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NCHRP research covers a wide ramnge
of problem areas related to design, con-

struction, and maintenance of bridges.
Nevertheless, the studies included in
Tables 1 through 5 comprise only a small
portion of all bridge research carried
out in the United States 1in recent
years. A more comprehensive listing of
current and planned research, including

contracts and state High-
and Research (HP&R) stu-

FHWA-sponsored
way Planning

20

dies, can be found in the documentatien
for the FHWA's Nationally Coordinated
Program of Highway Research, Develop-
ment, and Technology (NCP), which may
be obtained from the office of Mr.
Charles F. Galambos, Chief, Structures
Division, Office of Research, Develop-
ment & Technology, HNR-10, Federal High-
way Administration, 6300 Georgetown
Pike, McLean, Va 22101 (703/285-2087).





















































































D& Determiné_fhe effects of corrosion on
strength and fatigue

D3 Develop rating procedures based on field
tests and analysis

D6 Develop realistic impact criteria and
load factors for RC

It is hoped that these results and
recommendations will be useful to the railroad
industry as a whole, to the Association of
American Railroads and to other organizations who
share this great concern for the condition of our
country's railway bridges.
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Figure 1 Original Patterson Loop RAerial Crossing

Figure 2 Modified Patterson Loop Aerial Crossing

Figure 3 Avalon Extension Aerial Crossing

Figure 4 Missouri River Pipeline Suspension Bridge

Figure 5 Mississippi River Pipeline Suspension Bridge
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Figure 1. Parallel-chord stress-laminated bridge under construction.
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Figure 2. Load-testing an experimental stress-laminated bridge.
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4) A major effect of introduction of
the Epoxy-Graphite laminates was the

control of cracks and crack widths.
Photoelastic sheets conclusively
proved that cracks can be controlled
by external reinforcement and
prestressing the reinforced concrete
members.

5) The externally reinforced concrete
beams showed very little effect due
to cyclic loading of a million
cycles.

6) The structural adhesive together
with the steel bolts formed an
effective shear connection between
the Epoxy-Graphite laminate and the
reinforced concrete beam.

The tests conducted are a part of a
larger project to upgrade existing
reinforced concrete continuous slab
bridges by external reinforcement. A
finite element model is being developed
to represent the above mentioned
experimental procedure and behavior. The
same finite element technique will be
applied to study analytically, the
effects of prestressing and external
reinforcement on an already existing
one-fourth scale model bridge before
conducting field tests.
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CONCLUSION

For the large number of bridge struc-
tures in need of strengthening to meet
uniform rating criteria, proven rehabili-
tation methods are needed to ensure the
required performance. To properly assess
the effectiveness and consequences of
strengthening measures a state determina-
tion of the actual bridge structure is
required. This state determination re-
quires the combination of field observa-
tions and measurements with state-of-the-
art analytical tocols. Both the validation
of strengthening measures and the verifi-
cation of state determination models can
only be obtained from full scale prototype
testing under controlled laboratory condi-
tions prior to any field implementation.
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signers to identify bridges needing ur-
gent consideration for retrofit.

Techniques for retrofitting bridge
structures to improve flexural strength
and ductility and shear strength of exist-
ing bridges will be discussed and evalu-
ated. Where needs for further re- search
information are identified, rec-
ommendations for further research pro-
grams will be made.

CONCLUSIONS

Approval to proceed on this project was
obtain in June 1988. Currently, work is
underway on a detailed analysis of the I-
5/I-605 separator. Analyses of other
bridges will proceed shortly.

This program should result in effective
means for identifying 'at risk' bridges
being developed, with recommendations as
to viable and economical techniques for
repair or retrofitting. 1In this context,
the project may be seen as complimentary
to another project described in a paper to
this symposium [1].]
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observe the long term behavior.
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load of a continuous, posttensioned
curved beam tested by Lee [7]. Excellent
correlation was obtained between observed
and predicted failure loads.

CONCLUSIONS

This paper presents a brief summary
of some of the principal findings of a
study sponsored jointly by the Florida
Department of Transportation and US
Department of Transportation. At the
present time two quarter scale models of
the bridges are being tested and the
findings of this study will be fine tuned
following completion of the experimental
phase of the project.
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FIG. 1 - A Pothole Type Failure of Deck Slab
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2. The f&tigue strengths of repaired girders were
usually increased by grinding of the toes of
fillet welds.

3. When a welded repair was carried out under
dynamic loading in which the gap at the bottom
of a weld groove varied from nil to 0.1 inches
the root bead cracked unding welding. Cracking

« of the root bead was prevented by depositing
short lengths of weld, up to 4in long, from
each end of the groove to lock the groove and
prevent movement,
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Table 5.1 Normalized intercctive Forces Over Stringers

T i ]
Load Position Source |Str.$3 Str.§2 Str.§1 5#.}45&.'4:“' o

20| 27| - | -
237 | 257 | 257 | 180 ]| -77
227 | 277 | 227 | a4
300 | 252 | - | -
308 | 230 | .184 | 008 20
2D8 | 282 | .184 | 048
347|200 - | -
S50 | 2280 | .122 | ~-.004 78
31 | 227 | .100 | —.028
S22 968 | - -
306| 205 | 082 [~-.100| 114
..:Hﬁ. 183 | 0386|000
~S17 | 088 = =
01| 121 | -.081] - 311 10
07 | 134

¢ Modmum difference betwean theoreticol and experimental volus ot the point of maximum lood share.
—: Data not recorded
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Table - 1.

Positive Moment Specimens

Beam | Section Prest ressing Tendon
Type

Type |Profile [Position | Total | Total

(a) mm Area, | Force

(in) mm, | KN,
(in")| (Kips)

(1) (2) (3) (4) (5) (6) (7)
C W14x30 bar straight| 30,5 361 267
(1.2) |(0.56) | (60)

D W14x30| strand [straight| 30.5 279 289
(1.2) (0.432)| (65)

o W14x30| strand [draped | 30.5 | 279 | 267
(1.2) [0.,432) | (60)

(a) Position of tendon is the distance from the bottom surface

General Notes on Table 1

1.
2.

Steel beam:

3. Total Depth:

of the tension flange at the midspan of the beam

Concrete slab: Width = 1066,8 mm (42 in.)

Thickness = 89 mm (3.5 in.)

(0,38 in x 6,73 in.)

Web thickness = 6.86 mm (0.27 in.)
352 mm (13.86 in.)

Flange thickness x with = 9.7 mm x 171 mm

Table 2. Negative Moment Specimens
Steel Ginder | Prestress Tendon
Compress Flange Tension Flange Web Conc rete Slab - _
in Steel |Ginder
Girder | Thickness |Width Thickness |Width |Thickness | Depth STab Tendon Tendon Tendon ota ota
mm mm mm mm mn mm Type Qrea 2 Type Bond 2Argaz Force
(in) (in) {in) {in) (in) (in) mm~ (in") om” (in“) |[KN (Kips)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
F 12.7 147.6 7.9 133.4 6.4 685.8 precast 592 uncoated | bonded 197 196
(0.5) (5.8) (0.31) (5.25) | (0.25) (27) (0.918) (0.306) | (44)
G 9.5 196.9 7.9 1133.4 6.4 685.8 precast 592 uncoated | bonded 197 205
(0.38) (7.75) | (0.31) (5.25) | (0.25) (27) (0.918) {0.306) | (46)
H 9.5 176.9 1.9 133.4 9.5 508.0 precast 592 uncoated | bonded 197 222
(0.38) (7.75) | {0.31) (5.25) | (0.38) (20) (0.918) (0.306) | (50)
I 12.7 147.6 7.9 133.4 6.4 685.8 precast 592 epoxy bonded 197 213
(0.5) (5.8) (0.31) (5.25) | (0.25) (27) (0.918) | coated (0.306) | (48)
J 9.5 196.9 7.9 1133.4 6.4 685.8 cast-in- 836 uncoated | unbonded 0 0
(0.38) (7.75) | (0.31) (5.25) | (0.25) (27) place (1.296)

1.
zi
3.

General Note on Table 2

Concrete Slab: Width = 1966.8 mn (42 in), thickness = 101.6 mm (4 in.), and prestressing

Prest ressi

ng tendons positioned 25.4 mm (1 in.) from extreme fiber of tension flange in steel ginder.

Prestressing tendons in the slab positioned in the middle of the thickness of the slab.

force = 774 kN (167.3 kips).

266










0=---p Analytical
o——y0 Measured

Stress - ksf

Location
Top Fiber stress

Figure 5. Stress After Final Cable Adjustments

Strain readings were made at random times
during the day, often with large variations in the
thermal gradients through the depth of the deck
girder, resulting in considerable fluctuation in
strain readings with temperature increase, With
additional data and a more systematic approach to
data collection, some of these fluctuations should
be eliminated. Wind effects will continue to be a
topic for investigation as well as thermal and
time-dependent strains.

Presently, several of the locations are not
operating properly because of lack of proper
maintenance, but a proposal has been submitted to
service the entire strain monitoring system and to
reactivate it., An inspection has indicated that
approximately 85% of the strain gages are still
operable,

REFERENCE

(1.) Hanley, Lucine S.,, "A Study of Thermal
Effects on the East Huntington Cable=Stayed
Bridge," A Master's Thesis, The University of
Toledo, 1987.
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TABLE 1-Truss Members Data and Force Summary

Members  Cross Mean Mean Force before Force after
and Sectional Tensile Compressive Prestressing, Prestressing,
Cable Area Capacity Capacity Tension Tension
(Compression) (Compression)
(cM?) (KN) (KN) (KN) (KN)
(1) (2) (3) (4) (5) (6)
Ly I3 7.87 196 178 100 48
Ly L, 7.87 196 178 100 48
U; Uy 30.97 165 231 (109) (109)
Ly U 4.52 111 53 53 53
Ly, Uy 4,52 116 58 43 43
Lgp U 30.97 120 285 (128) (128)
L, Uy 0.90 22 31 8 8
Cable 2.90 147 —_ — 52

TABLE 2-Safety Measures of the Prestressed Truss

Truss  Probability of Failure Pp x1072

intact Structure event E

System Probability of Survival (1-Pgp)

Upper Lower Average
I | I | ‘ l l ] ‘ Bound Bound Bound
(1) (11) (2) (8) (7) (8) (_G} (8) (12) (8) (10) (3) (13) (4) (1) (2) (3) (4)
J . Driginal
§ Truss 7.390 1.350 4.360
ﬁ """ i“"] """ | """ r“i""i | I | | | l brittle (0.992) (0.9986) (0.9956)
(1) (2) ) (4 (5) (8) (7) (8) (8) (10) (11) (12) (13) e
Truss 1.990 0.434 L@ L2
brittle (0.998) (0.9996) (0.9987)
Prestressed
BEE TR E Y E .7 Truss 1.990 0.434 3. Y2
C 234 % C1 3 4 #% CY 48 G123 ductile (0,998) (0.9996) (0.9987)
I l I
24 32 14 13 24 14 23 31 4
O
x I
ra) 3
¥ o
<
™
>
3 ol
| | :
TR EERRE g
C 566 7 889 1011 12 13
2 b
Fig. 2-Event Tree Model of the Prestressed Truss
System Using Straight Cable Layout 0

Case (a) Case (b) Case (c) Case (c)
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Fig. 3-Redundancy Factor of Prestressed Truss
System
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