I 59
vol. 14
no. 7
1932

Key to the Mosses of the Okoboji Region
H.S. Conand

UNIVERSITY OF IOWA STUDIES

STUDIES IN NATURAL HISTORY

A KEY TO THE MOSSES OF THE OKOBOJI REGION

by

H. S. Conard and B. O. Wolden

09
$7,170.7$
Published by the University, Iowa City, Iowa

Issued semi-monthly throughout the year. Entered at the post office at Iowa City, Iowa as second class matter under the Act of October 3, 1917.

To communities, and schools, books for reloaning are loaned for a three month's period. To individuals and to clubs for study use, books are loaned for two to four weeks.

Borrowers are requested to return the books as soon as the need for them is passed, and always when books are due. Where books are re-loaned, fines may be charged by the local library and retained when the books are returned.

DAMAGES. The pages of these books must not be marked and librarians are required to note the condition of books when loaned to borrowers and when returned by such borrowers and to report damages beyond reasonable wear to the State Traveling Library.

10M.SE-40

University of IowaStudies in Natural History

Henry Frederick Wickham, Editor

A KEY TO THE MOSSES OF THE OKOBOJI REGION

by
H. S. Conard and B. O. Wolden

Published by the University, Iowa City, Iowa
June, 1932

A KEY TO THE MOSSES OF THE OKOBOJI REGION*

H. S. Conard and B. O. Wolden

The Okoboji Region as here understood includes the area readily available to botanists working at the Iowa Lakeside Laboratory, namely Emmet, Dickinson, Osceola and Lyon Counties, Iowa, the Sioux Quartzite outcrops in Brown and Cottonwood Counties, Minn., and the vicinity of Heron Lake, Minn. No additional species have been found in brief forays in Palo Alto, Clay, O'Brien, Sioux, Plymouth, Woodbury, Cherokee, Webster and Kossuth Counties, so that these counties may be considered to be included in the list. It covers, therefore, the known mosses of northwestern Iowa. Additional species appear in Winnebago County, and become more numerous eastward.

The list of species in this key is based upon Wolden's "Moss and Lichen Flora of Western Emmet County" (8), and subsequent collections of Wolden published by Blagg (2, 3, 4). We have recently collected together in most of the region, under guidance of Mr. Wolden, seeing again the majority of the species and adding a few which are here published for the first time for the area. The lists published by Shimek (7) and Cavanagh $(5,6)$ have also been considered and we entered in the Key those species which through the kindness of Miss Cavanagh, we have seen. Species not seen, and for which therefore we cannot assume responsibility, are given in footnotes.

The identifications of Wolden's Emmet County list were by G. B. Kaiser of the Sullivant Moss Society. Later material has been checked by A. LeRoy Andrews, E. B. Bartram, A. J. Grout, G. R. Jones and G. B. Kaiser, to all of whom we are indebted. Amblystegium and Drepanocladus were referred to Grout. Specimens of all species given in the key, excepting Amblystegium brevipes, Bryum intermedium and Orthotrichum anomalum are accessible in the herbaria of the authors. Species marked with an asterisk (*) have been collected by Wolden in Emmet County.

[^0]A number of names found in the published lists are believed to be in error:
Hypnum fluitans is probably our Drepanocladus aduncus.
Ephemerum sessile cannot be found or verified.
Fabronia gymnostoma, kindly communicated by Miss Cavanagh, we believe to be better referred to F. octoblepharis.

Amblystegiella subtilis, Bryum inclinatum, Campylium radicale, Catharinea crispa, Drepanocladus vernicosus, Fissidens adiantoides, F. bryoides and F. subbasilaris are found to be wrongly identified.

Authorities for names are not cited, since the names are understood to be as given in Grout's "Mosses with hand-lens and microscope". Grimmia poecilostoma (Card. \& Seb.) Limpr., identified by G. R. Jones (G. glauca and G. leucophaea of other lists) is not given in Grout's book. The species of Amblystegium and Drepanocladus are treated in harmony with Grout's "Moss Flora of North America." The student will not be satisfied with the meager descriptions afforded by the Key, but will want to have at hand a suitable manual. Hence the reference to Grout, and the retention of his names.

The Key is obviously patterned after Grout, but an attempt has been made to include both leaf and capsule characters, wherever both are diagnostic. Thus both sterile and fertile material can be traced in the same key. Helpful corrections and modifications will be welcomed by the authors.

We are indebted to the Administration of the State University of Iowa, and especially to Professor G. W. Martin, Director of the Iowa Lakeside Laboratory, for the use of the facilities of the Laboratory (which gave us the opportunity to work together) and for the privilege of publishing under their auspices.

KEY TO GENERA

1. Plant thalloid: a green scale-like growth, without distinction of stem and leaf (Fig. 1-3)

Hepaticae

1. Plant showing stem and leaves (Fig. 11, 14, 27, 29, 40) 2
2. Lvs. 2-ranked (dorso-laterally), without midrib, the cells isodiametric; sporophyte short-lived (Fig. 11-19)

Hepaticae
2. Lvs. with midrib; or if without midrib, many ranked, the leaf or the cells or both elongate; sporophytes persisting for weeks or months (Fig. 21-52) Musci

HEPATICAE

1. Plant thalloid: a green scale-like growth (Fig. 1-3, 20) 2
2. Plant showing stem and leaves (Fig. 11, 14, 19) 11
3. Thallus watery-translucent, without air spaces .. 3
4. Thallus opaque, with air chambers .. 4
5. In rosettes to 2 cm . across; capsule erect, rod-like, long lived (Fig.
20) .
6. In small (to 2 cm . long) irregularly pinnate-lobed thalli, in water or marshes (Fig. 10)
7. Aneura
8. In clustered running thalli, each $5-10 \mathrm{~mm}$. across; on moist earth8. Pellia
9. Without visible pores opening into air chambers 5
10. Surface showing polygonal areas, with an air pore in each polygon (Fig. 7)9
11. On earth 6
12. In water, floating 8
13. On upland soil or rocks; margins red-purple beneath; purple scales with 2 linear appendages (Fig. 9). 6. Reboulia
14. On margins of ponds; without scales; green 7
15. Thalli very numerous, $1-2 \mathrm{~mm}$. wide, in dense beds (Fig. 1) 1. Riccia
16. Thalli 1 -few in a place, $2-4 \mathrm{~mm}$, wide (Fig. 2)8. Thalli $1-2 \mathrm{~mm}$. wide, $5-25 \mathrm{~mm}$. long, branched (Fig. 1)1. Riccia
17. Thalli $2-10 \mathrm{~mm}$. across, about as long as wide (Fig. 2)2. Ricciocarpus
18. Polygons $1-1.3 \mathrm{~mm}$. across; pore at tip of a colorless mound (Fig. 5)3. Conocephalum
19. Polygons 0.5 mm . across or smaller; pores barrel-shaped 10
20. With marginal scales beneath; gemmae cups common (Fig. 3, 4)
21. Marchantia10. No marginal scales or gemmae; rare (Fig. 6)
22. Preissia
23. Lvs. with an underlobe, incubous; underleaves present (Fig. 11, 12) 12
24. Lvs. without underlobes, succubous (Fig. 14, 19) 13
25. Underlobe forming a helmet-shaped sac; shoots $1 / 2 \mathrm{~mm}$. wide (Fig. 12, 13)
26. Underlobe not sac-like; shoots $1-2 \mathrm{~mm}$. wide (Fig. 11) 10. Porella
27. Some or all lvs. notched at apex (Figs. 14, 15, 18) 12. Lophocolea
28. Lvs. rounded; no underleaves; shoots 1 mm . wide or less (Fig. 19)
29. Jungermannia
30. Lvs. obovate; underleaves minute, wedge-shaped; shoots 3 mm . wide11. Plagiochila

MUSCI

1. Lvs. long and narrow, with parallel vertical plates of cells (Fig. 22, 23) on upper surface of midrib; teeth of peristone 32 or 64 , not transversely jointed or barred (Fig. 21)
Nematodontae Polytrichaceae 2
2. Lvs. without vertical plates; teeth 8,16 or 32 , transversely jointed or barred, or absent (Fig. 26, 30, 36) Arthrodontae 3
3. Lvs. without green lamina (Fig. 22), but with membranous sheathingbase; caps. stout, angular; calyptra hairy
4. Polytrichum
5. Lvs. with distinct lamina, not sheathing at base (Fig. 23) ; caps. slender cylindric ; calyptra hairless 16. Catharinea
6. Lvs. 2-ranked, split at base, clasping stem and next leaf above; with mid- rib (Fig. 28) 17 Fissidens
7. Lvs. not split along upper margin 4
8. Plants erect, unbranched except for annual renewal of growth; seta from tip of stem (or apparently lateral because of renewal shoots) (Fig. 25-29) Acrocarpi 5
9. Plants creeping widely, branching continuously, sometimes with erectshoots (Fig. 40-52) ; seta from a lateral bud29

ACROCARPI

5. Lvs. papillose, without midrib; often white-tipped; on rocks; caps. covered by lvs., without peristome 22. Hedwigia
6. Lvs. papillose, with midrib (Fig. 24, 35) 6
7. Lvs. not papillose, or only faintly so on upper back 15
8. Leaf margin rolled upward (involute) (Fig. 31) 7
9. Leaf margin rolled backward (revolute), at least above 8
10. Leaf margin plane (not rolled) ; tiny tufted rock-moss without peristome(Fig. 35)25. Gymnostomum
11. Seta distinct, $5-15 \mathrm{~mm}$. ; peristome imperfect (Fig. 31) 24. Weisia
12. Seta shorter than capsule; without operculum 23. Astomum ${ }^{1}$
13. Lvs. evenly tapering from base to slender apex 11
14. Lvs, ovate or tongue-shaped, with a point or hair on the rounded tip 9
15. Tip composed of the excurrent midrib; peristome of twisted threads 10
16. Tip made of single cells beyond tip of rib; peristome white, imperfect(Fig. 24)10. Leaf tip very short and stout; peristome wholly of threads26. Barbula

[^1]10. Leaf tip slender, hair-like; peristome threads from a netted basal mem-brane (Fig. 26)28. Tortula
11. Lvs. entire 12
11. Lvs. irregularly crenate near apex ; capsule elongate, ribbed
35. Aulacomnium
11. Lvs. distinctly and sharply serrate; caps. nearly globular, with mouth on one side of tip 14
12. On earth or earthy rocks ; peristome twisted; seta about 1 cm . tall
26. Barbula
12. On bark, well above ground (Fig. 27) 30. Orthotrichum
12. On rocks, firmly attached, independent of soil 13
13. Peristome teeth erect when dry 30. Orthotrichum
13. Peristome teeth folded back against outside of capsule when dry 29. Ulota
14. Lvs. very slender, recurved ; plants of wooded banks (Fig. 25)37. Bartramia
14. Lvs. ovate-lanceolate, erect or spreading; in very wet places
36. Philonotis
15. Very black tufted moss on rocks; caps. covered by lvs.; teeth red
21. Grimmia
15. Ordinary green mosses; midrib present 16
16. Lvs. oval; cells small, isodiametric, thick-walled; peristome of twisted threads from a netted basal membrane (Fig. 26) 28. Tortula
16. Lvs. oval ($1: 5$ or less) ; cells large, distinct 17
16. Lvs. long, slender ($1: 6$ or more) ; pointed 23
17. Cells rectangular, distinct; lvs. clustered at ground level on the very short stems; annuals (Fig. 29) 18
17. Cells hexagonal; lvs. $5-10 \mathrm{~mm}$. long, in a rosette at top of a stem $1-2 \mathrm{~cm}$. tall; perennial (Fig. 37) 43. Rhodobryum
17. Cells hexagonal to rhombic, or rarely elongate; lvs, equally placed along a distinct stem; caps, nodding 20
18. Caps. erect, globular or bowl-shaped, without peristome; lvs. sharply toothed in upper half (Fig. 29) 19
18. Caps. nodding, pear-shaped, the operculum to one side of tip (Fig. 32); 33. Funarialvs. entire or nearly so
19. Caps. immersed (no seta) 31. Aphanorhegma
19. Seta distinct ; caps. above lvs. (Fig. 29) 32. Physcomitrium
20. Caps. barrel-shaped; stems often rooting at tips (Fig. 39) 44. Mnium
20. Caps. pear-shaped (Fig. 33) ; stems strictly erect, usually densely tufted 21
21. Lvs, relatively far apart, the chlorophyll sparse (in flecks on cell wallswhen dry)40. Mniobryum
21. Lvs. crowded or close, evenly green (or white-tipped) 22
22. In dense sods everywhere; lvs. spreading when moist, or julaceous and white tipped 41. Bryum
22. Stems julaceous, flagelliform; cells narrow; very rare, on Sioux quartzite42. Anomobryum
23. Lvs. $5-6 \mathrm{~mm}$. long, with stout midrib 24
23. Lus. less than 5 mm . long 26
24. Lvs. suddenly narrowed to tip, toothed near apex; inner peristome entirely of cilia (Fig. 34) 34. Timmia
24. Lvs. very finely tapered from base to apex 25
25. Livs. all curved to one side, channelled; toothed on back of midrib; plantsin big cushions20. Dicranum
25. Lvs. hairlike, wavy; caps. pear shaped, nodding 38. Leptobryum
26. Tiny tufted annuals with caps. sessile among the lvs.; no peristome
see footnote 2.
26. Seta and peristome well developed; perennial 27
27. Margins plane 28
27. Margins revolute nearly to the finely toothed apex; seta and inclined caps. mahógany red (Fig. 38) ; common 18. Ceratodon
27. Lvs. channeled by upturned margins, or plane and entire; caps. erect, or kinked to one side below the mouth; teeth split half way down
19. Dicranella
28. Lvs. toothed above; with strong midrib; caps. large, nodding; mesic
39. Pohlia
28. Lvs. entire, without midrib; in bogs57. Campylium
29. Livs. apparently 2 -ranked; large mosses with stems arching over and root-ing at tips; caps. barrel-shaped, nodding, from erect leafy shoots (acro-carpous) ; common (Fig. 39)44. Mnium
29. Very black tufted moss on rocks; caps. covered by lvs.; teeth red, (acro- carpous) 21. Grimmia
29. Stems creeping, or if erect, branching freely (Fig. 40-52) 30

PLEUROCARPI

30. Main stems creeping in soil; erect shoots bushy-branched at top ($2-5 \mathrm{~cm}$.
31. Stems not normally buried in earth 31
32. Lvs. strongly toothed, papillose at outer end of each cell51. Bryhnia
33. Lvs. opaque because of papillae on cells; entire, or toothed at apex 32
34. Lvs. translucent, not papillose ... 37
35. Lvs. without midrib, often white-tipped; caps. covered by lvs., without operculum (acrocarpous) ..22. Hedwigia
36. Lvs. with midrib (Leskeaceae) .33
37. Lvs. almost orbicular, coarsely an dirregularly toothed; on oak trees (Fig. 44)
38. Thelia
39. Lvs, more elongate, entire or nearly so (Fig. 40-43) 34
40. Lvs. strongly papillose, slenderly acuminate, the costa ending near the middle; on trees, rare 47. Fabroleskea
41. Not showing the above combination of characters .. 35
42. Evenly pinnately branched; paraphyllia many or few (Fig. 40)
43. Thuidium

[^2]35. Not evenly pinnate; paraphyllia rarely seen 36
36. Lvs, very small, ovate, more or less acute but not hair-tipped; caps. erect; common 46. Leskea
36. Lvs. closely appressed to stem, crowded, hair-tipped; or spreading and more or less tongue-shaped (Fig. 41-43) 48. Anomodon
37. Lvs. with midrib (costa) 38
37. Lvs. without midrib 46
38. Without paraphyllia 39
38. With numerous oval, toothed paraphyllia; in marshes, rare 55. Cratoneuron
39. In water or marshes; lvs. turned to right and left of stem, the taperedtips bent down (at least at ends of stems) (Fig. 52) -....54. Drepanocladus
39. Lvs. 2-ranked, glossy, not bent down (Fig. 51) 52. Eurhynchium
39. Lvs. nearly equally placed around stem 40
40. Very slender mosses; lvs. about 1 mm . long; cells of leaf mostly rhombic 41
40. Stouter; lvs. larger; cells mostly linear 43
41. Lvs. close to stem or spreading; midrib straight 42
41. Lvs, clearly to strongly bent back shortly above base (squarrose) (Fig.47)57. Campylium
42. Lvs. irregularly dentate with entire cells projecting from margin; caps.erect64. Fabronia
42. Lvs. nearly or quite entire ; caps. curved, strongly contracted below mouth when dry 58. Amblystegium
43. Lvs. rounded at apex ; rare 56. Calliergon
43. Lvs. pointed at apex 44
44. Lvs. acuminate, very entire (Fig. 49) 58. Amblystegium
44. Lvs. more or less toothed on margin 45 45
45. Foliage dull or somewhat shiny; lvs. often pleated lengthwise (Fig. 50); no spur on back; beak of operculum short 50. Brachythecium
45. Foliage glossy; little pleated, if at all; midrib ending in a spur on back of leaf; beak of operculum long 52. Eurhynchium
46. Lvs, about 1 mm . long, or less 47
46. Lvs. $2-3 \mathrm{~mm}$. long 49
46. Lvs. $3.5-7 \mathrm{~mm}$. long; streaming from rocks in brooks 65. Fontinalis
47. Lvs. with straight axis, erect or spreading 48
47. Lvs. squarrose (axis sharply bent back) (Fig. 47) ; caps. curved57. Campylium
47. Lvs. with sharp points all bent downward 59. Hypnum
48. Very dark green or olive, small moss on trees and old wood; clustered budson tips of some branches; many square alar cells; caps. erect
48. Very tiny mosses, the lvs. scarcely visible without a lens; few if any squarealar cells61. Amblystegiella
49. Lvs. flat, not folded, in flat sprays (Fig. 51) ; margin toothed or entire;no distinct alar cells; caps. curved, inclined
49. Lvs. large, shiny, entire, with distinct square alar cells; when sprays areflat, marginal lvs. folded62. Entodon

SYSTEMATIC LIST AND KEY TO SPECIES

Hepaticae Marchantiales Ricciaceae

1. Riccia
2. In floating clusters or mats, or stranded (Fig. 1) ...R. fluitans*
3. Ricciocarpus
4. With a fringe of scales beneath when floating; in shallow water, or stranded (Fig. 2) R. natans*

Marchantiaceae

3. Conocephalum

1. Thallus $1-1.5 \mathrm{~cm}$. wide; aromatic when bruised (Fig. 5).
C. conicum*

4. Marchantia

1. With umbrella-shaped erect reproductive shoots; pores oval (Fig. 3, 4) M. polymorpha*
2. Preissia
3. On cool rock faces; pores round (Fig. 6, 8)
P. quadrata

6. Reboulia

1. Thallus $4-6 \mathrm{~mm}$. wide; porous under a lens (fig. 9) R. hemisphaerica*

Jungermanniales Metzgeriaceae

7. Aneura
8. Thallus $10-12$ cells thick at middle (fig. 10) A. pinguis*
9. Pellia
10. Thalli about 8 mm . wide; species unknown*

Jungermanniaceae

9. Frullania (Figs. 12, 13, 16)
10. Autoicous (antheridia and archegonia on same plant)
F. inflata*
11. Dioicous (on different plants)
F. bolanderi*

10. Porella

1. Underlobes narrower than underleaves, tapering to apex (Fig. 11)
P. platyphylla*

11. Plagiochila

1. Leaf margins slightly bent down, upper surface convex
P. asplenioides*
2. Lophocolea
3. Lvs. 1 mm . wide, some of them entire (Fig. 14, 15, 17)
L. heterophylla*
4. Lvs. much smaller, deeply notched, with 1 -celled gemmae at tips (Fig. 18) L. minor*

13. Jungermannia

1. Leafy stems about 1 mm . wide, scattered or in mats (Fig. 19)
J. sphaerocarpa

Anthocerotales Anthocerotaceae

14. Anthoceros

1. Spores yellow, with finely granular surface (Fig. 20) A. laevis*

| Musci | Bryales
 Polytrichaceae |
| :--- | :--- | Nematodontae

15. Polytrichum (Fig. 21)
16. Lamellae covered by transparent leaf margins 2
17. Lamellae uncovered; margins toothed (Fig. 22) 3
18. Leaf ending abruptly in a colorless hairP. piliferum
19. Leaf tapering to a colored point P. juniperinum*
20. Terminal cell of lamellae notched ; caps. nearly cubical (Fig. 22)
P. commune
21. Terminal cell of lamellae rounded, not enlarged; caps. much longer than broad
P. gracile

16. Catharinea

1. Lamellae covering $1 / 3$ to $1 / 4$ of width of leaf. (Fig. 23)
C. angustata*
2. Lamellae covering $1 / 8$ to $1 / 10$ of leaf.
C. undulata*3

[^3]Arthrodontae Aplolepideae Fissidentaceae
17. Fissidens (Fig. 28)

1. Stems 3 cm . long ; in water F. julianus
2. Shorter, and not in water 2
3. Lvs. bordered by narrow long cells; minute F. incurvus*
4. Lvs. bordered by 2 or 3 rows of paler cells ; large . \boldsymbol{F}. cristatus*
5. Lvs. not bordered; sporophyte at end of shoot; on moist rocks3
6. Lvs. entire ; operculum scarcely beaked F. obtusifolius
7. Lvs. finely toothed; beak long, needle-like F. osmundioides*
Dicranaceae
8. Ceratodon
9. In small or large dense sods (Fig. 38) C. purpureus*
10. Dicranella
11. Seta yellowish; lvs. bent to one side (Fig. 30) ..D. heteromalla*1. Seta red; lvs. symmetric ${ }^{4}$D. varia*
12. Dicranum
13. Caps. stout, curved; seta $2-4 \mathrm{~cm}$. long D. scoparium*
Grimmiaceae
14. Grimmia
15. Lvs. with short hair tip or none; on boulders. G. apocarpa*
16. Lvs. with long white hair tip ; on Sioux quartzite

\qquad
G. poecilostoma ${ }^{5}$
22. Hedwigia

1. More or less prostrate; with white tips H. albicans*
2. Lacking the white tips var. viride*

Tortulaceae

23. Astomum

1. Lvs. spirally twisted when dry; caps. in autumn and early spring
[^4]
24. Weisia

1. Whole plant $1 / 2 \mathrm{~cm}$. tall, in little sods (Fig. 31)W. viridula*

25. Gymnostomum

1. Pale green, about 1 cm . tall; not seen in fr. (Fig. 35)
G. calcareum

26. Barbula

1. Midrib extending beyond the blunt apex of leaf B. unguiculata*
2. Midrib ending in the gradually tapered apexB. fallax*

27. Desmatodon

1. Plant with sporophyte about 1 cm . tall, on rock faces (Fig. 24)
D. arenaceus

28. Tortula

1. Leaf cells smooth; hair tip smooth; on earth (Fig. 26)
2. Lvs. papillose ; hair tip rough; on Sioux quartziteT. ruralis

Diplolepideae	Acrocarpae	Orthotrichaceae
	29. Ulota	

1. Capsule gently tapering into seta U. americana 30. Orthotrichum
2. On rocks .. 2
3. On trees (Fig. 27) .. 3
4. Capsule half exposed above lvs ...eri
5. Capsule completely lifted above lvs., rounded abruptly to the seta O. anomalum
6. Lvs. round-obtuse at apex ; margins scarcely recurved; strongly papillose
O. obtusifolium
7. Lvs. with a minute hyaline apiculus
o. schimperi* ${ }^{*}$

Funariaceae

31. Aphanorhegma

1. On muddy shores, in open clusters
A. serratum*

32. Physcomitrium

1. Seta $5-15 \mathrm{~mm}$. long ; lvs. serrate above (Fig. 29) P. turbinatum*
2. Seta scarcely longer than lvs.; lvs. nearly entireP. hookeri*
3. Funarla
4. Seta $2-4 \mathrm{~cm}$. tall, bent and twisted (Fig. 32) ...F. hygrometrica*
Timmiaceae
5. Timmia
6. Calyptra erect at bend of seta (Fig. 34)T. cucullata*
Aulacomniaceae
7. Aulacomnium
8. $1-4 \mathrm{~cm}$. tall, pale green, in tufts; very rare A. palustre*
Bartramiaceae
9. Prilonotis
10. Stems red, darker below ; rare P. fontana*
11. Bartramia
12. In soft cushions $5-20 \mathrm{~cm}$. across, $3-5 \mathrm{~cm}$. tall (Fig. 25)B. pomiformis*
Bryaceae
13. Leptobryum
14. Plant about 3 cm . tall; caps. thin walled L. pyriforme*
15. Ронlia
16. Plant $3-4 \mathrm{~cm}$. tall ; caps. thick walled P. nutans*
17. Mniobryum
18. Pale green, watery moss; not seen fruiting M. albicans*
19. Bryum (Fig. 33, 36)
20. Lvs. strongly decurrent ; in wet places B. bimum*
21. Lvs. not decurrent 2
22. Tiny matted silvery moss of dry places; lvs. not bordered B. argenteum* ${ }^{*}$
23. Larger, green; lvs. bordered by narrow cells 3
24. Cilia lacking or rudimentary 6
25. Cilia present, appendiculate (Fig. 36i) ; seta curved but not the caps. (Fig. 33) 4

[^5]4. Costa long excurrent 5
4. Costa percurrent or shortly excurrent B. capillare*5. Dioicous (antheridia and archegonia on different plants)
\qquad B. caespiticium*
5. Synoicous (antheridia and archegonia in same cluster) B. intermedium
6. Caps. curved; inner peristome nearly free from outer; teeth simply cross-barred
B. uliginosum* ${ }^{* 7}$
6. Caps. symmetrical; inner peristome firmly adhering to outer; teeth with vertical and oblique bars on inner face B. pendulum*s

42. Anomobryum

1. In small sods, or rising singly among liverworts A. filiforme americanum

43. Rhodobryum

1. Mostly in sods $5-30 \mathrm{~cm}$. across (Fig. 37) R. roseum (ontariense)* 44. Mnium
2. Lvs. without marginal teeth; large M. affine rugicum*
3. Lvs. with single teeth on margin 2
4. Lvs. with teeth in pairs M. marginatum*
5. Teeth on upper half of leaf only; very common (Fig. 39) M. cuspidatum*
6. Teeth all around, of $2-3$ cells each M. affine ciliare*

Pleurocarpi Leskeaceae

45. Thuidium

1. Apical cell of branch leaf papillose; paraphylia very numerous on stem (Fig. 40 l, p)2
2. Apical cell of branch leaf not papilloseT. microphyllum*
3. Branching closely pinnate; branches taperingT. abietinum
4. Branching bipinnate, "fern-like" (Fig. 40s) 3
5. Stem lvs. erect-spreading when moist, gradually tapering to apex; perichaetial lvs. ciliate
T. delicatulum*
6. Stem lvs. recurved-spreading when moist, abruptly narrowed to apex; perichaetial lvs. not ciliate T. recognitum*
[^6]
46. Leskea

1. Lvs. more than 2 x as long as wide, acute to acuminate 2
2. Lvs. less than 2 x as long as wide, acute to obtuse 3
3. Capsule straight, erect ... L. polycarpa*
4. Capsule curved, but erectvar. paludosa*
5. Lvs. symmetric, with a pleat on each half; margins often recurved; the commonest tree moss L. gracilescens*
6. Lvs. unsymmetric, not pleated; margins plane L. obscura*

47. Fabroleskea

1. Small, dark colored, loosely spreadingF. austinii**

> 48. Anomodon

1. Lvs. ending in a hair point (Fig. 43) A rostratus*
2. Lvs. more or less tongue-shaped .. 2
3. Midrib ending well below the rounded apex of lf. (Fig. 41)
4. Midrib nearly touching apex; lvs. with a tiny point and sometimes a few teeth at tip (Fig. 42)
A. attenuatus*
5. Light green; julaceous; papillae forked (Fig. 44)

Hypnaceae

50. Brachythecium ${ }^{9}$

1. Lvs. strongly pleated lengthways (Fig. 50) 2
2. Lvs. not pleated, or only slightly so when dry 5
3. Lvs. very strongly pleated (Fig. 50) ; alar cells small, cubical; caps. nearly erect; very commonB. oxycladon*
4. Lvs. less plicate ; caps. inclined to horizontal 3
5. Stem lvs. broadly triangular-ovate; cubical alar cells very numerous
B. digastrum*
6. Stem lvs. ovate-lanceolate, acuminate; basal cells broad, distinct

4
3. Stem lvs. lanceolate, gradually and evenly tapering from base to apex
B. flexicaule*
4. Seta smooth .. B. salebrosum*
4. Seta rough above
B. campestre*

[^7]5. Lvs. evenly tapering from base to apex, the margin a straightline; seta smooth; common in bogsB. acutum*
5. Lvs. with curved margins 6
6. Mostly on trees; seta smooth; caps. erect, straight 7
6. Mostly on soil or rocks or in water ; caps. curved 8
7. Larger; cells elongate B. acuminatum*
7. Smaller ; cells rhombic, 4-8:1 B. cyrtophyllum*
8. Small, in thin mats, clinging closely; seta rough above
B. plumosum*
8. Large, stout, sometimes bushy ; seta rough throughout 9
9. In or near water ; lvs. strongly decurrent, the alar cells enlargedand inflatedB. rivulare* ${ }^{*}$
9. In rich woods; lvs. slightly decurrent, without peculiar alarcellsB. rutabulum*
51. Bryhnia

1. Lvs. 1 mm . long or less; in delicate green sods .B. graminicolor*
2. Eurhynchium
3. Lvs. 2-ranked; apical cells of leaf not peculiar ...E. serrulatum*
4. Lvs. all round stem; apical cells broad and short 2
5. Lvs. broadly ovate; seta rough E. hians*
6. Branch lvs. lanceolate, blunt; stem lvs. broadly ovate, abruptlyshort-acuminate; seta smoothE. strigosum robustum*
7. Climacium1. Base of leaf auriculate-cordate; cells $5-7$ times longer than wide(Fig. 48)C. americanum*
8. Base of leaf simply cordate ; cells $10: 1$ C. dendroides
9. Drepanocladus
10. Lvs. strongly falcate-secund; no enlarged alar cells (Fig. 52) 2
11. Lvs. falcate-secund or not so; with a cluster of inflated alarcells (Fig. 46)3
12. Plant reddish; lvs. with long slender acumination (Fig. 52);cells very long and narrow, $10-30: 1,0.006 \mathrm{~mm}$. wide
\qquad
13. Plant green to yellowish; acumination and cells of leaf shorter D. intermedius*
14. Alar cells colorless, thin walled; costa slender
D. aduncus 4
15. Alar cells colored, thick walled; costa stout; robust land form
with crowded falcate lvs. sendteneri ${ }^{10}$
16. Lower leaf cells linear .. 5
17. Lower leaf cells oblong-hexagonalD. a. polycarpus 7
18. Stem lvs. falcate-secund, channeled at apexD. a. typicus 6
19. Stem lvs. flat, straight (except at tips of stems), lanceolate
D. a. kneiffii intermedius*
20. Lvs. $3-4 \mathrm{~mm}$. long, with long slender falcate acumination
21. Lvs. lanceolate ; cells narrowly linear, flexuose ; auricles of inflated cells very large
D. a. t. pseudofluitans
22. Stems mostly creeping or floating .. 8
23. Stems erect, stout, in large sods (Fig. 46)D. a. p. uncus
24. Lvs. with long slender acumination, falcate ; aquatic \qquad
D. a. p. aquaticus
25. Lis. with acumination about $1 / 2$ the length of the rest of the leaf; aquatic
D. a. p. filicuspis
26. Lvs. strongly secund, with short channeled acumen; on earth

55. Cratoneuron

1. Costa percurrent ; cells $3-6: 1$
C. filicinum*

56. Calliergon

1. Stems green; in wet places
C. cuspidatum*
2. Stems red; in mesic woods
C. Schreberi*

57. Campylium

1. Midrib distinct; lvs. gradually acuminate (Fig. 47) C. chrysophyllum*
2. Midrib absent, or very short, or double 2
3. Very slender ; alar cells not enlarged; on dry ground or wood C. hispidulum*
4. Stouter; alar cells inflated; basal cells thick walled, porose; in
bogs, often erect .. stellatum

58. Amblystegium ${ }^{12}$

1. Midrib very stout, extending into apex or beyond; in or near water (Fig. 45, 49)
[^8]1. Midrib ending near middle of leaf, or above 3
2. Stem lvs. cordate-ovate, acuminate (Fig. 49) A. irriguu**
3. Stem lvs. cordate-ovate, acute or obtuse (Fig. 45)
A. orthocladon*13
4. Stem lvs. lance-ovate, with slender acumen
A. fluviatile brevifolium
5. Median cells rhomboid, 8:1 or wider 5
6. Median cells long and slender, $10: 1$ or narrower
A. riparium 4
7. On earth or rotten wood; cells very slender A. r. typicum*
8. Stems long, soft, streaming in water A. r. fluitans*
9. Costa very feeble; cells short and broad; lvs. less than 1 mm . long 6
10. Costa very strong for size of leaf; lvs. less than 1 mm . long A. varium*
11. Costa of medium strength; lvs. 1 mm . or more long 7
12. Lvs. pressed close to stem when dry; on old wood or bark
A. serpens* ${ }^{* 14}$
13. Lvs. spreading when dry A. juratzkanum*
14. Lvs. slightly toothed on margin ; cells 4-6:1 8
15. Lvs. very entire; cells 6-8:1 9
16. Midrib reaching into base of acumination A. trichopodium*
17. Midrib ending about middle of leaf A. t. kochii*
18. Lvs. broadly ovate, shortly acuminateA. brevipes
19. Lvs. lance-ovate, acuminateA. riparium laxirete*
20. Hypnum
21. Dark green, in dense thin mats H. reptile*
22. Plagiothecium
23. Lvs. serrate nearly or quite to base (Fig. 51) ...P. deplanatum*
24. Lvs. entire, or rarely denticulate at apex P. denticulatum*
25. Amblystegiella
26. Thin closely attached films on rocks or bark A. adnata*
27. Entodon
28. Shoots cylindric E. seductrix** ${ }^{* 15}$
29. Shoots very flat E. cladorrhizans*
[^9]
63. Platygyrium

1. In dense mats 5 mm . thick P. repens*

Fabroniaceae
64. Fabronia

1. Fine film on Cedar tree bark F. octoblepharis

Fontinalaceae

65. Fontinalis
66. Lvs. distant, loosely spreading F. lesurii*

Species, varieties and forms in the key

Hepaticae 16
Musci 128
144
In footnotes, from Cavanagh 6
Total 150
Known from Emmet County
Hepaticae 14
Musci 100
114

BIBLIOGRAPHY

1. Blagg, B. Preliminary list of Iowa mosses. Proc. Iowa Acad. Sci. 34:125132. 1927.
2. \longrightarrow, Additional notes on Iowa mosses. L.c. 35:113-116. 1928.
3. \longrightarrow, Additional notes on Iowa Mosses. L.c. $36: 137-139.1929$.
4. \longrightarrow. Additional notes on Iowa mosses. -1929-1930. L.c. $37: 96$ 98. 1930.
5. Cavanagh, L. M. Mosses new to Iowa. Bryol. 52:112-113. 1929.
6. ——. Notes on Iowa mosses. IV. Proc. Iowa Acad. Sci. 38: 1931.
7. Shimek, B. The plant geography of the Lake Okoboji region. Bull. Lab. Nat. Hist. State Univ. of Iowa 7 (2):27, 42, 57-58. 1915.
8. Wolden, B. O. The moss and lichen flora of western Emmet County. Proc. Iowa Acad. Sci. 26:259-267. 1919.

EXPLANATION OF TERMS USED IN THE KEY

acumen, a tapering leaf tip whose margins are concave; hence acuminate (Fig. $43,44,47,49)$
alar cells, the cells at the basal-marginal angles of a leaf (Fig. 46)
apiculus, a little abrupt point on a rounded leaf tip (Fig. 24)
appendiculate, with knobs or short bars at intervals (Fig. 36, 1)
auriculate, bowed out like ears (Fig. 48, 1)
autoicous, archegonia and antheridia on separate shoots from the same plant
cordate, notched or heart shaped
costa, a midrib of a leaf; costate, with a costa
crenate, with coarse rounded teeth
decurrent, margins of leaf continued down along stem
dentate, with coarse teeth sloping equally toward base and apex of leaf
denticulate, finely dentate
excurrent, protruding beyond the lamina
falcate, curved, sickle shaped (Fig. 46, 52)
flagelliform, long and slender, whip-like
flexuose, wavy and winding
gemma, a 1- or few-celled propagating body
hyaline, clear, transparent
incubous, arranged like shingles on a roof if base of plant is at ridge and apex at eaves (Fig. 11, 12)
julaceous, cylindrical and smooth or downy
lamina, the flat green part of a leaf
lanceolate, about 4 times as long as wide, broadest near base and tapering to a point
mesic, of a moist habitat, neither very wet nor very dry
orbicular, nearly circular
ovate, egg-shaped in outline
papilla, a tiny lump or knob on a cell wall; hence papillose (Fig. 24, 32)
paraphyllia, thread-like or tiny leaf-like growths on a stem (Fig. 40p)
percurrent, of a costa that runs clear to the tip of a leaf (Fig. 25, 31)
perichaetial, around base of seta
porose, of thick walls with thin spots (pores)
recurved, bent backward (downward)
revolute, rolled backward more closely than recurved (Fig. 37, 1)
secund, all turned to one side, usually downward (Fig. 52)
serrate, saw-toothed
sessile, without any stalk
squarrose, spreading and recurved (Fig. 47)
succubous, arranged like shingles on a roof if base of plant is at eaves and apex at ridge (Fig. 14, 19)
underleaf, a small leaf on the under side of stem (Fig. 11, 12)
underlobe, a lobe of the leaf folded under and lying close to the leaf (Fig. 11, 12)

EXPLANATION OF PLATES

Figures of Hepaticae are mostly from drawings by Miss Esther Collette; figures of Musci are by Miss Mary Perry. This help is gratefully acknowledged by the authors.

Plate I

1. Riccia fluitans, entire plant, nat. size.
2. Ricciocarpus natans, floating form with ventral scales, and with capsules in midrib; nat. size.
3. Marchantia polymorpha, showing antheridial receptacles, gemma cup and at a marginal scales on ventral side, and median ventral scales; nat. size.
4. Marchantia polymorpha, archegonial receptacle, nat. size.
5. Receptacle of Conocephalum conioum, with one perianth projecting from under side; nat. size.
6. Receptacle of Preissia quadrata seen from above showing 4 thalloid areas with pores; x 1.5.
7. Polygonal areas of thallus with an air pore in each area, $x 4$.
8. Ventral-median scale of Preissia, x 10.
9. Ventral-median scale of Reboulia, $\times 10$.
10. Thallus of Aneura pinguis, nat. size.
11. Porella platyphylla seen from beneath, showing underleaves (central row) and underlobes; x 10.
12. Frullania from beneath, showing underleaves and underlobes, $x 20$.
13. Perianth of Frullania, seen from above, with tubular opening and two dorsal ridges; x 15 .
14. Lophocolea heterophylla, with terminal perianth; x 12.
15. Unopened capsule of Lophocolea heterophylla, x 12.
16. Elater from capsule of Frullania, x 50.
17. Elater from capsule of Lophocolea heterophylla, x 50 .
18. Leaf of Lophocolea minor with gemmae, x 12.
19. Jungermannia sphaerocarpa, seen from the side, x 5 .
20. Anthoceros laevis. Sporophytes rising from their perianths, the larger one split in two (dehisced), showing columella; nat. size.
21. Polytrichum juniperinum ; teeth of peristome (nematodontous), $\times 20$.
22. P. commune; trans. sec. leaf, showing lamellae, x 20.
23. Catharinea angustata; a, cross section, b, entire leaf, $x 15$ and 10.
24. Desmatodon arenaceus; a, b, leaf tips; c, peristome; x 20.
25. Bartramia pomiformis; a, top of plant with sporophyte; b, leaf; $\times 5$.
26. Tortula mucronifolia, peristome, x 15.
27. Orthotrichum, with "immersed" capsule, x 5.
28. Fissidens leaf, split on one side near base, $x 15$.
29. Physcomitrium turbinatum, x 5.
30. Dicranella heteromalla, capsule with arthrodontous teeth, x 10.
31. Weisia viridula leaf seen from above (margins involute), and cross sections of leaf at different levels, x 15.
32. Funaria hygrometrica, capsule, x 10.
33. Bryum capsule, nodding, pear-shaped, $x 10$.
34. Timmia cucullata, capsule and calyptra, x 10 .
35. Gymnostomum calcareum; a, leaf; b, leaf apex; c, cells from middle of leaf.

PLATE I

Plate II

36. Bryum intermedium; o, tooth of outer peristome; i, teeth (segments) and appendiculate cilia of inner peristome; x 65.
37. Rhodobryum roseum (ontariense) ; m, mature plant, nat. size; l, leaf from beneath with revolute margins, $x 3$.
38. Ceratodon purpureus, capsule, x 12.
39. Mnium ouspidatum, creeping and erect shoots, $\times 3$.
40. Thuidium delicatulum; s, a shoot bipinnately branched, nat. size; p, paraphyllium; l, apical cell of branch leaf with 3 papillae, x 50.
41. Anomodon minor leaf, x 15.
42. A. attenuatus leaf, $\times 15$.
43. A. rostratus leaf, $\times 20$.
44. Thelia asprella leaf, x 20 ; a forked papilla much enlarged.
45. Amblystegium orthocladon leaf, $\times 15$.
46. Drepanocladus aduncus polycarpus uncus Grout; l, leaf, x 20 ; c, alar cells, x 50 .
47. Campylium chrysophyllum with squarrose leaves, $x 15$.
48. Climacium americanum ; m, plant nat. size; l, leaf, x 12.
49. Amblystegium irriguum leaf, x 15.
50. Brachythecium oxycladon leaf with longitudinal pleats, x 15 .
51. Plagiothecium deplanatum, showing flat spray, $x 5$.
52. Drepanocladus revolvens, stem and leaves, x 5.

[^0]: * Contribution from the Iowa Lakeside Laboratory.

[^1]: ${ }^{1}$ Phascum floerkianum, lvs. revolute, 'on open drift hill near West Okoboji Lake' ' is reported by Cavanagh (6).

[^2]: ${ }^{2}$ Pleuridium palustre with caps. wholly enclosed by lvs., "along edge of canal, Upper Gar Lake', and Amphidium californicum with caps. projecting from lvs. "on sandy ground near Spirit Lake"' are minute mosses reported by Miss Cavanagh (6).

[^3]: ${ }^{3}$ Var. alteoristata with lamellae 5, 6-12 cells high, "on partly shaded bank on W. Okoboji Lake" is reported by Miss Cavanagh (6).

[^4]: ${ }^{4}$ Dicranella rufescens with red seta and large, thin walled, transparent leaf cells, "on seepy ground near Lower Gar Lake" is reported by Miss Cavanagh (6).
 ${ }^{5}$ As G. leucophaea Grev. in Cavanagh (6), and G. glauca as identified by G. N. Jones.

[^5]: 6 B. argenteum lanatum, white hairy with hair-like leaf tips, occurs on Sioux Quartzite.

[^6]: 7 Also identified as B. pallens and B. inclinatum, we think wrongly so (H. S.C.)

 8 Formerly reported as B. inclinatum.

[^7]: 9 See figures in Grout: Mosses with hand lens and microscope, the differences in cell details being quite indescribable.

[^8]: 10 Also forma gracilescens
 ${ }_{11}$ Also subform temis
 12 See figures in Grout: Mosses with hand lens and microscope, the differences in cell details being quite indescribable.

[^9]: ${ }^{13}$ A form with shorter costa in var. brevinerve.
 ${ }^{14}$ A very slender form is var. tenue*
 ${ }^{15}$ Var. minor, "lvs., seta and capsule shorter than in type", "at base of bur oak, near Lower Gar Lake' ' is reported by Cavanagh (6).

