# AIRPORT

the

# DEVELOPMENT PLAN 1990 UPDATE

# POCAHONTAS, IOWA



TL 726.4 .P63 A37 1990

-

.

1

**CONSULTING ENGINEERS** 

1725 N. LAKE AVENUE · P.O. BOX 458 STORM LAKE, IOWA 50588

(712) 732-7745

STATE LIBRARY OF IOWA East 12th & Grand DES MOINES, IOWA 50319

# AIRPORT DEVELOPMENT PLAN 1990 UPDATE POCAHONTAS MUNICIPAL AIRPORT

## PREPARED FOR: POCAHONTAS AIRPORT COMMISSION CITY OF POCAHONTAS, IOWA NOVEMBER, 1990

## KUEHL AND PAYER, LTD. STORM LAKE, IOWA 50588 (712) 732-7745

The preparation of this report was financially aided through the State Aviation Program of the Iowa Department of Transportation.



## TABLE OF CONTENTS

## SECTION ONE

## COMMUNITY AND AIRPORT BACKGROUND

| A. | Introduction I – 1          |
|----|-----------------------------|
| B. | Community Elements I-4      |
| C. | Socioeconomic BackgroundI-7 |
| D. | Area Airports I - 9         |

## SECTION TWO

## FORECAST OF AVIATION DEMAND

| A. | Introduction II – 1                           |   |
|----|-----------------------------------------------|---|
| Β. | Based Aircraft II - 2                         |   |
| C. | Aviation Operations and Operations Mix II - 4 |   |
| D. | Pilots, Air Passengers and Air Freight II - 8 | 3 |
| E. | Summary II - 9                                |   |

## SECTION THREE

#### FACILITY REQUIREMENTS

| A. | IntroductionIII – 1                   |   |
|----|---------------------------------------|---|
| B. | Runways and TaxiwaysIII - 2           |   |
| C. | Landing and Navigational AidsIII - 12 | 2 |
| D. | Terminal Area III - 1                 | 5 |
| E. | FAR Part 77 III - 23                  | 3 |
| F. | Land Use GuidelinesIII - 28           | 3 |
| G. | Summary                               | ) |

## SECTION FOUR

#### **AIRPORT SITE PLANS**

| A. | Airport Site | e Plans | IV | - / | 1 |
|----|--------------|---------|----|-----|---|
|----|--------------|---------|----|-----|---|

## SECTION FIVE

## DEVELOPMENT SCHEDULE AND STRATEGY FOR IMPLEMENTATION

| A. | IntroductionV - 1                          |
|----|--------------------------------------------|
| B. | Development Schedule and Cost EstimatesV-2 |
| C. | Airport Revenue and ExpendituresV-7        |
| D. | Federal and State AssistanceV - 9          |
| E. | FeasibilityV - 9                           |

## LIST OF FIGURES

| Figure<br><u>No.</u> |                                                         | Page<br><u>No.</u>  |
|----------------------|---------------------------------------------------------|---------------------|
| 1.                   | Airport Development Plan Update Process                 | I – 2               |
| 2.                   | Vicinity Map                                            | I – 3               |
| 3.                   | Area Airports Aeronautical Chart                        | I – 11              |
| 4.                   | Iowa Registered Aircraft                                | ll – 1              |
| 5.                   | Iowa Registered Pilots                                  | <mark>II</mark> – 2 |
| 6.                   | Based Aircraft Projection                               | II – 6              |
| 7.                   | FAA Runway Length Curves                                | III – 5             |
| 8.                   | Typical Cross Sections                                  | III – 8             |
| 9.                   | Non Precision Instrument Runway Marking                 | III — 10            |
| 10.                  | Typical Turnaround                                      | III — 11            |
| 11.                  | Segmented Circle Marker and Wind<br>Direction Indicator | III – 13            |
| 12.                  | Future Terminal Office Building Example                 | III – 22            |
| 13.                  | Airport Imaginary Surface                               | III – 27            |

B

1

## LIST OF TABLES

| Table<br><u>No.</u> |                                                   | Page<br><u>No.</u>    |
|---------------------|---------------------------------------------------|-----------------------|
| 1.                  | Population of Pocahontas County Communities       | I – 7                 |
| 2.                  | Nine County Population                            | I – 8                 |
| 3.                  | Area Airport Facilities                           | I – 10                |
| 4.                  | Based Aircraft – Pocahontas                       | II – 3                |
| 5.                  | Pocahontas Airport Statistics                     | II – 4                |
| 6.                  | Aircraft Operations Forecast                      | II – 5                |
| 7.                  | Based Aircraft Mix                                | II – 7                |
| 8.                  | Operational Mix                                   | II – 7                |
| 9.                  | Registered Pilots – Pocahontas                    | II – 8                |
| 10.                 | Air Passengers                                    | II – 8                |
| 11.                 | Crosswind Runway Orientation Trials               | III – 2               |
| 12.                 | 12 MPH Crosswind Runway Usability                 | III – 3               |
| 13.                 | Runway Length and Width Summary                   | III – 6               |
| 14.                 | Aircraft Tie-Downs 1990 – 2010                    | III – 16              |
| 15.                 | Future Hangar Needs                               | III – 17              |
| 16.                 | Ground Storage Dimensions of<br>Selected Aircraft | III — 18              |
| 17.                 | Facility Requirements                             | <mark>III – 30</mark> |
| 18.                 | 20 Year Development Cost Summary                  | V – 5                 |
| 19.                 | Cost Summary and Source of Funds                  | V - 6                 |
| 20.                 | Annual Revenue                                    | V – 7                 |
| 21.                 | Annual O & M Expenditures                         | V - 8                 |
| 22.                 | State and Federal Assistance to Pocahontas        | V – 9                 |
|                     |                                                   |                       |

SECTION ONE

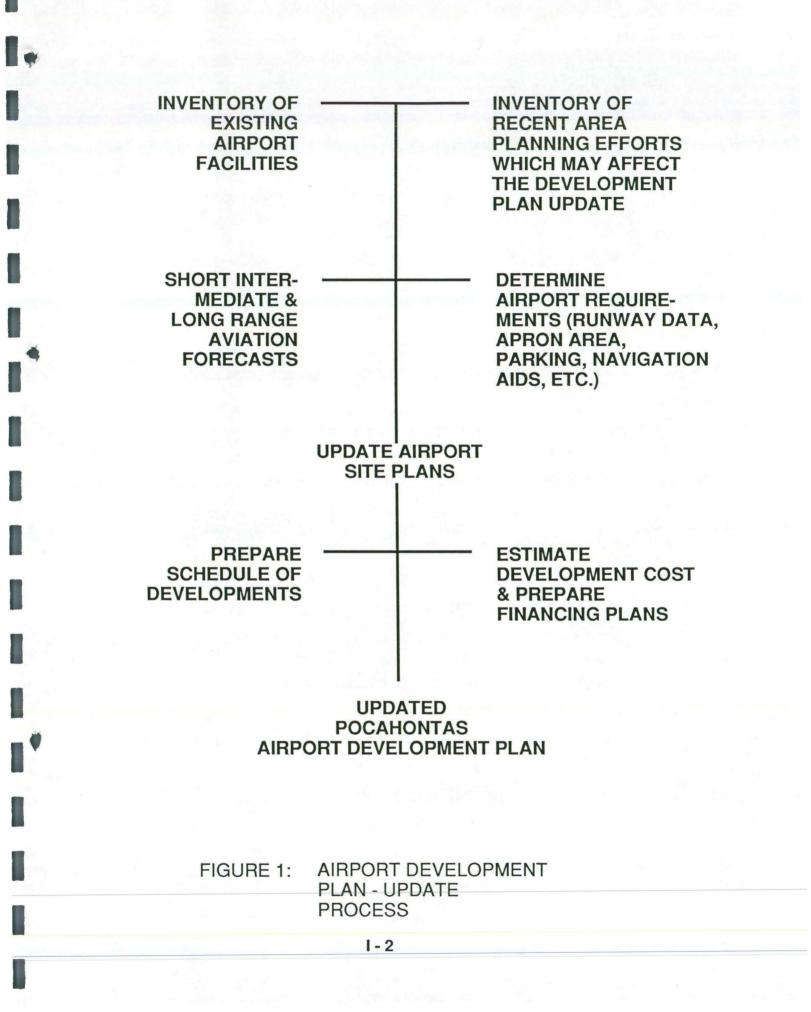
1.

COMMUNITY AND AIRPORT BACKGROUND

## A. INTRODUCTION

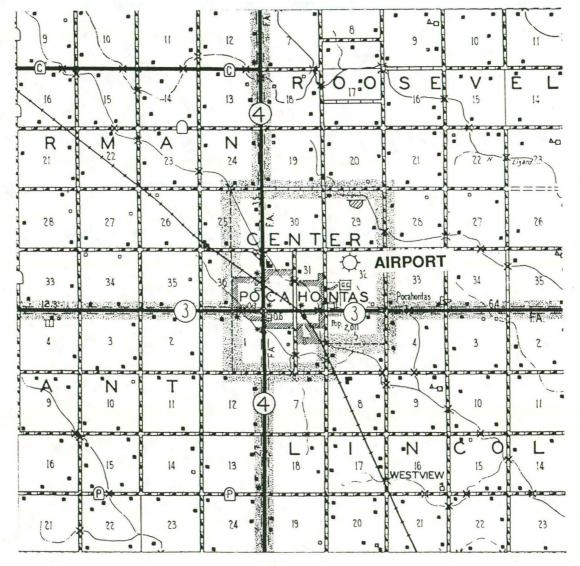
Financed in part by the Federal Aviation (FAA), the current Airport Master Plan was completed in August of 1980 and final approval of all documents received from FAA in February of 1981. The Master Plan covered a twenty year study period from 1978 to 1997.

In order to be effective, the existing airport facilities, aviation forecasts, financial plans, schedules and other plan components must be periodically reviewed and the plan updated.


Specific objectives of an Airport Development Plan are:

- To provide an effective graphic presentation of the ultimate development of the airport over a twenty year planning period.
- To establish a schedule of priorities and phasing for the various improvements proposed in the plan.
- To provide a plan that is consistent with other community goals and objectives of Pocahontas and Pocahontas County as well as the State of Iowa DOT, Air and Transit Division, and the Federal Aviation Administration.
- To provide a tool for decision making at the local level.
- To provide an ultimate development plan which is feasible, acceptable and can be implemented within existing and future financial constraints of the community.

To be eligible for State Aviation Program (SAP) funding, an Airport Master or Development Plan, prepared by a prequalified professional consultant, must be on file with the Iowa DOT and certified as being current within the last five (5) years.


This Airport Development Plan, 1990 Update was accomplished in part with a grant of funds from the Iowa DOT Planning Grant Program.

The planning process is outlined on Figure 1.



The Pocahontas Municipal Airport is located in Section 32, T-92-N, R-32-W of the 5th P.M., Pocahontas County, Iowa, and is approximately one (1) mile northeast from the center of the City of Pocahontas, Iowa, as shown on Figure 2.

The majority of the all aircraft operations at Pocahontas Municipal Airport are served by primary runway 11/29, which is a 60' x 3900' hard surface runway. A crosswind (18/36) 200' x 2400' turf runway is also available.



**FIGURE 2** 

VICINITY MAP

## Water

Water Supplied By: Name of Supplier: Source of City Water: Elevated Storage Capacity: Capacity of Water Plant: Average Consumption: Peak Consumption:

#### Sanitation

Type of Treatment Plant: Percent of Community Served Average Load: Peak Load: Design Capacity:

#### Natural Gas

Name of Local Distributor: Pipeline Source:

#### Electricity

Electricity Supplied by Name(s) of Suppliers:

## Municipal City of Pocahontas Wells 550,000 gals. 500,000 gpd 220,000 gpd 450,000 gpd

Primary 99% 555,000 gpd 1,500,000 gpd 2,300,000 gpd

Peoples Natural Gas Northern Natural Gas Company

Municipal Iowa Public Service Company Interconnect Cornbelt Power

### Telephone

Name of System:

U.S. West Communications

#### TRANSPORTATION SERVICES

#### **Highways**

Pocahontas is served by two major highways: Iowa Highway 3, and Iowa Highway 4. The distance to the nearest interstate highway interchange is 60 miles.

## Rail Service

Name of Railroad Serving Pocahontas: Frequency of Switching Service: Distance to Nearest Piggy Back Service: Chicago Central & Pacific As Needed 38 Miles

## Motor Carrier

| Number of Motor Freight Carriers Serving Community: | 4    |
|-----------------------------------------------------|------|
| Number of Local Terminals:                          | None |
| Number of Intrastate Carriers:                      | 1    |
| Number of Interstate Carriers:                      | 4    |

## Air Carrier

| Distance to Nearest Commuter |                      |
|------------------------------|----------------------|
| Service (Fort Dodge):        | 45 Miles             |
| Name of Commuter:            | Great Lakes Aviation |

## Length of Time Goods in Transit to:

| City        | Miles | Days By<br>Railroad<br>(Carload) | Days By<br>Motor Freight<br>(Truckload) |
|-------------|-------|----------------------------------|-----------------------------------------|
| Atlanta     | 1,050 | 5                                | 4                                       |
| Chicago     | 452   | 5                                | 1                                       |
| Cleveland   | 782   | 6                                | 3                                       |
| Denver      | 683   | 5                                | 2                                       |
| Des Moines  | 137   | 1                                | 1/2                                     |
| Detroit     | 730   | 6                                | 3                                       |
| Houston     | 1,070 | 4                                | 3                                       |
| Kansas City | 300   | 5                                | 1                                       |
| Los Angeles | 1,812 | 11                               | 5                                       |
| Milwaukee   | 450   | 3                                | 1                                       |
| Minneapolis | 220   | 2                                | Overnight                               |
| New Orleans | 1,104 | 4                                | 3                                       |
| New York    | 1,250 | 10                               | 4                                       |
| Omaha       | 143   | Overnight                        | 1                                       |
| St. Louis   | 450   | 5                                | 3                                       |
|             |       |                                  |                                         |

|-5|

#### TAX STRUCTURE

Assessed Value of City Property: Basic Tax Rate for Taxes Payable: (Per \$1,000 Assessed Value) City: \$10.09 County: \$2.52

Total: \$23.48

\$38,229,989 1986-1987

2 School: \$10.43 Area College: \$0.44

Pocahontas Bonded Indebtedness: \$945,000

Source of data for community elements:

Pocahontas "Community Quick Reference", dated January, 1988, obtained from the Iowa Department of Economic Development.

#### C. SOCIOECONOMIC BACKGROUND

## Population

There is a positive relationship between the numbers of based aircraft, aircraft operations, and population. Population must be considered as a variable in estimating the future levels of aviation activity for the Pocahontas airport.

In addition to population in numbers, there are a number of other social factors which contribute to an increase or decrease in travel. Among these are family size, occupational background, age, and income.

It should be noted, however, that relationships between population, the general growth of the economy, and subsequent growth of aviation activities is difficult to quantify.

"The choice of a site for basing an aircraft is not always directly related to the residence of the owner."

(Source: 1978, State Airport Systems Plan, pg. 38.)

In the case of Pocahontas, population at the community level is not critically related to the number of aircraft potentially based at the municipal utility. Pocahontas, centrally located in the county, offers the only municipal airport facility in the county, and; therefore, would logically serve as the central facility. Therefore, we must look at regional and county population trends to receive a more appropriate understanding of the trends which will be effecting the Pocahontas airport facility.

Population growth or loss can be attributed to differences between births and deaths, also in-migration versus out-migration. Migration (in or out) is dependent on the attractiveness of the region and job opportunities. Expanded job opportunities are thus a key element in Pocahontas returning to a population growth trend.

The population of Pocahontas showed a steady rate of increase from the turn of the century to some point after the 1980 U.S. Census when the population started to decline. The same is generally true for the seven Pocahontas County communities with the exception of Havelock as shown on Table 1.

Pocahontas County and its eight surrounding counties showed a 10.8% population loss from the 1980 U.S. Census to the U.S. Census Bureau's 1988 population estimates as shown on Table 2.

## TABLE 1

## POPULATION OF POCAHONTAS COUNTY COMMUNITIES

| County     | 1980  | *July, 1988 | % Change |
|------------|-------|-------------|----------|
| Fonda      | 863   | 720         | - 16.6   |
| Havelock   | 279   | 290         | + 3.8    |
| Laurens    | 1,606 | 1,520       | - 5.4    |
| Palmer     | 288   | 250         | - 13.2   |
| Plover     | 135   | 130         | - 3.7    |
| Pocahontas | 2,352 | 2,070       | - 12.0   |
| Rolfe      | 796   | 640         | - 19.6   |
| Varina     | 122   | 110         | - 9.8    |
|            | 6,441 | 5,730       | - 11.0   |

\*U. S. Census Bureau's July 1, 1988 Estimate for Iowa Cities

## TABLE 2 NINE COUNTY POPULATION

| County      | <u>1980</u>   | * <u>July. 1988</u> | % Change     |
|-------------|---------------|---------------------|--------------|
| Buena Vista | 14,817        | 14,180              | - 4.3        |
| Calhoun     | 8,668         | 7,430               | -14.3        |
| Clay        | 14,573        | 12,540              | - 14.0       |
| Humboldt    | 8,516         | 7,690               | - 9.7        |
| Kossuth     | 12,302        | 10,910              | - 11.3       |
| Palo Alto   | 8,194         | 7,060               | - 13.8       |
| Pocahontas  | 6,441         | 5,730               | - 11.0       |
| Sac         | 8,801         | 7,502               | – 14.8       |
| Webster     | <u>35,640</u> | 32,120              | <u>– 9.9</u> |
| VVEDSIEI    | 117, 952      | 105,162             | - 10.8       |

\* U.S. Census Bureau's July 1, 1988 Estimate for Iowa Cities

It is expected that 1990 census figures will show that populations have generally stabilized and in the case of Pocahontas, an increase will be shown from the 1988 estimate.

## ECONOMIC BASE

The propensity to use air as a mode of transportation is dependent upon a number of factors such as income, occupation, and family size. The following are also factors:

- Travel Distance
- Accessibility
- Time
- Cost Per Unit of Travel
- Reason for Making the Trip
- Number of Persons
- Type and Value of Cargo
- Availability of Aircraft
- Regulations
- Aviation Interest
- Availability of Other Transportation Modes

Occupation or employment by industry provides some insight into travel tendencies.

High Travel: Mining, Manufacturing, Government Business Service

Medium Travel: Construction, Wholesale and Retail Trade, Professional Services, Finance, Insurance and Real Estate

Low Travel: Agriculture, Forestry, Transportation, Communication, Utilities, Repair Service, Recreation, Amusement, Printing

#### LOCAL EMPLOYMENT CHARACTERISTICS Major manufacturers and other large employers in community:

| Name                       | Product/Service     | Employment<br><u>Male-Female</u> | Union<br>Affiliation          |
|----------------------------|---------------------|----------------------------------|-------------------------------|
| lowa Industrial Hydraulics | Hydraulic Equip.    | 135                              | Nat'l Assoc.<br>of Machinists |
| Allied Precision Products  | Tooling             | 4                                | None                          |
| Buske Manufacturing        | Wreckers            | 53                               | None                          |
| Ahlrichs Cabinets          | Cabinets/Constr.    | 5                                | None                          |
| Seabee Corporation         | Hydraulic Cylinders | 17                               | None                          |
| Number of manufacturing pl | ants in community   | 5                                |                               |
| Number of manufacturing p  | 1                   |                                  |                               |
| Number of manufacturing e  |                     | 210                              |                               |
| Number of work stoppages   | in last five years  | 1                                |                               |

## D. AREA AIRPORTS

Pocahontas County is served by the Pocahontas Municipal Airport located approximately one (1) mile northeast from the center of the City of Pocahontas, Iowa.

The role of each of the Pocahontas Airport and other vicinity general aviation airports in the State Airport System Plan (SASP), area as follows:

| Airport              | Approximate<br>Air Miles<br>From | General<br>Aviation<br>Service         | Design             |
|----------------------|----------------------------------|----------------------------------------|--------------------|
| Location             | Pocahontas                       | Classification                         | Classification     |
| Algona               | 30                               | 1                                      | Basic Transport    |
| Emmetsburg           | 26                               | II | Basic Utility - II |
| Humboldt             | 20                               | I                                      | Basic Utility - II |
| Pocahontas           |                                  | 1                                      | General Utility    |
| <b>Rockwell City</b> | 24                               | 111                                    | Basic Utility - I  |
| Sac City             | 30                               |                                        | Basic Utility – II |
| Storm Lake           | 32                               | I                                      | General Utility    |

Three service classifications for general aviation were established as follows:

<u>General Aviation I:</u> Airports providing access to major market centers and having significant use by business jets;

<u>General Aviation II:</u> Airports providing access to market centers and having limited use by business jets; and,

<u>General Aviation III:</u> Airports providing air access to Iowa communities supporting low activity levels.

| TABLE 3                 |
|-------------------------|
| AREA AIRPORT FACILITIES |

|               | Orien  |          |       |       |                 |      |            |         |
|---------------|--------|----------|-------|-------|-----------------|------|------------|---------|
| Airport       | tation | Length   | Width | Paved | <u>Lighting</u> | REIL | <u>NDB</u> | VASI-II |
| Algona        | 12/30  | 3960'    | 75'   | Yes   | Yes             | Yes  | Yes        | No      |
|               | 18/36  | (1)3000' | 165'  | No    | No              | No   | Yes        | No      |
| Emmetsburg    | 04/22  | (2)3190' | 130'  | No    | No              | No   | Yes        | No      |
|               | 13/31  | 3400'    | 50'   | Yes   | Yes             | No   | Yes        | Yes     |
|               | 17/35  | (2)2555' | 150'  | No    | No              | No   | Yes        | No      |
| Humboldt      | 12/30  | 3400'    | 60'   | Yes   | Yes             | No   | No         | Yes     |
| Pocahontas    | 11/29  | 3900'    | 60'   | Yes   | Yes             | Yes  | Yes        | Yes     |
|               | 18/36  | (3)2510' | 175'  | No    | No              | No   | Yes        | No      |
| Rockwell City | 12/30  | (4)3500' | 60'   | Yes   | Yes             | No   | Yes        | No      |
| Sac City      | 14/32  | 2663'    | 44'   | Yes   | Yes             | No   | Yes        | No      |
|               | 18/36  | 3500'    | 60'   | Yes   | Yes             | Yes  | Yes        | Yes     |
| Storm Lake    | 06/24  | 2000'    | 100'  | No    | No              | No   | Yes        | No      |
|               | 13/31  | (5)3035' | 50'   | Yes   | Yes             | No   | Yes        | No      |
|               | 17/35  | 4200'    | 75'   | Yes   | Yes             | Yes  | Yes        | Yes     |

| (1) | Obstructions: | Rwy 18 – road   | Rwy 36 – tence      |
|-----|---------------|-----------------|---------------------|
| (2) | Obstructions: | Rwy 4 - road    | Rwy 22 - road       |
|     |               | Rwy 17 - road   | Rwy 35 - road       |
| (3) | Obstructions: | Rwy 18 - road   |                     |
| (4) | Obstructions: | Bwy 12 - thresh | old displaced 1100' |

1

(4) Obstructions: Rwy 12 – threshold displaced 1100'
(5) Obstructions: Rwy 13 – threshold displaced 170'



#### AREA AIRPORTS AERONAUTICAL CHART

SECTION TWO FORECAST OF AVIATION DEMAND

1

## A. INTRODUCTION

The airport facility is expected to continue to have a significant role in the development of Pocahontas and it's surrounding hinterland.

Activity at the airport will be influenced not only by future developments locally, but by state and national trends as well.

The number of aircraft based at a small general aviation airport often varies from year to year. Because of the small numbers dealt with, it is not unreasonable for such a facility to experience significant increases and decreases in the number of registered aircraft based at a facility. This is especially evident where a large share of the aircraft are owned by a single individual or business concerns.

The 1985 Iowa Aviation System Plan indicates that aircraft registrations increased each year from 1970 through the peak year of 1979, when 3530 aircraft were registered. Since 1980, Iowa has experienced a decline in registrations. In 1984, only 3079 aircraft were registered, a decline of almost 13%. 1985 estimates showed a further decrease of about 100 aircraft.

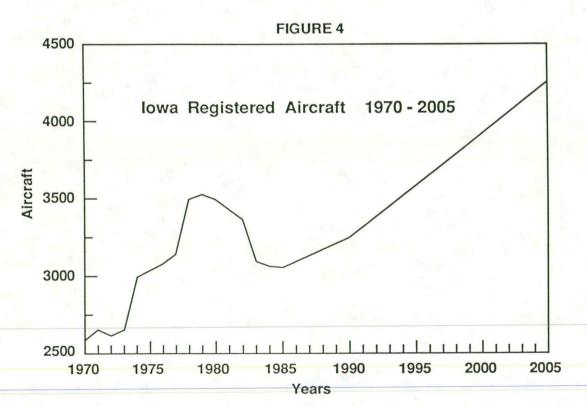



Figure 4 shows historic and projected aircraft registrations from 1970 - 2005.

#### **B. BASED AIRCRAFT**

In 1984, 2935 aircraft were based at publicly owned airports in Iowa. This number has remained fairly stable, while the number of registered aircraft dropped sharply after 1979.

In the 1985 Iowa Aviation System Plan, projected numbers of aircraft were allocated to airports by community population and based aircraft. Although there appears to be a close tie between these two factors, the population of the community does not account for conditions which, affect the number of based aircraft, i.e., aircraft ownership costs including initial price, insurance, hangar space, fuel, maintenance, etc. These accelerating costs can take away the number of based aircraft even in a period of increasing community population.

lowa's pilot population followed the same trend of aircraft registrations by dropping sharply from 1980 to 1984. In 1980, Iowa had 12,101 registered pilots. This number decreased to just over 10,000 in 1982. By 1984 about 9,000 pilots were registered in Iowa.

The State Aviation System Plan projects pilot population increasing to 2005 as shown on Figure 5.

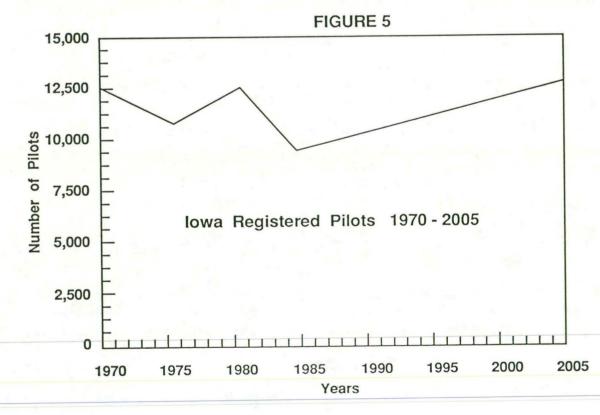



Table 4 lists the current based aircraft at Pocahontas Municipal Airport.

## TABLE 4 BASED AIRCRAFT POCAHONTAS MUNICIPAL AIRPORT APRIL, 1990

|     | AIRCRAFT      |           |               |                       |          |
|-----|---------------|-----------|---------------|-----------------------|----------|
|     | CERTIFICATE   |           | POPULAR       | NO.                   | PRIMARY  |
|     | HOLDER        | MODEL     | NAME          | ENGINES               | USE      |
|     | have the star |           |               |                       | 179 C    |
| 1.  | Beechcraft    |           | Sierra        | 1                     | Personal |
| 2.  | Beechcraft    | 33        | Debonnaire    | 1                     | Personal |
| 3.  | Beechcraft    | C35       | Bonanza       | 1                     | Personal |
| 4.  | Beechcraft    | C35       | Bonanza       | 1                     | Business |
| 5.  | Beechcraft    | A36       | Bonanza       | 1                     | Personal |
| 6.  | Cessna        | 150       | 150           | 1                     | Personal |
| 7.  | Cessna        | 150       | 150           | 1                     | Business |
| 8.  | Cessna        | 170       | 170           | 1                     | Personal |
| 9.  | Cessna        | 172       | Skyhawk       | 1                     | Business |
| 10. | Cessna        | 172       | Skyhawk       | <ul> <li>1</li> </ul> | Personal |
| 11. | Cessna        | 172       | Skyhawk       | 1                     | Personal |
| 12. | Cessna        | 182 RG    | Skylane       | 1                     | Business |
| 13. | Home Built    | Acro II   |               | <u> </u>              | Personal |
| 14. | Piper         |           | Arrow         | 1                     | Business |
| 15. | Piper         |           | Tri-Pacer     | 1                     | Personal |
| 16. | Piper         |           | Warrior       | 🚊 🐘 🔁 📜 📥             | Personal |
| 17. | Piper         | PA 12     | Super Cruiser | r 1                   | Business |
| 18. | Piper         | PA 25-235 | Pawnee        | 1                     | Business |
| 19. | Piper         | PA 25-235 | Pawnee        | 1                     | Business |
| 20. | Taylorcraft   |           | T-Craft       | 1                     | Personal |
|     |               |           |               |                       |          |

Source: Airport Commission Secretary 3-30-90

## C. AVIATION OPERATIONS AND OPERATIONS MIX

## ANNUAL ITINERANT AND LOCAL OPERATIONS

An aircraft operation is defined as the airborne movement of aircraft in controlled and noncontrolled airport terminal areas and about given enroute fixes or at other points where counts can be made. Each movement counts as one operation. A "touch and go", for example counts as two operations.

Total annual aircraft operations are further broken down by local and itinerant. A local operation is defined as one by an aircraft that:

- 1. Operates within the local traffic pattern or within sight of the control tower:
- Is known to be departing for or arriving from local practice areas; or
- 3. Executes simulated instrument approaches of low passes at the airport.

An itinerate aircraft operation is one that operates outside the local traffic pattern. A typical example of an itinerant operation is an air taxi operation. Aviation operations most often are discussed in terms of:

Total Annual Aircraft Operations
 Total Annual Local
 Total Annual Itinerant

Peak Day and Peak Hour Operations

Aircraft Operations are a function of the following:

- Based Aircraft
- Airmen
- Airport Facilities
- Aircraft Maintenance Services
- Airport Management
- Socioeconomic Characteristics of the Airport Service Area

Table 5 shows projections of based aircraft, pilots, and total and itinerant operations at the Pocahontas Airport.

## TABLE 5 POCAHONTAS AIRPORT STATISTICS

| BASED AIRCRAFT |      |      | 77 A. 1923. | PILC | DTS  | 이 같다. |      |
|----------------|------|------|-------------|------|------|-------|------|
| 1985           | 1990 | 1995 | 2005        | 1985 | 1990 | 1995  | 2005 |
| 23             | 24   | 26   | 31          | 42   | 47   | 51    | 60   |

| TOTAL OPERATIONS (000) |      |      | ITINER | ANT OPE | RATION | IS (000) |      |
|------------------------|------|------|--------|---------|--------|----------|------|
| 1985                   | 1990 | 1995 | 2005   | 1985    | 1990   | 1995     | 2005 |
| 16                     | 17   | 17   | 18     | 7       | 8      | 8        | 9    |

Source: 1985 Iowa Aviation System Plan

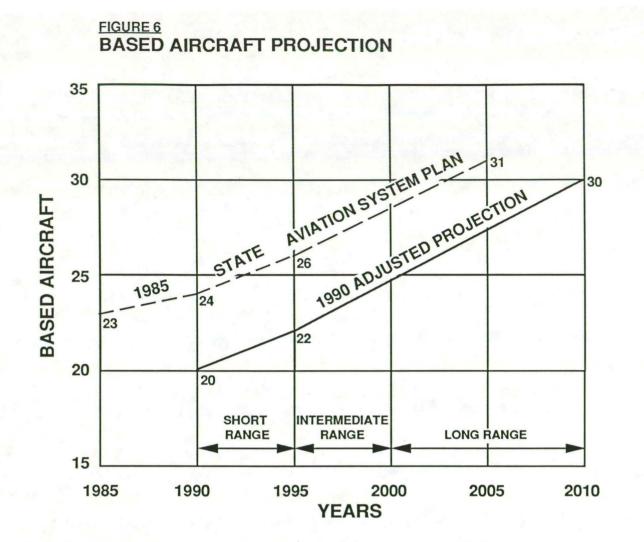
Table 6 shows graphically the 1985 State Aviation System Plans estimate of based aircraft at Pocahontas for the 20 year period—1985 – 2005.

The actual number of based aircraft March 30, 1990 is 20 as compared to the 24 estimated for 1990 in the 1985 plan. Figure 6 also shows a projection of based aircraft for the new study period 1990 to 2010. This projection is adjusted downward from earlier estimates to account for a loss of based aircraft between 1980 and 1990.

The based aircraft rate of gain estimated in the 1985 State Plan is considered realistic and is applied to the current projection.

The 1980 Pocahontas Airport Master Plan estimated annual aircraft operations at 600 per based aircraft and 60% of the total annual operations expected to be local operations.

The 1985 State Aviation System Plan estimates a somewhat higher number of operations per aircraft at 700.


Allowing for some error inherent in long range forecasting, it is expected that the ratio of operations to based aircraft is realistic at 600 and 60% local operations.

Assuming the above to be a reasonable expectation, Table 6 is developed for the short (5 year), intermediate (10 year), and long (20 year) range planning period to show estimated based aircraft, annual operations, local operations and itinerant operations.

## TABLE 6

| Year | Estimated<br>Based<br><u>Aircraft</u> | Ops Per<br>Based<br><u>Aircraft</u> | Estimated<br>Annual<br>Operations | Estimated<br>Local<br><u>Operations</u> | Estimated<br>Itinerant<br><u>Operations</u> |
|------|---------------------------------------|-------------------------------------|-----------------------------------|-----------------------------------------|---------------------------------------------|
| 1990 | 20                                    | 600                                 | 12,000                            | 7,200                                   | 4,800                                       |
| 1995 | 22                                    | 600                                 | 13,200                            | 7,920                                   | 5,280                                       |
| 2000 | 25                                    | 600                                 | 15,000                            | 9,000                                   | 6,000                                       |
| 2010 | 30                                    | 600                                 | 18,000                            | 10,800                                  | 7,200                                       |
|      |                                       |                                     |                                   |                                         |                                             |

II - 5



## **OPERATIONS MIX**

The operations mix at the general aviation airport is considered more significant than the total number of annual operations.

For the 1980 Pocahontas Airport Master Plan, a determination of based aircraft mix and operational mix was made for the type of aircraft expected to use the airport during a 20 year planning period, 1978 to 1997. The type of aircraft anticipated were included in a grouping by FAA as follows:

| Class A       | 4 engine jet and larger                             |
|---------------|-----------------------------------------------------|
| Class B       | 2 and 3 engine jet, 4 engine piston, and turbo prop |
| Class C       | Executive jet and transport type twin-engine piston |
| Class D and E | Light twin-engine piston and single-engine piston   |

Aircraft based at Pocahontas are in the D and E class with itinerant operations including Class C aircraft. The same type of operational mix currently exists. However, FAA Advisory Circular AC – 150/5300-13, dated September 29, 1989, establishes an Airport Reference Code (ARC) to relate airport design criteria to the operational and physical characteristics of the airplanes intended to operate at the airport.

The coding system has two components relating to the airport design aircraft. The components are:

1. <u>Aircraft Approach Category</u> A grouping of aircraft based on 1.3 times their stall speed in their landing configuration at their maximum certificated landing weight. The categories are as follows:

Category A: Speed less than 91 knots

Category B: Speed 91 knots or more but less than 121 knots Category C: Speed 121 knots or more but less than 141 knots Category D: Speed 141 knots or more but less than 166 knots Category E: Speed 166 knots or more

2. <u>Airplane Design Group</u> A grouping of airplanes based on wingspan. The groups are as follows:

Group I: Up to but not including 49 feet (15 m) Group II: 49 feet (15 m) up to but not including 79 feet (24 m) Group III: 79 feet (24 m) up to but not including 118 feet (36 m) Group IV: 118 feet (36 m) up to but not including 171 feet (52 m) Group V: 171 feet (52 m) up to but not including 214 feet (65 m) Group VI: 214 feet (65 m) up to but not including 262 feet (80 m)

The Pocahontas airport is designed, constructed and maintained as a Utility Airport to serve airplanes in Aircraft Approach Category A and B.

Airplane Design Group I and II would include the wingspan of future based and transient aircraft.

The Airport Reference Code (ARC) for Pocahontas Municipal Airport is recommended to be B–II for airplanes intended to operate at the airport. Aircraft based at Pocahontas formerly in the D and E class defined previously would now be included in Airport Reference Code A–I. Transit aircraft range from A–I to B–II, with B–II aircraft that use Pocahontas airport were formerly in a Class C designation.

## TABLE 7 BASED AIRCRAFT MIX

| Planning<br>Period | Design Aircraft<br>Code A–1<br><u>No. %</u> | Design Aircraft<br>Code B–1 and B–II<br><u>No. %</u> |
|--------------------|---------------------------------------------|------------------------------------------------------|
| 1990 - 1995        | 22 100.0                                    | 0 0.0                                                |
| 1995 - 2000        | 24 96.0                                     | 1 4.0                                                |
| 2000 - 2010        | 28 93.3                                     | 2 6.7                                                |

## TABLE 8 OPERATIONAL MIX

| Planning<br>Period | Design Aircraft<br>Code A–1<br><u>No. %</u> | Design Aircraft<br>Code B–1 and B–II<br><u>No. %</u> |
|--------------------|---------------------------------------------|------------------------------------------------------|
| 1990 - 1995        | 12,836 98.0                                 | 264 2.0                                              |
| 1995 - 2000        | 14,550 97.0                                 | 450 3.0                                              |
| 2000 - 2010        | 17,100 95.0                                 | 900 5.0                                              |
|                    |                                             |                                                      |

## AIRPORT CAPACITY

Over the twenty year planning period, no airport operational capacity problems are anticipated.

The 1980 Pocahontas Airport Development Plan contained the following generalities concerning airport capacity.

Single Runway, Mix 1 PANCAP PHOCAP

215,000 ops/year IFR – 53 ops/hour VFR – 99 ops/hour Intersection Runway, Mix 1 PANCAP PHOCAP

220,000 ops/year IFR – 61 ops/hour VFR – 99 ops/hour

| PANCAP | Practical Annual Capacity                 |
|--------|-------------------------------------------|
| PHOCAP | Practical Hourly Capacity                 |
| Mix 1  | 90% D & E, 10% C Aircraft ( <u>+</u> 10%) |

Peak hour operations at Pocahontas is not expected to be more than 30 peak hours operations.

From the preceding discussion, it is evident that capacity problems from the standpoint of operations are not, nor are expected to be, a future concern. This assumption is based upon typical single annual runway capacity under IFR conditions as developed by the FAA as well as the practical hourly capacity of a single runway under IFR conditions.

## D. PILOTS, AIR PASSENGERS AND AIR FREIGHT

## PILOTS

The Pocahontas share of Iowa registered pilots was estimated in the 1985 State Airport System Plan is shown on Table 9.

|             | TABLE 9  |            |      |  |
|-------------|----------|------------|------|--|
|             | REGISTER | RED PILOTS |      |  |
| <u>1985</u> | 1990     | 1995       | 2005 |  |
| 42          | 47       | 51         | 60   |  |

#### AIR PASSENGERS

The number of air passengers is estimated at 1.5 times the number of itinerant aircraft operations.

|| - 9

## TABLE 10 AIR PASSENGERS

| Itinerant<br>Operations | Air<br><u>Passengers*</u>                    |
|-------------------------|----------------------------------------------|
| 4,800                   | 7,200                                        |
| 5,280                   | 7,920                                        |
| 6,000                   | 9,000                                        |
| 7,200                   | 10,800                                       |
|                         | <u>Operations</u><br>4,800<br>5,280<br>6,000 |

\*Assuming 1.5 times per itinerant operation

## AIR FREIGHT

No effort was made to estimate tonnage of air freight.

## E. SUMMARY

Based upon the forecast of aviation demand, the Pocahontas Municipal Airport should be designed around the concept of a General Utility (GU) airport with improvements necessary to accommodate business jet airplanes using the airport..

## POCAHONTAS MUNICIPAL AIRPORT

1990 - 2010 General Utility Airport

SECTION THREE FACILITY REQUIREMENTS

## A. INTRODUCTION

Airport facility requirements presented herein are recommended for implementation over a twenty year period. The needs identified are based upon the following:

- 1. Forecast of aviation demand
- 2. Existing airport facilities
- 3. Existing airport site

While it may be desirable to implement required facilities as soon as possible, constraints at the local, state, and federal level may prevent such from taking place. The most salient of these constraints relate to the financial status of the local entity as well as the availability of state and federal assistance.

It cannot be emphasized enough that <u>planning</u> is a process. As such, the recommendations presented herein are based upon present conditions and future levels of activity. Time brings change which may also affect the assumptions used herein. State and Federal requirements also change. Because of the likelihood of these changes, the <u>Airport Development Plan</u> must remain a <u>flexible document</u>. The <u>Plan</u> will change as local, state, and federal needs change. Every effort should be made to insure that only the facilities needed are implemented. The community is encouraged to monitor aviation activity throughout the twenty year planning period. As a result of this effort, the plan can then be updated with minimal effort. A five year update appears to represent a realistic time frame.

## B. RUNWAYS AND TAXIWAYS WIND COVERAGE & RUNWAY ORIENTATION

One of the most important factors influencing runway orientation and usage is wind. the smaller the airplane, the more it is affected by wind, particularly crosswind components.

Since wind data was not available when the 1980 Pocahontas Airport Master Plan was prepared, wind data compiled at Fort Dodge Municipal airport (1963-1967) was used for Pocahontas.

Given the fixed alignment of primary runway 11/29, several runway orientations were calculated to determine the most favorable alignment for a crosswind runway. The results are summarized in the following table.

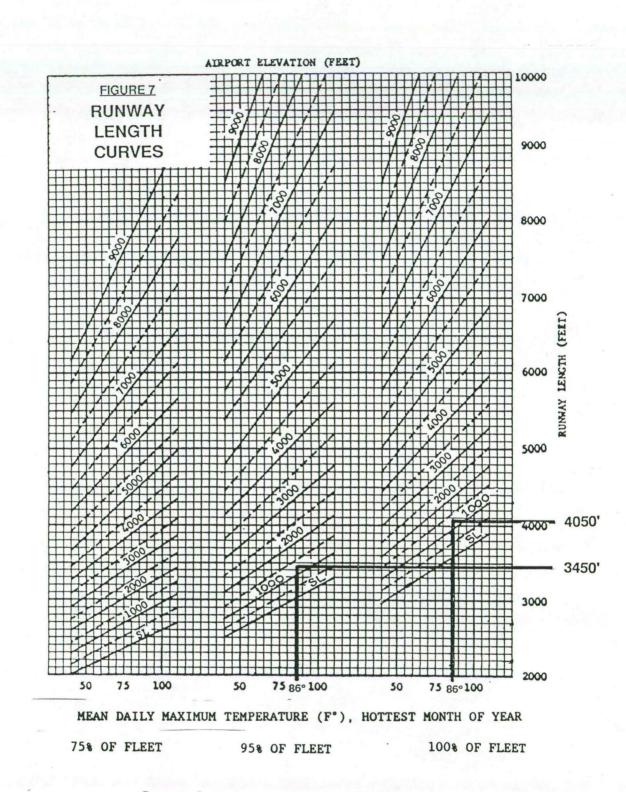
| RUNWAY<br>ORIENTATION   | 12 MPH CROSSWIND<br><u>COVERAGE*</u> |
|-------------------------|--------------------------------------|
| 350°                    | 90.9%                                |
| 355°                    | 91.9%                                |
| 360°                    | 92.3%                                |
| 05°                     | 94.3%                                |
| 10°                     | 93.3%                                |
| 15°                     | 92.9%                                |
| *including runway 11/29 |                                      |

## TABLE 11 CROSSWIND RUNWAY ORIENTATION TRIALS

From the calculations above, it is obvious that at 94.3% the 5° runway orientation affords the best possible percent of coverage of winds in excess of 12 miles per hour. Additional orientation trials indicated that a third runway would be necessary to achieve the recommended 95% coverage.

No consideration is given to the construction of a third runway as it is felt that wind coverage between the two alignments will afford sufficient safety and usability. Thus, on the basis of wind analysis alone no clear cut decision is offered. It is, therefore, necessary to review additional development schemes and to examine the relationship between current fixed investments in the primary runway, the additional margin of safety supplied in constructing the crosswind runway and the economic realities of funding improvements.

## RUNWAY LENGTH AND WIDTH


Figure 7 shows runway lengths for small airplanes having less than ten (10) passenger seats.

The runway lengths for Pocahontas Airport determined from FAA AC 150/5325-4A assumes the following:

- 1. Zero headwind component
- 2. Maximum weight for take-off and landing
- 3. Optimum flap setting for shortest runway length
- 4. Airport elevation equal to pressure altitude
- 5. Relative humidity and runway gradient not accounted for individually, but based upon the group's most demanding aircraft.
- 6. Airport elevation: 1223.5' ASL
- 7. Temperature, normal maximum: 86°F

To accomodate 100% of the samll airplane fleet, Figure 7 shows a minimum length of 4050 feet which supports the 1980 Pocahontas Airport Master Plan recommended 4100 foot primary runway length.

Ideally the crosswind (secondary) runway should be the same length as the primary runway (4100 feet). At minimum, the secondary runway should be Basic Utility – II length and width.



Runway length to serve small airplanes having less than 10 passenger seats

Source: AC 150/5325-4A

## TABLE 13

## RUNWAY LENGTH AND WIDTH SUMMARY

|                        | Present      | <b>Recommended</b> |
|------------------------|--------------|--------------------|
| Primary Runway 11/29   | 3900' x 60'  | 4100' x 75'        |
|                        | Turf         |                    |
| Secondary Runway 18/36 | 2510' x 175' | 3450' x 60' (MIN.) |

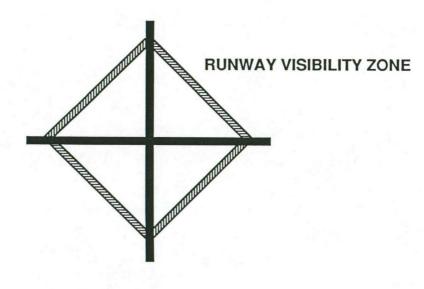
#### **RUNWAY DESIGN CRITERIA**

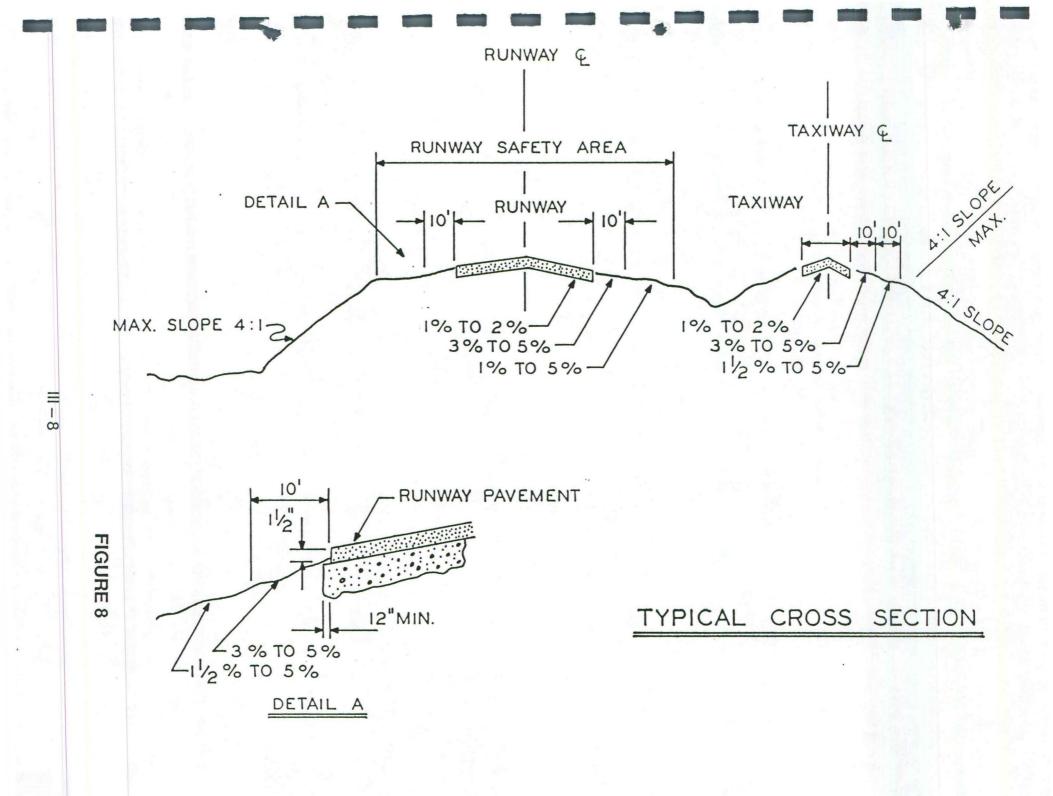
A minimum pavement design which will support a single wheel aircraft load of 12,500 pounds is recommended.

Present gross weight, single wheel capacity is:

Runway 11/29

#### 15,000 pound


Runway grade changes should be such that there will be an unbstructed line-ofsight any point five feet above the runway center line for the entire length of the runway. Maximum grade changes should not exceed 2% where vertical curves are required. The length of the vertical curve should not be less than 300 feet for each percent grade. Transverse grades on the runway itself should be at least 1% and no more than 2%. Within ten feet of the pavement edge, the grade should have a minimum slope of 3% and not to exceed 5%. Reference may be made to Figure 8.


A graded area beyond the runway surface is referred to as the runway safety area. The area, located symmetrically about the runway, extends outward from the runway centerline 75 feet and 200 feet beyond the runway ends. The primary function of the runway safety area is to provide a degree of safety should an aircraft veer off the runway. The transverse grade should not exceed 5%. A minimum grade of 3% should be provided on the inner ten feet and 1-1/2% on

the remaining area. The slope will facilitate the movement of water off the runway to the drainage ditches or storm sewers.

The minimum width of a runway safety area, which also coincides with the landing area, should be void of drainage structures, etc. that could cause damage to aircraft or injury to occupant.

For airports not having a parallel taxiway system, runway grade changes should be such that any two points five feet above the runway centerline will be mutually visible the entire runway length. The layout of the runways and other airport components must be such that a runway visibility zone can be provided. This zone is an area formed by imaginary lines connecting the visibility of each runway.





#### LATERAL WIDTHS AND CLEARANCES

The following is criteria for separation of airport facilities. The use of maximum standards will provide for ease of upgrading the facility in the future. General utility requirements related to lateral widths and clearances will be used for planning purposes.

|   |                                                                                          | Minimum | <u>Desirable</u> |
|---|------------------------------------------------------------------------------------------|---------|------------------|
| _ | Runway to taxiway centerline                                                             | 150'    | 200'             |
| - | Runway centerline to building restriction line (BRL) and property line (nontaxiway side. | 200'    | 250'             |
| - | Runway centerline to building restriction line (taxiway side)                            | 250'    | 300'             |
| - | Taxiway centerline to airplane tie-<br>down area                                         | 75'     | 75'              |
| - | Taxiway centerline to fixed or movable obstacle                                          | 50'     | 50'              |
| - | Runway centerline to fixed or movable obstacle                                           | 125'    | 125'             |
| - | Runway centerline to tie-down area                                                       | 275'    | 275'             |
| C | AURON: EAA AC 150/5200 48                                                                |         |                  |

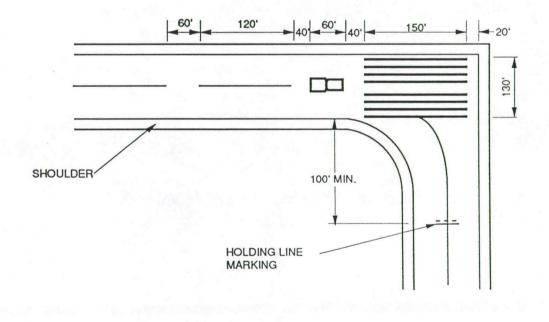
Source: FAA AC 150/5300 - 4B

#### PAVEMENT MARKINGS

Nonprecision instrument (N.P.I.) markings are found on runway 11/29. A nonprecision instrument runway is one to which a straight-in nonprecision approach has been approved. N.P.I. markings consist of basic runway markings in addition to threshold markings.

- Centerline Markings

The centerline markings consist of a broken line having 120 foot dashes and 80 foot blank spaces. The minimum width is one foot.


#### Designation Markings

Each runway end is marked with designated numbers representing the magnetic azimuth, measured clockwise from north on the runway centerline from the approach end and recorded to the nearest 10° with the last zero omitted.

#### Threshold Markings

Threshold markings consist of eight 150' x 12' stripes. Each stripe is separated by a minimum of three feet except in the center where minimum distance is sixteen feet.

Reference should be made to FAA AC 150/5340-1D concerning pavement marking requirements and the figure below.

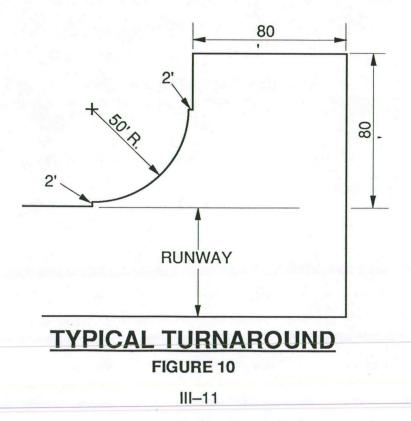


#### NON PRECISION INSTRUMENT RUNWAY MARKING

#### **FIGURE 9**

**III - 10** 

#### TAXIWAYS


Taxiways may be defined as parallel (full and partial) or stub. The former parallels the runway providing for movement entirely or partially along the runway. The latter connects the runway to the apron or hanger.

The FAA supports the construction of a partial parallel taxiway when total operations exceed 20,000 annually. A full parallel taxiway is justified when annual operations exceed 50,000. The IDOT finds justification for a partial parallel taxiway at one runway end when annual operations are between 30,000 and 50,000.

Based upon the forecasts in Section II, a parallel or partial taxiway is not justified within the 20 year planning period. A stub taxiway, at present, connects runway 11/29 to the apron and provides access to the hanger facilities.

#### HOLDING APRON

Where a partial or full parallel taxiway is not recommended, an aircraft turnaround is recommended for each runway end. Pocahontas has a turnaround or aircraft holding area on runway end 29. The stud taxiway near runway end 11 is used as an aircraft holding area.



#### C. LANDING AND NAVIGATIONAL AIDS

#### RUNWAY AND TAXIWAY LIGHTING

Runway 11/29 is presently lighted with a medium intensity system. The medium intensity runway light system, MIRL, is the desirable standard for general utility runways. A MIRL system should be installed on the crosswind runway when improved. Runway lights are used to outline the edges of the runway during periods of darkness or low visibility. Each runway edge light fixture emits and aviation white\* light defining the lateral limits of the VFR runway. The edge light fixture should be located no more than ten feet from the defined runway edge and spaced 200' on center. The runway light stake should be no less than 30" high due to snow, snow removal, and grass cutting. The lights, located on both sides of the runway, should be directly across from each other and perpendicular to the runway centerline.

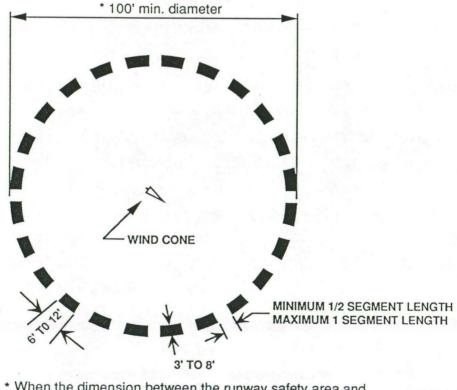
Special requirements exist at runway intersections. Two groups of threshold lights, the second part of a runway light system, are located symmetrically about the runway centerline. The threshold lights emit an 180° aviation red light inward and 18° green light outward. Threshold lights should be located no closer than two feet and no more than ten feet from the runway threshold.

\*Yellow is substituted for white on the last 2000 feet of runways having a nonprecision instrument flight rule procedure.

#### RUNWAY END IDENTIFIER LIGHTS (REIL)

The primary function of runway end identifier lights is to assist the pilot with runway identification where the runway is difficult to distinguish because of other light sources.

Pocahontas Airport is currently equipped with REILS. The REILS are located in line with the threshold lights. When installed in conjunction with the VASI II System the location should be 75' outward from the pavement edge. REILS should be installed on runway 18/36, when improved.


#### SEGMENTED CIRCLE, WIND INDICATOR

The segmented circle performs two functions; it aids the pilot in locating obscure airports and it provides a centralize location for such indicators and signal devices as may be required at a particular airport. Segmentation of the circle is necessary so that from a reasonable distance it can be readily distinguished form a solid circle, which is sometimes used to mark the center of a landing area.

The Pocahontas Airport does not presently possess a segmented circle system. It is recommended that such a system be installed in a position affording maximum visibility to pilots in the air and on the ground. Consideration should also be given to accessibility for ground operation. A conventional wind cone should be installed as depicted in Figure 11 below.

#### FIGURE 11

# SEGMENTED CIRCLE MARKER & WIND DIRECTION INDICATOR



\* When the dimension between the runway safety area and the building or property line does not permit a 100' segmented circle, a 75' diameter circle may be used.

#### AIRPORT BEACON

A rotating airport beacon light which is currently installed at the facility should be located such that it will not dazzle pilots of approaching aircraft. For airports with runways over 3,200' in length, the beacon should be located at least 750' from the runway centerline. The beacon should be of the 10" size, conforming to FAA specification L-801.

#### VISUAL APPROACH SLOPE INDICATOR (VASI)

A VASI II system currently exists for runway 11/29. This system should be located to the left side of the runway approach and 50' out from the pavement edge. The downwind bar should, ideally, be located 500 feet $\pm$  from the threshold. The upwind bar is located 700 feet $\pm$  from the downwind bar. The VASI system enables the pilot to determine if his approach is high, on course, or low, from the two color light beam emitted.

Pilots on an "on course" approach will see a red bar over white. On a high approach, both light beams are white, while on a low approach, both beams appear red.

Justification for installation of a VASI-II system on the crosswind runway is questionable in terms of operations, but may be justified for obstruction clearance purposes on Runway end 13.

#### NONDIRECTIONAL RADIO BEACON (NDB)

A nondirectional radio beacon (NDB) system is in operation at the Pocahontas Municipal Airport. The NDB system allows an aircraft equipped with an automatic direction finder (ADF) to "home" in on the signal.

#### WIND TEE (TETRAHEDRON)

A lighted Wind Tee is located on the east side of the taxiway connecting runway 11/29 with the aircraft apron. The Wind Tee is in need of repair and should be relocated and combined with a new segmented circle and lighted wind cone.

#### RADIO UNICOM

The present unicom equipment is operating satisfactorily.

#### AUTOMATED WEATHER OBSERVATION SYSTEM (AWOS)

AWOS systems are classified as A, I, II and III. The AWOS A is limited to one sensor which provides altitude. Each change to a higher category AWOS system provides additional sensors to a total of six in the AWOS III system (altitude, temperature, dew point, cloud height, etc.). An AWOS system is contemplated in Phase II.

#### D. TERMINAL AREA

#### APRON

The existing concrete apron consists of approximately 2,500 square yards of pavement with space for nearly half dozen improved surface tiedowns. Unfortunately, the spaces designated for aircraft tiedown are located too close to the runway centerline and do not meet the minimum separation requirements. A portion of the apron, however, can be utilized as queuing space for aircraft movement. Tiedown areas are difficult to quantify. Calculations of required areas deviate from FAA standard methodology and have been adjusted slightly downward to compare with observed trends. Itinerant tiedown needs are based upon the following methodology:

#### TABLE 14

### <u>AIRCRAFT TIE-DOWN</u> <u>1990 TO 2010</u>

| Planning<br><u>Phase</u> | Planning<br><u>Period</u> | Annual<br>Itinerant<br><u>Operations</u> | Average<br><u>Day</u> | 50% on Ground<br><u>At Any One Time</u> |
|--------------------------|---------------------------|------------------------------------------|-----------------------|-----------------------------------------|
| 1                        | 1990 – 1995               | 5,280                                    | 14                    | 7                                       |
| I                        | 1995 – 2000               | 6,000                                    | 16                    | 8                                       |
| Ш                        | 2000 - 2010               | 7,200                                    | 20                    | 10                                      |
|                          |                           |                                          |                       |                                         |

It is assumed that all based aircraft owners will choose to place their aircraft in hangers.

Three hundred and sixty square yards per itinerant aircraft tiedown is recommended by the FAA as a basis for calculating improved surface area.

The expanded apron area as projected in the terminal area plan will provide space for 9 tiedowns. Depending on the future observed actual tiedown needs, any additional tiedowns to be close to the terminal, would require placement within the building restriction area south of the proposed fueling area.

#### HANGARS

The existing hangar capacity is as follows:

| Existing Hangar               | Aircraft Capacity |  |  |
|-------------------------------|-------------------|--|--|
| Private Tee Hangars           | 5                 |  |  |
| Private Conventional Hangars  | 7                 |  |  |
| Municipal Conventional Hangar | 1                 |  |  |
| Municipal Group Hangar        | 11                |  |  |
|                               | 24                |  |  |

III-16

Aircraft capacity of some of the conventional hangars depends upon the stacking procedure. Over the twenty year planning period, a hangar space need for 30 aircraft is anticipated.

Over the twenty year planning period it is suggested that 11 of the 12 hangars currently located west of the municipal group hangar be removed or relocated. Those hangars which exhibit the most structural integrity could be relocated east of the municipal group hangar.

The proposed hangar removal relocation and replacement schedule is presented below by planning period.

#### <u>TABLE 15</u>

#### FUTURE HANGAR NEEDS

| Planning<br><u>Phase</u> | Planning<br><u>Period</u> | Remove<br><u>Hangars</u> | No.<br>Stalls<br><u>Removed</u> | Construct<br>Nested<br><u>Tee-Hangar</u> | No.<br>Stalls<br><u>Added</u> |
|--------------------------|---------------------------|--------------------------|---------------------------------|------------------------------------------|-------------------------------|
| 1                        | 1990 – 1995               | 6                        | 6                               | Six Unit                                 | 6                             |
| I                        | 1995 – 2000               | 1                        | 1                               |                                          |                               |
| III                      | 2000 - 2010               | 4                        | 4                               | Ten Unit                                 | <u>10</u>                     |
|                          |                           |                          | 12                              |                                          | 16                            |

The above schedule yields a net aircraft stall increase of 4 which (not considering hangar relocation) provides a total of 28.

If the hangar stall demand exceeds projected numbers, the Airport Commission could consider construction of a "Standard" tee-hangar east of the municipal group hangar.

Building size for this type hangar is typical as follows:

| Bldg. | Bldg. Leng | ths:          |               |               |                |
|-------|------------|---------------|---------------|---------------|----------------|
| Width | 2 Unit     | <u>4 Unit</u> | <u>6 Unit</u> | <u>8 Unit</u> | <u>10 Unit</u> |
| 32'   | 71'-9"     | 133'-3"       | 194'-9"       | 256'-3"       | 317'-9"        |

Clear door dimensions for the suggested nested tee-hangars and "Standard" hangar is 40'-6" x 12'-0".

#### TABLE 16

4

#### GROUND STORAGE DIMENSIONS OF SELECTED GENERAL AVIATION AIRCRAFT (in feet and inches)

#### Single Engine. High Wing Tail wheel

| Make        | Model       | (Wingspan) | (Length) | (Height) |
|-------------|-------------|------------|----------|----------|
| Bellanca    | 7           | 35–5       | 22-8     | 6-8      |
| Cessna      | 120/140     | 32-10      | 21-0     | 6–3      |
|             | 170         | 36–0       | 25-0     | 6-7      |
| Cessna      | 180/185     | 36-2       | 25-9     | 7–9      |
|             | 190         | 36-2       | 27-1     | 7–2      |
|             | 195         | 27-4       | 27-1     | 7–2      |
| Piper       | PA-12/14/15 | 35–6       | 22-6     | 6-10     |
|             | PA-18       | 35–3       | 22-5     | 6-8      |
|             | PA-20       | 29-4       | 20-5     | 6–3      |
| Taylorcraft | BC-12       | 36–0       | 22-0     | 6-8      |
|             |             |            |          |          |

#### Single Engine, Low Wing Tricycle Gear

| Make           | Model    | (Wingspan) | (Length) | <u>(Height)</u> |
|----------------|----------|------------|----------|-----------------|
| Aerostar       | 415      | 30–0       | 20-7     | 6-3             |
|                | M-20     | 35–0       | 23-7     | 8-4             |
|                | M-22     | 35–0       | 27–0     | 9-10            |
| Beechcraft     | 23       | 32-9       | 25-0     | 8-3             |
|                | V-35B    | 33-6       | 26-5     | 6-7             |
|                | F-33     | 32-10      | 25–6     | 8-3             |
| Bellanca       | 260/300  | 24-2       | 23-6     | 7-4             |
| Grumman        | AA-1     | 24-6       | 19–3     | 6-10            |
| Piper          | PA-24    | 36–0       | 24–9     | 7–5             |
| P              | A-28-180 | 30-0       | 23–6     | 7-4             |
|                | -200     | 30-0       | 24–2     | 8–0             |
|                | PA-32    | 32-10      | 27–9     | 7-11            |
| Rockwell Int's | 122      | 35–0       | 27–2     | 10-1            |
|                |          |            |          |                 |

### Single Engine, High Wing Tricycle Gear

| Make   | Model | (Wingspan) | (Length) | (Height) |
|--------|-------|------------|----------|----------|
| Cessna | 150   | 32–9       | 23–0     | 8-8      |
|        | 172   | 35-10      | 26-11    | 8-10     |
|        | 177   | 35–6       | 27-0     | 9-1      |
|        | 182   | 35-10      | 28-1     | 8-11     |
|        | 206   | 35-10      | 28-0     | 9–8      |
|        | 207   | 35-10      | 21-9     | 9-7      |
|        | 210   | 36-9       | 28–3     | 9-8      |
| Piper  | PA-22 | 29-4       | 20-4     | 6-3      |

### Twin Engine. High Wing Tricycle Gear

| Make           | Model          | <u>(Wingspan)</u> | (Length) | <u>(Height)</u> |
|----------------|----------------|-------------------|----------|-----------------|
| Cessna         | 366/377        | 38-2              | 29-10    | 9-4             |
| DeHaviland     | DHC-6          | 65–0              | 65–0     | 18-7            |
| Mitsubishi     | MU-2           | 39-2              | 39–6     | 13-8            |
| Rockwell Int'l | 500            | 49–6              | 35-1     | 14-6            |
|                | 560/680/Shrike | 49-1              | 36-7     | 14-6            |
| Short Bros.    | Skyvan         | 40-1              | 15-1     | 14-10           |

8

l

ľ

### Twin Engine, Low Wing Tricycle Gear

| Make       | Model   | (Wingspan) | (Length) | (Height) |
|------------|---------|------------|----------|----------|
| Aerostar   | 600/601 | 34–3       | 34–10    | 12-2     |
| Beechcraft | B-55    | 37-10      | 27–0     | 9-7      |
|            | E-55    | 27-10      | 29–0     | 9–2      |
|            | A-60    | 39–3       | 33–10    | 12-4     |
|            | A-65    | 45-11      | 35-6     | 14-3     |
|            | B-80    | 50-3       | 35-6     | 14-3     |
|            | A-90    | 50-3       | 36-6     | 14-8     |
|            | A-100   | 45-11      | 39-11    | 15-4     |
|            | 99A     | 45-11      | 44-7     | 14-4     |
|            |         |            |          |          |

| <u>Twin Engine. Low Wing Tricycle Gear</u><br><u>Cont.</u> |              |                   |          |          |  |
|------------------------------------------------------------|--------------|-------------------|----------|----------|--|
| Make                                                       | Model        | <u>(Wingspan)</u> | (Length) | (Height) |  |
| Cessna                                                     | 310          | 37–6              | 29–7     | 9-11     |  |
|                                                            | 401/402/421  | 39-10             | 33–9     | 11-10    |  |
| Grumman                                                    | Gulfstream I | 78–4              | 63–9     | 22-10    |  |
| Piper                                                      | PA-23-160    | 37–2              | 27–5     | 9-6      |  |
|                                                            | -250         | 37–0              | 27-7     | 10-4     |  |
|                                                            | PA-30        | 36–0              | 25-2     | 8–3      |  |
|                                                            | PA-31        | 40-8              | 32–8     | 13-0     |  |
| Swearingen                                                 | Merlin IIB   | 45-11             | 40-1     | 14-4     |  |
|                                                            | Merlin III   | 46-3              | 42-2     | 16-8     |  |

### Turbo Jet. Turbo Fan Aircraft

|   | Make           | Model    | (Wingspan) | (Length) | (Height) |
|---|----------------|----------|------------|----------|----------|
| 1 | Dassault       | Fan Jet  |            |          |          |
|   |                | Falcon   | 53-6       | 56-3     | 17-5     |
| , | Cessna         | Citation | 43–9       | 44-1     | 14-4     |
|   | Learjet        | 24       | 35-7       | 43-3     | 12-7     |
|   |                | 25       | 35-7       | 47-7     | 12-7     |
|   |                | 35/36    | 38-1       | 48-8     | 12-4     |
|   | Grumman        | G–II     | 68-10      | 79-11    | 24-6     |
|   | Hawker         |          |            |          |          |
|   | Siddeley       | HS-125   | 47-0       | 47-5     | 16-6     |
|   | Lockheed       | Jetstar  | 53-8       | 60-5     | 20-6     |
|   | Rockwell Int'l | 40       | 44–5       | 43-9     | 16-0     |
|   |                | 60       | 44-5       | 48-4     | 16-0     |
|   |                | 70/75A   | 44-6       | 47-2     | 17-3     |
|   |                |          |            |          |          |

#### TERMINAL BUILDING AND F.B.O. SHOP

Phase I improvements would open up an area outside the building restriction line (BRL) for construction of a new terminal building and F.B.O. shop during Phase II.

In Phase II (1995 – 2000) a new terminal building of at least 25' x 40' would be constructed to provide a pilots' briefing area, public waiting room, restrooms, telephone, and a small office area for airport administration. IDOT recommends that if a separate building is provided and not combined with F.B.O. operations, it should include a minimum of 1,000 square feet.

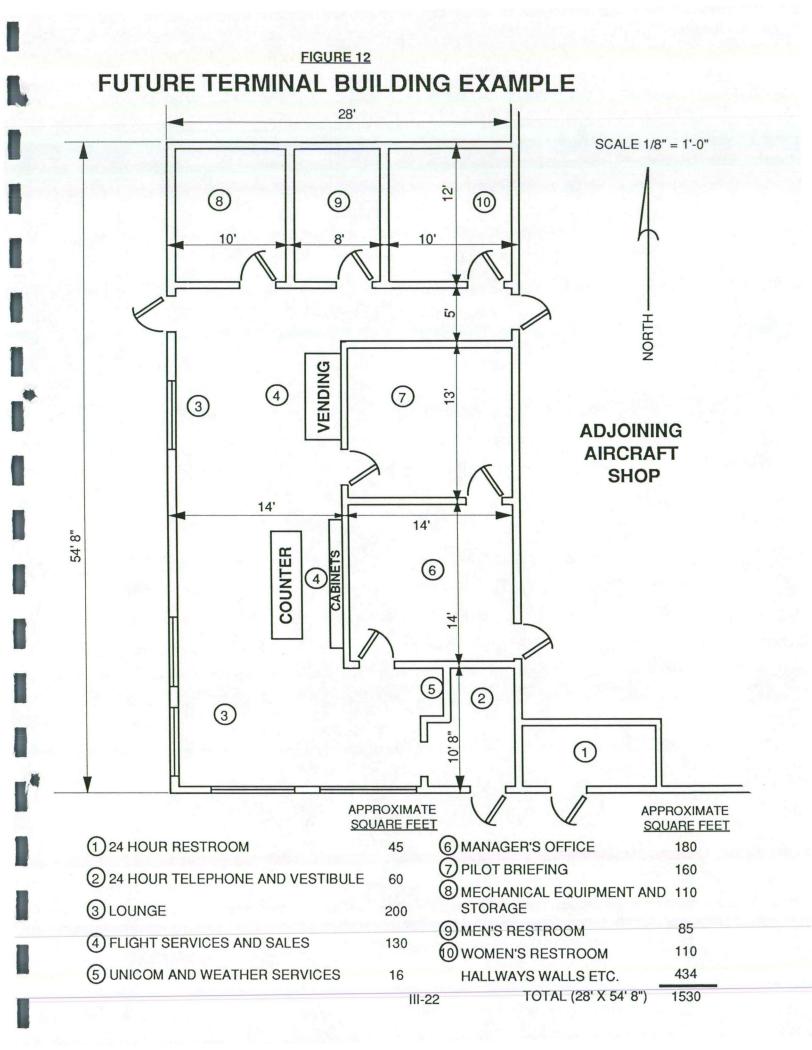
Figure 12 is an example of a terminal building which accommodates most of the needs discussed above.

An F.B.O. shop is recommended in Phase II of at least 60' x 80' (4800 SF).

#### VEHICLE PARKING

Ideally, a general utility airport should have a hard surface area capable of accommodating a number of parking spaces equal to the number of based aircraft.

The present twenty (20) based aircraft is projected to be thirty (30) by year 2010.


Part of the total parking space demand can be met by providing pilot parking areas near aircraft hangars.

During Phase II when the terminal building is constructed, 15 parking space should be provided near the terminal building.

Parking spaces nearest the terminal office should be restricted to airport personnel and handicapped parking.

Where the public, pilots, and airport personnel park and numbers of vehicles should be monitored closely to determine when the hard surface parking area outside the terminal should be expanded for convenience and safety.

Reference can be made to the terminal area layout for vehicle parking recommendations.



#### E. FAR PART 77

#### OBSTRUCTION STANDARD

Part 77 of Volume XI, Federal Aviation Regulations, sets forth a number standards to be used in identifying obstructions to air navigation. These standards are of considerable importance. The discussion herein is primarily extracted from Part 77. These standards will be used as a guide in the preparation of a zoning ordinance and the airport layout plan.

#### STANDARDS FOR DETERMINING OBSTRUCTIONS

A stationary or mobile object is defined as an obstruction to air navigation if it is of a greater height than any one of the following:

- A height of 500 feet above the ground at the site. Α.
- B. A height of 200 feet above the ground or airport elevation, whichever is higher, within three (3) nautical miles of the airport reference point.
- C. The surface of a takeoff or landing area of an airport or any imaginary surface.
- D. Traverse ways on or near an airport to be used for the passage of mobile objects.
  - Interstate Highway
  - Public Roadway

17 Feet

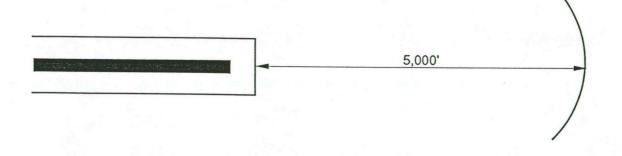
**Private Road** 

15 Feet

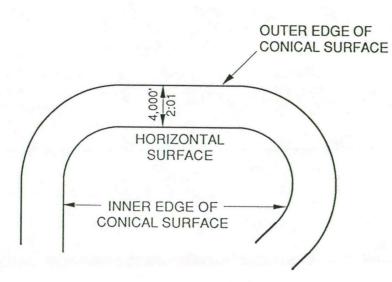
Railroad

10 Feet or height of height of the highest mobile object 23 Feet

#### IMAGINARY SURFACES


Imaginary surfaces establish areas where any object penetrating that surface would be considered an obstruction to air navigation. The imaginary surface establishes an imaginary line that separates ground activities from aircraft activities. In order to select that applicable imaginary surface, the type of approach to each runway must be considered.

Horizontal Surface: The horizontal surface is a plane 150 feet above the established airport elevation. It is constructed by swinging arcs of specific radii from the center of each end of the primary surface and by connecting the arcs by lines tangent to those arcs.

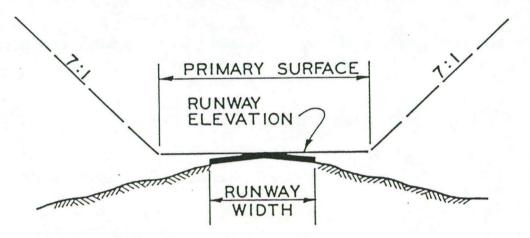

Visual Radius of 5,000 feet

A.

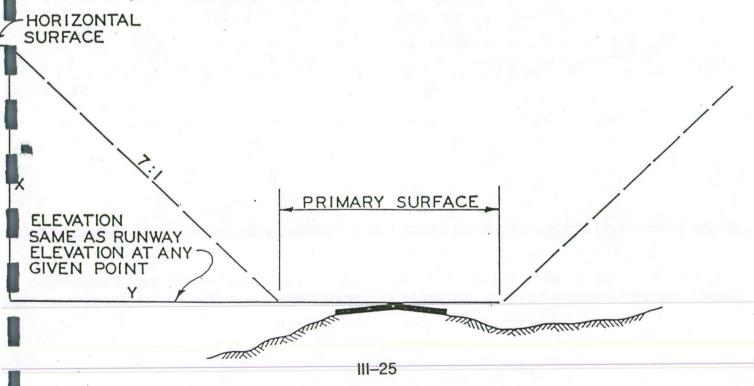
- NPI Radius of 10,000 feet. (Runway larger than Utility)
- NPI Radius of 5,000 feet. (Utility Runway)



B. Conical Surface: The conical surface extends outward and upward from the periphery of the horizontal surface at a slope of 20:1 for a horizontal distance of 4,000 feet.




111-24


C. Primary Surface: The primary surface is longitudinally centered on the runway and extends 200 feet beyond the runway end in the case of a paved runway. The primary surface end coincides with the runway end in the case of a turf runway. The width of the primary surface varies with the approach.

|        | Width | End of Runway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|--------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|        |       | AND INCOMENTATION OF A DESCRIPTION OF A |  |
| Visual | 250'  | 200'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| NPI    | 500'  | 200'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |

The elevation of any point on the primary surface is the same as the elevation of the nearest point on the runway centerline.



D. Transitional Surface: The transitional surface extends upward at a slope of 7:1 from the edge of the primary surface and approach surfaces. They extend outward and upward from the runway centerline and runway centerline extended until they intersect with the horizontal surface.



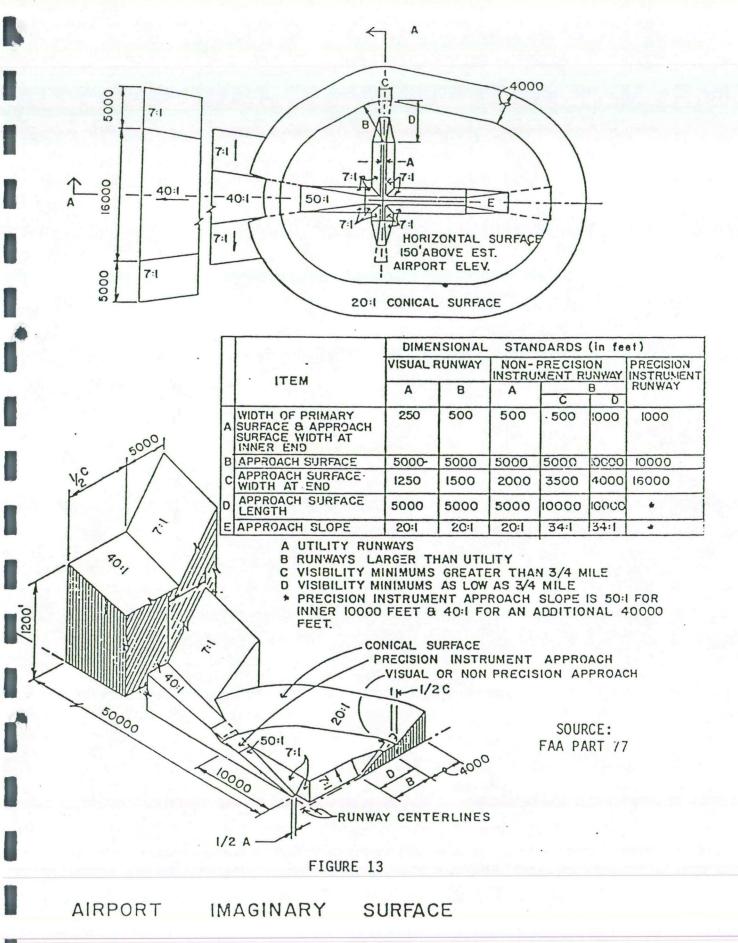
X and Y vary in dimension and are determined by the distance required for an imaginary line at a 7:1 slope, to intersect with the primary surface.

E. Approach Surface: The approach surface is longitudinally centered on the extended runway centerline. The inner edge of the approach surface coincides with primary surface and expands uniformly outward to a width determined by the type of approach:

| Visual: | 250' x 5,000 x 1,250'  |                     |
|---------|------------------------|---------------------|
| NPI:    | 500' x 10,000 x 3,500' | (Runway larger than |

(Runway larger than Utility w/viability minimum as low as 3/4 of a mile) (Utility runways)

NPI: 500' x 5,000 x 2,000'


The approach slope also varies:

| Visual: | 20:1                       |
|---------|----------------------------|
| NPI:    | 34:1 (Larger than Utility) |
| NPI:    | 20:1 (Utility Runways)     |

The clear zone represents that portion of the approach surface on the ground. The inner edge of the approach surface coincides with the primary surface. The clear zone extends outward uniformly to a width determined by a point which is 50 feet above the ground elevation or runway end elevation.

 Visual:
 250' x 1,000 x 450' Utility Runway

 NPI:
 500' x 1,000 x 800' Utility Runway



111-27

#### F. LAND USE GUIDELINES

#### LAND USE

Airport land use may be discussed in terms of the

- Impact of adjacent land uses on the airport
- Impact of the airport on adjacent land uses

Each of the two general impacts can further be broken down into specific impacts. The impacts may not all be negative as some impacts are quite positive in nature. The objective is to insure that the land use conflicts are reduced to a minimal level in view of the fact that it will not be possible to alleviate all problems. The following land use goals in the vicinity of the airport will provide a set of parameters upon which to design specific land use policies. These goals are not static nor is the list all inclusive. Throughout the planning period, goals are expected to change to meet unforeseen demand.

#### <u>GOALS</u>

- The airport and associated imaginary surfaces should be protected from encroachment of land uses that might impair operational capabilities of the facility.
- Having identified the ultimate level of airport development, care should be exercised throughout the planning period to insure that future expansion of the facility is not compromised.
- Adjacent airport environs should be protected against aircraft operations and noise.
- Establish or organize land uses on the airport and off the airport that will complement each other.

Encourage the development of an industrial park adjacent to the airport.

#### LAND USE COMPATIBILITY

Land use compatibility depends upon a number of factors. In other words, to say that industrial activity is compatible depends upon the type to include structures and processes. The latter is of concern where considerable amounts of heat is released.

The following adjacent land use activities, identified by the FAA, are potentially compatible. Potentially compatible may be defined as a land use that does not, for example, exceed Part 77 requirements, or has properly been designed so that noise is not a problem.

#### Natural Corridors

| Rivers  | Canals            |
|---------|-------------------|
| Lakes   | Drainage Basins   |
| Streams | Flood Plain Areas |

Natural Buffer Areas Forest Reserves Land Reserves and Vacant Land

#### Open Space Areas

Memorial Parks and Pet Cemeteries Water & Sewage Treatment Plants Water Conservation Areas Marinas, Tennis Courts Golf Courses Park and Picnic Areas Botanical Gardens Bowling Alleys Landscape Nurseries Archery Ranges Golf Driving Ranges Go-Cart Tracks Skating Rinks Passive Recreation Areas Reservation/Conservation Areas Sod and Seed Farming Tree and Crop Farming Truck Farming

Airport and Aviation Oriented Facilities

AirparksAerial Survey LabsAerospace IndustriesBanksAircraft Repair ShopsAirfreight Terminals

#### Airport and Aviation Oriented Facilities

| Hotels      | Aircraft Factories    |
|-------------|-----------------------|
| Motels      | Aviation Schools      |
| Restaurants | Employee Parking Lots |

Aviation Research and Testing Labs Aircraft and Aircraft Parts Manufacturers

Commercial Facilities

Retail Businesses Shopping Centers Parking Garages Finance & Insurance Companies Professional Services Gas Stations Real Estate Firms Wholesale Firms

The compatibility of each of these land use activities depends upon the proximity of the specific land use to the airport, the level of sound proofing and the type, height, and location of building structures.

The land uses identified herein as being compatible are not all inclusive nor is the list intended to suggest that such community land uses be located in the vicinity of the airport. Such land uses, when incorporated into the comprehensive growth and management plan, will insure a degree of compatibility within the vicinity of the airport.

#### <u>G. SUMMARY</u> FACILITY REQUIREMENTS

#### TABLE 17

|     |          | E E              | lanning Period   | to a serie of |
|-----|----------|------------------|------------------|---------------|
|     |          | Phase I          | Phase II         | Phase III     |
|     | Existing | <u>1990–1995</u> | <u>1995–2000</u> | 2000-2010     |
| dth |          |                  |                  |               |

Runway Length & Width RW 11/29

RW 18/36 (Turf)

3900' x 60' 2510' x 175' 4100' x 75'

|                           | Existing     | E<br>Phase I<br><u>1990–1995</u> | Planning Period<br>Phase II<br>1995–2000 | Phase III<br>2000–2010 |
|---------------------------|--------------|----------------------------------|------------------------------------------|------------------------|
| Runway Lighting           |              |                                  |                                          |                        |
| RW 11/29                  | MIRL         |                                  |                                          | Replace MIRL           |
| RW 18/36                  | NONE         |                                  | (MIRL Future)                            |                        |
| Runway Pavement           |              |                                  |                                          |                        |
| RW 11/29                  | PC Concrete  |                                  | Satisfactory                             |                        |
| RW 18/36                  | Turf         |                                  |                                          |                        |
| Runway Strength           |              |                                  |                                          |                        |
| RW 11/29                  | 15,000 S     |                                  | Satisfactory                             |                        |
| Taxiway Pavement          |              |                                  |                                          |                        |
| RW 11/29 to Apron         | 30' Wide Cor | IC.                              |                                          | Widen to 40'           |
| RW End 11 to Apron        | NONE         |                                  |                                          | 40' Wide               |
|                           |              |                                  |                                          | PC Concrete            |
|                           |              |                                  |                                          |                        |
| Taxiway Lighting          |              |                                  |                                          |                        |
| RW 11/29 to Apron         | MITL         |                                  | Satisfactory                             |                        |
| RW End 11 to Apron        | NONE         |                                  |                                          | MITL                   |
| Airport Land              | Acres        |                                  |                                          |                        |
| Acquisition               |              |                                  |                                          | RW End 36              |
|                           |              |                                  |                                          | 50 AC                  |
|                           |              |                                  |                                          |                        |
| Runway Protection Zone Ea | asements     |                                  |                                          |                        |
| RW End 11                 |              |                                  |                                          | 3.7 AC                 |
| RW End 29                 |              |                                  |                                          | 7.7 AC                 |
| RW End 18                 |              |                                  |                                          | 5.6 AC                 |
| RW End 36                 |              |                                  |                                          | 4.6 AC                 |

I

|                                                                                                                                                                                              | Existing             | Phase I<br><u>1990–1995</u>          | anning Period<br>Phase II<br><u>1995–2000</u>                                                                                      | Phase III<br>2000–2010            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Electronic Navigation Aids                                                                                                                                                                   |                      |                                      |                                                                                                                                    |                                   |
| Nondirectional Beacon<br>(NDB)<br>Radio Controlled                                                                                                                                           | Yes                  |                                      | Satisfactory                                                                                                                       | -                                 |
| Runway Lights                                                                                                                                                                                | Yes                  |                                      | Satisfactory                                                                                                                       |                                   |
| Radio Unicom<br>Automated Weather                                                                                                                                                            | Yes                  |                                      | Satisfactory                                                                                                                       |                                   |
| Observation System<br>(AWOS)                                                                                                                                                                 | No                   |                                      | AWOS III                                                                                                                           |                                   |
| Visual Navigational Aids                                                                                                                                                                     |                      |                                      |                                                                                                                                    |                                   |
| RW 11/29                                                                                                                                                                                     | VASI-2, REI          | L                                    |                                                                                                                                    | Relocate<br>RW end 1              |
| RW 18/36                                                                                                                                                                                     | NONE                 |                                      |                                                                                                                                    |                                   |
| Rotating Beacon                                                                                                                                                                              | Yes                  |                                      | Satisfactory                                                                                                                       |                                   |
| Wind Tee<br>Lighted Wind Cone                                                                                                                                                                | Yes<br>No            |                                      | n di kanan kana<br>Tanan kanan kan | Relocate<br>Segmente              |
|                                                                                                                                                                                              |                      |                                      |                                                                                                                                    | Circle                            |
| Aircraft Apron                                                                                                                                                                               |                      |                                      |                                                                                                                                    | Circle                            |
| <u>Aircraft Apron</u><br>PC Concrete                                                                                                                                                         |                      | Add 2400 SY                          | Add 1700 SY                                                                                                                        | Circle                            |
|                                                                                                                                                                                              |                      | Add 2400 SY<br>Construct 4           | Add 1700 SY<br>Construct 5                                                                                                         | Circle                            |
| PC Concrete                                                                                                                                                                                  |                      |                                      |                                                                                                                                    | Circle                            |
| PC Concrete<br>Aircraft Tiedowns                                                                                                                                                             | 5 Spaces             |                                      |                                                                                                                                    | Circle                            |
| PC Concrete<br>Aircraft Tiedowns<br>Aircraft Hangars<br>5 Private                                                                                                                            | 5 Spaces<br>2 Spaces | Construct 4<br>Remove or             |                                                                                                                                    | Circle                            |
| PC Concrete<br><u>Aircraft Tiedowns</u><br><u>Aircraft Hangars</u><br>5 Private<br>Tee Hangars<br>1 Private 2 Unit                                                                           |                      | Construct 4<br>Remove or             | Construct 5<br>Remove or                                                                                                           | Remove                            |
| PC Concrete<br><u>Aircraft Tiedowns</u><br><u>Aircraft Hangars</u><br>5 Private<br>Tee Hangars<br>1 Private 2 Unit<br>Conventional Hangar<br>5 Private                                       | 2 Spaces             | Construct 4<br>Remove or<br>Relocate | Construct 5<br>Remove or                                                                                                           | Remove<br>Relocate<br>Remove      |
| PC Concrete<br><u>Aircraft Tiedowns</u><br><u>Aircraft Hangars</u><br>5 Private<br>Tee Hangars<br>1 Private 2 Unit<br>Conventional Hangar<br>5 Private<br>Conventional Hangar<br>1 Municipal | 2 Spaces<br>5 Spaces | Construct 4<br>Remove or<br>Relocate | Construct 5<br>Remove or                                                                                                           | Remove of<br>Relocate<br>Relocate |

|                            |               | Phase I   | Planning Period<br>Phase II | Phase III     |
|----------------------------|---------------|-----------|-----------------------------|---------------|
|                            | Existing      | 1990-1995 | 1995-2000                   | 2000-2010     |
| <b>Operations Building</b> |               |           |                             |               |
| Terminal Building          | 768 SF        |           | 28' x 54'-8"<br>1530 SF     |               |
| F.O.B. Shop Building       | NONE          |           | 60' x 80'<br>4800 SF        |               |
|                            |               |           | 4000 SF                     |               |
| Vehicle Parking            | Improperly L  | ocated    |                             |               |
| Restricted:                |               |           |                             |               |
| Airport Personnel          |               | 3         |                             |               |
| Handicap                   |               | 1         |                             |               |
| Public                     |               | 111       | (Future A                   | Add 12 to 25) |
| Security Fence             | None          |           | Operations Bldg             |               |
|                            |               |           | & Vehicle Parkin            | g             |
| Aircraft Fueling Facility  | Yes           |           |                             |               |
|                            | (Above Ground | )         | Underground                 |               |

SECTION FOUR AIRPORT SITE PLANS

I,

#### AIRPORT SITE PLANS

Based upon the analysis of facility requirements in Section III, recommended improvements and additions to the various elements of the Pocahontas Municipal Airport are depicted graphically in the airport plans as follows:

#### AIRPORT LAYOUT PLAN, ALP:

The ALP depicts existing and proposed airport facility components.

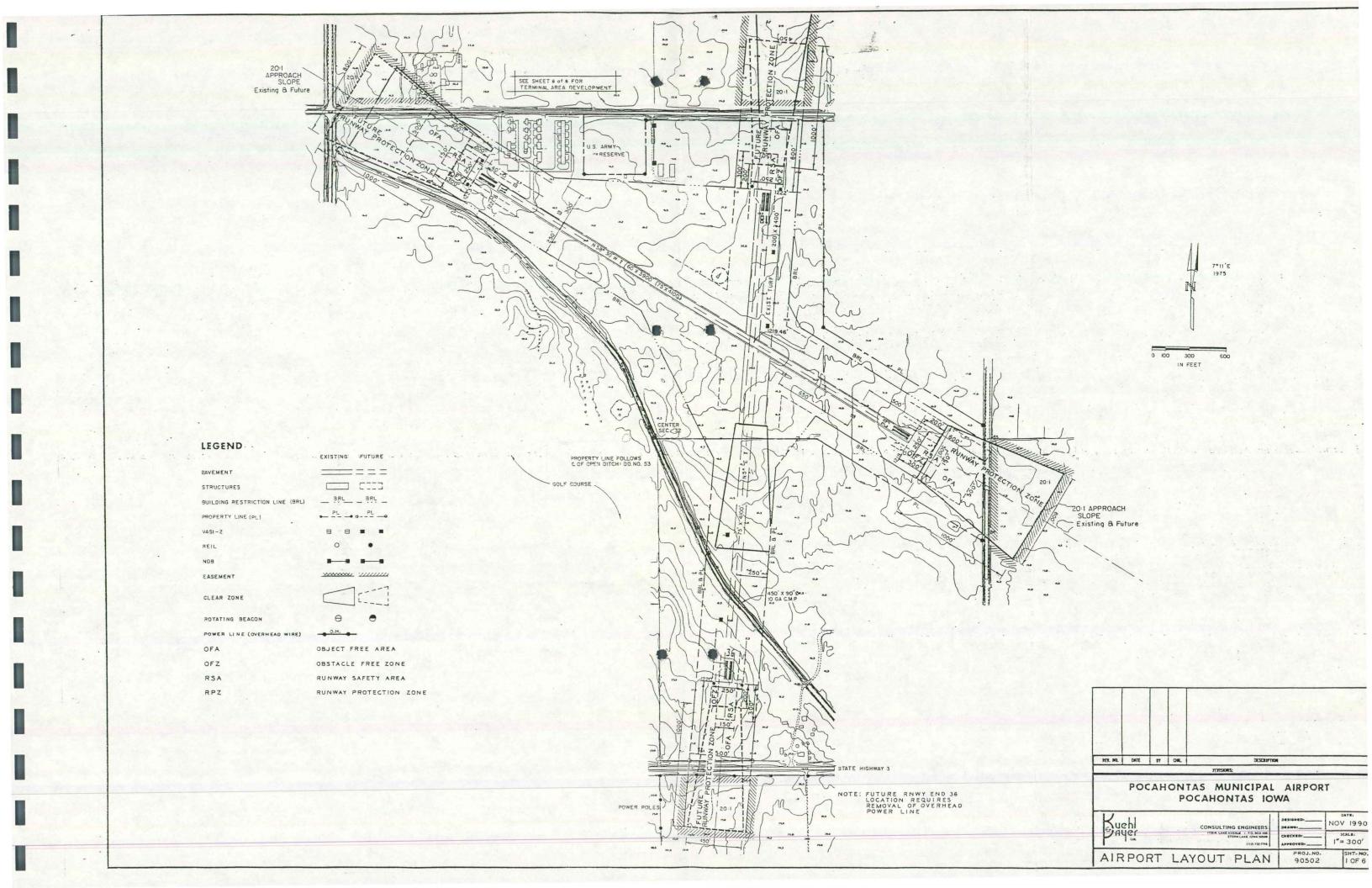
#### AIRPORT LAYOUT PLAN DATA SHEET:

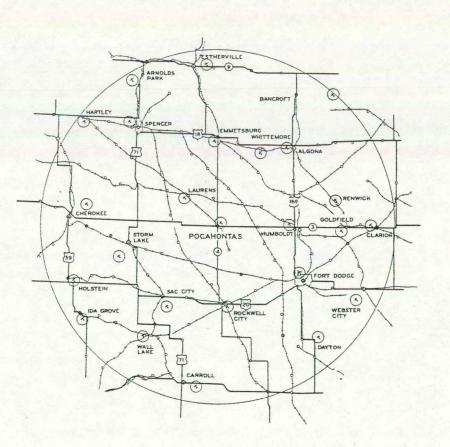
The ALP Date Sheet depicts the location of the airport with respect to area communities and airports. Relevant airport data and runway data are also summarized together with wind rose data on this sheet. All general notes regarding the ALP are placed on this sheet.

#### FAR PART 77:

The imaginary surfaces criteria shown on this sheet is based upon FAR Part 77. This sheet also serves as the airport zoning map and should be made a part of the tall structures ordinance.

#### **APPROACH PLAN:**


FAA Part 77 imaginary surfaces are depicted in plan and profile form on this sheet.


#### RUNWAY PROTECTION ZONE PLAN AND PROFILE SHEET:


The clear zone plan and profile for each runway end is depicted on this sheet.

#### TERMINAL AREA PLAN:

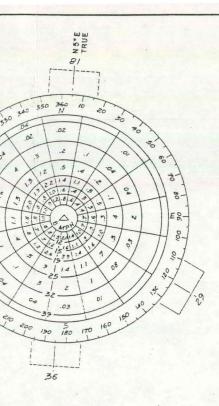
The terminal area plan depicts at a larger scale anticipated improvements and additions in the terminal area.







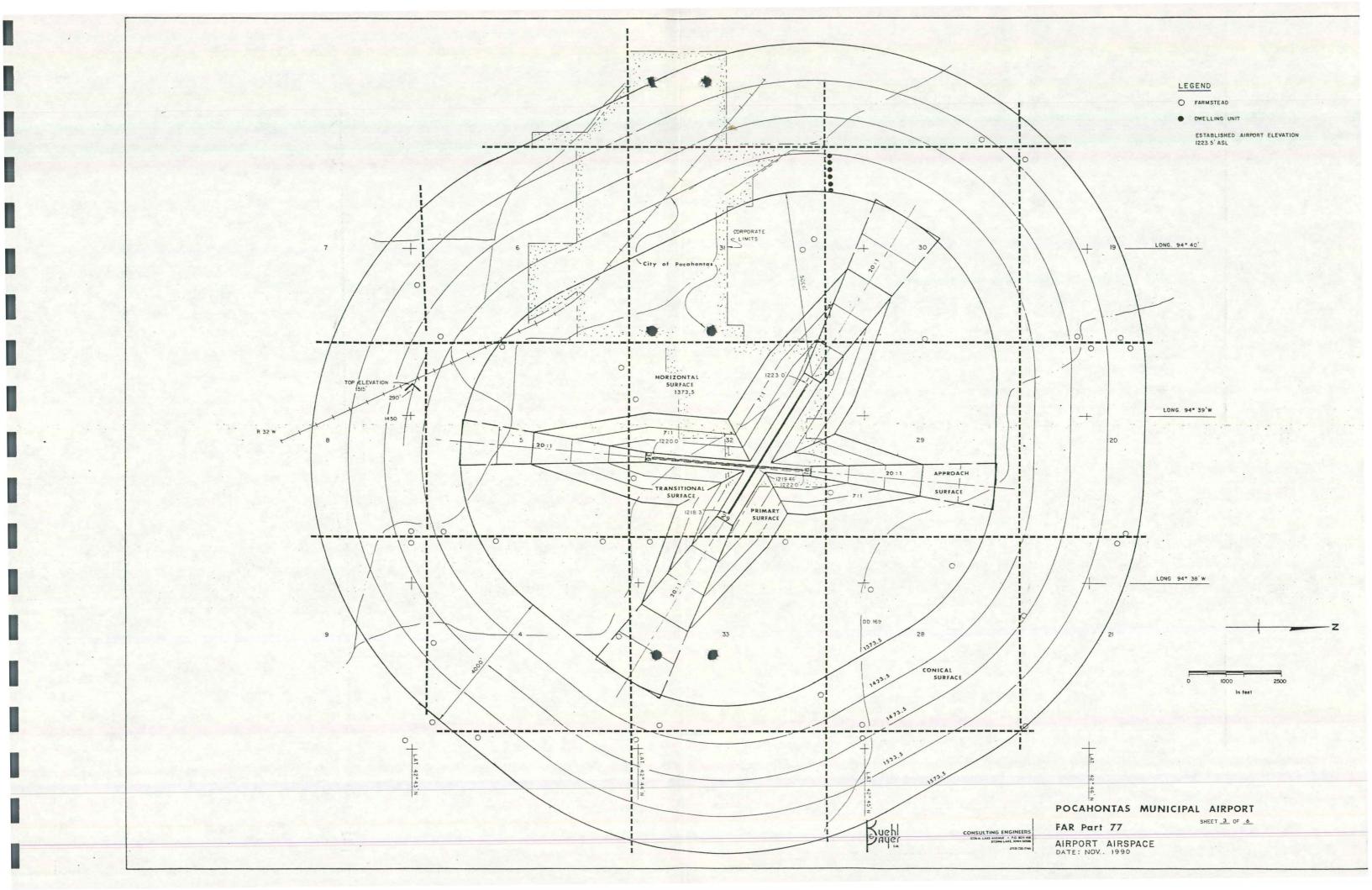
-

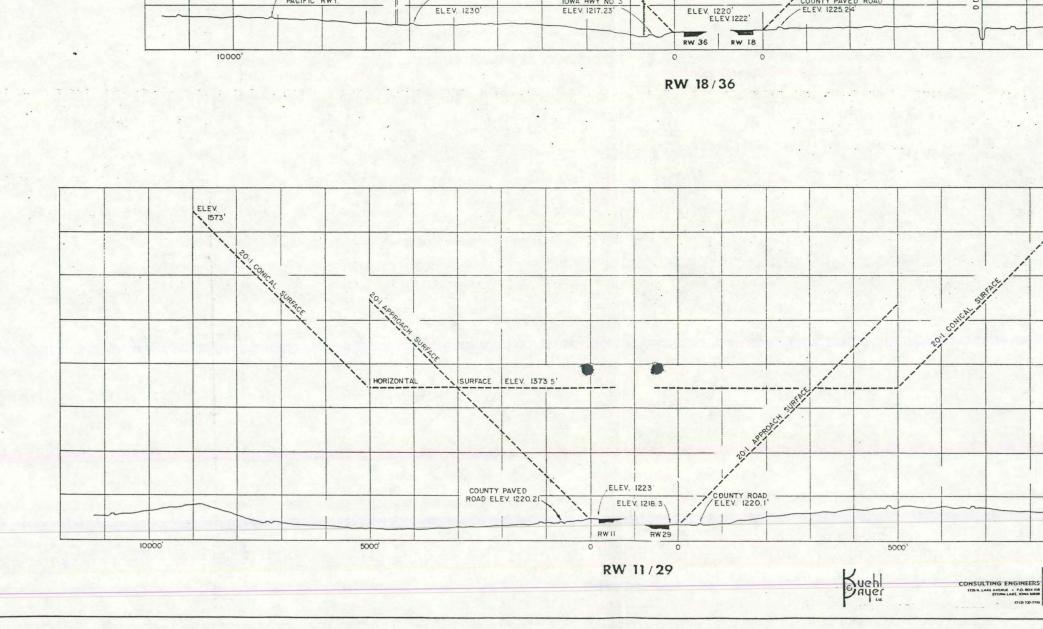

| RUNWAY DATA              | RUNWA         | AY 11/29        | RUNWA      | Y 18/36       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|--------------------------|---------------|-----------------|------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| RONWAT                   | EXISTING      | FU TURE         | EXISTING   | FUTURE        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| FFECTIVE RUNWAY GRADIENT | .09%          | .11%            | .23 %      | .05%          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| % WIND COVERAGE          | 73 %          | 73 %            | 76.9 %     | 76 9 %        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| NSTRUMENT RUNWAY         | NPI .         | NPI             | VISUAL     | VISUAL        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| APPROACH SURFACE         | 20:1          | 20:1            | 20:1 -     | 20:1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 124        |
| RUNWAY LENGTH            | 3900'         | 4100'           | TURF       | 4100          | Service and the service of the servi |            |
| RUNWAY WIDTH             | 60'           | 75'             | TURF       | 75'           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| RUNWAY STRENGTH          | 15000 lbs SW  | 15000 lbs SW    | _          | 12000 lbs SW  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| RUNWAY SAFETY AREA WIDTH | 120'          | 150             | -          | 150'          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| RUNWAY LIGHTING          | MIRL          | MIRL            | -          | MIRL          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| NAVIGATIONAL AIDS        | VASI-2, REIL  | VASI-2, REIL    | -          | VASI-2, REIL  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Carlos Sal |
| RUNWAY MARKINGS          | BASIC         | NPI             | -          | NPI .         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| RUNWAY END ELEVATIONS    | RW 11: 1221.8 | RW 11 : 1223.0' | RW 18 1222 | RW 18: 1222.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| X                        | RW 29: 1218.3 | RW 29 1218.3    | RW 36 1218 | RW 36: 1220.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| RUNWAY SURFACE           | CONC          | CONC.           | TURF       | CONC.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                          |               |                 |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                          |               |                 |            |               | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |
|                          |               |                 | -          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                          |               |                 |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          |
|                          |               |                 |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |

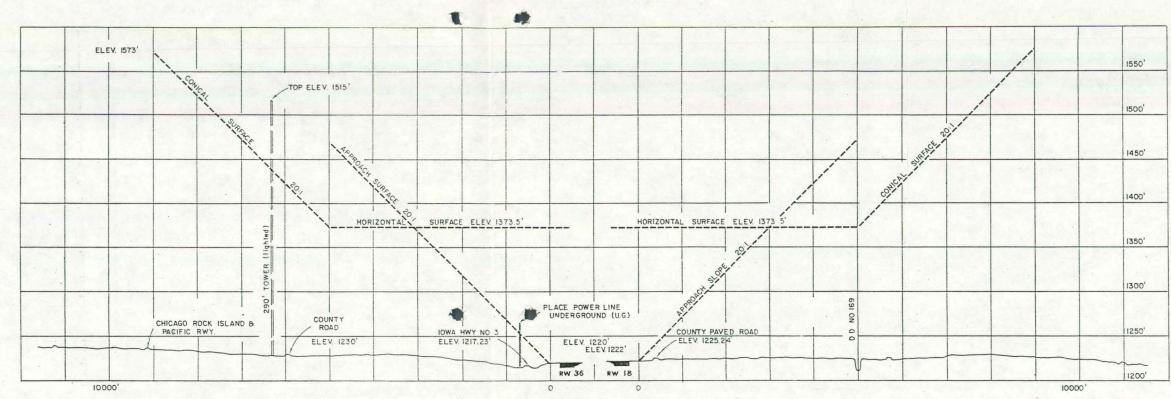
|   | AIRPO                                                                                                          |
|---|----------------------------------------------------------------------------------------------------------------|
| + |                                                                                                                |
| L |                                                                                                                |
|   | AIRPORT ELEVATION                                                                                              |
|   | AIRPORT REFERENCE POINT                                                                                        |
| L | COORDINATES                                                                                                    |
| F | NORMAL MEAN MAX. TEMP.                                                                                         |
| - | AIRPORT NAVIGATIONAL AIDS                                                                                      |
|   | AIRPORT ACREAGE                                                                                                |
| - | AWOSI                                                                                                          |
|   | BEACON                                                                                                         |
|   | SEGMENTED CIRCLE                                                                                               |
| _ | LIGHTED WIND TEE                                                                                               |
| - |                                                                                                                |
| - |                                                                                                                |
| + |                                                                                                                |
| + |                                                                                                                |
| - |                                                                                                                |
| T |                                                                                                                |
| - |                                                                                                                |
| T | The second s |
| - |                                                                                                                |

N 58° 30'W TRUE

1.4.4


- 2





ALL WEATHER WIND ROSE SOURCE FT. DODGE 1963 - 1967 12 MPH COVERAGE

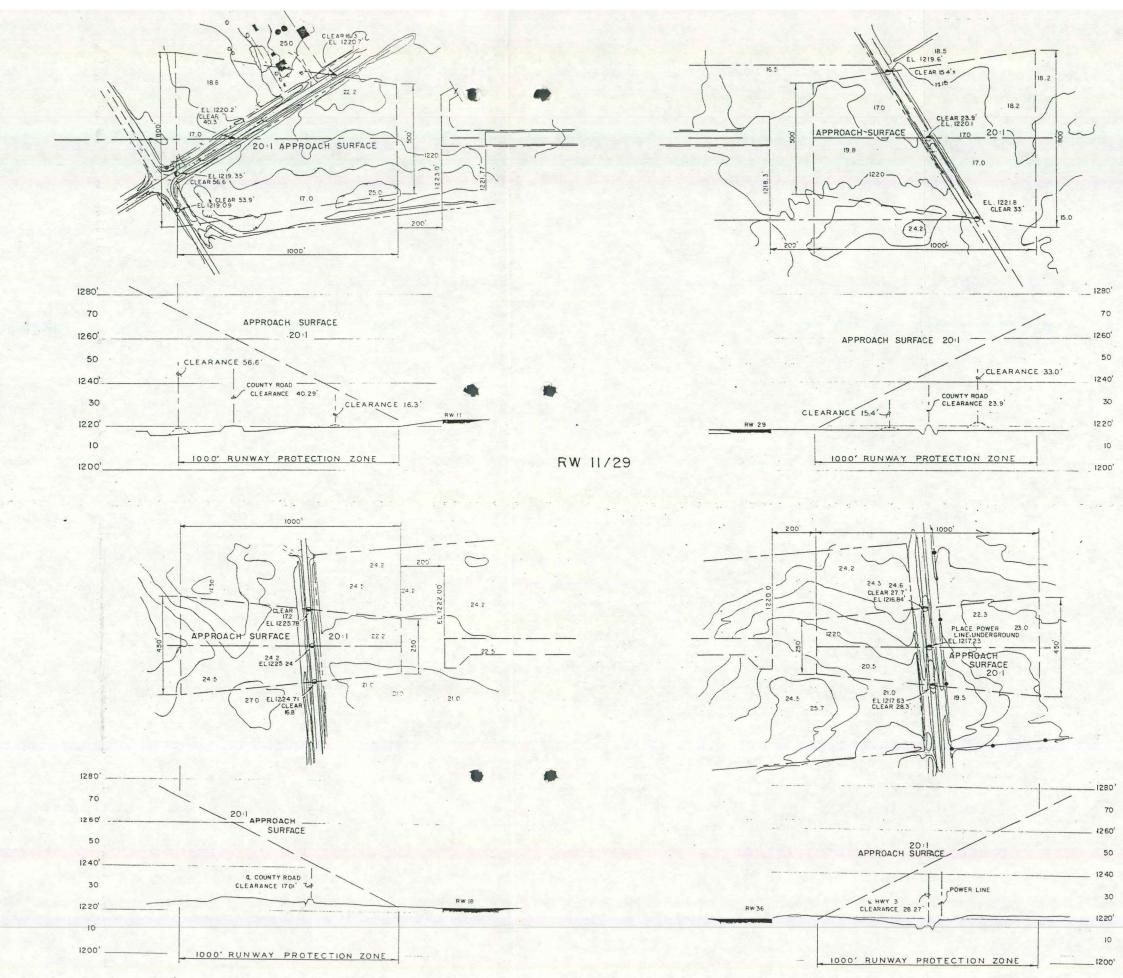
| ORT | DATA                                      |         |
|-----|-------------------------------------------|---------|
|     | EXISTING                                  | FUTURE  |
|     | 1223.5                                    | 1223 5  |
|     | LAT. 42° 44' 30" N<br>LONG. 94° 38' 45" W |         |
|     | 86°F                                      | 86° F   |
|     | ·                                         |         |
| S   | NDB                                       | NDB     |
|     | .129.6                                    | 180.4 1 |
|     | NO                                        | YES     |
|     | YES                                       | YES     |
|     | NO                                        | YES     |
|     | YES                                       | YES     |
|     | -                                         |         |
|     |                                           |         |
|     |                                           |         |
|     |                                           |         |
|     |                                           |         |
|     |                                           |         |
|     |                                           |         |
|     |                                           |         |

|         | R         | DESCRIPTIO                                                 |       | DHL. | BY  | DATE | REY. NO. |
|---------|-----------|------------------------------------------------------------|-------|------|-----|------|----------|
|         |           |                                                            | RE    |      |     | _    |          |
| PORT    | L AIRE    | ICIPA                                                      | SM    | ATL  | HON | ADC  | PO       |
| i Onti  |           |                                                            |       |      |     |      | 10       |
|         | NA        | S 101                                                      | HON.  | AL   | POC |      |          |
|         |           |                                                            |       |      |     |      |          |
|         |           |                                                            |       |      |     |      |          |
| DATE    |           | 1                                                          |       |      |     |      | 11       |
| NOV 199 | DESIGNED: | ENGINEERS                                                  | CONSU |      |     | ehl  | Kue      |
|         | DR AWN :  | ENGINEERS                                                  |       |      |     | ehl  | Kue      |
| NOV 199 |           |                                                            |       |      |     | ehl  | Kue      |
| NOV 199 | DR AWN:   | RAL + P.D. BOX 450<br>M LAKE, KOWA 50588<br>(712) 730-7745 |       |      |     |      | Kue      |








10000'

POCAHONTAS MUNICIPAL AIRPORT

SHEET 4 OF 6

(712) 720-3745

APPROACH PLAN DATE: NOV 1990



RW 18/36



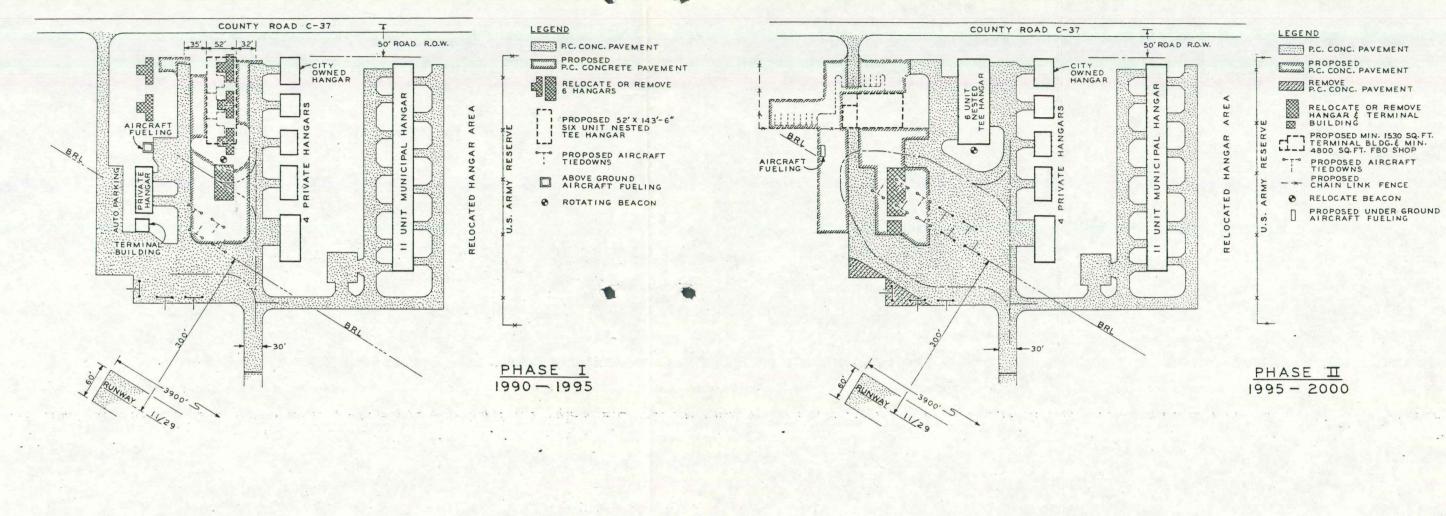
· · ·

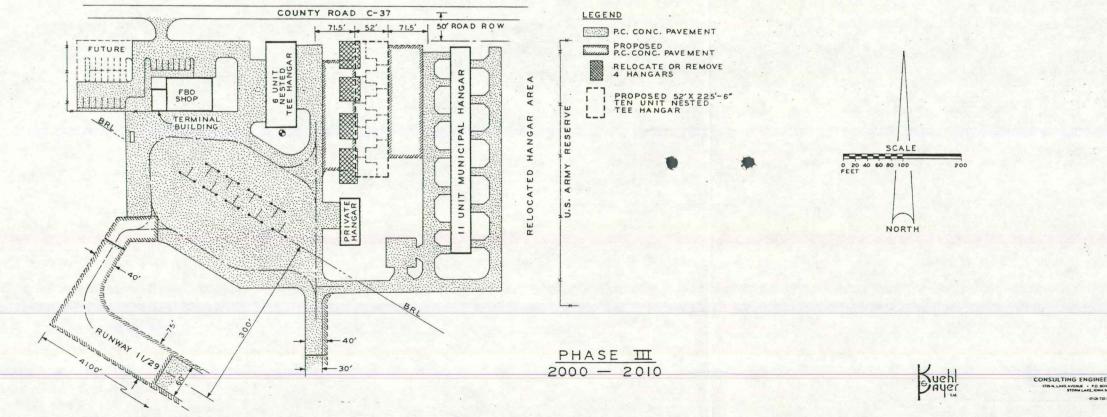
SCALE IN FEET

10 20

HORZ

#### RUNWAY PROTECTION ZONE PLAN & PROFILE


CONSULTING ENGINEERS


(712) 732-7745

POCAHONTAS MUNICIPAL AIRPORT

SHEET 5 OF 6

DATE: NOV . 1990





STORM LAKE, IOWA 505 17121 737-77 POCAHONTAS MUNICIPAL AIRPORT TERMINAL AREA PLAN DATE: NOV 1990

SHEET 6 OF 6

#### SECTION FIVE

/

b

1

ľ

DEVELOPMENT SCHEDULE AND STRATEGY FOR IMPLEMENTATION

#### A. INTRODUCTION

The development schedule is based upon the forecast of aviation demand and the facilities needed to satisfy the anticipated demand over a 20 year period. There are, however, other factors that must also be considered. The more salient of these relate to financial constraints at the local level as well as the availability of state and federal assistance.

While certain proposed actions may be desirable, they are not critical to the airport and, thus, are of a lower priority than others. Where financial resources are limited, some emphasis must be placed upon those components having the greatest benefit as well as the best chance of funding.

The development schedule proposed herein is subject to change over the 20 year period. Should aviation demand expectations not be achieved or such demand exceeds expectations, the proposed actions may be required within a different phase. As with all planning efforts, the final product should be reviewed on a periodic basis.

In addition, the airport owner is not obligated to implement the recommendations as outlined. This document is intended to provide direction for development of the airport. Also, financial assistance from state and federal programs is not guaranteed. The development schedule is divided into two five (5) year phases and one ten (10) year phase.

| Phase I   | 1990 - 1995 |
|-----------|-------------|
| Phase II  | 1995 – 2000 |
| Phase III | 2000 – 2010 |

Unit costs herein were obtained from Kuehl & Payer, Ltd., past project data and other available cost estimating guides.

Inflationary trends may cause a significant increase in the cost of each item as well as total estimated cost by phase.

The cost estimates are preliminary in scope and are not based upon detailed engineering plans and specifications. The estimated costs are anticipated to be on the high side with actual construction costs being somewhat lower. For example, the cost of hangers could vary considerably depending upon whether or not such items as full partitions, personnel doors, electrically operated doors, etc. are included. Should these features be eliminated, the hangar cost would be somewhat less than indicated.

The primary purpose of preparing long-range costs is to provide the sponsor with some indication of total capital needs at the airport. These costs, along with a discussion of state and federal air, provide some insight into financial constraints at local, state and federal levels of governments.

#### B. DEVELOPMENT SCHEDULE AND COST ESTIMATES PHASE I — 1990 – 1995

|                | ltem                                              | <u>Unit</u>    | Unit<br><u>Cost</u>    | Quant.                | 1990<br>Dollar<br><u>Cost</u>             | Engr.<br>Legal,<br><u>Admin.</u> | Cont. | Total<br><u>Cost</u> |
|----------------|---------------------------------------------------|----------------|------------------------|-----------------------|-------------------------------------------|----------------------------------|-------|----------------------|
| A.             | <u>Terminal Area</u><br>Building Removal          |                |                        |                       |                                           |                                  |       |                      |
| 1.             | Remove or Relocate<br>6 Private Hangars           | LS             |                        |                       | 6,000                                     |                                  |       | 6,000                |
| B.             | <u>6 Unit Nested Tee</u><br>Hangar (52' x 143'-6  | <u>")</u> SF   | 12.00                  | 7,500                 | 90,000                                    | 18,000                           | 9,000 | 117,000              |
| C.             | <u>Terminal Area</u><br><u>Pavement</u>           |                |                        |                       |                                           |                                  |       |                      |
| 1.<br>2.<br>3. | Subgrade Prep.<br>4" Gran. Subbase<br>6" PC Conc. | SY<br>CY<br>SY | 2.00<br>25.00<br>18.00 | 2,234<br>246<br>2,234 | 4,468<br>6,150<br><u>40,212</u><br>50,830 | 10,166                           | 5,083 | 66,079               |
| D.             | <u>Aircraft</u><br>Mooring Eyes                   | EA             | 250.00                 | 8                     | 2,000                                     | 400                              | 200   | 2,600                |
| E.             | <u>Misc. Site Work</u><br>(Drainage, Etc.)        | LS             |                        |                       | 2,000                                     | 400                              | 200   | 2,600                |
|                |                                                   | Pha            | ise I – Esti           | imated To             | tal Cost                                  |                                  |       | \$194,279            |

PHASE II - 1996 - 2000

ł

1

|                | ltem                                                                          | Unit           | Unit<br><u>Cost</u>   | Quant.                 | 1990<br>Dollar<br><u>Cost</u>               | Engr.<br>Legal,<br><u>Admin.</u> | Cont.  | Total<br><u>Cost</u> |
|----------------|-------------------------------------------------------------------------------|----------------|-----------------------|------------------------|---------------------------------------------|----------------------------------|--------|----------------------|
| Α.             | <u>Terminal Area</u><br>Building Removal                                      |                |                       |                        |                                             |                                  |        |                      |
| 1.<br>2.       | Remove & Relocate<br>Private Hangar<br>Remove & Relocate<br>Terminal Building | LS<br>LS       |                       |                        | 1,000<br><u>1.500</u><br>2,500              |                                  |        | 2,500                |
| В.             | <u>Terminal Building</u><br><u>28' x 54'-8")</u>                              | SF             | 40.00                 | 1,530                  | 61,200                                      | 12,240                           | 6,120  | 79,560               |
| C.             | <u>F.B.O Shop</u><br>(60' x 80')                                              | SF             | 15.00                 | 4,800                  | 72,000                                      | 14,400                           | 7,200  | 93,600               |
| D.             | <u>Terminal Area</u><br><u>Pavement</u>                                       |                |                       |                        |                                             |                                  |        |                      |
| 1.<br>2.<br>3. | Subgrade Prep.<br>4" Gran. Subbase<br>6" PC Concrete                          | SY<br>CY<br>SY | 4,562<br>502<br>4,562 | 2.00<br>25.00<br>18.00 | 9,124<br>12,550<br><u>82.116</u><br>103,790 | 20,758                           | 10,379 | 134,927              |
| E.             | Monitored Undergrou<br>Aircraft Fueling                                       | und            |                       |                        |                                             |                                  |        |                      |
| 1.<br>2.       | 2 Dbl. Wall Tanks<br>Pumping Equip.                                           | GL<br>LS       | 2.00                  | 12,000                 | 24,000<br><u>5.000</u><br>29,000            | 5,800                            | 2,900  | 37,700               |
| F.             | Aircraft Mooring<br>Eyes                                                      | EA             | 250.00                | 10                     | 2,500                                       | 500                              | 250    | 3,250                |
| G.             | <u>Electronic</u><br>Navigational Aids                                        |                |                       |                        |                                             |                                  |        |                      |
| 1.             | AWOS II                                                                       | LS             |                       |                        | 45,000                                      | 4,500                            | 2,250  | 51,750               |
| H.             | <u>Misc. Site Work</u><br>(Drain, Fencing, Etc.)                              | LS             |                       |                        | 5,000                                       | 1,000                            | 500    | <u>6.500</u>         |
|                |                                                                               | Pha            | ase II – Es           | timated T              | otal Cost                                   |                                  |        | \$409,787            |

PHASE III - 2001 - 2010

-

I

|                | ltem                                                                               | <u>Unit</u>    | Unit<br><u>Cost</u>    | Quant.                | 1990<br>Dollar<br><u>Cost</u>             | Engr.<br>Legal,<br><u>Admin.</u> | Cont.  | Total<br><u>Cost</u> |  |
|----------------|------------------------------------------------------------------------------------|----------------|------------------------|-----------------------|-------------------------------------------|----------------------------------|--------|----------------------|--|
| A.             | <u>Terminal Area</u><br>Building Removal                                           |                |                        |                       |                                           |                                  |        |                      |  |
| 1.<br>2.       | Remove or Relocate<br>3 Private Hangars<br>Remove or Relocate<br>City Owned Hangar | LS<br>LS       |                        |                       | 3,000<br><u>1.000</u><br>4,000            |                                  |        | 4,000                |  |
| B.             | <u>10 Unit Nested Tee</u><br>Hangar (52' x 225'-6")                                | SF             | 12.00                  | 11,726                | 140,712                                   | 28,142                           | 14,071 | 182,925              |  |
| C.             | <u>Hangar Approach</u><br>Pavement                                                 |                |                        |                       |                                           |                                  |        |                      |  |
| 1.<br>2.<br>3. | Subgrade Prep.<br>4" Gran. Subbase<br>6" PC Conc.                                  | SY<br>CY<br>SY | 2.00<br>25.00<br>18.00 | 2,230<br>245<br>2,230 | 4,460<br>6,125<br><u>40,140</u><br>50,725 | 10,145                           | 5,073  | 65,943               |  |
| D.             | <u>Runway 11/29</u><br>Extension                                                   |                |                        |                       |                                           |                                  |        |                      |  |
| 1.<br>2.<br>3. | Subgrade Prep.<br>4" Gran. Subbase<br>6" PC Concrete                               | SY<br>CY<br>SY | 2.00<br>25.00<br>18.00 | 1,670<br>184<br>1,670 | 3,340<br>4,600<br><u>30.060</u><br>38,000 | 7,600                            | 3,800  | 49,400               |  |
| E.             | Stub Taxiway                                                                       |                |                        |                       |                                           |                                  |        |                      |  |
| 1.<br>2.<br>3. | Subgrade Prep.<br>4" Gran. Subbase<br>6" PC Conc.                                  | SY<br>CY<br>SY | 2.00<br>25.00<br>18.00 | 844<br>93<br>844      | 1,688<br>2,325<br><u>15,192</u><br>19,205 | 3,841                            | 1,921  | 24,967               |  |
| F.             | Taxiway Widening                                                                   |                |                        |                       |                                           |                                  |        |                      |  |
| 1.<br>2.<br>3. | Subgrade Prep.<br>4" Gran. Subbase<br>6" PC Concrete                               | SY<br>CY<br>SY | 2.00<br>25.00<br>18.00 | 278<br>31<br>278      | 556<br>775<br><u>5.004</u><br>6,335       | 1,267                            | 634    | 8,236                |  |
|                |                                                                                    |                |                        |                       |                                           |                                  |        |                      |  |

V – 4

|                                                 | ltem                                                             | Unit                 | Unit<br><u>Cost</u>      | Quant.                   | 1990<br>Dollar<br><u>Cost</u>                     | Engr.<br>Legal,<br><u>Admin.</u> | Cont.   | Total<br><u>Cost</u> |
|-------------------------------------------------|------------------------------------------------------------------|----------------------|--------------------------|--------------------------|---------------------------------------------------|----------------------------------|---------|----------------------|
| G.                                              | <u>Runway 11/29</u><br><u>Widening</u><br>(7.5' x 3900' Both Si  | des)                 |                          |                          |                                                   |                                  |         |                      |
| 1.<br>2.<br>3.                                  | Subgrade Prep.<br>4" Gran. Subbase<br>6" PC Concrete             | SY<br>CY<br>SY       | 2.00<br>25.00<br>18.00   | 6,500<br>715<br>6,500    | 13,000<br>17,875<br><u>117,000</u><br>147,875     | 29,575                           | 575     | 192,238              |
| н.                                              | Replace Medium<br>Intensity Runway<br>Lighting (MIRL)            | LS                   |                          |                          | 40,500                                            | 8,100                            | 4,050   | 52,650               |
| I.                                              | Land Acquisition<br>Runway End 36                                | AC                   | 2,500                    | 50                       | 125,000                                           | 12,500                           | 6,250   | 143,750              |
| J.                                              | Runway Protection<br>Zone Easements                              |                      |                          |                          |                                                   |                                  |         |                      |
| 1.<br>2.<br>3.<br>4.                            | Runway End 11<br>Runway End 29<br>Runway End 18<br>Runway End 36 | AC<br>AC<br>AC<br>AC | 600<br>600<br>600<br>600 | 3.7<br>7.7<br>5.6<br>4.6 | 2,220<br>4,620<br>3,360<br><u>2,760</u><br>12,960 | 2,592                            | 1,296   | 16,848               |
| K.                                              | <u>Misc. Site Work</u><br>(Drain, Fencing, Etc.                  | ) LS                 |                          |                          | 20,000                                            | 4,000                            | 2,000   | 26.000               |
|                                                 |                                                                  | Phase                | III – Estir              | nated To                 | tal Cost                                          |                                  |         | \$766,957            |
| 20 YEAR<br>DEVELOPMENT COST SUMMARY<br>TABLE 18 |                                                                  |                      |                          |                          |                                                   |                                  |         |                      |
| рц                                              |                                                                  |                      |                          |                          |                                                   |                                  |         |                      |
|                                                 | <u>ASE I</u><br>1990 – 1995                                      |                      | Тс                       | otal Cost                |                                                   | \$*                              | 194,279 |                      |
| PH                                              |                                                                  |                      |                          |                          |                                                   |                                  |         |                      |

<u>PHASE II</u> 1996 – 2000

ÿ

<u>PHASE III</u> 2001 – 2010

**Total Cost** 

**Total Cost** 

\$409,787

\$766.957

\$1,371,023 Total 20 Year Development Cost

## COST SUMMARY & SOURCE OF FUNDS

### TABLE 19

| PHASE I                          | 1990    | ENGR.  |                 |           | SOU     | RCE OF FUN | IDS        |
|----------------------------------|---------|--------|-----------------|-----------|---------|------------|------------|
| 1990 - 1995                      | DOLLAR  | LEGAL, |                 | TOTAL     | 90%     | 70%        |            |
| ITEM                             | COST    | ADMIN. | CONT.           | COST      | FEDERAL | STATE      | LOCAL      |
| A. Terminal Area Bldg. Removal   | 6,000   |        |                 | 6,000     |         |            | 6,00       |
| B. 6 Unit Nested Tee Hangar      | 90,000  | 18,000 | 9,000           | 117,000   |         |            | 117,0      |
| C. Terminal Area Pavement        | 50,830  | 10,166 | 5,083           | 66,079    |         |            | 66,0       |
| D. Aircraft Mooring Eyes         | 2,000   | 400    | 200             | 2,600     |         |            | 2,6        |
| E. Misc. Site Work               | 2,000   | 400    | 200             | 2,600     |         |            | 2,6        |
|                                  |         |        | L               | \$194,279 |         |            | \$194,27   |
| PHASE II                         | 1990    | ENGR.  |                 |           | SOU     | RCE OF FUN | IDS        |
| 1996 - 2000                      | DOLLAR  | LEGAL, | in the second   | TOTAL     | 90%     | 70%        | Survey and |
| ITEM                             | COST    | ADMIN. | CONT.           | COST      | FEDERAL | STATE      | LOCAL      |
| A. Terminal Area Bldg. Removal   | 2,500   |        |                 | 2,500     |         |            | 2,5        |
| B. Terminal Building             | 61,200  | 12,240 | 6,120           | 79,560    |         |            | 79,5       |
| C. FBO Shop                      | 72,000  | 14,400 | 7,200           | 93,600    |         |            | 93,6       |
| D. Terminal Area Pavement        | 103,790 | 20,758 | 10,379          | 134,927   |         |            | 134,9      |
| E. Monitored U.G. Aircraft Fuel  | 29,000  | 5,800  | 2,900           | 37,700    |         |            | 37,7       |
| F. Aircraft Mooring Eyes         | 2,500   | 500    | 250             | 3,250     |         |            | 3,2        |
| G. Electronic Navigation Aids    | 45,000  | 4,500  | 2,250           | 51,750    |         | 36,225     | 15,5       |
| H. Misc. Site Work               | 5,000   | 1,000  | 500             | 6,500     |         |            | 6,5        |
|                                  |         |        | L               | \$409,787 |         | \$36,225   | \$373,56   |
| PHASE III                        | 1990    | ENGR.  |                 |           | SOU     | RCE OF FUN | IDS        |
| 2001 - 2010                      | DOLLAR  | LEGAL, | · · · · · · · · | TOTAL     | 90%     | 70%        |            |
| ITEM                             | COST    | ADMIN. | CONT.           | COST      | FEDERAL | STATE      | LOCAL      |
| A. Terminal Area Bldg. Removal   | 4,000   |        |                 | 4,000     |         |            | 4,0        |
| B. 10 Unit Nested Tee Hangar     | 140,712 | 28,142 | 14,071          | 182,925   |         |            | 182,9      |
| C. Hangar Approach Pavement      | 50,725  | 10,145 | 5,073           | 65,943    |         |            | 65,9       |
| D. Runway 11/29 Extension        | 38,000  | 7,600  | 3,800           | 40,400    | 44,460  |            | 4,9        |
| E. Stub Taxiway                  | 19,205  | 3,841  | 1,921           | 24,967    | 22,470  |            | 2,4        |
| F. Taxiway Widening              | 6,335   | 1,267  | 634             | 8,236     | 7,412   |            | 8          |
| G. Runway 11/29 Widening         | 147,875 | 29,575 | 14,788          | 192,238   | 173,014 |            | 19,2       |
| H. Replace Runway 11/29 Lighting | 40,500  | 8,100  | 4,050           | 52,650    | 47,385  |            | 5,2        |
| I. Land Acquistion               | 125,000 | 12,500 | 6,250           | 143,750   | 129,375 |            | 129,3      |
| J. Runway Protection Zone Easmt. | 12,960  | 2,592  | 1,296           | 16,848    | 15,163  |            | 1,6        |
|                                  |         |        |                 |           |         |            |            |

V-6

#### C. AIRPORT REVENUE AND EXPENDITURES

At most small general aviation airports, the annual operation and maintenance (O&M) expenditures equal or exceed revenue generated by the airport. In Iowa, those airports having title to considerable amounts of farm land may have revenues in excess of O&M expenditures. In nearly all cases, such income is not adequate to implement major capital improvements.

The second major source of revenue is derived from rental or lease of hanger stalls or space. Provided such income is available, an airport is in a position to implement smaller capital improvement projects. If hangar income is being used to retire hangar construction debt, this income is usually not available for other improvements.

Thus, it would appear that revenue generated from the airport should be expected to do no more than meet annual O&M costs.

Airport revenue generated at Pocahontas is derived from the lease of land and hangar stalls.

# ANNUAL REVENUE

| Hangars: |              |                 |            |              | Approx.<br>Per Year<br>Income |
|----------|--------------|-----------------|------------|--------------|-------------------------------|
|          | ublic        | 11 Stalls       | @\$250.00  | = \$2,750.00 |                               |
|          | ivate        | 12 Stalls       | @ \$50.00  |              |                               |
|          |              |                 |            |              | \$3,350.00                    |
| Farm Lar | nd:          |                 |            |              |                               |
|          | ash Rent     | 111 Acres       | @\$112.00  | =            | \$12,432.00                   |
|          |              |                 | <b>C</b> , |              | · · · · /                     |
|          | ty :         |                 |            |              | <b>\$0,000,00</b>             |
| Re       | evenue Fror  | n City of Pocah | ontas      | =            | \$2,000.00                    |
| Investme | nt Income:   |                 |            |              |                               |
| Int      | terest Incom | ne              |            | =            | \$3,000.00                    |
|          |              |                 |            |              | \$20,782.00                   |

#### STATE AND FEDERAL AID TO POCAHONTAS AIRPORT

|      | TABLE 22  |            |
|------|-----------|------------|
| Year | State     | Federal    |
| 1947 |           | \$5,917.00 |
| 1961 | 10,211.11 |            |
| 1967 | 339.10    |            |
| 1969 | 24,588.36 |            |
| 1973 | 2,727.45  |            |
| 1974 | 25,000.00 |            |
| 1975 | 25,000.00 |            |
| 1976 | 25,232.02 |            |
| 1977 | 450.00    |            |
| 1979 | 4,523.32  | 9,165.47   |
| 1981 |           | 3,434.53   |
| 1982 | 954.50    |            |
| 1987 | 187.00    |            |
| 1988 | 218.00    |            |
| 1990 | 1,076.02  |            |
|      |           |            |

#### E. FEASIBILITY

The feasibility of the proposed actions are greatly enhanced with the availability of state and federal assistance as well as the ability of the City to provide the local match. Table 19 (Cost Summary & Source of Funds) shows the proposed actions for the 20 year planning period and funding sources which have been available in the past. It is not intended on Table 19 to imply that such funds will be available in the future.

It should be noted some of the proposed actions in a particular phase may have to be adjusted in time to a different phase, in some cases perhaps an earlier phase and in other cases a later phase depending upon demand for the action and/or funds availability.

It appears the airport could generate sufficient income to nearly meet annual O&M costs. It will require community support in order to implement the major capital improvements.

Construction of a hangar facility, when demanded, could be undertaken by the private sector. Rental income from the hangar stalls should be such as to amor-

tize the cost and provide an adequate return on investment. The hangar would become City property upon amortization of the cost. This strategy would maintain bonding capacity for other airport improvements which do not directly generate income.

Po