BOD_5}{(mg/1)/(1b/day)}$	Ammonia-N (mg/l)/(lb/day)	Sludge Disposal	
Roadrunner Campground & MHP S-66	41 sj	paces	NA			One Cell Lagoon Not Applicable	
Champlain Truck Stop I-67	**					One Cell Lagoon Not Applicable	Total retention
Raccoon River							
Meridith Corp. I-68			0.85/NA			None	Cooling water recycled to Des Moines Water Works
KOA Campgrounds S-67	16 sı	paces					Permit issued 8/25/69 for lagoon.
Des Moines Water Works S-68			.3/NA			Total retention lagoon	Lime-soda ash sludge, back wash.
Des Moines River							
Clive M-147	3,005						To Des Moines STP
West Des Moines M-148	16,441						To Des Moines STP
Windsor Heights M-149	6,303					·	To Des Moines STP
Dean's Lake							
Armstrong Rubber Co. I-70			2.85/NA	8/190		None	Cooling water
Chicago, Rock Isla and Pacific R.R. I-71	and		0.005/NA			None	Water from oil traps
Frye Copy Systems I-72			0.72/NA				Cooling water to city stor sewer.
Lennox Industries I-73			0.038/NA	1 <u></u>			Cooling water to city stor sewer.

Table	V-2
DISCHARGE	INVENTORY

Discharger (Ref. No.)	1970 Pop.	Design P.E.	Flow (mgd) Average/Design	$\frac{\text{Effluent}}{\text{BOD}_5}$ (mg/1)/(1b/day)	Ammonia-N (mg/1)/(lb/day)	<u>Treatment Type</u> Sludge Disposal	Comments
Des Moines River							
Des Moines (#1) M-150	201,404	540,000	38.9/35.0	30/9,733	11/3,569	Trickling Filter Wet Haul to Land Fill	
Yeader Creek							
Des Moines Area C Sanitary Lagoon M-222	NA	3,050	NA/.3			<u>One Cell Lagoon</u> Not Applicable	Under Construction
Des Moines River							
IA Power & Light I-74			150/NA		K	None	Three discharges of cooling water.
Four Mile Creek							
Slater M-152	1,094	350	0.090/0.158	60/45	14/11	Two Cell Lagoon	16.81 acres
Allemen M-227	183		0.01/			NET APPILCADIE NEMTF	Individual Septic Tanks Discharge to stream
IA Highway Comm. Rest Stop S-107	-		NA/0.005	NA	NA	<u>One Cell Lagoon</u> Not Applicable	
Ankeny E. M-153	6,700	4,200	9.910/0.285	30/228	8/61	<u>Trickling Filter</u> Dry Haul to Farm- land	New plant is under construc tion to handle hydraulic & organic overloading.
Oakwood Heights MHP S-69			NA			<u>One Cell Lagoon</u> Not Applicable	164 spaces, total retention
Greenwood Acres WT S-70	P		0.001/NA			None	Iron backwash-1,000 gal/weel
Sunny Brook MHP S-71		-	.025/NA	23/5	8	<u>One Cell Lagoon</u> Not Applicable	
Altoona M-155	2,883	3,600	0.534/1.5	30/134	8/36	Trickling Filter <u>disinfection</u> Wet Haul to Farm-	Built in 1969

land

			3	Effluent		Treatment Type	Comments
Discharger (Ref. No.)	1970 Pop.	Design P.E.	Flow (mgd) Average/Design	BOD5 (mg/1)/(lb/day)	Ammonia-N (mg/l)/(lb/day)	Sludge Disposal	
Country Living MHP S-72			NA			<u>One Cell Lagoon</u> Not Applicable	
Des Moines River							
S.E. Polk Comm. Sch. S-73			0.013/0.026	25/2.7		Extended aeration Wet Haul to Farm- land	Built in 1963
Pleasant Hill M-156	1,536	3,664	0.110/0.360	36/33	9/8	Trickling Filter Disinfection Compost Sludge	
North River							
Menlo M-157	391					NEMTF	
North Branch						x	
Dexter M-158	652	750	NA/.075	44/28	11/7	Two Cell Lagoon Not Applicable	7.5 acres
Cedar Creek					- 		
Winterset WTP S-74			0.720/NA		<u></u>	None	Filter backwash & sludge
Madison County Home S-75			NA/0.005	NA	NA	Aerated lagoon, polishing pond Not Applicable	
E.I. Sargent I-75			NA			Settling ponds	Quarry dewatering, Sec. 27 T 76 R 27W.
Schildberg I-76		-	NA		(° ''	None	Quarry dewatering, Sec. 22
North Divor							T 76 R 27W
NOICH RIVEL							
Middle Creek							
Cumming M-162	189					NEMT F	

Table	V-2	
DTSCHARGE	INVENTORY	

				Effluent		Treatment Type	Comments
	1970	Design	Flow (mgd)	BOD	Ammonia-N	Sludge Disposal	
Discharger (Ref. No.)	Pop.	P.E.	Average/Design	(mg/1)/(1b/day)	(mg/1)/(1b/day)		
Windmill Creek							
IA Metro Sewer M-160	NA	1,500	.100/.120	37/31	8/7	One Cell Lagoon Not Applicable	15 acres
Norwalk M-159	1,745						To Iowa Metro Sewer
Des Moines Highland Hills M-151	4,600	6,100	.525/.432	40/175	16/70	<u>Trickling Filter</u> Wet Haul to Farm- land	
Des Moines Area B M-223	NA	3,050	NA/.300			One Cell Lagoon Not Applicable	Under Construction
Middle Creek							
Des Moines Water Dev. Co. S-76	 '		.015/NA			None	Iron Filter backwash
Greenfield Plaza M-161	NA	2,000	.350/.200	NA	NA	One Cell Lagoon Not Applicable	15.9 acres
North River							
Carlisle M-163	2,246	4,000	.104/.295	25/22	1/.9	Four Cell Lagoon Not Applicable	36.1 acres
Carlisle WTP S-77			.065/NA			None	Filter backwash
Carlisle Sand & Gravel I-77			NA			None	Wash water, Sec 5 & 6, T 76 R 22W,
Middle River				•			
South Fork							
Adair M-164	750	1,000	.057/.100	45/19	8/3	Imhoff Tank, Trick- ling Filter	- Built in 1962

V-53

Open Sludge Pits

	·····			Effluent		Treatment Type	Comments
	1970	Design	Flow (mgd)	BOD ₅	Ammonia-N	Sludge Disposal	
Discharger (Ref. No.)	Pop.	P.E.	Average/Design	(mg/l)/(lb/day)	(mg/1)/(1b/day)	······································	
Middle River							
Casey M-165	561	700	.022/.070	25/5	3/.6	Contact stabilizat & polishing pond Unknown	
Menlo WIP S-79			.027/NA			None	Filter backwash
IA Highway Comm. Rest Area S-78-A&B			.005	NA	NA	One Cell Lagoon Not Applicable	
Schildberg Const. Co. I-79			NA			None	Quarry dewatering NW4, S 17, T 77, R 31W.
Schildberg Const. Co. I-80	••••••• ,		NA.			None	Dewatering quarry SE4, S 17, T 77, R 31W.
Nickerson Farms I -7 8	·					<u>One Cell Lagoon</u> Not Applicable	Total retention
Winterset M-166	3,685	5,300	.320/.500	28/75	6/16	<u>Trickling Filter</u> Wet Haul to Farm- land	Built in 1969
Patterson M-167	120			-		NEMTF	
Bevington M-168	54					NEMTF	
Martensdale M-169	306	400	NA/.04	26/NA	5/NA	<u>Two Cell Lagoon</u> Not Applicable	3.44 acres
Middle River							
Clanton Creek				an an Anna Anna an			
North Fork			• • •	$= \int dx dx dx$	بر ب		1 2.3 - 1 1 1 1 1 1 1
E.I. Sargent I-81			NA			None	Quarry dewatering NE ¹ / ₄ Sec. 1

Table V-2 DISCHARGE INVENTORY

۱0 T 74, R 27W.

				Effluent	Treatment Type	Comments	
Discharger (Ref. No.)	1970 Pop.	Design P.E.	Flow (mgd) Average/Design	BOD5 (mg/1)/(1b/day)	Ammonia-N (mg/1)/(lb/day)	Sludge Disposal	
Middle River							
Clanton Creek							
East Peru M-170	184		1.1.1			NEMT F	
Hay Branch							
Truro M-171	359	450	.045/.040	25/9	NA	<u>Two Cell Lagoon</u> Not Applicable	3.5 acres
Unnamed Tributary							
St. Charles M-172	443	··		St.		NEMT F	
Middle River							
Spring Hill M-173	131					NEMT F	
Unnamed Tributary							
Indianola N. M-174	4,976	5,500	.651/.463	25/136	3/16	<u>Trickling Filter</u> Wet Haul to Farm- land	North plant built in 1953
Butcher Creek							
Hartford MHP S-80			NA			One Cell Lagoon Not Applicable	
Hartford M-226	582					N EMT F	Individual Septic Tanks
Des Moines River							
Mud Creek							
Bondurant M-175	462	486	.047/.049	48/19	12/4.7	<u>Two Cell Lagoon</u> Not Applicable	4.16 acres, constructed in 1960
S. E. Polk High School S-81			.020/NA	25/4	1/.2	Extended aeration Wet Haul to Farm- land	

				Effluent	Treatment Type	Comments	
Discharger (Ref. No.)	1970 Pop.	Design P.E.	Flow (mgd) Average/Design	BOD ₅ (mg/1)/(lb/day)	Ammonia-N (mg/l)/(lb/day)	Sludge Disposal	
Runnells M-176	354					NEMTF	To build extended aeration activated sludge facility
South River							
St. Mary's M-177	105					NEMTF	
Squaw Creek							
South Squaw Creek							
Concrete Materials I-82			NA			None	Quarry operations 53/4, Sec. 12, T 72, R26W
E.I. Sargent I-83			NA			None	Quarry operations Sec. 1 T 72, R 26W.
Squaw Creek							
IA Promotional Man. S-82			NA			One Cell Lagoon Not Applicable	System in poor condition
MBZ Mobil Home Park S-83			NA			One Cell Lagoon Not Applicable	
New Virgina S.D. M-178	450	462	.028/.028	25/5.8		Two Cell Lagoon Not Applicable	4 acres
Stuckeys I-84			NA/.003			Aeration Unit & soil absorption pit Unknown	Package aeration unit (Oxigest)
South River							
Indianola S. M-179	4,000	4,000	0.45/.40	25/93.8	3/11.3	Contact stabilizati and polishing pond Wet Haul to Farm-	on South Plant

V-56

				Effluent		Treatment Type	Comments
	1970	Design	Flow (mgd)	BOD	Ammonia-N	Sludge Disposal	
Discharger (Ref. No.)	Pop.	P.E.	Average/Design	(mg/1)/(1b/day)	(mg/1)/(1b/day)		
South River							
Otter Creek							
S.E. Warren Comm. School S-109	NA		NA/.01	NA	NA	Three Cell Lagoon Not Applicable	Construction permit for three cell lagoon was issued 5/1/74.
Milo M-180	561	480	NA/.048	54/NA	3/NA	<u>Two Cell Lagoon</u> Not Applicable	Construction 1968 4 acres
South River		,					en green an an an green gr
Ackworth M-181	111					NEMTF	
Sandyville M-182	89					NEMTF	
Coal Creek							
Pleasantville M-183	1,297	1,300	.047/.120	33/13	7/2.7	Three Cell Lagoon Not Applicable	10.7 acres
Des Moines River							
Camp Creek							
Mitchellville M-184	1,341	1,500	.085/.150	35/25	6/4.3	Imhoff Tank & Trick ling Filter	- Built in 1954 -
						land or Land Fill	a service a service se Service service s
Ditch						• • • • • •	
IA Highway Comm. Rest Stop S-84			NA	One Cell Lagoon Not Applicable	Seasonal discharge
Camp Creek							· · · · · · · · · · · · · · · · · · ·
Thomas Mitchell Park S-85			NA			One Cell Lagoon Not Applicable	Seasonal discharge

1 3

	_		Effluent			Treatment Type	Comments
Discharger (Réf. No.)	1970 Pop.	Design P.E.	Flow (mgd) Average/Design	$\frac{BOD_5}{(mg/1)/(1b/day)}$	$\frac{\text{Ammonia}-N}{(mg/1)/(1b/day)}$	Sludge Disposal	
<u></u>				(mg/1)/(10/00)/	(mg/ 1// (10/ dd/)	······································	······································
Des Moines River							
Calhoun Creek							
Prairie City M-185	1,141	2,400	.370/.208	25/77	NA	Two Cell Lagoon	3.2 acres
		*				Not Applicable	
Des Moines River							
Brush Creek							
Monroe M-225	1,389	408	.040/.031	40/13	NA	One Cell Lagoon	4.21 acres
Des Moines River						Not Applicable	
Des nomes River							7
Elk Rock State Park S-108	NA		NA	NA	NA	Multi Complex. Total Retention	four separate lagoon facilities to serve State
						Lagoon Not Applicable	Park.
						NOC APPLICADIC	
White Breast			· 2			·.	
IA Highway Comm.			NA/.004			One Cell Lagoon	
S-86						NOT Applicable	
Osceola M-186-1	3,124*	18,000	.573/.550	51/243	10/48	Two Cell Lagoon One Small aerated	S. plant 20 acres, plant over loaded by industrial wastes.
						Lagoon	discharge occurs after 5
· · ·						Not Applicable	working days at flow of 1.925 MGD for 2 days.
Osceola M-186-2	3,124*	3,000	.19/.225	46/73	23/36	Trickling Filter	E. Plant
	•					Wet Haul to Farm-	
				ж		Talla	Total retention
Champlain Pet. Co. I-85						Lagoon Not Applicable	

*City's Total Population

	1970	Design	Flow (mgd)	Effluent BOD ₅	Ammonia-N	Treatment Type Sludge Disposal	Comments
Discharger (Ref. No.)	Pop.	P.E.	Average/Design	(mg/1)/(1b/day)	(mg/1)/(lb/day)	·	····
R & R Campground S-87		.	NA			One Cell Lagoon Not Applicable	
Woodburn M-187	186				400 000 000	NEMTF	
Lucas M-188	247		177 PO 778			NEMTF	
Williamson M-189	216					NEMTF	
Mill Branch Creek							
Lacona Oil Co. I-86		 .	NA			None	Car wash - oil and grease
Lacona M-190	424	540	.034/.081	25/7	2/.6	Two Cell Lagoon Not Applicable	7.61 acres - D.T. = 82 days const. 1964
White Breast							
Winn Branch							
C.D. Hess & Son Rock I-88			NA			None	Quarry dewatering
Competine Creek							
Knoxville STP M-191	7,755	12,500	.606/1.25	25/126	10/50	Trickling Filter <u>& Disinfection</u> Wet Haul to Farm- land	
Knoxville WTP S-88			NA			None	Filter backwash water
Red Rock Lake View Subdivision S-89	,		NA			One Cell Lagoon Not Applicable	81 Lots

Table V-2 DISCHARGE INVENTORY

	×.			Effluent		Treatment Type Comments		
	1970	Design	Flow (mgd)	BOD	Ammonia-N	Sludge Disposal	COMMETER	
Discharger (Ref. No.)	Pop.	P.E.	Average/Design	(mg/1)/(1b/day)	(mg/1)/(1b/day)			
Unnamed Tributary								
Knoxville V.A. Hospital S-90			.186/.250			Trickling Filter <u>& disinfection</u> Dry Haul to Farm- land	Plant to be abandoned, sewage to go to municipal plant.	
Marion County Home S - 91	<u> </u>					Lagoon Not Applicable	Total retention lagoon	
Sents Creek								
Pella STP M-192	NA		.054/.043	31/14	3/1.35	Imhoff tank & <u>Trickling Filter</u> Dry Haul to Farm-	South West Plant Const. 1949.	
						Talld		
Pella WTP S-92			0.028/NA			None	Filter backwash water	
Vermeer Mfg. Co. I-90			NA			Septic tank to holding pond Unknown	Lagoon planned for future	
English Creek								
Tracy Creek								
Melcher M-193	913	1,259	.10/.1259	33/28	5/4	Two Cell Lagoon Not Applicable	10.7 acres	
Dallas M-194	438						To Melcher Lagoon	
English Creek						18		
Harvey M-195	217			·		NEMTF		
Kaser Const. Co. I-91			NA			None	Quarry dewatering, discolored discharge, SW ¹ 4 Sec. 4-T 75 - R 18W.	
Kaser Const. Co. I-92			NA			None	Quarry dewatering Sec. 8- T 15 - R 18W.	

Table V-2 DISCHARGE INVENTORY

				Effluent			Comments
Discharger (Ref. No.)	1970 Pop.	Design P.E.	Flow (mgd) Average/Design	$\frac{BOD_5}{(mg/1)/(1b/day)}$	Ammonia-N (mg/l)/(lb/day)	Sludge Disposal	
Des Moines River						···	
Pella Limestone Co. I-93			NA			Holding Pond	Pond is adequate for solids settling NE4 Sec. 18 - T 15-
Cedar Creek	,						K 1/W.
Melrose M-196	192					NEMTF	
Marysville M-197	91				· · · · ·	NEMT F	
Pershing Utilities Corp. I-94			.0001/NA			None	Iron Filter backwash
N. Coal Creek							
S. Coal Creek							
Lovilia M-198	640	656	.012/.065	32/3	4/.4	Two Cell Lagoon Not Applicable	5.5 acres
Lovilia WTP S-93			.006/NA			None	Filter backwash water
Hamilton M-199	186					NEMTF	
Twin Cedar Comm. School S-110	400	100	NA/.013	NA	NA	One Cell Lagoon	Triangular shaped Lagoon
Bussey M-200	498	200	NA/.02	52/22	NA	One Cell Lagoon Not Applicable	
Bluff Creek							
Monroe Co. Park S-94			NA/.0002	NA	NA	One Cell Lagoon Not Applicable	

				Effluent		Treatment Type	Comments
	1970	Design	Flow (mgd)	BOD5	Ammonia-N	Sludge Disposal	
Discharger (Ref. No.)	Pop.	P.E.	Average/Design	(mg/1)/(1b/day)	(mg/1)/(1b/day)		
Des Moines River							
Martin Marietta Corp. I-95			NA	·		None	Quarry Dewatering Sec. 36 - T 74 - R 16.
(Eddyville)	٠.						
Grays Creek							
Kasser Const. Co.			.005/NA			Settling pond	Quarry Dewatering
1-90							
Des Mornes River							
Concrete Mat. Div. I-97			NA	·		Holding ponds	Ponds are adequate $S\frac{1}{4}$, Sec. 36, T 74, R 16W.
Muchakinock Creek							
Leighton M-201	140					NEMTF	
Beacon M-202	431	718	.023/.072	33/6	12/2.3	<u>Two Cell Lagoon</u> Not Applicable	Built 1967, 4.23 acres
Little Muchakinock Cr	eek						
Oskaloosa M-203	240	1,560	.051/.05	25/11	6/2.6	Aerated Lagoons Not Applicable	2 acres D.T. = 15.8 days S. Plant
Oskaloosa M-204	6,000	12,000	.410/.810	50/171	16/55	Activated sludge, disinfection	S.W. Plant
						Dry Haul to Land Fill	
Hacherts Mobile Home S-95		6 9 -				<u>One Cell Lagoon</u> Not Applicable	Total Retention
Mahaska Bottling I-98			NA		"en est en	No Treatment	Required to go to municipal STP

•		,		Effluent		Treatment Type	Comments
	1970	Design	Flow (mgd)	BODr	Ammonia-N	Sludge Disposal	
Discharger (Ref. No.)	Pop.	P.E.	Average/Design	(mg/1)/(lb/day)	(mg/1)/(1b/day)		
Kaser Const. Co. I-99	·		NA			None	Has no Natural Resources Water Permit NW4, Sec. 12, T 74, R 16W.
		• •					· · · · · · · · · · · · · · · · · · ·
Clow Corp. I-100			0.013/NA			None	Cooling water discharge
Miller Creek							
Albia M-205	NA	1,307	.114/.137	93/88	14/13	Imhoff tank, <u>trickling Filter</u> Dry Haul Farm- land	Built 1952, S.W. plant, total 1970 Albia population is 4,151.
Albia M-206	NA	6,500	.273/.634	53/121	20/46	<u>Trickling Filter</u> Dry Haul to Farm- land	Built 1965, N. plant.
Chamberlain Mfg. I-101			NA			None	
IA Southern Utilities I-102			1.3/.39			Septic tank, ash basin Unknown	Cooling tower and septic tank discharge to ash basin.
Des Moines River							
Eddyville M-207	970	1,100	.138/.138	59/64	8/9	Two Cell Lagoon Not Applicable	8.25 acres built 1968
Unnamed Tributary							
Kirkville M-208	222		·			NEMTF	
South Avery							
Chillicothe M-209	126					NEMTF	
Des Moines River						•	
Material Service I-103			NA			None	Quarries operation & dewater- ing NE4, Sec. 23, T 72, R 14W

Table V-2 DISCHARGE INVENTORY

			Effluent			Treatment Type	Comments
	1970	Design	Ign Flow (mgd)	BOD ₅	Ammonia-N	Sludge Disposal	
Discharger (Ref. No.)	Pop.	P.E.	Average/Design	(mg/1)/(1b/day)	(mg/1)/(1b/day)		
Bear Creek							
Chicago, Milwaukee, St. Paul, & Facific R.R. I-104	 c		.002/NA			0il separation tanks	
Woodland Hills MHP S-96		a	NA			One Cell Lagoon	
Des Moines River							
Ottumwa WTP S-97			0.13/NA			None	Filter backwash water, lim sludge.
Ottumwa STP M-210 2	29,610	NA	2.18/5.5	23/418	4/127	Trickling Filter, disinfection Disposal to Land	Plant modification just completed.
Rabbit Run MHP S-98			NA/0.013	NA	NA	Extended Aeration Unknown	Package extended aeration unit.
George A. Hormel & Co. I-105		-	TEMPOH	RARILY CLOSED		Oxidation Ditch Disposal to Land	The Morrell Pack facilitie will be used by Hormel.
Martin Marietta Corp. I-106			NA			None	Sand plant
Des Moines River							
Chippewa Creek							
Eldon WTP S-99			.007/NA			None	
Des Moines River							
Eldon M-211	1,319	1,300	NA/.130	NA	NA	Two Cell Lagoon	16 acres

Table	V-2
DISCHARGE	INVENTORY

			Effluent			Treatment Type	Comments
	1970	Design	Flow (mgd)	BOD5	Ammonia-N	Sludge Disposal	
Discharger (Ref. No.)	Pop.	<u>P.E.</u>	Average/Design	(mg/1)/(1b/day)	(mg/l)/(lb/day)		· · · · · · · · · · · · · · · · · · ·
Soap Creek							
			052/ 05/	20/12		Two Cell Lagoon	Area unknown
Moravia M-212	699	666	.053/.054	30/15		Not Applicable	
S. Soap Creek							
Sundown Lake			NA/.049			One Cell Lagoon	
Devel. S-100							
Little Soap							
Blakesburg M-213	403					NEMTF	Three cell lagoon planned.
Soap Creek							
Floris M-214	145					NEMTF	
Stump Creek							
Kaser Const. Co. I-107			NA			None	Quarry dewatering NW4, Sec. 16, T 70, R 11W.
Des Moines River							
Douds Stone, Inc. (Gardner Quarry) I-113			.100/NA			None	Quarry dewatering Sec. 16 - 17, T 70, R 11W.
Unnamed Tributary							
Kaser Const. Co. I-108			NA			None	Quarry dewatering Sec. 19-20, T 70, R 11W.
Des Moines River							
Doude Stone Inc			.100/NA			None	Quarry dewatering Sec 35,
(Nedrow Quarry) I-114			• 1007 1				T 70, R 11W.
Douds Mine I-109			.180/NA		,	Settling Pond	Quarry dewatering only Sec. 25. T 70. R 11W.

				Effluent		Treatment Type	Comments
	1970	Design	Flow (mgd)	BODs	Ammonia-N	Sludge Disposal	
Discharger (Ref. No.)	Pop.	P.E. ·	Average/Design	(mg/1)/(1b/day)	$\overline{(mg/1)/(1b/day)}$		
					· · · · · · · · · · · · · · · · · · ·		
Lick Creek							
Libertyville M-215	329					NEMTF	
Chequest							
Burnshatt Guppon			NT A	1		One Cell Lagoon	
Club T-110			NA		<i>.</i>	Not Applicable	
						not npp1100010	
Douds Stone, Inc.			.100/NA			None	Quarry dewatering Sec. 16,
(Lewis Quarry)	· •						T 70, R 12W.
I-111							
·							
Des Moines River							
······································							
Unnamed Creek							
Keosaugua WTP S-101			NΔ			None	
Reosauqua arr b ror							- * *
Des Moines River							
<u></u>							
Keosauqua M-216 1	,018	1,270	.079/.127	36/24	2/1	Two Cell Lagoon	10.6 acres, placed into
						Not Applicable	operation in 1968.
	- / ->					NEMTE	Maste stabilization 3 cell
Bonaparte M-217	547					NEUL E	lagoon is planned.
							ragoon to pramou
Big Indian Creek							,
210 2110101 01000							
Triangle Quarries	and the state	·	NA		1.9 Las (***	None	Quarry dewatering
I-112							
						1	
Des Moines River							
Formington M_919	800					NEMTE	<u>.</u>
raimington m-210	000					ATTACAL A	
Harmony Comm H S			NA/.010			Single Cell Lagoon	
S-102			• • • • •			Not Applicable	

		•		Effluent		Treatment Type	Comments
	1970	Design	Flow (mgd)	BOD5	Ammonia-N	Sludge Disposal	
Discharger (Ref. No.)	Pop.	P.E.	Average/Design	(mg/1)/(1b/day)	(mg/1)/(1b/day)		·
Sugar Creek							·
Donnellson M-219	798	960	.078/.072	26/17	13/8	Imhoff Tank, <u>Trickling Filter</u> Open Drying Beds	Built in 1936
Sugar Valley Campground S-103			NA		 ,	One Cell Lagoon Not Applicable	
Main Creek	÷						
Argyle School S-104	 .	⁻	NA			Septic Tank Unknown	Effluent discharge into farm field
Central High School S-105			NA		55 tas 55	<u>One Cell Lagoon</u> Not Applicable	
** Al	breviati	ions used :	include:				и
Ar BC Ci	mmonia-N DD ₅ = Fix Es = Cubi	= Ammonia ve Day Bio ic feet pe	-Nitrogen chemical Oxygen De r second	NEMTF = No emand P.E. = Pop Pop. = Pop	Existing Municipal T ulation Equivalent ulation	Freatment Facility	
CC D.	D = Chen D = Dra	nical Oxygo ainage Dito	en Demand ch	R. = Range Ref. No. =	Reference Number		
ga ga	.T. = Det al. = gal	Llons	ne	Sec. = Sec.	tion		
11	$s_{\bullet} = pot$	inds		$S_*S_* = Sus$	pended Solids		
mg mg	za = m113 z/1 = m13	ligrams p	er liter	T = Townsh	ip		
M	IP = Mobi	ile Home Pa	ark	WTP = Wate	r Treatment Plant		

NA = Not Available

TABLE V-3

DES MOINES RIVER BASIN POINT SOURCE WASTEWATER DISCHARGE SUMMARY

2012/02 2012/02	Municipal	Semipublic	Industrial
Blue Earth River			
Flow (mgd)	0.10	87 <u>-</u>	5
%Total flow	100	_	2020 a 1 <u>2</u> 2
BOD_{-} (lbs/dav)	29	-	_
%Total BOD_	100	-	112110
Ammonia-N (lbs/day)	7	_	-
%Total ammonia-N	100	-	요즘 주도 만들어 다.
West Fork Des Moines Riv	er		
Flow (mgd)	3 224	0.01	7 460
STOTAL FLOW	30	1	69
BOD (lbs/day)	2555	_	463
%Total BOD-	85		15
Ammonia-N (lbs/day)	641	-	
%Total Ammonia-N	100		
East Fork Des Moines Riv	er		
Flour (mgd)	1 200	0 022	0.27
Flow (mga)	1.300	0.023	0.37
STOTAL LIOW	555		21
STOFAL BOD	100	_	
Ammonia-N (lbs/day)	88		_
%Total Ammonia-N	100		
Boone River			
boone kiver			
Flow (mgd)	2.986	0.280	11.748
%Total flow	20	2	78
BOD ₅ (lbs/day)	823	-	
%Total BOD5	100		
Ammonia-N (lbs/day)	349	· · · · · · · · · · · · · · · · · · ·	
%Total Ammonia-N	100		
Upper Main Stem Des Moin	es River		
Flow (mgd)	7.694	0.557	3,96
%Total flow	63	5	32
BOD_ (lbs/dav)	2490	167	789
%Total BOD-	72	5	23
Ammonia-N (lbs/dav)	839	and the second	
%Total Ammonia-N	100		
	and the second	14	
----------------------------	--	------------	---
	Municipal	Semipublic	Industrial
Raccoon River			en andre Manager i en mente en richmene andre men
Flow (mad)	9.054	0.302	5,689
%Total flow	60	2	38
BOD_{-} (lbs/dav)	2345	429	436
%Total BOD_	84	15	392
Ammonia-N (lbs/dav)	815	1	· <u>-</u>
%Total Ammonia-N	99.9	0.1	
Middle River			
Flow (mgd)	1.135	0.281	<u> </u>
%Total flow	80	20	_
BOD _r (lbs/day)	244	—	— , • • •
%Total BOD ₅	100		
Ammonia-N (lbs/day)	36	-	· · · · · ·
%Total Ammonia-N	100	а. -	
Lower Main Stem Des Moi	nes River		
	······································		
Flow (mgd)	48.288	1.890	151.627
%Total flow	24	0.1	76
BOD_ (lbs/day)	12,209	9	· 0
%Total BOD ₅	99.9	1	0
Ammonia-N (lbs/day)	4,320	1	3
%Total Ammonia-N	99.8	0.1	0.2

TABLE V-3 (CONTINUED)

MUNICIPAL WASTEWATER TREATMENT FACILITY PROCESS SUMMARY BY SUBBASIN

Type of Facility	No. of Facilities	Population Served
Blue Earth River		
Two Cell Lagoon Total	1	$\frac{1,118}{1,118}$
No Treatment	3	949
West Fork Des Moines River		
Single Cell Lagoon Three Cell Lagoon Trickling Filter Imhoff-Trickling Filter Total	2 1 3 1	1,674 384 16,878 <u>865</u> 19,801
No Treatment	9	1,429
East Fork Des Moines River		
Single Cell Lagoon Imhoff Tank Trickling Filter Total	6 1 4	3,834 1,103 <u>8,035</u> 12,972
No Treatment	5	830
Boone River		
Single Cell Lagoon Two Cell Lagoon Three Cell Lagoon Trickling Filter Total	2 2 1 4	1,147 1,215 380 <u>17,518</u> 20,260
No Treatment	3	982
Upper Main Stem Des Moines River*		
Single Cell Lagoon Two Cell Lagoon Trickling Filter Activated Sludge Total	5 7 8 1	2,1463,73254,44071061,028
No Treatment	9	4,206

*Main Stem of Des Moines River above Raccoon River Confluence

	No. of	Population
Type of Facility	Facilities	Served
Raccoon River		
Single Cell Lagoon Two Cell Lagoon Three Cell Lagoon Imhoff Tank Septic Tank Trickling Filter Imhoff-Trickling Filter Total	1 16 1 2 16 7	$270 \\ 12,858 \\ 378 \\ 1,225 \\ 453 \\ 46,843 \\ \underline{6,438} \\ 68,470 \\ \hline \end{tabular}$
No Treatment	20	5,172
Middle River		
Two Cell Lagoon Three Cell Lagoon Trickling Filter Imhoff-Trickling Filter Total	2 1 2 1	665 561 8,661 <u>750</u> 10,637
No Treatment	5	932
Lower Main Stem Des Moines River*		
Single Cell Lagoon Two Cell Lagoon Three Cell Lagoon Four Cell Lagoon Trickling Filter Activated Sludge Imhoff-Trickling Filter Total	2 16 2 1 11 1 2	3,900 11,512 5,297 2,246 266,059 6,000 2,139 297,153
No Treatment	21	5,286

TABLE V-4 (CONTINUED)

*Main Stem of the Des Moines River below Raccoon River Confluence

DES MOINES RIVER BASIN MUNICIPAL WASTEWATER TREATMENT FACILITY PROCESS SUMMARY

Type of Facility	Communities	Served	Population Serve	ed
Trickling Filter	48		418,439	_
Activated Sludge	2		6,710	
Single Cell Lagoon	18		12,971	
Two Cell Lagoon	44		31,100	
Three Cell Lagoon	6		7,000	
Four Cell Lagoon	1		2,246	
Septic Tank	2		453	
Imhoff Tank	2		2,328	
Imhoff Tank-				
Trickling Filter	11		10,192	
Total	134		491,439	
NEMTF*	86		19,786	

*No Existing Municipal Treatment Facilities

CHAPTER VI - WASTE LOAD ALLOCATIONS AND RANKING

Using a computer methodology, effluent limitations required for dischargers to meet Iowa Water Quality Standards within the basin were determined. Waste load allocation analyses were performed assuming projected 1990 wastewater discharges at the 7-day, 1-in-10 year low flow under both summer and winter conditions. Analyses were performed on streams classified either A, B, or C with existing wastewater discharges. Some considerations that went into the analysis are discussed below. A detailed description of the computer methodology and the assumptions used can be found in the Supporting Document (1). The waste load allocations are listed in Table VI-1. The effluent limitations for all dischargers in the Des Moines River Basin not appearing in Table VI-1 is either secondary treatment or BPT.

Considerations

Four basic considerations go into the selection of the specific effluent limitations for any given discharge. These involve secondary treatment as defined by the EPA and the DEQ, best practicable control technology currently available (BPT), applicable water quality standards, and Iowa's antidegradation requirement.

<u>Secondary Treatment</u> - The Act requires that all publicly owned treatment works shall, by July 1, 1977, achieve, as

	Stream	1990	Summ	er	Win	ter
Discharger (Reference Number)	Flow (MGD)	Discharger (MGD)	BOD5 (mg/1)/(lbs/day)	Ammonia-N (mg/1)/(lbs/day)	BOD5 (mg/1)/(lbs/day)	Ammonia-N (mg/l)/(lbs/day)
Blue Earth River						
None						
Des Moines River		,				
West Fork Des Moines River			•		•	
Wadco Foods, Inc. <u>5</u> / (I-1)	0.31					
Estherville (M-5)	0.31	2.51	30/628	2/42	10/209	2/42
Morrell and Co. <u>5</u> / (I-3)	0.31					
Graettinger (M-8)	3.12	Controlle	d Discharge			
Emmetsburg (M-9)	3.71	0.55	30/138	10/45	10/45	2/9

WASTE LOAD ALLOCATIONS

1/ As given on NPDES permit.

2/ BOD and ammonia discharge quantities should be in accordance with final standard industrial classification, "Best Practicable Waste Treatment Technology."

3/ Quarry dewatering and rock washing. No reported BOD or ammonia. Flow from quarry will be low or zero during low flow periods.

4/ Reported value of existing discharge.

5/ Discharge expected to be connected to city sewerage system.

	Stream	1990 Summer		Win	ter	
Discharger (Reference Number	Flow (MGD)	Discharger (MGD)	BOD5 (mg/1)/(lbs/day)	Ammonia-N (mg/1)/(lbs/day)	BOD5 (mg/1)/(lbs/day)	Ammonia-N (mg/l)/(lbs/day)
Emmetsburg Rendering Works (I-5)	3.71		CLOSEI)		
West Bend (M-13)	5.19	0.076	30/19	10/6	30/19	15/10
Rolfe (M-17)	5.47	Controlled	Discharge			
P & M Stone <u>3</u> / (I-6)	5.53					
Humboldt (M-20)	5.64	0.926	30/232	10/77	30/232	9/68
East Fork Des Moines River						
Armstrong (M-22)	0.0	Controlled	Discharge			
Swea City (M-23)	0.0	Controlled	Discharge			
Bancroft (M-24)	0.0	Controlled	Discharge			
Burt (M-25)	0.0	Controlled	Discharge			
Titonka (M-26)	0.0	.057	30/14	10/5	30/14	15/7
Ringsted (M-27)	0.0	Controlled	Discharge			
Oak Lake Development (S-106)	1.04	Controlled	Discharge			
Algona (M-30)	3.40	0.900	30/225	9/68	30/225	6/45

		Stream	1990	Summe	r	Winter		
Discharger (Reference Number)		Flow (MGD)	Discharger (MGD)	BOD5 (mg/1)/(lbs/day)	Ammonia-N (mg/1)/(lbs/day)	BOD5 (mg/1)/(lbs/day)	Ammonia-N (mg/l)/(lbs/day)	
Burr Oak Manor (S-11)		3.40	0.011	30/3	10/1	30/3	15/1.4	
Livermore (M-31)		.42	Controll	ed Discharge				
Lotts Creek								
Whittemore (M-32)		.07	0.151	30/38	2/2.5	30/38	2/2.5	
Bode (M-33)		.41	Controlle	ed Discharge				
East Fork Des Moines Ri	ver							
Dakota City (M-36)		6.1	0.042	30/11	10/3.5	30/11	15/5	
Des Moines River								
Corn Belt Power Coop (1-8)	<u>4</u> /	12.14	30.00	1.0/	0.2/	1.0/	0.2/	
Farmegg Production, (I-14)	Inc.	12.30	Complete 1	Retention System				
Badger (M-38)		12.36	Controlled	l Discharge				
Hormel & Co. (I-20)	<u>4</u> /	13.03	0.315	5/	1/	5/	0/	
Fort Dodge Creamery (I-21)	<u>2</u> /	13.03	0.200	Cooling Water Discharg	e			
American Can Co. (I-22)	<u>2</u> /	13.03	0 . 020	Cooling Water Discharg	e (
Fort Dodge (M-45)		13.03	4.322	30/1081	8/228	30/1081	4/144	

	Stream	1990	Sum	ner	Winter	
Discharger (Reference Number)	Flow (MGD)	Discharger (MGD)	BOD5 (mg/1)/(lbs/day)	Ammonia-N (mg/1)/(lbs/day)	BOD5 (mg/1)/(1bs/day)	Ammonia-N (mg/1)/(lbs/day)
I B P (I-25)	17.92	Controlled	Discharge			
Land O' Lakes, Inc. (I-24)	17.92	0.576	15/72	2/10	15/72	2/10
Savage S.D. (M-46)	18.53	0.05	30/13	10/4	30/13	15/6
Webster Processing Co. (I-28)	18.53	Complete	Retention System			
United States Gypsum Co. (I-27)	<u>4</u> / 18.53	0.223	5/9	0/	5/9	0/
National Gypsum (I-29)	<u>4</u> / 18.53	0.078	10/	1/	10/	1/
0tho (M-47)	18.53	Controlle	d Discharge			
Farmland Industries (I-31)	18.90	Controlle	d Discharge			
Lehigh (M-48)	19.05	Controlle	d Discharge			
Dickey Clay Mfg. (I-33)	<u>5</u> / 19.05	0.050				
Boone River						
Corwith (M-51)	0.0	Controlle	d Discharge			
Britt (M-52)	0.0	0.23	30/58	10/19	30/58	2/4
Renwick (M-55)	0.23	Controlle	d Discharge			
Goldfield (M-57)	0.23	Controlle	d Discharge			

	Stream	1990 Discharger (MGD)	Summer		Winter	
Discharger (Reference Number)	Flow (MGD)		BOD5 (mg/1)/(lbs/day)	Ammonia-N (mg/l)/(lbs/day)	BOD5 (mg/1)/(lbs/day)	Ammonia-N (mg/1)/(lbs/day)
Boone Valley Coop (I-35)	0.23	0.155	10/13	2/3	10/13	2/3
Iowa Public Service <u>4</u> / (I-36)	0.23	0.016	5/	0/	5/	0/
Eagle Grove (M-59)	0.23	0.560	30/140	2/9	30/140	2/9
Clarion (M-60)	0.96	0.28	30/70	2/5	30/70	2/5
Franklin Mfg. <u>5</u> / (I-37)	1.24					
Webster City (M-62)	1.24	2.06	30/515	2/34	30/515	2/34
Des Moines River						
Stratford (M-63)	23.31	0.070	30/18	10/6	30/18	15/9
Dayton (M-64)	23.44	0.174	30/44	10/15	30/44	15/22
Boone Co. Home (S-22)	23.70	Controlle	d Discharge			
Episcopal Center & Conference Camp (S-23)	23.70	0.007	30/2	10/.6	30/2	15/.9
Boone (M-68)	26.33	2.407	30/602	10/201	30/602	5/100
Camp Laurie (S-21)	28.85	Controlle	d Discharge			
Woodward St. Institution (S-27)	28.85	0.20	30/50	10/17	30/50	15/25
Sheldahl (M-221)	29.23	Controlle	d Discharge			
Polk City (M-71)	29.23	Controlle	d Discharge			

WASTE LOAD ALLOCATIONS

	Stream	1990	Sum	ner	Winter		
Discharger (Reference Number)	Flow (MGD)	Discharger (MGD)	BOD ₅ (mg/1)/(1bs/day)	Ammonia-N (mg/1)/(lbs/day)	BOD ₅ (mg/1)/(lbs/day)	Ammonia-N (mg/l)/(lbs/day)	
Ankeny Ind. (M-154-2)	133.26	0.130	30/33	10/11	30/33	15/16	
Beaver Creek							
Grand Junction (M-117)	0	0.040	30/10	10/3	30/10	15/5	
Ogden (M-73)	0	0.176	30/44	10/15	30/44	15/22	
Woodward (M-75)	0.28	Controlle	d Discharge				
Town & Country, Inc. (S-32)	0.28	Controlle	d Discharge				
Granger (M-77)	0.28	Controlle	d Discharge				
Grimes (M-78)	1.91	0.131	5/11	2/2	5/11	2/2	
Beaver Valley <u>5</u> / Canning Co. (I-43)	1.91						
Urbandale S.D. (M-79)	2.64	0.875	5/36	2/15	5/36	2/15	
Des Moines River							
Ankeny W. (M-154-1)	133.26	1.707	30/427	10/142	30/427	15/213	
Mid-Continent <u>1</u> / Industries	133.35	0.05	25/10	/	25/10	/	
(1-45)							
North Raccoon River							
Rembrandt	0	Controlle	d Discharge				

(M-82)

		Stream	1990	1990 Summer		Summer Win	iter
Discharger (Reference Number)		Flow (MGD)	Discharger (MGD)	BOD ₅ (mg/1)/(lbs/day)	Ammonia-N (mg/l)/(lbs/day)	BOD ₅ (mg/1)/(1bs/day)	Ammonia-N (mg/l)/(lbs/day)
Albert City (M-82)		0.01	0.085	30/21	10/7	30/21	8/6
Iowa Public Service Company (I-48)	<u>4</u> /	0.10	0.016	5/	1/	5/	1/
Storm Lake (M-84)		0.10	3.090	30/773	3/77	30/773	2/51
Storm Lake Industrial (M-85)	<u>5</u> /	0.10					
Country Village MHP (S-37)		0.10	Controlle	d Discharge			
Vilas & Company (I-49)	<u>4</u> /	0.10	0.099	0/	0.5/	0/	0.5/
Vista Prod. <u>(</u> I-50)		0.10	0.18	30/45	2/3	No Discharge	
Sac City (M-87)		3.49	0.28	30/70	10/23	30/70	2/5
Laurens (M-89)		3.77	0.160	30/40	10/13	30/40	2/3
Mefferd Industries (I-52)	<u>2</u> /	3.77	0.008				
Fonda (M-91)		3.77	0.093	30/23	10/8	30/23	2/2
Newell (M-92)		3.77	0.092	30/23	10/8	30/23	2/2
Lake View (M-93)		4.43	0.229	30/57	10/19	30/57	4/8
Lytton (M-96)		5.30	Controlle	d Discharge			
Pomeroy		6.06	Controlle	d Discharge			
(M-98)							

	Stream	1990	Sum	mer	Winter		
Discharger (Reference Number)	Flow (MGD)	Discharger (MGD)	BOD5 (mg/l)/(lbs/day)	Ammonia-N (mg/l)/(lbs/day)	BOD ₅ (mg/1)/(1bs/day)	Ammonia-N (mg/1)/(lbs/day)	
Rockwell City (M-99)	6.06	0.277	30/69	10/23	30/69	7/16	
Rockwell City Women's Reformatory (S-43)	6.06	Controlle	d Discharge				
Lake City N. (M-100)	6.06	0.095	30/24	10/8	30/24	7/6	
Lake City S.W. (M-101)	6.06	0.084	30/21	10/7	30/21	7/5	
Manson (M-103)	8.39	Controlle	d Discharge				
Rinard (M-106)	8.39	0.008	30/2	10/1	30/2	15/1	
Lohrville (M-107)	8.39	0.056	30/14	10/5	30/14	15/7	
Scranton (M-108)	8.77	0.065	30/16	10/5	30/16	15/8	
Jefferson (M-109)	8.95	0.606	30/152	10/51	30/152	6/30	
Farnhamville (M-110)	10.53	Controlle	d Discharge				
Churdan (M-111)	10.53	Controlle	d Discharge				
Callender (M-112)	11.49	Controlle	d Discharge	· · · · .			
Gowrie (M-113)	11.49	0.081	30/20	10/7	30/20	15/10	
Rippey (M-119)	12.07	Controlle	d Discharge				

Discharger (Reference Number)	Stream Flow (MGD)	1990 Discharger (MGD)	Summer		Winter			
			BOD ₅ (mg/1)/(lbs/day)	Ammonia-N (mg/l)/(lbs/day)	BOD5 (mg/1)/(lbs/day)	Ammonia-N (mg/l)/(lbs/day)		
Oscar Mayer & Co. (I-56)	13.42	1.233	33/339	9/93	33/339	4/41		
Perry (M-121)	12.18	1.378	30/345	10/115	30/345	2/23		
Iowa Electric Light <u>2</u> / & Power (I-57)	13.42	0.002						
Minburn (M-122)	14.91	Controlle	Controlled Discharge					
Adel (M-124)	15.17	0.224	30/56	10/19	30/56	15/28		
South Raccoon River								
Guthrie Center (M-125)	2.22	0.196	30/49	10/16	30/49	15/25		
Dedham (M-128)	3.98	Controlle	d Discharge					
Stuart (M-129)	6.38	0.203	30/50	10/17	30/50	15/25		
Middle Raccoon River								
Breda (M-130)	0	Controlled Discharge						
Carroll (M-131)	0.84	1.075	30/269	10/90	30/269	5/45		
Carroll Rendering Works (I-52)	0.84	0.080	33/22	25/17	33/22	10/7		
Iowa Public Service Co. <u>4</u> / (I-61)	0.84	0.025	1/	1/	1/	1/		

		Stream Flow (MGD)	1990 Discharger (MGD)	Summer		Winter	
Discharger (Reference Number)				BOD ₅ (mg/1)/(lbs/day)	Ammonia-N (mg/l)/(lbs/day)	BOD ₅ (mg/1)/(1bs/day)	Ammonia-N (mg/l)/(lbs/day)
Lidderdale (M-132)		3.09	Controlle	d Discharge			
Coon Rapids (M-134)		3.95	0.088	30/22	10/7	30/22	15/11
Glidden (M-135)		6.58	0.068	30/17	10/6	30/17	15/8
Panora (M-138)		10.22	Controlle	d Discharge			
Bagley (M-140)		10.22	0.039	30/10	10/5	30/10	15/5
South Raccoon River							
Redfield (M-142)		16.37	Controlle	d Discharge			
Norther Iowa Gas Co. (I-52)	<u>2</u> /	17.98					
Earlham (M-143)		18.01	Controlle	d Discharge			
Gendler Ston Co. (I-64)	<u>2</u> /	1801					
DeSoto (M-144)		18.48	Controlle	d Discharge			
Raccoon River							
Van Meter (M-145)		32.64	Controlle	d Discharge			
Waukee (M-146)		32.92	Controlle	d Discharge			
Dallas Center (M-123)		14.91	0.258	30/65	10/22	30/65	15/32

Discharger (Reference Number)	Stream	1990 Discharger (MGD)	Summer		Winter	
	Flow (MGD)		BOD5 (mg/l)/(lbs/day)	Ammonia-N (mg/l)/(lbs/day)	BOD ₅ (mg/1)/(lbs/day)	Ammonia-N (mg/1)/(lbs/day)
Skelly 011 Company <u>2</u> / (I-65)	33.4					· · ·
American Oil Company <u>2</u> / (1-66)	33.48					
Des Moines River						
Des Moines (M-150)	175.29	40.77	10/3400	2/680	30/10201	4/1360
Slater (M-152)	216.72	Controlle	ed Discharge			
Ankeny E. (M-153)	216.72	2.992	30/749	10/250	30/749	15/375
Altoona (M-155)	216.72	1.513	30/379	10/126	30/379	15/189
Southeast Polk Comm. Sch (S-73)	001 216.72	0.013	30/3	10/1	30/3	15/2
Pleasant Hill (M-156)	223.85	0.220	30/55	10/18	30/55	15/28
Middle River						
Adair (M-164)	0.27	0.076	30/19	10/6	30/19	15/10
Casey (M-165)	0.27	0.059	30/15	10/5	30/15	15/7
Winterset (M-166)	0.41	0.446	10/37	3/11	10/37	3/11
Martensdale (M-169)	0.45	Controlle	ed Discharge			
Truro (M-171)	0.45	Controlle	ed Discharge			

TABLE VI-1 WASTE LOAD ALLOCATIONS

	Stream Flow (MGD)	1990 Discharger (MGD)	Summer		Winter	
Discharger (Reference Number)			BOD5 (mg/1)/(lbs/day)	Ammonia-N (mg/1)/(lbs/day)	BOD5 (mg/l)/(lbs/day)	Ammonia-N (mg/l)/(lbs/day)
Indianola N. (M-174)	1.24	1.034	10/86	2/17	10/86	3/26
Hartford MHP (S-80)	2.28	Controlle	d Discharge			1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 -
Des Moines River		. •				
Sugar Creek						
Donnellson (M-219)	0.0	0.111	10/9	2/2	10/9	2/2
Sugar Valley Campground (S-103)	.111	Controlle	d Discharge			
Argyle School (S-104)	.111	Controlle	d Discharge			
Central High School (S-105)	.111	Controlle	d Discharge			

a minimum, secondary treatment. No municipal discharge is, therefore, allowed an effluent limitation less stringent than secondary treatment. Secondary treatment has been defined by the EPA and the DEQ as having the following concentrations in the effluent: 30 mg/l BOD₅, 30 mg/l suspended solids; or not less than 85 percent removal of BOD₅ and suspended solids; and 200 most probable number/100 ml fecal coliforms.

<u>BPT</u> - The Act requires that all point sources other than publicly owned treatment works shall, by July 1, 1977, achieve as a minimum, "best practicable control technology currently available" (BPT). No industrial discharge is, therefore, allowed an effluent limitation less stringent than BPT. BPT for various industrial processes is defined by the EPA in their industrial development documents.

Applicable Water Quality Standards - The ultimate reason for requiring any effluent limitation is the protection of water quality. The Iowa Water Quality Standards are designed to ensure a reasonable degree of protection. All discharges are, therefore, required to meet effluent limitations stringent enough to assure that water quality standards will be met. Where secondary treatment or BPT is not sufficient to meet the applicable water quality standards, a higher level of treatment is required.

<u>Antidegradation</u> - A policy on antidegradation has been adopted by the DEQ to assure that in those places where water quality significantly exceeds that of the standards, the present condition shall be maintained. New dischargers locating in areas of high quality water may, therefore, be required to meet effluent limitations more stringent than secondary treatment or BPT, even though a lesser degree of treatment might be sufficient to meet water quality standards.

ALLOCATION RESULTS

The waste load allocations are based upon a mathematical model. Based upon the available data, the model predicts stream quality when given the existing wastewater discharges. For the initial simulation, all discharges were assumed to meet either secondary treatment or BPT. Where the model indicated violations of Iowa Water Quality Standards, more stringent effluent limitations were imposed until standards were met. Both winter and summer conditions were evaluated in determining the waste load allocations for the study areas.

Upper Des Moines River

<u>Summer Conditions</u> - Dissolved oxygen and ammonia nitrogen concentration profiles for the West and East Fork Des Moines River, Lotts Creek, Boone River, and the main stem of the Upper Des Moines River are shown in Figures VI-1 to VI-5. The water quality criteria for dissolved oxygen is met in all sections of the streams with secondary treatment. The BOD waste load allocations are thus the same as secondary treatment. In order to meet the water quality criteria for ammonia nitrogen the communities of Estherville, Algona, Fort Dodge, Eagle Grove, Clarion, and Webster City must provide a level of ammonia removal exceeding that of secondary treatment.

<u>Winter Conditions</u> - Dissolved oxygen and ammonia nitrogen concentration profiles for sections of the Upper Des Moines

WT 20

River under winter conditions are shown in Figures VI-6 to VI-10. Secondary treatment or BPT for BOD are sufficient to meet the water quality criteria for dissolved oxygen, with the exception of the City of Estherville, which must provide more advanced BOD treatment. Ammonia removal exceeding that of secondary treatment will be necessary for the discharges from Estherville, Emmetsburg, Humboldt, Algona, Whittemore, Fort Dodge, Britt, Eagle Grove, Clarion, Webster City, and the City of Boone in order to meet the water quality criteria for ammonia nitrogen.

Raccoon River

<u>Summer Conditions</u> - Dissolved oxygen concentration profiles for the South Raccoon River, Middle Raccoon River, North Raccoon River, and Raccoon River are shown on Figures VI-11 and VI-12. The water quality criteria for dissolved oxygen is met in all sections of the streams with secondary treatment. The BOD waste load allocations are thus the same as secondary treatment.

Ammonia nitrogen concentration profiles are shown on Figures VI-13 and VI-14 for the South Raccoon River, Middle Raccoon River, North Raccoon River, and Raccoon River.

The ammonia nitrogen waste load allocations required to meet stream standards are equivalent to secondary for all dischargers with the exception of the community of Storm Lake and the Oscar Mayer plant at Perry. Only these two

VI-24

VI-25

MIDDLE RACCOON RIVER

RACCOON RIVER

ą

discharges must provide ammonia removal exceeding that of secondary treatment.

<u>Winter Conditions</u> - Dissolved oxygen concentration profiles for the South Raccoon River, Middle Raccoon River, North Raccoon River, and Raccoon River are shown on Figures VI-15 and VI-16. The water quality criteria for dissolved oxygen is met in all sections of the streams with secondary treatment. The BOD waste load allocations are thus the same as secondary treatment.

Ammonia nitrogen concentration profiles for the streams under winter low flow conditions are shown on Figures VI-17 and VI-18. The water quality criteria for ammonia nitrogen is met for all classified sections of the stream for given waste load allocations. With only secondary treatment, ammonia nitrogen concentrations in the stream violate stream quality criteria. Ammonia nitrogen concentrations within the streams are not reduced as appreciably in the winter as during the summer because of the lack of bio-oxidation of ammonia at low temperatures.

The water quality criteria for ammonia nitrogen can be met by secondary treatment of all wastewater discharges with the exception of two areas. The community of Carroll on the Middle Raccoon River and all communities along the North Raccoon River; with the exception of Lohrville, Rinard, Scranton, Gowrie, and Adel must provide ammonia removal exceeding that of secondary treatment to meet water quality standards.

VI-33

RACCOON RIVER

FIGURE VI-17 AMMONIA NITROGEN CONCENTRATIONS WINTER CONDITIONS

FIGURE VI-18 AMMONIA NITROGEN CONCENTRATIONS WINTER CONDITIONS

Lower Des Moines River (below Saylorville Dam)

<u>Summer Conditions</u> - Dissolved oxygen and ammonia nitrogen concentration profiles for the Des Moines River, Beaver Creek, and the Middle River are shown on Figures VI-19, VI-20, and VI-21.

Secondary treatment or BPT is sufficient to meet the water quality criteria for dissolved oxygen and ammonia nitrogen with the exception of the cities of Des Moines, Grimes, Winterset, and Indianola (north plant) and the Urbandale Sanitary District which must provide both BOD and ammonia removal exceeding that of secondary treatment.

<u>Winter Conditions</u> - Dissolved oxygen and ammonia nitrogen concentration profiles for the Des Moines River, Beaver Creek, and the Middle River are shown on Figures VI-22, VI-23, and VI-24. Secondary treatment or BPT is sufficient to meet the water quality criteria for dissolved oxygen and ammonia nitrogen with the following exceptions: the cities of Grimes, Winterset, and Indianola (north plant) and the Urbandale Sanitary District must provide both BOD and ammonia nitrogen removal exceeding that of secondary treatment while Des Moines must provide only higher level ammonia nitrogen removal.

Special Note

Grimes and Urbandale were modeled at the seven-day ten-year low flow (7Q10). However, at 7Q10 the upper Beaver Creek is a dry run. Therefore, the Beaver Creek was also modeled at higher flow where the discharges from Ogden and Grand Junction reach the mouth of the creek. Figures VI-19, VI-20, VI-22, and VI-23 show this higher flow.

FIGURE VI-19 DISSOLVED OXYGEN CONCENTRATIONS SUMMER CONDITIONS

DES MOINES RIVER

FIGURE VI-22 DISSOLVED OXYGEN CONCENTRATIONS WINTER CONDITIONS

DES MOINES RIVER

-1 \

FIGURE VI-23 AMMONIA NITROGEN CONCENTRATIONS WINTER CONDITIONS

DES MOINES RIVER

SEGMENT CLASSIFICATION

From the waste load allocation analyses a classification of stream segments is possible. Segment classification is a contributing factor in the determination of the segment ranking, discharger ranking, and compliance scheduling. The two segment types are described as follows:

- 1. An effluent limited (EL) segment is any segment whose water quality is meeting and will continue to meet standards, or where there is adequate demonstration that standards will be met after application of secondary treatment or BPT to all point discharges to the segment.
- 2. A water quality limited (WQ) segment is the segment whose water quality does not currently meet applicable standards, and is not expected to meet standards even after application of secondary treatment or BPT to all point discharges to the segment.

The classification of the stream segments in the Des Moines River Basin are listed in Table VI-2. The water quality limited segments are shown in Figures VI-25, VI-26 and VI-27. All segments which are not designated as water quality limited are currently considered to be effluent limited.

DES MOINES BASIN STREAM SEGMENT RANKING

			WQ/		P	RIOR	ITY	CRIT	ERIA			TOTAL	PRIORITY
RANK	RIVER	STREAM SEGMENT	EL*	A	BC	BW	<u>C</u>	BC	AES	POP	<u>sq</u>	POINTS	POINTS
1	Des Moines River	Raccoon River to Red Rock Dam	WQ	2	0	1	0	1	1	2.0	4.0	30.00	29
2	Des Moines River	Boone R. to Saylorville Dam	WQ	2	0	1	0	1	1	1.5	4.0	28.00	28
3	Middle Raccoon R.	South Carroll County Line to South Fork Confluence	EL	2	0	1	2	1	1	1.0	3.0	25.50	27
4	Des Moines River	Red Rock Dam to Ottumwa	EL	2	0	1	2	1	0	2.0	2.5	21.25	26
5	Boone River	(entire length)	WQ	0	0	1	0	1	0	1.5	5.0	20.00	25
6	Lower Raccoon R.	North Fork to Des Moines R.	EL	0	0	1	2	1	0	2.0	3.0	19.50	24
7	Des Moines River	E. and W. Fork to Ft. Dodge	EL	2	0	1	0	1	0	2.0	3.0	19.50	23
8	Des Moines River	Ft. Dodge to Boone River	WQ	0	0	1	0	1	0	2.0	4.0	18.00	22
9	North Raccoon R.	Big Cedar Creek to Green- Carroll County Line	WQ	0	0	1	0	1	0	0.5	6.0	18.00	21
10	W.F. Des Moines R.	(entire length)	WQ	0	0	1	0	1	0	1.0	5.0	17.5	
11	North Raccoon R.	Above Big Cedar Creek	WQ	0	0	1	0	1	0	1.0	5.0	17.50	19
12	Des Moines River	Saylorville Dam to Raccoon R.	EL	2	0	1	0	1	0	2.0	2.5	16.25	18
13	Des Moines River	Ottumwa to Koekuk	EL	2	0	1	0	· 1	0	2.0	2.5	16.25	
14	North Raccoon R.	Greene - Carroll County Line to Main Stem Confluence	WQ	0	0	1	0	1	0	1.5	4.0	16.00	16

DES MOINES BASIN STREAM SEGMENT RANKING

			WO/		P	RIOR	ITY	CRIT	ERIA			TOTAL	PRICRIT
RANK	RIVER	STREAM SEGMENT	EL*	A	BC	BW	<u>C</u>	BC	AES	POP	<u>sq</u>	POINTS	POINTS
15	Middle River	(entire length)	WQ	0	0	1	0	1	0	1.5	4.0	16.00	15
16	Beaver Creek	Polk Co. Line to Des Moines R.	WQ	0	0	1	0	0	0	2.0	4.0	14.00	14
17	Middle Raccoon R.	Above S. Carroll County Line	WQ	0	0	1	0	1	0	1.0	4.0	14.00	13
18	E.F. Des Moines R.	Above Lotts Creek	WQ	0	0	1	0	.1	0	1.0	4.0	14.00	12
19	Big Cedar Creek	(North Raccoon River)	WQ	0	0	0	0	1	0	1.0	5.0	12.50	11
20	E.F. Des Moines R.	Lotts Creek to Confluence	EL	0	0	1	0	1	0	1.0	3.0	10.50	10
21	South Raccoon R.	S&M Fork Confluence to N.Fork	EL	0	0	1	0	1	0	1.0	3.0	10.50	9
22	Lotts Creek	(entire length)	WQ	0	0	1	0	0	0	0.5	4.0	8.00	8
23	South Raccoon R.	Above S&M Fork Confluence	EL	0	0	1	0	1	0	0.5	2.5	7.50	7
24	Sugar Creek	(entire length)	WQ	0	0	1	0	0	0	0.0	4.0	6.00	6
25	Beaver Creek	Above Polk County Line	WQ	0	0	0	0	0	0	0.0	4.0	2.00	5
26	North River	(entire length)	EL	0	0	0	0	0	0	0.0	2.5	1.25	4
27	South River	(entire length)	EL	0	0	0	0	0	0	0.0	2.5	1.25	3
28	White Breast Cr.	(entire length)	EL	0	0	0	0	0	0	0.0	2.5	1.25	2
29	Blue Earth River	(entire length)	EL	0	0	0	0	0	0	0.0	2.5	1.25	1

*Water Quality or Effluent Limited

PRIORITY RANKINGS

Stream Segment Ranking

The Des Moines River Basin has been divided into various stream segments. Each stream segment consists of surface waters that have common hydrologic characteristics and natural, physical, chemical, and biological processes. The segments have been ranked in order of abatement priority. The ranking methodology has attempted to take into account: (1) severity of pollution problems, (2) population affected, (3) need for preservation of high quality waters, and (4) national priorities.

The total points for a segment are determined from a product of the points earned in each of two factors. The formula weighs both the degree of usefulness of a segment and the severity of the pollution problem. The specific details and rationale used for the segment ranking methodology have been described in Chapter I.

Table VI-2 lists the stream segments selected, their respective priority points, and their final ranking. Figures VI-25 VI-26, and VI-27 show the stream segments.

Table VI-3 lists the reductions in waste load that can be achieved by the waste load allocations.

Municipal Discharger Ranking Methodology

The significant municipal dischargers in the basin have been ranked to be consistent with the segment priority ranking and

TABLE VI-3

WASTE LOAD REDUCTIONS

		Pr	esent	Project	ed (1990)	Load
Dischargers	Reference	Flow	lbs.Eff.	Flow	lbs.Eff.	Reduction
	Number	(mgd)	BOD5/NH3	(mgd)	BOD5/NH3	BOD/NH3
Blue Forth Rive	r					
Dide haren kive	<u>·</u>					
Ledyard	M- 1	NEMT F		0.024	6/3	4/
Lakota	M- 2	NEMTF		0.04	10/5	4/
Buffalo Center	M- 3	0.100	P.S.`	C.D.		
Rake	M- 4	NEMT F		0.032	8/4	4/
Segment Total					24/12	<u>4</u> /
West Fork Des N	loines River					
Estherville	M- 5	.025	2280/557	2,51	209/42	2071/515
Gruver	M- 6	NEMT F		C.D.	C.D.	
Wallingford	M- 7	NEMT F		C.D.	C.D.	
Graettinger	M- 8	0.185	P.S.	C.D.	C.D.	
Emmetsburg	M- 9	0.222	74/28	0.55	45/9	29/19
Avrshire	M-10	NEMTF		C.D.	C.D.	
Cvlinder	M-11	NEMT F		C.D.	C.D.	
Rodman	M-12	NEMT F			·	
West Bend	M-13	0.077	35/7	0.076	19/10	$16/-\frac{4}{-1}$
Curlew	M-14	NEMTF				/
Mallard	M-15	NA		.0384	C.D.	
Polver	M-16	NEMTF				
Rolfe	M-17	0.032	P.S.	C.D.	C.D.	
Bradgate	M-18	NEMT F				
Rutland	M-19	NEMTF		C.D.	C.D.	4/
Humboldt	M-20	0.683	114/46	0.926	232/54	4/
Segment Total			2503/638		505/115	2116/534
East Fork Des M	loines River					
Armstrong	M-21	0.089	P.S.	C.D.	C.D.	
Dolliver	M-22	NEMT F				
Swea City	M-23	0.047	P.S.	C.D.	C.D.	
Bancroft	M-24	0.099	66/18	C.D.	C.D.	66/18
Burt	M-25	0.157	P.S.	C.D.	C.D.	
Titonka	M-26	0.056	P.S.	C.D.	C.D.	
Ringsted	M-27	0.043	P.S.	C.D.	C.D.	
Fenton	M-28	NEMT F		C.D.	C.D.	
Lone Rock	M-29	NEMTF				4/
Algona	M-30	0.552	184/37	0.900	225/45	4/
Livermore	M-31	0.033	P.S.	C.D.	C.D	
Segment Total			250/55		225/45	66/18

		P1	resent	Project	ed (1990)	Load
Dischargers	Reference	Flow	lbs.Eff.	Flow	lbs.Eff.	Reduction
	Number	(mgd)	BOD5/NH3	(mgd)	BOD5/NH3	BOD/NH3
Lotts Creek						
Whittemore	M-32	0.251	157/4	0.150	38/3	119/1
Bode	M-33	0.017	<u>P.S.</u>	C.D.	<u>C.D.</u>	
Segment Total			157/4		38/3	119/1
East Fork Des M	Moines River					
Ottosen	M-34	NEMTF				
Hardy	M-35	NEMTF				1.1
Dakota City	M-36	0.044	13/4	0.042	11/5	2/_=
Segment Total			13/4		11/5	$2/-\frac{4}{-2}$
0						·
Des Moines Rive	er					
Pocahontas	M-40	0.236	79/12	0.324	81/41	4/
Havelock	M-39	NEMTF		.0262	7/4	$\frac{1}{4}$
Gilmore City	M-41	0.087	P.S.	C.D.	C.D.	· · · · · ·
Clare	M-42	NA	P. S.	C.D.	C.D.	
Palmer	M-225	NEMTE		0.028	7/4	4/
Barnum	M-43	NEMTE		C.D.	.,, , С. П.	<u> </u>
Moorland	M-44	NEMTF		.032	8/4	<u>4</u> /
Segment Total			79/12		103/53	<u>4</u> /
Des Moines Rive	er					
· · · · · · · · · · · · · · · · · · ·						4/
Fort Dodge	M-45	3.367	1067/421	4.322	1081/144	- - ⁻ /277
Ia. Beef Proc.	I-25	1.00	1580/900	NA	C.D.	1580/900
Savage S.D.	M-46	C.D.	NA	C.D.	C.D.	
Otho	M-47	0.057	P.S.	C.D.	C.D.	
Farmland Ind.	I-31	0.60	50/88	NA	C.D.	50/88
Leigh	M-48	0.047	P.S.	C.D.	C.D.	
Vincent	M-49	C.D.	P.S.	C.D.	C.D.	
Duncombe	M-50	0.022	P.S.	C.D.	<u>C.D.</u>	· · · ·
Segment Total			2697/409		1081/144	1630/1265

		Pr	esent	Projec	ted (1990)	Load
Dischargers	Reference	Flow	lbs.Eff.	Flow	lbs.Eff.	Reduction
	Number	(mgd)	BOD5/NH3	(mgd)	BOD5/NH3	BOD/NH3
Boone River						
Corwith	M-51	0.023	P.S.	C.D.	C.D	
Britt	M-52	0.242	80/4	0.230	58/4	22/0
Wesley	M-53	NEMT F		C.D.	C.D.	
Luverne	M-54	C.D.		C.D.	C.D.	
Renwick	M-55	0.076	P.S.	C.D.	C.D.	
Kanawha	M-56	0.083	P.S.	C.D.	C.D.	
Goldfield	M-57	0.024	P.S.	C.D.	C.D.	
Thor	M-58	NEMT F		C.D.	C.D.	
Eagle Grove	M-59	0.682	283/109	9.560	140/9	143/100
Clarion	M-60	0.261	131/35	0.208	70/5	61/30
Woolstock	M-61	NEMTF		C.D.	C.D.	1.1
Webster City	M-62	1.582	330/198	2.06	515/34	_=/164
Segment Total			824/346		783/52	226/294
Des Moines Rive	er					
Stratford	M-63	0.060	13/5	0.070	18/9	4/ 4/
Dayton	M-64	0.150	50.8	0.174	44/22	6/-=
Fraser	M-65	NEMTF				
Boxholm	M-66	NEMT F		C.D.	C.D.	
Pilot Mound	M-76	NEMTF		C.D.	C.D.	
Boone	M-68	1.99	697/199	2.407	602/100	95/99
Luther	M-69	NEMTF				
Madrid	M-70	0.198	58/21	0.004	65/32	4/
Plains Poultry	I-41	0.01	9/	NA	3/	6/
Polk City	M-71	0.070	P.S.	C.D.	C.D.	
Ankeny Ind.	M-154-2	To E	e Included	in M-15	4-1 Needs	
Segment Total			827/233		732/163	107/99
Beaver Creek						
Beaver	M-72	NEMTF				1.1
Grand Junction	M-117	0.040	12/1	0.040	10/2	2/-=
Ogden	M-73	0.342	100/34	.176	44/22	56/12
Berkley	M-74	NEMTF				
Woodward	M-75	0.084	P.S.	C.D.	C.D.	
Bouton	M-76	NEMTF				
Segment Total			112/35		54/24	58/12

		Pre	sent	Project	ted (1990)	Load
Dischargers	Reference	Flow	lbs.Eff.	Flow	lbs.Eff.	Reduct ion
	Number	(mgd)	BOD5/NH3	(mgd)	BOD5/NH3	BOD/NH3
Beaver Creek						
Granger	M-77	0.060	P.S.	C.D.	C.D.	
Grimes	M-78	0.10	25/4	0.131	33/8	4/
Johnston	M-224	NEMTF		0.50	1/	<u> </u>
Urbandale S.D.	M-79	0.30	65/25*	0.875	/	
Segment Total			90/29		33/8	57/21 ^{2/}
Des Moines Rive	<u>er</u>					
Ankeny W.	M-154-1	0.517	151/86	1.707	38/3-1/	
Segment Total			151/86		38/3 <u>1</u> /	113/83 <u>2</u> /
North Raccoon R	liver					
Marathon	M-80	NEMT F		0.48	12/6	4/
Rembrandt	M-81	0.015	P.S.	C.D.	C.D.	
Albert City	M-82	0.080	25/7	0.085	12/6	4/1
Truesdale	M-83	NEMTF				4/
Storm Lake	M-84	1.516	506/164	3.090	773/51	4/348
Storm Lake	M-85	1.046	218/235			
Hy-Grade		To Be	Included	in Stor	m Lake 201	Plan
Lakeside	M-86	То Ве	Included	in Stor	m Lake 201	Plan
Nemaha	M-88	NEMTF				
Sac City	M-87	0.270	90/25	0.28	70/5	_20/20
Segment Total			839/431		876/68	/369
North Raccoon R	River					
Cedar Creek						
Laurens	M-89	0.160	53/17	0.160	40/3	13/14
Varina	M-90	NEMTF				
Fonda	M-91	NA	40/5	0.093	23/2	17/34/
Newell	M-92	0.087	25/5	0.092	23/12	
Segment Total			118/27		86/17	32/17

· · · · · · · · · · · · · · · · · · ·		Pr	esent	Projec	ted (1990)	Load
Dischargers	Reference Number	Flow (mgd)	lbs.Eff. BOD5/NH3	Flow (mgd)	lbs.Eff. BOD5/NH3	Reduction BOD/NH ₃
North Raccoon H	River					
	M 02	0 21 0	15/10	0 220	57/0	$\frac{4}{10}$
Lake view	M-93	U.ZIO	45/18	0.229	5770	/10
Auburn Jollow	M-94 M-05	NEMTE		·U•D•	C.D.	
Jutton	M-95 M-96	0.157	D C	с р	с р	
Vetter	M-97	NEMTE	1.0,			
Pomerov	M-98	0.073	P.S.	C. D.	C.D.	. 1
Rockwell City	M-99	0.264	66/35	0.277	69/16	$-\frac{4}{7}/19$
Lake City N.	M-100	0.090	23/8	0.095	24/6	$\frac{4}{-\frac{4}{2}}$
Lake City S W	M-101	0.084	23/7	0.084	21/5	2/2
Lanesboro	M-102	NEMTE		C.D.	C. D.	-/-
Comment Total			157/69	0.00	171/25	4/
Segment local			121/00		1/1/33	/ 55
North Raccoon H	River					
Manson	M-103	0.110	P.S.	C.D.	C.D.	
Knierim	M-104	NEMT F				
Somers	M-105	NEMT F				41
Rinard	M-106	0.003	1/1	0.008	2/1	<u>-</u> =/10
Lohrville	M-107	0.053	13/4	0.056	14/7	4/
Scranton	M-108	0.065	19/10	0.065	16/8	3/2
Jefferson	M-109	0.485	162/55	0.606	152/30	10/25
Farnhamville	M-110	0.110	P.S.	C.D.	C.D.	
Churdan	M-111	0.028	P.S.	C.D.	C.D.	
Callender	M-112	0.02	P.S.	C.D.	C.D.	4/
Gowrie	M-113	NA	41/8	0.081	20/10	21/=-
Harcourt	M-114	NEMT F		C.D.	C.D.	
Paton	M-115	NEMTF		C.D.	C.D.	
Dana	M-116	NEMT F				
Jamaica	M-118	NEMTF		C.D.*	C.D.	*
Rippey	M-119	0.012	P.S.	C.D.	C.D.	
Dawson	M-120	NEMT F		C.D.	C.D.	4/
Perry	M-121	1.052	307/70	1.378	345/23	-=/47
Oscar Mayer	I-56	0.90	563/525	1.233	339/41	224/484
Minburn	M-122	NA	P.S.	C.D.	C.D.	
Adel	M-124	0.400	100/37	0.224	56/28	44/9
Segment Total			1206/710		944/148	302/567

· · · · · · · · · · · · · · · · · · ·		Pr	esent	Projec	ted (1990)	Load
Dischargers	Reference	Flow	lbs.Eff.	Flow	lbs.Eff.	Reduction
	Number	(mgd)	BOD ₅ /NH ₃	(mgd)	BOD5/NH3	BOD/NH3
Couth Decesor I						
South Raccoon F	lver					
Guthrie Center	M-125	0.186	54/20	0.196	49/25	5/ <u>-</u> 4/
Arcadia	M-126	NEMT F		C.D.	C.D.	·
Halbur	M-127	NEMTF		0.024	6/3	4/
Dedham	M-128	0.009	P.S.	C.D.	C.D.	
Stuart	M-129	0.201	42/22	0.203	50/25	<u>4/</u>
Segment Total			96/42		105/53	<u>4</u> /
Middle Raccoon	River					
Breda	M-1 30	0 065	рс	CD	CD	0/39
Carroll	M-131	0.805	181/67	1.075	260/28	4/
Lidderdale	M-1 32	0.015	P.D.	C.D.	C.D.	/ 39
Willey	M-133	NEMTF				
Coon Rapids	M-134	0.081	17/6	0.088	_22/11	4/
Segment Total			198/73		291/39	<u>-4/</u> -=/ 39
Middle Raccoon	River					
c1 · 11	X 105	0 000	06/5	0.0(0	17/0	o <u>/4/</u>
Glidden	M-135 M-126	U.UU3 NEMTE	26/5	0.068	1//8	9/
Raiston	M-130 M 137	NEMPE		0 069	170	
Bayard	M 1 29	NEMI F		9.000	17.0	<u>4</u> /
Fanora	M-1.30 M-1.20	U.LOU NEMTE	r.5.		U.D. 10/5	. 1
	M-1.59	NEMI F	21 + /0+	0.040	10/5	$\frac{4}{4}$
Bagley	M = 140	•U30	21*/9*	.039	10/5	$\frac{4}{4}$
rale	M-141	NEMIF	<u>نیں</u> جنب سن سند 	0.032	8/4	4/
Segment Total			26/5		62/30	<u>4</u> /
South Raccoon H	River					
Redfield	M-142	0.062	P.S.	С.D.	C.D.	
Earlham	M-143	0.236	P.S.	C.D.	C.D.	
De Soto	M-144	0.060	P.S	C.D.	<u>C.D.</u>	
Segment Total						
Lower Raccoon F	<u>liver</u>					
Van Matar	M_1/5	0 033	חכ	C D	ĊD	
Vall recer	M_1/6	0.033	г. э. рс	съ.	с.р.	
Dallas Center	M-123	0.188	47/3	0.250	65/32	<u>4</u> /
Segment Total			47/3		65/32	<u>4</u> /

Carl Carl	Service of the service of the	Pr	esent	Project	ted (1990)	Load
Dischargers	Reference	Flow	lbs.Eff.	Flow	lbs.Eff.	Reduction
	Number	(mgd)	BOD5/NH3	(mgd)	BOD5/NH3	BOD/NH 3
Des Moines River						
Clive	M-147		to D.M.		1/	
West Des Moines	M-148		to D.M.		1/	
Windsor Heights	M-149		to D.M.		1/	
Des Moines #1	M-150	38.9	9733/3569	40.77	3400/680	6333/2889
Des Moines-C	M-222	NA		NA	1/	
Four Mile Creek						
Slater	M-152	.090	P.S.	C.D.	C.D.	
Allemen	M-227	0.01	NA	.0236	6/3	
Ankeny E.	M-153	0.910	228/61	2.992	1/	
Altoona	M-155	0.534	134/36	1.513	$\overline{\underline{1}}/$	
Des Moines River						
Pleasant Hill	M-156	0.110	33/8	0.220	1/	
Bondurant	M-175	0.047	P.S.	1.034	1/	
Runnells	M-176	NEMTF		0.048	12/6	4/
Pleasantville	M-183	0.047	P.S.	C.D.	C.D.	-
Mitchellville	M-184	0.085	25/4	0.176	44/22	4/
Prairie City	M-185	0.037	77/31*	0.140	35/17	42/14
Monroe	M-225	0.040	P.S.	C.D.	C.D.	4/
Knoxville	M-191	0.606	126/50	0.883	221/111	<u>4</u> /
Segment Total			10356/3759		3718/839	6375/2903
North River						
Menlo	M-157	NEMT F		0.04	10/5	4/
Dexter	M-158	NA	P.S.	C.D.	C.D.	-
Ia. Metro Sewer	M-160	0.100	31/7	C.D.	1/	
Norwalk	M-159		To M-160	.323	$\frac{\overline{1}}{1}$	
Highland Hills	M-151	0.525	175/70	NA	$\overline{\overline{1}}$	
Des Moines-B	M-223	NA L	Inder const.	NA	$\overline{1}/$	
Greenfield Plaza	M-161	0.350	P.S.	NA	1/	
Carlisle	M-163	0.104	P.S.	C.D.	C.D.	
Segment Total			206/77		<u>2</u> /	<u>4</u> /

		Pr	esent	Projec	ted (1990)	Load
Dischargers	Reference	Flow	lbs.Eff.	Flow	lbs.Eff.	Reduction
	Number	(mgd)	BOD5/NH3	(mgd)	BOD5/NH3	BOD/NH3
Middle River						
	26.161	0 057	10/0	0.076	10/10	, ,
Adair	M-164	0.057	19/3	0.076	19/10	$\frac{4}{4}$
Casey	M-165	0.022	5/1	0.059	15/7	4/
Winterset	M-166	0.032	75/16	0.446	37/11	38/5
Patterson	M-167	NEMTF		C.D.	C.D.	
Bevington	M-168	NEMTF				
Martensdale	M-169	NA	P.S.	C.D.	C.D.	
East Peru	M-170	NEMTF				
Truro	M-171	0.045	P.S.	C.D.	C.D.	
St. Charles	M-172	NEMTF		C.D.	C.D.	
Spring Hill	M-173	NEMTF		C.D.	C.D.	_4/
Indianola N.	M-174	0.651	136/16	1.034	86/26	50/
Segment Total			235/36		157/54	$\frac{4}{88/}$
begmente rotar			233730		137734	007
South River						
St. Marys	M-177	NEMTF				
New Virginia S	.D.M-178	0.028	P.S.	C.D.	C.D.	
Indianola S.	M-179	0.45	94/11	0.40	100/50	4/
Milo	M-180	NA	PS	C.D.	C. D.	<u></u>
Ackworth	M-181	NEMTE				
Sandywillo	M_182	NEMTE				
Sandyviile	11-102	MERIT				
Segment Total			94/11		100/50	4/
Ubita Preset C	r o o le					_
white breast c	reek					
Osceola	M-186-1	0.573	243/48	Ab	andon	
	M-186-2	0.19	73/36	1.0	250/125	66/4/
Woodburn	M-187	NEMTF				
Lucas	M-188	NEMTF		0.026	7/8	-4//4/
Williamson	M-189	NEMTF		0.023	6/3	-4/14/
Lacona	M-190	0.034	7/0.6	C.D.	C.D.	<u> </u>
Segment Total			323/85		263.136	66/4/
Des Moines Riv	er					
Pella S.W.	M-192	0.054	14/1	0,016	9/5	5/4/
Melcher	M-193	0.10	p c	C D		<u> </u>
Dallas	M-19/	0.10	To M-103	0.0.	To M-102	
Harvey	M-195	NEMTE		0.024	6/3	1.1
		TITTT.	and the second se	0.024	0/5	4/

	· · · · · · · · · · · · · · · · · · ·	P	resent	Projec	ted (1990)	Load
Dischargers	Reference	Flow	lbs.Eff.	Flow	lbs.Eff.	Reduction
	Number	(mgd)	BOD_5/NH_3	(mgd)	BOD ₅ /NH ₃	BOD ₅ /NH ₃
Des Moines Riv	er cont.					•
Melrose	M-196	NEMTE				
Marvsville	M-197	NEMTE				
Lovilia	M-198	0.028	P.S.	C.D.	C.D.	
Hamilton	M-199	NEMTF		C.D.	C.D.	
Bussey	M-200	NA	P.S.	C.D.	C.D.	
Leighton	M-201	NEMTF				
Beacon	M-202	0.023	P.S.	C.D.	C.D.	
Oskaloosa S.	M-203	0.052	11/3	0.092	23/11	4/
Oskaloosa S.W.	M-204	0.410	171/55	0.807	202/101	4/
Albia S.W.	M-205	0.114	88/13	To Be		88/13
				Abandone	d	
Albia N.	M-206	0.273	121/46	0.50	124/62	<u>4</u> /
Eddyville	M-207	0.138	P.S.	C.D.	C.D.	
Kirkville	M-208	NEMTF		0.028	7/4	<u>4/</u>
Chillicothe	м-209	NEMTF				<u>4</u> /
Segment Total			405/118		371/186	<u>4</u> /
Des Moines Riv	er					
Ottumwa	M-210	2.18	418/127	10.7	1786/893	4/
Eldon	M-211	NA	P.S.	C.D.	C.D.	······
Moravia	M-212	0.053	P.S.	C.D.	C.D.	
Blakesburg	M-213	NEMTF		0.052	13/7	4/
Floris	M-214	NEMTF	- -			4/
Libertyville	M-215	NEMTF		0.040	10/5	4/
Keosauqua	M-216	0.079	P.S.	C.D.	C.D.	
Bonaparte	M-217	NEMTF		0.052	13/7	<u>4</u> /
Farmington	M-218	NEMTF		0.084	21/11	4/
Segment Total			418/127		1786/893	<u>4</u> /
Sugar Creek						
Donnellson	M-219	0.078	17/8	0.111	9/2	8/6
Segment Total			17/8		9/2	8/6

P.S. - Partial Storage

C.D. - Controlled Discharge

* Engineering Estimate

1/ In accordance with 208 plan for Des Moines Metro Area. 2/ Not a true representative value because of lack of 201 or 208 plans. 3/ DEQ 1974 Need Survey.

 $\frac{1}{4}$ / Minor load increased due to increased population growth or new STP being constructed with increased flows.

to be subsequently used in establishing priorities and output estimates for municipal facilities construction. The relative significance of each discharger is determined by its total points as calculated by the discharger ranking formula. The specific details and rationale used for the municipal discharger ranking methodology have been described in Chapter I.

Table VI-4 lists the municipalities in the basin, their priority points, and their final ranking.

TABLE VI-4

			Discha	arge C	riter	ia		Segment	Priority
Rank	Municipality	A	<u>A</u> 2	<u>B</u> 1	<u>B</u> 2	\underline{D}_1	<u>D</u> 2	Points	Points
1	Estherville	60	50	.91	.92	21	18	24	160.44
2	Ankeny Ind.	60	40	.69	.50	14	12	28	105.39
3	Eagle Grove	50	30	.51	.92	16	12	25	98.72
4	Des Moines #1	20	20	.65	.81	25	25	29	94.77
5	Albia S.W.	60	20	.78	. 31	12	9	26	91.38
6	Clarion	50	30	.47	.86	14	12	25	90.80
7	Bagley	60	40	.52	.44	9	7	15	72.03
8	Bancroft	60	30	.62	.33	12	9	12	69.73
9	Storm Lake	30	40	.00	.87	16	18	18	68.59
10	Whittemore	60	1	.77	. 38	14	5	9	67.34
11	Ankeny S.W.	30	30	.00	.97	14	14	22	64.82
12	Emmetsburg	30	20	. 39	.68	12	12	24	62.71
13	Prairie City	20	20	.55	.45	12	12	29	60.91
14	Eddyville	50	10	.53	.00	12	7	26	58.94
15	Webster City	20	20	.00	.83	16	16	25	54.82
16	Boone	40	20	.14	.50	16	16	28	53.54
17	Sac City	30	20	.22	.80	12	9	18	50.53
18	Panora	30	30	.41	.48	9	9	15	49.67
19	Fort Dodge	30	20	.00	.66	18	18	20	45.00
20	Goldfield	40	10	.40	.00	5	1	25	43.00

	a de la composition de	a a tha a she and the second	Disch	arge C	riter	ia		Segment	Priority
Rank	Municipality	Al	<u>A</u> 2	<u>B</u> 1	<u>B</u> 2	\underline{D}_1	<u>D</u> 2	Points	Points
21	Laurens	30	20	.25	.82	12	9	8	42.18
22	Fonda	50	10	.43	.60	9	5	8	42.08
23	Rockwell City	20	30	.00	•54	12	12	19	41.80
24	Albia N.	50	30	.24	.00	14	12	26	41.36
25	Polk City	30	20	.30	.00	9	7	28	39.82
26	Donnellson	20	20	.47	. 75	7	7	6	38.96
27	Bondurant	40	20	.21	.00	7	5	29	38.89
28	Adel	20	20	.44	.24	12	12	16	37.86
29	Winterset	20	10	.51	. 31	12	9	15	37.15
30	Britt	30	1	.28	.00	12	5	25	36.55
31	Slater	50	20	.11	.00	9	9	29	35.55
32	Lake View	20	20	.00	.56	9	9	19	35.11
33	Ogden	30	20	.31	.53	12	12	5	34.96
34	Kanawha	30	1	.25	.00	9	0	25	34.75
35	Jefferson	30	20	.06	.45	14	14	16	34.17
36	Pella S.W.	30	10	.21	.00	7	1	26	33.93
37	Dayton	30	10	.12	.00	9	7	28	32.68
38	Farnhamville	20	10	.57	.00	9	5	16	32.39
39	Perry	30	10	.00	.67	16	14	16	32.11
40	Glidden	40	20	. 35	.00	9	5	15	31.96
41	Graettinger	30	1	.19	.00	12	5	24	31.78

	Municipality	· · · · · · · · · · · · · · · · · · ·	Discha	arge C	Segment	Priority			
Rank		\underline{A}_1	<u>A</u> 2	<u>B</u> 1	<u>B</u> 2	<u>D</u> 1	<u>D</u> 2	Points	Points
		<u></u>			<u></u>				
42	Des Moines Highland Hills	30	30	.38	.23	14	14	4	30.90
43	Gowrie	20	10	.51	.00	9	7	16	30.85
44	Rolfe	30	20	.18	.00	7	5	24	30.73
45	Corwith	30	11	.14	.00	7	0	25	30.29
46	Melcher	30	10	.11	.00	9	5	26	30.18
47	Pocahontas	30	10	.22	.00	12	9.	21	30.04
48	West Bend	30	10	.14	.00	9	5	24	29.32
49	Lake City S.W.	30	20	.09	.25	9	7	19	29.24
50	Scranton	30	30	.16	.20	7	7	16	29.24
51	Breda	30	10	.36	.00	9	5	15	29.18
52	Des Moines "C"	00	00	.00	.00	00	00	29	29.00
53	Ankeny E.	20	10	.00	.00	14	14	29	29.00
54	Knoxville	20	20	.00	.00	14	12	29	29.00
55	Altoona	20	10	.00	.00	14	12	29	29.00
56	Pleasant Hill	30	20	.00	.00	9	7	29	29.00
57	Mitchellville	30	10	.00	.00	9	5	29	29.00
58	Monroe	30	30	•00	.00	7	7	29	29.00
59	Runnells	00	00	.00	.00	00	00	29	29.00
60	Allemen	00	00	.00	.00	00	00	29	29.00
61	Madrid	30	20	.00	.00	12	9	28	28.00
62	Stratford	20	20	.00	.00	7	5	28	28.00

MUNICIPAL DISCHARGER RANKING

			Disch	arge C		Segment Pirori			
Rank	Municipality	A	<u>A</u> 2	<u></u> 1	<u>B</u> 2	<u>D</u> 1	<u> </u>	Points	Points
63	Sheldahl	00	00	.00	.00	00	00	28	28.00
64	Boxholm	00	00	.00	.00	00	00	28	28.00
65	Pilot Mound	00	00	.00	.00	00	00	28	28.00
66	Luther	00	00	.00	.00	00	00	28	28.00
67	Earlham	20	10	•56	.00	12	7	10	27.90
68	Burt	40	10	. 30	.00	12	7	12	27.79
69	Titonka	30	30	.13	.30	7	7	12	27.73
70	Indianola N.	20	10	.37	.00	14	9	15	27.50
71	Lytton	30	10	.19	•00	12	7	19	27.08
72	Carroll	20	20	.00	.33	14	14	15	26.16
73	Oskaloosa S.W.	40	30	.00	.00	14	14	26	26.00
74	Oskaloosa S.	20	10	.00	.00	7	5	26	26.00
75	Beacon	30	20	.00	.00	5	3	26	26.00
76	Lovilia	30	10	.00	.00	1	00	26	26.00
77	Bussey	20	20	.00	.00	3	3	26	26.00
78	Dallas	00	00	.00	.00	00	00	26	26.00
79	Kirkville	00	00	.00	.00	00	00	26	26.00
80	Harvey	00	00	.00	.00	00	00	26	26.00
81	Hamilton	00	00	.00	.00	00	00	26	26.00
82	Chillicothe	00	00	.00	.00	00	00	26	26.00
83	Lake City N.	20	20	.00	.25	9	7	19	25.75
84	Renwick	20	10	.00	.00	7	3	25	25.00

	Discharge Criteria							Segment	Priority
Rank	Municipality	<u>A</u> 1	<u>A</u> 2	<u>B</u> 1	<u>B</u> 2	<u>D</u> 1	<u>D</u> 2	Points	Points
85	Wesley	00	00	.00	.00	00	00	25	25.00
86	Luverne	00	00	.00	.00	00	00	25	25.00
87	Woolstock	00	00	.00	.00	00	00	00	25.00
88	Thor	00	00	.00	.00	00	00	25	25.00
89	Gilmore City	20	10	.14	.00	9	5	21	24.95
90	Humboldt	10	10	.00	.00	14	12	24	24.00
91	Mallard	00	00	.00	.00	00	00	24	24.00
92	Bode	40	10	. 33	.00	5	1	9	24.00
93	Wallingford	00	00	.00	.00	00	00	24	24.00
94	Ayshire	00	00	.00	.00	00	00	24	24.00
95	Rutland	00	00	.00	.00	00	00	24	24.00
96	Gruver	00	00	.00	.00	00	00	24	24.00
97	Cylinder	00	00	.00	.00	00	00	24	24.00
98	Waukee	20	20	.00	.00	9	9	23	23.00
99	Dallas Center	20	1	.00	.00	9	5	23	23.00
100	Van Meter	40	20	.00	.00	7	5	23	23.00
101	Osceola E.	30	30	.16	.35	9	12	2	22.69
102	Badger	30	20	.00	.00	5	5	21	21.00
103	Clare	00	00	.00	.00	00	00	21	21.00
104	Moorland	00	00	.00	.00	00	00	21	21.00
105	Havelock	00	00	.00	.00	00	00	21	21.00
106	Palmer	00	00	.00	.00	00	00	21	21.00

			Discha	arge C	riter		Segment	Priority	
Rank	Municipality	<u>A</u> 1	<u>A</u> 2	<u>B</u> 1	<u>B</u> 2	$\underline{\mathbf{D}}_{1}$	<u>D</u> 2	Points	Points
107	Barnam	00	00	.00	.00	00	00	21	21.00
108	Pomeroy	30	10	.05	.00	9	3	19	20.86
109	Otho	30	10	.00	.00	7	1	20	20.00
110	Lehigh	30	1	.00	.00	7	1	20	20.00
111	Savage S.D.	20	20	.00	.00	5	5	20	20.00
112	Duncombe	20	1	.00	.00	5	00	20	2.00
113	Vincent	00	00	.00	.00	00	00	20	20.00
114	De Soto	30	30	.07	.20	7	7	10	19.71
115	Manson	30	20	.00	.00	9	7	19	19.00
116	Auburn	00	00	.00	.00	00	00	19	19.00
117	Lanesboro	00	00	.00	.00	00	00	19	19.00
118	Somers	00	00	.00	.00	00	00	19	19.00
119	Rinard	20	20	.00	.00	00	00	19	19.00
120	Albert City	20	10	.00	.00	7	5	18	18.00
121	Rembrandt	20	30	.00	.00	3	3	18	18.00
122	Marathon	00	00	.00	.00	00	00	18	18.00
123	Lakeside	00	00	.00	.00	00	00	18	18.00
124	Ottumwa	20	10	.00	.00	16	16	17	17.00
125	Eldon	20	10	.00	.00	9	9	17	17.00
126	Keosauqua	30	1	.00	.00	9	1	17	17.00
127	Moravia	20	20	.00	.00	7	5	17	17.00
128	Farmington	00	00	.00	.00	00	00	17	17.00

				Discha	arge C	riter		Segment	Priority	
Rank	Municipality		<u>A</u> 1	<u>A</u> 2	<u>B</u> 1	<u>B</u> 2	<u>D</u> 1	<u>D</u> 2	Points	Points
129	Bonaparte	. <u> </u>	00	00	.00	.00	00	00	17	17.00
130	Blakesburg		00	00	.00	.00	00	00	17	17.00
131	Libertyville		00	00	.00	.00	00	00	17	17.00
132	Dakota City		30	20	.15	.00	7	5	11	16.69
133	Lohrville		20	20	.00	.00	7	5	16	16.00
134	Minburn		20	10	.00	.00	5	1	16	16.00
135	Churdan		20	10	.00	.00	5	1	16	16.00
136	Callender		20	20	.00	.00	1	1	16	16.00
137	Rippey		20	10	.00	.00	1	00	16	16.00
138	Paton		00	00	.00	.00	00	00	16	16.00
139	Harcourt		00	00	.00	.00	00	00	16	16.00
140	Jamaica		00	00	.00	.00	00	00	16	16.00
141	Dawson		00	00	.00	.00	00	00	16	16.00
142	Coon Rapids		20	20	.00	.00	7	7	15	15.00
143	Adair		40	10	.00	.00	7	5	15	15.00
144	Truro		20	20	.00	.00	5	5	15	15.00
145	Martensdale		20	10	.00	.00	5	3	15	15.00
146	Casey		20	10	.00	.00	3	00	15	15.00
147	Lidderdale		20	20	.00	.00	3	3	15	15.00
148	Bayard		00	00	.00	.00	00	00	15	15.00
149	Hartford		00 :	00	.00	.00	00	00	15	15.00

	Municipality	· ·····	Disch	arge C		Segment	Priority		
Rank		<u>A</u> 1.	<u>A</u> 2	<u>B</u> 1	<u>B</u> 2	<u>D</u> 1	<u>D</u> 2	Points	Points
150	St. Charles	00	00	.00	.00	00	00	15	15.00
151	Yale	00	00	.00	.00	00	00	15	15.00
152	Linden	00	00	.00	.00	00	00	15	15.00
153	Spring Hill	00	00	.00	.00	00	00	15	15.00
154	Patterson	00	00	.00	.00	00	00	15	15.00
155	Dexter	40	20	.21	.00	9	7	4	14.50
156	Osceola S.	50	20	.19	.00	14	12	2	14.42
157	Urbandale S.D.	20	20	.00	.00	12	9	14	14.00
158	Grimes	20	10	.00	.00	9	5	14	14.00
159	Granger	30	30	.00	.00	7	7	14	14.00
160	Johnston	00	00	.00	.00	00	00	14	14.00
161	Algona	30	10	.00	.00	14	12	12	12.00
162	Armstrong	20	1	.00	.00	9	7	12	12.00
163	Swea City	40	20	.00	.00	7	5	12	12.00
164	Ringsted	20	10	.00	.00	5	1	12	12.00
165	Livermore	20	1	.00	.00	5	00	12	12.00
166	Fenton	00	00	.00	.00	00	00	12	12.00
167	Newell	30	10	.08	.00	9	5	8	11.12
168	Guthrie Center	30	20	.09	.00	12	9	7	10.89
169	Redfield	30	10	.00	.00	9	5	10	10.00
170	Stuart	20	20	.00	.00	9	9	7	7.00
171	Dedham	20	20	.00	.00	1	3	7	7.00
TABLE VI-4 (continued)

MUNICIPAL DISCHARGER RANKING

			Discha	arge (riter	ia		Segment	Priority
Rank	Municipality	<u>A</u> 1	<u>A</u> 2	<u>B</u> 1	<u>B</u> 2	<u>D</u> 1	<u>D</u> 2	Points	Points
172	Arcadia	00	00	.00	.00	00	00	7	7.00
173	Halbur	00	00	.00	.00	00	00	7	7.00
174	Woodward	20	10	.00	.00	9	5	5	5.00
175	Grand Junction	30	1	.00	.00	7	0	5	5.00
176	Bouton	00	00	•00	.00	00	00	5	5.00
177	Des Moines Area B	00	00	.00	.00	00	00	4	4.00
178	Greenfield Plaza	00	00	•00	.00	00	00	4	4.00
179	Carlisle	20	1	.00	.00	9	1	4	4.00
180	Norwalk	00	00	.00	.00	00	00	4	4.00
181	Menlo	00	00	.00	.00	00	00	4	4.00
182	Cumming	00	00	.00	.00	00	00	4	4.00
183	Indianola S.	20	10	.00	.00	12	9	3	3.00
184	Pleasantville	30	10	.00	.00	7	5	3	3.00
185	Milo	50	40	.00	.00	1	3	3	3.00
186	New Virginia S.D.	20	20	.00	.00	5	3	3	3.00
187	Ackworth	00	00	.00	.00	00	00	3	3.00
188	Lacona	20	1	•00	.00	5	00	2	2.00
189	Lucas	00	00	.00	.00	00	00	2	2.00
190	Williamson	00	00	.00	.00	00	00	2	2.00
191	Woodburn	00	00	.00	.00	00	00	2	2.00
192	Buffalo Center	00	00	.00	.00	00	00	1	1.00
193	Ledyard	00	00	.00	.00	00	00	1	1.00

TABLE VI-4 (continued)

MUNICIPAL DISCHARGER RANKING

			Disch	arge (Criter	ia		Segment	Priority
Rank	Municipality	<u>A</u> 1	<u>A</u> 2	<u>B</u> 1	<u>B</u> 2	<u>D</u> 1	<u>D</u> 2	Points	Points
194	Lakota	00	00	.00	.00	00	00	1	1.00
195	Rake	00	00	.00	.00	00	00	1	1.00

REFERENCES

1. <u>Supporting Document For Iowa Water Quality Management</u> <u>Plans</u>, Iowa Department of Environmental Quality, Water Quality Management Division, Des Moines, Iowa 1976.

CHAPTER VII - NONPOINT POLLUTION SOURCES

Flow contributions into surface waters from sources other than readily identifiable domestic, industrial, commercial and institutional point discharges may have a substantial impact on water quality. The water resource may be adversely affected by nonpoint discharges associated with combined sewer overflows, urban and rural runoff, and agricultural waste.

GENERAL RURAL RUNOFF

Approximately 96 percent of the Des Moines River Basin is classified as agricultural land. The pollution potential of general rural runoff has been developed and related to specific conditions in the study area.

An estimation of the land use in each drainage area was developed using the 1970 <u>Iowa Conservation Needs Inventory</u>, (4). Land use acreages are listed in Table VII-1.

A detailed analysis was conducted to estimate nutrient losses within the study area. Nutrient loads in the basin were estimated based on sampling conducted below the Saylorville Dam (prior to closing). Actual nutrient loadings were measured. A significant relationship was found to exist between the flow and the nutrient concentration. The total annual nutrient load was then estimated based on the sampling analysis and

				Land Use	in Acres			
Hydrologic Unit	Cropland	Pasture	Forest	Federal	Urban	Small Water	Other	Total
W. Fork			<u></u>					
Des Moines	516,275	25,091	9,037	6	20,635	194	22,828	594,066
E. Fork					·			
Des Moines	646,558	32,798	9,160	1,342	26,119	459	24,225	740,691
Blue Earth	176,321	7,461	2,526	492	6,818	35	6,902	200,555
Boone	461,211	19,023	10,072	237	22,855	449	14,191	528,038
Upper	•	•			·		·	•
Des Moines	861,556	66,938	59,887	278	75,093	659	28,944	1,093,355
Raccoon	1,367,289	90,058	44,947	444	67,877	1,522	41,156	1,613,293
Middle & South		•	·		•	•	•	
Raccoon	513,173	88,847	48,369	291	22,666	1,299	23,054	697,699
North River	156,838	47,588	30,226	300	13,162	681	9,410	258,205
Middle River	214,000	63,895	37,098	475	16,245	928	13,803	346,444
South River	148,471	54,094	34,163	883	10,486	927	18,287	267,311
Lower	·		•				•	, ,
Des Moines	1,047,379	397,796	322,673	38,426	98,792	3,688	76,911	1,975,665
	6,109,071	893,589	608,158	33,174	380,748	10.841	279.741	8.315.322

LAND USE CLASSIFICATIONS

the flow duration curve for the Des Moines River at Saylorville. Point source loadings, based on EQAP data, were subtracted from the total loadings, yielding the nonpoint nutrient contribution.

The results of this analysis are shown in Table VII-2. Annual nitrogen and phosphorus losses were 10.87 and 1.35 lbs/acre respectively. Nonpoint runoff accounted for 98.3 percent of the nitrogen and 89.6 percent of the phosphorus in the river. The estimated nutrient loading for each hydrologic unit was then estimated based on the average annual loss per acre calculated for the Des Moines River above Saylorville (Table VII-3).

The 1970 <u>Conservation Needs Inventory</u> (4) was used to summarize treatment measures necessary to reduce surface runoff and limit soil losses to levels established by the Soil Conservation Districts (Table VII-4). The associated implementation costs were then developed based on these needs and cost estimates provided by the Soil Conservation Service (Table VII-5). The cost of treatment measures to reduce runoff from cropland was by far the largest cost segment since cropland would be more susceptible to runoff due to limited soil cover. Annual costs developed by Stanley Consultants for the various types of treatment are also listed in Table VII-5. Total capital costs are shown in Table VII-6. The total capital cost of the runoff control measures for the Des Moines River Basin is almost 340 million dollars.

ESTIMATED* ANNUAL NUTRIENT LOAD IN THE DES MOINES RIVER AT SAYLORVILLE

Nutrient	Estimated Lbs/Yr Stream	Estimated Lbs/Yr Point Sources	Estimated Lbs/Yr Nonpoint Sources	Acres Drainage Area	Annual Runoff Lbs/Acre	Nonpoint Percent of Total
Phosphorus	5,621,007	586.015	5,034,992	3,738,240	1.35	89.6
Nitrogen	41,334,897	695,235	40,639,662	3,738,340	10.87	98.3

* BASED ON WATER QUALITY AND FLOW DATA

VII-

TABLE VII-3

ESTIMATED NUTRIENT LOADINGS FROM NONPOINT SOURCES

...

Hydrologic Unit	Nitrogen Lbs/Yr	Phosphorus Lbs/Yr
· · · · · · · · · · · · · · · · · · ·		
West Fork Des Moines	6,457,498	861,990
East Fork Des Moines	8,051,312	999,933
Blue Earth	2,180,033	270,750
Boone	5,739,773	712,852
Upper Des Moines	11,884,769	1,476,030
Raccoon	17,536,495	2,177,946
Middle & South Raccoon	7,583,989	941,894
North River	2,806,689	348,577
Middle River	3,765,847	467,700
South River	2,905,671	360,870
Lower Des Moines	21,475,479	2,667,148
Total	90,387,555	11,225,690

RUNOFF CONTROL MEASURES REQUIRED

DES MOINES RIVER BASIN

	Cropland	Acres		Pastur	e Acres		Acres
Hydrologic Unit	Terracing Stripcropping	Grade Stabilization	Diversions	Land Conversions	Critical Area Planting	Grassland Management	Woodland Management
West Fork Des Moines	87,486	8,433	1,386	0	11,557	584	16,354
East Fork Des Moines	75,048	60,585	2,693	0	8,056	981	7,857
Blue Earth	20,406	20,484	980	0	1,307	313	1,830
Boone	44,113	76,363	5,895	535	1,703	144	7,631
Upper Des Moines	64,708	82,572	11,757	505	4,040	5,269	37,546
Raccoon	209,854	93,917	15,593	1,253	6,848	2,858	29,690
Míddle & South Raccoon	184,407	35,437	7,134	385	11,514	814	33,857
North River	65,282	2,095	5,139	0	5,751	3,443	16,442
Middle River	92,391	2,251	6,062	16	10,368	4,053	20,306
South River	54,400	3,826	5,450	458	4,518	2,176	19,565
Lower Des Moin	es <u>369,380</u>	96,112	31,062	1,580	145,494	31,509	<u>180,712</u>
Total	1,267,475	482,075	93,151	4,732	211,156	52,144	371 , 790

UNIT COSTS FOR STATEWIDE CONTROLS

Land Use	Total Cost	Total Acres	Capital Cost/Acre	Annual Cost/Acre
Cropland	State of the	and and the second		1.1.1
Stripcropping and Terracing	\$824,677,000	7,932,499	\$ 103.96	\$5.00
Grade Stabilization	\$638,440,000	1,873,037	\$ 340.86	\$1.50
Pasture				
Diversions	\$ 7,003,000	610,660	\$ 11.47	\$5.00
Land Conversions	\$ 29,647,000	16,682	\$1,777.18	\$2.00
Critical Area Planting	\$ 8,002,000	715,003	\$ 11.19	\$1.00
Grassland Management	\$ 9,296,000	229,332	\$ 40.54	\$1.00
Woodland				
Woodland Management	\$160,080,000	2,055,435	\$ 77.88	\$2.00
\$	1,677,145,000	13,432,648		

RUNOFF CONTROL COSTS BY SUBBASIN

DES MOINES RIVER BASIN

			Cropland						Pas	tur	e				
	Hydrologic Unit	-	Terracing Stripcropping	(Grade Stabilization	D	iversions	La Co	and onversions	C P	ritical Area lanting	1	Grassland Management	Woodland Management	Total
	West Fork Des Moines	\$	9,095,203	\$	2,874,457	\$	15,895	\$	0	\$	129,341	\$	23,673	\$ 1,273,671	\$ 13,412,240
	East Fork Des Moines	\$	7,802,126	\$	20,650,893	\$	30,883	\$	0	\$	90,159	\$	39,765	\$ 611,914	\$ 29,225,740
V	Blue Earth	\$	2,121,445	\$	6,982,139	\$	11,239	\$	0	\$	14,627	\$	12,687	\$ 142,523	\$ 9,2 <mark>84,660</mark>
[1-7	Boone	\$	4,586,067	\$	26,028,953	\$	67,603	\$	950 , 794	\$	19,059	\$	5,837	\$ 594,312	\$ 32,252,625
	Upper Des Moines	\$	6,727,161	\$	28,145,342	\$	134,828	\$	897,478	\$	45,214	\$	213,580	\$ 2,924,132	\$ 39,087,735
	Raccoon	\$	21,816,802	\$	32,012,378	\$	178,819	\$2	2,226,813	\$	76,640	\$	115,849	\$ 2,312,297	\$ 58,739,598
	Middle and South Racco	on	19,171,285	\$	12,078,991	\$	81,812	\$	684,216	\$	128,860	\$	32,996	\$ 2,636,828	\$ 34,814,988
	North River	\$	6,786,835	\$	714,098	\$	58,934	\$	0	\$	64,363	\$	139,562	\$ 1,280,525	\$ 9,044,317
	Middle River	\$	9,605,136	\$	767,272	\$	69,519	\$	28,435	\$	116,034	\$	164,289	\$ 1,581,458	\$ 12,332,143
	South River	\$	5,655,522	\$	1,304,123	\$	62,500	\$	813,951	\$	50,563	\$	88,204	\$ 1,523,748	\$ 9,498,611
	Lower Des Moines	\$_	38,401,413	\$_	32,760,561	\$	356,216	\$2	2,807,952	\$ <u>1</u>	,628,305	\$ <u>1</u>	,277,221	\$14,074,090	\$ <u>91,305,758</u>
	Total	\$	131,768,995	\$1	164,319,207	\$1	,068,248	\$8	3,409,639	\$2	,363,165	\$2	,113,663	\$28,955,498	\$338,998,416

ANIMAL FEEDING OPERATIONS

In order to determine the size and location of livestock facilities in the study area, information was gathered on feeding operations registered with the Department of Environmental Quality. Livestock census information was obtained from the Iowa Annual Farm Census, 1971 (3) to establish the number and distribution of animals in the study area (Table VII-7). The inventory information developed is representative of conditions at a particular point in time. A completely accurate account of livestock feeding operation capacity is not practical or even possible. The number of livestock on feed and even the number of feeding operations is subject to many variables, the most significant of which is livestock marketing conditions. The inventory data accumulated for the basin, however, does highlight livestock feeding as a significant potential source of water pollution. The locations of registered animal feeding operations are shown on Figures VII-1, VII-2, and VII-3. The animal numbers of each operation may be identified through the appropriate reference number in Tables VII-8, VII-9, and VII-10.

Cattle densities in the basin range from a low of 0.04 head per acre in the Lower Des Moines Subbasin to a high of 0.15 in the West Fork Des Moines River drainage area. Swine densities vary between 0.28 head per acre in the main stem Upper Des Moines River drainage area to 0.49 in the East Fork Des Moines River drainage area.

Because of insufficient data, quantitative estimates of potential pollution loads from feeding operations were not calculated. As

LIVESTOCK DISTRIBUTION BY SUBBASIN

DES MOINES RIVER BASIN

Hydrologic Unit	Hogs	Cattle	Sheep	Poultry
West Des Moines	224,448	66,327	4,440	214,868
East Des Moines	314,318	58,937	7,889	258,812
Blue Earth	92,017	13,847	1,878	75,449
Boone	276,224	36,846	7,957	393,306
Upper Des Moines	336,913	87,232	16,603	752,451
Raccoon	709,911	217,613	25,937	863,502
Middle & South Raccoon	371,230	102,684	4,256	273,853
North River	93,547	9,464	2,006	39,040
Middle River	129,374	12,916	2,885	53 , 582
South River	79,587	5,675	1,336	24,647
Lower Des Moines	688,758	71,143	45,971	334,082
Total	3,316,327	682,684	121,158	3,283,592

FIGURE VII-1 VII-10

TUDUU ATT O	TAF	3LE	VI	I-	8
-------------	-----	------------	----	----	---

ANIMAL FEEDING OPERATIONS; UPPER DES MOIN	ES RIVER SUBBASIN
---	-------------------

Registration No.	County	No. Of Animals	Ref. No.	Type Controls*
	HOG FEE	DING OPERATION	ONS	
2-08-00-4-01 "04 "05 "06 "07	Boone	750 1,385 3,180 400 650	H-38 H-39 H-40 H-41 H-42	SL SL ST SL
2-32-00-4-01 " 02 " 03	Emmet	6,400 450 1,200	H- 1 H- 2 H- 3	ST ST SL
2-40-00-4-03 "04 "05	Hamilton	750 480 400	H-35 H-36 H-37	RC ST ST
2-41-00-4-02	Hancock	375 1,000	H-13 H-14	ST SL
2-46-00-4-01	Humboldt	2,700 560	H-19 H-20	SL ST
2-55-00-4-01 "02 "03 "04 "05 "06 "07	Kossuth	2,950 1,800 800 720 2,000 400 2,300	H- 4 H- 5 H- 6 H- 7 H- 8 H- 9 H-10	SL ST SL RC SB ST SL
2-74-00-4-01 " 02	Palo Alto	25 2,000	H-11 H-12	ST SL
2-76-00-4-01 "02 "03 "05 "06 "07 "08 "09 "10	Pocahontas	300 400 280 270 600 5,280 300	H-21 H-22 H-23 H-24 H-25 H-26 H-27 H-28 H-29	ST ST ST ST ST ST SL RC

Registration No.		No. Of Animals	Ref. No.	Type Controls*
2-94-00-4-01	Webster	600	H-30	SL
"03		500	H-31	SL
"05		150	H-32	ST
"06		260	H-33	ST
"09		575	H-34	ST
2-99-00-4-02	Wright	600	H-15	ST
"03		680	H-16	RC
"04		3,000	H-17	SL
"06		642	H-18	ST
	CATTLE F	FEEDING OPERAT	IONS	
2-08-00-0-01	Boone	600	C-27	RC
" 02		80	C-28	RC
" 03		NA	C-29	RC
" 05		800	C-30	RC
2-32-00-0-01	Emmet	1,000	C-31	RC
" 02		1,000	C-32	SL
" 03		NA	C-33	RC
" 04		250	C-34	RC
" 05		500	C-35	RC
" 06		500	C-1	SL
" 08		700	C-2	ST
' 09		1,200	C-3	ST
2-40-00-0-02	Hamilton	NA	C-22	NA
" 03		300	C-23	NA
" 06		700	C-24	SL
" 07		345	C-25	SL
" 10		500	C-26	ST
2-46-00-0-01	Humboldt	NA	C-14	NA
2-55-00-0-01 "02 "03 "04 "05 "06 "07	Kossuth	2,000 3,000 3,100 1,000 500 500 1,000	C- 4 C- 5 C- 6 C- 7 C- 8 C- 9 C-10	NC RC RC SL SL RC

TABLE VII-8

TABLE VII-8

Registration No.	County	No. Of Animals	Ref. No.	Type Controls*
2-74-00-0-01	Palo Alto	500	C-11	RC
" 02		720	C-12	ST
2-76-00-0-01	Pocahontas	550	C-15	RC
" 02		NA	C-16	ST
2-94-00-0-01	Webster	1,600	C-17	NC
"02		700	C-18	RC
"03		NA	C-19	NC
"04		NA	C-20	NA
"05		1,500	C-21	SL
2-99-00-0-03	Wright	400	C-13	SL

* SB - Storage Basin SL - Lagoon

RC - Runoff Controls

ST - Below Building Storage - or Tank

NC - No Control NA - Not Available

i

H-32 AUDUBON Guthrie Center Dallas Center C-25 C-26 C-27 Urband Moson () See Insert Abov Waukee Sugar H-33 Adel West DesMoin Redfield -H-34 CT.24 De Soto Bem an Me Stu Earlham MADISON WARREN ADAIN FIGURE VII-2 VII-14

Registration No.	County Of	No. Animals	Ref. No.	Type Controls*
	HOG FEEDING	G OPERATIO	NS	
2-11-00-4-01	Buena Vista	325	H- 1	ST
"03		282	H- 2	ST
2-13-00-4-01	Calhoun	260 320	H- 9 H-10 H-11	ST ST
" 04		400	H-12	ST
" 05		425	H-13	ST
" 06		400	H-14	ST
" 07	Carroll	500	H-15	ST
2-14-00-4-01		400	H-16	ST
" 02		400	H-17	NC
" 05		20	H-18	ST
" 06		240	H-19	ST
" 07		350	H-20	ST
" 08		600	H-21	ST
" 09 " 10		2,660	H-22 H-23	ST ST
2-25-00-4-01	Dallas	24	H-31	ST
" 02		24	H-32	ST
" 03		400	H-33	ST
: 04		300	H-34	ST
2-37-00-4-01	Greene	414	H-24	ST
" 02		150	H-25	RC
" 03		480	H-26	ST
" 04		1,370	H-27	SL
" 05		560	H-28	ST
" 06		1,000	H-29	ST
2-39-00-4-02	Guthrie	4,130	H-30	SL
2-81-00-4-01 " 02 " 03 " 04 " 06 " 07	Sac	260 560 360 2,660 350 502	H- 3 H- 4 H- 5 H- 6 H- 7 H- 8	SL RC SL ST RC

ANIMAL FEEDING OPERATIONS; RACCOON SUBBASIN

Registration No.	County	No. Of Animals	Ref. No.	Type Controls*
2-94-00-4-02	Webster	216	H-35	ST
"04		190	H-36	ST
"07		24	H-37	ST
"08		480	H-38	ST
	CATTLE FI	EDING OPERATI	ONS	
	CATTER 11	DDING OF DIMIT	OND	
2-11-00-0-01	Buena Vista	NA	C- 1	NC
" 02		450	C- 2	RC
" 07		1,000	C- 3	RC
" 08		NA	C- 4	NC
2-13-00-0-01	Calhoun	1,500	C- 6	RC
" 02		NA	C- 7	NA
" 03		600	C- 8	SL
2-14-00-0-01	Carroll	100	C- 9	RC
"02		600	C-10	RC
"04		250	C-11	SB
"05		1,000	C-12	RC
"06		400	C-13	ST
"07		108	C-14	RC
"08		500	C-15	RC
"09		NA	C-16	RC
"10		600	C-17	NC
"11		630	C-18	ST
2-25-00-0-01 "	Dallas	600 400 2,000	C-25 C-26 C-27	SL ST RC
2-37-00-0-01	Greene	NA	C-19	NA
" 02		NA	C-20	NA
" 03		NA	C-21	NA
" 04		NA	C-22	NA
2-39-00-0-01	Guthrie	NA	C-23	NA
" 02		300	C-24	RC
2-81-00-0-07	Sac	1,000	C- 5	RC
* SB - Storag ST - Below or Tan NA - Not Av	e Basin Building Stor k ailable	RC - SL - NC -	Runoff Cont Lagoon No Control	crols

TABLE VII-9

H - Hog Feeding Operation

FIGURE VII-3 VII-17

Registration No.	County	No. Of Animals	Ref. No.	Type Controls*
	HOG FEED	ING OPERATIO	NS	
2-01-00-4-01	Adair	1,400	H- 2	SL
" 03		NA	H- 3	NA
" 04		250	H- 4	ST
2-39-00-4-01	Guthrie	300	H- 1	RC
2-50-00-4-04	Jasper	980	H-22	ST
"06		630	H-33	ST
2-61-00-4-01	Madison	515	H- 5	RC
" 02		400	H- 6	ST
" 03		500	H- 7	ST
" 04		560	H- 8	ST
2-62-00-4-01	Mahaska	900	H-24	SL
"06		320	H-25	ST
"12		480	H-26	ST
"13		400	H-27	ST
"14		300	H-28	ST
2-63-00-4-01	Marion	400	H-18	ST
" 02		400	H-19	ST
" 03		1,306	H-20	ST
" 04		NA	H-21	NC
2-68-00-4-01	Monroe	752	H-29	SL
" 02		2,500	H-30	SL
" 03		440	H-31	SL
2-89-00-4-01	Van Buren	3,000	H-32	SL
" 01		1,250	H-33	SL
" 02		400	H-34	ST
" 03		250	H-35	ST
2-91-00-4-01	Warren	250	H- 9	ST
" 02		NA	H-10	NA
" 03		NA	H-11	NA
" 04		345	H-12	ST
" 05		720	H-13	ST

ANIMAL FEEDING OPERATIONS; LOWER DES MOINES SUBBASIN

Registration No.	County	No. Of Animals	Ref. No.	Type Controls*
" 06 " 07 " 08 " 09		560 320 350 382	H-14 H-15 H-16 H-17	ST ST ST ST
	CATTLE H	FEEDING OPERAT	IONS	
2-56-00-0-03	Lee	100	C-12	RC
2-59-00-0-01 "02 "04	Lucas	700 500 NA	C- 7 C- 8 C- 9	RC RC NA
2-61-00-0-01	Madison	NA	C- 2	NA
2-62-00-0-02	Mahaska	100	C- 5	RC
2-68-00-0-01	Monroe	NA	C- 6	NA
2-77-00-0-01	Polk	680	C- 1	ST
2-89-00-0-01	Van Buren	750	C-11	RC
2-90-00-0-01	Wapello	1,300	C-10	NC
2-91-00-0-01 " 02	Warren	48 300	C- 3 C- 4	SL RC

- * SB Storage Basin SL Lagoon RC Runoff Controls ST Below Building Storage or Tank

 - NC No Control NA Not Available

indicated in Tables VII-8, VII-9, and VII-10, there are 72 registered feeding operations with a cumulative capacity for 41,813 cattle. The remaining 640,871 cattle in the study area are dispersed throughout the basin. Similar dispersion of the swine, sheep and poultry populations occurs in the basin. Because of the areal distribution of animals, somewhat misleading conclusions could result from a projection of total pollution potential for each watershed.

Animal Feeding Operation Pollution Abatement Costs

In order to indicate the relative magnitude of treatment costs for feeding operations in the basin, capital cost estimates have been developed for treatment systems for both cattle and swine operations. Most registered feeding operations in the basin presently have adequate treatment facilities. For purposes of this cost estimate, it is, therefore, necessary to approximate the number of unregistered beef cattle and swine which are in confined feeding operations that require treatment facilities. Testimony given before a U. S. House of Representative subcommittee (1) estimates that 22 percent of the hog operations and 26 percent of the beef cattle feeding operations in the United States have pollution problems requiring remedial measures. Treatment costs presented in Table VII-11 reflect the above percentages of unregistered animals in the basin and treatment costs from the EPA (2).

No treatment costs are provided for sheep since no confined sheep feeding operations are identified in the basin. Most

LIVESTOCK TREATMENT COST*

			Capital C	Cost
Hydrologic Unit		Cattle	Swine	Total
Main Stem Upper	Ś	278 212	\$ 575 761	\$ 853 973
Des normes krver	Ý	270,212	φ 575,701	φ 3000,070
Boone River		148,000	686,000	834,000
East Fork Des Moines River		293,000	882,000	1,175,000
West Fork Des Moines River		335,000	602,000	937,000
Lizzard Creek		98,000	259,000	357,000
Raccoon River]	,169,739	2,848,426	4,018,165
Main Stem Lower Des Moines River		455,068	2,920,317	3,375,385
Total	\$2	2,777,019	\$8,773,504	\$11,550,523

* 1974 Dollars

poultry in the basin are located in a relatively small number of large egg-laying or turkey raising operations. Waste handling facilities are normally taken into consideration during the design of the operation, and most facilities presently spread the dry waste on agricultural land. For these reasons, no costs have been determined for poultry operations.

URBAN RUNOFF

In urbanized areas, surface runoff and combined sewer overflows can adversely affect the utility of the water resource. Contaminants discharged to a watercourse are the result of debris, animal droppings, eroded soil, tire and vehicular exhaust residues, deicing compounds, pesticides, fertilizers, air pollution fallout, and decayed vegetation contained in the urban runoff. These materials can be discharged into the stream during periods of precipitation or snow melt.

The impact of urban runoff upon the aquatic environment is difficult to quantify based upon present information. In addition to having little data in the basin identifying specific pollution contributions and the resulting impact from urban runoff, available technical literature has not resolved the impact of these sources upon streams.

Corrective measures applicable for urban storm-water runoff pollution abatement may be classified as preventive or curative. Preventive practices may consist of proper conservation techniques on land development projects to reduce sediment erosion. Also, improved collection of material through normal municipal street cleaning operations should reduce the waste load that currently reaches the streams. Curative solutions may require substantial physical facilities and result in large capital expenditures.

Generalized cost curves which were developed for the 1974 Survey of

Needs of Municipal Wastewater Treatment Facilities were used to give an indication of the cost to treat and/or control urban storm water runoff in the basin. The curves were based upon a composite of local consulting engineers' estimates for treating urban runoff. The cost estimate developed for the Des Moines River Basin, and found in Table VII-12, exceeded 767 million dollars.

TABLE VII-12

URBAN STORMWATER TREATMENT AND/OR CONTROL COSTS

Hydrologic Unit	Cost*
Blue Earth	\$ 1,500,000
West Fork Des Moines	\$ 24,540,000
East Fork Des Moines	\$ 19,180,000
Upper Des Moines	\$539,650,000
Raccoon	\$ 67,565,000
Lower Des Moines	\$116,365,000
Total	\$767,300,000

* 1974 Dollars

REFERENCES

- "Control of Pollution from Animal Feedlots." A hearing before a subcommittee of the Committee on Government Operations, House of Representatives, 93rd Congress, November 29-30, 1973.
- David, M. L., Selter, R. E., and Eickhoff, W. D., "Economic Analysis of Proposed Effluent Guidelines-Feedlot Industry." Environmental Protection Agency, 1973.
- 3. <u>Iowa Annual Farm Census</u>, <u>1971</u>, compiled by the Iowa Crop and Livestock Reporting Service, published by State of Iowa, Des Moines, Iowa.
- Iowa Conservation Needs Inventory, Iowa Conservation Needs Committee, United States Department of Agriculture, Des Moines, Iowa, 1970. 229pp.

CHAPTER VIII - NEEDS AND COMPLIANCE SCHEDULES

ASSESSMENT OF NEEDS

Municipal Needs

The waste load allocations in Table VI-1 were compared to the present discharges (Table V-2). Facilities which could not meet their waste load allocation were evaluated as to their need for additional treatment capacity. Physical needs for effective municipal sewage control can be classified into:

- New sewer systems and treatment facilities for certain unsewered communities.
- Upgrading to adequate secondary treatment where the present treatment level is either primary or inadequate secondary.
- 3. Infiltration and/or inflow (I/I) removal.
- 4. Advanced treatment under selective circumstances.
- 5. Adequate sludge disposal.

An estimation of these needs and their associated cost has been developed for the municipalities in the Des Moines Basin. Several sources have been used to estimate costs. Some of these are listed below in order of priority.

- Grant applications, based on preliminary engineering estimates or final construction costs.
- 2. 1974 Needs Survey.

- 3. EPA cost curves supplied for the 1974 needs survey.
- 4. State cost curves based on comparable construction costs.

All of the costs were updated to September, 1974, dollars based on EPA construction indices (1).

<u>New Systems</u> - Of the 217 incorporated municipalities in the basin, 86 do not have a sewage system. These communities are presently served by individual residence septic tanks and tile drain fields. Some of these communities have a disposal problem causing either water pollution, or a health hazard, or both. This may be caused either by old systems in need of repair or replacement, or because of unsuitable site conditions such as a high ground water table, local limestone deposits, or poor soil conditions.

Most unsewered communities have a waste water disposal problem, but whether it is cost effective to construct a sewer system and treatment plant or to replace or repair existing individual septic tank systems is difficult to estimate without a detailed engineering report.

For the purpose of this study it was assumed to be cost effective to continue using individual residence septic tank systems in those communities with projected 1990 populations of less than 200. It may also be cost-effective for certain towns with populations somewhat greater than 200 to continue the use of individual septic systems, however, increased

potential for groundwater contamination and related health problems from the use of individual septic systems by larger communities must also be weighed in a cost-effectiveness evaluation. As a result, communities with projected 1990 populations greater than 200 were assumed to have a need for a sewer system and treatment facilities while communities with projected populations of less than 200 were assumed to have no needs.

<u>Upgrade to Secondary Treatment</u> - No communities in the Des Moines River Basin have only primary treatment. All municipal facilities provide what is commonly referred to as secondary treatment. The Act requires that all municipal treatment facilities shall, by July 1, 1977, have treatment equivalent to secondary treatment. Many municipal secondary plants, however, cannot presently, or with projected 1990 flow, meet the new EPA and DEQ definition of secondary treatment. When compared with the present quantitative definition, several municipalities are estimated to have a need to upgrade their facilities to secondary treatment.

Upgrade to Advanced Treatment -The waste load allocation analyses have pointed out several locations where treatment more stringent than secondary will be required if water quality standards are to be met. Because the new waste load allocations will be incorporated into discharge permits, several municipalities now have the need for advanced treatment facilities.

Infiltration and/or Inflow Removal - Many municipalities have infiltration and/or inflow (I/I) problems. To estimate the cost to correct I/I problems in an individual case requires detailed information concerning the systems. Without such information an accurate cost estimation is difficult. Some municipalities have been studied by consulting engineers and correction costs estimated. In addition, the 1974 Needs Survey of Municipal Wastewater Treatment Plants provides the estimated cost to study and correct I/I for a 20 percent random sampling of Iowa municipalities. For those municipalities for which an I/I correction cost estimate was available, the cost for study and correction was updated and included in the costs column of the table of needs. For those municipalities where no estimate was available for I/I correction, no costs are included because of the difficulty in making an accurate estimate without detailed information about the system. It should be realized, therefore, that the total municipal needs for the basin will be greater than what is predicted in Table VIII-5.

Most cost estimates assume that, for a given facility, it is cost effective to remove I/I rather than treat it. If it is known from engineering studies that it is cost-effective to treat I/I, those costs are included with treatment plant costs. <u>Sludge Disposal</u> - Sludge disposal is a major concern at any wastewater treatment plant. A secondary municipal treatment

plant produces approximately 1726 lbs. of dry solids per million gallons of water treated, or approximately 173 lbs. per 1000 people per day. When an additional contribution comes from industrial wastes, sewage sludge can become the second largest disposal problem facing a municipality, next only to garbage disposal.

Unfortunately, the job of designing a sludge disposal system, historically, seems to have been done backwards (2). The conditioning and handling design was often completed before much thought was given to actual method and site of final disposal. A more logical method of design is to first choose the final disposal method and location and then work back from that point to the most cost-effective process for getting the sludge in the best condition to accomodate the mechanics of actual disposal.

Most municipal treatment facilities in the Des Moines basin handle their sludge in similar manners. After settling to concentrate solids, the sludge is stabilized either by aerobic or anaerobic digestion. Digested sludge is then usually either dried mechanically or on drying beds and finally hauled either to a landfill or farmland.

Farmland is the more common disposal location since many landfills, because of their location or equipment, cannot accept sewage sludge either wet or dry. Currently there are twenty-two approved landfills in the Des Moines River

Basin. Therefore, many sludges are either applied to farmland or are being illegally dumped into abandoned gravel pits or unapproved landfills. Greater effort must be made to educate the public to the benefits of accepting treated sewage sludge for land application. Even though some sludges contain traces of toxic metals from plating industries making them undesirable for application to certain crops, most grain crops are not influenced by these metals and with proper controls can serve as application sites.

If weather is conducive for equipment to get into the fields wet digested sludge is often applied directly to farmlands. In fact, nearly all municipalities have sludge treatment equipment although most presently apply wet digested sludge directly to farmland allowing the sludge treatment facilities to lie idle. Drying beds, for example, often become relegated to a backup status as a method of sludge handling. This is done so as to reserve their entire capacity for the wet spring season when farm fields become inaccessable.

Land disposal of sludge has the advantage of being one of the simplest methods during winter months. It is also generally one of the most cost-effective methods.

Table VIII-1 gives an indication of sludge disposal costs found in Ohio(2).

AVERAGE DISPOSAL COSTS (PER TON OF DRY SOLIDS)

Sludge Handling Method	Costs*
Vaccum filters, centrifuges	\$34.41
Direct land application of liquid (Hauling by contract)	31.93
Drying beds (On-site storage for private individual hauling may reduce cost)	14.34
Direct land application of liquid (By city-owned trucks)	7.73

*Costs do not include digestion.

One community in the basin is presently experimenting with a method of combined sludge and garbage composting. In this process the ultimate disposal of the sludge would be as a salable soil conditioning agent. No conclusive results are as yet available from the project.

Costs to upgrade or to add additional sludge handling capacity that may be required under the basin plan have not been estimated for the municipalities in the basin. A detailed knowledge of the existing facilities, not presently available, is needed for an accurate estimate. In many cases, the cost should be small when compared with that to upgrade the existing treatment. This is, therefore, another reason why the total municipal need for the basin will be greater than what is predicted in Table VIII-5.

<u>Summary of Municipal Needs</u> - Table VIII-2 is a compilation of municipal treatment facility needs for the Des Moines River Basin. In this table, projected flows are listed along with the concentration of BOD₅ and ammonia-N (NH₃-N) in the effluent. In addition either the pounds projected for the 1990 discharge or the pounds allowed by the waste load allocations (whichever is less), and a compliance schedule for meeting the waste load allocations are listed. A permit will be issued by the DEQ to the municipalities which will assure compliance with the basin plan.

Table VIII-3 summarizes the basin municipal treatment facility needs and the related investment requirements for the basin.
Table VIII-2 MUNICIPAL ASSESSMENT OF NEEDS AND SCHEDULE OF COMPLIANCE***

		Was	te Load Allocation	n	and the set of the set	Need	ls		Schedu	Le of Com	oliance
Rank	Dischargers	1990 Flow**	Concentration* BOD5/NH3	lbs.Eff. BOD5/NH3	Treatment	1974 Dollars	Collection	1974 Dollars	Facility Plans	Final Plans	Completion Date
1	Estherville M- 5	2.51	10/2	209/42	advanced treatment	10/ 8,312,000	none		Und	er Constr	uction
2	Ankeny Ind. M-154-2	0.13	30/15	33/16	To be included	in M-154-1	Needs		4/1/77	<u>4</u> /	<u>4</u> /
3	Eagle Grove M- 59	0.56	30/2	140/9	upgrade to advanced STP	<u>10/</u> 1,119,200	upgrade s system	ewer <u>10</u> 200,120	0/ 0 7/1/75	1/1/76	7/1/76
4	Des Moines # M-150	1 40.77	10/2	3400/680	<u>4/</u> advanced treatment plant	<u>9/</u> 70,000,000	upgrade sewer system	14,873,000	2/ 0 4/1/77	<u>4</u> /	<u>4</u> /
* 1/ / 2/ 0 2/ 0 3/ 5/ 1 5/ 1 6/ 7/ 8/ 0 9/ 1 0/ 0	In mg/1 In mgd At such time as Collection costs the Des Moines M In accordance wi Not a true repre In accordance wi In accordance wi Cost estimates f DEQ 1974 Need Su Cost values give	deemed nec include m etropolita th 201 pla th 208 pla sentative th 201 pla rom DEQ & rvey. n on Grant	eessary. teeds for all comm on Sewer System as on for Storm Lake. In for Des Moines I value because of on for Pella. In for Oskaloosa. EPA cost curves.	unities disch established Metro Area. lack of 201 o	arging to in the 1974 Needs St r 208 plans.	urvey.	*** Abr BOD C.D dis D.M Eff F.H I/I 1bs NA NH S Pop P.S S.D	eviations - Biochem - Contro inf dis - Des Mo: - Efflue - A Fede - Inflow - pounds - Not Avai - Anmonia - Populat Sanita	Used inclu ical Oxyge led Discha infection ines Treat nt ral Housin Infiltrati lable Nitrogen ion 1 Storage ry Distric	nde: en Demand arge ment Plan ng Adminis ion Analys	nt stration sis

		Was	ste Load Allocatio	n		Needs			Schedul	e of Com	liance
Rank	Dischargers	1990	Concentration*	lbs.Eff.	Treatment	1974	Collection	1974	Facility	Final	Completion
	Ref. #	Flow**	BOD 5/NH 3	BOD ₅ /NH ₃		Dollars		Dollars	Plans	Plans	Date
5	Albia S.W. M-205	To Be At	bandoned								
6	Clarion M- 60	0.28	30/2	70/5	upgrade to advanced treatment	8/ 775,000	none		2/1/77	4/1/78	12/1/79
7	Bagley M-140	0.39	30/15	10/5	complete secondary facility & disinf.	140,000 140,000	none		<u>1</u> /	<u>1</u> /	<u>1</u> /
8	Bancroft M- 24	C.D.	C.D.	C.D.	three cell lagoon	394,000	none		Unde	er Constr	uction
9	Storm Lake M- 85	3.09	30/2	773/51	complete advanced STP	6,166,000	lift station force main	2,765,000	8/ 5 12/1/75	6/1/76	10/1/76
10	Whittemore M- 32	0.151	30/2	38/3	new advanced treatment plant	480,000 480	none		1/1/76	7/1/76	1/1/78
11	Ankeny S.W. M-154-1	1.707	30/15	427/213	new plant <u>4</u> / I/I	9/ 3,494,000	sewers	<u>9</u> 353,000	0/ 0 4/1/77	<u>4</u> /	<u>4</u> /
12	Emmetsburg M- 9	0.55	10/2	45/9	ad <mark>va</mark> nced treatment	<u>10/</u> 1,835,200	sewer improvemer	225,900 11	0/ 5 Und	ler Const	ruction
13	Prairie City M-185	0.14	30/15	35/17	none		none			6/6/74	

	· · · · · · · · · · · · · · · · · · ·	Wa	ste Load Allocatio	n	······································	Needs		· · · · · · · · · · · · · · · · · · ·	Schedu1	e of Comp	liance
Rank	Dischargers Ref. #	1990 Flow**	Concentration* BOD ₅ /NH ₃	lbs.Eff. BOD5/NH3	Treatment	1974 Dollars	Collection	1974 Dollars	Facility Plans	Final Plans	Completion Date
14	Eddyville M-207	C.D.	C.D.	C.D.	third lagoon cell	<u>8/</u> 106,000	none		1/	<u>1/</u>	<u>1</u> /
15	Webster City M- 62	2.06	30/2	515/34	complete advanced STP & I/I	<u>9</u> / 2,055,000	lift station	947,000		1/1/76	11/1/77
16	Boone M- 68	2.407	30/5	602/100	complete advanced treatment plant	<u>9/</u> 5,264,000	sewers, lift station, force main	9 2,027,000	/ 10/1/75	10/1/76	12/1/78
17	Sac City M- 87	0.28	30/2	70/5	upgrade to advanced treatment	<u>10/</u> 652,390	upgrade sewer system	<u>10</u> 46,800	/	12/1/75	8/1/77
18	Panora M-138	C.D.	C.D.	C.D.	third lagoon cell	<u>8/</u> 108,000	none	-	<u>1</u> /	<u>1</u> /	<u>1</u> /
19	Fort Dødge M- 45	4.322	30/4	1081/144	advanced treat plant under co	ment. nst.	none		U	nder Const	truction
20	Goldfield M- 57	C.D.	C.D.	C.D.	const. two lagoon cell	<u>8/</u> 93,000	none		<u>1</u> /	<u>1</u> /	<u>1</u> /
21	Laurens M- 89	0.16	30/2	40/3	upgrade to secondary, ^{NH} 3 & disinf.	<u>8/</u> 223,000	none		7/1/76	1/1/77	11/1/78

		Wa	ste Load Allocation	n		Needs			Schedul	e of Compl	iance
Rank	Dischargers Ref. #	1990 Flow**	Concentration* BOD ₅ /NH ₃	1bs.Eff. BOD ₅ /NH ₃	Treatment	1974 Dollars	Collection	1974 H Dollars	Facility Plans	Final Plans	Completion Date
22	Fonda M- 91	0.093	30/2	23/2	upgrade to advanced, NH ₃ & disinf.	<u>8/</u> 158,000	none		9/1/75	4/1/76	10/1/77
23	Rockwell Cit M- 99	9 0.277	30/7	69/16	upgrade to advanced. NH3 disinf. and I/I	<u>8</u> / 166,000	none		1/1/76	7/1/76	8/1/78
24	Albia N. M-206	0.496	30/15	124/6 2	upgrade to secondary treatment	<u>9</u> / 1,159,000	upgrade sewer system	923,000		5/1/76	9/1/77
25	Polk City M- 71	C.D.	C.D.	C.D.	I/I correction	400,000 400,000	none		7/1/76 (I/I)	4/1/77 (Facility Plan)	
26	Donnellson M-219	0.111	10/2	9/2	advanced treatment plant	<u>8/</u> 450,000	none		1/1/76	9/1/76	12/1/77
27	Bondurant M-175	<u>4</u> /	C.D.	<u>4</u> /	<u>4</u> / I/I add third cell	<u>9/</u> 284,000	upgrade sewer system	<u>9/</u> 808,000	7/1/76 (I/I)	4/1/77 (Facility Plans)	
28	Adel M-124	0.224	30/15	56/28	upgrade to secondary treatment I/I & disinf.	<u>8</u> / 131,000			10/1/76	8/1/77	10/1/78

		Was	ste Load Allocatio	n		Needs			Schedul	e of Comp	liance
Rank	Dischargers Ref. #	1990 Flow**	Concentration* BOD ₅ /NH ₃	lbs.Eff. BOD5/NH3	Treatment	1974 Dollars	Collection	1974 Dollars	Facility Plans	Final Plans	Completion Date
29	Winterset M-166	0.446	10/3	37/11	upgrade to advanced treatment	<u>8/</u> 394,000	none		1/1/76	7/1/76	11/1/77
30	Britt M- 52	0.230	30/2	58/4	new advanced treatment plant, (nitrification) I/I	<u>8</u> / 675,000	lift station force main and sewer	<u>9</u> 526,000	/ 1/1/77	11/1/77	4/1/79
31	Slater M-152	C.D.	C.D.	C.D.	third lagoon cell	8 <u>/</u> 175 ,0 00	none		12/1/75	9/1/76	11/1/77
32	Lake View M- 93	0.229	30/4	57/8	upgrade to advanced nitrification and disinf.	<u>8</u> / 120,000	none		2/1/77	2/1/78	12/1/79
33	Ogden M− 73	.176	30/15	44/22	upgrade to secondary treatment, disinf., I/I	<u>8</u> / 200,000	none		5/1/77	3/1/78	11/1/79
34	Kanawha M- 56	C.D.	C.D.	C.D.	third lagoon cell	<u>8</u> / 100,000	none		<u>1</u> /	<u>1</u> /	<u>1</u> /
35	Jefferson M-109	0.606	30/6	152/30	complete advanced STP	<u>10/</u> 967,600	interceptor and lift	r 170,950	/		12/1/77
36	Pella S.W. M-192	<u>6</u> /	<u>6</u> /	<u>6</u> /	<u>6</u> /		<u>6</u> /		6/1/76	2/1/77	12/1/78

	a second a second as	Wa	ste Load Allocatio	n		Needs	and the second se		Schedul	e of Comp	liance
Rank	Dischargers Ref. #	1990 Flow**	Concentration* BOD ₅ /NH ₃	lbs.Eff. BOD ₅ /NH ₃	Treatment	1974 Dollars	Collection	1974 Dollars	Facility Plans	Final Plans	Completion Date
37	Dayton M- 64	0.174	30/15	44/22	upgrade to secondary treatment	<u>8</u> / 260,000	none		8/1/76	6/1/77	10/1/78
38	Farnhamville M-110	C.D.	C.D.	C.D.	third lagoon cell	<u>81,000</u>	none		<u>1</u> /	<u>1</u> /	<u>1</u> /
39	Perry										
	M-121	1.378	30/2	345/23	complete advanced STP	<u>8/</u> 1,950,000	none		12/1/75	9/1/76	4/1/78
40	Glidden M-135	0.068	30/15	17/8	upgrade to secondary treatment &	<u>8/</u> 105,000	none		6/1/76	1/1/77	9/1/78
					disinf.						
41	Graettinger M- 8	C.D.	C.D.	C.D.	third lagoon cell and I/I	<u>8/</u> 110,000	none		<u>1</u> /	1/	<u>1</u> /
42	Des Moines Highland Hill			e				c	/		
	M-151	<u>4</u> /	<u>4</u> /	<u>4</u> /	<u>4</u> /	<u>4</u> /	I/I	978,000	7/1/76 (I/I)	4/1/77 (Facilit Plan)	у
43	Gowrie M-113	0.081	30/15	20/10	upgrade to	<u>8</u> / 40,000	none		1/	<u>1</u> /	<u>1</u> /
					meet secondary treat. & I/I						
	D. 1.C.										
44	M- 17	C.D.	C.D.	C.D.	third lagoon cell	100,000	none		<u>1</u> /	<u>1</u> /	<u>1</u> /

		Wa	ste Load Allocatio	n		Needs			Schedul	e of Comp	liance
Rank	Dischargers Ref. #	1990 Flow**	Concentration* BOD ₅ /NH ₃	lbs.Eff. BOD ₅ /NH ₃	Treatment	1974 Dollars	Collection	1974 Dollars	Facility Plans	Final Plans	Completion Date
45	Corwith M- 51	C.D.	C.D.	C.D.	third lagoon cell	<u>9</u> / 113,000	none		<u>1</u> /	<u>1</u> /	1/
46	Melcher M-193	C.D.	C.D.	C.D.	third lagoon cell	<u>8</u> / 105,000	none		1/	<u>1</u> /	1/
47	Pocahontas M- 40	0.325	30/15	81/41	upgrade to secondary treatment & I/I	<u>8/</u> 112,000	none			7/1/76	2/1/78
48	West Bend M- 13	0.076	30/15	19/10	secondary plant	<u>9</u> / 337,000	inter- ceptor	<u>9</u> 88,000)/) <u>1</u> /	<u>1</u> /	<u>1</u> /
49	Lake City S.W. M-101	0.084	30/7	21/5	upgrade to secondary, NH3 and disinf.	<u>8</u> / 330,000	none			1/1/77	9/1/78
50	Scranton M-108	0.065	30/15	16/8	upgrade to secondary treat. & disinf.	<u>8/</u> 158,000	none		2/1/77	11/1/77	7/1/79
51	Breda M-130	C.D.	C.D.	C.D.	third lagoon cell, I/I	9/ 121,000	none		<u>1</u> /	<u>1</u> /	<u>1</u> /

1

.

		Wa	ste Load Allocatio	n		Needs			Schedul	le of Compl	iance
Rank	Dischargers Ref. #	1990 Flow**	Concentration* BOD ₅ /NH ₃	1bs.Eff. BOD5/NH3	Treatment	1974 Dollars	Collection	1974 Dollars	Facility Plans	Final Plans	Completion Date
52	Des Moines Area "C" M-222	<u>4</u> /	<u>4</u> /	<u>4</u> /	<u>4</u> /	<u>4</u> /	upgrade sewer system	<u>9</u> 31,000	/ 7/1/76 (I/I)	4/1/77 (Facility Plan)	
53	Ankeny E. M-153	2.992	30/15	749/375	<u>4</u> / new facility just completed		upgrade sewer system	101,430,000	/		 `
54	Knoxville M-191	0.88	30/15	221/111	I/I	7,800/	upgrade sewer system	10 205,600	/ <u>1</u> /	<u>1</u> /	<u>1</u> /
55	Altoona M-155	1.513	30/15	379/189	<pre>4/ complete secondary plant</pre>	<u>8/</u> 955,000	upgrade sewer system	102,000	/ 7/1/76 (I/I)	4/1/77 (Facility Plan)	
56	Pleasant Hill M-156	0.220	30/15	55/28	<u>4</u> / I/I	<u>9</u> / 406,000	upgrade sewers	<u>9</u> 1,058,000	/ 7/1/76 (I/I)	4/1/77 (Facility Plan)	
57	Mitchellville M-184	0.176	30/15	44/22	upgrade to secondary treatment	<u>8</u> /40,000	none		4/1/77	<u>1</u> /	<u>1</u> /
58	Monroe S.W. M-225	C.D.	C.D.	C.D.	two lagoon cells	<u>9/</u> 80,000	none		8/1/76	6/1/77	12/1/78

m 1 1			
Table VIII-7 (continued)	Table.	WTTT-2	(continued)

		Was	ste Load Allocation	n		Needs	3		Schedul	e of Con	mliance
Rank	Dischargers	1990 Flow**	Concentration* BOD ₅ /NH ₃	BOD ₅ /NH ₃ lbs.Eff.	Treatment	1974 Do llar s	Collection	1974 Dollars	Facility Plans	Final Plans	Completion Date
59	Runnells M-176	.048	30/15	12/6 <u>4</u> /	<u>4</u> /complete secondary STP & disinf.	<u>8/</u> 175,000	complete sewer system	8, 460,000	, <u>1</u> /	<u>1</u> /	<u>1</u> /
60	Allemen M-227	.024	C.D.		three cell lagoon	<u>8</u> / 85,000	complete sewer system	8/ 300,000	, 4/1/77	<u>1</u> /	<u>1</u> /
61	Madrid M- 70	.259	30/15	65/32	upgrade to secondary treatment & I/I	<u>8/</u> 292,000	new collection system	8/ 29,000	, <u>1</u> /	<u>1</u> /	<u>1</u> /
62	Stratford M- 63	0.07	30/15	18/9	upgrade to secondary treatemnt & I/I	<u>8/</u> 21,000	none		<u>1</u> /	<u>1</u> /	<u>1</u> /
63	Sheldahl M-221	will	l go to Slater M-1.	52		(complete sewer system	<u>8</u> / 380,000	' <u>1</u> /	<u>1</u> /	<u>1</u> /
64	Boxholm M- 66	C.D.	C.D.	C.D.	three cell lagoon	<u>8</u> / 85,000	complete sewer system	<u>8</u> / 305,000	, Ui	nder Con	struction
65	Pilot Mound M- 67	C.D.	C.D.	C.D.	three cell lagoon	<u>10/</u> 67,900	complete sewer system	100,900	, <u>1</u> /	<u>1</u> /	<u>1</u> /
66	Luther M- 69				maintain septic tanks		none				

		Was	ste Load Allocatio	n		Needs			Schedul	e of Comp	liance
Rank	Dischargers Ref. #	1990 Flow**	Concentration* BOD ₅ /NH ₃	lbs.Eff. BOD ₅ /NH ₃	Treatment	1974 Dollars	Collection	1974 Dollars	Facility Plans	Final Plans	Completion Date
67	Earlham M-143	C.D.	C.D.	C.D.	third lagoon cell	<u>8/</u> 105,000	none		6/1/76	2/1/77	1/1/78
68	Burt M- 25	C.D.	C.D.	C.D.	third lagoon cell	90,000	none		<u>1</u> /	<u>1</u> /	<u>1</u> /
69	Titonka M- 26	0.057	30/15	14/7	upgrade to secondary	<u>8/</u> 40,000	none		4/1/77	2/1/78	6/1/79
70	Indianola N. M-174	1.034	10/2	86/17	new advanced STP, I/I	<u>10</u> / 3,150,000	new collec- tors, new interceptors	<u>10</u> / 2,012,000	10/1/75	4/1/76	12/1/77
71	Lytton M- 96	C.D.	C.D.	C.D.	none		none				
72	Carroll M-131	1.075	30/5	269/45	upgrade with NH ₃ removal	<u>10/</u> 338,000	outfall sewer	<u>10</u> 216,800	/ 7/1/76	1/1/77	4/1/78
73	Oskaloosa S.W. M-204	0.807	30/15	202/101	<u>7</u> /		<u>7/</u>		<u>7</u> /	<u>7</u> /	<u>7</u> /
74	Oskaloosa S. M-203	0.09	30/15	23/11	<u>7</u> /	· · · · · ·	<u>7</u> /		<u>7</u> /	<u>7</u> /	<u>7</u> /
75	Beacon M-202	C.D.	C.D.	C.D.	third lagoon cell	<u>8/</u> 78,000	none		<u>1</u> /	<u>1</u> /	<u>1</u> /

	······································	Was	ste Load Allocatio	n	· · · · · · · · · · · · · · · · · · ·	Needs	· · · · · · · · · · · · · · · · · · ·	·····	Schedul	e ofComp	liance
Rank	Dischargers Ref. #	1990 Flow**	Concentration* BOD ₅ /NH ₃	lbs.Eff. BOD ₅ /NH ₃	Treatment	1974 Dollars	Collection	1974 Dollars	Facility Plans	Final Plans	Completion Date
76	Lovilia M-198	C.D.	C.D.	C.D.	third lagoon cell	<u>8/</u> 90,000	none		<u>1</u> /	<u>1</u> /	1/
77	Bussey M-200	C.D.	C.D.	C.D.	two lagoon cells	<u>86,000</u>	none		<u>1</u> /	<u>1</u> /	<u>1</u> /
78	Dallas M-174	To Melch	ner M-193		none		upgrade sewer system	<u>5</u> 00,000	9/ 0 <u>1</u> /	<u>1</u> /	<u>1</u> /
79	Kirkville M-208	0.028	30/15	7/4	complete secondary STP	<u>9/</u> 128,000	complete sewer system	281,000	9/ 0 <u>1</u> /	<u>1</u> /	<u>1</u> /
80	Harvey M-195	0.024	30/15	6/3	complete secondary STP	<u>8</u> 3,000	complete sewer system	300,000	3/ 5 <u>1</u> /	<u>1</u> /	<u>1</u> /
81	Hamilton M-199	C.D.	C.D.	C.D.	three cell lagoon	<u>9/</u> 84,000	sewer system	234,000	9/ D <u>1</u> /	<u>1</u> /	<u>1</u> /
82	Chillicothe M-209	 `	 *		maintain septic tanks		none			• • •	
83	Lake City N. M-100	0.095	30/7	24/6	upgrade to advanced, NH ₃ & disinf.	<u>8/</u> 159,000	none			1/1/77	9/1/78

		Wa	ste Load Allocation				Schedul	e of Com	liance		
Rank	Dischargers Ref. #	1990 Flow**	Concentration* BOD ₅ /NH ₃	lbs.Eff. BOE ₅ /NH ₃	Treatment	1974 Dollars	Collection	1974 Dollars	Facility Plans	Final Plans	Completion Date
84	Renwick M- 55	C.D.	C.D.	C.D.	add two lagoon cells	<u>8/</u> 162,000	none		<u>1</u> /	<u>1</u> /	<u>1</u> /
85	Wesley M- 53	C.D.	C.D.	C.D.	three cell lagoon	<u>8/</u> 180,000	complete sewer system	<u>8</u> 510,000	/ Unde	r Constru	ction
86	Luverne M- 54	C.D.	C.D.	C.D.	three cell lagoon	<u>10</u> / 236,700	sewers	<u>10</u> 203,100	/ <u>1</u> /	<u>1</u> / .	<u>1</u> /
87	Woolstock M- 61	C.D.	C.D.	C.D.	three cell lagoon	<u>10</u> / 410,830	complete sewer system	<u>10</u> 234,000	/ Unde:	r Constru	ction
88	Thor M- 58	C.D.	C.D.	C.D.	three cell lagoon	<u>81,000</u>	complete sewer system	<u>8</u> 280,000	/	<u>-</u>	
89	Gilmore City M- 41	C.D.	C.D.	C.D.	third lagoon cell & I/I	<u>9/</u> 140,000	additional sewer	<u>9</u> 24,000	/ 1/	<u>1</u> /	<u>1/</u>
90	Humboldt M- 20	0.926	30/9	232/68	advanced treatment	<u>9/</u> 1,085,000	none		6/1/76	12/1/76	5 12/1/77
91	Mallard M- 15	C.D.	C.D.	C.D.	three celllagoon	n	none				
92	Bode M- 33	C.D.	C.D.	C.D.	third lagoon cell	79,000	none		<u>1</u> /	<u>1</u> /	<u>1</u> /

		Was	ste Load Allocation	n		Need	S		Schedul	e of Com	oliance
Rank	Dischargers	1990 Flow**	Concentration* BOD5/NH3	lbs.Eff. BOD5/NH3	Treatment	1974 Dollars	Collection	1974 Dollars	Facility Plans	Final Plans	Completion Date
93	Wallingford M- 7	C.D.	C.D.	C.D.	three cell lagoon	<u>8</u> / 82,500	complete sewer system	300,000	/ <u>1</u> /	<u>1</u> /	<u>1</u> /
94	Ayrshire M- 10	C.D.	C.D.	C.D.	three cell lagoon	96,000 96,000	complete sewer system	9 489,000	/ <u>1</u> /	<u>1</u> /	<u>1</u> /
95	Rutland M- 19	C.D.	C.D.	C.D.	three cell lagoon	81,000	complete sewer system	236,0 <u>00</u>	/ Und	ler Constr	ruction
96	Gruver M- 6	C.D.	C.D.	C.D.	three cell lagoon	<u>10</u> / 71,800	complete sewer system	120,000	/ <u>1</u> /	<u>1</u> /	<u>1</u> /
97	Cylinder M- 11	C.D.	C.D.	C.D.	three cell lagoon	82,4 <u>00</u>	complete sewer system	63,500	/ <u>1</u> /	<u>1</u> /	<u>1</u> /
98	Waukee M-146	C.D.	C.D.	C.D.	none		none		4/1/77		
99	Dallas Center M-123	0.258	30/15	65/32	upgrade to secondary treatment	<u>8/</u> 20,000	none		6/1/76	3/1/77	7/1/78
100	Van Meter M-145	C.D.	C.D.	C.D.	third lagoon cell	<u>98,000</u>	sewers	9 162,000	/ <u>1</u> /	<u>1</u> /	<u>1</u> /
101	Osceola E. M-186-1	NA	NA	NA	Engineer Plans	to Abandon 1	Plant				
102	Badger M- 38	C.D.	C.D.	C.D.	third lagoon	85,000 85,000	none		<u>1</u> /	<u>1</u> /	<u>1</u> /

cell

		Wa	ste Load Allocatio	n		Needs	S		Schedul	e of Con	npliance
Rank	Dischargers	1990 Flow**	Concentration* BOD ₅ /NH ₃	lbs.Eff. BOD ₅ /NH ₃	Treatment	1974 Dollars	Collection	1974 Dollars	Facility Plans	Final Plans	Completion Date
103	Clare M- 42	C.D.	C.D.	C.D.	three cell lagoon	<u>9/</u> 88,000	sewer lift station interceptor	<u>9</u> 356,000	/ Und	er Const	ruction
104	Moorland M- 44	0.031	30/15	8/4	secondary treatment	<u>9/</u> 131,000	complete sewer system	<u>9</u> 319,000	/ <u>1</u> /	<u>1</u> /	<u>1</u> /
105	Havelock M- 39	0.026	30/15	7/4	secondary treatment	<u>9</u> / 136,000	complete sewer system	<u>9</u> 398,000	/ <u>1</u> /	<u>1</u> /	<u>1</u> /
106	Palmer M-225	0.028	30/15	7/4	secondary treatment	88,000 88,000	sewer system	<u>8</u> 330,000	/ <u>1</u> /	<u>1</u> /	<u>1</u> /
107	Barnum M- 43	C.D.	C.D.	C.D.	three cell lagoon	146,1 <u>00</u>	complete sewer system	176,200	/ Und	er Const	ruction
108	Pomeroy M- 98	C.D.	C.D.	C.D.	third lagoon cell	98,000 98,000	none		<u>1</u> /	<u>1</u> /	<u>1</u> /
109	Otho M- 47	C.D.	C.D.	C.D.	third lagoon cell	<u>8/</u> 91,000	none		<u>1</u> /	<u>1</u> /	<u>1</u> /
110	Lehigh M- 48	C.D.	C.D.	C.D.	third lagoon cell, I/I	<u>9/</u> 143,000	additional sewers	9. 100,000	/ <u>1</u> /	<u>1</u> /	<u>1</u> /
111	Savage S.D. M- 46	C.D.	C.D.	C.D.	third lagoon cell	88,000 <u>8</u> /	none		<u>1</u> /	<u>1</u> /	<u>1</u> /
112	Duncombe M- 50	C.D.	C.D.	C.D.	third lagoon	<u>82,000</u>	none		<u>1</u> /	<u>1</u> /	<u>1</u> /

VIII-23

		Wa	ste Load Allocatio	n		Needs			Schedul	e of Comp	liance
Rank	Dischargers Ref. #	1990 Flow**	Concentration* BOD ₅ /NH ₃	lbs.Eff. BOD ₅ /NH ₃	Treatment	1974 Dollars	Collection	1974 Dollars	Facility Plans	Final Plans	Completion Date
113	Vincent M- 49	C.D.	C.D.	C.D.	third lagoon cell	<u>8/</u> 67,000	none		<u>1</u> /	<u>1</u> /	<u>1/</u>
114	De Soto M-144	C.D.	C.D.	C.D.	third lagoon cell	<u>88,000 88,000 88</u>	none		<u>1</u> /	<u>1</u> /	<u>1</u> /
115	Manson M-103	C.D.	C.D.	C.D.	third lagoon cell	<u>9</u> / 156,000	none		<u>1</u> /	<u>1</u> /	<u>1</u> /
116	Auburn M- 94	C.D.	C.D.	C.D.	three cell lagoon	<u>8</u> / 92,000	complete sewer system	<u>8,</u> 375,000	/ <u>1</u> /	<u>1</u> /	<u>1</u> /
117	Lanesboro M-102	C.D.	C.D.	C.D.	three cell lagoon	<u>8</u> / 81,000	complete sewer system	<u>8</u> ,000	/ <u>1</u> / ,	<u>1</u> /	<u>1</u> /
118	Somers M-105				maintain septic tanks	· .	none		<u>1</u> /	<u>1</u> /	<u>1</u> /
119	Rinard M ~ 106	0.008	30/15	2/1	complete secondary facility	<u>8/</u> 52,000	additional sewers		<u>1</u> /	<u>1</u> /	<u>1</u> /
120	Albert City M- 82	0.085	30/8	21/6	ammonia reduction plant upgrade, disinf. & I/I	<u>8/</u> 90,000	none		11/1/75	9/1/76	3/1/78

.

·		Wa	ste Load Allocatio	n		Needs	3		Schedul	e of Com	pliance
Rank	Dischargers Ref. #	1990 Flow**	Concentration* BOD ₅ /NH ₃	1bs.Eff. BOD ₅ /NH ₃	Treatment	1974 Dollars	Collection	1974 Dollars	Facility Plans	Final Plans	Completion Date
121	Rembrandt M- 81	C.D.	C.D.	C.D.	third lagoon cell	<u>9</u> 6,000	none		<u>1</u> /	<u>1</u> /	<u>1</u> /
122	Marathon M- 80	.047	30/8	12/3	new advanced (NH ₃ removal)	<u>8</u> / 255,000	complete sewer system	460,000	/ <u>1</u> /	<u>1</u> /	<u>1</u> /
123	Lakeside M- 86	<u>3</u> /	<u>3</u> /	<u>3</u> /	<u>3</u> /		<u>3</u> /		<u>3</u> /	<u>3</u> /	<u>3</u> /
124	Ottumwa M-210	7.14	30/15	1786/893	none		none				
125	Eldon M-211	C.D.	C.D.	C.D.	third lagoon cell	<u>8/</u> 93,000	none		1/1/77	1/1/78	3/1/79
126	Keosauqua M-216	C.D.	C.D.	C.D.	third lagoon cell	<u>8/</u> 107,000	none		<u>1</u> /	<u>1</u> /	1 <u>/</u>
127	Moravia M-212	C.D.	C.D.	C.D.	third lagoon cell	<u>8/</u> 93,000	none		<u>1</u> /	<u>1</u> /	1/
128	Farmington M-218	C.D.	C.D.	C.D.	three cell lagoon	<u>10/</u> 957,400	complete s <i>e</i> wer system	439,700	/ Ur	nder Cons	truction
129	Bonaparte M-217	C.D.	C.D.	C.D.	three cell lagoon completed		none	 -		Complet	ed

		Wa	ste Load Allocatio	n		Needs	1		Schedul	e of Cor	pliance
Rank	Dischargers Ref. #	1990 Flow**	Concentration* BOD ₅ /NH ₃	lbs.Eff. BOD ₅ /NH ₃	Treatment	1974 Dollars	Collection	1974 Dollars	Facility Plans	Final Plans	Completion Date
130	Blakesburg M-213	C.D.	C.D.	C.D.	three cell lagoon	<u>10/</u> 128,600	, complete sewer system	F.H.A loa approved	ın Unc	ler Const	truction
131	Libertyville M-215	0.039	30/15	10/5	complete secondary STP	<u>8</u> / 75,000	complete sewer system	<u>8/</u> 395,000	<u>1</u> /	<u>1</u> /	<u>1</u> /
132	Dakota City M- 36	0.042	30/15	11/5	secondary treatment & disinf.	<u>8/</u> 240,000	none		<u>1</u> /	<u>1</u> /	<u>1</u> /
133	Lohrville M-107	0.056	30/15	14/7	upgrade to secondary treatment & disinf.	<u>8/</u> 210,000	none		<u>1</u> /	<u>1</u> /	<u>1</u> /
134	Minburn M-122	C.D.	C.D.	C.D.	third lagoon cell	<u>8</u> 5,000	none		<u>1</u> /	<u>1</u> /	<u>1</u> /
135	Churdan M-111	C.D.	C.D.	C.D.	third lagoon cell	<u>8/</u> 90,000	none		<u>1</u> /	<u>1</u> /	<u>1</u> /
136	Callender M-112	C.D.	C.D.	C.D.	third lagoon cell	84,000 84,000	none		<u>1</u> /	<u>1</u> /	<u>1</u> /
137	Rippey M-119	C.D.	C.D.	C.D.	two lagoon cell	<u>8/</u> 160,000	none		<u>1</u> /	<u>1</u> /	<u>1</u> /

		Wa	ste Load Allocatio	n		Needs			Schedul	e of Comp	liance
Rank	Dischargers Ref. #	1990 Flow**	Concentration* BOD ₅ /NH ₃	lbs.Eff. BOD ₅ /NH ₃	Treatment	1974 Dollars	Collection	1974 Dollars	Facility Plans	Final Plans	Completion Date
138	Paton M-115	C.D.	C.D.	C.D.	three cell lagoon	186,000	complete sewer system	252,000	/ Unde	er Constru	oction
139	Harcourt M-114	C.D.	C.D.	C.D.	three cell lagoon	97,000	complete sewer system	<u>9</u> 557,000	/ <u>1</u> /	<u>1</u> /	<u>1</u> /
140	Jamaica M-118	C.D.	C.D.	C.D.	three cell lagoon	<u>8</u> 3,000	complete sewer system	<u>8</u> ,000	/ <u>1</u> /	<u>1</u> /	<u>1</u> /
141	Dawson M-120	C.D.	C.D.	C.D.	three cell lagoon	<u>8</u> 5,000	complete sewer system	350,000	/ <u>1</u> /	<u>1</u> /	<u>1</u> /
142	Coon Rapids M-134	0.088	30/15	22/11	upgrade to secondary treatment	<u>10/</u> 390,000	lift station force main and sewers	<u>10</u> n 155,000	/	3/1/76	12/1/77
143	Adair M-164	0.076	30/15	19/10	none	·	none				
144	Truro M-171	C.D.	C.D.	C.D.	third lagoon cell	8/ 79,000	none		<u>1</u> /	<u>1</u> /	1/
145	Martensdale M-169	C.D.	C.D.	C.D.	third lagoon cell	86,000	none		5/1/77	5/1/78	8/1/79

		Wa	ste Load Allocatio			· · ·	Schedul	e of Com	pliance		
Rank	Dischargers Ref. #	1990 Flow**	Concentration* BOD5/NH ₃	lbs.Eff. BOD ₅ /NH ₃	Treatment	1974 Dollars	Collection	1974 Dollars	Facility Plans	Final Plans	Completion Date
146	Casey M-165	0.059	30/15	15/7	none		none	100 000 an sus			
147	Lidderdale M-132	C.D.	C.D.	C.D.	third lagoon cell & I/I	<u>10/</u> 91,000	none		<u>1</u> /	<u>1</u> /	<u>1</u> /
148	Bayard M-137	0.066	30/15	17/8	complete secondary facility	<u>10/</u> 364,000	complete sewer system	422,000	′ <u>1</u> /	<u>1</u> /	<u>1</u> /
149	Hartford M-228	.088	30/15	22/11	secondary	<u>8</u> / 183,000	complete sewer system	<u>8</u> ,740,000	<u>1</u> /	<u>1</u> /	<u>1</u> /
150	St. Charles M-172	C.D.	C.D.	C.D.	three cell lagoon	<u>8/</u> 102,000	complete sewer system	470,000	′ <u>1</u> /	<u>1</u> /	<u>1</u> /
151	Yale M-141	.032	30/15	8/4	complete secondary facility	89,000 89,000	complete sewer system	8, 350,000	′ <u>1</u> /	<u>1</u> /	<u>1/</u>
152	Linden M-139	0.038	30/15	10/5	complete secondary facility	95,000	complete sewer system	<u>8</u> , 390,000	<u>1</u> /	<u>1</u> /	<u>1</u> /
153	Spring Hill M-173	С.Д.	C.D.	C.D.	three cell lagoon	83,000	complete sewer system	300,000	′ <u>1</u> /	<u>1</u> /	<u>1</u> /
154	Patterson M-167	C.D.	C.D.	C.D.	three cell lagoon	74,000	complete sewer system	<u>8</u> 240,000	<u>1</u> /	<u>1</u> /	1/

		Was	ste Load Allocatio	n		Needs		· · · ·	Schedul	e of Comp	liance
Rank	Dischargers Ref. #	1990 Flow**	Concentration* BOD ₅ /NH ₃	lbs.Eff. BOD5/NH3	Treatment	1974 Dollars	Collection	1974 Dollars	Facility Plans	Final Plans	Completion Date
155	Dexter M-158	C.D.	C.D.	C.D.	third lagoon cell	<u>8</u> / 101,000	none		11/1/76	7/1/77	10/1/78
156	Osceola S. M-186-2	1.00	30/15	250/125	upgrade and expand existing treatment plant correct I/I	1,451,200	lift static force main and sewers	on NA	Under Co	onstructio	on 1/1/77
157	Urbandale S.D. M- 79	0.875	10/2	73/15	upgrade to advanced I/I	<u>8</u> / 1,090,000	sewers	<u>9</u> 1,396,000	/ 7/1/76 (I/I)	4/1/77 (Facility Plan)	<u>4</u> /
158	Grimes M- 78	0.131	10/2	11/2	upgrade to advanced	<u>8/</u> 1,200,000	none		7/1/76 (I/I)	4/1/77 (Facility Plan)	<u>1</u> /
159	Granger M- 77	C.D. <u>4</u> /	C.D. <u>4</u> /	C.D. <u>4</u> /	third lagoon cell & I/I	<u>8/</u> 142,000	none		6/1/76 (I/I)	4/1/77 (Facility Plan)	
160	Johnston M-224	<u>4</u> /	<u>4</u> /	<u>4</u> /	<u>4</u> /	<u> </u>	complete sewer system	9 3,500,000	/ <u>4</u> /	<u>4</u> /	<u>4</u> /
161	Algona M- 30	0.900	30/6	225/45	complete advanced STP	<u>8/</u> 1,129,000	none		10/1/75	7/1/76	7/1/78
162	Armstrong M- 22	C.D.	С.Д.	C.D.	third lagoon cell	<u>8/</u> 108,000	none		<u>1</u> /	<u>1</u> /	<u>1</u> /

VIII-29

		Wa	ste Load Allocatio	Needs				Schedul	e of Comp	liance	
Rank	Dischargers Ref. #	1990 Flow**	Concentration* BOD ₅ /NH ₃	lbs.Eff. BOD ₅ /NH ₃	Treatment	1974 Dollars	Collection	1974 Dollars	Facility Plans	Final Plans	Completion Date
163	Swea City M- 23	C.D.	C.D.	C.D.	third lagoon cell	252,000	none		<u>1</u> /	<u>1</u> /	<u>1</u> /
164	Ringsted M- 27	C.D.	C.D.	C.D.	third lagoon cell & I/I	<u>9</u> / 129,000	additional sewer	<u>9</u> , 18,000	/ <u>1</u> /	<u>1</u> /	<u>1</u> /
165	Livermore M- 31	C.D.	C.D.	C.D.	third lagoon cell	<u>84,000</u>	none		<u>1</u> /	<u>1</u> /	1/
166	Fenton M- 28	C.D.	C.D.	C.D.	three cell lagoon	<u>9/</u> 108,000	complete sewer system	<u>9</u> 607,000	/ <u>1</u> /	<u>1</u> /	<u>1</u> /
167	Newell M- 92	0.092	30/2	23/2	upgrade to advanced for NH ₃ removal, disinf. & I/I	<u>8/</u> 130,000	none		5/1/76	3/1/77	11/1/78
168	Guthrie Center M-125	0.196	30/15	49/25	upgrade to secondary treatment & disinf.	<u>8</u> / 24,000	none		9/1/76	3/1/77	9/1/78
169	Redfield M-142	C.D.	C.D.	C.D.	third lagoon cell	<u>8/</u> 108,000	none		<u>1</u> /	<u>1</u> /	1/
170	Stuart M-129	0.203	30/10	50/25	upgrade to secondary treatment level I/I & disinf.	<u>9</u> / 293,000	sewers	<u>9</u> 188,000	/ <u>1</u> /	<u>1</u> /	<u>1</u> /

	1. I.	Wa	ste Load Allocation	n		Needs			Schedul	e of Comp	liance
Rank	Dischargers Ref. #	1990 Flow**	Concentration* BOD ₅ /NH ₃	lbs.Eff. BOD ₅ /NH ₃	Treatment	1974 Dollars	Collection	197 4 Dollars	Facility Plans	Final Plans	Completion Date
171	Dedham M-128	C.D.	C.D.	C.D.	third lagoon cell	<u>82,000</u>	none		<u>1</u> /	<u>1</u> /	<u>1/</u>
172	Arcadia M-126	C.D.	C.D.	C.D.	three cell lagoon	<u>10/</u> 155,900	complete sewer system	41,200)/)		1/1/77
173	Halbur M-127	0.026	30/15	7/3	complete secondary treatment	82,000 82,000	complete sewer system	301,000	9/ 1_/	<u>1</u> /	<u>1</u> /
174	Woodward M- 75	C.D.	C.D.	C.D.	third lagoon cell	<u>8/</u> 121,000	none		3/1/76	11/1/76	10/1/77
175	Grand Junction M-117	0.040	30/15	10/5	upgrade to secondary, I/I	<u>9/</u> 153,000	lift station & sewers	9 145,000	4/1/77	2/1/78	5/1/79
176	Bouton M- 76				maintain septic tanks		none		<u>1</u> /	<u>1</u> /	<u>1</u> /
177	Des Moines Area B M-223	<u>4</u> /	<u>4</u> /	<u>4</u> /	<u>4</u> /	<u>4</u> /	upgrade sewer system I/I	<u>10</u> 466,000)/ 0 7/1/76 (I/I)	4/1/77 (Facility Plan)	

		Was	ste Load Allocation	1	Needs				Schedul	e of Com	liance
Rank	Dischargers Ref. #	1990 Flow**	Concentration* BOD ₅ /NH ₃	lbs.Eff. BOD ₅ /NH ₃	Treatment	1974 Dollars	Collection	1974 Dollars	Facility Plans	Final Plans	Completion Date
178	Greenfield Plaza M-161					Not Eligible					
179	Carlisle M - 163	C.D. <u>4</u> /	C.D. <u>4</u> /	C.D. <u>4</u> /	<u>4</u> / I/I	<u>9</u> / 467,000	none		4/1/77	<u>4</u> /	<u>4</u> /
180	Norwalk M-159	<u>4</u> /	<u>4</u> /	<u>4</u> /	<u>4</u> / I/I	<u>9</u> / 409,000	none		7/1/76 (I/I)	4/1/77 (Facili Plan)	ty
181	Men lo M-157	0.041	30/15	10/5	complete secondary facility	<u>8/</u> 160,000	complete sewer system	410,000	<u>3/</u> D <u>1</u> /	<u>1</u> /	<u>1</u> /
182	Cumming M-162	0.029	30/15	7/4	three cell lagoon	<u>9/</u> 87,000	complete sewer system	330,000	9/ D <u>1</u> /	<u>1/</u>	<u>1/</u>
183	Indianola S. M-179	0.400	30/15	100/50	upgrade I/I corrections	500,000	new inter- ceptors		<u>0</u> / 00 10/1/75	4/1/76	12/1/77
184	Pleasantville M-183	C.D.	C.D.	С.Д.	upgrade to secondary treatment	<u>8/</u> 106,000	none		<u>1</u> /	<u>1</u> /	<u>1</u> /
185	Milo M-180	C.D.	C.D.	C.D.	third lagoon cell	<u>8/</u> 106,000	none		<u>1</u> /	<u>1</u> /	<u>1</u> /
186	New Virginia S.D. M-178	C.D.	C.D.	C.D.	third lagoon cell	<u>9</u> / 88,000	none		<u>1</u> /	<u>1</u> /	<u>1</u> /

.

· ····································		Waste Load Allocation			Needs			Schedule of Compliance			
Rank	Dischargers Ref. #	1990 Flow**	Concentration* BOD ₅ /NH ₃	lbs.Eff. BOD ₅ /NH ₃	Treatment	1974 Dollars	Collection	1974 Dollars	Facility Plans	Final Plans	Completion Date
187	Ackworth M-181				maintain septic tanks		none		<u>1</u> /	<u>1</u> /	<u>1</u> /
188	Lacona M-189	C.D.	C.D.	C.D.	third lagoon cell	<u>8</u> / 96,000	none		<u>1</u> /	<u>1</u> /	<u>1</u> /
189	Lucas M-188	0.026	30/15	7/3	complete secondary STP	<u>84,000</u>	complete sewer system	310,000	<u>8/</u> 0 <u>1</u> /	<u>1</u> /	<u>1</u> /
190	Williamson M-189	0.023	30/15	6/3	complete secondary system	<u>8</u> /82,000	complete sewer system	290,000	<u>8/</u>) <u>1</u> /	<u>1</u> /	<u>1</u> /
191	Woodburn M-187				maintain septic tanks		none				
192	Buffalo Center M- 3	C.D.	C.D.	C.D.	third lagoon cell	<u>8/</u> 105,000	none		4/1/77	3/1/78	10/1/79
193	Ledyard M- 1	0.024	30/15	6/3	secondary plant	<u>8</u> 3,000	complete sewer system	300,000		<u>1</u> /	<u>1</u> /
194	Lakota M- 2	0.039	30/15	10/5	secondary plant	<u>9/</u> 107,000	complete sewer system	- 515 , 000	0/ 0 <u>1</u> /	<u>1</u> /	<u>1</u> /
195	Rake M- 4	0.033	30/15	8/4	secondary plant	<u>9/</u> 137,400	complete sewer system	162,700	2/ D <u>1</u> /	<u>1</u> /	<u>1</u> /

TABLE VIII-3

Treatment Type Need	Number	1974 Dollars			
Complete Advanced STP	15	\$103,773,600			
Upgrade to Advanced STP	17	7,904,400			
Complete Secondary STP	24	7,500,000			
Upgrade to Secondary Facility	21	5,705,200			
Three Cell Lagoon	30	4,592,100			
Add 2 Additional Cells	5	581,000			
Add Third Lagoon Cell	50	5,407,000			
I/I Correction Only	5	1,682,800			
Collection System Needs	83	53,202,400			
No Need	8				
Maintain Septic Tanks	35				
TOTAL	293	\$190,348,500			

SUMMARY OF MUNICIPAL TREATMENT NEEDS

Industrial Needs

Iowa has become increasingly more industrialized. Many industries are agriculturally oriented, such as meat packing and processing, dairy and cheese processing, fertilizer and pesticide production, wet grain milling, and rendering. All of these are "wet" industries (using large quantities of water) and produce inordinately large amounts of waste which are difficult to treat by conventional methods. In the Des Moines River Basin most of the industries discharge to municipal treatment facilities. Sometimes they cause an overload condition upon the municipal plant.

Some industries have their own treatment facilities such as Farmland Industries and Iowa Beef Packers at Fort Dodge. Farmland, a fertilizer plant, has a holding pond discharging cooling water contaminated by ammonia nitrogen. Iowa Beef has an anaerobic/aerobic lagoon system which reduces BOD in the system more than ninety percent. The waste load from these industries is still so great that controlled discharges of their effluent must be maintained.

The majority of industry in the basin is "dry" (using little or no water) such as tractor and implement manufacturing, tire manufacturing, metal fabrication (for furnaces and appliances), printing, and electrical component assembly.

The DEQ, through the State Operation Permit Program, in coordination with the Federal NPDES Discharge Permit Program

VIII-35

will regulate industrial dischargers. Effluent limits are set according to the waste load allocations. BPT is the minimum allowable allocation.

Table VIII-4 lists the significant industrial discharges in the basin, their present discharge, waste load allocation, projected need, and a compliance schedule. A permit will be issued by the DEQ to the industry, which will assure compliance with the basin plan.

According to the schedules of compliance for the significant industrial dischargers, a reduction of industrial waste loads of 75% and 74% of BOD₅ and ammonia-nitrogen, respectfully, is expected. This reduction is estimated to cost the industries approximately 2.5 million dollars. This cost estimation was derived from a DEQ survey of the significant industries.

Semipublic

The major semipublic wastewater disposal problem is water treatment plants. Many of these plants use lime (calcium hydroxide) to soften the water before distribution. The sludge created poses a significant disposal problem.

Most facilities lagoon the sludge, but this does not answer the final disposal problem of what to do when the lagoons are full. Some plants discharge their lime sludge directly to the river. These plants are currently studying methods to eliminate such discharges.

Industrial	Flow	Present	7/1/77	Treatment	Schedule of Compliance			
Discharger	MGD	Eff. 1bs BOD/NH ₃	Eff. 1bs BOD/NH ₃	Needs	Preliminary Report	Final Plans	Completion Date	
Beaver Valley Canning I-43	0.025	4.2/-	0/0	To Grimes STP	-	-	• –	
Farmland Industries I-31	0.60	50/88	50/10	NH ₃ reduction	3/30/75	7/30/75	7/1/77	
Iowa Beef Processors I-25	1.00	1580/900	168/300	BOD ₅ & NH ₃ reduction	3/30/75	9/30/75	7/1/77	
Mefferd Industries I-52	0.007	20*	.002*	New Facility	Not Dr	afted to I	ate	
Oscar Mayer I-56	0.90	563/525	282/75	New Treatment Facility	3/1/75	6/1/75	3/31/77	
Plains Poultry I-41	0.01	9/-	3/-	Upgrade Exist-	7/1/75	10/1/75	5/31/76	

TABLE VIII-4

TREATMENT NEEDS AND SCHEDULE OF COMPLIANCE FOR SIGNIFICANT INDUSTRIES

* Values are shown for hexavalent chromium.

VIII-37

Lime sludge does have an economic value if handling problems can be overcome. The sludge can be used for landfill, or as a pH buffer on farmland which has acidic soil. Recently concrete manufacturers have expressed an interest in the material, since it is one of the major ingredients in their product.

As pressure is brought to bear on water treatment plants from Government agencies and landowners located adjacent to sludge lagoons, lime sludge disposal will receive greater attention.

An estimate of semipublic needs and related costs to meet the basin plan has not been performed due to a lack of information detailing the facilities.

Nonpoint Source Needs

Nonpoint sources of pollution have been divided into the three main areas: general rural runoff, animal feeding operations, and urban nonpoint sources. Each of the three areas has been discussed in Chapter VII, and in greater detail in the Supporting Document (3).

<u>General Rural Runoff</u> - The major pollution parameters in general rural runoff have been classified as sediment, nutrients, and organics. Sediment is usually the parameter of most significance. Nutrients can also be of major significance especially if they will affect near-by lakes or impoundments. Runoff from cropland is a major source of nutrients. Nutrient pollution abatement is accomplished through improved methods of fertilizer application and implementation of the same measures used to control soil loss.

Except where runoff occurs from animal feeding operations, organics are usually of relatively minor importance, especially when compared with the contribution from municipalities.

Physical needs for abating general rural runoff pollution reduce to those methods employed for controlling soil loss. These methods have been discussed in some detail in the Supporting Document (3). An estimate to implement such control measures in the Des Moines basin was presented in Ch. VII. The estimated capital investments amounted to approximately 340 million dollars.

<u>Animal Feeding Operations</u> - The major pollutants from animal feeding operations are suspended solids, nutrients, and organics. Physical needs to control these sources of pollution have been summarized as including debris basins and retention basins, with land application for final disposal. The estimated capital investments to implement such control measures in the Des Moines River Basin amounted to approximately 11.5 million dollars. <u>Urban Nonpoint Sources</u> - In urbanized areas, surface runoff and combined sewer overflows can adversely affect the utility of the water resource. Contaminants discharged to a watercourse are the result of debris, animal droppings, eroded soils, tire and vehicular exhaust residues, deicing compounds, pesticides, fertilizers, air pollution fallout, and decayed vegetation contained in the urban runoff. The estimated capital investments to implement control measures in the Des Moines River Basin amounted to approximately 767 million dollars.

Summary of Needs

The total dollar need to meet the objectives of this basin plan for the Des Moines River Basin is estimated to exceed 1.3 billion dollars. This amount is broken down in Table VIII-5.

TABLE VIII-5

SUMMARY OF NEEDS

Need	Approximate Dollars*
Municipal Treatment	\$137,146,100
Municipal Collection and Combined Sewer Overflow Correction	53,202,400
Industrial Treatment (Significant Industries)	4,500,000
Animal Feeding Operations Controls	11,551,000
Soil Loss Controls	338,998,000
Urban Stormwater Treatment and/or Control Costs	767,300,000
TOTAL	\$1,312,697,500

* 1974 Dollars

REFERENCES

- 1. Sewage Treatment Plant and Sewer Construction Cost Index, U.S. EPA Office of Water Program Operations, Municipal Construction Division.
- 2. Manson, R.J. and Merrit, C.A., "Land Application of Liquid Municipal Wastewater Sludges", Water Pollution Control Federation Journal, Vol. 47, No. 1, January, 1975.
- 3. <u>Supporting Document For Iowa Water Quality Management</u> <u>Plans, Iowa Department of Environmental Quality, Water</u> <u>Quality Management Division, Des Moines, Iowa, 1976.</u>

CHAPTER IX - CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

Several significant conclusions have arisen throughout the development of this basin plan. Some of these include:

- The Des Moines River Basin currently has 217 incorporated municipalities with a total population of 731,092. The population of these municipalities is projected to increase by 8 percent to 790,316 by 1990.
- 2. Of the 217 incorporated municipalities, 136 currently have collection and treatment facilities and 86 communities have no central sewage systems. Many of the treatment facilities are not presently achieving secondary treatment.
- 3. Waste stabilization lagoons serve nearly 50 percent of the municipalities and a large number of industries within the basin.
- 4. A number of water quality violations have been documented in the basin due to point source discharges. Most of these violations have occurred at stream flows well above the 7-day 1-in-10 year low flow.
- 5. Water Quality violations have been documented during high stream flows. These pollution problems can probably be attributed to agricultural and urban runoff.
- 6. Sediment, which often carries other pollutants with it, is a significant pollution parameter in Iowa. Proper land and water management can minimize soil erosion.

IX-1

Effort should be made to continue and increase the use of established soil conservation practices. Pesticides in the environment can be reduced by using soil conservation practices and fertilizer loss can be minimized by application methods which assure efficient uptake by crops.

- 7. All lakes and reservoirs in the basin are subject to potential eutrophication from rural and urban runoff.
- 8. Land disposal of digested municipal sewage sludge is the most economical ultimate disposal method currently being used in the planning area.
- 9. Waste load allocations have shown that a significant number of dischargers will be required to provide advanced waste treatment to meet water quality standards at the 7-day, 1-in-10 year low streamflow. This is particularly true in the Upper Des Moines River and Raccoon River Subbasins.
- 10. The water quality strategy for point sources, as outlined in the plan, should result in the maintenance of acceptable surface water quality for designated uses.
- 11. The Des Moines River Basin Plan has demonstrated (Chapter VIII) a need for municipal treatment and collection facilities which may exceed a cost of 190 million dollars.

IX-2

12. Most industries should be able to meet the July 1, 1977 requirements of the Act. A high percentage of municipalities will also meet this deadline, however, long construction schedules and lack of adequate grant funding will result in some municipalities not meeting the deadline. The 1983 goals requiring all streams to be of suitable water quality to be fishable and swimmable can be met if Federal funding is continued.
RECOMMENDATIONS

As stated in the Foreword, the objective of this Basin plan is to provide the framework for achieving the protection and maintenance of surface and ground water quality in the Des Moines River Basin. The implementation of this Basin plan will help in attaining that objective, however, several possibilities exist that would further aid this effort. It is therefore recommended that the following topics be given further consideration and study.

- The State Water Plan, which is currently under development, should give careful consideration to water quality. Consideration should also be given to restricting future water uses in water quality limited segments.
- Non-structural management measures that can enhance and protect water quality should be given careful consideration by all levels of government, business interests and private citizens.

Examples include:

- a. Improved operation should be initiated at all waste treatment systems. Small communities may be able to accomplish this goal by sharing qualified operators and laboratory facilities.
- b. Land use planning and zoning decisions should include considerations of water quality. This is particularly important when development around lakes may occur.

IX-4

- c. Local government should give consideration to the impact on water quality before making commitments for new development or industry.
- d. Tillage practices should be selected that will minimize soil erosion.
- e. Woodland management practices should be selected that will minimize soil erosion.
- f. Agricultural chemicals should be applied at rates and times that will minimize runoff fertilizers and herbicides.
- g. The design of any new or expanded industrial or commercial facilities should give careful consideration to minimize the amount of waste products that will be discharged from that facility.
- h. Recycling should be encouraged and selected even when marginally cost-effective on the assumption that the cost of all natural resources will increase in the future.
- i. Strict enforcement of local ordinances should be practiced. Such ordinances should include provision for rigid inspection of all new sewer construction and connections.
- j. County Boards of Health should adopt and enforce individual waste disposal system regulations promulgated by the State Health Department.
- k. Sanitary districts should be established to provide sewerage services to unincorporated areas.

IX-5

- Although thermal discharges are not considered to be a major problem in the study area, they are significant enough that further studies are warranted to determine specific thermal limits.
- m. Land disposal of wastewater should be considered where soil and other conditions permit, and complete retention lagoons rather than small mechanical treatment plants should be considered, where applicable, in view of the national goal of zero discharge of pollutants by 1985. The communities, assisted by the Department of Environmental Quality, are responsible for considering this in their plan alternatives.
- n. It is known that urban runoff contains metals and other pollutants, but their impact on downstream water uses needs further studies. Urban runoff can be controlled by storage and treatment. Economic feasibility studies should be performed for all major municipalities.
- o. Land disposal of digested municipal sewage sludge is the most economical ultimate disposal method presently used. Many communities let sludge drying facilities lie idle much of the time, preferring to wet haul sludge when farmland is available and ready for receipt of the sludge. Departmental policy should address the disposal of municipal sludge. An educational program might be worthwile to emphasize the economic advantages of using sludge as a soil conditioner and fertilizer supplement.

IX-6

p. Establishment of specific waste load allocations has indicated certain areas where regionalization of facilities should be considered. In addition to combining industrial discharges with publicly-owned facilities, combinations of municipal facilities are possible.

(1) <u>Facility Planning</u> - It is recommended that detailed evaluations should be performed as an element of the Section 201, Step 1 Facilities Planning for regionalization of waste treatment facilities in the following areas:

Estherville Area - Estherville, Morrell and Co., and Wadco Foods, Inc.

Pocahontas - Pocahontas and Iowa Industrial

Hydraulics, Inc.

Fenton Area - Fenton and Central Community

School District

Humboldt Area - Humboldt and Dakota City Lehigh Area - Lehigh, Dayton, and Dickey Clay Mfg. Webster City Area - Webster City and Franklin Mfg. Fort Dodge Area - Fort Dodge, Farmland Industries,

Hormel and Co., Fort Dodge Creamery, American Can Processors, Land O'Lakes, Webster Processing Co. and Savage Sanitary Sewer District

Storm Lake Area - Storm Lake, Vilas, Hygrade,

Lakeside

Perry Area - Perry, Oscar Mayer

IX -7

Pella Area Oskaloosa Area Ottumwa Area

(2) <u>Areawide Planning</u> - The Des Moines Metropolitan area has already been officially designated by the Governor as a 208 areawide planning area. The planning agency for the area is the Central Iowa Regional Association of Local Governments (CIRALG). No other 208 designation are currently recommended for the Des Moines Basin.

(3) <u>Other</u> - At the community and county level zoning and land use planning should be used to assure an orderly and efficient development of unsewered areas.

3. Structural measures will of course also help to protect water quality. Many of the structural measures required in the basin are outlined in the needs table.

CHAPTER X - REVIEW AND REVISION

PUBLIC HEARING PROCEDURE

Public hearings are specified by the Federal Water Pollution Control Act Amendments of 1972 as part of the procedure for establishing a water quality management plan for river basins. In accordance with Section 101(e) of the Act, public participation was required on significant elements of the planning process.

Statements or presentations given at public hearings were required to be retained in writing for the record. Verbal comments and written statements were specified to be limited to the Water Quality Management Plan. Written statements were requested to be submitted to DEQ at least one week prior to the hearing. Additional statements, filed within ten days after the scheduled hearing, were also considered part of the record.

"Reasonable Notice" was given to the public by prominent advertisement, indicating time, date, place, and availability of proposed plan, 30 days prior to the date of each hearing. Complete records of such hearings are kept and a transcript made available on payment of fee.

WATER QUALITY STANDARDS REVIEW

The Federal Act specifies that at least every three years, starting from date of enactment of the 1972 Amendments, the Iowa Water Quality Commission hold public hearings for purpose of review, and/or revision, of the Iowa Water Quality Standards. The 303(e) process, including this basin plan developed as part of the process, is used to assist in making any necessary revisions of Iowa Water Quality Standards. The Iowa Water Quality Standards are scheduled for revision in 1976.

BASIN PLAN REVISION

This Basin Plan is Phase I of the annual continuing planning process as required by section 303(3) of the Act. This basin plan will be revised under Phase II in such manner as is necessary to maintain its viability. Thereafter, this Basin Plan will be reviewed annually and revision will be made if warranted. Revision to the wasteload allocations, compliance schedules, or construction grant needs and priorities will be based on the most current and accurate data available.

BASIN PLAN HEARINGS

Three public hearings concerning the adoption of the proposed Des Moines River Basin Water Quality Management Plan were conducted by the Department of Environmental Quality. The hearings were held October 21, 1975, at 10:00 a.m. at the Humboldt Social Center, 702 First Ave. N., Humboldt, Iowa; October 22, 1975, at 7:30 p.m. at the Des Moines Area Community College Auditorium, Building 24, Ankeny, Iowa; and October 23, 1975, at 7:30 p.m. at the Indian Hills Community College Auditorium, Administration Building, Ninth and College (Ottumwa Airport), Ottumwa, Iowa. A copy of the public notice announcing the hearings appears in this chapter.

Identified in the following list are persons who attended the hearings:

At Humboldt

Name

Ivan T. Schultz Paul Silbaugh

Asu S. Arent, MD Carry Steburg Dennis Plautz Steve Hakeman E. A. Tellier Milton R. Berger Myles Van Patter Wm. Ellingrod John T. Baker Maurice A. Marble Tim Duritsa Ray Schlotfeldt William H. Heilman Stan Logterman Dan C. Adams Arlin Schalekamp Steve Schutte

Representing

Self Humboldt Co. Conservation Board Self City of Fort Dodge City of Fort Dodge Humboldt Newspapers Self Humboldt Co. Conservation Self Palo Alto County SCS Ia.-Ill. Gas & Electric Ft. Dodge Chamber of Commerce Schlotfeldt Engineering Schlotfeldt Engineering Hormel Corn Belt Power Coop ICC ICC

At Ankeny

Name

Susan Barisas E. R. Baumann, Prof. Jeffrey Dezellar Dale S. Harrington Merwin D. Dougal, Prof Dick Jacobson Mrs. Wm. Mills Gary F. Elbert Max Schnepf William A. Mills Harold Coder, Mayor Bob Gee R. G. Glenn D. Beason Paul D. Schreck L. J. Lemprecht Arnold R. Lamp Ray Henely Ron Jackson Gary Speiran Victor Ziegler James G. Armstrong Michael D. Foreman Robert G. Page Leroy Bergmann Ronald L. Cooper Martin H. Meyer Marvin Thorton Roger A. Wood

Representing

INRC ISU Minnesota Poll. Control Agency CIRALG WRRI, ISU City of Ankeny Self Indianola Journal of Soil & Water Cons. SCS City of Coon Rapids INRC Veenstra & Kimm CIRALG Mun. Utilities, Coon Rapids Mun. Utilities, Coon Rapids City of Coon Rapids AGC of Iowa Kirkham, Michael & Assoc. Self EPA U.S. Fish & Wildlife Service CIRALG Iowa Power & Light Shive-Hattery & Assoc. Oakes Eng. Co. INRC Veenstra & Kimm Indianola

At Ottumwa

Name

Ann Morris Fred Van Glenderen C. B. Curtis Victor Ziegler

Representing

League of Women Voters Self Water Quality Commission EPA

iowa department of environmental quality

NOTICE OF PUBLIC HEARING

The Iowa Department of Environmental Quality (DEQ) will hold public hearings concerning the adoption of the proposed Water Quality Management Plan for the Des Moines River Basin on October 21, 1975, at 10:00 a.m., at the Humboldt Social Center, 702 1st Ave. N., Humboldt, Iowa; on October 22, 1975, at 7:30 p.m., at Des Moines Area College Auditorium, Building No. 24, Ankeny, Iowa; and on October 23, 1975, at 7:30 p.m., at the Indian Hills Community College, 2nd floor, Administration Building, 9th & College (Ottumwa Airport), Ottumwa, Iowa.

The Water Quality Management Plan is specifically directed toward satisfying the requirements of Section 303(e) of the Federal Water Pollution Control Act, as amended, Public Law 92-500, 86 Statute 849 (1972); (33 United States Code Annotated 1313(e)). The purpose of the Water Quality Management Plan is to identify the water quality problems of the Des Moines River Basin and to set forth a program to correct the problems.

The public hearings (held pursuant to Subsection 455B.32(7) of the Code of Iowa and 40 Code of Federal Regulation Part 131.502 (Federal Register, Volume 39, 19643, June 3, 1974)) will give the public opportunities for expression of views to DEQ as well as provide for total public disclosure of the Water Quality Management Plan.

Oral and written statements presented at the hearings will be retained in the written record of the hearings. Statements should be limited to the subject matter of the Water Quality Management Plan for the Des Moines River Basin. Time limits may be set on oral presentations at the discretion of the hearing officer so that all those wishing to speak may be heard. Written statements may be submitted to DEQ prior to the hearings and at any of the hearings. Written statements received within ten days after the third hearing will also be considered part of the hearings record. Complete records of the hearings will be kept and transcripts will be available upon payment of a duplication fee. The final Water Quality Management Plan will include a description of any major objections raised during the period for public comment and the disposition of such objections. The plan will become effective after approval by the Iowa Water Quality Commission, the Governor of Iowa and the U.S. Environmental Protection Agency.

A copy of the proposed plan will be available for inspection in the City Clerk's Office in the county seat of each county located in, or partially in, the Des Moines River Basin. Copies will also be available for inspection in the DEQ regional offices located in Manchester, Mason City, Spencer, Washington and Council Bluffs, and in the main office in Des Moines. Written statements and requests for additional information should be addressed to the Water Quality Management Division, Iowa Department of Environmental Quality, 3920 Delaware, P.O. Box 3326, Des Moines, Iowa 50316, telephone: 515/265-8134.

WATER QUALITY MANAGEMENT DIVISION

X-5 Joseph E. Obr, P.E., Director

3920 Delaware Ave., P.O. Box 3326, Des Moines, Iowa 50316 • 515/265-8134

The substantive comments (both written and oral) for all six basin plans presented at the hearings and/or directly submitted to the DEQ office in Des Moines, have been compiled. Responses made by the DEQ staff were then presented to the Iowa Water Quality Commission. Those commenting on the plan included federal and state agencies, county and local governments and agencies, industrial organizations, local citizens and special interest groups. Many of these comments have been adopted or substantially justified by change, deletion from, or additions to the basin plans. The Commission approved the plans and copies along with the comments and responses were sent to the Region VII office for EPA's approval. Oral and written statements presented at the hearings are available at the DEQ office for inspection. Copies may be obtained from the DEQ for a reproduction fee.

The DEQ has revised the plans in responses to issues raised, which could be resolved easily and not slow the progress of the study. If, however, it cannot readily be resolved and is a major issue, the issue will be addressed in Phase II of the planning process.

The water quality standards and the stream classifications will be reviewed in 1976. The DEQ, in cooperation with the Iowa Conservation Commission, will evaluate stream use and classification. The chemical and physical parameters listed

in the standards will also be subject to review. Public hearings will be held prior to commission approval.

The stream segment and discharger ranking methodology, as required by Sec. 303(e) of the Act, may be the basis for future construction grant funding. Before any future grant priority list is compiled, which may be based on new priority formulas, the methodology will be reviewed and public hearings held. The discharger ranking used in the basin plans basically assumes that dischargers creating the greatest impact on water quality will be addressed more quickly than dischargers with less impact. This methodology will be expanded before it is used for the construction grant ranking.

New data regarding the seven-day ten-year low flow is now available and new population projections are expected. This will necessitate updating many waste load allocations in the Phase II planning program.

As stated earlier, 303(e) basin planning, or Phase I, mainly addressed point source pollution abatement. Under EPA (Phase II) guidelines, states are required to fully address nonpoint source pollution and to develop abatement programs to handle the problem. Phase II planning will continue to include point source waste load allocations and time schedules, and will update the municipal needs tables. Much of this will concern locating errors, or be tied to stream reclassification, new low flow data or standards revision.

The goal of Phase II planning is to reassess controls and needs of combined sewer replacement, feedlot control, urban runoff, and rural nonpoint pollution and to assign implementation programs.

GLOSSARY

Activated sludge is a completely aerobic treatment process by which wastewater is fed continuously into an aerated tank where microorganisms metabolize the organic material. The biological floc is settled in a final clarifier and may be recirculated to the aeration basin. Ninety to ninetyfive percent BOD removal can be achieved.

<u>Aerobic</u> denotes biological processes in which oxygen is used for the decomposition of organic matter.

<u>Anaerobic</u> denotes biological processes in which decomposition of organic matter is accomplished in an environment devoid of free oxygen.

Biochemical oxygen demand (BOD) is the quantity of oxygen utilized in the biochemical oxidation of organic matter in a specified time and at a specified temperature.

Combined sewer is designed to carry sanitary sewage, industrial wastes, and storm runoff in a single conduit.

Disinfection of water or wastewater is a method of reducing pathogens or objectionable microorganisms by means of chemicals or other acceptable means.

Dissolved oxygen is the concentration of oxygen dissolved in a liquid. If affects biological changes brought about by aerobic or anaerobic organisms, and is an important environmental factor for growth and reproduction of fish and other aquatic organisms. Determination of dissolved oxygen also serves as the basis of the BOD test.

<u>Gaging station</u> is a particular site on a stream, canal, lake, or reservoir where systematic observations of gage height or discharge are obtained.

Holding or storage pit is a covered container into which wastewater flows until it can be pumped out and taken to a treatment facility.

Industrial wastewater is the wastewater which originates in industrial processing, cooling, or washing operations.

Infiltration is the groundwater which gains entrance to sewers through joints or improper connections.

Intermediate treatment involves additional settling of the wastewater and may incorporate chemicals to aid the settling process. Normally 50 percent BOD removal may be obtained through this process.

Intermittent stream is a stream with 7-day, 10-year low flow less than 0.1 cubic feet per second.

Lagoon or stabilization pond is generally a shallow geometrical pond which treats pretreated or untreated sewage biologically. Wastewater is retained in the pond for treatment and a clarified effluent is discharged after a specific detention time.

Main sewer is a conduit to which one or more branch sewers are tributary.

Outfall sewer receives the wastewater from a collection system and carries it to a point of final discharge.

<u>pH</u> is the negative logarithm of the hydrogen ion concentration. A pH below 7 indicates an acid condition and a pH above 7 indicates an alkaline condition.

Population equivalent measures the strength of a wastewater in terms of an equivalent number of persons, using an average 0.17 pounds of oxygen demand per person per day in domestic wastewater.

<u>Pretreatment</u> of industrial waste refers to treatment, usually primary, given to the wastewater before it is discharged into a sanitary sewer for secondary treatment.

Primary treatment involves only screening and physical settling of the wastewater. Approximately 30 percent of the BOD can be removed through this process.

Sampling station is a particular site on a stream, lake, canal, or reservoir where systematic samples of water are taken for analysis for physical, chemical, or biological parameters.

Sanitary sewer is a conduit designed to carry sanitary sewage. However, in many cases, it will also carry industrial wastes produced in the area it serves. Secondary treatment conventionally involves biological treatment of wastewater to reduce the BOD by 85 percent or more. These biological processes usually involve trickling filters, stabilization ponds, or activated sludge processes. Recently, straight physical-chemical processes have been considered secondary treatment on the basis of their BOD removal efficiency.

Septic tank allows solids to settle out of a waste and permits a clarified effluent to be discharged to a ground seepage system. The solids are broken down anaerobically, and the residue must be pumped out periodically.

Sewage disposal applies to the act of disposing of sewage by any method. It may be done with or without any previous treatment of the wastewater.

Sewage treatment refers to any artificial process to which wastewater is subjected in order to remove or alter its objectionable constituents so as to render it less dangerous or offensive.

Sewage treatment plant is a comprehensive term encompassing an arrangement of devices and structures for treating domestic and industrial wastewater and sludge.

Sewerage is a system of sewers and appurtenances for the collection, transportation, pumping, and treatment of domestic and industrial wastewaters.

Solids are all matter except water contained in a liquid. They may be suspended or dissolved solids.

Storm runoff is the wastewater flowing due to rain water, snowmelt, or other surface runoff.

Storm sewer carries storm runoff and similar waters not including sanitary or industrial sewage.

Trickling filter systems consist of a bed of crushed rock, or other media, coated with biological films, through which primary effluent is passed for secondary treatment. The filter may be followed by a final settling basin, and recirculation through the filter may be employed for better removal. Up to 90 percent BOD removal can be achieved through trickling filter systems in ideal situations.

IOWA DEPARTMENT OF ENVIRONMENTAL QUALITY

3920 Delaware Avenue P.O. Box 3326 Des Moines, Iowa 50316 Phone: 515/265-8134

H-4782