TD 224 .I8 .B38 1974

E. ROBERT BAUMANN LEWIS M. NAYLOR DEAN A. WILLIS

DECEMBER 1974

SPECIAL REPORT ISU—ERI—AMES—74261

DES MOINES—RACCOON RIVER BASIN CHARACTERISTICS RELATED TO RED ROCK AND SAYLORVILLE RESERVOIRS DES MOINES RIVER, IOWA

Contracts: DACW 25-75-C-0008 Red Rock DACW 25-75-C-0007 Saylorville

Department of the Army Rock Island District Corps of Engineers STATE LIBRARY COMMISSION OF IOWA Historical Building DES MOINES, IOWA 50319

ERI Projects 1140 and 1141

ENGINEERING RESEARCH INSTITUTE

SPECIAL REPORT

DES MOINES—RACOON RIVER BASIN CHARACTERISTICS

RELATED TO
RED ROCK AND SAYLORVILLE RESERVOIRS
DES MOINES RIVER, IOWA

E. Robert Baumann

Anson Marston Distinguished Professor of Engineering

Professor of Civil Engineering

Research Associate in Civil Engineering

Dean A. Willis Research Trainee in Civil Engineering

Submitted to:
Department of the Army
Rock Island District
Corps of Engineers
Clock Tower Bldg.
Rock Island, Illinois 61201

Contracts: DACW-25-75-C-0008 Red Rock DACW-25-75-C-0007 Saylorville

ISU-ERI-AMES-74261 ERI Projects 1140 and 1141 ENGINEERING RESEARCH IOWA STATE UNIVERSITY

INSTITUTE

TABLE OF CONTENTS

	Page
INTRODUCTION	1
TRACING THE FLOW OF THE DES MOINES RIVER	4
WATERSHED CHARACTERISTICS	5
POPULATION	7
POPULATION DISTRIBUTION	8
MUNICIPAL WASTEWATER TREATMENT	9
AGRICULTURAL CONTRIBUTIONS	10
Animal Wastes	10
Crop Production	11
Fertilizer Applied	12
CLIMATOLOGY AND HYDROLOGY	12
REFERENCES	14
KILLIKING	

LIST OF TABLES

	LIST OF TRADE	Page
	U.S.G.S. Gaging Stations in the Upper Des Moines River Basin.	16
	U.S.G.S. Gaging Stations in the Raccoon River Basin.	17
	U.S.G.S. Gaging Stations in the Lower Des Moines River Basin.	18
		19
Table 4.	Population Distribution in the Des Moines River Basin below	
	the Confluence of the Des Moines and Raccoon Rivers, 1970.	20
Table 5.	Population of Municipalities in the Upper Des Moines River	20
	Basin, 1970.	
Table 6.	Population of Municipalities in the Raccoon River Basin, 1970.	22
Table 7.	Population of Municipalities in the Lower Des Moines River	24
	Basin, 1970.	
Table 8.	Point Source Wastewater Discharge Locations in the Upper	26
	Des Moines River Basin in Iowa.	
Table 9.	Point Source Wastewater Discharge Locations in the Raccoon	36
Table 7.	River Basin.	
m 11- 10	Point Source Wastewater Discharge Locations in the Lower Des	43
Table 10.	Moines River Basin Above Red Rock Reservoir.	
	Discharge Quantities, Upper Des Moines	49
Table 11.		
	River Basin.	62
	Wastewater Treatment Facilities, Upper Des Moines River Basin.	72
Table 13.	Point Source Wastewater Discharge Quantities, Raccoon River	
	Basin.	76
	. Wastewater Treatment Facilities, Raccoon River Basin.	83
Table 15	. Point Source Wastewater Treatment Facilities and Discharge	
	Quantities, Lower Des Moines River Basin Above Red Rock Reservoi	ir. 90
Table 16	. Table of Abbreviations for Wastewater Treatment Facilities.	90

List of Tal	oles,(continued)	Page
Table 17.	Point Source BOD Contributions to Rivers and Streams in the	92
	Des Moines River Basin Above Red Rock Dam.	
Table 18.	Livestock Waste Production Equivalents.	93
Table 19.	Livestock Distribution in the Des Moines River Basin.	94
Table 20.	Livestock Production Estimates for the Upper Des Moines River	
	Basin in Iowa, 1972.	95
Table 21.	Livestock Production Estimates for the Raccoon River Basin,	96
	1972.	
Table 22.	Livestock Production Estimates for the Lower Des Moines River	97
	Basin, 1972.	
Table 23.	Corn and Soy Bean Production in the Upper Des Moines River	98
	Basin in Iowa - 1973.	
Table 24.	Corn and Soy Bean Production in the Raccoon River Basin - 1973.	
Table 25.	Corn and Soy Bean Production in the Lower Des Moines River	100
	Basin - 1973.	
Table 26.	Statewide Average Crop Acreage Distribution in Iowa, 1973.	101
Table 27.	Discharge Records in the Upper Des Moines River Basin for	102
	Period of Record.	
Table 28	. Discharge Records in the Upper Des Moines River Basin for	103
	Period from 1967-73.	

LIST OF FIGURES

	Page
Frontispiece - Location of Sub-basins in the Des Moines River Basin.	
Fig. 1. General Plan of Des Moines River Basin.	104
Fig. 2. Hydrogeologic Map of the Upper Des Moines River Basin in Iowa.	105
Fig. 3. Hydrogeologic Map of the Raccoon River Basin.	106
Fig. 4. Hydrogeologic Map of the Lower Des Moines River Basin.	107
Fig. 5. Location of Continuous-Record Gaging Stations and Water Quality	108
Stations in the Upper Des Moines River Basin in Iowa.	
Fig. 6. Location of Continuous-Record Gaging Stations and Water Quality	109
Stations in the Raccoon River Basin.	
	110
Fig. 7. Location of Continuous-Record Odging John Stations in the Lower Des Moines River Basin.	
Fig. 8. Municipalities in the Upper Des Moines River Basin in Iowa.	111
the Paccoon River Basin.	112
Fig. 9. Municipalities in the Lower Des Moines River Basin.	113
Fig. 10. Municipal Populations and Point Source BOD Loads in the Upper	114
Des Moines River Basin in Iowa.	
Fig. 12. Municipal Populations and Point Source BOD Loads in the Raccoon	115
River Basin.	
Fig. 13. Municipal Populations and Point Source BOD Loads in the Lower	116
Des Moines River Basin.	- B
1000 15 Con Densities in the Upper Des Moines River	117
Fig. 14. Equivalent 1000-16 Cow Densities In Street Programme Basin in Iowa.	
1000 15 Cor Densities in the Raccoon River Basin.	118
Fig. 15. Equivalent 1000-16 Cow Densities in the Lower Des Moines River	119
Basin.	

List of Figures, (continued)

			Page
Fig.	17.	Corn and Soy Bean Production in the Upper Des Moines River	120
		Basin in Iowa.	
Fig.	18.	Corn and Soy Bean Production in the Raccoon River Basin.	121
Fig.	19.	Corn and Soy Bean Production in the Lower Des Moines River Basin.	122

BASIN CHARACTERISTICS DES MOINES-RACCOON RIVERS IN IOWA

INTRODUCTION

The river-lake water quality problems found within a basin are functions of the various activities of man that take place within that basin. Therefore, this Special Report has been prepared to provide a description of the Des Moines River basin in Iowa (Fig. 1) and the activities within the basin that influence or are influenced by the quality of water pertinent to determining lake water quality relationships in the Red Rock and Saylorville reservoirs.

In view of the very unique characteristics present in the Des Moines River, the basin characteristics are presented in three separate parts (Frontispiece):

- The upper Des Moines River in Iowa from the confluence of the Raccoon River to the headwaters of the river,
- The Raccoon River from its confluence with the Des Moines
 River in the City of Des Moines to the headwaters of the river, and
- The lower Des Moines River from the confluence of the Raccoon River to its confluence with the Mississippi River.

The unique characteristics of the Des Moines River are these:

• The upper Des Moines River flows through rich, Iowa farmland and ends in the Saylorville Reservoir (closure scheduled in summer of 1975) just a few miles above a major metropolitan

area - the City of Des Moines.

- The Raccoon River also flows through rich, Iowa farmland and joins the Des Moines River a few miles downstream of the Saylorville Reservoir and within the City of Des Moines.
- basins draining farm land: one whose flow and water quality are to be influenced by the Saylorville Reservoir and one whose flow and water quality are not affected by reservoir construction.

 In Des Moines, water from these basins is combined, and into them are discharged the surface water runoff and municipal and industrial wastewater discharges of the major metropolitan area of the state.

This basin has importance because the water quality is being sampled on a long-term basis (starting in 1967) by personnel of the Sanitary Engineering Section of the Iowa State University Engineering Research Institute under contract with the Corps of Engineers, U.S. Army, Rock Island District. The study will provide the basic data needed for:

- An evaluation of the effect of man's activities within the basin on the water quality of both the upper Des Moines and Raccoon Rivers above the City of Des Moines,
- An evaluation of the effect of the Saylorville Reservoir on water quality in the upper Des Moines River just above the City of Des Moines,
- An evaluation of the effect of man's activities in a major metropolitan area on the river water quality in the lower Des Moines River, and

• An evaluation of the effect of the Red Rock Reservoir on water quality in the lower Des Moines River. The inflow to this reservoir represents the combined flow of the upper Des Moines River, the Raccoon River, and the lower river basin flow from the metropolitan area of the City of Des Moines.

This report is <u>not</u> designed to provide a detailed analysis of the above effects. It is designed to provide details of the basin characteristics which can be used in making such analyses. Pertinent river basin characteristics related to water quality which are included in this special report are:

• Characteristics of cities, towns, and major industrial operations in the basin:

location and population
wastewater treatment facilities
wastewater discharges and their quality

• Geological characteristics of the basin:

location of water quantity and quality gaging stations hydrogeologic characteristics of the basin

Agricultural and non-point sources of pollution:

animal production

crop production

corn-soy bean production fertilizer applications

TRACING THE FLOW OF THE DES MOINES RIVER

The frontispiece shows the general locations of the upper Des Moines, lower Des Moines, and Raccoon River basins in Iowa. Figure 1 is a general plan of the entire Des Moines River basin. Figures 2, 3, and 4 are, respectively, hydrogeologic maps of the upper Des Moines, Raccoon, and lower Des Moines River basins.

The source of the West Fork of the Des Moines River is in the meadows of Murray and Lyon Counties in southwestern Minnesota at an altitude of 1800 to 1850 feet above sea level. The outlet of a large shallow lake, Lake Shetek, forms the initial stream in a flat plain area. Several small lakes drain to Lake Shetek. The northernmost of these is Long Lake in Lyon County, Minnesota, which lies less than 5 miles south of the Cottonwood River which flows into the Minnesota River at New Ulm, Minnesota, and ultimately into the Mississippi River at St. Paul, Minn. The east Fork of the Des Moines River is formed by the outlet of Okamanpeden Lake near the Iowa-Minnesota border.

border, the West Fork of the Des Moines River flows in a southeasterly direction where it is joined by the East Fork a few miles below Humbolt, Iowa. The confluence of the Boone River and the Des Moines River is just above Stratford, Iowa, and the Raccoon River enters at Des Moines, Towa. Below Des Moines, many smaller rivers flow into (Fig. 4) the major existing Des Moines River impoundment, the Red Rock Reservoir. The Des Moines River forms the boundary between Iowa and Missouri from Farmington, Iowa to Keokuk, Iowa, a distance of about 30 river miles. The total

length of Iowa's largest river from its source in Minnesota to its mouth immediately below Keokuk, Iowa, is about 535 miles. There, the river empties into the Mississippi River, 486 miles below St. Paul, Minnesota.

WATERSHED CHARACTERISTICS

More than 14,500 square miles of three states are drained by the Des
Moines River, including 23 percent of Iowa. The watershed has a long and
relatively narrow crescent shape averaging about 40 miles in width from
southwestern Minnesota to the Iowa-Missouri border. Above the city of
Des Moines at Saylorville, Iowa, the river drains 5841 square miles and
above Boone, Iowa 5511 square miles (Fig. 2). Tables 1, 2, and 3 list
and Figs. 5, 6, and 7 show the location of continuous-record stream
gaging and water quality stations located, respectively, in the upper
Des Moines, Raccoon, and lower Des Moines River basins. Stream flow
records in this study were taken from the U.S.G.S. recording gage records
at Saylorville, Iowa and Stratford, Iowa (Fig. 5). The river at the
Stratford gaging station about 18 miles north of Boone drains 5,452 square
miles.

From its source in Minnesota to its outlet at Keokuk on the Mississippi River, the Des Moines River falls nearly 1,370 feet. The stream slope averages 3.2 feet per mile from the source to river mile 300 near Fort Dodge, Iowa. The slope then becomes more gentle, about 1.6 feet per mile, from river mile 300 to the confluence with the Mississippi River. It is interesting to note that although the river is navigable only for small

boats at the present time, a steamboat was able to bring supplies to Des Moines from Keokuk in 1851. During still another highwater period of yesteryear, the river was navigable as far north as Fort Dodge.

The Des Moines River watershed lies in a glaciated plain in which the valley cut into the glaciated area does not generally exceed 200 feet.

Many lakes and ponds dot the headwater area and a rather poorly defined drainage pattern exists in northern Iowa (Figs. 2 and 3). The stream has cut deeper near Humbolt, Iowa, exposing the limestone underlying the glacial till. In Boone County, the valley formed by the river is about 1/4 mile wide and 150 to 200 feet deep. Sandstone outcroppings in the Ledges State Park south of Boone, Iowa are a major scenic attraction in the area. The valley widens in Dallas and Polk Counties to about 1/2 mile where the river cuts through the drift in the vicinity of the Saylorville Reservoir.

Below Des Moines, where the valley is mature, the landscape changes dramatically, and the drainage pattern is well defined (Fig. 4). In the area between Des Moines and Knoxville, Iowa, the river meanders through a flood plain 2 to 4 miles wide bordered by rounded cliffs. Red Rock Reservoir covers much of this area at high water levels, but at the conservation pool level, river meanders are still visible. Downstream near the site of Red Rock Dam in Marion County, the valley width is reduced to 1 to 3 miles, forming a deep flat-bottomed valley. Near Tracey, Iowa the river has cut into the limestone, forming a flood plain 1/2 to 2 miles in width. The stream valley in Mahaska County and Van Buren County becomes constricted to a width ranging from 1/3 to 1 mile wide, but below this reach the flood plain again becomes wider and is bordered by rounded bluffs in the vicinity of its confluence with the

Mississippi River.

The soils found in the Upper Des Moines River watershed are moderately permeable. Pockets of sand and gravel are common, and these are highly permeable. Because of the moderate to high permeability, flooding problems during wet spring weather are localized. The areas flooded are generally confined to clay pan soils in pot hole areas and in places where the land is lower than the adjacent roads.

Large quantities of water percolate into the permeable soil and contribute to the groundwater supply rather than direct runoff into streams. In poorly-drained areas, however, tile drains and open ditches divert much of this excess water from fields into the stream. It has been estimated that as much as half of the Upper Des Moines River Basin is artificially drained.

POPULATION

Based on national census data, the state of Iowa is growing more slowly than the rest of the nation. In the 70 year interval between 1900 and 1970, the percentage of the U.S. population living in Iowa has steadily declined from 2.84 percent to 1.39 percent.

Many factors influence population growth and decline within the state. However, the fundamental factors are mortality, fertility, and migration. Mortality has not changed substantially for many years. Hence, fertility and net migration in effect control variations in the Iowa population.

In Iowa, and throughout the rest of the nation, fertility is declining.

The peak number of births (66,123) in Iowa occurred in 1951 following World War II. In 1974, the number of births was less than 39,000, the lowest since 1917. This represents a current trend toward smaller families begun in 1959. Thus, if the population of Iowa is to grow, the dominant factor appears to be the net migration. Between 1900 and 1970 one million more people moved out of Iowa than moved into the state. This trend seems to be changing, however — for in the years 1970 to 1973 the net gain for the state was 38,000.

In the Upper Des Moines River basin, Iowa counties showing an increase in population of 1000 or more are Marion, Warren, Polk, Madison, Boone, and Hancock. The increase in population appears to be the result of attracting new industries into communities having populations that are less than 10,000. Based on 1973 population estimates and considering the population to be distributed uniformly throughout each county, the population of the Upper Des Moines River basin above Des Moines is approximately 150,000 including the non-municipal population. The only cities over 10,000 population in this area are Boone (pop., 12,468) and Fort Dodge (31,263).

POPULATION DISTRIBUTION

More than half a million people live in the cities and towns of the Des Moines River basin, including the Raccoon River basin according to the 1970 census records, and nearly 40 percent of these people live in the Des Moines metropolitan area. About 14 percent of those remaining live

in the Raccoon River basin, 23 percent live in the Upper Des Moines River basin, and 23 percent live in the Lower Des Moines River basin. Population data are summarized in Table 4.

Tables 5, 6, and 7 list the 1970 populations of municipalities in the upper Des Moines, Raccoon, and lower Des Moines River basins, respectively. Figures 8, 9, and 10 show the locations of these municipalities in their respective basins.

MUNICIPAL WASTEWATER TREATMENT

Tables 8, 9, and 10 list the point source wastewater discharge locations in, respectively, the upper Des Moines, Raccoon, and lower Des Moines River basins above the Red Rock Reservoir. Figures 11, 12, and 13 show pictorially the municipal populations and point source BOD loads in these basins. Tables 11 and 12, 13 and 14, and 15 list, respectively, the discharge quantities and the wastewater treatment facilities, respectively, in the upper Des Moines, Raccoon, and Lower Des Moines River basins. Table 16 lists the abbreviations used in Tables 12 and 14 to represent the different wastewater treatment facilities used.

The principal methods of treating municipal waste in the Des Moines River basin are trickling filters and waste stabilization ponds.

Trickling filter plants serve the greatest population, including the Des Moines metropolitan area.

Communities above Red Rock Dam add about 20,349 1b BOD/day to the

area contributes nearly 48 percent of this amount, and only 10 percent of the cities and towns in the basin area produce more than 100 lb BOD/day. Eight cities contribute nearly 78 percent of the total BOD. One of these cities, Estherville, with a population just over 8,100, contributes nearly 2400 lb BOD/day. It has, however, submitted plans to the Iowa Department of Environmental Quality for polishing ponds and dual-media filters following secondary activated sludge treatment. Table 17 summarizes the BOD contributions to rivers and streams in the Des Moines River basin above Red Rock Dam.

AGRICULTURAL CONTRIBUTIONS

Animal Wastes

The State of Iowa is consistently among the nation's leaders in the production of cattle, hogs, poultry, and other livestock. Livestock production in Iowa contributes greatly to the state's economic development, but it also has great potential for polluting the surface water of the state.

Based on individual animal estimates for the period from 1971 to 1973, the equivalent of 2.4 million cows were raised in the Des Moines River basin (3). This figure was estimated by multiplying the number of each kind of animal by the factors given in Table 18 to give the number of equivalent 1000-1b cows.

For comparison, the BOD of the livestock waste produced in the basin is equivalent to a human population of at least 20 million people, far exceeding the human population of 500,000. The number of livestock and their density in number per square mile varies from one part of the Des Moines River basin to another, as shown in Table 19.

Tables 20, 21, and 22 list and Figs. 14, 15, and 16 show pictorially the equivalent 1000-1b cow densities in, respectively, the upper Des Moines, Raccoon, and lower Des Moines River basins.

Crop Production

The principal agricultural activity in the Des Moines River basin involves crop production — the production of corn and soy beans. The yearly acreage devoted to production of each grain will vary somewhat from year to year, depending on expected market conditions. The yield each year will depend principally on weather conditions.

In the last 25 years, corn production has increased from about 60 to 100 bushels per acre (statewide average). Soy bean acreage during this period has increased, and average yield (statewide average) now approximates 35 bushels per acre.

Tables 23, 24, and 25 list the total and unit production of corn and soy beans by county in, respectively, the upper Des Moines, Raccoon, and lower Des Moines River basins. Figures 17, 18, and 19 show pictorially the total acreage devoted to corn and soy bean production in, respectively, the upper Des Moines, Raccoon, and lower Des Moines River basins.

Corn and soy bean production respresent the most important cash grain crop in the State of Iowa. Its effect on river water quality is also the most significant. It does not, however, represent the only use of Iowa farm land. Table 26 summarizes the 1973 crop acreage devoted in Iowa to different farm uses.

Fertilizer Applied

Data concerning fertilizer applications by county or river basin are not readily available. The most important crops are corn and soy beans, and most fertilizer is used on these crops. Since the fertilizer applications are expected to be related to these crops, an estimate of fertilizer (and herbicide) application can be approximated, but such data are not included in this report.

CLIMATOLOGY AND HYDROLOGY

The State of Iowa receives an average of about 32 inches of rain each year. In the Des Moines River basin, this amount varies between 28 and 36 inches, with the greater amounts received in the southern part of the basin. During the period that the Des Moines River Water Quality Study has been in effect, from 1967 to 1973, the precipitation in the central part of Iowa has averaged 34.26 inches. This area includes most of the upper Des Moines River basin. The average annual precipitation for the central part was 31.36 inches prior to 1965. The range

for the 1967 to 1973 period was from 27.59 to 41.82 inches. One of Iowa's greatest assets is the timing of this rainfall. Nearly half of the annual precipitation occurs during the months of May, June, July, and August.

Streamflow in the upper Des Moines River has averaged 1,747 cfs for the 53-years period of record at Stratford. At Saylorville, Iowa, the average streamflow is 2.603 cfs, covering a shorter period of 12 years as shown in Table 27. The much higher streamflow at Saylorville reflects the higher than average precipitation during the past 12 years. During this same period, the streamflow has averaged 2,526 cfs and 2,749 cfs, respectively, at Stratford and Saylorville as given in Table 28.

ACKNOWLEDGMENT

Appreciation is expressed to the Iowa State Department of Environmental Quality and to Bob Kellogg, Environmental Specialist, for their cooperation in providing the extensive data necessary for compilation of many of the tables and figures in this report.

The assistance of the Iowa State University Department of Agricultural Engineering in providing agricultural data is gratefully acknowledged.

Thanks are also extended to the Engineering Research Institute's Editorial Office for help in editing and preparing this report.

REFERENCES

- Drum, Ryan W., "Ecology of Diatoms in the Des Moines River Basin," Unpublished PhD thesis, Iowa State University, Ames, Iowa, 1964.
- "Fact Sheet -- National Pollutant Discharge Elimination System --Agricultural Permits," Environmental Protection Agency, 1973.
- 3. "Iowa Livestock and Poultry -- County Estimates 1971-1973," Iowa Crop and Livestock Reporting Service, 1974.
- 4. Melvin, Stewart, Personal communication, Department of Agricultural Engineering, Iowa State University, Ames, Iowa, December 1974.
- 5. "Non-Point Pollution Sources," in Upper Des Moines River -- Waste Load Allocation Study, Iowa Department of Environmental Quality, Des Moines, Iowa, 1974.
- 6. "Point Source Wastewater Discharges," in Upper Des Moines River -- Waste Load Allocation Study, Iowa Department of Environmental Quality, Des Moines, Iowa, 1974.

Table 1. U.S.G.S. Gaging Stations in the Upper Des Moines River Basin.

Station*	Stream	Location	Drainage Area (sq.mi)
4765	W. F. Des Moines R.	Estherville	1,372
4767.5	W. F. Des Moines R.	Near Humbolt	2,256
4780	E. F. Des Moines R.	Near Burt	462
4785	E. F. Des Moines R.	Near Hardy	1,268
4790	E. F. Des Moines R.	Dakota City	1,308
4800	Lizard Creek	Near Clare	257
4805	Des Moines River	Near Fort Dodge	4,190
4810	Boone River	Near Webster City	844
4813	Des Moines River	Near Stratford	5,452
4815	Des Moines River	Near Boone	5,511
4816.5	Des Moines River	Near Saylorville	5,841
	Beaver Creek	Near Grimes	358
4819.5	Des Moines River	Des Moines	6,245

^{*}From Water Resources Data for Iowa, USGS, 1973.

Table 2. U.S.G.S. Gaging Stations in the Raccoon River Basin.

Station* No.	Stream	Location	Drainage Area (sq.mi.)
4821.7	Big Cedar Creek	Near Varina	80.0
4823	North Raccoon River	Near Sac City	713
4825	North Raccoon River	Near Jefferson	1,619
4830	E. F. Hardin Creek	Near Churdan	24.0
4836	Middle Raccoon River	Panora	440
4840	South Raccoon River	Redfield	988
4845	Raccoon River	Van Meter	3,441
4848	Walnut Creek	Des Moines	80.9
4850	Raccoon River	Des Moines	3,590

^{*}From Water Resources Data for Iowa, USGS, 1973.

Table 3. U.S.G.S. Gaging Stations in the Lower Des Moines River Basin.

Station* No.	Stream	Location	Drainage Area (sq.mi.)
4855	Des Moines River	Des Moines	9,879
4856.4	Four Mile Creek	Des Moines	92.7
4860	North River	Near Norwalk	349
4864.9	Middle River	Near Indianola	503
4874.7	South River	Near Ackworth	460
4879.8	White Breast Creek	Near Dallas	342
4880	White Breast Creek	New Knoxville	380
4885	Des Moines River	Near Tracy	12,479
4890	Cedar Creek	Near Bussey	374
4895	Des Moines River	Ottumwa	13,374
4905	Des Moines River	Keosauqua	14,038
4910	Sugar Creek	Near Keokuk	105
4745	Mississippi River	Keokuk	119,000

^{*}From Water Resources Data for Iowa, USGS, 1973.

Table 4. Population Distribution in the Des Moines River Basin below the Confluence of the Des Moines and Raccoon Rivers.

Area	Municipal Population	Percent of Total
Des Moines River Basin	504,606	100.0
Des Moines River Basin above Red Rock Dam	436,241	86.5
Des Moines Metropolitan Area	201,404	40.0
Lower Des Moines River Basin	315,558	62.5
Upper Des Moines River Basin	116,647	23.1
Raccoon River Basin	72,401	14.4

Table 5. Population of Municipalities in the Upper Des Moines River Basin, 1970.

pasin, i	,,,,,		1070
Boone County	1970 Population	Hancock County	1970 Population
Beaver	113	Britt	2,069
Berkley	56	Corwith	407
Boone	12,468	Kanawha	705
Boxholm	242		
Fraser	143	Humbolt County	070
Luther	189	Bode	372
Madrid	2,448	Bradgate	130
Ogden	1,661	Dakota City	746
Pilot Mound	214	Gilmore City	766
11100 110011	1	Hardy	73
Dallas County		Humbolt	4,665
Bouton	160	Livermore	510
Granger	661	Ottosen	93
Woodward	1,010	Pioneer	56
Emmet County		Renwick	429
Armstrong	1,061	Rutland	215
Dolliver	95	Thor	212
Estherville	8,108		
Grover	135	Kossuth County	
Ringsted	509	Algona	6,032
Wallingford	249	Bancroft	1,103
Hamilton County		Burt	608
Webster City	8,488	Fenton	403
		Lone Rock	166

Table 5. Population of Municipalities in the Upper Des Moines River Basin, 1970 (continued).

Kossuth County	1970 Population	Webster County	1970 Population
Lu Verne	380	Badger	465
Swea City	774	Barnum	147
Titonka	599	Clare	249
Wesley	548	Dayton	909
West Bend	865	Duncombe	418
Whittemore	658	Fort Dodge	31,263
Palo Alto County		Lehigh	739
Ayrshire	243	Otho	581
Curlew	95	Stratford	710
Cylinder	133	Vincent	204
Emmetsburg	4,150	Moorland	269
Graettinger	907	Wright County	
Mallard	384	Clarion	2,972
Rodman	104	Eagle Grove	4,489
Pocahontas County	7	Goldfield	722
Havelock	248	Woolstock	222
Palmer	264		
Plover	129		
Pocahontas	2,338		
Rolfe	767		
Polk County			
Grimes	834		
Polk City	715		

Table 6. Population of Municipalities in the Racoon River Basin, 1970.

Adair County	1970 Population	Carroll County	1970 Population
Stuart	1,354	Arcadia	414
Buena Vista County		Breda	518
Albert City	683	Carroll	8,716
Lakeside	353	Coon Rapids	1,381
Marathon	447	Dedham	325
Newell	877	Glidden	964
Rembrandt	250	Halbur	235
Storm Lake	8,591	Lanesboro	203
Storm Lake		Lidderdale	173
Hygrade	-	Ralston	129
Truesdale	132	Willey	72
Calhoun County		Dallas County	
Farnhamville	393	Adel	2,419
Jolley	112	Dallas Center	1,128
Knieriem	131	Dawson	232
Lake City - Nor	th 1,910	DeSoto	369
Lake City-South		Linden	278
Lohrville	553	Minburn	378
Manson	1,993		6,906
Pomeroy	765	Perry	
Rinard	88	Redfield	921
Rockwell City	2,396	Van Meter	464
Somers	197	Waukee	1,577
Yetter	47		

Table 6. Population of Municipalities in the Raccon River Basin, 1970 (continued).

(continued	.).		
Greene County	1970 Population	Polk County	1970 Population
Churdan	598	Urbandale	14,434
Dana	118	West Des Moines	16,441
Grand Junction	967	Windsor Heights	6,303
Jefferson	4,735	Sac County	
Paton	329	Auburn	329
Rippey	270	Lake View	1,249
Scranton	751	Lytton	378
Guthrie County		Nemaha	117
Bagley	365	Sac City	3,268
Bayard	628	Webster County	
Guthrie Center	1,834	Callender Callender	421
Jamaica	271	Gowrie	1,225
Panora	982	Harcourt	305
Yale	301		
Madison County			
Earlham	974		
Pocahontas County			
Fonda	980		
Laurens	1,792		
Varina	140		
Polk County	THE SEC.		
Clive	3,005		

Table 7. Population of Municipalities in the Lower Des Moines River Basin, 1970.

	1970	Lucas County	1970 Population
Adair County	Population		
Adair	750	Williamson	216
Appanoose County		Madison County	
Moravia	699	Bevington	53
Clark County		East Peru	184
Osceola	3,124	Patterson	120
Woodburn	186	St. Charles	443
Dallas County		Truro	359
Dexter	652	Winterset	3,654
Davis County		Mahaska County	
Floris	145	Beacon	431
Guthrie County		Leighton	140
Casey	561	Oskaloosa	11,224
Menlo	391	Marion County	
Jasper County		Bussey	498
Prairie City	1,141	Dallas	438
Jefferson County		Hamilton .	186
Libertyville	329	Harvey	217
Lee County		Knoxville	7,755
Donnellson	798	Marysville	91
Keokuk	14,631	Melcher	913
Lucas County		Pella	6,784
Lucas	247	Pleasantville	1,297

Table 7. Population of Municipalities in the Lower Des Moines River Basin, 1970 (continued).

Monroe County	1970 Population	Wapello County	1970 Population
Albia	4,151	Chillicothe	126
Lovilia	640	Eddyville	970
Melrose	192	Eldon	1,319
Polk County		Kirkville	222
Altoona	2,883	Ottumwa	29,610
Ankeny	6,700	Warren County	
Bondurant	462	Ackworth	111
Clive	3,005	Carlisle	2,246
Des Moines	201,404	Cumming	189
Mitchellville	1,341	Hartford	582
Pleasant Hill	1,536	Indianola	8,976
Runnels	354	Lacoma	424
West Des Moines	16,441	Martensdale	306
Windsor Heights	6,303	Milo	561
Story County		New Virginia	452
Slater	1,094	Norwalk	1,745
VanBuren County		Sandyville	89
Bonaparte	517	Spring Hill	131
Farmington	800	St. Mary's	105
Keosauqua	1,018		
Wapello County			
Blakesburg	403		

Table 8. Point Source Wastewater Discharge Locations in the Upper Des Moines River Basin in Iowa.

	Refer-				Page Reference	
Discharger	ence Number	County	River*	Discharge To	Quantity	Treatment
		M	UNICIPA	<u>L</u>		
Algona	M- 9	Kossuth	42	East Fork Des Moines River	51	64a
Armstrong	M-14	Emmet	90	East Fork Des Moines River	51	63
Ayrshire	M-62	Palo Alto			NEMTF	
Badger	M-22	Webster	326	Des Moines River (Badger Creek	52	64a
Bancroft	M-42	Kossuth	64	East Fork Des Moines River (Mud Creek)	51	63
Dannam	M-31	Webster			NEMTF	
Barnum	M-70	Boone		Beaver Creek	NEMTF	
Beaver				Beaver Creek	NEMTF	
Berkley	M-71	Boone		Trulner Creek	52	64a
Bode	м-63	Humboldt			60	69
Boone	м-33	Boone	251	Des Moines River (Honey Creek)		
Bouton	M-72	Dallas		Beaver Creek	NEMTF	
Boxho1m	M-64	Boone			NEMTF	
Bradgate	M-34	Humboldt			NEMTF	
Britt	M-40	Hancock		East Branch Boone River	57	66
Burt	M- 1	Kossuth	61	East Fork Des Moines River	51	63

NEMTF: No Existing Municipal Treatment Facilities.

Table 8. Point Source Wastewater Discharge Locations in the Upper
Des Moines River Basin in Iowa (continued).

	Refer-				Page Reference	
Discharger	ence Number	County .	River* Mile	Discharge To .	Quantity	Treatment
Clare	M-16	Webster			NEMTF	
Clarion	M-66	Wright		Eagle Creek	58	67
Corwith	M-51	Hancock	89	Boone River	57	65
Curlew	M-55	Palo Alto			NEMTF	
Cylinder	M-29	Palo Alto			NEMTF	61 -
Dakota City	M- 6	Humboldt	5	East Fork Des Moines River	52	64a
Dawton	M-30	Webster	276	Des Moines	59	68
Dayton				River (Skillet Creek)		
Dolliver	M- 8	Emmet			NEMTF	
Duncombe	M- 3	Webster		Brushy Creek	57	65
Eagle Grove	M-24	Wright	47	Boone River (Drainage	58	67
Emmetsburg	M-43	Palo Alto	45	Ditch 94) West Fork Des	50	62
Estherville	M-17	Emmet	73	Moines River West Fork Des Moines River	49	62
Fenton	M-59	Kossuth			NEMTF	
Fort Dodge	M-53		314	Des Moines River	53	64b
Fraser	M-38	Boone			NEMTF	

NEMTF: No Existing Municipal Treatment Facilities.

Table 8. Point Source Wastewater Discharge Locations in the Upper Des Moines River Basin in Iowa (continued).

	Refer-				Page Reference	
Discharger	ence Number	County	River's Mile	Discharge To	Quantity	Treatment
Gilmore City	M-56	Humboldt		North Branch Lizard Creek	53	64b
Goldfield	M-44	Wright	61	Boone River	57	66
Graettinger	M- 2	Palo Alto	61	West Fork Des Moines River	50	62
Granger	M-84	Dallas		Beaver Creek	60	70
Grimes	M-82	Po1k		Beaver Creek	60	70
Gruver	M-67				NEMTF	
Hardy	M-47	Humboldt			NEMTF	
Havelock	M-21	Pocahontas			NEMTF	
Humboldt	M-10	Humboldt	4	West Fork Des Moines River	51	63
Kanawha	M-23	Hancock		West Otter Creek	57	66
Lehigh	M-41	Webster	295	Des Moines River (Crooked Creek)	57	65
Livermore	м-58	Humboldt	20	East Fork Des Moines River	51	64a
Lone Rock	M-20	Kossuth			NEMTF	
Luther	M-28	Boone			NEMTF	
Lu Verne	M-61	Kossuth			NEMTF	
Madrid	M-32	Boone		Little Creek	60	69

NEMTF: No Existing Municipal Treatment Facilities.

Table 8. Point Source Wastewater Discharge Locations in the Upper Des Moines River Basin in Iowa (continued).

	Refer-		D:		Pag Refere	
Discharger	Number Number	County	River'	Discharge To	Quantity	Treatment
Mallard	M-49	Palo Alto			NEMTF	
Moorland	M- 5	Webster			NEMTF	
Ogden	M-86	Boone		Beaver Creek	60	70
Otho	M-57	Webster	305	Des Moines River (Dry Run)	56	65
Ottosen	M-27	Humboldt			NEMTF	
Palmer	M-19	Pocahontas			NEMTF	
Pilot Mound	M-35	Boone			NEMTF	
Pioneer	M-52	Humboldt			NEMTF	
Plover	M-13	Pocahontas			NEMTF	
Pocahontas	M-50	Pocahontas	34	Lizard Creek	53	64b
Polk City	M-60	Polk	217	Des Moines River (Big Creek)	60	69
Renwick	M-15	Humboldt	67	Boone River (Joint Drainage Ditch 3, 47)	57	66
Ringsted	M-39	Emmet		Black Cat Creek	51	64a
Rodman	M-65	Palo Alto			NEMTF	
Rolfe	M- 4	Pocahontas	18	West Fork Des Moines River (Pilot Creek)	50	63
Rutland	M-46	Humboldt			NEMTF	

STATE LIBRARY COMMISSION OF IOWA
Historical Building
DES MOINES. IOWA 50319

Table 8. Point Source Wastewater Discharge Locations in the Upper Des Moines River Basin in Iowa (continued).

	Refer-					Page Reference	
Discharger	ence Number	County	River's Mile	Discharge To	Quantity	Treatment	
Stratford	M- 7	Webster	283	Des Moines River (Dry Run)	59	68	
Swea City	M-11	Kossuth		Mud Creek	51	63	
Thor	M-36	Humboldt			NEMTF		
Titonka	M-25	Kossuth		Buffalo Creek	51	63	
Vincent	M-18	Webster		Brushy Creek	57	65	
Wallingford	M-54	Emmet			NEMTF		
Webster City	M-45	Hamilton	24	Boone River	59	67	
Weslay	M-37	Kossuth			NEMTF		
West Bend	M-26	Kossuth	24	West Fork Des Moines River (Prairie Creek)	50	62	
Whittemore	M-48	Kossuth		Lotts Creek	51	64a	
Woodward	M-81	Dallas		Beaver Creek	60	70	
Woolstock	M-12	Wright			NEMTF		
			INDUSTRI	AL			
American Car	I-34	Polk		Des Moines River	61	71	
American Car	1-4	Webster	314	Des Moines River	53		
Armstrong Rubber Co.	I-35	Polk		Dean Lake	61	71	

Table 8. Point Source Wastewater Discharge Locations in the Upper Des Moines River Basin in Iowa (continued).

	Refer-				Page Refere	
Discharger	ence Number	County	River	Discharge To	Quantity	Treatment
Beaver Valley Canning Co.		Polk		Dean Lake	-	70
Boone Valley	I-15	Wright	47	Boone River	57	
	I-36	Po1k		Dean Lake	61	71
Coates Utility Co.	I-26	Webster	310	Des Moines River	55	64b
Cooperative Farm Chemicals Assn.	I-11	Webster		Des Moines River	56	65
Corn Belt Power Coop.	I-16	Humboldt	330	Des Moines River	52	
Culligan Water Conditioning	I- 2	Webster	312	Des Moines River	53	
Inc.	,					
Deere and Co	. I-30	Polk		Rock Creek	60	69
Dickey Clay	1-20	Webster	295	Des Moines River (Crooked Creek)	57	
Emmetsburg Rendering Works	I- 6	Palo Alto	45	West Fork Des Moines River	50	
Estherville Municipal Light Plant		Emmet	76	West Fork Des Moines River	49	

Table 8. Point Source Wastewater Discharge Locations in the Upper Des Moines River Basin in Iowa (continued).

	Refer-		Direct		Pag Refer	
Discharger	Number Number	County	River	Discharge To	Quantity	Treatment
Farmegg Production, Inc.	I-10	Webster		Des Moines River (Bass Creek)	52	64a
Farmland Industries	I-13	Webster	305	Des Moines River (Holiday Creek)	56	65
Firestone Tire and Rubber Co.	I-31	Polk		Wafley Creek	61	70
Ford Motor	I-32	Polk		Des Moines River	61	70
Fort Dodge Creamery	I-24	Webster	314	Des Moines River	53	
Franklin Mfg.	I- 5	Hamilton	24	Boone River	58	-
Frye Copy Systems	1-37	Polk		Des Moines River	61	71
Hallett Construction Co.	I-17	Pocahontas		North Branch Lizard Creek	53	
Hormel and	I-23	Webster	314	Soldier Creek	53	
Iowa Beef Processors	I-19	Webster	311	Des Moines River	54	64b
Iowa Indus- trial Hydrau lics, Inc.	I-21	Pocahontas	35	Lizard Creek	52	
Iowa Power & Light Co.	1-39	Polk		Des Moines River	61	71

Table 8. Point Source Wastewater Discharge Locations in the Upper Des Moines River Basin in Iowa (continued).

	Refer-		70.1		Pag Refer	
Discharger	Number	County	River	Discharge To	Quantity	Treatment
Iowa Public Service Co.	I- 1	Wright	47	Boone River (Drainage Ditch 94)	58	
Land O'Lakes, Inc.	I- 9	Webster	312	Des Moines River	54	-
Lennox Industries	I-38	Po1k		Des Moines River	61	71
Mid Conti- nent Bottling Co.	I-33	Polk		Wafley Creek	61	71
Morrell and	1-25	Emmet	73	West Fork Des Moines River	49	62
National Gypsum Co.	I- 7	Webster	309	Des Moines River (Gypsum Creek)	56	
Northern Natural Gas Co.	I-18	Webster		Soldier Creek	53	-
P and M Stone	e I-12	Humboldt	14	West Fork Des Moines River	50	
United State Gypsum Co.	s I-22	Webster	310	Des Moines Rive	r 55	
Wadco Foods, Inc.	I-14	Emmet	73	West Fork Des Moines River	49	
Webster City Municipal Light & Powe		Hamilton	23	Boone River	59	67
Webster Pro- cessing Co.	I- 3	Webster	309	Des Moines River	55	65

Table 8. Point Source Wastewater Discharge Locations in the Upper Des Moines River Basin in Iowa (continued).

Discharger	Refer- ence Number	County	River*	Discharge To	Page Reference Quantity Tr	
Welp and McCarter	I- 8	Webster	7	Lizard Creek	53	
		5	SEMIPUBLIC	2		
Boone County Home	s- 3	Boone	265	Des Moines River (Poor Farm Creek)	60	68
Burr Oak Manor	s- 8	Kossuth		East Fork Des Moines River	51	64a
Camp	s- 1	Boone		Des Moines River	59	68
Dallas County Home	S-12	Dallas		Beaver Creek	60	-
Episcopal Center and Conference	S- 4	Boone	265	Des Moines River (Poor Farm Creek)	60	68
Oak Lake Development	s- 7	Kossuth	52	East Fork Des Moines River	51	63
Regency Mand Mobile Home Park	or S-11	Po1k		Des Moines River	61	71
Savage Sanitary Se District Fo Dodge		Webster	310	Des Moines River	55	65
Sentral Com munity Scho District		Kossuth		Black Cat Creek	51	64a

Table 8. Point Source Wastewater Discharge Locations in the Upper Des Moines River Basin in Iowa (continued).

	Refer-				Page Reference	
Discharger	ence Number	County	River's Mile	Discharge To	Quantity	Treatment
Town and Country	S-10	Dallas		Beaver Creek		70
Woodward State Institution	s- 6	Boone	236	Des Moines River (Preston Branch)	60	69

* Main stem Des Moines River: O mile at confluence with Mississippi River.

West Fork Des Moines River: O mile at confluence with East Fork Des Moines River.

East Fork Des Moines River: O mile at confluence with West Fork Des Moines River.

Boone River: O mile at confluence with Des Moines River.

Lizard Creek: O mile at confluence with Des Moines River.

Table 9. Point Source Wastewater Discharge Locations in the Raccoon River Basin.

	Refer-				Pag Refer	
Discharger	ence Number	County	River*	Discharge To	Quantity	Treatment
	9.518%		MUNICIPA	<u>L</u>		
Ade1	M-1	Dallas	37.4	North Raccoon River		79
Albert City	M-2	Buena Vista		Lateral 2	72	76
Arcadia	M-6	Carrol1		Brushy Creek	NEMTF	
Auburn	M-7	Sal			NEMTF	
Bagley	M-8	Guthrie		Mosquito Creek	74	81
Bayard	M-9	Guthrie		Willow Creek	NEMTF	
Breda	M-13	Carroll	75.5	Middle Raccoon River		80
Callender	M-14	Webster		West Butterick Creek	73	78
Carrol1	M-15	Carrol1	66.2	Middle Raccoon River		80
Churdan	M-16	Greene		Hardin Creek	73	78
Coon	M-17	Carrol1	47.4	Middle Raccoon River		81
Dallas Cente	er M-18	Dallas		Walnut Creek	-	79
Dana	M-19	Greene			NEMTF	
Dawson	M-20	Dallas			NEMTF	
Dedham	M-21	Carrol1			-	80
De Soto	M-24	Dallas		Bugler Creek	-	82
Earlham	M-25	Madison		Bear Creek	74	81

Table 9. Point Source Wastewater Discharge Locations in the Raccoon River Basin (continued).

	Refer-				Pag Refer	ge rence
Discharger	ence Number	County	River*	Discharge To	Quantity	Treatment
Farnhamville	M-26	Calhoun		Hardin Creek	-	78
Fonda	M-27	Pocahontas		Cedar Creek	72	77
Glidden	M-28	Carrol1		Willow Creek		81
Gowrie	M-29	Webster		West Butterick Creek	73	78
Grand Junction	M-30	Greene		East Butterick Creek	73	79
Guthrie	M-33	Guthrie	43.4	South Raccoon River		80
Halbur	M-34	Carrol1			NEMTF	
Harcourt	M-35	Webster		East Butterick Creek	NEMTF	
Jamaica	M-36	Guthrie			73	79
Jefferson	M-37	Greene		Drainage Ditch 132	73	78
Jolley	M-38	Calhoun			NEMTF	
Knierim	M-39	Calhoun			NEMTF	
Lake City - North	M-40	Calhoun		Lake Creek	73	77
Lake City - Southwest	M-41	Calhoun		Lake Creek	73	77
Lakeside	M-42	Buena Vis	ta		-	76
Lakeview	M-43	Sac		Indian Creek	72	77
Lanesboro	M-44	Carrol1				78

Table 9. Point Source Wastewater Discharge Locations in the Raccoon River Basin (continued).

	Refer-		D. t		Pag Refer	
Discharger	Number	County	River*	Discharge To	Quantity	Treatment
Laurens	M-45	Pocahontas			72	77
Lidderdale	M-46	Carrol1		Storm Creek	-	80
Linden	M-47	Dallas			NEMTF	
Lohrville	M-48	Calhoun		Cedar Creek	73	78
Lytton	M-49	Sac		Camp Creek	72	77
Manson	M-50	Calhoun		Cedar Creek	73	78
Marathon	M-51	Buena Vista	a		NEMTF	
Menlow	M-52	Guthrie		South Raccon Rive	er -	80
Minburn	M-53	Dallas	52.0	North Raccoon River	-	79
Nemaha	M-54	Sac			-	76
Newell	M-55	Buena Vista	154.0	North Raccoon River	72	77
Panora	M-57	Guthrie	16.3	Middle Raccoon River	74	81
Paton	M-58	Greene		East Butterick Creek	NEMTI	3
Perry	M-59	Dallas	60.6	North Raccoon River		79
Pomeroy	M-61	Calhoun		Lake Creek	73	77
Ralston	M-62	Carrol1			NEMT	F
Redfield	M-63	Dallas	16.4	Middle Raccoon River	74	81
Rembrandt	M-64	Buena Vista	196.0	North Raccoon River	72	76

Table 9. Point Source Wastewater Discharge Locations in the Raccoon River Basin (continued).

	Refer-				Pag Refer	ge
Discharger	ence Number	County	River*	Discharge To	Quantity	Treatment
Rinard	M-65	Calhoun		Cedar Creek	73	78
Rippey	M-66	Greene		Snake Creek	73	79
Rockwell City	M-67	Calhoun		Lake Creek	73	77
Sac City	M-68	Sac	156.3	North Raccoon River	72	76
Scranton	M-69	Greene		Drainage Ditch 171	73	78
Somers	M-71	Calhoun			NEMTF	
Storm Lake	M-72	Buena Vista		Boyer Creek	72	76
Storm Lake (Hy-Grade)	M-73	Buena Vista		Boyer Creek	72	76
Stuart	M-74	Adair		Long Branch Creek	NEMTF	
Truesdale	M-75	Buena Vista			NEMTF	
Van Meter	M-77	Dallas	29.2	South Raccoon River	74	82
Varina	M-78	Pocahonta	ıs		-	77
Waukee	M-79	Dallas		Sugar Creek	74	82
Willey	M-80	Carroll			NEMTF	
Yale	M-82	Guthrie			NEMTF	
Yetter	M-83	Calhoun			NEMTF	

INDUSTRIAL

American I-1 Polk Walnut Creek
Oil Co.

Table 9. Point Source Wastewater Discharge Locations in the Raccoon River Basin (continued).

	Refer-		River*		Page	
Discharger	Number	County	Mile	Discharge To	Quantity	Treatment
Carroll Rendering Co.	I-5	Carroll		Middle Raccoon River		80
Gendler Stone Products Co., Inc.	I-11	Dallas		Bear Creek	74	81
Hormel	I-12	Dallas		North Raccoon River		79
Towa Electric Light &	I-13	Dallas		North Raccoon River		79
Power Co. Iowa Public Service Co.	I-15	Buena Vista		Boyer Creek	72	76
Iowa Public Service Co. Carroll Station	I-16	Carroll		Middle Raccoon River		80
Mefferd	I-18	Pocahontas		Cedar Creek	72	77
Meridith Corporation (Printing Division)	I-19	Polk		Raccoon River	74	82
Northern Iowa Natura Gas Co. (Redfield Compressor Station)	1-21	Dallas		South Raccoon River (Panther Creek)	74	81

Table 9. Point Source Wastewater Discharge Locations in the Raccoon River Basin (continued).

	Refer-		7.		Page Refere	
Discharger	Number Number	County	River*	Discharge To	Quantity	Treatment
Oscar Mayer & Co.	I-23	Dallas		North Raccoon River	-	81
Skelly Oil Company	I-24	Polk		Unnamed Tributary	74	82
Vilas & Company	I-25	Buena Vista		Storm Lake	72	76
Vista Products Co.	I-26	Buena Vista		Storm Lake	72	76
			SEMIPUBL	<u>C</u>		77
Country Village Mobile Home Park	S-2	Buena Vista		Storm Lake	72	76
Crossroads	s-3	Sac		Indian Creek	73	78
KOA Camp- ground	s-5	Polk		Raccoon River		82
Prairie Village Mobile Home Park	S-6	Dallas		Raccoon River		82
Rockwell City Women's Reformatory	S-8	Calhoun		Lake Creek	73	77
Twin Lakes Travel Park	S-11	Calhoun		Lake Creek		77

Table 9. Point Source Wastewater Discharge Locations in the Raccoon River Basin (continued).

* Des Moines River: O mile at confluence with Mississippi River.

Raccoon River and North Raccoon River: O mile at confluence with

Des Moines River.

South Raccoon River: O mile at confluence with North Raccoon River.

Middle Raccoon River: O mile at confluence with South Raccoon River.

Table 10. Point Source Wastewater Discharge Locations in the Lower Des Moines River Above Red Rock Reservoir.

Discharger	Refer- ence Number	County	Discharge To	Page Reference Treatment
		MUN	ICIPAL	
Ackworth	M-181	Warren	South River	87
Adair	M-164	Adair	S. Fork Middle R.	84
Altoona	M-155	Polk	Four Mile Creek	83
Ankeny E	M-153	Polk	Four Mile Creek	83
Bevington	M-168	Madison	Middle River	85
Bondurant	M-175	Polk	Mud Creek	86
Bussey		Marion		NEMTF
Carlisle	M-163	Warren	North River	84
Casey	M-165	Guthrie	Middle River	85
Clive	M-147	Polk	Des Moines River	83
Cumming	M-162	Warren	Middle Creek	84
Dallas	M-194	Marion	Tracy Creek	89
Des Moines	M-150	Polk	Des Moines River	83
Des Moines	M-151	Polk	Windmill Creek	84
Highland Hills	** ***			
Dexter	M-158	Dallas	N. Branch North R.	84
East Peru	M-170	Madison	Clanton Creek	85
Hamilton		Marion		NEMTF

Table 10. Point Source Wastewater Discharge Locations in the Lower Des Moines River Above Red Rock Reservoir (continued).

	Refer- ence			Page Reference
Discharger	Number	County	Discharge To	Treatment
Hartford	-	Warren		NEMTF
Harvey	_	Marion		NEMTF
Indianola	M-174	Warren	Middle River	. 86
Indianola	M-179	Warren	South River	86
Knoxville	M-191	Marion	Competine Creek	88
Lacoma	M-190	Warren	Mill Branch Creek	88
Lucas	M-188	Lucas	White Breast	88
Martensdale	M-169	Warren	Middle River	85
Marysville		Marion		NEMTF
Melcher	M-193	Marion	Tracy Creek	89
Menlo	M-157	Cuthrie	North River	83
Milo	M-180	Warren	Otter Creek	87
Mitchellvill	e M-184	Po1k	Camp Creek	87
New Virginia	M-178	Warren	Squaw Creek	86
Norwalk	M-159	Warren	Windmill Creek	84
Osceola	M-186-1	Clark	White Breast	87
Osceola .	M-186-2	Clark	White Breast	87
Patterson	M-167	Madison	Middle River	85
Pella	M-192	Marion	Sents Creek	88
Pleasant Hi	11 M-156	Polk	Des Moines River	83

Table 10. Point Source Wastewater Discharge Locations in the Lower Des Moines River Above Red Rock Reservoir (continued).

Des	Moines Kiv	el Above Red		n
	Refer-			Page Reference
Discharger	ence Number	County	Discharge To	Treatment
Pleasantville		Marion	Coal Creek	87
Prairie City	M-185	Jasper	Calhoun Creek	87
Runnels	M-176	Po1k	Mud Creek	86
Sandyville	M-182	Warren	South River	87
Slater	M-152	Story	Four Mile Creek	83
Spring Hill	M-173	Warren	Middle River	86
St. Charles	M-172	Madison	Middle River	85
St. Mary's	M-177	Warren	South River	86
Truro	M-171	Madison	Hay Br. Middle R.	85
West Des Moines	M-148	Polk	Des Moines River	83
Williamson	M-189	Lucas	White Breast	88
Windsor Heights	M-149	Po1k	Des Moines River	83
Winterset	M-166	Madison	Middle River	85
Woodburn	M-187	Clark	White Breast	88
		INDU	STRIAL	
Carlisle Sand & Gravel	I-77	Warren	North River	84
C.D. Hess and Son Rock	I - 88	Marion	Winn Br., White Breast	88
Champlain Pet Co.	I-85	Clarke	White Breast	87

Table 10. Point Source Wastewater Discharge Locations in the Lower Des Moines River Above Red Rock Reservoir (continued).

				Page
	Refer- ence			Reference
Discharger	Number	County	Discharge To	Treatment
Concrete	I-82	Clarke	South Squaw Creek	86
E.I. Sargent	I - 75	Madison	Cedar Creek	84
E.I. Sargent	I-81	Madison	North Fork Clanton Creek	85
E.I. Sargent	I-83	Clarke	South Squaw Creek	86
Lacona Oil Co.	I-86	Warren	Mill Branch Creek	88
Nickerson Farms	I-78	Madison	Middle River	85
Pella Power Plant	I-89	Marion	Sents Creek	88
Schildberg Const. Co.	I-76	Madison	Cedar Creek	84
Schildberg Const. Co.	I-79	Madison	Middle River	85
Schildberg Const. Co.	I-80	Madison	Middle River	85
Stuckeys	I-84	Clarke	Squaw Creek	86
Vermeer Mfg. Co.	I-90	Marion	Sents Creek	88
		SEMI P	UBLIC	
	3348	221	M	84
Carlisle WTP	S-77	Warren	North River	
Country Living MHP	S-72	Polk	Four Mile Creek	83
Des Moines Water Dev. Co	s-76	Polk	Middle Creek	84

Table 10. Point Source Wastewater Discharge Locations in the Lower Des Moines River Above Red Rock Reservoir (continued).

	Refer- ence	Country	Discharge To	Page Reference Treatment
Discharger	Number	County	Discharge 10	
Greenwood WTP	S-70	Polk	Four Mile Creek	83
Hartford MHP	s-80	Warren	Butcher Creek	86
Ia. Highway Comm. Rest Area	S-78 A & B	Guthrie	Middle River	85
Ia. Highway Comm. Rest Stop	S-84	Po1k	Ditch to Des Moines River	87
Ia. Highway Comm.	s-86	Clarke	White Breast	87
Ia. Promo- tional Man.	S-82	Clarke	Squaw Creek	86
Knoxville VA Hospital	s-90	Marion	Unnamed Tributary, Des Moines River	88
Knoxville VA W.T.P.	S-88	Marion	Competine Creek	88
Madison County Home	S-75	Madison	Cedar Creek	84
Marion County Home	S-91	Marion	Unnamed Tributary, Des Moines River	87
MBZ Mobile Home Park	s-83	Clarke	Squaw Creek	86
Menlo WTP	s-79	Guthrie	Middle River	85
Oakwood Heights MHP	S-69	Po1k	Four Mile Creek	83
Pella WTP	S-92	Marion	Sents Creek	88
Red Rock Lave View Subdivi- sion		Marion	Competine Creek	88
R & R Camp- ground	S-87	Clarke	White Breast	88

Table 10. Point Source Wastewater Discharge Locations in the Lower Des Moines River Above Red Rock Reservoir (continued).

	Refe- ence			Page Reference
Discharger	Number	County	Discharge To_	Treatment
S.E. Polk Comm. Sch.	S-73	Polk	Four Mile Creek	83
S.E. Polk High School	S-81	Polk	Mud Creek	86
Sunny Brook MHP	s-71	Polk	Four Mile Creek	83
Thomas Mitchell Park	s-85	Polk	Camp Creek	87
Winterset	S-74	Madison	Cedar Creek	84

5

Table 11. Point Source Wastemater Discharge Cuantities, Upper Des Moines River Basin (continued).

			BOD			Suspend	ed	Anmo	nia Nit	rogen (11)	Phosph		Total Dis- solved Solids	Temperat	Sinte	
Ref.	Average Flow	(mg/1)	r	Winto (mg/1)		Solid (mg/1)	5	Sun me (mg/1)	b/day)	(mg/1)	er	(mg/1) (1)	b/day)	(mg/l) (lb/day)	(oF)	(~F)	(mg/l unless noted otherwise)
	(mgd)	(1)	(day)		lb/day)	(15	/day)	(,									F Coli ≤ 10/100
West	Fork Des	Moines Ri	ART (C)	J. C)													T Coli ≤ 10/100
																	Surfactants = 0.08
								2	3	10	15	4	6				
M-2	0.185	28	43	40	61			3	6	18	33	30	56				
M-43	0.222	30	56	45	83			180						2268 3.8	195	175	pH = 6.0 units
1-6	0.0002	2,100	3.5			508	0.8	150	0.5								COD = 4420
																	TS = 1694
																	TVS = 1432
																	Oil = 14
																	F Coli = 559 x 10 ⁹ /100
	4:																T Coli = $757 \times 10^6/100$ ml
								1060	1.3					508 0.6			cop = 24,800
1-6	.00013	5 13,000	16			1176	1.5	1000	1.5								TS = 2776
																	1VS = 2068
																	Oil = 1070
																	F Coli = 600/100 ml
																	T Coli < 1/100 ml
Pra	airie Cree			100				4	3	13	8	20	13				
M-1	26 0.077	30	19	40	26			4									
Pi	lot Creek								5 2	15	4	15	4				
М-	4 0.032	3	8 0	45	12				5 2	13			461				
Wes	t Fork De	s Moines	River												56	3	3 TS = 696
1-1	2 5.04					160	672										

Table 11. Point Source Wastewater Discharge Quantities, Upper Des Moines River Basin (continued).

Ref.	Average Flow (mgd)	Summer (mg/1)	BO /day)	Wint (mg/1)	erb/day)	Suspended Solids (mg/1) (lb/day)	(mg/1)		Wint (mg/1)	er	(mg/l)	P) /day)	Total Dis- Temper solved Solids Summer (mg/1) (OF) (1b/day)	Winter	Other (mg/l unless noted otherwise)
West I		Moines Riv													pH = 6.8 units
															Alk as CaCO ₃ = 320
M-10	0.683	20	114	30	171		10	57	5	28	20	114			
East	Fork Des	Moines Riv	ver												
M-14	0.089	25	19	40	30		1	1	12	9	4	3			
Mud C	reek														
	0.047	30	12	60	24		4	2	20	8	15 ^b	6			
	0.099	50	41	100	83		10	8	22	18	20	1.7			
	0.157	25	33	60	79		1	1	14	18	6	8			
	lo Creek														
	0.056		12	40	19		4.	2	16	7	16	7			
		Moines Ri													
	0.005b		1				6 ^b	0.3			15 ^b	1			
-	k Cat Cre	25	9	25	9		2	1	8	3	10	4			
	0.043						6 ^b	0.3			15 ^b	1			
	0.006 ^b														
		Moines R			220		5	23	15	69	25	115			
	0.552		115	50	230		6 ^b	0.6			1.5 ^b				
	0.011	25 ^b			212			0.0	15	4	10	3			
M-58	0.033	25	7	35	10		4	1 2 3	4.5	1 20	1				
Lott	s Creek										100	200			
M-48	0.151	25	31	115	145		2	3	1.0	1.3	18	23			

52

Table 11. Point Source Wastewater Discharge Quantities, Upper Des Moines River Basin (continued).

BOD		Suspended	Ammoria Ni	trogen (%		Total Dis- solved Solids	Temperature	Other
Ref. Average Surer (mg/1 (lb/day)	Winter (mg/1) (lb/day)	Golids (mg/l) (lb/day)	(lb/day)	Winter (mg/l) (lb/day)	(mg/1)	(mg/1) (lb/day)	(°F) (°F)	(mg/l unless noted otherwise)
<u>Trulcer Creek</u> M-63 0.017 30 4	50 7		2 0.3	12 2	8 1			
East Fork Des Moines River M-6 0.044 25 9	45 17		12 4	2 1	18 7			
<u>Des Moines River</u> I-16 0.034 < 1 < 0.3		31 9	< .2 < 0.1		0.1 < 0.1	2178 618	85 76	pH = 6.95 units COD = 40 Kjel-N = 0.43
								Alk as CaCO ₃ = 16 TS = 2209
								TVS = 322 Cr = 9.96
								Cu = 0.02 Fe = 0.10
								NO ₃ -N = 5.8
Bass Creek								
Badger Creek					10 3			
M-22 0.032 ^b 30 8 Lizard Creek	36 10		2 0.5	12 3	10 3			
I-21 0.003 0 0		57 1	17.6 1		< .01 -	2515 63	68	pH = 6.74 units COD = 41.2
								CN = 0.024
								C1 = 280 $A1 = 0.51$

5

Table 11. Point Source Wastewater Discharge Quantities, Upper Des Moines River Basin (continued)

		ВС	DD ₅	Suspended	Ammonia Nit	rogen (N)	Phosphorus	Total Dis-	Temper:	ature	Other
	Average Flow	Summer (mg/1) (1b/day)	Winter (mg/1) (1b/day)	Solids (mg/l) (lb/day)	Summer (mg/1) (1b/day)	(mg/l) (lb/day)	(Total P) (mg/l) (lb/day)	<pre>solved Solids (mg/1) (1b/day)</pre>	(OF)	(°F)	(mg/l unless noted otherwise)
30.	110#	(//	(4 - 3.0, 3.0 - 2.0)	X=== -310							Cd = 0.038
											Cr = 0.058
											Cu = 0.031
											Hg < 0.05
											Ni = 0.071, Ag = 0.051
M-50	0.236	30 59	45 89		1 2	7 14	18 35				$NO_3 - N = 35$
	1.500			5 63				84 1051	76		pH = 7.8 units
											Alk as CaCO ₃ = 61
M-56	0.087	25 18	36 26		3 2	12 9	11 8				
	0.123			0				640 657	54	52	pH = 8.2 units
											TS = 640
I-8	0.05			14 6				566 236	68	70	pH = 8.5 units
											TS = 580
I-8	0.210			42 74				469 821			pH = 8.2 units
So	ldier Cre	ek.									TS = 511
I-18	0.090								65	40	pH = 8.0 units
1-23	0.158	< 5 < 7							120		pH = 7.2 units
											Oil < 10
Des	Moines Ri	ver									
1-24	0.200								80	80	
1-4	0.020								75		pH = 6.9 units
M-53	3.367	35 983	45 1264		7 197	31 871	26 730				
1-2	0.006	< 5 < 1		44 2	< 0.1 -	112 9335	0.15 0.	01 9188 460	62	62	pH = 7.2 units
											COD < 10

	BOD	5	Suspended		trogen (N)	Phosphorus (Total P)	Total Dis- solved Sol	lds Summer	Winter	Other
Ref. Average No. Flow	Summer (mg/1) (1b/day)	Winter (mg/1) (1b/day)	Solids (mg/l) (lb/day)	(mg/1) (1b/day)	Winter (mg/1) (1b/day)	(mg/1) (1b/day)	(mg/1)	(ot)	(°F)	(mg/1 unless noted otherwise)
										so ₄ = 150
										C1 = 360
										Ca = 100
										Fe = 0.2
										Mg = 0.05
										Na = 230
										F Strep = 10/100 ml
										F Coli = 10/100 ml
										T Coli = 10/100 ml
b	25 ^b 10			65 3		15 ^b 6				
S-2 0.050 ^b			6 2			0.08 0.	03 2778 99	6 60	40	pH = 7.9 units
1-22 0.043	7.2 3									$COD = 27, NO_3 - N = 0.4$
										NO ₂ = 0.2
1-22 0.180	3.0 5		5 8			0.08 0.	1 2709 406	57 60	40	pH = 7.9 units
1-22 0.100	2.2									COD = 18
										$NO_3 - N = 0.7$
1-26 0.0095										
I-3 No dis										
Gypsum Cre										
1-7 0.0028			15	0.56 0.0	01	0.24 0.	.01 1381	33		$COD = 42, NO_3 - N = 2.00$
										Kjel-N = 12.26
1-7 0.0685	5 1 0.	6	17 10	0.22 0.	1	0.20 0	.1 2575 14	71		$COD = 12, NO_3 - N = 6.90$
										Kjel-N = 5.6

55

56

Table 11. Point Source Wastewater Discharge Quantities, Upper Des Moines River Basin (continued).

	вор	5	Suspended		trogen (N) Winter	Phosphorus (Total P)	Total Dis- solved Solids Summer Winter (mg/1) (OF) (OF)	Other (mg/1 unless noted
Ref. Average No. Flow	Summer (mg/1) (lb/day)	Winter (mg/1) (lb/day)	Solids (mg/l) (lb/day)	Summer (mg/1) (1b/day)	(mg/l) (1b/day)	(mg/1) (1b/day)	(mg/l) (°F) (°F) (°F)	otherwise)
			28 0.5	0.22 -		0.38 0.01	1051 19	COD = 23, NO ₃ -N = 1.40 Kjel-N 3.08
			28 1.0	0.22 0.01		0.38 0.01	1051 38	$COD = 23, NO_3 - N = 1.40$
I-7 · 0.00432	10 0.4							Kjel-N = 3.08
Des Moines Riv	<u>ver</u> 25 12	41 19		2 1	8 4	8 4		
Holiday Cre	ek_			100	100			
Des Moines Ri	6 42		0	20 140		0.09 0.6	3000 21,017 75 40	$cop = 32, No_3 - N = 2$ org - N = 3
								Kje1-N = 22
								Na = 450 Oil = 1
								$SO_4 = 2260$ $C1 = 320$
								Ca = 260 A1 = 0.6
								Mg = 0.07
								Cr = 0.05 Cu = 0.05
								Fe = 4.6 Pb = 0.01

U

Table 11. Point Source Wastewater Discharge Quentities, Upper Des Moines River Basin (continued).

1-15 0.720

	ВО	005	Suspended		itrogen (N)	Phosphorus	Total Dis- Temperature solved Solids Summer Winter	Other
Ref. Average	Summer (mg/1)	Winter mg/1)	Solids (mg/l)	Summer (mg/1)	Winter (mg/1) (1b/day)	(Total P) (mg/l) (lb/day)	(mg/1) (oF) (oF) (OF)	(mg/l unless noted otherwise)
No. Flow	(lb/day)	(lb/day)	(1b/day)	(1b/day)	(10/00)	(10,10)		
1-11								Mn = 0.29
1-11								Ni = 0.02
								Zn = 0.16
								F Coli = 76/100 ml
								T Coli = 7800/100 ml
Crooked Cre	eek							
M-41 0.047	25 10	40 16						
I-20 0.054			9 4			0.05 0.02	1619 729 65 57	pH = 7.9 units, NO ₃ -N = 0.12
Brushy Cree	ek.							
M-18 0.02 ^b	25 ^b 5 ^b							
M-3 0.022	25 5	35 6		2 0.4	8 1	10 2		
Boone Rive								
M-51 0.023	28 5	40 8		2 0.4	12 2	6 1		
East Bra	nch Boone River							
M-40 0.242	27 54	50 101		2 4	14 28	10 20		
Joint Dr	ainage Ditch 3,	47						
M-15 0.040	25 8	35 12		1 0.3	12 4	15 5		
Otter Cr	eek							
M-23 0.083	31 21	46 32		1 0.7	14 10	10 7		
Boone Rive	Ī							
M-44 0.024	31 6	80 16		1 0.2	2 17 2	25 5		
Drainage	Ditch 94							

20

Table 11. Point Source Wastewater Discharge Quantities, Upper Des Moines River Basin (continued).

	Surmer	Winter	Suspen Solid (mg/l)	8	Summe: (mg/1)		Nitrogen (N) Winter (mg/l)	(To	phorus	Total Dis- solved Sol (mg/l) (1b/d	ids Sum	mperature mer Winter F) (°F)	Other
Ref. Average No. Flow	(mg/l) (1b/day)	(mg/1) (1b/day)	(1	b/day)	(1)	b/day)	(1b/day) ((lb/day)	(10/0	ay)		
			.110			0.2		0.5	0.07	495 6	6 8	4 71	pH = 7.6 units
I-1 0.016	3 0.4		4	0.5	1.1	0.2							COD = 4
													Kjel-N = 1.54
													Ortho-P = 1.6
													TS = 499
													NO3-N = 0.07
													TVS = 0.2
													Alk as CaCO ₃ = 280
													so, = 166
													C1 = 4
													Zn = 0.06
													Phenols = 0.009
													Ca = 179
													Algal inhibitor = 0.08
					4	22	14 76	11	60				
M-24 0.652		75 408					1000						
Eagle Cr					4	9	16 35	9	20				
M-66 0.261	35 76	70 152			7								
Boone Rive			26	120	0.77	3		3.0	2 12	710 27	24	73 73	pH = 9.5 units
1-5 0.46	20 77		36	138	0.77								Kjel-N = 1.13
													Ortho-P = 3
													TS = 734
													TVS = 65

Table 11. Point Source Wastewater Discharge Quantities, Upper Des Moines River Basin (continued).

BOD 5		Suspended	Ammonia Ni	trogen (N)	Phosphorus (Total P)	Total Dis- solved Solids	Temperature Summer Winter	Other	
Ref. Average No. Flow	Summer (mg/1) (1b/day)	Winter (mg/1) (1b/day)	Solids (mg/l) (lb/day)	Summer (mg/1) (lb/day)	Winter (mg/l) (1b/day)	(mg/1) (1b/day)	(mg/1) (1b/day)	(°F) (°F)	(mg/l unless noted otherwise)
									COD = 40
					H H TO				Alk as CaCO ₃ = 102
									so ₄ = 310
									C1 = 56
									Flouride = 0.92
									Ca = 22.9
									Cr = 0.86
									Fe = 0.5
									Pb < 0.1
									Mg = 16.3
									Mn = 0.03
									Cu < 0.01
									$NO_3^{-N} = 0.61$
M-45 1.582	25 330	40 528		6 79	16 211	25 330			
I-28 11.52								80 45	
Des Moines R	iver								
M-7 0.042	25 9	25 9		8 3	19 7	19 7			
Skillet Cr	eek								
M-30 0.057	25 12	60 28		4 2	14 7	18 9			
Des Moines I	liver					THE REAL			
s-1 0.010 ¹	25 ^b 2			6 ^b 0.5		15 ^b 1			

60

Table 11. Point Source Wastewater Discharge Quantities, Upper Des Moines River Basin (continued).

I-30 0.130

		,	BODs	Suspended	Amr	nonia Ni	trogen ((N)	Phosp	horus	Total Dis- solved Solids	Temper	Winter	Other
Ref. Average No. Flow	Simer (mg/1) (1b/		Winter (mg/l) (lb/day)	Solids (mg/1)	(mg/1)	ner	(mg/1)	er	(mg/1	31 1/	(mg/1) (1b/day)	(oF)	(°F)	(mg/l unless noted otherwise)
Poor Farm C	-	15			6 ^b	4			15 ^b	9				
s-4 0.007 ^b	25 ^b	1			6 ^b	0.4			15	1				
Honey Creek M-33 1.991		64	70 1162		4	66	16	266	18	299				
Preston Bra		42			6 ^b	10			15 ^b	25				
Big Creek Little Cre	ek													
M-32 0.198		41	40 66		8	13	21	35	23	38				
Big Creek M-60 0.070	35	20	50 29		10	6	20	12	20	12				
Beaver Cre M-86 0.262	25	50			1	30			30	0				T Coli = 30 x 10 ³ /100ml
M-81 0.084	25	18	45 32		20	14	30	21	21	8				pH = 8.8 COD = 40
														Grease = 9.8
M-84 0.057	25	40			1	1			30					
M-82 0.100	30	25	35 29		5	4	8		10	8				Org - N = 9
S-12 0.063	75	39	150 79		4	2	8	4						
Rock Cree	k													

61

Table 11. Point Source Wastewater Discharge Quantities, Upper Des Moines River Basin (continued).

Ref. Average (mg/1) (mg/1) (mg/1) (mg/1) (lb/day) (lb/day) (lb/day) (lb/day) otherwis	less noted
	• • •
Des Moines River	
I-31 1.270 5 53 20 212 0.30 3 1 11 TDS = 500	0
1-32 0.194	
I-33 0.50 25 10 65 271 30 125 4 17 1	
S-11	
I-34 T-35 2 848 1 24 8 190 10 238 1 24 1 24 10 238 NO ₂ - N =	= 1
I-35 2.848 1 24 8 190 10 238 1 24 1 24 10 230 TDS = 71!	
I-36 0.005	= 0.15
1-37 0.72	
NO ₃ - N	= 0.16
I-38 0.038	
1-39 208.0	
Total 240.403 6,422 3017.06	
(208.0 mgd is from I-39)	

b. Estimated: poor or no data available

Table 12. Wastewater Treatment Facilities, Upper Des Moines River Basin.

	Existing Design	Present BOD ₅		Suspende	d Soliis_	Type of Treatment Solids				
Discharge (Ref. No.)	Day Capacity (mgd)	Day Flow (mgd)	Influent Conc. (mg/1)	Effluent Conc. (mg/1)		Conc. (mg/1)	Primary	Secondary	Treatment	Comments
West Fork Des Moines River Estherville (M-17)		2.025	1128	135	1147	1.45	Qm Sm Cm	Fo Cm Ftr Cm	Dfh Ls X1	Plans and specifications for new treatment facility are presently being reviewed by IDEQ. Proposed treatment processes include primary clarification, high rate trickling filters, activated sludge aeration, flow equalization and polishing ponds, dual-media filters, and chlorination.
Morrell & Co. (I-25) Wallingford (M-54)		0.37		150		230		Lo		No existing municipal treatment facility. Preliminary engineering report submitted to IDEQ during October, 1969.
Graettinger (M-2)	0.246	0.185		35				Lo		Plant put into operation during 1968.
Emmetsburg (M-43)	0.266	0.222		40			Ga Sch (m Ftr Cp	Ga Sch Cm	Existing plant is organically overloaded. City is in the process of designing new treatment facility. Consent order issued by IDEQ requires final plans and specifications to be prepared by 1/1/74 with contract awarded by 6/1/74. Plant to be designed for effluent BODs and ammonia concentrations of 10 mg/l and 2 mg/l, respectively.
Prmirie Creek West Bend (M-26)	0.111	0.077		35			Ci	Ftr Cp	Во	Existing treatment facility was constructed during the 1940's and is rather poor condition.
Beaver Creek Mallard (M-49)	0.054									No existing municipal treatment facility. Waste stabilization pond has been designed to replace private septic tanks. Construction permit was issued by IDEQ in September, 1973.

Table 12. Wastewater Treatment Facilities, Upper Des Moines River Basin (continued).

	Existing Design Average	Present Average	BOD	5	Suspended	Solids	Тур	e of Treatment		
Discharge (Ref. No.)	Day Capacity (mgd)	Day Flow (mgd)	Conc. (mg/1)	Conc. (mg/1)	Conc. (mg/1)		Primary	Secondary	Solids Treatment	Comments
Pilot Creek	(8-7	75-7								
Rolfe (M-4)	0.085	0.032		40				Lo		Waste stabilization pond was put into operation during May, 1970; replaced Imhoff tank and sand filters.
West Fork Das Moines River										
Rutland (M-46)										No existing municipal treatment system. Preliminary engineering report submitted to IDEQ during October, 1973.
Humboldt (M-10)	0.926	0.683	219	20	676	70	Sh Gw Cm	Ftr Cm	Dfr Bo X1	
East Fork Des Moines River										
Armstrong (M-14)	0.175	0.089		30				Lo		Plant placed in operation during 1966.
Mud Creek										
Swea City (M-11)	0.063	0.047		45				Lo		Plant placed in operation during 1969.
, Bancroft (M-42)		0.099		80			Ci	Fs	Во	Presently designing new waste stabilization pond to replace existing plant.
East Fork Des Moines River										
Burt (M-1)	0.073	0.157		45					Lo	Plant placed in operation during 1964.
Buffalo Creek										
Titonka (M-25)	0.115	0.056		35			Cp Ftoc	Lo		
East Fork Des Moines River										
Oak Lake Development (S-7)										Construction of a one acre waste stabilization pond to treat the
										flow from 100 people was approved by IDEQ on February 14, 1973.

Table 12. Wastewater Treatment Facilities, Upper Des Moines River Basin (continued).

	Existing Design	Present	BOD		Suspended Solids	Тур	e of Treatmer		
	Average	Average	Influent	Effluent	Influent Effluent		Secondary	Solids Treatment	Comments
Discharge (Ref. No.)	Capacity (mgd)	Flow (mgd)	Conc. (mg/1)	Conc. (mg/1)	Conc. Conc (mg/1)	Primary	Secondary	A E as	
Black Cat Creek									Plant placed in operation during
Ringsted (M-39)	0.077	0.043		25			Lo		1969.
Sentral Community School (S-5)	0.006					Cm	Pt		Constructed in 1957.
Fenton (M-59)									No existing municipal treatment system. Preliminary engineering report submitted to IDEQ during
									January, 1967.
East Fork Des Moines River									and the top 195/
Algona (M-9)	0.655	0.552		40		Sg Gm (Km Cm)	Ftr Cm	Dfh Bo	Plant constructed during 1954.
Burr Oak Manor (S-8)	0.015						Aa	HA	and the commenter
Livermore (M-58)	0.110	0.033		30			Lo		Plant placed in operation during 1968.
Lotts Creek									Plant constructed in 1960.
Wittemore (M-48)	0.147	0.151		75		Sh Gh Cm	Ftr Cp	Dfh Bo	Plant Constituted in 1900.
Trulner Creek									Plant placed in operation during
Bode (M-63)	0.050	0.017		45			Lo		1968.
East Fork Des Moines River									Plant constructed in 1958.
Dakota City (M-6)	0.10	0.044		35		Sh Ci	Ftr Cp	Во	Plant constructed in 1990.
Bass Creek									Plant constructed in 1970.
Farmegg Production, Inc. (I-10)	0.0066						Lo		Plant Constructed In 1979.
Badger Creek									m erabilization pond
Badger (M-22)	0.045	0.032		35			Lo		Two-cell waste stabilization pond with first cell constructed in 1961 and second cell constructed in 1968.

Table 12. Wastewater Treatment Facilities, Upper Des Moines River Basin (continued).

	Existing Design	Present	BOD		Suspended Sol	fds	Type	of Treatment		
Discharge (Ref. No.)	Day Capacity (mgd)	Day Flow (mgd)	Influent E Conc. (mg/l)		Influent Effl	uent	Primary	Secondary	Solids Treatment	Comments
Lizard Creek										-1
Pocahontas (M-50)	0.156	0.236		40			Sch Cm	Ftr	Dfh Bo	Plant constructed in 1951. Preliminary report is being prepared for new facilities.
Gilmore City (M-56)	0.100	0.087		30				Lo		Plant placed in operation during 1959.
Clare (M-16)										No existing municipal treatment facilities. Community has attempted to obtain grant assistance for waste stabilization pond since 1967 with active interest in August, 1973.
South Branch Lizard Cr	eek									
Barnum (M-31)										No existing municipal treatment system. Preliminary engineering report submitted to IDEQ during May, 1973.
Spring Creek										
Moorland (M-5)										No existing municipal treatment system. Preliminary engineering report submitted to IDEQ during June, 1971.
Des Moines River										
Fort Dodge (M-53)	5.30	3.367	420	38	375	34	Sm Gm Oa Ka Cm	Fto Cm Eg Ftr Cm	Dfhemt Ds Bo Ls	Last plant expansion was completed in 1965.
Iowa Beed Processors (I-19)	1.20	1.00		30		120	O Af	Ln Lo	T X1	Plant placed in operation during 1970. Waste stabilization pond covers about 40 acres. No dis- charge allowed when river flow is less than 32 cfs.
Coats Utility Co. (1-26)	0.0095							Lo		

65

Table 12. Wastewater Treatment Facilities, Upper Des Moines River Basin (continued).

Discharge (Ref. No.)	Existing Design Average Day Capacity (mgd)	Present Average Day Flow (mgd)	BOD 5 Influent E Conc. (mg/1)	Conc. (mg/1)	Suspended Influent E Conc. (mg/l)	L. And San State Control of the Cont	Secondary	Solids Treatment	Comments
Savage Sanitary Dist. (S-2)	0.05						La Lo		Plant constructed in 1970 to serve Webster County Home and new residential development.
Webster Processing Co. (I-3)	0.05						Lo		Treatment facility was constructed during 1967-68. In 1971, waste stabilization pond was being redesigned as a complete retention facility with no discharge.
Otho (M-57)	0.044	0.057		35			Lo		Plant placed in operation during 1968.
Holiday Creek Farmland Industries (I-13)							Lo		Plant placed in operation during 1966.
Des Moines River Cooperative Farm Chemical Assn. (I-11)		0.52		6		0	L		Package aeration plant is provided for sanitary flow. Chemical process water is also treated to reduce chromate and ammonia.
Crooked Creek Lehigh (M-41)	0.150	0.047		35			Lo		
Brushy Creek Vincent (M-18)							Lo		Plant placed in operation during October, 1972.
Duncombe (M-3)	0.034	0.022		30			Lo		Plant placed in operation during 1967.
Boone River Corwith (M-51)	0.091	0.023		35			Lo		Waste stabilization pond placed in operation during October, 1971; replaced Imhoff tank and sand filters.

Table 12. Wastewater Treatment Facilities, Upper Des Moines River Basin (continued).

	Existing Design	Present	BOD_		_1-1 0-1/d-	Type	e of Trestment		
	Average	Average	Influent Efflue		ent Effluen		C OI II C SAME	Solids	
Discharge (Ref. No.)	Capacity (mgd)	Flow (mgd)	Conc. Conc (mg/1) (mg/	Co		Primary	Secondary	Trestment	Comments
East Branch Boone River									
Britt (M-40)	0.18	0.242	40			Sc Cm	Ftr Cm	Dch Bo X1	Existing plant was constructed in 1935 and is in poor condition. A site has been approved for a new waste stabilization pond designed to replace the existing facility.
Prairie Creek									
Wesley (M-37)									No existing municipal treatment system. Preliminary engineering report submitted to IDEQ during December, 1967.
60.00									No existing municipal treatment
Lu Verne (M-61)									facility. Preliminary plans have been prepared for three-cell waste stabilization pond.
Joint Drainage Ditch 3,	47								
Renwick (M-15)	0.096	0.040	3)			Lo		Plant constructed in 1962.
Otter Creek									
Kanawha (M-23)	0.087	0.083	4				Lo		Waste stabilization pond placed in operation in March, 1970; replaced Imhoff tank and sand filters.
									Imnori tank and sand titters.
Boone River									
Goldfield (M-44)	0.219	0.024	5)			Lo		Plant constructed in 1963.
Drainage Ditch 3									
Thor (M-36)									No existing municipal treatment facility. Plans and specifica- tions are being prepared for waste stabilization pond system.

67

Table 12. Wastewater Treatment Facilities, Upper Des Moines River Basin (continued).

	Existing Design	Present			*	-			
	Average Day	Average		Effluent	Suspended Solids Influent Effluent		of Treatment Secondary	Solids Treatment	Comments
Discharge (Ref. No.)	Capacity (mgd)	Flow (mgd)	(mg/1)	(mg/1)	(mg/1) (mg/				
Drainage Ditch 94	(8-7)					Gm Sc Cm	Fth Cm	Dfht Dop	Existing sewers have a large
Eagle Grove (M-24)	0.504	0.652	106	52		Gir Sc Car		Во	quantity of infiltration during periods of wet weather. Treatment plant is overloaded and raw sewage is by-passed frequently. City had preliminary report prepared which recommended construction of a large aerated lagoon and oxidation pond to treat by-pass flows.
Eagle Creek									Plant constructed in 1933-34.
Clarion (M-66)	0.145	0.261		60		Sh Cm	Ftr Ctp	Dch Bo	Presently making modifications to recirculate trickling filter effluent.
Woolstock (M-12)									No existing municipal treatment facility. Preliminary plans were made for sanitary sewers and waste stabilization pond system in 1967-68, and city made application for a loan from FHA. City is still served by individual septic tanks.
Boone River									
Webster City (M-45)	1.50	1.582	341	25	108 90) Sh Gw Cm	Ftr Cm	Dfh Bo X1	Plant was built in 1939 and expanded in 1963. Preliminary report issued October 30, 1973, recommends adding another digestor, two more trickling filters, and final clarifiers.
Webster City Municipal Light & Power (I-28)	11.52	11.52				Lo			

Table 12. Wastewater Treatment Facilities, Upper Des Moines River Basin (continued).

	Existing Design	Present	BOD		Suspended	Solids	Type	of Treatment		
	Average	Average	Influent I	Effluent	Influent	Effluent			Solids	
Discharge (Ref. No.)	Day Capacity (mgd)	Flow (mgd)	Cone. (mg/1)	Conc. (mg/1)	(mg/1)	Conc.	Primary	Secondary	Treatment	Comments
Des Moines River										
Stratford (M-7)	0.070	0.042		25			Sh Ae	Ae Lp		Treatment plant was constructed in 1965. Existing sewers have a large quantity of infiltration during periods of wet weather. A compliance order was issued by IDEQ to correct the infiltration problem. The compliance order requires: preliminary report by 6/1/74, final plans and specifications by 12/1/74, construction
										contract be awarded by 4/1/75, and project completed by 12/1/74, construction contract be awarded by 4/1/75, and project completed by 12/31/75.
Skillet Creek										
Dayton (M-30)	0.084	0.057		40			Sh Ci	Ftr Cp	Во	Plant was constructed in 1956 and is in poor condition. Compliance order issued by IDEQ requires inplant and operation modifications to be completed by 6/1/74.
Des Moines River										
Camp Laurie (S-1)	0.0	010								Permit issued to construct waste stabilization pond in September, 1969.
Poor Farm Creek										
Boone Co. Home (S-3)	0.0	800					Lo			Plant constructed in 1967.
Episcopal Center and Conference Camp (S-4)		007								Permit issued 1/18/73 to construct waste stabilization pond to replace septic tank. No discharge allowed during summer low flow periods.
Bluff Creek										
Boxholm (M-64)										No existing municipal treatment system. Final plans and specifica- tions received by IDEQ on 11/26/73 for waste stabilization pond.

Table 12. Wastewater Treatment Facilities, Upper Des Moines River Basin (continued).

	Existing Design Average Day	Present Average Day	BOD ₅	Effluent	Suspended Influent E	ffluent		e of Treatment	Solids Treatment	Comments
Discharge (Ref. No.)	Capacity (mgd)	Flow (mgd)	Conc. (mg/1)	Conc. (mg/1)		THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	Primary	Secondary		
Pilot Mound (M-35)										No existing municipal treatment system. Plans and specifications are being prepared for waste stabilization pond system.
Honey Creek Boone (M-33)	1.60	1.99	165	42	149	34	Sch Gam Ka Cm	Ftr Cm	Ho Zil Vv Xp	Plant constructed in 1958
Des Moines River Luther (M-28)										No existing municipal treatment system. Preliminary engineering report submitted to IDEQ during May, 1973.
Preston Branch Woodward State Institution (S-6)	0.213	0.20					San G Can	Ft Cm E	D B	Plant constructed in 1941.
Big Creek Little Creek Madrid (M-32)	0.305	0.198		35			Sh Ga (Cp Do)	Ftr Cm	X1	Plant constructed in 1967.
Polk City (M-60) Rock Creek	0.080	0.070		40				Lo		Plant constructed in 1963.
Deere & Co. (I-30)		0.130								Deere & Co. plans to send all cooling and process wastes to city industrial sewer by end of 1974.

Table 12. Wastewater Treatment Facilities, Upper Des Moines River Basin (continued).

	Existing Design Average	Present Average	BOD	5	Suspended			pe of Treatme	ent	
	Day	Day	Influent	Effluent	Influent E				Solids	Comments
Discharge (Ref. No.)	Capacity (mgd)	Flow (mgd)	(mg/1)	(mg/l)	(mg/1)	(mg/1)	Primary	Secondary	Treatment	- Comments
Beaver Creek										
Beaver (M-70)										
Ogden (M-86)	0.246	0.342		35			Sch Gm Cm	Ftr Cp	Dfp Bo	Plant placed in operation in 1958 Existing sewers have a large quantity of infiltration during period of wet weather.
Berkley (M-71)										
Woodward (M-81)	0.0965	0.084		30		45	Lo	Lo		Total surface area equals 8.52 acres.
Bouton (M-72)										
Town & Country, Inc. (S-10)	0.0065						Lo			Total surface area equals 0.58 acres.
Granger (M-84)										
Grimes (M-82)	0.080	0.100		30			Sh (Cp Do)	Ftr Cp	Во	The City of Grimes is in the process of building a new treatment facility.
Beaver Valley Canning Co. (I-29)		0.063		850			Lo	Co ly		Plans are being made to connect into the city's new treatment facility when completed.
/Urbandale Sanitary Sewe District (M-76)	r						G Sn	C FtC E	DB	Discharges are cooling water, curing water, and blowdown all other wastes are handled by the City of Des Moines Stp.
Des Moines River										
Firestone Tire & Rubber Co. (I-31)		1.270		5						
Ford Motor Co. (I-32)		0.194								O.01 mgd sanitary wastes to Des Moines STP. Cooling water and process water discharged to city storm sewer.

7

Table 12. Wastewater Treatment Facilities, Upper Des Moines River Basin (continued).

Discharge (Ref. No.)	Existing Design Average Day Capacity	Present Average Day Flow	BOD ₅ Influent Effluent Conc. Conc.	Conc. Conc.	Primary	e of Treatment Secondary	Solids Treatment	Comments
	(mgd)	(mgd)	(mg/1) (mg/1)	(mg/1) (mg/1)				
Mid Continent Bottling Co. (I-33)	0.050		31		Lo	Lo		They have NPDES Permit (11-73 to 11-78) which limits BOD ₅ to 25 mg/l.
- W-11-					P	Lp		
Regency Manor Mobile Home Park (S-11)								
American Can Co. (I-34)	0.202							Discharge is water for cooling, air conditioning, etc. MPDES permit issued 9-14-73 effective till 9-1-78.
Armstrong Rubber Co. (1-35)		2.85	8					
Chicago, Rock Island, and Pacific R.R. (I-36))	0.005						
Frye Copy Systems (I-3		0.72						Cooling water discharged to city storm sewer.
Lennox Industries (I-3	8)	0.038						Sanitary wastes discharged to city sanitary sewer. Cooling water discharged to city storm sewer.
Iowa Power & Light Co. (I-39)		150-200 7.4						Three wastewater discharges - Condenser cooling water - Ash sluicing water (following ash settling pond) - Boiler blowdown and softening demineralizing flows.

Table 13. Point Source Wastewater Discharge Quantities, Raccoon River Basin.

			В	OD ₅		Susper	nded	Ammo	onia Nit	rogen (N		Phospho	rus	Total Dis- solved Solids	Temper	ature Winter	
Ref. Av	erage_	Sunt	ner	Wint	er	Sol	ids	(mg/1)	er	(mg/1)	er	(mg/1)		(mg/1)	(°F)	(°F)	Other (mg/l unless noted
No. F	rlow (n	ng/1)	lb/day)	(mg/1)	b/day)	(mg/1)	lb/day)	(1	lb/day)	(1	b/day)	(16	/day)	(mg/1) (1b/day)			otherwise
North	Raccoon	Rive	r														
M-64	0.075	25	40					16									
Late	ral 2												2.0				
M-2	0.080	25	17	25	17			6	4	9	6	15	10				
North	Raccoon	Rive	er														
Boye	er Creek											0.6					TDS = 1,355
1-15		3				4		0				0.0					
M-72	1.516	30	379	35	443			. 5	63	25	316						
	1.045			30	261	60	523	1.7	148	90	784						
S-2																	
1-25	0.0986							3	2						48	43	
I-26	0.180	28	42					3	5						115		
North	Raccoo	n Riv	er														
M-68	0.270	25	56	50	113			8	18	17	38	38	86				
N C	edar Cr	eek															
M-45	0.198	30	50	95	157			2	3	24	40	13	21				
I-18	0.0082																
M-27	0.088	40		100				5		10		30	44				
M-55	0.087	25	13	100	53			4	2	30	16	21	11				
Ind	dian Cre	eek															
M-43	0.218	25	45	30	55												
Car	mp Creel	k															
M-49	0.157	30		50				1	-	12		5					

Table 13. Point Source Wastewater Discharge Quantities, Raccoon River Basin (continued).

			100	2311	nter	Suspended Solids	Amm	onia Nit	ropen (N) Winte	r	(100	al P)	solved Solids	Temperatur Summer Wint (°F) (°F	er
No.	rerage Flow (mgd)	(mg/1	numer) (1b/day)	(mg/1		(mg/1)	(mg/1)	lb/day)	(mg/1)	/day)	(mg/1)	1b/day)	(mg/1) (1b/day)		(mg/l unless noted otherwise
Lake	Creek														
M-61	0.073	50	30	25	1.5		1	1	18	11	7	4: 1			
M-67	0.264	25	55	35	77		6	13	26	57	17	37			
s-8		25				25									
M-40	0.090	25	19	25	19				35	26					
M-41	0.080	25	17	45	30		2	1	18	12	17	11			
Ced	ar Cree	k													
M-50	0.110	25	23	60	55		10	9	17	16	35	32			
M-65		25		25											
M-48	0.053	25	11	40	18		4	2	13	6	16	7			
Dra	inage D	itch 7	1												
S-3															
M-69	0.065	30	16	60	33		7	4	28	15	20	11			
Dra	ainage I	oitch 1	132												
M-37	0.485	30	121	50	202		5	20	18	73	16	65			
Har	rdin Cre	eek													
M-36	0.110	25	23	25	23		4	4	1	1	25	23			
M-16	0.028	30	7	25	6		1	0			8	2			
Bu	tterick	Creek													
M-14	0.020														
M-29	0.070	25	15	50	29		12	7	2	1	15	4			
M-30	0.040	25	8	35	11		1	0	1	0	10	3			
Sn	ake Cre	ek													
M-66	0.012	25	3				6	1			2	0			Org - N = 5 1b/day

Table 13. Point Source Wastewater Discharge Quantities, Raccoon River Basin (continued).

			BOD ₅			Suspended	Ammor	nia Nit	rogen (horus	Total Dis- solved Solids	Temperature Summer Winte	er.
Ref.	Average Flow (mgd)	(mg/1)	er Lb/day)	(mg/1)	(1b/day)	Solids (mg/l) (1b/day)	Summe (mg/1) (11	o/day)	Winte (mg/1) (1)		(mg/1)	(1b/day)	(mg/1) (1b/day)	(°F) (°F)	Other (mg/l unless noted otherwise)
North	Raccoon	River							122		16	140			
M-59	1.052	25	219	30	263		3	26	10	88	16	140			
I-23		25		110			34		127						
1-12	1.233														
I-13	0.002														
M-53		25		25					4		6	12/22			
M-18	0.188	25	39	40	63		1	2	10	16		22			vo v = 16 1b/dev
M-1	0.069	25	14	35	20		1	1	13	7	21	12			$NO_3 - N = 16 lb/day$
South	Raccoon	River													
M-33	0.186	25	39	40	62		1	2	16	25	35	54			
Lot	ng Branch														
M-74	0.201	25	42	35	59		2	3	40	67	23	39			
Bri	ushy Cree	<u>k</u>													
M-21	0.009	25	2	40	3										
Midd	le Racco	n River	=												
M-13	0.063	25	13	85	45				6	3	27	14			
M-15	0.805	25	168	25	168		1	7	14	94	30	201			Org - N = 141b/day
1-5															
I-16		0	0			0.3	0.0	6			2				$TDS = 157$ $NO_3 - N = 2 \frac{1b}{day}$
St	orm Cree	k													,
M-45															
Midd	le Racco	on Rive	r												
M-17	0.081	25	17	35	24		4	3	19	13					
Wi	llow Cre	ek													
M-28	0.062	60	31	130	67		10	5	130	67	37	19			

75

Table 13. Point Source Wastewater Discharge Quantities, Raccoon River Basin (continued).

			BOD			Suspended	Ammonia	Nitrogen (N)	Phosphorus	Total Dis-	Temperature	
		Summe (mg/1)		Win (mg/1)		Solids (mg/l) (lb/day)	Summer (mg/1) (1b/day	Winter (mg/l) (lb/day)	(Total P) (mg/1)	solved Solids (mg/l) (lb/day)	(oF) (oF)	Other (mg/l unless noted otherwise)
Middle	Raccoon	River										
1	0.150	25	31	40	50							
	quito Cre	ek										
M-8												
Middle	e Raccoon	River										
H-63	0.062	25	13	50	26		1 1	12 6	8 4			
1-21	0.0015											
	0.34 (based or 8 day/yr)		58									
Bea	r Creek											
H-25	0.236	25	49	35	69		1 2	11 22	10 20			
1-11												
Bug	ler Cree	<u>K</u>										
H-77	0.033	25	7	95	26		1 0	56 15				
Sug	ar Creek											
M-79		30		100								
Racco	on River											
1-24	0.008										60 68	
I-19	0.85						1 100		_			
Total	7.2013		1409				3	10	351			

Table 14. Wastewater Treatment Facilities, Raccoon River Basin.

	Existing Design	Present	BOD		Suspended	Solids	Туре	of Treatment		
Discharge (Ref. No.)	Day Capacity (mgd)	Day Flow (mgd)	Influent Formation (mg/1)	Conc. (mg/1)	Influent Conc. (mg/1)	Effluent Conc (mg/1)	Primary	Secondary	Solids Treatment	Comments
North Raccoon River										
Marathon (M-51)										
Rembrandt (M-64)		0.075		30			Lo	Lo		Lagoon.
Lateral 2										
Albert City (M-2)	0.048	0.080		25			Sh Cl	Ftrc Cp	Во Х	Plant put into operation during October, 1951. It is in good condition considering its age but is about due to be replaced.
Boyer Creek										Discharge is cooling water.
Iowa Public Service (I-15)		0.100		3	2	4	None			
Storm Lake (M-72)	2.40	1.516		40			Sc Gm Km Cm	Fo Cm Ftr Cm	Dm Fth Bo	STP by 1-1-75.
Storm Lake, Hy- Grade (M-73)	2.653	1.045		25			Ln La La	Lo Lo Lp		(Constructed in 1966).
Country Village Mobile Home Park (S-2	2)						Lo			Permit issued March, 1972.
∜ilas and Co., Inc. (I-25)		0.0986		0						Sanitary wastes are sent to Storm Lake's STP. Discharge is defreeze water.
Vista Products Co. (1-26)	0.180		28						Discharge is cooling water.
Lakeside (M-42)										Lake's Industrial lagoon.
North Raccoon River										
Sac City (M-68)	0.220	0.270		40			Sch Cm	Ftr Cm	Dcm H	Preliminary plans were made for a new STP in 1973.
Nemaha (M-54)										City and school is served by industrial septic tanks.

Table 14. Wastewater Treatment Facilities, Raccoon River Basin (continued).

(S-11)

	Existing Design	Present	BOD	-117		Collde	Type o	f Treatment		
	Average	Average Day	Influent	Effluent	Suspended Influent	Effluent		Secondary	Solids Treatment	Comments
Discharge (Ref. No.)	Capacity (mgd)	Flow (mgd)	(mg/1)	Conc. (mg/1)	Conc. (mg/l)	(mg/1)				
Cedar Creek	10-2							THE CO	Dfh Bo	Plant constructed in 1953.
Laurens (M-45)	0.198	0.150		40			Sh Cm	Ftr Cp	650.00	Discharge is from the chrome rinse
Mefferd Industries		0.0082								tank.
(I-18)							Sh Cl	Ftr Cp	Dfp Bo	Plant originally built in 1919
Varina (M-78)										with major modification in 1957. Needs updating. Large quantity of
										infiltration during wet weather.
		0.000		54						
Fonda (M-27)	0.111	0.088		54			Sh Cl	Ftr Cm	Во	Plant constructed in 1964.
Newell (M-55)	0.110	0.087		35						
Indian Creek										Plant constructed in 1970.
Lakeview (M-43)	0.060	0.218								
orth Raccoon River										A waste stabilization pond is
Auburn (M-7)										being considered.
Camp Creek										
Jolley (M-38)										
Lytton (M-49)	0.167	0.157		40			La	to to		
Yetter (M-83)										
Lake Creek										
Pomeroy (M-61)	0.062	0.073		35			Lo	Lo		
Rockwell City (M-67)	0.288	0.264		30			Sch Gh Cm	Fer Co	Dfh Bo	Sewers have large quantity of infiltration during wet weather.
										Lagoon (0.68 acres) constructed
Rockwell City Women's Reformatory (S-8)				25			Lo			in 1961.
Lake City N (M-40)	0.150	0.090		30			Sh Gh Cm	Ftr Cl Ftn	Do Bo	
Lake City SW (M-41)	0.20	0.80					Cl	Ftn	Во	A new plant consisting of two mechanically equipped settling tanks, trickling filter, polishing lagoon, and digestor is proposed.
Twin Lakes Travel Park										Permit issued November 15, 1967, for a complete retention lagoon.

78

Table 14. Wastewater Treatment Facilities, Raccoon River Basin (continued).

	Existing Design	Present	BOD ₅		Suspended Solid	THE RESERVE TO THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAME	of Treatment	Solids	
Discharge (Ref. No.)	Day Capacity	Day Flow	Influent E Conc. (mg/1)	Conc. (mg/1)	Influent Efflue	nt . Primary	Secondary	Treatment	Comments
North Raccoon River	(mgd)	(mgd)	(mg/1)	(81 - 1					
Lanesboro (M-44)									Individual septic tanks.
Cedar Creek									Lagoons constructed in 1960.
Manson (M-50)	0.190	0.110		35		Lo	Lo -		Lagoons Constitution
Knierim (M-39)						None			
Somers (M-71)						None			
Rinard (M-65)				25		Cs	Fs		
Lohrville (M-48)	0.069	0.053		30		Sh Cl	Ftr E Cu	Во Х	Plant constructed in 1958.
Drainage Ditch 171									
Crossroads Enterprises (S-3)						Cs	Fs		
Scranton (M-69)	0.127	0.065		35					
Drainage Ditch 132							74- A-	Dfh Bo	Preliminary plans have been
Jefferson (M-37)	0.360	0.485		40		Sm Km Cm	Ftr Cm	D111 D0	prepared for expansion, including nitrification.
Mardin Creek									
Parnhamville (M-26)	0.180	0.110		25		Lo	Lo		Total surface area equals 2.5 acres.
Churdan (M-16)	0.032	0.028		. 27		Lo	Lo		Lagoons built in 1962. Total surface area equals 2.9 acres.
Butterick Creek									Presently constructed two waste
Callender (M-14)	0.050	0.020				Lo	Lo		stabilization lagoons.
Gowrie (M-29)	0.081	0.070		26		Sh Cm	Ftr Cp	Do Bo	Excessive infiltration during wet weather.
Harcourt (M-35)	0.04								Proposed two-cell lagooon with total surface area of 3.2 acres.

79

Table 14. Wastewater Treatment Facilities, Raccoon River Basin (continued).

	Existing Design Average	Present	BOD ₅		Suspended Solids		of Treatment	Solids	
	Day	Day	Influent		Influent Effluen Conc. Conc.	Primary	Secondary	Treatment	Comments
Discharge (Ref. No.)	(mgd)	Flow (mgd)	Conc. (mg/1)	Conc.	(mg/1) (mg/1				
Paton (M-58)	0.048	(Construction permit issued for a two-cell lagoon.
Dana (M-19)									and the large quantity of
Grand Junction (M-30)	0.072	0.040		35		Sch Cl	Во	Ftr Cp	Sewers have large quantity of infiltration during wet weather.
North Raccoon River									
Jamaica (M-36)									
Snake Creek									
Rippey (M-66)	0.040	0.012		25		Lo	Lo		One-cell lagoon (3.2 acres) constructed in 1969.
North Raccoon River									
Dawson (M-20)									Town with decreasing population. No treatment facility planned.
Perry (M-59)	1.545	1.052		35		Sch Ga Cm	Fto Cm Ftr Cm	Dfh Bo Ls	
Oscar Mayer Co. (I-23)	1.00			50		Ln	Ln	Lo	They have an odor problem from the lagoons and have had fish killsprobably NH3.
Hormel & Perry (I-12)	1.625	1.233							No permit file.
Iowa Electric Light & Power Co. (I-13)	0.002								Discharges boiler, cooling tower blowdown, and water softener wash water.
Minburn (M-53)	0.048			25		Lo	Lo		Two-cell lagoon with total surface area of 5.2 acres, built in 1967.
Dallas Center (M-18)	0.066	0.188		30		Sh Cl	Ftr Cp	Во	
Dallas County Home									In later 1972, they were about to build a lagoon sized for 110 people (one acre). No further information is available.
Adel (M-1)	0.224	0.069		30		Gmw Sm (Cp Do)	Ftr Cp	Во	

Table 14. Wastewater Treatment Facilities, Raccoon River Basin (continued).

	Existing Design	Present	BOD ₅			Calida	Torr	oe of Treatment		
Discharge (Ref. No.)	Average Day Capacity	Average Day Flow	Influent Efflu		Suspended Influent Conc.	Effluent		Secondary	Solids Treatment	Comments
South Raccoon River										
Guthrie Center (M-33)	0.286	0.186		35			Sch (Gan Ka) Om	Foc Cm Fth Cm	Dth Bo X	
Brushy Creek										
Arcadia (M-6)										
Halbur (M-34)										
Dedham (M-21)	0.035	0.009	**	30			Lo	Lo		
South Raccoon River										
Menlow (M-52)	0.150	0.201		35			Gm Sh Cm	Ftr Cp	Dop Bo	Sewers have a large quantity of infiltration during wet weather.
Long Branch										
Stuart (M-74)										
Middle Raccoon River										
Breda (M-13)	0.055	0.063		40			Ll	Fs	Во	Permit issued 6-4-73 to build waste stabilization lagoon.
Carroll (M-15)	1.200	0.805		27			Sch Km Cm	Fth Cm Ftr	Dth Bo X	Presently building a new plant.
Carroll Rendering Co. (I-5)		1.0*		40*						As of September 28, 1970, Carroll Rendering Co. was in the process of building a new sewage treat- ment facility.
Iowa Public Service Co. Carroll Station (I-16)			0	0	1	0.3				Discharge is cooling water. Submitted application for operating permit 2-27-74.
Storm Creek										
Lidderdale (M-46)							Lo	Lo		Lagoon constructed in 1973.

^{*} Assumed value.

Table 14. Wastewater Treatment Facilities, Raccoon River Basin (continued).

Gendler Stone Products 0.024

Co., Inc. (I-11)

	Existing Design	Present	BODs					Description		
	Average	Average		ncci	Suspended Influent E			Type of Treatmen	Solids	
(n	Day	(1155 TEACH)	Influent Conc.	Conc.	Conc.		Primary	Secondary	Treatment	Comments
Discharge (Ref. No.)	(mgd)	(mgd)	(mg/1)	(mg/1)	(mg/1)	(mg/1)	No. of the last of			
Middle Raccoon River	1-9-1	1 0								
Willey (M-80)										-1 10/0
Coon Rapids (M-17)	0.120	0.081		25			Sh Km Cm	Ftr Cm	Dfr Bo	Plant constructed in 1942.
Willow Creek										
Glidden (M-28)	0.088	0.062		50			Sch Cl	Ftr Cp	Во	Plant constructed in 1951.
Ralston (M-62)										
Bayard (M-9)										Permit issued 2-1-73 to construct a new treatment facility.
Middle Raccoon River										
Panora (M-57)	0.125	0.150		35			Lo	Lo		Total surface area equals 10 acres.
Linden (M-47)							None			
Mosquito Creek										
Bagley (M-8)							Cs	None	х	Inadequate treatment facility with no future plans. City has been decreasing in population.
Yale (M-82)										
South Raccoon River										
Redfield (M-63)	0.120	0.062		40			Lo	Lo		Lagoon constructed in 1968.
Northern Iowa Natural Gas Co., Redfield Compressor Station (I-21)		0.0015								Discharge is cooling water and effluent from three septic tanks.
Northern Iowa Natural Co., Redfield Storage Area (I-22)		0.35 (28 day year)	rs/							
Bear Creek										
Earlham (M-25)	0.093	0.236		30			Lo	Lo		Lagoons have wet weather problem but seem to be functioning properly

Table 14. Wastewater Treatment Facilities, Raccoon River Basin (continued).

	Existing Design Average	Present Average	BOD	5	Suspended	Solids		ype of Treatment	0-1/1-	
Discharge (Ref. No.)	Day Capacity (mgd)	Day	Influent Conc. (mg/1)	Conc. (mg/1)	Conc. (mg/1)	Conc. (mg/1)	Primary	Secondary	Solids Treatment	Comments
Bugler Creek De Soto (M-24)				31			Lo	Lo		Lagoon built in 1970.
Raccoon River Van Meter (M-77)	0.027	0.033		50			Lo	Lo		Plant built in 1963 and is having seepage problems. Total surface area equals 3.8 acres. Using only one cell.
Prairie Village Mobile Home part (S-6)										Lagoon is so oversized that there is no discharge. It is, in effect, an evaporation pond.
Sugar Creek Waukee (M-79)	0.083			50			La	Lo		Seems that lagoon is too small, aeration should help, but no results were actually given.
Raccoon River Skelly Oil Co. (I-24)		0.008					Lo			
Meridith Corporation (I-19)		0.85								NPDES permit issued 9-27-73 limits SS to 20 mg/l and pH to 6.5-9.0
ROA Campgrounds (S-5)										Permit issued 8-25-69 for a waste stabilization lagoon.

83

Table 15. Point Source Wastewater Treatment Facilities and Discharge Quantities, Lower Des Moines River Basin Above Red Rock Reservoir.

Table 13. Political and the second se	Population		Effluent	Ammonia-N		Comments
		Flow(mgd)	B025	(mg/1)/(1b/day)	Treatment	Comments
Discharger (Ref. No.)	1970/Design	Average/Design	(mg/1)/(lb/day)	(mg/1//(13/23/)		
Des Moines River						TO TO STORY
Clive M-147	3,005					To Des Moines STP
West Des Moines M-148	16,441					To Des Moines STP
Windsor Heights M-149	6,303					To Des Moines STP
Des Moines (*1) M-150	201,404/540,000	38.9/35.0	30/9,733	11/3,569	Trickling filter	
Yeader Creek					o and larger	Under construction
Des Moines Area C Sanitary Lagoon M-222	NA/3,050	-/0.3			One cell lagoon	Olider Collscrattion
Four Mile Creek						
Slater M-152	1,094/350	0.95/0.158	60/475	14/111	Two cell lagoon	16.81 acres
Ankeny E M-153	6,700/4,200	0.910/0.285	30/228	8/61	Trickling filter	New plant is planned to handle hydraulic and organic overloading.
Oakwood Heights MHP S-69		NA			Lagoon	164 spaces, total detention.
Greenwood SIP S-70		NA				Iron backwash-1000 gal/week.
		.025/NA	23/5	8	Lagoon	
Sunny Brook MHP S-71 Altoona M-155	2,883/500	0.534/0.5	30/134	8/36	Trickling fil- ter, disinfection	Built 1961
Country Living MHP S-72		NA			Lagoon	
S.E. Polk Comm. Sch. S-73		0.013/0.026	25/2.7		Extended aeration	Built 1963
Des Moines River						
Pleasant Hill M-156	1,536/3,664	0.110/0.360	36/33	9/8	Trickling fil- ter, disinfection	Built 1972
North River						
Menlo STP M-157	391				NEMTF	

Table 15. Point Source Wastewater Treatment Facilities and Discharge Quantities, Lower Des Moines River Basin Above Red Rock Reservoir.

	-		Effluent	AA BLE		Company
	Population	Flow(mgd)	BOD ₅	Ammonia-N	Treatment	Comments
Discharger (Ref. No.)	1970/Design	Average/Design	(mg/1)/(1b/day)	(mg/1)/(1b/day)		
North Branch						
Dexter STP M-158	652/750	NA/.075	44/28	11/7	Two cell lagoon	7.5 acres
Cedar Creek						
Winterset WTP S-74		0.720/NA				Filter backwash
Madison County Home S-75		NA/0.005	NA	NA	Aerated lagoon, polishing pond	
		NA			Settling ponds	Quarry dewatering
E. I. Sargent I-75 Schildberg I-76		NA			None	Quarry dewatering
North River						
Middle Cteek						
Cumming M-162	189				NEMTF	
Windmill Creek						**
Ia. Metro Sewer M-160	NA/1,500	.100/.120	37/31	8/7	One cell lagoon	15 acres
Norwalk M-159	1,745					To Iowa Metro Sewer
Des Moines Highland Hills M-151	4,600/6,100	.525/.432	40/175	16/70	Trickling filter	
Des Moines Area B M-223	NA/3,050	NA/0.30			Single cell lagoon	n Under construction
Middle Creek						Iron filter backwash, pH 7.2
Des Moines Water Dev. Co. S-76		.216/NA			One coll lesson	15.9 acres
Greenfield Plaza M-161	NA/2,000	.350/.200	NA	NA.	One cell lagoon	13.7 46263
North River				200		36.1 acres
Carlisle STP M-163	2,246/4,000	.104/.295	25/22	1/.9	Four cell lagoon	Filter backwash pH 7.4
Carlisle WTP S-77		.065/NA				Tittet oderwesh bu 144
Carlisle Sand & Gravel I-77						
Middle River						
South Fork						n 41 - 1060
Adair M-164	750/1,000	.057/-100	45/19	8/3	Imhoff tank, trickling filter	Built 1962

84

85

Table 15. Point Source Wastewater Treatment Facilities and Discharge Quantities, Lower Des Moines River Basin Above Red Rock Reservoir.

	Population		Effluent			
	ropulation	Flow(mgd)	BOD ₅	Ammonia-N	Treatment	Comments
Discharger (Ref. No.)	1970/Design	Average/Design	(mg/1)/(1b/day)	(mg/1)/(lb/day)		
Middle River						
Casey M-165	561/700	.022/.070	25/5	3/.6	Contact stabiliza- tion & polishing pond	
Menlo WTP S-79		.027/NA			Sludge lagoon	Filter backwash
Ia. Highway Comm. Rest Area S-78-A&B		.003	NA	NA	Lagoon	Direct discharge
Schildberg Const. Co. I-79		NA			Lagoon	Quarry dewatering NWt, S17. T77, R31W
Schildberg Const. Co. I-80		NA				Dewatering quarry SEt, S17, T77, R31W
T 79		.006	NA	NA	Lagoon	Total retention
Nickerson Farms I-78 Winterset M-166	3,685/5,300	.320/.500	28/75	6/16	Trickling filter	Built 1969
Patterson M-167	120				NEMTF	
Bevington M-168	54				NEMTF	
Martensadale M-169	306/400	NA/.04	26	5	Two cell lagoon	3.44 acres
Middle River						
Clanton Creek						
North Fork						O devetoring
E.I. Sargent I-81					None	Quarry dewatering
East Peru M-170	184				NEMTF	
Hay Branch						
Truro M-171	359/450	.045/.040	25/9	NA	Two cell lagoon	3.5 acres
Unnamed Tributary						
St. Charles M-172	443				NEMTF	

Table 15. Point Source Wastewater Treatment Facilities and Discharge Quantities, Lower Des Moines River Basin Above Red Rock Reservoir.

	Population	Flow(mgd)	Effluent BOD _c	Ammonia-N	Trantment	Comments
Discharger (Ref. No.)	1970/Design	Average/Design	-	(mg/l)/(lb/day)	Treatment	
Middle River						
Spring Hill M-173	131				NEMTF	
Unnamed Tributary						
Indianola M-174	4,976/5,500	.651/.463	25/136	3/16	Trickling filter	North plant built 1953
Butcher Creek						
Hartford MHP S-80		NA			Single cell lagoon	
Des Moines River						
Mud Creek						
Bondurant M-175	462/486	.047/.049	48/19	12/4.7	Two cell lagoon	4.16 acres, constructed 1960
S.E. Polk High School S-81		.020	25/.7	1	Extended aeration	
Runnells M-176	354				NEMTF	To build extended aeration activated sludge facility
South River						
St. Mary's M-177	105				NEMTF	
Squaw Creek						
South Squaw Creek						
Concrete Materials I-82		NA			None	Quarry operations
E. I. Sargent I-83		NA			None	Quarry operations
Squaw Creek						
Ia. Promotional Man. S-82		NA			Lagoon	System in poor conditions
MBZ Mobil Home Park S-83		NA			Single cell lagoon	
New Virginia M-178	450/462	.028/.028	25/5.8		Two cell lagoon	4 acres
Stuckeys I-84		NA/.003			Aeration to soil absorption pit	
South River						
Indianola M-179	4,000/4,000	.045/.40	25/9	3/1.1	Contact stabiliza- tion & polishing pond	South plant

o

Table 15. Point Source Wastewater Treatment Facilities and Discharge Quantities, Lower Des Moines River Basin Above Red Rock Reservoir.

	nulation		Effluent		To a stream t	Comments	
	Population	Flow(mgd)	BOD ₅	Ammonia-N	Treatment		
Discharger (Ref. No.)	1970/Design	Average/Design	(mg/1)/(1b/day)	(mg/1)/(1b/day)			
South River							
Otter Creek	561 //80	NA/.048	54	3	Two cell lagoon	Const. 1968 4 acres	
Milo M-180	561/480	HA, . O TO					
South River					NEMTF		
Ackworth M-181	111				NEMTF		
Sandyville M-182	89						
Coal Creek					Three cell lagoon	10.7 acres	
Pleasantville M-183	1,297/1,300	.047/.120	33/13	7/2.7	Inree Cell Lagoon		
Des Moines River							
Camp Creek						Built 1954	
Mitchellville M-184	1,341/1,500	.085/.150	35/25	6/4.3	Imhoff tank & trickling filter	Built 1954	
Ditch					Lagoon	Seasonal discharge	
Ia. Highway Comm. Rest Stop S-S4		NA					
Camp Creek						Seasonal discharge	
Thomas Mitchell Park S-85		NA			Lagoon	303303101	
Des Moines River							
Ćalhoun Creek							
	1,141/2,400	NA/.208	NA	NA	Two cell lagoon	3.2 acres	
Prairie City M-185							
White Breast		NA/.004			Lagoon		
Ia. Highway Comm. S-86			51/94		Aerated lagoon	S. plant 20 acres, plant	
Osceola M-186-1	1,900/400	.22/.19	32/74			overloaded by industrial wastes, new plant plans	
						submitted	
	2 100/12 670	.19/.225	46/73	23/36	Trickling filter	E. plant	
Osceola M-186-2	3,120/19,470	.17/.267			Lagoon	Total retention	
Champlain Pet. Co. I-85		NA					

Table 15. Point Source Wastewater Treatment Facilities and Discharge Quantities, Lower Des Moines River Basin Above Red Rock Reservoir.

Discharger (Ref. No.)	Population 1970/Design	Flow(mgd) Average/Design	Effluent BOD ₅ (mg/1)/(lb/day)	Ammonia-N (mg/1)/(lb/day)	Treatment	Comments
R & R Campground S-87		NA			Lagoon	
Woodburn M-187	186				NEMTF	
	247				NEMTF	
Lucas M-188 Williamson M-189	216				NEMTF	
Mill Branch Creek					None	Car wash-oil and grease
Lacona Oil Co. I-86				1000		7.61 acres - D.T. = 82 days,
Lacona STP M-190	424/540	.034/.081	25/7	2/.6	Two cell lagoon	Const. 1964
White Breast						
Winn Branch						Quarry dewatering
C. D. Hess & Son Rock I-88		NA			None	Quarry denderano
Competine Creek					m / 11/ 6/150F	East plant
Knoxville STP M-191	7,755/12,500	.606/1.25	25/126	10/50	Trickling filter & disinfection	bast plane
Knoxville WTP S-88		NA				Filter backwash water
Red Rock Lake View Subdivision 3-89		NA			Lagoon	81 lots
Unnamed Tributary						
Knoxville V.A. Hospital S-90		.186/.250			Trickling filter & disinfection	Plant to be abandoned, sewage to go to municipal plant
Marion County Home S-91		NA			Lagoon	No discharge
Sents Creek Pella STP M-192	NA	.054/.043	31/14	3/1.35	Imhoff tank &	South west plant const.
rella Sir M-172	4 1 1 1 1 1 1 1 1				trickling filter	Filter backwash water
Pella STP S-92		0.028				
Pella Power Plant I-89		0.07				Cooling tower & boiler blowdown - 4.5 ppm chromium
Vermeer Mfg. Co. I-90		NA			Septic tank to holding pond	Lagoon planned for future

Table 15. Point Source Wastewater Treatment Facilities and Discharge Quantities, Lower Des Moines River Basin Above Red Rock Reservoir.

	Population		Effluent			Comments
		Flow (mgd)	BOD ₅	Ammonia-N	Treatment	
Discharger (Ref. No.)	1970/Design	Average/Design	(mg/1)/(lb/day)	(mg/1)/(1b/day)		
English Creek						
Tracy Creek			33/28	5/4	Two cell lagoon	10.7 acres
Melcher H-193	913/1,259	.10/.1259	33/20			To Melcher lagoon
Dallas M-194	438					TO THE ROLL OF THE PARTY OF THE

Table 16. Table Abbreviations for Wastewater Treatment Facilities.

A----Aeration (in tanks or basins) Aa ---- Activated sludge, diffused air aeration Ac ---- Contact stabilization Ad----Aerobic digestion Ae----Extended aeration Af----Air flotation Am----Activated sludge, mechanical aeration Ao ---- Oxidation ditch Ap---- Aeration, plain, without sludge return B----Sludge beds Bo----Open Bc----Glass covered C----Settling tanks Ci----Two-story (Imhoff) Cm----Mechanically equipped Cp----Plain, hopper bottom, or intermittently drained for cleaning Cs----Septic tank Ct----Multiple tray, mechanically equipped CmDm--Two-story "Clarigester" CpDo--Two-story "Spiragester" D----Digesters, separate sludge Dc----With cover (fixed if not otherwise specified) D(cg)-Gasometer in fixed cover De---- Gas used in engines (heat usually recovered) Df----With floating cover Dg----With gasometer cover Dh----Gas used in heating Dm----Mixing Do----Open top Dp----Unheated Dr----Heated Ds----Gas storage in separate holder Dt----Stage digestion

E----Chlorination Ec---With contact tank Eg----By chlorine gas Eh----By hypochlorite F----Filters Fc----Covered filter Fo----Roughing filter Fr----Rapid sand or other sand straining Fs----Intermittent sand Ft----Trickling (no further details) Fth---High capacity Ft2H--High capacity, two-stage Ftn---Fixed nozzle, standard capacity Ftr --- Rotary distributor, standard capacity Ftt---Traveling distributor, standard capacity G----Grit chambers Ga----Aerated grit removal Gh----Without continuous removal mechanism Gm----With continuous removal mechanism Gp----Grit pocket at screen chamber Gw----Separate grit washing device H----Sludge storage tanks (not second-stage digestion units) Ha----Aerated Hc ---- Covered Hm----With stirring or concentrating

mechanism

Ho----Open

I-----Sewage application to land

If----Ridge and furrow irrigation

Is----Subsurface application

lu----Land underdrained

ly----Spray irrigation

K-----Chemical treatment-flocculation.

K----Chemical treatment-flocculation.

Chemical treatment-type
units or equipment not
necessarily complete or

Table 16. Table of Abbreviations for Wastewater Treatment Facilities. (continued).

operated as chemical treatment.

Ka----Flocculation tank, air agitation

Kc----Chemicals used

Km----Flocculation tank, mechanical agitation

Kx----No chemicals used

L----Lagoons

La----Aerated lagoon

Le----Evaporation lagoon

Ln---- Anaerobic lagoon

Lo----Waste stabilization lagoon

Lp----Polishing lagoon

Ls----Sludge lagoon - not for treatment of sewage

O----Grease removal or skimming tanks - not incidental to settling tanks

Oa---- Aerated tank (diffused air)

Om----Mechanically equipped tank

Ov----Vacuum type

S----Screens

Sc----Comminutor (screenings ground in sewage stream)

Sf----Fine screen (less than 1/8" opening)

Sh----Bar rack, hand cleaned 1/2" to 2" openings

Si----Intermediate screen 1/8" to 1/2" openings

Sm----Bar rack mechanically cleaned 1/2" to 2" openings

Sr----Coarse rack (openings over 2")

St----Garbage ground at plant and returned to sewage flow

T----Sludge thickener

Tc----Covered

Tm----Stirring mechanism

Tp----Open top

V----Mechanical sludge dewater-

Vc----Sludge centrifuge

Vp----Pressure filter

Vv----Rotary vacuum filter

Vo----Other

X----Sludge drying or incinera-

Xd----Used for fertilizer

Xf----Sludge burned for fuel

X1----Disposal to land

Xn----Incinerated

Xp----Used for fill

Z----Sludge conditioning

Za----Chemicals used, alum

Zc----Chemical used (unidentified)

Zi----Chemicals used, iron salts

Z1----Chemicals used, lime

Zp----Polyelectrolytes used

Zx----No chemicals used

Zy----Elutriation

Table 17. Point Source BOD Contributions to Rivers and Streams in the Des Moines River Basin Above Red Rock Dam.

Area	Average Daily BOD, 1b/day	Percent of Total
Lower Des Moines River Basin	11,394 (9,733)*	56.0 (47.8)*
Upper Des Moines River Basin	6,563	32.3
Raccoon River Basin	2,392	11.7
Total in Des Moines River Basin	20,349	100.0

^{*(}Des Moines Metropolitan Area)

Table 18. Livestock Waste Production Equivalents.

<u>Animal</u>	Conversion Factor +
All Cattle and Calves	0.8
Swine	0.4
Poultry	0.02

⁺ Number of animals times conversion factor gives waste production equivalent to that of a 1000 lb cow (2, 3, 4).

Table 19. Livestock Distribution in the Des Moines River Basin.

River Basin	Numbers of Equivalent Cows in Thousands	Drainage Area sq mi	Density, Animals per sq mi
Raccoon River Basin	941	3680	256
Upper Des Moines River Basin	715	6200	115
Lower Des Moines River Basin	744	4172	178
Des Moines River Basin	2400	14052	171

Table 20. Livestock Production Estimates for the Upper Des Moines
River Basin in Iowa, 1972

Equivalent 1000-1b

Cows Density In All Cattle Thou-Animals per Poultry, Swine and Calves, County sands in Thousands sq mi in Thousands in Thousands 77.3 167 254.2 83.4 48.6 Boone 3.3 191 4.1 3.0 2.5 Clay 22.9 153 146.5 81.0 15.0 Dallas 4.0 175 4.1 3.8 3.0 Dickinson 64.8 171 90.3 59.5 49.0 Emmet 9.6 170 3.1 10.3 6.8 Green 173 32.0 20.1 51.5 13.8 Hamilton 39.5 177 46.1 62.9 16.8 Hancock 60.5 139 67.0 72.0 38.0 Humbolt 118.9 164 171.0 171.7 58.5 Kossuth 83.8 163 105.8 113.0 50.6 Palo Alto 71.2 183 147.7 91.8 39.5 Pocahontas 11.9 86 15.3 12.2 8.4 Po1k 64.9 116 516.0 74.1 31.2 Webster 15.6 149 14.3 26.3 6.0 Winnebago 50.2 134 53.3 74.7 24.0 Wright

Table 21. Livestock Production Estimates for the Raccoon River Basin, 1972

				Equivalent 1	000-16
County	All Cattle and Calves, in Thousands	Swine, in Thousands	Poultry, in Thousands	Density Animals per sq mi	In Thou- sands
Audubon	5.3	7.1	6.9	322	7.2
Buena Vista	46.0	129.2	51.7	248	89.5
Calhoun	64.7	102.9	62.7	168	94.2
Carrol1	110.1	207.5	87.4	358	172.8
Crawford	7.0	11.5	9.0	289	10.4
Dallas	45.0	75.0	135.7	153	68.7
Greene	61.2	93.6	27.9	170	87.0
Guthrie	72.1	99.5	124.4	202	100.0
Pocahontas	19.5	45.3	70.4	183	35.1
Po1k	14.1	20.5	25.8	86	20.0
Sac	73.0	95.6	54.9	341	96.5
Webster	8.8	20.9	145.5	116	18.3

Table 22. Livestock Production Estimates for the Lower Des Moines River Basin, 1972.

				Equivalent 10 Cows	000-1ъ
County	All Cattle and Calves, in Thousands	Swine, in Thousands	Poultry, in Thousands	Density Animals per sq mi	In Thou- sands
Adair	28.8	43.4	18.9	231	40.8
Appanoose	4.1	2.6	0.6	113	6.5
Clarke	32.2	35.3	6.8	151	40.0
Davis	21.3	23.2	4.9	137	26.4
Guthrie	6.1	8.4	10.4	202	8.4
Jasper	9.3	19.6	10.9	235	15.5
Jefferson	3.5	8.9	1.4	163	6.4
Lee	21.6	47.3	20.3	154	36.6
Lucus	40.6	46.2	23.1	169	51.5
Madison	65.2	84.4	51.3	177	87.0
Mahaska	28.1	80.2	43.6	293	55.4
Marion	59.0	142.6	72.2	241	105.6
Monroe	52.4	49.5	10.7	147	61.9
Po1k	19.6	28.5	35.8	86	27.8
Union	1.3	1.4	0.3	183	1.6
Van Buren	34.1	52.3	8.9	135	48.5
Wapello	25.7	42.2	15.2	131	37.8
Warren	61.0	94.0	45.0	155	86.7

Table 23. Corn and Soy Bean Production in the Upper Des Moines River Basin - 1973.

				Corn		Soy Beans		Total Corn and
County	Total Land in Farms in 1000 Acres	Approximate % of County in Farmland	The second of th		Harvested for Grain in 1000 Acres	Grain Yield Per Acre Bu	in Corn and Soy Beans	Acreage in 1000 Acres
	278 1	93.6	110.2	117.3	90.8	37.3	72	201.0
81			4.1	105 2	3.5	35.0	73	7.6
3	10.4	94.7	4.1	10.3.2				59.6
25	88.1	92.3	34.5	106.3	25.1	33.1	68	39.0
		92.8	5.6	103.9	4.3	34.9	73	9.9
			92.9	115.2	91.6	37.6	80	184.5
96				109 1	12.9	33.8	78	27.7
10	35.7	98.2	14.0	107.1			90	92.0
32	115.2	97.5	47.7	112.7	44.3	36.6		
39	136.8	96.2	54.5	103.9	54.6	31.5	80	109.1
	272 4	97.8	114.7	111.1	111.8	36.7	83	226.5
	25		181.0	112.3	191.1	36.2	82	372.1
74	451.3	97.3			105.0	25 6	78	251.9
92	322.2	97.5	126.1	109.6	125.8	33.0		
67	242.5	97.3	93.4	114.9	106.5	36.0	82	199.9
		76.1	25.0	108.5	20.0	34.0	67	45.0
24				116 5	135.3	36.9	78	260.7
78	333.8	93.1	125.4	110.5				51.0
26	65.3	97.9	24.5	107.1	26.5	35.1		
65	236.9	98.7	98.0	110.8	98.2	35.0	83	196.2
	County in Basin* 81 3 25 6 96 10 32 39 100 74 92 67 24 78 26	County in Farms in 1000 Acres 81 278.1 3 10.4 25 88.1 6 13.5 96 231.2 10 35.7 32 115.2 39 136.8 100 272.4 74 451.3 92 322.2 67 242.5 24 67.6 78 333.8 26 65.3	County in Basin* in Farms in 1000 Acres % of County in Farmland 81 278.1 93.6 3 10.4 94.7 25 88.1 92.3 6 13.5 92.8 96 231.2 95.5 10 35.7 98.2 32 115.2 97.5 39 136.8 96.2 100 272.4 97.8 74 451.3 97.3 92 322.2 97.5 67 242.5 97.3 24 67.6 76.1 78 333.8 93.1 26 65.3 97.9	Percent County in Basin* Total Land 1000 Acres Approximate 7 of County in Farmland Harvested for All Purposes in 1000 Acres 81 278.1 93.6 110.2 3 10.4 94.7 4.1 25 88.1 92.3 34.5 6 13.5 92.8 5.6 96 231.2 95.5 92.9 10 35.7 98.2 14.8 32 115.2 97.5 47.7 39 136.8 96.2 54.5 100 272.4 97.8 114.7 74 451.3 97.3 181.0 92 322.2 97.5 126.1 67 242.5 97.3 93.4 24 67.6 76.1 25.0 78 333.8 93.1 125.4 26 65.3 97.9 24.5	Percent County in Basin* Total Land in Farms in 1000 Acres Approximate 7 of County in Farmland Harvested for All Purposes in 1000 Acres Crain Yield Per Acre Bu 81 278.1 93.6 110.2 117.3 3 10.4 94.7 4.1 105.2 25 88.1 92.3 34.5 106.3 6 13.5 92.8 5.6 103.9 96 231.2 95.5 92.9 115.2 10 35.7 98.2 14.8 109.1 32 115.2 97.5 47.7 112.7 39 136.8 96.2 54.5 103.9 100 272.4 97.8 114.7 111.1 74 451.3 97.3 181.0 112.3 92 322.2 97.5 126.1 109.6 67 242.5 97.3 93.4 114.9 24 67.6 76.1 25.0 108.5 78 333.8 93.1 125.4 <t< td=""><td>Percent County in Basin* Total Land in Farms in 1000 Acres Approximate Z of County in Farmland Harvested for All Purposes in 1000 Acres Crain Yield Per Acre Bu Harvested for Grain in 1000 Acres 81 278.1 93.6 110.2 117.3 90.8 3 10.4 94.7 4.1 105.2 3.5 25 88.1 92.3 34.5 106.3 25.1 6 13.5 92.8 5.6 103.9 4.3 96 231.2 95.5 92.9 115.2 91.6 10 35.7 98.2 14.8 109.1 12.9 32 115.2 97.5 47.7 112.7 44.3 39 136.8 96.2 54.5 103.9 54.6 100 272.4 97.8 114.7 111.1 111.8 74 451.3 97.3 181.0 112.3 191.1 92 322.2 97.5 126.1 109.6 125.8 67 242.5 97.3<!--</td--><td>Percent County in Basin* Total Land 1000 Acres Approximate Tof County in Farms in 1000 Acres Harvested for All Purposes in 1000 Acres Crain Yield Per Acre Bu Harvested for Grain in 1000 Acres Grain Yield Per Acre Bu 81 278.1 93.6 110.2 117.3 90.8 37.3 3 10.4 94.7 4.1 105.2 3.5 35.0 25 88.1 92.3 34.5 106.3 25.1 33.1 6 13.5 92.8 5.6 103.9 4.3 34.9 96 231.2 95.5 92.9 115.2 91.6 37.6 10 35.7 98.2 14.8 109.1 12.9 33.8 32 115.2 97.5 47.7 112.7 44.3 36.6 39 136.8 96.2 54.5 103.9 54.6 31.5 100 272.4 97.8 114.7 111.1 111.8 36.7 92 322.2 97.5 126.1 109.6 125.8<!--</td--><td>Percent County in Basin* Total Land County in Farms in 1000 Acres Approximate T of County in Farmland Harvested for 1000 Acres Grain Yield Per Acre 1000 Acres Harvested for Crain in 1000 Acres Grain Yield Per Acre 1000 Acres In Corn and Soy Beans 81 278.1 93.6 110.2 117.3 90.8 37.3 72 3 10.4 94.7 4.1 105.2 3.5 35.0 73 25 88.1 92.3 34.5 106.3 25.1 33.1 68 6 13.5 92.8 5.6 103.9 4.3 34.9 73 96 231.2 95.5 92.9 115.2 91.6 37.6 80 10 35.7 98.2 14.8 109.1 12.9 33.8 78 32 115.2 97.5 47.7 112.7 44.3 36.6 80 39 136.8 96.2 54.5 103.9 54.6 31.5 80 100 272.4 97.8 114.7 <</td></td></td></t<>	Percent County in Basin* Total Land in Farms in 1000 Acres Approximate Z of County in Farmland Harvested for All Purposes in 1000 Acres Crain Yield Per Acre Bu Harvested for Grain in 1000 Acres 81 278.1 93.6 110.2 117.3 90.8 3 10.4 94.7 4.1 105.2 3.5 25 88.1 92.3 34.5 106.3 25.1 6 13.5 92.8 5.6 103.9 4.3 96 231.2 95.5 92.9 115.2 91.6 10 35.7 98.2 14.8 109.1 12.9 32 115.2 97.5 47.7 112.7 44.3 39 136.8 96.2 54.5 103.9 54.6 100 272.4 97.8 114.7 111.1 111.8 74 451.3 97.3 181.0 112.3 191.1 92 322.2 97.5 126.1 109.6 125.8 67 242.5 97.3 </td <td>Percent County in Basin* Total Land 1000 Acres Approximate Tof County in Farms in 1000 Acres Harvested for All Purposes in 1000 Acres Crain Yield Per Acre Bu Harvested for Grain in 1000 Acres Grain Yield Per Acre Bu 81 278.1 93.6 110.2 117.3 90.8 37.3 3 10.4 94.7 4.1 105.2 3.5 35.0 25 88.1 92.3 34.5 106.3 25.1 33.1 6 13.5 92.8 5.6 103.9 4.3 34.9 96 231.2 95.5 92.9 115.2 91.6 37.6 10 35.7 98.2 14.8 109.1 12.9 33.8 32 115.2 97.5 47.7 112.7 44.3 36.6 39 136.8 96.2 54.5 103.9 54.6 31.5 100 272.4 97.8 114.7 111.1 111.8 36.7 92 322.2 97.5 126.1 109.6 125.8<!--</td--><td>Percent County in Basin* Total Land County in Farms in 1000 Acres Approximate T of County in Farmland Harvested for 1000 Acres Grain Yield Per Acre 1000 Acres Harvested for Crain in 1000 Acres Grain Yield Per Acre 1000 Acres In Corn and Soy Beans 81 278.1 93.6 110.2 117.3 90.8 37.3 72 3 10.4 94.7 4.1 105.2 3.5 35.0 73 25 88.1 92.3 34.5 106.3 25.1 33.1 68 6 13.5 92.8 5.6 103.9 4.3 34.9 73 96 231.2 95.5 92.9 115.2 91.6 37.6 80 10 35.7 98.2 14.8 109.1 12.9 33.8 78 32 115.2 97.5 47.7 112.7 44.3 36.6 80 39 136.8 96.2 54.5 103.9 54.6 31.5 80 100 272.4 97.8 114.7 <</td></td>	Percent County in Basin* Total Land 1000 Acres Approximate Tof County in Farms in 1000 Acres Harvested for All Purposes in 1000 Acres Crain Yield Per Acre Bu Harvested for Grain in 1000 Acres Grain Yield Per Acre Bu 81 278.1 93.6 110.2 117.3 90.8 37.3 3 10.4 94.7 4.1 105.2 3.5 35.0 25 88.1 92.3 34.5 106.3 25.1 33.1 6 13.5 92.8 5.6 103.9 4.3 34.9 96 231.2 95.5 92.9 115.2 91.6 37.6 10 35.7 98.2 14.8 109.1 12.9 33.8 32 115.2 97.5 47.7 112.7 44.3 36.6 39 136.8 96.2 54.5 103.9 54.6 31.5 100 272.4 97.8 114.7 111.1 111.8 36.7 92 322.2 97.5 126.1 109.6 125.8 </td <td>Percent County in Basin* Total Land County in Farms in 1000 Acres Approximate T of County in Farmland Harvested for 1000 Acres Grain Yield Per Acre 1000 Acres Harvested for Crain in 1000 Acres Grain Yield Per Acre 1000 Acres In Corn and Soy Beans 81 278.1 93.6 110.2 117.3 90.8 37.3 72 3 10.4 94.7 4.1 105.2 3.5 35.0 73 25 88.1 92.3 34.5 106.3 25.1 33.1 68 6 13.5 92.8 5.6 103.9 4.3 34.9 73 96 231.2 95.5 92.9 115.2 91.6 37.6 80 10 35.7 98.2 14.8 109.1 12.9 33.8 78 32 115.2 97.5 47.7 112.7 44.3 36.6 80 39 136.8 96.2 54.5 103.9 54.6 31.5 80 100 272.4 97.8 114.7 <</td>	Percent County in Basin* Total Land County in Farms in 1000 Acres Approximate T of County in Farmland Harvested for 1000 Acres Grain Yield Per Acre 1000 Acres Harvested for Crain in 1000 Acres Grain Yield Per Acre 1000 Acres In Corn and Soy Beans 81 278.1 93.6 110.2 117.3 90.8 37.3 72 3 10.4 94.7 4.1 105.2 3.5 35.0 73 25 88.1 92.3 34.5 106.3 25.1 33.1 68 6 13.5 92.8 5.6 103.9 4.3 34.9 73 96 231.2 95.5 92.9 115.2 91.6 37.6 80 10 35.7 98.2 14.8 109.1 12.9 33.8 78 32 115.2 97.5 47.7 112.7 44.3 36.6 80 39 136.8 96.2 54.5 103.9 54.6 31.5 80 100 272.4 97.8 114.7 <

Mean = 77.2

^{*} By planimeter measurement.

Table 24. Corn and Soy Bean Production in the Raccoon River Basin - 1973.

				Corn		Soy Be	an s	Percent of Farmland	Total Corn and
County	Percent County in Basin*	Total Land in Farms in 1000 Acres	Approximate % of County in Farmland	Harvested for All Purposes in 1000 Acres		Harvested for Grain in 1000 Acres	Grain Yield Per Acre Bu	in Corn and Soy Beans	Acreage in 1000 Acres
Audubon	5	13.8	96.4	5.2	99.9	2.1	31.0	53	7.3
Buena Vista	63	220.5	95.6	95.6	109.5	76.5	36.5	78	172.1
Calhoun	98	348.2	97.2	137.9	103.2	144.1	30.6	81	282.0
Carroll	84	302.7	98.1	135.9	103.9	72.0	33.6	69	207.9
Crawford	5	22.0	96.1	8.6	102.0	2.9	33.6	52	11.5
Dallas	75	264.4	92.3	103.4	106.3	75.4	33.1	68	178.8
Greene	90	321.7	98.2	133.0	109.1	116.2	33.8	77	249.2
Guthrie	83	298.3	94.2	82.6	101.7	55.5	31.0	46	138.1
Pocahontas	33	119.4	97.3	46.0	114.9	52.5	36.0	82	98.5
Polk	14	39.4	76.1	14.6	108.5	11.6	34.0	66	26.2
Sac	49	178.1	98.3	81.7	107.6	44.3	34.0	71	126.0
Webster	22	94.1	93.1	35.4	116.5	38.1	36.9	78	73.5
Menacer		500.50	27.75						

Mean = 68.4

^{*} By planimeter measurement.

Table 25. Corn and Soy Bean Production in the Lower Des Moines River Basin - 1973.

				Corn		Soy Beans		Percent of Farmland	Total Corn and
Percent County in Basin		Total Land in Farms in 1000 Acres	Approximate % of County in Farmland	Harvested for All Purposes in 1000 Acres		Harvested for Grain in 1000 Acres		in Corn and Soy Beans	Soy Bean Acreage in 1000 Acres
	31	111.5	98.7	28.1	100.7	16.5	31.7	40	44.6
Adair			87.9	3.8	88.6	4.6	26.8	26	8.4
Appanoose	11	32.4			90.2	17.4	29.6	25	39.4
Clarke	62	157.4	92.5	22.0	90.2			20	32.5
Davis	38	117.9	95.2	17.0	91.0	15.5	29.4	28	
	7	25.2	94.2	7.0	101.7	4.7	31.0	46	11.7
Guthrie	9	39.6	94.0	13.7	109.3	7.7	36.8	54	21.4
Jasper			92.9	5.8	97.1	5.2	29.3	47	11.0
Jefferson	9	23.3			98.0	24.2	29.9	47	63.3
Lee	45	134.4	88.6	39.1	90.0			20	49.8
Lucas	70	178.2	91.2	28.2	84.1	21.6	26.7	28	
Madison	87	306.1	97.5	71.6	100.9	50.7	32.0	40	122.3
Mahaska	33	113.4	93.9	38.1	102.3	25.7	33.9	56	63.8
	88	274.6	97.9	69.7	100.7	45.2	31.7	42	114.9
Marion		241.8	89.5	32.6	79.2	23.2	24.5	23	55.8
Monroa	97				108.5	46.6	34.0	69	104.9
Polk	56	152.0	76.1	58.3					1.6
Union	2	5.2	95.3	1.0	94.2	0.6	32.1	31	
Van Buren	74	215.2	93.3	39.5	95.9	33.0	29.4	34	72.5
Wapello	66	161.1	87.3	34.4	101.1	31.3	31.1	41	65.7
Warren	100	334.9	93.8	76.6	104.7	50.3	31.0	38	126.9

Mean = 39.7

^{*}By planimeter measurement.

Table 26. Statewide Average Crop Acreage Distribution in Iowa, 1973.

Crop	Acreage	Percent of Farmland
Total Farm Land	33,705,189	100.00
Corn (field)	11,883,148	35.26
Oats	1,244,300	3.69
Soy Beans	7,588,192	22.51
Sorghum	13,414	0.04
Wheat	26,724	0.08
Rye	2,752	0.008
Timothy Seed	1,684	0.005
Red Clover Seed	2,487	0.007
White Corn	9,304	0.03
Popcorn	31,496	0.09
Hay	2,465,313	7.31
Other Crop	38,767	0.12
Pasture	6,465,709	19.18
All other land	3,933,948	11.67

Table 27. Discharge Records in the Upper Des Moines River Basin for Period of Record⁺.

	Stratford	Saylorville
Average Annual Flow, cfs	1747	2603
Minimum Daily Flow	17	44
Maximum Flow	57,400 (June 22, 1954)	47,700 (April 10, 1965)

+Period of record: Stratford -- 1920 to 1973 Saylorville -- 1961 to 1973

Table 28. Discharge Records in the Upper Des Moines River Basin for Period from 1967 to 1973.

	Stratford	Saylorville
Average Annual Flow, cfs	2,526	2,749
Minimum Average Annual Flow	409	466
Maximum Average Annual Flow	4,962	5,175
Minimum Average Monthly Flow	75	75
Maximum Average Monthly Flow	15,770	15,830
Minimum Daily Flow	46	44
Maximum Daily Flow	24,600	23,800

Figure 1. General Plan of Des Moines River basin.

Fig. 9 Municipalities in the Raccoon River Basin

