
PORTLAND CEMENT CONCRETE

REFERENCE MANUAL 2007-2008

TECHNICAL TRAINING AND CERTIFICATION PROGRAM

PORTLAND CEMENT CONCRETE REFERENCE MANUAL

TABLE OF CONTENTS

- IM 203 Consultation Provided by Materials Personnel
- IM 204 Inspection of Construction Projects: Inspection Sampling Guide
- IM 208 Materials Laboratory Qualification Program
- IM 213 Technical Training and Certification Program
- Codes Federal Code 1020, Iowa Code 714.8, and Article 1102.03
- IM 216 Guidelines for Verifying Certified Test Results
- IM 301 Minimum Size of Samples for Sieve Analysis
- IM 302 Method of Test, Sieve Analysis of Aggregates
- IM 306 Material Finer Than the #200
- IM 307 Specific Gravity of Aggregate
- IM 308 Determination of Free Moisture in Aggregates
- IM 315 Making and Testing Concrete Cylinders
- IM 316 Flexural Strength of Concrete
- IM 317 Slump of Portland Cement Concrete
- IM 318 Air Content of Freshly Mixed Concrete by the Pressure Method
- IM 327 Sampling Freshly Mixed Concrete
- IM 328 Making, Protecting, and Curing Concrete Flexural Specimens
- IM 340 Weight per Cubic Foot, Yield, and Air Content of Concrete
- IM 347 Measuring Length of Drilled Concrete Cores
- IM 375 Method of Test for Flow of Grout Mixes
- IM 383 Testing the Strength of PCC Using the Maturity Method
- IM 385 Temperature of Freshly Mixed Concrete
- IM 401 Inspection and Acceptance of Portland Cement
- IM 403 Inspection and Acceptance of Admixtures
- IM 491.14 Inspection and Acceptance of Slag for Use in PCC
- IM 491.17 Inspection and Acceptance of Fly Ash
- IM 525 Method of Designing Flowable Mortar
- IM 527 Paving Plant Inspection
- IM 528 Structural Concrete Plant Inspection
- IM 529 Portland Cement Concrete Proportions
- IM 530 Quality Management and Acceptance of PCC Pavement
- IM 531 Test Method for Combining Aggregate Gradations
- IM 532 Aggregate Proportioning Guide for PCC Pavement
- IM T-203 General Aggregate Source Information

Specifications – Sections 2301 and 2403

Office of Materials

Iowa Department of Transportation

April 20, 2004 Supersedes April 27, 1999 Matls. IM 203

CONSULTATION PROVIDED BY MATERIALS PERSONNEL ON CONSTRUCTION PROJECTS

INTRODUCTION

In addition to the routine duties associated with the inspection of materials, assurance sampling and testing, and certain laboratory operations, the District Materials Engineer (DME) is required to monitor Quality Control and acceptance procedures, and provide consultation when difficulties are encountered.

CONSULTATION


Plant inspectors are by instruction required to consult the DME through the Resident Construction or County Engineer when the contractor encounters difficulty with regard to specification compliance and satisfactory plant operations. Consultations are also required when technical problems become evident to personnel performing sampling and testing and other specialized functions. The DME should provide the necessary assistance and guidance when conditions indicate action is required.

GUIDELINES FOR CONSULTATION

In many cases plant equipment operation and maintenance practices are directly related to problems associated with the work. Materials handling and storage procedures also cause difficulty at times. Sampling, testing and related inspection functions require re-evaluation when difficulties are encountered on a project. The following guidelines should be observed when Materials personnel are consulted for guidance:

- 1. Determine who is responsible for the problem and advise the appropriate party.
- 2. If the difficulty is associated with sampling, testing or related inspection functions provide the necessary guidance or instruction if practical and advise the engineer in charge of action taken.
- 3. If the difficulty is associated with the contractor's equipment or procedures, reaffirm the responsibility and requirements assigned to the contractor by the contract documents. The DME should then assist the contractor in identifying the problem by performing additional tests, calibrations, or other measurements as provided for in the specifications and appropriate instructions.
- 4. In the event that the standard procedures do not properly identify the factors causing the difficulties encountered, the DME may provide additional guidance, if requested, with the clear understanding that such further consultation will not relieve or reduce the contractor's responsibility for solving problems associated with the work. Assistance so provided shall not include management services associated with the operation and maintenance of the contractor plant equipment and the direction of the contractor personnel.

Iowa Department of Transportation

Office of Materials

October 17, 2006 Supersedes October 19, 2004 Matls. IM 204

GENERAL REWRITE - PLEASE READ CAREFULLY.

INSPECTION OF CONSTRUCTION PROJECT SAMPLING & TESTING

INTRODUCTION

The Iowa Department of Transportation (DOT) has established a Quality Assurance Program (IM 205) to assure that the quality of materials and construction workmanship incorporated into all highway construction projects is in reasonable conformity with the requirements of the approved plans and Specifications, including approved changes. It consists of an Acceptance Program and an Independent Assurance Program (IAP), both of which are based on test results obtained by qualified persons and equipment.

The acceptance portion of the program covers quality control (QC) sampling and testing and verification sampling and testing. The IAP portion of the program covers the evaluation of all sampling and testing procedures, personnel, and equipment used as part of an acceptance decision (includes Contractor, Contracting Agency, and consultant).

ACCEPTANCE PROGRAM FOR MATERIALS

To fulfill the materials acceptance requirements, several methods are used by the DOT.

Sampling & Testing (Test Report) Certification Approved Sources Approved Shop Drawings Approved Catalog Cut Fabrication Report Visual Approval by the Engineer

In many cases more than one method may be required for acceptance in the 204 Appendices and tables in the back of this guide. For some new or special materials, the Materials Engineer may need to determine the most appropriate acceptance requirements.

In order to provide the Contractor the opportunity to construct a project with minimal sampling and testing delays, inspection is performed at the source for many materials. Source inspection may consist of inspecting process control, sampling for laboratory testing or a combination of these procedures. All source-inspected or certified materials are subject to inspection at the project site prior to being incorporated into the work. Project site inspections are for identification of materials with test reports and for any unusual alterations of the characteristics of the material due to handling or other causes. Verification samples secured by project Agency personnel of source-inspected, certified, or project processed materials are also required for some materials in order to secure satisfactory validation for acceptance.

1

When certification procedures are required, the Contractor may, on the Contractor's own responsibility and at the Contractor's risk, incorporate these materials into the work. Acceptance will be based on satisfactory certification and compliance of the test results of any verification samples. When verification samples are not required, acceptance will be based on satisfactory certification.

A. SAMPLING & TESTING (TEST REPORT)

When a material is sampled and tested, the results will be documented on a construction form or a test report. There is quality control sampling and testing done by the Contractor or producer and verification sampling testing done by the Project Engineer, the District Materials Engineer, the Central Materials Laboratory, or an independent laboratory.

In many cases, in addition to sampling and testing, some other type of acceptance method will also be required. Sampling and testing may be done at the project, supplier, or source depending on which is the most appropriate.

B. CERTIFICATION OF COMPLIANCE

For many materials a fabricator, manufacturer, or supplier is required to provide the Project Engineer with a certification document stating that the material meets the requirements of the plans and specifications. In most cases, the fabricator, manufacturer, or supplier must also be on an approved list in the IM. For some of these materials, sampling and testing is also required before final acceptance. The certification comes in a variety of forms:

- Stamped or preprinted on truck tickets as with aggregates,
- Stamped or preprinted on invoices as with Portland Cement and asphalt binder,
- Stamped or printed on the Mill Analysis as with reinforcing steel, structural steel, and other metals,
- Furnished as a separate document with each shipment as with zinc-silicate paint, engineering fabrics, epoxy coatings, and dowel baskets,
- Stamped or printed on a list of materials for each shipment as with CMP, concrete pipe, clay tile, and corrugated plastic subdrain,
- In the form of a guaranteed analysis as with seed labels.

The inspector will verify that the certification has been received by documenting it in the project materials book. Certifications are Type A, Type C, Type D, or other type as required by the Engineer or IM.

Type A Certification

A Type A certification is a laboratory report with test results and a certification statement stating that the materials furnished comply with the specifications. The tests may be conducted in the manufacturer laboratory or another qualified laboratory. The test samples must be from the lots of material shipped.

Type C Certification

A Type C certification is a paper prepared by the manufacturer or producer stating that the materials furnished are in accordance wit the specifications. The applicable specification article or Office of Materials IM number is identified in the certification.

Type D Certification

A Type D certification is a letter or paper prepared by an approved manufacturer stating that the materials furnished comply with the applicable specifications of the Iowa Department of Transportation.

C. APPROVED SOURCE

(May also be referred to as "Approved Producer, Approved Supplier, Approved Fabricator, or Approved Brand") The source, producer, and the material must be evaluated and approved by the Office of Materials according to the appropriate Office of Materials IM in order to be used on a project. Once a letter of approval is issued, the source or producer is approved for use on projects (with the exception of steel fabricators). Approved lists are issued biannually for general information only. Approval for a source or producer may be rescinded at any time if it no longer meets the requirements of the IM.

The project inspector will document information about this material such as product name, source, date, producer, and lot number in the project materials book.

Most approved sources also require a certification.

D. APPROVED WAREHOUSE STOCK

For some items made up of miscellaneous materials, inspection and approval will be done by the District Materials Engineer at the supplier's warehouse.

E. APPROVED SHOP DRAWING & APPROVED CATALOG CUT

This information must be submitted to, and reviewed by the lowa DOT Central Design Offices, before the material can be incorporated in the project.

F. FABRICATION REPORT

The project inspector must have a copy of the final fabrication report prior to incorporating the item into the project. The report will vary depending on the Materials IM requirements for the item fabricated. Final acceptance is by construction personnel at the project site, and is based on the proper documentation and the condition of the component.

G. VISUAL APPROVAL BY PROJECT ENGINEER

(May also be referred to as "As Per Plan, Approved By RCE, or Manufacturer Recommendations") The project inspector must document information about this material such as product name, source, producer, lot number and date produced in the project materials book. The inspector will make sure the material meets the requirements of the plans, the Engineer, or the manufacturer before the material is used. Visual approval requires construction personnel to visually inspect the material to determine if it complies with the specifications. Visual approval is appropriate for non-critical items such as mulch or sod stakes, where compliance can be readily determined by visual means. If there are questions on specification compliance, samples will be taken for testing.

INDEPENDENT ASSURANCE PROGRAM

The IAP evaluates all sampling and testing procedures, personnel, and equipment used as part of an acceptance decision (Includes Contractor, Contracting Agency, and consultant). Independent assurance includes evaluation based on:

Calibration checks Split samples Proficiency samples Observation of sampling and testing performance

The test method and the frequency of test are in the Appendices. Calibration checks and proficiency samples testing is covered in IM 208.

SMALL QUANTITIES

Refer to Appendix X.

IM 204 Appendixes

- Appendix A Roadway & Borrow Excavation & Embankments
- Appendix B Soil Aggregate Subbase
- Appendix C Modified Subbase
- Appendix D Granular Subbase
- Appendix E Portland Cement Concrete Pavement, Pavement Widening, Base Widening, Curb & Gutter & Paved Shoulders
- Appendix F Hot Mix Asphalt (QMA)
- Appendix H Structural Concrete, Reinforcement, Foundations & Substructures, Concrete Structures, Concrete Floors, & Concrete Box, Arch & Circular Culverts
- Appendix I Concrete Drilled Shaft Foundations
- Appendix K Cold-In-Place Recycled Asphalt Pavement
- Appendix L Granular Surfacing/Driveway Surfacing
- Appendix M Concrete Bridge Floor Repair & Overlay & Surfacing
- Appendix P Surface Treatment (Seal Coat, Slurry, Joint Repair, Crack Filling & Fog Seal)
- Appendix T Base Repair, Pavement Repair
- Appendix U Granular Shoulders
- Appendix V Subdrains
- Appendix W Water Pollution Control, Erosion Control
- Appendix X Acceptance of Small Quantities of Materials
- Appendix Z Supplemental Guide, Basis of Acceptance

October 16, 2007 Supersedes October 17, 2006 **ROADWAY & BORROW EXCAVATION & EMBANKMENTS**

Section 2102 & 2107

Matls. IM 204 Appendix A (US) Units

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE		QUA	LITY CONTRO	L					ENT ASSURA		_	REMARKS
ITEM		& RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
SOURCE INSPECTIO	N							1.1						
Special Backfill														1
Crushed Stone (4132.02)		AS 209												
Crushed Concrete (4132.02)		209							1					
RAP (2303.02) Gravel (4132.03)		AS 209												
Granular Backfill		AS 209												
Engineering Fabric (4196)	Quality	AS 496.01												1
GRADE INSPECTION	1				-									
Special & Select Backfill Compaction Control	Moisture	309, 310						V	RCE	1/lift/ 1500 ft.	1 lb	RCE	Field Book	
Moisture & Density Compaction Control	Density (Proctor) Moisture	309, 310						V	RCE	1/soil class 1/lift/1500 ft.	25 lb 1lb	RCE	Field Book	
Compacted Materials	Density	311, 326, 334						V	RCE	1/lift/mile or 1/1500 cy		RCE	Field Book	Unless otherwise specified or directed
						-			-	1		-		
									-					
AS-Approved Sou ASD-Approved Sh S&T-Sampling & T	op Drawing	Cert C	-Type A Cer -Type C Ce -Type D Ce	rtification		DME- CTRL	Resident Co District Mat -Central Ma TR-Contrac	erials Engaterials Of		Project Engi	neer		IA-Independen V-Verification	t Assurance

ROADWAY & BORROW EXCAVATION & EMBANKMENTS

October 16, 2007 Supersedes October 17, 2006

Section 2102 & 2107

Matls. IM 204 Appendix A (Metric) Units

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE		QU	ALITY CONTRO	DL					ENT ASSURAN	NCE		REMARKS
ITEM		& RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE	FREQ.	SAMPLE	TEST BY	REPORT	
SOURCE INSPECTIO	N													
Special Backfill					1									
Crushed Stone (4132.02)		AS 209			1						1.4.7.1			
Crushed Concrete (4132.02)		209			1									
RAP (2303.02) Gravel (4132.03)		AS 209			1.5					100	2	1		
Granular Backfill		AS 209											1	
Engineering Fabric (4196)	Quality	AS 496.01							1-					
GRADE INSPECTIO	ON													1. S.
Special & Select Backfill Compaction Control	Moisture	309, 310						V	RCE	1/lift/ 450 m	0.5 kg	RCE	Field Book	
Moisture & Density Compaction Control	Density (Proctor) Moisture	309, 310					10.00	V	RCE	1/soil class 1/lift/450 m	12 kg 0.5 kg	RCE	Field Book	14
Compacted Materials	Density	311, 326, 334						V	RCE	1/lift/1.5 km or 1/1150 m ³		RCE		Unless otherwise specified or directed
							-		1					
	2													
AS-Approved Sour ASD-Approved Shu S&T-Sampling & T	op Drawing	(Cert C-Type	A Certificatio C Certificatio D Certificatio	n	[RCE-Residen DME-District M CTRL-Central CONTR-Contr	Materials Materials	Engineer	eer/Project E	l ngineer		IA-Indeper V-Verificat	dent Assurance

October 16, 2007 Supersedes October 17, 2006

SOIL AGGREGATE SUBBASE

Section 2110

Matls. IM 204 Appendix B

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE		QU	ALITY CONTR	OL	_				ICATION S&T			REMARKS
ITEM		& RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
SOURCE INSPECT	TION													
Granular Surfacing Material (4120)		AS 209												
GRADE INSPECTI	ON									-				
Mixed Materials (2110)	Density (Proctor)	309						V	RCE	2/mile (min. 2/proj.)	5000 gm	RCE	Field Book	Change of Soil type requires additional Proctors
Uncompacted Mixture	Pulverization Moisture	2" Sieve Visual						Ā	RCE	2/mile		RCE	Field Book	
Compacted Mixture (2110)	Density Thickness Width	311, 312, 334 337						V	RCE	2/mile	, I	RCE	Field Book	
Finished Subbase	Cross Section	Stringline						V	RCE	10/mile		RCE	Field Book	Template for secondary park 8 institutional roads
		1												
AS-Approved S ASD-Approved S&T-Sampling &	Shop Drawing	1	Cert A-Type Cert C-Type Cert D-Type	C Certificat	tion		RCE-Reside DME-Distric CTRL-Centr CONTR-Co	t Materials al Materia	s Engineer	neer/Proje	ct Engineer		IA-Independ V-Verificatio	lent Assurance on

MODIFIED SUBBASE

October 17, 2006 Supersedes October 18, 2005

Section 2115

Matls. IM 204 Appendix C (US) Units

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE		1	QUALITY CONT	ROL					IDENT ASSUR			REMARK
ITEM		& RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
SOURCE INSPECTION	N					-		-			-			
Natural Aggregate	Quality Gradation	AS 209									1.1.1.1			
Recycled Products												15.10		
Composite	Gradation	*As Per Spec.											-	-
PCC Pavement	Gradation	*As Per Spec.												
Rap		*As Per Spec.												
GRADE INSPECTIO	N												-	
Compacted Subbase	Density	*As Per Spec.						V	RCE			RCE	Field Book	
Dimensions	Thickness Width	337						V	RCE	3/2 lane mi.		RCE	Field Book	
	Cross Section (Primary)	Stringline						V	RCE	10/mi.		RCE	Field Book	
	Cross Section (Other)	Template			-			V	RCE	3/mi.		RCE	Field Book	
AS-Approved Sou ASD-Approved Sh S&T-Sampling & 1	op Drawing	Cer	t A-Type A o t C-Type C t D-Type D	Certificatio	n		RCE-Resider DME-District CTRL-Centra CONTR-Con	Materials Materia	s Engineer	 neer/Project E	Engineer		IA-Independent V-Verification	Assurance

* Use Current Specification for Modified Subbase

October 17, 2006 Supersedes October 18, 2005

MODIFIED SUBBASE

Section 2115

Matls. IM 204 Appendix C (Metric) Units

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE		1	QUALITY CONT	ROL				INDEPENDEN & VERIFIC	T ASSURANC	E		REMARKS
ITEM		& RELATED IMs	SAMPLE	FREQ.	SAMPLE	TEST BY	REPORT	S&T TYPE	SAMPLE	FREQ.	SAMPLE	TEST BY	REPORT	
SOURCE INSPECTION	N													-
Natural Aggregate	Quality Gradation	AS 209												
Recycled Products							1	1			1.1			
Composite	Gradation	*As Per Spec.												
PCC Pavement	Gradation	*As Per Spec.												
Rap		*As Per Spec.		_										
GRADE INSPECTIO	N					-								
Compacted Subbase	Density	*As Per Spec.						V	RCE			RCE	Field Book	T
Dimensions	Thickness Width	337				-		V	RCE	2/2 lane km	1	RCE	Field Book	1
	Cross Section (Primary)	Stringline						V	RCE	6/km		RCE	Field Book	
-	Cross Section (Other)	Template						V	RCE	2/km		RCE	Field Book	
AS-Approved Sou ASD-Approved Si S&T-Sampling &	nop Drawing	Ce	rt A-Type A rt C-Type C rt D-Type D	Certificatio	n		RCE-Resider DME-District CTRL-Centra CONTR-Cont	Materials I al Materials	Engineer	 er/Project Eng	ineer		IA-Independen V-Verification	It Assurance

* Use Current Specification for Modified Subbase

GRANULAR SUBBASE

October 17, 2006 Supersedes October 18, 2005

Section 2111

Matls. IM 204 Appendix D (US) Units

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE			QUALITY CONT	ROL					ENT ASSURAN	ICE		REMARKS
ITEM		& RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
SOURCE INSPECTION	N													
Natural Aggregate (4121)	Quality Gradation	AS 209					12.2							1.
PCC Pavement	Gradation	209						1						
5								-			-		1	
						-								
	-		-	-		-					-			
GRADE INSPECTIO	N					1								-
Compacted Subbase (2111)	Density	By Specification		-			-	V	RCE			RCE	Field Book	
Dimensions	Thickness Width	337						V	RCE	3/2 lane mi.		RCE	Field Book	
	Cross Section (Primary)	Stringline						V	RCE	10/ mi.		RCE	Field Book	
	Cross Section (Others)	Template						V	RCE	3/mi		RCE	Field Book	
AS-Approved Sou ASD-Approved Sh S&T-Sampling &	op Drawing	Cert	A-Type A C-Type C D-Type D	Certificatio	on		CE-Resident ME-District M TRL-Central N CONTR-Contra	laterials En Materials (ngineer	r/Project Eng	ineer		IA-Independer V-Verification	nt Assurance

1

October 17, 2006 Supersedes October 18, 2005

GRANULAR SUBBASE

Section 2111

Matls. IM 204 Appendix D (Metric) Units

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE			QUALITY CONT	ROL			, 1	NDEPENDENT / & VERIFICAT				REMARKS
ITEM		& RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPL E SIZE	TEST BY	REPORT	
SOURCE INSPECTIO	N			_	_	-								
Natural Aggregate (4121)	Quality Gradation	AS 209												
PCC Pavement	Gradation	209		1					1					
								-						
												-		
GRADE INSPECTION	N											-		
Compacted Subbase (2111)	Density	By Specification						V	RCE	100		RCE	Field Book	
Dimensions	Thickness Width	337		-				V	RCE	2/2 lane km		RCE	Field Book	
	Cross Section (Primary)	Stringline						V	RCE	6/km		RCE	Field Book	
	Cross Section (Others)	Template						V	RCE	2/km		RCE	Field Book	
AS-Approved Sou ASD-Approved SI S&T-Sampling &	hop Drawing	Cer	A-Type A C-Type C D-Type D	Certification	on		RCE-Reside DME-District CTRL-Centr CONTR-Cor	t Materials I al Materials	Engineer	er/Project Eng	ineer		IA-Independe V-Verification	

1

PORTLAND CEMENT CONCRETE PAVEMENT, PAVEMENT WIDENING, BASE WIDENING

CURB & GUTTER, & PAVED SHOULDERS

October 16, 2007 Supersedes April 17, 2007

Section 2122, 2201, 2213, 2301, 2302, 2310, SS-01046

Matls. IM 204 Appendix E (US) Units

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE		QUAL		DL			INC		NT ASSURA			REMARKS
ITEM		& RELATED IMs	SAMPLE BY	FREQ.	SAMPLE	TEST BY	REPT.	S&T TYPE	SAMPLE	FREQ.	SAMPLE	TEST BY	REPORT	
SOURCE INSPEC	CTION	10						122	1					
Aggregates- Fine (4110)		AS 209					5		-					
Aggregate- Coarse (4115), Intermediate		AS 209								1				
Portland Cement (4101)	Quality	AS 401												
Fly Ash (4108)	Quality	AS 491.17							1					
GGBFS (Ground Granulated Blast Furnace Slag)	Quality	AS 491.14												10.00
Curing Compounds (4105)	Lab- Tested													
Clear Curing Compounds (4105)		AB 405.07												
Air Entraining Admixture (4103)	Quality	AB 403				-								
Water Reducing Admix. (4103)	Quality	AB 403												
Retarding Admixture (4103)	Quality	AB 403												
Joint Sealer (4136.02)	Lab Tested	436.01, 436.02,436.03												
Backer Rod (4136.02)	Lab Tested	AB 436.04		_				S	1.43.2					
Mixing Water (4102)	Lab Tested							V	RCE/ CONTR	1/ source	1 pint	CTRL		Not required for potable water from municipal supply
AS-Approved Sour ASD-Approved Sho S&T-Sampling & T	op Drawing	Ce	ert A-Type A C ert C-Type C C ert D-Type D C	Certification		DM	E-Resident E-District M RL-Central M NTR-Contra	aterials En Materials O		Project Eng	ineer	V-V	ndependent A erification C-Quality Ma	

PORTLAND CEMENT CONCRETE PAVEMENT, PAVEMENT WIDENING, BASE WIDENING

October 16, 2007 Supersedes April 17, 2007 **CURB & GUTTER, & PAVED SHOULDERS**

Section 2122, 2201, 2213, 2301, 2302, 2310, SS-01046

Matls. IM 204 Appendix E (US) Units

MATERIAL OR CONSTRUCTION	TESTS	METHO ACCEPT	ANCE		QU	ALITY CONTRO	L.				INDEPENDENT A & VERIFICAT		_		REMARKS
ITEM		& RELATE		SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
SOURCE INSPECT	ION									22					
Steel Reinforcement (4151)															
Dowels	Quality	AS	451	1		1				-					
Tie Bars	Quality	AS	451				-	1	-	1					
General Use	Quality	AS	451										100		
PLANT INSPECTIO	DN		0					-		1					
Aggregates-Fine (4110/4111)	Grad * QMC	302 306 336		CONTR	1/1500cy	IM 301	CONTR	800240	V V	DME RCE CONTR	1/100,000 sy, sample 1/day, test 1 st day + 2/lot	IM 301 IM 301	DME RCE/ DME		See Notes See IM 213
	Grad * Non-QMC	302 306 336		CONTR	1/day	IM 301	CONTR		V V	DME RCE/ CONTR	1/100,000 sy, sample 1/day, test 1 st day + 1/lot	IM 301 IM 301	DME RCE/ DME		
	Moist	308, 527		CONTR	1/half day	1000 gm	CONTR					1.1		1	Not applicable with probe
	Sp. Gr.	307		CONTR	IM 527	1000 gm	CONTR	1					-		
	Quality	AS	209			1									
AS-Approved Source ASD-Approved Sho S&T-Sampling & Te	p Drawing		Cert C	-Type A Cert -Type C Cer -Type D Cer	tification		DME-Dist	rict Material ntral Materia	s Enginee	gineer/Projec r	t Engineer	١	/-Verificat		ance ment Concre

* A system approach to independent assurance may be applied, at the discretion of the DME.

NOTE: When Certified Plant Inspection is not provided, the engineer is responsible for performing quality control sampling and testing.

PORTLAND CEMENT CONCRETE PAVEMENT, PAVEMENT WIDENING, BASE WIDENING

CURB & GUTTER, & PAVED SHOULDERS

October 16, 2007 Supersedes April 17, 2007

Section 2122, 2201, 2213, 2301, 2302, 2310, SS-01046

Matls. IM 204 Appendix E (US) Units

MATERIAL OR	TESTS		THOD OF		QUA		OL				NDEPENDENT AS				REMARK
ITEM		REL	& ATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE	FREQ.	SAMP. SIZE	TEST BY	REPORT	
PLANT INSPECT	ION														
Aggregates- Coarse (4115), Intermediate	Grad * QMC	302 306 336		CONTR	QMC 1/1500 cy	IM 301	CONTR	800240	IA V	DME RCE/ CONTR	1/100,000 sy Sample 1/day,test 1 st day+2/lot	IM 301 IM 301	DME RCE/ DME		See Notes
	Grad * Non- QMC	302 306 336		CONTR	1/day	IM 301	CONTR		IA V	DME RCE/ CONTR	1/100,000 sy, sample 1/day, test 1 st day + 1/lot	IM 301 IM 301	DME RCE/ DME		
	Moist	308		CONTR	1/half day	IM 301	CONTR		1.00	11.1	1	1			
	Sp. Gr.	307		CONTR	IM 527	IM 301	CONTR	1							
	Quality	AS	209		1		1 - 1		V	DME	1/100,000 sy	50 lb	CTRL		
Portland Cement (4101)	Quality	AS	Cert D		Each Load				V	DME	1/100,000 sy	15 lb	CTRL		
	Cement Yield			CONTR	1/10,000 cy		CONTR	820912							
Fly Ash	Quality	AS	Cert D		Each Load			800240	V	DME	1/100,000 sy	15 lb	CTRL		
GGBFS(Ground Granulated Blast Furnace Slag)	Quality	AS	Cert		Each Load				V	DME	1/100,000 sy	15 lb	CTRL		
Air Admixture	Quality	AS	403						V	DME	1/batch	1 pint	CTRL		Sample
Water Reducer	Quality	AS	403				1200		V	DME	1/batch	1 pint	CTRL	-	batches not previously
Retarding Admixture	Quality	AS	403						V	DME	1/batch	1 pint	CTRL		reported or a required by DME
AS-Approved Sour ASD-Approved Sho S&T-Sampling & T	op Drawing		C	ert A-Type A ert C-Type C ert D-Type D	Certification		DME	-Resident Co -District Mate L-Central Ma ITR-Contracto	erials Engi terials Offi	neer	ject Engineer		V-Verifica	ndent Assura tion lity Managen	ince

* A system approach to independent assurance may be applied, at the discretion of the DME.

NOTE: When Certified Plant Inspection is not provided, the engineer is responsible for performing quality control sampling and testing.

NOTE: Quality samples not required when mix quantity is less than 2000 sq. yds., except for curing compound.

PORTLAND CEMENT CONCRETE PAVEMENT, PAVEMENT WIDENING, BASE WIDENING

October 16, 2007 Supersedes April 17, 2007 CURB & GUTTER, & PAVED SHOULDERS Section 2122, 2201, 2213, 2301, 2302, 2310, SS-01046 Matls. IM 204 Appendix E (US) Units

MATERIAL OR	TESTS	METHOD OF ACCEPTANCE		QUAL	TY CONTR	ROL		22	1	NDEPENDENT AS				REMARKS
ITEM		& RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPT.	S&T TYPE	SAMP. BY	FREQ.	SAMPLE SIZE	TEST BY	REPT.	
GRADE INSPECT	ION													
Chloride Solution	Concentration	373	RCE	1/day									1	
Steel Reinforcement:							1		2.					
Dowels	Quality	AS 451.03B			1.000			V	DME	1/District/Yr	2 ft	CTRL	1	
Dowel Basket Assembly	Quality	AS 451 Cert D 451.03B					1							
Tie Bars	Quality	AS 451				1		V	DME	1/District/Yr	2 ft	CTRL	1	1
General Use	Quality	AS 451						V	DME	1/District/Yr	48 in	CTRL	1	
Curing Compound	Quality	Tested 4105						V	DME	1/batch	1/qt	CTRL		Sample batches not previously reported or as required by DME
Plastic Concrete	Air	318 327	QMC CONTR	QMC only 2301.04C 1/350 cy		QMC CONTR	E115	IA V	DME	1/100,000 sy 2301.04C 1/700 cy, 1/100 cy for transit mixer		DME RCE		Min. 1 test/pour
	Slump	317						V	RCE	1/700 cy, min 1/pour		RCE	1	For hand finish or fixed form only
	Grade Yield	1	RCE	1/1000 cy		RCE						1000		
	Beams**	316, 327, 328	RCE	2/day		RCE	E115		-		1			-
Hardened Concrete	Thickness*	346, 347						IA V	DME RCE/ CONTR	1/2000 sy	10%	DME RCE		
	Smoothness	341 Cert. Test Rept.	CONTR		100%	CONTR		V	DME	10000	10%	DME	5.22	15 4
AS-Approved Sou ASD-Approved Sh S&T-Sampling & T	op Drawing	Cert C-1	ype A Certi ype C Cert ype D Cert	ification		RCE-Resid DME-Distr CTRL-Cen CONTR-C	ict Materia tral Materi	Is Enginee		ect Engineer		V-Verifica		urance gement Concrete

*IA thickness cores sent to Central Lab for additional project information testing (Interstate and Primary only.)

**None required when maturity is used. Quality samples not required when mix quantity is less than 2000 sq. yds., except for curing compound.

NOTE: RCE/CONTR indicates that the contractor shall assist in the sampling at the direction of and witnessed by the project engineer. NOTE: Form #E115 available from the Office of Construction.

PORTLAND CEMENT CONCRETE PAVEMENT, PAVEMENT WIDENING, BASE WIDENING

October 16, 2007 Supersedes April 17, 2007 CURB & GUTTER, & PAVED SHOULDERS Section 2122, 2201, 2213, 2301, 2302, 2310, SS-01046

Matls. IM 204 Appendix E (Metric) Units

MATERIAL OR CONSTRUCTION	TESTS		THOD OF		QU	ALITY CONT	ROL			INC	& VERIFICA	ASSURANC	E		REMARKS
ITEM		REL	& ATED IMs	SAMPLE	FREQ.	SAMPLE	TEST BY	REPORT	S&T TYPE	SAMPLE	FREQ.	SAMPLE	TEST BY	REPOR	
SOURCE INSPEC	CTION														
Aggregates- Fine (4110)		AS	209						1						
Aggregate- Coarse (4115), Intermediate		AS	209												
Portland Cement (4101)	Quality	AS	401							1.					
Fly Ash (4108)	Quality	AS	491.17		215	11									
GGBFS (Ground Granulated Blast Furnace Slag)	Quality	AS	491.14												
Curing Compounds (4105)	Lab- Tested														
Clear Curing Compounds (4105)		AB	405.07												
Air Entraining Admixture (4103)	Quality	AB	403												
Water Reducing Admix. (4103)	Quality	AB	403												
Retarding Admixture (4103)	Quality	AB	403			5									
Joint Sealer (4136.02)	Lab Tested	436.01 436.02	l, 2,436.03												
Backer Rod (4136.02)	Lab Tested	AB	436.04							12					
Mixing Water (4102)	Lab Tested								V	RCE/ CONTR	1/source	0.5 L	CTRL		Not required for potable water from municipal supply
AS-Approved Sourc ASD-Approved Sho S&T-Sampling & Te	p Drawing		Cert	A-Type A Ce C-Type C Ce D-Type D Ce	ertification			RCE-Resider DME-District CTRL-Centra CONTR-Cont	Materials Materials	Engineer	r/Project Eng	lineer	V-V	ndependent erification C-Quality Ma	

PORTLAND CEMENT CONCRETE PAVEMENT, PAVEMENT WIDENING, BASE WIDENING

October 16, 2007 Supersedes April 17, 2007 **CURB & GUTTER, & PAVED SHOULDERS**

Section 2122, 2201, 2213, 2301, 2302, 2310, SS-01046

Matls. IM 204 Appendix E (Metric) Units

MATERIAL OR CONSTRUCTION	TESTS	METHO ACCEPT	-		QU	ALITY CONTR	OL				INDEPENDENT & VERIFICAT		E		REMARKS
ITEM		& RELATE	DIMs	SAMPLE	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
SOURCE INSPEC	TION	-													
Steel Reinforcement (4151)															
Dowels	Quality	AS	451						1000						
Tie Bars	Quality	AS	451												
General Use	Quality	AS	451						-						
PLANT INSPECTI	ON						100							-	
Aggregates-Fine (4110/4111)	Grad * QMC	302 306 336		CONTR	1/1200 m ³	IM 301	CONTR	800240	IA V	DME RCE/ CONTR	1/100,000 m², sample 1/day, test 1 st day + 2/lot	IM 301 IM 301	DME RCE/ DME		See Notes See IM 213
	Grad * Non- QMC	302 306 336		CONTR	1/day	IM 301	CONTR		IA V	DME RCE/ CONTR	1/100,000 m ² Sample 1/day, test 1 st day+1/lot	IM 301 IM 301	DME RCE/ DME		
	Moist	308, 527		CONTR	1/half day	1000 gm	CONTR	1							Not applicable with probe
	Sp. Gr.	307		CONTR	IM 527	1000 gm	CONTR		1						
	Quality	AS	209					1							
AS-Approved Sourc ASD-Approved Sho S&T-Sampling & Te	p Drawing			Cert A-Type Cert C-Type Cert D-Type	e C Certifica	ation			ct Materi tral Mate	als Enginee	gineer/Project Eng r	gineer	V-Verifica		ement Concrete

* A system approach to independent assurance may be applied, at the discretion of the DME.

NOTE: When Certified Plant Inspection is not provided, the engineer is responsible for performing quality control sampling and testing. NOTE: RCE/CONTR indicates that the contractor shall assist in the sampling at the direction of and witnessed by the project engineer.

PORTLAND CEMENT CONCRETE PAVEMENT, PAVEMENT WIDENING, BASE WIDENING

CURB & GUTTER, & PAVED SHOULDERS

October 16, 2007 Supersedes April 17, 2007

Section 2122, 2201, 2213, 2301, 2302, 2310, SS-01046

Matls. IM 204 Appendix E (Metric) Units

MATERIAL OR	TESTS		THOD OF		QUAI		OL	_		-	INDEPENDENT & VERIFICA		E		REMARK
ITEM		REL	& ATED IMs	SAMPLE	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE	FREQ.	SAMPLE	TEST BY	REPORT	
PLANT INSPECT	ON				A service and and						the second				
Aggregates- Coarse (4115), Intermediate	Grad * QMC	302 306 336		CONTR	1/1200m ³	IM 301	CONTR	800240	IA V	DME RCE/ CONTR	1/100,000 m ² Sample 1/day,test 1 st day+2/lot	IM 301 IM 301	DME RCE/ DME		See Notes
	Grad * Non- QMC	302 306 336		CONTR	1/day	IM 301	CONTR		IA V	DME RCE/ CONTR	1/100,000 m ² Sample 1/day, test 1 st day+1/lot	IM 301 IM 301	DME RCE/ DME		
	Moist	308		CONTR	1/half day	IM 301	CONTR								
	Sp. Gr.	307		CONTR	IM 527	IM 301	CONTR	1					(
	Quality	AS	209					1	V	DME	1/100,000 m ²	22kg	CTRL		
Portland Cement (4101)	Quality	AS	Cert D		Each Load				V	DME	1/100,000 m ²	7 kg	CTRL		
	Cement Yield			CONTR	1/7500m ³		CONTR	820912		1					
Fly Ash	Quality	AS	Cert D		Each load			800240	V	DME	1/100,000 m ²	7 kg	CTRL		
GGBFS(Ground Granulated Blast Furnace Slag)	Quality	AS	Cert		Each load				V	DME	1/100,000 m ²	7 kg	CTRL		
Air Admixture	Quality	AS	403						V	DME	1/batch	0.5 L	CTRL		Sample
Water Reducer	Quality	AS	403						V	DME	1/batch	0.5 L	CTRL		batches not previously
Retarding Admixture	Quality	AS	403						V	DME	1/batch	0.5 L	CTRL		reported or as required by DME
S-Approved Source SD-Approved Shop &T-Sampling & Te	Drawing		Cert	A-Type A Ce C-Type C Ce D-Type D Ce	rtification	- 3-	DME CTR	-Resident Co -District Mate L-Central Ma TR-Contract	erials Eng aterials Of	gineer	roject Engineer		V-Verifica	ndent Assura tion lity Managen	

* A system approach to independent assurance may be applied, at the discretion of the DME.

NOTE: When Certified Plant Inspection is not provided, the engineer is responsible for performing quality control sampling and testing.

NOTE: Quality samples not required when mix quantity is less than 2000 m², except for curing compound.

PORTLAND CEMENT CONCRETE PAVEMENT, PAVEMENT WIDENING, BASE WIDENING

October 16, 2007 Supersedes April 17, 2007 **CURB & GUTTER, & PAVED SHOULDERS**

Section 2122, 2201, 2213, 2301, 2302, 2310, SS-01046

Matls. IM 204 Appendix E (Metric) Units

MATERIAL OR	TESTS	METHOD OF ACCEPTANCE		QUALI	TY CONT	ROL		1.5	11	& VERIFICATION				REMARKS
ITEM		& RELATED IMs	SAMPLE BY	FREQ.	SAMP. SIZE	TEST BY	REPT.	S&T TYPE	SAMP. BY	FREQ.	SAMP. SIZE	TEST	REPT.	
GRADE INSPECT	ION							-			_			
Chloride Solution	Concentration	373	RCE	1/day		1								
Steel Reinforcement:											1.2.1			
Dowels	Quality	AS 451.03B						V	DME	1/District/Yr	0.5 m	CTRL	1.000	
Dowel Basket Assembly	Quality	AS 451 Cert D 451.03B												
Tie Bars	Quality	AS 451						V	DME	1/District/Yr	0.5 m	CTRL		
General Use	Quality	AS 451						V	DME	1/District/Yr	1 m	CTRL		
Curing Compound	Quality	Tested 4105						V	DME	1/batch	1/L	CTRL		Sample batches not previously reported or as required by DME
Plastic Concrete	Air	318 327	QMC CONTR	QMC only 2301.04C 1/275 m ³		QMC CONTR	E115	IA V	DME RCE	1/100,000 m ² 2301.04C 1/550m ³ 1/75 m ³ for transit mixer		DME RCE		Min. 1 test/pour
	Slump	317						V	RCE	1/550 m ³ , min. 1/pour		RCE		For hand finish or fixed form only
	Grade Yield		RCE	1/750 m ³		RCE				E				
	Beams**	316, 327, 328	RCE	2/day		RCE	E115				-			
Hardened Concrete	Thickness*	346, 347			T.			IA V	DME RCE/ CONTR	1/2000 m²	10%	DME RCE		0
	Smoothness	341Cert. Test Report	CONTR		100%	CONTR		V	DME		10%	DME		
AS-Approved Source ASD-Approved Sho S&T-Sampling & Te	p Drawing	Cert C-1	ype A Certi Type C Certi Type D Certi	fication		DME	-District M	aterials En Materials O	gineer	I Project Engineer		IA-Indepe V-Verifica QMC-Qua	tion	urance gement Concrete

*IA thickness cores sent to Central Lab for additional project information testing (Interstate and Primary only.)

PORTLAND CEMENT CONCRETE PAVEMENT, PAVEMENT WIDENING, BASE WIDENING

CURB & GUTTER, & PAVED SHOULDERS

October 16, 2007 Supersedes April 17, 2007

Section 2122, 2201, 2213, 2301, 2302, 2310, SS-01046

Matls. IM 204 Appendix E (Metric) Units

**None required when maturity is used. Quality samples not required when mix quantity is less than 2000 m², except for curing compound. <u>NOTE</u>: RCE/CONTR indicates that the contractor shall assist in the sampling at the direction of and witnessed by the project engineer. <u>NOTE</u>: Form #E115 available from the Office of Construction.

April 17, 2007

HOT MIX ASPHALT

Supersedes October 17, 2006

Section 2303, 2213, & 2114

Matls. IM 204 Appendix F (US) Units

MATERIAL OR CONSTRUCTION	TESTS	ACCEF	IOD OF PTANCE		QL	JALITY CONTRO	DL				INDEPENDENT & VERIFICA		,		REMARKS
ITEM			& TED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
SOURCE INSPECTIO	N													-	
Aggregates-Coarse (4127)		AS	209												
Aggregates-Fine (4127)		AS	209												
Hydrated Lime (4126/4127)		AS	491.04												
Asphalt Binder		AS	437												
Emulsions & Cutbacks		AS	437											1	
Release Agent		AB	491.15												
PLANT INSPECTION				1											
Aggregates (2303)	Quality			-					V	DME	1/20,000 Ton	50 lb.	CTRL		
Combined Aggregate (4126, 4127)	Gradation			RCE/ CONTR	1/lot	IM 301	CONTR		V IA	RCE/ CONTR	Sample 1/day, Test 1s day + 20% Systems Approach	IM 301	DME/ RCE	IM 216 IM 216	
	Moisture			CONTR	1 / half day	1000 gm	CONTR								Dryer Drum Plants Only
			-	1											
AS-Approved Sou ASD-Approved Sh S&T-Sampling & 1	nop Drawing		(Cert A-Type Cert C-Type Cert D-Type	C Certifica	ation		RCE-Resid DME-Distri CTRL-Cen CONTR-Ce	ct Materi tral Mate	ials Engineer erials Office	ineer/Project En	gineer		IA-Inde V-Verifi	pendent Assuranc cation

*A project approach may be applied at the discretion of the DME at the frequency 1/project.

HOT MIX ASPHALT

Section 2303, 2213, & 2114

Matls. IM 204 Appendix F (US) Units

April 17, 2007 Supersedes October 17, 2006

MATERIAL OR CONSTRUCTION	TESTS		THOD OF EPTANCE		QUA	LITY CONTRO)L				INDEPENDENT AS & VERIFICATION				REMARKS
ITEM		REL	& ATED IMs	SAMPLE BY			SAMPLE TEST SIZE BY		S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
PLANT INSPECTION	1. C														
Mineral Filler									V	DME	1/project	5 kg	DME	821278	
Asphalt Binder	DSR Quality	AS	Cert D	1					V V AI	RCE/ CONTR DME	Sample 1/day Test 1st 3days + 1/week 1/20,000 T of Mix Systems Approach	4 oz tin 1 qt	DME CTRL		Log all shipments
Cutback		AS	329				1900								Log all shipments
Emulsion	Residue	AS	360				1		V	RCE	1/project	1 qt	DME		Plastic bottle required
GRADE INSPECTION	l				-					200					
Uncompacted Mixture:	Lab Density & Lab Voids		321, 350 325G	RCE/ CONTR	As per 2303	30 lb	CONTR		V IA	RCE/ CONTR	As per 2303 Test 1/day Systems Approach	30 lb	DME		May be adjusted by DME as per 2303
Compacted Mixture	Density, Thickness & Voids		320, 321 337	RCE/ CONTR	Lot	7/lot	RCE		IA	DME	1 lot/project*		DME		
	Smoothness		341	CONTR	100%	100%	CONTR	1	V	DME	10%		DME		
S-Approved Source SD-Approved Sho &T-Sampling & Te	p Drawing		Cer	t C-Type C	Certification Certification Certification			DME-Distr	rict Mate	rials Enginee erials Office	ngineer/Project Engi er	neer		IA-Indeper V-Verificat	ident Assurance

* A system approach may be applied at the discretion of the DME. <u>NOTE</u>: Verification not required under 2000 tons of mix. <u>NOTE</u>: RCE/CONTR indicates that the Contractor shall assist in the sampling at the direction of and witnessed by the Project Engineer.

April 17, 2007 Supersedes October 17, 2006

HOT MIX ASPHALT Section 2303, 2113, & 2114

Matls. IM 204 Appendix F (Metric) Units

MATERIAL OR CONSTRUCTION	TESTS		ETHOD OF		QL	ALITY CONTR	ROL				INDEPENDENT & VERIFICA				REMARKS	
ITEM		RE	& ELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE	FREQ. Note 1	SAMPLE SIZE	TEST BY	REPORT		
SOURCE INSPECTI	ON			-												
Aggregates- Coarse (4127)		AS	209				-			11						
Aggregates-Fine (4127)		AS	209			1			-					-		
Hydrated Lime (4126/4127)		AS	491.04			1	1								1	
Asphalt Binder		AS	437						-							
Emulsions & Cutbacks		AS	437										2-21			
Release Agent		AS	491.15	1000		1										
PLANT INSPECTION	N									-			-		-	
Aggregates (2303)	Quality								V	DME	1/20,000 Mg	22 kg	CTRL			
Combined Aggregate (4126, 4127)	Gradation			RCE/ CONTR	1/lot	IM 301	CONTR		V IA	RCE/ CONTR	Sample 1/day, Test 1st day + 20% Systems Approach*	IM 301	DME/RCE DME	IM 216 IM 216		
	Moisture			CONTR	1/halfday	1000 gm	CONTR								Dryer Drum Plants Only	
AS-Approved Sour ASD-Approved Sh &T-Sampling & T	op Drawing		Cert	A-Type A C C-Type C C D-Type D C	Certification			RCE-Resid DME-Distric CTRL-Cent CONTR-Co	t Material ral Materia	s Engineer	neer/Project En] gineer		IA-Indepen V-Verification	dent Assuran on	

"A project approach may be applied at the discretion of the DME at the frequency 1/project.

HOT MIX ASPHALT

Section 2303, 2113, & 2114

Matls. IM 204 Appendix F (Metric) Units

April 17, 2007 Supersedes October 17, 2006

MATERIAL OR CONSTRUCTION	TESTS	METHO			Q	UALITY CONTR	OL				INDEPENDEN & VERIFIC	T ASSURANC	E,		REMARKS
ITEM		8 RELAT	ED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
PLANT INSPECTION															
Mineral Filler									V	DME	1/project	5 kg	DME	821278	
Asphalt Binder	DSR Quality	AS	Cert D						V V IA	RCE/ CONTR DME	Sample 1/day, Test 1st day + 20% Systems Approach	120 ml 1 L	DME		Log all shipments
Cutback	Quality Viscosity	AS	329												Log all shipments
Emulsion	Residue	AS	360						V	RCE	1/project	1L	DME		Plastic bottle required
GRADE INSPECTION	1						1								
Uncompacted Mixture:	Lab Density & Lab Voids	3	321, 350 325G	RCE/ CONTR	As per 2303	14 kg	CONTR		V IA	RCE/ CONTR	As per 2303, Test 1/day Systems Approach	14 kg	DME		May be adjusted by DME as per 2303
Compacted Mixture	Density Thickness Voids	3	320, 321 337	RCE/ CONTR	Lot	7/lot	RCE		IA	DME	1/lot/project		DME		
	Smoothness		341	CONTR	100%	100%	CONTR		V	DME	10%		DME		
SD-Approved Sho	-Approved Source Cert A-Type A Certification D-Approved Shop Drawing Cert C-Type C Certification T-Sampling & Testing Cert D-Type D Certification					DN CT	CE-Resident ME-District M RL-Central I DNTR-Contra	laterials Materials	Engineer	eer/Project Er	ngineer		IA-Inde V-Verifi	bendent Assurance cation	

* A system approach may be applied at the discretion of the DME. <u>NOTE</u>: Verification not required under 2000 Mg of mix. <u>NOTE</u>: RCE/CONTR indicates that the contractor shall assist in the sampling at the direction of and witnessed by the project engineer.

STRUCTURAL CONCRETE, REINFORCEMENT, FOUNDATIONS & SUBSTRUCTURES, CONCRETE STRUCTURES, CONCRETE FLOORS, & CONCRETE BOX,

October 16, 2007 Supersedes April 17, 2007 **ARCH & CIRCULAR CULVERTS**

Sections 2403, 2404, 2405, 2406, 2412, & 2415

Matls. IM 204 Appendix H (US) Units

MATERIAL OR CONSTRUCTION ITEM	TESTS	METHOD OF ACCEPTANCE		QL	JALITY CONTR	ROL		-			ENT ASSURA			REMARKS
TEW		RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE	TEST BY	REPORT	
SOURCE INSPEC	TION												-	
Aggregate-Fine (4110)		AS 209				20				-				
Aggregate-Coarse (4115)		AS 209	()								-			
Granular Backfill (4133)	1	AS 209												
Portland Cement (4101)	Quality	AS 401	-											
Fly Ash (4108)	Quality	AS 491.17												
Mixing Water (4102)	Quality		2					V	RCE	1/project	1L	CTRL	731	Not required for potable water from Municipal Supply
GGBFS (Ground Granulated Blast Furnace Slag)	Quality	AS 491.14											1	manapar ouppry
Air Entraining Admixture	Quality	AS 403												
Retarding Admixture	Quality	AS 403		1200					1					
Water reducing Admixture	Quality	AS 403												Sample batches not previously reported or as required by DME
Curing Compound, White (4105)	Lab Tested	AS 405		-				V	DME	1/batch	1qt	CTRL		
Curing Compound, Clear (4105)		AS 405.07	1		1									
AS-Approved Sour ASD-Approved Sh S&T-Sampling & T	op Drawing		Cert A-Type Cert C-Type Cert D-Type	C Certifica	ation		RCE-Reside DME-Distric CTRL-Centr CONTR-Cor	t Material al Materia	s Engineer		ct Engineer			dependent Assurance rification

October 16, 2007 Supersedes April 17, 2007

Sections 2403, 2404, 2405, 2406, 2412, & 2415

Matls. IM 204 Appendix H (US) Units

MATERIAL OR CONSTRUCTION ITEM	TESTS	METHOD OF ACCEPTANCE &		QU	ALITY CONT	ROL			11		ENT ASSURAN			REMARKS
ITEM		RELATED IMS	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
SOURCE INSPEC	CTION													
Pre-formed Joint Sealer (4136)	Lab-Tested	AS 436.02 436.05										(24.1	1
Reinforcing Steel Bars (4151)	Quality	AS 451	1											
Steel Pile (4167)	Quality	467		-	-						1.1.1	1		
Concrete Pile (4166)	Quality	AS 570						A						
Timber Pile (4165)	Quality	Cert A 462 AS			-							1		
Timber (4162) & Lumber (4163		Treated-Cert A 462 AS												
Concrete Anchors	Quality	AS 453.09												
Epoxy Grout	Quality	AS 491.11				-								
Concrete Sealer	Quality	AS 491.12				-				1				
Subdrain Pipe (4143)	Quality	AS 443, 448												
Neoprene Bearing Pads (4195)		AS 495.03												
Bronze Bearing Plates (4190.03)		AS D/Cert A		La parte			-				-			
AS-Approved Sour ASD-Approved Shi S&T-Sampling & T	op Drawing	Cert C-Type C Certification DME-D Cert D-Type D Certification CTRL-0				DME-District I	rict Materials Engineer V-V ntral Materials Office						pendent Assuranc cation	

STRUCTURAL CONCRETE, REINFORCEMENT, FOUNDATIONS & SUBSTRUCTURES, CONCRETE STRUCTURES, CONCRETE FLOORS, & CONCRETE BOX, ARCH & CIRCULAR CULVERTS

October 16, 2007 Supersedes April 17, 2007

ARCH & CIRCULAR CULVERIS

Sections 2403, 2404, 2405, 2406, 2412, & 2415

Matls. IM 204 Appendix H (US) Units

MATERIAL OR CONSTRUCTION ITEM	TESTS	METHOD OF ACCEPTANCE &		QL	ALITY CONTI	ROL			IN		ICATION S&T	ICE		REMARKS
II LM		RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
SOURCE INSPEC	CTION													
Steel Masonry Plate (4152)		ASD/Cert A												
Precast Units (2407)	Quality	AS 570												
Anchor Bolts (lighting, signing, handrail) (4153)	Lab Tested	ASD												
Structural Steel (4152)	Quality	Cert A							-					Monitor Sample According to plans or other instructions
Aluminum Bridge Rail & Anchor Assembly	-	ASD												
Conduit (Electrical) (4185.10)) Steel		AS			1	-		-						
Conduit (Plastic) (4185.10)	Lab Tested							V	DME	1/size	4'	CTRL		
Bentonite		Visual								1.1.1.1	1	1000		
Flowable Mortar	Lab Tested	Approved 525, 375 Trial Mix								1			-	Tested by DME
AS-Approved Sou ASD-Approved Sh S&T-Sampling & 1	op Drawing	C	ert A-Type ert C-Type ert D-Type	C Certificat	ion		RCE-Reside DME-District CTRL-Centra CONTR-Con	Materials al Materials	Engineer	er/Projec	ct Engineer			dependent Assuran

STRUCTURAL CONCRETE, REINFORCEMENT, FOUNDATIONS & SUBSTRUCTURES, CONCRETE STRUCTURES, CONCRETE FLOORS, & CONCRETE BOX, ARCH & CIRCULAR CULVERTS

October 16, 2007 Supersedes April 17, 2007

Sections 2403, 2404, 2405, 2406, 2412, & 2415

Matls. IM 204 Appendix H (US) Units

MATERIAL OR CONSTRUCTION ITEM	TESTS	METHOD OF ACCEPTANCE &		Q	UALITY CON	TROL				INDEPENDENT A & VERIFICAT				REMARKS
TIEM.		RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	1.
PLANT INSPEC	TION													
Aggregate- Fine (4110)	Gradation Deck	302, 306 336	CONTR	IM 528	IM 301	CONTR	800240	IA V	DME RCE/ CONTR	1/1000 cy Sample & Test 1/deck/wk	IM 301 IM 301	DME RCE	101	May Use System App
	Gradation All other		CONTR	IM 528	IM 301	CONTR		IA V	DME RCE/ CONTR	1-1000 cy Sample 1/wk Test 1st day +20%	IM 301 IM 301	RCE		May Use System App
	Moisture	308, 528	CONTR	1/lot	1000 gm	CONTR	1							See IM 528 if Moisture Probe is used
	Sp. Gr.	307	CONTR	IM 528	1000 gm	CONTR								Probe is used
	Quality	AS 209							10.00					
Aggregate- Coarse (4115)	Gradation Deck	302, 306 336	CONTR	IM 528	IM 301	CONTR		IA V	DME RCE/ CONTR	1/1000 cy Sample & Test 1/deck/wk	IM 301 IM 301	DME RCE		May Use System App
	Gradation All other		CONTR	IM 528	IM 301	CONTR		IA V	DME RCE/ CONTR	1/1000 cy Sample 1/wk Test 1st day +20%	IM 301 IM 301	DME RCE		May Use System App.
	Moisture	308, 528	CONTR	1/lot	2000gm	CONTR				12070				
	Sp. Gr.	307	CONTR	IM 528	2000gm	CONTR								
	Quality	AS 209		-				V	DME	1/1000 cy	50 lb	CTR		(1)
Portland Cement	w/c ratio	528	CONTR	1/pour		CONTR					0.50	L		
	Quality	AS Cert D						V	DME	1/1000 cy	15 lb	CTR		(1)
AS-Approved Sou ASD-Approved Sh S&T-Sampling & T	roved Source Cert A-Type A Certification proved Shop Drawing Cert C-Type C Certification							nt Constru Materials al Materials tractor	Engineer	l eer/Project Eng	ineer		IA-Inde V-Verifi	pendent Assurance cation

(1) These verification samples for concrete materials not required when mix quantity is less than 50 cu. yd.

STRUCTURAL CONCRETE, REINFORCEMENT, FOUNDATIONS & SUBSTRUCTURES, CONCRETE STRUCTURES, CONCRETE FLOORS, & CONCRETE BOX,

October 16, 2007 Supersedes April 17, 2007 ARCH & CIRCULAR CULVERTS

Sections 2403, 2404, 2405, 2406, 2412, & 2415

Matls. IM 204 Appendix H (US) Units

MATERIAL OR CONSTRUCTION	TESTS		METHOD OF ACCEPTANCE		QUA	LITY CONTR	OL				INDEPENDENT & VERIFICA				REMARKS
ITEM		I	& RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
PLANT INSPECTION														1	
Fly Ash	Quality	AS	Cert D		Each Load			800240	-		-				
GGBFS(Ground Granulated Blast Furnace Slag)	Quality	AS	Cert D		Each Load										
Air-Entraining Admixture (4103)	1 1	AS	403			1 million		_	V	RCE	1/batch	0.5 L	CTRL		(1) Sample lots not
Retarding Admixture		AS	403	-					V	RCE	1/batch	0.5 L	CTRL		previously reported or as required by DME
Water Reducing Admixture (4103)		AS	403						V	RCE	1/batch	0.5 L	CTRL		
GRADE INSPECTION	1			-				L	-			-			
Plastic Concrete	Air Content		316, 327				-	E145*	IA V	DME RCE	1/1000 cy 1/30 cy		DME RCE		DME may adjust
	Slump		317, 327						IA V	DME RCE	1/1000 cy 1/30 cy		Witness Only RCE		DME may adjust
	Beams		316, 327, 328							RCE	2/placement		RCE		If required per 2403.18 and 2403.19
	Cylinders					1				DME	3/project		DME	1.1	Primary Projects Only (Information only)
AS-Approved Sou ASD-Approved Sh S&T-Sampling & 7	roved Source Cert A-Type A Certification proved Shop Drawing Cert C-Type C Certification							RCE-Reside DME-District CTRL-Centr CONTR-Cor	Materials	Engineer	er/Project En	gineer		IA-Indep V-Verific	bendent Assurance cation

(1) These verification samples for concrete materials not required when mix quantity is less than 50 cu. yd.

NOTE: RCE/CONTR indicates that the Contractor shall assist in the sampling at the direction of and witnessed by the Project Engineer.

*Available from the Office of Construction.

STRUCTURAL CONCRETE, REINFORCEMENT, FOUNDATIONS & SUBSTRUCTURES, CONCRETE STRUCTURES, CONCRETE FLOORS, & CONCRETE BOX,

October 16, 2007 Supersedes April 17, 2007 ARCH & CIRCULAR CULVERTS Sections 2403, 2404, 2405, 2406, 2412, & 2415

Matls. IM 204 Appendix H (US) Units

MATERIAL OR CONSTRUCTION	TESTS		THOD OF EPTANCE		QU	ALITY CONTR	ROL					IT ASSURANC	E		REMARKS
ITEM		REL	& ATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TES BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
GRADE INSPECTION	N														
Reinforcing Steel (4151)	Quality	AS	Cert A		Each Shipment		-	Field Book	V	DME	IM 451	6 ft	CTRL		
Reinforcing Steel Epoxy Coated (4151)	Quality	AS	Cert A		Each Shipment			Field Book	V	DME	1 bar	6 ft	CTRL		Will be acceptance tested for coating
Steel Pile (4167)	Quality	AS	Cert A		Each Heat			Field Book		DME	IM 467		CTRL		
Timber Pile (4165)	Quality	AS	462 Cert A						V	DME	IM 467		CTRL		No grade requirement Charge numbers on butt end.
Anchor Bolts (lighting, signing, handrail)	Lab Tested	ASD							V	DME	1/project	1 bolt w/nut & washer	CTRL		Sample only if not source inspected
Steel Masonry Plates (4152)		ASD	Cert A		Each Shipment		1.5	Field Book							Approved by Materials Department
Bronze Bearing Plates (4190.03)	Lab Tested	_							V	DME	1/project	1 only	CTRL		Sample only if not source inspected
Neoprene Bearing Pads (4195)		AS	495.03		Each Shipment			820905							
Alum. Bridge Rail & Anchor Assembly		ASD			Each Shipment			Field Book							Approved By Materials Dept.
Drains (Std Steel Pipe)(as per plan)	Dimensions Galvanized	ASD	Visual 332						V	DME	1/project	_	DME		
AS-Approved Sou ASD-Approved Sh S&T-Sampling & 1	op Drawing		(Cert C-Type	A Certification C Certification D Certification	on		RCE-Residen DME-District I CTRL-Central CONTR-Cont	Materials E Materials	Engineer	er/Project Er	ngineer		IA-Indep V-Verific	endent Assurance ation

STRUCTURAL CONCRETE, REINFORCEMENT, FOUNDATIONS & SUBSTRUCTURES, CONCRETE STRUCTURES, CONCRETE FLOORS, & CONCRETE BOX,

October 16, 2007 Supersedes April 17, 2007 **ARCH & CIRCULAR CULVERTS**

Sections 2403, 2404, 2405, 2406, 2412, & 2415

Matls. IM 204 Appendix H (US) Units

MATERIAL OR CONSTRUCTION ITEM	TESTS	METHOD OF ACCEPTANCE &		QU	ALITY CONTR	OL				INDEPENDEN & VERIFIC	T ASSURANCE			REMARKS
ii Liw		RELATED IMs	SAMPLE	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
GRADE INSPEC	LION													
Timber (4162) & Lumber (4163)	Quality	AS 462 Treated-Cert A												
Subdrain Pipe (4143)	Quality	AS Cert D 443, 448		Each Shipment										
Flowable Mortar (2506)	Flow Test	375	RCE	As needed for Project Control	-	RCE	830211							Mix Design approval by DME
Bentonite	Flow Test	Visual 375				RCE							1	
Smoothness (2317)	Profilometer	Cert. Test Report 341	CONTR	Each Project	Each Wheelpath	CONTR	821301	V		10%	DME			
								1	1				. L	
AS-Approved Sou ASD-Approved St S&T-Sampling &	op Drawing	C	ert C-Type	A Certification C Certification D Certification	on		RCE-Residen DME-District CTRL-Centra CONTR-Cont	Materials I Materials	Engineer	er/Project Er	ngineer		IA-Inde V-Verifi	bendent Assurance cation

STRUCTURAL CONCRETE, REINFORCEMENT, FOUNDATIONS & SUBSTRUCTURES,

CONCRETE STRUCTURES, CONCRETE FLOORS, & CONCRETE BOX,

October 16, 2007 Supersedes April 17, 2007 **ARCH & CIRCULAR CULVERTS**

Sections 2403, 2404, 2405, 2406, 2412, & 2415

Matls. IM 204 Appendix H (Metric) Units

MATERIAL OR CONSTRUCTION ITEM	TESTS		METHOD OF CCEPTANCE &		(QUALITY CONT	ROL			IN	DEPENDENT & VERIFIC/	ASSURANC	E		REMARKS
TIEM		R	ELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
SOURCE INSPEC	CTION														
Aggregate-Fine (4110)		AS	209			6									
Aggregate-Coarse (4115)		AS	209												
Granular Backfill (4133)		AS	209				(-E							1	_
Portland Cement (4101)	Quality	AS	401					-			-				
Fly Ash (4108)	Quality	AS	491.17						-	1					
Mixing Water (4102)	Quality									RCE	1/project	1L	CTRL	731	Not required for potable water from Municipal Supply
GGBFS (Ground Granulated Blast Furnace Slag)	Quality	AS	491.14												
Air Entraining Admixture	Quality	AS	403										-		
Retarding Admixture	Quality	AS	403												
Water reducing Admixture	Quality	AS	403												
Curing Compound, White (4105)	Lab Tested		405						V	DME	1/batch	1 qt	CTRL		
Curing Compound, Clear (4105)		AS	405.07					1							
Clear (4105) Cert A-Type A Certification AS-Approved Source Cert A-Type A Certification ASD-Approved Shop Drawing Cert C-Type C Certification S&T-Sampling & Testing Cert D-Type D Certification								RCE-Residen DME-District I CTRL-Central CONTR-Cont	Materials I Materials	Engineer	er/Project E	ngineer			dependent Assurance rification

STRUCTURAL CONCRETE, REINFORCEMENT, FOUNDATIONS & SUBSTRUCTURES, CONCRETE STRUCTURES, CONCRETE FLOORS, & CONCRETE BOX,

October 16, 2007 Supersedes April 17, 2007 **ARCH & CIRCULAR CULVERTS**

Sections 2403, 2404, 2405, 2406, 2412, & 2415

Matls. IM 204 Appendix H (Metric) Units

MATERIAL OR CONSTRUCTION ITEM	TESTS	METHOD OF ACCEPTANCE &		QL	JALITY CONTI	ROL			II		ENT ASSURAN	ICE		REMARKS
TLW.		RELATED IMs	SAMPLE BY	FREQ.	SAMPLE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
SOURCE INSPEC	CTION													24
Preformed Joint Sealer (4136)	Lab- Tested	AS 436.02 436.05										_		
Reinforcing Steel Bars (4151)	Quality	AS 451	1					10						
Steel Pile (4167)	Quality	467												
Concrete Pile (4166)	Quality	AS 570												
Timber Pile (4165)	Quality	Cert A AS 462												
Timber (4162) & Lumber (4163)		Treated-Cert A 462		-			1							-
Concrete Anchors	Quality	AS 453.09		_		-		-						
Epoxy Grout	Quality	AS 491.11					-							
Concrete Sealer	Quality	AS 491.12				1								
Subdrain Pipe (4143)	Quality	AS 443, 448												
Neoprene Bearing Pads (4195)		AS 495.03		2					1	1				
Bronze Bearing Plates (4190.03)		ASD/Cert A		-										
AS-Approved Sou ASD-Approved Sh S&T-Sampling & T	op Drawing	1 (Cert A-Type Cert C-Type Cert D-Type	C Certificat	ion		RCE-Reside DME-Distric CTRL-Centr CONTR-Co	t Materials al Materia	Engineer	neer/Proj	ect Engineer		IA-Inde V-Verit	ependent Assuran fication

STRUCTURAL CONCRETE, REINFORCEMENT, FOUNDATIONS & SUBSTRUCTURES,

CONCRETE STRUCTURES, CONCRETE FLOORS, & CONCRETE BOX,

October 16, 2007 Supersedes April 17, 2007 ARCH & CIRCULAR CULVERTS Sections 2403, 2404, 2405, 2406, 2412, & 2415 Matls. IM 204 Appendix H (Metric) Units

MATERIAL OR CONSTRUCTION ITEM	TESTS	METHOD OF ACCEPTANCE &		QI	JALITY CONTI	ROL					T ASSURANC	E		REMARKS
TEM		RELATED IMs	SAMPLE BY	FREQ.	SAMPLE	TEST BY	REPORT	S&T TYPE	SAMPLE	FREQ.	SAMPLE	TEST BY	REPT.	
SOURCE INSPEC	CTION										1.00	-		
Steel Masonry Plate (4152)		ASD/Cert A									17.1			
Precast Units (2407)	Quality	AS 570										12.00		
Anchor Bolts (lighting, signing, handrail) (4153)	Lab Tested	ASD												
Structural Steel (4152)	Quality	Cert A												Monitor Sample According to plans or other instructions
Aluminum Bridge Rail & Anchor Assembly		ASD							1			_		
Conduit (Electrical) (4185.10) Steel)		AS												
Conduit (Plastic) (4185.10)	Lab Tested							V	DME	1/size	1 m with coupling	C TRL		
Bentonite		Visual												
Flowable Mortar	Lab Tested	Approved 525, 375 Trial Mix												Tested by DME
AS-Approved Sour ASD-Approved Sh S&T-Sampling & T	op Drawing	Cer	t A-Type A C t C-Type C C t D-Type D C	Certification	1		RCE-Resider DME-District CTRL-Centra CONTR-Con	Materials E al Materials	Engineer	er/Projec	t Engineer			I -Independent Assurance Verification

STRUCTURAL CONCRETE, REINFORCEMENT, FOUNDATIONS & SUBSTRUCTURES, CONCRETE STRUCTURES, CONCRETE FLOORS, & CONCRETE BOX,

October 16, 2007 Supersedes April 17, 2007

ARCH & CIRCULAR CULVERTS Sections 2403, 2404, 2405, 2406, 2412, & 2415 Matls. IM 204 Appendix H (Metric) Units

33-3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	DN	& RELATED IMs	SAMPLE						-					
Aggregate- Fine	N	BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE	FREQ.	SAMPLE SIZE	TEST BY	REPORT		
33-3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-														
	Gradation Deck	302, 306 336	CONTR	IM 528	IM 301	CONTR	800240	IA V	DME RCE/ CONTR	1/750 m ³ Sample & Test 1/deck/wk	IM 301 IM 301	DME RCE	-	May use System App.
	Gradation All other		CONTR	IM 528	IM 301	CONTR		IA V	DME RCE/ CONTR	1/750 m ³ Sample 1/wk Test 1의 day +20%	IM 301 IM 301	DME RCE		May use System App.
N	Moisture	308, 528	CONTR	1/lot	1000 gm	CONTR								See IM 528 if Moisture Probe is used
S	Sp. Gr.	307	CONTR	IM 528	1000 gm	CONTR	1					1		
(Quality	AS 209												
33 3	Gradation Deck	302, 306 336	CONTR	IM 528	IM 301	CONTR		IA V	DME RCE/ CONTR	1/750 m ³ Sample & Test 1/deck/wk	IM 301 IM 301	DME RCE		May use System App.
	Gradation All other		CONTR	IM 528	IM 301	CONTR		IA V	DME RCE/ CONTR	1/750 m ³ Sample 1/wk Test 1 st day +20%k	IM 301 IM 301	DME RCE		May use System App
N	Moisture	308, 528	CONTR	1/lot	2000gm	CONTR	1		-					
5	Sp. Gr.	307	CONTR	IM 528	2000gm	CONTR	1							
(Quality	AS 209					1	V	DME	1/750 m ³	22 kg	CTRL		(1)
Portland v Cement	w/c ratio	528	CONTR	1/pour		CONTR								
AS-Approved Source	Quality	AS Cert D						V	DME	1/750 m ³ er/Project Engir	7 kg	CTRL		(1)

(1) These verification samples for concrete materials not required when mix quantity is less than 40 m³.

STRUCTURAL CONCRETE, REINFORCEMENT, FOUNDATIONS & SUBSTRUCTURES,

CONCRETE STRUCTURES, CONCRETE FLOORS, & CONCRETE BOX,

October 16, 2007 Supersedes April 17, 2007 ARCH & CIRCULAR CULVERTS Sections 2403, 2404, 2405, 2406, 2412, & 2415 Matls. IM 204 Appendix H (Metric) Units

MATERIAL OR CONSTRUCTION ITEM	TESTS		METHOD OF ACCEPTANCE &		QU	ALITY CONTR	OL				INDEPENDEN & VERIFIC		E		REMARKS
TEM			RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
PLANT INSPECT	ION													-	
Fly Ash	Quality	AS	Cert D		Ea Load			800240							
GGBFS(Ground Granulated Blast Furnace Slag)	Quality	AS	Cert D		Ea Load				V	DME	1/750 m ³	7 kg	CTRL		
Air Entraining Admixture (4103)		AS	403						V	RCE	1/batch	0.5 L	CTRL		(1) Sample lots not
Retarding Admixture		AS	403		-				V	RCE	1/batch	0.5 L	CTRL	1	previously reported of as required by DME
Water Reducing Admixture (4103)		AS							V	RCE	1/batch	0.5 L	CTRL		
GRADE INSPECTION				-											
Plastic Concrete	Air Content		316, 327					M145*	IA V	DME RCE	1/750 m ³ 1/25 m ³	3.	DME RCE	_	DME may adjust
	Slump		317, 327						IA V	DME RCE	1/750m ³ 1/25 m ³		Witness Only RCE		DME may adjust
	Beams		316, 327, 328							RCE	2/placement		RCE		If required per 2403.18 & 2403.19
	Cylinders						-			DME	3/project		DME		Primary Projects Only (Information only)
AS-Approved Sound ASD-Approved Sh S&T-Sampling & T	roved Source Cert A-Type A Certification proved Shop Drawing Cert C-Type C Certification							RCE-Reside DME-Distric CTRL-Cent CONTR-Co	t Materials ral Material	Engineer	eer/Project Er	ngineer		IA-Indep V-Verific	endent Assurance ation

(1) These verification samples for concrete materials not required when mix quantity is less than 40 m³.

NOTE: RCE/CONTR indicates that the Contractor shall assist in the sampling at the direction of and witnessed by the Project Engineer.

*Available from the Office of Construction.

STRUCTURAL CONCRETE, REINFORCEMENT, FOUNDATIONS & SUBSTRUCTURES, CONCRETE STRUCTURES, CONCRETE FLOORS, & CONCRETE BOX, ARCH & CIRCULAR CULVERTS

October 16, 2007 Supersedes April 17, 2007

Sections 2403, 2404, 2405, 2406, 2412, & 2415

Matls. IM 204 Appendix H (Metric) Units

MATERIAL OR CONSTRUCTION ITEM	TESTS	METHOD C ACCEPTAN &		QL	JALITY CONTI	ROL					T ASSURANC	E		REMARKS
		RELATED	Ms SAMPL BY	E FREQ.	SAMPLE	TEST BY	REPORT	S&T TYPE	SAMPLE	FREQ.	SAMPLE	TEST BY	REPORT	
GRADE INSPEC	FION													
Reinforcing Steel (4151)	Quality	AS C	ert A	Each Shipment			Field Book	V	DME	IM 451	2 m	CTRL	1	
Reinforcing Steel Epoxy Coated (4151)	Quality	AS C	ert A	Each Shipment			Field Book	V	DME	1 bar	2 m	CTRL		Will be acceptance tested for coating
Steel Pile (4167)	Quality	AS C	ert A	Each Heat			Field Book	V	DME	IM 467		CTRL		
Timber Pile (4165)	Quality	AS	462 ert A					V	DME	IM 462		CRTL	-	No grade requirement Charge numbers on butt end.
Anchor Bolts (lighting, signing, handrail)	Lab Tested	ASD						V	DME	1/project	1 bolt w/nut & washer	CTRL		Sample only if not source inspected
Steel Masonry Plates (4152)	10-11	ASD C	ert A	Each Shipment		-	Field Book	1	-					Approved by Material Department
Bronze Bearing Plates (4190.03)	Lab Tested	A		_				V	DME	1/project	1 only	CTRL		Sample only if not source inspected
Neoprene Bearing Pads (4195)	-	AS 4	95.03	Each Shipment			820905							
Alum. Bridge Rail & Anchor Assembly		ASD		Each Shipment	1		Field Book			_				Approved By Materials Dept.
Drains (Std Steel Pipe)(as per plan)	Dimensions Galvanized	ASD \	/isual 332					V	DME	1/project		DME	Test Report	
AS-Approved Sou ASD-Approved SI S&T-Sampling &	nop Drawing		Cert C-T	ype A Certifica ype C Certifica ype D Certifica	ation		RCE-Resider DME-District CTRL-Centra CONTR-Con	Materials al Materials	Engineer	eer/Project E	ngineer		IA-Inder V-Verifie	bendent Assurance cation

STRUCTURAL CONCRETE, REINFORCEMENT, FOUNDATIONS & SUBSTRUCTURES, CONCRETE STRUCTURES, CONCRETE FLOORS, & CONCRETE BOX,

ARCH & CIRCULAR CULVERTS

October 16, 2007 Supersedes April 17, 2007

Sections 2403, 2404, 2405, 2406, 2412, & 2415

Matls. IM 204 Appendix H (Metric) Units

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE		QL	JALITY CONTR	ROL		-		INDEPENDEN & VERIFIC	T ASSURANC	E		REMARKS
ITEM		& RELATED IMS	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	-
GRADE INSPEC	TION		-	-						-		-		
Timber (4162) & Lumber (4163)	Quality	AS 462 Treated-Cert A	-	Each Shipment						2				
Subdrain Pipe (4143)	Quality	AS Cert D 443, 448		Each Shipment										024
Flowable Mortar (2506)	Flow Test	375	RCE	As needed for Project Control		RCE	830211							Mix Design approval by DME
Bentonite	Flow Test	Visual 375				RCE								
Smoothness (2317)	Profilometer	Cert. Test Rpt. 341	CONTR	Each Project	Each Wheelpath	CONTR	821301	V		10%	12.00	DME	<u>v</u>	
AS-Approved Sou ASD-Approved Sh S&T-Sampling & T	op Drawing		Cert C-Type	A Certification C Certification D Certification	on		RCE-Reside DME-Distric CTRL-Centr CONTR-Col	t Materials al Material	Engineer	eer/Project E	Ingineer		IA-Indep V-Verific	pendent Assurance cation

CONCRETE DRILLED SHAFT FOUNDATIONS SS-01032

October 17, 2006 Supersedes October 18, 2005

Matls. IM 204 Appendix I

MATERIAL OR CONSTRUCTION ITEM	TESTS	METHOD OF ACCEPTANCE &		QU	ALITY CONTR	OL				EPENDENT & VERIFICA	ASSURANCI	E		REMARKS
TEM		RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
SOURCE INSPECT	ION													
Aggregate-Fine (4110)		AS 209						18						
Aggregate-Coarse (4115)		AS 209							1					
Portland Cement (4101)	Quality	AS 401					0.00							
Fly Ash (4108)	Quality	AS 491.17						1.		1				
Mixing Water (4102)	Quality								DME	1/project	1 quart	CTRL	731	Not required for potable water from Municipal Supply
Air Entraining Admixture	Quality	AS 403	-					1000						manopar cappiy
Retarding Admixture	Quality	AS 403			_			-						
Reinforcing Steel Bars (4151)	Quality	AS 451	0											
Permanent Casing	Quality	Cert A												According to plans or other instructions
Drilling Slurry		Visual DS-01038									1			
AS-Approved Source ASD-Approved Shop S&T-Sampling & Tes	Drawing	Cert	A-Type A C C-Type C C D-Type D C	ertification			RCE-Resider DME-District CTRL-Centra CONTR-Con	Materials I al Materials	Engineer	er/Project E	ngineer		IA-Indeper V-Verificat	dent Assurance ion

Quality samples not required when mix quantity is less than 50 cu. yd.

CONCRETE DRILLED SHAFT FOUNDATIONS SS-01032

Matls. IM 204 Appendix I

October 17, 2006 Supersedes October 18, 2005

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE		QL	JALITY CONTR	OL				INDEPENDENT & VERIFICA		E		REMARKS
ITEM	-	& RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	_
PLANT INSPECTIO	DN													
Aggregate- Fine (4110)	Gradation	302, 306 336	CONTR	3/lot	IM 301	CONTR	800240	IA V	DME RCE/ CONTR	1/1000 cy 1st day+20%	IM 301 IM 301	DME RCE		System Approact Applicable
	Moisture	308, 528	CONTR	1/lot	1000 gm	CONTR	1							See IM 528 if Moisture Probe is used
	Sp. Gr.	307	CONTR	IM 528	1000 gm	CONTR								
	Quality	AS 209			-				1	1.	1			1
Aggregate- Coarse (4115)	Gradation	302, 306 336	CONTR	3/lot	IM 301	CONTR		IA	DME RCE/ CONTR	1/1000 cy 1st day+20%	IM 301 IM 301	DME RCE		System Approach Applicable
	Moisture	308, 528	CONTR	1/lot	2000gm	CONTR	1						1.000	
	Sp. Gr.	307	CONTR	IM 528	2000gm	CONTR			-	1		1		
	Quality	AS 209					1	V	DME	1/1000 cy	50 lb	CTRL		
Portland Cement	w/c ratio	528	CONTR	1/pour		CONTR	1							
	Quality	AS Cert D		1				V	DME	1/1000 cy	15 lb	CTRL		
Fly Ash	Quality	AS Cert D	1	Each Load		1	800240							
Air-Entraining Admixture (4103)		AS 403						V	DME	1/batch	1 pint	CTRL		Sample lots not previously reported or as required by DME
Retarding Admixture		AS 403						V	DME	1/batch	1 pint	CTRL		Sample lots not previously reported or as required by DME
AS-Approved Source ASD-Approved Shop I S&T-Sampling & Testi			Cert A-Type Cert C-Type Cert D-Type	e C Certifica	ation		RCE-Resid DME-Distric CTRL-Cent CONTR-Co	ct Materia ral Materi	Is Engineer	ineer/Project	Engineer		IA-Independ V-Verificatio	reported or required by dent Assura

Quality samples not required when mix quantity is less than 50 cu. yd.

CONCRETE DRILLED SHAFT FOUNDATIONS SS-01032

October 17, 2006 Supersedes October 18, 2005

Matls. IM 204 Appendix I

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE		QUA	LITY CONTRO	DL			I		T ASSURANCE ATION S&T	CE		REMARKS
ITEM	-	& RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
GRADE INSPECTION														
Plastic Concrete	Air Content	316, 327					E145*	IA	RCE	1/30 cy		RCE		DME may adjust
	Slump	317, 327	RCE	1/30 cy		RCE		IA	DME	1/30 cy	2	RCE		DME may adjust
	Cylinders								DME	3/project		DME		Primary Projects Only (Information only)
Reinforcing Steel (4151)	Quality	AS Cert A		Each Shipment			Field Book	-				-		
Metal Access Pipe		Visual		-						-				
Drilling Slurry	Density, Viscosity, pH, Sand Content	387	CONTR	1/2 hours		CONTR		-						1/ 4 hours if consistent
Crosshole Sonic Log Test		SS-01032	CONTR	1/shaft		CONTR	Report, Analysis, Inter- pretation							
AS-Approved Source ASD-Approved Shop & T-Sampling & Tes	Drawing	Cert C-T	ype A Certi ype C Cert ype D Cert	ification		DME-Dis CTRL-Ce		als Engine		ject Engine	er		-Independe -Verification	nt Assurance

Quality samples not required when mix quantity is less than 50 cu. yd.

*Available from the Office of Construction.

October 17, 2006 Supersedes April 18, 2006

COLD-IN-PLACE RECYCLED ASPHALT PAVEMENT

Section 2318, DS-01076

Matls. IM 204 Appendix K (US) Units

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE		Q	UALITY CONT	ROL	_		IN	DEPENDENT & VERIFICA				REMARKS
ITEM		& RELATED IMs	SAMPLE BY	FREQ.	SAMPLE	TEST BY	REPORT	S&T TYPE	SAMPLE	FREQ.	SAMPLE	TEST BY	REPORT	
SOURCE INSPECTION	ON		-		-	-								
Asphalt Stabilizing Agent	Quality	AS 4	37						1		1			
GRADE INSPECTIO														
RAP (2318.02)	Max Size		RCE	1st day + 1/week	10 lb	RCE		V					-	15
Stabilizing Agent (Engr. Emulsion)	Quality Residue	Cert D	60					V	RCE/CONTR RCE/CONTR	1/project 1/day (2)	1 qt 1 qt	CTRL DME		Must use plastic bottle for emulsion
Stabilizing Agent (Foamed Asphalt)	Quality DSR	Cert D						V	RCE/CONTR RCE/CONTR	1/project 1/day (2)	1 qt 1 qt	CTRL DME		
Stabilizing Agent (Std. Emulsion)	Quality Residue	Cert D 3	60					V	RCE	1/day(2)	1 qt	DME		Must use plastic bottle for emulsion
Uncompacted Mixture	Moisture Density		04					V	RCE	1/lot	30 lb	DME		Sealed Container
Compacted Mixture	Moisture(1) Density		04 CONTR 04 CONTR	10/lot 10/lot		CONTR								Witnessed by RCE
Smoothness		DS-01076 only						-		1				
AS-Approved Source ASD-Approved Shop S&T-Sampling & Test		Cert A-Type A Cert Cert C-Type C Cert Cert D-Type D Cert	ification		DME-Distric	t Materials E al Materials (l ion Engineer/Pr ngineer Office	oject Engi	neer	IA-Independent Assurance V-Verification				

See IM 504 for Day 1 moisture correction factor.
 The sample from the first day and 1/week shall be forwarded to the District Laboratory for testing. The other samples shall be retained for submission in the event of a failing test result.

October 17, 2006 Supersedes April 18, 2006

COLD-IN-PLACE RECYCLED ASPHALT PAVEMENT

Section 2318

Matls. IM 204 Appendix K (Metric) Units

MATERIAL OR CONSTRUCTION	TESTS	METHO ACCEPT			Q	JALITY CONTR	ROL				1/10/00/00/00/00/00/00/00/00/00/00/00/00	ENT ASSURA	100 J 11 200 200		REMARKS
ITEM		& RELATE	D IMs	SAMPLE BY	FREQ.	SAMPLE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
SOURCE INSPECT	ION		-			-				-					
Asphalt Stabilizing Agent (2318.02)	Quality	AS	437				1								
GRADE INSPECTI			_				- DOE								
RAP 2318.02	Max Size			RCE	1st day + 1/ week	5 kg	RCE			1					
Stabilizing Agent (Engr. Emulsion)	Quality Residue	Cert D	360	RCE	1/day (2)	1L	DME		V	RCE	1/project	1L	CTRL		Must use plastic bottle for emulsion
Stabilizing Agent (Foamed Asphalt)	Quality DSR	Cert D		RCE	1/day (2)	90 ml tin	DME,		V	RCE	1/project	1L	CTRL		
Stabilizing Agent (Std. Emulsion)	Quality Residue	Cert D	360	RCE	1/day (2)	1L	DME								Must use plastic bottle for emulsion
Uncompacted Mixture (2318.04)	Moisture Density		504 504	RCE RCE	1/lot 1/lot	14 kg 14 kg	DME DME								Sealed Container
Compacted Mixture (2318.04)	Moisture(1) Density		504 504	CONTR CONTR	10/lot 10/lot		CONTR CONTR								Witnessed by RCE
ASD-Approved S	D-Approved Shop Drawing Ce					ation ation ation			ct Materia ral Materi	truction Eng Is Engineer ials Office	ineer/Proje	ect Enginee	r		dependent Assurance rification

(1) See IM 504 for Day 1 moisture correction factor.

(2) The sample from the first day and 1/week shall be forwarded to the District Laboratory for testing. The other samples shall be retained for submission in the event of a failing test result.

GRANULAR SURFACING/DRIVEWAY SURFACING

October 17, 2006 Supersedes October 18, 2005

Sections 2312 & 2315

Matls. IM 204 Appendix L (US) Units

MATERIAL OR CONSTRUCTION	TESTS	ACCE	IOD OF PTANCE	-		QUALITY CONT	ROL		-			ENDENT ASSU			REMARKS
ITEM			& TED IMs	SAMPLE	FREQ.	SAMPLE	TEST BY	REPORT	S&T TYPE	SAMPLE	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
SOURCE INSPECTIO	N									1					
Class C Gravel (4120.03)	Gradation Quality	AS	209	-											-
Class A Crushed Stone (4120.04)	Gradation Quality	AS	209					1-8-1							
Class B Crushed Stone (4120.05)	Gradation Quality	AS	209							1	10-11		1		
Class D Crushed Stone (4120.06)	Gradation Quality	AS	209					3.110							
Aggregate for Type B, AC or cold laid Bituminous Concrete (for driveways only)	Gradation Quality	AS	209										4		
Crushed Stone Base (For driveways only) (4122)	Gradation Quality	AS	209			-									
GRADE INSPECTION															
Dimensions	Thickness Width Cross Slope			RCE	3/mi.			Field Book							
			-						0						
									1						
S-Approved Source	e o Drawing		Cert	A-Type A C-Type C	Certificatio	on on		RCE-Residen DME-District	t Construc Materials E	tion Engine	er/Projec	t Engineer	-	IA-Indepe V-Verifica	endent Assurance
&T-Sampling & Tes	sting	-	Cert	D-Type D	Certificatio	on		CTRL-Central CONTR-Contr	Materials						

October 17, 2006 Supersedes October 18, 2005

GRANULAR SURFACING/DRIVEWAY SURFACING

Sections 2312 & 2315

Matls. IM 204 Appendix L (Metric) Units

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANC			QUALITY CONT	ROL					NDENT ASSU			REMARKS
ITEM		& RELATED IN	Is SAMPLE BY	FREQ.	SAMPLE	TEST BY	REPORT	S&T TYPE	SAMPLE	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
SOURCE INSPECTION	N				and the second									
Class C Gravel (4120.03)	Gradation Quality	AS	209											
Class A Crushed Stone (4120.03)	Gradation Quality	AS	209											
Class B Crushed Stone (4120.03)	Gradation Quality	AS	209											
Class D Crushed Stone (4120.03)	Gradation Quality	AS	209				1							
Aggregate for Type B, AC or cold laid Bituminous Concrete (For driveways only)	Gradation Quality	AS	209		- 14									
Crushed Stone Base (For driveways only) (4122)	Gradation Quality	AS	209											
GRADE INSPECTION									-					
Dimensions	Thickness Width Cross Slope		RCE	2/km			Field Book							
				-		-								
-						-			1					
		-	-		-	-		-	-	-	-			
AS-Approved Sourc ASD-Approved Sho S&T-Sampling & Te	p Drawing	1.50	Cert A-Type A Cert C-Type C Cert D-Type D	Certificat	tion		RCE-Resider DME-District CTRL-Centra CONTR-Con	Materials al Materials	Engineer	eer/Proje	ct Engineer		IA-Indepen V-Verificati	dent Assurance on

0

CONCRETE BRIDGE FLOOR REPAIR & OVERLAY & SURFACING

Section 2413

Matls. IM 204 Appendix M

October 16, 2007 Supersedes October 17, 2006

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE		(QUALITY CONT	ROL					NT ASSURAN	ICE		REMARKS
ITEM		& RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
SOURCE INSPECTIO	N													
Aggregates-Fine (4110)		AS 209								-				
Aggregates-Coarse (4115)		AS 209										1		14
Portland Cement (4101)	Quality	AS 401					1.1			10.00	1.1.1	1		
Mixing Water (4102)	Quality	Lab Tested			0			V	RCE	1/source	1 qt.	CTRL		Not needed for potable Municipal Water
Air Entraining Admixture (4103)	Quality	AS 403		_								1		
Water Reducing Admixture (4103)	Quality	AS 403		·	3				1		-			1.5
Retarding Admixture (4103)		AS 403												
Curing Compound (4105)	Lab Tested	405		-		-		V	DME	1/batch	1 pt	CTRL		Sample lots not previously reported
PLANT INSPECTION											-			
Aggregate-Fine (4110)		AS Cert A												
Aggregate-Coarse (4115)	Quality	AS Cert A	-					V	DME	1/project	50 lb	CTRL		DME may adjust frequency
Portland Cement (4101)	Quality	AS Cert D						V	DME	1/project	15 lb	CTRL		
Air Entraining Admixture (4103)		AS 403						V	RCE	Each batch	1 pt	CTRL		Sample if not previously reported
Water Reducing Admixture (4103)		AS 403						V	RCE	Each batch	1 pt	CTRL		Sample if not previously reported
Retarding Admixture (4103)		AS 403						V	RCE	Each batch	1 pt	CTRL		Sample if not previously reported
S-Approved Sourc SD-Approved Shop &T-Sampling & Te	Drawing	(Cert A-Type Cert C-Type Cert D-Type	C Certific	ation		RCE-Reside DME-District CTRL-Centra CONTR-Con	Materials E al Materials	Ingineer	er/Project	Engineer		IA-In V-Ve	dependent Assurance rification

CONCRETE BRIDGE FLOOR REPAIR & OVERLAY & SURFACING

October 16, 2007 Supersedes October 17, 2006

Section 2413

Matls. IM 204 Appendix M

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE		(QUALITY CONT	ROL					ENT ASSURA			REMARKS
ITEM		& RELATED IMs	SAMPLE	FREQ.	SAMPLE	TEST	REPORT	S&T TYPE	SAMPLE	FREQ.	SAMPLE SIZE	TEST	REPORT	
GRADE INSPECTIO	N													
Plastic Concrete	Air	318, 327						V	RCE	1/100 sy		RCE		
(2413)	Slump	317, 327					-	V	RCE	1/100 sy		RCE		
	Density	358						V	RCE	See Note		RCE		For Class O PCC only. (1)
	Thickness								RCE	3/50 sy		RCE		
	Cylinders							V	DME	3/project	-	DME	1	Primary Projects only (Information Only)
Concrete Sealer (2413.09)	Quality	AS 491.12												
						-						-		
				1		-								
														-
AS-Approved Sour ASD-Approved Sh S&T-Sampling & T	op Drawing esting		Cert C-Ty Cert D-Ty	pe A Certin pe C Certi pe D Certi	fication		RCE-Reside DME-Distric CTRL-Centr CONTR-Cor	t Materials al Materials ntractor	Engineer		Engineer		V-Verif	ependent Assurance ication

(1) Nuclear density testing frequency for each placement shall be one test within 5 feet (1500 mm) of the beginning and end of the placement and additional tests shall be equally spaced a maximum of 100 feet (30 000 mm) throughout the length of the placement. Each placement shall have a minimum of three nuclear density tests.

2

October 17, 2006 Supersedes April 19, 2005 SURFACE TREATMENT (Seal Coat, Slurry, Joint Repair, Crack Filling, Fog Seal)

Section 2307, 2319, 2540, 2544, 2306, 2308

Matls. IM 204 Appendix P (US) Units

MATERIAL OR METHOD OF QUALITY CONTROL INDEPENDENT ASSURANCE REMARKS CONSTRUCTION TESTS ACCEPTANCE & VERIFICATION S&T ITEM & **RELATED IMs** SAMPLE SAMPLE TEST REPORT S&T SAMPLE FREO. FREQ. SAMPLE TEST REPORT BY SIZE BY TYPE BY SIZE BY SOURCE INSPECTION Aggregates (4125) AS 209 Quality Gradation AS Emulsions/ Quality Cutbacks 1 qt & DME/ Compatibility 349 DME 1/ Seal Coat Emulsion & 10lb CTRL Aggregate source Emulsion & Mix Design Slurry Aggregate **GRADE INSPECTION** DME **Quality Gradation** Cert D 301 V 1/proj. 50 lb CTRL Seal Coat Aggregate Emulsion Quality Cert D 323, 360 RCE 1/20,000 gal 1 qt DME Fieldbook(2) Seal Residue Coat/Slurry(1) 349 RCE 1st day+ 1/week 1 at & 10 b DME Compatibility Seal Coat 323, 329 DME Fieldbook(2) Cert D RCE 1/20,000 gal Cutback Quality 1 qt Viscosity AS Anti-Strip 323. 374 Cert A-Type A Certification IA-Independent Assurance AS-Approved Source RCE-Resident Construction Engineer/Project Engineer ASD-Approved Shop Drawing DME-District Materials Engineer Cert C-Type C Certification **V-Verification** S&T-Sampling & Testing Cert D-Type D Certification **CTRL-Central Materials Office CONTR-Contractor**

Emulsion samples in plastic bottles only.

No samples required for joint repair, crack filling, and fog seal. Acceptance based on certification only.

(1) Samples of emulsion for slurry are required for full width placement only.

(2) Log all shipments

October 16, 2007 Supersedes October 17, 2006

BASE REPAIR (2212), PAVEMENT REPAIR (PATCHES) Sections 2529 & 2530

MATERIAL OR CONSTRUCTION	TESTS		METHOD OF CCEPTANCE			QUALITY CONT	ROL					ENDENT ASSU			REMARKS
ITEM		F	& RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
SOURCE INSPEC	CTION														
Aggregates Fine (4110)		AS	209						1						
Aggregates Coarse (4115)		AS	209										2		
Portland Cement (4101)	Quality	AS	401												
Fly Ash (4108)	Quality	AS	491.17												
GGBFS (Ground Granulated Blast Furnace Slag)	Quality	AS	491.14									<u> </u>			
Curing Compound (4105)	Lab Tested		405								1-				
Air Entraining Admixture (4103)	Quality	AS	403									1			
Granular Backfill	Gradation Quality	AS AS	CERT CERT												
Drain Tubing	Quality	AS	443												
Epoxy Grout		AS	491.11												
Joint Seal (4136.02)	Lab Tested	AS	436.01 436.02									-			
Backer Rod (4136.02)		AS	436.04					1.1							
Steel Reinforcing	Quality	AS	451												
AS-Approved Source ASD-Approved Sho S&T-Sampling & Te	p Drawing			Cert A-Typ Cert C-Typ Cert D-Typ	be C Certif	fication		DME-Dis CTRL-Ce	trict Materi	ials Enginee rials Office	l gineer/Pi er	 roject Engine	eer	IA-Indepen V-Verificati	dent Assurance

BASE REPAIR (2212), PAVEMENT REPAIR (PATCHES) Sections 2529 & 2530

October 16, 2007 Supersedes October 17, 2006

MATERIAL OR CONSTRUCTION ITEM	TESTS		METHOD OF ACCEPTANCE &		QUA	LITY CONTR	OL				INDEPENDEI & VERIFI	NT ASSURAN CATION S&T	ICE		REMARKS
TLW			RELATED IMs	SAMPLE BY	FREQ.	SAMPLE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE	TEST BY	REPORT	
PLANT INSPECT	ION														1.0
Aggregates-Coarse (4115)	Grad	302	306 336	CONTR	1/lot	IM 301	CONTR		V	RCE/ CONTR	1st day +20%	IM 301	RCE		1
	Moist		308	CONTR	1 / half day	1000 gm	CONTR				1				
	Sp. Gr.		307	CONTR	IM 527	1000 gm	CONTR								
	Quality	AS	209						1.00	-		2			
Aggregate- Fine (4110)	Gradation		302, 306 336	CONTR	1/lot	IM 301	CONTR	830211	V	RCE/ CONTR	1st day+ 20%	IM 301 IM 301	RCE		
	Moisture		308, 528	CONTR	1/lot	1000 gm	CONTR	830211							See IM 528 if Moisture Probe is used
	Sp. Gr.		307	CONTR	IM 528	1000 gm	CONTR	830211			1				
	Quality	AS	209												
Portland Cement (4101)	Quality	AS	CERT D		Each Load					-				_	
Fly Ash	Quality	AS	CERT D		Each Load		-								
Air Entraining Admixture		AS	403						V	DME	1/batch	1 pt	CTRL		Sample lots not previously
Water Reducing Admixture		AS	403		1				V	DME	1/batch	1 pt	CTRL		reported or as directed by DME
Retarding Admixture		AS	403					-	V	DME	1/batch	1 pt	CTRL		
S-Approved Source SD-Approved Sho &T-Sampling & Te	p Drawing			ert C-Type	A Certification C Certificatio D Certificatio tractor	n		DME-Dist	dent Const rict Materia ntral Materi	Is Engineer	ineer/Project E	ingineer		IA-Indeper V-Verificati	ndent Assurance ion

October 16, 2007 Supersedes October 17, 2006

BASE REPAIR (2212), PAVEMENT REPAIR (PATCHES) Sections 2529 & 2530

MATERIAL OR CONSTRUCTION ITEM	TESTS	METHO ACCEPT &	TANCE		QU	ALITY CONTR	OL					DENT ASSURA			REMARKS
TIEM .		RELATE		SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
GRADE INSPECT	TION														13.2.20
Uncompacted HMA Mixture		Scale ticket wit number	th JMF												Job Mix Formula (JMF) approved by DME
Plastic Concrete	Air Slump	318 318	327 327			1.5	1		V V	RCE RCE	2/half day 2/half day	1	RCE RCE		
Reinforcing Steel Epoxy-Coated Steel	Quality Quality	AS AS	118 327 NS 451 NS 451		Each Shipment					r - P					
Calcium Chloride	Concentr.		373	RCE	1/lot		RCE								
Smoothness for Compacted HMA or Hardened Conc. (2529.10)			341	CONTR			CONTR								Approval by DME See Plans/Specs for exclusions
S-Approved Source SD-Approved Sho &T-Sampling & Te	p Drawing			Cert C-Typ	e A Certificat e C Certificat e D Certificat	tion		DME-Dist	rict Mate ntral Mat	rials Engine erials Office	er	ect Engineer		IA-Indeper V-Verificat	ident Assurance

GRANULAR SHOULDERS

October 17, 2006 Supersedes October 18, 2005

Section 2121

Matls. IM 204 Appendix U (US) Units

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE			QUALITY CONT	TROL			_		NDENT ASSU			REMARKS
ITEM		& RELATED IMs	SAMPLE	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	1
SOURCE INSPECTION	N									1				1.4
Aggregate (4120.02)	Gradation Quality	AS 20	9											
Aggregate (Paved Shoulder Fillets) (4120.07)	Gradation Quality	AS 20	9											
GRADE INSPECTIO	4													
Dimensions	Thickness Width Cross Section	Template	RCE	3/mile 3/mile 3/mile		RCE	Field Book							
Aggregate (Paved Shoulder Fillets)	Gradation	Certification					-		-					
													1.5	
S-Approved Source SD-Approved Sho &T-Sampling & Te	p Drawing		Cert A-Typ Cert C-Typ Cert D-Typ	e C Certifi	cation		DME-Dist	rict Materia ntral Mater	truction Eng als Engineer rials Office	gineer/Pro	oject Engine	er	IA-Indepe V-Verifica	endent Assuran ation

October 17, 2006 Supersedes October 18, 2005

GRANULAR SHOULDERS

Section 2121

Matls. IM 204 Appendix U (Metric) Units

MATERIAL OR METHOD OF QUALITY CONTROL INDEPENDENT ASSURANCE REMARKS CONSTRUCTION TESTS ACCEPTANCE & VERIFICATION S&T ITEM & **RELATED IMs** SAMPLE FREQ. SAMPLE TEST REPORT S&T SAMPLE FREQ. SAMPLE TEST REPORT BY SIZE BY TYPE BY SIZE BY SOURCE INSPECTION Aggregate Gradation AS 209 (4120.02) Quality Aggregate Gradation AS 209 (Paved Shoulder Quality Fillets) (4120.07) GRADE INSPECTION Dimensions 2/km Thickness Width RCE 2/km RCE Field Book Cross Section Template 2/km Aggregate (Paved Shoulder Fillets) Certification Gradation RCE-Resident Construction Engineer/Project Engineer AS-Approved Source Cert A-Type A Certification IA-Independent Assurance ASD-Approved Shop Drawing Cert C-Type C Certification DME-District Materials Engineer V-Verification Cert D-Type D Certification **CTRL-Central Materials Office** S&T-Sampling & Testing **CONTR-Contractor**

SUBDRAINS Section 2502

October 17, 2006 Supersedes April 15, 2003

Mat	tls. II	M 204
Appendix V	(US)	Units

MATERIAL OR CONSTRUCTION	TESTS		METHOD OF ACCEPTANCE		Q	UALITY CONT	ROL					DENT ASSURA			REMARKS
ITEM			& RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	1.1
SOURCE INSPEC	CTION														
Drain Tubing (4143)	Quality	AS	443			V e									
Rodent Guard (4143.01)		AS	443.01						-						
Subdrain Outlet (4143)		AS													
Porous Backfill (4131)	Quality Gradation	AS	209												-
Granular Backfill (4133)	Quality Gradation	AS	209					-							
Class A (Outlets) (4120.04)	Quality Gradation	AS	209												
GRADE INSPECT	ION														
Drain Tubing (4143)	Quality	AS													
Engineering Fabric (4196)	5. TO 1	AS	496.01												
Subdrain Outlet	Quality	AS	Cert D		2		1							(
Porous Backfill (4131)	Gradation	AS	Cert A		Each Shipment										
Granular Backfill (4133)	Gradation	AS	Cert A		Each Shipment										
Class A (Outlets) (4120.04)	Gradation	AS	Cert A		Each Shipment										-
Metal Posts (4154.09)		Visual		RCE										1	
AS-Approved Sour ASD-Approved Sho S&T-Sampling & T	op Drawing	2	(Cert C-Type	e A Certifica e C Certifica e D Certifica	tion		RCE-Residen DME-District I CTRL-Central CONTR-Contr	Materials E Materials	Engineer	er/Project E	I I Engineer		IA-Indepe V-Verifica	l ndent Assurar tion

SUBDRAINS

Section 2502

Supersedes April 15, 2003

October 17, 2006

	Matls. IM 204 Appendix V (Metric) Units
EPENDENT ASSURANCE	REMARKS

MATERIAL OR CONSTRUCTION	TESTS		METHOD OF ACCEPTANCE		QL	JALITY CONTR	ROL					DENT ASSUR			REMARKS
ITEM			& RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
SOURCE INSPEC	TION														
Drain Tubing (4143)	Quality	AS	443									-			
Rodent Guard (4143.01)		AS	443.01										-		
Subdrain Outlet (4143)		AS													
Porous Backfill (4131)	Quality Gradation	AS	209						-						
Granular Backfill (4133)	Quality Gradation	AS	209												
Class A (Outlets) (4120.04)	Quality Gradation	AS	209												
GRADE INSPECT	TION														
Drain Tubing (4143)	Quality	AS	C											-	
Engineering Fabric (4196)		AS	496.01												
Subdrain Outlet	Quality	AS	Cert D												
Porous Backfill (4131)	Gradation	AS	Cert A		Each Shipment						-				
Granular Backfill (4133)	Gradation	AS	Cert A		Each Shipment										
Class A (Outlets) (4120.04)	Gradation	AS	Cert A		Each Shipment										
Metal Posts (4154.09)		Visua	I	RCE										1	
AS-Approved Sou ASD-Approved Sh S&T-Sampling & 1	op Drawing		Cer	t C-Type C	Certification Certification Certification	1		DME-Dis CTRL-Ce	trict Materi	als Enginee rials Office	I gineer/Proj r	L ect Enginee	r	IA-Indep V-Verific	pendent Assurance cation

WATER POLLUTION CONTROL EROSION CONTROL

October 17, 2006 Supersedes April 18, 2006

Matls. IM 204 Appendix W

Section 2525, 2601

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE		,	QUALITY CONT	ROL					ENDENT ASSU		1	REMARKS
ITEM		& RELATED IMs	SAMPLE	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
GRADE INSPECTION							-		1					
Seeds 4169.02		Cert A								-			1911	
Fertilizer 4169.03		AS 469.03												
Inoculants 4169.04		Seed Manufacturer Recommendation								-	-			
Sticking Agent		Manufacturer Recommendation												
Sod 4169.07		Visual				RCE	Field Book							
Mulch 4169.07		Visual				RCE	Field Book	1		- 1 - 1		6		-
Stakes for Sod		Visual				RCE	Field Book	-						
Jute mesh 4169.10a		Visual				RCE	Field Book							
Wire Staples 4169.10b		Visual				RCE	Field Book							
Wood Excelsior Mat 4169.10c		Visual	-			RCE	Field Book							
Engineering Fabrics		AS IM 496.01			1		Field Book	2						
Silt Fence Wire and Posts (Std. Rd. Plan RC-16)		Visual				RCE	Field Book							
AS-Approved Sourc ASD-Approved Sho S&T-Sampling & Te	p Drawing	(Cert A-Type Cert C-Type Cert D-Type	e C Certifi	cation		RCE-Residen DME-District I CTRL-Central CONTR-Contr	Materials E Materials	Ingineer	er/Projec	t Engineer		IA-Indepe V-Verifica	endent Assurance ation

****THIS IS A NEW APPENDIX. - PLEASE READ CAREFULLY.****

Sampling & Testing Guide-Minimum Frequency

October 17, 2006 New Issue

ACCEPTANCE OF SMALL QUANTITIES OF MATERIALS

Material	Maximum Quantity	Specifications	Alternate Acceptance Method
Beads, Glass	0.5 mi. application	4184	Visual
Dowel Baskets, Epoxy-coated	25		Visual & Field Check
Fly Ash	5 ton		Approved Source & Type
Hardware for Timber	100 lbs.	4153.07	Visual
Joint Filler, Preformed	50 ft.	4136.03	Visual & Dimension
Lighting Material-Conduit & Fittings	100 ft	4185.10	Visual & Brand Name
Paint, Bridge	5 gal.	4182	Visual & Brand Name
Pipe, Welded Steel for Bridge Railing	100 ft.	4153.05	Letter of Compliance

SUPPLEMENTAL GUIDE - BASIS OF ACCEPTANCE

Material	IM	Spec.	Sample Size	Sampled By	Basis of Acceptance	Cert. Type	Verification	Other Details
Abrasives for Blast Cleaning	482.03		10		Approved Source			Note brand in field book
Admixture-Air Entraining	403	4103	1 pt.	DME or RCE	Approved Source Batch (Lot)		Project	Contact District Matls.
Admixture-Corrosion Inhibitor	402	4103	1 pt.	DME or RCE	Approved Source Batch (Lot)		Project	Contact District Matls.
Admixture-Retarder	403	4103	1 pt.	DME or RCE	Approved Source Batch (Lot)		Project	Contact District Matls.
Admixture-Water Reducer	403	4103	1 pt.	DME or RCE	Approved Source Batch (Lot)		Project	Contact District Matls.
Aggregates-Non- proportioned	209	4110-4133			Approved Source/Certified Truck Tickets, (Form #821278)	D	Source	Certified Ticket for pay items by weight
Aggregates-Proportioned	209 & 204	4110-4133	IM 301	CONTR/RCE/ DME	Approved Source/Certified Truck Tickets, (Form #821278)	D	Source Project	
Aluminum, Structural		4190.01			Approved Shop Drawing & Fabrication Report			
Anchor Bolts	453.08	2522.04, D 4185.02, A 4187.01, C	1 bolt, nut & washer per size, per project	DME	Approved Source/Test Report/Steel Mill Certifications	A		
Anchors, Concrete	453.09				Approved Source			
Anti-Strip Agent	491.16				Approved Source			
Arrow Panels, Solar-Assisted	486.12	2528.06	1		Approved Source		-	
Asphalt Binder	437	4137	1 4-oz. tin	CONTR/DME	Approved Source/Certification/Test Rpt.	D	Source Project	
Asphalt, Cutback	437	4138	1 qt. tin	RCE	Approved Source/Certification/Test Rpt.	D	Source	

SUPPLEMENTAL GUIDE - BASIS OF ACCEPTANCE

Material	IM	Spec.	Sample Size	Sampled By	Basis of Acceptance	Cert. Type	Verification	Other Details
Asphalt, Emulsified	437	4140	1 qt. bottle	RCE	Approved Source/Certification/Test Rpt.	D	Source	Project verification for seal coat
Attenuators -see crash cushion								
Attenuators, Guardrail	1.1				As per plan			
Backer Rod for Cold Pour Joint Seal	436.04	4136.02, C			Approved Source			
Backer Rod for Hot Pour Joint Seal	436.04	4136.02C			Approved Source			
Barrier Rail, Precast Concrete	571	2513			Approved Source/DOT Stamp/Fabrication Report		Source	
Beads, Glass	484	4184	1 qt.	DME	Approved Source		Subcontr.	
Bearing, Bronze		4190.03	1/project	DME	Test Report			
Bearing, Lead		4195.01	-		Certification	D		
Bearing, Neoprene	495.03	4195.02	1/pad	DME	Fabrication Report/Approved Source		Fabricator	
Bentonite Clay					Visual Approval by RCE			-
Bolts, Nuts & Washers, Structural	453.06B	4153.06	Per IM 453.06B	DME	Certification/Rotational Capacity Test/Test Report	A		
Calcium Chloride Solution	373	4194.01	4 lbs. or 1 qt.	RCE	Test by RCE			
Caulking Compound		4192		1	Visual Approval by RCE			
Concrete, Special Sections	445	4145 4149.02, B			Approved Source, Fabricator's trade mark, Date of Manufacture, Certified stamp, Certification	D	Source	

SUPPLEMENTAL GUIDE - BASIS OF ACCEPTANCE

Material	IM	Spec.	Sample Size	Sampled By	Basis of Acceptance	Cert. Type	Verification	Other Details
Concrete, Modular & Segmental Block	445.04				Approved Source/Certification	D	-	
Concrete, Precast Box Culvert	445.02	2415		1.0	Approved source, Approved Shop Drawing, Fabricator's trade mark, Date of Manufacture, Certified stamp, Certification	D	Source	
Concrete, Prestressed, Precast Units	570	2407			Approved Source, Fabricator's trade mark, Date of Manufacture, Certified stamp, Fabrication Report	-	Source	
Concrete Sealer	491.12	4139			Approved Source	-		
Conduit - See Lighting Matl.		-				-		
Curing Matls., Burlap		4104			Visual Approval by RCE			
Curing Matls., Clear	405.07	4105.07	1.11		Approved Source			
Curing Matls., Dark-colored	437	4105.06			Approved Source		Source	
Curing Matls., Plastic Film		4106.02			Visual Approval by RCE			2.1
Curing Matls., White Pigmented	405	4105.05	1 qt.	DME	Batch (Lot) Accept		Source	
Crash Cushion	455	2509			Approved Source, Certification if source not clearly marked	D		
Delineators–See Signing Matls.				1.5				
Detectable Warning Panels	411	2511.02			Approved Source			
Dowel-See Steel Reinforcement								200

SUPPLEMENTAL GUIDE - BASIS OF ACCEPTANCE

Material	IM	Spec.	Sample Size	Sampled By	Basis of Acceptance	Cert. Type	Verification	Other Details
Drainage Trough, Elastomeric Bridge Joints	494				Approved Source		1.1	
Drains, Floor		2406.05			Approved Shop Drawing & Fabrication Report			
Drums, Channelizing	488.02	4188.02	-		Approved Source	-		
Epoxy-coated Steel-See Steel Reinforcement								
Epoxy Injection Resin	491.19				Approved Source			
Erosion Control, Fertilizer	469.03	4169.03			Approved Source			If material is suspect, DME will sample
Erosion Control, Fungicide		4169.05			Seed Manufacturing Recommendation			
Erosion Control, Inoculant		4169.04			Seed Manufacturing Recommendation			
Erosion Control, Jute Mesh		4169.10, A			Visual Approval by RCE			
Erosion Control, Mulch		4169.08			Visual Approval by RCE			
Erosion Control, Seed	469.02	4169.02			Certification	A		
Erosion Control, Silt Fence Fabric	496.01	4196.01			Approved Source			
Erosion Control, Silt Fence Wire & Posts		Std. Road Plan RC-16 Series			Visual Approval by RCE			
Erosion Control, Sod		4169.07			Visual Approval by RCE	1.5		
Erosion Control, Sod Stakes		4169.09			Visual Approval by RCE			

SUPPLEMENTAL GUIDE - BASIS OF ACCEPTANCE

Material	IM	Spec.	Sample Size	Sampled By	Basis of Acceptance	Cert. Type	Verification	Other Details
Erosion Control, Sticking Agent		4169.06			Seed Manufacturing Recommendation			6
Erosion Control, Wire Staples		4169.10, B			Visual Approval by RCE			
Erosion Control, Wood Excelsior Mat	469.10			1	Approved Source			
Expansion Device, Steel		4152.02			Approved Shop Drawing & Fabrication Report			
Expansion Tube		4191.01, B			Visual Approval by RCE			
Fabric Engineering	496.01	4196.01			Approved Source			-
Fasteners, Aluminum Structural	486	4190.02			Fabrication Report		-	
Fence, Barbed Wire		4154.04			Visual Approval by RCE			
Fence, Brace for Field Fence		4154.08			Visual Approval by RCE			1
Fence, Tie & Tension Wire		4154.05			Visual Approval by RCE		-	
Fence, Chain Link Fabric	454.10	4154.03	1/source/yr		Approved Source/Certification		Project	
Fence, Chain Link Fittings		4154.11			Visual Approval by RCE			
Fence, Chain Link Posts, Braces, & Rails	454.10	4154.10	1/source/yr		Approved Source/Certification		Project	
Fence, Field Fence Fabric		4154.02		-	Visual Approval by RCE			
Fence, Gate		4154.12		e	Visual Approval by RCE			
Fence, Misc. Hardware					Visual Approval by RCE		-	

SUPPLEMENTAL GUIDE - BASIS OF ACCEPTANCE

Material	IM	Spec.	Sample Size	Sampled By	Basis of Acceptance	Cert. Type	Verification	Other Details
Fence, Orange Mesh Safety	488.03	4188.03			Approved Source			
Fence, Silt-See Erosion Control								
Fence, Staples		4154.06			Visual Approval by RCE			
Fence, Steel Line Posts		4154.09			Visual Approval by RCE			
Fence, Wood Fence Post	462	4154.07			Approved Source/Certification	D		
Fertilizer-See Erosion Control							10.00	
Fly Ash	491.17	4108	10 lbs.	DME	Approved Source/Certification	D	Project Source	Verification on paving only
Galvanized Items		4100.07		DME	Test Report by District Materials			
GGBFS	491.14	4100.08			Approved Source/Certification	D	Source Project	
Grating (Aluminum)		4187.01, A			Approved Shop Drawing & Fabrication Report	-		
Grout, Hydraulic Cement	491.13				Approved Source			
Grout, Polymer	491.11				Approved Source			
Guardrail, Box-beam Median Barrier		4155.06			Approved Shop Drawing & Fabrication Report			
Guardrail, Cable		4155.06	6 ft.	DME	Test Report by Central Lab			
Guardrail, High Tension Cable	455.01	SS-01048			Approved Source/Certification	D		
Guardrail, Formed Steel Beam	455.02	4155.02			Approved Source			

Sampling & Testing Guide-Minimum Frequency

October 16, 2007 Supersedes October 17, 2006

SUPPLEMENTAL GUIDE - BASIS OF ACCEPTANCE

Material	IM	Spec.	Sample Size	Sampled By	Basis of Acceptance	Cert. Type	Verification	Other Details
Guardrail, Steel Posts		4155.05			Mill Test Report	A		
Guardrail, Wood Posts	462	4155.04			Approved Source/Certification	A		
Iron Castings, Utility Access Covers, etc.	453.04	4153.04			Certification & Proper Identification Imprint	A	· · · · · · · · · · · · · · · · · · ·	
Iron Castings, Utility Access Adjustment Rings	449.05				Approved Source/Certification	D		
Iron Bridge Rockers		4153.04			Approved Shop Drawing & Fabrication Report			
Joint Filler, Flexible Foam- Type CF & EF Joints	436.05	4136.03, B 4136.03, D			Approved Source		- 1	
Joint Filler, Type E Joint	436.03	4136.03, A			Approved Source			
Joint Filler, Bituminous	436.03	4136.03, A			Approved Source			
Joint Sealer for Concrete Sewer Pipes	491.09	4149.08			Approved Source			
Joint Sealer, Elastomeric (Neoprene)	436.02	4136.03			Approved Source			
Joint Sealer, Poured	436.01	4136.02, A			Approved Source			
Keyway		4191.01, A			Visual Approval by RCE			
Lighting Material, Aluminum Poles	557	4185.02, E		1.2	Approved Shop Drawing/Approved Source/Certification	D		
Lighting Material, Circuit Test		2523.21		Contractor	Test Report (Contractor) Form #820928			
Lighting Material, Connectors		4185.11			Approved Catalog Cut			
Lighting Material, Contactors		4185.05			Approved Catalog Cut			

SUPPLEMENTAL GUIDE – BASIS OF ACCEPTANCE

Material	IM	Spec.	Sample Size	Sampled By	Basis of Acceptance	Cert. Type	Verification	Other Details
Lighting Material, Control Cabinet		4185.07			Approved Shop Drawing & Catalog Cut			
Lighting Material, Conduit & Fittings, Plastic		4185.10	4'-Plastic	DME	Test Report			
Lighting Material, Conduit & Fittings, Steel	485.10	4185.10			Approved Source			
Lighting Material, Ground Rods & Clamps		4185.04			Visual			
Lighting Material, Handholes	445	4185.08			Approved Source, Fabricator's trade mark, Date of Manufacture, Certified stamp, Certification	D	Source	
Lighting Material, Junction Boxes		4185.09			Approved Catalog Cut			
Lighting Material, Lighting Tower	557	2522.04			Approved Shop Drawing/Approved Source/Certification	D		
Lighting Material, Lowering Device		2522.06			Approved Shop Drawing & Fabrication Report			
Lighting Material, Luminaries		4185.03		1	Approved Catalog Cut			
Lighting Material, Photoelectric Control		4185.06			Approved Catalog Cut			
Lighting Material, Sealant for Traffic Loop Detectors	491.18				Approved Source			
Lighting Material, Steel Poles	557	4185.02, D		1	Approved Shop Drawing/Approved Source/Certification	D		

SUPPLEMENTAL GUIDE - BASIS OF ACCEPTANCE

Material	IM	Spec.	Sample Size	Sampled By	Basis of Acceptance	Cert. Type	Verification	Other Details
Lighting Material, Underground Warning Tape		2523.13	JILC	by	Visual Approval by RCE			
Lighting Material, Wire & Cable		4185.12	1		Approved Catalog Cut & Certification	D		DME may obtain verification samples
Lighting Material, Wood Poles	462	4185.02, F			Approved Source/Certification	D		
Lighting Material, Fasteners for Poles	453.09	4185.02, A	1 each type	DME	Test Report & Approved Shop Drawing			
Lighting Material, Mastarms	557	4185.02, B			Approved Shop Drawing/Approved Source/Certification	D		
Lighting Material, Slip Base	557	4185.02		2.2	Approved Shop Drawing/Approved D Source/Certification			
Lighting Material, Transformer Base	557	4185.02, C			Approved Shop Drawing/Approved Source/Certification	D		
Markers (reflective) for Guardrail & Concrete Barrier Rail	486.08	4186.08			Approved Source			
Markers, Raised Pavement	483.07	2527.02, E			Approved Source			
Mastarms-See Lighting Materials								
Paint, Epoxy Aluminum	482.04		1		Approved Source			
Paint, Traffic-VOC-Compliant Solvent-borne	483.03	4183.03			Approved Source			
Paint, Traffic Waterborne	483.03	4183.04			Approved Source Subcontr.			

SUPPLEMENTAL GUIDE – BASIS OF ACCEPTANCE

Material	IM	Spec.	Sample Size	Sampled By	Basis of Acceptance	Cert. Type	Verification	Other Details
Paint, Waterborne Acrylic Finish (Bridge Paint)	482.05	4182.03			Approved Source/Certification	D		
Paint, Zinc-rich Epoxy	482.02	4182.02			Approved Source/Certification	D		
Paint, Zinc-silicate Solvent- borne	482.05	4182.02	1		Approved Source/Certification	D		
Patch Material, Rapid-set Concrete	491.20				Approved Source			_
Pedestrian Bridge,	557				Approved Source/Approved Shop			
Pre-engineered					Drawing			
Piling, Concrete	570	4166		0 - 3	Approved Source, Fabricator's trade mark, Date of Manufacture, Certified stamp, Fabrication Report		Source	
Piling, Steel	467	4167			Approved Source/Mill Certification	A	Project	
Pipe, ABS Sewer/PVC	443, 446	4146.04 4146.05			Approved Source/Certification	D	Source	
Pipe, Clay Sewer		4149.02, A	2 each	DME	Test Report	C.A.		
Pipe, Concrete	445	4145			Approved Fabricator, Fabricator's trade mark, Date of Manufacture, Certified stamp, Certification	D	Source	1
Pipe, Corrugated Aluminized	441	4141			Approved Source/Certification			
Pipe, Corrugated Polyethylene 3-10 in.	443	4146.02 4143.02			Approved Source		Source	
Pipe, Corrugated Polyethylene 12-36 in.	446	4146.02			Approved Source/Certification	D	Source	· · · · · · · · · · · · · · · · · · ·

SUPPLEMENTAL GUIDE - BASIS OF ACCEPTANCE

Material	IM	Spec.	Sample Size	Sampled By	Basis of Acceptance	Cert. Type	Verification	Other Details
Pipe, Corrugated Steel	441	4141			Approved Source/Certification	D	Fabricator	
Pipe, Ductile Iron Sewer		4149.02, C			Certification	A	1	
Pipe, Polyethylene Sewer	443, 446	4146.03			Approved Source/Certification	D	Source	
Pipe, Rodent Guard for PE Pipe	443.01	4143.01, B	1.000		Approved Source	-		
Pipe, Rodent Guard for CMP Pipe	443.01	4143.01, B			Approved Source			
Pipe, Concrete Subdrain Tile	448	4148			Approved Source/Certification	С	Source	
Pipe, Corrugated Metal Subdrain Outlet	441	4141			Approved Source/Certification D		Fabricator	
Pipe, Corrugated Polyethylene Subdrain	443	4143.01, B			Approved Source		Source	
Pipe, Welded Steel for Bridge Rail (See Railing, Bridge)								1.1.
Pipe, Horizontal Subdrain	443	4143.01, A			Approved Source	-	Source	
Plant Material, Fertilizer	469.03	4170.09, B			Approved Source		-	
Plant Material, Mulch	470	4170.09, D		RCE	Field Review Report			
Plant Materials, Plants	470	4170.01- 4170.08		Roadside Development	Field Review Report			Rpt. Issued-Roadside Development
Portland Cement Concrete Premix Pack	447				Approved Source/Certification	С	Source	
Portland Cement, All Types	401	4101	10 lbs.	DME	Approved Source/Certification	D	Project Source	

SUPPLEMENTAL GUIDE - BASIS OF ACCEPTANCE

Material	IM	Spec.	Sample Size	Sampled By	Basis of Acceptance	Cert. Type	Verification	Other Details
Railing, Bridge		4153.05			Approved Source/Approved Shop Drawing/Fabrication Report			
Reflective Sheeting-See Signing Material								
Release Agent	491.15				Approved Source			
Sealant, Traffic Loop-See Lighting Material								
Seed-See Erosion Control								
Signing Material, Delineator Posts		4186.10, C	1 each supplier	DME	Test Report			
Signing Material, Delineators	486.07	4186.07			Approved Source		Project	
Signing Material, Finished Sign	486	4186			Fabrication Report/Approved Source/Certification	D	Source	
Signing Material, Fasteners	1.00	4186.06			Fabrication Report	-		
Signing Material, Reflective	486.03	4186.03		1	Approved Source		Source	
Signing Material, Sign Panels		4186.02			Approved Shop Drawing & Fabrication Report			
Signing Material, Sign Support Structures	557	4187			Approved Source/Approved Shop Drawing/Fabrication Report			
Signing Material, Stainless Steel Fasteners	453.07		1 per size per proj.	DME	Approved Source/Mill Certification	A	Project	
Signing Material, Steel Posts		4186.10			Approved Shop Drawing & Fabrication Report			

SUPPLEMENTAL GUIDE - BASIS OF ACCEPTANCE

Material	IM	Spec.	Sample Size	Sampled By	Basis of Acceptance	Cert. Type	Verification	Other Details
Signing Material, Wood Posts	462	4186.10		-,	Approved Source/Certification	A		
Signing Material, Galvanized Items		4100.07			Test Report by District Materials			
Sod-See Erosion Control								
Steel Castings		4153.03			Approved Source/Catalog Cut			
Steel Masonry Plates		4152.02			Mill Certification	A		-
Steel Pile, Welded		4153.05			Approved Shop Drawing & Fabrication Report			
Steel, Pins/Rollers, Cold Finished		4153.02	1.4		Approved Source/Catalog Cut			
Steel, Pins/Rollers, Forged		4153.01			Approved Source/Catalog Cut			
Steel Reinforcement, Basket Assemblies	451.03B	4151.02			Approved Source/Certification	D		
Steel Reinforcement, Epoxy- coated	451.03B	4151.03, B	6 ft.	DME	Approved Source/Mill Certifications & Epoxy Certification/Test Report	A	Project	Test sample should be 3 ft. away from end of the bar.
Steel Reinforcement, Epoxy- coated Tie Bars	451.03B	4151.02, A	1 per project per year		Approved Source/Certification	D	Project	
Steel Reinforcement, Epoxy- coated Dowels	451.03B	4151.02	1 per project per year		Approved Source/Certification	D	Project	
Steel Reinforcement, Galvanized	451	4151.03, A	3 ft.	DME	Mill Certifications & Test Report for Galvanizing	A	Project	
Steel Reinforcement, Uncoated	451	4151	*6 ft. of most common	DME	Approved Source/Mill Certification	A	Project	*Proj. quant. under 45T Cert. Only, 45T+ 1 samp.

SUPPLEMENTAL GUIDE - BASIS OF ACCEPTANCE

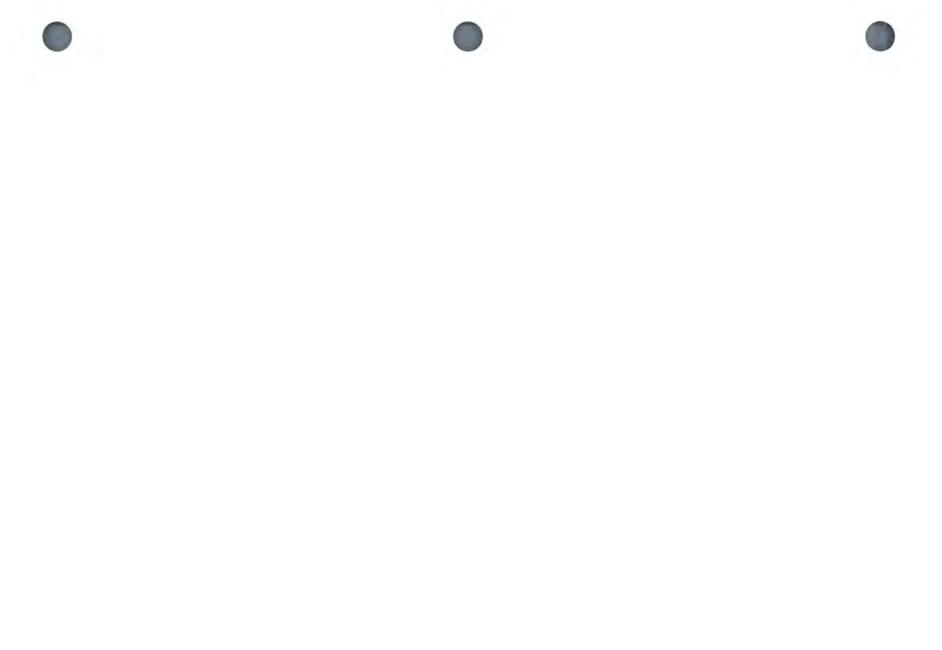
Material	IM	Spec.	Sample Size		Basis of Acceptance	Cert. Type	Verification	Other Details
Steel Reinforcement, Wire Mesh	451	4151.04	2 ft. x 2 ft.	DME	Approved Supplier or Distributor. Steel Reinforcement/Certification	A	Supplier	1 sample per source per year
Steel Mechanical Splicers for Reinforcement	451				Approved Source/Mill Certification/Epoxy Certification		Project	Need: Certification Statement, Project #, Quantity, Heat #
Steel Structural	557, 561 to 565	2408 4152			Approved Source/Approved Shop Drawing/Fabrication Report/Mill Certifications	A		
Step Irons for Utility Access		4149.06			Fabrication Report			
Structural Items, Other				1	Approved Shop Drawing & Fabrication Report			
Structural Plate (Arches)	444	4144	Visual	RCE	Approved Source/Certification Statement	С		
Studs, Shear	453.10			1	Approved Source/Certification	A		
Surface Finish, Special	491.10	2403.21, C	-		Approved Source			
Tape, Pavement Marking	483.06	2527.02, A			Approved Source			
Torque Calibration Machine (skidmore)		2408.38, C	Calibrate every 6 mo.	CTRL	Test Report			6
Torque Wrench		2408.38, C	Calibrate every 6 mo.	CTRL	Test Report			
Traffic Signalization, Electrical Tests	-	2525.03, A, 3b 2525.06, A		Contractor	Test Report (Contractor) Form #820928			
Water		4102	1 qt. per source	DME	Test Report or City Water Supply			


Sampling & Testing Guide-Minimum Frequency

October 16, 2007 Supersedes October 17, 2006

SUPPLEMENTAL GUIDE - BASIS OF ACCEPTANCE

Material	IM	Spec.	Sample Size	Sampled By	Basis of Acceptance	Cert. Type	Verification	Other Details
Wire & Cable-See Lighting Material								1
Wood, Hardware for Timber Structure	462	4153.07	1 ea. type		Test Report			
Wood, Timber Piles	462	4165			Approved Source/Certification	A		Charge number on butt ends
Wood, Treated Posts	462	4164			Approved Source/Certification	A		
Wood, Treated Timber & Lumber	462	4162			Approved Source/Certification	A		
Wood, Untreated Timber & Lumber	462	4162	Visual	RCE	Quality grad mark or certification of grade on items requiring grade		195	



•

Iowa Department of Transportation

Office of Materials

October 17, 2006 Supersedes October 19, 2004 Matls. IM 208

MATERIALS LABORATORY QUALIFICATION PROGRAM

GENERAL

The FHWA has outlined a Laboratory Qualification Program in the Federal-Aid Policy Guide update published as 23 CFR 637 on June 29, 1995. The updated guide has requirements for laboratories performing testing on Federal-Aid highway projects.

In order to avoid an appearance of a conflict of interest, any qualified non-DOT laboratory shall perform only one of the following types of testing on the same project: Verification testing, quality control testing, IA testing, or dispute resolution testing.

LABORATORIES TO BE QUALIFIED

The following laboratories are included in the qualification program for all Federal-Aid projects:

Central Materials Laboratory 6 District Laboratories District Area Laboratories Resident Construction Laboratories* Aggregate Producer Laboratories

Ready Mix Laboratories PCC Contractor Laboratories HMA Contractor Laboratories Consultant and Commercial Laboratories * City and County Laboratories *

* May be qualified at the time of a project.

LABORATORY QUALIFICATION PROCESS

A two-level qualification system is required by the FHWA. Laboratories are either accredited or qualified. The accreditation process is more rigorous than the qualification process.

Accredited Laboratory Process

The Central Materials Laboratory and the six District Laboratories will be accredited as outlined in the 23 CFR 637 guide. The Central Materials Laboratory is accredited through the AASHTO Materials Reference Laboratory Program. The District Materials Laboratories will be accredited by using the Central Materials Staff and equipment to check testing and testing procedures and by using the same calibration and training documentation process. Laboratories will be accredited for a two-year period. In addition, an annual review will be made by the Central Office Staff. Appendix A contains the procedures for accrediting the District Materials Laboratories.

Qualified Laboratory Process

The remaining laboratories will be qualified as outlined below:

The District Materials Offices will qualify laboratories. Laboratories will be qualified for a twoyear period. In addition, an annual review will be made by District Staff. Appendix B contains the procedures for qualifying materials laboratories.

Three laboratory types will be qualified, aggregate laboratories, PC Concrete laboratories and Hot Mix Asphalt laboratories.

Qualified laboratories will have the following:

- 1. Current manuals and test methods to perform the qualified testing available
- 2. A technician certified by the Iowa DOT to perform the qualified testing
- Proper equipment to perform the qualified testing (calibrated or checked annually according to Appendix B)
- 4. Satisfactory project and proficiency test results
- 5. Documentation of equipment calibrations, equipment checks, and proficiency results

ADMINISTRATION OF THE PROCESS

The Central Materials Laboratory will be responsible for implementation and operation of the Laboratory Qualification Program. The Central Materials Laboratory will accredit the District Laboratories. The District Materials Offices will qualify laboratories.

NON-COMPLIANCE/DISPUTE RESOLUTION

A laboratory that does not meet the requirements of the IM is subject to elimination from the qualification program.

Disputes concerning calibration and correlation of equipment will be resolved by the office responsible for the qualification. For disputes that cannot be resolved at the District, the Central Materials Laboratory will be the final authority.

DISTRICT LABORATORY ACCREDITATION PROGRAM

The Central Materials Laboratory (CML) will accredit the District Materials Laboratories and maintain records of the accreditation for five years. The CML Staff will check the following prior to accrediting a laboratory:

- 1. Check for current manuals and test procedures covering the accredited testing.
- 2. Check the certification and training records of the testing personnel.
- 3. Document that proper equipment is available to perform qualified testing.
- 4. Check documentation system.

Scheduling of the annual accreditation review will be discussed with the laboratories needing accreditation.

Table 1 is the list of items to be reviewed.

An oral close out on any deficiencies will be held with the testing personnel. Written notice will be sent within two months of the inspection. CML personnel will re-inspect if necessary after correction of any deficiencies.

A report showing the laboratory, the date accredited, and the expiration date will be issued by the Materials Testing Engineer.

NON-COMPLIANCE/DISPUTE RESOLUTION

A laboratory that does not meet the requirements of the IM is subject to elimination from the qualification program.

The CML and the District Materials Engineer will resolve disputes concerning calibration and correlation of equipment.

1

Matls. IM 208 Appendix A

TABLE 1 - Laboratory Accreditation Checklist

		Minimum Calib./Verif.	Calib./Verif.
	\checkmark	Interval	Procedure
Tester Qualifications-Proper Iowa DOT certifications			
Current Test Procedures	1.5		
Current Calibration Procedures & Records			
Documentation of correlation results and corrective			
actions taken for previous construction season			
Balances		12 months	lowa 917-B
Ovens		12 months	lowa 1501-A
Mechanical Shakers		12 months	lowa 1502-A
Marshall Compactor T-245		12 months	lowa 1504-A
Gyratory Compactor T-312		6 months	lowa 1522-A
Marshall Molds T-245		12 months	lowa 1523-A
Comp. Test Machine T-245		12 months	lowa 1505-A
Sieves		6 months	lowa 1506-A
Thermometers - Test		6 months	lowa 1607-A
Thermometers - Ref.		12 months	lowa 1607-A
Timers T-201, T-202		6 months	lowa 1508-A
Sand Equivalent T-176		12 months	lowa 1509-A
Gyratory Compactor Molds T-312		12 months	lowa 1524-A
Vacuum Systems T-209		12 months	lowa 1510-A
Pycnometers T-228, T209		12 months	lowa 1618-A
Fine Aggregate Anularity T-304		12 months	lowa 1525-A
Dynamic Shear Rheometer T-315		6 months	lowa 1612-A
Balance Weights M-231		12 months	
Sample Splitters T-248		12 months	(visual condition)

October 18, 2005 Supersedes April 19, 2005

LABORATORY QUALIFICATION PROGRAM

The District Materials Office will qualify the other laboratories and maintain records of the qualification for three years. The District Staff will check the following prior to qualifying a laboratory:

- 1. Establish the type of laboratory (Aggregate, Hot Mix Asphalt, PC Concrete).
- 2. Check for current manuals and test procedures covering the qualified testing.
- 3. Check the certification of the testing personnel.
- 4. Document that proper equipment is available to perform qualified testing.
- 5. Check documentation system.

Scheduling of the qualification review will be discussed with the laboratories seeking qualification. The District Materials Engineer should be contacted for laboratories that have been qualified in other states. The District Materials Office may qualify a laboratory based on an acceptable qualification report and qualification program from another state transportation agency.

Table 1 and the pages following cover the list of items to be reviewed.

An oral close out on any deficiencies will be held with the testing personnel. Written notice will be sent within two weeks of the inspection. District personnel will re-inspect after correction of any deficiencies.

A form showing the laboratory type, the date qualified, and the expiration date will be issued by the District Materials Engineer.

The list of Qualified Laboratories will be maintained on a database accessible by authorized Materials Personnel.

NON-COMPLIANCE/DISPUTE RESOLUTION

A laboratory that does not meet the requirements of the IM is subject to elimination from the qualification program.

The office responsible for the qualification will resolve disputes concerning calibration and correlation of equipment. For disputes that cannot be resolved at the District level, the Central Materials Laboratory will be the final authority.

	\checkmark	Calib./Verif. Interval	Calib./Verif. Procedure
Tester Qualifications-Proper Iowa DOT certifications			1 1 1 2 2 1 2 A
Current Test Procedures			
Current Calibration Procedures & Records			
Documentation of correlation results and corrective			
actions taken for previous construction season.	-		
Aggregate Laboratory			
Balances		12 months	lowa 917-B
Sieves- wear, tear, size, and opening size	1	12 months	lowa 1506-A
Splitter- condition	1.	12 months	(Visual)
Mechanical Shakers- condition (if used)		12 months	lowa 1502-A
HMA Laboratory			
Balances- and water bath		12 months	lowa 917-B
Sieves- wear, tear, size, and opening size		12 months	lowa 1506-A
Splitter- condition		12 months	(Visual)
Mechanical Shakers- condition (if used)	-	12 months	lowa 1502-A
Rice equipment- vacuum and flask	1.00	12 months	IM 350
Thermometers		12 months	lowa 1607-A
Ovens- temperatures		12 months	lowa 1501-A
Gyratory Compactor and molds	1	12 months	lowa 1524-A
Marshall Hammer and molds		12 months	Correlation Checks
PCC Laboratory			
Balances		12 months	lowa 917-B
Sieves- wear, tear, size, and opening size		12 months	lowa 1506-A
Splitter- condition		12 months	(Visual)
Mechanical Shakers- condition (if used)		12 months	lowa 1502-A
Air Meter		12 months	IM 318
Slump Cone and equipment-condition		12 months	
Beam Breaker		12 months	Central Lab

LABORATORY ITEMS

The following list contains, as a minimum, what is required for a qualified asphalt laboratory. The test equipment to perform each of the required tests is contained in the respective IM.

- Field Lab and Office [Suggested size 8 ft. x 44 ft. (2.4 m x 13.41 m)]. Locate the Field Lab so it is convenient to the plant, but outside the influence of plant vibration.
 - Air-conditioned Personal computer Phone Fax machine Copy Machine Sample storage Work table Bulletin board Water available to perform necessary testing Desk and chair Incidental spoon, trowels, pans, pails
- The personal computer shall be capable of running lowa DOT programs. It is recommended to have at least Windows 2000 or newer software on the computer. Iowa DOT programs have been checked and are capable of running on Windows 2000 and newer software.

3.5" high-density floppy disk drive (CD drive recommended) Color monitor, VGA or better Printer, ink jet recommended.

- Diamond saw for cutting core lifts.
- Diamond core drill (minimum 4" diameter core).

lowa Department of Transportation ф

MATERIALS LABORATORY QUALIFICATION PROGRAM Laboratory Inspection - per Materials Instructional Memorandum 208

Laboratory technician:		Certification number:		Expires:
			_	
			-	
Current manuals and written				
Current calibration procedure	es and records?			
Proper equipment available to	o perform qualified testing?			
	o perform qualified testing?			
Other remarks:				
Dther remarks:		Qualification expiration date		
Dther remarks:		_ Qualification expiration date		
Other remarks:		Qualification expiration date		
Other remarks:		_ Qualification expiration date Print name Sign name		

cc: Materials Engineer, Contractor/Producer, Ames, File

lowa Department of Transportation

AGGREGATE LABORATORY INSPECTION QUALITY CONTROL CHECKLIST

Contractor/Producer:		Locatio	Location:		
Certified Technician: Cer		Certific	rtification No:		
Balances	(Iowa Test Method 917-B)		Yes	No	
	Updated balance calibration records available	ble?			
	Check balance using 500 gm & 1000 gm c	alibrated weights?			
	Is balance accurate to 0.1%?			-	
Sieves					
	Is there adequate correlation history to qua	lify?		-	
	Were go/no-go gauges used to check accu	iracy?		_	
	Are the sieves in good condition (no loose f	frames, holes, or tears)?	1990 - 19900 - 19900 - 19900 - 1990 - 19900 - 1990 - 1990 - 1990 - 1990		
Splitter					
	Is the splitter in good condition?		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	
	(i.e., missing shuts, cracked welds, or lea	king seams)			
Shaker					
	Is shaker apparatus secure and level?				
Scale					
	Are the laboratory weights used for routine calibrations accurate? (Use 0.1% difference from our calibrated weights as standard.)			-	
Comments	3		1.000		
cc:Materials Er Contractor/F		nspected By:			
Ames		ate Inspected:			
File					

Iowa Department of Transportation

HMA LABORATORY INSPECTION QUALITY CONTROL CHECKLIST

Certified Technician:			Certification No.:		
Thermometers (IM 321, IM 325, IM 325G, IM 350)		Yes	No		
nd Documentati	on available?				
ermometer	(25 deg C or 135 deg C	2)			
umentation ava n 25.5 and 30n	ilable?	\equiv			
available? n?	(IM 325/IM 325G) ints?		\equiv		
ry?	(IM 325/IM 325G)	=	=		
(IM 321)				
for previous ye	ar?				
lify as an aggre	gate lab.				
	Inspected By:				
	Date Inspected:				
	nd Documentati meter ermometer erence (IM 350 umentation ava en 25.5 and 30n actor nailable? n? old measureme ure checks? ry? d? (IM 321	(IM 321, IM 325, IM 325G, IM 350) nd Documentation available? (25 deg C or 135 deg C meter ermometer erence (IM 350) cumentation available? en 25.5 and 30mm of mercury vacuum? (IM 325/IM 325G) wailable? n? old measurements? (IM 325/IM 325G) ure checks? ry? d? (IM 321) for previous year? Ify as an aggregate lab.	(IM 321, IM 325, IM 325G, IM 350) Yes ind Documentation available?		

lowa Department of Transportation

READY MIX/PCC PAVING LABS QUALITY CONTROL CHECKLIST

Certified Technician:	Certification No:	_
nspection Checklist Items:		
Air Meter (IM 318)	Yes	No
Check meter using approved 5% pugs. Is air meter clean?		-
Proper rod and mallet.		
Slump Cone (IM 317)		
Interior of cone free of dents or projections.		1
5/8" by 24" tamping rod. Rigid, nonabsorbent base.		_
Equipment clean and free of hardened concrete.		
Beam Breaker (IM 316)		
Current annual calibration sheet		
Equipment clean.		_
Beam Molds (IM 328)		
Molds clean and free of dents		
General condition of molds good.		_
Comments		
		_
		_
NOTE: PCC labs must also qualify as an aggregate la	D.	
	ted By:	
Contractor/Producer Ames Date I File	nspected:	

INDEPENDENT ASSURANCE PROFICIENCY & TESTING FOR HMA

GENERAL

The HMA Proficiency Program is part of the Independent Assurance Program described in IM 205. The HMA Proficiency Program provides participating laboratories with a means to:

- Check both the instrument and the operator under actual testing conditions.
- Compare individual test results with the average of a large body of results so that corrective action may be taken where wide discrepancies occur.
- Evaluate the quality of test results, thereby reducing the risk of dispute due to testing errors.

Each accredited and qualified Laboratory and certified staff shall establish and maintain their proficiency by following program described herein.

A project approach for independent assurance may be used for RCE, county, city, and consultant laboratories.

PROFICIENCY SAMPLE

The Central Materials Laboratory will prepare and send out proficiency samples during the construction season (April through September). The samples and tests for laboratories will be as follows:

A. District Laboratories

- 1. Asphalt Binder
 - a. G*/Sin Delta
- 2. HMA Mix
 - a. Gmb Laboratory Density
 - b. G_{mm} Maximum Specific Gravity
 - c. % Binder, Ignition Oven
 - d. Gradation, Ignition Oven
- 3. Combined Aggregate
 - a. Gradation
 - b. G_{sa} Apparent Specific Gravity (every other sample)

- c. G_{sb} Bulk Specific Gravity (every other sample)
- d. Percent Absorption (every other sample)
- e. Fine Aggregate Angularity (every other sample)
- f. Sand Equivalency (every other sample)
- B. HMA Laboratories
 - 1. HMA Mix
 - a. G_{mb} Laboratory Density
 - b. G_{mm} Maximum Specific Gravity
 - 2. Combined aggregate
 - a. Gradation
- C. Aggregate Laboratories
 - 1. Gradation

PROFICIENCY SAMPLE FREQUENCY

District Laboratories will receive a set of proficiency samples monthly April through September. The samples will be tested and the results reported within 14 calendar days of receipt.

HMA laboratories and HMA aggregate laboratories will pick-up proficiency samples one to three times per year depending on how many projects are done in a particular year. The frequency criteria is as follows:

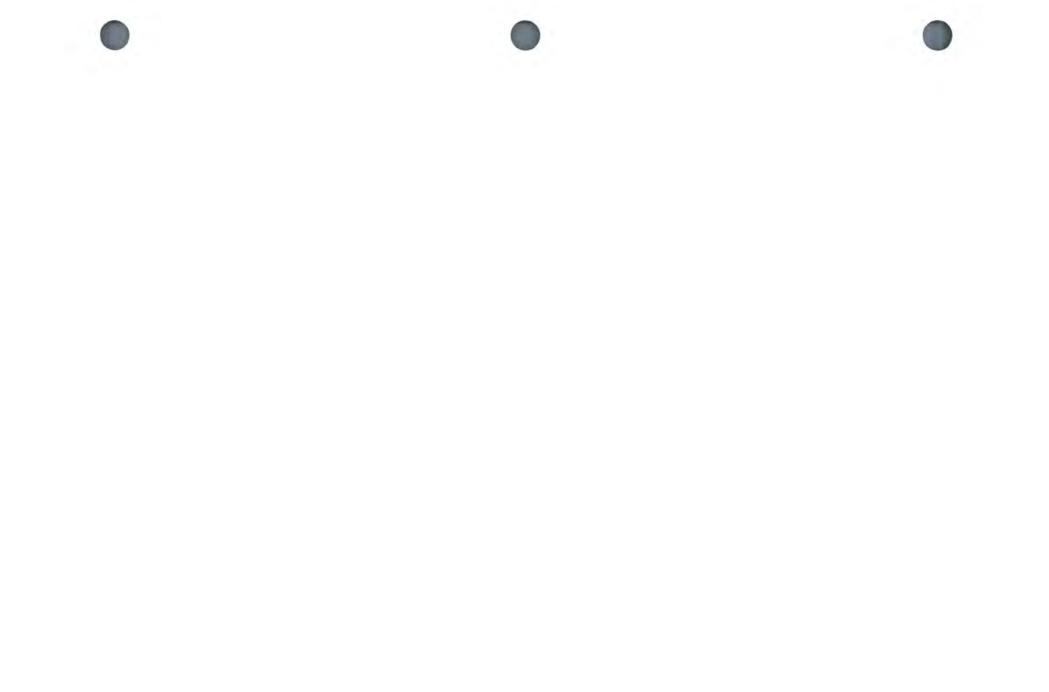
- A sample shall be picked up for the technician's first HMA project of the construction season.
- At 3 months from the first sample pickup, the technician must pick up a second sample in order to continue performing acceptance testing.
- At 3 months from the second sample pickup, the technician must pick up a third sample in order to continue performing acceptance testing.

Each certified technician routinely working in the laboratory shall perform the proficiency tests and report the results within 14 calendar days of receipt.

TEST RESULT ANALYSIS

Test results from the proficiency samples will be analyzed using the current AASHTO Material Reference Laboratory (AMRL) procedure. The analysis compares the results from each participant and each District and Central Laboratory to the overall mean. Test results will also be compared to the Central Materials Laboratory results.

Matls. IM 208 Appendix C


Any test result that is 3.0 standard deviations or greater from the mean will be considered failing. Two consecutive proficiency sample results that are 2.0 standard deviations or greater from the mean will be considered failing.

In the event of a small data set or large or small variation within a data set, the individual results will be compared with the Central Laboratory results. IM 216 will be used to compare the results. Proficiency test results beyond the tolerance will be considered failing.

INVESTIGATION OF FAILING TEST RESULTS

The technician with failing test results shall review the calculation, test procedures, and perform a calibration if warranted. When there are two or more consecutive failing results, the Central Materials Laboratory or the District Material Engineer will contact the technician and arrange to conduct an evaluation of the procedures and equipment to correct any deficiencies. More than 3 consecutive failing results by a technician will constitute unsatisfactory performance as defined in IM 213 and become a part of their permanent file.

Iowa Department of Transportation

Office of Materials

October 17, 2006 Supersedes October 18, 2005 Matls. IM 213

TECHNICAL TRAINING & CERTIFICATION PROGRAM

GENERAL

The purpose of the Technical Training & Certification Program is to ensure Quality Control (QC)/Quality Assurance (QA) and Acceptance of Aggregates, Hot Mix Asphalt (HMA), Portland Cement Concrete (PCC), Grade Inspection, Precast and Prestressed Concrete, and Pavement Profiles and to ensure proper documentation of quality control/quality assurance and acceptance procedures and test results by industry and Contracting Authority personnel.

This Instructional Memorandum (IM) explains the requirements to become certified and to remain certified to perform inspection and testing in the State of Iowa. This IM also describes the duties, responsibilities and the authority of persons assigned the position of Certified Technician in any of the above areas for construction or maintenance projects. Appendix C of this IM lists what tests and procedures the technician is qualified to perform for each level of certification they obtain.

Through a cooperative program of training, study, and examination, personnel of the construction industry, State DOT, and other Contracting Authorities will be able to provide quality management and certified inspection. Quality control/quality assurance and acceptance sampling, testing and inspection will be performed by certified personnel and documented in accordance with the IMs.

A technician who is qualified and holds a valid certification(s) shall perform quality control/quality assurance and acceptance at a production site, proportioning plant, or project site. Responsibilities cannot be delegated to non-certified technicians. The duties of a Certified Technician may be assigned to one or more additional Certified Technicians.

The Technical Training & Certification Program will be carried out in accordance with general policy guidelines established or approved by the Highway Division Director. A Board of Certification composed of the following members will advise the Director:

Director – Office of Materials Director – Office of Construction Representative of District Materials Engineers** Representative of District Construction Engineers** Representative of Associated General Contractors (AGC of Iowa) Representative of Iowa Concrete Paving Association (ICPA) Representative of Asphalt Paving Association of Iowa (APAI) Representative of Iowa Ready Mixed Concrete Association (IRMCA) Representative of Iowa Limestone Producers Association (ILPA) Representative of County Engineers Coordinator of Technical Training & Certification Program**

** Appointed by Program Director

The Director of the Office of Materials will be the Program Director. Coordinators will be appointed by the Program Director to assist in administration of the program and to handle such planning, administration, and coordinating functions as may be needed.

TRAINING

The lowa DOT will provide the training necessary to become certified or an agency approved by the Program Director. Producers/Contractors are encouraged to conduct their own pretraining program. A complete listing of training opportunities is available in the Technical Training & Certification Program's Information and Registration Booklet or at the Technical Training & Certification Program website, www.iowa.gov/dot/materials/training.htm. This book is available at any of the Iowa DOT Materials Offices. They may also be obtained from the ICPA, IRMCA, ILPA, and APAI.

CERTIFICATION REQUIREMENTS

- 1. A candidate must attend instruction and pass the examination(s) for all levels of certification prepared and presented by the Program Director or someone designated by the Program Director. If the new candidate fails the examination, they will have one opportunity to retake the examination. The retake must be completed within six months of the original exam. If they fail the retake of the examination, they will need to attend the training again before taking the examination the third time. If an individual is recertifying they will have only one opportunity to take the examination. If they fail the examination they must take the applicable training before retaking the examination.
- All prerequisites shall be met before the applicant may attend the next level of training for the certification desired. A listing of certification levels and prerequisites is located in Appendix A.
- Once the candidate has met all the criteria and has received certification, it is recommended the Certified Technician work under the supervision of an experienced technician until they become efficient in the inspection and testing methods they will be performing.

An individual requesting to become certified as a Precast/Prestress Concrete Technician is required to obtain forty hours of experience assisting in quality control inspection at an approved plant before certification will be issued. The experience must be documented and shall be approved by the District Materials Engineer. This experience must be completed within two years from the date the individual attended the training.

4. Registered Professional Engineers, engineering graduates, and geology graduates from accredited institutions will be exempt from the training requirement in the areas they have had instruction. In order to obtain certification for any technical level, these persons must pass all applicable tests for the level of certification they wish to obtain. All certificates issued in accordance with these requirements will be subject to the same regulations concerning expiration, recertification, etc., as applies to certificates obtained via training and examinations.

Out-of-state technicians will be issued certifications when the following criteria are met:

- 1. The applicant must be certified in another state or shall have received equivalent training, if the state does not have a certification program, in each level of certification they are requesting.
- 2. The applicant must pass an examination for each level of certification desired, which will be administered by the Iowa Department of Transportation. Failure of the examination shall require the applicant to take the applicable schooling before they can retake the exam.
- 3. The applicant must follow the prerequisite requirements of the Technical Training & Certification Program.

Out-of-state applications should be submitted to the District Materials Office closest to the home location of the applicant. Copies of all the applicant's certifications must accompany the application.

CERTIFICATION

Upon successfully completing the requirements for certification, the Program Director will issue a certificate and a pocket certification card. This certification is not transferable. A certification shall be valid for five years.

CERTIFICATION IDENTIFICATION

The certificate will contain letters that identify the District of record, the certificate holder, certification number, the level of certification, and the expiration date of each level.

The assigned certification number may change if the certificate holder changes their residence.

RENEWAL OF CERTIFICATION

A certification shall be valid through December 31st of the fifth year. A 90-day grace period will be allowed. If the individual has not renewed their certification within the 90-day grace period, they are automatically decertified. The individual may obtain certification by taking the examination for the level of certification they are requesting. If the individual does not take the examination within one year after their certification(s) expire, i.e., 12/31/expiration year, they must retake all applicable schooling and pass the examinations. If an applicant becomes decertified in any level of certification and that certification is a prerequisite for other levels of certification the applicant will also be decertified in those related levels of certification.

All certified technicians will be required to pass an examination in each level of certification they hold before recertification will be issued. Failure of any level shall require the applicant to retake the applicable schooling and pass the test.

The certificate holder shall be responsible for applying for certification renewal and for maintaining a current address on file with the appropriate District Materials Office.

Technicians certified as Level I HMA and/or Level II PCC shall attend a minimum of two update classes each in the five-year period between certification and each recertification. The lowa DOT or an agency or organization approved by the TTCP will hold these classes. These update classes will be listed in the Technical Training & Certification Program Booklet and on the program website, or the certified technician may contact the lowa DOT for information. If an individual does not attend the two update classes required before their certification expires, they must take the entire schooling and pass the examination for the certification required.

The certified technician will not receive credit for the following:

- 1. More than one update per training season in each level of certification.
- 2. An update taken during the same training season in which the individual recertified.

UNSATISFACTORY PERFORMANCE NOTICE

A certified technician failing to perform the required specified duties or inadequately performing these duties, will receive an Unsatisfactory Notice (Office of Materials IM 213, Appendix B). The notice will be from the District Materials Engineer in the District where the failure occurred. This notice and all supporting documentation will be placed in the technician's permanent file with the District Materials Office in which the technician resides. The notice will also be placed on the statewide computer file.

SUSPENSION & DECERTIFICATION

A three-month suspension will be given upon receipt of two Unsatisfactory Performance Notices. Technicians that are suspended shall not perform any duties of the applicable certification, including any duties for which the affected certification is a prerequisite.

Technicians are eligible to be reinstated after the three-month suspension and successful completion of the applicable recertification test(s).

Technicians are subject to decertification when they receive a third Unsatisfactory Performance Notice.

Certified Technicians will be decertified for any of the following reasons:

The certificate will become invalid for the following reasons:

- 1. Failure of the certificate holder to renew the certificate prior to regular expiration as described above.
- 2. Use of false or fraudulent information to secure or renew the certificate.
- 3. Use of false or fraudulent actions or documentation by the certificate holder.
- 4. Not performing tests and technician duties properly and in accordance to specifications.

Action will be effective on the date the Program Director issues the suspension or decertification notice.

Technicians that are decertified shall not perform any duties requiring certification. Technicians may request reinstatement after one year.

Appeals and reinstatement requests shall be submitted in writing to the Program Director. Appeals and reinstatement requests will be considered by the Certification Board.

If reinstatement is authorized, the applicant must attend and successfully complete the applicable certification courses.

FUNCTIONS & RESPONSIBILITES

A certificate holder at each production site, project site, proportioning plant, or laboratory will perform duties. The certified technician shall perform quality control testing in accordance with specified frequencies and submit designated reports and records.

The specification requirement for materials testing by a certified technician does not change the supplier's responsibilities to furnish materials compliant with the specification requirements.

The District Materials Engineer and/or Project Engineer will be responsible for monitoring the sampling, testing, production inspection activities and quality control performed by the contractor. A monitor shall have satisfactorily completed the training and be certified for the level of technician they are monitoring.

The District Materials Engineer and/or Project Engineer will have authority and responsibility to question and where necessary, require changes in operations and quality control to ensure specification requirements are met.

QUALITY CONTROL, TESTING, & DOCUMENTATION

The QC Technician shall be present whenever construction work related to production activity, such as stockpiling or other preparatory work, requires record development and/or documentation is in progress. The QC Technician's presence is normally required on a continuing basis beginning one or more days before plant operation begins and ending after plant shut down at the completion of the project. The work shall be performed in a timely manner and at the established frequencies.

The QC Technician's presence is not normally required during temporary plant shut downs caused by conditions, such as material shortages, equipment failures, or inclement weather.

All quality control activities and records shall be available and open for observation and review by representatives of the contracting authority.

Reports, records, and diaries developed during progress of construction activities will be filed as directed by the Contracting Authority and will become the property of the Contracting Authority.

Quality control activities, testing, and records will be monitored regularly by Contracting Authority representatives. The Project Engineer or District Materials Engineer will assign personnel for this function.

Monitor activities will be reported and filed at prescribed intervals with the Project Engineer, District Materials Engineer, producer, contractor, and the contractor's designated producer.

At no time will the monitor inspector issue directions to the contractor, or to the QC Technician. However, the monitor inspector will have the authority and responsibility to question, and where necessary, reject any operation or completed product, which is not in compliance with contract requirements.

ACCEPTANCE

Completed work will be accepted on the basis of specification compliance documented by acceptance test records, and monitor inspection records. Specification noncompliance will require corrective action by the producer, contractor, or by the contractor's designated producer, and review of events and results associated with noncompliance by the Project Engineer.

CERTIFICATION LEVELS

CERTIFICATION LEVEL	
---------------------	--

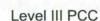
PRE-REQUISITES

AGGREGATE

TITLE

Level I Aggregate

Level II Aggregate


Certified Sampling Technician Certified Aggregate Technician

Level I Aggregate

None

PORTLAND CEMENT CONCRETE

Level I PCC** Level II PCC PCC Testing Technician PCC Plant Technician

PCC Plant Technician

None Level II Aggregate & Level I PCC Level II PCC

**American Concrete Institute (ACI) Grade I certification will be acceptable as a portion of the Level I PCC training.

PCC Mix Design Technician

HOT MIX ASPHALT

HMA Sampler Level I HMA Level II HMA

Profilograph

HMA Sampler HMA Technician HMA Mix Design Technician None Level II Aggregate Level I HMA

PROFILOGRAPH

Profilograph Technician

None

PRESTRESS

Prestress

Prestress Technician

Level I PCC or ACI Grade I If the technician will be performing gradations, they will need to be Aggregate Level II- certified.

0

UNSATISFACTORY PERFORMANCE NOTICE

Issued To:	Date:

This notice is to inform you that your performance as a Certified Inspector/Technician was unsatisfactory for the reason(s) listed below.

This notice will be placed in your permanent file with the District Materials Office in which you reside. It will also be placed on the statewide computer file.

The goal of the Technical Training and Certification Program (TTCP) is to work with contractors, producers, cities, and counties to continually improve the quality of Iowa's construction projects. We hope you will work with us to achieve this goal.

Unsatisfactory Performance:

District Materials Engineer

cc: Program Director – Materials Engineer, Ames TTCP Coordinator Resident Construction Engineer

CERTIFIED TECHNICIANS QUALIFICATIONS

Tests and Procedures the Certified Technician is qualified to perform for each level of certification.

LEVEL I AGGREGATE

- IM 204 Inspection of Construction Project Sampling & Testing (when material is incorporated)
- IM 209, App. C Aggregate Specification Limits & Sampling & Testing Guide (when material is produced)
- IM 301 Aggregate Sampling Methods

LEVEL II AGGREGATE

- IM 216 Guidelines for Verifying Certified Testing Results
- IM 302 Sieve Analysis of Aggregates
- IM 306 Determining the Amount of Material Finer Than #200 (75µm) Sieve in Aggregate
- IM 307 Determining Specific Gravity of Aggregate
- IM 308 Determining Free Moisture & Absorption of Aggregate
- IM 336 Methods of Reducing Aggregate Field Samples to Test Samples
- IM 344 Determining the Amount of Shale in Fine Aggregate
- IM 345 Determining the Amount of Shale in Coarse Aggregate

LEVEL I PCC

- IM 204 Inspection of Construction Project Sampling & Testing
- IM 208 Materials Laboratory Qualification Program
- IM 216 Guidelines for Verifying Certified Testing Results
- IM 315 Method of Protecting, Curing, Making & Testing Concrete Cylinders
- IM 316 Flexural Strength of Concrete
- IM 317 Slump of Hydraulic Cement Concrete
- IM 318 Air Content of Freshly-Mixed Concrete by Pressure
- IM 327 Sampling Freshly-Mixed Concrete
- IM 328 Making, Protecting, and Curing Concrete Flexural Specimens
- IM 340 Weight Per Cubic Foot, Yield, & Air Content (Gravimetric) of Concrete
- IM 383 Testing the Strength of PCC Using the Maturity Method
- IM 385 Temperature of Freshly-Mixed Concrete
- IM 525 Designing Flowable Mortar
- Iowa 410-B Method of Test for Flow of Grout Mixtures
- AASHTO T97 Third Point Loading

Matls. IM 213 Appendix C

LEVEL II PCC

- IM 527 Paving Plant Inspection
- IM 528 Structural Concrete Plant Inspection
- IM 529 PC Concrete Proportions

LEVEL III PCC

- IM 530 Quality Management & Acceptance of PC Concrete Pavement
- IM 531 Test Method for Combining Aggregate Gradations
- IM 532 Aggregate Proportioning Guide for Portland Cement Concrete Pavement

HMA SAMPLER

- IM 322 Method of Sampling Uncompacted Hot Mix Asphalt
- IM 323 Method of Sampling Asphaltic Materials

LEVEL I HMA

- IM 204 Inspection of Construction Project Sampling & Testing
- IM 208 Materials Laboratory Qualification Program
- IM 216 Guidelines for Verifying Certified Testing Results
- IM 320 Method of Sampling Compacted Asphalt Mixtures
- IM 321 Method of Test for Compacted Density of Hot Mix Asphalt (HMA) (Displacement)
- IM 322 Method of Sampling Uncompacted Hot Mix Asphalt
- IM 323 Method of Sampling Asphaltic Materials
- IM 325 Compacting Asphalt Concrete by the Marshall Method
- IM 325G Method of Test for Determining the Density of Hot Mix Asphalt (HMA) Using the Superpave Gyratory Compactor (SGC)
- IM 337 Determining Thickness of Completed Courses of Base, Subbase, & Hot Mix Asphalt
- IM 350 Maximum Specific Gravity of Hot Mix Asphalt (HMA) Mixtures
- IM 357 Preparation of Hot Mix Asphalt (HMA) Mix Samples for Test Specimens
- IM 501 Asphaltic Terminology, Equations & Example Calculations
- IM 508 Hot Mix Asphalt (HMA) Plant Inspection
- IM 509 Tank Measurement & Asphalt Cement Content Determination
- IM 511 Control of Hot Mix Asphalt (HMA) Mixtures
- IM 514 Correlation of Field Density for Hot Mix Asphalt (HMA) Paving

LEVEL II HMA

- IM 380 Vacuum-Saturated Specific Gravity & Absorption of Combined or Individual Aggregate Sources
- IM 510 Method of Design of Hot Mix Asphalt (HMA) Mixes
- AASHTO T176 Plastic Fines in Graded Aggregate & Soils by use of Sand Equivalent Test
- AASHTO T304 Uncompacted Void Content of Fine Aggregate
- ASTM D 4791 Flat Particles, Elongated Particles, or Flat & Elongated Particles in Coarse Aggregate

PROFILOGRAPH

• IM 341 - Determining Pavement & Bridge Ride Quality

PRESTRESS

• IM 570 - Precast & Prestressed Concrete Bridge Units

AGGREGATE TECHNICIAN DUTIES

Duties of the Aggregate Technician are detailed in IM 209 and the IM 300 Series and consist of, but are not limited to the following:

- A. Sampling
 - 1. Obtain representative samples by approved method(s).
 - 2. Sample at required frequencies.
 - 3. Identify samples with pertinent information such as:
 - a. Type of material
 - b. Intended use
 - c. Production beds working depth
 - d. Sampling method
- B. Gradation Testing
 - 1. Follow appropriate gradation testing methods.
 - 2. Maintain current applicable specifications.
 - 3. Post test results within 24 hours of sampling.
- C. Other Testing as Required (specific gravity, moisture, deleterious material, etc.)
 - 1. Follow appropriate testing methods.
 - 2. Maintain current applicable specifications.
 - 3. Complete required reports.
- D. Sampling & Testing Equipment
 - 1. Clean and check testing sieves for defects.
 - 2. Assure scale accuracy.
 - 3. Maintain sampling and testing equipment.

- E. Communication
 - 1. Notify the District Materials office for production start-up or changes.
 - 2. Relay test results to appropriate production or supervisory personnel.
 - 3. Report failing test results immediately to appropriate personnel (including District Materials office) and assure remedial actions are taken.
- F. General
 - 1. Monitor stockpiling procedures to avoid contamination and excess segregation.
 - 2. Assure proper identification of stockpiles.
 - 3. Assure specification requirements for intended use are met before shipment.
 - 4. Assure sampling locations are safe.
 - 5. Assure proper bedding planes or production depths are maintained.
- G. Documentation
 - 1. Report all production test results of certified aggregates on Form #821278 and distribute as required.
 - 2. Assure "plant production log" is maintained.

PORTLAND CEMENT CONCRETE (PCC) TECHNICIAN DUTIES PAVING & STRUCTURAL CONCRETE

The Quality Control Technician shall have no other duties while performing certified inspection duties. The District Materials Engineer may approve all quality control activities be performed by a single certified technician for low production situations.

Many of the duties of the PCC Level II Technician are detailed in IM 527 (Paving) and IM 528 (Structural) and consist of, but are not limited to the following:

A. Stockpiles

- 1. Assure proper stockpiling procedures.
- 2. Prevent intermingling of aggregates.
- 3. Prevent contamination.
- 4. Prevent segregation.
- B. Plant Facilities
 - 1. Assure safe sampling locations.
 - 2. Check for equipment compliance.
 - 3. Assure proper laboratory location and facilities.
- C. Calibration
 - 1. Be present during calibration (paving).
 - 2. Check plant calibration (structural).
 - 3. Assure proper batch weights.
- D. Cement (Fly Ash) & Aggregate Delivery
 - 1. Check for proper sources and certification.
 - 2. Document quantities delivered.
 - 3. Monitor condition of shipments.

- E. Plant Sampling
 - 1. Check aggregate gradations by obtaining, splitting, and testing samples.
 - 2. Check aggregate moistures and specific gravity.
- F. Proportion Control
 - 1. Check scale weights and operation.
 - 2. Check admixture dispensers.
 - 3. Check mixing time and revolutions.
 - 4. Check cement yield. (Paving plant only, unless over 10,000 cu. yds.)

G. Concrete Tests

- 1. Cure flexural test specimens.
- 2. Test flexural specimens (Contract agency will perform test in structural plant).
- 3. Conduct maturity testing.
- H. Test Equipment
 - 1. Clean and maintain scales, screens, pycnometers and beam molds, and laboratory facility.
- I. Documentation
 - 1. Prepare daily plant reports (paving), weekly plant reports (structures).
 - 2. Document all checks and test results in the field book.
 - 3. Maintain daily diary of work activity.

HOT MIX ASPHALT (HMA) TECHNICIAN INSPECTION DUTIES

The following is a list of the duties that must be performed by the Certified Level I HMA Technicians doing quality control work for the Contractor on all projects where the Quality Management-Asphalt (QM-A) specification applies.

These duties consist of, but are not limited to, the following:

- A. Aggregate Stockpiles.
 - 1. Assure proper stockpiling of aggregate deliveries. (stockpile build & additions)

(daily check list, IM 508)

- a. Prevent intermingling of aggregates.
- b. Check for and prevent contamination.
- c. Prevent segregation.
 - d. Check for oversize material.
 - 2. Document certified aggregate deliveries. (each delivery) (plant book, IM 508)
 - a. Obtain truck tickets.
 - b. Check for proper certification.
 - c. Check for proper approved source.
- d. Enter deliveries in Plant Book Program, Aggregate Certification page.
 - 3. Observe loader operation. (daily) (daily check list, IM 508)
 - a. Check for proper stockpile to bin match-up.
 - b. Check that loader does not get stockpile base material in load.
 - c. Check that loader does not intermingle aggr. by overloading bins.
- B. Asphalt Binder Delivery. (each delivery) (plant report & plant book, IM 508 & 509)
 - 1. Check that material is pumped into correct tank.
 - 2. Document Deliveries.
 - a. Obtain truck tickets.
 - b. Check for proper approved source.
 - c. Check for proper certification.
 - d. Check for proper grade.
 - e. Check for addition of liquid anti-strip if required.
 - f. Check if weight per gallon or specific gravity has changed.
 - g. Enter deliveries into Plant Book Program, Asphalt Binder Shipment Log page.
- C. Plant Operations. (daily)

- 1. Prepare Plant Report Program for daily entries. (plant report, IM 511)
 - a. Enter Date.
 - b. Enter Report Number.
 - c. Enter expected tonnage for the day.
 - d. Enter any proportion or target changes that apply.
- 2. Aggregate Delivery System. (daily check list, IM 508)
 - a. Check for proper cold feed gate settings.
 - b. Check for proper cold feed belt speed settings.
 - c. Check for proper moisture setting (drum plants).
 - d. Monitor RAP proportions
- 3. Mixing System. (daily check list, spec 2303.03, IM 508)
 - a. Check for proper asphalt binder delivery setting.
 - b. Check for proper interlock operation.
 - c. Monitor coating of aggregates.
 - d. Monitor mixing time (batch plants).
- 4. Loading System. (daily check list, spec 2303.03 & 2001.01, IM 508)
 - a. Check hopper/silo gates for proper open/close
 - b. Check trucks for proper loading and possible segregation.
 - c. Check trucks for diesel fuel contamination in box and remove contaminated trucks from service (5 hrs with box raised).
- 5. Asphalt Binder Quantity Determination. (plant report, IM 508 & 509)
 - Perform start-up tank stick measurement before mix production begins (if applicable).
 - b. Perform final tank stick measurement after mix production is done (if applicable).
 - c. Perform intermediate tank stick measurements as needed.
 - d. If using meter for quantity, obtain totalizer printout readings and periodically check against tank stick readings.
 - e. If using batch count for quantity, obtain printouts of each batch and add up the asphalt binder used for total quantity.
- D. Plant Operations. (2 hour intervals) (plant report, IM 508)
 - 1. Temperatures.
 - a. Monitor and record mix temperature at discharge into truck box.
 - b. Monitor and record asphalt binder temperature.

- c. Monitor and record air temperature.
- 2. Observe plant operation for any irregularities.
- E. Weighing Equipment.
 - 1. Proportioning scales (batch plants). (min. 1/day) (spec 2001.07 & .20)

(daily check list, IM 508)

- a. Perform sensitivity checks of scales.
- b. Check for interference at scale pivot points.
- 2. Pay Quantity Scales. (min. 1/day) (spec 2001.07 & .20, IM 508)

(daily check list, plant book)

- a. Regularly perform check weighing comparisons with a certified scale as necessary. (min. 1st day and one additional if >5000 tons, and as
- b. Perform sensitivity checks of scales. directed by Engineer)
- c. Check for interference at scale pivot points.
- d. Perform verification weighing (truck platform scales).
- 3. Weigh Belts. (daily) (daily check list)
 - a. Check weigh belt for excess clinging fines that effects speed reading.
 - b. Check weigh belt for interference at bridge pivot points.
 - c. Check for proper span setting.
- Enter scale checks in Plant Book Program, Daily Check List or Plant Scale Checks page. (daily) (plant book)
- F. Plant Sampling. (daily) (spec 2303.04, IM 204 & 511)
 - Obtain cold-feed gradation samples as directed by Contracting Authority personnel per IM 301and IM 204.
 - Obtain asphalt binder samples as directed by Contracting Authority personnel per IM 323 and IM 204.
 - 3. Enter sample data into Plant Book Program, Sample Log page.
 - 4. Obtain cold-feed moisture samples at a minimum of every 1/2 day (drum mix plants).
- G. Field Sampling (if not performed by others). (daily) (spec 2303.04, IM 204 & 511)
 - 1. Obtain uncompacted mix random samples as directed by Contracting Authority personnel, and identify time, station, lift and side.

- 3. Obtain compacted mix core random samples as directed by Contracting Authority personnel.
- H. Testing. (daily) (spec 2303.04, IM 204 & 511)
 - 1. Field cores.
 - a. Provide properly calibrated equipment for Contracting Authority technician's use.
 - b. Obtain and record core location station and offset information.
 - c. Obtain copy of core thickness measurements from Contracting Authority Technician.
 - d. Obtain copy of core weights from Contracting Authority technician.
 - e. Record weights and thickness in Plant Report Program.
 - f. Enter sample data into Plant Book Program Sample Log page.
 - 2. Uncompacted mix.
 - a. Properly store Contracting Authority secured portion of paired sample.
 - b. Split Contractor half of paired sample into test portions as per IM 357.
 - c. Perform gyratory compaction as per IM 325G.
 - d. Perform bulk specific gravity test of laboratory-compacted specimen as per IM 321.
 - e. Perform maximum specific gravity test as per IM 350.
 - f. Enter test data into Plant Report Program.
 - g. Submit secured samples to DOT District Lab.
 - h. Enter sample data into Plant Book Program, Sample Log page.
 - 3. Aggregate.
 - a. Split one sample each day as directed by Contracting Authority personnel and provide half for testing by Contracting Authority.
 - b. Perform gradation analysis as per IM 302 and enter weights into Plant Report Program.
 - c. Perform moisture tests and enter weights into Plant Book Program, Plant Moistures page (drum mix plants).
 - 4. Testing Lab Qualification. (as needed) (IM 208 & 511)
 - a. Record all HMA sample validations with DOT on form 235.
 - b. Document corrective actions taken when not correlating.
 - c. Document all test equipment calibrations.
 - d. Update IM's, test procedures and specs as required.

- I. Documentation. (daily) (spec 2303.04, plant report, plant book, IM 204, 511 & 508)
 - 1. Prepare computerized Daily Plant Report (form 241).
 - a. Check that all data is correct.
 - b. Check that all data is complete.
 - c. Compute moving averages for gradation and lab voids.
 - d. Compute tons of mix used to date.
 - e. Enter mix adjustment data on report.
 - f. Check for spec compliance.
 - g. Immediately report non-complying results.
 - h. Obtain and record mat temperatures and stationing.
 - i. Provide daily Plant Report printout to DME.
 - 2. Maintain a daily diary of work activity in Plant Report Program.
 - a. Record weather conditions.
 - b. Record daily high and low temperatures.
 - c. Record sunrise and sunset times.
 - d. Record any interruptions to plant production.
 - e. Record any other significant events.
 - 3. Copy and export daily data and paste into control charts program.
 - Enter all asphalt binder or aggregate proportion changes in Plant Book Program, Mix Adjustments page.
 - 5. Enter tack shipment quantities in Plant Book Program, Tack Shipment Log page.
 - Total all truck tickets delivered to project and deduct any waste to determine HMA pay quantity.
- J. Miscellaneous. (daily) (daily check list, IM 208 & 511)
 - 1. Fill out Plant Book Program, Daily Check List page.
 - 2. Clean lab.
 - 3. Back-up computer files.
 - 4. Dispose of samples as directed by District Lab.
 - 5. Clean and maintain lab equipment.

- K. Independent Assurance Duties. (Every 3 months) (IM 205 & 216)
 - 1. Pick up HMA and aggregate proficiency sample from District Lab.
 - 2. Test aggregate proficiency sample for gradation per IM 302.
 - 3. Test HMA proficiency sample per IM 357, 325G, 321 & 350.
 - 4. Report test results on proficiency samples to Central Materials Office per IM 205.
 - L. Project Duties. (1/project) (IM 508 & 511)
 - 1. Be in possession of appropriate mix design.
 - 2. Be present during plant calibration.
 - 3. Observe scale calibrations.
 - 4. Perform plant site and set-up inspection and fill out Plant Site Inspection List.
 - 5. Set up Plant Report and Plant Book Programs and enter all project information to create Project Master files at beginning of project.
 - 6. Check that release agents used in truck boxes are on the approved list in IM 491.15
 - Copy all computer files and provide to the Contracting Authority at completion of project.
 - 8. Copy all paperwork and control charts and provide to the Contracting Authority at completion of project.

PRESTRESS TECHNICIAN DUTIES

Duties of the Prestress Technician are detailed in IM 570 and consist of, but are not limited to the following:

- A. Pre-pour
 - 1. Identify and document materials requiring outside fabrication inspection.
 - 2. Identify potential fabrication or production problems and notify Iowa DOT inspectors.
 - 3. Verify that all materials incorporated meet the requirements of the contract documents.
 - 4. Review concrete placement documents for strand locations.
 - 5. Check tension calculations.
 - 6. Measure elongation and gauge pressure during tensioning.
 - 7. Check hold down and insert locations.
 - 8. Check stress distributions.
 - 9. Check steel reinforcement and placement.
 - 10. Check strand position.
 - 11. Check condition of pallet.
 - a. Level
 - b. Holes
 - c. Gaps
 - d. Other deformities
 - 12. Determine moisture of aggregates.
 - 13. Check form condition and placement.
 - a. Oil
 - b. Line alignment level
 - c. Tightness

- B. Concrete Placement
 - 1. Check on use of an approved mix design and batching operations (sequence).
 - 2. Assure appropriate placement and proper vibration techniques.
 - 3. Measure and record concrete temperature.
 - 4. Assure test cylinders are properly made.
 - 5. Assure appropriate finish.
 - 6. Assure appropriate curing operations.
- C. Post-pour
 - 1. Check temperature and record during curing process.
 - 2. Assure concrete strength has been met prior to releasing the line.
 - 3. Assure proper detensioning procedure.
 - 4. Check unit for defects and obtain approval for repairs.
 - 5. Identify and store cylinders with the respective units.
 - 6. Check beam ends for fabrication in accordance with the plans.
 - 7. Assure exterior sides of facia beams are grouted.
 - 8. Inspect after patching and desired surfacing.
 - 9. Measure and record overall dimensions of beam.
 - 10. Measure and record camber at release and compare to design camber.
 - 11. Check and/or measure and record lateral sweep before shipping.
 - 12. Assure proper cylinder cure.

PROFILOGRAPH TECHNICIAN DUTIES

Duties of the Profilograph Technician are detailed in IM 341 and consist of, but are not limited to the following:

- A. Test pavement for smoothness criteria.
- B. Evaluate and certify test results.
 - 1. Certified person that reduces trace must sign certified test report.
 - 2. Profilograms become part of permanent project record.

C. Documentation

1. Certified Profilograph Test report must include following statement:

This is to certify that all testing and trace reduction herein described has been performed according to applicable contract specifications and requirements.

FEDERAL CODE 1020 and IOWA CODE 714.8

I.M. 213 discusses the Unsatisfactory Notice that Certified Technicians are given when they are not performing their job duties satisfactorily. This can be given for a number of reasons including, improper sampling and/or testing, not performing their duties and reporting in the time frame required, reporting incorrect information, etc. The technician is given one written notice, the second notice is three-month certification suspension, and the third notice is decertification. According to I.M. 213 the Certified Technician can automatically be decertified for false statements without going through the Unsatisfactory Notice procedure. The Certified Technician also needs to be aware of the false statement clause that is applicable to all federal-aid projects and the fraudulent practice clause that applies to all non-federal aid projects. Certified Technicians need to read and be aware of U.S.C. 1020 and Iowa Code 714.8 since these do apply to them. They read as follows:

FEDERAL AID PROJECTS

IX. FALSE STATEMENTS CONCERNING HIGHWAY PROJECTS

In order to assure high quality and durable construction in conformity with approved plans and specifications and a high degree of reliability on statements and representations made by engineers, contractors, suppliers, and workers on Federal-aid highway projects, it is essential that all persons concerned with the project perform their functions as carefully, thoroughly, and honestly as possible. Willful falsification, distortion, or misrepresentation with respect to any facts related to the project is a violation of Federal law. To prevent any misunderstanding regarding the seriousness of these and similar acts, the following notice shall be posted on each Federal-aid highway project (23 CFR 635) in one or more places where it is readily available to all persons concerned with the project:

NOTICE TO ALL PERSONNEL ENGAGED ON FEDERAL-AID HIGHWAY PROJECTS

18 U.S.C. 1020 reads as follows:

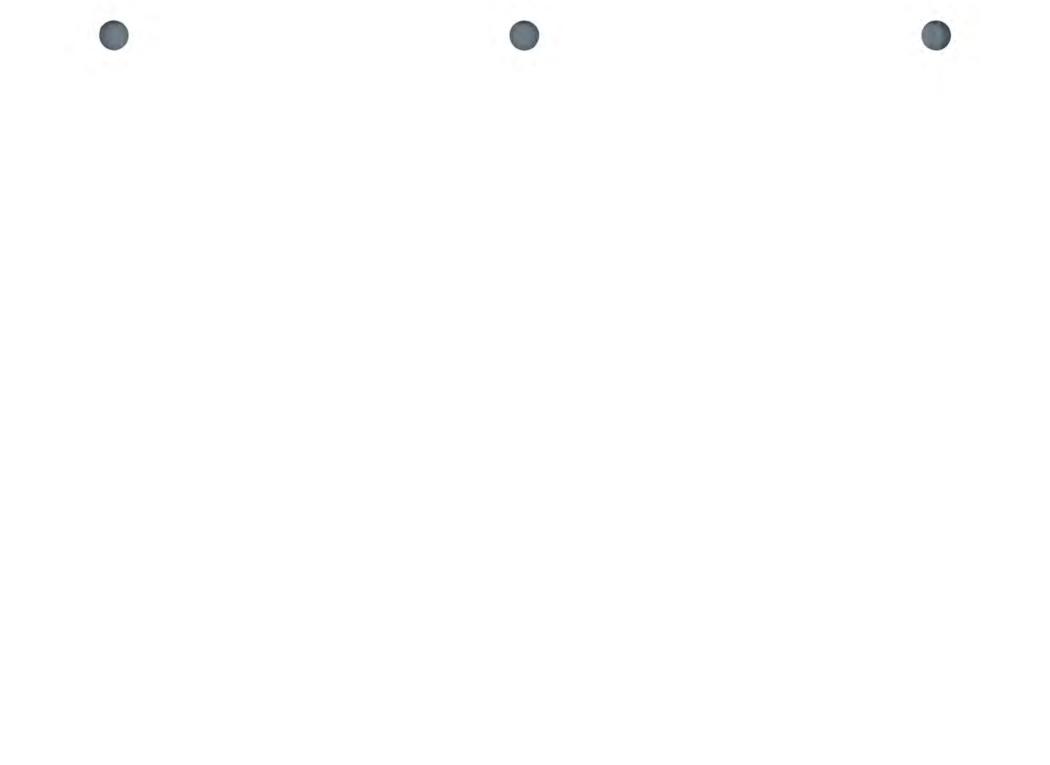
"Whoever, being an officer, agent, or employee of the United States, or of any State or Territory, or whoever, whether a person, association, firm, or corporation, knowingly makes any false statement, false representation, or false report as to the character, quality, quantity, or cost of the material used or to be used, or the quantity or quality of work performed or to be performed, or the cost thereof in connection with the submission of plans, maps, specifications, contracts, or costs of construction on any highway or related project submitted for approval to the Secretary of Transportation; or

Whoever knowingly makes any false statement, false representation, false report or false claim with respect to the character, quality, quantity, or cost of any work performed or to be performed, or materials furnished or to be furnished, in connection with the construction of any highway or related project approved by the Secretary of Transportation; or Whoever knowingly makes any false statement or false representation as to material fact in any statement, certificate, or report submitted pursuant to provisions of the Federal-aid Roads Act approved July 1, 1916, (39 Stat. 355), as amended and supplemented;

Shall be fined not more than \$10,000 or imprisoned not more than 5 years or both"

NON-FEDERAL AID PROJECTS

Iowa Code 714.8, subsection 3, defines fraudulent practices. "A person who does any of the following acts is guilty of a fraudulent practice. Subsection 3, Knowingly executes or tenders a false certification under penalty of perjury, false affidavit, or false certificate, if the certification, affidavit, or certificate is required by law or given in support of a claim for compensation, indemnification, restitution, or other payment." Depending on the amount of money claimed for payment, this could be a Class C or Class D felony, with potential fines and/or prison.


The above codes refer to the individual making the false statement. Standard Specification Article 1102.03, paragraph C. section 5 refers to the Contractor.

Article 1102.03, paragraph C, section 5 states, "A contractor may be disqualified from bidder qualification if or when: The contractor has falsified documents or certifications, or has knowingly provided false information to the Department or the Contracting Authority."

B 10

Iowa Department of Transportation

Office of Materials

October 16, 2007 Supersedes October 17, 2006 Matls. IM 216

GUIDELINES FOR VALIDATING TEST RESULTS

GENERAL

Agency laboratory and field personnel validate testing by Contractor and producer personnel on a regular basis. Tolerances given herein are for use as guides to flag test result variations that indicate a possible discrepancy.

TOLERANCES

The tolerances shown in the following listing apply to the difference between Contractor and producer test results and verification test results. When the tolerances are exceeded, an immediate investigation must be made to determine possible cause so that any necessary corrections can be made.

TEST NAME	TEST METHOD	TOLERANCE
Slump of PC Concrete	IM 317	1/4 in. (6 mm)
Air Content of PC Concrete	IM 318	0.4%
Length of Concrete Cores	IM 347	0.10 in. (2 mm)
Free Moisture in Aggregate, by Pycnometer	IM 308	0.2%
Specific Gravity of Aggregate, by Pycnometer	IM 307	0.02
Moisture in Aggregate, by Hot Plate		0.3%
Wet Density by Nuclear Gauge, Soils & Bases kg/m ³)	IM 334	2.0 lb./ft. ³ (32
G _{mm} Maximum Specific Gravity	IM 350	0.010
G _{mb} Density of HMA Concrete, by Displacement	IM 321	0.020
G*/Sin Delta	T315	10% of mean
% Binder, Ignition Oven	IM 338	0.3%
G _{sa} Apparent Specific Gravity	IM 380	0.010
G _{sb} Bulk Specific Gravity	IM 380	0.028
Percent Absorption	IM 380	0.37%
Fine Aggregate Angularity	T304	2
Sand Equivalency	T176	10 % of mean

Pavement Profile Index (0.2" blanking band) Verification Profile Index Test Result Inches/mile (mm/km)	IM 341	
6.0 (95) or less 6.1 to 20.0 (96 to 315) 20.1 to 40.0 (316 to 630) More than 40.0 (630)		1.0 in./mi. (16 mm/km) 2.0 in./mi. (32 mm/km) 3.0 in./mi. (47 mm/km) 5.0 in./mi. (79 mm/km)
Pavement Profile Index (0.0" blanking band) Verification Profile Index Test Result Inches/mile (mm/km)	IM 341	
25.0 (395) or less 25.1 to 40.0 (396 to 630) More than 40.0 (630)		3.0 in./mi. (47 mm/km) 4.0 in./mi. (63 mm/km) 5.0 in./mi. (79 mm/km)
Bridge Profile Index (0.2" blanking band) Verification Profile Index Test Result Inches/mile (mm/km)	IM 341	
6.0 (95) or less 6.1 to 20.0 (96 to 315) 20.1 to 40.0 (316 to 630) More than 40.0 (630)		2.0 in./mi. (32 mm/km) 3.0 in./mi. (47 mm/km) 4.0 in./mi. (63 mm/km) 6.0 in./mi. (95 mm/km)

TOLERANCES FOR AGGREGATE GRADATIONS

Determining the precision of an aggregate sieve analysis presents a special problem because the result obtained with a sieve is affected by the quantity of material retained on the sieve and by results obtained on sieves coarser than the sieve in question. Tolerances are, therefore, given for different ranges of percentage of aggregate passing one sieve and retained on the next finer sieve used.

Comparisons of test results are made on each fraction of the sample, expressed in percent that occurs between consecutive sieves.

NOTE: Tolerances for aggregate gradations are only valid if the two tests were made on a split sample. Experience has shown that improper sample reduction, as well as differences in test procedures can contribute to results being out of tolerance. When a comparison exceeds the tolerance limits, a review of the test procedures and equipment will be performed. Where practical, additional comparisons will be done with similar equipment and methods.

Table 1 Tolerances for All Aggregates Except HMA-Combined Aggregate

	Size Fraction Between Consecutive Sieves, %*	Tolerance, %
Coarse Portion:	0.0 to 3.0	2
#4 Sieve and larger	3.1 to 10.0	3
	10.1 to 20.0	5
	20.1 to 30.0	6
	30.1 to 40.0	7
	40.1 to 50.0	9
Fine portion:	0.0 to 3.0	1
#8 Sieve and smaller	3.1 to 10.0	2
	10.1 to 20.0	3
	20.1 to 30.0	4
	30.1 to 40.0	4

Table 2 Tolerances for All HMA-Combined Aggregate

Size Fraction Between	
Consecutive Sieves, %*	Tolerances
0.0 to 3.0	2
3.1 to 10.0	3
10.1 to 20.0	5
20.1 to 30.0	6
30.1 to 40.0	7
40.1 to 50.0	9

*The verification test analysis fraction is used to find the proper tolerance.

Use of these tolerances is explained in the following examples. Computer spreadsheets to perform the analysis are available on the Iowa DOT Materials Office website. Use of the spreadsheets is preferred when possible. Appendix A contains a copy of the printouts from the spreadsheets.

Sieve Size	DOT Coarse Aggr Percent Passing	Prod./CPI Coarse Aggr Percent Passing	DOT Coarse Aggr Percent Retained	Prod./CPI Coarse Aggr Percent Retained	Fraction Difference	Applicable Tolerance	Complies
1.5"/37.5mm	100.0	100.0	0.0	0.0	0.0	2	Yes
1"/25.0mm	97.1	99.1	2.9	0.9	2.0	2	Yes
3/4"/19.0mm	72.2	65.1	24.9	34.0	9.1	6	No
1/2"/12.5mm	38.1	34.9	34.1	30.2	3.9	7	Yes
3/8"/9.5mm	12.0	8.8	26.1	26.1	0.0	6	Yes
#4/4.75mm	0.6	0.2	11.4	8.6	2.8	5	Yes
#8/2.36mm	0.5	0.2	0.1	0.0	0.1	1	Yes
Minus #200	0.3	0.2	0.3	0.2	0.1	1	Yes

Example 1 - PC Concrete Coarse Aggregate

The size fraction between consecutive sieves is found by calculating the difference between the percent passing reported for the two sieves. For example, the fraction between the 1.5 in. (37.5 mm) and 1 in. (25 mm) sieves for the above verification test is 100.0 - 97.1 = 2.9%. Between the 1/2 in. (12.5 mm) and 3/8 in. (9.5mm) sieves it is 38.1 - 12.0 = 26.1%. Since nothing passes the pan, the size fraction between the #200 sieve and the pan is equal to the percent passing the #200.

The example shows the fraction between each pair of consecutive sieve sizes for both tests and the difference between these fractions for both tests. The difference is compared with the applicable tolerance to determine a disposition. In this example, a suspect result is found in the fraction between the 1 in. (25 mm) and 3/4 in. (19 mm) sieves. Since the suspect difference is due primarily to the percent passing results on the 3/4 in. (19 mm) sieves, it is these results that should at least be investigated first. Only further investigation can determine which 3/4 in. (19 mm) sieve, if any is faulty.

NOTE: The applicable tolerance changes between #4 and #8 size fractions.

Sieve Size	DOT Fine Aggregate Percent	Prod./CPI Fine Aggregate Percent	DOT Fine Aggregate Percent	Prod./CPI Fine Aggregate Percent	Fraction	Applicable	
	Passing	Passing	Retained	Retained	Difference	Tolerance	Complies
3/8"/9.5mm	100.0	100.0	0.0	0.0	0.0	2	Yes
#4/4.75mm	95.0	95.0	5.0	5.0	0.0	3	Yes
#8/2.36mm	87.8	86.3	7.2	8.7	1.5	2	Yes
#16/1.18mm	72.0	71.5	15.8	14.8	1.0	3	Yes
#30/600um	44.0	43.8	28.0	27.7	0.3	4	Yes
#50/300um	12.2	13.0	31.8	30.8	1.0	4	Yes
#100/150um	1.5	1.3	10.7	11.7	1.0	3	Yes
Minus #200	0.4	0.4	0.4	0.4	0.0	1	Yes

Example 2 - PC Concrete Fine Aggregate

Example 3 - HMA Combined Aggregate

	Sieve Sizes										
	1"	3/4"	1/2"	3/8"	4	8	16	30	50	100	200
 Specs.						-					
D.O.T.		100	99.1	87.3	68.8	54.2	41.4	28.2	15.5	9.1	6.9
Prod./C.P.I.		100	98.8	86.1	74.9	56.1	41.9	28.7	15.1	10.9	8.6

D.O.T. % Retained	Prod./C.P.I. % Retained	Diff.	Tol. %	Comply (Y/N)
NA	NA	0.0	2	Y
0.9	1.2	0.3	2	Y
11.8	12.7	0.9	5	Y
18.5	11.2	7.3	5	N
14.6	18.8	4.2	5	Y
12.8	14.2	1.4	5	Y
13.2	13.2	0.0	5	Y
12.7	13.6	0.9	5	Y
6.4	4.2	2.2	3	Y
2.2	2.3	0.1	2	Y
6.9	8.6	1.7	3	Y

			D.O.T. FBR:
Sieve Fra Consecu		Tolerance, %	
0.0	То	3.0	2
3.1	То	10.0	3
10.1	То	20.0	5
20.1	То	30.0	6
30.1	То	40.0	7
40.1	То	50.0	9

Matls. IM 216

NOTE: The applicable tolerance for this combined aggregate sample is from Table 2. In this example, the suspect fractions would indicate a possible problem for two pairs of consecutive sieve sizes involving the #4 (4.75 mm) sieves. This evidence and the difference in the test values found for the #4 (4.75 mm) sieves, strongly point to an error in one of the #4 (4.75 mm) sieve results.

When RAP mixes are used, the comparison data is of the composite gradation results and not of the cold feed.

PC CONCRETE GRADATION COMPARISON REPORT

(Computer Spreadsheet Available on Iowa DOT Office of Materials Web Site)

	Project No.:							Intende	d Use:					
										(Pav	ing, Struc	ture, Pat	ching, Inc	cidenta
										Good		Fair		Poo
Contra	ctor/Producer						Care	e of Equ	ipment:					
									cedure:		-			
Coarse Age	. T203 A No.:								cedure:					
	. T203 A No.:								pletion:					
	er Equipment								tations:			-		-
App	licable Specs.								porting:					
DO	T Tested By:		_			Ce	rt. No.:		_		Date:			
Contr./Pr	od. Tested By										Date:	1		
							Sieve	Sizes - P	ercent Pa	ssing				
0	0		1 1/2"	1"	3/4"	1/2"	3/8"	#4	#8	#16	#30	#50	#100	#20
Grad No.	Sample ID	Specs DOT		-			-		1					
		Contr./Prod.					-				-			
	1000	Contr./Flog.	-	-			-		-		-			-
Grad No.	Sample ID			-		Specs	-			-	-		-	-
		DOT	-	-		-				_	-		-	-
		Contr./Prod.	-				-	-	-	-		-		-
	DOT	Contr./Prod.		Tol.	Comply						etween			
Sieves	% Retained	% Retained	Diff.	%	(Y/N)	1			Consec	utive Si	eves, %	T	olerance,	%
1 1/2 - 1	NA	NA	0.0	2	Y	Coarse Aggregate:								
1 - 3/4	NA	NA	0.0	2	Y				0.0	to	3.0	2		
3/4 - 1/2	0.0	0.0	0.0	2	Y				3.1	to	10.0		3	
1/2 - 3/8	0.0	0.0	0.0	2	Y				10.1	to	20.0		5	
3/8 - 4	0.0	0.0	0.0	2	Y				20.1	to	30.0		6	
4 - 8	0.0	0.0	0.0	1	Y				30.1	to	40.0		7	
8 - 200	0.0	0.0	0.0	1	Y				40.1	to	50.0		9	
200	0.0	0.0	0.0	1	Y	1								
3/8 - 4	0.0	0.0	0.0	2	Y	1	Fine Ad	gregate:						
4 - 8	0.0	0.0	0.0	1	Y	1			0.0	to	3.0		1	
8 - 16	0.0	0.0	0.0	1	Y	1			3.1	to	10.0		2	
16 - 30	0.0	0.0	0.0	1	Y	1			10.1	to	20.0		3	
30 - 50	0.0	0.0	0.0	1	Y	1			20.1	to	30.0		4	
50 - 100	0.0	0.0	0.0	1	Y	1			30.1	to	40.0		4	
100 - 200	0.0	0.0	0.0	1	Y]								
200	0.0	0.0	0.0	1	Y	1								

Distribution

Central Materials

1

Dist. Materials_

Contr./Producer_

Proj. Engineer

Technician

HMA GRADATION COMPARISON REPORT (Computer Spreadsheet Available on Iowa DOT Office of Materials Web Site)

Iowa Department Of Transportation Form 201 Rev 05/03 Reported Gradation & IM 216 Comparison Report Project No.: Contract ID: Intended Use: County: Contractor/Producer: Mix Design No.: Good Fair Poor Care of Equipment: Mix Change (Y/N): Date of Change: _____ Sampling Procedure: Total, % Asphalt (Pb): Splitting Procedure: -Effective % Asphalt (Pbe): Sieving to Completion: Proper Equipment: Computations: Applicable Specs.: Reporting: DOT Tested By: Cert. No.: Date: Contr./Prod. Tested By: Cert. No.: Date: Sieve Sizes - Percent Passing 1 1/2" 1" 3/4" 1/2" #100 3/8" #4 #8 #16 #30 #50 #200 Specs. Sample ID DOT Contr./Prod. Sample ID

Sieves	DOT % Retained	Contr./Prod. % Retained	Diff.	Tol. %	Comply (Y/N)
1 1/2 - 1	NA	NA	0.0	2	Y
1 - 3/4	NA	NA	0.0	2	Y
3/4 - 1/2	NA	NA	0.0	2	Y
1/2 - 3/8	NA	NA	0.0	2	Y
3/8 - 4	NA	NA	0.0	2	Y
4 - 8	NA	NA	0.0	2	Y
8 - 16	NA	NA	0.0	2	Y
16 - 30	NA	NA	0.0	2	Y
30 - 50	NA	NA	0.0	2	Y
50 - 100	NA	NA	0.0	2	Y
100 - 200	NA	NA	0.0	2	Y
200	NA	NA	0.0	2	Y

DOT Gyratory Filler/Bitumen Ratio

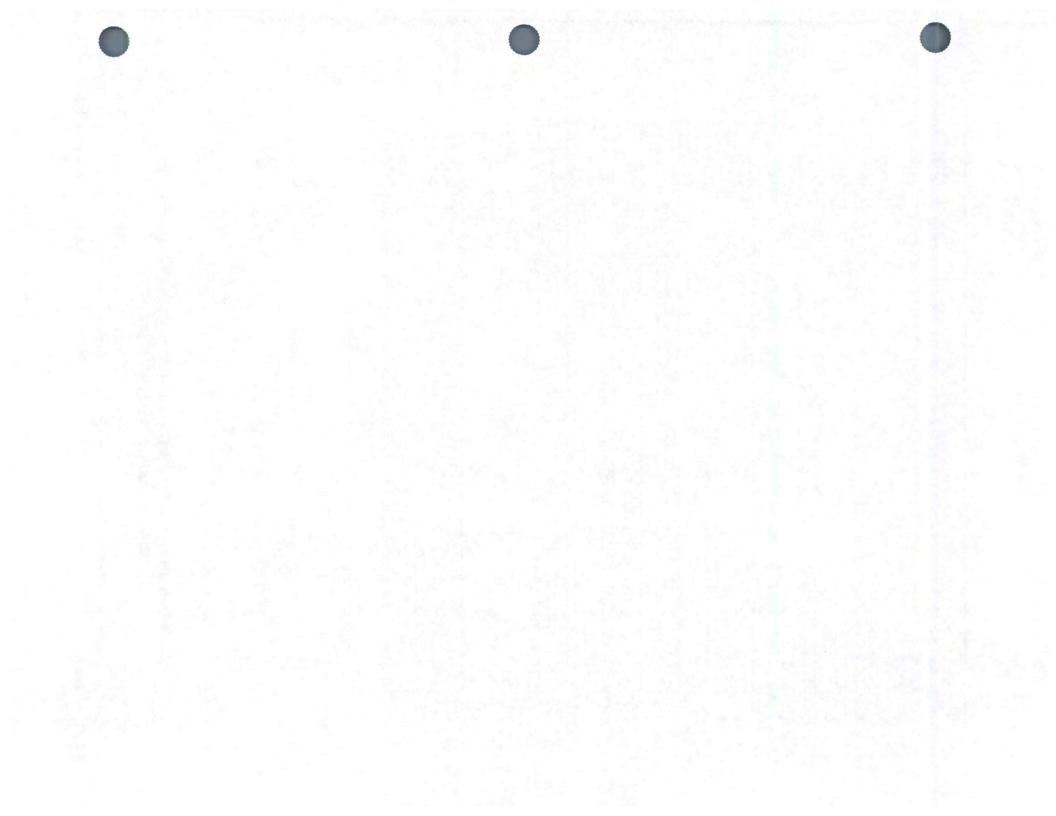
onsecut	ive Sie	ves, %	Tolerance, %
0.0	То	3.0	2
3.1	То	10.0	3
10.1	То	20.0	5
20.1	То	30.0	6
30.1	То	40.0	7
40.1	То	50.0	9

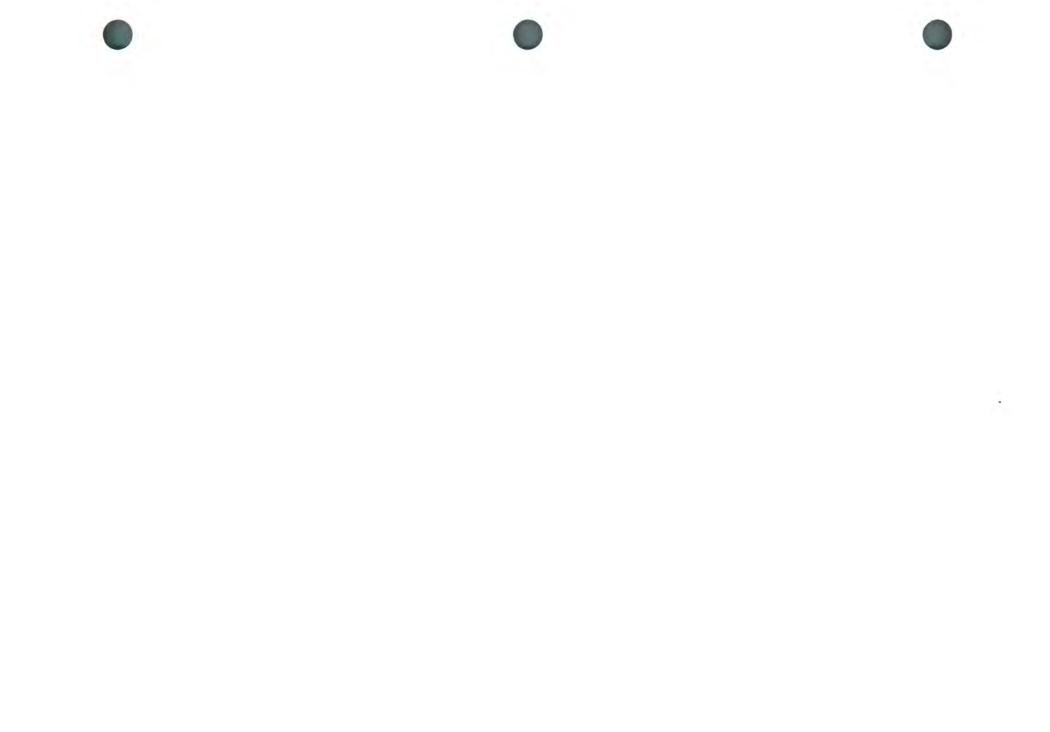
Remarks:

Distribution ____ Central Materials ____ Dist Materials ____ Contr./Producer ____ Proj. Engineer ____ Technician ____

QMC GRADATION COMPARISON REPORT (Computer Spreadsheet Available on Iowa DOT Office of Materials Web Site)

QMC Gradation Correlation I.M. 216


Project No.							
			Contract ID:		Date Sampled		
Plant Name			County.	S. 1	Gradation Date:		
Contractor			Mix Design Number:		Design No.:		
oarse Agg. Source			Intermediate Agg. Source.	6.000	Fine Agg. Source:	0	
C.P.I.			Cert. No.:	_	Specification:		
Sieve Size	D.O.T. Coarse Agg Percent Passing	Prod. / C. P. I. Coarse Agg Percent Passing	D.O.T. Coarse Agg Percent Retained	Prod. / C. P. I. Coarse Agg Percent Retained	Fraction Difference	Applicable Tolerance	Complies
1.5" / 37.5mm							
1"/25.0mm			1				
3/4" / 19.0mm							
1/2" / 12.5mm							
3/8" / 9.5mm							
#4 / 4.75mm							
#8 / 2.36mm							
Minus #200							
Sieve Size			D.O.T. Intermediate Aggregate Percent Retained	Prod. / C. P. I. Intermediate Aggregate Percent Retained	Fraction Difference	Applicable Tolerance	Complies
1.5" / 37.5mm							
1"/25.0mm							
3/4" / 19.0mm							
1/2" / 12.5mm							
3/8" / 9.5mm							
#4 / 4.75mm							
#8 / 2.36mm							
Minus #200							


Sieve Size	D.O.T. Fine Aggregate Percent Passing	Prod. / C. P. I. Fine Aggregate Percent Passing	D.O.T. Fine Aggregate Percent Retained	Prod. / C. P. I. Fine Aggregate Percent Retained	Fraction Difference	Applicable Tolerance	Complies
3/8" / 9.5mm							
#4 / 4.75mm							
#8 / 2.36mm							
#16 / 1.18mm							
#30 / 600um			1		1.2		
#50 / 300um					1		
#100 / 150um							
Minus #200							

Care of Equipment	r" good	EFAIR	IT POOR	Comments:
Sampling Procedure	E GOOD	FAIR	IT POOR	Carl as here, while the second second
Splitting Procedure	IT GOOD	FAIR	E POOR	
Sieving to Completion	E GOOD	IT FAIR	IT POOR	
Computations	E GOOD	FAIR	I" POOR	
Reporting	F GOOD	FAIR	F POOR	cc

Iowa Department of Transportation

April 18, 2006 Supersedes April 30, 2002 Matls. IM 301

AGGREGATE SAMPLING & MINIMUM SIZE OF SAMPLES FOR SIEVE ANALYSIS

SCOPE

This IM sets forth approved sampling methods and the minimum amount of dry materials necessary for the determination of particle size distribution.

LOCATION FOR SAMPLING

Safety must be foremost when determining sample locations. The Contractor/Producer shall make adequate provisions, satisfactory to the Engineer, for the safety of personnel responsible to obtain representative samples of the aggregate.

Provisions shall include guards for moving belts, pulleys, and wheels near the sampling point, and a stable platform with adequate safety rails when sampling is to be done from an elevated location.

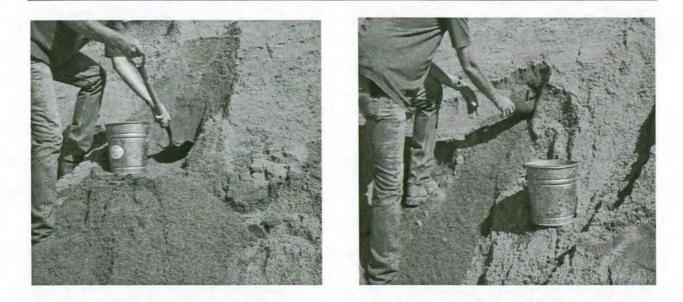
Stopped belt sampling locations must be equipped with an on-off switch near, and in plain view of the sampling location. This switch, when in the off position, must have full control of the belt.

1. Conveyor Belt/Template Method

To obtain an off-the-belt sample: stop the belt, insert a template (as illustrated in the pictures below) at three or more separate locations along the belt, remove <u>all</u> material within the template, and combine it into the sample. In belt sampling, the ends of the template should be spaced just far enough apart to get an increment approximately one-third the minimum mass (weight) of the sample. If the template does not yield the minimum size of sample in three locations, additional locations will be necessary. No less than three separate locations should be used in obtaining one sample.

1

2. Stream Flow Method


When obtaining a sample by interception of the aggregate stream flow, care must be exercised, so the sampling device (See picture below.) passes quickly through the entire stream flow and does not overflow. At least three separate passes shall be made with the sampling device when obtaining a sample. Each pass is an increment of the sample. This is normally considered to be the best method to obtain a representative sample of coarse aggregate.

3. Stockpile Method (for fine aggregate only, or as directed by the District Materials Engineer)

Stockpile sampling of fine aggregate may be accomplished by either using a shovel or a sand probe. When obtaining a field sample by the stockpile method, a minimum of three increments shall be taken at different locations around the stockpile. Avoid sampling in areas prone to segregation, such as along the bottom of cone stockpiles.

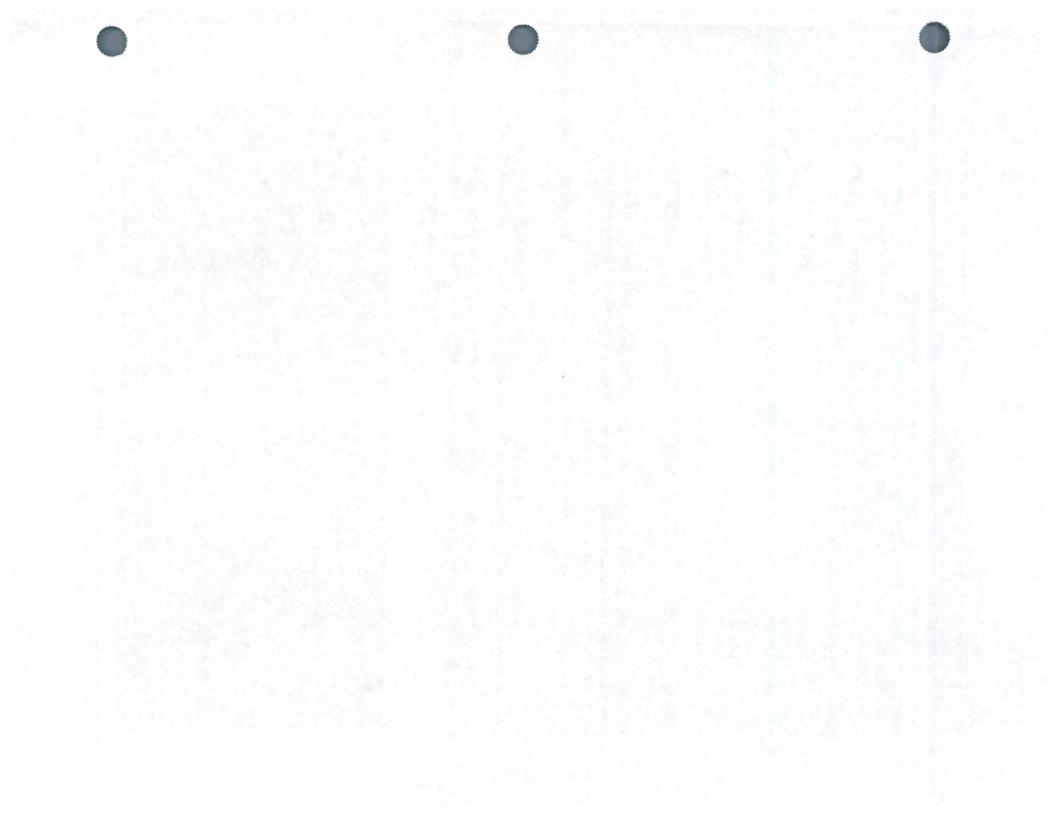
NOTE: Stockpile sampling of coarse aggregate should be avoided. If it becomes absolutely necessary to obtain a sample from a stockpile, consult the District Materials Engineer to help devise an adequate and proper sampling plan.

SHIPPING SAMPLES

Transport aggregate samples in bags or other containers constructed to preclude loss or contamination of the sample, or damage to the contents from mishandling during shipment.

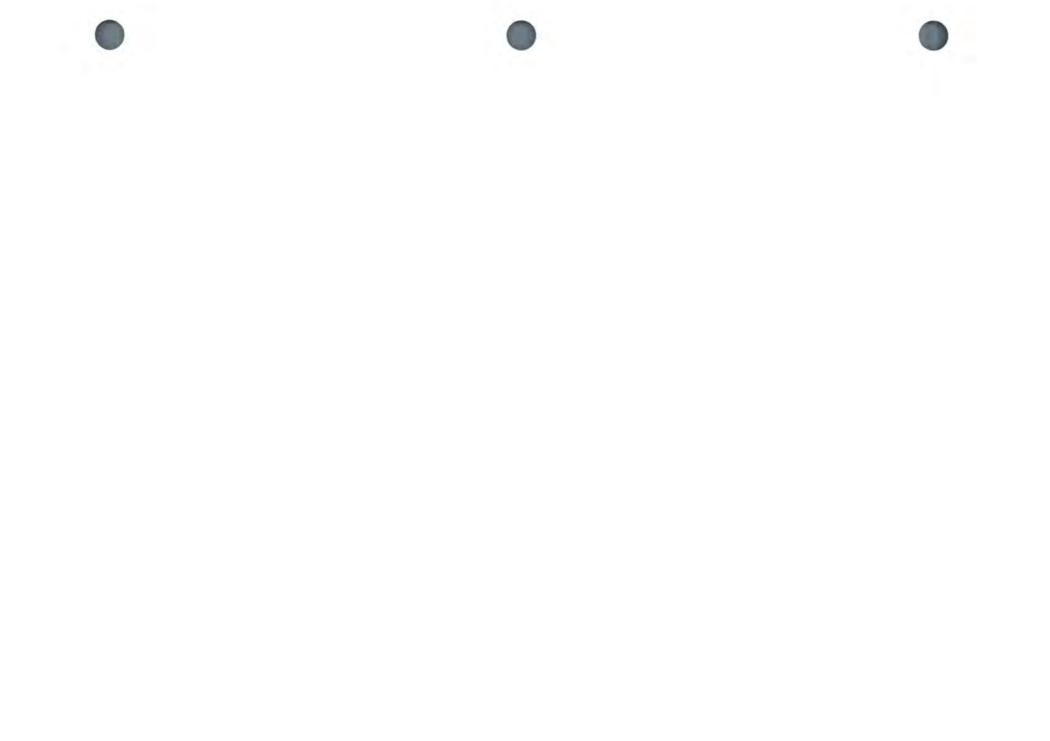
Shipping containers for aggregate samples shall each have suitable identification attached and enclosed so that field reporting, laboratory logging and testing may be facilitated.

SAMPLE SIZES


Minimum sample sizes for sieve analysis of aggregates are based on the maximum size of the product and the intended use. The following table lists the required minimum field sample and test sample sizes based on the smallest sieve through which at least 95% of the sample will pass.

SIEVE SIZE	FIELD SAMPLE (lbs./kg)	TEST SAMPLE (gms/kg)		
1½ in. (37.5 mm)	50/23.0	5,000/5.0<2>		
1 in. (25.0 mm)	30/13.5	3,500/3.5		
³ / ₄ in. (19.0 mm)	20/9.0	2,000/2.0		
1/2 in. (12.5 mm)	20/9.0	1,500/1.5		
³ / ₈ in. (9.5 mm)	10/4.5	1,000/1.0<1>		
#4 sieve (4.75mm)	10/4.5	500/0.5		
#8 sieve (2.36mm)	10/4.5	200/0.2		

(Products with maximum sizes over 1¹/₂ in. (37.5 mm) are normally visually inspected. Contact the appropriate District Materials Engineer.)


- (1) When testing fine aggregate for PC Concrete, the minimum test sample is 500 grams.
- (2) When testing 1¹/₂" aggregate for Special Backfill, Granular Subbase, or Modified Subbase the minimum test sample is 2500 grams.

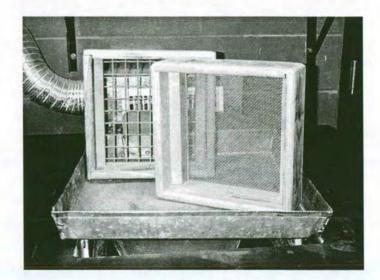
Office of Materials

Iowa Department of Transportation

April 8, 2008 Supersedes October 19, 2004 Matls. IM 302

SIEVE ANALYSIS OF AGGREGATES

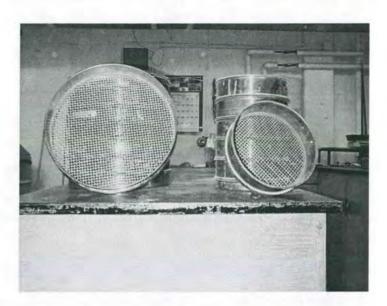
SCOPE


This method of test covers the procedure for determination of the particle size distribution of aggregates.

PROCEDURE

- A. Apparatus
 - 1. Balance accurate to within 0.1 percent of weight (mass) of the sample to be tested. NOTE: The balance shall be reset to zero before each weighing.
 - 2. Sieves with square openings mounted on substantial frames are constructed in such a manner to prevent loss of material during sieving. Use suitable sieve sizes to furnish the information required by the specifications covering the material to be tested. The woven wire cloth shall conform to AASHTO M-92. This will normally consist of a set of each of the following:

Box Sieves for testing coarse aggregates consisting of the following sizes:


37.5 mm (1 1/2-in.)	19 mm (3/4-in.)	4.75 mm (#4)
25 mm (1-in.)	12.5 mm (1/2-in.)	2.36 mm (#8)
	9.5 mm (3/8-in.)	and the second second

203 mm (8 in.) Diameter Sieves	for testing fine aggregates consisting of the following
sizes:	

4.75 mm (#4)	1.18 mm (#16)	150 µm (#100)
2.36 mm (#8)	600 µm (#30)	75 µm (#200)
	300 µm (#50)	Pan

A set of **305 mm (12 in.) Diameter Sieves** may be used for testing fine aggregate or aggregate containing both coarse and fine material.

- 3. Mechanical and hand-powered sieve shakers
- 4. Drying oven or stove
- 5. Fiber bristle sieve cleaning brush (similar to stencil brush or cropped paintbrush)
- B. Test Sample
 - 1. Test samples for sieve analysis shall conform to the sample size for the applicable material as indicated by Materials IM 301.
 - 2. Obtain the sample for sieve analysis (test sample) from the material to be tested (field sample) by the appropriate method as outlined in Materials IM 336. The test sample shall be approximately of the weight (mass) desired when dry and must be the end result of the reduction. Reduction to an exact predetermined weight (mass) shall not be permitted.

- C. Preparation of Sample
 - When a determination of the amount of material passing the #200 (75 μm) sieve is required, the test sample must first be subjected to Materials IM 306, Determining the Amount of Material Finer Than the #200 (75 μm) Sieve. Coarse aggregates may have a *separate* "wash" sample of the appropriate size (per IM 306) *reduced* from the remaining portion of the field sample, per IM 336.
 - Coarse aggregates, which have changes in moisture for different particle sizes, must be dried to a constant weight (mass). When the absorbed moisture stays essentially the same for different particle sizes the sample may be sieved at a surface-dry condition (no free water present).

NOTE: Material from crushed composite (HMA/PC) pavements shall be sieved at a surface-dry condition using no artificial heat. No gradation determination will be made for material finer than the #8 (2.36 mm) sieve. For material made from crushed PC pavement, determination of the percent passing the #200 sieve may be required. In some instances, larger particles may be coated to the extent that dry sieving will not accurately reflect the true gradation of the material. In these instances, the air-dried sample must be washed over the #8 (2.36 mm) sieve and allowed to come to a surface-dry condition by air-drying. The total percent passing this sieve is the sum of the washing loss and pan after dry sieving divided by the original (air) dry/weight (mass). Coated particles may also be a problem with some virgin aggregate material (e.g., Class D crushed stone, etc.). When this condition exists, the material shall be dried to a constant weight (mass), washed over the smallest sieve for which there is a specification requirement, and dried again. The total percentage passing this sieve is a combination of the washing loss and the amount passing the sieve obtained by dry sieving the washed sample divided by the original dry weight (mass).

- D. Test Procedure
 - 1. Weigh and record the weight (mass) of the test sample as the Original Dry Mass.
 - 2. Sieve the sample over the required sieves. The sieving operation must be accomplished by using a lateral and vertical motion of the sieve(s), accompanied by a jarring action, which keeps the sample moving continuously over the surface of the sieve. Do not attempt to turn or manipulate the aggregate particle through the sieve openings by hand.

When using a mechanical sieve shaker, excessive sieving times may result in degradation of the sample.

The sieving operation may be considered complete when not more than 0.5 percent by weight (mass) of the original sample passes any sieve during an additional one minute of hand-sieving.

a. On the #4 (4.75 mm) and larger sieves, limit the amount of material carried on the sieve to a single layer when determining sieving to completion.

b. Overloading of the 8 in. (203 mm) and 12 in. (305 mm diameter sieves, #4 (4.75 mm) and smaller, must be avoided to allow for sieving to completion. The weights retained should not exceed the following:

8 in. (203 mm) diameter sieves	12 in. (<u>305mm) diameter sieves</u>
#4 (4.75 mm) 200 grams and smaller	#4 (4.75 mm) 850 grams #8 (2.36mm) 450 grams and smaller

If sieving to completion (as described above) is not readily accomplished, reduce the amount of material carried on the sieve.

c. When the aggregate being tested has a mixture of coarse and fine material, the portion of the sample finer than the #4 (4.75 mm) sieve may be distributed among two or more sets of sieves to prevent overloading of individual sieves. Alternately, the portion passing the #4 (4.75 mm) sieve may be reduced to a minimum of 500 grams using a mechanical splitter according to IM 336. If this procedure is followed, compute the weight (mass) of each size increment of the original sample as follows:

$$A = \frac{W1}{W2} \times B$$

Where:

- A = calculated weight (mass) of the material retained on each sieve based on the total sample weight (mass).
- W1 = weight (mass) of the total amount of material passing the #4 (4.75 mm) sieve.
- W2= weight (mass) of the reduced, minus #4 (4.75 mm) sieve material.
- B = weight (mass) of the reduced sample material retained on each sieve.

NOTE: This method is recommended when using 8 in. (203 mm) diameter sieves to test the fine aggregate portion of a sample when overload is anticipated. If using 12 in. (305 mm) sieves and the original test sample is reasonably close to the required weight (mass), overload should not occur. When sieve overload is anticipated on the #8 (2.36 mm) sieve only, sieve the original sample through the #8 (2.36 mm) box sieve before placing the fine portion in the nest of 8 in. (203 mm) round sieves.

- 3. Clean the retained material from each sieve for weighing. Remove as much material as practical without damaging the wire cloth. Particles may be removed most readily from a sieve by inverting the sieve over a pan and tapping the sieve by hand and/or pushing (without force) the particles out of the mesh into the pan. Care must be taken while cleaning the sieves, so no damage occurs to the wire mesh by bending or breaking the wires. A fiber-bristle brush should be used for cleaning the #16 (1.18 mm), #30 (600 μ m), and #50 (300 μ m) sieves. Do not use a brush or any external force on the wire cloth to attempt cleaning the #100 (150 μ m), or #200 (75 μ m) sieves. If clogging of the mesh occurs on these finer sieves, they should be sent to the District Materials Laboratory for cleaning.
- 4. Weight the fraction of material retained on each sieve and in the pan, to at least the nearest 0.5 gram and record. Total the weight (mass) of the material retained on the sieves and in the pan.
- 5. An accuracy check must be made comparing the weight (mass) of the material before sieving to the total weight (mass) after sieving. The total of the weights retained on the sieves and in the pan must be within 0.5 percent of the Original Dry Mass by washing.

When the percent finer than the #200 (75µm) sieve is not determined:

X

Total

100 = Tolerance (99.5 to 100.5)

Original Dry Mass

When the percent finer than the #200 (75 μ m) sieve is determined by washing (IM 306):

Total - Washing Loss

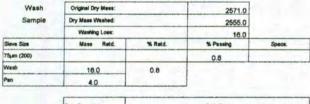
X 100 = Tolerance (99.5 to 100.5)

Dry Mass Washed

If the difference exceeds the 0.5 percent tolerance, check all the calculations, the sieves for retained material and the balance for proper care. If needed, weigh each increment of material retained again. If the error cannot be found, the test is void and a new sample shall be tested.

E. Calculations

 Divide the weight (mass) of the material retained on each sieve, and in the pan, by the Original Dry Weight (mass) of the sample. When computing the percent retained of a washed sample the sum of the washing loss and pan weight (mass) shall be divided by the Original Dry Weight (mass). Computation shall be carried out to the nearest 0.1 percent when determining percent retained and the consequent percent passing.



- 2. The percent-retained column should equal 100 percent when totaled. Because the weight (mass) of material retained on the sieves may not equal the Original Dry Weight (mass), the total of the percentages retained may not equal 100 percent. If this occurs, the percentages retained should be altered by prorating on the larger quantities, so they do equal 100 percent.
- 3. The percent passing is then determined by subsequent subtraction starting with the sieve which had no material retained (100 percent passing).
- 4. Sieve analysis results are to be reported in terms of percent passing and recorded to two significant figures, i.e., to the nearest whole percent for percentages above 10.0 and to the nearest tenth of a percent for lower results.
- 5. The fineness Modulus, when required, may now be calculated by cumulative addition of the percent retained on each of the following sieves coarser than the 75 μm (#200) sieve and dividing that sum by 100: 150 μm (#100); 300 μm (#50); 600 μm (#30); 1.18 mm (#16); 2.36 mm (#8); 4.75 mm (#4); 9.5 mm (3/9 in.); 19.0 mm (3/4 in.); 37.5 mm (1 ½ in.), and larger, (i.e. doubling the previous sieve size).

EXAMPLE #1,	COARSE AGGRE	SATE
Lab. No.:		
Material:		Grad, No.:
Co. & Proj. #		
Producer:		
Contractor:		
Sampled By:		Date:
Sample Loc.:		
Original Dry Mass:	5793	Total Minus 4.75 mm (W1):
Dry Mass Washed:		Reduced Minus 4.75 mm (W2):

		Celculated Weight (A)=Conversion Factor x (B)	
Washing Loss:		Conversion Factor: W1 / W2	
Dry Mass Washed:		Reduced Minus 4.75 mm (W2):	
Original Dry Mass:	5793	Total Minus 4.75 mm (W1):	

Sieve Size	Reduced Minus 4.75mm	Total or Calc. Weight Retd	% Retd.	% Passing	Specs.
37.5mm (1%)	這個情報的			100.0	
25mm (1)		577	10.0	90.0	
19mm (%)	日本的時期日	1068	18.4	71.6	
12.5mm (1/s)	計詞以時待日	1448	25.0	48.6	
9.5mm (3/8)	目的注意能	1383	23.9	22.7	
4.75mm (4)		1082	18.7	4.0	
2.36mm (8)	(8)	141 (A)	2.4	1.6	0
1.18mm (16)	(B)	(A)			
600µm (30)	(B)	(A)			
300µm (50)	(B)	(A)			
150µm (100)	(8)	(A)			1
75µm (200)	(8)	(A)		0.8	
Wash	部時間的神	(A)	1.6		
Pan	(B)	93 (A)			
Total		5790	100.0		
Tolerance		99.9			

Dels Reported: Cert, Ho.: Testod By:

Note: For the 4.75mm (#4) sieve and smaller, a 203mm (8") sieve should retain no more than 200 grams, and a 305mm (12") sieve no more than 450 grams

Comments:

Lab. No.:	
Material:	Grad. No.:
Co. & Proj. #	
Producer:	
Contractor:	
Sampled By:	Data:
Sample Loc.:	

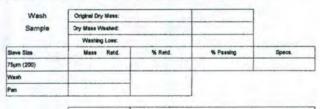
Original Dry Mass:	Total Minus 4.75 mm (W1):	
Dry Mass Washed:	Reduced Minus 4.75 mm (W2):	
Washing Loss:	Conversion Factor: W1 / W2	
	Calculated Weight (A)=Conversion Eaclor x (B)	

Sieve Size	Reduced Minus 4.75mm	Total or Calc. Weight Retd	% Retd.	% Passing	Specs.
37.5mm (11/2)	國聯盟國際				
25mm (1)	經續議員將議員				-
19mm (%)					
12.5mm (%)					
9.5mm (3/8)	品牌 書 書 書				
4.75mm (4)	同時間 一般的時				
2.36mm (8)	(B)	(A)			
1.18mm (16)	(B)	(A)			
600µm (30)	(B)	(A)			
300µm (50)	(B)	(A)			
150µm (100)	(B)	(A)			
75µm (200)	(B)	(A)			
Wash	新闻的 和 19		1		
Pan	(B)	(A)	and the second second		
Total			and the second se		
Tolerance					

Wash Sample	Original Dry Mass:			
	Dry Mass Washed:			
	Washing Loss:			
Sleve Size	Mass Retd.	% Retd.	% Passing	Specs.
75µm (200)				
Wesh				
Pan				

Date Reported:	Cert. No.;
Tested By:	

Note: For the 4.75mm (#4) sieve and smaller, a 203mm (8") sieve should retain no more than 200 grams, and a 305mm (12') sieve no more than 450 grams


Comments:

EXAMPLE #2, 1	FINE AGGREGATE
Lab. No.:	
Material:	Grad, No.;
Co. & Proj. #	
Producer:	
Contractor.	
Sampled By:	Date:
Sample Loc.:	
dainal Day Maga:	504 0 Total Minus 4 75 mm (M/1)

Original Dry Mass:	594.0	Total Minus 4.75 mm (W1):	
Dry Mass Washed	591.5	Reduced Minus 4.75 mm (W2):	
Washing Loss:	2.5	Conversion Factor: W1 / W2	

Calculated Weight (A)=Conversion Factor x (B)

Sieve Size	Reduced Minus 4.75mm	Total or Calc. Weight Retd	% Retd.	% Passing	Specs.
37.5mm (11⁄3)	國和計劃是				
25mm (1)	112月1日日111日		-		
19mm (%)					
12.5mm (%)	國國國國際				
9.5mm (3/8)	14日1月2日日			100,0	
4.75mm (4)		29.0	4.9	95.1	
2.36mm (8)	(B)	64.5 (A	10.9	84.2	
1.18mm (16)	(B)	102.0 (A	17.2	67.0	
600µm (30)	(B)	181.5 (A	30.8 (30.7)	36.3	
300µm (50)	(B)	154.5 (A) 26.0 (26.1)	10.2	
150µm (100)	(8)	51.0 (A	8.6	1.6	
75µm (200)	(8)	6.0 (A	1.0	0.6	
Wash		2.5	0.6		
Pan	(B)	1.0 (A)		
Total		592.0	99.8 (100.0)		
Tolerance		99.7			

Note: For the 4.75mm (#4) sieve and smaller, a 203mm (6") sieve should retain no more than 200 grams, and a 305mm (12") sieve no more than 450 grams

Cert. No .:

Comments:

Date Reported:

Tested By:

Lab. No.:	
Material:	Grad. No.:
Co. & Proj. #.	
Producer:	
Contractor:	
Sampled By:	Date:
Sample Loc.:	

Original Dry Mass: Dry Mass Washed:	Total Minus 4.75 mm (W1); Reduced Minus 4.75 mm (W2);	
Washing Loss:	Conversion Factor: W1 / W2	
	Calculated Weight (A)=Conversion Factor x (B)	-

ated Weight (A)=Conversion Factor x (B)

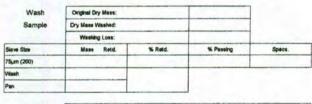
Sieve Size	Reduced Minus 4.75mm	Total or Calc. Weight Retd	% Retd.	% Passing	Specs
37.5mm (11/3)	業務相對品牌				
25mm (1)	國家和基礎				
19mm (%)	國新聞推議				
12.5mm (1/s)	國制設有意義				
9.5mm (3/8)	2008日日間				
4.75mm (4)					
2.36mm (8)	(B)	(A)			
1.18mm (18)	(B)	(A)			
600µm (30)	(B)	(A)			
300µm (50)	(B)	(A)			
150µm (100)	(B)	(A)			
75µm (200)	(B)	(A)			
Wash	對國際關係				
Pan	(B)	(A)			
Total			and the second second		
Tolerance					

Wash	Original Dry I	Mass:			
Sample	Dry Mass Washed:				
	Washing	Loss:			
Sieve Size	Mass	Retd.	% Retd.	% Passing	Specs.
75µm (200)					
Wash					
Pan					

Date Reported:	Cart. No.:
and the second second	

Note: For the 4.75mm (#4) sieve and smaller, a 203mm (8") sieve should retain no more than 200 grams, and a 305mm (12") sieve no more than 450 grams

Comments:


EXAMPLE #3, COMBINED AGGREGATE, 8" AND BOX SIEVES

Material:	Grad. No.:
Co. & Proj. #:	
Producer:	
Contractor:	
Sampled By:	Date:
Sample Loc.:	

Original Dry Mass:	2457.2	Total Minus 4.75 mm (W1):	2115.7
Dry Mass Washed:	2410.5	Reduced Minus 4.75 mm (W2):	537.2
Washing Loss:	48.7	Conversion Factor: W1 / W2	3.9384

Calculated Weight (A)=Conversion Factor x (B)

Sieve Size	Reduc Minus 4.3		Total or C Weight R		% Retd.	% Passing	Specs
37.5mm (1%)							
25mm (1)	1.16					100.0	
19mm (%)			14.8		0.6	99.4	
12.5mm (%)	2.111		45.9		1.9	97.5	
9.5mm (3/8)			81.0		3.3	94.2	
4.75mm (4)	翻出語		154.0		6.3	87.9	
2.36mm (8)	57.6	(B)	226.9	(A)	9.2	78.7	-
1.18mm (16)	93.0	(B)	366.3	(A)	14.9	63.8	
600µm (30)	178.3	(B)	694.3	(A)	28.3 (28.4)	35.4	
300µm (50)	172.5	(B)	679.4	(A)	27.6	7.8	
150µm (100)	32.7	(B)	128.8	(A)	5.2	2.6	
75µm (200)	3.9	(B)	15.4	(A)	0.6	2.0	
Wash	建构器	設備等	46.7		2.0		
Pan	0.8	(B)	3.2	(A)			
Total	538.8		2456.5		99.9 (100.0)		
Tolerance	99.9		100.0				

Note: For the 4.75mm (#4) sieve and smaller, a 203mm (8") sieve should retain no more than 200 grams, and a 305mm (12") sieve no more than 450 grams

Cart. No .:

Lab. No.:	
Material:	Grad. No.:
Co. & Proj. #.	
Producer:	
Contractor:	
Sampled By:	Date:
Sample Loc.:	

Original Dry Mass:	Total Minus 4.75 mm (W1):
Dry Mass Washed:	Reduced Minus 4.75 mm (WZ):
Washing Lose:	Conversion Factor: W1 / W2

Calculated Weight (A)=Conversion Factor x (B)

Sieve Size	Reduced Minus 4.75mm	Total or Calc. Weight Retd	% Retd.	% Passing	Specs.
37.5mm (11/2)	計算的時期。				
25mm (1)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				
19mm (%)	影教育部院的影响				
12.5mm (1/5)					
9.5mm (3/8)					
4.75mm (4)	的。自己的问题。				
2.36mm (8)	(B)	(A)			
1.18mm (16)	(B)	(A)			
600µm (30)	(B)	(A)			
300µm (50)	(B)	(A)			
150µm (100)	(B)	(A)			
75µm (200)	(B)	(A)			
Wash	品品。加密如此				
Pan	(8)	(A)			
Total			A CONTRACTOR OF THE OWNER		
Tolerance		-			

Wash	Original Dry Mass:			
Sample	Dry Mass Weshed:			
	Weshing Loss:			
Sieve Size	Mass Rold.	% Retd.	% Passing	Specs.
75µm (200)				
thealW		-		
Pan				

Date Reported:	Cert. No.:
Tested By:	

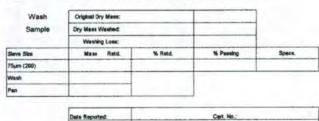
Note: For the 4.75mm (#4) sieve and smaller, a 203mm (8") sieve should retain no more than 200 grams, and a 305mm (12") sieve no more than 450 grams

Comments:

9

April 8, 2008 Supersedes October 19, 2004

Matls. IM 302


Comments:

Cate Reported

EXAMPLE #4	, COMBINED AGGR	EGATE, 12" SIEVES	
Lab. No.:			_
Material		Grad, No.:	4
Co. & Proj. #.			_
Producer;			4
Contractor.			_
Sampled By:		Dete:	_
Sample Loc.:			
Original Dry Mass;	2051.2	Total Minus 4.75 mm (W1):	
Dry Mass Washed:	2011.4	Reduced Minus 4.75 mm (WZ):	
Washing Loss:	39.8	Conversion Factor: W1 / W2	

Calculated Weight (A)=Conversion Factor x (B)

Sieve Size	Reduced Minus 4.75mm	Total or Calc. Weight Retd	% Retd.	% Passing	Specs.
37.5mm (1%)	自己的意思				
25mm (1)	的。 新聞時代的目標			100.0	
19mm (%)	建制的现在	26.8	1.3	98.7	
12.5mm (1/s)		80.7	3.9	94.8	-
9.5mm (3/8)	相關及他認識的	55.1	2.7	92.1	
4.75mm (4)		182.7	8.9	83.2	La mineria
2.36mm (8)	(B)	229.7 (A)	11.2	72.0	
1.18mm (16)	(B)	382.8 (A)	17.7	54.3	
600µm (30)	(8)	810.5* (A)	29.8	24.5	
300µm (50)	(B)	377.1 (A)	18.4	6.1	
150µm (100)	(8)	72.2 (A)	3.5	2.6	
75µm (200)	(8)	10.2 (A)	0.5	2.1	
Wash	北京市日本語	39.8	2.1		
Pan	(8)	3.4 (A)	-		
Total		2051.0	100.0		
Tolerance		100.0	-		

Tested By:

Note: For the 4.75mm (#4) sieve and smaller, a 203mm (8") sieve should retain no more than 200 grams, and a 305mm (12") sieve no more than 450 grams

Comments: *The 600µm (30) sieve was overloaded. Sleving to completion was verified by hand sleving.

Lab. No.:	
Material:	Grad. No.:
Co. & Proj. #:	
Producer:	contract of the second s
Contractor:	
Sampled By:	Date:
Sample Loc.:	

Original Dry Mass:	Total Minus 4.75 mm (W1):
Dry Mass Washed:	Reduced Minus 4.75 mm (W2):
Washing Loss:	Conversion Factor: W1 / W2

Calculated Weight (A)=Conversion Factor x (B)

Sieve Size	Reduced Minus 4.75mm	Total or Calc. Weight Retd	% Retd.	% Passing	Specs
37.5mm (1%)					
25mm (1)					
19mm (%)	國建設建設設置				
12.5mm (1/2)	的時間。目前是				
9.5mm (3/8)	战队的 指因 我				
4.75mm (4)	新教教教授				
2.36mm (8)	(B)	(A)			
1.18mm (18)	(B)	(A)			
600µm (30)	(B)	(A)			
300µm (50)	(B)	(A)			
150µm (100)	(8)	(A)			
75µm (200)	(8)	(A)			
Wash	的智能建筑结				
Pan	(B)	(A)			
Total					
Tolerance				1	

Wash	Original Dry Mass:			
Sample	Dry Mass Washed:			
	Washing Loss:			
Sieve Size	Mass Retd.	% Retd.	% Passing	Specs.
75jum (200)				
Vesh				
Pan				

Date Reported:	Cert. No.:
Tested By:	

Note: For the 4.75mm (#4) sieve and smaller, a 203mm (8") sieve should retain no more than 200 grams, and a 305mm (12") sieve no more than 450 grams

Comments:

Cumulative Percent Retained

Fineness Modulus Calculation For Concrete Sand (Grad. #1 – Spec. 4110) AASHTO T27

lowa DOT has specified that sand produced for the use in Portland Cement Concrete should have a Fineness Modulus of 2.75 or higher. The Materials Engineer may require samples be submitted for Mortar Strength testing if the Fineness Modulus fails to meet the minimum 2.75.

The Fineness Modulus is simply a calculation based on the 'cumulative' percent retained from the sieve analysis sample.

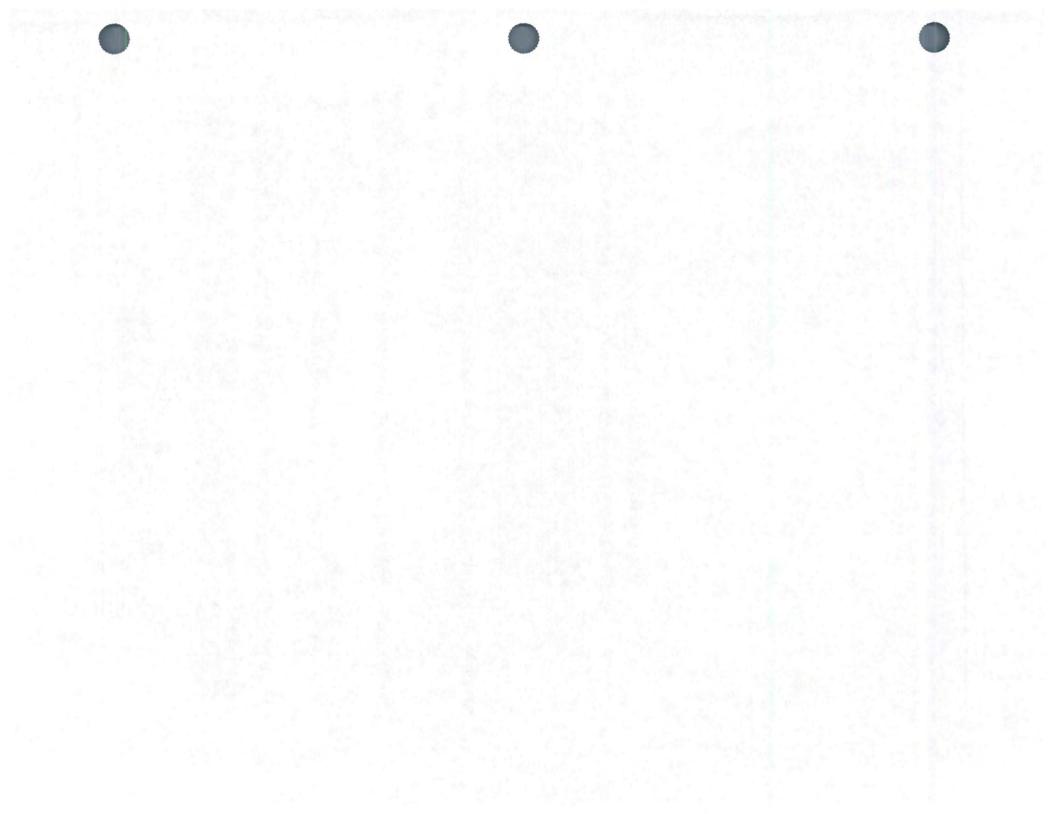
Starting with the largest sieve retaining any material, add the cumulative percents retained on each sieve through the #100 sieve and divide this total by 100. The result is reported to the nearest 0.01%.

Note: The percent retained on the #200 sieve is not calculated in determining the Fineness Modulus.

Percent Retained

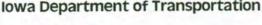
Example:

Sieve


0	0
3.6	3.6
16.9	20.5
19.6	40.1
23.4	63.5
26.1	89.6
9.5	40.1 63.5 89.6 99.1
	0 3.6 16.9 19.6 23.4 26.1

Total Cumulative Percent Retained = 316.4

316.4 ÷ 100 = 3.16 Fineness Modulus



•

Office of Materials

October 19, 2004 Supersedes April 20, 2004 Matls. IM 306

DETERMINING THE AMOUNT OF MATERIAL FINER THAN THE #200 (75 µm) SIEVE IN AGGREGATE

SCOPE

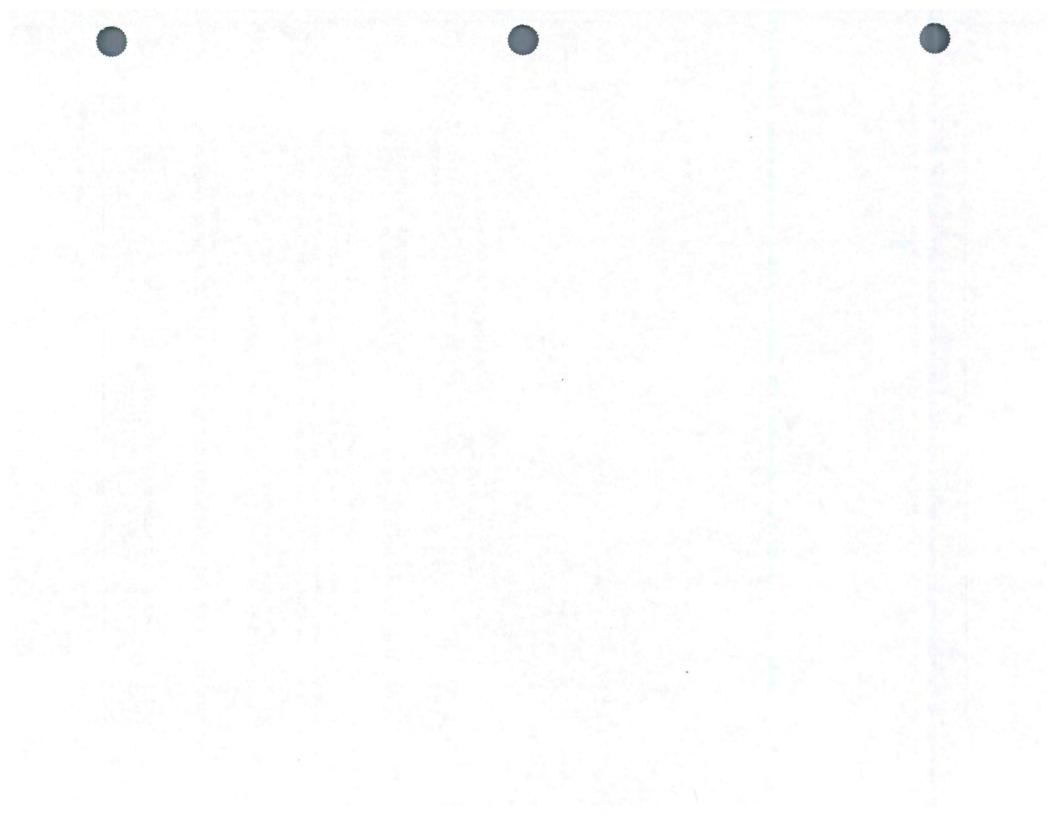
This test method outlines the procedure for determining the quantity of material finer than a $\#200 (75 \ \mu\text{m})$ sieve by washing and dry sieving.

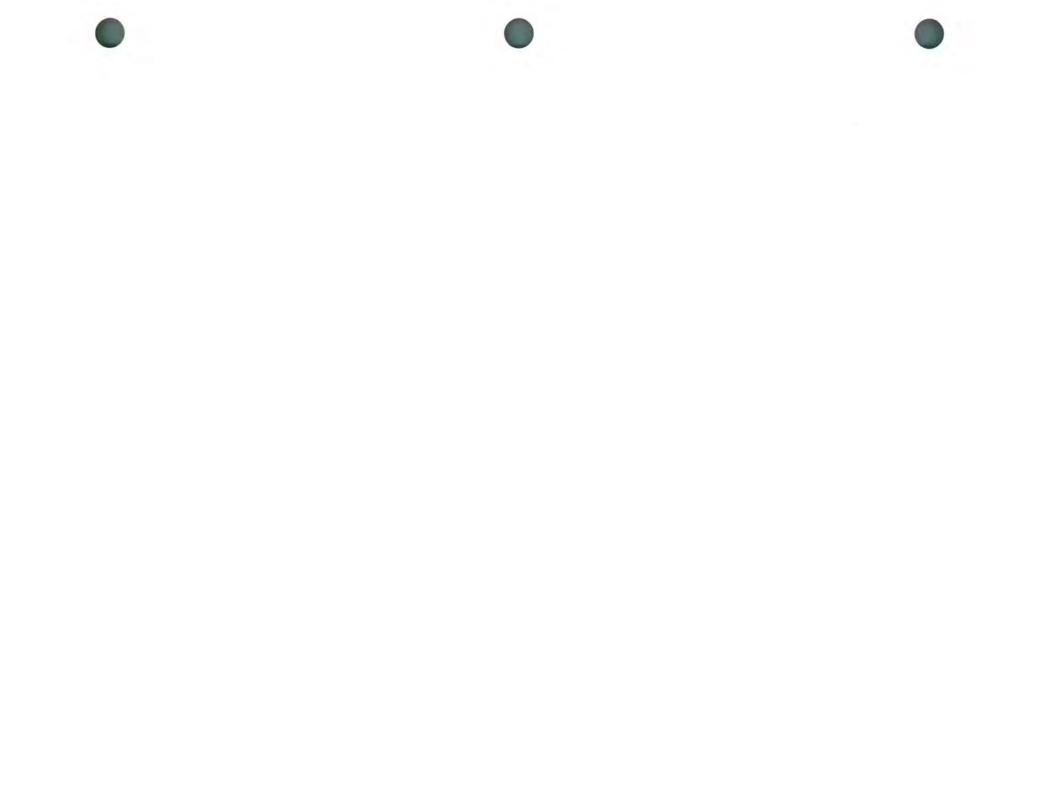
PROCEDURE

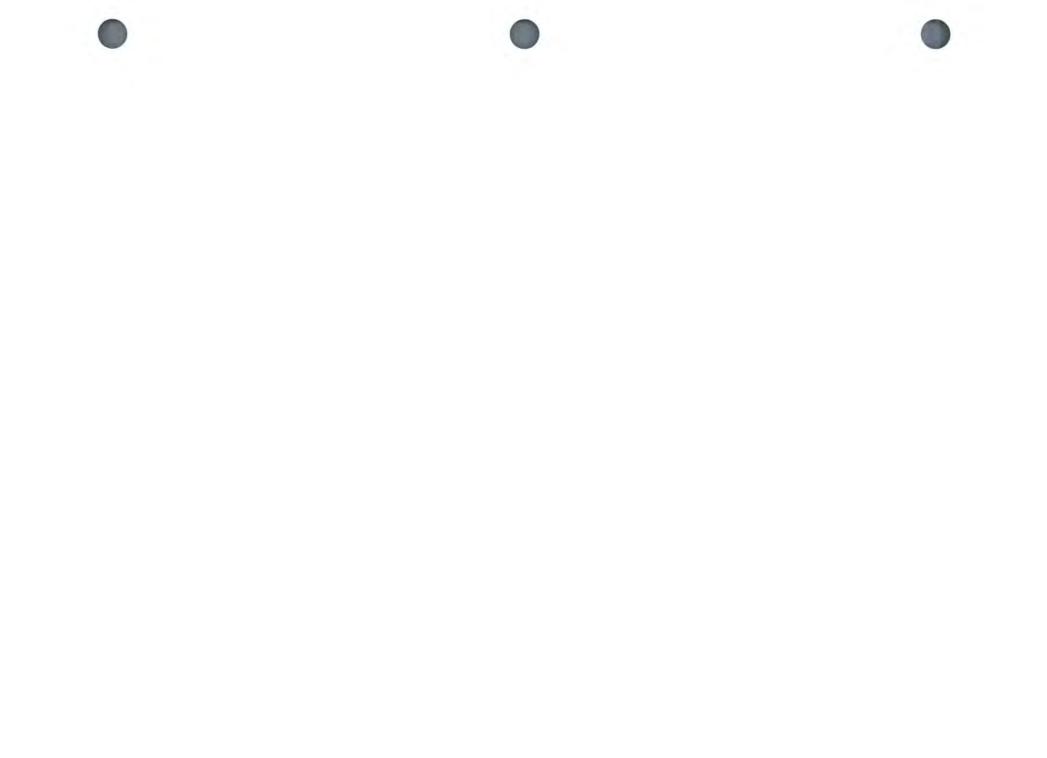
- A. Apparatus
 - 1. A #200 (75 µm) sieve (wash sieve)
 - 2. A wash pan large enough to prevent loss of water and material
 - 3. Oven or drying stove
 - 4. Balance accurate to 0.1 percent of the sample mass (weight)
 - 5. A set of 8-in. (203-mm) or 12-in. (305-mm) sieves for dry sieving
- B. Test Sample
 - 1. Select the test sample from the material to be tested by an appropriate method as outlined in Materials IM 336.
 - When determination of specification compliance is needed on each or any of the following sieves: #16 (1.18 mm), #30 (600 μm), #50 (300 μm), or #100 (150 μm), subject the entire sample to this test procedure.
 - 3. When determination of specification compliance is needed for only the amount of material finer than the #200 (75 μm) sieve, reduce the remaining portion of the field sample from which the original test sample was selected, by the appropriate method as outlined in IM 336. A representative sample, sufficient to yield not less than the appropriate mass of dried material, as shown in the following table shall be selected:

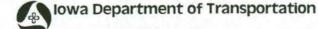
Sample Mass (Weight) kg	Appropriate Minimum
(See Materials IM 301)	Mass (Weight) kg of Sample
5.0 kg	2.5 kg
3.5 kg	2.5 kg
2.0 kg	1.0 kg
1.5 kg	*
1.0 kg	*
0.5 kg	*
0.2 kg	*

*Use entire sample.


C. Test Procedure


- Place the sample in the oven at 230°F (110°C) or on the stove and dry to a constant mass (weight). Care must be taken in drying the sample to avoid overheating causing the sample to "pop" or "sputter."
- 2. Allow the sample to cool, weigh and record as the Original Dry Mass (Weight).
- Place the sample in the wash pan and add a sufficient amount of water to cover it. A detergent, dispersing agent, or other wetting solution may be added to the water to ensure a thorough separation of fine material from the coarser particles.
- 4. Agitate the sample vigorously using a rotary motion of the pan for five to ten seconds.
- 5. Pour off the water through the #200 (75 μm) wash sieve. When washing samples with a high silt content, it may be necessary to vibrate or lightly tap the wash sieve in order to keep the mesh open so the water and the minus #200 (75 μm) sieve material may pass through freely. Repeat this operation until the wash water appears almost clear.




- Rinse the material retained on the #200 (75 μm) sieve back into the sample and decant as much water as possible by carefully pouring the water through the #200 (75 μm) sieve.
- 7. Dry the washed sample, allow to cool, weigh and record as the Dry Mass (Weight) of the washed sample.
- 8. When determining only the amount passing the #200 (75 μm) sieve, screen the sample over the #8 (2.36 mm) sieve and discard the retained material. Place the portion of material passing the #8 (2.36 mm) sieve on a nest of sieves including the #50 (300 μm), #100 (150 μm), and #200 (75 μm) sieves and the pan. The sieves larger than the #200 (75 μm) sieve are included for protection of the #200 (75 μm) sieve. Place the nest of sieves in the mechanical sieve shaker and sieve to completion (normally five minutes or less). Weigh and record only the material retained in the pan.
- 9. When a complete sieve analysis is required, test the entire sample using the appropriate method as outlined in IM 302.
- D. Calculations

% Passing 75 μ m (#200) sieve = $\frac{\text{Washing Loss + Pan}}{\text{Original Dry Mass (Weight)}} \times 100$

Office of Materials

April 19, 2005 Supersedes April 25, 2000 Matls. IM 307

DETERMINING SPECIFIC GRAVITY OF AGGREGATES

SCOPE

This method describes two procedures used for determining the bulk specific gravity of aggregates proposed for use in Portland Cement Concrete. This method is also described in Laboratory Test Method 201.

PROCEDURE A – SPECIFIC GRAVITY OF AGGREGATES USING A PYNCNOMETER

A. Apparatus

- 1. Balance having a capacity of at least 5,000 grams, accurate to 0.5 grams
- 2. Pycnometer a fruit jar supplied with a gasket and conical pycnometer top. A two-quart pycnometer is used for coarse aggregates, and a one-quart pycnometer is used for fine aggregate. If a two-quart pycnometer cannot be obtained, a one-quart jar may be substituted (The engineer may require 2 samples be obtained and tested in separate 1-quart pycometers for some aggregates). The quantity of aggregate would be approximated 1100 grams for the one-quart pycnometer.
- 3. Thermometer a thermometer with a range of at least 50°F (10°C) to 100°F (38°C)
- 4. Sieve a No. 4 (4.75 mm) sieve
- B. Field Sample
 - 1. Obtain a field sample as prescribed in IM 301.
- C. Preparation of Test Sample
 - 1. Fine Aggregate
 - a. Obtain a test sample of approximately 1100 grams from the material to be tested by one of the following methods:
 - (1) Use of a sample splitter
 - (2) Method of quartering after being thoroughly mixed and in a damp condition
 - (3) By taking small scoops of material from various places over the field sample, after it has been dampened and thoroughly mixed. In order to avoid segregation, the material must be damp enough to stand in a vertical face when cut with a trowel. This method of sample reduction is applicable to sands only.

1

- b. If the material has been continuously wet before being received on the job, it may be assumed to be saturated. Otherwise, the sample must be saturated by immersing it in water for period of not less than 15 hours.
- c. After soaking, pour off the free water, spread the wet sample on a flat, nonabsorbent surface, and allow it to come to a surface-dry condition by natural evaporation of free moisture. Circulation of air by means of a fan may also be used to attain the surface-dry condition. The sample should be stirred frequently to secure uniform drying.
- 2. Coarse Aggregate
 - a. Obtain the test sample as prescribed in IM 336, Methods of Reducing Aggregate Field Samples To Test Samples (See Sections on Quartering or Splitting).
 - b. Sieve the test sample over the No. 4 (4.75 mm) sieve. The sample should be of sufficient size to produce approximately 2100 grams of material retained on the No. 4 sieve. Discard the material that passes this sieve.
 - c. Immerse the sample (plus No. 4 sieve size) in water for a period of not less than 15 hours.
 - d. After soaking, pour off the free water and allow the sample to come to a saturatedsurface-dry condition by spreading the sample on a flat, non-absorbent surface. The forced circulation of air by means of a fan, if available, may hasten this process. The sample should be stirred frequently to secure uniform drying. The predominance of free moisture may be removed initially by rolling the sample back and forth in a clean, dry, absorbent cloth.
 - e. The sample may be considered to be saturated-surface-dry when the particles look comparatively dull as the free moisture is removed from their surfaces. For highly absorptive aggregates, the saturated-surface-dry condition is reached when there is an absence of free moisture.
- D. Calibration of Pycnometers
 - 1. Fill the pycnometer jar nearly full of water at the temperature to be used in the actual test, plus or minus 3°F (1.7°C). This may be done either before or after the actual test.
 - 2. Screw the pycnometer top down tightly on the jar and mark the position of the top on the jar by a scratch or mark on the threaded rim and a scratch in a corresponding position on the jar, which will establish a constant volume.
 - 3. Fill the pycnometer completely by pouring water into the hole of the pycnometer top until a bead forms above the opening. Immediately wipe the bead of water level with the pycnometer opening. Wipe all other excess moisture from the outside surfaces of the pycnometer. If a bead of water forms at the opening during the final wiping, it should remain for weighing. Weigh the pycnometer to the nearest 0.5-gram.

- E. Test Procedure
 - 1. Weigh the saturated-surface-dry sample to the nearest 0.5-gram. For ease in calculations, the fine aggregate sample may be brought to exactly 1000 grams weight, and the coarse aggregate sample may be brought to exactly 2000 grams weight.
 - Place the sample in the appropriate pycnometer containing approximately two inches of water.
 - Nearly fill the pycnometer jar with water at the same temperature plus or minus 3°F (1.7°C) as used in the calibration.
 - 4. Screw the cap down into the proper position by lining up the mark on the pycnometer top and the jar.
 - 5. Entirely fill the pycnometer by adding additional water through the hole in the pycnometer top.
 - 6. Hold one finger over the hole in the top and gently roll and shake the pycnometer to remove any trapped air in the sample.
 - 7. When further rolling and shaking brings no more air bubbles to the top, fill, dry and weigh as in step C3.
- F. Calculations
 - Calculate the saturated-surface-dry (SSD) specific gravity to the nearest 0.01 by the following formula:

Bulk Specific Gravity (SSD) =
$$\frac{S}{P+S-W}$$

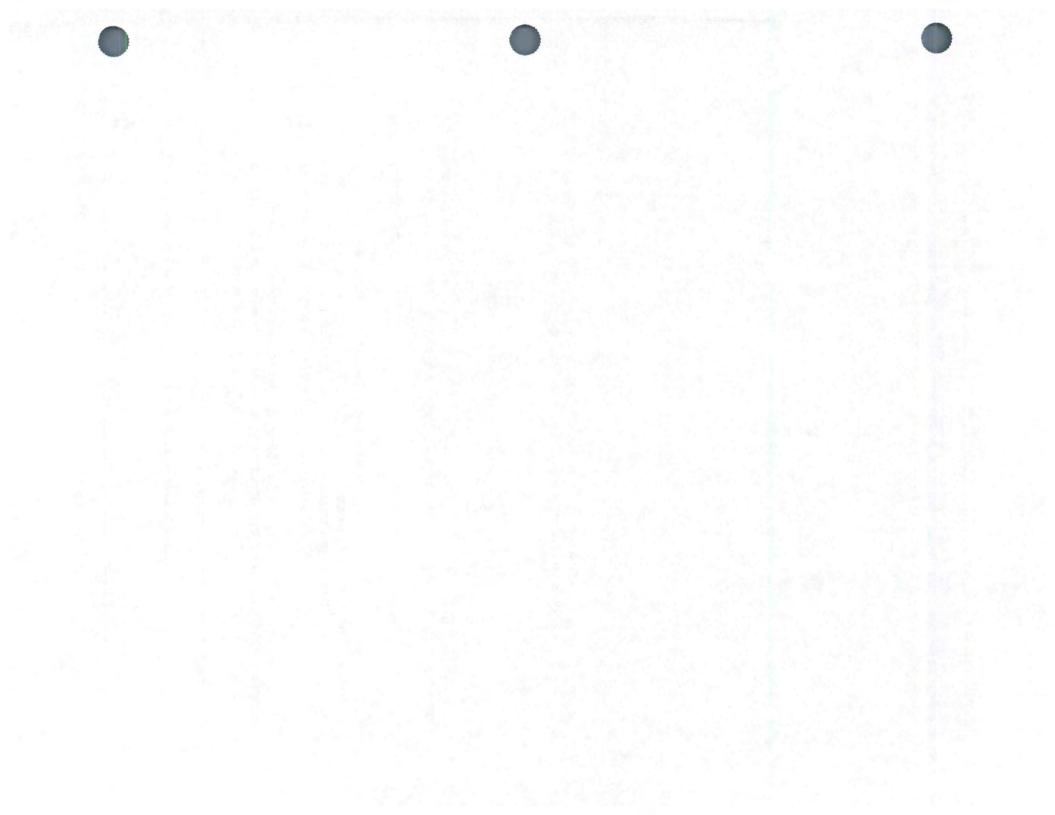
Where:

- S = Weight in grams of aggregate in a saturated-surface-dry condition.
- P = Weight in grams of the pycnometer filled with water.
- W = Weight in grams of the pycnometer containing the sample and sufficient water to fill the remaining space in the pycnometer.

3

Pycnometers for Coarse and Fine Aggregates

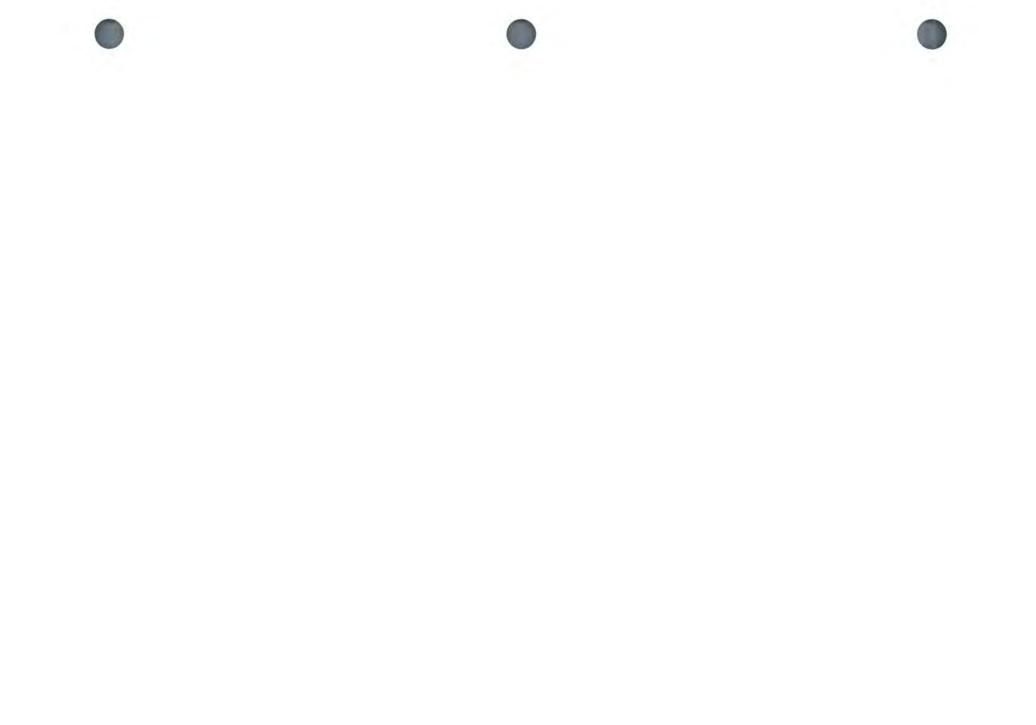
PROCEDURE B - SPECIFIC GRAVITY OF COARSE AGGREGATE (AASHTO T 85)


- A. Apparatus
 - 1. Balance having a capacity of at least 5,000 grams, accurate to 0.5 grams
 - Sample Container A wire basket of No. 6 (3.35 mm) or finer mesh, or a bucket of approximately equal breadth and height, with a capacity of 4 to 7 L. The container shall be constructed so as to prevent trapping air when the container is submerged.
 - Water Tank A watertight tank, into which the sample and container are placed for complete immersion while suspended below the balance, equipped with an overflow outlet for maintaining a constant water level.
 - 4. Suspended Apparatus Wire suspending the container shall be of the smallest practical size to minimize any possible effects of a variable immersed length.
 - 5. Sieve A No. 4 (4.75 mm) sieve
 - 6. Thermometer a thermometer with a range of 50°F (10°C) to 100°F (38°C)
- B. Field Sample
 - 1. Obtain a field sample as prescribed in IM 301.

- C. Preparation of Test Sample
 - 1. Prepare the test sample identical to that described in Procedure A.
- D. Test Procedure
 - 1. Weigh the saturated-surface-dry sample to the nearest 0.5-gram. For ease in calculations, the fine aggregate sample may be brought to exactly 1000 grams weight, and the coarse aggregate sample may be brought to exactly 2000 grams weight.
 - 2. After weighing, immediately place the saturated-surface-dry sample in the sample container, remove all entrapped air by shaking the immersed container, and determine its mass in water at 73.4°F ± 3°F (23.0°C ± 1.7°C). Make sure the water is at a depth sufficient enough to cover the container and sample.
- E. Calculations
 - 1. Calculate the saturated-surface-dry (SSD) specific gravity to the nearest 0.01 by the following formula:

Bulk Specific Gravity (SSD) =
$$\frac{S}{S - W}$$

Where:


- S = Weight in grams of aggregate in a saturated-surface-dry condition.
- W = Weight in grams of the saturated-surface-dry sample in water

Iowa Department of Transportation

Office of Materials

October 19, 2004 Supersedes October 29, 2002 Matls. IM 308

DETERMINING FREE MOISTURE & ABSORPTION OF AGGREGATES

SCOPE

This method describes several procedures for determining free moisture and absorption of aggregates.

PROCEDURE A - FREE MOISTURE IN AGGREGATES USING A PYCNOMETER

- A. Apparatus
 - 1. Balance having a capacity of at least 5,000 grams accurate to 0.5 grams
 - 2. Pycnometer A fruit jar supplied with a gasket and conical pycnometer top. A two-quart pycnometer is used for coarse aggregates. If a two-quart pycnomter cannot be obtained, a one-quart jar may be substituted (The engineer may require 2 samples be obtained and tested in separate 1-quart pycnometers for some aggregates). The quantity of aggregate would be approximately 1000 grams for the one-quart pycnomter. A one-quart pycnometer is used for fine aggregates.
 - 3. Thermometer -35°C (-30°F) to 50°C (120°F) thermometer
 - 4. Scoop
- B. Field Sample
 - 1. Obtain a field sample as prescribed in IM 301.
- C. Preparation of Test Sample
 - 1. Obtain a test sample of about 1000 grams of fine aggregate or about 2000 grams of coarse aggregate by the following method:

Place the field sample on a clean, hard non-absorbent surface. Mix the sample thoroughly, form a miniature stockpile and obtain small increments of materials from random locations from the stockpile until the desired sample size is obtained. <u>NOTE:</u> The moisture test should be completed as soon as possible after obtaining the field sample to avoid moisture loss due to evaporation.

2. Weigh to the nearest 0.5-gram, a 1000-gram sample of fine aggregate, or 2000-gram sample of coarse aggregate. To avoid moisture loss due to evaporation the weighing should be done immediately after obtaining the test sample. Also avoid any excessive manipulation of the aggregate, prior to weighing, which could cause a loss of moisture.

- D. Calibration of Pycnometer
 - 1. Calibrate the pycnometer by the procedure in IM 307.
- E. Test Procedure
 - 1. The test procedure is identical to IM 307 with the exception that the test sample is wet, as received, and not in a saturated surface dry condition. This procedure is intended for determining the moisture content of aggregates for Portland Cement Concrete.
- F. Calculation
 - Calculate the moisture content, based on wet sample mass (weight), to the nearest 0.1 percent as follows:

Percent Moisture as received =
$$\frac{(W - W_1)Gs \times 100}{(Gs - 1)s}$$

Where:

- W = Mass (Weight) in grams of the pycnometer containing a saturated-surface-dry sample of the same mass (weight) as "s" and sufficient water to fill the remaining volume of the pycnometer as determined in IM 307.
- W₁ = Mass (Weight) in grams of the pycnometer containing the wet sample and sufficient amount of water to fill the remaining volume of the pycnometer.
- Gs = Specific gravity of material in a saturated-surface-dry condition. (This is obtained from Method IM 307.
- s = Mass (Weight) in grams of wet sample
- The percent of moisture, based on the saturated-surface-dry mass (weight), is calculated as follows:

Percent Moisture (SSD) = $\frac{\%$ Moisture as received}{100 - \%Moisture as received x 100

PROCEDURE B - FREE MOISTURE IN AGGREGATE BY MASS (WEIGHT) DIFFERENCE

This procedure is an alternate to using a pycnometer and is also intended for determining the moisture content of aggregates for Portland Cement Concrete.

- A. Apparatus
 - 1. Balance having a capacity of at least 5,000 grams and accurate to 0.5 gram
- B. Preparation of Sample
 - 1. Prepare the test sample identical to that described in Procedure A.
- C. Test Procedure
 - 1. Bring the weighed wet sample to a saturated-surface-dry condition in the manner described in Materials IM 307 and weigh to the nearest 0.5 gram.
- D. Calculation
 - 1. Calculate the moisture content, based on wet mass (weight), to the nearest 0.1 percent as follows:

Percent Moisture = $\frac{Wt. as received - Wt. SSD}{Wt. as received} \times 100$

A negative result is due to absorption of the aggregate rather than free moisture.

2. The percent of moisture, based on saturated-surface-dry mass (weight), is calculated to the nearest 0.1 percent as follows:

Percent Moisture SSD = $\frac{\% \text{ Moisture as received}}{100 - \% \text{ Moisture by wet mass (weight) as received}} \times 100$

or

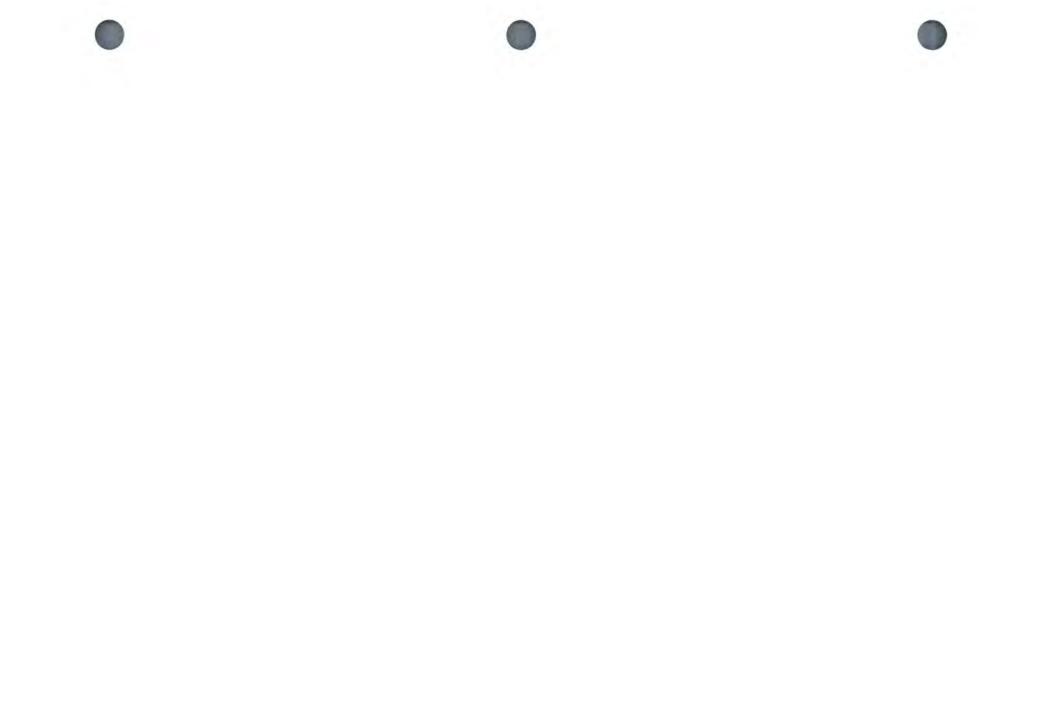
Percent Moisture (SSD) = wet mass (weight) - saturated - surface - dry mass (weight) saturated - surface - dry mass (weight) x 100

PROCEDURE C - WATER ABSORPTION IN AGGREGATE

This procedure is used for determining absorption of aggregates for use in asphaltic concrete as well as determining specification compliance for absorption.

- A. Apparatus
 - 1. Balance having the capacity of at least 5000 grams and accurate to 0.5 gram
 - 2. Oven or hot plate

- B. Preparation of Sample
 - 1. Obtain a test sample of at least 1000 grams of fine aggregate and 2000 grams of coarse aggregate by following the appropriate procedure outlined in IM 307.
 - 2. When the sample is not in a saturated condition it must be immersed in water at room temperature for a minimum of 15 hours before continuing with the test.
 - Allow the saturated sample to attain a surface-dry condition by following the procedure in IM 307.
- C. Test Procedure
 - 1. Weigh the saturated, surface-dry sample to the nearest 0.5 gram.
 - 2. Dry the sample in the oven or on the hot plate or stove to a constant weight (mass).
 - 3. Allow the sample to cool and weigh to the nearest 0.5 gram.
- D. Calculation
 - 1. The percent absorption, based on the oven dry mass (weight) is calculated to the nearest 0.01 percent as follows:


Percent Absorption =

Saturated - surface - dry mass (weight) - oven dry mass (weight) oven dry mass (weight) x 100

Office of Materials

Iowa Department of Transportation

April 20, 2004 Supersedes April 27, 1999 Matls. IM 315

METHOD OF MAKING, PROTECTING, CURING & TESTING CONCRETE CYLINDERS

SCOPE

This method covers procedures for making, protecting, and curing, according to AASHTO) T23. This method also covers testing concrete cylinder specimens for compressive strength. This test procedure is a supplement and not a replacement for the beam test to determine when a structure may be put in service.

HEADER

- I. MAKING, PROTECTING & CURING SPECIMENS
 - A. Apparatus for Making Specimens
 - 6 in. x 12 in. (152.4 mm x 304.8 mm) or 4 in. x 8 in. (101.6 mm x 203.2 mm) steel, brass, or single-use plastic vertical molds meeting the requirements of AASHTO M205.
 - 2. Molds shall be either of the vertical or horizontal type.
 - 3. Tamping rods shall comply with AASHTO T23.
 - 4. Internal or external vibrators may be used. They shall comply with AASHTO T23 with the exception that the diameter of the vibrating element of the internal vibrator shall vary for each specimen size, as stated below. External vibrators shall be either a table type or a plank type.
 - 5. Rubber hammer or equivalent
 - 6. Wood float or equivalent
 - B. Making Test Specimens
 - 1. The concrete shall be sampled in accordance with IM 327, Sampling Freshly Mixed Concrete.
 - 2. Before casting specimens, the inside surfaces of the steel or brass molds should be clean and treated with a thin coating of light grease or form oil.
 - 3. Consolidation may be rodding with a tamping rod, or by vibration, either internal or external. Concrete with slump greater than 3 inches (75 mm) shall be consolidated by rodding. Concrete with slump of 1 inch to 3 inches (25 mm to 75 mm) shall be consolidated by rodding or vibration. Concrete with slump of less than1 inch (25 mm) shall be consolidated by vibration.

- a. <u>Rodding</u>. 4 in. x 8 in. (101.6 mm x 203.2 mm) vertical specimens shall receive 25 roddings evenly distributed over two equal layers and 6 in x 12 in. (152.4 mm x 304.8 mm) vertical specimens shall receive 25 roddings evenly distributed over three equal layers. The bottom layer shall be rodded throughout its depth. For each upper layer, the rod shall penetrate 1/2 inch (13 mm) into the underlying layer. After rodding each layer, the sides and ends of the mold shall be tapped with a rubber hammer until the surface of the concrete is relatively smooth. Use an open hand to tap the single-use molds. After consolidation, strike off the horizontal surface and finish with a float or trowel.
- b. Internal Vibration. The diameter of the vibrating element shall be 3/4 inch to 1 inch (19 mm to 25 mm) for the 4 in. x 8 in. (101.6 mm x 203.2 mm) specimens. The diameter of the vibrating element shall be 3/4 inch to 1 1/2 inch (19 mm to 38 mm) for 6 in. x 12 in. (152.4 mm x 304.8 mm) specimens. The molds shall be filled in two equal layers. Each layer shall be vibrated only long enough to make the surface relatively smooth. The time required will vary with the consistency of the concrete. Over vibration may cause segregation. In compacting the concrete, the vibrator shall not rest on or touch the sides of the mold. When vibrating the top layer, the element shall penetrate about 1/2 inch (13 mm) into the bottom layer. After vibrating, tap the sides of the mold with a rubber hammer to ensure removal of entrapped air bubbles at the surface of the mold. Use an open hand to tap the single-use molds. When consolidation is complete, strike off and finish with a wood float or trowel.
- c. <u>External Vibration</u>. Each layer shall be vibrated only until the surface is relatively smooth. Take care to ensure that the mold is rigidly attached or securely held against the vibrating table or vibrating surface. After consolidation, strike off and finish with a trowel or float.
- C. Protecting & Curing
 - Initial Curing. During the first 24 hours after molding, specimens shall be stored under conditions that maintain the temperature immediately adjacent to the specimens in the range of 50°F to 80°F (10°C to 27°C) and prevent loss of moisture from the specimens. This may be done by covering specimens with wet burlap and placing a plastic sheet over the burlap, or use other suitable methods to ensure that the foregoing requirements are met.
 - 2. <u>Curing to Determine Form Removal Time or When a Structure May be Put in Service</u>. Cure test specimens as nearly as practicable in the same manner as the concrete in the structure. After 48 ± 4 hours, remove specimens from the molds. They shall be stored as near as possible to the point in the structure they represent and shall be afforded the same temperature protection and moisture environment as the structure until the time of testing. Specimens shall be tested while in the moisture condition resulting from the curing they receive.

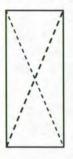
- 3. Curing To Check the Adequacy of Laboratory Mix Proportions for Strength or As a Basis For Acceptance or For Quality Control. For this purpose, specimens are to be removed from the molds at the end of 16 to 24 hours and stored in a moist condition at 68°F to 81.5°F (20°C to 27.5°C) until the time of test. This condition can be met by immersion in saturated limewater. <u>NOTE</u>: Lime-saturated water is prepared by mixing 1 oz. (28 g) of hydrated lime, meeting the requirements of ASTM C977, with 1 gallon (3.8 liters) of water.
- 4. <u>Steam Curing</u>. When artificial heat is used to accelerate curing, concrete specimens shall be placed with the unit being cured and shall receive the same curing as the concrete they represent. Prior to testing the specimens, the temperature of the concrete shall be lowered to the temperature of the surrounding air at a rate not to exceed 40°F (22°C).
- 5. Special care must be given to ensure that specimens are not damaged during handling. For 16 to 24 hours after molding, specimens shall not be moved.

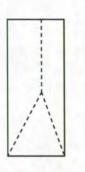
II. TESTING CONCRETE SPECIMENS FOR COMPRESSION

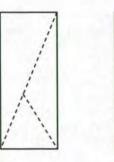
A. Apparatus

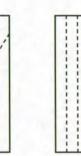
- 1. The testing machine shall conform to AASHTO T22. Manually operated testing machines will be accepted.
- B. Time of Testing
 - 1. Make compression tests of moist cured specimens as soon as practicable after removal from curing. Keep specimens moist by use of wet burlap or other suitable covering, which will ensure similar protection until actual time of testing.
 - 2. The time to test specimens otherwise cured will be as directed by the engineer.

C. Test Specimens

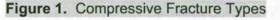

- Neither end of compressive test specimens when tested shall depart from the perpendicularity to the axis by more than 0.5 degrees [approximately 1/8 in. in 12 in. (3 mm in 300 mm)]
- 2. The ends of the specimens that are not plane within 0.002 in. (0.05 mm) shall be capped. The planeness of the ends of every tenth specimen should be checked by means of a straightedge and feeler gauge, making a minimum of three measurements on different diameters, to insure that the end surfaces do not depart from a plane by more than 0.002 in. (0.05 mm).
- 3. The top surface of vertically cast specimens shall be capped.




- D. Capping
 - 1. Capping equipment and procedures shall comply with that described in AASHTO T231.
 - 2. Hardened specimens, which have been moist-cured, may be capped with a neat Portland Cement paste or sulfur mortar meeting the requirements set forth below:
 - The Portland Cement in neat Portland Cement caps shall conform to AASHTO M85, Type I or Type III.
 - b. Sulfur mortar shall conform to the compositional and compressive strength requirements of ASTM C287 for sulfur mortar, and shall be capable of developing a strength of at least 4000 psi (27.6 MPa) in two hours when tested as 2-inch (50-mm) cubes.
 - Specimens, which are to be tested in an air-dry condition, should, be capped with sulfur mortar.
 - If it is found necessary to cap specimens, and equipment and facilities for capping are not available, arrangements should be made to test such specimens at the Central Laboratory or other qualified laboratory.
- E. Test Procedure
 - 1. Placing Specimen
 - a. Place the plain (lower) bearing block with its hardened face up, on the table or platen of the testing machine directly under the spherically seated (upper) bearing block.
 - b. Wipe clean the bearing faces of the upper and lower bearing blocks and of the test specimen.
 - c. Carefully align the axis of the specimen with the center thrust of the spherically seated block.
 - d. As the spherically seated block is brought to bear on the specimen, rotate its moveable portion gently by hand so that uniform seating is obtained.
 - 2. Rate of Loading
 - a. Apply the load continuously and without shock. Apply the load at a constant rate within the range of 20 to 50 psi (138 kPa to 345 kPa) per second. During the application of the first half of the estimated maximum load, a higher rate of loading may be permitted.
 - b. Do not make any adjustment in the controls of the testing machine while the specimen is yielding, especially in the period just before failure.


April 20, 2004 Supersedes April 27, 1999

- c. Increase the load until the specimen yields or fails, and record the maximum load carried by the specimen during test.
- d. Note the type of failure (Figure 1) and the appearance of the concrete if the break appears to be abnormal.
- F. Calculations
 - 1. Calculate the compressive strength of the specimen by dividing the maximum load carried by the specimen during the test by the cross sectional area, and express the result to the nearest 10 psi (0.1 MPa). The attached tables may be used to facilitate these computations.


Shear

Cone

Cone & Split

Cone and Shear

Columnar

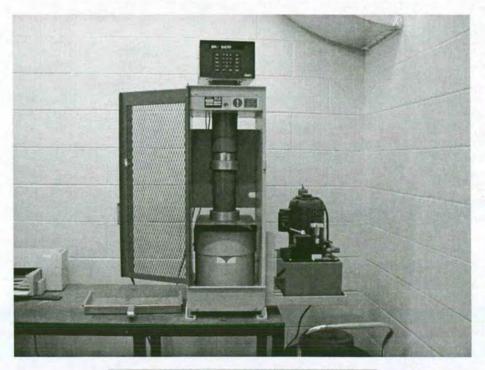


Figure 2. Compression Testing Machine

Table for Computing MPa/1000 kPa on 6 in. to 12 in. (154.mm x 304.8 mm) Cylinders
Area = 0.01824m ²	

oad (kN)	MPa	Load (kN)	MPa						
75	9.59	425	23.30	675	37.01	925	50.71	1175	64.42
80	9.87	430	23.57	680	37.28	930	50.99	1180	64.69
85	10.14	435	23.85	685	37.55	935	51.26	1185	64.97
90	10.42	440	24.12	690	37.83	940	51.54	1190	65.24
			24.40	695	38.10	945	51.81	1195	65.52
95	10.69	445		700	38.38	950	52.08	1200	65.79
00	10.96	450	24.67					1200	05.73
05	11.24	455	24.95	705	38.65	955	52.36		
10	11.51	460	25.22	710	38.93	960	52.63		
15	11.79	465	25.49	715	39.20	965	52.91		
20	12.06	470	25.77	720	39.47	970	53.18		
225	12.34	475	26.04	725	39.75	975	53.45		
30	12.61	480	26.32	730	40.02	980	53.73		
35	12.88	485	26.59	735	40.30	985	54.00		
40	13.16	490	26.86	740	40.57	990	54.28		
45	13.43	495	27.14	745	40.84	995	54.55		
	13.71	500	27.41	750	41.12	1000	54.82		
50				755	41.39	1005	55.10		
55	13.98	505	27.69						
60	14.25	510	27.96	760	41.67	1010	55.37		
65	14.53	515	28.23	765	41.94	1015	55.65		
70	14.80	520	28.51	770	42.21	1020	55.92		
75	15.06	525	28.78	775	42.49	1025	56.20		
280	15.35	530	29.06	780	42.76	1030	56.47		
85	15.63	535	29.33	785	43.04	1035	56.74		
90	15.90	540	29.61	790	43.31	1040	57.02		
95	16.17	545	29.88	795	43.59	1045	57.29		
			30.15	800	43.86	1050	57.57		
00	16.45	550			43.80	1055	57.84		
05	16.72	555	30.43	805					
10	17.00	560	30.70	810	44.41	1060	58.11		
15	17.27	565	30.98	815	44.68	1065	58.39		
320	17.54	570	31.25	820	44.96	1070	58.66		
325	17.82	575	31.52	825	45.23	1075	58.94		
330	18.09	580	31.80	830	45.50	1080	59.21		
35	18.37	585	32.07	835	45.78	1085	59.48		
40	18.64	590	32.35	840	46.05	1090	59.76		
		595	32.62	845	46.33	1095	60.03		
45	18.91			850	46.60	1100	60.31		
50	19.19	600	32.89						
55	19.46	605	33.17	855	46.88	1105	60.58		
60	19.74	610	33.44	860	47.15	1110	60.86		
65	20.01	615	33.72	865	47.42	1115	61.13		
370	20.29	620	33.99	870	47.70	1120	61.40		
375	20.56	625	34.27	875	47.97	1125	61.68		
80	20.83	630	34.54	880	48.25	1130	61.95		
85	21.11	635	34.81	885	48.52	1135	62.23		
90	21.38	640	35.09	890	48.79	1140	62.50		
			35.36	895	49.07	1145	62.77		
95	21.66	645							
00	21.93	650	35.64	900	49.34	1150	63.05		
05	22.20	655	35.91	905	49.62	1155	63.32		
10	22.48	660	36.18	910	49.89	1160	63.60		
15	22.75	665	36.46	915	50.16	1165	63.87		
120	23.03	670	36.73	920	50.44	1170	64.14		

April 20, 2004 Supersedes April 27, 1999

(Load in Thousands)

	-
1	

Table for Computing Ib./in.² on 6 in. x 12 in. Cylinders Area = 28.2744 in.²

Load	Psi	Load	Psi	Load	Psi	Load	Psi	Load	Ps
10	1410	90	3180	140	4950	190	6720	240	849
11	1450	91	3220	141	4990	191	6760	241	852
12	1490	92	3250	142	5020	192	6790	242	856
43	1520	93	3290	143	5060	193	6830	243	859
44	1560	94	3320	143	5090	193	6860		
45	1590	95	3360					244	8630
				145	5130	195	6900	245	8670
46	1630	96	3400	146	5160	196	6930	246	8700
47	1660	97	3430	147	5200	197	6970	247	8740
48	1700	98	3470	148	5230	198	7000	248	8770
49	1730	99	3500	149	5270	199	7040	249	8810
50	1770	100	3540	150	5310	200	7070	250	8840
51	1800	101	3570	151	5340	201	7110	251	8880
52	1840	102	3610	152	5380	202	7140	252	8910
53	1870	103	3640	153	5410	203	7180	253	8950
54	1910	104	3680	154	5450	204	7220	254	8980
55	1950	105	3710	155	5480				
56	1980	105	3750			205	7250	255	9020
				156	5520	206	7290	256	9050
57	2020	107	3780	157	5550	207	7320	257	9090
58	2050	108	3820	158	5590	208	7360	258	9120
59	2090	109	3860	159	5620	209	7390	259	9160
60	2120	110	3890	160	5660	210	7430	260	9200
61	2160	111	3930	161	5690	211	7460	261	9230
62	2190	112	3960	162	5730	212	7500	262	9270
63	2230	113	4000	163	5760	213	7530	263	9300
64	2260	114	4030	164	5800	214	7570	264	9340
65	2300	115	4070	165	5840	215			
66	2330	116	4070				7600	265	9370
				166	5870	216	7640	266	9410
67	2370	117	4140	167	5910	217	7670	267	9440
58	2410	118	4170	168	5940	218	7710	268	9480
69	2440	119	4210	169	5980	219	7750	269	9510
70	2480	120	4240	170	6010	220	7780		
71	2510	121	4280	171	6050	221	7820		
72	2550	122	4310	172	6080	222	7850		
73	2580	123	4350	173	6120	223	7890		
74	2620	124	4390	174	6150	224	7920		
75	2650	125	4420	175	6190	225			
76	2690	125	4420				7960		
				176	6220	226	7990		
77	2720	127	4490	177	6260	227	8030		
78	2760	128	4530	178	6300	228	8060		
79	2790	129	4560	179	6330	229	8100		
80	2830	130	4600	180	6370	230	8130		
81	2860	131	4630	181	6400	231	8170		
82	2900	132	4670	182	6440	232	8210		
83	2940	133	4700	183	6470	233	8240		
84	2970	134	4740	184	6510	233	8280		
85	3010	135	4740						
				185	6540	235	8310		
86	3040	136	4810	186	6580	236	8350		
37	3080	137	4850	187	6610	237	8380		
88	3110	138	4880	188	6650	238	8420		
89	3150	139	4920	189	6680	239	8450		

Matls. IM 315

April 20, 2004 Supersedes April 27, 1999

(Load in Tho	ousands)	Table for Com	Area = 12.5		cynnuers		
Load	Psi	Load	Psi	Load	Psi	Load	Ps
10	800	50	3980	90	7160	130	10350
11	880	51	4060	91	7240	131	10420
12	950	52	4140	92	7320	132	10500
13	1030	53	4220	93	7400	133	10580
14	1110	54	4300	94	7480	134	10660
15	1190	55	4380	95	7560	135	10740
16	1270	56	4460	96	7640	136	10820
17	1350	57	4540	97	7720	137	10900
18	1430	58	4620	98	7800	138	10980
19	1510	59	4700	99	7880	139	11060
20	1590	60	4770	100	7960	140	11140
21	1670	61	4850	101	8040	141	11220
22	1750	62	4930	102	8120	142	11300
23	1830	63	5010	103	8200	143	11380
24	1910	64	5090	104	8280	144	11460
25	1990	65	5170	105	8360	145	11540
26	2070	66	5250	106	8440	146	11620
27	2150	67	5330	107	8520	147	11700
28	2230	68	5410	108	8590	148	11780
29	2310	69	5490	109	8670	149	11860
30	2390	70	5570	110	8750	150	11940
31	2470	71	5650	111	8830	151	12020
32	2550	72	5730	112	8910	152	12100
33	2630	73	5810	113	8990	153	12180
34	2710	74	5890	114	9070	154	12260
35	2790	75	5970	115	9150	155	12330
36	2860	76	6050	116	9230	156	12410
37	2940	77	6130	117	9310	157	12490
38	3020	78	6210	118	9390	158	12570
39	3100	79	6290	119	9470	159	12650
40	3180	80	6370	120	9550	160	12730
41	3260	81	6450	121	9630	161	12810
42	3340	82	6530	122	9710	162	12890
43	3420	83	6610	123	9790	163	12970
44	3500	84	6680	124	9870	164	13050
45	3580	85	6760	125	9950	165	13130
46	3660	86	6840	126	10030	166	13210
47	3740	87	6920	127	10110	167	13290
48	3820	88	7000	128	10190	168	13370
49	3900	89	7080	129	10270	169	13450

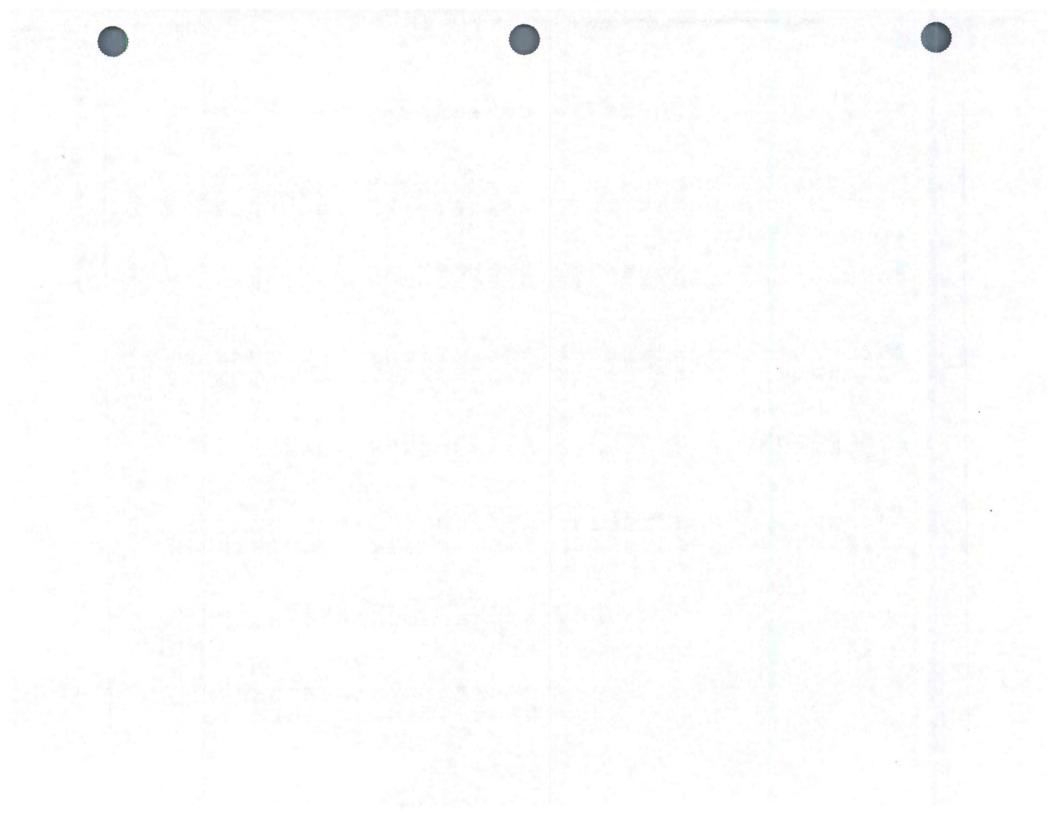
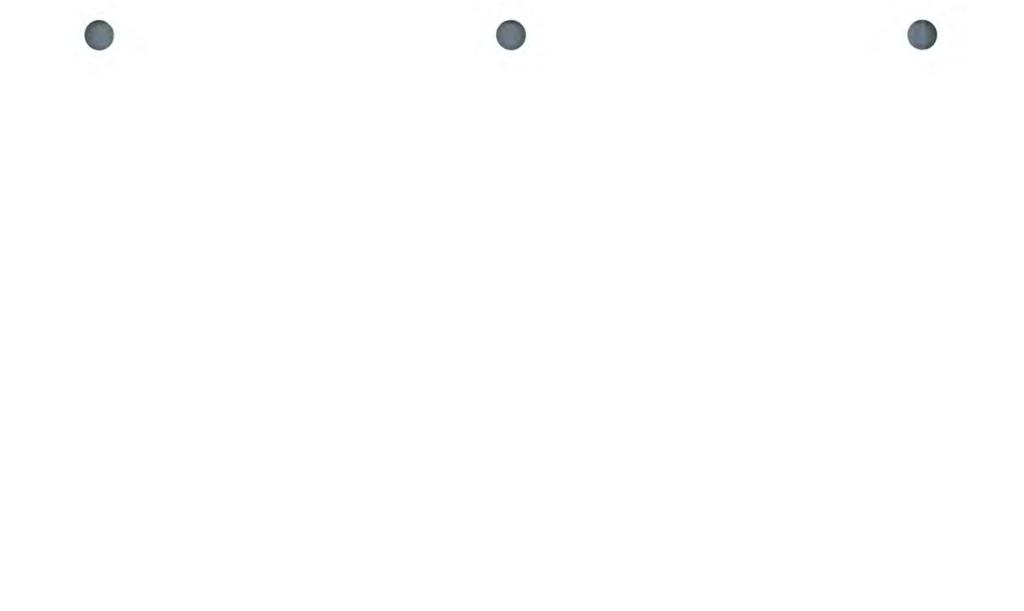

April 20, 2004 Supersedes April 27, 1999

Table for Computing M	Pa on 4 in. x 8 in.	. (101.6 mm x 203.3 mm) Cy	linders
	Area = 0.0081	107 m ²	

Load (kN)	MPa						
45	5.55	245	30.22	445	54.89	645	79.56
50	6.17	250	30.84	450	55.51	650	80.18
55	6.78	255	31.45	455	56.12	655	80.79
60	7.40	260	32.07	460	56.74	660	81.41
65	8.02	265	32.69	465	57.36	665	82.03
70	8.63	270	33.30	470	57.97	670	82.64
75	9.25	275	33.92	475	58.59	675	83.26
80	9.87	280	34.54	480	59.21	680	83.88
85	10.48	285	35.15	485	59.82	685	84.49
90	11.10	290	35.77	490	60.44	690	85.11
95	11.72	295	36.39	495	61.06	695	85.73
100	12.34	300	37.01	500	61.68	700	86.35
105	12.95	305	37.62	505	62.29	705	86.96
110	13.57	310	38.24	510	62.91	710	87.58
115	14.19	315	38.86	515	63.53	715	88.20
120	14.80	320	39.47	520	64.14	720	88.81
125	15.42	325	40.09	525	64.76	725	89.43
130	16.04	330	40.71	530	65.38	730	90.05
135	16.65	335	41.32	535	65.99	735	90.66
140	17.27	340	41.94	540	66.61	740	91.28
145	17.89	345	42.56	545	67.23	745	91.90
150	18.50	350	43.17	550	67.84	750	92.51
155	19.12	355	43.79	555	68.46	755	93.13
160	19.74	360	44.41	560	69.08	760	93.75
165	20.35	365	45.02	565	69.69		
170	20.97	370	45.64	570	70.31		
175	21.59	375	46.26	575	70.93		
180	22.20	380	46.87	580	71.54		
185	22.82	385	47.49	585	72.16		
190	23.44	390	48.11	590	72.78		
195	24.05	395	48.72	595	73.39		
200	24.67	400	49.34	600	74.01		
205	25.29	405	49.96	605	74.63		
210	25.90	410	50.57	610	75.24		
215	26.52	415	51.19	615	75.86		
220	27.14	420	51.81	620	76.48		
225	27.75	425	52.42	625	77.09		
230	28.37	430	53.04	630	77.71		
235	28.99	435	53.66	635	78.33		
240	29.60	440	54.27	640	78.94		

9



t

Iowa Department of Transportation

Office of Materials

October 17, 2006 Supersedes October 19, 2004 Matls. IM 316

FLEXURAL STRENGTH OF CONCRETE

SCOPE

This test method is used for determining the flexural strength of concrete by the use of a simple beam with center-point loading.

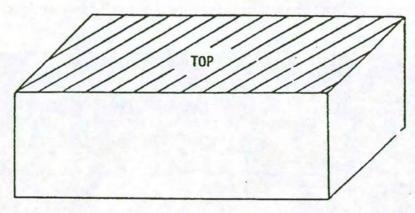
PROCEDURE

A. Apparatus

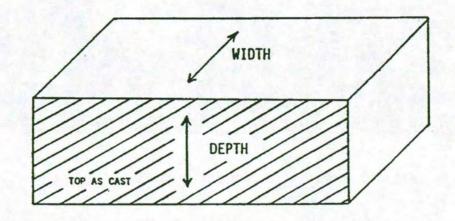
1. Hydraulic testing machines provided on Portland Cement Concrete paving projects shall conform to AASHTO T-177. The hydraulic machine consists of a frame to hold the specimen, a hand-operated hydraulic jack, and a pressure gauge to read the load. Practically all of the hydraulic machines have a micro pump in the loading line to facilitate control of the last half of the load within specifications, and without pause in loading. A calibration sheet is included with each machine of this type. Additional equipment needed includes a caliper, plastic ruler and a tri-square. The hydraulic test machine needs to be calibrated annually by the DOT Central Laboratory. Calibration sheets with each machine will indicate the date last calibrated.

B. Test Specimen

- 1. The test specimen shall have approximate dimensions of 6 in. x 6 in. x 20 in. (152 mm x 152 mm x 508 mm). The test specimen shall be kept wet until the time of the test.
- C. Test Procedure
 - 1. Either before or after the beam is placed in the testing machine, draw a reference line on the top and bottom of the beam, as cast, about 10 in. (250 mm) from the end of the specimen. The two reference lines should be exactly opposite each other. A line drawn across the bottom of the beam, as placed in the machine, will meet these two lines, and will be perpendicular to them. The bottom of the beam as placed in the machine will be the side of the beam as cast.
 - 2. Insert the stirrup pins in the slots at the bottom of the stirrups to prevent the stirrups from swinging while the beam is being placed in the machine. This also assures that the support bearings are in the correct position.
 - 3. Place the beam in the testing machine so that the two reference lines on the side of the beam are directly under the centerline of the center bearing. The maximum fiber stress during application of the load will occur in the outer fiber in the line drawn across the bottom of the beam, this line being directly under the load.
 - 4. Rotate the micro pump handle counter-clockwise to expose the maximum number of threads, and close the loading valve on the pump.


- 5. Apply a small initial load, and remove the stirrup pins.
- 6. The load may be applied rapidly up to approximately 50 percent of the estimated breaking load with the pump handle. The final half of the loading is accomplished by turning the crank of the micro pump, at a rate that the extreme fiber stress does not exceed 150 psi (1.0 MPa) per minute. This is approximately 1200 pounds (500 kg) per minute on the test gauge.
- 7. Make measurements to the nearest 0.02 in. (0.5 mm) to determine the average width and average depth of the specimen at the section of failure.
- 8. Measure the distance from the line drawn at the center of the span to the location of the break on the bottom side of the beam as tested. If this distance exceeds 1 1/2 in. (40 mm), the test results will not be used in determining when a pavement can be opened to traffic, when forms may be removed from a structure, or when a concrete structure can be subjected to exterior loads, which produce flexure.
- D. Calculations
 - 1. From the calibration sheet furnished with each machine, determine the corrected load placed upon the beam. The machine should be calibrated annually.
 - 2. Calculate the modulus of rupture as follows:

$$R = \frac{3PI}{2bd^2}$$


Where:

- R = Modulus of rupture, MPa or psi.
- P = Corrected load indicated, N or Ib.
- I = Span length, mm or in., between supports (or 18 in. or 457 mm)
- b = Width of beam at point of fracture, mm or in.
- d = Depth of beam at point of fracture, mm or in.
- 3. The typical range of modulus of rupture should be from 300 psi to 700 psi (2 MPa to 5 MPa). Report the modulus of rupture to the nearest 5 psi (0.05 MPa).

E. The following figure shows the beam as cast, and the beam as placed in the flexural testing machine.

As Cast

As Placed in the Machine

Figure 1


Matls. IM 316

F. Precautions

Always make sure the pointers on the gauge are set at zero before any loading begins.

Figure 2. Concrete Specimen in Hydraulic Testing Machine

			Con	crete Beam (US Unit					
				Width (ir	n.)				
	5.82	5.84	5.86	5.88	5.9	5.92	5.94	5.96	5.98
Depth (in.)									
5.8	0.137907	0.137434	0.136965	0.136499	0.136037	0.135577	0.135121	0.134667	0.134217
5.82	0.136960	0.136491	0.136025	0.135563	0.135103	0.134647	0.134193	0.133743	0.133296
5.84	0.136024	0.135558	0.135095	0.134636	0.134179	0.133726	0.133276	0.132829	0.132384
5.86	0.135097	0.134634	0.134175	0.133718	0.133265	0.132815	0.132368	0.131924	0.131482
5.88	0.134179	0.133720	0.133264	0.132810	0.132360	0.131913	0.131469	0.131028	0.130589
5.9	0.133271	0.132815	0.132362	0.131911	0.131464	0.131020	0.130579	0.130141	0.129706
5.92	0.132372	0.131919	0.131469	0.131022	0.130577	0.130136	0.129698	0.129263	0.128831
5.94	0.131482	0.131032	0.130585	0.130141	0.129700	0.129261	0.128826	0.128394	0.127965
5.96	0.130602	0.130154	0.129710	0.129269	0.128831	0.128395	0.127963	0.127534	0.127107
5.98	0.129729	0.129285	0.128844	0.128406	0.127970	0.127538	0.127109	0.126682	0.126258
6	0.128866	0.128425	0.127986	0.127551	0.127119	0.126689	0.126263	0.125839	0.125418
6.02	0.128011	0.127573	0.127137	0.126705	0.126275	0.125849	0.125425	0.125004	0.124586
6.04	0.127165	0.126729	0.126297	0.125867	0.125441	0.125017	0.124596	0.124178	0.123762
6.06	0.126327	0.125894	0.125465	0.125038	0.124614	0.124193	0.123775	0.123359	0.122947
6.08	0.125497	0.125067	0.124640	0.124216	0.123795	0.123377	0.122962	0.122549	0.122139
6.1	0.124675	0.124249	0.123824	0.123403	0.122985	0.122569	0.122157	0.121747	0.121340
6.12	0.123862	0.123438	0.123016	0.122598	0.122182	0.121770	0.121360	0.120952	0.120548
6.14	0.123056	0.122635	0.122216	0.121801	0.121388	0.120978	0.120570	0.120166	0.119764
6.16	0.122259	0.121840	0.121424	0.121011	0.120601	0.120193	0.119789	0.119387	0.118987
6.18	0.121469	0.121053	0.120639	0.120229	0.199822	0.119417	0.119015	0.118615	0.118219

Modulus of Rupture = Total Load X Coefficient R (in psi) = P (in lbs.) X Coefficient (in in-2)

Re-issued April 15, 2003 Supersedes April 28, 1998

			Cond	crete Beam C US Unit					
				Width (in	i.)				
	6	6.02	6.04	6.06	6.08	6.1	6.12	6.14	6.16
Depth (in.)		100.00							
5.8	0.133769	0.133325	0.132883	0.132445	0.132009	0.131576	0.131146	0.130719	0.130295
5.82	0.132852	0.132410	0.131972	0.131536	0.131103	0.130674	0.130247	0.129822	0.129401
5.84	0.131943	0.131505	0.131069	0.130637	0.130207	0.129780	0.129356	0.128935	0.128516
5.86	0.131044	0.130609	0.130176	0.129747	0.129320	0.128896	0.128475	0.128056	0.127640
5.88	0.130154	0.129722	0.129292	0.128865	0.128442	0.128020	0.127602	0.127186	0.126773
5.9	0.129273	0.128844	0.128417	0.127993	0.127572	0.127154	0.126738	0.126326	0.125915
5.92	0.128401	0.127975	0.127551	0.127130	0.126712	0.126296	0.125884	0.125473	0.125066
5.94	0.127538	0.127114	0.126693	0.126275	0.125860	0.125447	0.125037	0.124630	0.124225
5.96	0.126683	0.126263	0.125845	0.125429	0.125017	0.124607	0.124199	0.123795	0.123393
5.98	0.125838	0.125419	0.125004	0.124592	0.124182	0.123775	0.123370	0.122968	0.122569
6	0.125000	0.124585	0.124172	0.123762	0.123355	0.122951	0.122549	0.122150	0.121753
6.02	0.124171	0.123758	0.123348	0.122941	0.122537	0.122135	0.121736	0.121340	0.120946
6.04	0.123350	0.122940	0.122533	0.122129	0.121727	0.121328	0.120931	0.120537	0.120146
6.06	0.122537	0.122130	0.121726	0.121324	0.120925	0.120528	0.120134	0.119743	0.119354
6.08	0.121732	0.121328	0.120926	0.120527	0.120130	0.119737	0.119345	0.118957	0.118570
6.1	0.120935	0.120533	0.120134	0.119738	0.119344	0.118953	0.118564	0.118178	0.117794
6.12	0.120146	0.119747	0.119350	0.118957	0.118565	0.118176	0.117790	0.117407	0.117025
6.14	0.119365	0.118968	0.118574	0.118183	0.117794	0.117408	0.117024	0.116643	0.116264
6.16	0.118591	0.118197	0.117805	0.117417	0.117030	0.116647	0.116266	0.115887	0.115511
6.18	0.117824	0.117433	0.117044	0.116658	0.116274	0.115893	0.115514	0.115138	0.114764

Modulus of Rupture = Total Load X Coefficient R (in psi) = P (in lbs) X Coefficient (in in-2) October 29, 2002 Supersedes April 28, 1998

				Con	crete Beam C Metric Ur					
			-		Width (m		100			
	147.5	148	148.5	149	149.5	150	150.5	151	151.5	152
Depth (mm)										
147	0.000215	0.000214	0.000214	0.000213	0.000212	0.000211	0.000211	0.000210	0.000209	0.000209
147.5	0.000214	0.000213	0.000212	0.000211	0.000211	0.000210	0.000209	0.000209	0.000208	0.000207
148	0.000212	0.000211	0.000211	0.000210	0.000209	0.000209	0.000208	0.000207	0.000207	0.000206
148.5	0.000211	0.000210	0.000209	0.000209	0.000208	0.000207	0.000207	0.000206	0.000205	0.000205
149	0.000209	0.000209	0.000208	0.000207	0.000207	0.000206	0.000205	0.000204	0.000204	0.000203
149.5	0.000208	0.000207	0.000207	0.000206	0.000205	0.000204	0.000204	0.000203	0.000202	0.000202
150	0.000207	0.000206	0.000205	0.000204	0.000204	0.000203	0.000202	0.000202	0.000201	0.000200
150.5	0.000205	0.000204	0.000204	0.000203	0.000202	0.000202	0.000201	0.000200	0.000200	0.000199
151	0.000204	0.000203	0.000202	0.000202	0.000201	0.000200	0.000200	0.000199	0.000198	0.000198
151.5	0.000202	0.000202	0.000201	0.000200	0.000200	0.000199	0.000198	0.000198	0.000197	0.000196
152	0.000201	0.000200	0.000200	0.000199	0.000198	0.000198	0.000197	0.000196	0.000196	0.000195
152.5	0.000200	0.000199	0.000198	0.000198	0.000197	0.000197	0.000196	0.000195	0.000195	0.000194
153	0.000199	0.000198	0.000197	0.000197	0.000196	0.000195	0.000195	0.000194	0.000193	0.000193
153.5	0.000197	0.000197	0.000196	0.000195	0.000195	0.000194	0.000193	0.000193	0.000192	0.000191
154	0.000196	0.000195	0.000195	0.000194	0.000193	0.000193	0.000192	0.000191	0.000191	0.000190
154.5	0.000195	0.000194	0.000193	0.000193	0.000192	0.000191	0.000191	0.000190	0.000190	0.000189
155	0.000193	0.000193	0.000192	0.000191	0.000191	0.000190	0.000190	0.000189	0.000188	0.000188
155.5	0.000192	0.000192	0.000191	0.000190	0.000190	0.000189	0.000188	0.000188	0.000187	0.000187
156	0.000191	0.000190	0.000190	0.000189	0.000188	0.000188	0.000187	0.000187	0.000186	0.000185
156.5	0.000190	0.000189	0.000188	0.000188	0.000187	0.000187	0.000186	0.000185	0.000185	0.000184
157	0.000189	0.000188	0.000187	0.000187	0.000186	0.000185	0.000185	0.000184	0.000184	0.000183

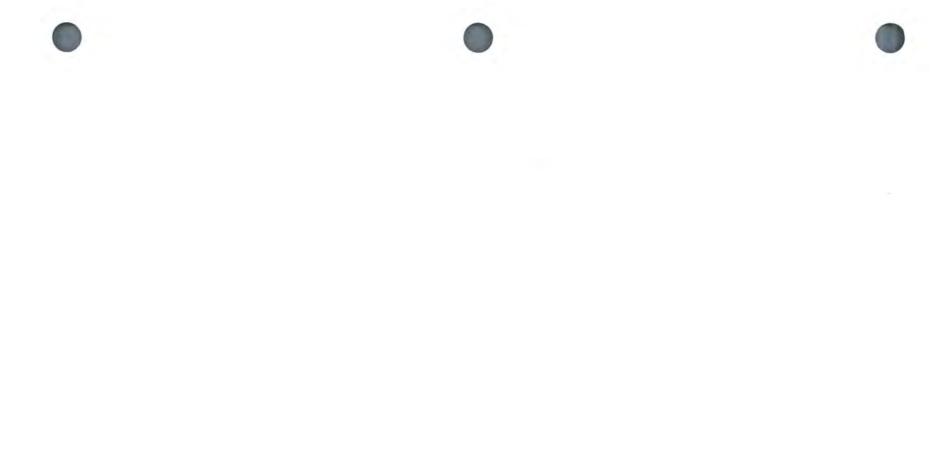
Modulus of Rupture = Total Load X Coefficient R (in MPa) = P (in N) X Coefficient (in mm-2)

1

October 29, 2002 Supersedes April 28, 1998

	Concrete Beam Coefficients Metric Units											
1	152.5	153	153.5	154	Width (mi 154.5	m) 155	155.5	156	156.5	157		
Depth (mm)	102.0	100	100.0	104	104.0	100	100.0	100	100.0	107		
Depth (mm)	1											
147	0.000208	0.000207	0.000207	0.000206	0.000205	0.000205	0.000204	0.000203	0.000203	0.000202		
147.5	0.000207	0.000206	0.000205	0.000205	0.000204	0.000203	0.000203	0.000202	0.000201	0.000201		
148	0.000205	0.000205	0.000204	0.000203	0.000203	0.000202	0.000201	0.000201	0.000200	0.000199		
148.5	0.000204	0.000203	0.000203	0.000202	0.000201	0.000201	0.000200	0.000199	0.000199	0.000198		
149	0.000202	0.000202	0.000201	0.000200	0.000200	0.000199	0.000199	0.000198	0.000197	0.000197		
149.5	0.000201	0.000200	0.000200	0.000199	0.000199	0.000198	0.000197	0.000197	0.000196	0.000195		
150	0.000200	0.000199	0.000198	0.000198	0.000197	0.000197	0.000196	0.000195	0.000195	0.000194		
150.5	0.000198	0.000198	0.000197	0.000197	0.000196	0.000195	0.000195	0.000194	0.000193	0.000193		
151	0.000197	0.000196	0.000196	0.000195	0.000195	0.000194	0.000193	0.000193	0.000192	0.000191		
151.5	0.000196	0.000195	0.000195	0.000194	0.000193	0.000193	0.000192	0.000191	0.000191	0.000190		
152	0.000195	0.000194	0.000193	0.000193	0.000192	0.000191	0.000191	0.000190	0.000190	0.000189		
152.5	0.000193	0.000193	0.000192	0.000191	0.000191	0.000190	0.000190	0.000189	0.000188	0.000188		
153	0.000192	0.000191	0.000191	0.000190	0.000190	0.000189	0.000188	0.000188	0.000187	0.000187		
153.5	0.000191	0.000190	0.000190	0.000189	0.000188	0.000188	0.000187	0.000186	0.000186	0.000185		
154	0.000190	0.000189	0.000188	0.000188	0.000187	0.000186	0.000186	0.000185	0.000185	0.000184		
154.5	0.000188	0.000188	0.000187	0.000186	0.000186	0.000185	0.000185	0.000184	0.000184	0.000183		
155	0.000187	0.000186	0.000186	0.000185	0.000185	0.000184	0.000183	0.000183	0.000182	0.000182		
155.5	0.000186	0.000185	0.000185	0.000184	0.000183	0.000183	0.000182	0.000182	0.000181	0.000181		
156	0.000185	0.000184	0.000184	0.000183	0.000182	0.000182	0.000181	0.000181	0.000180	0.000179		
156.5	0.000184	0.000183	0.000182	0.000182	0.000181	0.000181	0.000180	0.000179	0.000179	0.000178		
157	0.000182	0.000182	0.000181	0.000181	0.000180	0.000179	0.000179	0.000178	0.000178	0.000177		

Modulus of Rupture = Total Load X Coefficient R (in MPa) = P (in N) X Coefficient (in mm-2)



1.1

Iowa Department of Transportation

October 19, 2004 Supersedes April 15, 2003 Matls. IM 317

SLUMP OF HYDRAULIC CEMENT CONCRETE

SCOPE

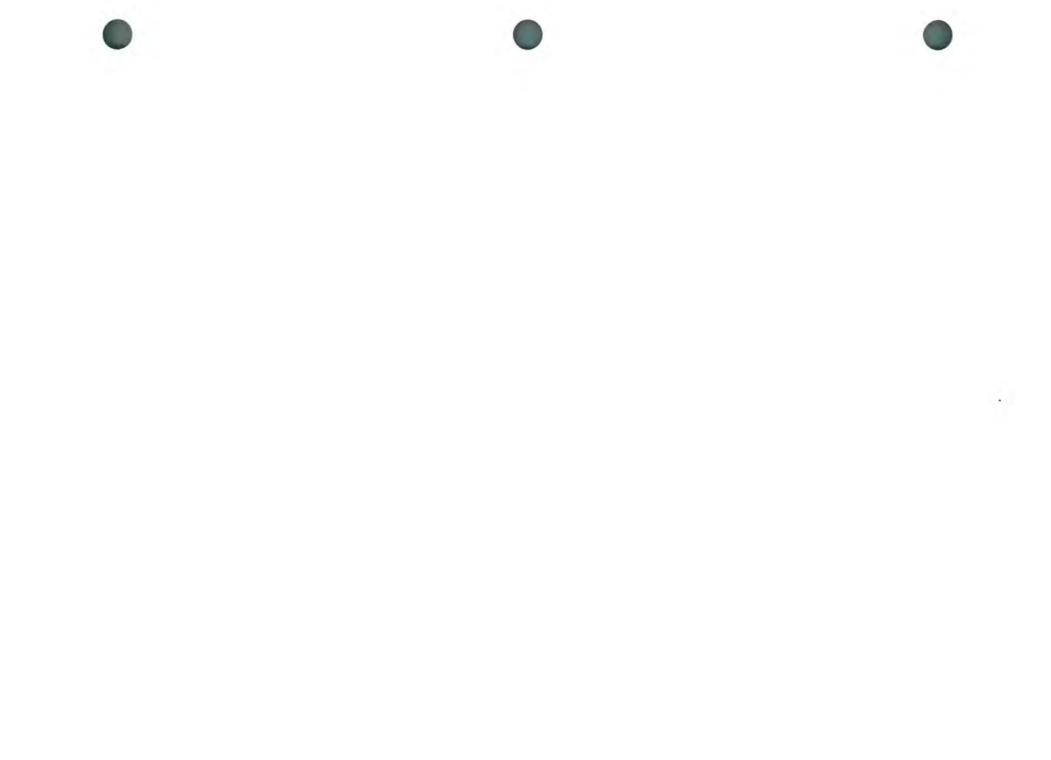
This procedure provides instructions for determining the slump of hydraulic cement concrete. It is not applicable to non-plastic or non-cohesive concrete, nor when the maximum size of the coarse aggregate is over 2 in. (50 mm).

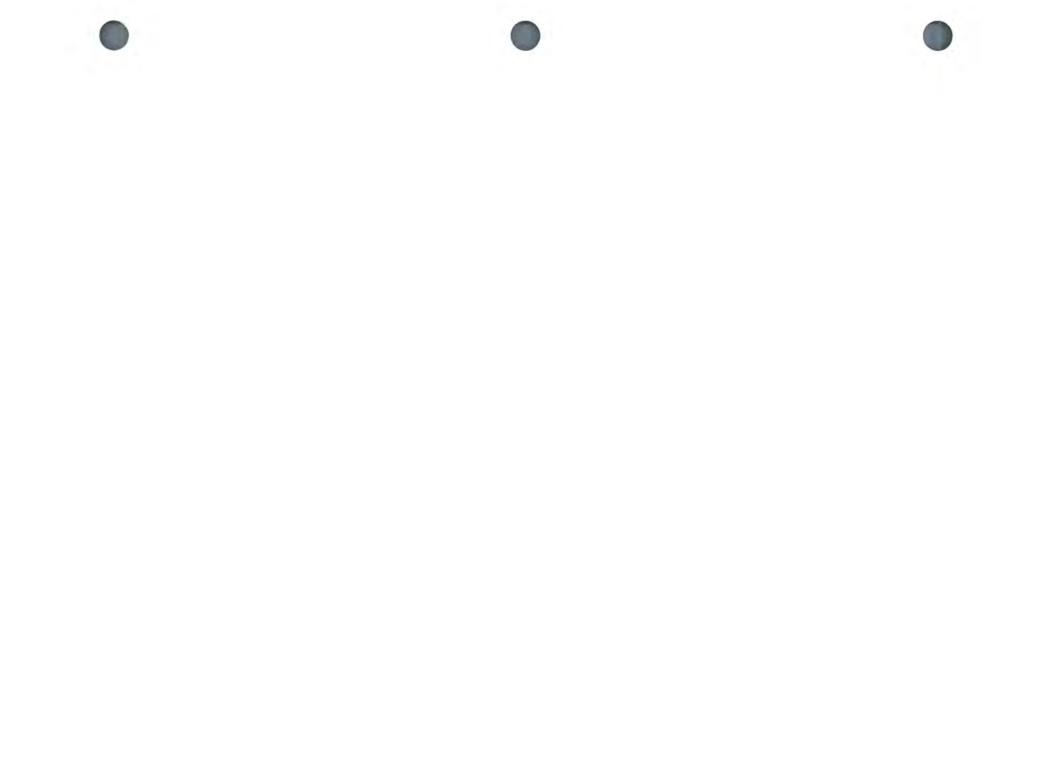
SIGNIFICANCE

The slump test is used to determine the consistency of concrete. Consistency is a measure of the relative fluidity or mobility of the mixture. Slump does not measure the water content or workability of the concrete. While it is true that an increase or decrease in the water content will cause a corresponding increase or decrease in the slump of the concrete, many other factors can cause slump to change without any change to water content. One cannot assume that the water/cement ratio is being maintained simply because the slump is within specification limits.

PROCEDURE

- A. Apparatus
 - 1. <u>Slump Cone.</u> The slump cone shall conform to AASHTO T 119: The mold shall be provided with foot pieces and handles. The mold may be constructed either with or without a seam. The interior of the mold shall be relatively smooth and free from projections such as protruding rivets. The mold shall be free of dents. A mold that clamps to a rigid non-absorbent base plate is acceptable provided the clamping arrangement is such that it can be fully released without movement of the mold.
 - 2. <u>Tamping Rod.</u> The tamping rod shall be 5/8 in. (16 mm) in diameter and approximately 24 in. (600 mm) in length, having a hemispherical tip.
 - 3. Scoop.
 - 4. Tape Measure or Ruler. These should have at least 1/8 in. (5 mm) gradations.
 - 5. <u>Base.</u> The base shall be rigid with a non-absorbent surface on which to set the slump cone.
- B. Test Procedure
 - 1. Obtain the sample in accordance with IM 327.
 - 2. Dampen the inside of the cone and place it on a dampened, rigid, non-absorbent surface that is level and firm.




- 3. Stand on both foot pieces in order to hold the mold firmly in place.
- 4. Fill the cone 1/3-full in volume, to a depth of 2 5/8 in. (67 mm) in depth.
- 5. Consolidate the layer with 25 strokes of the tamping rod, using the rounded end. Distribute the strokes evenly over the entire cross section of the concrete. For this bottom layer, incline the rod slightly and make approximately half the strokes near the perimeter, and then progress with vertical strokes, spiraling toward the center.
- 6. Fill the cone 2/3-full in volume, to a depth of 6 1/8 in. (155 mm) in depth.
- 7. Consolidate this layer with 25 strokes of the tamping rod, just penetrating into, but not through, the bottom layer. Distribute the strokes evenly.
- 8. Fill the cone to overflowing.
- 9. Consolidate this layer with 25 strokes of the tamping rod, just penetrating into, but not through, the second layer. Distribute the strokes evenly. If the concrete falls below the top of the cone, stop, add more concrete, and continue rodding for a total of 25 strokes. Keep an excess of concrete above the top of the mold at all times. Distribute strokes evenly as before.
- Strike off the top surface of concrete with a screeding and rolling motion of the tamping rod.
- 11. Clean the overflow concrete away from the base of the mold.
- 12. Remove the mold from the concrete by raising it carefully in a vertical direction. Raise the mold 12 in. (300 mm) in 5 ± 2 seconds by a steady upward lift with no lateral or torsional motion being imparted to the concrete.

The entire operation from the start of the filling through removal of the mold shall be carried out without interruption and shall be completed within an elapsed time of 2 1/2 minutes.

- 13. Invert the slump cone and set it next to the specimen.
- 14. Lay the tamping rod across the mold so it is over the test specimen.
- 15. Measure the distance between the bottom of the rod and the displaced original center of the top of the specimen to the nearest 1/4 in. (6 mm).

NOTE: If a decided falling away or shearing off of concrete from one side or portion of the mass occurs, disregard the test and make a new test on another portion of the sample. If two consecutive tests on a sample of concrete show a falling away or shearing off of a portion of the concrete from the mass of the specimen, the concrete probably lacks the plasticity and cohesiveness necessary for the slump test to be applicable.

lowa Department of Transportation

Office of Materials

October 17, 2006 Supersedes April 19, 2005 Matls. IM 318

AIR CONTENT OF FRESHLY MIXED CONCRETE BY PRESSURE

SCOPE

This test method describes the procedure for determining the air content of freshly mixed concrete by one form of pressure method.

PROCEDURE

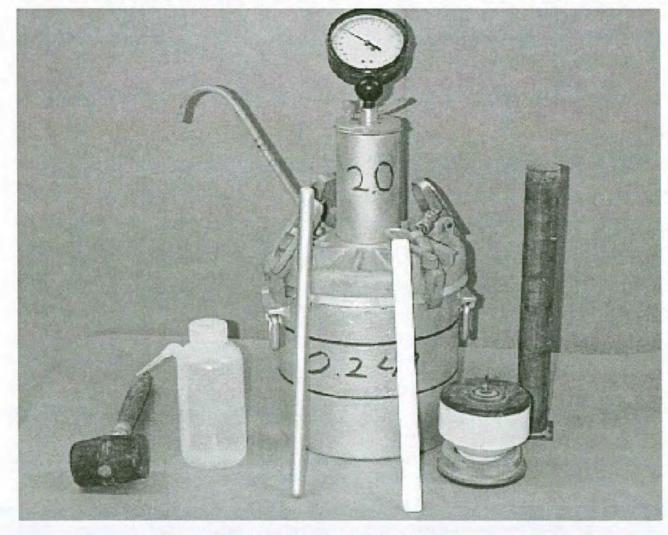
NOTE: Certain coarse aggregates in east central lowa will cause air meter readings to indicate higher air content than is actually in the concrete. An aggregate correction factor must be applied to correct the air content. The District Materials Engineer will supply the correction factor when using these aggregates. AASHTO T152 requires an aggregate correction factor for all concrete; however, it typically is not large enough for most aggregates to require adjustment.

A. Apparatus

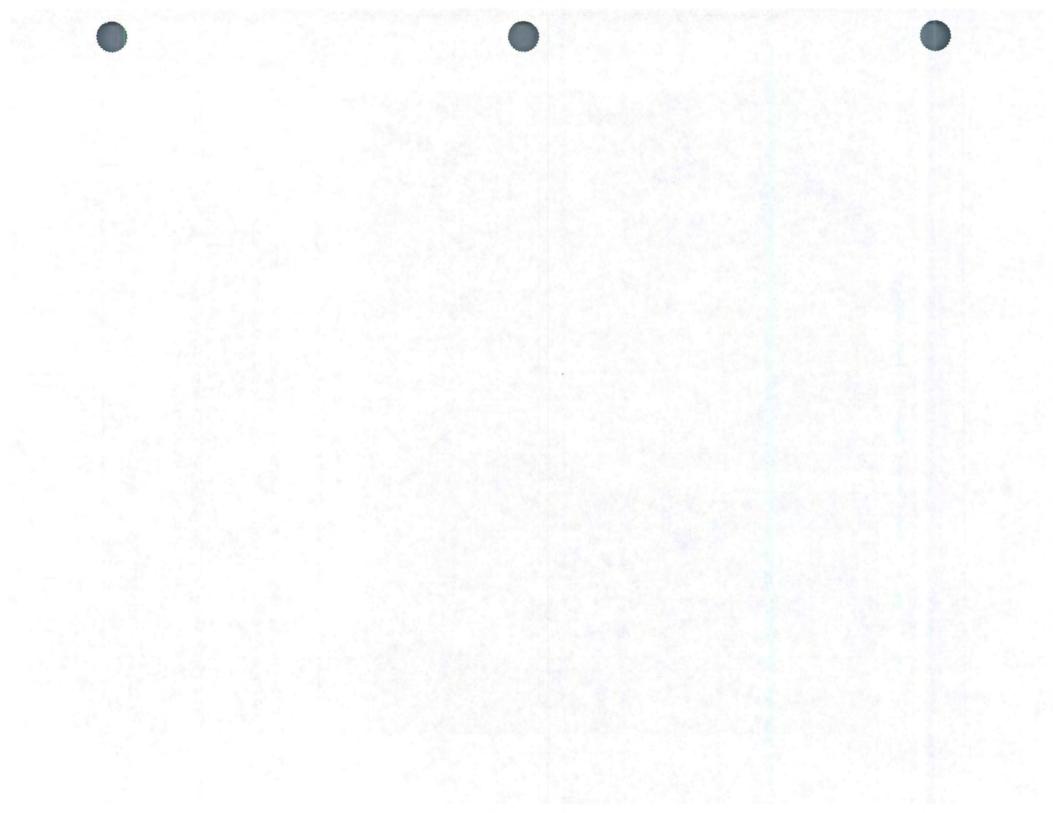
1. All apparatus used shall incorporate the requirements of Section 2a, under Apparatus, of AASHTO Designation T-152. While there are several meters, which meet these requirements, the directions given below in B., Test Procedure, apply to the Washington-type presently in use by the Iowa Department of Transportation.

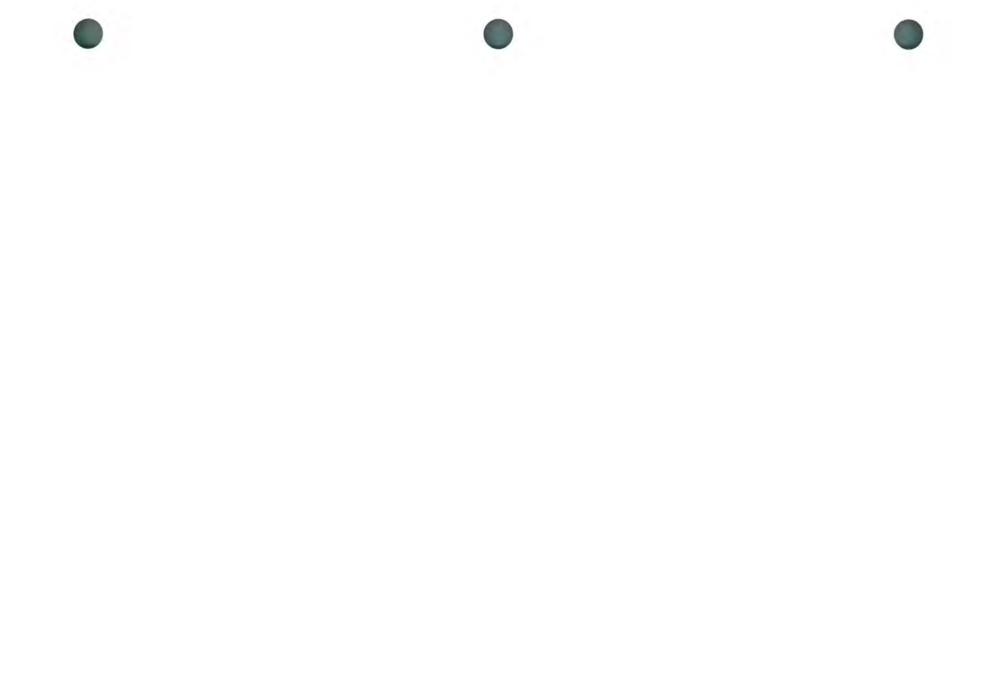
NOTE: It is recommended that a calibration be performed prior to any new pour.

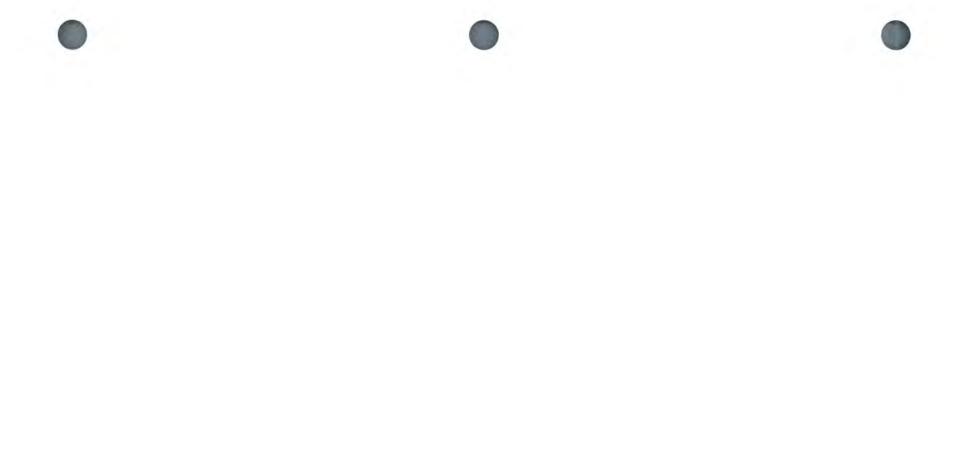
- B. Test Procedure (For use with Washington-Type Air Meter)
 - 1. Calibration of Apparatus (Water Method)
 - a. To calibrate the apparatus, first fill the measuring bowl with water, then withdraw measured amounts of water corresponding to definite percentages of air in the base. After each increment of water is withdrawn, pump air into the head until a predetermined initial pressure line on the dial is reached.
 - b. Open the operating valve and read the air content directly from the dial. The reading on the dial is compared to the known amount of air in the base and suitable corrections made. Consult air meter box lid for more explicit calibration instruction.
 - 2. Calibration of Apparatus (Plug Method)
 - a. To calibrate the apparatus, first fill the measuring bowl with water, and then insert the calibration plug. Place the head on the unit and pump air into the head until a predetermined initial pressure line on the dial is reached.



1


- b. Using a rubber syringe, inject water through one petcock until all the air is expelled through the opposite petcock. Jar the base to insure removal of all air. Leave petcocks open.
- c. Stabilize dial hand at proper initial pressure line by pumping or bleeding off, as needed, while lightly tapping the backside of the dial with the fingers. Inject water through the petcock again to make sure all the air is expelled.
- d. Close both petcocks and press down on the thumb lever exhausting air into the base. The dial should read 5% air for each calibration plug in the measuring bowl with a maximum variation of ±0.2% air. Two plugs may also be used to get a 10% air reading. The gauge is set to 5.0% when calibrated in the Central Laboratory. If the reading is off by more than ±0.2% at either 5% or 10% setting, the gauge should be returned to the Central Laboratory for repair.
- 3. Operation of Apparatus (Determination of Air Content of Concrete)
 - a. Fill the base with a sample of fresh concrete placing the concrete in the base in three equal layers. Rod each layer twenty-five times with the tamping rod provided with the meter. For slumps less than 1 in. (25mm), the sample may need to be consolidated by internal vibration.
 - b. Do not allow the rod to forcibly strike the bottom of the base while rodding the bottom layer. The rod should just penetrate the underlying layer when rodding the upper layers. Care should also be taken to avoid hitting the top edge of the base with the tamping rod.
 - c. Tap the sides of the base 10-15 times with a rubber mallet after rodding each layer to close the holes left by the rod.
 - d. A clean, smooth surface on the top edge of the base is necessary to insure a tight seal with the cover. Strike off base, level full, with the straight edge furnished. Wipe the top edge of the base clean to insure a tight seal with the cover.
 - e. Clamp cover on with petcocks open.
 - f. With the built in pump, pump air into the air chamber atop the cover until the pressure indicator points to the proper initial pressure line on the gauge. <u>NOTE</u>: The pump stem may need a <u>light</u> coat of oil to slide freely. Too much oil on the stem will fill the pump chamber and block the air valve causing the pump to fail.
 - g. Using a rubber syringe, inject water through one petcock until all the air is expelled through the opposite petcock. Jar the base to insure removal of all air. Leave petcocks open. <u>NOTE</u>: Use care if injecting water through opposite petcock to not add air bubbles. When jarring the base to remove the air, the base shall not be tilted more than 2 inches (50 mm) from horizontal.


The sequence of Steps f. and g. may be interchanged without adversely effecting the test result.


- h. Stabilize dial hand at the proper initial pressure line by pumping or bleeding off, as needed, while lightly tapping the backside of the dial with the fingers. Inject water through the petcock again to make sure all the air is expelled.
- i. Close both petcocks. Press down on lever to release air into the base. Hold lever down a few seconds lightly tapping the backside of the dial with your fingers until the dial stabilizes. Observe the dial reading before letting up on the lever. Record the dial reading.
- j. Open petcocks to release pressure, and then remove cover. Empty the concrete from base, clean up base, cover with petcocks left opened.

Air Meter and Calibrating Accessories

Office of Materials

Iowa Department of Transportation

October 17, 2006 Supersedes April 30, 2002 Matls. IM 327

SAMPLING FRESHLY MIXED CONCRETE

SCOPE

This procedure provides instruction for obtaining samples of fresh concrete for new construction or repair. Sources covered include grade, ready mix truck, mobile mixer, pump or conveyor placement systems, and concrete slab as placed.

SIGNIFICANCE

Testing fresh concrete in the field begins with obtaining and preparing the sample to be tested. Standardized procedures for obtaining a representative sample from various types of mixing and/or agitating equipment have been established. Specific time limits regarding when tests for temperature, slump, and air content must be started and for when the molding of test specimens must begin are also established.

Technicians must refrain from obtaining the sample too quickly. Doing so would be a violation of the specifications under which the concrete is being supplied and it may result in a nonrepresentative sample of concrete. Every precaution must be taken to obtain a sample that is truly representative of the entire batch and then to protect that sample from the effects of evaporation, contamination, and physical damage.

PROCEDURE

- A. Apparatus
 - 1. Wheelbarrow or other nonabsorbent container
 - 2. Cover for wheelbarrow or container (plastic, canvas, or burlap)
 - 3. Shovel
 - 4. 5-gal. (19 L) bucket for water
- B. Testing Procedure

For acceptance testing, obtain representative samples from the last practical point before incorporation, but before consolidation.

1. Sampling from Grade

Sample after the concrete in the transport vehicle has been discharged onto the grade. To ensure a representative sample, obtain concrete from at least five different locations in the pile and combine into one test sample. Avoid contamination with subgrade material or prolonged contact with absorptive subgrade.

2. Sampling from Ready Mix Truck

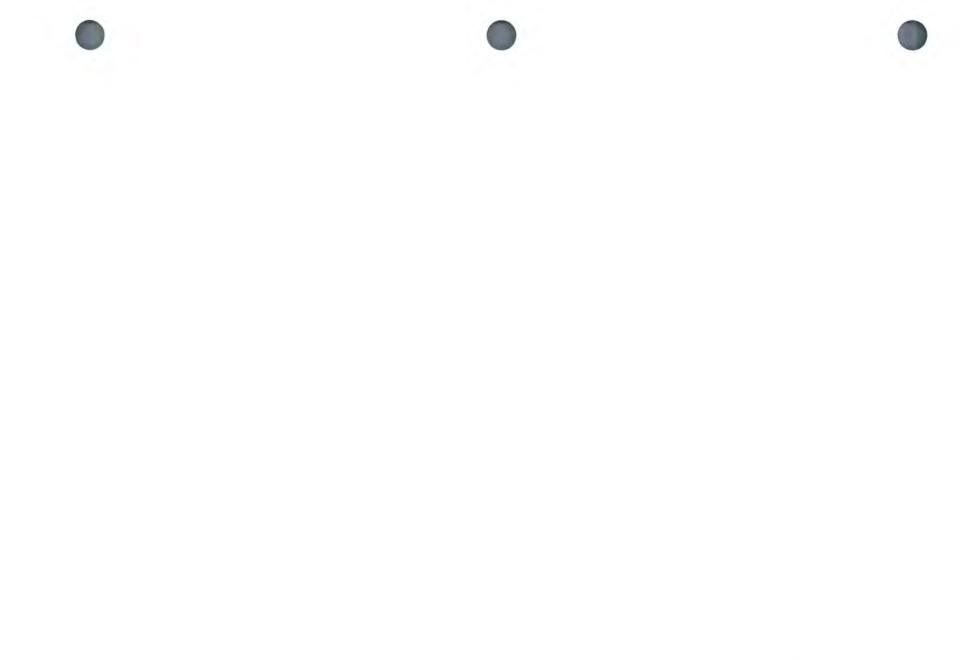
Sample the concrete after a minimum of 1/2 yd.³ (1/2 m³) of concrete has been discharged. Do not obtain samples until after all of the water has been added to the mixer. Do not obtain samples from the very first or last portions of the batch discharge. Sample by repeatedly passing a receptacle through the entire discharge stream or by completely diverting the discharge into a sample container. Regulate the rate of discharge of the batch by the rate of revolution of the drum and not by the size of the gate opening.

3. Sampling from Mobile Mixer

Discharge the concrete into a container or power buggy sufficiently large enough to accommodate the entire batch. Secure a representative sample after the batch has been deposited by obtaining one shovel full, more or less, from each of at least three different positions in the container or power buggy.

4. Sampling from Pump or Conveyor Placement Systems

Sample after a minimum of 1/2 yd.³ (1/2 m³) of concrete has been discharged. Do not obtain samples until after all of the pump slurry has been eliminated. Sample by repeatedly passing a receptacle through the entire discharge system or by completely diverting the discharge into a sample container. Do not lower the pump arm from the placement position to ground level for ease of sampling, as it may modify the air content of the concrete being sampled. Do not obtain samples from the very first or last portions of the batch discharge.


5. Sampling from Concrete Slab as Placed

Mark the approximate location of concrete placed on grade and sampled for air content. After the paver has passed the marked location, remove the sample from the slab, approximately in line with a vibrator and within an 18 in. x 18 in. (500 mm x 500 mm) square area to a depth approximately two-thirds of the pavement thickness. The sample should be obtained a minimum of 12 in. (300 mm) from the edge of slab to prevent extra handwork in maintaining the pavement edge.

Transport samples to the place where fresh concrete tests are to be performed and specimens are to be molded. Protect the sample from direct sunlight, wind, rain, and sources of contamination.

Complete test for temperature and start tests for slump and air content within five minutes of obtaining the sample. Complete tests as quickly as possible. Start molding specimens for strength tests within 15 minutes of obtaining the sample.

Office of Materials

Iowa Department of Transportation

October 17, 2006 Supersedes April 20, 2004 Matls. IM 328

MAKING, PROTECTING & CURING CONCRETE FLEXURAL STRENGTH FIELD SPECIMENS

SCOPE

This method covers procedures for making, protecting and curing flexural strength field specimens sampled from concrete being used in construction.

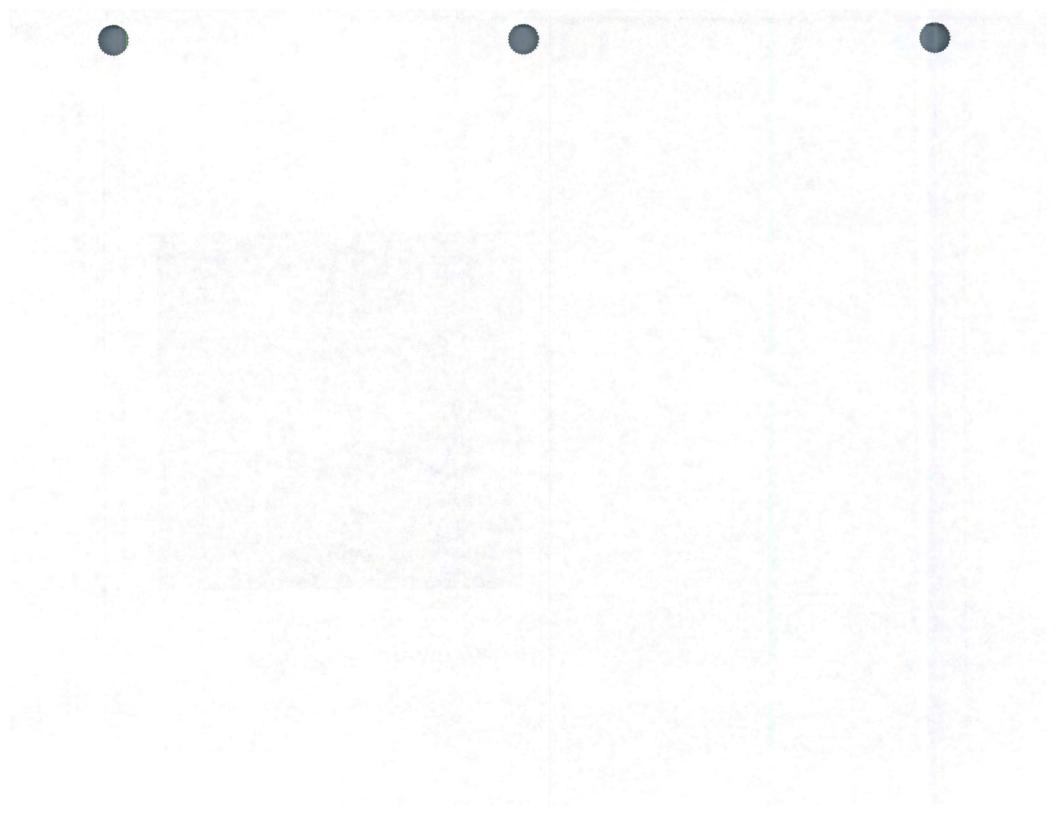
PROCEDURE

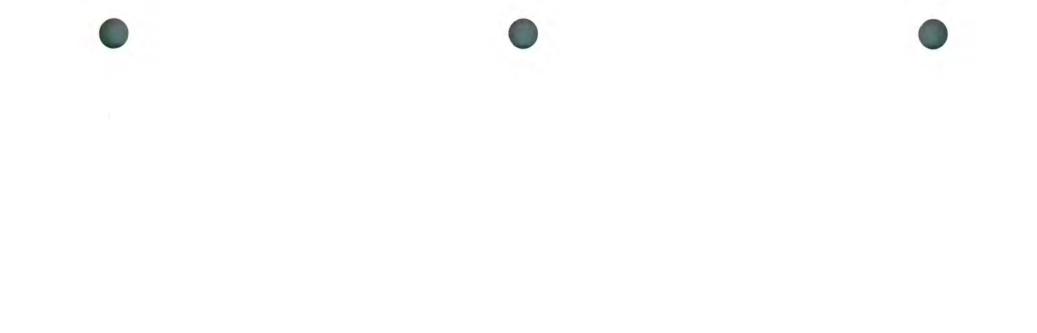
- A. Apparatus
 - 1. 6 in. x 6 in. x 20 in. (152 mm x 152 mm x 508 mm) beam mold. The molds provided will comply with the requirements of AASHTO T-23 for dimensions, construction, materials, smoothness and straightness.
 - 2. Shovel (square point).
 - 3. Rubber hammer or equivalent
 - 4. Wood float or equivalent.
- B. Test Procedure

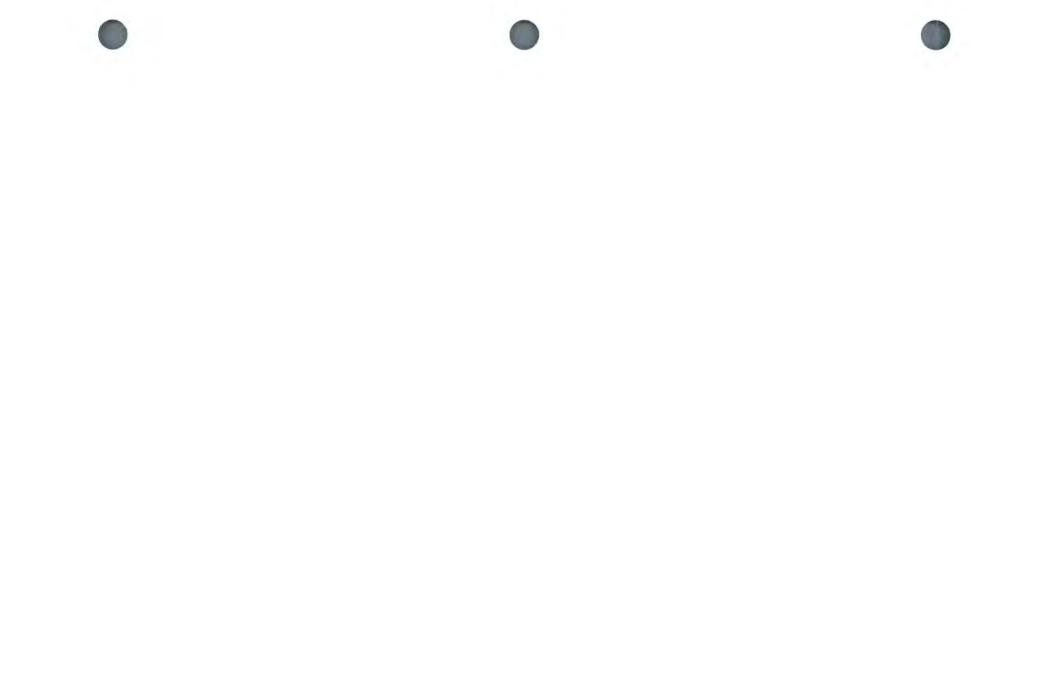
Specimens molded for determination of compliance with strength specifications shall be cast and cured according to AASHTO T-23.

1. Secure the concrete sample in accordance with IM 327, Method of Sampling Concrete for Slump, Air Content and Strength Testing. Specimens shall be molded on a level, rigid, horizontal surface as near as practicable to the place where they will be stored during the first 20 ± 4 hours. All jarring, striking, tilting or scarring (however, preliminary markings with a nail or other sharp object within 4 in. (100 mm) of the beam end will be permitted) of the specimen surface shall be avoided if moving immediately after striking off is necessary. Place the concrete in the mold in two equal layers and thoroughly spade each layer with the shovel. Use special care consolidating the sides and after spading each layer strike the sides of the form with a rubber hammer or equivalent until the spading marks are closed. Strike off the excess concrete and smooth the surface with as little manipulation of the concrete as possible. Excessive spading and smoothing must be avoided.

When consolidating by vibration, fill concrete in one layer. Insert the vibrator at intervals not exceeding 6 in. (150 mm) along the centerline of the long dimension of the specimen, avoiding the exact center of the beam. Sufficient vibration is achieved as soon as the surface has become relatively smooth. Avoid overvibration which may cause segregation. After vibrating, strike the sides of the form with a rubber hammer 10 to 15 times to release any air bubbles that may have been trapped.




When consolidating by rodding, specimens shall receive 60 roddings evenly distributed over two equal layers with a 5/8 in. (16 mm) rod. The bottom layer shall be rodded throughout its depth. For the upper layer, the rod shall penetrate 1 in. (25 mm) into the underlying layer. After rodding each layer, strike the sides of the form with a rubber hammer 10 to 15 times to release any air bubbles that may have been trapped.


- 2. Immediately after smoothing protect the freshly made beam against <u>moisture loss</u> by <u>evaporation</u>, against <u>rapid temperature increase</u> caused by the combined effects of hot weather, bright sun, and the chemical hydration process and against freezing or near freezing temperature. It is generally practical to apply the same protection to the test specimen that is applied to the represented pavement or structure. This is not absolutely necessary, however, so long as the three conditions outlined above are satisfied.
- 3. On the day after the specimens are made and when they have reached an age of 16 to 24 hours, move the specimens while still in the molds to the location of final storage and curing, generally the concrete plant inspector's laboratory. The beams, even with the molds in place, must be handled carefully to avoid injury. A slight jar or bump may cause cracking which may be invisible at the time but which may become apparent with later handling or as premature failure during testing.
- Remove the specimens from the molds (generally at the plant), clean, oil, reassemble and return the molds to the sampling location (generally at the direction of the paving or grade inspector).
- 5. Assign a chronological number, which corresponds with the day the beam was made to each beam. Begin with number 1. When more than one beam is made on a given day use capital letters A, B, C, etc., following the number which identifies the day to identify the daily making sequence. When two or more mixers are operated on separate sections of a project use a separate letter identification preceding the number assigned to the beams made from each respective mixer. Clean the beam and mark the numbers on the smooth bottom of the beam as cast. The numbers should be neatly made, and should be 4 to 8 inches (100 to 200 mm) from the end of the beam. When freshly marked specimens are being placed in storage, cover the marked section with a small board to keep the sand out of the marking.
- 6. Store the specimens in a wetted sand filled pit of adequate size to accommodate all specimens made on the project or in lime saturated water. A pit 4' x 6' x 18" (1.2 m x 1.8 m x 0.5 m) is normally adequate. Place the specimens on a reasonable smooth bed of sand and cover them completely with additional sand. If the temperature in the sand-filled pit drops below 40°F (4°C) remove the specimens and place them under wetted burlap in a heated enclosure or in lime saturated water. Maintain the specimens in a <u>continually wet</u> condition, and above 40°F (4°C) until they are tested. <u>NOTE:</u> Lime-saturated water is prepared by mixing 1 ounce (28 gm) of hydrated lime with 1 gallon (3.8 liters) of water.

Concrete Beam Mold

Office of Materials

Iowa Department of Transportation

October 17, 2006 Supersedes October 21, 2003 Matls. IM 340

WEIGHT PER CUBIC FOOT, YIELD & AIR CONTENT (GRAVIMETRIC) OF CONCRETE

SCOPE

This procedure covers the determination of density, or unit weight of freshly mixed concrete. It also provides formulas for calculating the volume of concrete produced from a mixture of known quantities of component materials.

SIGNIFICANCE

The unit weight is a useful tool in determining the concrete batch yield and air content. Since air adds no weight to the concrete and only occupies a volume, the unit weight of the concrete gives a very good indication of the air content of the concrete. Normal weight concrete is in the range of 140 - 150 lbs./cu. ft. For normal weight concrete, a change in unit weight of 1.5 lbs./cu. ft. relates to approximately a 1 percent change in air content. Using the unit weight to indicate air content can also prevent any discrepancies between air meters.

PROCEDURE

- A. Apparatus
 - Measure: May be the base of the air meter used for determining air content from IM 318. Otherwise, it shall be a metal container meeting the requirements of AASHTO T-121. The capacity and dimensions of the measure shall conform to those specified in Table 1.
 - 2. Balance or scale: Accurate to 0.3 percent of the test load at any point within the range of use.
 - 3. Tamping Rod: 5/8 in. (16 mm) diameter and approximately 24 in. (600 mm) long, having a hemispherical tip.
 - 4. Vibrator: 7000 vibrations per minute, 0.75 in. to 1.50 in. (19 mm to 38 mm) in diameter, at least 3 in. (75 mm) longer than the section being vibrated for use with low slump concrete.
 - 5. Scoop
 - 6. Strike-off Plate: A flat rectangular metal plate at least 1/4 in. (6 mm) thick or a glass or acrylic plate at least 1/2 in. (12 mm) thick, with a length and width at least 2 in. (50mm) greater than the diameter of the measure with which it is to be used. The edges of the plate shall be straight and smooth within tolerance of 1/16 in. (1.5mm).
 - 7. Mallet: With a rubber or rawhide head having a mass of 1.25 ± 0.5 lb. $(0.57 \pm 0.23$ kg) for use with measures of 1/2 ft.³ (0.014 m³) or less, or having a mass of 2.25 ± 0.5 lb. $(1.02 \pm 0.23$ kg) for use with measures of 1 ft.³ (0.028 m³).

1

Table 1 Dimensions of Measures											
Capacity	Inside Diameter	Inside Height	Minimum T <u>mm (i</u>	Nominal Maximum Size of Coarse Agg							
M ³ (ft. ³)	mm (in.)	mm (in.)	Bottom	Wall	mm(in.)						
0.0071	203 ± 2.54	213 ± 2.54	5.1	3.0	25						
(1/4)	(8.0 ± 0.1)	(8.4 ± 0.1)	(0.20)	(0.12)	(1)						
0.0142	254 ± 2.54	279 ± 2.54	5.1	3.0	50						
(1/2)	(10.0 ± 0.1)	(11.0 ± 0.1)	(0.20)	(0.12)	(2)						
0.0283	356 ± 2.54	284 ± 2.54	5.1	3.0	76						
(1)	(14.0 ± 0.1)	(11.2 ± 0.1)	(0.20)	(0.12)	(3)						

Measure may be the base of the air meter used in IM 318.

B. Calibration of Measuring Bowl

- 1. Determine the weight of the dry measure and strike-off plate.
- Fill the measure with water at a temperature between 16°C and 29°C (60°F and 85°F) and cover with the strike-off plate in such a way as to eliminate bubbles and excess water.
- 3. Wipe dry the measure and cover plate, being careful not to lose any water from the measure.
- 4. Determine the weight of the measure, strike-off plate, and water in the measure.
- 5. Determine the weight of the water in the measure by subtracting the weight in Step 1 from the weight in Step 4.
- 6. Measure the temperature of the water and determine its density from Table 2, interpolating as necessary.
- 7. Calculate the volume of the measure, V_m, by dividing the weight of the water in the measure by the density of the water at the measured temperature, from Table 2.

Example:
$$V_m = \frac{15.57}{62.274}$$
 V_m = 0.250 ft.³

Unit Weight of Water 15°C to 30°C										
°C	(°F)	kg/m ³	(lb./ft. 3)	°C	(°F)	kg/m ³	(lb./ft. 3)			
15	(59.0)	999.10	(62.372)	23	(73.4)	997.54	(62.274)			
15.6	(60.0)	999.01	(62.366)	23.9	(75.0)	997.32	(62.261)			
16	(60.8)	998.94	(62.361)	24	(75.2)	997.29	(62.259)			
17	(62.6)	998.77	(62.350)	25	(77.0)	997.03	(62.243)			
18	(64.4)	998.60	(62.340)	26	(78.8)	996.77	(62.227)			
18.3	(65.0)	998.54	(62.336)	26.7	(80.0)	996.59	(62.216)			
19	(66.2)	998.40	(62.328)	27	(80.6)	996.50	(62.209)			
20	(68.0)	998.20	(62.315)	28	(82.4)	996.23	(62.192)			
21	(69.8)	997.99	(62.302)	29	(84.2)	995.95	(62.175)			
21.1	(70.0)	997.97	(62.301)	29.4	(85.0)	995.83	(62.166)			
22	(71.6)	997.77	(62.288)	30	(86.0)	998.65	(62.156)			

Table 2

C. Testing Procedure

NOTE: There are two methods of consolidating the concrete – rodding and vibration. If the slump is greater than 3 in. (75 mm), consolidation is by rodding. When the slump is 1 to 3 in. (25 to 75 mm), internal vibration or rodding can be used to consolidate the sample, but the method used must be that required by the agency in order to obtain consistent, comparable results. For slumps less than 1 in. (25 mm), the sample may be consolidated by internal vibration.

- 1. Determine the weight of the dry measure.
- 2. Obtain the sample in accordance with IM 327. Testing may be performed in conjunction with IM 318. When doing so, this test should be performed prior to IM 318. NOTE: If the two tests are being performed using the same sample, this test shall begin within five minutes of obtaining the sample.
- Dampen the inside of the measure.
- 4. Fill the measure approximately 1/3-full with concrete.
- 5. Consolidate the layer with 25 strokes of the tamping rod, using the rounded end. Distribute the strokes evenly over the entire cross section of the concrete. Rod throughout its depth without hitting the bottom too hard.
- 6. Tap the sides of the measure smartly 10 to 15 times with the mallet to close voids and release trapped air.
- 7. Add the second layer, filling the measure about 2/3-full.
- 8. Consolidate this layer with 25 strokes of the tamping rod, penetrating about 1 in. (25 mm) into the bottom layer.
- 9. Tap the sides of the measure smartly 10 to 15 times with the mallet.

- 10. Add the final layer, slightly overfilling the measure.
- 11. Consolidate this layer with 25 strokes of the tamping rod, penetrating about 1 in. (25 mm) into the second layer.
- 12. Tap the sides of the measure smartly 10 to 15 times with the mallet.

NOTE: The measure should be slightly over full, about 1/8 in. (3 mm) above the rim. If there is a great excess of concrete, remove a portion with the scoop. If the measure is under full, add a small quantity. This adjustment may be done only after consolidating the final layer and before striking off the surface of the concrete.

- 13. Strike off the surface of the concrete and finish it smoothly with a sawing action of the strike-off plate using great care to leave the pot just full. The surface should be smooth and free of voids.
- 14. Clean off all excess concrete from the exterior of the measure including the rim.
- 15. Determine and record the weight of the measure and the concrete.
- 16. If the air content of the concrete is to be determined, proceed to Step E of IM 318.
- D. Calculations

Unit Weight (density) – Calculate the net weight, W_3 , of the concrete in the measure by subtracting the weight of the measure, W2 from the gross weight of the measure plus the concrete, W1. Calculate the density, ρ , by dividing the net weight, W_3 , by the volume, V_m , of the measure as shown below.

 $W_1 - W_2 = W_3$ Example: 42.8 - 7.6 = 35.2 lb.

 $\rho = \frac{W_3}{V_m}$ Example: $\rho = \frac{35.2 \text{ lb.}}{0.249 \text{ cu. ft.}} = 141.37/\text{cu.ft.}$

Theoretical unit weight (air-free basis) – The theoretical unit weight, T, is the total weight of materials batched divided by the absolute volume of materials batched on an air-free basis.

Using the actual batch weights and absolute volumes, sum the following:

	Weight	SpGr	Abs. Vol.	Example Abs. Vol. Calc.
Cement	477	3.14	0.090	$= 477/(3.14 \times 62.4 \times 27)$
Fly Ash	84	2.68	0.019	
Total Water	220	1.00	0.131	
(Plant, aggr.,	grade)			
Fly Ash	84	2.68	0.019	
Total Water	220	1.00	0.131	
(Plant, aggr.,	grade)			

Fine	1246	2.65	0.279
Intermediate	364	2.57	0.084
Coarse	1451	2.57	0.335
Total	3842		0.938
Theoretical un	nit weight (o	u. Ft.) = Bate	
incorotiour ur			1 0
Theoretical al		Abs. Vo	ol. x 27
meereticara			ol. x 27 342

Air Content – Air content is calculated by subtracting the unit weight, ρ , from the theoretical unit weight, T, divided by the theoretical unit weight, T, multiplied by 100 as shown below.

= 151.7 lbs./cu. ft.

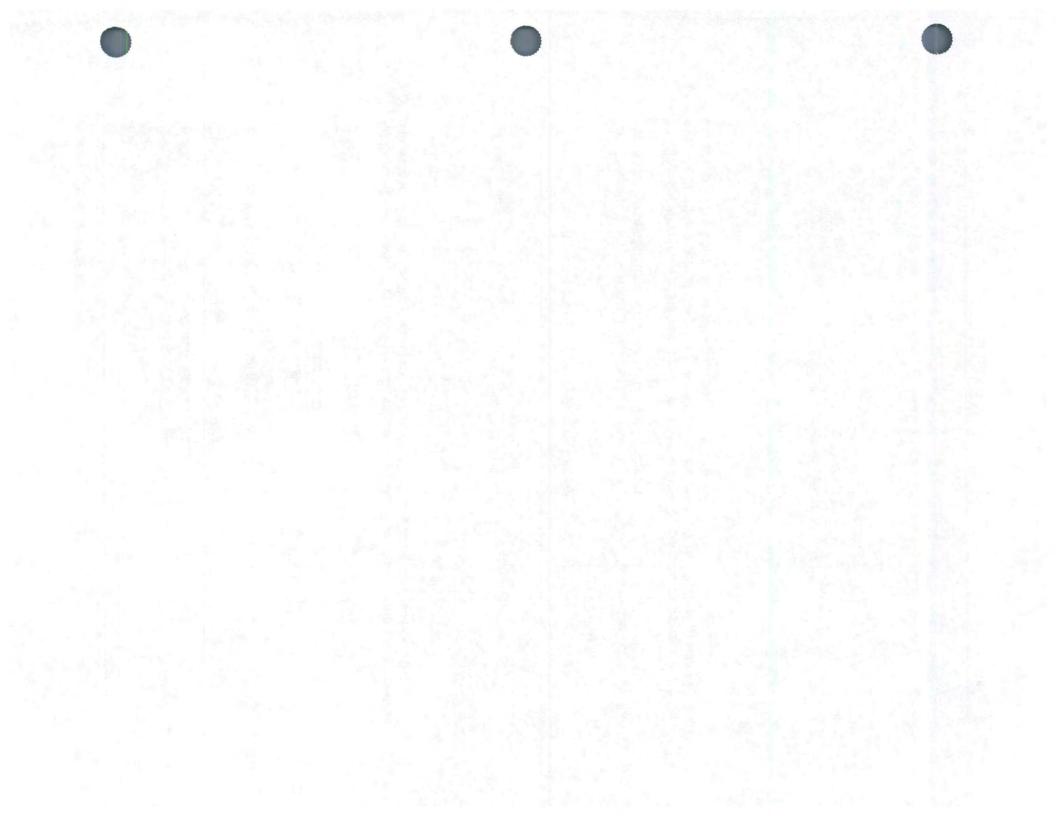
$$A = \frac{T - \rho}{T} \times 100$$

Example:

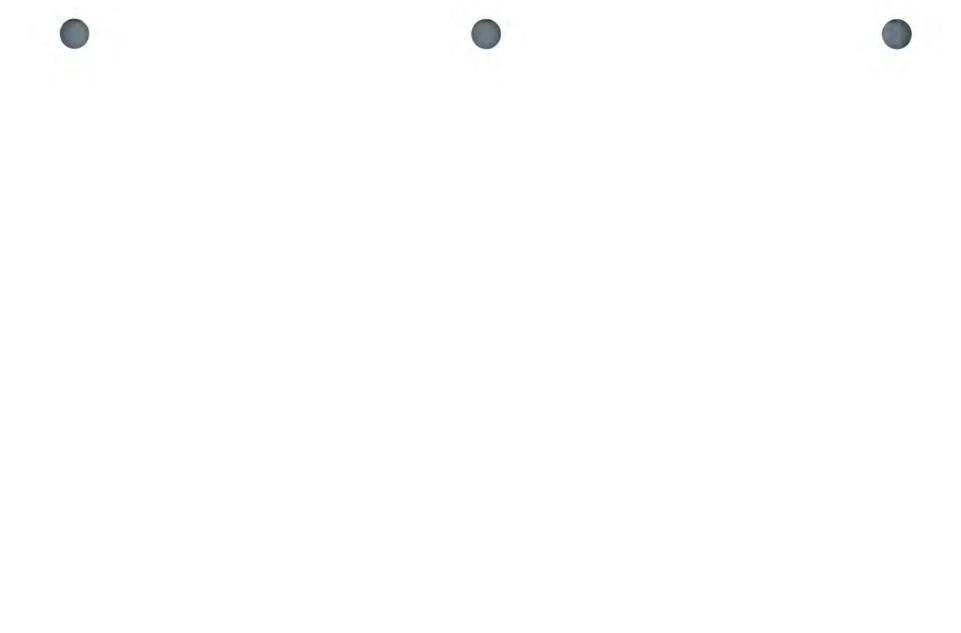
Example:

 $A = \frac{151.7 \text{ lbs./cu. yd.} - 141.37 \text{ lbs./cu. yd.}}{151.7 \text{ lbs./cu. yd.}} \times 100 = 6.8\%$

Theoretical Unit Weight = 151.7


The theoretical unit weight, T, is the total weight of materials batched divided by the absolute volume of materials batched on an air free basis.

Relative Batch Yield – Calculate the yield, Y, or volume of concrete produced per cubic yard, by dividing the total weight of the cubic yard batched, W_{t_i} by 27, then dividing by the density, ρ , of the concrete as shown below.


$$Y = \frac{W_1 \div 27}{\rho}$$

 $Y = \frac{3842 \text{ lbs. batched per cu. yd.} \div 27}{141.37 \text{ lb./cu. ft.}} = 1.007 \text{ cu. yd.}$

Iowa Department of Transportation

Office of Materials

October 18, 2005 Supersedes April 20, 2004 Matls. IM 347

MEASURING LENGTH OF DRILLED CONCRETE CORES

SCOPE

This method covers the procedure for determining the length of a core drilled from a PC Concrete structure, particularly from a PC Concrete pavement. The procedure is a modification of AASHTO T 148.

PROCEDURE

A. Apparatus

- 1. The apparatus consists of a calipering device that will measure the length of axial elements of the core.
- 2. The apparatus is designed so the specimen is held with its axis in a horizontal position by guide rods when making circumferential measurements, and a stand placed upon the guide rods for making a center measurement. The device is equipped with an auxiliary wheel that rests on the specimen and is calibrated such that one-half of a revolution of the wheel represents one-eighth the circumference of a 4 in. (100 mm) diameter core.
- 3. The device is constructed so the specimen is brought into contact with a single flat-faced probe 3/8 in. (10 mm) in diameter mounted on a fixed end of the device.
- 4. The measuring rod, which makes contact with the end surface of the specimen, is rounded to a radius of 1/8 in. (3 mm) and is mounted on a moveable plate, which in turn is mounted on guide rods. One guide rod is provided with a scale on which the length readings are made. The graduations of the scale are spaced at 0.10 in. (2.5 mm) intervals.
- 5. The apparatus provides for the accommodation of specimens of different nominal lengths over a range of 4 to 11 in. (100 mm to 275 mm).
- 6. The calipering apparatus is designed so it is possible to make a length measurement at the center of the specimen and at eight additional points spaced equally along the circumference of a circle whose center point coincides with the end area of the specimen and whose radius is not less than one-half, nor more than three-fourths, of the radius of the specimen.
- 7. The apparatus is stable and sufficiently rigid to maintain its shape and alignment without a distortion or deflection of more than 0.01 in. (0.25 mm) during all normal measuring operations.

1

B. Test Specimens

- Cores used as specimens for length measurement must be in every way representative of the concrete in the structure from which they are removed. The specimen is to be drilled with the axis normal to the surface of the structure, and the ends must be free from all conditions not typical of the surfaces of the structure. Cores that show abnormal defects or that have been damaged appreciably in the drilling operation should not be used.
- C. Test Procedure
 - Before any measurements of the core length are made, calibrate the apparatus with suitable gauges so errors caused by mechanical imperfections are known. When these errors exceed 0.01 in. (0.25 mm), suitable corrections must be applied to the core length measurements.
 - 2. Place the stand on the guide rods and place the specimen on the stand for the center point measurement. The smooth end of the core, that is, the end that represents the upper surface of a pavement slab or a formed surface in the case of other structures is to be positioned facing the fixed end of the measuring device. Bring the specimen into contact with the stud in the fixed end, slide the movable plate until it is in contact with the specimen and record the length.
 - Remove the stand, place the specimen directly on the guide rods and make another measurement as described in C2.
 - 4. Place the small auxiliary wheel on the specimen so the scribed marks on the wheel are in alignment. Rotate the specimen until the marks are again in alignment (1/2 revolution of the wheel) and make another measurement. Continue in this manner until eight measurements in addition to the center measurements have been made.
 - 5. Read each of the nine measurements directly to 0.10 in. (2.5 mm), and interpolate to the nearest 0.05 in. (1 mm) by estimation.
 - 6. If, in the course of the measuring operation, it is discovered that at one or more of the eight circumferential measuring points the surface of the specimen is not representative of the general plane of the core end because of a small projection or depression, rotate the specimen slightly about its axis, and make another set of measurements with the specimen in the new position. If the center measurement is not representative of the general plane of the core end, it should not be used in computing the length of the core.
 - 7. If some damage from drilling is apparent, no measurements are to be made in the damaged area. Reposition the core to avoid the areas when measuring the length. If these areas cannot be avoided, the length measurements made in these areas are not to be used in computing the length of the core. In no case, are fewer than seven measurements to be used in determining the core length.

D. Report

- 1. The individual observations are to be recorded to the nearest 0.05 in. (1 mm) and the average of the nine measurements expressed to the nearest 0.05 in. (1 mm) and shall be reported as the length of the concrete core.
- E. Precautions
 - 1. Be careful to move the core away from the stud in the fixed end slightly when turned, so the stud will retain its proper length and shape.

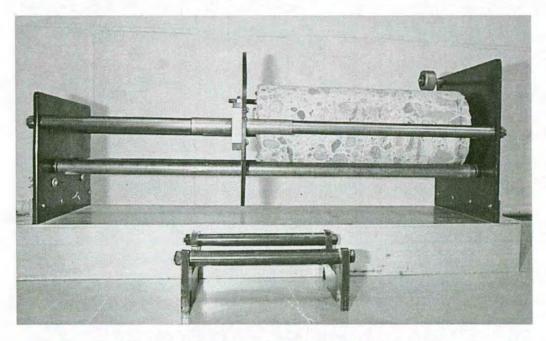
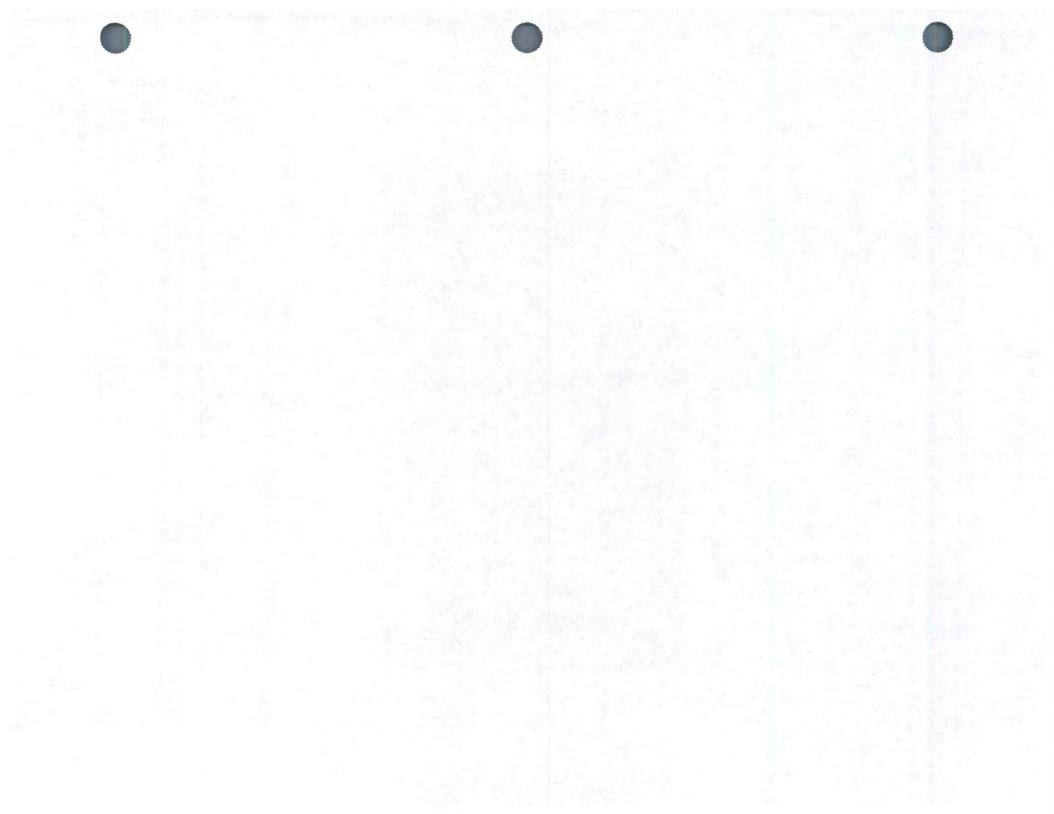
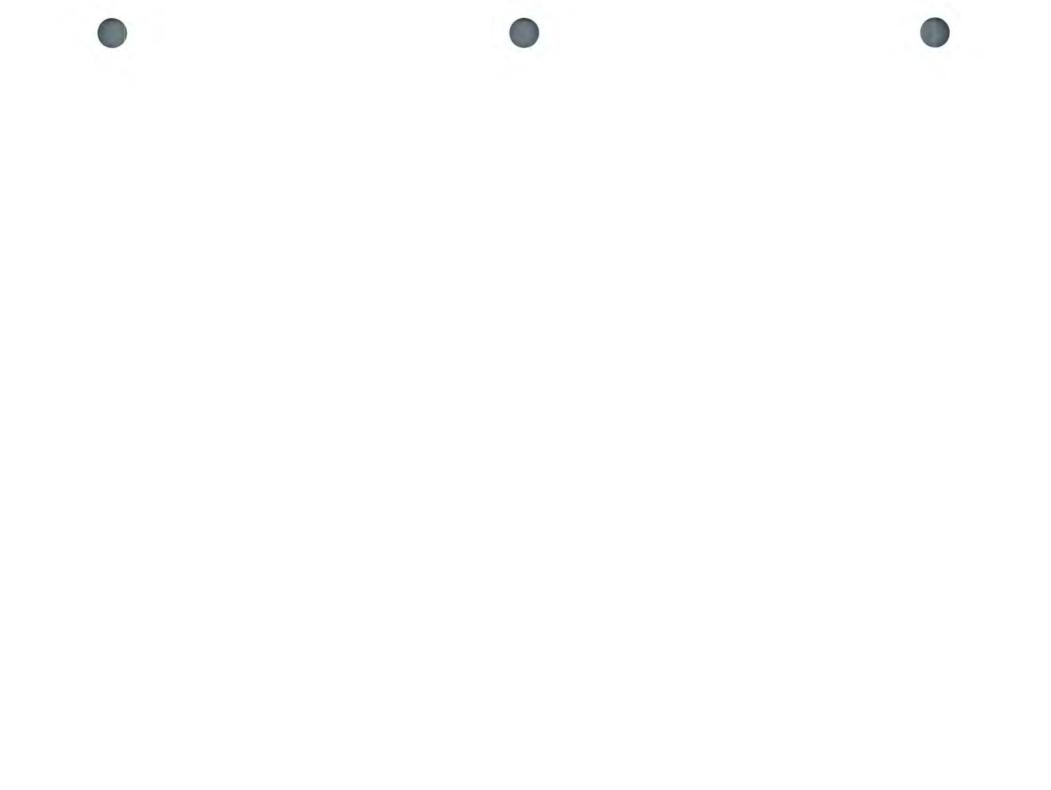
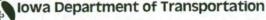





Figure 1. Concrete Core in Measuring Apparatus

Office of Materials

April 19, 2005 Supersedes April 25, 2000

DETERMINING FLOW OF GROUT MIXTURES (FLOW CONE METHODS)

SCOPE

This method of test covers the procedure to be used both in the laboratory and in the field for determining the flow of grout mixtures by measuring the time of efflux of a specified volume of grout from a standardized flow cone.

The procedure is a modification of Corp. of Engineers Method CRD-C611-80.

APPARATUS

- 1. Flow cone as specified in the Corp. of Engineers Method CRD-C611-80
- 2. Stopwatch accurate and readable to 0.2 seconds
- 3. Level
- 4. Calibration jug or container to hold a quantity of water equal to 2 qt. (1725 mL)

CALIBRATION OF CONE

- 1. The flow cone shall be firmly mounted in such a manner that the top will be level and the cone free from vibration (use level, rigid, horizontal surface).
- 2. Level the cone by adjusting the mounting forks.
- 3. Close the discharge tube of the cone by placing a finger over the lower end. (Be sure not to disturb the leveled cone.)
- 4. Introduce 1725 ± 1 mL of water into the cone.
- 5. Adjust the pointer so that the point just comes into contact with the water.

SAMPLE

The test sample shall consist of 1725 ± 1 mL of grout.

PROCEDURE

- 1. Moisten the inside surface of the flow cone.
- 2. Place a finger over the discharge opening.
- 3. Introduce grout into the cone until the grout surface rises into contact with the pointer.
- 4. Start the stopwatch and remove the finger simultaneously.
- 5. Stop the stopwatch at the first break in the continuous flow of grout from the discharge opening (when the cone is essentially empty).
- 6. Read time of efflux of the grout (which is the time indicated by the stopwatch).

NOTE 1: If there is a break in the continuity of discharge prior to essential emptying of the cone, it is an indication that the grout is too thick to be properly tested for flow.

NOTE 2: If the sand used in the grout mixture is larger than No. 4 (4.75 mm) in size, then the sample should be sieved through a No. 4 (4.75 mm) sieve cloth prior to being introduced to the flow cone.

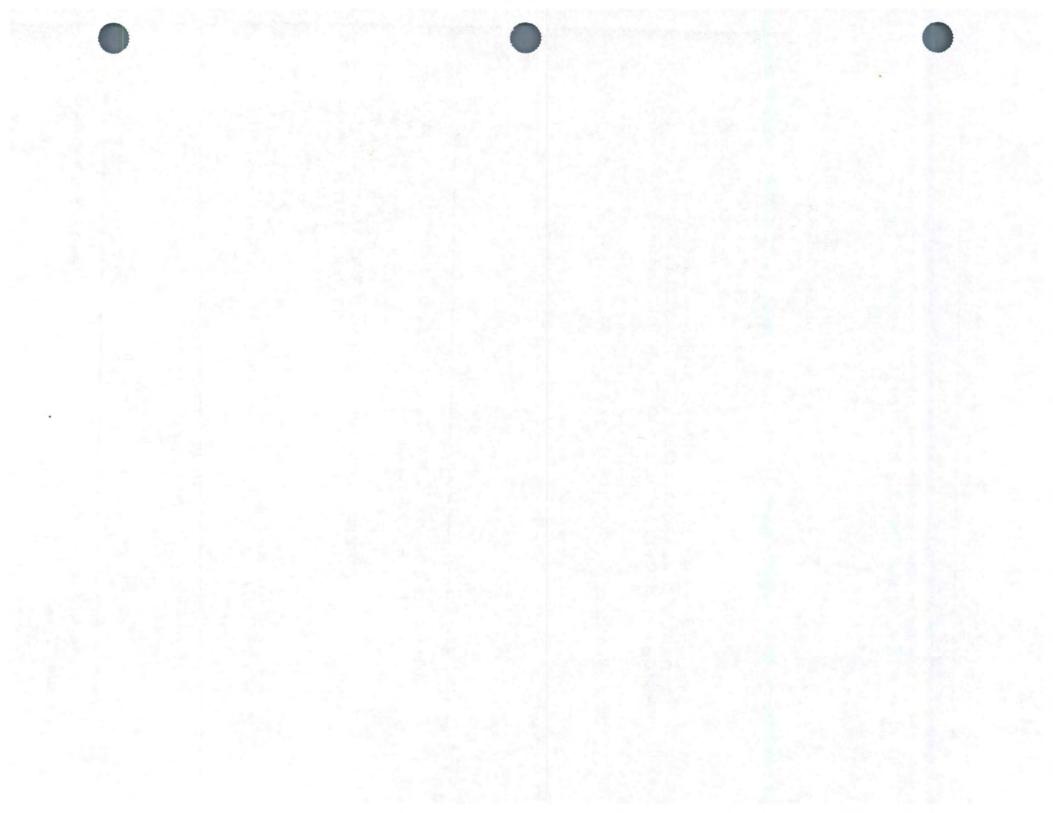
REPORT – (See Figure 1 for an Example.)

- 1. Average time of efflux to the nearest second.
- 2. Composition of the sample
- 3. Information and observation of the physical characteristics of the sample

April 19, 2005 Supersedes April 25, 2000

FIGURE 1

IOWA DOT DISTRICT 1 LAB FLOWABLE MORTAR


LAB NUMBER: 1AS4:008 PROJECT NUMBER: CONTRACT NUMBER: COUNTY: POLK DESIGN: CONTRACTOR: MATERIAL: FINE SAND SOURCE: HALLETT-JOHNSON UNIT OF MATERIAL: CEMENT-LAFARGE, FLYASH-COUNCIL BLUFFS QUANTITY: 50 LB BAG PRODUCER: GNA CONCRETE SAMPLED BY: SENDER'S NUMBER DATE SAMPLED: 5/12/04 DATE RECEIVED: 5/12/04 DATE REPORTED: 5/14/04

SIEVE	PERCENT
SIZE	PASSING
3/8"	100
#4	99
#8	92
#16	78
#30	44
#50	8.2
#100	0.9
#200	0.5

DISPOSITION: COMPLIES WITH THE FOLLOWING PROPORTIONS: 400 LBS. FLYASH, 100 LBS. CEMENT, 2600 LBS. SAND. FLOWABILITY OF 16.10 SEC OBTAINED WITH 68 GAL/YD³ H20.

COPIES: DISTRICT 1 DISTRICT 1 MATERIALS LAB OFFICE OF MATERIALS S. TWOHEY J. HART OFFICE OF CONSTRUCTION GNA CONCRETE

> SIGNED: KEVIN JONES, PE MATERIALS TESTING ENGINEER

Office of Materials

lowa Department of Transportation

October 17, 2006 Supersedes April 18, 2006

Matls. IM 383

TESTING THE STRENGTH OF PORTLAND CEMENT CONCRETE USING THE MATURITY METHOD

GENERAL

This IM outlines the procedure for using the maturity concept as a nondestructive method to determine concrete strength.

This is a two-step procedure. First, a relationship must be established between the maturity values and the concrete strength as measured by destructive methods (that is, through testing of beams or cylinders). The development of the maturity-strength curve shall be done in the field at the beginning of construction using project materials and the project proportioning and mixing equipment. The second step is the instrumentation of the concrete to be measured. Temperature probes are installed in the concrete and the temperature is measured. From those measurements, along with the age at which the measurements were taken, maturity values are determined. A maturity meter or temperature-measuring device and a computer or calculator may also be used to determine the maturity values.

The contractor and the agency shall jointly develop a plan for performing the maturity testing. The plan shall include:

- 1. The contractor shall be responsible for the development of the maturity curve. The curve development shall be monitored by the contracting agency.
- 2. The temperature monitoring process of the constructed pavement or structure shall be the responsibility of the contractor and shall be monitored by the contracting agency. Determining that sufficient strength has been achieved shall remain the responsibility of the engineer. The contractor shall provide documentation of maturity testing before a pavement section may be opened to traffic, a structure may be loaded, or the forms may be removed.

For concrete furnished from a construction or stationary mixer, which is in place prior to construction of the specified project, a maturity curve may be established ahead of actual construction of the specified project. The test specimens shall be cast with concrete made from the same plant and using the same materials source as will be used in the specified project. The agency shall be informed and have an opportunity to observe the development of the maturity curve.

THE MATURITY CONCEPT

The hydration of cement and gain in strength of the concrete is dependent on both curing time and temperature. Thus, the strength of the concrete may be expressed as some function of time and temperature. This information can then be used to determine the strength of concrete without conducting physical tests. The time-temperature function commonly used is the maturity concept proposed by Nurse-Saul (ASTM C1074),

M (°C x hours) = $\sum [(T - T_0) \Delta t]$

Where M is the maturity in °C-hours [M is also termed the time-temperature factor (TTF)], Δt is the time interval in hours (or days), T is the average concrete temperature during the time interval Δt , and T₀ is the datum temperature at which concrete ceases to gain strength with time. The value of T₀ = 14°F (-10°C) is most commonly used. As a result, Equation 1 becomes:

M (°C x hours) = $\sum [(T + 10) \Delta t]$ Equation 2

ESTABLISHMENT OF MATURITY-STRENGTH RELATIONSHIP

<u>Precaution</u>: When the concrete temperature is below 50°F (10°C), maturity strength development will cause over extended TTF values. Development of strength maturity relationship should be performed on concrete with temperatures above 50°F (10°C).

When air temperatures are expected to fall below 40°F (4°C), place the beams on a piece of foam board or plywood to prevent the cold ground from lowering beam temperatures. Placing insulation over the beams to retain heat may also be warranted.

To establish a maturity-strength relationship for a concrete mix, a maturity meter or other maturity and continual temperature profiling system and a hydraulic testing machine are needed. The following procedure shall be used: (NOTE: Before using any maturity meter, check to be sure the datum temperature is set to -10°C.) The procedure to check or change the datum temperature is included at the end of this IM

- Cast a minimum of twelve (12) 6 in. x 6 in. x 20 in. (152 mm x 152 mm x 508 mm) beams, as per IM 328. Test the entrained air content and slump of the concrete being used to cast the beams, as per IM 327. Record these values. The concrete shall meet specifications. Since there is a direct relationship between w/c ratio and strength, the concrete used to develop the maturity-strength relationship shall be at the maximum w/c ratio expected during production. The beams shall be cast from a batch of at least 3m³ (3 cu. yd.).
- 2. Embed a thermocouple wire near each end of a test beam (when flexural strength is to be determined) to monitor the temperature. This beam will be the last to be tested. A probe shall be inserted near each beam end to the approximate mid-depth and such that they are approximately 3 in. (75 mm) from each side and each end. Loop the wire around the beam box handles to prevent the wire from being inadvertently pulled out of the beam. The average of the two readings will be used in the development of the maturity-strength curve. When a maturity meter is used, the meter computes the values. Twelve (12) test specimens shall be tested as described in #4 below.
- 3. Cast, cure, and test the beams at the plant site. Test in accordance to IM 316. This will allow a maturity meter to be protected from the weather and theft. The meter can be stored in a lab trailer or vehicle with the probes run outside to the beam in the sandpit. The beams shall be covered with plastic immediately after casting and prior to form removal. If possible, wet burlap should be placed over the surface of the beams under the plastic. The forms shall be removed the following day. Cure all beams in a pit of wet sand after form removal, until they are tested.

- 4. Determine maturity values and strength at four different ages. Test three specimens for strength at each age and calculate the average strength at each age. The maturity value shall be calculated from a temperature reading at the time the specimen is tested for strength. The tests shall be spaced such that they are performed at somewhat consistent intervals of time and span a range in strength that includes the opening strength desired. The table below gives suggested maturity values for each test of three standard mixture classes. This is only a guide and may need to be modified, depending on specific mixtures and conditions.

_	1			
	Test 1	Test 2	Test 3	Test 4
A Mix	750	1500	2500	3500
B Mix	1500	3500	5500	7500
C Mix	750	1500	2500	3500
M Mix	600	1200	2000	3000

Approximate Maturity Values (TTF)

These values assume opening strength for pavements of 3.45 MPa (500 psi) for the A, B and C mixtures, and a five-hour opening for the M mixture with calcium chloride. If the maturity curve is intended for use in determining the time to begin joint sawing, testing must begin at lower maturity values.

For structural concrete, a minimum flexural strength of 3.8 MPa (550 psi) is required before concrete may be subjected to flexural loading. Strength requirements vary for determining when forms for roofs of culverts may be removed (See Article 2403.18). Testing intervals may need to be increased over those for paving.

The first test (Test 1), for Class C mixes, normally would be performed at an age of approximately twelve (12) hours when hot, summer temperatures prevail. During cooler conditions, the first test may be performed at the beginning of the day following the casting of test specimens.

Additional test specimens may be cast at a later time and tested at earlier ages to add data to the strength-maturity relationship as an aid to determining the appropriate time to saw.

5. Plot the measured strength against the corresponding values of maturity at different ages, as determined by the maturity meter or by hand methods. Use a computer program provided by the District Materials Concrete Technician to determine maturity-strength relationship. The TTF number corresponding to the opening strength or the flexural loading strength/form removal strength of the structure shall be used to determine when the pavement has reached opening strength or the structure has reached the required loading strength. An example of the Maturity-Strength Development form, generated by the computer program, is included at the end of this IM This form shall be signed by the contractor/contractor representative and reviewed by the DME. Copies will be provided to the Project Engineer, DME, Central Materials, PCC Engineer, and the contractor.

FIELD PROCEDURE

Equipment

- 1. 12 6 in. x 6 in. x 20 in. (152 mm x 152 mm x 508 mm) beam molds
- 2. 1 each shovel (square point), rubber hammer or equivalent, and wood float or equivalent
- 3. 1 each hydraulic testing machine center point leading flexural
- 4. 1 each maturity meter or other maturity and temperature profiling system
- 5. 1 each hand-held thermometer or other continual temperature-monitoring device
- 6. Type T thermocouple wire
- 7. Connectors

Placement of the Temperature Probes

Strip the coating from each end of the two wires and twist the ends together before inserting them into the fresh concrete.

For pavements, insert the temperature probe into the concrete until the end is at approximately the pavement mid-depth and 1.6 feet (0.5 m) from the edge of the pavement. The wire ends are the points at which the temperature measurement is taken. Insertion may be accomplished by attaching the wire ends to a wooden dowel and embedding it into the slab. Check to ensure the concrete is consolidated around the dowel. The portion of the dowel that protrudes above the pavement should be cut or broken off after the testing is completed.

Probes may be placed at any point along the pavement slab. A minimum of two probes shall be placed in each day's placement. On days when there is a large difference between daytime high temperatures and nighttime low temperatures, placing additional probes near the beginning of the day's run and at a point near the midday location would provide helpful information. This would be helpful to those sawing the pavement as well as those determining the opening time. It has been found that the concrete does not always gain strength at the same rate. Therefore the concrete placed during the middle of the day can gain strength faster than the concrete placed at the beginning of the day.

For structures, a minimum of two probes shall be attached to the reinforcing steel near the edge at the upper corner of the exposed surface. (See Figure 1 at the end of this IM.) The probe should be wrapped around the rebar and taped with approximately 1 to 2 inches (25 to 50 mm) extending below the rebar to prevent the probe from damage and removal during concrete placement. The rebar should also be taped 2 to 3 inches (50 to 75 mm) on both sides of the probe location to prevent contact with the reinforcing steel. (See Figure 2 at the end of this IM.)

Data Collection

The other probe wire ends, not placed in the concrete, shall be connected to a plug, unless the temperature-measuring device must be connected to the probe directly with bare wires. The plug is then inserted into the maturity meter or thermal meter. Normally a thermal meter can be used to collect field data. Be careful to connect the copper wire to the copper plug prong (+).

When a thermal meter is used, the wire is connected to the meter each time a temperature is taken. Then the wire is disconnected and the value recorded. A Maturity Data Recording Sheet is provided at the end of this IM, which may be used to record the temperature readings and calculate the maturity values.

Do not disconnect the wire from the maturity meter until the test is completed. The data collection must be uninterrupted. Also the maturity meter must be protected from rain or water. If water finds its way inside the meter, permanent damage will result.

Once the wires are placed, an initial temperature of the concrete shall be taken and recorded, when a thermal meter is being used. Temperature readings should be taken in the morning and late afternoon, when one first arrives on the project and before one leaves for the day, <u>as a minimum</u> for standard A, B and C mixtures. For the fast-setting mixtures, readings should be taken every few hours, depending on weather conditions and mixture. If a maturity meter is being used, it should be connected to the probe as soon as possible to begin data collection.

Measuring the Maturity

For pavements, the maturity number can be read directly from the maturity meter or calculated from the temperature readings obtained by the thermal meter or other continual temperature-monitoring device. This number is then used to enter the strength-maturity chart that was established as described above and strength is then determined. **NOTE:** An instruction sheet will accompany each maturity meter. It is important to follow these instructions to initialize the instrument.

For structures, a maturity number can be read directly from the maturity meter or calculated from the temperature readings that shall be obtained from a continual temperature-monitoring device.

Implementation

For pavements, when used at the contractor's option, it is the intent of the procedure to use the maturity method to open the pavement to traffic from the very first day of paving, including the days of development of new curves.

Pavement placed on the first day during development of the strength-maturity curve may be opened when either of the following criteria has been met:

- 1. The TTF of the slab, or structure, meets or exceed the opening TTF as determined by the strength-maturity curve being developed.
- 2. At a particular test age, the average strength of the three beams used for development of the strength-maturity curve meets or exceeds the required opening strength.

For structures, since maturity is to be used on units exposed to flexural loading, the maturity curve should be developed early in the project during placement of concrete exposed to compressive stress. If this is not possible, concrete placed on the same day as development of the strength-maturity curve may be loaded at a particular age using either of the first day placement criteria required for pavements.

Validation

Once per month, validation tests shall be conducted to determine if concrete strength is being represented by the current maturity curve. Cast and cure three (3) beams using the same procedure and manner as used to develop the current maturity curve. Test all three beams as close as possible to the maturity value determined to represent the opening strength of the pavement or the flexural loading strength or form removal strength of the structure.

For pavements, if the average calculated strength value at the TTF the validation beams were tested is within the range of ± 50 psi (0.34 MPa) of the original curve, the original curve shall be considered validated. If the average calculated strength at the TTF the validation beams were tested is lower than the minimum range (-50 psi (-0.34 MPa)) of the original maturity curve, a new maturity curve shall be developed. If the average calculated strength at the TTF the validation beams were tested is greater than the maximum range (+50 psi (+0.34 MPa)) of the original maturity curve, a new maturity curve, a new maturity curve may be developed at the contractor's option.

For structures, if the average calculated strength is greater than the original curve at the TTF the validation beams were tested, the original curve shall be considered validated. If the average calculated strength is less than the original maturity curve at the TTF the validation beams were tested, a new maturity curve shall be developed.

An example of the Validation of the Maturity Curve is included at the end of this IM. Signed copies shall be provided to the RCE, DME, Central Materials, PCC Engineer, and the contractor.

This validation procedure is a check to ensure the mix is basically the same as originally tested. If the test results indicate a new curve must be developed, this should be done in a timely manner. The curve currently being used shall be continued until new beams can be cast and at that point the implementation procedure described above shall be followed.

Factors Requiring a New Curve

Changes in material sources, proportions, and mixing equipment all affect the maturity value of a given concrete mixture. Development of a new maturity curve due to material source or proportion changes in a concrete mix may be waived by use of the validation procedure.

The following will require a new curve to be developed:

- The average calculated strength at the TTF the validation beams were tested is lower than the minimum range (-50 psi (-0.34 MPa)) of the original maturity curve (pavements only).
- The w/c ratio of the production concrete exceeds the w/c ratio of the concrete used to develop the strength-maturity curve by more than 0.02.

Calibration

Maturity meters shall be calibrated yearly to ensure proper temperature sensing. The calibration may be performed at the Central Laboratory, before the start of each construction. To ensure accurate temperature measurement, the maturity meter should also be checked periodically against a certified thermometer or other calibrated meter.

October 17, 2006 Supersedes April 18, 2006

County: MONO	7(25)55-67 NA		Dat		8/12/1999 C-3WR-C-15		Maturi	ty Curve #: <u>1</u>
	[TTF R	equired for	Opening	or Loading :	1585		
SITE 1	Section of Pav	ement for Open	ing or Struc	tural Unit fi	or Loading by	Maturity		Probe #
Structu	al Unit or Probe L	ocation From:] [Probe Lo	ocation To:	
	Date Enter	Time Enter	Age (hours) Enter	Temp (deg C) Enter	TTF at age (deg C-hr)	Sum TTF (deg C-hr)	Air Temp (deg C) Enter	
	08/12/99	09:00 AM	0.00	22	0	0		
		01:00 PM 05:30 PM	4.00 8.50	29 25	142 167	142		
	08/13/99	08:00 AM	23.00	19	464	773		
		02:30 PM	29.50	22	198	971	1	
	08/14/99	08:00 AM 01:30 PM	47.00 52.50	21 20	551 168	1522 1690		
		01.30 PW	02.00	20	100	1090	1	
							10.000	
	TTF = (Temp	+Temp ₁ +10	(Age _i - Age	3.1)	TTE:			x should be greate al to required TTF.
SITE 2 Structuz	Section of Pav	ement for Open	ing or Struc			Maturity	than or equ	
	Section of Pav al Unit or Probe Lo	, rement for Open pocation - From: <u>Time</u>	Age	tural Unit f Temp (deg C)	or Loading by	Matunty To Prob Sum TTF	than or equ e Location: Air Temp (deg C)	al to required TTF.
	Section of Pav	vement for Open	ing or Struc	ctural Unit f	or Loading by	Matunty To Prob Sum	than or equ e Location: Air Temp	al to required TTF.
	Section of Pav al Unit or Probe Lo	, rement for Open pocation - From: <u>Time</u>	Age (hours) Enter	tural Unit f Temp (deg C)	or Loading by TTF at age (deg C-hr)	Matunty To Prob Sum TTF (deg C-hr)	than or equ e Location: Air Temp (deg C)	al to required TTF.
	Section of Pav al Unit or Probe Lo	, rement for Open pocation - From: <u>Time</u>	Age (hours) Enter	tural Unit f Temp (deg C)	or Loading by TTF at age (deg C-hr)	Matunty To Prob Sum TTF (deg C-hr)	than or equ e Location: Air Temp (deg C)	al to required TTF.
	Section of Pav al Unit or Probe Lo	, rement for Open pocation - From: <u>Time</u>	Age (hours) Enter	tural Unit f Temp (deg C)	or Loading by TTF at age (deg C-hr)	Matunty To Prob Sum TTF (deg C-hr)	than or equ e Location: Air Temp (deg C)	al to required TTF.
	Section of Pav al Unit or Probe Lo	, rement for Open pocation - From: <u>Time</u>	Age (hours) Enter	tural Unit f Temp (deg C)	or Loading by TTF at age (deg C-hr)	Matunty To Prob Sum TTF (deg C-hr)	than or equ e Location: Air Temp (deg C)	al to required TTF.
	Section of Pav al Unit or Probe Lo	, rement for Open pocation - From: <u>Time</u>	Age (hours) Enter	tural Unit f Temp (deg C)	or Loading by TTF at age (deg C-hr)	Matunty To Prob Sum TTF (deg C-hr)	than or equ e Location: Air Temp (deg C)	al to required TTF.
	Section of Pav al Unit or Probe Lo	, rement for Open pocation - From: <u>Time</u>	Age (hours) Enter	tural Unit f Temp (deg C)	or Loading by TTF at age (deg C-hr)	Matunty To Prob Sum TTF (deg C-hr)	than or equ e Location: Air Temp (deg C)	al to required TTF.
	Section of Pav al Unit or Probe Lo	, rement for Open pocation - From: <u>Time</u>	Age (hours) Enter	tural Unit f Temp (deg C)	or Loading by TTF at age (deg C-hr)	Matunty To Prob Sum TTF (deg C-hr)	than or equ e Location: Air Temp (deg C)	al to required TTF.
	Section of Pav al Unit or Probe Lo	, rement for Open pocation - From: <u>Time</u>	Age (hours) Enter	tural Unit f Temp (deg C)	or Loading by TTF at age (deg C-hr)	Matunty To Prob Sum TTF (deg C-hr)	than or equ e Location: Air Temp (deg C)	al to required TTF.
	Section of Pav al Unit or Probe Lo	, rement for Open pocation - From: <u>Time</u>	Age (hours) Enter	tural Unit f Temp (deg C)	or Loading by TTF at age (deg C-hr)	Matunty To Prob Sum TTF (deg C-hr)	than or equ e Location: Air Temp (deg C)	al to required TTF.
	Section of Pav	, rement for Open pocation - From: <u>Time</u>	Age (hours) Enter 0.00	Temp (deg C) Enter	or Loading by TTF at age (deg C-hr)	Matunty To Prob Sum TTF (deg C-hr)	than or equ e Location: Air Temp (deg C) Enter	al to required TTF

		_	Da	ate Placed Mix:			Maturit	y Curve #:
actor:		TTE	Pequired fo	Opening	or Loading :		1	
		-]	
SITE 1	Section of Pa	evernent for O	pening or St	tructural Un	nit for Loading	by Maturity		Probe #
Structual I	Unit or Probe Lo	cation From]	Probe L	ocation To:	· · · · · · · · · · · · · · · · · · ·
		1	Age	Temp	TTF	Sum	Air Temp	
	Date	Time	(hours)	(deg C)	at age	TTF	(deg C)	
	Enter	Enter	Enter	Enter	(deg C-hr) 0	(deg C-hr) 0	Enter	
			0.00	-	U	0		
						V		
			12.0					
		-				1		
		-	-				-	
	-			-				
			-					
			-					
	TTF; = (Temp	+Temp ₁ +10) (Age, - Age	a.1)	ПЕ: [should be greater I to required TTF.
SITE 2	(,	_	TTE:			
	(vement for Og	pening or Sti	_		by Maturity		I to required TTF.
	Section of Pa	vement for Og	pening or Sti	ructural Un	it for Loading L	by Maturity To Prob	than or equa	I to required TTF.
	Section of Pa	vement for Og	Age	_	it for Loading L	by Maturity To Prob Sum TTF	than or equa	I to required TTF.
	Section of Pa	vement for Og ation - From	Age (hours) Enter	ructural Un	it for Loading L TTF at age (deg C-hr)	by Maturity To Probe Sum TTF (deg C-hr)	than or equa	I to required TTF.
	Section of Pa nit or Probe Loc Date	vement for Op ation - From <u>Time</u>	Age	Temp (deg C)	it for Loading L	by Maturity To Prob Sum TTF	than or equa e Location: Air Temp (deg C)	I to required TTF.
	Section of Pa nit or Probe Loc Date	vement for Op ation - From <u>Time</u>	Age (hours) Enter	Temp (deg C)	it for Loading L TTF at age (deg C-hr)	by Maturity To Probe Sum TTF (deg C-hr)	than or equa e Location: Air Temp (deg C)	I to required TTF.
	Section of Pa nit or Probe Loc Date	vement for Op ation - From <u>Time</u>	Age (hours) Enter	Temp (deg C)	it for Loading L TTF at age (deg C-hr)	by Maturity To Probe Sum TTF (deg C-hr)	than or equa e Location: Air Temp (deg C)	I to required TTF.
	Section of Pa nit or Probe Loc Date	vement for Op ation - From <u>Time</u>	Age (hours) Enter	Temp (deg C)	it for Loading L TTF at age (deg C-hr)	by Maturity To Probe Sum TTF (deg C-hr)	than or equa e Location: Air Temp (deg C)	I to required TTF.
	Section of Pa nit or Probe Loc Date	vement for Op ation - From <u>Time</u>	Age (hours) Enter	Temp (deg C)	it for Loading L TTF at age (deg C-hr)	by Maturity To Probe Sum TTF (deg C-hr)	than or equa e Location: Air Temp (deg C)	I to required TTF.
	Section of Pa nit or Probe Loc Date	vement for Op ation - From <u>Time</u>	Age (hours) Enter	Temp (deg C)	it for Loading L TTF at age (deg C-hr)	by Maturity To Probe Sum TTF (deg C-hr)	than or equa e Location: Air Temp (deg C)	I to required TTF.
	Section of Pa nit or Probe Loc Date	vement for Op ation - From <u>Time</u>	Age (hours) Enter	Temp (deg C)	it for Loading L TTF at age (deg C-hr)	by Maturity To Probe Sum TTF (deg C-hr)	than or equa e Location: Air Temp (deg C)	I to required TTF.
	Section of Pa nit or Probe Loc Date	vement for Op ation - From <u>Time</u>	Age (hours) Enter	Temp (deg C)	it for Loading L TTF at age (deg C-hr)	by Maturity To Probe Sum TTF (deg C-hr)	than or equa e Location: Air Temp (deg C)	I to required TTF.
	Section of Pa nit or Probe Loc Date	vement for Op ation - From <u>Time</u>	Age (hours) Enter	Temp (deg C)	it for Loading L TTF at age (deg C-hr)	by Maturity To Probe Sum TTF (deg C-hr)	than or equa e Location: Air Temp (deg C)	I to required TTF.
	Section of Pa nit or Probe Loc Date	vement for Op ation - From <u>Time</u>	Age (hours) Enter	Temp (deg C)	it for Loading L TTF at age (deg C-hr)	by Maturity To Probe Sum TTF (deg C-hr)	than or equa e Location: Air Temp (deg C)	I to required TTF.
	Section of Pa nit or Probe Loc Date	vement for Op ation - From <u>Time</u>	Age (hours) Enter	Temp (deg C)	it for Loading L TTF at age (deg C-hr)	by Maturity To Probe Sum TTF (deg C-hr)	than or equa e Location: Air Temp (deg C)	I to required TTF.
	Section of Pa nit or Probe Loc Date Enter	vement for Op ation - From: <u>Time</u> Enter	Age (hours) Enter 0.00	Temp (deg C) Enter	it for Loading L TTF at age (deg C-hr)	by Maturity To Probe Sum TTF (deg C-hr)	than or equa e Location: Air Temp (deg C)	I to required TTF.
	Section of Pa nit or Probe Loc Date Enter	vement for Op ation - From: <u>Time</u> Enter	Age (hours) Enter 0.00	Temp (deg C) Enter	it for Loading L TTF at age (deg C-hr)	by Maturity To Probu Sum TTF (deg C-hr) 0	than or equa	I to required TTF.
	Section of Pa nit or Probe Loc Date	vement for Op ation - From: <u>Time</u> Enter	Age (hours) Enter 0.00	Temp (deg C) Enter	it for Loading L	by Maturity To Probu Sum TTF (deg C-hr) 0	than or equa	I to required TTF.

			MATURITY	- STREN	GTH DEVE	ELO	PMENT MOR-	CPL					
COUNTY:			MONITOR: Jenkin				(Dec.			Sec. 2	0		
URVE #:			and a state of the			-		INSPECTOR:					
PROJ. #: IM-35-5(99)		REP/CONTRACTOR:			Ma	inatt's		DATE:	05/05/03				
BEAM #	LOAD AT BREAK	TABLE VALUE	BREAK	WIDTH	DEPTH		FLEXURAL	FLEXURAL	AGE AT BREAK	TTF CH 1	TTF CH 2	AVERAGE TTF	BEAM
	(lbs)	(lbs)	(in)	(in)	(in)	-		CPL (psi)	(days)	P. 1.	Planta	-	(AVG
	Enter	Enter	Enter	Enter 5.98	Enter 6.02		0.124586	386	Enter 24	Enter	Enter 650	650	Ente 26
1	3000	3100	0.5							650			
2	3100	3250	0.5	6.00	6.01		0.124584	405	24	650	650	650	26
3	3050	3150	0.5	6.00	6.02		0.124171	391	24	650	650	650	26
4	3450	3400	0.5	5.98	6.00		0.125418	426	38	800	850	825	24
5	3550	3450	0.5	6.00	6.00		0.125000	431	38	800	850	825	24
6	3500	3425	0.5	6.00	6.00		0.125000	428	38	800	850	825	24
7	4000	4100	0.5	5.98	6.00		0.125418	514	55	1100	1150	1125	22
8	3990	4000	0.5	5.98	6.00		0.125418	502	55	1100	1150	1125	22
9	4000	4100	0.5	6.00	6.00		0.125000	513	55	1100	1150	1125	22
10	4600	4650	0.5	6.00	6.00		0.125000	581	72	1500	1500	1500	23
11	4700	4680	0.5	6.00	6.00		0.125000	585	72	1500	1500	1500	23
12	4750	4700	0.5	5.98	6.00		0.125418	589	72	1500	1500	1500	23
	INFORMAT		East		1	_				_	-		_
MID	CINFORMAT	AIR:	Ente 7.2					Matu	rity Curve				
				-					xural Strengths				
	_	SLUMP:	2	4		700			1 2 7 1				
		w/c:	0.4									-	
		MIX:	C-4WF		11							+-	
		SH SOURCE:	Port Ne	al #4	11								
		FS SOURCE:											
	CEME	NT SOURCE:	Lehi	0		600			*				
COAL	RSE AGGREGA	TE SOURCE:	Ames	Mine	0.				1 1				
INTE	RM. AGGREGA	TE SOURCE:		_	No.				1				
F	INE AGGREGA	TE SOURCE:	Vand	alia	()s				A				
	WATER REDU	CER BRAND:	Darata	rd 17		500			×.			Regre	
		Add. Rate:	20	Ζ.	ngti	500			1			× Stren	gths
	AIR ADMIXT	URE BRAND:	Daravai	r 1400	Stre				1			-	
_		Add. Rate:	60	Ζ.	Tal				6				
м	ETHOD OF DE	ELOPMENT:	Maturity	Meter	Flexural Strength (psi) MOR-CPI				/K				
Desire	ed Flexural Stren	igth (MOR-CPL):	500	psi] =	400		X					
	REQUIR	ED TTF:	1066										
		-											
						300 2.	000		3.000			4.000	
		in the second							of TTF (C-hou	rs)			
	Certified Col	ntractor Rep	resentative -	_		_		Comments:					
					Signature	е							
		aturity Curr	Davieward										
	M	aturity Curv	e Reviewed -		esting Engi	inee	r						
RCE D	ME Central M	Aaterials, Cor	atractor	16	sung Engl	mee							

cc: RCE, DME, Central Materials, Contractor

9

CURVE #:	1	1			MONITOR:	Jenkins			INS	SPECTOR:	S	mith
	IM-35-5(99)	1			TRACTOR:					tion DATE:	6/11/03	
												1
-	BEAM#	LOAD AT	TABLE	BREAK	WIDTH	DEPTH	FLEXURAL	FLEXURAL	AGE AT	CH 1	CH 2	AVERAG
		BREAK (lbs)	(lbs)	LOCATION (in)	(in)	(in)	CUEFFICIEN	(psi)	BREAK (DAYS)	CHI	CH2	TTF
		Enter	Enter	Enter	Enter	Enter		(psi)	Enter	Enter	Enter	-
	1	4000	4100	0.5	6.00	6.00	0.125000	513	39	1000	1000	1000
	2	3990	4000	0.5	6.00	6.00	0.125000	500	39	1000	1000	1000
	3	4000	4100	0.5	6.00	6.00	0.125000	513	39	1000	1000	1000
			1									
	AIR:			Enter				-				
	SLUMP:	2.5		Enter				Verificatio	n Curve			
		0.42		Enter				of All Flexura	Strengths			
		C-4WR-C										
	FLY ASH:	Port Neal	#4		800			1 1	1 1		÷	
	GGBFS:											
	CEMENT:			1								
COARSE	AGGREGATE:	Ames Mir	ne								-	
	AGGREGATE:		1	2	700						-Regression	
FINE	AGGREGATE:	Vandalia	0									
WAT	R REDUCER:	Daratard	17								 Verification 	
	Add. Rate:				CPL					_	-Upper Linit	
AIF	ENTRAINER:	Daravair 1	400		NO 600						- Opper Linit	
	Add. Rate:	6 oz.	_	le de la della d				1.		-	-Lower Limit	
Method of	Development:	Maturity N	leter		sd) a			1 1/				
REQ	UIRED TTF:	1066			angth			11.				
	CURVE VERIFI	CATION			Flexural Strength (psi) MOR-CPL			1.1				
	CONVE VENIN		-	-	Kura			111				
-	TTF @ Break	1000			Flee			1.1.1.				
								1/1		100		
	Beam 1				400			//				
	MOR (psi)	513						1				
	Beam 2											
	MOR (psi)	500	1					/				
	Beam 3		1		300							
	MOR (psi)	513				2.000		Log of TTF (C-hour		4	.000	
	Beam Avg.							Log of TTF (C-hou	5)		<u></u>	
	MOR (psi)	508]									
-	Coloriate d	1	Denne					Commonte: F		_		
	Calculated psi @ TTF	485	Range Minimum	435	Curve Veri	fication		Comments:				1
	psilerir	400	Mirinican	400	OK	IGaliOn	1					
		1		505	UN							
			Maximum	535				Verification stre	anoth about th	o uppor limit	deac pet	
								require a new of		ie upper innit.	does not	
Certifie	d Maturity Cont	tractor Repr	esentative -					qui e a new c				
					Signature							
	Maturity Curve	Varification	Reviewed									
-	naturny curve	v ennication	Nevieweu -	Te	esting Engine	er						
				14	and an indiana							MATURITY XL

Matls. IM 383

10

Procedure to Determine Datum Temperate Setting for Humboldt Maturity Meters

Key

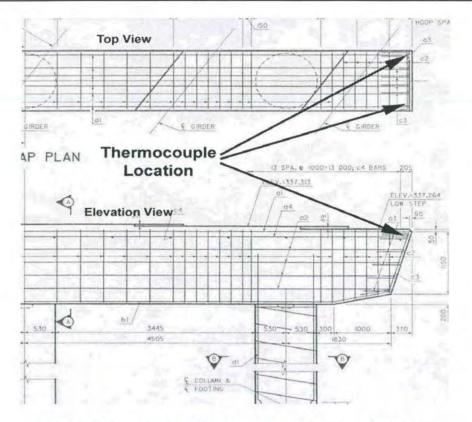
Press ENTER

Displays

PRESENT VALUES CH 1 Temp: XX

RECORDING 1. START

Press REC


Press REC

SETUP 1. DATUM TEMP

Press ENTER

SETUP DATUM TEMP: -10

If datum temperature is not set to -10° C, press the up (\uparrow) or down (\downarrow) arrows to set the maturity meter to -10. Then press ENTER to save the settings.

Figure 1. Typical thermocouple location placement in pier cap Use similar method for thermocouple placement in other structural elements.

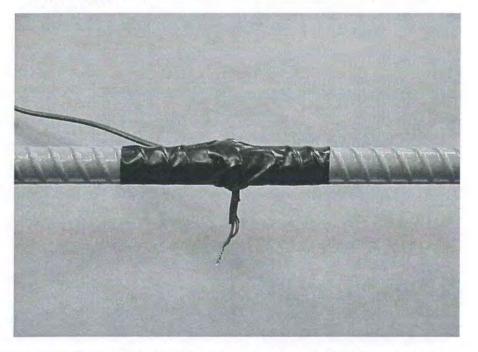
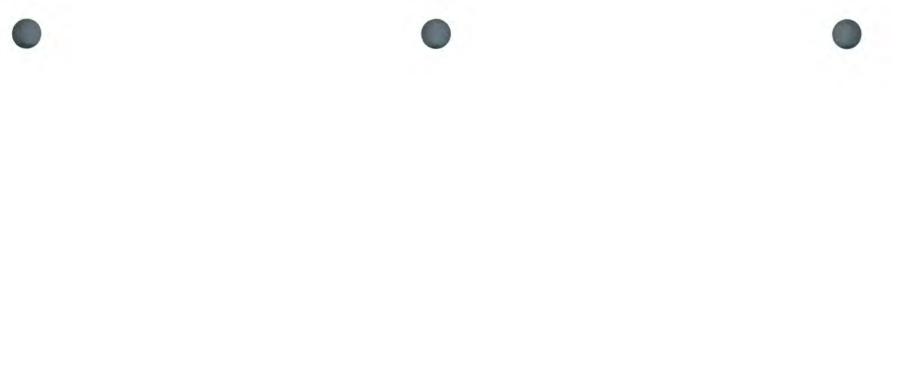
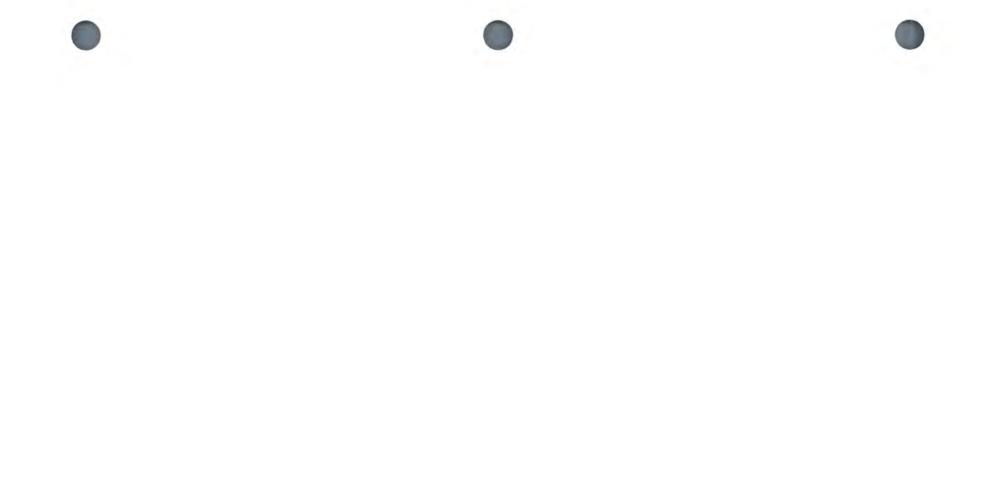




Figure 2. Typical attachment of thermocouple to reinforcing steel

Iowa Department of Transportation

Office of Materials

April 17, 2007 Supersedes October 18, 2005 Matls. IM 385

TEMPERATURE OF FRESHLY MIXED CONCRETE

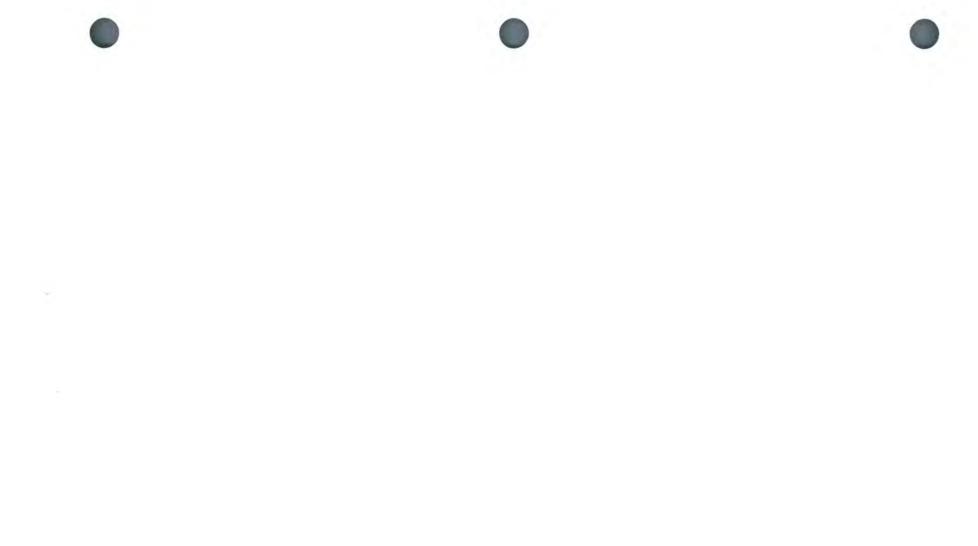
SCOPE

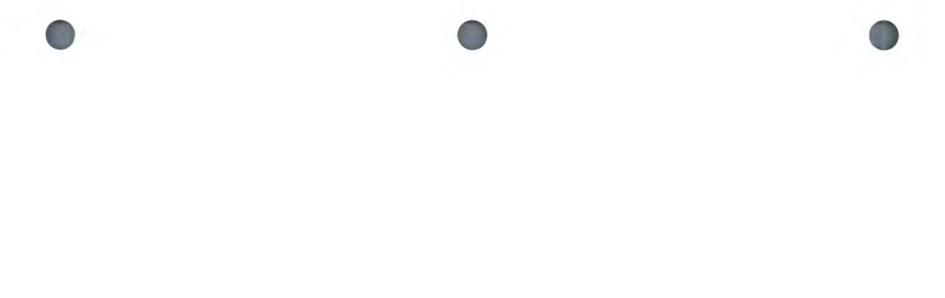
This test method covers the determination of temperature of freshly mixed Portland Cement Concrete.

This standard may involve hazardous materials, operations, and equipment. This standard does not address all of the safety problems associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices.

SIGNIFICANCE & USE

This test method provides a means for measuring the temperature of freshly mixed concrete. It may be used to verify conformance to a specified requirement for temperature of concrete. For specification compliance, temperature shall be measured by means of an immersion temperature-measuring device. Infrared thermometers may be used for information purposes only.


PROCEDURE


- A. Apparatus
 - 1. Container. The container shall be made of nonabsorptive material and large enough to provide at least 3 in. (75 mm) of concrete in all directions around the sensor of the temperature-measuring device; the concrete cover shall also be at least three times the nominal maximum size of the coarse aggregate.
 - 2. Temperature-measuring Device. The temperature-measuring device shall be capable of reading the temperature of the freshly mixed concrete to ±1°F (±0.5°C) throughout the entire temperature range likely to be encountered in the fresh concrete. Liquid-inglass thermometers having a range of 0°F to 120°F (-18°C to 49°C) are satisfactory. Other thermometers of the required accuracy, including the metal immersion type, are acceptable.
 - 3. Thermometer Marking. Partial-immersion liquid-in-glass thermometers (and possibly other types) shall have a permanent mark to which the device must be immersed without applying a correction factor.
 - 4. Reference Temperature-measuring Device. The reference temperature-measuring device shall be a liquid-in-glass thermometer readable to 0.5°F (0.2°C) that has been verified and calibrated. The calibration certificate or report indicating conformance to ASTM E77 requirements shall be available for inspection.

1

- B. Calibration of Temperature-measuring Device
 - Each temperature-measuring device used for determining the temperature of freshly mixed concrete shall be calibrated before initial use, or whenever there is a question of accuracy. This calibration shall be performed by comparing the readings on the temperature-measuring device at two temperatures at least 27°F (15°C) apart.
- C. Sampling Concrete
 - The temperature of freshly mixed concrete may be measured in the transporting equipment providing the sensor of the temperature-measuring device has at least 3 in. (75 mm) of concrete cover in all directions around it.
 - 2. If the transporting equipment is not used as the container, a sample shall be prepared as follows:
 - a. Immediately prior to sampling the freshly mixed concrete, dampen (with water) the sample container.
 - b. Sample the freshly mixed concrete in accordance with IM 327.
 - c. Place the freshly mixed concrete into the container. (NOTE: When concrete contains a nominal maximum size of aggregate greater than 3 in. (75 mm), it may require 20 minutes after mixing before the temperature is stabilized.)
 - d. Complete the temperature measurement of the freshly mixed concrete within five minutes after obtaining the sample.
- D. Test Procedure
 - 1. Place the temperature-measuring device in the freshly mixed concrete, so the temperature-sensing portion is submerged in a minimum of 3 in. (75 mm) of concrete. Gently press the concrete around the temperature-measuring device at the surface of the concrete so the ambient air temperature does not affect the reading.
 - Leave the temperature-measuring device in the freshly mixed concrete for a minimum period of two minutes or until the temperature reading stabilizes, then read and record the temperature.
 - 3. Complete the temperature measurement of the freshly mixed concrete within five minutes of obtaining the sample.
 - Record the measured temperature of the freshly mixed concrete to the nearest 1°F (0.5°C).

Iowa Department of Transportation

Office of Materials

October 16, 2007 Supersedes April 17, 2007 Matls. IM 401

HYDRAULIC CEMENTS

GENERAL

Portland Cement shall meet the requirements of ASTM C-150 for the type specified. When blended cement is to be furnished, it shall meet the requirements of ASTM C-595. Cement Type I, II, III, IP, and IS shall also meet the additional requirements outlined in Section 4101 of the Standard Specifications. Approval of any type of Portland and blended cements will be based on certification by an approved plant or upon source sampling and testing before being incorporated into the work. Cement sampling and testing will be used only for establishing a basis for plant approval or for unusual situations. Approved cement producers and distribution terminals are listed in the Appendixes of this IM.

AVAILABLE CEMENT TYPES

ASTM C150

Type I	For general use.
Type II	For moderate sulfate resistance. C ₃ A less than 8%
Type III	High early strength. Generally, a finer ground Type I cement.
ASTM C595	
Type IS	Type I Slag is a Portland cement blended, or clinker interground, up to 95% GGBSF.
Type IP	Type I Pozzolan is a Portland cement blended or clinker interground, up to 40% pozzolan.

WHITE CEMENT

White cement sources shall meet the requirements of ASTM C150, except the maximum Fe₂O₃ shall not exceed 0.5%. Approved sources of white cement are listed in the Appendix B.

SAMPLING & TESTING

Samples will be taken of the cement while in storage, or at time of manufacture. Samples will be secured of each 400 tons (400 Mg) or less, from a given lot. A lot is considered an identified unit of cement, such as a bin or silo. Acceptance may be on the basis of time of set, fineness, soundness and air content or mortar, if other tests continuously meet the requirement of the specifications. Cement shall not be incorporated until the above-mentioned test results and certified mill test data are available. Each shipment shall be accompanied by two copies of an invoice or bill of lading, which bear a statement by the producer, attesting to the type of cement, lot number, quantity, and transport tanker number.

PLANT CERTIFICATION

A. Accepted Quality Control Program

The sampling and testing frequency shall be that which the District Materials Engineer considers necessary for proper quality control. The control of the production from each grinding mill type shall be considered separately. The following minimum testing frequencies are presented as a general guideline:

- One sample representing 24 hours of production to be tested for air content, false set, and soundness. Determinations of free lime may be used to alter the frequency of testing soundness.
- 2. One sample representing 4 hours production to be tested for time of set and fineness.
- 3. One sample representing 48 hours production to be tested for chemical analysis.
- 4. One sample representing 4 day's production to be tested for 3- and 7-day compressive strength.

The sampling, tests and testing frequencies required may vary from the above guidelines depending of the particular production problems of the plant. In all cases, the quality control procedure used shall be submitted in writing to the District Materials Engineer for approval.

The plant sample test records shall be available for study by Highway Division personnel for at least seven years after the cement represented has been produced.

B. Control Laboratory Approval

The Portland Cement plant is required to have a control laboratory complaint with ASTM C1222, Standard Practice for Evaluation of laboratories Testing Hydraulic Cement. This laboratory will perform testing on the applicable types of cement produced (ASTM C150/AASHTO M85, C595/AASHTO M240, C1157) and shipped for consumption for Iowa DOT projects. A control laboratory will be considered approved if it is properly equipped and staffed to perform tests required for an accepted Quality Control Program. AASHTO accreditation for hydraulic cement testing of the applicable cement types is acceptable. Continued approval of the control laboratory will depend on the comparison of its test results with those of the Highway Division Ames Laboratory. If major differences are found, an attempt to resolve them should be made as quickly as possible. Continued unresolved differences in test results will be considered a basis for discontinuing control laboratory approval.

C. Monitor Sampling/Testing at Production Plant or Distribution Center of a Regular Supplier

A **Regular Supplier** is one that furnishes cement to lowa DOT or other public roads projects on a regular and continual basis. To establish an initial quality control history, the production of cement from the plant of a Regular Supplier shall first be sampled at the rate of 1 sample per 400 tons (400 Mg) until 20 samples have been tested. For a cement plant located outside of lowa, test results of host state transportation agency may be accepted for establishing the 20-sample history. Otherwise, 20 samples can be taken at an lowa terminal where the cement is stored before shipping to a project. After establishing the 20-sample history, random samples shall be obtained at the rate of one sample per lot. However, per the approval of the District Materials Engineer, the rate of these random samples may not exceed one sample per month. Whenever possible, these random samples shall be obtained from the production plant. If it is not practical to sample from the production plant, random samples may be obtained from bins at a distribution terminal of the Regular Supplier. A lot is considered to be 10,000 tons (10,000 Mg) of certified production. Iowa-certified cement at a distribution terminal of a Regular Supplier shall be sampled and tested at a minimum rate of one sample each calendar quarter.

A sample shall be obtained from the plant of a Regular Supplier twice a year, preferably in January and July. The sample will be split and tested for complete chemical and physical properties by supplier's control laboratory and the Highway Division Ames Laboratory, respectively. The date of the split sampling and load out silo number will be identified on the sample identification report for later comparison.

D. Monitor Sampling/Testing at Production Plant and Distribution Terminal of an Intermittent Supplier

An **Intermittent Supplier** is one that furnishes cement to Iowa DOT or other public roads projects in small quantities and at irregular intervals.

Establishment of initial quality control history of an Intermittent Supplier shall be the same as that required of a Regular Supplier.

If the plant is making shipments directly from the plant to lowa DOT or other public roads projects, samples of that cement shall be obtained and tested a minimum of once each calendar quarter.

Cement at a distribution terminal of an Intermittent Supplier shall be sampled and tested at the minimum rate of one sample each calendar quarter or prior to use.

E. Quality Control

If a producer's quality control sample of a monitor sample test result exceeds the established critical limits, additional samples shall be taken of the lot represented at the rate of I sample per 400 tons (400 Mg). This sampling rate shall continue until 2 consecutive test results fall within the critical limits, at which time the sampling rate may be reduced to the sampling rate shown above. The producer shall immediately advise the District Materials Engineer responsible for monitoring the plant, when critical limits have been exceeded.

F. Co-mingling of Cement

Mixing of cement from different sources, different plants, or of different types in one storage bin or silo will not be allowed.

At ready mixed concrete plants and paving batch plants, a cement storage bin shall be emptied, as far as practical, prior to refilling from a different source. Type IP or Type IS cement shall be stored in bins not used for Type I, II, or III cement.

G. Addition of Limestone

Up to 5% of limestone by mass is permitted in amount such that the chemical and physical requirements described in ASTM C150 are met. When limestone is used, the manufacturer shall inform the Office of Materials in writing on the amount of the addition. The manufacturer shall also supply comparative test data on chemical and physical properties of the cement with and without limestone. The amount of limestone used shall be included in the manufacturer's Mill Test Reports.

H. Mill Test Reports

Mill Test Reports covering cement to be certified shall be submitted to the Cement and Concrete Engineer at the Central Laboratory at Ames, and if requested, to the District Materials Engineer who monitors the plant. In addition, the alkali equivalent for the clinker used in production of Type IP and IS cements shall be submitted to the Cement and Concrete Engineer.

An electronic form (Excel spreadsheet) is acceptable.

The plant of a regular supplier is required to submit reports for ASTM C917, Standard Test method for Evaluation of Cement Strength Uniformity at least semiannually.

I. Removal from Approved List

A producer that does not supply lowa's state or county projects during a three consecutive year period shall be removed from the list of approved sources of Portland cement.

J. Percent Alkali Equivalent

The percent alkali equivalent listed in Appendix A shall be used in calculating the alkali level of the cementitious materials which may affect proportions for concrete mixtures on construction projects, when limitations are specified. Any adjustments in mixture proportions shall be the responsibility of the contractor and approved by the engineer.

K. Type IP and IS for Patching Applications

Type IP and IS may be approved for patching provided the following criteria is met:

Compressive strength for a five hour Class M patching mix, using the blended cement, shall be equal to or greater than the compressive strength achieved using the same mix with the Type I/II cement used to produce the blended cement.

L. Certification By Other States

lowa DOT will accept cements and cement blends certified by other state transportation agencies, providing the process complies with the following agreement.

- The host state agency will require the cement plant within its boundaries to have a laboratory compliant with ASTM C1222, Standard Practice for Evaluation of Laboratories Testing Hydraulic Cement. This laboratory will perform testing on the applicable types of cement produced (ASTM C150/AASHTO M85, C595/AASHTO M240, C1157) and shipped for state agencies consumption. AASHTO accreditation for hydraulic cement testing of the applicable cement types is acceptable. Agency laboratories used for verification testing must meet the same criteria.
- 2. The host state agency will require the cement plant within its boundaries to have a printed, agency acceptable quality control/quality assurance plan for the production of cements used by state agencies. The plan must include commitments to comply with ASTM C1222 and ASTM C183, Standard Practice for Sampling and the Amount of Testing of Hydraulic Cement. The host state agency will verify compliance with the quality control plan.
- The host state agency will require the cement producer to maintain and provide, for each lot (silo) of cement shipped, a compilation of Mill Test Reports in an electronic form (Excel spread sheet). The applicable data will be provided to the host state agency at least semiannually.
- 4. The host state agency will require the cement producer to submit split samples of a regular Portland cement (ASTM C150/AASHTO M85) and a blended cement (ASTM C595/AASHTO M240) or performance specification cement (ASTM C1157) if produced, semiannually for verification testing.
- 5. The host state agency will require the cement producer to submit reports for ASTM C917, Standard Test Method for Evaluation of Cement Strength Uniformity From a Single Source, for both a regular Portland cement and a blended cement, if produced, at least semiannually.
- 6. The host state agency will require the cement producer to maintain production and quality control/quality assurance records for at least seven years and make those records available if requested.
- 7. The host state agency will review submittals from the cement producer along with agency test results. If deficiencies are discovered, the state agency will monitor corrective actions taken by the producer until the deficiencies are corrected. The reciprocal agreement state agency will be notified of the deficiencies and of each occurrence.
- 8. Any test results or submittals collected by the host state agency may be made available to the reciprocal agreement state agency upon request.
- 9. All cement plant information and data is confidential within the limits of a public agency and is for state agencies information and inspection only.

- 10. Quality assurance test results of field samples, performed by a reciprocal state, shall be reported to the host state agency when non-compliance occurs. The reciprocal state agency will deal directly with the cement producer. The host state agency will take action as described in Item 7. The host state agency shall notify all reciprocal agreement state agencies when non-compliance occurs.
- 11. Cement tests or requirements beyond the standards stated above may be provided to reciprocal state agencies by agreement between the host state and reciprocal state agencies.

CERTIFICATION DOCUMENTS

The producer of certified cement shall furnish for the project records, two invoices or bill of lading copies, which bear the following certification statement and the signature of a responsible company representative:

CERTIFICATION STATEMENT

The material herein described has been sampled and tested as prescribed by the Highway Division of the Iowa Department of Transportation and complies with the applicable specification requirements for type ______ cement.

Bin No._____ Signed ____ Date

The bills of lading or invoices shall include project number, if available, source name, source location, source code, type, and quantity in the shipments. For blended cements (Types IP and IS), the above type designation shall include the suffix (X), where (X) equals the targeted percentage of slag or pozzolan in the product.

In the case of truck shipments, these copies of the bill of lading or invoice shall accompany each load, and shall be retained at the project or ready mixed concrete plant for the project engineer records. In the case of rail shipments, these copies shall be mailed to the project or ready mix plant.

The truck tanker shall have a copy of the invoice or bill of lading attached directly to the tanker portion of the truck. When the tanker unloads the contents at the project site, the unloading time and material final destination (storage "pig" number) shall be marked on this copy and left with the invoice or bill of lading copies.

In the case of more than one project being supplied by a ready mixed concrete plant, the plant shall furnish the project engineer, for each project, either a copy of each bill of lading or invoice, or a listing of the bills of lading or invoices representing the cement incorporated in the project. This listing shall bear the signature of a responsible plant representative.

PROJECT DOCUMENTATION

The manufacturer, car or truck number, ticket number, cement type, and quantity of each shipment of cement used on a project shall be recorded on Form #830211, or Form #830224, whichever is applicable. In the case of paving, recording the first and last ticket for cement received each day on the Form #830224 will be sufficient.

PROJECT ASSURANCE SAMPLING

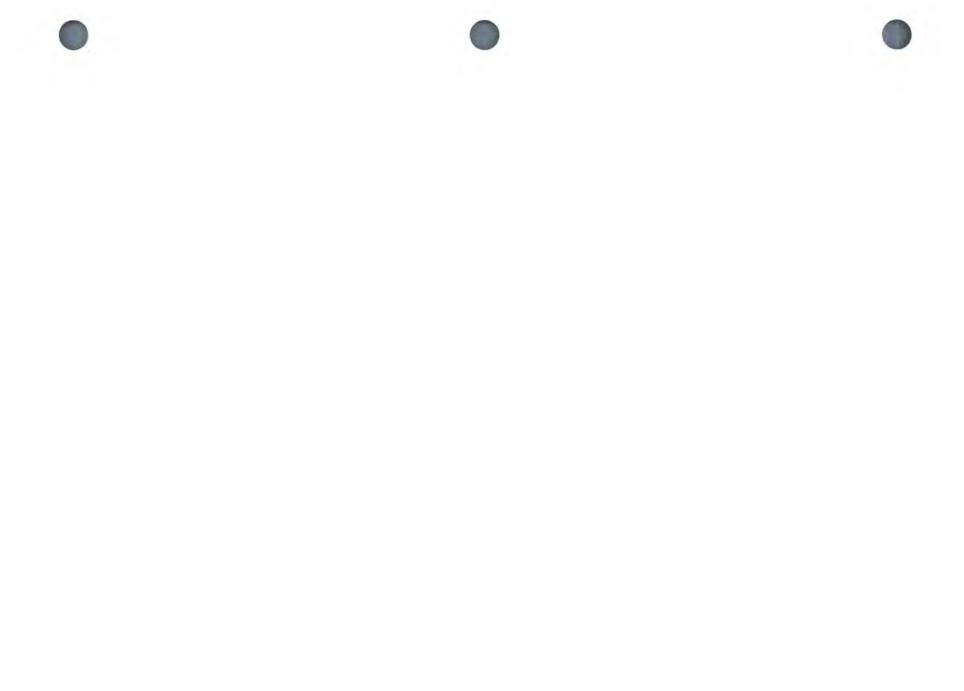
Assurance samples will be secured at the project site just before incorporation into the work. Test results, which do not comply with the specifications, may be considered sufficient cause to rescind approval to furnish cement on a certification basis. Construction that contains cement represented by assurance samples showing deficient test results, will be subject to the requirements of Article 1105.04 of the Standard Specifications.

October 16, 2007 Supersedes April 17, 2007

APPROVED SOURCES PORTLAND & BLENDED CEMENTS

The plant and terminal sources listed below are approved to furnish Type III Cement and other types of cement listed below on the basis of certification. A specific gravity of 3.17 should be used for Type III Cements.

		THE		LILING	
SOURCE	PLANT	TYPE	SP GR	CODE	APPROVED TERMINALS, NOTE 1
Ash Grove Cement	Louisville, NE	I/II IP (25)	3.14 2.95	PC0002 PC0008	Louisville, NE; Des Moines, IA; Hawarden, IA
Continental Cement Co.	Hannibal, MO	1 11	3.14 3.14	PC0201 PC0202	Bettendorf, IA; Hannibal, MO
Holcim, Inc.	Mason City, IA	l IS (25)	3.14 3.09	PC0301 PC0307	Mason City, IA; Des Moines, IA; Cedar Rapids, IA LaCrosse, WI; Rock Island, IL
Lafarge N. America	Buffalo, IA	I/II IS (20)	3.14 3.10	PC0502 PC0507	W. Des Moines, IA; Buffalo, IA; Winona, MN
Lehigh Cement Co.	Mason City, IA	I II	3.14 3.14	PC0401 PC0402	Mason City, IA
Monarch Cement Co.	Humboldt, KS	1/11	3.14	PC0802	W. Des Moines, IA


REGULAR SUPPLIERS

October 16, 2007 Supersedes April 17, 2007

INTERMITTENT SUPPLIERS							
SOURCE	PLANT	TYPE	SP GR	CODE	APPROVED TERMINALS, NOTE 1		
Ash Grove Cement	Chanute, KS	1/11	3.14	PC0102	Des Moines, IA		
St. Mary's Cement (Canada)	St. Mary's, Ontario	11	3.14	PC1702			
Buzzi Unicem	Pryor, OK Cape Girardeau, MO	1 1/11	3.14 3.14	PC1401 PC1502	Bonner Springs, KS		
GCC Dacotah	Rapid City, SD	1/11	3.14	PC1002	Sioux Falls, SD		
Hercules General/ Holcim, Inc.	Milaki, Greece	1.	3.14	PC1201	LaCrosse, WI		
Holcim, Inc.	Siam, Thailand Ssangyong, S. Korea Clarksville, MO Three Forks, MT Portland, CO Ada, OK Lima, Peru Jidong, China	/ / S (25) / / 	3.14 3.14 3.09 3.14 3.14 3.14 3.14 3.14 3.14	PC1602 PC2102 PC0901 PC0907 PC1102 PC2002 PC1901 PC2601 PC2702	LaCrosse, WI; Fremont, NE; Des Moines, IA Summit, IL; Lemont, IL		
Lafarge N. America	Alpena, MI Waukegan, IL Sugar Creek, Mo Fredonia, KS Exshaw, Alberta Grand Chain, IL	 / / / Tercem 3000	3.14 3.14 3.14 3.14 3.14 3.14 3.07	PC1801 PC2301 PC0702 PC0602 PC1302 PC2509	W. Des Moines, IA; Omaha, NE		
Lehigh Cement Co.	Canakkale, Turkey	1/11	3.14	PC2402			

NOTE 1: Each terminal can be used to finish all approved types of cements from the same producer.

lowa Department of Transportation

Office of Materials

October 16, 2007 Supersedes April 17, 2007 Matls. IM 403

CHEMICAL ADMIXTURES FOR CONCRETE

GENERAL

Air entraining, water reducing and retarding, and water-reducing admixtures for Portland Cement Concrete shall meet the requirements of applicable lowa Department of Transportation Specifications.

ACCEPTANCE

Acceptance of air entraining, water reducing and retarding, and water-reducing admixtures for use on Iowa Department of Transportation projects will be on the basis of manufacturer and brand name approval.

Approved manufacturers and brand names for the four different types of admixtures are listed in Appendixes A, B, C, D, E and F.

For all types of admixtures, the source, brand name, and lot/batch number must be identifiable by markings on the container and by description on the invoice. The manufacturer and supplier shall maintain a record of shipment, which identifies the brand, lot/batch number and certified test data for each shipment. This data shall be made available to the contracting authority when requested.

Material suspected of being frozen shall be sampled and tested prior to use. Material older than 18 months shall be sampled and tested prior to use.

MANUFACTURER, BRAND NAME APPROVAL, USAGE GUIDELINES

To obtain approval for any admixture type, the manufacturer shall submit the following items to the Office of Materials in Ames:

- 1. Product identification including brand name and product number
- 2. Complete manufacturer's recommendation for usage
- 3. Independent test data on admixture showing compliance with appropriate ASTM specification
- 4. A current Materials Safety Data Sheet (MSDS)
- 5. A one-quart (one-liter) representative sample

Specific requirements and testing procedures for each type of admixture are as follows:

A. Air Entraining Admixtures

Air entraining admixtures shall meet the requirements of Iowa Department of Transportation Standard Specifications Section 4103 and ASTM C260.

When an air-entraining admixture is produced by neutralizing vinsol resin with sodium hydroxide, the manufacturer shall submit to the Central Office a certification concerning the admixture in the following form:

"This is to certify that the product <u>(trade name)</u>, as manufactured and sold by the (company), is an aqueous solution of vinsol resin that has been neutralized with sodium hydroxide. The ratio of sodium hydroxide to vinsol resin is one part of sodium hydroxide to (number) parts of vinsol resin. The normal percentage of solids based on the residue dried at 105EC for 3 hours is (number). This percentage will be controlled within minus 1.0 and plus 3.0 of this figure. No other additive or chemical agent is present in this solution."

Brand name approval of air entraining admixtures does not preclude material rejection if satisfactory entrainment air content results in the plastic concrete are not readily and consistently achieved.

Approved brands of air entraining admixtures are listed in Appendix A of this IM.

B. Water-Reducing & Retarding Admixtures

These admixtures can be used to retard structural concrete in bridge floors and for water reduction, retardation, or water reduction and retardation in concrete pavement.

When they are used in bridge floors, use the dosage rates shown in Appendix B, for retarding structural concrete. Use the dosage rate shown for the respective concrete temperature.

When they are used in concrete pavement, use the dosage in Appendix B, for use in concrete pavement. Use the single dosage rate shown for water reduction, retardation, or water reduction and retardation. Dosage rates may be adjusted in accordance with the manufacturer's recommendation during cooler conditions to prevent overextending setting times.

Water-reducing and retarding admixtures shall meet the requirements of ASTM C494; Type D and those outlined herein.

In addition to meeting requirements of ASTM C494, Type D, tests may also be required to show strength and retardation performance as described in this Section B and strength and water reduction performance as described in Section C of this IM.

The analysis as a retarder utilizes concrete specimens from two D-57 mixtures. One mix shall contain the retarding admixture, and the other shall be a control without the retarder. The results of the concrete with retarder as compared to the control shall show:

A minimum increase of 10% in the 7-day compressive strength; a minimum increase of 33% in setting time; reduction in water requirements.

When use as a retarder is specified or authorized by the engineer, the contractor shall be responsible for its use and application of the proper dosage rate. When using retarding admixtures, it may be necessary to adjust the quantity of air entraining agent. When fly ash is used in the concrete, the dosage rate shall be applied to both the cement and fly ash combined.

Approved brands of water-reducing and retarding admixtures are listed in Appendix B of this IM. Recommended dosage is given for use in concrete pavement. Appendix B also contains a guideline for dosage rates and working time limits for use in structural concrete based on an estimated maximum temperature of the concrete during placement at the point of discharge. Working time limits have been determined by AASHTO T197 using 200 psi (1.38 MPa) penetration resistance.

C. Water-Reducing Admixtures (WR)

Water-reducing admixtures shall meet the requirements of ASTM C494, Type A, and those outlined herein.

Concrete specimens shall be made from two C-3 mixtures. One mix shall contain the WR admixture with an 8% reduction in cement mass and the other shall be a control with no cement reduction or WR admixture. Compressive strengths of WR mix must equal or exceed that of the control at 28 days. Water-reducing admixtures shall also be tested with a deck mix as per ASTM C494. When fly ash is used in the concrete, the dosage rate shall be applied to both the cement and fly ash weight combined.

Approved brands of water-reducing admixtures with their proper dosage rates are listed in Appendix C of this IM.

D. High Range Water-Reducing Admixtures (HRWR, sometimes called super water-reducer)

High Range water-reducing admixtures shall meet the requirements of ASTM C494; Type F and those outlined herein. Concrete specimens shall be made from two basic prestressed mixtures 705 lb. cement/yd³ (419 kg cement/m³). One mix shall contain the super water-reducing admixture and the other shall be a control mix with no HRWR admixture. There shall be no cement reduction in either mix. Compressive strengths of the HRWR mix must exceed that of the control at 1, 3, and 28 days. When fly ash is used in the concrete, the dosage rate shall be applied to both the cement and fly ash combined.

Approved brands of high range water-reducing admixtures with their recommended dosage rates are listed in Appendix D of this IM.

E. Non-Chloride Accelerating (NCA) Admixtures

Non-Chloride Accelerating Admixtures shall meet the requirements of ASTM C494, Type C or E, and those outlined herein. Total chloride content, which may come from some indirect sources, shall not exceed 0.1% in the admixtures.

Concrete specimens shall be made from two C-3 mixtures. One mix shall contain the NCA admixture and the other shall be a control with no NCA admixture. Compared to the control mix the NCA mix must achieve a minimum decrease of 33% in initial setting time, a minimum increase of 25% in 3-day compressive strength, and equal or greater in 28-day compressive strength.

Approved brands of Non-Chloride Accelerating Admixtures with their recommended dosage rates are listed in Appendix E of this IM.

F. Admixtures for Prestressed & Precast Concrete

These admixtures are used for dry-cast concrete. Benefits of these admixtures include increasing production rate, improvement of visual appeal, greater strength, more durable, better compactability, and extension of life of molds and machines parts. In order to get an admixture approval, its producer shall prove that the use of the admixture will not reduce strength of concrete, and provide evidence of the above-mentioned benefits.

Approved brands of admixtures for prestressed and precast concrete with their recommended dosage rates are listed in Appendix F of this IM.

If alternative requirements specified in ASTM C 494 are met, an admixture may be provisionally approved based on six-month test results. Producer shall submit one-year test results from an independent laboratory for final approval as soon as they become available. The failure or delay in submitting one-year results may lead to revoking of provisional approval.

Satisfactory evaluation reports by the National Transportation Product Evaluation Program (NTPEP) will be accepted for approval.

Approval of admixtures may be withdrawn because of deficient test results; product changes made after original approval, or unsatisfactory field performance.

AGITATION OF ADMIXTURES

Provision shall be made to stir, agitate, or circulate air-entraining admixtures prior to use so as to ensure a uniform and homogeneous mixture of solids and solution. It is the admixture supplier's responsibility to the contractor to provide a quality product. Therefore the admixture suppliers shall be responsible for the system used to maintain the quality product described above.

Retarding, water-reducing, and super water-reducing admixtures shall be stirred, circulated, or agitated thoroughly once a day prior to operation of the proportioning plant to maintain the solids in

October 16, 2007 Supersedes April 17, 2007

suspension. The agitating shall be done in such a way that the solution in the holding or storage tank is circulated for a minimum of five minutes each day per 100 gallons (380 liters) of solution or any fraction thereof. A circulating pump with a 250-watt (1/3 hp) pump motor and a 5/8-inch (16 mm) inside diameter hose will be considered as a minimum requirement. The engineer shall approve the method of agitation. **NOTE:** Introducing air into a tank will not be acceptable.

CERTIFICATION

A. FOR MANUFACTURER

At the beginning of each calendar year, a certification form will be sent to each manufacturer. If the admixture to be supplied during that year is identical with the formulation previously tested and approved, then the manufacturer shall complete the quality control limits to be followed and return it to the Office of Materials in Ames, Iowa.

B. FOR DISTRIBUTOR

At the beginning of each calendar year, a certification form will be sent to each distributor. The distributor shall certify that admixtures to be supplied are not altered and will be distributed as received from the manufacturer.

MONITOR SAMPLING & TESTING

Monitor samples will be obtained and sent to Central Materials for testing. Sampling frequency shall be according to IM 204. The sample size shall be one 1 pint (0.5 liter).

For all admixtures, only one acceptance sample per lot/batch is necessary. No project assurance samples are needed.

Samples will be tested for variation from the manufacturer target for solids, specific gravity and chloride content.

5

Matls. IM 403 Appendix A

APPROVED SOURCES AIR-ENTRAINING ADMIXTURES

VINSOL RESIN BRAND NAME	PRODUCER/DISTRIBUTOR	LOCATION
Catexol AE260 Catexol AE360	Amix Concrete Tech.	Middlebranch, OH
Daravair - 1400 Darex II AEA Darex EH AEA	W.R. Grace & Company	Boston, MA
Euco Air Mix	Euclid Chemical Distributed by Brett Admixtures	Cleveland, OH Des Moines, IA
MB AE 90 MB-VR Standard Micro-Air Pave-Air Pave-Air 90	BASF Admixtures, Inc.	Cleveland, OH
Polychem VR	General Resource Technology	Eagen, MN
RVR-15	RussTech, Inc.	Louisville, KY
Sika AER	Sika Corporation Dist. by Contractors Steel Corp.	Marion, OH Des Moines, IA
NON-VINSOL RESIN BRAND NAMI	E PRODUCER/DISTRIBUTOR	LOCATION
AEA-92 AEA-92S	Euclid Chemical Company Distributed by Brett Admixtures	Cleveland, OH
Daravair 1000 Daravair AT30 Daravair AT60	W.R. Grace & Company	Boston, MA
Everair Plus	BASF Admixtures, Inc.	Cleveland, OH
EXP 960 KAJ	W.R. Grace & Company	Boston, MA
Polychem AE	General Resource Technology	Eagen, MN
RSA-10	RussTech, Inc.	Louisville, KY
Sika AEA-15 Sika Air	Sika Corporation	Marion, OH
Super Air Plus* Air Plus*	Fritz-Pak Corporation	Dallas, TX

October 16, 2007 Supersedes April 17, 2007

Matls. IM 403 Appendix A

*Dry powdered admixture, prepackaged in water-soluble bag.

Matls. IM 403 Appendix B

APPROVED SOURCES WATER REDUCING & RETARDING ADMIXTURES & GUIDELINES

FOR USE IN STRUCTURAL CONCRETE: RETARDING ADMIXTURES GUIDELINES FOR DOSAGE RATES WITH ANTICIPATED WORKING TIME LIMITS

- 1. Dosage is in fluid ounces per 100 lbs. (mL/kg) of cement, fly ash, and ggbfs.
- 2. Check percent of air as retarding admixtures tend to increase air contents

Working time limits for various cements with -NO RETARDER

Mix Temp at point of discharge		Dosage	Type I/II, no fly ash	Type I/II with fly ash	Type I(SM), IP with fly ash	Type IS with fly ash	
°F	°C	fl. oz. (ml/kg)	hours	hours	hours	hours	
55	13	0	3.8	4.8	5.8	7.8	
65	18	0	3.1	3.8	4.6	6.1	
75	24	0	2.5	3.0	3.5	4.5	
85	29	0	2.2	2.5	2.7	3.2	
95	35	0	1.9	1.9	1.9	1.9	

Mix Tem of discha	p at point arge	Dosage	Type I/II, no fly ash	Type I/II with fly ash	Type I(SM), IP with fly ash	Type IS with fly ash
°F	°C	fl. oz. (ml/kg)	hours	Hours	Hours	hours
55	13	2 (1.3)		1		
		3 (2.0)				
		4 (2.6)				
_		5 (3.3)	1.7.7.1			
65	18	3 (2.0)	9.1	9.8	10.6	12.1
		4 (2.6)	10.2	11.0	11.7	13.2
		5 (3.3)	11.4	12.1	12.9	14.4
		6 (3.9)	13.2	13.9	14.7	16.2
75	24	3 (2.0)	6.2	6.7	7.2	8.2
		4 (2.6)	7.9	8.4	8.9	9.9
		5 (3.3)	9.4	9.9	10.4	11.4
		6 (3.9)	1			
		7 (4.6)	1000			
85	29	3 (2.0)	5.5	5.8	6.0	6.5
		4 (2.6)	6.1	6.4	6.6	7.1
		5 (3.3)	8.2	8.5	8.7	9.2
		6 (3.9)				
	-	7 (4.6)				
95	35	3 (2.0)	4.7	4.7	4.7	4.7
		4 (2.6)	6.2	6.2	6.2	6.2
		5 (3.3)	7.6	7.6	7.6	7.6
	1 3	6 (3.9)	8.1	8.1	8.1	8.1
		7 (4.6)				
-		8 (5.2)				1.4

Working time limits for various cements with - Plastocrete 161-MR

Mix Temp at point of discharge		Dosage	Type I/II, no fly ash	Type I/II with fly ash	Type I(SM), IP with fly ash	Type IS with fly ash
°F	°C	fl. oz. (ml/kg)	hours	hours	hours	hours
55	13	2 (1.3)				
		3 (2.0)			-	
		4 (2.6)				
		5 (3.3)				
65	18	3 (2.0)	4.9	5.6	6.4	7.9
		4 (2.6)	6.8	7.5	8.3	9.8
	_	5 (3.3)	10.9	11.6	12.4	13.9
_		6 (3.9)	19.3	20.0	20.8	22.3
75	24	3 (2.0)	3.4	3.9	4.4	5.4
		4 (2.6)	4.5	5.0	5.5	6.5
		5 (3.3)	6.6	7.1	7.6	8.6
		6 (3.9)	10.5	11.0	11.5	12.5
		7 (4.6)	18.0	18.5	19.0	20.0
85	29	3 (2.0)	2.8	3.1	3.3	3.8
		4 (2.6)	3.5	3.8	4.0	4.5
		5 (3.3)	4.6	4.9	5.1	5.6
		6 (3.9)	6.5	6.8	7.0	7.5
		7 (4.6)	9.9	10.2	10.4	10.9
95	35	3 (2.0)	2.1	2.1	2.1	2.1
		4 (2.6)	2.6	2.6	2.6	2.6
		5 (3.3)	3.3	3.3	3.3	3.3
		6 (3.9)	4.6	4.6	4.6	4.6
		7 (4.6)	7.0	7.0	7.0	7.0
		8 (5.2)	11.6	11.6	11.6	11.6

Working time limits for various cements with - Plastiment 100

Mix Temp at point of discharge		Dosage	Type I/II, no fly ash	Type I/II with fly ash	Type I(SM), IP with fly ash	Type IS with fly ash
°F	°C	fl. oz. (ml/kg)	hours	hours	hours	hours
55	13	2 (1.3)				
		3 (2.0)				
		4 (2.6)				
_		5 (3.3)				
65	18	3 (2.0)	5.5	6.2	7.0	8.5
		4 (2.6)	7.6	8.3	9.1	10.6
		5 (3.3)	12.1	12.8	13.6	15.1
		6 (3.9)	21.5	22.2	23.0	24.5
75	24	3 (2.0)	3.8	4.3	4.8	5.8
		4 (2.6)	5.0	5.5	6.0	7.0
		5 (3.3)	7.4	7.9	8.4	9.4
		6 (3.9)	11.7	12.2	12.7	13.7
		7 (4.6)	20.1	20.6	21.1	22.1
85	29	3 (2.0)	3.2	3.5	3.7	4.2
	-	4 (2.6)	3.9	4.2	4.4	4.9
		5 (3.3)	5.2	5.5	5.7	6.2
		6 (3.9)	7.3	7.6	7.8	8.3
-		7 (4.6)	10.9	11.2	11.4	11.9
95	35	3 (2.0)	2.4	2.4	2.4	2.4
		4 (2.6)	2.9	2.9	2.9	2.9
		5 (3.3)	3.7	3.7	3.7	3.7
		6 (3.9)	5.2	5.2	5.2	5.2
		7 (4.6)	7.9	7.9	7.9	7.9
		8 (5.2)	12.9	12.9	12.9	12.9

Mix Temp at point of discharge		Dosage	Type I/II, no fly ash	Type I/II with fly ash	Type I(SM), IP with fly ash	Type IS with fly ash
°F	°C	fl. oz. (ml/kg)	hours	hours	hours	hours
55	13	2 (1.3)				
		3 (2.0)				
-		4 (2.6)				
		5 (3.3)				
65	18	3 (2.0)	9.0	9.7	10.5	12.0
		4 (2.6)	1000			
		5 (3.3)				
		6 (3.9)			1	
75	24	3 (2.0)	6.1	6.6	7.1	8.1
	1	4 (2.6)	7.8	8.3	8.8	9.8
		5 (3.3)	9.2	9.7	10.2	11.2
		6 (3.9)				
_		7 (4.6)				
85	29	3 (2.0)	5.2	5.5	5.7	6.2
		4 (2.6)	6.7	7.0	7.2	7.7
		5 (3.3)	8.1	8.4	8.6	9.1
		6 (3.9)				
_		7 (4.6)				
95	35	3 (2.0)	4.5	4.5	4.5	4.5
		4 (2.6)	6.0	6.0	6.0	6.0
		5 (3.3)	7.4	7.4	7.4	7.4
		6 (3.9)				
		7 (4.6)				
		8 (5.2)	-			

Working time limits for various cements with - Pozzolith 100XR

Working time limits for various cements with - Daratard 17

Mix Temp at point of discharge		Dosage	Type I/II, no fly ash	Type I/II with fly ash	Type I(SM), IP with fly ash	Type IS with fly ash	
°F	°C	fl. oz. (ml/kg)	hours	hours	hours	hours	
55	13	2 (1.3)					
		3 (2.0)					
		4 (2.6)					
		5 (3.3)					
65	18	3 (2.0)	1				
		4 (2.6)					
		5 (3.3)					
		6 (3.9)					
75	24	3 (2.0)	4.3	4.7	5.3	6.3	
		4 (2.6)	6.6	7.1	7.6	8.6	
		5 (3.3)	7.6	8.1	8.6	9.6	
		6 (3.9)					
		7 (4.6)			1	1.5	
85	29	3 (2.0)	4.3	4.6	4.8	5.3	
	1.1	4 (2.6)	5.2	5.5	5.7	6.2	
		5 (3.3)	6.5	6.8	7.0	7.5	
		6 (3.9)					
-		7 (4.6)					
95	35	3 (2.0)	3.9	3.9	3.9	3.9	
		4 (2.6)	4.4	4.4	4.4	4.4	
		5 (3.3)	5.7	5.7	5.7	5.7	
		6 (3.9)					
		7 (4.6)				1	
		8 (5.2)					

6 (3.9)

3 (2.0)

4 (2.6)

5 (3.3)

6 (3.9)

7 (4.6)

3 (2.0)

4 (2.6)

5 (3.3)

6 (3.9)

7 (4.6)

3 (2.0)

4 (2.6)

5 (3.3)

6 (3.9)

7 (4.6)

8 (5.2)

75

85

95

24

29

35

Mix Temp at Dosage Type I/II, no Type I/II Type I(SM), Type IS point of fly ash with fly IP with fly with fly discharge ash ash ash fl. oz. (ml/kg) hours hours °F °C hours hours 2 (1.3) 55 13 13.6 3 (2.0) 9.6 10.6 11.6 11.4 12.4 14.4 4 (2.6) 10.4 5 (3.3) 12.3 13.3 15.3 16.3 8.2 8.9 9.7 11.2 18 3 (2.0) 65 4 (2.6) 10.0 10.7 11.5 13.0 5 (3.3) 11.7 12.4 13.2 14.7

12.9

7.5

9.9

11.9

12.5

6.8

9.6

11.9

11.9

6.8

9.9

11.8

11.8

13.6

8.0

10.4

12.4

13.0

7.1

9.9

12.2

12.2

6.8

9.9

11.8

11.8

14.4

8.5

10.9

12.9

13.5

7.3

10.1

12.4

12.4

6.8

9.9

11.8

11.8

15.9

9.5

11.9

13.9

14.5

7.8

10.6

12.9

12.9

6.8

9.9

11.8

11.8

Working time limits for various cements with - Eucon Retarder 100

Mix Temp at Dosage Type I/II, no Type I/II Type I(SM), Type IS point of fly ash with fly IP with fly with fly discharge ash ash ash °F °C fl. oz. (ml/kg) hours hours hours hours 13 2 (1.3) 55 4.5 5.5 6.5 8.5 3 (2.0) 5.5 6.5 9.5 7.5 4 (2.6) 7.0 8.0 9.0 11.0 5 (3.3) 3 (2.0) 65 18 4.8 5.5 6.3 7.8 4 (2.6) 5.6 6.3 7.1 8.6 5 (3.3) 6.8 7.5 8.3 9.8 6 (3.9) 75 24 3 (2.0) 5.2 5.7 7.2 6.2 4 (2.6) 5.7 6.2 6.7 7.7 5 (3.3) 6.7 7.2 7.7 8.7 6 (3.9) 7 (4.6) 29 3 (2.0) 4.8 5.1 5.8 85 5.3 4 (2.6) 5.4 5.7 5.9 6.4 5 (3.3) 6.2 6.5 6.7 7.2 6 (3.9) 7 (4.6) 95 35 3 (2.0) 4.5 4.5 4.5 4.5 4 (2.6) 5.1 5.1 5.1 5.1 5 (3.3) 5.7 5.7 5.7 5.7 6 (3.9) 6.5 6.5 6.5 6.5 7 (4.6) 8 (5.2)

Working time limits for various cements with - Catexol 1000R

4

Mix Temp at point of discharge		Dosage	Type I/II, no fly ash	Type I/II with fly ash	Type I(SM), IP with fly ash	Type IS with fly ash
°F	°C	fl. oz. (ml/kg)	hours	hours	hours	hours
55	13	2 (1.3)				
		3 (2.0)				2
		4 (2.6)	1			
		5 (3.3)				
65	18	3 (2.0)		1		
		4 (2.6)				
		5 (3.3)				
		6 (3.9)				
75	24	3 (2.0)	4.4	4.9	5.4	6.4
		4 (2.6)	4.6	5.1	5.6	6.6
		5 (3.3)	4.8	5.3	5.8	6.8
		6 (3.9)	5.7	6.0	6.7	7.7
		7 (4.6)				-
85	29	3 (2.0)	3.4	3.7	3.9	4.4
		4 (2.6)	3.6	3.9	4.1	4.6
		5 (3.3)	3.8	4.1	4.3	4.8
		6 (3.9)	4.0	4.3	4.5	5.0
-		7 (4.6)				
95	35	3 (2.0)				
		4 (2.6)				
		5 (3.3)				
		6 (3.9)				
		7 (4.6)	-			
		8 (5.2)				

Working time limits for various cements with - FR-IL

Working time limits for various cements with - Pozzolith 300R

Mix Temp at point of discharge		Dosage	Type I/II, no fly ash	Type I/II with fly ash	Type I(SM), IP with fly ash	Type IS with fly ash
°F	°C	fl. oz. (ml/kg)	hours	hours	hours	hours
55	13	2 (1.3)	4.5	5.5	5.5	8.5
		3 (2.0)	5.3	6.3	6.3	9.3
		4 (2.6)	6.8	7.8	8.8	10.8
		5 (3.3)				
65	18	3 (2.0)	4.6	5.3	6.1	7.6
		4 (2.6)	5.5	6.2	7.0	8.5
		5 (3.3)	6.8	7.5	8.3	9.8
		6 (3.9)				
75	24	3 (2.0)	4.7	5.2	5.7	6.7
		4 (2.6)	6.0	6.5	7.0	8.0
		5 (3.3)	7.2	7.7	8.2	9.2
		6 (3.9)				
		7 (4.6)			10	1
85	29	3 (2.0)	4.6	4.9	5.1	5.6
		4 (2.6)	5.3	5.6	5.8	6.3
		5 (3.3)	6.4	6.7	6.9	7.4
		6 (3.9)				1
		7 (4.6)	1			
95	35	3 (2.0)	4.1	4.1	4.1	4.1
		4 (2.6)	4.7	4.7	4.7	4.7
		5 (3.3)	5.6	5.6	5.6	5.6
		6 (3.9)	6.6	6.6	6.6	6.6
		7 (4.6)		2011		
		8 (5.2)				

5

APPROVED SOURCES WATER REDUCING & RETARDING ADMIXTURES

FOR USE IN CONCRETE PAVEMENTS:

<u>NOTE</u>: Mixed-to-placed time period may be extended as per Iowa DOT Standard Specifications Section 2301.13.D.

Brand Name	Producer/Distributor	Recommended Minimum Dosage	
		Kg/mL cementitious materials	100 lb./fl. oz. cementitious materials
Catexol 800 R	AXIM Concrete Technologies	2.0	3
Catexol 1000R	AXIM Concrete Technologies	2.0	3
Daratard 17	W.R. Grace & Company	2.0	3
Daratard HC	W.R. Grace & Company	2.0	3
Delvo Stabilizer	Degussa Admixtures, Inc.	2.6	4
Eucon Retarder 100	Euclid Chemical Company Distributed by Brett Admixtures	1.3	2
LC-500R	RussTech	2.0	3
Plastiment	Sika Corporation	1.3	2
Plastiment 100	Sika Corporation	2.0	3
Plastocrete 161	Sika Corporation	1.3	2
Plastocrete 161 M R	Sika Corporation	2.0	3
Pozzolith 100 X R	Degussa Admixtures, Inc.	2.0	3
Pozzolith 200N	Degussa Admixtures, Inc.	2.0	3
Pozzolith 300R	Degussa Admixtures, Inc.	2.0	3
Polychem R	General Resource Technology	2.0	3
Recover	W.R. Grace & Company	See Manufacturer's Recommendations	

<u>Brand Name (Con't)</u> Dosage	Producer/Distributor	Recommended Minimum	
Dosuge		Kg/mL cementitious materials	100 lb./fl. oz. cementitious materials
Standard Delayed Set	Fritz-Pak Corporation	2.6	4*
WRDA with Hycol	W.R. Grace & Company	2.0	3

*Dry powdered admixture, pre-packaged in water-soluble bag.

APPROVED SOURCES WATER REDUCING ADMIXTURES

CONCRETE PAVEMENT

		RECOMMENDED MIN. DOSAGE	
BRAND NAME	PRODUCER/DISTRIBUTOR	mL/kg cementitious <u>materials</u>	fl. oz./100 lb. cementitious <u>materials</u>
	Regular Water Reduce	ers	
#1920 Auger Aid	SPECCO Industries	5.2	8.0
Catexol 800 N	AXIM Concrete Technologies	2.0	3.0
Catexol 1000N	AXIM Concrete Technologies	1.3	2.0
Eucon WR	Euclid Chemical Company Distributed by Brett Admixtures	2.6	4.0
Eucon WR-75	Euclid Chemical Company Distributed by Brett Admixtures	2.0	3.0
Eucon WR-91	Euclid Chemical Company Distributed by Brett Admixtures	2.0	3.0
FinishEase NC	RussTech, Inc.	3.3	5.0
Glenium 3000 NS	BASF Admixtures, Inc.	2.6	4.0
Glenium 3030 NS	BASF Admixtures, Inc.	3.9	6.0
Glenium 3200 HES	BASF Admixtures, Inc.	1.3	2.0
LC-400	RussTech, Inc.	2.6	4.0
LC-400P	RussTech, Inc.	3.3	5.0
LC-500R	RussTech, Inc.	2.0	3.0
Master Pave	BASF Admixtures, Inc.	3.3	5.0
Master Pave⁺	BASF Admixtures, Inc.	2.6	4.0
Master Pave N	BASF Admixtures, Inc.	1.3	2.0

CONCRETE PAVEMENT (Continued)

		RECOMMENDE	MIN. DOSAGE
BRAND NAME	PRODUCER/DISTRIBUTOR	mL/kg cementitious <u>materials</u>	fl. oz./100 lb. cementitious materials
		1.	
	Regular Water Reducers (Co	<u>entinued)</u>	
Master Pave RI	BASF Admixtures, Inc.	1.3	2.0
Plastocrete 161	Sika Corporation Dist. by Contractors Steel Corp.	2.0	3.0
Plastocrete 169	Sika Corporation	2.6	4.0
Polychem 1000 General Resource Tech.		2.0	3.0
Polychem 400 NC	General Resource Tech.	2.0	3.0
Polychem KB-1000	General Resource Tech.	2.0	3.0
Pozzolith 200N	BASF Admixtures, Inc.	2.0	3.0
Pozzolith 220N	BASF Admixtures, Inc.	2.0	3.0
Pozzolith 322 N	BASF Admixtures, Inc.	1.6	2.5
PS 1466	BASF Admixtures, Inc.	1.3	2.0
Sikament 686	Sika Corporation	2.0	3.0
WRDA-82	W.R. Grace & Company	2.3	3.5
WRDA with Hycol	W.R. Grace & Company	2.0	3.0

CONCRETE PAVEMENT (Continued)

		RECOMMENDE	D MIN. DOSAGE
BRAND NAME	PRODUCER/DISTRIBUTOR	mL/kg cementitious <u>materials</u>	fl. oz./100 lb. cementitious <u>materials</u>
	Mid-range Water Reduc	cers	
CATEXOL 300GP	Axim	1.3	2.0
Daracem-65	W.R. Grace & Company	2.0	3.0
Eucon MR	Euclid Chemical Company Distributed by Brett Admixtures	3.9	6.0
MIRA 92	W.R. Grace & Company	1.6	2.5
Polyheed 900	BASF Admixtures, Inc.	2.0	3.0
Polyheed 997	BASF Admixtures, Inc.	3.3	5.0
Polyheed 1020	BASF Admixtures, Inc.	2.0	3.0
Polyheed 1025	BASF Admixtures, Inc.	2.0	3.0
Sikament HP	Sika Corporation	3.3	5.0

BRIDGE FLOOR REPAIR, OVERLAY, & RESURFACING

BRAND NAME	PRODUCER/DISTRIBUTOR	RECOMMENDED mL/kg cementitious materials	MIN. DOSAGE fl. oz./100 lb. cementitious materials
Eucon WR-91	Euclid Chemical Company Distributed by Brett Admixtures	2.0	3.0
Finish Ease NC	RussTech, Inc.	3.3	5.0
LC-400	RussTech, Inc.	2.0	3.0
LC-400P	RussTech, Inc.	2.6	4.0
LC-500R	RussTech, Inc.	2.0	3.0

BRIDGE FLOOR REPAIR, OVERLAY, & RESURFACING (Continued)

		RECOMMENDE	D MIN. DOSAGE
BRAND NAME	PRODUCER/DISTRIBUTOR	mL/kg cementitious <u>materials</u>	fl. oz./100 lb. cementitious <u>materials</u>
Master Pave	BASF Admixtures, Inc.	3.3	5.0
Master Pave RI	BASF Admixtures, Inc.	1.3	2.0
Plastocrete 161	Sika Corporation Dist. by Contractors Steel Corp.	2.0	3.0
WRDA-82	W.R. Grace & Company	2.3	3.5
WRDA with Hycol	W.R. Grace & Company	2.0	3.0

*<u>NOTE</u>: When concrete mobile mixer is used for bridge deck overlay, use same dosage rate per sack of cement.

APPROVED SOURCES HIGH RANGE WATER-REDUCING ADMIXTURES

		RECOMMENDED	MIN. DOSAGE
BRAND NAME	PRODUCER/DISTRIBUTOR	mL/kg cementitious <u>materials</u>	fl. oz./100 lb. cementitious <u>materials</u>
ADVA 100	W.R. Grace & Company	2.0	3.0
ADVA 170	W.R. Grace & Company	2.0	3.0
ADVA Cast 500	W.R. Grace & Company	2.0	3.0
ADVA Cast 530**	W.R. Grace & Company	2.0	3.0
ADVA Cast 540**	W.R. Grace & Company	3.3	5.0
ADVA Cast 575	W.R. Grace & Company	1.3	2.0
ADVA 140M	W.R. Grace & Company	1.3	2.0
ADVA 190	W.R. Grace & Company	2.0	3.0
Catexol 1000 SPMN	AXIM Concrete Technologies	7.8	12
Catexol 2000 NI	AXIM Concrete Technologies	11.8	18
Catexol Superflux 2000 PC**	AXIM Concrete Technologies	2.0	3.0
Daracem 19	W.R. Grace & Company	5.9	9.0
Daracem 100	W.R. Grace & Company	6.5	10
Eucon 37	Euclid Chemical Company Distributed by Brett Admixtures	7.8	12
Eucon 1037	Euclid Chemical Company Distributed by Brett Admixtures	6.5	10
EXP 950**	W.R. Grace & Company	1.3	2.0
Glenium 3000 NS	BASF Admixtures, Inc.	7.8	12
Glenium 3030 NS**	BASF Admixtures, Inc.	3.9	6.0
MIRA 92	W.R. Grace & Company	1.6	2.5
Glenium 3200 HES**	BASF Admixtures, Inc.	1.3	2.0
Glenium 3400 NV	BASF Admixtures, Inc.	2.0	3.0

HIGH RANGE WATER REDUCING ADMIXTURES (Continued)

		RECOMMENDED MIN. DOSAGE				
BRAND NAME	PRODUCER/DISTRIBUTOR	RECOMMENDEDMIN. DOSAGEmL/kgfl. oz./100 lbcementitiousmaterialsmaterialsmaterials1.32.05.28.02.03.04.67.0				
Glenium 7500*	BASF Admixtures, Inc.	1.3	2.0			
Melchem	General Resource Tech.	5.2	8.0			
Plastol 341**	Euclid Chemical Company Distributed by Brett Admixtures	2.0	3.0			
Plastol 341-S	Euclid Chemical Company Distributed by Brett Admixtures	4.6	7.0			
Plastol 5000**	Euclid Chemical Company Distributed by Brett Admixtures	3.0	10			
Plastol 5500**	Euclid Chemical Company Distributed by Brett Admixtures	2.0	3.0			
Polyheed 1020	BASF Admixtures, Inc.	3.9	6.0			
PS 1466**	BASF Admixtures, Inc.	1.3	2.0			
Rheobuild 1000	BASF Admixtures, Inc.	9.8	15			
Sikament 300	Sika Corporation	15.6	24			
Sikament 686	Sika Corporation	2.0	3.0			
Supercizer 1	Fritz-Pak Corporation	3.9	6.0*			
Supercizer 5	Fritz-Pak Corporation	3.9	6.0*			
Supercizer 6	Fritz-Pak Corporation	5.2	8.0*			
Supercizer 7	Fritz-Pak Corporation	2.5	4.0*			
Superflo 440	RussTech, Inc.	7.8	12			
Superflo 443	RussTech, Inc.	6.5	10			
Superflo 2000 SCC**	RussTech, Inc.	2.0	3.0			

HIGH RANGE WATER REDUCING ADMIXTURES (Continued)

		RECOMMENDED	MIN. DOSAGE
BRAND NAME	PRODUCER/DISTRIBUTOR	mL/kg cementitious <u>materials</u>	fl. oz./100 lb. cementitious <u>materials</u>
ViscoCrete 2100**	Sika Corporation	1.3	2.0
ViscoCrete 4100**	Sika Corporation	2.0	3.0
ViscoCrete 6100**	Sika Corporation	5.2	8.0

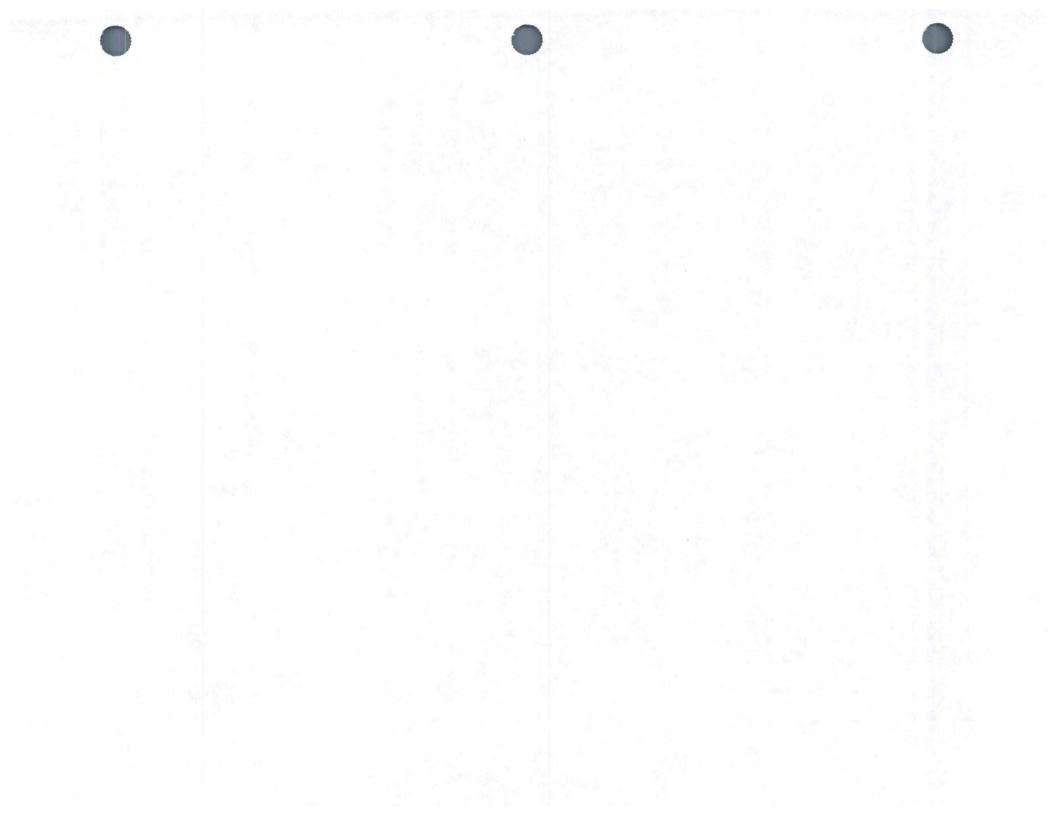
*Dry powdered admixture, prepackaged in water-soluble bag.

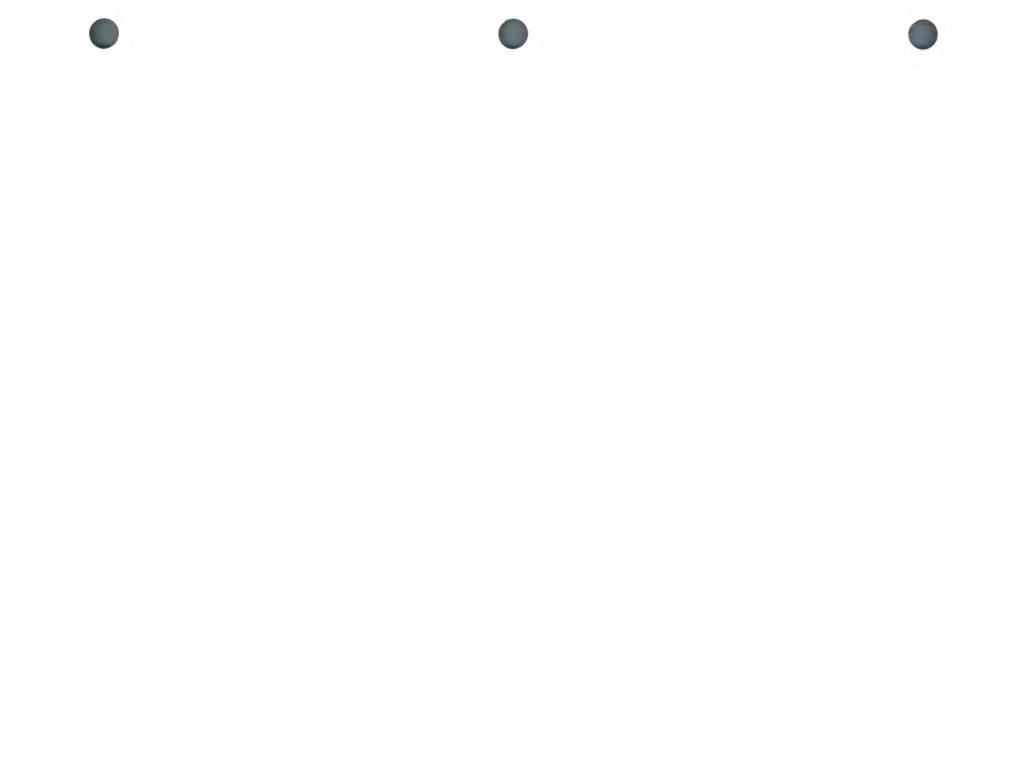
**These admixtures may be used to make self-consolidating concrete. For such an application, viscositymodifying admixture may be needed. The selection of viscosity-modifying admixture and rate of the admixtures should be based on manufacturer's recommendations.

..............

APPROVED SOURCES NON-CHLORIDE ACCELERATING ADMIXTURES

		RECOMMENDED	MINIMUM DOSAGE	
BRAND NAME	PRODUCER/DISTRIBUTOR	mL/kg cementitious <u>materials</u>	fl. oz./100 lb. cementitious <u>materials</u>	
Accelguard NCA	Euclid Chemical Company	7.8	12.0	
CATEXOL 2000 RHE	Axim	6.5	10.0	
Daraset 400	W.R. Grace & Company	6.5	10.0	
DCI	W.R. Grace & Company	See Manufacturer	's Recommendation	
Lubricon NCA (Also acts as a water r	W.R. Grace & Company educer)	6.5	10.0	
Plastocrete 161FL	Sika Corporation	3.9	6.0	
Polarset	W.R. Grace & Company	5.2	8.0	
Plychem Super Set	General Resource Technology	5.2	8.0	
Pozzolith NC 534	BASF Admixtures, Inc.	10.4	16.0	
Pozzutec 20	BASF Admixtures, Inc.	3.3	5.0	
Pozzutec 20+	BASF Admixtures, Inc.	3.3	5.0	
Rheocrete CNI	BASF Admixtures, Inc.	See Manufacturer	s Recommendation	
Sika Rapid-1	Sika Corporation	5.2	8.0	
SikeSet NC	Sika Corporation	6.5	10.0	


1


October 16, 2007 Supersedes October 17, 2006

APPROVED SOURCES ADMIXTURES FOR PRESTRESSED & PRECAST CONCRETE

			RECOMMENDED	MINIMUM DOSAGE
BRAND NAME	<u>USAGE</u>	PRODUCER/DISTRIBUTOR	mL/kg cementitious <u>materials</u>	fl. oz/100 lb. cementitious <u>materials</u>
Daravair M	Air Entraining	W.R. Grace & Company	1.0	0.67
Quantec PL-490) Plasticizer	W.R. Grace & Company	0.20	0.13
ADMIXTURES F	FOR DRY-CAST			
Eucon BK-S8	Plasticizer	Euclid Chemical Company	1.3	2.0
Eucon DC	Plasticizer	Euclid Chemical Company	1.3	2.0
Rheomix 700	Plasticizer	BASF Admixtures, Inc.	1.3	2.0
Rheomix 730S	Plasticizer	BASF Admixtures, Inc.	1.3	2.0
Rheomix 750S	Plasticizer	BASF Admixtures, Inc.	1.3	2.0
Rheomix 825	Plasticizer	BASF Admixtures, Inc.	1.3	2.0

Office of Materials

Iowa Department of Transportation

October 16, 2007 Supersedes October 19, 2004 Matls. IM 491.14

INSPECTION & ACCEPTANCE GROUND GRANULATED BLAST FURNACE SLAG (GGBFS)

GENERAL

Acceptance of Ground Granulated Blast Furnace Slag (GGBFS), the glassy, granular material produced when molten blast furnace slag is rapidly chilled, will be on the basis of approved sources and upon satisfactory test results on samples obtained at the project site.

Approval is based upon slag produced when the blast furnace is utilizing specific processes. Any change in the processes will void any source approval and require that a new approval be sought.

SOURCE APPROVAL

Approval of a GGBFS source is based on the requirement of ASTM C989.

A source may furnish Ground Granulated Blast Furnace Slag on the basis of certification provided:

A. The quality-monitoring program meets the minimum sampling and testing frequencies established in ASTM C-989. At least one sample for each 30 consecutive days shall be tested by the producer for conformance to Iowa Department of Transportation Specifications. The test reports for all monitor samples shall be submitted to the Iowa Department of Transportation, Office of Materials, within 45 days of the sampling date.

The Quality Control Laboratory will be considered approved if it is properly equipped and staffed to perform the tests required for an accepted Quality Control Program. Continued approval of the control laboratory will depend on the comparison of its test results with the lowa Department of Transportation Central Materials Laboratory. If major differences are found, an attempt to resolve them shall be made as quickly as possible. Continued unresolved differences in test results will be considered a basis for discontinuing control laboratory approval.

- B. The Ground Granulated Blast Furnace Slag has shown conformance to the applicable specifications for a continuous period of at least six months.
- C. Each shipment of Ground Granulated Blast Furnace Slag is properly certified.

The supplier of certified Ground Granulated Blast Furnace Slag shall furnish, for the project records, two invoices or bill of lading copies, which bear the following certification statement and the signature of a responsible company representative:

Certification Statement

The material herein described has been sampled and tested as prescribed by the Highway Division of the Iowa Department of Transportation and complies with the applicable specification requirements for Ground Granulated Blast Furnace Slag.

Date _____Signed_____

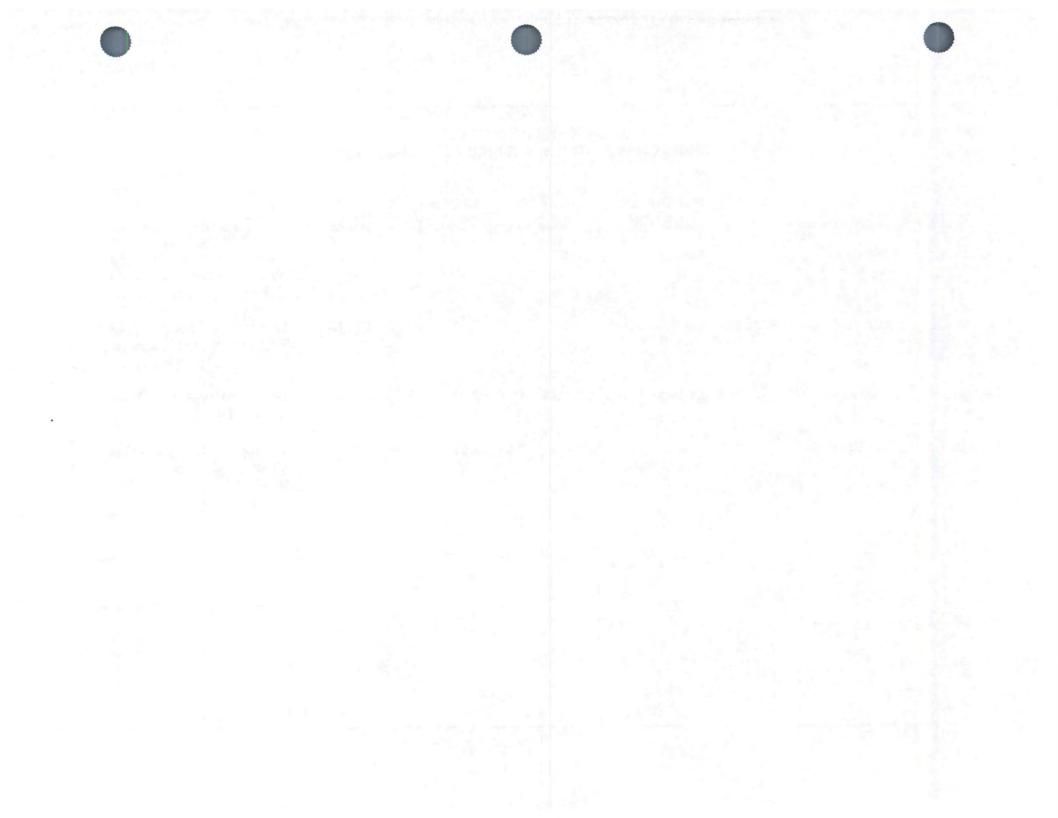
The bills of lading or invoices shall include project number, if available, source name, source location, source code, grade, and quantity of the shipments.

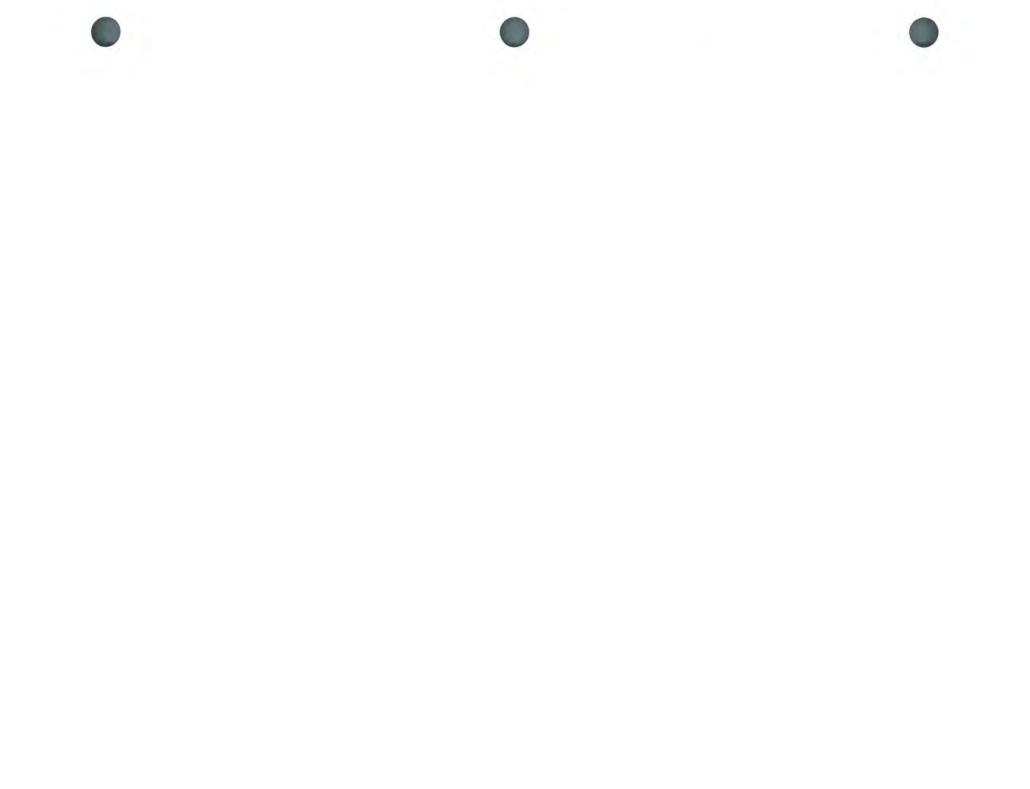
These copies of bill of lading or invoice shall accompany each load, and shall be retained at the project or ready mix plant for the Project Engineer record. The truck tanker shall have a copy of the invoice or bill of lading attached directly to the tanker portion of the truck. When the tanker unloads the contents at the project site, the unloading time and material final destination (storage "pig" number) shall be marked on this copy and left with the invoice or bill of lading copies.

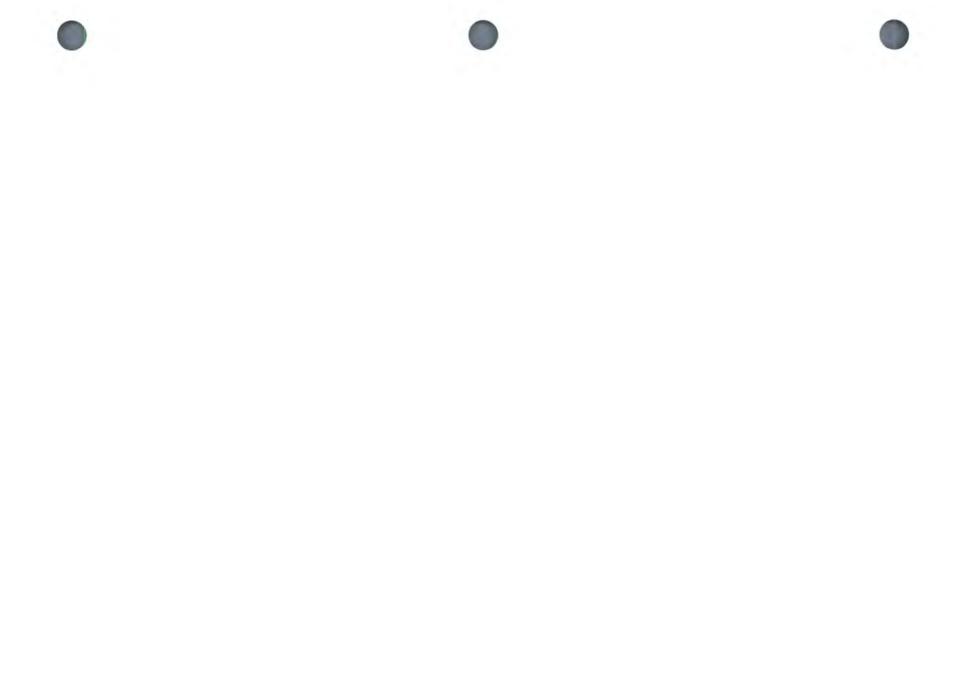
In the case of more than one project being supplied by a ready mix plant, the plant shall furnish the Project Engineer, for each project, either a copy of each bill of lading or invoice, or a listing of the bills of lading or invoices representing the ground granulated blast furnace slag incorporated in the project. This listing shall bear the signature of a responsible supplier representative.

The source, car or truck number, ticket number, grade, and quantity of each shipment of ground granulated blast furnace slag used on a project shall be recorded on Form #830211, Form #830224, or other applicable form.

D. Monitor samples secured and tested by the Iowa Department of Transportation indicate compliance with current specifications. The District Materials Engineer will obtain yearly samples.







APPROVED SOURCES GROUND GRANULATED BLAST FURNACE SLAG (GGBFS)

MARKETER	TRADE NAME	PRODUCER LOCATION	GRADE OF SLAG	SPECIFIC GRAVITY	CODE	DISTRIBUTION TERMINALS
Holcim, Inc.	Grancem	Chicago, IL	100	2.87	SL00A	Des Moines, Mason City, Cedar Rapids, Chicago, IL, Lemont, IL, Summit, IL, Rock Island, Lacrosse, WI
Holcim, Inc.	Obourg-Belgium Grancem	LaPorte, CO	100	2.91	SL01A	Des Moines, Mason City, Cedar Rapids, Chicago, IL, Lemont, IL, Summit, IL, Rock Island, Lacrosse, WI
Lafarge, Co.	NewCem	Chicago, IL	120	2.93	SL02B	Davenport, West Des Moines, Omaha, NE
Lafarge, Co.	NewCem	Chicago, IL/ New Orleans, LA	120	2.93	SL03B	Davenport, West Des Moines, Omaha, NE

Iowa Department of Transportation

Office of Materials

October 17, 2006 Supersedes October 19, 2004 Matls. IM 491.17

FLY ASH

GENERAL

Acceptance of fly ash will be on the basis of approved sources and upon satisfactory test results on samples obtained at the project site. Test results of fly ash shall meet the requirements of ASTM C618 and the Specifications of the Iowa Department of Transportation. Approval will require identification of the specific sources of the coal from which the ash is derived.

Approval is based upon fly ash produced when the power plant is utilizing specific materials, equipment, and processes. Any change in materials, equipment, and processes will void any source approval and require that a new approval be sought.

Fly ash produced immediately prior to shut down and after start up may be quite different from the fly ash normally obtained. The fly ash can be affected to the point that it does not meet specifications. Monitor samples or assurance samples tested by the Iowa Department of Transportation not meeting specifications will void the source approval.

SOURCE APPROVAL

A. Certified Source

A source may furnish fly ash on the basis of certification provided:

 The quality-monitoring program meets the minimum sampling and testing frequencies established in ASTM C311. The tonnage units expressed therein are interpreted to refer to as-marketed material. The producer shall test at least one sample for each consecutive 30 days, for the months of March through October for conformance to Iowa Department of Transportation specifications. The test reports for all monitor samples shall be submitted to the Iowa Department of Transportation within 45 days of the sampling date.

In addition to the test frequencies established in ASTM C311, daily control tests shall be made to establish the uniformity of the fly ash being produced. Specific tests shall be agreed to by the engineer and may vary from source to source. As a minimum, the loss on ignition and percent retained on the No. 325 mesh sieve shall be determined.

Sample test records and shipment reports shall be available for inspection by Iowa Department of Transportation personnel for at least three years after the fly ash has been tested.

The Quality Control Laboratory will be considered approved if it is properly equipped and staffed to perform the tests required for an accepted Quality Control Program. Continued approval of the control laboratory will depend on the comparison of its test results with the lowa Department of Transportation Central Laboratory. If major differences are found, an attempt to resolve them shall be made as quickly as possible. Continued unresolved differences in test results will be considered a basis for discontinuing control laboratory approval.

- 2. The fly ash has shown conformance to the applicable specifications for a continuous period of at least the last six months.
- 3. Available alkali in approval sources of fly ashes shall be less than 1.50%. The value of available alkali in fly ash can be either determined by the test method specified in ASTM C-311, or by statistical formula developed by Central Materials Laboratory based on historical data. Fly ash sources that have available alkali between 1.50% and 2.50% will be approved based on satisfactory results of the following test. Mortar bars made per ASTM C-311 with 15% and 30% fly ash, Type I cement with 0.70% to 0.80% of alkali (Na2O) equivalent, and Pyrex aggregate shall exhibit no more than 10% expansion over non-fly ash mortar bars. Testing shall be performed by a laboratory approved by the lowa Department of Transportation.
- 4. Each shipment of fly ash is properly certified.

The supplier of certified fly ash shall furnish for the project records two invoices or bill of lading copies that bear the following certification statement and the signature of a responsible company representative:

Certification Statement

The material herein described has been sampled and tested as prescribed by the Highway Division of the Iowa Department of Transportation and complies with the applicable specification requirements for Class _____ fly ash.

Date _____ Signed

The bills of lading or invoices shall include project number, if available, source name, source location, source code, class, and quantity in the shipment.

These copies of the bill of lading or invoice shall accompany each load, and shall be retained at the project or ready mix plant for the Project Engineer records.

The truck tanker shall have a copy of the invoice or bill of lading attached directly to the tanker portion of the truck. When the tanker unloads the contents at the project site, the unloading time and material final destination (storage "pig" number) shall be marked on this copy and left with the invoice or bill of lading copies.

In the case of more than one project being supplied by a ready mix plant, the plant shall furnish the Project Engineer, for each project, either a copy of each bill of lading or invoice, or a listing of the bills of lading or invoices representing the fly ash incorporated in the project. This listing shall bear the signature of a responsible supplier representative.

The source, car or truck number, ticket number, ash type, and quantity of each shipment of fly ash used on a project shall be recorded on Form #830211, or Form #830224, whichever is applicable.

- 5. Monitor samples secured and tested by the Iowa Department of Transportation indicate compliance with current specifications.
- 6. Percent Available Alkali

The percent available alkali listed in Appendix A shall be used in calculating the alkali level of the cementitious materials and for proportions for concrete mixes on construction projects when specified. Any adjustments in mix proportions shall be the responsibility of the contractor, and approved by the engineer.

7. Co-Mingling of Fly Ash

Mixing of fly ash from different sources, different plants, or different types into one storage bin or silo will not be allowed. At ready mixed concrete plants and paving batch plants, a fly ash storage bin shall be emptied, as far as practical, prior to refilling from a different source.

- B. Sources for Pavement Subsealing and Jacking
 - 1. Fly ash to be used for pavement subsealing and jacking may be accepted on an approved source basis as listed in Appendix B.
 - 2. A mixture of 3 parts fly ash and 1 part Portland Cement shall have an initial setting time between 30 minutes and 3.0 hours. Initial set is defined as 100-psi resistance when measured in accordance with ASTM C403.

PROJECT ASSURANCE SAMPLING

Required assurance samples will be secured at the project site just before incorporation into the work. Test results, which do not comply with the specifications, may be considered sufficient cause to rescind approval to furnish fly ash on certification basis. Construction, which contains fly ash represented by assurance samples, which show deficient test results, will be subject to the requirements of Article 1105.04 of the Standard Specifications.

Depending upon certain chemical characteristics, fly ash is marketed as either Class F (noncementing) or Class C (self-cementing) ash. The identification submitted with the assurance samples sent to the Central Laboratory should include the normal descriptive information as well as the source of the ash, the marketer and the class of the ash.

Precautionary measures shall be taken to prevent cement contamination of fly ash samples obtained at the proportioning plants. The samples shall be taken preferably as follows:

- 1. Directly from the delivery transport vehicles
- 2. Drop a sufficient amount of material in a clean container or a clean end loader bucket, and obtain a representative sample.

Source	Class Ash	Nearest City	Marketer	Specific Gravity	%Available Alkali	Code
Burlington Generating Station	С	Burlington, IA	Headwaters Resources, Inc.	2.79	1.55	FA000C
Coal Creek Power Plant*	С	Bismark, ND	Headwaters Resources, Inc.	2.56	0.75	FA003C
Columbia Generating Station #1	С	Portage, WI	Lafarge North America	2.79	0.99	FA001C
Columbia Generating Station #2	С	Portage, WI	Lafarge North America	2.60	1.15	FA002C
Council Bluffs Unit #3	С	Council Bluffs, IA	Headwaters Resources, Inc.	2.64	1.06	FA004C
Edgewater Unit 5 Generating Station	С	Sheboygan, WI	Lafarge North America	2.66	0.93	FA020C
Geral Gentleman Station, Unit #1	С	Sutherland, NE	Nebraska Ash	2.65	1.23	FA028C
Hawthorn Generating Station	С	Kansas City, MO	Lafarge North America	2.61	1.21	FA006C
latan Generating Station	С	Weston, MO	Lafarge North America	2.77	0.95	FA007C
Lansing Generating Station	С	Lansing, IA	Headwaters Resources, Inc.	2.77	0.96	FA008C
Louisa Generating Station	С	Grandview, IA	Headwaters Resources, Inc.	2.70	1.14	FA009C
Muscatine Power & Water	С	Muscatine, IA	Lafarge North America	2.77	0.55	FA010C
Nebraska City Station	С	Nebraska City, NE	Nebraska Ash	2.57	1.25	FA011C
North Omaha Generating Station	С	Omaha, NE	Nebraska Ash	2.71	1.23	FA012C
Ottumwa Generating Station**	С	Chillicothe, IA	Headwaters Resources, Inc.	2.73	1.75	FA013C
Pleasant Prairie Generating Station	С	Kenosha, WI	Lafarge North America	2.50	1.05	FA014C
Port Neal #3	С	Sioux City, IA	Headwaters Resources, Inc.	2.71	1.17	FA015C

APPROVED CERTIFIED SOURCES Class C Fly Ash

*This fly ash has greater than 66.0% of total oxides (SiO₂ + Al₂O₃ + Fe₂O₃), and greater than 38.0% of SiO₂.

**The fly ash co-fired with up to 5% switch grass is allowed for this source.

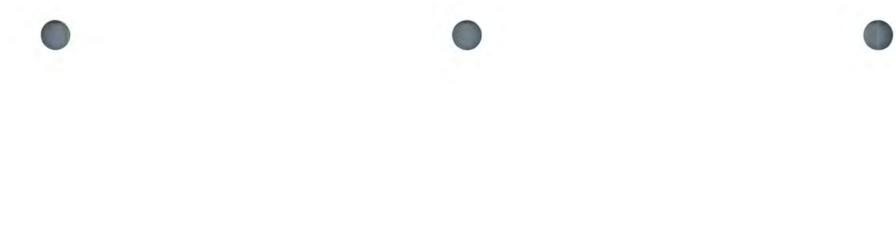
Matls. IM 491.17 Appendix A

Source	Class Ash	Nearest City	Marketer	Specific Gravity	%Available Alkali	Code
Joppa Power Plant	С	Joppa, IL	Mineral Resource Technologies, LLC	2.69	1.48	FA023C
Labadie Power Plant	С	Labadie, MO	Mineral Resource Technologies, LLC	2.71	1.02	FA022C
Labadie Power Plant	С	South Beloit, MO	Mineral Resource Technologies, LLC	2.71	1.02	FA024C
M.L. Kapp	С	Clinton, IA	Headwaters Resources, Inc.	2.76	1.11	FA018C
Port Neal #2	С	Sioux City, IA	Headwaters Resources, Inc.	2.63	1.43	FA029C
Port Neal #3	C	Sioux City, IA	Headwaters Resources, Inc	2.16	1.17	FA015C
Port Neal #4	С	Sioux City, IA	Headwaters Resources, Inc.	2.66	0.89	FA016C
Rush Island Power Plant	С	Festus, MO	Mineral Resource Technologies, LLC	2.83	1.37	FA021C
Thomas Hill Energy Center	С	Clinton Hill, MO	Headwaters Resources, Inc.	2.62	1.36	FA025C
Weston Units	С	Weston, WI	Lafarge North America	2.68	1.30	FA026C

Class C Fly Ash (Continued)

Class F Fly Ash

Source	Class Ash	Nearest City	Marketer	Specific Gravity	%Available Alkali	e Code
Joliet	F	Joliet, IL	Lafarge North America	2.54	N/A	FA017F
Monticello	F	Monticello, TX	Boral Material Technologies	2.42	0.44	FA021F


APPROVED FLY ASH SOURCES FOR PAVEMENT UNDERSEALING & JACKING

SOURCE	CLASS ASH	NEAREST CITY	MARKETER	CODE
Hawthorn Generating Statio	n C	Kansas City, MO	Lafarge North America	FA006C
Lansing Generating Station	С	Lansing, IA	ISG Resources, Inc.	FA008C
Louisa Generating Station	С	Grandview, IA	ISG Resources, Inc.	FA009C
Muscatine Power & Water	С	Muscatine, IA	Lafarge North America	FA010C
Nebraska City Station	С	Nebraska City, NE	Nebraska Ash	FA011C
North Omaha Generating St	ation C	Omaha, NE	Nebraska Ash	FA012C
Pawnee Power Plant	С	Ft. Morgan, CO	Western Ash	FA026C
Pleasant Prairie Corporation	С	Kenosha, WI	Lafarge North America	FA014C

1

Iowa Department of Transportation

Office of Materials

October 19, 2004 Supersedes October 26, 1999 Matls. IM 525

DESIGNING FLOWABLE MORTAR

GENERAL

The design of flowable mortar involves determining the proper proportions to obtain the required flow characteristics.

MATERIALS

Obtain representative samples of the following materials from the producing ready mix plant:

Sand	(75 lb.) 34 kg
Portland Cement	(15 lb.) 7 kg
Fly Ash	(15 lb.) 7 kg

PROCEDURE

- A. Apparatus
 - 1. Flow cone and equipment specified in IM 375
 - 2. Mixer 4 qt. (4.5 L) or larger
 - 3. 1,000 mL cylinder
 - 4. Spatula
 - 5. Equipment specified in IM 302
 - 6. 1 mL pipette
- B. Test Samples
 - 1. Obtain samples for the sieve analysis and the trial mixes by one of the quartering methods listed in IM 302.
 - 2. Two samples of at least 4,600 grams should be obtained for the trial mixes. Do not attempt to select a sample of an exact predetermined mass.
- C. Preparation of Samples
 - 1. Oven dry the samples to a constant mass and allow to cool. Screen the sample over a No. 4 (4.75 mm) sieve to remove over-sized material.
 - 2. Weigh the dry sand samples to the nearest gram and calculate the cement and fly ash

batch weight (mass) as follows:

Cement Mass = Sand Mass x
$$\frac{(60 \text{ kg/m}^3)}{1550 \text{ kg/m}^3}$$

Fly Ash Mass = Sand Mass x $\frac{(180 \text{ kg/m}^3)}{1550 \text{ kg/m}^3}$ Fly Ash Weight = Sand Weight x $\frac{(300 \text{ lb./yd.}^3)}{(2600 \text{ lb./yd.}^3)}$

Cement Weight = Sand Weight x $\frac{(100 \text{ lb./yd.}^3)}{(2600 \text{ lb./yd.}^3)}$

Air entraining agent at 1 oz./cu. yd. (38.7 mL/m³)

mL of Air Agent = Sand Mass x
$$\frac{38.7 \text{ mL/m}^3}{1550 \text{ kg/m}^3}$$

mL of Air Agent = Sand Weight x $\frac{1 \text{ oz./cu. yd. x } 29.57 \text{ mL/oz.}}{2600 \text{ lb./cu. yd. x } 453.6 \text{ lb./gm}}$

- D. Mix Procedure
 - 1. Add the air-entraining agent to the mixing water. Add the sand and part of the needed mixing water to the bowl. Start the mixer and add the cement, fly ash, and water. Add water until the mix appears fluid. Mix for three minutes after adding all materials.

When too much water is added, the water and solids will separate after mixing. If too much water is added on the initial trial, the mix should be discarded. A good starting point for the water is 70 gallons per cubic yard (350 liters per cubic meter). The batch volume of water would be:

mL of water = sand mass x $\frac{(350 \text{ L/m}^3)}{1550 \text{ kg/m}^3}$

mL of water = sand weight x
$$\frac{(70 \text{ gal./yd.}^3)(8.34 \text{ lb./gal.})}{2600 \text{ lb./yd.}^3}$$

- 2. Record the amount of water added. Run the flow test as per IM 375 to obtain the efflux time.
- 3. If the time of efflux is too long, increase the amount of water, air-entraining agent, or fly ash to improve the flow on the second trial. If additional water causes separation of the water and solids, fly ash should be added in 100-lb. (60-kg) increments up to a total of 400 pounds per cubic yard (240 kg per cubic meter). Air-entraining agent should be added in 0.5-oz. (19.35-mL) increments up to a total of 2 oz./cu.yd. (77.4 mL/m³). Some sands will not produce satisfactory mix and will need to be rejected.

- E. Calculations and Reporting
 - 1. Determine the final mix design weights as follows:

Fly Ash Mass = $\frac{(\text{grams fly ash used})}{(\text{grams sand})} \times 1550 \text{ kg/m}^3$

Fly Ash Weight = $\frac{(\text{grams fly ash used})}{(\text{grams sand})} \times 2600 \text{ lb./yd.}^3$

Water (Liter) = $\frac{(mL \text{ water used})}{(\text{grams sand})} \times \frac{1550 \text{ kg/m}^3}{1 \text{ kg/L}}$

Water (Gallons) = $\frac{(\text{mL water used})}{(\text{grams sand})} \times \frac{(2600 \text{ lb./yd.}^3)}{(8.34 \text{ lb./gal.})}$

Portland Cement = 100 lb. (60 kg) Sand = 2600 lb. (1560 kg)

Air-Entraining Agent # oz./cu. yd. (#mL/m³)

2. Report the time of efflux to the nearest 1 second. The test report should be issued like the report in the Appendix.

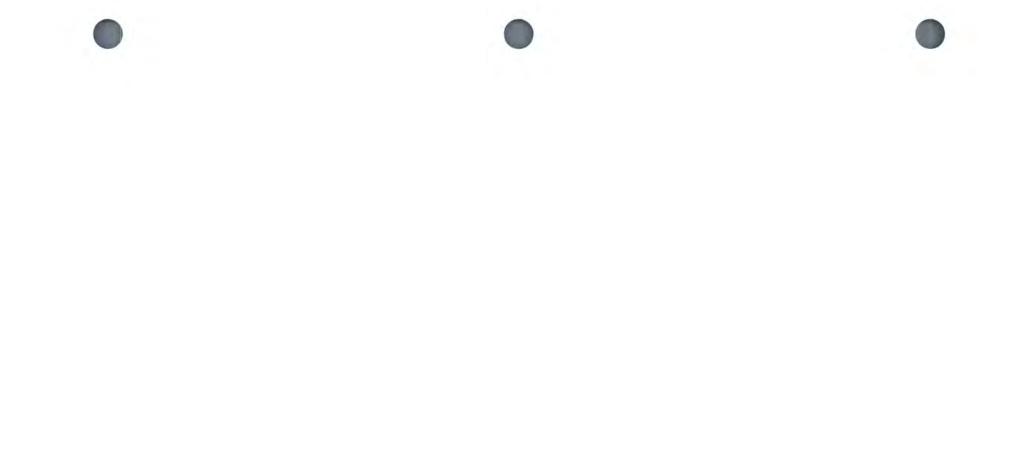
EXAMPLE:

IOWA DEPARTMENT OF TRANSPORTATION NWITC - Materials Laboratory Test Report - SAND Sioux City, Iowa

MATERIAL: 1-4110 sand	COUNTY: Plymouth		
INTENDED USE: Flowable Mortar	PROJECT: STPN-12-2(13)-2J-75		
LAB NO.: 3FM6-3002	DESIGN:		
DATE REPORTED: 10/28/96	CONTRACT: 73512		
SOURCE: Higman's Sand & Gravel, Akron	PRODUCER: Joe's Ready Mix		
QUANTITY: 30 cubic meters	CONTRACTOR: Brower Construction.		

UNIT OF MATERIAL: 75# sack Use with LaFarge Portland Cement with Midwest Fly Ash Port Neal #4

SAMPLED BY: C. Fenceroy SENDER'S NO. CF10-24-96-5 DATE SAMPLED: 10/24/96 DATE REC'D: 10/24/96


Sieve Analysis	%
3/8	100
#4	99
#8	88
#16	65
#30	35
#50	11
#100	1.3
#20	0.7

CC: Materials - Ames, Geology, R. Kalsem, C. Narotam, Proj. Engineer, Contractor, Source, Producer, Lab, Proj. File

Disposition: Complies only with the following proportions: 100 lbs. cement, 300 lbs. fly ash, 2600 lbs. sand. Flowability obtained in 15.9 seconds with 66 yd3 H2O

SIGNED: C. E. Leonard, NWITC Materials Engineer

October 16, 2007 Supersedes April 17, 2007

Office of Materials

Matls. IM 527

PAVING PLANT INSPECTION

GENERAL

The following instruction is to be used when inspecting the operation of a PC Concrete paving plant.

Materials and proportions must be controlled in accordance with the specifications and the following detailed instructions.

The plant inspector will normally be assigned the following duties:

- 1. Inspection or monitoring of proportioning and of plant operation
- 2. Gradation determination of the aggregates used
- 3. Identification and tabulation of materials received and used
- 4. Protection, curing, and testing of the strength specimens, and care of the specimen forms
- 5. Maintenance of a daily diary and preparation of the Daily Plant and Strength Reports

Certified Plant Inspectors will assume a number of duties, as specified in IM 213.

The contract documents provide for the class of concrete to be used in a given project. Standard and slip form are the two types of pavement specified. All classes of concrete contain entrained air to improve durability. Unit absolute volume proportions for the four classes of concrete and the various mix numbers are provided in IM 529. The class of concrete is designated in the contract documents and the Contractor may use any of the numbered mixes designated in the respective class of concrete. The gradation of the coarse aggregate must comply with the requirements of the mix number chosen.

The Engineer will see that the inspector is provided with proper equipment for carrying on the work, except the Certified Plant Inspectors will provide their own equipment. Furnished equipment will be provided upon request from the Ames Laboratory and the Inventory Management storerooms. Requests for equipment or supplies to be checked out must be made on Iowa Department of Transportation Stock Issue Form #133005.

The following statement shall apply to all phases of equipment and material testing and/or examinations:

Tests and/or examinations must be made at least as frequently as described herein or in other applicable memorandums. All test and examination results are to be recorded in the Plant Inspector Field Book. All field books and records shall become the property of the Contracting Authorities at the completion of the project.

If a test result on a project acceptance or control sample indicates specification noncompliance, appropriate action in accordance with the applicable specifications, instructional memorandums, and resident engineer instructions shall be taken. (See IM 204.) Normally, the Contracting Authority will issue a Form #830246, Noncompliance Notice.

It must be noted that the Contractor is responsible for deciding what corrective action must be taken, for directing that it be taken and for the results. The inspector must not in any way assume responsibility for the corrective action or its results.

It is the inspector's responsibility, based on prescribed tests and examinations, to monitor the progress of the work, to make available to the Contractor the results of tests and examinations on a continuing basis and to inform the Engineer and Contractor when tests show noncompliance. The Contractor is responsible for furnishing compliant material and finished work.

A checklist of the detailed plant inspection duties is included as part of these instructions. Refer to this checklist before the work begins, and periodically thereafter, to be certain that all the required tests and inspection procedures are being included in the routine activities.

SAFETY

Safety should be uppermost in the minds of those working in a concrete plant. In the past there have been injuries and even deaths, because proper attention was not given to safety details. Certain requirements have been made a part of the contract documents as safety measures. It is not possible, however, to remove all unsafe conditions from a paving plant situation.

The plant inspector must make certain all contractual requirements are met, including those related to safety. The inspector should encourage the elimination of hazards not specifically covered by the specifications. Some hazards will be impractical to remove. The inspector should be familiar with these hazards and thus be better able to protect against them. Protective headgear should be worn when working around bins and other plant equipment.

Safety considerations mandate that stopped belt sampling locations must be equipped with an onoff switch near and in plain view of the sampling point. This switch must have sole control of the sampling belt when the switch is in the off position.

EQUIPMENT

1. BINS

The following requirements shall apply to bins used in connection with the production and delivery of materials and to bins used in connection with the proportioning of materials for mixtures. The Standard Specifications in Article 2001.06 authorize the Engineer to examine the bin each time it is erected for use.

The Contractor shall maintain any stress-carrying parts of the bin frame, which support the load in proper working condition. No stress-carrying member shall be absent while the bin is in use. All members must be straight and full-size. If any member has become bent or deformed, it shall be straightened by methods, which will not injure the material, or a new member must replace it. Piles of aggregate shall be kept from introducing stresses into the bin legs caused by lateral pressure against the legs. If all footings under one bin settle uniformly after the bin has been loaded, the settlement is not considered a problem. However, if the settlement differential of the footings under one bin exceeds 1/10 foot (30 millimeters), the District Materials Engineer must be informed.

The Contractor shall periodically observe the bin for settlement after the bin has been loaded. Before concrete proportioning at a new plant installation, the bins should have been fully-loaded for at least 12 hours and the amount of settlement determined by the contractor. Checks of settlement by the contractor shall be furnished to the Engineer. If a scale is affected by the above unequal settlement, its operation must also be re-evaluated.

All conveyers and other plant machinery shall meet current OSHA Standards. The Contractor shall be responsible for complying with these requirements for both design and erection. The Contractor shall furnish a certification or design calculations to the Engineer to confirm compliance, if requested to do so.

2. PROPORTIONING EQUIPMENT

Requirements for scales or meters for proportioning aggregates, cement, fly ash, water, or admixtures are found in Article 2001.20 of the Standard Specifications. These essential requirements are in addition to the safety requirements referred to in Section 1 above for bins.

When a proportioning plant has been moved and set up, it is essential that the proportioning scales are test loaded and the proportioning meters are tested for specification compliance.

Proportioning scales and meters shall be test loaded to the maximum load expected during production. Proportioning during production shall not exceed the maximum load tested during calibration.

It is the duty of the District Materials Engineer or designated staff to witness calibration of all proportioning and plant equipment before concrete work begins. The plant inspector is encouraged to be present while the scales and other equipment are being tested and evaluated.

When it has been determined that all proportioning devices and plant equipment comply with the specification requirements, a Plant Calibration Report, Form #820917, will be prepared by the contractor's representative and signed by the District Materials Engineer, or representative, as a witness to the calibration. This report authorizes the use of the plant to which it applies and the materials and proportions listed thereof. It is to remain at the plant in the inspector's files during progress of the work. A sample copy of Form #820917 is shown later in Appendix C and a calibration checklist is shown in Appendix D. The plant inspector must be familiar with all features of the plant operation before the work begins. While the inspector must not personally make any of the plant manipulations or adjustments, understanding the basic machinery operation and being able to recognize the significance of a malfunction is important.

The proportioning equipment must be examined at least at **3-hour intervals** for correctness of the **amount being batched** and for damage of the equipment. Special attention must be given to the empty balance and the position of the poises for beam and dial scales. The normal plant operation causes vibration, which tends to change these adjustments.

Accumulation of material clinging to the inside of the hopper can also cause these adjustments to drift. Small amounts of material accumulation clinging to the inside of the hopper are not considered objectionable. If the amount exceeds one percent of the material batch mass, however, it must be removed and the indicator on the empty hopper readjusted to indicate a zero load within ± 0.5% (See Article 2001.20). The **scale sensitivity** shall be checked **at least twice during a normal working day** by placing a mass equal to 1/10 percent of the batch on the fully-loaded scales and observing the movement of the indicator. A properly sensitive scale will exhibit a visible indicator movement when so tested. If no indicator movement is visible and immediate corrective action by the Contractor does not yield successful results, the District Materials Engineer must be informed.

The following procedure is required for setting or adjusting the various items of proportioning equipment in order that they will deliver the proper amount of material to the batch:

- The plant superintendent or other authorized contractor representative must make all necessary scale and equipment settings and/or adjustments. The plant inspector is specifically directed not to participate in this activity.
- Before the plant operation begins or resumes, the plant inspector will independently determine that the settings and/or adjustments are accurate and that the masses of material being delivered to the batch are correct. Errors must be corrected immediately.

Strict adherence to the above procedure is necessary to maintain a proper division of authority and responsibility between the Contractor and the Contracting Authority and to minimize the possibility of operating with erroneous proportions.

Suitable wind protection on all sides of the scales is required by the specification. This protection, if not provided by the plant design, can be fabricated from burlap, Masonite, plywood or other suitable material and should provide adequate room for the scale operator to work unobstructed.

a. CEMENT & FLY ASH SCALES. Cement and fly ash scales at the contractor proportioning plant are usually required to be automatic. (See Article 2001.20 and 2301.13.) The scales must be accurate to within plus or minus 0.5% of the load and must operate (delivery tolerance) within plus or minus 1% of the required batch.

The scale accuracy is determined prior to the beginning of concrete work by the District Materials Engineer or representative and in most cases will need no further attention.

The delivery tolerance, however, can be determined only when the automatic device is in operation. A number of suitable procedures for determining delivery tolerance have been devised. While one procedure may not be suitable for all scale installations, the following is suggested, because it can be applied to the majority of the cement proportioning equipment used. Modifications of the procedure are permitted providing the delivery tolerance is determined.

- With the hopper loaded to the correct amount for one batch, the addition of material to the hopper equal to one percent of the correct batch must cause the "over" limit switch to function and prevent automatic discharging of the batch.
- 2) With the hopper loaded to the correct amount for one batch, the removal of material from the hopper equal to one percent of the correct batch must cause the "under" limit switch to function and prevent automatic discharging of the batch.

Check scale operations to determine **delivery tolerance** conformance at least **once** during **each day** of normal operation.

Minor adjustments of numerous phases of the automatic batching cycle are normally required on a continuing basis because of changing weather and material conditions. The inspector must become intimately familiar with the automatic scale operation to be able to recognize when these minor adjustments are needed. As a general rule, if the operator has to manually adjust the amount of material in the hopper or charge or discharge manually more often than once in each ten batches the automatic measuring device needs repair, adjustment, or servicing. A 24-hour grace period is provided during which manual operation is permissible. Specific approval of the engineer is required for continued manual operation beyond the 24-hour grace period. The engineer's approval should be based on a consideration of the following:

- Immediate steps were taken to repair the automatic malfunction.
- If repair within the 24-hour period is not possible and beyond the control of the Contractor and the malfunction could not reasonably have been anticipated.
- Manual measuring is within the accuracy required for automatic scales.
- It would be to the advantage of the contracting authority for the paving operation to continue.

Manual measuring of cement shall be under the constant surveillance of the inspector. The empty scales must be tare-balanced after discharging each batch and before charging another.

Cement Yield Check

The Standard Specification requires that the cement shipment yield determination must be made at intervals of approximately 10,000 cubic yards (10,000 cubic meters) after the original determination made near the end of the first full day of production. When a permanent, commercial-ready mix plant is dedicated to furnish greater than 10,000 cubic yards of continuous concrete production, cement yield determinations are required. When a permanent, commercial-ready mix plant furnishes greater than 10,000 cubic yards on an intermittent basis, cement yield determinations shall be at the option of the District Materials Engineer. If fly ash is batched on the same scale as cement, no yield determination is needed for the fly ash.

The purpose of the cement yield test is to compare the amount of cement, which is measured, on the contractor's batch scales with the amount, which is measured on the scales at the cement manufacturing plant. The assumption is made that the mass shown by the manufacturer (billed amount) is correct.

The cement storage bin or bins must be empty and free of cement before the test is started. In the event a bin is partially filled with cement left over from a previous project, it should be used and the bin completely empty before the yield determination is started. The removal of all cement from the bins provides the necessary starting point in addition to assurance that cement lumps and foreign debris have been eliminated.

Make the first cement yield near the end of the first full day of production, being sure each cement car or truck is completely empty after unloading into the storage bin.

At the end of the test the storage bin must be completely empty again. Estimating the amount of cement in a storage bin is not suitable and by doing so the test result is virtually meaningless.

A careful record must be made of the total batches used and from this figure calculate the total cement batched. Also calculate the yield expressed as a percent of the billed total.

If the yield percent is less than 99.0, or greater than 101.0, refer to the section entitled, General, in this IM for special action required. If the results of the first test are within the above limits no special action is necessary. Follow the same procedure for following yield tests, except extend the test over about 10,000 cubic yards (10,000 cubic meters) intervals of work. For the longer interval tests, the amount of cement in a bin at the beginning and ending can be estimated without introducing appreciable error. Report each cement yield test performed on Form #820912, Portland Cement Shipment Yield Report. (See sample Yield Report in Appendix C).

- b. AGGREGATE SCALES. Aggregate scales may be operated either manually or automatically and must operate within a **delivery tolerance** of plus or minus **one percent** of the required batch amount. If the scales are operated automatically, the delivery tolerance can be determined in the same manner described in 2a, Cement Scales. If it is operated manually note the location of the balance indicator or dial indicator when a one percent over and under load is added to and subtracted from the correct amount in the hopper. Aggregate delivered to the batch must be within the above limits. Check scale operation to determine **delivery tolerance** conformance at least **once during a normal working day**.
- c. WATER MEASURING DEVICE. Scales or volume meters are permissible for measuring water. Scales may be operated manually or automatically. Regardless of the type of measuring equipment used, the amount of water delivered to the batch must be accurate to 2.2 lbs. (1 kg) or within plus or minus one percent of the amount shown by the indicator whichever is greater. If water is measured with a scale, the delivery tolerance must be determined at least once for each day of normal operation as described in 2b, Aggregate Scales. If a volume meter is used, the delivery tolerance need not be determined other than during the original calibration or at such time that a water-measuring problem is indicated. Testing a water meter is the duty of the District Materials Engineer or his/her representative.
- d. ADMIXTURE DISPENSING EQUIPMENT. Admixtures (air or water reducing) may be proportioned manually or by automatic equipment. If they are proportioned manually, the method and procedure must be approved by the engineer and should be performed by a person having no other duties. If they are proportioned automatically, the dispensers must be equipped with a transparent chamber that will permit visual observation of the admixtures as they are introduced into the batch. The visual inspecting chamber requirement may be waived in lieu of admixture dispensing systems utilizing positive electronic flow metering and computer controlled delivery that prevents improper admixture incorporation into the mix. Equipment for dispensing liquid admixtures shall be accurate within plus or minus 3.0 percent of the quantity required. The operation of the dispenser when operated either manually or automatically must be observed for uniform delivery at least once during each 3 hours of normal operation. The dispensing equipment must be flushed with water at least once daily to minimize the possibility of material accumulation that will impair the equipment performance. The use of malfunctioning dispenser equipment will be discontinued immediately upon detection of the malfunction and its use must not be resumed until the malfunction has been eliminated. If a problem with the air agent dispenser develops, the first indication of it will likely appear as a problem controlling the air content in the plastic concrete. The air content may be variable from one batch to another or it may be uncontrollable in either the high or low range. If immediate corrective action does not yield satisfactory results the engineer in charge and/or the District Materials Engineer must be informed. Concrete work must not be permitted to continue if air test results show specification non-compliance. There are no such indicators in plastic concrete for water-reducing admixtures. Therefore, as mentioned above, the dispenser operation must be observed regularly.

3. MIXING EQUIPMENT

Central mixer is the most popular, and is the type normally used when high production is desired, ready mix trucks are used for limited amounts of pavement, and mobile mixers are typically used in bridge deck overlays.

Mixing equipment for paving projects will be one of the following types as described in Article 2001.21:

a. CENTRAL MIXERS. For central mixers, the maximum batch size and the mixing speed recommended by the manufacturer are shown on the Mixer Manufacturer Bureau (MMB) rating plate that is attached to the mixer. The batch size shall not exceed that recommended on the MMB plate and the rotational speed of the mixer drum shall be at least equal to that shown on the MMB plate. After all materials are in the mixer, the mixing time shall be a minimum of 60 seconds and a maximum of 5 minutes.

The following is the recommended method for determining mixing time:

There are three parts of the batch cycle; the charging of the drum, the mixing, and the discharge. In order to check the mixing time; first determine the time required to add all ingredients to the mixing drum. Then determine the time to discharge, from the time the first concrete falls out of the drum into the delivery vehicle until the drum is back into the mixing position and material begins to be charged into the drum. The charge time plus discharge time plus a minimum mixing time of 60 seconds is the minimum batch cycle time.

The mixing time must be determined and recorded at least once per day by the Certified Plant Inspector. By timing the batch cycle and subtracting the charge time and discharge time, the mixing time can be determined. Determining the average cycle times over a number of batches where the batching operation is running uninterrupted is preferable. The total batch cycle time, as well as the time needed for charging and discharging, should also be recorded initially for a given batch size. This enables mixing time to be determined through timing of the total batch cycle.

The batch cycle time may change if the size of the batch changes. The size of the batch should be noted if changes in the cycle time are found.

The monitor inspector should check the mixing time when visits are made to the project. The monitor should then compare the determined mixing time to those recorded by the Certified Plant Inspector. The contractor is required to furnish individual batch tickets or a daily summary of the materials in each batch and the time the batching begins or in the case of batch tickets, the time of discharge of each batch.

If the mixing time is less than 60 seconds, an immediate correction must be made.

b. READY MIX. The maximum size of the batch and the mixing speed recommended by the manufacturer for ready mix trucks shall be shown on a plate attached to the mixer. The Truck Mixer Manufacturer's Bureau (TMMB) may issue the plate; if not, an independent, recognized laboratory, shall determine compliance as defined in Article 4103.01, and complete test results may be required. The batch size must not exceed that shown on the plate and the mixing speed must be in the range shown. Determine and record the mixing speed for each mixer at least once daily. The batch must be mixed from 70 to 90 revolutions at mixing speed unless otherwise directed by the engineer. All mixers must be equipped with a revolution counter. If the counter is one that counts revolutions only when the drum is turning at mixing speed, mixing may be permitted while the truck is in transit. If the counter is a simple re-settable counter, which counts all revolutions regardless of the drum speed, mixing must be accomplished at a location where it can be observed by the inspector. It is permissible for the mixing to be done either at the plant or the project site. A clear understanding must exist between the plant and grade inspectors as to where the mixing will be done.

Ready mix trucks must carry, in the vehicle; a current certification signed by a responsible company representative stating that the mixer condition has been examined during the previous 30 days, and is free of hardened concrete and is in proper working condition. Mixers not carrying the required certification must not be used.

4. TRANSPORTATION VEHICLES

a. CENTRAL MIXING. When the concrete is centrally mixed it may be transported in either agitating or non-agitating hauling units. If non-agitating units are used, the fresh concrete must be placed on the grade within 30 minutes after it has been discharged from the mixer. If agitating units are used, the fresh concrete must be placed on the grade within 90 minutes after the water and cement have made contact with each other (See Article 2301.13.D.1).

When approved by the engineer, an approved retarding admixture may be used at the rate prescribed in IM 403, and the mixed-to-placed time period, for concrete transported <u>without</u> agitation, may be extended an additional 30 minutes.

b. READY MIX. When the concrete is mixed in ready mix trucks and agitated thereafter, the fresh concrete must be placed on the grade within 90 minutes after the water and cement have made contact with each other. If continuous agitation is not used, the time limit is 30 minutes (See Article 2301.13.D.2.). For pavement patching, ready mix concrete must be placed within 30 minutes or 90 minutes when retarder is used (See Articles 2529.02.B.8 and 2530.03.B.2.). Concrete, which has been mixed, agitated or held in excess of the above time limits, must not be used.

Determine and record the cement to water contact time at least once during each day of normal operation.

9

MATERIAL

1. IDENTIFICATION

Arriving shipments of material must be examined for damage and contamination. Before material is incorporated into the project, the inspector must be assured that approval reports for the material have been received or will be received shortly.

For shipments of cement and fly ash the inspector shall examine the invoice or bill of lading that is attached to the tanker when shipments arrive. When nighttime delivery occurs, the inspector shall examine the invoice or bill of lading before production begins on the next working day. The inspector must be ensured the proper material is placed in the proper storage unit.

An orderly record showing when the shipment arrived, the amount and identification of material involved and the laboratory report number, invoice number, ticket number, on which the material has been approved is necessary for documenting that material used has been tested and approved. Telephone conversations regarding material approval must also be summarized in this record. Keep a similar record for aggregates, and admixtures.

The inspector will not permit any material to be used or stored with accepted material until the inspector is satisfied the material is acceptable.

- a. AGGREGATES. Certified aggregate may be incorporated into a project on the basis of the certified truck ticket. When the material represented is non-proportioned aggregate the project number must show on the truck ticket and a copy furnished for project inspection personnel. When the material represented is proportioned aggregate, the project number is preferred when practical as in the case when shipping to a paving plant site and not required when impractical as in the case when shipping into warehouse stock at a ready mix plant. A file of proportioned aggregate tickets will be maintained by the contractor and made available for inspection at each plant or project site during the project period. The plant inspector shall verify that all material incorporated in the appropriate daily or periodic construction reports. No other project documentation for the incorporated aggregate is required (See IM 209).
- CEMENTITIOUS MATERIAL. Cement, fly ash, and Ground, Granulated, Blast Furnace Slag (GGBFS) may be incorporated into the project on the basis of the manufacturer certification. (See IM 401, 491.17, and 491.14.)
- c. WATER. Water secured from streams, lakes, and other non-potable sources must will be tested and approved by the Central Laboratory before it is used. Water from municipal supply systems and other potable sources may be used without testing provided the source is documented.
- ADMIXTURES. Admixtures may be incorporated into the project without further sampling and testing if they are listed in IM 403.

e. Approved brands of water reducing admixtures, retarding admixtures, and dosage rates are in IM 403. Any admixtures suspected of being frozen and materials older than 18 months shall not be used before being tested and approved. These admixtures shall be **mixed** thoroughly **once a day** prior to proportioning to maintain the solids in suspension. The mixing shall be done in such a way that the solution in the holding or storage tank is circulated for a minimum of 5 minutes each day per 100 gallons (380 liters) of solution or any fraction thereof. A circulating pump with 250 watts (1/3 hp) pump motor and a 5/8-in. (16-mm) inside diameter hose will be considered as a minimum requirement. The engineer shall approve the method of mixing and the plant inspector shall witness the mixing process.

<u>NOTE</u>: A stream of air bubbles will not be acceptable. Proper storage of the admixtures during the winter months is recommended to avoid freezing of the material.

2. STORAGE & HANDLING OF MATERIALS

The contractor shall notify the Engineer of the stockpiling procedures to be used and of the date when stockpiling will begin. This shall be done ahead of commencement of stockpiling in order to allow discussion of procedures and inspection of the stockpile sites and dumping areas. District Materials personnel may also be a part of this review and inspection.

The storage and handling of all aggregates must comply with Article 2301.13. If alternate methods are used as permitted and the required sampling and testing indicates non-specification aggregate gradation, the District Materials Engineer must be informed immediately. The responsibility of and the authorization for proper changes, if necessary, lies with the District Materials Engineer. It is important that the moisture content of the aggregates be uniform. Fine aggregate must be drained at least 24 hours before it is placed in the batch. For both coarse and fine aggregate, moisture content of successive batches must not vary more than 0.5 percent or this will be considered non-compliant. In such a case, the engineer and the contractor must be immediately informed. The problem must be corrected within a reasonable amount of time, generally one day. The work must not be permitted to progress when such a problem is not corrected. Unless aggregates are stored on platforms or other smooth hard surfaces some material in the bottom of the pile will be unfit for use because of contamination by the underlying soil. (See Article 2301.13.)

Aggregates may become contaminated or degraded from a number of sources. Examples of these are foreign material from the pit or quarry, foreign material in the rail cars or other hauling units, boards or bags used to plug holes in rail cars, and degradation from handling or prolonged storage. When aggregates are being taken from the lower portion of the pile, particularly when the work is approaching completion and the stockpiles are small, the inspector must be continually alert and forbid the use of contaminated aggregates. The inspector must understand that all of the above sources and numerous others can furnish objectionable contaminants. If contamination does occur, the aggregates affected must not be used.

Cement, fly ash, and GGBFS must be stored in weatherproof enclosures, which will protect against dampness. If lumps develop in the cement or fly ash it must not be used until it has been reprocessed, re-tested and approved as provided in Articles 4101 and 4108. Cement, fly ash, and GGBFS, which has been in storage more than 60 days at the project site or in the producer silo for more than a year must also be re-tested and approved.

SAMPLING & TESTING

1. AGGREGATES

The explanation below describes the sampling and testing required for proper plant inspection. IM 204 describes the minimum sampling and testing frequencies required for the inspection of construction projects.

a. SAMPLES. Aggregate samples are necessary to determine moisture content, specific gravity, and gradation. Care must be taken to ensure that the samples are representative of the materials being used. Secure fine and coarse aggregate samples as prescribed in IM 301.

The Contractor is required to furnish, at the proportioning plant site, facilities for collecting representative samples of the coarse aggregate from a ribbon or stream. Refer to Article 2001.20. Do not attempt to secure samples in dangerous locations. Under no circumstance should samples be secured from a partially opened clam bucket or from the discharge end of a belt where proper walkways and stairs do not exist. Refer to Article 2001.06.

Secure and test aggregate samples at least as frequently as described in IM 204.

b. GRADATION. Determine the fine and coarse aggregate sieve analysis in accordance with IMs 302 and 306. These Instructional Memorandums prescribe the test sample size and the procedures for fine and coarse aggregate sieve analysis and for determining the amount of material finer than the No. 200 (75 μm) sieve. Sample calculations are included.

Article 4109 of the Standard Specifications allows an increase of the minus No. 200 (75 μ m) material from 1.5% to 2.5% with certain restrictions. Determination to allow this increase shall be made by consultation with the District Materials Engineer.

For projects requiring certified plant inspection, the certified inspector results shall be quality control tests. Quality control testing is performed to ensure the proper material is being delivered to the plant from the source and identify stockpile changes. Verification sampling and testing will be performed by the Engineer at the frequency described below. IM 205 describes the agency responsibility to randomly select sample location and time, and witness sampling with the contractor providing assistance in obtaining the samples.

For continuous construction operation, a verification lot is defined as a week of paving. Lots less than three days of paving will be grouped with the previous or subsequent lot. A verification lot may include a minimum of three days up to eight days. Quality control sampling and testing shall be performed daily. Verification sampling and testing will be performed daily. Verification sampling will be performed daily and tested once per lot. If production on a given day is less than 250 cubic yards, verification sampling may be grouped with the previous or subsequent full day of paving.

Intermittent construction operation involving small quantities, less than 250 cubic yards per day, shall be grouped to establish a lot not to exceed one week. A minimum of one quality control sample shall be obtained and tested during the week. A minimum of one verification sample will be obtained and tested during the week.

When a quality control gradation test does not comply with the gradation requirements of Article 4109, the certified plant inspector shall contact the Engineer. After corrections have been made, the Engineer will obtain and test another verification sample.

When a verification gradation test does not comply with the gradation requirements of Article 4109, the Engineer will contact the contractor and the District Materials Engineer. The District Materials Engineer may investigate sampling and testing procedures, stockpiling, source material, etc. After corrections have been made, the Engineer will obtain and test another verification sample.

A lot is accepted when a verification test result by the Contracting Authority is determined to be in compliance. The Engineer will retain the samples until the lot is accepted. The Contractor may elect to run a split sample when the verification samples are obtained. The Engineer will witness the splitting and secure their portion of the sample. Since the contracting authority tests are verification, correlation with IM 216 is not required, but may be performed as a check of sampling and testing procedures only.

c. SPECIFIC GRAVITY. Determine in accordance with IM 307 and IM 308. The W-W₁ chart, IM T215A, which shows the corresponding moisture content values, is also included. It must be noted that the mass of the sample for determining both W and W₁ must be 1000 to 2000 grams respectively for the fine and coarse aggregate for the W-W₁ chart to be valid.

Minimum testing will be one sample per day for both coarse and fine aggregates for the first three days of normal operation and one for each three days of normal operation for both coarse and fine thereafter, assuming the first three days' results are consistent.

The specific gravity should not vary more than 0.02 from the tabular value (T203-General Aggregate Source Information) or from one day's test to the next. If the above variations are greater then 0.02, inform the Engineer and the District Materials Engineer immediately. The District Materials Engineer may adjust the specific gravity used to determine batch weights.

d. MOISTURE. Tables T214A, showing the Moisture Reciprocals (multiplication factors) that can be used for adjusting the aggregate batch amounts for the moisture content are included. The method most preferred for adjusting batch amounts is located in the Proportions section of this instruction.

Document all original test result information in the field book or other permanent records. Record the following for each test:

- All W and W₁ determinations
- The mass retained on each sieve for gradation
- All calculations for arriving at the final test result, i.e., moisture and gradation

The Specifications (Article 2301.13A) provide that coarse aggregate with absorption of 0.5% or more shall be wetted in the stockpile or cars, and methods of handling shall be such that change in moisture content in excess of 0.5% between successive batches must be prevented.

The use of materials that have varying amounts of moisture shall not be permitted. When the moisture content varies more than one-half percent from one batch to the next, the material must not be used unless something can be done to make the moisture uniform. It is the responsibility of the plant operator to devise remedial measures.

When the moisture content in either aggregate is high enough that water can be observed dripping from the bin between batches, or when the water will drip from the sample as described in Article 2301.13A3, the moisture cannot be measured successfully with the pycnometer nor can it be uniformly controlled. Materials with too much free water as described above must not be used until the moisture content has stabilized. It is the plant inspector's responsibility to recognize when this condition occurs and to secure the necessary corrective measures. Close communication with the grade inspector will inform the plant inspector when difficulties caused by moisture variation arise. When proportioning equipment is equipped with features, which allow instantaneous moisture content measurement of an aggregate, the following shall apply:

- The acceptance of this system will be based on a correlation of the aggregate moisture content in a batch as determined by the proposed system and the moisture content determined by tests described in IM 308. The proposed system should be able to accurately determine the moisture content within 0.5 percent when compared to a sample obtained from a point in the plant as close as possible to the point of measurement used by the proposed system.
- 2. Prior to project startup, the contractor shall provide the engineer with the current calibration range data for the proposed system. The calibration range shall be used to establish the upper and lower limits of the range. After plant calibration, a check between the moisture content obtained by the system and the moisture content determined the test described in IM 308 shall be made prior to production.
- Batch weights for the aggregates proportioned using this proposed system may be adjusted automatically on an individual batch basis. Moisture content results outside the upper and lower range limits of system shall not be used to adjust batch weights.
- 4. The limit in moisture content variation between successive batches will not apply. (Ref. Standard Specification Article 2301.13A3 and IM 527)
- Moisture contents determined by the test described in IM 308 shall be performed at the frequency prescribed in IM 204 to establish correlation with results from the moisture determination system as per Paragraph 1. After correlation is demonstrated, the Engineer may reduce the frequency of moisture testing (IM 308) to a minimum of once per week for verification of the system.
- 6. The proposed system will provide a batch by batch record of the material weights, percent of moisture of the aggregates, time, date, batch number, truck number, mix type, water in aggregate, total water in batch and end tares for all scales and meters. This may be in the form of a printed summary report or as a ticket to be sent to the project, provided the ticket includes the required information as shown on Form #830212 and described in IM 527.

2. STRENGTH

Test specimens shall be cast, cured, and tested as per the appropriate IM (i.e., IM 315, IM 316, and IM 328).

PROPORTIONS

The following procedure is required for determining basic proportions of dry materials in order that the proportions used in the work are correct:

- 1. The Contractor representative must make the calculations necessary to determine the quantities of dry ingredients and water necessary to comply with the mix proportions specified.
- 2. Before the plant operation begins or resumes the plant inspector (if certified plant inspection does not apply) or the monitor inspector will independently determine the batch quantities and cross check them with those made by the contractor representative.
- 3. Batching operations shall not commence until both independent determinations have been made and documented in the field records.

The proportions in the Standard Specifications are stated in terms of absolute volume per unit volume of freshly mixed concrete. Refer to IM 529. To obtain the weight (mass) of aggregate or cement per batch, the specified absolute volume per unit volume must be multiplied by the number of cubic feet (cubic meters) of concrete per batch, and this product multiplied by the mass of saturated surface dry aggregate or dry cement per cubic foot (cubic meter). The weight (mass) per cubic foot (cubic meter) of aggregate will be determined using the aggregate specific gravities shown in Table T203, General Aggregate Source Information.

Table T203 is revised annually, and care must be taken to use the table, which is current. Follow the same procedure for determining the cement batch weight. However, the specific gravity for Type 1 Portland Cement is constant for all brands at 3.14 (3.17 for Type III).

The following is an example of a basic mix without fly ash.

Determine the mass of the cement and aggregate batch for a C-3 mix using crushed stone from B.L. Anderson's Montour Quarry and sand from Manatt's at Tama.

abs. vol. x kilograms of water/cubic meter x sp.gr. = kilograms/cubic meter (abs. vol. x cubic feet/cubic yard x sp.gr. x lbs. of water/cubic foot = lbs./cubic yard)

Cement - specific gravity 3.14 Specified unit absolute volume, From IM 529, 0.114.

(0.114) (1000) (3.14) = 358 kilograms [(0.114) (27) (3.14) (62.4) = 603 lbs.]

Fine aggregate - specific gravity 2.66 Specified unit absolute volume, from IM 529, 0.302.

(0.302) (1000) (2.66) = 803 kilograms [(0.302) (27) (2.66) (62.4) = 1353 lbs.]

Coarse aggregate - specific gravity 2.63 Specified unit absolute volume, From IM 529, 0.370. (0.370) (1000) (2.63) = 973 kilograms [(0.370) (27) (2.63) (62.4) = 1639 lbs.]

The above masses are for one cubic yard (cubic meter) of concrete and would have to be multiplied times the total cubic yards (cubic meters) being batched.

The Batch Tables contain the masses of the batch including cement predetermined for the respective mixes using the above calculation procedure. These aggregate amounts must be corrected for the amount of moisture determined by the pycnometer method. While the plant inspector is instructed to make specific gravity determinations in the field, these determinations are for the cross checking the tabular value and must <u>not</u> be used for batch calculations. THE SPECIFIC GRAVITY VALUES FURNISHED IN THE CURRENT TABLE T203, AGGREGATE SOURCE INFORMATION, MUST BE USED FOR CALCULATING THE DRY BATCH.

1. ADJUSTMENTS FOR MINERAL ADMIXTURE SUBSTITUTION & CEMENT MODIFICATION

Fly ash or GGBFS may be substituted for cement at the contractor's option within certain restrictions. Article 2301.04 specifies the substitution rates as they relate to time of the year.

IM 529 lists each standard concrete mix. These mixes contain only cement but may be adjusted to accommodate fly ash or GGBFS substitution. Explanation of how those adjustments are to be performed is discussed later. The procedure to make necessary adjustments for increasing cement content in a mix is also explained later in the IM.

2. PROPORTIONING A MIX FOR A MINERAL ADMIXTURE SUBSTITUTION

- a. To adjust a standard mix for fly ash or GGBFS substitution, the amount of cement specified for a basic mix is multiplied by the percentage of fly ash that is to be substituted. This product will give the kilograms (pounds) of fly ash in the mix. To calculate the adjusted cement in the mix, subtract the fly ash or GGBFS amount from the basic cement weight (mass). The basic water must also be adjusted. This is done by taking the design w/c, which is found in IM 529, and multiplying that number by the total amount of cementitious material in the mix. The product of that calculation will be the adjusted kilograms (pounds) of basic water.
- b. The absolute volumes must also be adjusted for the new mix. This is done by multiplying the specific gravity of the material by the kilograms of water per cubic meter or 1000 (pounds of water per cubic yard times cubic feet in a cubic yard or 62.4 x 27), then dividing the kilograms per cubic meter (pounds per cubic yard) by that amount. This procedure is used for the cement, fly ash, GGBFS, and water. Those absolute volumes plus the absolute volume of air, which is designated as 0.060, must be summed and subtracted from 1.000. The remaining volume is the aggregate portion of the mix.
- c. To determine the volumes of the coarse and fine aggregate, the number from the difference above would be multiplied by the percentage of each aggregate used in the mix. The percentage would depend on the mix number being used, for example, a C-4 mix would have 50% coarse aggregate and 50% fine aggregate, a C-3 mix would have 55% coarse aggregate and 45% fine aggregate. After the absolute volumes of the fine and coarse aggregate are determined, the kilograms of each shall be determined. This is done by multiplying the absolute volumes of the aggregate by the specific gravity of that aggregate and by kilograms of water in a cubic meter (pounds of water in a cubic foot x cubic feet in a cubic yard).

Example A, in Appendix B, shows the process of adjusting a mix for 15% fly ash usage in a C-mix using the form provided.

3. PROPORTIONING A MIX FOR ADDITIONAL CEMENT

Adjusting a mix for additional cement would be accomplished by the same procedure as above. To find the basic cement the formula on page 18 would be used. To add 15% more cement in the mix, the basic cement would be multiplied by 115%. This figure is the adjusted cement in kilograms (pounds). The rest of the procedure would be identical to the procedure used for the addition of fly ash to a mix.

The above dry aggregate batch amounts must be adjusted to account for moisture or lack of moisture in the aggregates. If additional moisture is present above the amount for the saturated and surface-dry condition (SSD), refer to IM 308. The aggregate dry batch amount must be increased an amount equal to the mass of the water in the aggregate batch. If aggregates have less moisture than is present for the SSD condition, the aggregate dry batch amount must be reduced an amount equal to the mass of the water in the batch, below what is required for the SSD condition. When the latter condition occurs, the aggregate is described as having absorption. It occurs infrequently and for short duration and will generally be found during or at the end of a prolonged hot dry period in mid or late summer. The maximum permissible absorption limit is 0.5 percent. If the absorption exceeds 0.5 percent refer to the section entitled,

"General" in this IM for the special action necessary.

The District Materials Engineer must authorize proportion adjustments (changing material amounts), if any are necessary.

There are two procedures that can be used for adjusting the dry aggregate batch amount to account for the free moisture in the aggregates. If a system with instantaneous moisture content measurement equipment is used to automatically adjust individual batch weights, see previous section, **Sampling & Testing/Moisture**, for instructions on an approval, use, and monitoring of the system.

The following example illustrates one of the methods used:

Assume the fine aggregate contains 3.4 percent and the coarse aggregate contains 0.7 percent of free moisture.

Fine aggregate -- 100.0 percent minus 3.4 percent = 96.6 percent 803 ÷ 96.6 x 100 = 831 kilograms (1353 ÷ 96.6 x 100 = 1401 lbs.)

Coarse aggregate -- 100.0 percent minus .7 percent = 99.3 percent $973 \div 99.3 \times 100 = 980$ kilograms ($1639 \div 99.3 \times 100 = 1651$ lbs.)

To determine the free water in the aggregates subtract the dry aggregate quantity from the adjusted dry aggregate weight for both aggregates and add the two differences.

831 kg - 803 kg = 28 kg (1401 lbs. - 1353 lbs. = 48 lbs.) 980 kg - 973 kg = 7 kg (1651 lbs. - 1639 lbs. = 12 lbs.)

28 kg + 7 kg = 35 kg (48 lbs. + 12 lbs. = 60 lbs.) of free moisture in one cubic yard (cubic meter) of concrete.

The less preferred method is to use the moisture reciprocal tables T214A in which the correction factors are for 3.4 and 0.7, 1.0351967 and 1.0070493 respectively. Multiply the dry aggregate batch weight determined previously by the respective moisture reciprocal correction factor.

Fine aggregate (803 kg)(1.0351967) = 831 kg [(1353 lbs.) (1.0351967) = 1401 lbs.]

Coarse aggregate (973 kg)(1.0070493) = 980 kg [(1639 lbs.) (1.0070493) = 1651 lbs.]

These adjusted quantities are for one cubic meter (cubic yard) and would have to be multiplied times the total cubic meters (cubic yards) being batched. To determine the free water in the aggregates, subtract the dry aggregate weight from the adjusted dry aggregate amount for both aggregates and add the two differences as you did above in the example.

Add the total free water in the aggregates to the water proportioned into the mixer to determine the total water for mixing. The **aggregate moisture tests** shall be determined and recorded at a minimum of **one test per each half day** of operation. Determine and record also at the same time the adjusted dry aggregate batch amounts, the water in the materials, the water proportioned and the total water available in the batch for mixing.

Consult with your District Materials Engineer office staff that will provide a print out of the batch amounts for varying moisture contents.

Record in the plant field book all weight determinations and calculations and sign each day's entry.

Check the aggregate scale settings, also at three-hour minimum intervals, as indicated by the adjusted dry aggregate batch weights. Refer to the section entitled Equipment, in this IM, for the procedure to follow when scale adjustments are required.

The water demand of a particular mix is dependent upon the materials used in the mix. For this reason the water batch weight is determined by trial when the mixing begins. The water batch weight is controlled indirectly by the slump requirements.

Many central mixing plants have equipment for introducing additional water into the mixer after the batch has been in the mixer and has been mixed. The additional water is added manually through a system, which is independent from the main water proportioning system. The auxiliary water meter must be read at the same interval as the moisture determinations and scale adjustments are made. The total water through the auxiliary system is reduced to the pounds per batch basis by dividing by the number of batches produced during the three hour interval and the per batch amount must be included in the total mixing water recorded per batch.

The plant inspector must keep a record in the plant field book of the total mixing water used, including the water in the aggregates, for at least each three (3) hours of normal operation to determine that the maximum permissible water content is not exceeded and to determine the batch volume.

Whenever the water demand, to achieve the desired workability, exceeds the design water/cement ratio and approaches the maximum water allowed, the Engineer and the District Materials Engineer Office should be notified. At the same time, aggregate moisture contents, batch weights, cement scales, water meter, etc., should all be immediately checked. In no circumstance should the maximum water/cement ratio be knowingly exceeded.

If, after the District Materials Engineer investigation and evaluation, additional workability above that which is attainable with the maximum permissible water content is desired, the cement content may be increased in accordance with Article 2301.04B. This should be done <u>only</u> with the approval of the District Materials Engineer or his/her representative. The District Materials Engineer will provide the revised and adjusted mix proportions for these situations.

If the batch yield variation is less than 98 percent or greater than 102 percent for the water content being used, refer to Specification Article 2301.04B for the special action necessary. The District Materials Engineer may allow adjustments in the proportions after checking moisture contents of the material and the operation of the batching equipment.

Mixes using fly ash as a substitution for cement are permitted as a contractor option, as allowed in the specifications.

OTHER REPORTED TESTING

- 1. IN-PLACE AIR CONTENT
 - a. Air content of vibrated, in-place concrete shall be checked in accordance with Article 2301.04, Paragraph C.
 - b. A concrete sample shall be taken from the in-place slab in accordance with IM 327.
 - c. There are no acceptance/rejection criteria for these tests. They are for information purposes. The tests are intended to be used to measure air loss through the paver and consistency of the air content of the in-place concrete. The tests should be used to determine the target air content in front of the paver and if corrective action is needed. A test result less than 5.0% would indicate that action needs to be taken. Reducing vibrator speed including repositioning vibrators to accommodate additional vibrators should be considered if a small increase in the addition rate of air entraining agent is not sufficient to raise the in-place concrete air content.

If these efforts do not solve an air loss problem, the engineer and District Materials Engineer shall be consulted.

2. VIBRATION CHECKING

In accordance with Article 2301.07, an electronic vibrator-monitoring device displaying the operating frequency of each individual internal vibrator is required for all Interstate and Primary paving over 50,000 square yards (40,000 m²).

- a. The vibration speed of each internal vibrator of a slip form paver shall be checked a minimum of once per day. These tests shall be performed while the paver is in operation and concrete surrounds the vibrators.
- b. If any vibrator is found to be operating outside the limits of the specification, the vibration speed shall be immediately changed to comply with the specification. If any vibrator cannot be adjusted to operate within the specification, the paving operation shall be stopped until corrections are completed.
- c. The vibration speeds for each vibrator shall be recorded in the project records. When a vibrator is found to be operating outside the specification limits, record the vibrator speed, location of the vibrator across the pavement, and approximate beginning and ending stations of the section of pavement affected if it can be determined.

REPORTS & REPORTING

1. PLANT PAGE - FORM #240

Plant reports are to be recorded in the computer program or on hand completed forms, both provided by the Iowa Department of Transportation. A copy of the completed PCC Plant Page shall be faxed or delivered to the District Materials Engineer on the next working day, within four hours after start-up of the plant. The CPI shall keep a copy of the PCC Plant Page and send the original to the Engineer. Copies of the files containing the project information are to be available to the engineer upon request until the project is final.

A separate report is to be made for each day concrete is placed. These reports are to be consecutively numbered for each project. A sample copy and the instructions on completing this report are in Appendix A.

When computer forms are used the CPI and Monitor shall indicate their review by marking initials by their printed name.

2. PERSONAL COMPUTER

The personal computer shall be capable of running Microsoft Excel 97 or newer version to use lowa DOT Programs. The printer shall be capable of producing quality hard copies. That is, original printed output, which is clearly readable and remains readable after being faxed and/or copied.

3. READY MIXED CONCRETE, TRUCK TICKET FORM - FORM #830212

When concrete source for a paving project is a commercial ready mix plant, each truckload of concrete must be identified by Form #830212 or acceptable computer generated plant ticket.

The plant inspector or the scale operator must fill in the information pertaining to the plant, and the grade inspector must collect and record the information pertaining to the grade, assemble the tickets by day and store with the other project records. These completed tickets will contain primary information and must not be lost or destroyed. A sample is shown in Appendix C.

4. PORTLAND CEMENT SHIPMENT YIELD REPORT - FORM #820912

The cement shipment yield test is described in section 2a, Cement Scales. Report the cement yield results on Form #820912. A sample copy of Form #820912 is included in Appendix C.

IMs & SPECIFICATIONS

A list of the IMs and Specifications used in PCC Plant Inspection are located at the end of this IM.

CONCRETE PLANT INSPECTION CHECKLIST

- A. The proportioning equipment must be examined at least at 3-hour intervals for correctness of the amount being delivered and for damage.
- B. The scale sensitivity shall be checked at least twice during a normal working day by placing a mass equal to 1/10 percent of the batch on the fully-loaded scales and observing the movement of the indicator.
- C. Check scale operation to determine cement delivery tolerance conformance at least once during each day of normal operation.
- D. The Standard Specification requires that the cement shipment yield determination must be made at intervals of approximately 10,000 cubic yards (10,000 cubic meters) after the original determination made near the end of the first full day of production.

- E. Check scale operation to determine aggregate delivery tolerance conformance at least once during a normal working day and document.
- F. If water is measured with a scale, the delivery tolerance must be determined at least once for each day of normal operation and document.
- G. Admixture dispensers shall be observed for uniform delivery at least once during each 3 hours of normal operation and document.
- H. Admixture dispensers must be flushed with water at least once daily.
- I. Determine and record the mixing speed and the mixing time at least once daily by using the sweep hand of a watch and counting the drum revolutions in one minute.
- J. Determine and record the time between batching and placement at least once during each day of normal operation.
- K. Specific gravity One sample per day for both coarse and fine aggregates for the first three days of normal operation and one for each three days of normal operation for both coarse and fine thereafter, assuming the first three days results are consistent.
- L. Moisture A minimum of one test per each half day of operation.
- M. Gradation Obtain and test one sample per day. Show sample number, name of sampler, and name of tester on lab work sheet.
- N. If opening not determined by maturity method, cast one 20-in. (508-mm) long beam for each 2000 cu. yd. (1529 cubic meters) of concrete placed. Make flexural tests representing alternating 2000 cu. yd. (1529 cubic meters) placement units at 7 and 14 days.
- O. At the plant, the plant inspector shall remove the specimens, clean the molds, oil and return the molds to the grade at the direction of the paving inspector. The plant inspector shall store the specimens until date of test. The storage space shall be a pit adequate for the project, and for normal projects it should be at least 4 ft. x 6 ft. x 18 in. (1.2 m x 1.8 m x .46 m). The specimens shall be wet at all times. If the temperature in the sand filled pit drops below 40°F (4.4°C), remove the specimens and place them under wetted burlap in a heated enclosure or in lime-saturated water. See IM 328. NOTE: Lime-saturated water is prepared by mixing 1 ounce (30 ml) of hydrated lime with 1 gallon (4 L) of water.
- P. When opening is determined by the maturity method, casting beams every 2000 cubic yards (1529 cubic meters) is not required. The plant inspector should ensure curve development is performed according to IM 383.
- Q. Other duties include:
- Close observation of stockpiling and handling of aggregates. There must be no intermingling of aggregates and no contamination.
- Frequent check on wet batch or dry batch truck cleanliness and degree of discharge.
- Document all the above data in diary.

- Make the following report daily: Plant Reports Form #800240
- Make the following report as prescribed: Cement Yield Report Form #820912E
- At the end of the project, make a copy of the plant book for the Engineer. When required by Article 2301.07, make a copy of vibration-monitoring device records in electronic format.

IMs/SPECIFICATIONS USED IN PCC PLANT INSPECTION BY VOLUME

Volume II IMs:

- IM 527 Paving Plant Inspection
- IM 528 Structural Concrete Plant Inspection
- IM 529 Portland Cement (PC) Concrete Proportions
- IM 401 Hydraulic Cements
- IM 403 Chemical Admixtures for Concrete
- IM 491.14 Ground Granulated Blast Furnace Slag (GGBFS)
- IM 491.17 Fly Ash
- IM 203 Consultation Provided by Materials Personnel on Construction Projects
- IM 204 Inspection of Construction Project Sampling & Testing
- IM 213 Technical Training & Certification Program
- IM 216 Guidelines for Validating Testing Results
- IM 301 Aggregate Sampling & Minimum Size of Samples for Sieve Analysis
- IM 302 Sieve Analysis of Aggregate
- IM 306 Determining Amount of Material Finer than the No. 200 (75 µm) Sieve in Aggregate
- IM 307 Determining Specific Gravity of Aggregate
- IM 308 Determining Free Moisture & Absorption of Aggregates
- IM 316 Flexural Strength of Concrete
- IM 317 Slump of Hydraulic Cement Concrete
- IM 318 Air Content of Freshly Mixed Concrete by Pressure
- IM 327 Sampling Freshly Mixed Concrete
- IM 328 Making, Protecting & Curing Concrete Flexural Strength Field Specimens
- IM 383 Testing Strength of Portland Cement Concrete Using the Maturity Method

Volume IV IMs:

- IM 209 Certified Aggregates & Approved Producer Program
- IM 409 Source Approvals for Aggregates
- IM T203 General Aggregate Source Information

Specifications:

- 2301 Portland Cement Concrete Pavement
- 2403 Structural Concrete
- 4100 General Provisions
- 2001 General Equipment Requirements

Supplemental Specifications:

The Supplemental Specification that was in effect at the time of the project letting will be used.

INSTRUCTIONS FOR COMPLETION OF PCC PAVING & STRUCTURAL REPORTS

The new reporting process does not include Mobile Mixer information. Use the following forms and reports when using a Mobile Mixer:

Form M or E 115 Form M or E 120 Report #820180 Report #821297 Report #820020 Air & Slump Record Mobile Mixer Data Record Gradation Test Nuclear Density of Plastic PC Concrete Mobile Mixer Calibration

Project No.

Enter the project number listed on the plans.

Plant Name

Enter the name of the ready mix plant and location for structural concrete. Enter the approximate location of a paving plant set up by a contractor.

Example:

Croell - Waverly (Ready Mix) 2 miles NW of Waverly (Paving Plant)

Contractor/Sub

A group of people or a company must perform the work being done, either a prime or sub contractor. Enter the name of the contractor performing the work. If it is a subcontractor, list this after the contractor name.

Weather

Enter a brief description of the actual weather conditions at the paving plant. Weather conditions are not required for structural concrete (Ready Mix).

Contract ID

Enter the nine-digit contract number listed at the top of a contract. This is <u>not</u> the five-digit accounting ID number listed with the project number.

County

Enter the county listed on the project plans.

Temperatures, Min. & Max.

An air temperature shall be recorded early in the morning for the minimum and around midafternoon for the maximum. Take the temperatures in a shaded area, otherwise they are meaningless. Temperatures are not required for structural concrete (Ready Mix).

Matls. IM 527 Appendix A

Report No.

Start with the number 1 at the beginning of work for each item on each project. The ending report number shall coincide with the last day each item is completed for paving and the last week for structural. Do not restart the report sequence if the project carries over to the next year.

Example:	(Paving)	16 days of 200-mm slip form paving - report 1 through 16.
	(Ready Mix)	8 weeks of concrete on Des. 1290 - report 1 through 8.

Date This Report

Enter the date the concrete is placed for each day of paving. Enter the last day of the workweek for structures (normally the Saturday date).

Date of Last Report

Self-explanatory.

Design No.

Enter the design number of the structure where the concrete is being placed on each project. Leave this space blank on paving projects.

Check Mix (Central or Ready)

Place an "X" in the appropriate box provided indicating how the concrete is being produced.

Check Usage (Paving, Structural, Incidental, Patching)

Place an "X" in the appropriate box provided to indicate the type of work where the concrete is used.

Date (Mo./Day)

This column is only used for Ready Mix concrete applications. Enter the month and the date for each day of production during the week.

Example: 5/24, 7/01, 12/03, etc.

Mix Number

Enter the mix number being used that is listed in the proportion tables of IM 529.

Station (Beg./End/Dir)

Enter the beginning and ending station for concrete placed daily by mix. Enter the direction (N, S, E, W) for divided sections or B for 2-lane sections.

Batched

Enter the total cu. yds. (m³) batched for each mix for a paving plant. Enter the total cu. yds. (m³) batched for each unit poured for structures.

% Of Est. Used

Enter the percent of estimated concrete used.

Fine, Intermediate & Coarse Aggregate (Moisture)

Enter the percent moisture once in the morning and once in the afternoon for paving projects. Enter

April 19, 2005 Supersedes October 2, 2001

the percent moisture for each unit poured on structures.

Fine, Intermediate & Coarse Aggregate (T203 sp gr)

Enter the specific gravity for each aggregate listed in the T203 source tables.

Fine, Intermediate & Coarse Aggregate (Dry Mass or Wt.)

Enter the weight (mass) of each aggregate calculated by absolute volumes.

Actual Quantities Used Per cu. yds. (m3) in Kilograms (Pounds)

Cement	Enter the pounds (kilograms) of cement calculated by absolute volumes.
Fly Ash	Enter the pounds (kilograms) of fly ash calculated by absolute volumes.
GGBFS	Enter the pounds (kilograms) of ggbfs calculated by absolute volumes.
Fine	Enter the actual pounds (kilograms) of fine aggregate adjusted by moisture content.
Inter.	Enter the actual pounds (kilograms) of intermediate aggregate adjusted by moisture content.
Coarse	Enter the actual pounds (kilograms) of coarse aggregate adjusted by moisture content.
In Agg.	Enter the calculated difference between the actual weights (masses) and the dry weights (masses) of both fine and coarse aggregates.
Plant	Enter the average pounds (kilograms) of water added at the plant for each cu. yd. (m ³).
Grade	Enter the average pounds (kilograms) of water added on the grade (when permitted by specification).

Avg. W/C Ratio

Enter the ratio of total water in one cu. yd. (m³) divided by the total sum of cement and fly ash in one cu. yd. (m³), report to three decimal places.

CPI Gradations

This section of the report is for reporting the Certified Plant Inspector gradation test results for the coarse and fine aggregates being used in the mix. If one of the tests fail and backups are tested, record the average in the column provided, which is located just right of the specifications column.

Batched (Today or Week)

Place an "X" under the Today column if the report is being submitted daily (paving). Place an "X" under the Week column if the report is being submitted weekly (structures).

Concrete Batched

Enter the total cu. yd. (m³) of concrete batched under the appropriate column. Paving plant totals are normally under the Today column; structural concrete totals are normally under the Week column.

To Date Total

Enter the running total for both concrete and cement.

Air Entraining (Air Ent.)

Enter the brand name or source, average rate per cu. yd. (m³), and lot number.

Water Reducer (Wat. Red.)

Enter the brand name or source, average dosage rate, and lot number.

Enter the brand name or source, average dosage rate, and lot number.

Calcium Chloride (Cal. Chlor.)

Enter the brand name or source, average dosage rate, and lot number only when added at the plant site.

Superplasticizer (Superplas.)

Enter the brand name or source, average dosage rate, and lot number.

Concrete Treatment

Place an "X" directly behind Ice, Heated Water, or Heated Materials, if one or more are used. If ice is used to cool the mix, enter the pounds (kilograms) of ice per cu. yd. (m³).

Cement

Retarder

Enter the cement type, specific gravity, and source. See IM 401 for the actual source name.

Fly Ash

Enter the type and specific gravity and source. See IM 491.17 for the actual source name.

Example:

Chillicothe and ISG Headwaters are <u>not</u> source names. Ottumwa <u>is</u> the source name.

Rock

Enter the T203 A number, and gradation number.

GGBFS

Enter the grade, specific gravity, and source. See IM 491.14 for the actual source name.

Sand

Enter the T203 A number, and gradation number.

Intermediate

Enter the T203 A number.

Remarks

Enter delays, which may take place. Enter description of noncomplying test results.

CPI

Enter the Certified Plant Inspector name and certification number.

Monitor

Enter the plant monitor name and certification number.

If using the computer spreadsheet, most of this information will be entered on the Project Information and Mix Information sheets and automatically transferred to the Report. For QMC and BR mixes, the combined gradation will be calculated from aggregate percentages entered in the Mix Information Station From and To, Totals to Date Cement and Concrete, and Remarks will be entered directly on the Report.

The next page is an example of a completed Paving Plant Report.

800240E - 04/00 computer

Date of Placement

Mix 1 Mix 2

Mix 3 Mix 4

Mix

C-3WR-C15

Location

From

To

Project No.: NHS-18-5(123)--19-17

1.5 April 19, 2005 Supersedes October 2, 2001 Targe This is i Distribu

Batched % Of Est. Meist T-203 WL SSD Moist T-203 WL SSD Moist T-203 WL SSD Moist T-203 WL SSD Cement Fly Ash GGBPS Fine Inter. Coarse In Agg Plant Grade I 1,100.00 101.3 4.0 2.67 1,380 0 0.9 2.75 1,751 470 83 1,448 1,767 74 194.0 0	X	(Daily)
Image: Note: Weather: Temp. (*) Max: 30 Actual Quantitati Used Per of (in pounds) Patching Basked %, 0*Est Moist 720 N<500		(Week)
Bached So C Est. Title Aggregate Intermediate Aggregate Coarree Aggregate Achal Quantitie Used Per of (in psunds) Weter Meter		(Weekh
Batched N, O'Est Moltit T-203 WR S5D Moist T-203 WR S5D Moist T-203 WR S5D Cammant Fire Fire Intern		(Week)
Backbod So DExt Moint T 203 WL SD Moint T 203 WL SD Cammet Piy Ah GGBPS Fine Inter- transmit Weiter Weiter 1001.0 4.0 2.877 1.300 0 0 2.78 1.751 470 8.3 1.440 1.767 74 64.0 0 1011.0 4.0 2.877 1.300 0		or end
Balched (DY) Weikt T-203 WL SSD (Bb) Meikt T-203 MEikt T-203 MEikt T-203 MEikt T-203 MEikt MEikt T-203 MEikt MEikt MEikt MEikt <t< td=""><td>Avg</td><td>N</td></t<>	Avg	N
1(17) Used (%) 9p. 0. (%) 5p. 0. (%) <td>wic</td> <td></td>	wic	
1.100.00 101.2 4.0 2.97 1.390 0.9 2.75 1,751 470 83 1,448 1.767 74 194.0 0 <t< td=""><td>Ratio</td><td>e B</td></t<>	Ratio	e B
Inter. 1100 56-100 20-75 5-55 0-10 0-5 0-15 YN I 100 75 49 31 14 4.1 0.5 0.5 Y Inter. I 11/2 1" 3/4" 1/2" 3/8" e4 e8 200 Compty NA Inter. 11/2" 1" 3/4" 1/2" 3/8" e4 e8 200 Compty NA Inter. 11/2" 1" 3/4" 1/2" 3/8" e4 e8 200 Compty NA Fine 3/8" 84 91 420 1 NA NA NA NA 100 86 89 44 25 11 4.7 0.3 Y NA NA 1.5 1" 3/4" 1/2" 3/8" 84 98 816 8200 Compty NA 1.5 1/0 0 0 <	0.430	
Inter. 1100 56-100 20-75 6-56 0-10 0-5 0-1.5 Y/N 100 75 49 31 14 4.1 0.5 0.5 Y 1100 75 49 31 14 4.1 0.5 0.5 Y 1101 10 10 10 10 10 10 100		-
Inter. 11/2 1° 3/4° 1/2" 3/8° 6 6 6 000 Check One (X) X Inter. 11/2" 1° 3/4° 1/2" 3/8° 6 6 6200 Comply NA Inter. 11/2" 1° 3/4° 1/2" 3/8° 6 6 6200 Comply NA Inter. 11/2" 1° 3/4° 1/2" 3/8° 6 6 6200 Comply NA Inter. 11/2" 1° 3/4° 1/2" 3/8° 6 702.70V Common (Ions): 258.50 Inter. 11/2" 1° 3/4° 10.0 50.0 Comply NA Inter. 11/2" 3/8° 64 6 6200 Comply NA Inter. 100 66-100 70-100 10.420 0.15 YA Inter. 100 88 89 44 25 11 4.7		
Inter. 11/2 1° 3/4° 1/2" 3/8° 6 6 6 000 Check One (X) X Inter. 11/2" 1° 3/4° 1/2" 3/8° 6 6 6200 Comply NA Inter. 11/2" 1° 3/4° 1/2" 3/8° 6 6 6200 Comply NA Inter. 11/2" 1° 3/4° 1/2" 3/8° 6 6 6200 Comply NA Inter. 11/2" 1° 3/4° 1/2" 3/8° 6 702.70V Common (Ions): 258.50 Inter. 11/2" 1° 3/4° 10.0 50.0 Comply NA Inter. 11/2" 3/8° 64 6 6200 Comply NA Inter. 100 66-100 70-100 10.420 0.15 YA Inter. 100 88 89 44 25 11 4.7	1	
Image: 1100 75 49 31 14 4.1 0.5 0.5 V Inter. 1	Week	k Te
Inter. 1 1/2" 1" 3/4" 1/2" 3/8" 84 #6 #200 Comply YR Inter. 1 1/2" 1" 3/4" 1/2" 3/8" 84 #6 #200 Comply YR Image: Comply Signature Image:	THER	To
Inter. 11/2* 1/2* 3/4* 1/2* 1/1 4.7 0.3 Y 1/2* 1/2* 3/4* 1/2* 1/1 4.7 0.3 Y 1/2* 1/2* 1/2* 1/2* 1/1 4.7 0.3 Y 1/2*		
Inter. 11/2* 1* 3/4* 1/2* 3/8* #4 #8 #200 Comply YAN Image: International Control Contrel Contrel Control Control Contecon Control Control Con		17,
Image: Second		5.
Image: Single state in the		
Image: Normal System Sector	Lot Numb	
Image:	C80005M	ISM
Fine 3/8" #4 #8 #16 #30 #200 Comply 100 90-100 70-100 10-60 0-1.5 Y/N 100 86 69 44 25 11 4.7 0.3 Y 100 86 69 44 25 11 4.7 0.3 Y Adjusted % Pessing Calculated Combined Gradation Within Trype Sp. Qr. Sg. 1.5" 1" 3/4" 1/2" 3/8" #4 #8 #16 #30 #50 #100 #200 Target 1.5" 1" 3/4" 1/2" 3/8" #4 #8 #16 #30 #50 #100 #200 Target 1.5" 1" 3/4" 1/2" 3/8" #4 #8 #16 #30 #50 #100 #200 Target 0GBFS: 0 0 0 0 0 0 0 0 0 0 0 1.6 0 0 0 0 0	D80002P)2P
Fine 3/8" #4 #8 #16 #30 #50 #100 #200 Comply V/N 100 90-100 70-100 10-60 0-1.5 Y/N 100 88 59 44 25 11 4.7 0.3 Y Image: complex to the set of the		
100 90-100 10-60 0-1.5 Y/N 100 88 89 44 25 11 4.7 0.3 Y 100 88 89 44 25 11 4.7 0.3 Y 100 88 89 44 25 11 4.7 0.3 Y 100 88 89 44 25 11 4.7 0.3 Y 100 88 89 44 25 11 4.7 0.3 Y 100 </td <td></td> <td></td>		
Image: Normalized for personal states of the personal states		
Image: Normal Sector Sp. Gr. Ss. Sp. Gr. <th< td=""><td></td><td></td></th<>		
Image: Constraint of the sensing Calculated Combined Gradation Within 1.5" 1" 3/4" 1/2" 3/8" #4 #8 #16 #30 #50 #100 #200 Target 1.5" 1" 3/4" 1/2" 3/8" #4 #8 #16 #30 #50 #100 #200 Target 1.6" 1 1 1/2" 3/8" #4 #8 #16 #30 #50 #100 #200 Target 1.6" 1		
Adjusted % Passing Calculated Combined Gradation Within 1.5" 1" 3/4" 1/2" 3/8" #4 #8 #16 #30 # 100 # 200 Target 1.5" 1" 3/4" 1/2" 3/8" #4 #8 # 16 # 30 # 50 # 100 # 200 Target 0	Source	ce
Adjusted % Pessing Calculated Combined Gradation Within 1.5" 1" 3/4" 1/2" 3/8" #4 #8 #16 #30 #100 #200 Target 1.5" 1" 3/4" 1/2" 3/8" #4 #8 #16 #30 #100 #200 Target 1.6" 1	HOLNAM	AM
1.5" 1" 3/4" 1/2" 3/8" #4 #8 #16 #30 #200 Target 1.5" 1	PORTAGE	GE 1
Image: Construction of the second		_
Image: Construction of the second of the		_
Image: Coarse: A17008 Image: Coarse: A17008 Image: Coarse: Image: Coarse:	Gred	
Intermediate: Fine: A17514	No.	
Fine: A17514	4	120.000
Remarks	NERSONAL STREET	19135
	1	
C.P.I.: JEFFREY BOLSINGER NE118		
stribution: Central Materials DME Proj. Eng. Plant Monitor: JASON RUTER N6443		

Contract ID: 17-0185-11

9

Check Mix(x)
Central X

Report No.:

2

Check One(x)

х

Paving

SEND (Daily)

April 15, 2003 Supersedes October 29, 2002

EXAMPLE A

Rev 02/01				rtment Of Transpo fice Of Materials	rtation			Form E820150E
				D CEMENT CONC	RETE			
	Project No.: F	-273(26)10		_			County :	BUCHANAN
	Mix No.: _	C-4WR-C15	P	ounds Cement:	593			
	1st Adjus	sted lbs. Cement:	504	Source:	MONARCHI		Sp. Gr.:	3.14
	IM 491.17	Fly Ash:	89	Source:	LOUISA		Sp. Gr.:	2.68
	IM 491.14	Slag GGBFS:	_	Source:			Sp. Gr.:	
	2nd Adjus	sted lbs. Cement:	504					
	Т	otal Cementitious	593	2.001				
	IM T203	Fine Aggregate	Source:	NIEMAN CONST	. HUFFMAN		Sp. Gr.:	2.65
	IM T203	Interm. Aggregate			-		Sp. Gr.:	and a feat
	IM T203	Coarse Agregate	Source:	NIEMAN CONST	r. Jesssup		Sp. Gr.:	2.63
	Basic w/c	0.430		Water (lbs	/cv) = Design	w/c (wt. cement + wt	Flv Ash +Slaq) =	255
	Max w/c	0.489				w/c (wt. cement + wt	-	
Absolute	Volumes	Cement			(lbs/cy) / (S	p. Gr. X 62.4 X 27)	-	0.095
		Fly Ash			(lbs/cy) / (S	p. Gr. X 62.4 X 27)	-	0.020
		Slag			(lbs/cy) / (S	p. Gr. X 62.4 X 27)	-	-
		Water			(lbs/cy) / (1.	.00 X 62.4 X 27)	-	0.151
		Air						0.060
						Subtotal	-	0.326
						1.000 - Subtotal	=	0.674
						Total	-	1.000
	% FA Agg.:	50	Fine	Aggregate (1.000	- Subtotal) X	% In Mix		0.337
	% In. Agg.:			Aggregate (1.000			-	
	% CA Agg.:	50		Aggregate (1.00			-	0.337
					Aggre	gate Total	-	0.674
Aggregate	e Weights		Fine Ag	ggregate (abs vo	l.) X Sp. Gr. X	62.4 X 27	-	150
			Intermediat	e Aggregate (ab	s vol.) X Sp. C	Gr. X 62.4 X 27	-	<u></u>
			Coarse	Aggregate (abs v	ol.) X Sp. Gr.	X 62.4 X 27		149
Summary				Cement	504	(lbs/cy)		
				Fly Ash	89	(lbs/cy)		
				Sla	g	(lbs/cy)		
				Water	255	(lbs/cy)		
				Fine Agg	. 1505	(lbs/cy)		
				Interm. Agg		(lbs/cy)		
				Coarse Agg	. 1493	(lbs/cy)		

Distribution: ____ Materials, ___ DME, ___ Proj. Engr., ___ Contractor

Form 830212 10-95 READ	Y MIX CONCRETE	
		Plant
Truck No	Ticket No	
Date	Des. No	
Proj. No.		
Mix No Re	etarder/Water Reducer? 🗌 Yes	No No
Conc. This Truck		_ C.Y./m ³
Air agent added this truck		oz./mL
Time Batched	Discharged	
Rev. Mixed (Plant)	Grade	
Water (gal./L or lbs./kg This 7	Truck) 8.33lbs./gal.	
In Aggregate	gal./L	_lbs./kg
	gal./L	
Subtotal	gal./L	_ lbs./kg
Added Grade	gal./L	_ lbs./kg
TOTAL WATER	gal./L	_ lbs./kg
Maximum Water Allowed	gal./Llbs./cy	or kg/m³
Air	Slump	
Plant Insp.		
Receiving Insp		

April 20, 2004 Supersedes April 20, 2003

rm 820912E -	computer										
									Report No :	1	
			Portland Cer	nent Shipment Yield	Report			Date Su		01/02/04	
ontract ID:	29999							Source	Ash Grove		
Project No.:	FM-85(25)55	-85						Contractor:	Manatt's		1
County.	Story			Plant Loo	cation:	NW Corr E29					
	Invoice	Billed			Invoice	Billed		-	Invoice	Billed	
Date	Number	Tons	Туре	Date	Number	Tons	Туре	Date	Number	Tons	Туре
06/02/03	107312	28.19	I/II	06/04/03	107352	27.86	I/II	0	0	0.00	IVII
06/02/03	107313	28.14	1/1	06/04/03	107353	27.57	1/11	0	0	0.00	I/II
06/02/03	107314	27.85		06/04/03	107354	28.14	1/11	0	0	0.00	
	107315	27.81 27.92	VII	06/04/03 06/04/03	107355 107356	27.99	VII	0	0	0.00	VII
06/02/03	107316 107317	28.21	VII	06/04/03	107356	28.10	1/11	0	0	0.00	VII
06/02/03	107317	25.49	VII	06/04/03	107358	26.99	1/11	0	0	0.00	VII
06/02/03	107319	25.49	VII	06/04/03	107359	27.85	1/11	0	0	0.00	VII
06/02/03	107320	28.06	VII	06/04/03	107360	28.00	1/11	0	0	0.00	VII
06/02/03	107321	28.02	IVI	06/04/03	107361	27.94	INI	0	0	0.00	I/II
06/02/03	107322	28.15	VII	06/04/03	107362	27.30	VII	0	0	0.00	VII
06/03/03	107323	28.36	IVI	06/04/03	107363	28.28	VII	0	0	0.00	VII
06/03/03	107324	28.08	I/II	06/04/03	107364	27.90	1/11	0	0	0.00	1/II
06/03/03	107325	27.73	VII	06/04/03	107365	28.50	1/11	0	0	0.00	VII
06/03/03	107326	28.26	1/11	06/04/03	107366	28.00	1/11	0	0	0.00	VII
06/03/03	107327	25.55	VII	06/04/03	107367	27.99	1/11	0	0	0.00	VII
06/03/03	107328	28.19	I/I	0	0	0.00	VII	0	0	0.00	VII
06/03/03	107329	27.61	M	0	0	0.00	VII	0	0	0.00	VII
06/03/03	107330	28.18	INI	0	0	0.00	1/11	0	0	0.00	1/11
06/03/03	107331	28.37	MI	0	0	0.00	1/11	0	0	0.00	1/11
06/03/03	107332	28.24	I/II	0	0	0.00	L/II	0	0	0.00	VII
06/03/03	107333	28.20	1/11	0	0	0.00	I/II	0	0	0.00	VII
06/03/03	107334	28.03	VII	0	0	0.00	L/II	0	0	0.00	VII
06/03/03	107335	28.18	I/II	0	0	0.00	I/II	0	0	0.00	VII
06/03/03	107336	28.03	VII	0	0	0.00	I/II	0	0	0.00	VII
06/03/03	107337	21.00	VII	0	0	0.00	L/II	0	0	0.00	IVII
06/04/03	107338	27.78	U1I	0	0	0.00	VII	0	0	0.00	1/11
06/04/03	107339	28.15	IVI	0	0	0.00	L/II	0	0	0.00	1/II
06/04/03	107340	28.25	I/I	0	0	0.00	1/1	0	0	0.00	VII
06/04/03	107341	28.32	VII	0	0	0.00	VII	0	0	0.00	VII
06/04/03	107342	27.89		0	0	0.00		0	0	0.00	VII VII
06/04/03	107343 107344	27.96 28.50	VII	0	0	0.00	VII	0	0	0.00	VII
06/04/03	107344	28.50	VII	0	0	0.00	Vil	0	0	0.00	VII
06/04/03	107345	20.20	1/11 1/11	0	0	0.00	U/I	0	0	0.00	M
06/04/03	107346	27.91	IVI	0	0	0.00	1/1	0	0	0.00	VII
06/04/03	107348	28.34	IVI	0	0	0.00	1/11	0	0	0.00	VII
06/04/03	107349	27.88	U/I	0	0	0.00	1/11	0	0	0.00	VII
06/04/03	107350	28.34	VII	0	0	0.00	1/11	0	0	0.00	INI
06/04/03	107351	28.35	1/11	0	0	0.00	1/11	0	0	0.00	IVI
	1.3					1		-			
	Cement			Cement							
	Per CY	Batched		Batched							
Mix No.	(lbs)	(CY)		(Tons)							
C-4WR-C15	503	5,782.00		1,454.17					1		
M-4	825	168.00		69.30				Total Billed	Weight (Tons)	1,555.84	
C-4WR	593	147.00	Manager .	43.59							
0	0	0.00		0.00							
0	0	0.00		0.00				Yield =	100.7	%	
Left In	-		his Check (+)	1.53			7		Termine		
Scale (Tons)			ld Check (-)	1.68			C.P.I.:		-		
	1	otal Weighed	(Batch Scale)	1,566.91					Signature		

2

	lice of Materials		
Portland Cement Paving Plant Initial Calibration	Check Calibration	in Material Source	
haded area to be completed for paving plants and when applical Contractor/Producer	ble for ready mixed concrete plants. County		
Plant Location	Project		
Class of Concrete	Mix No.(s)	S. States	
Design W/C Ratio(s)	Max W/C Ratio(s)		
MATERIAL SOURCE Producer Name &		SPECIFIC GRAVITY	DRY BATCH MASS
Aggregate (Coarse)			
Aggregate (Find)			No. of the local states of
Cement			
Fly Ash			Sector Contraction
Water			
Air Entraining Agent			
Curing Compound			
Water Reducing Agent			
Retarding Admixture			
calibrated by:	Title:	Dat	e:
oarse Aggregate Sampling Point:			
emarks:			
	admixtures is required prior to use.		
lote: Circulation of air entraining, water reducing, and retarding a 'his above data is furnished by the Contractor/Producer as se orth in the Standard Specifications for plant operations. Th Contracting Authority makes no representations as to accuracy ither express or implied, which are to be construed to relieve th	et Witnessede		

April 19, 2005 Supersedes April 30, 2002 Matls. IM 527 Appendix D

PORTLAND CEMENT & READY MIX PLANT CALIBRATION CHECKLIST

References: IM 527, 528 and noted Specifications

STORAGE & HANDLING OF MATERIALS

Aggregates: 2301.13

- Certified compliance
- Separation of materials
- Storage area floor shall be a minimum of 18" of similar material
- Fine aggregates shall drain a minimum of 24 hours on new bridge deck floors-2412.02

Cementitious Material: 2301.13

- Approved certified sources
- No intermingling of products or sources
- Stored in suitable weather proof enclosures

WATER

Sample when required

ADMIXTURES

- Verify acceptance of lot
- Circulate 5 min. per 100 gal. of solution
- Proper storage to prevent freezing

1

PLANT REQUIREMENTS

Safety:

- Guards, ladders, railings and walkways
- Sampling location
- Proper template if belt sample
- Safety switches and belt lockouts in place
- Bins are structurally safe: 2001.06
- Settlement of footings is uniform
- Suitable wind protection for scale operation
- Automatic interlocks for projects over 6000 sq. yds: 2001.20 & 2301.13
- Weight indicator or digital readouts are in full view of the plant operator.

Scale Calibration: 2001.20

Calibration of batch plant scales as required by the specifications is performed by incrementally loading the scales with standard test weights and partial batches through the operating range of the scales. As each increment of load is applied, the actual observed weight and the required weight are compared. The differences plus or minus, are determined and converted to percentages of the required weight. If the percentage deviations are less than the tolerance allowed by the specifications and the scales are sensitive to the test loads, the scales will be considered in calibration. If the scales do not meet the various requirements, the contractor should be notified immediately and required to make the necessary repairs or adjustments. The engineer may order recalibration if the scale equipment malfunctions, material quantities do not agree with actual material quantities, or any repairs or replacement of equipment occurs.

- Calibrate scales to include the maximum weight for projected batches
- Commercially manufactured weights that have the weight stamped on the exterior and appear to be unaltered and in good condition may be assumed to meet the requirements of ASTM E617.
- Non-commercially manufactured test weights may be used in providing accumulating weight for loading the scales, if validated against commercially manufactured test weights.
- Accumulate calibration error at each increment that material replaces known weight.

NOTE: Example uses 2000 lbs. of known weights applied at 1000 lb. increments. Accumulated error applies only when exchanging known weight with material.

Applied Wt.	Scale <u>Reading</u>	Error	Accum. Error	Wt. Replaced By Material
1000	995	-5		
2000	1995	-5	-5*	yes
3000	2990	-10	-15	<
4000	3995	-5	-10*	yes
5000	5000	0	-10	<
6000	6005	+5	-5*	yes
7000	7010	+10	+5	<

NOTE: *Accumulated error is from last known error prior to material replacement.

< Intermediate errors are measured to determine specification compliance, but are not part of the accumulated result.

As a guide, a working form to help record field calibration measurements is on page 4.

Water Calibration: 2001.20B

- Equipment shall be such that accuracy will not be affected by variations in pressure of the water supply.
- Weighing equipment to verify water calibration shall meet specification
- Repairs or adjustments will require equipment to be recalibrated.

Equipment for Dispensing Liquid Admixtures: 2001.20C

- Calibrate per Specification
- Measuring container of digital readout shall be on view of plant operator.

Truck Mixer & Agitator: 2001.21B

- Meet the requirements of specification
- Truck mixer certification (Form #820907) kept in truck and is up to date.

Matls, IM 527 Appendix D

CONCRETE PLANT CALIBRATION WORKSHEET

DATE

____ PAVING PLANT

LOCATION

READY MIX PLANT

CEMENT SCALE – ACCURATE TO 0.5% OF BATCH WEIGHT

SENSITIVITY - EMPTY FULL LBS. @ LBS. TOLERANCE - 0.1% OF BATCH WEIGHT OR 2 LBS., WHICHEVER IS GREATER

applied weight	scale reading	error	accum. error	applied weight	scale reading	error	accum. error

AGGREGATE SCALE - ACCURATE TO 0.5% OF BATCH WEIGHT

SENSITIVITY - EMPTY FULL LBS. @ LBS. TOLERANCE - 0.1% OF BATCH WEIGHT OR 2 LBS., WHICHEVER IS GREATER

applied weight	scale reading	error	accum. error	applied weight	scale reading	error	accum. error
							-

WATER-ACCURATE TO +/-1.0% OR 2 LBS., ADMIXTURES-ACCURATE TO +/-3.0% WHICHEVER IS GREATER

OF QUANTITY REQUIRED

					and the second se		Retarder meter meas.		
lbs.	reading	error	oz.	OZ.	oz.	OZ.	oz.	oz.	
			-						
-									
			_						
			-					-	
			10000	-					
				ered scale meter		ered scale meter meas. meter	ered scale meter meas. meter meas.	ered scale meter meas. meter meas. meter	

Office of Materials

Iowa Department of Transportation

October 16, 2007 Supersedes April 17, 2007 Matls. IM 528

STRUCTURAL CONCRETE PLANT INSPECTION

GENERAL

Refer to IM 527 (General, Safety).

The following instruction is to be used when inspecting the operation of a ready mix concrete plant typically used for structural concrete, patching, and other concrete items.

EQUIPMENT

1. ELEVATED, LOW PROFILE, AND GROUND-LEVEL BINS

Refer to IM 527 (Equipment Bins) and the following:

Permanent structural concrete plants often have facilities for storing sizable quantities of a number of different aggregates. There is a tendency for the stockpiles to become too large for the available area and for the bins to be filled beyond their normal capacity. Aggregates thus tend to become intermingled. Aggregates may also become contaminated with foreign material from a number of sources, including the material, which underlies some stockpiles, if proper care is not taken. Materials, which have been intermingled or otherwise contaminated, must not be incorporated into the work.

2. PROPORTIONING EQUIPMENT

Requirements for scales or meters for proportioning aggregates, cement, fly ash, water or air entraining agents or other admixtures are found in Article 2001.20 of the Standard Specifications, as modified by Supplemental Specifications. These requirements are in addition to Section 1 above for elevated bins.

It is the duty of the District Materials Engineer to examine and evaluate all proportioning and plant equipment annually, and maintain a current list of approved structural concrete plants. The Calibration Report, Form #820917, with any appropriate restrictions, conditions, comments, etc., will be posted at the plant site. (See IM 527, Appendix C for a sample copy and Appendix D for calibration checklist.) Before concrete work begins on a project, the Project Engineer must communicate with the District Office and determine that the plant to be used has received annual approval.

The plant inspector must be familiar with all features of the plant operation before work begins. While the inspector must not personally make any of the manipulations or adjustments, an understanding of the basic machinery operation and the ability to recognize the significance of a malfunction is important.

The proportioning equipment must be examined at regular intervals during a placement for correctness of the amount being delivered and for possible damage or malfunction. Special attention must be given to the empty balance and the position of the poise weights for beam and dial scales.

1

The normal plant operation causes vibration, which tends to change these adjustments. Accumulation of material clinging to the inside of the hoppers can also cause these adjustments to drift. Small amounts of material accumulation clinging to the inside of a hopper are not considered objectionable. If the amount exceeds one percent of the material batch, however, it must be removed and readjusted to indicate a zero load within 0.5% (Article 2001.20).

The scale sensitivity shall be checked at least at the beginning of a placement if operations are intermittent, and at the beginning of each day if the operations are continuous in the following manner:

Place a mass equal to 1/10 percent of the batch on the fullyloaded scales while observing the movement of the indicator.

A properly sensitive scale will exhibit a visible indicator movement when tested in this manner. If no indicator movement is visible and immediate corrective action by the owner does not yield successful results, the District Materials Engineer must be informed.

Periodic observation of the measuring operation must be made to determine that the proper amounts of materials are being delivered to the concrete batch. The plant inspector must be able to recognize when the hopper is overloaded or underloaded by one percent of the batch. For a dial scale, these limits are readily recognizable on the graduated dial chart. For scales with a balance indicator, the location of the indicator hand when a one percent over and underload is applied and removed can be noted before work begins.

If an examination reveals that the scales are not properly sensitized or the proper amounts of material are not being furnished to the concrete batch, refer to IM 527, General, for the necessary action.

Document all routine scale sensitivity, delivery tolerance checks and any necessary corrective action taken, in the plant inspection diary.

The following procedure is required for setting or adjusting the various items of proportioning equipment so that they will deliver the proper amount of material to the batch:

- The plant superintendent or other authorized operator representative must make all necessary scale and equipment setting and/or adjustments. The plant inspector is specifically directed not to participate in this activity.
- Before the plant operation begins or resumes, the plant inspector will independently
 determine for himself/herself that the settings and/or adjustments are correct and that the
 amounts of material being delivered to the batch are correct. Errors must be corrected
 immediately. Strict adherence to the above procedure is necessary to maintain a proper
 division of authority and responsibility between the contractor and the contracting authority,
 and to minimize the possibility of operating with erroneous proportions.

Suitable wind protection on all sides of the scales is required by the specification. This protection, if not provided by the plant design, can be fabricated from burlap, masonite, plywood or other suitable material and should provide adequate room for the scale operator to work unobstructed.

An air-entraining admixture is required for all structural concrete, except Class X, and can be proportioned either manually or automatically. Mechanical dispensers must have a transparent measuring chamber so that each batch can be observed as it is measured and dispensed. Mechanical dispensers must be cleaned daily to minimize the possibility of deposits accumulating and causing a malfunction.

The amount of air entraining admixture required is determined by the results of the pressure meter air tests run on the plastic concrete, as described in IM 318. The contractor must decide the quantity to be used and the adjustments necessary, if any, after the pressure meter testing has been completed. Provision shall be made for agitation of the air-entraining agent. (See Article 4103.01A)

An admixture for set retardation may be required. The list of approved retarding admixtures, and recommended dosages, is found in IM 403. An admixture for water reduction may be used at the contractor's option in mixes so designated in IM 529. (See Article 2301.04D.)

See IM 527 (Materials, Admixtures), regarding dosage, handling and storage of admixtures.

Most air entraining and retarding admixtures, when intermingled with each other tend to neutralize each other and negate the effects of each. Care must therefore, be taken to introduce each admixture into the mixer separately and allow the first to become intermingled into the batch before the second is introduced. A procedure, which has been used successfully, is to introduce the air-entraining agent first along with most of the mixing water and other ingredients, and after these have become intermingled then introduce the balance of the mixing water and the retardant admixture.

3. MIXING EQUIPMENT

Mixing equipment for structural projects will be one of the following types:

Truck-mounted transit mixers Stationary central mixers with in-transit agitation Stationary mixers located at the project site Concrete-Mobiles

The truck-mounted transit mixers are the most popular with stationary, central mixers increasing in popularity. Stationary site mixers are seldom used.

Refer to IM 527 (Mixing Equipment) for inspection instructions relating to stationary central mixers and truck-mounted transit mixers, and IM 534 for Concrete-Mobiles.

Transit mixers must carry a current certification signed by a responsible company representative stating that the mixer condition has been examined during the previous 30 days, is free of hardened concrete, and is in proper working condition. Mixers not carrying the required certification must not be used.

MATERIAL

Refer to IM 527 (Material) for the necessary inspection instructions relating to material identification, handling and storage.

SAMPLING & TESTING

1. AGGREGATES

Refer to IM 527 (Sampling & Testing) for related inspection instructions.

The minimum frequencies for testing aggregates for structural concrete vary slightly from those for pavement and are as follows:

Specific Gravity - One sample per week for both coarse and fine aggregate for the first two weeks of concrete placement, and one sample for both coarse and fine every other week thereafter, unless the first two tests indicate variations greater than 0.02 from the tabular value T203, Aggregate Source Information, or from one test to the next. If the above variations are greater than 0.02, inform the Project Engineer and the District Materials Engineer immediately. The District Materials Engineer may adjust the specific gravity used to determine batch weights.

Moisture - One sample for each aggregate per lot. If a system with instantaneous moisture content measurement equipment is used to automatically adjust individual batch weights, see section titled Sampling & Testing/Moisture in IM 527 for instructions on approval, use, and monitoring of the system.

Gradation - One sample for each aggregate per lot.

Lots are based on amount concrete produced from the plant and may include more than one project. For structural concrete operations, a quality control lot shall consist of one day's run or approximately 250 cubic yards (190 m³) whichever is greater. If less than 250 cubic yards (190 m³) are produced in one calendar week that week's work shall be considered as one lot. A bridge deck is considered a lot, unless a bridge deck has over a single day's run, then each day's run shall be considered a lot.

For projects requiring certified plant inspection, the certified inspector will obtain and test one gradation sample per lot, unless operations are prematurely shut down.

Verification sampling and testing will be performed the first day. Thereafter, verification sampling will be performed once per week and testing will be performed on a minimum of 20% of the samples obtained. Also, verification sampling and testing will be performed once

per deck pour.

The engineer will perform verification sampling and testing at the frequency described above. IM 205 describes the agency responsibility to randomly select sample location and time, and witness sampling with the contractor providing assistance in obtaining the samples. For small quantities and intermittent production of less than 35 cubic yards (30 cubic meters) per week, verification sampling may be grouped with the previous or subsequent week. A minimum of one sample will be obtained per two week period (grouped as a lot) for each production plant.

Non-Critical Concrete

When non-critical concrete is the only concrete produced for the project(s) from a given plant, quality control testing may be reduced to one gradation per two weeks. Verification sampling and testing for small quantities and intermittent production will apply.

The following Items of work may be designated as non-critical concrete, when placed at less than 35 cubic yards (30 cubic meters) per week:

Concrete Base and Widening **Temporary Pavement** Curb and Gutters **Pavement Patching** Culvert Curtain Wall Concrete **Fence Posts** Sign, Signal and Light Bases **Slope Protection Building Floors Catch Basins Pipe Collars** Intakes **Utility Access** Sidewalks and Driveways **Guard Rail Anchorages** Full PCC Depth Rumble Strip Patch

Non Complying Gradation

When a quality control gradation test does not comply with the gradation requirements of Article 4109, the certified plant inspector shall contact the Engineer. After corrections have been made, the Engineer will obtain and test another verification sample.

When a verification gradation test does not comply with the gradation requirements of Article 4109, the Engineer will contact the contractor and the District Materials Engineer. The District Materials Engineer may investigate sampling and testing procedures, stockpiling, source material, etc. After corrections have been made, the Engineer will obtain and test another verification sample.

Acceptance of lots will be based on complying verification test results. The engineer will retain all samples representing the lots until the lots have been accepted. Since the contracting authority tests are verification, correlation with IM 216 is not required, but may be performed as a check of sampling and testing procedures.

2. WATER/CEMENT RATIO

Whenever the water demand, to achieve the desired workability, exceeds the design water/cement ratio and approaches the maximum water allowed the Project Engineer and the District Materials Engineer Office should be notified. At the same time, aggregate moisture contents, batch amounts, cement scales, water meter, etc., should all be immediately checked. In no circumstance should the maximum water/cement ratio be knowingly exceeded.

If, after the District Materials Engineer investigation and evaluation, additional workability above that which is attainable within the maximum permissible water content is desired, the cement content may be increased in accordance with Article 2403.03A. This should be done <u>only</u> with the approval of the District Materials Engineer or the engineer representative. The District Materials Engineer will provide the revised and adjusted mix proportions for these situations.

Also, in accordance with Article 2403.03C, the engineer may authorize the use of a waterreducing admixture to improve workability. When authorized, only the water-reducing admixtures and dosage rates, as shown in IM 403 should be used.

When calcium chloride solution is added for patching M mix, water included in the calcium chloride solution should not be included in calculation of water-to-cement ratio.

3. STRENGTH TESTS

The test for Modulus of Rupture is the only strength test determined in the field. Test specimens are required for each section placed.

A section is defined as a day's placement of structural concrete. IM 204 lists minimum testing requirements.

Abutment backwalls, pier footings, bridge end posts, and culvert curtain walls are not considered critical structural units and therefore, test specimens are not required from these units, unless directed by the engineer.

Test the flexural specimens as prescribed in IM 316, Flexural Strength of Concrete. Testing shall be done by contract authority personnel.

PROPORTIONS

Refer to IM 527 (Proportions)

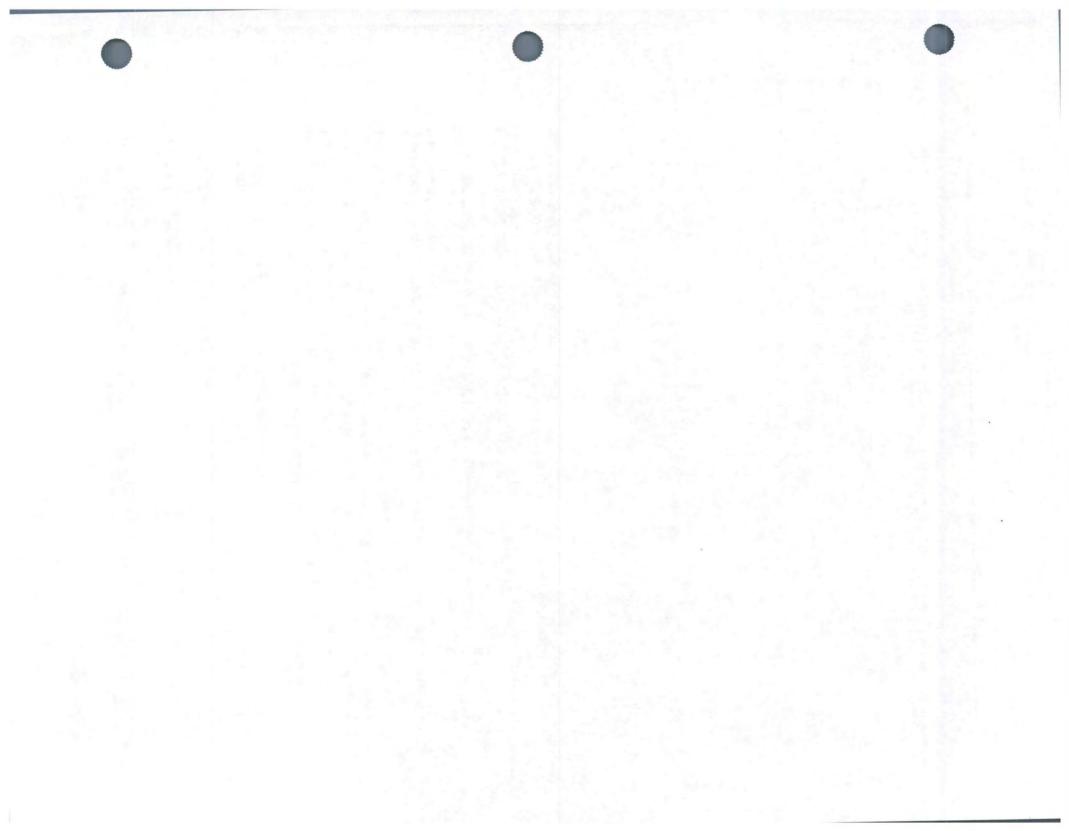
October 16, 2007 Supersedes April 17, 2007

REPORTS & REPORTING

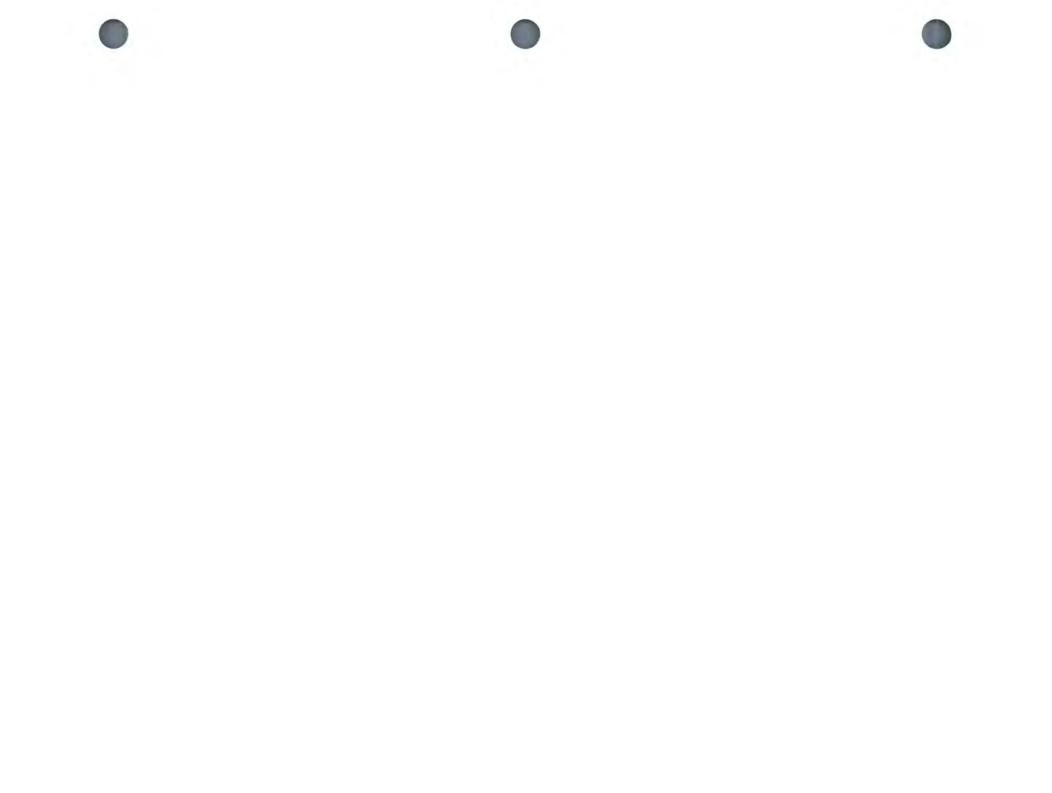
1. PCC PLANT PAGE - FORM #240

The same form is to be used for PCC Paving and PCC Structures. Refer to IM 527 for instructions on completing the form and an example form.

Structural Reports are to be recorded in the computer program or on hand-completed forms both provided by the Iowa Department of Transportation. A copy of the completed PCC Plant Page shall be faxed or delivered to the District Materials Engineer within four hours on the next working day after the end of the lot. The Certified Plant Inspector shall keep a copy of the PCC Plant Page and send the original to the Project Engineer. Copies of the files containing the project information will be available to the engineer upon request until the project is final.


A separate report is to be made for each lot of concrete. These reports are to be consecutively numbered for each project.

When computer forms are used, refer to IM 527 for the necessary equipment.


2. READY MIXED CONCRETE, TRUCK TICKET FORM - FORM #830212

Each truckload of concrete must be identified by Form #830212 or an acceptable computergenerated plant ticket. See IM 527.

October 16, 2007 Supersedes April 17, 2007

Matls. IM 529

PORTLAND CEMENT (PC) CONCRETE PROPORTIONS

GENERAL

Materials for pavement concrete and structural concrete shall be mixed in any one of the following proportions for the class of concrete specified. Each mixture will have specific requirements for the coarse and fine aggregates and the type of cement. Concrete mix proportions include the unit volumes of all materials.

Mix numbers designate numerous aspects of the particular mix. The following is an explanation of the various aspects of the mix number:

- The first letter designates the class of concrete as designated in the contract documents.
- In certain mix designations, the letter V appears after the first hyphen. This indicates either Class V aggregate is to be used. If no letter is shown, aggregate other than Class V shall be used.
- The number indicates the relationship of coarse aggregate to fine aggregate. A mix with a 4 is a 50/50 mix. The following chart shows the number within the mix number and the proportions of the aggregates for each number:

is composed of 40% fine and 60% coarse
is composed of 45% fine and 55% coarse
is composed of 50% fine and 50% coarse
is composed of 55% fine and 45% coarse
is composed of 60% fine and 40% coarse
is composed of 65% fine and 35% coarse
is composed of 70% fine and 30% coarse
is composed of 50% fine and 50% coarse
is composed of 60% fine and 40% coarse

- The letters WR indicate water reducer is used in this mixture.
- When a C or an F is shown toward the end of the mix number, fly ash is a part of the mixture and C-fly ash or an F-fly ash, respectively, is used. The percentage of fly ash being used in the mixture shall be designated at the end of the mix number.
- When used as a mineral admixture, Ground Granulated Blast Furnace Slag (GGBFS) shall be designated through the letter "S," followed by the percent substitution, and shown at the end of the mix number. This would be in the same convention used for fly ash substitution. When GGBFS is a portion of a blended cement, the cement type will be designated as IS or IS (M), but special notation will not be made in the mix number.
- The following example illustrates a mix number showing a Class C concrete mixture, 50/50
 aggregate proportions, using Class L aggregate, water reducer, and 35% GGBFS substitution.

Example: C - L 4 W R - S35

The following example illustrates a mix number showing a Class C concrete mixture, 50/50 aggregate proportions, using water reducer and a Class C fly ash substitution at a rate of 10%.

Example: C – 4 W R – C10

The following example illustrates a mix number showing a Class C concrete mixture, 50/50 aggregate proportions, using a water reducer, Class C fly ash substitution at 15%, and GGBFS substitution at 35%.

Example: C – 4 W R – C15-S35

The Class D mixtures and the Class V mixtures vary somewhat from the above pattern, but follow the general format.

MIX REQUIREMENTS

General requirements for the mixes are:

- Fly Ash and GGBFS used in concrete mixtures shall meet the requirements of Section 4108. Fly Ashes for use in concrete mixtures shall be included on the list of approved sources (Materials IM 491.17). GGBFS for use in concrete mixtures shall be included on the list of approved sources (Materials IM 491.14).
- 2. A water-reducing admixture shall be used in concrete mixtures with the designation as follows: Those mixtures have mixture numbers which have the letters "WR" following a single digit number, all following the first hyphen in the mixture number. These mixtures have reduced cementitious contents to produce concrete of approximately equal strength compared with other mixtures in a particular class of concrete. A water-reducing admixture may be added to other concrete mixtures, without cement reduction, to aid in workability and air entrainment.

The water-reducing admixture shall meet the requirements of Section 4103 and shall be included on the list of Approved Sources of Water Reducing Admixtures (Materials IM 403, Appendix C). The dosage shall be as described in IM 403.

- 3. The total quantity of water in the concrete, including water in the aggregate, shall not exceed the maximum water to cement and fly ash ratio.
- Type I, Type II, Type III, Type I (PM), Type IP, Type I (SM), and Type IS Cement shall be used as provided for in the specifications. All cement shall be from an approved source as per IM 401. The cement type shall be documented on all reports pertaining to a project.
- 5. The fine aggregates other than Class V (Section 4117) shall meet the requirements of Section 4110 of the current specifications. The coarse aggregates for mixtures using aggregates other than Class V aggregates and excluding Class O concrete (Section 4115.05) mixtures shall meet the requirements of Articles 4115.01 through 4115.04 of the current specifications.

- 6. When approved by the Engineer, combined fine and coarse aggregate may be used in combination with screened coarse aggregate to produce proportions specified for Class D and Class X concrete mixtures according to the percentage of particles passing the No. 4 sieve in the combined aggregate at the time the material is used.
- 7. With Engineer approval, proportions designated for mixtures A-V, B-V or C-V with and without fly ash may be substituted for Class X concrete.
- 8. With Engineer approval, Class M concrete may be substituted for Class A, Class B or Class C concrete.

A-MIX

A-Mixes are specified primarily as paving mixes. They have a lower cement content and lower ultimate strength when compared to a Class C-Mix. A-Mix is commonly used on lower traffic roadways.

B-MIX

B-Mixes are specified primarily as paving mixes. They have the least amount of cement of any paving mix. The strength is also lower than for other paving mixes. B-Mix is commonly used on lower traffic roadways.

C-MIX

C-Mixes are specified for use in both paving and structures. It is the normal paving mix used in primary paving. Typical structural uses would include box culverts, bridge piers, bridge abutments, and most bridge decks.

D-MIX

D-Mixes are specified for use primarily in structures. A typical use includes drilled shafts.

M-MIX

M-Mixes are designed for high early strength, suitable for many applications for which they are allowed. Calcium chloride should only be used when needed, for patching and other placements without steel reinforcement.

Matls. IM 529

O-MIX

O-Mixes are specified for low slump concrete, primarily for use in bridge deck overlays. The watercement ratio is intended to be controlled by the slump specified elsewhere for concrete where these mixtures are used. A water-reducing agent, which meets the necessary requirements of IM 403, is required for this mix. The dosage shall be as described in IM 403. O-Mixes require coarse aggregate specifically intended for repair and overlay. See Specification 4115.06.

X-MIX

X-Mixes are specified to be used as seal course concrete, primarily in cofferdams. No air entraining is required. No maximum water-cementitious ratio is specified. See Specification 2405.05 for limits on water usage.

QMC

Contractor-designed aggregate proportioning mixes. Minimum absolute volume of cement is 0.106. Maximum water-cement ratio is 0.45.

BR

BR mixes are used in slip form barrier rail in accordance with Section 2513. Required designed aggregate proportioning. The minimum absolute volume of cement is 0.114. Maximum water-cement ratio is 0.45.

CLASS V

Class V is an aggregate classification, specified in Section 4117. The fine limestone aggregates in concrete mixes using Class V aggregate with/without fly ash shall meet the requirements of Article 4117.03 of the current specifications. This material may be used in various concrete mixes, so designated. The mixes utilizing this material will be designated with a Roman numeral V, in the Mix Number.

FLY ASH & GGBFS SUBSTITUTION

At Contractor option, fly ash or GGBFS may be substituted for a portion of the cement in concrete mixes, within the limitations set forth in the appropriate Article for each type of placement. IM 527 gives instructions on how to determine the proper batch proportions in a mix.

October 16, 2007 Supersedes April 17, 2007

When fly ash or GGBFS is substituted for the cement, the replacement shall be on a pound-forpound (kilogram-for-kilogram) basis. Tables 1 and 2 define concrete mixes with no substitution. These mixes shall be used as the basis for determining the final batch proportions and shall be adjusted accordingly. The change in volume resulting from the substitution shall be determined and an adjustment in both coarse and fine aggregate proportions shall be determined in order to ensure a unit volume. The change in aggregate proportions shall be in the same ratio as that of the specific mix. In those cases where the cement content is increased, relative to the standard design mix, the mix proportions shall be adjusted and a change in the aggregate content shall be determined, as described above.

When both fly ash and GGBFS are substituted for the cement in ready-mixed concrete, the replacement shall be on a pound-for-pound (kilogram-for-kilogram) basis and shall be substituted in the following order. First, fly ash shall be substituted for the cement. Next, GGBFS shall be substituted for the weight (mass) cement minus the pound (kg) of fly ash replacement.

Type IP and Type IS cements shall be considered cement with regard to substitution of fly ash. Refer to appropriate Article for limitations. For pavements, a 20% fly ash replacement of a blended cement with 25% replacement, such as IS(25), is equivalent to a 40% weight replacement of Portland cement. For structures, a 35% replacement with ggbfs and a 20% replacement with fly ash is equivalent to 48% weight replacement of Portland cement.

Proportion Table 1 Concrete Mixes Using Article 4110 and 4115 Aggregates Basic Absolute Volumes of Materials Per Unit Volume of Concrete

Mix No.	Cement	Water	Air	Fine	Coarse
A-2	0.101	0.150	0.060	0.276	0.413
A-3	0.104	0.155	0.060	0.306	0.375
A-4	0.108	0.161	0.060	0.335	0.336
A-5	0.111	0.165	0.060	0.365	0.299
A-6	0.115	0.171	0.060	0.392	0.262
BMIXE		/c = 0.536	Max w/c = 0.60		10.202
Mix No.	Cement	Water	Air	Fine	Coarse
B-2	0.088	0.148	0.060	0.282	0.422
B-3	0.091	0.153	0.060	0.313	0.383
B-4	0.093	0.157	0.060	0.345	0.345
B-5	0.096	0.162	0.060	0.375	0.307
B-6	0.099	0.167	0.060	0.404	0.270
B-7	0.102	0.172	0.060	0.433	0.233
B-8	0.105	0.177	0.060	0.461	0.197
C MIXE		/c = 0.430	Max w/c = 0.48		1 0.107
Mix No.	Cement	Water	Air	Fine	Coarse
C-2	0.110	0.149	0.060	0.272	0.409
C-3	0.114	0.154	0.060	0.302	0.370
C-4	0.118	0.159	0.060	0.331	0.332
C-5	0.123	0.166	0.060	0.358	0.293
C-6	0.128	0.173	0.060	0.383	0.256
C-WR		ic w/c = 0.43			0.200
Mix No.	Cement	Water	Air	Fine	Coarse
C-3WR	0.108	0.146	0.060	0.309	0.377
C-4WR	0.112	0.151	0.060	0.338	0.339
C-5WR	0.117	0.158	0.060	0.366	0.299
C-6WR	0.121	0.163	0.060	0.394	0.262
D MIXE		c = 0.423	Max w/c = 0.45		0.202
Mix No.	Cement	Water	Air	Fine	Coarse
D-57	0.134	0.178	0.060	0.314	0.314
D-57-6	0.134	0.178	0.060	0.377	0.251
MMIXE		c = 0.328	Max w/c = 0.40		0.201
Mix No.	Cement	Water	Air	Fine	Coarse
M-3	0.149	0.153	0.060	0.287	0.351
M-4	0.156	0.155	0.060	0.311	0.312
M-5	0.160	0.161	0.060	0.307	0.308
O MIXE	and the second se	c = 0.327	Max w/c =	and the second sec	0.506
		Water			Coores
Mix No.	Cement		Air	Fine	Coarse
0-4WR	0.156	0.160	0.060	0.312	0.312
		c = 0.400	Max w/c =0.420	the second se	0.047
HPC-O	0.134	0.168	0.060	0.316	0.317
X MIXE		c = 0.423	Max w/c =		10
Mix No.	Cement	Water	Air	Fine	Coarse
X-2	0.124	0.165	0.000	0.284	0.427
					1 0 205
X-3 X-4	0.129	0.171	0.000	0.315	0.385

Above mixtures are based on Type I or Type II cements (Sp. G. = 3.14). Mixes using blended cements (Type IP or IS) must be adjusted for cement gravities listed in IM 401.

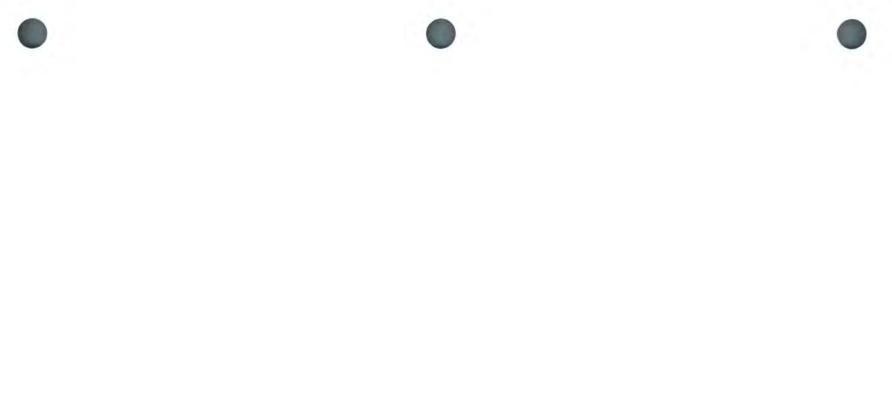
VATO MIVES

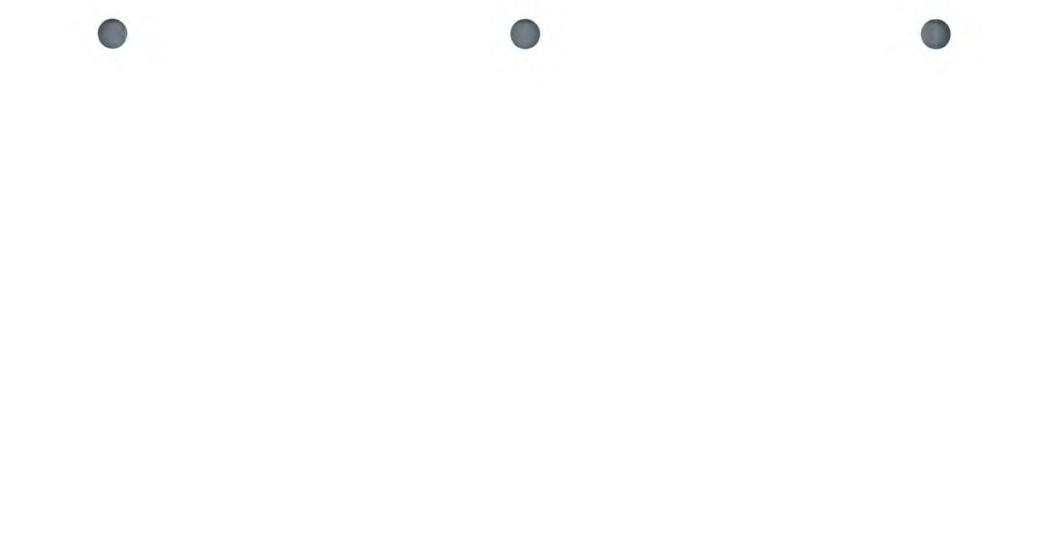
Proportion Table 2 Concrete Mixes Using Class V Aggregates Combined with Limestone Basic Absolute Volumes of Materials Per Unit Volume of Concrete

Mix No.	Cement	Water	Air	Class V.	Coarse Limestone	Basic w/c	Max. w/c
A-V47B	0.107	0.148	0.060	0.479	0.206	0.440	0.560
B-V47B	0.098	0.160	0.060	0.477	0.205	0.520	0.597
C-V47B1	0.107	0.148	0.060	0.479	0.206	0.440	0.560*
C-V47BF	² 0.114	0.141	0.060	0.479	0.206	0.420	0.488*
V MIX	ES				S. Com		
Mix No.	Cement	Water	Air	Class V.	Fine Limestone	Basic w/c	Max. w/c
A-V	0.135	0.188	0.060	0.586	0.031	0.444	0.467
B-V	0.135	0.188	0.060	0.586	0.031	0.444	0.467
C-V	0.135	0.188	0.060	0.586	0.031	0.444	0.467
M-V	0.160	0.196	0.060	0.555	0.029	0.390	0.420

Above mixtures are based on Type I or Type II cements (Sp. G. = 3.14). Mixes using blended cements (Type IP or IS) must be adjusted for cement gravities listed in IM 401.

*The maximum w/c shall be 0.450 when used in concrete pavement.


¹C-V47B mix shall be used when Type I/II cements are used with Class F fly ash or ggbfs.


²C-V47BF mix shall be used when Type IP or Type IS cements are used.

Iowa Department of Transportation

Office of Materials

October 16, 2007 Supersedes April 17, 2007 Matls, IM 530

QUALITY MANAGEMENT & ACCEPTANCE PC CONCRETE PAVEMENT

GENERAL

This Instructional Memorandum is based on the concept of mutual benefit partnership between the Contracting Agency and the Contractor during progress of the work. Technical partnering shall be a part of this work and a formal partnership agreement may or may not be in effect.

The Contractor shall submit and comply with a Quality Control Program. The Contractor shall be responsible for the design of a Portland Cement Concrete Design Mixture (CDM) for use in pavement and shall be approved by the District Materials Engineer. The Contractor shall perform process control sampling, testing, and inspection during all phases of the concrete work at the rate specified in the contract documents, with monitor inspection by the agency personnel. Inspection of all other aspects of the concrete paving operation remains the responsibility of the Engineer.

The Contractor shall have an Iowa DOT PCC Level II Certified Technician responsible for all process control sampling and testing and execution of the Quality Control Plan as specified in the specification and this Instructional Memorandum. An Iowa DOT PCC Level I Concrete Field Testing Technician or Technician Grade I (in accordance with ACI CP-2) may perform the sampling and testing duties for which he or she is certified.

MIX DESIGN PROCEDURE

An Iowa DOT PCC Level III Certified Technician shall perform the mix design. The Engineer shall concur with the Contractor designee.

The CDM shall be developed using the Excel spreadsheet developed by the Office of Materials. ACI 211 procedure, PCA procedure, or alternative methods may also be used. Aggregate proportions are contained on Form #955QMC (IM 532, Appendix A). When a CDM is developed, the absolute volume method shall be used.

The Contractor shall submit the CDM with test data, including a list of all ingredients, the source of all materials, target gradation, and the proportions, including absolute volumes.

A CDM with a satisfactory record of performance strength may be submitted in lieu of a new CDM. The concrete used for paving per this IM shall be produced with the same material sources and batched and mixed with the same equipment used to produce the concrete represented by the performance strength documentation.

For each proposed aggregate proportion, the 28-day flexural strength shall be determined at the proposed cementitious content. The CDM shall be based on the 28-day strength and the average of a minimum of three tests per mixture.

QUALITY CONTROL PLAN

The Contractor shall submit a Quality Control Plan listing the type and frequency of inspection, sampling, and testing deemed necessary to measure and control the various properties of materials and construction governed by the specifications. As a minimum, the sampling and testing plan shall detail sampling location, sampling procedures, and the test frequency to be utilized. This Contractor Quality Control Plan shall be submitted to the PCC Engineer and will be retained for use on all QMC projects. A copy of the Quality Control Plan shall be available on the project at all times. Periodic updates may be required as necessary.

A Project Information Quality Control Plan shall be submitted for each project. The plan shall identify the personnel responsible for the contractor quality control. This should include the company official who will act as liaison with Iowa DOT personnel, as well as the certified technician who will direct the inspection program. The certified technician shall be responsible to an upper level company manager and not to those responsible for daily production. The project information plan shall also include the mix design and mix design properties.

A. Elements of the Quality Control Plan

The plan shall address all elements that affect the quality of the concrete, including but not limited to, the following:

- 1. Stockpile management
- 2. Mixing time and transportation, including time from batching to completion of delivery and batch placement rate (batches per hour)
- 3. Placement and consolidation
- 4. The frequency of sampling and testing, coordination of activities, corrective actions to be taken, and documentation
- 5. How the duties and responsibilities are to be accomplished and documented, and whether more than one certified technician would be provided
- The criteria used by the technician to correct or reject noncompliant materials, including notification procedures

B. Personnel Requirements

- 1. Perform and utilize process control tests and other quality control practices to ensure that delivered materials and proportioning meets the requirements of the mix design(s).
- Periodically inspect all equipment utilized in transporting, proportioning, mixing, placing, consolidating, finishing, and curing to ensure proper operation. Monitor placement, consolidation, finishing, and curing to ensure conformance with the mix design and other contract requirements.

The Project Information Quality Control Plan shall be submitted in writing to the Engineer for the project. The Contractor shall not start paving until receipt of the approval of the Project Information Quality Control Plan.

C. Elements of Project Information Quality Control Plan

- 1. Mix design(s)
- 2. Mix design properties, as specified in the Specifications
- 3. The Contractor shall furnish name(s) and credentials of the quality control staff to the Engineer prior to the beginning of construction.
- 4. Project-related information

DOCUMENTATION

The Contractor shall maintain records of all inspections and tests. The records shall indicate the nature and number of observations made, the number and type of deficiencies found, the quantities represented by the test, and any corrective action taken. The contractor documentation procedures will be subject to the approval of the Iowa DOT prior to the start of the work and prior to regular monitoring during the progress of the work. Use standard Iowa DOT forms. Batch tickets and gradation data shall be documented in accordance with Iowa DOT requirements. Copies shall be submitted to the engineer as work progresses.

A control chart and running tabulation of individual test results shall be prepared for the following tests. An Excel spreadsheet is available from the Office of Materials to plot the test results. These shall be available to the Engineer at any time and submitted to the Engineer weekly:

- Gradation (% passing) for each of the following sieves: 1 1/2 in. (37.5 mm), 1 in. (25 mm), 3/4 in. (19 mm), 1/2 in. (12.5 mm), 3/8 in. (9.5 mm), #4 (4.75 mm), #8 (2.36 mm), #16 (1.18 mm), #30 (600 μm), #50 (300 μm), #100 (150 μm), #200 (75 μm), and pan.
- 2. Moisture: Coarse Aggregate(s) & Sand
- 3. Unit Weight
- 4. Plastic Air Content
- 5. Coarseness & Workability Factors
- 6. Water/cementitious Ratio

Charting will be completed within 24 hours after testing. Working range limits shall be indicated on the control charts.

The Contractor shall notify the Engineer whenever the process approaches a specification limit and shall take action, which results in the test results moving toward the specification target, away from the limit.

All charts and records documenting the contractor quality control inspections and tests shall become property of the Iowa DOT upon completion of the work.

The PCC Level II Technician shall document the changes to the mix design, allowed by the specification, on the Iowa DOT QM-C Mix Adjustment form (IM 530, Appendix A). The PCC Level III Technician shall concur with the changes and shall periodically review mix changes affect on workability and placement in the field.

FIELD VERIFICATION TESTING

For continuous construction operation, a lot will be defined as a week of paving. Lots less than three days of paving will be grouped with the previous week lot. Intermittent construction operation involving quantities less than 250 cubic yards per day, shall be grouped to establish a lot, not to exceed one week. The Engineer will perform verification testing at the following minimum test frequencies:

MINIMUM TEST FREQUENC	IES
-----------------------	-----

	Verification	
Unit Weight Plastic Concrete	None	IM 340
Gradation (Individual aggr., % passing)	1st/day, then twice per lot	IM 302
Flexural Strength, Third Point Loading - 28 days *	1/10,000 cu. yd. (1/10,000 m ³)	IM 328
Air Content Unconsolidated Concrete	1/700 cu. yd. (1/550m³)	IM 318
Water/Cement Ratio	None	IM 527
Vibration Frequency	1/week	IM 384

*One set of two beams at the above rate, with a maximum of five sets per project, shall be cast for pavement design purposes. The beams shall be delivered to the Central Laboratory in Ames for testing. Transported beams shall be stripped and wrapped in wet burlap and plastic to ensure adequate curing during delivery. Include information on project number, contractor, date cast and air content with delivery. Date of testing will be increased to 90 days when quartzite coarse aggregate is used.

CONTROL & ACCEPTANCE PROCESS OF PLASTIC AIR TESTING

On the first air test of each day, the Contractor and Agency shall run side by side tests to ensure both air meters are within the tolerance in IM 216. If the air tests are outside the tolerance, both air meters should be calibrated in accordance with IM 318 to resolve the difference.

Thereafter, the Engineer will randomly test the plastic air content at the minimum frequency in the table above. The Contractor may elect to run side by side comparison at the same time as the Engineer to ensure both meters are operating properly. When a verification test result is outside the tolerance for the target air content, the Contractor will be immediately notified.

The unconsolidated air content limits will be established according to Article 2301.04C using Contractor test results. The Contractor shall notify the Engineer whenever an individual quality control test result is outside the tolerance for the target air content. Lot acceptance shall be based on the agency verification test results on the unconsolidated mix on the grade.

DETERMINING COARSENESS & WORKABILITY INCENTIVE

On the first day of paving, the Engineer will direct and witness sampling and splitting of one sample of each aggregate. The split sample shall meet the requirements of IM 216. If correlation is not established, the District Materials Engineer will resolve the differences.

Thereafter, The Engineer will direct and witness sampling of one random independent sample per day. The agency will take immediate possession of the samples. The Engineer will randomly test a minimum of two samples per lot. The Engineer will determine aggregate percentages based on the batch weights at the time the sample was obtained, compute the average coarseness and workability factors in accordance with IM 532 for the combined samples tested, and average the results. If the average results obtained by the Engineer fall within the same pay zone as the Contractor, appropriate incentive will be paid for the lot.

If the average results obtained by the agency are not in the same pay zone as the Contractor, the Engineer will test the remaining samples representing the lot and average all results for the lot. If the average results of all verification samples for the lot fall within the same pay zone as Contractor results for the lot, incentive will be paid for the lot. If the average results of all verification samples for the lot. If the average results of all verification samples for the lot. If the average results of all verification samples for the lot. If the average results of all verification samples for the lot are in a different pay zone than Contractor, the agency results will govern for the basis of incentive for the lot.

CORRECTIVE ACTION

The Contractor shall take prompt action to correct conditions that have resulted, or could result, in the incorporation of noncompliant materials.

NONCOMPLIANT MATERIALS

The Contractor shall establish and maintain an effective and positive system for controlling noncompliant material, including procedures for its identification, isolation and disposition. Reclaiming or reworking of noncompliant materials shall be in accordance with procedures acceptable to the lowa DOT.

All noncompliant materials and products shall be positively identified to prevent use, shipment, and intermingling with conforming materials and products.

AVOIDANCE OF DISPUTES

Every effort should be made by Contractor and Engineer personnel to avoid any potential conflicts in the Quality Assurance Program prior to and during the project by using partnering concepts. Potential conflicts should be resolved at the lowest possible levels between the Contractor and Engineer personnel. Correction of problems and performance of the final product should be the primary objective of this resolution process.

TESTING

If less than 500 cu. yd. (500 m³) are produced in one day that day's production may be grouped with the following day's production.

April 18, 2006 New Issue Matls. IM 530 Appendix A

******THIS IS A NEW APPENDIX. – PLEASE READ CAREFULLY.****** IOWA DOT QM-C MIX ADJUSTMENT FORM

Project Number:

Contractor:

Date of Mix Adjustment (m/d/yy):

Station of Mix Adjustment:

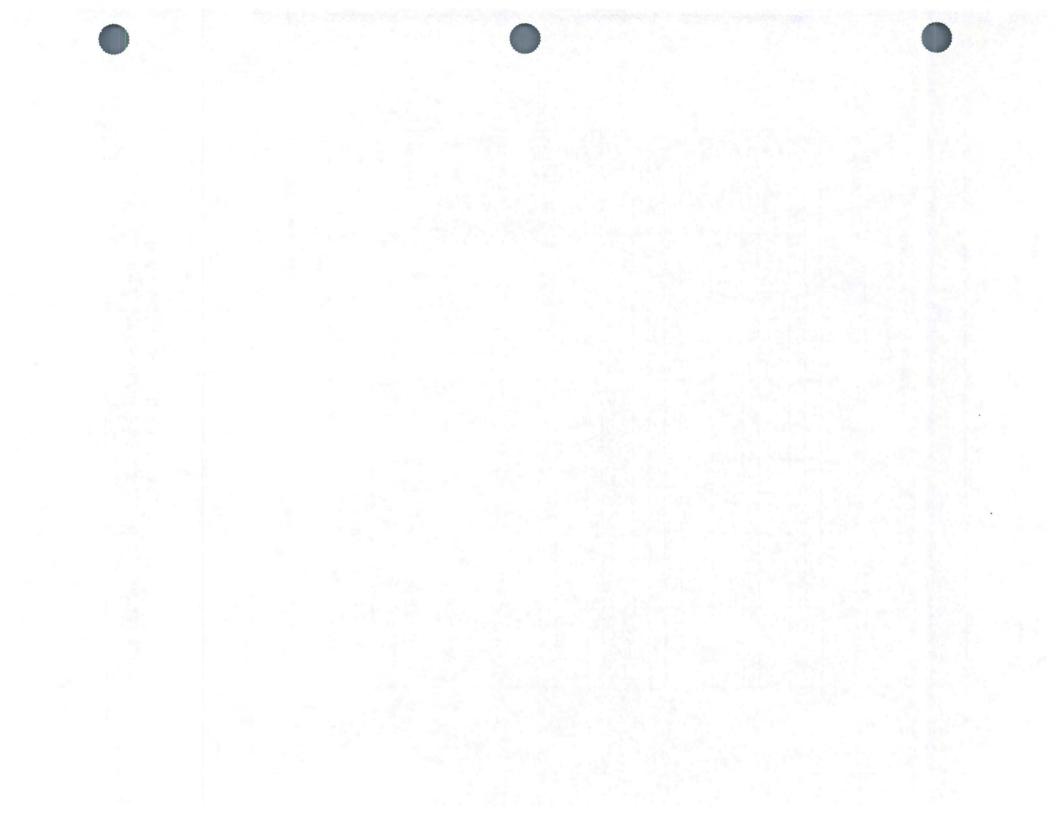
Number of Mix Changes to Date:

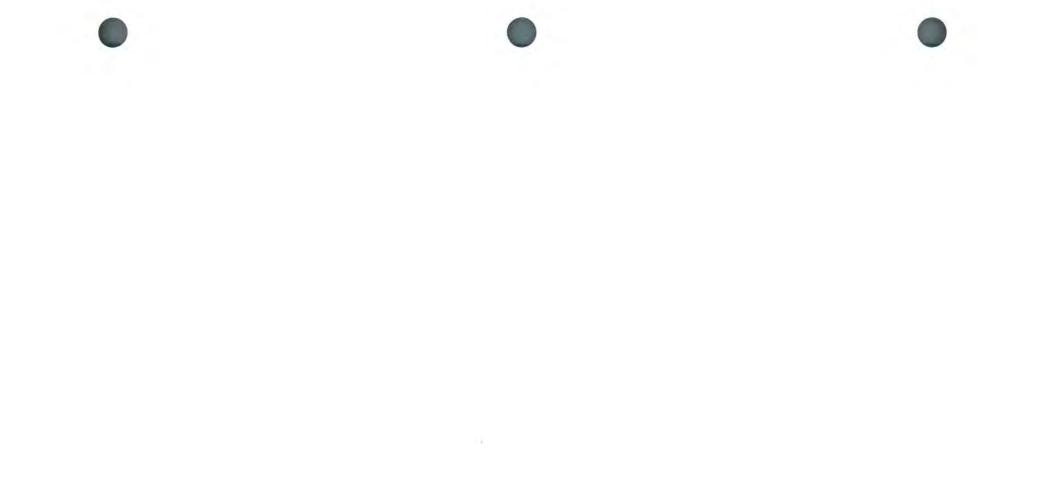
Old Mix ID:

New Mix ID:

Mix Adjustment 1: Reason:

Mix Adjustment 2: Reason:


Mix Adjustment 3: Reason:


1	Old Mix I	Proportions	New Mix Proportions		
	Source	SSD Weight or Dosage	Source	SSD Weight or Dosage	
Cement		1			
Fly Ash					
Water					
Coarse Aggregate					
Intermediate Aggregate	100				
Fine Aggregate					
Air Entraining Agent					
Water Reducer			-		
Retarder					

PCC II Technician

Cert No.

Copies To: District Materials Engineer Resident Construction Engineer

Iowa Department of Transportation

October 19, 2004 Supersedes October 26, 1999 Matls. IM 531

TEST METHOD FOR COMBINING AGGREGATE GRADATIONS

When the aggregate gradations for a PCC mixture are sampled and tested individually, the results must be mathematically combined to create a theoretical combined gradation. This combined gradation is based on their relative percent volume in the mixture.

Each individual aggregate gradation shall start with the largest appropriate sieve for that material and shall include all the consecutive smaller sieve sizes through the #200 (75- μ m) sieve. They shall include: 1/2-in. (37.5-mm), 1-in. (25-mm.), 3/4-in. (19-mm), 1/2-in. (12.5-mm), 3/8-in. (9.5-mm), #4 (4.75-mm), #8 (2.3-mm), #16 (1.18-mm), #30 (600- μ m), #50 (300- μ m), #100 (150- μ m), and #200 (75- μ m) sieves. For coarse and intermediate aggregates, the #16 (1.18-mm) through #100 (150- μ m) sieves may be determined mathematically.

The following methods outline the procedures to be used to determine the combined gradation. Method A is generally used for most aggregate combinations. Method B should be used when the specific gravity of the individual aggregates differ by more than 0.25.

METHOD A

Multiply relative percentage by the percent passing and sum all aggregates for each sieve size.

P = Aa + Bb + Cc

P = Combined percent passing of a given sieve

A,B,C = Percent passing given sieve for aggregate A, B, and C

a,b,c = Relative percent of total aggregates A, B, and C

Convert combined percent passing to combined percent retained by subtracting the combined percent passing on the top sieve from 100 and the combined percent passing from each subsequent sieve, thereafter.

Sieve	Coarse Aggregate	Intermediate Aggregate	Fine Aggregate	Theoretical Combined Gradation % Passing	Theoretical Combined Gradation % Retained
Relative Percent→	0.472	0.118	0.410		
1 1/2 inch	100	100	100	100	0.0
1 inch	83	100	100	92	8.0
3/4 inch	65	100	100	83.4	8.5
1/2 inch	35	100	100	69.3	14.2
3/8 inch	14	100	100	59.4	9.9
No. 4	2.1	33	96	44.2	15.2
No. 8	0.9	2.8	82	34.4	9.8
No. 16	0.8	2.3	63	26.5	7.9
No. 30	0.7	1.8	37	15.7	10.8
No. 50	0.5	1.2	9.4	4.3	11.4
No. 100	0.4	0.7	1	0.7	3.6
No. 200	0.3	0.1	0.4	0.3	0.4

METHOD B

STEP 1:

The percent volume of each of the aggregates is determined from the volume proportions of the mixture design. The relative proportion of each aggregate of the total aggregate is determined by dividing the individual aggregate portion in the mix by the total aggregate portion in the mix.

Example:

A mixture design has the following mix proportions by volume:

Cement	0.110
Water	0.150
Air Entraining	0.070
Fine Aggregate (PCC Sand)	0.270
1/2 inch Intermediate Aggregate (Limestone Chip)	0.100
11/2 inch Coarse Aggregate (Limestone PCC Stone)	0.300
Total	1.000

The total aggregate portion is: 0.270 + 0.100 + 0.300 = 0.670

The relative percent retained portion for each aggregate by volume is determined as follows:

Fine Aggregate (0.270/0.670) = 0.403Intermediate Aggregate (0.100/0.670) = 0.149Coarse Aggregate (0.300/0.670) = 0.448

Check the total aggregate relative portions. They should equal 1.000.

0.403 + 0.149 + 0.448 = 1.000 (OK)

STEP 2:

These volume proportions are then adjusted by the specific gravity of the aggregates, since gradations are based on percent weight retained on each sieve. The proportion retained by weight is determined by multiplying each aggregate's volume proportion by its specific gravity. These weights are then summed to obtain a total weight. The proportion by weight is then determined by dividing each aggregate's weight by the total weight.

Example:

Aggregate	Proportion Volume	Specific Gravity	Weight	Proportion By Weight
Fine	0.403	2.67	1.07601	(1.07601/2.64912) = 0.406
Intermediate	0.149	2.59	0.38591	(0.38591/2.64912 = 0.146
Coarse	0.448	2.65	1.18720	(1.18720/2.64912) = 0.448
Total	1.000		2.64912	1.000

STEP 3:

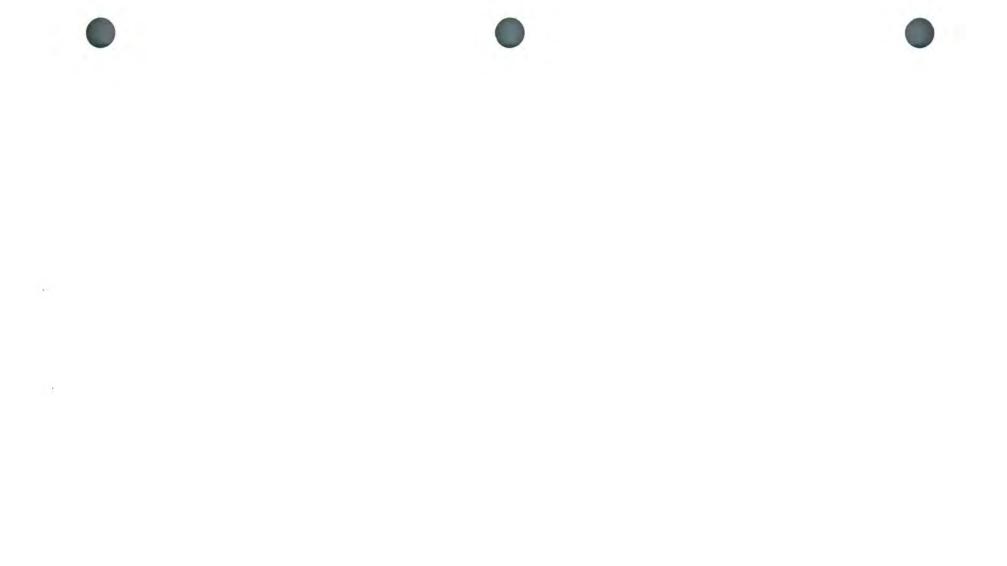
Determine the theoretical combined gradation from the individual gradations. This is done by multiplying the percent retained on each sieve for the individual gradations by the relative portion of the aggregate volumes. Then total the percent retained of each product for each sieve size. This is the theoretical combined percent retained for each sieve. The total of these percents retained should equal 100.0. If the total is off due to rounding, prorate the rounding error.

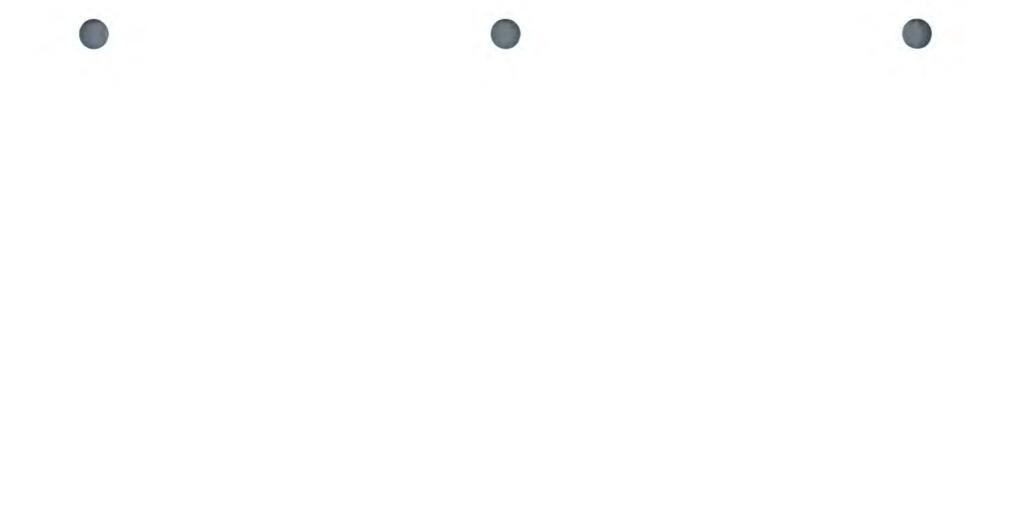
Example:

Coarse Aggregate

Sieve	% Retained	Relative Volume	Adjusted % Retained
1 1/2 inch	0.0	0.448	0.0
1 inch	1.4	0.448	0.6
3/4 inch	23.7	0.448	10.6
1/2 inch	31.0	0.448	13.9
3/8 inch	24.5	0.448	11.0
No. 4	14.1	0.448	6.3
No. 16	0.7	0.448	0.3
No. 30	0.8	0.448	0.4
No. 100	0.4	0.448	0.2
No. 200	0.2	0.448	0.1
Minus 200	0.8	0.448	0.4

3


Similar calculations are done for the intermediate and fine aggregates.


STEP 4:

The individual adjusted gradations are summed to get the theoretical combined gradation, percent retained. The theoretical combined gradation, percent passing, may be calculated by subtracting subsequent sieves beginning with 100, as per IM 302. The following table shows the calculations:

Sieve	Coarse Aggregate	Intermediate Aggregate	Fine Aggregate	Theoretical Combined Gradation % Retained	Theoretical Combined Gradation % Passing
1 1/2 inch	0.0			0.0	100
1 inch	0.6			0.6	99.4
3/4 inch	10.6	0.0		10.6	88.8
1/2 inch	13.9	3.2		17.1	71.7
3/8 inch	11.0	5.4	0.0	16.4	55.3
No. 4	6.3	4.9	2.0	13.2	42.1
No. 8	0.9	0.4	4.1	5.4	36.7
No. 16	0.3	0.3	5.6	6.2	30.5
No. 30	0.4	0.1	12.9	13.4	17.1
No. 50	0.1	0.2	12.0	12.3	4.8
No. 100	0.2	0.1	3.1	3.4	1.4
No. 200	0.1	0.1	0.2	0.4	1.0
Minus 200	0.4	0.2	0.4	1.0	0.0

The theoretical combined gradations are used in graphically displaying aggregate blends of PCC mixture designs and for plotting control charts to compare target gradation with working ranges of the mixture design.

Iowa Department of Transportation Office of Materials

April 17, 2007 Supersedes October 18, 2005 Matls. IM 532

AGGREGATE PROPORTIONING GUIDE FOR PC CONCRETE PAVEMENT

GENERAL

This Instructional Memorandum covers procedures for developing a well-graded aggregate combination for use in Portland Cement Concrete paving. It is the responsibility of the mix designer to design a mix with appropriate properties for the intended application and placement method. The mixture should be economical, meet workability and finishing requirements, and allow for a proper air void system at a minimum water/cementitious ratio. Regardless of how the mix performs in controlled conditions, ultimately it must be evaluated on how well it performs during production and placement in the field.

Concrete mixtures produced with a well-graded aggregate combination tend to reduce the need for water, provide and maintain adequate workability, require minimal finishing, and consolidate without segregation. These characteristics tend to enhance placement properties as well as strength and long-term performance. Concrete mixtures produced with a gap graded aggregate combination tend to segregate easily, contain higher amounts of fines, require more water, and increase susceptibility to shrinkage. These characteristics tend to limit placement properties as well as strength as strength and long term performance.

Achieving a uniform gradation may require the use of three or more different aggregate sizes. It is the responsibility of the mix designer to consider particle shape when designing a mix. When using the coarseness/workability chart it is assumed that particles are rounded or cubical shaped. Rounded or cubical shaped aggregates typically enhance workability and finishing characteristics. Flat and elongated aggregates typically limit workability and finishing characteristics.

COARSENESS/WORKABILITY CHART¹

The mathematically combined gradation, expressed as percent retained, shall be calculated in accordance with IM 531. The coarseness and workability factors shall be calculated and then plotted in a coarseness/workability chart as shown in Figure 1.

 $Coarseness Factor = \frac{[combined \% retained above 9.5 mm (3/8 in.) sieve]}{[combined \% retained above 2.36 mm (No. 8) seive]} \times 100$

Workability Factor = Combined % Passing No. 8 (2.36 mm) Sieve* *The workability factor shall be increased by 2.5% for each increase of 94 pounds of cement over 564 pounds per cubic yard.

¹ Shilstone, J. Sr., "Concrete Mixture Optimization", Concrete International, June 1990

Shilstone recommends a target of 60 Coarseness Factor and 35 Workability Factor. For a nominal maximum aggregate size of 1 in. to 1 1/2 in. (25 mm to 37.5 mm), Shilstone recommends a Workability Factor of 34 to 38 when the Coarseness Factor is 52 and a Workability Factor of 32 to 36 when the Coarseness Factor is 68.

Aggregate blends that plot close to the bottom boundary line may tend to have too much coarse aggregate. Aggregate blends with a point below the bottom boundary line (Zone V) will produce rocky mixtures with inadequate mortar and shall not be allowed.

Aggregate blends above the top boundary line (Zone IV) will produce sandy mixtures with high amounts of fines requiring higher water contents and potential for segregation.

Aggregate blends with coarseness factors higher than 75 (Zone I) will produce gap graded mixtures with inadequate workability and high potential for segregation.

Aggregate blends with a point in Zone III, respectively, corresponds with Zone II for aggregate sizes less than 1/2 in. (12.5 mm).

0.45 POWER CURVE

The 0.45 power curve is based on the mathematically combined percent passing gradation determined in accordance with IM 531. Historically, the 0.45 power curve has been used to develop uniform gradations for asphalt mix designs; however, it is increasingly being used to develop uniform gradations for Portland Cement Concrete mix designs.

To create a 0.45 power curve plot the mathematically combined percent passing for each sieve on a chart having percent passing on the y-axis and sieve sizes raised to the 0.45 power on the x-axis. Sieve sizes shall include the 1 1/2 in. (37.5 mm), 1 in. (25.0 mm), 3/4 in. (19.0 mm), 1/2 in. (12.5 mm), 3/8 in. (9.5 mm), No. 4 (4.75 mm), No. 8 (2.36 mm), No 16 (1.18 mm), No. 30 (600 μ m), No 50 (300 μ m), No. 100 (150 μ m), and the No. 200 (75 μ m). Connect the plotted points as shown in Figure 2. Plot the maximum density line from the origin of the chart to the sieve one size larger than the first sieve to have 90 percent or less passing.

A well-graded aggregate combination will follow the maximum density line to the No. 16 (1.18 mm) sieve. A slight deviation below the maximum density line at the No. 16 (1.18 mm) sieve will occur to account for the effect of the fines provided by the cementitious materials (Figure 2). A gap graded aggregate combination will produce an "S- shaped" curve deviating above and below the maximum density line (Figure 3).

PERCENT-RETAINED CHART

The percent-retained chart is based on the mathematically combined percent-retained gradation for each sieve in accordance with IM 531. The percent-retained chart has evolved from efforts to limit disproportionate amounts of material retained on any one sieve.

April 17, 2007 Supersedes October 18, 2005

To create a percent-retained chart plot the mathematically combined percent retained for each sieve on a chart having percent retained on the y-axis and sieve sizes on the x-axis. Sieve sizes shall include the 1 1/2 in. (37.5 mm), 1 in. (25.0 mm), 3/4 in. (19.0 mm), 1/2 in. (12.5 mm), 3/8 in. (9.5 mm), No. 4 (4.75 mm), No. 8 (2.36 mm), No. 16 (1.18 mm), No. 30 (600 μ m), No. 50 (300 μ m), No. 100 (150 μ m), and No. 200 (75 μ m). Connect the plotted points and plot the boundary lines as shown in Figure 4.

A well-graded aggregate combination will have no significant peaks and/or dips (Figure 4). A gap graded aggregate combination will have significant peaks and dips (Figure 5). Shilstone recommends that the sum of percent retained on two consecutive sieves should be at least 13% to be an optimum gradation.

OPTIMUM AGGREGATE BLEND

Determining an optimum combined aggregate blend will require the use of all 3 graphical representations as well as sound practical experience. The coarseness/workability chart should be the primary method used to develop an aggregate combination that will produce a mixture with appropriate properties for the intended application and placement method. The 0.45 power curve and the percent-retained chart should be used as secondary means to verify the coarseness/workability chart results and to identify areas deviating from a well-graded aggregate combination. Aggregate blend for QMC mixes may be found on Form #955QMC (Appendix A).

For BR mixes, a well-graded aggregate mix design on the coarseness/workability chart will typically fall in a parallelogram approximated by a workability factor between 35 and 42.5 at a coarseness factor of 45 and a workability factor between 32 and 38 at a coarseness factor of 70 in (Zones II-A, II-B, and II-C).

AGGREGATE SHAPE EFFECT ON OPTIMUM GRADATION

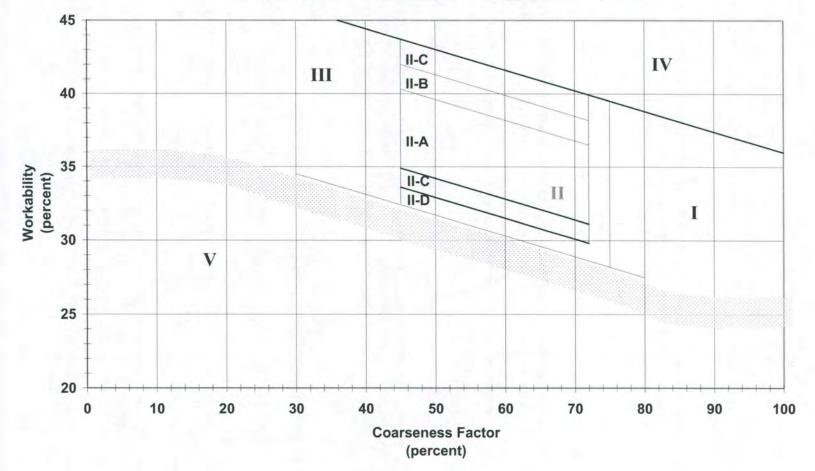
The shape and texture of aggregate particles affect the volume of paste needed to coat particles and decrease interactions during placement. The ideal aggregate shape for workability is smooth and round. Smooth and round particles, such as gravels, have a low surface to volume ratio and require less paste to coat the surfaces of each particle. Crushed limestone aggregates, which usually tend to be more angular and rough than gravel aggregates, have a higher surface to volume ratio, and may require more paste to reduce particle interactions.

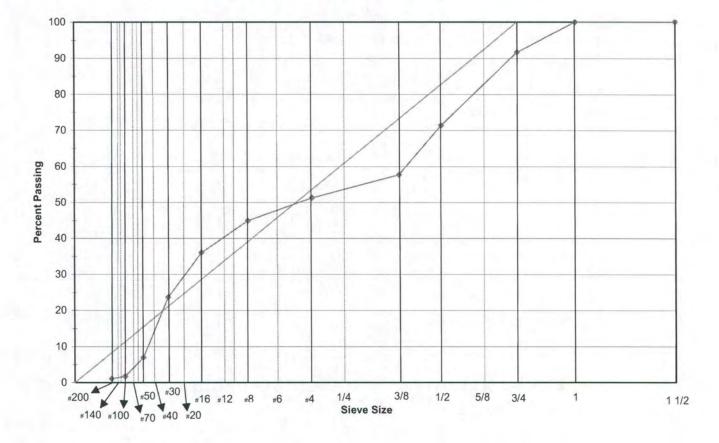
These rules are generalized and the mix designer must determine the actual optimum gradation, considering particle shape, with placing and finishing characteristics as the ultimate assessment of workability. Although other combinations can be used depending on aggregate top size, shape, and texture, typical optimum aggregate combinations tend to fall within the range of 58-62% coarse to 42-38% fine aggregate ratio, with 15-25% intermediate aggregate in the coarse fraction.

FIGURE 1

¹ Workability Factor VS Coarseness Factor for Combined Aggregate

Assumptions: 564 lbs cement per cubic yard, 1 inch Aggregate, and Slipformed




FIGURE #2

100 90 80 70 60 Percent Passing 50 40 30 20 10 0 #140 #100 #70 #40 #20 #200 3/8 1/4 1/2 5/8 #6 #4 3/4 1 1 1/2 Sieve Size

Combined Aggregate Gradation Power 45

FIGURE 3

Combined Aggregate Gradation Power 45

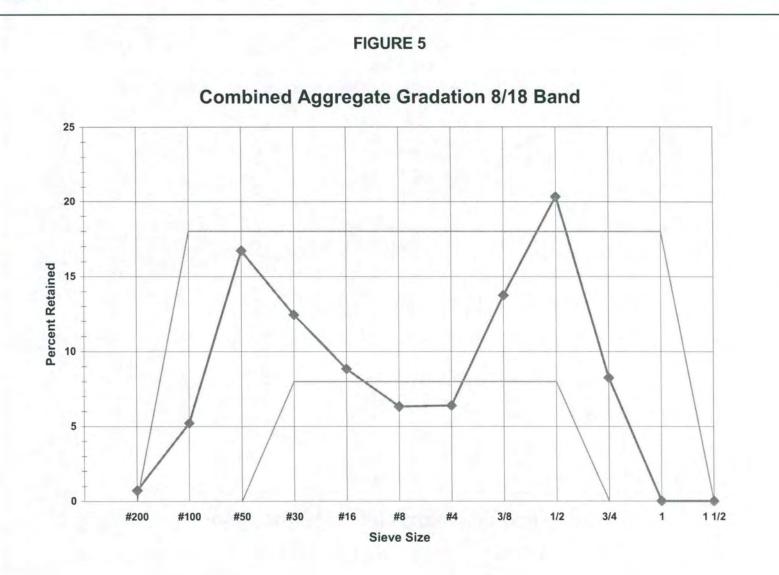


FIGURE 4

25 20 Percent Retained 15 10 5 0 #200 #100 #50 #30 #16 #8 #4 3/8 1/2 3/4 1 1/2 1 Sieve Size

Combined Aggregate Gradation 8/18 Band

****THIS IS A NEW APPENDIX. - PLEASE READ CAREFULLY.****

Form 955QMC

Iowa Department of Transportation

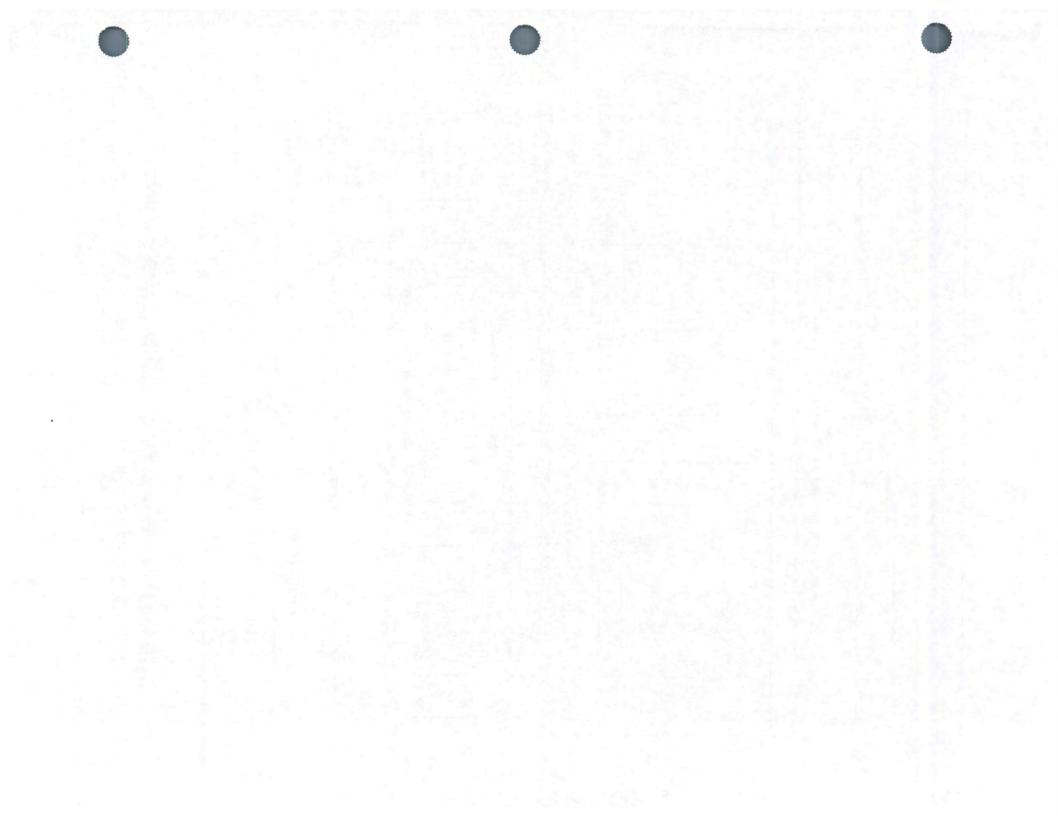
Highway Division - Office of Materials Proportion & Production Limits For Aggregates

County: Project Location:				Project No.:	Date: Mix Design No.:	
Contractor:	_					
Material	Ident #	% in Mix	A #	Producer & Lo	cation	
1 1/2 " Stone Intermediate Conc. Sand						

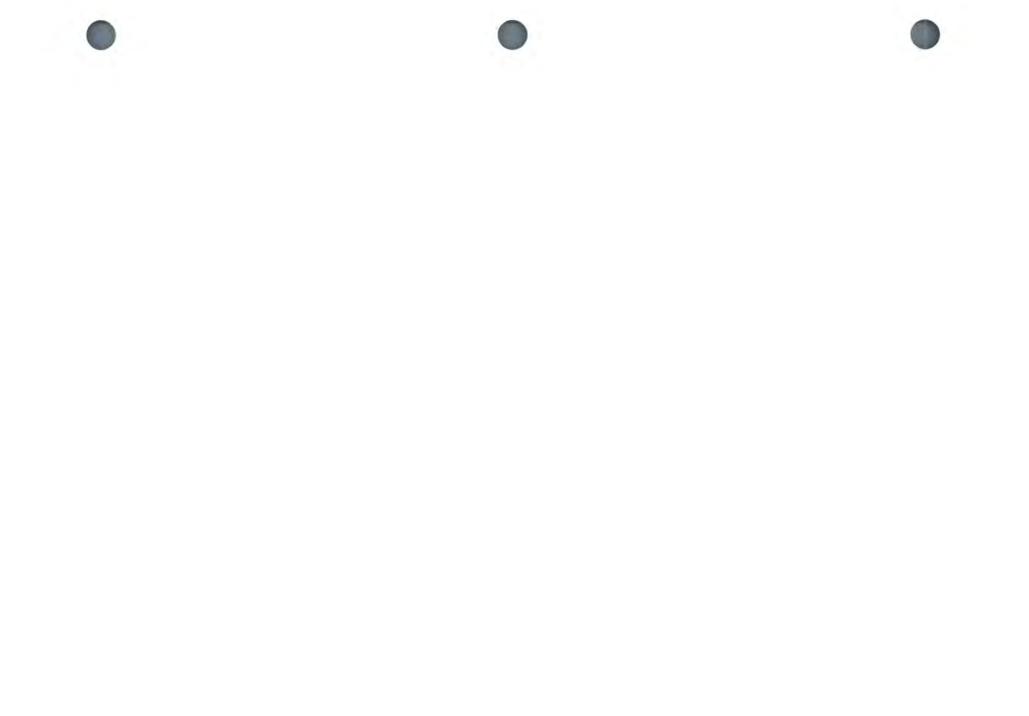
Material	1 1/2 "	1"	3/4"	1/2"	3/8"	#4	#8	#16	#30	#50	#100	#200
1/2 " Stone												
ntermediate										1		
Conc. Sand												

Preliminary Target Gradation

* Upper Tolerance	1							
Comb Grading	1.1				· · · ·			
* Lower Tolerance			_					


Production Limits for Aggregates Approved by the Contractor & Producer.

	Coa	arse	Interm	ediate		Fine Ag	gregate	
Sieve Size		Stone		ediate	Sieve Size		Sand	
in.	Max.	Min	Max.	Min.	in.	Max.	Min.	
1 1/2 1 3/4 1/2 3/8 #4 #8					3/8 #4 #8 #16 #30 #50 #100	100.0	100.0	
#200	1.5	0.0	1.11		 #200	1.5	0.0	


Comments:

The above target gradations and production limits have been discussed with and agreed to by an authorized representative of the aggregate producer. Check (X)

Signed:		Coarse	Signed:		
-	Producer	Interm.		Contractor	
Signed:		Fine	Signed:		
	Producer			Contractor	

Iowa Department of Transportation

Office of Materials

October 16, 2007 Supersedes April 17, 2007 Matls. IM T203

GENERAL AGGREGATE SOURCE INFORMATION

GENERAL

Generally, only those sources, which have been sampled or tested within the last ten years, are listed. This listing additionally ranks sources in accordance with a frictional classification as defined herein for aggregates used in Hot Mix Asphalt (HMA) construction, and a durability class for coarse aggregates used in Portland Cement Concrete construction. Upon request, new sources or different combinations of beds within an existing source can be evaluated for classification for either type of use. These rankings do not in any way waive the normal quality requirements for the particular types of aggregates indicated in contract documents.

PORTLAND CEMENT CONCRETE AGGREGATES

Aggregates shall be produced from sources approved in accordance with the requirements of Office of Materials IM 409. The engineer may approve scalping of some portion of the coarser fraction.

All aggregates produced and inspected for intended use in contracts under lowa Department of Transportation Specifications shall be stored in identifiable stockpiles unless they are being delivered as produced.

DURABILITY CLASSIFICATION

The coarse aggregates have been divided into three classes in accordance with their durability level as determined by performance or laboratory testing.

<u>Class 2</u> durability aggregates will produce no deterioration of pavements of the non-interstate segments of the road system after 15 years and only minimal deterioration in pavements after 20 years.

<u>Class 3</u> durability aggregates will produce no deterioration of pavements of non-interstate segments of the road system after 20 years of age and less than 5% deterioration of the joints after 25 years.

<u>Class 3i</u> durability aggregates will produce no deterioration of the interstate road system after 30 years of service and less than 5% deterioration of the joints after 35 years.

<u>NOTE</u>: Those sources with a "B" in their durability class designation may have 1/2 in. Bridge Deck Overlay/Repair material available.

HOT MIX ASPHALT AGGREGATES

Aggregates for HMA construction have been classified into five main functional types in accordance with their frictional characteristics. Those aggregates with the potential to develop the greatest amount of friction under traffic conditions are classified as Type 1 with the potential for friction decreasing as the type number increases. One or more friction types may be specified for use in pavement surface courses. If a type is not specified in the contract documents, Type 5 or better will be acceptable.

When aggregates of friction Type 1 through Type 4 are specified for construction, a source approval including bed limitations is required for each project. Tentative bed limitations are shown in this publication.

The frictional classification types are listed and defined in order of descending quality as follows.

<u>Type 1:</u> Aggregates, which are generally, a heterogeneous combination of minerals with coarsegrained microstructure of very hard particles (generally, a Mohs hardness range of 7 to 9) bonded together by a slightly softer matrix. These aggregates are typified by those developed for and used by the grinding-wheel industry such as calcinated bauxite (synthetic) and emery (natural). They are not available from Iowa sources. Due to their high cost, these aggregates would be specified only for use in extremely critical situations.

<u>Type 2:</u> Natural aggregates in this class are crushed quartzite and granites. The mineral grains in these materials generally have a Mohs hardness range of 5 to 7. Synthetic aggregates in this class are some air-cooled steel furnace slags and others with similar characteristics.

<u>Type 3:</u> Natural aggregates in this class are crushed traprocks, and/or crushed gravels. The crushed gravels shall contain 40% or more igneous and metamorphic particles. Synthetic aggregates in this class are the expanded shales with a Los Angeles abrasion loss less than 35 percent.

<u>Type 4:</u> Aggregates crushed from dolomitic or limestone ledges in which 80 percent of the grains are 20 microns or larger. The mineral grains in the approved ledges for this classification generally have a Mohs hardness range of 3 to 4. For natural gravels, the Type 5 carbonate (see below) particles, as a fraction of the total material, shall not exceed the non-carbonate particles by more than 20 percent.

The Friction Type 4D classification will no longer be a Friction designation. Friction Type 4D aggregates have been reclassified as Friction Type 5. Any source or bed combination can be reevaluated for a different Friction Classification by the Geology Section at the request of the Aggregate Producer.

<u>Type 5:</u> Aggregates crushed from dolomitic or limestone ledges in which 20 percent or more of the grains are 30 microns or smaller.

SOURCE LISTINGS - Explanation

The use of Xs in the PCC or HMA columns indicates use where no classification is required or, if required, has not been made.

	NOTE: - indicates ad	ditional source restrictions.						-		-		1
	source approval letter	for PCC aggregate are those r. Beds shown for HMA sourd d or have potential for use an n type.	ces a	re th	nose	_	-		-		1	
	<u>Frict</u> ional Classification	on - as indicated on page 2 be \underline{A} and \underline{B}] -			-	-	-				
	<u>Dur</u> ability Class for <u>P</u> <u>C</u> oarse <u>Agg</u> regate ("B" indicates accepta Deck Overlay/Repair			-	-	-						
	Source Code Numbe on test requests and											
	(DV	Specific Gravity VU-Determine When Used)			-							
CODE	OPERATOR	SOURCE NAME	LOC	ATION	٧		BULK SSD SpGr	DUR PCC CA FA	FRIC HMA A	1	▼ BEDS	NOTE
29	DES MOINES DIST 5	CRUSHED STONE				-						T
A29002	L&W QUARRIES INC	MEDIAPOLIS-LEONARD	SE	01	T071	R04W	2.65	3	4	4	15 15- 18 20	
A29008	CESSFORD CONST CO	NELSON	NE	26	T072	R02W	2.62	3	4	4	21- 24 7- 20 15- 24	
A29012	CESSFORD CONST CO	GEODE	NE	01	TO69	R05W			5 4 5	4 5 4 5	13- 24 24- 27 11- 12 9- 13	
	Sector Sector	SAND & GRAVEL								5	5 15	
A29502	CESSFORD CONST CO	SPRING GROVE	SW	36	TO69	R03W	2.66	3 X	4	4		

NOTE 1: AASHTO 57 GRADATION MAXIMUM

			RECENTLY ACT	IVE AGGRE	GATE	SOURC	ES	BULK	DUR	FR	ICT	(
CODE	OPERATOR		SOURCE NAME	LOC	ATIO	N		SSD SpGr	PCC CA FA	HN A		BEDS
01	ADAIR	DIST 4	CRUSHED STONE		-					-	-	
A01002	SCHILDBERG CO	NST CO INC	MENLO	SE	17	T077	R31W			5	5	15 - 16
A01006	SCHILDBERG CO	NST CO INC	HOWE	SW	01	T076	R31W				45	14 25
A01008	SCHILDBERG CO		JEFFERSON	NE	17	T077					5	20
								1.00			5	25
02	ADAMS	DIST 4	CRUSHED STONE									
A02002	SCHILDBERG CO		MT ETNA	SW	23	T073					4	11 - 13
A02004	SCHILDBERG CO	NST CO INC	CORNING		10	T071	R34W				4	3 - 5
A02502	SCHILDBERG CO	NIST CO INC	SAND & GRAVEL MT ETNA	NW	23	T073	R34W	2.67	2	4	4	
HULJUL	Somedberro co	101 00 110			20	10/5	10400	2.67	X		7	1.2
03	ALLAMAKEE	DIST 2	CRUSHED STONE			-	-			-		
A03002	BRUENING ROCK	PROD INC	WEXFORD	NE	36	TO98	R03W	2.70	3i			1C - 5
A03008	BRUENING ROCK	DDOD INC	MCCABE	NE	06	T097	R05W			4	4	1 - 8
A03010	ROVERUD CONS		RUDE	SE	17	T100	ROGW				4	1 - 0
A03014	BRUENING ROCK		HAMMELL-BOONIES	SW	02	T099	R06W	1	X	4	4	5 - 6
A03018	ROVERUD CONS		SWENSON	SW	17	TO96	R05W		i de la		- 11	
A03022	ROVERUD CONS	INC	LIVINGOOD	SW	07	TO96	R06W			4	4	4 - 7
A03028	ROVERUD CONS	LINC	WELPER-JOHNSON	SW	35	TO99	R04W				4	2 - 7
A03034	RIEHM CONST CO		WILDE	SE	13	TO99	R05W		X	4	4	1 - 5
A03036	BRUENING ROCK		SWENSON	SE	19	TO96	R05W	1.1				
A03038	RIEHM CONST CO		RIEHM	SE	07	T100	R04W	DWU	3i	4	4	1 - 4
A03040	BRUENING ROCK		DEE	SE	21	T099	R04W	DWU	3iB	4	4	5A - 5D
A03042	NIEMANN CONST	СО	CHURCHTOWN	SW	29	TO99	R04W			4	4	1 - 3
A03046	BRUENING ROCK	PROD INC	MOHS	SW	29	TO96	R04W	DWU	2	5	5	1 - 2
A03048	BRUENING ROCK	PROD INC	POSTVILLE	SW	16	TO96	R06W	2.61	3			6 - 8
A03050	BRUENING ROCK	PROD INC	GREEN	NW	16	TO96	R06W	2.63	3	4	4	2 - 5 2 - 3A
A03052	BRUENING ROCK		ROSSVILLE	NE	35	TO97	R05W	DWU		4	4	1 - 5
A03054	BRUENING ROCK	PROD INC	WEST RIDGE	NE	08	TO98	R06W					
A03056	NIEMANN CONST		WAUKON	SW	05	TO97	R05W	1.00				
403060	NIEMANN CONST		HANOVER	NE	36	TO99	R06W					
A03064	ROVERUD CONST		RAINBOW	SE	26	TO97	R05W	DIAN				
A03066 A03068	WILTGEN CONST WILTGEN CONST		ELSBERND JEFFERSON	NW SW	29 30	TO97 TO97	R06W R05W	DWU	3			2
403000	WILTGEN CONST	cu	SAND & GRAVEL	300	30	1097	RUSW		1			
403502	CARLSON MATER	IALS CO	HARPERS FERRY	SW	07	TO97	R02W	2.67	3iB	3	3	
A03506	BRUENING ROCK	PRODINC	HAMMELL-BOONIES	SW	02	TO99	R06W	2.67	X	4	4	
403510	CARLSON MATER		LONNING	SE	02	TO99	ROGW	1		4	4	
				01				DWU	Х			
03512	ROVERUD CONST	INC	ZEZULKA	NE	11	T100	R04W			3	3	
								2.66	Х			

)		RECENTLY ACT				ES	BULK SSD	DU PC	С	FRI	A	
CODE	OPERATOR	SOURCE NAME	LOC	ATION	1		SpGr	CA	FA	A	В	BEDS
04	APPANOOSE DIST 5	CRUSHED STONE										
04016	L&W QUARRIES INC	LEMLEY EAST #5	CT	35	T070	R19W	2.70	2		5	5	1 - 3
04018	L&W QUARRIES INC	CLARKDALE #8	SE	15	TO69	R18W				5	5 5	6 4
)5	AUDUBON DIST 4	SAND & GRAVEL			-							
05506	HALLETT MATERIALS CO	EXIRA	SW	08	T078	R35W	2.68 2.66	3	x	4	4	
6	BENTON DIST 6	CRUSHED STONE		-		-		-	-	-	-	
06002	BMC AGGREGATES LC	SMITH	NW	19	T086	R12W	2.65	2	-	4	4	21 - 26
06004	WENDLING QUARRIES INC	GARRISON A	SE	28	T085	R11W	2.67	2		4	4	6 - 16
06006	WENDLING QUARRIES INC	GARRISON B	NE	33	T085	R11W	2.64	2		4	4	6 - 16
06008	WENDLING QUARRIES INC	BALLHEIM	NE	17	T086	R12W	2107	-			X	
06012	COOTS MATERIALS CO INC	JABENS	SW	07	T085	R11W	DWU	2				6 - 11
							2.63	2		4	4	12
06014	WENDLING QUARRIES INC	VINTON-MILROY	S2	10	T085	R10W				4	4	10- 12
06016	COOTS MATERIALS CO INC	COOTS	SW	36	T086	R11W					X	
06018	WENDLING QUARRIES INC	PORK CHOP-EAST	NW	11	T085	R09W			- 1		X	
06020	WENDLING QUARRIES INC	PORK CHOP-WEST	NE	10	T085	R09W					~	
06022	WENDLING QUARRIES INC	LONG	SE	13	T084	R09W					х	
		SAND & GRAVEL										
06502	WENDLING QUARRIES INC	VINTON-MILROY	S2	10	T085	R10W				4	4	
000004			CIN	-	TOOC	DIOW	2.65		X		~	
06504	COOTS MATERIALS CO INC	MT AUBURN	SW	31	T086	R10W	2.05		v	3	3	
06506	WENDLING QUARRIES INC	PORK CHOP	СТ	11	T085	R09W	2.65		X	4	4	
100300	WENDEING QUARRIES INC	FORKCHOF	CI		1005	RUSW	DWU		х	4	4	
07	BLACK HAWK DIST 2	CRUSHED STONE								-		
407004	BMC AGGREGATES LC	WATERLOO SOUTH	NW	18	T087	R12W	DWU	3				25
							1.1			4	4	17 - 24
										4	4	32 - 3
										5	5	5 - 2
07008	BMC AGGREGATES LC	MORGAN	NE	15	T089	R12W					5	1 - 3 4A - 4
07014	NIEMANN CONST CO	GLORY	NE	36	T087	R11W					4	3 - 4
407018	BMC AGGREGATES LC	RAYMOND-PESKE	SW	01	T088	R12W	2.66	2		4	5	1 - 4 1B - 5
407020	BMC AGGREGATES LC	STEINBRON	SE	01	T088	R11W	2.62	3i		4 X	4 X	6 - 1
407022	BMC AGGREGATES LC	MESSERLY	NE	08	TO90	R14W						
		SAND & GRAVEL							1.1			
07504	BMC AGGREGATES LC	WATERLOO SAND	SW	09	T089	R13W	2.05		v	3	3	
407506	MANATT'S INC	ASPRO	NW	01	T088	R13W	2.65		X	4	4	
107 500		AJERO	INVV	01	1000	11300	2.65		x	4	4	
A07508	BMC AGGREGATES LC	GILBERTVILLE		16	T088	R12W	2.00		A	4	4	
							2.65		X			
407512	ZEIEN S&G	ZEIEN	NW	23	T087	R12W						
407518	NIEMANN CONST CO	JANESVILLE	NE	14	TO90	R14W				3	3	
101010							2.66					

NOTE: 1 - AASHTO 67, GRADATION #5, 40% MAXIMUM; RESTRICTION DOES NOT APPLY TO STRUCTURAL CONCRETE

		RECENTLY ACT	IVE AGGRE	GATE	SOURC	ES	BULK SSD	DUR PCC	FRICT HMA	(
CODE	OPERATOR	SOURCE NAME	LOC	ATIO	N		SpGr	CA FA	A B	BEDS
08	BOONE DIST 1	SAND & GRAVEL								
A08504	KNIFE RIVER	JENSEN	SW	36	TO85	R25W				
08526	KNIFE RIVER	POWERS		29	T084	R28W				
9	BREMER DIST 2	CRUSHED STONE								
09002	BMC AGGREGATES LC	FREDERIKA	NE	12	TO93	R13W			5	2 - 8
09004	NIEMANN CONST CO	DENVER-FOELSKE	NE	29	TO91	R13W			4 4	4 - 9
09006	NIEMANN CONST CO	TRIPOLI-PLATTE	SW	36	TO93	R13W	2.62	3i	4 4	1 - 5
09008	NIEMANN CONST CO	DENVER #2	NE	20	TO91	R13W				
		SAND & GRAVEL								
09504	NIEMANN CONST CO	NOLTE	SE	31	TO92	R11W	2.65	x	4 4	
09508	NIEMANN CONST CO	TRIPOLI-PLATTE	SW	36	TO93	R13W	2.05	^		
09510	CROELL REDI-MIX	PLAINFIELD-ADAMS	NE	32	TO93	R14W	2.66	x		
09512	NIEMANN CONST CO	BOEVERS	NE	31	TO92		2.00	x		
0	BUCHANAN DIST 6	CRUSHED STONE								
10002	NIEMANN CONST CO	WESTON-LAMONT	NW	14	TO90	R07W	2.61	3iB	4 4	1 - 6
10004	NIEMANN CONST CO	BLOOM-JESUP	SW	32	T089	R10W	2.63	3		2 - 5
10008	BRUENING ROCK PROD INC	OELWEIN	NW	02	TO90	R09W	2.65	3i	4 4 4 4	1 - 7 4 - 5
	torial many and and and				_				4 4	4 - 6
10010	NIEMANN CONST CO	HAZELTON	NW	11	T090	R09W	2.60	3iB	4 4	4
10012	NIEMANN CONST CO	INDEPENDENCE	NW	14	T088	R09W			5	1 10
10014	NIEMANN CONST CO	OELWEIN #1	SW	02	T090	R09W	DWU	2:	5 5 4 4	1 - 12
10016	NIEMANN CONST CO NIEMANN CONST CO	OELWEIN #2 EAST AURORA	SE SE	03	TO90 TO90	R09W R07W	DWU	3i	4 4 4	13 - 16
10018	BRUENING ROCK PROD INC	BROOKS	NW	02	TO88	R09W	2.60	3i	4 4	1 - 5
10024	NUEMANNI CONST CO	RASMUSSEN #2	C.F.	21	TODO	DOOM			5	1 - 6
10024	NIEMANN CONST CO NIEMANN CONST CO	BRANDON	SE SE	21 27	TO88 TO87	R08W R10W			5 5	
10026	NIEMANN CONST CO	HERTZBERGER	NE	36	TO87	R10W			5	
10020	NIEMANN CONST CO	SOUTH AURORA	NW	19	TO90	R07W	2.62	3iB	4	1 - 3
10032	NIEMANN CONST CO	SELLS	NW	25	T088	R09W	2.02	010	5	1 3
10034	NIEMANN CONST CO	TROY MILLS	SE		T087				0	
10036	WENDLING QUARRIES INC	KILER	NW	34	T087	R10W			4	
10038	BMC AGGREGATES LC	WIDGER	SW	07	T088	R10W	2.61	3i		1B 1A - 1B
10040	ZUPKE SAND & GRAVEL	ZUPKE-OELWEIN		09	TO90	R09W		1	4 4	IA- ID
10504	NICHANNI CONST CO	SAND & GRAVEL	NE	11	TODO	00714/				-
10504	NIEMANN CONST CO	WARD	NE	14	TO90	R07W	265	v	4 4	
10506	MANATT'S INC	GREENLEY	SE	29	TO89	R09W	2.65	X	4 4	
10510	NIEMANN CONST CO	HUFFMAN	SE	02	TO89	R08W	2.64	XI	4 4	1 1
				-			2.65	Х		
10514	NIEMANN CONST CO	HOLLERMAN	SE	26	TO90	R07W			4 4	
10516	NIEMANN CONST CO	MILLER	NW	14	T088	R09W	2.65	Х		
10518	MANATT'S INC	YEAROUS	SE	19	T089	R09W	2.65	Х		
10520	BRUENING ROCK PROD INC	BROOKS	SW	02	TO88	R09W				

٠

		RECENTLY ACTI	VE AGGREG	ATES	SOURCE	S	BULK SSD	DU		FRI HM		
CODE	OPERATOR	SOURCE NAME	LOCA	TION			SpGr	CA	FA	А	В	BEDS
11	BUENA VISTA DIST 3	SAND & GRAVEL										
11502	ROHLIN CONST CO INC	ROHLIN	SW	02	T093	R38W				4	4	
411504	MARTIN MARIETTA	RAILROAD	NE	03	TO93	R37W				3	3	
411506	MARTIN MARIETTA	LINN GROVE	NW	25	TO93	R38W				4	4	
A11508	WETHERALL CONST CO	NEWELL	NW	01	TO90	R36W				4	4	
11510	MARTIN MARIETTA	SIOUX RAPIDS		05	TO93	R36W				3	3	
A11512	BUENA VISTA COUNTY	MARATHON	SE	19	TO93	R35W				4	4	
A11514	LUNDELL CONST	STORM LAKE	SW	18	TO90	R36W				4	4	
A11516	HALLETT MATERIALS CO	SIOUX RAPIDS	W2	12	TO93	R37W				3	3	
A11518	KNIFE RIVER	MOLGAARD	NW	03	TO93	R38W						
12	BUTLER DIST 2	CRUSHED STONE	-	-	-	_		-	-	-	-	
A12004	GREENE LS CO	LUBBEN	NW	25	TO93	R17W					5	1 - 21
A12004	GREENE LS CO	FLORRY-STEERE	CT	08	TO93	R17W					5	1 - 11
A12010	CARLSON/BRUENING	CLARKSVILLE-ENGLE	NE	16	TO92	R15W					Ŭ	
A12014	NIEMANN CONST CO	OLTMANN	SE	08	T091	R16W					х	
A12016	GREENE LS CO	WIEGMANN-BRISTOW	SE	23	TO92	R18W				Х	X	1 - 11
A12018	GREENE LS CO	NEYMEYER	SW	28	TO90	R18W						
A12020	GREENE LS CO	BRUNS #2	NW	21	T091	R18W						
		SAND & GRAVEL					-		-			
A12502	CROELL REDI-MIX	CLARKSVILLE	NW	01	TO92	R16W	2.67	2	-	4	4	
							2.67		X			
A12504	SHELL ROCK S&G	BROOKS	NE	02	TO91	R15W	2.66	X		4	4	
							2.67		X			
A12508	GREENE LS CO	AUSTINVILLE	NW	23	TO90	R18W	2.64		X	3	3	
A12514	GREENE LS CO	DE VRIES	SW	28	TO90	R18W				4	4	
							2.63		X			
A12516	GREENE LS CO	JENSEN	S2	18	TO93	R16W				4	4	
A12518	NIEMANN CONST CO	SHELL ROCK-ADAMS	NE	03	TO91	R15W	100			3	3	
							2.66		X			
13	CALHOUN DIST 3	SAND & GRAVEL			TOOR	Danu						
A13502	KNIFE RIVER	LAKE CITY	NE	26	T086	R34W				4	4	
14	CARROLL DIST 3	SAND & GRAVEL										
A14506	MARTIN MARIETTA	POUND	SE		T085	R33W				4	4	
A14510	TIEFENTHALER INC	LANESBORO	NW	17	T085	R33W	2.72	2		4	4	
					-	-	2.68		X			
A14512	MARTIN MARIETTA	OPEN	SE	15	T084	R34W	0.00			4	4	
A14514	TIEFENTHALER INC	MACKE		06	T085	R33W	2.69	2	v	4	4	
A14516	KNIFE RIVER	RICHLAND	NE	23	T083	R33W	2.66		х	4	4	
15	CASS DIST 4	CRUSHED STONE										
A15004	SCHILDBERG CONST CO INC	LEWIS	SE	17	T075	R37W			-		4	10 - 1
A15008	SCHILDBERG CONST CO INC	ATLANTIC MINE	NE		T076						5	2

		RECENTLY ACTIV	E AGGRE	GATE	SOURC	ES	BULK	DUR	FRICT	
CODE	OPERATOR	SOURCE NAME	LOC	ATIO	N		SSD SpGr	PCC CA FA	HMA A B	BEDS
16	CEDAR DIST 6	CRUSHED STONE							1	
A16002 A16004	WENDLING QUARRIES INC WENDLING QUARRIES INC	HUNT LOWDEN-SCHNECKLOTH	SW NW	10 04	TO81 TO81		DWU DWU	3iB 3i	4 4	1
A16006 A16010	WENDLING QUARRIES INC WENDLING QUARRIES INC	STONEMILL PEDEN	SE NE	14 10	TO80 TO79	R03W R03W	DWU	3iB	4 4 4 4 5 5	1 - 3
A16012 A16014	WEBER STONE CO INC WENDLING QUARRIES INC	ONION GROVE TOWNSEND	SE	14 02	TO82 TO79	R02W	2.61	3i	4 4	1 - 7
A16018 A16022	WENDLING QUARRIES INC WENDLING QUARRIES INC	LOWDEN-MASSILLON TRICON	NW N2	23 09	T082 T082		DWU	3i	4 4	1
A16502	WENDLING QUARRIES INC	SAND & GRAVEL SHARPLISS	NW	12	T079	R03W	1.2		4 4	
A16506 A16508	WEBER STONE CO INC WENDLING QUARRIES INC	ONION GROVE MASSILLON	SE CT	14 11	T082 T082	R02W R01W	2.65 2.65 2.65	X X X	1.1	
17	CERRO GORDO DIST 2	CRUSHED STONE		-					-	
A17008 A17012	MARTIN MARIETTA MARTIN MARIETTA	PORTLAND WEST UBBEN	NE SW	19 26	TO96 TO94	R19W R20W	2.75 2.68	3iB 2	4 4	1 - 8
A17020	MARTIN MARIETTA	MASON CITY	NE	29	TO97	R20W	DWU 2.73	3i 3	5 5	1 - 3 7 7 - 9
									4 4 X X	8 - 9 1 - 6
A17022	HOLCIM INC	HOLCIM	SE	19	TO97	R20W	DWU DWU	2		1 - 4
A17024	HEARTLAND ASPHALT	RIVERVIEW	NE	29	T096	R19W			4 4	1 - 12
		SAND & GRAVEL	_							
A17506	KNIFE RIVER	NELSON-FORBES	SW	27	T096	R19W	-		4 4	
A17512	NORTH IOWA S&G INC	WEPKING	NE	15	TO97 TO97	R21W	DWU DWU	2 X	3 3 3	
A17514	MARTIN MARIETTA	HOLCIM SAND	NE	19		R20W	2.65	X		
A17518	HEARTLAND ASPHALT	AIRPORT	NE	08	TO96	R21W			3 3	
18	CHEROKEE DIST 3	SAND & GRAVEL	NE	10	T001	DION	2.70	2	2.2	-
A18506	HALLETT MATERIALS CO	CHEROKEE SOUTH	NE	16	TO91		2.70 2.69	2 X	3 3	
A18512	FABER & SON CONST CO	KILLIAM	SW	20	T093				4 4	
A18514 A18516	HIGMAN SAND & GRAVEL MARTIN MARIETTA	MONTGOMERY WASHTA #1	NE2 NE	20 30	TO93 TO90	R39W R41W			4 4 3 3	
A18516 A18518	MARTIN MARIETTA	QUIMBY	SW	15	TO90	R41W R41W			3 3	
A18520	MARTIN MARIETTA	QUIMBY-EAST	NW	06	TO90	R40W			3 3	
A18526	HALLETT MATERIALS CO	CHEROKEE NORTH	SW	23	TO92	R40W	2.70 2.67	2 X	3 3	
A18528 A18530	HIGMAN SAND & GRAVEL HIGMAN SAND & GRAVEL	WASHTA-BEAZLEY PATTERSON	SW	31 32	TO90 TO91	R41W R40W	DWU 2.69	2 X	3 3	
418532	CHEROKEE COUNTY	WALKER		31	TO90	R41W	DWU	Х		
A18534	HALLETT MATERIALS CO	NELSON	СТ	23	TO92	R40W	2.67 2.68	2 X		
A18536	HIGMAN SAND & GRAVEL	BECK	NE	30	TO93	R39W	DWU	2 X		

8

٠

.

)		RECENTLY ACTIV				.5	BULK SSD	DUR PCC	FRICT HMA	
CODE	OPERATOR	SOURCE NAME	LOC	ATION	1		SpGr	CA FA	A B	BEDS
19	CHICKASAW DIST 2	CRUSHED STONE								
19002	GREENE LS CO	TRACY	SE	29	T094	R14W	2.55	2	4 4	9 - 10
19004	BRUENING ROCK PROD INC	DEERFIELD-MAHONEY	SE	33	TO97	R14W			X	
19006	GREENE LS CO	HUNT	NE	29	T094	R14W	2.57	2	4 4	9 - 10
19008		BOICE	NE	16	T094		2.01	2	5	5 - 10
419008	GREENE LS CO		INE	10	1095	R14W			5	
		SAND & GRAVEL		00	-	-				
A19504	GREENE LS CO	HUNT	NW	29	T094	R14W			4 4	
19506	BLAZEK S&G CO	BLAZEK	NW	32	T096	R11W	1.000		4 4	
		and the second se				2	2.66	Х		
19508	ROVERUD CONST INC	BUSTA	SE	23	T096	R11W			4 4	
							2.65	X		
19510	RIVER BEND ENTERPRISES	NASHUA	NE	31	T094	R14W	12.00		X X	4
							2.66	X		
A19512	GREENE LS CO	PEARL ROCK	SE	31	TO94	R14W		1	4 4	
Designer .	A CARACTER COLOR	and the second se					2.65	X		
A19514	BRUENING ROCK PROD INC	NASHUA	SW	33	TO95	R14W	DWU	X		
A19516	NIEMANN CONST CO	REWOLDT	NE	25	T094	R13W	2.64	X		
A19518	CARLSON MATERIALS CO	AGGLAND	nic.	31	T096	R12W	2.64	x		
A19520	WILTGEN CONST CO	ROFONKE	NE SE	16	TO95	R12W	2.04	^		
		BUCKY'S	NE SE NW	03	TO95	R14W	2.65	X		
A19522	CROELL REDI MIX	DUCKTS	INVV	03	1032	KIIW	2.05	^		
20	CLARKE DIST 5	CRUSHED STONE						1		
A20002	SCHILDBERG CONST CO INC	OSCEOLA	NW	12	T072	R26W	· · · · ·		5	1 - 10
									X	
21	CLAY DIST 3	SAND & GRAVEL		-					-	+
	DAVE'S S&G	EVERLY	SW	31	T097	R38W	2.70	2	3 3	-
21506	DAVE 5 5&G	EVERLY	SVV	21	1097	RJOW			3 3	
101500		COLLADNIDUDO	NIT	11	TOOC	DOOL	2.68	X		
A21508	MARTIN MARIETTA	SCHARNBURG	NE	11	T096	R38W			4 4	
421510	NORGAARD S&G	DICKENS	NŴ	20	T096	R35W			3 3	
	(1.00				2.70	X		
A21514	MARTIN MARIETTA	CORNELL	SW	27	T094	R36W		1	4 4	
A21516	SIEH S&G	SPENCER #1	SW	24	T096	R36W	2.69	2	3 3	10.0
							2.66	X	1	
A21518	HALLETT MATERIALS CO	SPENCER #2	SW	05	TO97	R37W			4 4	
A21520	MARTIN MARIETTA	EVERLY	SE	06	TO96	R38W			4 4	
A21522	KNIFE RIVER	STAINS		30	TO97	R38W			4 4	
A21526	ROHLIN CONST CO INC	CLAY COUNTY	NW	20	TO96	R35W				
A21528	DAVE'S S&G	GOEKEN	NE	05	TO96	R38W	DWU	2		
A21520	ROHLIN CONST CO INC	BRAUNSCHWEIG	NL.	16	TO94	R36W	0	-		
A21530	CLAY COUNTY	ELSER	СТ	03	T094	R36W				
A21552			NW	06	T094					
A21534	HALLETT MATERIALS CO HALLETT MATERIALS CO	CLARK EVERLY GILLETT GROVE	NE	03	TO90	R38W R36W	1			
AZ 1530	HALLETT MATERIALS CO	GILLETT GROVE	INE	03	1094	RJOW				
22	CLAYTON DIST 2	CRUSHED STONE			- 2			-		-
A22002	KUHLMAN CONST CO	TWIN ROCK-SCHRADER	NW	14	T094	R05W			4 4	
									4 4	
A22004	ROVERUD CONST INC	BENTE-ELKADER-WATSON	SW	12	TO93	R05W	2.66	2	1	6 - 9
									4 4	1 - 9
A22006	BRUENING ROCK PROD INC	MARQUETTE	NW	16	TO95	R03W	DWU	3i	4 4	1 - 3
A22008	KUHLMAN CONST CO	ANDEREGG	SE	32	T092	R02W	DWU		4 4	2 - 8
A22010	KUHLMAN CONST CO	OSTERDOCK	SE	02	T091	R03W	2.67	2		2 - 5
			24						4 4	
A22012	KUHLMAN CONST CO	SCHMIDT	NE	33	T091	R01W	2.66	3i		4B - 6
ALLOIL	101121111 00101 00	Johnner	NE	55	1031	NOTW	2.00	51	4 4	
	BOUEDUD CONCTING	BLUME	NE	09	T093	R03W	2.64	2	4 4	1 - 7
A22014			INC	0.2	1093	KUSW	2.04	2		1 - 1
422014	ROVERUD CONST INC	DEOME							4 4	1 - 1

NOTE: 1 - FRICTION TYPE TO BE DETERMINED WHEN USED ON WINTERSET BEDS 1-4

		RECENTLY ACTIV				ES	BULK SSD	DUR PCC		RICT	
CODE	OPERATOR	SOURCE NAME	LOC	ATIO	N		SpGr	CA FA	A	В	BEDS
22	CLAYTON DIST 2	CRUSHED STONE									
22016	KUHLMAN CONST CO	GISLESON	NW	06	TO95	R04W	2.66	3i	4	4	1 - 8
22018	ROVERUD CONST INC	ZURCHER	SE	01	TO94	R05W	1	1.5	4	4	1 - 15
22020	KUHLMAN CONST CO	MUELLER	NE	30	T094	R03W	DWU	3i	4	4	1 - 8
22024	MIELKE'S QUARRY	SPOOK CAVE	NE	21	TO95	R04W	0.00	0.	4	4	1 - 2
22026	KUHLMAN CONST CO	DOERRING-LUANA	SE	05	TO95		1.			4	
22030	KUHLMAN CONST CO	EBERHARDT	NW	27	TO93	R05W	2.72	3	4	4	1 - 5
22032	KUHLMAN CONST CO	WELLMAN	NW	25	TO92	R06W	1.1	x	X	4	1 - 8
22034	KUHLMAN CONST CO	KRUSE	NW	17	TO92	R04W	2.70	3B	4	4	5 - 11
							2.70	2B	4	4	5 - 12
22038	KUHLMAN CONST CO	FASSBINDER	SW	09	TO92	R03W	2.67	3i	4	4	2 - 12 2B - 6
22040	KUHLMAN CONST CO	HARTMAN	NW	29	TO91	R06W	2.68	3i	4	4	1 - 4
22042	ROVERUD CONST INC	MORAREND	CT	35	TO92	R03W	2.67	X			1 - 8
22044	KUHLMAN CONST CO	BOGE	SW	18	TO91	R02W			4	4	1 - 10
22046	KUHLMAN CONST CO	JOY SPRINGS-BURRACK	NW	19	TO91	R06W	2.65	3i	4	4	1
22048	ROVERUD CONST INC	TUCKER	SW	18	TO91	R05W					
22056	ROVERUD CONST INC	MCGREGOR	NE	34	TO95	R03W		1		4	
22058	ROVERUD CONST INC	ST OLAF	SE	25	TO94	R05W					17
2060	ROVERUD CONST INC	JOHNSON	NW	26	TO93	R04W	2.64	3i	4	4	2 - 5 1 - 5
22062	ROVERUD CONST INC	SNY MAGILL	SE	22	TO94	R03W	DWU	3i	4	4	6 - 10
22066	ROVERUD CONST INC	PETERSON	NW	09	TO94	R06W					
22068	RIVER CITY STONE INC	MILLVILLE	NW	10	T091	R02W	DWU	3i			1 - 8
22070	ROVERUD CONST INC	BERNHARD/GIARD	NW	35	TO95	R04W	DWU	3i	4	4	1 - 3
2072	PATTISON BROS	CLAYTON TERMINAL		07	TO93	R02W	DWU	3i 3	4	4	3 - 4
2074	RIVER CITY STONE INC	STRAWBERRY POINT	NE	19	TO91	R06W	DWU	3i	1	-	1 - 2
22076	ROVERUD CONST INC	LARSON	NW	80	TO93	R05W					
2078	ROVERUD CONST INC	SMITH		07	T093	R06W			1		
22080	KUHLMAN CONST CO	HILINE	NW	08	T091	R03W			1		
2082	NIEMANN CONST CO	REIERSON	NW	20	T094	R06W					
2084	CJ MOYNA & SONS CJ MOYNA & SONS	MOYNA WILLIE	SW	14	T093	R05W					
2086	WILTGEN CONST CO	KEPPLER	NW	29	TO93 TO94	R02W R05W					
2000	WILTOLIN CONST CO	SAND & GRAVEL	1444	29	1094	RUJW					
2510	ROVERUD CONST INC	BENTE	SE	15	TO93	R05W	2.66	X	4	4	
2512	KUHLMAN CONST CO	FAIRGROUND	NE	26	TO93	R05W	2.66	X	4	4	
				20			2.66	х	1	4	
22514	KUHLMAN CONST CO	JOY SPRINGS	SW	19	TO91	R06W			X	Х	6
2518	KUHLMAN CONST CO	THURN	CT	25	T092	R05W			3	3	
							2.65	I X	1		I
2520	KUHLMAN CONST CO	WELTERLEN	SE	32	TO91	R05W	2.65	х			

)			RECENTLY ACTIV				ES	BULK SSD	DU PC	С	FR HM	A	
CODE	OPERATOR		SOURCE NAME	LOCA	TION	1		SpGr	CA	FA	A	В	BEDS
23 A23002 A23004 A23006	CLINTON D WENDLING QUARRIES WENDLING QUARRIES WENDLING QUARRIES	SINC	CRUSHED STONE BLOORE-ELWOOD BEHR SHAFFTON	NW SW NE	08 02 11	T083 T081 T080	R02E R03E R05E	DWU 2.61 DWU DWU DWU	3i 3i 3i 3 3		4 4 4 4	4 4 4 4	1 - 2 1 - 2 16 - 17 3 - 14 19 - 20 3 - 15
A23010 A23012 A23016 A23026 A23028 A23030 A23032 A23032 A23034	WENDLING QUARRIES WENDLING QUARRIES WENDLING QUARRIES WENDLING QUARRIES WENDLING QUARRIES WENDLING QUARRIES ANDERSON S&G PRESTON READY MIX	S INC S INC S INC S INC S INC S INC	GOOSE LAKE TEEDS GROVE LYONS MILL CREEK DELMAR EDON VALLEY ANDERSON TRANSTAR SAND & GRAVEL	SW SW NW NE SE NE	22 03 18 22 06 04 23 25	T083 T083 T082 T082 T083 T083 T081 T081	R05E R06E R07E R06E R04E R01E R03E R05E				4 4	4 4 4 4 4	1 - 10
A23502	WENDLING QUARRIES	SINC	DOYLE	NE	30	T083	R07E				4	4	
423504	WENDLING QUARRIES	SINC	BEHR	SW	02	T081	R03E	2.67 2.68 2.68	2	x x	4	4	
A23506	WENDLING QUARRIES	SINC	SCHNECKLOTH	S2	10	T080	R05E	100			4	4	
A23508	WENDLING QUARRIES	S INC	GATEWAY	NE	27	TO81	R06E	2.67		Х	4	4	
A23510	WENDLING QUARRIES	SINC	SHAFFTON	N2	11	TO80	R05E	2.66		X	4	4	
A23514 A23516	ANDERSON S&G WENDLING QUARRIES	S INC	ANDERSON OLSON	NW NW	23 23	TO81 TO81	R03E R02E	2.66 2.68		X X			
24		IST 3	SAND & GRAVEL				-						
A24512	HALLETT MATERIALS	CO	DUNLAP	SE	27	T082	R41W	2.70 2.66	2	x	3	3	
A24514	NATURAL MATERIALS	5	DENISON	SE	28	T084	R39W	DWU DWU	2	x	3	3	
25	DALLAS D	IST 4	SAND & GRAVEL								-		
A25502	HALLETT MATERIALS	CO	MESSERSCHMIDT	NW	28	T079	R27W	2.70 2.67	2	x	4	4	
A25510	HALLETT MATERIALS	со	PERRY	NW	01	T081	R29W	2.70	2		4	4	
A25512	HALLETT MATERIALS	СО	VAN METER	SE	16	T078	R27W	2.67 2.68	2	x	3	3	
A25514	HALLETT MATERIALS	со	BOONEVILLE	S2	26	T078	R26W	2.66 2.68	2	X	3	3	
A25516	HALLETT MATERIALS	со	VAN METER SOUTH		21,	22TO78	R27W	DWU 2.68	2	X	3	3	
A25518	MARTIN MARIETTA		RACCOON RIVER SAND			28TO78		2.66 DWU DWU	2	x x			

		RECENTLY AC	TIVE AC	GGRE	GATE	SOURC	ES	BULK	DUR	FRICT	
CODE	OPERATOR	SOURCE NAME		LOC	ATIO	N		SSD SpGr	PCC CA FA	HMA A B	BEDS
26	DAVIS DIST 5	CRUSHED STONE		-	-	-		1	1		1
A26004	DOUDS STONE INC	LEWIS		W2	02	TO69	R12W	2.60	3	4 4	1
								1.00		5 5	3 - 7
										5	3 - 5
								1.00		4 4	6 - 7
426006	DOUDS STONE INC	BROWN	SW	NW	02	TO69	R12W	2.60	3	4 4	1
										5 5	3 - 7
									1	5	3 - 5
										4 4	6 - 7
20502	DOUDS STONE INC	SAND & GRAVEL ELDON-FRANKLIN		SW	01	T070	R12W	2.67	X	-	
26502	DOUDS STONE INC	ELDON-FRANKLIN		SVV	01	1070	RIZW	2.07	~		-
7	DECATUR DIST 5	CRUSHED STONE	_					-		-	
27002	SCHILDBERG CONST CO INC	GRAND RIVER		NW	22	T070	R27W			5	12 - 14
27008	SCHILDBERG CONST CO INC	DECATUR		SE	32	TO69	R26W			X 5	7 9 - 15
-					_	-				5	9 - 15
8	DELAWARE DIST 6	CRUSHED STONE		0111	00	TOOS	DOCINI	0.00	0.0	1	-
28002	KUHLMAN CONST CO	SEDGEWICK #2		SW	36	TO90	R06W	2.66	3iB	4 4	3
28006	KUHLMAN CONST CO	SEDGEWICK #1		SW CT	36 04	TO90	R06W	2.67	21	4 4	1 - 3 2 - 7
28008	KUHLMAN CONST CO	EDGEWOOD WEST		CI	04	TO90	R05W	2.07	3i	4 4	2 - 7
28010	KUHLMAN CONST CO	TIBBOTT		SW	23	TO90	R04W	2.70	3i	4 4	1 - 5
20010	KUTLIMAN CONST CO	100011		500	25	1030	10400	2.70	51	4 4	1 - 7
28012	KUHLMAN CONST CO	BAUL		SE	22	TO89	R06W	2.69	3i	4 4	1 - 4
28012	KUHLMAN CONST CO	LOGAN		SW	10	T088	R05W	2.69	3		2 - 8
20014				5.11	10					4 4	1 - 8
28016	KUHLMAN CONST CO	WHITE		NW	02	T088	R04W	2.72	3i	4 4	1 - 2
28020	BARD CONCRETE CO	DEUTMEYER		SW	13	TO88	R03W	DWU	3i	4 4	2 - 6
28030	KUHLMAN CONST CO	GRIEF		NE	18	T087	R03W			4	
28032	RIVER CITY STONE INC	SCHNITTJER-DELHI		NE	35	T088	R04W			1.00	
28038	KUHLMAN CONST CO	KUHLMAN		NW	06	TO90	R04W	2.70	3i	4 4	1B - 5
28040	BARD CONCRETE CO	KRAPFL		SE	23	T089	R03W	2.69	3i	4 4	4
								1.00		4 4	1 - 4
28042	KUHLMAN CONST CO	WALSTON-MASONVILLE		SE	21	TO89	R06W	2.69	3i		1 - 4
0000		DUNDEE				TOCO	Dealer			4 4	1 - 6
28044	NIEMANN CONST CO	DUNDEE		NE	20	T090	R06W			4	
28046	KUHLMAN CONST CO	PINS		NW	27	T088	R03W				
28050	KUHLMAN CONST CO	BUCK CREEK		NW	20	T087	R04W	DWU	2		5 - 8
28052	RIVER CITY STONE INC RIVER CITY STONE INC	MANCHESTER WINCH	ABA/	SW SW	09 02	TO88 TO87	R05W R04W	DWU	3		5 - 8
28054 28056	RIVER CITY STONE INC	THORPE	INVV	NW	33	TO90	R04W R05W				
28058	RIVER CITY STONE INC	ROSSOW/MANCHESTER	NE	NW	16	TO90	R05W				
20030	INVERTON F STONE INC	SAND & GRAVEL	INC	1400	10	1000	10044			1.1	
28502	KUHLMAN CONST CO	SEDGEWICK		SW	36	TO90	R06W			4 4	A R
								2.65	Х	12	
28504	BARD CONCRETE CO	TEGLER		NE	36	T089	R03W			4 4	
		DUEDOUULE				TOPP	Dacus	2.65	Х		1-
28506	BARD CONCRETE CO	DYERSVILLE		NW	26	T089	R03W	2.05		4 4	
00510	KUUL MAN CONST CO	LOCAN		CIAL	10	TOPO	DOGW	2.65	X		
28510	KUHLMAN CONST CO	LOGAN		SW	10	T088	R05W	2.65	Х	1 1	
28514	KUHLMAN CONST CO	FERGESEN		NE	32	T089	R06W	DWU	х	4 4	
28520	RIVER CITY STONE INC	MANCHESTER		SW	10	T088	R05W	2.65	X		
28520	KUHLMAN CONST CO	LAKE DELHI		NW		T088	R05W	2.64	x		
0024	NUTLINIA CONST CO	LINE DELIN		1444	1.4	1000	10044	2.04	~		

NOTE 1: FRICTION TYPE TO BE DETERMINED WHEN USED

		RECENTLY A	CTIVE AGGREGATE SOURCES					N
				BULK	DUR	FRICT		0
				SSD	PCC	HMA		Т
CODE	OPERATOR	SOURCE NAME	LOCATION	SpGr	CA FA	A B	BEDS	Ε

29	DES MOINES DIST 5	CRUSHED STONE											
A29002	L&W QUARRIES INC	MEDIAPOLIS-LEONARD		SE	01	T071	R04W	2.65	3		4	4	15 15 - 18 20
429008	CESSFORD CONST CO	NELSON		NE	26	T072	R02W	2.62	3		5	4	21 - 24 7 - 20
A29012	CESSFORD CONST CO	GEODE		NE	01	TO69	R05W				5 4 5 4	4 5 4 5 4	15 - 24 24 - 27 11 - 12 9 - 13 17
		SAND & GRAVEL	_							_	-	_	
A29502	CESSFORD CONST CO	SPRING GROVE		SW	36	TO69	R03W	DWU 2.66	3	х	4	4	2
30	DICKINSON DIST 3	SAND & GRAVEL											
A30502	CONCRETE SAND & MATERIALS	SMILFORD			12	TO98	R37W	2.70 2.66	2	х	3	3	
A30504	ROHLIN CONST CO INC	ROHLIN		NE	06	TO98	R36W	-			3	3	
A30506	HUMMEL S&G	FOSTORIA		NE	26	TO98	R37W				4	4	
A30508	HALLETT MATERIALS CO	FOSTORIA/LOST			32	TO98	R37W	2.71 2.67	2	х	3	3	
30510	CEMSTONE S&G	EAST		NE	07	TO98	R36W	2.71 2.66	2	х	3	3	
A30512	DICKINSON CO	WESTPORT		NE	17	TO98	R38W				4	4	
A30514	HALLETT MATERIALS CO	MILFORD/LEITH		NE	04	TO98	R37W	DWU	2				
A30516	COHRS CONSTRUCTION INC	CROSBY		NW	21	T100	R37W						
A30518	COHRS CONSTRUCTION INC	SMITH		SE	06	TO98	R36W						
A30520	HALLETT MATERIALS CO	MILFORD/DERNER	W2 13	E2	14	TO98	R37W	DWU DWU	2	х			
A30522	HALLETT MATERIALS CO	FODNESS		CT	23	T100	R36W	1.00					

NOTE 1: AASHTO 57 GRADATION MAXIMUM

Matls. IM T203

		RECENTLY ACTIV	/E AGGRE	GATE	SOURC	ES	BULK	DUR	FR	ICT	
CODE	OPERATOR	SOURCE NAME	LOC	ATIO	N		SSD SpGr	PCC CA FA	HN A		BEDS
31	DUBUQUE DIST	6 CRUSHED STONE		-			1	1	1	-	-
A31002	RIVER CITY STONE INC	ROSE SPUR		27	TO90	R02E	2.66	3i	1		1 - 8
A31006	KUHLMAN CONST CO	DYERSVILLE-SUNDHEIM	SE	32	T089	R02W	2.66	3i	4	4	1 - 15 4 - 12
A31008	RIVER CITY STONE INC	KLEIN-RICHARDSVILLE	NW	33	TO90	R01E	DWU	3i	4	4	1 - 8 3A - 4B
101000	NIVER OIL POICHE INC	REERVICIANDOTIELE		00		HUIL	1.0	-	4	4	1 - 4
A31010	RIVER CITY STONE INC	BROWN	NW	33	T089	R02E	2.68	3i	4	4	3 - 9A
						1000		1	4	4	2 - 9
A31014	BARD CONCRETE CO	KURT	N2	35	T087	R02W	2.70	3iB	4	4	1 - 2
A31018	RIVER CITY STONE INC	MELOY	NW	23	T087	R01E	DWU	3i	4	4	1 - 3
A31020	RIVER CITY STONE INC	SCHLITCHE	SE	11	T089	R02W	DWU	3i	4	4	1 - 4
A31024	KUHLMAN CONST CO	JOHNS CREEK	SW	36	T088	R02W	2.69	3i	4	4	3 - 4
A31026	WENDLING QUARRIES INC	ARNSDORF	SE	25	T087	R02E	DWU	3i	4	4	1 - 2
A31028	RIVER CITY STONE INC	THOLE	NW	21	T087	R02E	DWU	3i	1	4	1 - 2
A31030	RIVER CITY STONE INC	KEMP	NE	09	T089	R01W				4	
A31034	RIVER CITY STONE INC	HERMSEN	NE	33	TO90	R02W				4	
A31036	RIVER CITY STONE INC	BALLTOWN	SE	05	TO90	R01E					
A31038	RIVER CITY STONE INC	HARTBECKE	SW	21	T088	R01W				4	
A31040	RIVER CITY STONE INC	KENNEDY	NW	03	T088	R01W				4	
A31042	RIVER CITY STONE INC	GANSEN	NW	09	TO87	R02E				4	
A31042	WENDLING QUARRIES INC	DECKER	SE	24	TO87	R02E	DWU	3i	4	4	1 - 5
431048	RIVER CITY STONE INC	MCDERMOTT	NE	35	T088	R01W	2.65	31	4	4	2
A31050	RIVER CITY STONE INC	PLOESSEL-DYERSVILLE	N2	07	T088	R02W	2.74	3i	4	4	3 - 5
A31052	KUHLMAN CONST CO	EPWORTH-KIDDER	SW	02	T088	R01W	2.74	51	1	-	5 5
A31052	RIVER CITY STONE INC	MERRITT	SE	02	T089	R02E					
A31054	RIVER CITY STONE INC	RUBIE	SE	05	TO89	R02E	DWU	3iB	4	4	5 - 9
A31056 A31058	RIVER CITY STONE INC	HOLY CROSS	SW	12	TO90	R03E	DWU	310	4	4	3 - 9
	BARD CONCRETE CO	EAST CASCADE	SW	22	TO90	R02W R01W	2.71	3i	4	4	2 - 5
A31060	RIVER CITY STONE INC	WEBER	NW	32	TO87	R01W R02E	2.67	3i	4	4	2 - 5 3 - 9A
A31064	RIVER CITY STONE INC	FILLMORE	SW	26	TO89	R02E	2.07	31	4	4	2 - 4
A31066	RIVER GITT STONE INC	SAND & GRAVEL	SW	20	1087	RUIW	2.70	51	4	4	2 - 4
A31502	AGGREGATE MATLSFLYN		NE	24	T088	R03E	2.66	3i	3	3	
							2.66	X			
431504	BARD CONCRETE CO	SAUSER PROPERTY	NW	36	T087	R02W	2.00		4	4	
01510			CIW	10	TODO	DOOM	2.66	X			
A31512	BARD CONCRETE CO	BURKLE	SW	19	T089	R02W	2.66	X			
A31514	RIVER CITY STONE INC	FILLMORE	CT	26	T087	R01W	2.66	X			

NOTE 1: TOP 17.0' OF BED 2 NOTE 2: TOP 6.0' OF BED 9

Matls. IM T203

		RECENTLY ACTIV				5	BULK SSD	DUR PCC		FRI HM		
CODE	OPERATOR	SOURCE NAME	LOCA	ATION	1		SpGr	CA	FA	A	В	BEDS
32	EMMET DIST 3	SAND & GRAVEL				-						
32502	HALLETT MATERIALS CO	ESTHERVILLE	N2	03	TO99	R34W	2.70	2		3	3	
	A Shared and a state of the						DWU		Х			
32506	EMMET COUNTY	FREY	NW	21	T100	R34W				4	4	
32514	BOGGESS CONST	WALLINGFORD		07	T098	R33W	DUU				4	
32518	ROHLIN CONST CO INC	EGELAND		20	T098	R33W	DWU		Х	4	4	
32520	ROHLIN CONST CO INC	YOUNG	NE	19	TO98	R32W				4	4	1
	ESTHERVILLE ROCK & GRAVEL		INC							4	4	
32522			CIM	30	T099	R33W						
32524	EMMET COUNTY	PETERSON	SW	34	T100	R34W						
32526	ROHLIN CONST CO INC	DAVID YOUNG	NE	29	T098	R33W	DUNI			4	4	
32530	HALLETT MATERIALS CO	ESTHERVILLE/WHITE	SW	16	T100	R34W	DWU	2	v	4	4	
22524	DOLULIN CONST CO INC	ENEDSON		20	T100	DOMM	DWU		Х			
32534	ROHLIN CONST CO INC	ENERSON	NINA	28	T100	R34W	DIAN	1		4	4	
32538	ESTHERVILLE ROCK & GRAVEL	JENSEN	NW	03	T099	R34W	DWU	2				
		FIGURE			-	-	DWU	1	Х			
32540	HALLETT MATERIALS CO	FISHER	NE	33	TO98	R32W					-	
432542	HALLETT MATERIALS CO	GRAETTINGER	SE	33	T098	R33W				4	4	
32544	DUININCK BROS INC	ANDERSON		7,8	T100	R34W	1000		_			-
3	FAYETTE DIST 2	CRUSHED STONE	_									
33002	NIEMANN CONST CO	ELDORADO-JACOBSEN	SW	17	TO95	R08W	2.69	3iB		5	5	4 - 6
33004	NIEMANN CONST CO	HOUG	SW	11	TO94	R08W				5	5	1 - 9
33006	NIEMANN CONST CO	MARYVILLE	SE	24	TO91	R07W	2.69	3i		4	4	1 - 2
33010	WILTGEN CONST CO	VOSHELL	NW	21	TO93	R07W				X	Х	1 - 4
33016	NIEMANN CONST CO	MAYNARD	NE	23	TO92	R09W					Х	
33018	NIEMANN CONST CO	FAIRBANK	SW	28	T091	R10W		X		4	4	5
	NITHANN CONST CO	VEADOUR	C 111	10	TOOO	Dealth					4	1 - 5
433020	NIEMANN CONST CO	YEAROUS	SW	19	T093	R08W				4	4	1 - 1
433022	NIEMANN CONST CO	MILLER	SW	35	T095	R10W	0.00	0.0		4	4	1 - 8
433024	NIEMANN CONST CO	WAUCOMA	NW	25	TO95	R10W	2.69	3iB		5	5	2 - 4
133026	WILTGEN CONST CO	LYNCH	NW	05	TO95	R10W				4	4	1 - 5
433030	NIEMANN CONST CO	SCHWEMMAN-ST LUCAS	NE	29	TO95	R09W				X	Х	
433032	BRUENING ROCK PROD INC	LANDIS	SE	12	TO93	R08W		X		4	4	1 - 5
433034	NIEMANN CONST CO	MCDONOUGH	SE	36	TO94	R08W						
433036	NIEMANN CONST CO	GRAHAM-HAWKEYE	SW	06	TO94	R09W		X		4	4	1 - 4
433038	NIEMANN CONST CO	PAPE	NE	28	TO95	R08W	DWU	3iB		5	5	3 - 5
433040	NIEMANN CONST CO	SINNOTT		25	T093	R09W						
10000	NICHANNI CONCT CO	SAND & GRAVEL	ANA/	02	TOOA	DIOW	204	V		1		-
\$33506	NIEMANN CONST CO	ALPHA	NW	03	TO94	R10W	2.64	X	Х	4	4	
A33508	CARLSON MATERIALS CO	DURSCHER	NW	03	T094	R07W	2.04		A		4	
A33510	ZUPKE S&G	RANDALIA	NW	29	TO93	R09W				4	4	
		WADENA	NE	25	TOOD	DOTAL	2.66		Х			
433512	NIEMANN CONST CO	WADENA	NE	25	TO93	R07W	2.66		х	4	4	
433518	KUHLMAN CONST CO	BASSETT	SE	11	TO91	R07W	2.00		A	4	4	-
							2.65		Х			
433520	BRUENING ROCK PROD INC	OELWEIN SAND	NE	09	TO91	R09W	2.65		Х			
A33522	BRUENING ROCK PROD INC	PAPE	SE	08	TO95	R08W	2.65		Х			
433524	CROELL REDI-MIX	ROGERS		04	TO94	R07W	2.66		Х			
A33526	WILTGEN CONST CO	ELDORADO	NE	13	TO95	R09W						
A33528	NIEMANN CONST CO	KASEMEIER	SE	19	TO93		DWU		Х			

Matls. IM T203

		RECENTLY ACTI	VE AGGRE	GATE	SOURC	ES	BULK	DU	IR	FF	RICT	(
CODE	OPERATOR	SOURCE NAME	LOC	ATIO	N		SSD SpGr	PC			ЛA	BEDS
34	FLOYD DIST 2	CRUSHED STONE			-			T				
A34002 A34004	GREENE LS CO GREENE LS CO	CARVILLE-BUNN MAXON	SW SE	23 07	TO95 TO94		2.63 2.68	2		4	4	1 - 4 4C - 19 1 - 17
A34006 A34008	GREENE LS CO GREENE LS CO	JOHLAS WARNHOLTZ	SW SW	07 09	TO94 TO96	R15W R16W	2.70	3i		5	X 5	1 - 4
A34010	GREENE LS CO	LACOSTA	SE	25	TO97	R17W	2.68 2.67	2 3i		4	4 X 5	17 - 18 1 - 18 1 - 4
121012		MULTANC		20	TOOC	DIOW				5 4	5 4	1 - 8 9 - 14
A34012 A34014 A34018	GREENE LS CO BRUENING ROCK PROD INC CROELL REDI-MIX	WILLIAMS HANNMANN JONES	NW NE N	29 20 26	TO94	R18W R15W R17W						
A34502	GREENE LS CO	SAND & GRAVEL ROCKFORD	SE	15	TO95	R18W	2.68	2	-	3	3	
			3E	15			2.65	2	x	3	5	
A34506	GREENE LS CO	LENT	NE	08	T096	R16W				4	4	
A34510 A34514	GREENE LS CO GREENE LS CO	BRACKEL LITTLE CEDAR	NE NW	17 01	TO94 TO95	R17W R15W	2.65		x	4	4	
A34514 A34516	GREENE LS CO	CEDAR ACRE RESORTS	E2	17	TO95	R15W	2.65	1	x	3	3	
A34518	GREENE LS CO	ENABNIT	NW	21	TO94		2.00					
35	FRANKLIN DIST 2	CRUSHED STONE										
A35002	MARTIN MARIETTA	DOWS	NE	30	TO91	R22W			T	4	4	1 - 4
										4	4	1 - 12
										4	4	7 - 12
A35006	MARTIN MARIETTA	HIBNESS	SE	22	TO91	R20W	2.58	3		4	4	1 - 4A 1 - 12
A35010	GREENE LS CO	MILLER	NE	13	TO91	R19W				4	4	1 - 5
A35016	GREENE LS CO	AYRES		01		R19W						
		SAND & GRAVEL		0-		Deciti	0.05		_		-	-
A35502	CARLSON MATERIALS CO	GENEVA	SW	07	TO91	R19W	2.68	2	x	3	3	
A35508	MARTIN MARIETTA	STUCK	SW	30	TO91	R22W	2.04		^	4	4	
	MARTIN MARIETTA	ANDERSON-POPEJOY	NE		TO90		2.68		X	3	3	
435514	CARLSON MATERIALS CO	KOCH	SW	08	TO91	R19W				4	4	
125510	KNIEE DIVED	DETEDS	CIM	04	TOOD	DOM	2.69		X	2	2	
435516	KNIFE RIVER	PETERS	SW	04	TO92	R20W	2.65		x	3	3	
A35518	KNIFE RIVER	REINKE	SW	22	TO91	R20W	2.00		^	4	4	
A35520	KNIFE RIVER	BRANDT	N2	34	TO90	R19W				4	4	
		DAGU	0.5	07	TOPP	00000	2.68		X			
A35522	MARTIN MARIETTA	RASH	SE	27	TO90	R22W	2.63		x	4	4	
36	FREMONT DIST 4	CRUSHED STONE	_	-			- Contraction	-		-	-	
436002	SCHILDBERG CONST CO INC	THURMAN	NW	23	TO70	R43W					4	
37	GREENE DIST 1	SAND & GRAVEL										
37504	HALLETT MATERIALS CO	JEFFERSON	SW	04	TO83	R31W	2.66	2	v	4	4	
				05	TO84	R32W	2.64		Х	4		
37514	ARCADIA LIMESTONE CO	WRIGHT	NIM	112							1	
A37514	ARCADIA LIMESTONE CO	WRIGHT	NW	05	1064	RJZVV	2.66		х	4	4	
A37514 A37520 A37522	ARCADIA LIMESTONE CO GREENE CO REDI MIX KNIFE RIVER	WRIGHT HAMILTON HAUPERT	NVV	27	TO83 TO84	R30W R30W	2.66 2.59		X X	4	4	(

			RECENTLY ACTI	IVE AG	GREG	ATE	SOURC	ES	BULK	DUR		ICT		
CODE	OPERATOR		SOURCE NAME		LOCA	TION	J		SSD SpGr	PCC CA FA	HN A		BEDS	
38 A38504 A38506	GRUNDY CARLSON MATERIA CARLSON MATERIA		SAND & GRAVEL HERONIMOUS MEESTER	NE	SE NE	35 12	T088 T088	R17W R17W	2.63 2.63	X X				
39 A39502 A39506 A39508	GUTHRIE KNIFE RIVER BUTTLER CONST C MCALISTER AGGRI		SAND & GRAVEL HEILAND BAYARD L & L		SW NE NE	29 22 33	T079 T081 T078	R30W R32W R31W			4 4 4	4 4 4		
40 \40006	HAMILTON MARTIN MARIETTA	DIST 1	CRUSHED STONE GRANDGEORGE SAND & GRAVEL		SE	18	T089	R25W				5	3 - 5	5
A40512	KNIFE RIVER		ANDERSON			12	T087	R26W						
41 A41002	HANCOCK BMC AGGREGATES	DIST 2 S LC	CRUSHED STONE GARNER NORTH	-	SE	11	TO95	R24W	2.77 2.77	3iB 3i	4	4	1 - 4 E	
A41004	BMC AGGREGATES	SLC	GARNER SOUTH-WIELAND		NW	13	TO95	R24W	2.77 2.77	3iB 3i	4 4	4 4	1 - 4	4
A41504 A41506 A41510 A41518	HANCOCK COUNTY HANCOCK COUNTY NUCKOLL'S CONCI SERVICES INC HANCOCK COUNTY	Y RETE	SAND & GRAVEL HUTCHINS KLEMME BRITT AUSTIN		E2 NE	27 26 34 11	TO96 TO95 TO96 TO97	R26W R24W R26W R25W	DWU DWU	2 x	3	4 4 3		
2	HARDIN	DIST 1	CRUSHED STONE		-								-	-
442002	MARTIN MARIETTA		ALDEN		NW	20	T089	R21W	2.59 DWU DWU	3iB 3iB 3	4	4		3 3 1
A42004	GERHKE QUARRIE	SINC	GIFFORD SAND & GRAVEL		NW	04	T086	R19W	0.00	5		5		
A42502	WELDON BROS CO	ONST CO	IOWA FALLS		NW	20	T089	R20W	2.65 2.68	2 X	4	4		
A42510	MARTIN MARIETTA	A	JANSSEN		SE	34	T089	R20W	2.65	x	4	4		
A42512	HARDIN AGGREGA	ATES INC	GIFFORD		SW	31	T087	R19W	2.66	x	4	4		
A42524 A42528	KNIFE RIVER		GRIFFEL LLOYD		SE	31 04	TO89 TO86	R19W R19W	DWU		3	3		

NOTE 1: WHEN BED 2 IS VISUALLY APPARENT, IT SHALL NOT EXCEED A THICKNESS OF ONE FOOT IN FULL-FACE OPERATION.

		RECENTLY ACTIV	E AGGRE	GATE	SOURC	ES	BULK SSD	DU		FR HN	ICT	1
CODE	OPERATOR	SOURCE NAME	LOC	ATIO	N		SpGr		FA	A		BEDS
43	HARRISON DIST 4	CRUSHED STONE		-				1		1		
A43002	SCHILDBERG CONST CO INC	LOGAN		19	T079	R42W				5 5	5 5 4	25E 25C-25E 26
443004	NATURAL MATERIALS	LOGAN		17	T079	R42W				5 5	5 5 4	25E 25C-25E 26
		SAND & GRAVEL										
43506	SCHEMMER LS INC	LOGAN	SE	08	T079	R42W	DWU		x	3	3	ā i
43512	HALLETT MATERIALS CO	WOODBINE-MCCANN	SW	29	T081	R41W	2.68 2.64	3	x	3	3	
43514	NATURAL MATERIALS	LOGAN		17	T079	R42W				-		
44	HENRY DIST 5	CRUSHED STONE		_					-			
A44002	COOTS MATERIALS CO INC	SMITH	SE	17	T071	R06W			- 1			
44006	HENRY COUNTY	LEEPER	NE	18	T071	R06W	DWU	2		4	4	8 - 11
44008	DOUDS STONE INC	TWEEDY	SW	36	T071	R06W				4 5	4	13 - 14 9 - 14
		SAND & GRAVEL		-	-		· · · · ·	1	-			
44502	CESSFORD CONST CO	NORTH ROME	SW	29	T072	R07W	2.66		x	4	4	
44504	IDEAL SAND CO	ENSMINGER-ROME	NW	32	T072	R07W	2.67	1	Х			0
15	HOWARD DIST 2	CRUSHED STONE										
45002	ROVERUD CONST INC	ECKERMAN	NW	33	T100	R11W	2.61	2		X	Х	8 - 9
45006	BRUENING ROCK PROD INC	NELSON	NE	33	TO99	R13W	2.54	2		4	4	1 - 3
							2.54	2		4	4	8 - 9
45008	BRUENING ROCK PROD INC	DOTZLER	NE	23	TO99	R12W	2.50	3		4	4	7 - 10A
45010	BRUENING ROCK PROD INC	DALEY	NE	11	TO98	R11W	2.59	3		4	4	9 - 11
45014	FALK CONST CO	CECELIA	SE	80	TO97	R14W	100				5	1
45018	BRUENING ROCK PROD INC	LE ROY	NW	10	T100	R14W					Х	1
45020	BRUENING ROCK PROD INC	RIECKS	NW	24	T100	R11W						
45022	BRUENING ROCK PROD INC	MAUER	SE	13	T100	R13W						
45024	BRUENING ROCK PROD INC	MAPLE LEAF	SE	04	T098	R13W				1		
45026	BRUENING ROCK PROD INC	BRUENING BROTHERS #1	SE	22	T100	R11W				1.	-	1 - 3
45028	BRUENING ROCK PROD INC	ELMA	NW	06	T097	R13W	DWU	3		4	4	2 - 3B
45030	BRUENING ROCK PROD INC	DIEKEN-TANK	SE	24	T100	R13W						
45032	ROVERUD CONST INC	KITCHEN		13	T100	R12W						
16600		SAND & GRAVEL	CE	04	T000	D12W	-	-			1	
45502	BRUENING ROCK PROD INC	MAPLE LEAF-POTTER	SE	04	T098	R13W	DWILL	2		4	4	
45504	ROVERUD CONST INC	ECKERMAN	NW	33	T100	R11W	DWU 2.65	3	х	4	4	
45508	CARLSON MATERIALS CO	SOVEREIGN	SW	01	T098	R12W	DWU 2.65	3	x	3	3	
45514	CARLSON MATERIALS CO	EASTLAND	NE	26	T100	R14W	2.00			3	3	
	CARLSON MATERIALS CO	FREIDERICH	NE	15	T098	R14W				3	3	
45516					19/2/0		2.67	1	Х	1		1

		RECENTLY ACT	IVE AGGREG	ATE	SOURC	ES	BULK	DUR	FR		1
CODE	OPERATOR	SOURCE NAME	LOC	ATION	N		SSD SpGr	PCC CA FA	HM A	B	BEDS
46	HUMBOLDT DIST 2	CRUSHED STONE	-	_						-	
A46006	MARTIN MARIETTA	HODGES	NE	32	T092	R28W	2.60 DWU	3i 3i	4 5	45	10 - 18 4 - 8
A46014	MARTIN MARIETTA	PEDERSEN	SW	28	TO92	R28W	2.59 2.58 2.57	3i 3i 3i	5 5 5	5 5 5	4 - 13 4 - 20 14 - 20
A46016	KNIFE RIVER	ERICKSON SAND & GRAVEL		30	TO91	R28W					
A46504 A46512 A46516	MARTIN MARIETTA NORTHWEST MATERIALS KNIFE RIVER	PETERSON WARREN ERICKSON	SW SW	27 08 30	TO92 TO92 TO91	R29W R30W R28W	DWU		4 X 3	4 X 3	
A46518	MARTIN MARIETTA	PEDERSEN	SW	28	TO91	R28W	1. 15	X	3	5	
47	IDA DIST 3	SAND & GRAVEL									
A47502 A47504	HALLETT MATERIALS CO HIGMAN SAND & GRAVEL	BATTLE CREEK CROCKER	NW	05 06	T086 T089	R41W R41W			3	3	1.5
48	IOWA DIST 6	SAND & GRAVEL			-						
A48502	MARENGO READY MIX	KIMMICH	SE	24	T081	R11W	2.00	v	4	4	
A48506 A48508	WENDLING QUARRIES INC MARENGO READY MIX	MARENGO DISTERHOFF	NW SE	22 34	TO81 TO81	R11W R10W	2.66 2.66 2.66	X X X			

			RECENTLY ACTI	VE AGGREC	SATE	SOURC	ES	BULK SSD	DUR PCC		RICT	
CODE	OPERATOR		SOURCE NAME	LOC	ATION	١		SpGr	CA F		A B	BEDS
49	JACKSON D	DIST 6	CRUSHED STONE		-					1.1	_	
449002	BELLEVUE S&G CO		BELLEVUE	SW	25	T087	R04E	2.67	3i	4	4	1 - 3
49004	BELLEVUE S&G CO		LAMOTT	NW	02	T086	R03E	1000	1.0	4	4	1.
49008	WENDLING QUARRIE	SINC	IRON HILL	SW	16	T085	R02E	DWU	3i	4	4	3 - 6
45000	WENDENNO QUARTE	5 110	intoit mee						1.5	4	4	1 - 6
49010	WENDLING QUARRIE	SINC	ANDREW	NW	21	T085	R03E	2.70	3iB	4	4	1B - 3
145010	WENDEING QUARTE	5 1140	ANDREW		-					4	4	1 - 7
A49012	WENDLING QUARRIE	SINC	FROST	SE	16	T084	R03E	DWU	3iB	4		1A - 1D
149012	WEINDLING QUARKIL	SINC	18051	JL.	10	1001	NOOL	0110	0.0	4		1 - 2
49016	WENDLING QUARRIE	SINC	WEIS	SE	22	T085	R04E				4	1.1.1
A49018	WENDLING QUARRIE		PATASKA	NW	23	T085	R05E				4	
			PRESTON	SW	26	T084	R05E	2.67	3i	4		7 - 10
49020	WENDLING QUARRIE	SINC	FRESTON	300	20	1004	NUUL	2.07	01			1 - 10
40001	DECTON DEADY MIN		DDESTON D/M	SW	26	T084	R05E	2.67	3i	4		7 - 10
A49021	PRESTON READY MIX	^	PRESTON R/M	300	20	1004	NUJL	2.01	0			1 - 10
10000		CINC	RELLEVILE	SE	22	T086	R04E			4		1 10
A49022	WENDLING QUARRIE		BELLEVUE	SE	23 07	T086	R04E R03E	DWU	3i	4	4	1 - 8
49024	WENDLING QUARRIE	SINC	MAQUOKETA EAST	SVV	07	1084	RUJE		31	4		7 - 8
				-		TOOL	DOCE	2.70	31	4		1 - 8
A49026	WENDLING QUARRIE		MILES	SW	20	T084	R06E	DIAN	0:		4	
49028	WENDLING QUARRIE	SINC	FULTON	SW	25	T085	R02E	DWU	31	4		2
						-	Date			4		1 - 2
A49030	BELLEVUE S&G CO		SPRINGBROOK		15	T085	R04E			4	4	
A49032	WENDLING QUARRIE		OTTER CREEK-GLAHN	CT	21	T086	R02E					
A49034	WENDLING QUARRIE	SINC	KILBURG	NW	21	T085	R05E					1.
A49040	WENDLING QUARRIE	SINC	JOINERVILLE-HAMANN	SE	20	T084	R02E			4		1 - 3
A49042	WENDLING QUARRIE	SINC	PETERSON		24	T084	R06E			4	4	1 - 2
A49044	WENDLING QUARRIE		FRANK	NW	14	T087	R04E					1
A49046	WENDLING QUARRIE		ROWAN	NE	25	T086	R03E					
A49048	PRESTON READY MIX		DRURY	CT	32	T085	R06E					
A49050	RIVER CITY STONE IN		MARSHALL	NW	01	T084	R06E					
A49052	WENDLING QUARRIE		STILLMUNKES		10	T085	R05E					
A49054	DUANE KUNDE	0 110	KUNDE	E2	33	T084	R05E					
A49058	WENDLING QUARRIE	SINC	61 ROAD CUT	N2	31	T084	R03E	2.67	3i	4	4	1
A49060	BELLEVUE S&G CO	5 110	ST DONATUS		18	T087	R04E			1		
A49062	PRESTON READY MIX	Y	JOHNSON		31	T084	R04E					
A49064	BELLEVUE S&G CO	A	VEACH		01	T085	R02E					
A49066	BELLEVUE S&G CO		MOREHEAD	NW	13	T085	R01E					
449000	BELLEVUE SAG CU		SAND & GRAVEL	1400	15	1000	NUTL					
		CINC		NE	36	T087	R04E			4	4	
A49504	WENDLING QUARRIE	SINC	KNIPELMEYER	NE	20	1007	NU4E	2.64	X		4	
			RELLEVILE	53	01	T086	R04E	2.64	3iB	3	3 3	
A49506	BELLEVUE S&G CO		BELLEVUE	E2	UI	1080	R04E				5	
		0.010	MACHOKETA	NE	10	TOOL	DOOF	2.68	×		1	
A49510	WENDLING QUARRIE	SINC	MAQUOKETA	NE	13	T084	R02E	2.00			4 4	
		-				TOOL	DATE	2.65	X			
A49516	WENDLING QUARRIE	SINC	TURNER	NE	07	T084	R07E	2.63	3iB		3 3	
				and a	-			2.65	X			
A49520	WENDLING QUARRIE		BALDWIN	SW	28	T084	R01E	2.66	X			1
A49522	CENTURY READY MIX	Х	EWING	NW	02	T084	R01E	DWU	X			
49524	BELLEVUE S&G CO		GRIEBEL	SE	25	T087	R04E	DWU	3B	4	4	
								2.67	Х			
A49526	BELLEVUE S&G CO		BELLEVUE FARM	SE	25	T087	R04E	DWU	3i			
								DWU	Х			
A49528	AGGREGATE MATER	IALS CO	STEVENS	NW	02	T084	R01E	2.65	Х			
49530	PRESTON READY MIX		PETERSEN	SW	18	T084	R07E	DWU	3iB	4	4 4	
								DWU	Х			
A49532	WEBER STONE CO IN	VC	IRON HILL	NE	16	T085	R02E	2.65	X			
A49534	PRESTON READY MIX		MARBURGER	SE	13	T084	R07E	DWU	Х			

			RECENTLY ACTIVE AGGREGATE SOURCES						DU		FRI			1
CODE	OPERATOR		SOURCE NAME	LOC	ATION	J		SSD SpGr		FA	A	В	BEDS	
50	JASPER	DIST 1	CRUSHED STONE											
A50002	MARTIN MARIETT	A	SULLY MINE	SE	16	T079	R17W	2.54	3i		4	4	36 - 41 10 - 19	
			SAND & GRAVEL											
A50502	MARTIN MARIETT	A	COLFAX	NE	01	T079	R21W	2.66 2.67	2	x	3	3		
A50504 MARTIN MARIETTA	A	REASNOR	NE	10	T078	R19W	2.07			4	4			
								2.66	1	X				
51	JEFFERSON	DIST 5	CRUSHED STONE											1
A51006	WINN CORP		JEFFERSON	NE	09	T071	R10W		-					
52	JOHNSON	DIST 6	CRUSHED STONE											1
A52002	WENDLING QUAR		FOUR CO	NW	04	T081	R08W					Х		
A52004	RIVER PRODUCT	SCO	CONKLIN	NW	33	TO80	R06W	2.66	3iB		4	4	2 - 10	~
								DWU	3i		5	5 5	23 - 24	+
								-			4	4	6 - 10	0
											4	4	21	1
A52006	RIVER PRODUCT	SCO	KLEIN	NW	02	T079	R07W	2.66	3iB		4	4	2 - 10	-
								DWU	3i		5	5	23 - 24	
											5 4	5 4	2 - 5	
											4	4	21	-
A52008	RIVER PRODUCT	'S CO	ERNST	SW	20	TO80	R05W	1000				Х		
-			SAND & GRAVEL		1.1	_			-			_		_
52502	S&G MATERIALS	INC	SHOWERS	NE	27	T079	R06W	2.05		v	4	4		
A52506	S&G MATERIALS	INC	BUTLER	SW	33	T079	R06W	2.65 DWU	-	X X				
A52508	S&G MATERIALS		WILLIAMS	NŴ	34	T079	R06W	DWU		x				

NOTE 1: 1.25 INCH MAXIMUM TOP SIZE

Matls. IM T203

			RECENTLY ACT	BULK	DUR	ł	FR	ICT						
CODE	OPERATOR		SOURCE NAME		LOCATION			SSD SpGr	PCC CA FA		HMA		BEDS	
53	JONES D	DIST 6	CRUSHED STONE	-	-	-	-		1					
A53002	BARD CONCRETE CC)	FARMERS-BEHRENDS		NE	14	T086	R03W	2.64	3i		4	4	1 - 5
A53004	WENDLING QUARRIE	S INC	MONTICELLO		NE	24	T086	R04W	2.66	3i		4	4	1
A53006	WENDLING QUARRIE	S INC	ANAMOSA		SE	13	T084	R04W	DWU	3i				1 - 5
												4	4	1 - 6
A53010	WENDLING QUARRIE	S INC	BALLOU-OLIN		NE	24	T083	R03W	DWU	3iB				3
									DWU	3				2 - 3
									1.1.1			4	4	1 - 3
A53012	WENDLING QUARRIE		WYOMING			33	T084	R01W	2.69	3iB		4	4	1 - 20
A53014	WEBER STONE CO IN		JACOBS-SCOTCH GROVE		SW	07	T085	R02W	1.0				5	
A53016	WEBER STONE CO IN		STONE CITY		1.0	5,6	T084	R04W	2.45	3i		4	4	2B - 3
A53018	RIVER CITY STONE IN		FINN		NE	06	T085	R01W	DWU	31		4	4	2 - 5
A53020	WENDLING QUARRIE		CANTON		NE	24	T085	R01W					Х	
453024	RIVER CITY STONE IN		SULLIVAN		NW	14	T086	R03W	DWU	3i				1 - 5
453026	RIVER CITY STONE IN	IC	ANAMOSA		SW	15	T084	R04W						
			SAND & GRAVEL		-		-		-	-	-		-	
A53502	WENDLING QUARRIES	SINC	MONTICELLO		SE	07	T086	R03W	0.00	100		4	4	
						~~	TOOL	DANK	2.66		X			
A53506	RIVER CITY STONE IN	IC	FINN		N2	06	T085	R01W	0.00			4	4	
			ANAMOCA VEDNON		CIAL	10	TOOL	DOMM	2.65		X			
A53508	WENDLING QUARRIES	SINC	ANAMOSA-VERNON		SW	13	T084	R04W	2.00		~	4	4	
100010			KNAPP		CE	27	TODA	DOOM	2.66		X			
A53510	WENDLING QUARRIES	SINC	KNAPP		SE	27	T084	R03W	2.05		~	4	4	
A53514	WENDLING QUARRIES	C INC	FLEMING		NE	12	T083	R03W	2.65		X	4	4	
435314	WEINDLING QUARRIE.	SINC	TELMING		INC	12	1005	RUSW	2.66		x	4	4	1
453522	WEBER STONE CO IN	C	WEBER	SE	SW	05	T084	R04W	2.66		x			
453526	BARD CONCRETE CO		STEPHENS	JL	NW	34	T086	R03W	2.00		^	4	4	
133320	DAND CONCRETE CO		STEFFICIO		1444	54	1000	RUSW	2.66		x	4	4	
A53528	WEBER STONE CO IN	C	ANAMOSA		NE	14	T084	R04W	2.65		x			
A53530	RIVER CITY STONE IN		ANAMOSA-WOOD'S		CT	15	T084	R04W	2.66		x			
-				_	-					-	-		_	
54		IST 5	CRUSHED STONE						0.04	-	-			
454002	DOUDS STONE INC		KESWICK		NW	21	T077	R12W	2.61	2		4	4	13 - 15
	DOUDO OTONE INO		01115		~	-	TOTA	Dealer	0.00			4	4	13 - 18
454004	DOUDS STONE INC		OLLIE		SW	01	T074	R11W	2.66	3		4	4	13 - 18
									2.57	3				27 - 29
												4	4	13 - 19
												4	4	27 - 30
454008	DOUDS STONE INC		HARPER		SE	11	T076	D1114/				٨	0	31 - 33
134000	DOUDS STONE INC		UDAT EN		JL		10/0	KIIW				4	4	15 - 24 32 - 37
												4	4	38 - 40
E4010	DOUDS STONE INC		LYLE		NW	13	T074	R13W	DWU	3		4	4	40
A TA / I I I I I I	DOODS STONE INC		LILL		INVV	13	10/4	N13W	DWO	1		4	Λ	36 - 38
\$54010														
134010			SAND & GRAVEL									4	4	50 - 50

NOTE 1: 1.25 INCH MAXIMUM TOP SIZE

		RECENTLY ACT	BULK SSD			FRICT HMA						
CODE	OPERATOR	SOURCE NAME	LOCA	ATION	J		SpGr	CA F	Ā	А	В	BEDS
55	KOSSUTH DIST 2	SAND & GRAVEL						1				
A55506	KOSSUTH COUNTY	WHITTEMORE	NW	16	TO95	R30W		-		4	4	
A55508	KOSSUTH COUNTY	IRVINGTON	NW	36	T095	R29W				4	4	1.1.1.1
A55518	REDING S&G	REDING		02	T094	R29W						
A55536	HANSEN CONST CO	BREESE	NE	15	T098	R30W	1 - 7					
A55548	MARTIN MARIETTA	BORMANN SAND	NW	39	T094	R29W			-			
56	LEE DIST 5	CRUSHED STONE										
A56002	CESSFORD CONST CO	HAWKEYE	NE	10	TO68	R06W					5	1 - 21
							1.1.1	1		4	4	22 - 27
A56004	CESSFORD CONST CO	FRANKLIN	NE	25	T068	R06W	2.49	2	1.54		-	12
			0.5		-	Dealth		100.00		4	4	12 - 14
A56006	CESSFORD CONST CO	ARGYLE	SE	18	T066	R06W	1.1			4	4	1 - 17
									1		5	4 - 12
A56008	CESSFORD CONST CO	DONNELLSON	SE	05	T067	R06W				4	4	13 - 17 10 - 15
A56012	CESSFORD CONST CO	VINCENNES	NW	19	T066	R06W				4	4	10- 15
A30012	CESSI OND CONST CO	SAND & GRAVEL		15	1000	110000						
A56504	CESSFORD CONST CO	VINCENNES	SE	32	T066	R06W				4	4	
1.00001			01	54	. 500		2.67		x	-		-
A56506	BROCKMAN SAND CO	FORT MADISON	SW	11	TO67	R05W				4	4	
							2.67		X			
A56508	SHIPLEY CONTRACTING CORP	LEE COUNTY S&G	SE	11	TO67	R05W	DWU		X			

NOTE 1: AASHTO 57 GRADATION MAXIMUM

Matls. IM T203

		RECENTLY ACTIV	BULK	DUR	FR	RICT	1				
CODE	OPERATOR	SOURCE NAME LOCATION						PCC CA FA	HN A		BEDS
57	LINN DIST 6	CRUSHED STONE	-				1	1			
A57002	WENDLING QUARRIES INC	BETENBENDER-COGGON	SW	03	T086	R06W	DWU	3i			8 - 9
A57004	WENDLING QUARRIES INC	PLOWER	SE	36	TO86	R06W	DWU 2.62	2 3			8 - 10 9 - 11
		DODING	NE	-	TOOL	DOTIN	0.57	01	4	4	1 - 10
A57006 A57008	WENDLING QUARRIES INC WENDLING QUARRIES INC	ROBINS BOWSER-SPRINGVILLE	NE SW	21 29	TO84 TO84	R07W R05W	2.57 DWU	3i 3i	4	4	6 - 7
A37008	WENDLING QUARRIES INC	BOWSER-SPRINGVILLE	200	29	1004	RUSW	DWU	3	4	4	6 - 7
A57010	WENDLING QUARRIES INC	TROY MILLS	SE	09	T086	R07W	0.00	5	X	X	0
A57012	WENDLING QUARRIES INC	MORGAN CREEK	SE	22	T083	R08W			X	X	
A57014	WENDLING QUARRIES INC	SWEETING	NW	18	TO85	R08W				4	
A57016	WENDLING QUARRIES INC	ALICE	NW	08	TO85	R07W	1.0			4	1.1.1
A57018	MARTIN MARIETTA	CEDAR RAPIDS	NE	15	T082	R06W	2.64	3i			2 - 9
									4	4	2 - 14
A57020	WENDLING QUARRIES INC	LISBON	NW	24	T082	R05W	DWU	3iB	4	4	1
A57022	CRAWFORD QUARRY CO	LEE CRAWFORD	NW	23	T083	R08W	2.55	3i	4	4	8
A57026	NIEMANN CONST CO	COOK	NW	10	T086	R07W			1.5		
A57028	WENDLING QUARRIES INC	BEVERLY	NW	07	T082	R07W	DWU	3i	4	4	6 - 7
A57030	BRUENING ROCK PROD INC	HENNESSEY	NE	01	T082	R07W	DWU	3i	4	4	4 - 5
A57502	WENDLING QUARRIES INC	SAND & GRAVEL SWEETING	NE	18	T085	R08W	-		4	4	
A37302	WENDLING QUARRIES INC	SWEETING	INC	10	1005	RUOVV	2.64	X	4	4	
A57506	WENDLING QUARRIES INC	CEDAR RAPIDS	NE	27	T084	R08W	2.04		4	4	
107000	WEItBEING GOMMIES ING	OLDINITION IDD		21	1001	110011	2.65	X		-	
A57508	WENDLING QUARRIES INC	EAST MARION	NE	36	T084	R06W			3	3	
							2.65	X			
A57516	MARTIN MARIETTA	CEDAR RAPIDS SAND	SW	35	T083	R07W	2.65	X			
A57520	WENDLING QUARRIES INC	IVANHOE	NW	29	T082	R05W			4	4	
							2.66	X			
A57522	WENDLING QUARRIES INC	CENTRAL CITY	NE	10	T085	R06W			4	4	
						-	2.65	X			
A57524	WENDLING QUARRIES INC	COGGON	NW	11	T086	R06W	0.05	V .	4	4	
AF7500	WENDLING OUADDIES ING	TROVINUES	00	00	TOOC	DOTIN	2.65	X			
A57526 A57528	WENDLING QUARRIES INC	TROY MILLS AGGREGATES INC	SE SW	09 26	TO86 TO84	R07W R08W	2.65 DWU	2B X	3	3	
A37328	AGGREGATES INC	AGGREGATES INC	200	20	1004	RUOW	2.65	X	3	3	
A57530	WENDLING QUARRIES INC	HESS	SW	04	T082	ROGW	DWU	x			
A57532	CROELL READY MIX	PALO	NE	21	T084		DWU	x			
A57534	MARTIN MARIETTA	LINN COUNTY SAND	NE	05	T082	R06W	DWU	X			
58	LOUISA DIST 5	CRUSHED STONE	_	-							
A58002	RIVER PRODUCTS CO	COLUMBUS JUNCTION	NW	03	T074	R05W	2.55	3			16 - 19
TOODOL				00			2.00		4	4	15 - 19
									4	4	19 - 21
		SAND & GRAVEL	-	_			-				1
A58504	RIVER PRODUCTS CO	FREDONIA A INLAND	SW	17	T075	R04W			4	4	
		PUMPING					2.66	X			
		FREDONIA B RIVER	SW	17	T075	R04W			4	4	
		PUMPING					2.66	Х			

NOTE 1: 1.25 INCH MAXIMUM TOP SIZE NOTE 2: AASHTO 57 GRADATION MAXIMUM

			RECENTLY ACTIVE /				ES	BULK SSD	DU PC	С	FR HM	A		
CODE	OPERATOR		SOURCE NAME	LOCA	TION	1	_	SpGr	CA	FA	A	В	BEDS	E
60	LYON DI	IST 3	SAND & GRAVEL											Т
A60502	PETTENGILL CONC & C	GRAVEL	ROCK RAPIDS #1	NW	33	T100	R45W	2.69	2		3	3		T
								2.67		X				
A60504	PETTENGILL CONC & C	GRAVEL	ROCK RAPIDS #2	NE	09	TO99	R45W	10			3	3	0.0	1
A60506	PETTENGILL CONC & C	GRAVEL	ROCK VALLEY		17	T100	R45W				4	4	1	
A60508	DIETER PIT		DIETER	SE	24	T100	R49W				_ 4	4		
A60510	HALLETT MATERIALS	CO	OLSON	NW	21	T099	R48W				4	4		
A60512	JOE'S READY MIX INC		LITTLE ROCK	NW	03	T099	R43W	DWU	2		4	4		1
								2.66		X				
A60514	MARTIN MARIETTA		DOON		21	TO98	R45W				3	3		
A60516	MARTIN MARIETTA		OPEN	SW	24	T098	R46W				3	3		
A60518	ROCK VALLEY GRAVE	LCO	OPEN	NW	17	T099	R48W				4	4		
A60520	HOGAN		WINTER	SE	18	T099	R43W				4	4		
A60522	HYMANS CONST CO		OPEN		17	TO98	R44W				4	4		
A60524	MARTIN MARIETTA		OPEN		29	TO98	R45W				4	4		
A60528	HYMANS CONST CO		RUDD		20	T100	R45W				4	4		
A60534	DUININCK BROS		EGEBO		16	TO99	R48W				4	4		
A60536	ROHLIN CONST CO		VAN ENGEN	SW	35	TO98	R46W							
A60540	SOUTHERN MN CONS	T CO INC		SE	04	TO99	R43W							
A60542	KRUSE PAVING		EBEN	NW	17	T099	R43W							
A60544		FRS INC	ORVE	NE	24	T100	R49W							
A60546	ROHLIN CONST CO		VANDERBRINK	NW	07	T098	R45W							
61	MADISON D	IST 4	CRUSHED STONE											
A61002	SCHILDBERG CONST	CO INC	EARLY CHAPEL-DAGGETT	SW	03	T076	R29W				5	5		5
												5	1	2
												4		4E
A61006	SCHILDBERG CONST	COINC	92 QUARRY	SW	05	T075	R29W				5	5	1	5
A61010	MARTIN MARIETTA		EARLHAM	N2	09	T077	R28W					5	2	25E
A61012	MARTIN MARIETTA		WINTERSET NORTH	SE	27	T076	R27W					5	2	25
A61013	SCHILDBERG CONST	COINC	WINTERSET WEST	SW	28	T076	R27W					5	2	256
A61016	PERU QUARRY		PERU	NE	27	T075	R27W							
A61018	MARTIN MARIETTA		PAMMEL		08	T075	R28W				5	5	1	5
A61024	MARTIN MARIETTA		PENN-DIXIE	SW	32	T076	R27W					5	2	25
A61026	MARTIN MARIETTA		MASON	SW	16	T077	R28W					4	2	20
												5		25
A61028	GRIMES ASPHALT & P	PAVING	GRIMES ASPHALT & PAV	SE	04	T074	R27W					5		25
A61032	MARTIN MARIETTA		THRAILKILL	NE	08	T077	R28W					4		20
												5	2	25
A61034	BIG STONES QUARRY	/ INC	CLANTON CREEK	NW	10	T074	R27W							
101001	SCHILDBERG CONST	CO INC	MONARCH CEMENT OF IOWA	NE	08	T077	R28W	1			1		25B-25	5E
A61036 62		DIST 5	CRUSHED STONE				The state of the s	-	-		-		-	_
A61036 62	MAHASKA D MARTIN MARIETTA	DIST 5	GIVEN #2	SE	14	T074	R16W		1					
A61036 62 A62008		DIST 5		SE SW	1	-	R16W	2.67		X				

		RECENTLY A	CTIVE AC				ES	BULK SSD	DUF		HN		
CODE	OPERATOR	SOURCE NAME		LOC	ATIO	N		SpGr	CA	FA	A	В	BEDS
63	MARION DIST 5	CRUSHED STONE											
A63002	MARTIN MARIETTA	DURHAM MINE		NE	08	T075	R18W	DWU 2.59	3i 2		4 4 4	4 4 4	10 ⁻ 88 - 95 95 - 96
A63010	BRUENING ROCK PROD INC	S&S SAND & GRAVEL		SE	25	T075	R20W				4	4	33 - 30
A63502	PELLA CONST CO LTD	BEAN PROPERTY		NE	02	T075	R18W	2.67		x	4	4	
A63512	MARTIN MARIETTA	NEW HARVEY		NW	12	T075	R18W	2.67		X			
64	MARSHALL DIST 1	CRUSHED STONE											
A64002	MARTIN MARIETTA	FERGUSON		SW	05	T082	R17W	2.65 2.66 DWU 2.66 DWU	3i 3 2 2 2		4 4 4 4 4	4 4 4 4 4 4	10 - 21 10 - 17 8 - 17 8 - 21 2 - 17 1 - 18
A64004	CESSFORD CONST CO	LE GRAND		SW	36	T084	R17W	2.58	3i		5 4	5 4	1 - 7 8 - 27
A64502	MARTIN MARIETTA	SAND & GRAVEL MARSHALLTOWN		SW	29	T084	R17W	2.66	2	-	4	4	
A04302	WARTIN WARLETTA	WARSHALLTOWN		300	29	1004	KI/W	2.65	4	X	4	4	
A64506	KNIFE RIVER	BEACH		NW	09	T085	R20W		-			Х	r
65	MILLS DIST 4	CRUSHED STONE	-					1.000	-				
A65006	SCHILDBERG CONST CO INC	MALVERN	NW	SE	31	T072	R41W	-				Х	
66	MITCHELL DIST 2	CRUSHED STONE											
A66002	FALK CONST CO	DUENOW		SE	08	ТО99	R17W	2.77	3iB 3		4	4	5 13 1 - 5 7 - 13
A66006	FALK CONST CO	WILDE		NE	07	TO98	R18W					5	
A66014 A66016	FALK CONST CO FALK CONST CO	STAFF LESCH		NE SW	17 12	TO97 TO97	R17W R17W	DWU	3i 3i				3 6 - 7
400010	FALK CONST CO			300	12	1097	KITW	DWO	51		5 4	5 4	1 - 8 9 - 14
A66018	FALK CONST CO	DYNES		SW	30	TO99	R15W						
A66020 A66022	FALK CONST CO FALK CONST CO	ASPEL WAGNER		NE NW	03 29	TO99 TO98	R15W R16W		x		Х	х	
A66024	FALK CONST CO	GRUNDEL			07	TO98	R18W				10		
A66026	R D SMITH ENTERPRISE	KOSTER		NE	35	TO99	R18W						
A66502	FALK CONST CO	SAND & GRAVEL OSAGE-SCHMIDT		NW	01	TO97	R17W		1	-	4	4	
								2.63		x			
A66504	FALK CONST CO	ST ANSGAR-BLAZEK		SW	36	T099	R18W	-			3	3	
A66510 A66512	FALK CONST CO FALK CONST CO	NEWBURG KLAAHSEN		NW SW	26 36	TO99 TO99	R18W R18W	2.66	1	xI	3	3	
A66514	FALK CONST CO	LOVIK	CE	SW		TO97	R17W	2.65		X			

NOTE 1: BOTTOM 5.0' ONLY OF BED 95

		RECENTLY ACTIVE	AGGREG	ATE	SOURC	ES	BULK	DUR		FRI		
CODE	OPERATOR	SOURCE NAME	LOC	ATION	N		SSD SpGr	PCC CA		HM A		BEDS
67	MONONA DIST 3	SAND & GRAVEL										
A67502	HALLETT MATERIALS CO	RODNEY		02	T085	R44W	DWU DWU	2	x	3	3	
A67506 A67508	HARGRAVE MIDWEST PAVING CO	HARGRAVE ONAWA	NE SW	31 09	T085 T082	R46W R45W	Divo		^	4 4	4 4	_
68 A68004	MONROE DIST 5 DOUDS STONE INC	CRUSHED STONE EDDYVILLE SOUTH	SW	02	T073	R16W			-			
69	MONTGOMERY DIST 4	CRUSHED STONE						1				
A69002 A69006	SCHILDBERG CONST CO INC NATURAL MATERIALS	STENNETT RED OAK SAND & GRAVEL	NE NW	27 12	T073 T072	R38W R39W					4	16 - 17 9
A69504	WESTERN ENGINEERING	ELLIOT		13	T073	R38W				4	4	
70	MUSCATINE DIST 5	CRUSHED STONE										
A70002	WENDLING QUARRIES INC	MOSCOW	NW	08	T078	R02W	2.66 2.67	3i 3iB		5 4 5	5 4 5 5	11 - 17 21A- 24 8 - 17 1 - 9
A70006 A70008	TUBE CITY IMS CORPORATION HARSCO CORP/HECKETT DIV	MONTPELIER	SE SE	02 11	T078 T077	R02W R01E				2 2	2 2	1-9
A70504	WENDLING QUARRIES INC	SAND & GRAVEL ATALISSA-MCKILLIP	NW	20	T078	R02W		-	-	4	4	
A70506 70508 A70510	ACME FUEL AND MATERIALS HAHN S&G NORTHERN GRAVEL CO	ACME HAHN NORTHERN	SE SE	22 16 15	TO76 TO76 TO76	R02W R02W R02W	2.66 2.65		X X			
71	O'BRIEN DIST 3	SAND & GRAVEL					0					
A71508 A71510 A71512 A71514 A71516 A71518 A71520 A71522 A71526 A71528 A71528 A71530 A71532 A71534	MARTIN MARIETTA MARTIN MARIETTA MARTIN MARIETTA MARTIN MARIETTA MARTIN MARIETTA MARTIN MARIETTA MARTIN MARIETTA FABER & SON CONST CO MARTIN MARIETTA O'BRIEN COUNTY ROHLIN CONST CO KNIFE RIVER HALLETT MATERIALS CO	SHELDON OPEN SANBORN PAULLINA OPEN OPEN PRIMGHAR SHELDON OPEN COUNTY ROHLIN DOUMA SHELDON/KLEINWALTERINK	SW SE SW SE SE SE NW SE SE NW	16 29 04 23 01 17 04 19 20 27 14 05 16	TO97 TO97 TO96 TO95 TO94 TO95 TO95 TO97 TO97 TO95 TO97 TO96 TO97	R42W R42W R41W R41W R39W R39W R42W R42W R42W R42W R42W R42W R42W				4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4	

27

		RECENTLY AC	TIVE A	GGRE	GATE	SOURC	ES	BULK SSD	DL		FR HN	ICT MA		(
CODE	OPERATOR	SOURCE NAME		LOC	ATIO	N		SpGr		FA	А	В	BEDS	
72	OSCEOLA DIST 3	SAND & GRAVEL		_	-	-		1	T		_			
A72504	NORTHWEST R/M CONC INC	OCHEYEDAN S	E 15	SW	14	T099	R40W	2.71	2		3	3		1
								2.68		X				
A72506	HALLETT MATERIALS CO	ASHTON		SW	28	TO98	R42W	2.69	2		3	3		
170500	MARTIN MARIETTA	THOMAS		NIM	20	TODO	DAOM	2.69		X				
A72508 A72514	MARTIN MARIETTA	OPEN		NW NW	36 31	TO99 T100	R40W R40W				4	4		
472518	FABER & SON CONST CO	VASS		14.00	19	T100	R40W				4	4		
472520	NORTHWEST R/M CONC INC	OCHEYEDAN NORTH		NE	23	TO99	R42W			- 1	4	4		
472520	HIGMAN SAND & GRAVEL	KAPPES		NE	11	TO99	R40W	DWU	2		4	4		
112322	HIGWAN SAND & GRAVEL	NALL 23		INL		1050	R42VV	DWU	14	x				
472524	KNIFE RIVER	BOERHAVE		SE	21	TO98	R42W	DWU		x				
72526	NORTHWEST R/M CONC INC	OCHEYEDAN SOUTH		JL	19	TO99	R39W	000		~				
72528	KNIFE RIVER	DIRKS		SW	36	TO99	R40W							
72530	NORTHWEST R/M CONC INC	BOYD		NW	36	TO99	R40W	2.65	2					
								2.66	-	X				
72532	HALLETT MATERIALS CO	OCHEYEDAN		NW	14	TO99	R40W							
3	PAGE DIST 4	CRUSHED STONE		-	-				-			-		-
73004	SCHILDBERG CONST CO INC	SHAMBAUGH		SW	20	TO67	R36W		-			4		-
		SAND & GRAVEL							1 -					
73508	HALLETT MATERIALS CO	SHENANDOAH-CONNELL II		NE	07	TO69	R39W	DWU	2					
								2.63		X				
4	PALO ALTO DIST 3	SAND & GRAVEL												ī
74502	HALLETT MATERIALS CO	EMMETSBURG S&G			36	TO96	R33W	2.71	2		3	3		
								2.64		X				1
74504	MARTIN MARIETTA	DORWEILLER		SW	05	TO94	R31W				3	3		1
74505		WEAT DEND				-	DOMM	2.67		X			1.00	
74506	MARTIN MARIETTA	WEST BEND		NW	08	T094	R31W				3	3	10	
74508	MARTIN MARIETTA	OPEN		NW	10	T097	R33W	0.00			4	4		
74509	HOFFERT S&G	EMMETSBURG		NW	22	TO96	R33W	2.69	2	~	4	4	8	
74512	ROHLIN CONST CO INC	KAY		SW	20	TO96	R31W	2.66		X		- 19		
_			_	500	20	1030	NJ IV		-	-	_		-	
75502	PLYMOUTH DIST 3 HIGMAN SAND & GRAVEL	SAND & GRAVEL		NW	01	TO92	R49W	2.70	2	-	3	3		-
175502	HIGWAN SAND & GRAVEL	ARRON		INVV	01	1092	R49VV	2.70	14	x	3	3		
75503	EVERIST INC	AKRON		NE	01	T092	R49W	2.69	2	^	3	3		
13303	EVERISTING	ARRON		INC	UI	1032	14344	2.67	12	x	2	2		
75506	MARTIN MARIETTA	REMSEN		SE	03	TO92	R44W	2.07			4	4		
75508	MARTIN MARIETTA	ASPEN		NE	11	T092	R49W				3	3		
75510	MARTIN MARIETTA	KINGSLEY		NE	35	T090	R44W	17			4	4		
75512	HYMANS CONST CO	KINGSLEY		NE	13	TO90	R44W				4	4		
75514	WALKERS EXCAVATING CO	OYENS			05	TO92	R44W				3	3		
75516	HALLETT MATERIALS CO	BRUNSVILLE			03	TO92	R46W				4	4		
75518	HALLETT MATERIALS CO	HINTON		NW	16	TO90	R46W	DWU	3		3	3		
75520	HALLETT MATERIALS CO	MERRILL			02	TO91	R46W		1	1	4	4		
75522	ROHLIN CONST CO INC	THOMS			26	TO92	R46W							
75524	L&M SAND & GRAVEL INC	G DIRKSEN #2			31	TO93	R44W	2.65		Х				
13324					0.5		DAMAL							
75526	L&M SAND & GRAVEL INC	FRITZ DIRKSEN			05	T092	R44W	DWU		X X				

)		RECENTLY	ACTIVE A				ES	BULK SSD	DU PC	С	FRI HM	Α	
CODE	OPERATOR	SOURCE NAME		LOC	ATION	N		SpGr	CA	FA	Α	В	BEDS
76 476002	POCAHONTAS DIST 3 MARTIN MARIETTA	CRUSHED STONE GILMORE CITY		NE	36	T092	R31W	2.64	3iB		5	5	1A - 3 1B - 3
476004	MARTIN MARIETTA	MOORE		SW	25	TO92	R31W	2.65	3iB		4 5 4 4 4 5	4 5 4 4 5	1A - 3 3 1B - 3 4 - 10 4 - 12
		SAND & GRAVEL	-										
A76506 A76508 A76510 A76512 A76514	MARTIN MARIETTA MARTIN MARIETTA MARTIN MARIETTA MARTIN MARIETTA BLACKTOP SERVICES	EGLE OPEN ZEAMAN LIZARD CREEK MILLER		NE NE SE	02 07 13 13 12	TO90 TO91 TO92 TO90 TO93	R31W R33W R31W R31W R31W	DWU		x	4 4 4 4	4 4 4 4	
77	POLK DIST 1	SAND & GRAVEL			_								
A77502	MARTIN MARIETTA	JOHNSTON		NW	17	T079	R24W	DWU 2.67	2	x	3	3	
477504	HALLETT MATERIALS CO	DENNY-JOHNSTON			08	T079	R24W	2.70 2.67	2	x	3	3	(
A77508 A77514 A77520	HALLETT MATERIALS CO HALLETT MATERIALS CO MARTIN MARIETTA	EDM #1-WHITE WEST DES MOINES ARMY POST ROAD		SE SE SW	18 29 29	TO78 TO78 TO78	R23W R25W R25W	2.65	2		3	3	
A77522	HALLETT MATERIALS CO	EDM #2-VANDALIA	NE 07	NW	08	T078	R23W	2.66 2.69 2.65	2	X	3	3	
77526	HALLETT MATERIALS CO	ARMY POST EAST		SE	29	T078	R25W	2.66	2	X	3	3	-
477528	HALLETT MATERIALS	PLEASANT HILL			08	T078	R23W	2.65	2	X	3	3	
477530	HALLETT MATERIALS CO	NORTH DES MOINES		NE	16	T079	R24W	2.66	2	X			
A77532 A77534	LOUNSBURY S&G MARTIN MARIETTA	WEST DES MOINES SAYLORVILLE SAND			30 09	TO78 TO79	R25W R24W	2.66 2.66		x x			
78	POTTAWATTAMIE DIST 4	CRUSHED STONE											
A78002	SCHILDBERG CONST CO INC	CRESCENT			35	TO76	R44W				4 4	4 4 5 4	25B-25 25C-25 25A-25 25A-25 26A-26
A78006	SCHILDBERG CONST CO INC	MACEDONIA-K&S SAND & GRAVEL		NE	28	T074	R40W					4	27A-27
A78504	WESTERN ENGRG CO INC	OAKLAND		SW	23	T075	R40W	2.65	3	Y	4	4	
A78506	SCHILDBERG CONST CO INC	CRESCENT		NE	34	T076	R44W	2.65		X	4	4	
79 A79002	POWESHIEK DIST 1 MARTIN MARIETTA	CRUSHED STONE MALCOM MINE		SE	04	T080	R15W	2.60	2		4	4	10 - 13
80 A80002	RINGGOLD DIST 4 SCHILDBERG CONST CO INC	CRUSHED STONE WATTERSON		SE	19	T067	R29W		-			5	7

Matls. IM T203

CODE	OPERATOR	RECENTLY AC	CTIVE A		GATE		ES	BULK SSD SpGr	DUI PCC CA		HN	ICT IA B	BEDS
81	SAC DIST 3	SAND & GRAVEL			-				T		-	-	
A81502	HALLETT MATERIALS CO	SACTON-LAKEVIEW		S2	08	T086	R36W	2.72	3		3	3	
A81504	HALLETT MATERIALS CO	AUBURN		NW	02	T086	R35W	2.67 2.68 2.64	2	x x	4	4	
A81506	HALLETT MATERIALS CO	SAC CITY		NW	36	T088	R36W	DWU		x	4	4	
A81508 A81514	LAKE VIEW CONCRETE PROD TIEFENTHALER INC	LAKEVIEW CARNARVON S&G		SE NE	05 16	TO86 TO86	R36W R36W	2.68 2.66	2	x	4 3	4 3	
A81520	KNIFE RIVER	UREN		SE	11	T087	R36W	2.67		x	3	3	
A81522 A81524 A81526	HALLETT MATERIALS CO KNIFE RIVER MARTIN MARIETTA	ULMER NO NAME BETTIN		SW SE	28 04 19	TO87 TO87 TO87	R35W R37W R36W				4 4 4	4 4 4	
A81528 A81530	HALLETT MATERIALS CO	WALL LAKE		NW SE	18 29	T086 T087	R36W R35W	2.70 2.67 DWU	3	x			
A81530 A81532	HIGMAN SAND & GRAVEL	EARLY-THORPE		SE	29	TO87 TO89	R35W R37W	DWU 2.66	2	x x	4	4	
A81534 A81536 A81540	MARTIN MARIETTA TIEFENTHALER INC TIEFENTHALER INC	SAC COUNTY S&G DAIKER COLBURN	SE	SE NE	22 12 13	TO89 TO86 TO87	R37W R35W R35W	2.68 DWU		X X			
32	SCOTT DIST 6	CRUSHED STONE										-	
\$82002	RIVERSTONE GROUP INC	MCCAUSLAND (MC 39)		W2	17	TO80	R04E	DWU DWU	3i 3		4 4	4	17 - 19 1 - 16
482004 482006	RIVERSTONE GROUP INC RIVERSTONE GROUP INC	NEW LIBERTY (MC 41) LECLAIRE (MC 38)		NE NW	33 35	TO80 TO79	R01E R05E	DWU 2.71 DWU DWU	3iB 3i 3i 3		4	4	1 - 2 14 - 27 28 - 29 2 - 13
482008	LINWOOD MINING & MINERALS	LINWOOD MINE		SW	13	T077	R02E	2.67 2.69 DWU DWU	3i 3i 3i 3		4 5 4 5 4	4 5 5 4 5 4	1 - 28 20 - 25 27 - 30E 33 - 41 19 24 - 25
		SAND & GRAVEL											
82502	RIVERSTONE GROUP INC	MCCAUSLAND (MC 43)		SW	17	T080	R05E	2.66		x	4	4	
3	SHELBY DIST 4	SAND & GRAVEL											
83506	HALLETT MATERIALS CO	HARLAN-REINIG		NW	30	TO79	R38W	2.65 2.65	3	x			
83508	NATURAL MATERIALS	JACKSONVILLE			12	T079	R37W	2.05		^			

* TOP 32' OF BED 19 NOTE 1: 1.25-INCH MAXIMUM TOP SIZE

CODE	OPERATOR	RECENTLY AC	TIVE AC	LOC			ES	BULK SSD SpGr	DUF		FRI HM		BEDS
JUDE				LUCI	110	v		Shoi	CA	TA	A	D	DEDS
34	SIOUX DIST 3	SAND & GRAVEL							-	-	-	-	1
484502	VALLEY SAND AND GRAVEL	VANZEE		NW	20	T097	R46W	2.69	2		3	3	
								2.67		X			
484504	HYMANS CONST CO	VANDERESCH		SE	20	TO96	R47W	DWU	2		3	3	
484506	HALLETT MATERIALS CO	HUDSON-OSTERCAMP		SE	07	TO96	R47W	1.1			3	3	
								2.69		X			
484508	JOE'S READY MIX INC	SIOUX CENTER		NW	33	TO95	R45W				4	4	
								DWU		X			
484510	EVERIST INC	HAWARDEN-NORTH	S2	NW	22	TO95	R48W	2.70	2		3	3	
								2.67		X			
484511	HYMANS CONST CO	HAWARDEN		NE	01	TO95	R48W	DWU	2		3	3	
\$84514	BOYDEN	COUNTY			35	TO97	R44W				4	4	
484516	MARTIN MARIETTA	NO NAME			25	TO97	R48W					-	
484518	MARTIN MARIETTA	ALTON		SE	15	T094	R44W				4	4	
484520	COUNTY PIT	CHATSWORTH		SW	28	T094	R44W				4	4	
											4	4	
484522	HALLETT MATERIALS CO	HYMAN		SW	31	T096	R47W						
484524	VALLEY SAND AND GRAVEL	GROTH		NW	36	T097	R48W	DIANA			4	4	
484526	BEDROCK GRAVEL CO	JONAS		NE	36	T094	R44W	DWU		X	4	4	
484528	HIGMAN S&G	HIGMAN-CHATSWORTH		W2	28	TO94	R48W	2.69	2		4	4	
								DWU		X			
484530	VALLEY SAND AND GRAVEL	GROENWEG		NW	15	T097	R46W	DWU	2		3	3	
								DWU		X			
484532	KNIFE RIVER	LASSON			32	TO94	R44W	DWU	2				
								DWU		X			
484534	KNIFE RIVER	CLEVERINGA		SE	25	T095	R44W						
5	STORY DIST 1	CRUSHED STONE											
485006	MARTIN MARIETTA	AMES MINE		SW	24	T084	R24W	2.57	3i		5	5	19 - 25
					-						4	4	26,28-39
								2.68	3iB		4	4	47
		SAND & GRAVEL						2.00	0.0				
A85510	HALLETT MATERIALS CO	AMES SOUTH			18	T083	R23W	2.66	2		3	3	
405510	HALLETT WATERIALS CO	AMES SOUTH			10	1005	RZJW	2.65	2	x	2	2	
_			_		-	_		2.00		^	-	_	
86	TAMA DIST 1	CRUSHED STONE										-	
A86002	WENDLING QUARRIES INC	MONTOUR		NW	09	T083	R16W	2.61	3i		5	5	1 - 7
								2.63	3i		4	4	13 - 20
											4	4	8 - 12
		SAND & GRAVEL											0 12
A86502	MANATT'S INC	FLINT		NW	03	T082	R15W				3	3	
HOUJUZ	MANATTSINC	1 LINI		1444	05	1002	RIJW	2.65		X	5	2	
			_	_		-		2.00	-	A		_	
87	TAYLOR DIST 4	CRUSHED STONE				-				_			-
A87004	SCHILDBERG CONST CO INC	102 QUARRY		NE	32	T068	R34W	-				4	
88	UNION DIST 4	CRUSHED STONE											
A88002	SCHILDBERG CONST CO INC	THAYER		NE	35	T072	R28W					5	25A-258
					~ ~			1				~	

NOTE 1: THE CONTENT OF BED 26 SHALL NOT BE MORE THAN 50% IN THE OVERALL PRODUCT.

		RECENTLY ACTIVI	E AGGREO	GATE	SOURC	ES	BULK	DUR	F	RICT	4
CODE	OPERATOR	SOURCE NAME	LOC	ATIO	N		SSD SpGr	PCC CA F		MA B	BEDS
89	VAN BUREN DIST 5	CRUSHED STONE		-			1	1			
A89002 A89006	DOUDS STONE INC CESSFORD CONST CO	DOUDS MINE FARMINGTON-COMANCHE	SE NE	25 05	TO70 TO67	R11W R08W	2.46 2.69 2.52	2 3i 2	4 5 4 5		6 - 13 3 16 - 17 18 - 22 5 - 12
A89008	DOUDS STONE INC	SELMA-GARDNER	NW	16	TO70	R11W	2.69	3	4 5 4 4	4 5 5 4 4	
90	WAPELLO DIST 5	SAND & GRAVEL									
A90504	DOUDS STONE INC	HOFFMAN	SE	10	T072	R14W	2.65	x	4	4	
92	WASHINGTON DIST 5	CRUSHED STONE									
A92002	DOUDS STONE INC	WEST CHESTER	NE	19	T076	R08W	2.64 DWU	32	4	4	5 - 7 14 - 16
A92006	DOUDS STONE INC	COPPOCK	NE	30	T074	R07W			5	5	3 - 4
A92008 A92014	RIVER PRODUCTS CO DOUDS STONE INC	PEPPER-KEOTA FIELD COPPOCK NORTH SAND & GRAVEL	SW SE	31 19	T076 T074	R09W R07W					
A92502	RIVER PRODUCTS CO	RIVERSIDE	NE	10	T077	R06W	2.65	x	4	4	
94	WEBSTER DIST 1	CRUSHED STONE					1000	1			
A94002	MARTIN MARIETTA	FT DODGE MINE	SW	24	T089	R29W	2.65	3iB	4	4	36 - 42
A94006	MARTIN MARIETTA	YATES	SW	01	T089	R29W				5	
A94008	KNIFE RIVER	BUSKE SAND & GRAVEL	SE	36	TO90	R29W			5	5	1 - 11
A94502	NORTHWEST MATERIALS	YATES	SW	01	T089	R29W			4	4	
							2.66	X			
A94522	AUTOMATED S&G	CROFT	NW	14	T089	R29W	2.65	X			
A94526	KNIFE RIVER	BUSKE	SE	36	TO90	R29W	0.07		3	3	
A94528	KNIFE RIVER	CONDON	NW	19	TO90	R30W	2.67	X			

		RECENTLY ACTIV	VE AGGREG	AIE	SOURC	ES	BULK	DUR	FR	ICT			
CODE	OPERATOR	SOURCE NAME	LOC	ATION	N		SSD SpGr	PCC CA FA	HM		BE	DS	
96	WINNESHIEK DIST 2	CRUSHED STONE		-			T	T	1		-	-	-
A96002	ROVERUD CONST INC	KENDALLVILLE	NE	33	T100	R10W	2.68	3B	4	4	3	- 7	7
A96003	WILTGEN CONST CO	BROWN	NILA	00	TOOO	DIOW	1.1			4	1	- 7	7
A96003	ROVERUD CONST INC	HOVEY	NW SW	08 28	TO99 TO98	R10W R08W	2.64	3B	4	4	1	- 4	4
		HOTEL	511	20	1030	ROOW	2.04	30	4	4		- 6	
A96005	BRUENING ROCK PROD INC	MCGEE	NW	19	T099	R10W						F	
A96007	WILTGEN CONST CO	JACKSON	NE	31	TO96	R10W		1					
A96008 A96009	BRUENING ROCK PROD INC ROVERUD CONST INC	WELKEN DRACKLEY	SW	04	T098	R07W	2.71	3i	4	4	4	- 8	3
A96010	ROVERUD CONST INC	ANDERSON	SW	15 22	TO99 T100	R08W R10W	2.65	3B	5	F	1	- 4	4
A96014	NIEMANN CONST CO	FESTINA	SW	26	T096	R09W	2.05	X	5	5 5		- 4	
A96016	BRUENING ROCK PROD INC	SKYLINE A	SE	10	T098	R08W	2.66	3B	5	5			
								1	4	4		- 8	
A96017	BRUENING ROCK PROD INC	SKYLINE B	CT	10	T098	R08W	2.66	3B	5	5		- 3	
A96022	WILTGEN CONST CO	MADISON #2	NE	18	T098	R08W	100		4	4	4	- 1	11
A96025	WILTGEN CONST CO	MADISON #1	NW	17	TO98	R08W				5 4			
A96030	ROVERUD CONST INC	ASK	NE	27	T098	R07W				4			
496032	ROVERUD CONST INC	BRUVOLD	NW	20	T098	R07W				X			
496034	BRUENING ROCK PROD INC	THOMPSON	SE	29	T098	R09W							
496038	ROVERUD CONST INC	NORDNESS	SE	09	T097	R08W				Х			
196040	ROVERUD CONST INC	LOCUST	NE	11	T099	R08W		1		Х			
A96046 A96048	BRUENING ROCK PROD INC NIEMANN CONST CO	SERSLAND-SMORSTAD	SE	09	T097	R07W			X	Х			
A96049	NIEMANN CONST CO	LOVE #1	NW SW	30 30	TO96 TO96	R10W R10W				X	1		10
A96050	BRUENING ROCK PROD INC	BULLERMAN-FESTINA	SE	14	TO96	R09W				X 4			
A96052	ROVERUD CONST INC	ESTREM	SW	04	TO97	R07W	2.63	3B		-		- 6	
									5	5		- 8	
A96054	ROVERUD CONST INC	HORSESHOE BEND	SW	20	TO97	R09W				Х			
A96058 A96060	BRUENING ROCK PROD INC ROVERUD CONST INC	BROGHAMMER	SE	26	T099	R08W				Х			
A96062	ROVERUD CONST INC	BURR OAK HOLT HAUS	SE SE	23 28	T100 TO98	R09W R08W			4	4			
496064	ROVERUD CONST INC	STIKA	NW	15	TO98	R10W	DWU	3i	4	X 4	1	- 4	
496066	BRUENING ROCK PROD INC	KROSHUS	SW	13	T100	R07W	000	51	1	X	1	-	A
496068	BRUENING ROCK PROD INC	HOLKESVIK	SW	01	TO99	R08W							
496070	WILTGEN CONST CO	KUHN	NW	33	TO96	R08W							
496072	BRUENING ROCK PROD INC	MCKENNA NORTH	SW	34	T100	R09W			1				
A96074 A96076	WILTGEN CONST CO ROVERUD CONST INC	OSSIAN	SW	21	T096	R08W							
496078	BRUENING ROCK PROD INC	PRASKA BUSTA	NE NW	19 30	TO97 TO96	R10W R10W							
496082	WILTGEN CONST CO	CROW	SW	17	TO90	R10W							
496084	WILTGEN CONST CO	YOUNG	SE	28	T100	R08W							
496086	BRUENING ROCK PROD INC	BRUVOLD	NE	29	TO98	R07W		1.000					
A96090	BRUENING ROCK PROD INC	MCKENNA SOUTH	SE	28	TO99	R09W	DWU	3iB	5	5	1	- 5	5
A96092	ROVERUD CONST INC	HANSON	SE	26	T100	R08W							
A96094	ROVERUD CONST INC	CAROLAN	SE	27	T099	R09W	1	1	1		1.1		
A96100	WILTGEN CONST CO	YOUNG SAND & GRAVEL	NE	05	T098	R07W							
A96502	CARLSON MATERALS CO	DECORAH	NE	22	T098	R08W			4	4			_
						NUOT	2.63	Х		4			
A96506	ROVERUD CONST INC	FREEPORT	NE	07	T098	R07W	2.65	X					
A96514	ROVERUD CONST INC	ELSBERND	NE	16	T096	R09W			4	4			
A96520	CARLSON MATERIALS CO	SWEDES POTTON	ALE	00	TOOR	Dealth	2.66	X					
A96520	BRUENING ROCK PROD INC	SWEDES BOTTOM WOHLSEORS	NE NW	06 17	T098 T098	R08W R10W	2.63	Х	4	4			
A96526	ROVERUD CONST INC	STIKA	NW	15		R08W							

		RECENTLY ACTIVE	AGGRE	GATE	SOURC	ES	BULK	DUR	FR	RICT	(
CODE	OPERATOR	SOURCE NAME	LOC	CATIO	N		SSD SpGr	PCC CA FA	HN A		BEDS
96	WINNESHIEK DIST 2	SAND & GRAVEL (CONTIN	UED)								
A96530	BRUENING ROCK PROD INC CARLSON MATERIALS CO WILTGEN CONST CO	GJETLEY CARLSON-FREEPORT SCHMITT	NE NE NE	08 13 34	TO98 TO98 TO96	R07W R08W R09W	2.63 DWU	X X	4	4	
	WOODBURY DIST 3	SAND & GRAVEL		-				1			
497502	HALLETT MATERIALS CO	CORRECTIONVILLE-BUCK	NW	13	T089	R42W	DIANU	~	3	3	
A97508	MARTIN MARIETTA	CORRECTIONVILLE #2	NW	35	T089	R42W	DWU	X	3	3	
	HALLETT MATERIALS CO	CORRECTIONVILLE-COCKBURN		11	T088	R42W			3	3	
	PERSINGER S&G	SMITHLAND	NW	25	T086	R44W			3	3	
							DWU	X			
497516	HALLETT MATERIALS CO	ANTHON		05	T087	R43W	2.72	3	3	3	
20052	and an and a submitted of the			-			2.67	Х			
497518	HALLETT MATERIALS CO	SMITHLAND		35	T086	R44W	2.69	3	3	3	
497520	HALLETT MATERIALS CO	CORRECTIONVILLE-BREESIE		01	T088	R43W	2.67	Х	4	4	
	FLEWELLING S&G	FLEWELLING	NW	10	T088	R43W	2.67	x	4	4	
	HALLETT MATERIALS CO	EDWARD	SE	23	T089	R42W	2.07	^			
	NELSTAR	NELSTAR	0L	14	T088	R43W					
A97532	KNIFE RIVER	CREASEY	SE	09	T089	R44W	1.5				
98	WORTH DIST 2	CRUSHED STONE								_	
98002	MARTIN MARIETTA	HARRIS	SW	29	T100	R20W	DWU	3i	4	4	10
							2.73	3B	4	4	6 - 7
							DWU	3	4	4	6 - 11
							DWU	2			2 - 11
98010	BMC AGGREGATES LC	FERTILE	SW	36	TO98	R22W	2.73	3B	4	4	2 - 10 15 - 20
190010	DIVIC AGGREGATES EC	TERNEE	344	50	1030	RZZVV	DWU	2B	4	4	15 - 29
							DWU	2B			22 - 29
										4	5 - 10
									4	4	5 - 20
98014	FALK CONST CO	STEVENS	NW	01	TO98	R20W	2.77	3			8 - 11B
										5	1 - 3
00040		FUEL OF CONTRACTON		40	TOOS	DANK			4	4	4 - 7
98016	ULLAND BROS CONST	EMIL OLSON-BOLTON	SW	10	TO99	R20W	DWU	2			2 - 5A
								X	4	4	3 - 7 1 - 7
98020	FALKSTONE	TRENHAILE	W2 NE	09	TO99	R20W	DWU	2		5	2
00020	THEROTONE	SAND & GRAVEL	TE HE	00	1000	ILLOW.	Uno	-			2
98502	RANDALL TRANSIT MIX	RANDALL TRANSIT MIX	NW	31	T100	R20W	1.	1	4	4	
							2.66	X			
	BMC AGGREGATES LC	FERTILE	NW	36	TO98	R22W			3	3	
98504							0.05	V			
					-	-	2.65	X			
98506	MARTIN MARIETTA FALK CONST CO	KNUTSON COOPER	SW NE	30 12	T100 TO98	R20W R20W	2.05	~	4	4	

.....

Matls. IM T203

CODE	OPERATOR		RECENTLY ACTIVE AG		ATION		S	BULK SSD SpGr	DUR PCC CA FA	FRI HM A	A	BEDS
					_							_
99 499002	WRIGHT BECKER GRAVEL	DIST 2	CRUSHED STONE VOSS SAND & GRAVEL	-	36	TO90	R26W	2.59	3i	4	4	8
A99502	WRIGHT MATERIAL	S	WRIGHT	NW	12	TO93	R24W	2.65 2.63	2 X	3	3	
499510	MARTIN MARIETTA		MEINEKE	NE	14	TO90	R23W	DWU	x	4	4	
A99514 A99516 A99518 A99520	KNIFE RIVER GIESE CONST CO KNIFE RIVER KNIFE RIVER		VOSS MCALPINE REICHTER DENNIS PETERSON	SE NE	36 24 06 15	TO90 TO92 TO92 TO90	R26W R24W R26W R23W					
L	ILLINOIS	2.	CRUSHED STONE									
AILOO2 AILOO6	CESSFORD CONST RIVERSTONE GROU	JP INC	BIGGSVILLE, HENDERSON CO MIDWAY (MC 45), ROCK ISLAND CO		17 16	TO10 TO18	R04W R02E	DWU	3iB	4 4	4	1 - 5
AILOO8 AILO10	RIVERSTONE GROU RIVERSTONE GROU		MCMAHON (MC 08), WHITESIDE CO ALLIED (MC 30), ROCK ISLAND CO	NE	11 14	TO20 TO17	R02E R02W	DWU 2.69 DWU 2.72	3i 3 3 3	4 5 4	4 5 4	18 7 - 13 14 16 - 17
AILO12 AILO14	MATERIAL SERVICE CESSFORD CONST		OTTAWA-LIGHTWEIGHT DALLAS CITY, HENDERSON CO	SW	36	T008	R07W	2.63	3i	4 4	4 4 4	5B 2 - 3
AIL016 AIL018 L020	RIVERSTONE GROU MEDUSA AGGREGA GRAY QUARRIES/M	ATES	CLEVELAND (MC 31), HENRY CO KANKAKEE, KANKAKEE CO HAMILTON, HANCOCK CO	SW NW NE	31 07 31	TO17 TO30 TO05	R02E R14W R08W	DWU DWU 2.65 DWU DWU	3i 2 3 3 2	4 4 4	4	2 - 3 2 4 7
AIL026 AIL028 AIL030 AIL032 AIL034 AIL038 AIL040	REIN SCHULTZ & D. WENDLING QUARR WENDLING QUARR GALENA STONE CO GALENA STONE CO COOTS MATERIALS COOTS MATERIALS	IES INC IES INC) S CO INC	EMERSON TURNBAUGH-MT CARROLL, IL HUIZENGA EUSTICE, JO DAVIESS CO VIRTUE, JO DAVIESS CO ROTH, JO DAVIESS CO MONMOUTH, WARREN CO SAND & GRAVEL	SE SW NW NE W2 SW NW	13 10 21 16 24 35 06	TO21 TO24 TO21 TO27 TO28 TO29 TO11	R06E R04E R03E R02E R02W R02W R02W	DWU	3	4	4 4 4	3 - 7
AIL502	RIVERSTONE GRO	UP INC	ALBANY (MC@511), ROCK IS CO	SW	34	TO20	R02E	2.65	3i	3	3	
AIL504	RIVERSTONE GRO	UP INC	BIG ISLAND (MC 51), ROCK IS CO		16	T017	R02W	2.67	3 ×	3	3	
AIL506 AIL508 AIL510	ILLINOIS-WISCONS RIVERSTONE GROUNELSON S&G CO		SOUTH BELOIT BARSTOW (MC 52), ROCK IS CO WHITESIDE COUNTY-SAND	NW NE SW	34 29	TO16 TO18 TO21	R02E R01E R07E	2.67	X	4 4 4	4 4 4	
AIL514 AIL516	MIDWEST S&G BUILDERS S&G		HENRY PIT, MARSHALL CO CORDOVA, ROCK ISLAND CO	NW SE	03 33	TO13 TO21	R10E R02E	DWU DWU DWU	3i X	4	4	
AIL518 AIL520	WENDLING QUARR RIVERSTONE GRO		THOMPSON CORDOVA (MC14@508),ROCK IS C	SE O S2	02 05	TO23 TO20	R03E R02E	DWU DWU DWU	3iB X			
KS	KANSAS		CRUSHED STONE									
AKS002	BINGHAM S&G		BAXTER SPRINGS, CHEROKEE CO		22	TO29	R23E			3	3	

NOTE 1: AASHTO 57 GRADATION MAXIMUM

35

		RECENTLY ACTIVE AG	GRE	GATE	SOURC	CES	BULK SSD	DU		FR	ICT		(
CODE	OPERATOR	SOURCE NAME	LOC	ATIO	N		SpGr		FA		В	BEDS	
MN	MINNESOTA	CRUSHED STONE	-	-	-	-	T	1	-		-	-	-
AMN002		NEW ALBIN, HOUSTON CO	NW	09	T101	R04W		X	-	Х	Х		1
AMN004		POOL HILL, HOUSTON CO	SW	33	T101	R04W		X		Х	Х		
AMN006	ROVERUD CONST INC	OTTERNESS, FILLMORE CO	E2	11	T101	R08W	2.75	31		Х	X	1 - 2	
	NEW ULM QUARTZITE QUARRY		SW	35	T110	R31W				2	2		
	ROVERUD CONST INC	NEWBURG, FILLMORE CO	NE	08	T101	R08W		X		X	X		
	PEDERSEN BROS	BIG SPRINGS, FILLMORE CO	SW	09	T101	R10W					4	1 - 6	
	ROVERUD CONST INC	EITZEN, HOUSTON CO	SE	20	T101	R05W		X		Х	X		
	ULLAND BROS	GRAND MEADOW, MOWER CO	NE	09	T103	R14W				Х	X		
	ED BUNNE	LEROY, MOWER CO	NE	27	T101	R14W				X	X		
	ROVERUD CONST INC	UNDERPASS	NE	20	T101	R07W							
	MARTIN MARIETTA	YELLOW MEDICINE, YLW MED CO	SW	28	T116	R39W	DWU	3i		2	2	1	
	ORTONVILLE STONE CO	BIG STONE, BIG STONE CO		26	T121	R46W	DWU	31		2	2		
	ROVERUD CONST INC	GENGLER, HOUSTON CO	SW	16	T102	R05W	DWU	3B		4	4	1 - 2	
	SIOUX ROCK PRODUCTS	COTTONWOOD, COTTONWOOD CO		08	T107	R35W	DWU	31		2	2	1.1.1	
	ROVERUD CONST INC	ENGRAV, HOUSTON CO	NE	24	T101	R08W	1.000						
	MILESTONE MATERIALS	GOLDBERG, OLMSTEAD CO	SW	36	T108	R14W				4	4	1	
	MILESTONE MATERIALS	RIFLE HILL, FILLMORE CO	NW	35	T102	R12W						1.1	
	DUININCK BROS INC	SCOTT, ROCK CO	NW	14	T104	R45W							
	MILESTONE MATERIALS	BIESANZ, WINONA CO	SW	19	T107	R07W	DWU	3i				1 - 2	
	MILESTONE MATERIALS	43 QUARRY, WINONA CO	NW	16	T106	R07W	DWU	3i				1 - 2	
		SAND & GRAVEL							_				
MN504	BRUENING ROCK PROD INC	NEW ALBIN, HOUSTON CO	-	09	T101	R04W				4	4		
	HECTOR CONST CO	LUTTCHENS, HOUSTON CO	NW	23	T101	R04W	2.63	2B		4	4		1
							2.68	1	X				
MN508	SOUTHERN MN CONST CO INC	HANSON, JACKSON CO	NE	34	T101	R34W				4	4		
	WILLETT	WILLETT, JACKSON CO	SW	25	T102	R35W				4	4		
MN512	MARTIN MARIETTA	MAUDLIN, NOBLES CO	SE	26	T101	R42W				4	4		
	ULLAND BROS	OLSON, FREEBORN CO	NW	31	T102	R20W	DWU		X				
	CARLSON MATERIALS CO	LANESBORO, FILLMORE CO	SE	07	T104	R10W	DWU		X				
	BUNNE & RANNELL	BUNNE & RANNELL, FILLMORE CO	SE	33	T101	R13W	DWU		X				1
	AGGREGATE INDUSTRIES	PRAIRIE ISLAND #3, GOODHUE CO		23	T114	R15W	DWU	2					
	AGGREGATE INDUSTRIES	HASTING #2, DAKOTA CO		02	T114	R17W							
	NORTHWESTERN AGGR	LAKEVILLE, DAKOTA CO		01	T114	R20W							
	HANCOCK CONCRETE CO	POPE, POPE CO	NW	08	T125	R37W							
	ULLAND BROS	LARSON, FREEBORN CO	-		T102	R21W		1					
	ROVERUD CONST INC	SMERUD, HOUSTON CO	SW		T101	R03W	DWU		X				
	AGGREGATE INDUSTRIES	ELK RIVER, SHERBURNE CO	4.00		T033	R26W	DWU	2					
		Charles which have the second provide the second					DWU		X				
MN538	ULLAND BROS	SHADE, MOWER CO	NW	04	T101	R18W	DWU		X				
	DUININCK BROS INC	SCOTT, ROCK CO		21	T104	R44W							
	RANDY KRAMER EXCAVATING	KIMBALL, STEARNS CO		34	T122	R29W							
				06	T114	R19W	DWU	2	1				11

		RECENTLY ACTIVE AG	GREG	ATE	SOURC	ES	BULK SSD	DUR PCC	FR HN	ICT	
CODE	OPERATOR	SOURCE NAME	LOC	ATION	J		SpGr	CA FA	А	В	BEDS
MO	MISSOURI	CRUSHED STONE									
AMO002	L&W QUARRIES INC	KAHOKA, CLARK CO	NE	17	TO65	R07W	DWU	2	4	4	2A - 3B
							-		4	4	14 - 16
MO004	NORRIS AGGREGATES CO	MERCER, MERCER CO	SE	22	T066	R23W				5	3 - 5
MO006	GREENE LS CO	TURNER PROP, NODAWAY CO	SW	31	T067	R34W	1.0			5	1.1.1
AMO012	NORRIS AGGREGATES CO	DR JEFFERIES, HARRISON CO	NW	03	T066	R26W	1		5	5	25C-25E
MO014	CARTER-WATERS CORP	EXPANDED SHALE, N. MARKET MO					DWU	2	3	3	
AMO018	NORRIS AGGREGATES CO	ROUTE C, DAVIESS CO	NE	30	TO61	R28W	1.00		5	5	2 - 5
AMO022	IRON MT TRAP ROCK CO	IRON MT, ST FRANCOIS CO					1.00		3	3	
AMO024	CENTRAL STONE CO	HUNTINGTON, RALLS CO	NE	17	TO56	R06W	2.68	3i			6 - 9
							2.68	3	4	4	6 - 11
AMO026	MISSOURI PORTABLE STONE	WARRENTON, WARREN CO		15	TO46	R02W			3	3	10.1
AMO027	ST JOE LEAD	PEA RIDGE MINE, WASH. CO						1 1	3	3	
AMO028	PLATTIN MATERIALS CO	PLATTIN, ST GENEVIEVE CO		09	TO39	R07W		1 1			
AMO030	KNOX COUNTY STONE CO	EDINA, KNOX CO	NE	25	T062	R12W			4	4	1 - 9
AMO032	SCHILDBERG CONST CO INC	GRAHAM, NODAWAY CO	NW	36	TO63	R37W			4	4	2 - 3
AMO038	CENTRAL STONE CO	GREENSBURG, SCOTLAND CO		22	T064	R12W					1000
AMO040	S&A CONSTRUCTION	SO ALLENDALE, WORTH CO NW	SW	17	T065	R30W					
AMO042	TRAGER	GALLATIN, DAVIESS CO		13	T058	R28W					
AMO044	CENTRAL STONE CO	NEW LONDON, RALLS CO	NE	24	T056	R05W		1 1			100
AMO046	NORRIS AGGREGATES CO	BETHANY, HARRISON CO	SW	01	TO63	R28W			5	5	
		SAND & GRAVEL	_					1	1.1.1	_	
AMO502	IDEAL SAND CO	WAYLAND, CLARK CO	SW	21	T065	R06W			4	4	
							2.66	X			
AMO504	MEDUSA AGGREGATES	ALBANY, GENTRY CO		27	T063	R31W			4	4	
MO506		GALLITIN, DAVIESS CO	CT	16	TO59	R27W			4	4	
MO510		CLEARMONT, NODAWAY CO	SW	34	T066	R37W	1.000		4	4	
AMO516		MT MORIAH, HARRISON CO		12	TO64	R26W	2.65	Х			
AMO518	CENTRAL STONE CO	TAYLOR, MARION CO	NW	01	TO59	R06W					

		RECENTLY ACTIVE A	GGRE	GATE	SOURC	ES	BULK	DU	P	FD	ICT	N
CODE	OPERATOR	SOURCE NAME	LOC	CATIO	N		SSD SpGr	PC		HN		BEDS E
NE	NEBRASKA	CRUSHED STONE	-									
ANE002	MARTIN MARIETTA	WEEPING WATER MINE, CASS CC)	03	TO10	R11E	2.69 DWU	3iB 3iB		5 5	55	10A- 10B 9-10A&B 1
ANE010	FORT CALHOUN STONE CO	FT CALHOUN, WASHINGTON CO	SE	01	T017	R12E	DWU	2		5 5	5 5 5 5 5 5	9-10A&B 2 25C- 25E 25A- 25C 25F 26A- 26E
ANE012	MARTIN MARIETTA	SPRINGFIELD, SARPY CO SAND & GRAVEL		28	T013	R12E					5	27A- 27B
ANE538	STALP S&G	WEST POINT, CUMING CO	SE	28	T022	R06E	2.64		Х			
		CLASS V AGGREGATE FOR					-	-		-	_	
ANE502	LYMAN-RICHEY S&G	CULLOM #5, CASS CO	SW	31	T013	R12E	2.62	3	v	4	4	
	LYMAN-RICHEY S&G	WATERLOO #40, DOUGLAS CO	SE	19	T015	R10E	2.62	3	X	4	4	
ANE504	LYMAN-RICHEY S&G	WATERLOO #40, DOUGLAS CO	SE	19	1015	RIUE	2.62	3	x	4	4	
ANE514	LYMAN-RICHEY S&G	OREAPOLIS #8, CASS CO	SE	36	T013	R13E	2.62	3	^	4	4	
ruteorr			0L				2.62		X			
ANE526	WESTERN S&G	FREMONT, DODGE CO	NW	36	T017	R08E	2.62	3		4	4	
							2.62	1	X			
ANE530	WESTERN S&G	SOUTH BEND, CASS CO	SW	13	T012	R10E	2.62	3		4	4	
	WESTERNICAS		CW	20	T013	DOOF	2.62	2	X			
ANE532	WESTERN S&G	ABEL SPUR, SAUNDERS CO	SW	30	1013	R09E	2.62	3	x	4	4	
ANE534	MALLARD S&G	SPRINGFIELD #3, SARPY CO		32	T013	R12E	2.62	3	^	4	4	
71112001	Minice into Suco			02	1010	THE	2.62	ľ	X		-	
ANE536	MARTIN MARIETTA	GRETNA, SARPY CO		17	T013	R10E	2.62	3		4	4	
							2.62		X			
ANE542	LYMAN-RICHEY S&G	PLANT #47, DODGE CO	NW	07	T017	R09E	2.62	3		4	4	_
	MALLADD COC	WALLEY DOUGLAS CO	NE	00	TOIL	R10E	2.62	3	X			
ANE544	MALLARD S&G	VALLEY, DOUGLAS CO	NE	06	T015	RIUE	2.62	13	x	4	4	
ANE546	LYMAN-RICHEY S&G	PLANT #77, HALL CO	E SW	27	T011	R09W	2.62		Ŷ			

NOTE 1: IF BED 9 IS INCORPORATED WITH BEDS 10A&B, THE DURABILITY CLASS BECOMES A CLASS 3iB IF THE COARSE AGGREGATE DOES NOT EXCEED 45% OF THE TOTAL AGGREGATE IN THE CONCRETE MIX.

NOTE 2: BED 9 CAN'T BE USED BY ITSELF IN PC CONCRETE. IF BED 9 IS INCORPORATED WITH BEDS 10A&B, THE DURABILITY BECOMES A CLASS 2.

Matls. IM T203

		RECENTLY ACTIVE	AGGREG	AIE :	SOURCE	:5	BULK SSD	DUR PCC	FRI HM		
CODE	OPERATOR	SOURCE NAME	LOCA	TION	1		SpGr	CA FA	Α	В	BEDS
D	SOUTH DAKOTA	CRUSHED STONE		-					-	-	
SD002	EVERIST INC	DELL RAPIDS E. MINNEHAHA CO	SW	10	T104	R49W	2.64	3iB	2	2	-
	CONCRETE MATLS CO	SIOUX FALLS QUARTZITE		13	T101	R50W	2.64	3iB	2	2	1
SD006	MYRL & ROY'S PAVING INC	EAST SIOUX, MINNEHAHA CO	SE	27	T101	R48W	DWU	3i	2	2	1
SD008		SPENCER, HANSON CO		24	T103	R57W			2	2	
SD010	EVERIST INC	DELL RAPIDS W. MINNEHAHA CO) NW	16	T104	R49W	2.64	3iB	2	2	
		SAND & GRAVEL					-				-
SD502	BOYER SAND AND GRAVEL	BOYER, UNION CO		10	TO95	R48W	DWU	2	4	4	
	MIDWEST PAVING CO	HAWARDEN, UNION CO	SW		TO95	R48W			4	4	
SD506	MIDWEST PAVING CO	RICHLAND, UNION CO		20	TO92	R49W		1 1	4	4	
SD508	CONCRETE MATERIALS CO	CANTON, LINCOLN CO	0	17	T089	R48W		1 1	4	4	
00000							2.68	X			
SD510	CONCRETE MATERIALS CO	MINNEHAHA CO		02	T101	R49W					
ASD514		HUDSON, UNION CO		02	TO95	R48W	DWU	2	4	4	
	HIGMAN S&G	VOLIN, CLAY CO		12	TO94	R54W	0.00	-			
	MYRL & ROY'S PAVING INC	MCVAY, LINCOLN CO		17	TO98	R45W					
	BOYER SAND AND GRAVEL	BOYER NORTH, UNION CO		01	TO95	R48W					
ASD522		BROOKINGS, BROOKINGS CO		31	T110	R49W	DWU	X			
	HIGMAN S&G	SPINK, UNION CO	JL		TO93	R50W	DWO	^			
	CONCRETE MATERIALS CO	CORSON, MINNEHAHA CO			24T102	R48W	DWU	2			
VI	WISCONSIN	CRUSHED STONE		-	-					-	-
W1002	BRYAN DRESSER TRAP ROCK								3	3	
AW1004	MARTIN MARIETTA	CNWRR-ROCK SPRINGS							2	2	
W1006	KIELER KOWALSKI	TENNYSON, GRANT CO					DWU	3i	4	4	
W1008	QUALITY STONE INC	WETZEL, CRAWFORD CO	NE	31	TO07	R06W	DWU	3i	4	4	7
AWI010	ED KRAEMER & SONS INC	RICHARDS, GRANT CO	SW		TO01	R02W	DWU	3i	4	4	
AWI012	SCARPELLI MATERIALS	WATERLOO QTZ, DODGE CO	27,28,33		T008	R13E	Divo	51	2	2	
AWI012	RIVER CITY STONE INC	FREESE, GRANT CO	NW		TO01	R02W			2	2	
AW1020	MILESTONE MATERIALS	MEDARY, LA CROSSE CO		27	TO16	R07W			4	4	
AWI020	MILESTONE MATERIALS	KINGS BLUFF, LA CROSSE CO	NE	25	T018	R08W	DWU	3	4	4	1 - 4
10022	WILLSTONE WATERIALS	KINGS BEUTT, EA CROSSE CO	INL	23	1010	RUOVV	DWU	2	4	4	1 - 5
AW1030	HAVERLAND STONE CO	HAVERLAND, GRANT CO	NW	26	TO02	R02W	5.10	-			
WI034	ED KRAEMER & SONS INC	HOUSEHOLDER, RICHLAND CO									
AWI036	MILESTONE MATERIALS	TORK, WOOD CO.									
AW1038	ROCKY MTN ENTERPRISES	ATHEN, MARATHON CO	SE	24	TO30	R04F		3i	2	2	
	MILESTONE MATERIALS	JACKSON COUNTY IRON MINE			TO21			0,	2	2	
AWI042	BOON CONSTRUCTION CO		NW SW		TO23	R03W		1.	2	2	
AWI044	MILESTONE MATERIALS	SLAMA, CRAWFORD CO			18TO07	R06W	DWU	3i	4	4	3 - 8
1001044	WILLSTONE WATERIALS	SAND & GRAVEL			101007	ROOW	DWO	51	4	4	5-0
AWI502	PRAIRIE S&G CO	PRAIRIE DU CHIEN, CRAWFORD	CO	24	TO07	R07W	2.67	3i	4	4	
					TON	Dace	2.67	X			
AWI504	DUBUQUE S&G CO	VOGT FARM, GRANT CO		17	TO90	R03E	2.67 2.67	3i X	3	3	
AW1506	PRAIRIE S&G CO	KRAMER, CRAWFORD CO	NE	12	TO07	R07W	DWU	Х	3	3	
AWI508	PRAIRIE S&G CO	BARN	SE	12	TO07	R07W	2.68	XX			1
				1			2.69	Х			
AWI510	RIVER CITY STONE INC	KRUG, GRANT CO	SW	17	TO01	R02W	DWU	X			
AWI512	MILESTONE MATERIALS	GIBBS	NE	25	TO25	R09W					
AWI514	HOLST EXCAVATING	REDWING #7	NE	33	TO25	R18W					
							DIALL	v			
AWI516	MILESTONE MATERIALS	SCHEER, TREMPEALAU CO		19	T018	R08W	DWU	Х			

OTE 1: BED 1- TOP 16' OF BED 5

			ENT STO					(
CODE	OPERATOR	SOURCE NAME	LOC	ATIO	N		BEDS	REVETMENT CLAS
DISTR	ICT 1							
A40006	MARTIN MARIETTA	GRAND GEORGE	SW	18	T089	R25W	3-5	D
42002	MARTIN MARIETTA	ALDEN	NW	20	T089	R21W	3	A, B, D, E
42004	GEHRKE QUARRIES INC	GIFFORD	NW	04	TO86	R19W	9-10	A, B, E
450002	MARTIN MARIETTA	SULLY	SE	16	T079	R17W	36-41	D, E
							42-47	D, E
464002	MARTIN MARIETTA	FERGUSON	SW	05	T082	R17W	8-17	E D, E
485006	MARTIN MARIETTA	AMES MINE	SW	24	TO84	R24W	1-7 26	D, E E
103000	MARTIN MARIE ITA	AMES MINE	SW	24	1004	112400	30-35	E
							47	A, B, D, E
486002	WENDLING QUARRIES INC	MONTOUR	NW	09	T083	R06W	8-12	D, E
94002	MARTIN MARIETTA	FORT DODGE MINE	SW	24	T089	R29W	36-42	A, B, D, E
DISTR	ICT 2			-				
03002	BRUENING ROCK PROD INC	WEXFORD	NE	36	TO98	R03W	1B-8	A, B, D, E
03028	ROVERUD CONST CO	WELPER-JOHNSON	SW	35	TO99	R04W	FULL FACE	A, B, D, E
03040	BRUENING ROCK PROD INC	DEE	SE	21	TO99	R04W	5A-5D	A, B, D, E
03050	BRUENING ROCK PROD INC	GREEN	NW	16	TO96	R06W	1-3	A, B, D, E
03066	WILTGEN CONST CO	ELSBERN	NW	29	TO97	R06W	2	A, B, D, E
07004	BMC AGGREGATES LC	WATERLOO SOUTH	NW	18	TO87	R12W	1-23	A, B, D, E
							17-23	A, B, D, E
07014	NIEMANN CONST CO	GLORY	NE	36	T087	R11W	1-TOP 5' OF BED 4	D
07018	BMC AGGREGATES LC	RAYMOND-PESKE	SW	01	T088	R12W	1B-5	A, B, D, E
							1B-10	A, B, D, E
		DENNED COFLEME			TORA	DAGU	6-10	A, B, D, E
09004	NIEMANN CONST CO	DENVER-FOELSKE	NE	29	TO91	R13W	BOTTOM 8' BED 12-TOP 9' BED	A, B, D, E
09006	NIEMANN CONST CO	TRIPOLI-PLATTE	SW	36	TO93	R13W	1-4	A, B, D, E
12004	GREENE LIMESTONE CO	LUBBEN	NW	25	TO93	R17W	1-20	D.
12014	NIEMANN CONST CO	OLTMANN	SE	08	TO91	R16W	1-TOP ½ BED 10	D
12020	GREENE LIMESTONE CO	BRUNS #2	NW	21	TO91	R18W	1-5	D
17008	MARTIN MARIETTA	PORTLAND WEST		19	TO96	R19W	1-8	A, B, D, E
17020	MARTIN MARIETTA	MASON CITY	NE	29	TO97	R20W	1-6, 7-9	A, B, D, E
19002	GREENE LIMESTONE CO	TRACY	SE	29	TO94	R11W	9-10	A, B, D, E
22002	KUHLMAN CONST CO	TWIN ROCK-SCHRADER	NW	14	TO94	R05W	3-11	A, B, D, E
22004	ROVERUD CONST CO	BENTE/ELKADER/WATSON	SW	12	TO93	R05W	5-9	A, B, D, E
22008	KUHLMAN CONST CO	ANDEREGG	SE	32	TO92	R02W	2-8	A, B, D, E
22010	KUHLMAN CONST CO	OSTERDOCK	SE	02	TO91	R03W	3-8	A, B, D, E
22012	KUHLMAN CONST CO	SCHMIDT	NE	33	TO91	R01W	2-6	A, B, D, E
22014	ROVERUD CONST CO	BLUME	NE	09	T093	R03W	1-12	A, B, D, E
22016	KUHLMAN CONST CO	GISLESON	NW	06	T095	R04W	1-15	A, B, D, E
22020	KUHLMAN CONST CO	MUELLER	NE	30	T094	R03W	1-8	A, B, D, E
22026	KUHLMAN CONST CO	DOERRING-LUANA	SE	05	TO95	R05W	3-5	A, B, D, E
22030	KUHLMAN CONST CO	EBERHARDT	NW	27	TO93	R05W	1-6	A, B, D, E
22034 22038	KUHLMAN CONST CO KUHLMAN CONST CO	KRUSE FASSBINDER	NW SW	17 09	TO92 TO92	R04W R03W	5-12 2-6	A, B, D, E
22038	KUHLMAN CONST CO	HARTMAN	NW	29	TO92 TO91	R03W	2-0 1-4	A, B, D, E A, B, D, E
22040	ROVERUD CONST CO	MORAREND	CT	35	TO92	R03W	1-4	A, B, D, E A, B, D, E
22042	KUHLMAN CONST CO	JOY SPRINGS-BURRACK	NW	19	TO91	R06W	1-2	A, B, D, E
22040	ROVERUD CONST CO	TUCKER	SW	18	TO91	R05W	1-2	D, D, D, L
22040	ROVERUD CONST CO	JOHNSON	NW	26	TO93	R04W	2-5	A, B, D, E
22062	ROVERUD CONST CO	SNY MAGILL	SE	22	TO94	R03W	6-10	A, B, D, E
22070	ROVERUD CONST CO	BERNHARD/GIARD	NW	35	TO95	R04W	1-3	A, B, D, E
22074	RIVER CITY STONE CO	STRAWBERRY POINT	NE	19	TO91	R06W	1-2	A, B, D, E
22082	NIEMANN CONST CO	REIERSON	NW	20	TO94	R06W	1	D

			APPROVA					
CODE	OPERATOR	SOURCE NAME	LOC	ATION	1		BEDS	REVETMENT CLAS
DISTR	ICT 2 (Continued)							
A22084	CJ MOYNA & SONS	MOYNA		14	T093	R05W	6-9	A, B, D, E
A33002	NIEMANN CONST CO	ELDORADO-JACOBSON	SW	17	T095	R08W	4-6B	A, B, D, E
A33004	NIEMANN CONST CO	HOUG	SW	11	TO94	R08W	3-8	A, B, D, E
A33006	NIEMANN CONST CO	MARYVILLE	S2	24	TO91	R07W	1-2	A, B, D, E
A33010	WILTGEN CONST CO	VOSHELL	NW	21	T093	R07W	1-4	A, B, D, E
A33016	NIEMANN CONST CO	MAYNARD	NE	23	T092	R09W	FULL FACE	D
A33018	NIEMANN CONST CO	FAIRBANK	SW	28	T091	R10W	1-5C	D
A33020	NIEMANN CONST CO	YEAROUS	SW	19	TO93	R08W	5A-5C 1-10C	A, B, D, E D
A33022	NIEMANN CONST CO	MILLER	SW	35	T095	R10W	1-6	D
A33024	NIEMANN CONST CO	WAUCOMA	NW	25	TO95	R10W	1-TOP 4' BED 5	A, B, D, E
A33024	WILTGEN CONST CO	LYNCH	NW	05	T095	R10W	6-8	A, B, D, E
A33030	NIEMANN CONST CO	SCHWAMMAN-ST LUCAS	NE	29	T095	R09W	FULL FACE	A, B, D, E
A33032	BRUENING ROCK PROD INC	LANDIS	SE	12	TO93	R08W	1-5	A, B, D, E
A33032	NIEMANN CONST CO	MCDONOUGH	SE	36	T093	R08W	1-3	D, D, D, C
A33034	NIEMANN CONST CO	GRAHAM-HAWKEYE	SW	06	T094	R09W	1-4	A, B, D, E
A33038	NIEMANN CONST CO	PAPE	NE	28	T094	R09W	1-4	
A32020	NIEWANN CONST CO	FAFE	INC	20	1095	RUOW	3-5	A, B, D, E
121001	CREENE LIMESTONE CO	MAYON	CE	07	TOOA	D1714/		A, B, D, E
A34004	GREENE LIMESTONE CO	MAXON	SE	07	T094	R17W	4C-19	A, B, D, E
A34006	GREENE LIMESTONE CO	JOHLAS	SW	07	T094	R15W	1-7	D
A34008	GREENE LIMESTONE CO	WARNHOLTZ	SW	09	T096	R16W	5-16	D
405000		DOME	NE		TOOT	DOOL	17-18	A, B, D, E
A35002	MARTIN MARIETTA	DOWS	NE	30	T091	R22W	1-12	A, B, D, E
25000		LUDNESS	C.F.	22	T001	DOOM	1-13	D
A35006	MARTIN MARIETTA	HIBNESS	SE	22	T091	R20W	1-12A	A, B, D, E
A41002	BMC AGGREGATES LC	GARNER NORTH	SE	11	T095	R24W	6	A, B, D, E
A41004	BMC AGGREGATES LC	GARNER SOUTH-WIELAND	NW	13	T095	R24W	6	A, B, D, E
A45002	ROVERUD CONST CO	ECKERMAN	NW	33	T100	R11W	7-9	A, B, D, E
A45006	BRUENING ROCK PROD INC	NELSON	NE	33	T099	R13W	8-9	A, B, D, E
A45008	BRUENING ROCK PROD INC	DOTZLER	NE	23	T099	R12W	7-10A	A, B, D, E
A45010	BRUENING ROCK PROD INC	DALEY	NE	11	T098	R11W	9-10	A, B, D, E
A46006	MARTIN MARIETTA	HODGES	NE	32	T092	R28W	4-18	D
A46014	MARTIN MARIETTA	PEDERSEN	SW	28	T092	R28W	4-13, 4-20	D
A66002	FALK CONST CO	DUENOW	SE	08	T099	R17W	6-8	A, B, D, E
A76002	MARTIN MARIETTA	GILMORE CITY	NE	36	T092		1A-3	A, B, D, E
A76004		MOORE	SW			R31W	1A-3	A, B, D, E
A96002	ROVERUD CONST CO	KENDALLVILLE	NE	33	T100	R10W	2-9	A, B, D, E
A96004	ROVERUD CONST CO	HOVEY	SW	28	T098	R08W	2-6	A, B, D, E
A96014	NIEMANN CONST CO	FESTINA	SW	26	TO96	R09W	1-3	A, B, D, E
A96017	BRUENING ROCK PROD INC	SKYLINE B	CT	10	T098	R08W	4-11	A, B, D, E
A96048	NIEMANN CONST CO	LOVE #1	NW	30	T096	R10W	1-10	D
A96049	NIEMANN CONST CO	LOVE #2	NW	30	T096	R10W	1-10	D
A96052	ROVERUD CONST CO	ESTREM	SW	04	TO97	R07W	2-8	A, B, D, E
A96060	ROVERUD CONST CO	BURR OAK	SE	23	T100	R09W	3-5	A, B, D, E
A96064	ROVERUD CONST CO	STIKA	NW	15	TO97	R10W	5A-8B	A, B, D, E
A98002	MARTIN MARIETTA	HARRIS	SW	29	T100	R20W	6-11	A, B, D, E
A98016	ULLAND BROS	EMIL OLSON-BOLTON	SW	10	TO99	R20W	2-5B	A, B, D, E
A98010	BMC AGGREGATES LC	FERTILE	SW	36	TO98	R22W	15-20	A, B, D, E
A99002	KNIFE RIVER	VOSS		36	TO90	R26W	8	A, B, D, E
AMN004	ROVERUD CONST CO	POOL HILL, HOUSTON CO	SW	33	T101	R04W	1-8	A, B, D, E
AMN030		GENGLER, HOUSTON CO	SW	16	T102	R05W	1-4	A, B, D, E
AMN034		ENGRAV, HOUSTON CO	NW	24	T101	R08W	1A-2B	A, B, D, E

		REVETMENT SOURCE APP						
CODE	OPERATOR	SOURCE NAME	LOC	ATIO	N	-	BEDS	REVETMENT CLASS
AMN032 ASD002	MARTIN MARIETTA SIOUX ROCK PRODUCTS EVERIST INC	YELLOW MEDICINE, YELLOW MED COTTONWOOD, COTTONWOOD CO DELL RAPIDS, MINNEHAHA CO	SE	08 10	T107 T104	R39W R35W R49W	GRANITE ENTIRE LEDGE* ENTIRE LEDGE*	A, B, D, E A, B, D, E A, B, D, E
ASD006	CONCRETE MATERIALS CO MYRL & ROY'S PAVING INC SPENCER QUARRIES INC	SIOUX FALLS QUARTZITE EAST SIOUX, MINNEHAHA CO SPENCER, HANSON CO	SE	13 27 24	T101	R50W R48W R57W	ENTIRE LEDGE* ENTIRE LEDGE* ENTIRE LEDGE*	A, B, D, E A, B, D, E A, B, D, E
A01002	SCHILDBERG CONST CO INC	MENLO	SE	17			15A-15C	B, D, E
	COLUL DOFOC CONOT OO ING	LIOWE	CIAL	04	TOTO	004144	250 255	D
A01006 A01008 A02002	SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC	HOWE JEFFERSON MT ETNA	SW NE SW	23	TO76 TO77 TO73	R31W R31W R34W	25B-25E 25B-25E 11-13	D D D
A01006 A01008 A02002 A02004 A15008	SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC	JEFFERSON MT ETNA CORNING ATLANTIC MINE	NE SW	17 23 10 13	T077 T073 T071 T076	R31W R34W R34W R37W	25B-25E 11-13 3-5 25B-25E	D D D D
A01006 A01008 A02002 A02004 A15008 A36002 A43002	SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC SCHLDBERG CONST CO INC	JEFFERSON MT ETNA CORNING	NE SW	17 23 10	TO77 TO73 TO71	R31W R34W R34W	25B-25E 11-13 3-5 25B-25E 18 25B-25E & 3' OF 26	D D D D B, D, E
A01006 A01008 A02002 A02004 A15008 A36002 A43002 A43004 A61002 A61024	SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC SCHLDBERG CONST CO INC WESTERN IA LIMESTONE SCHILDBERG CONST CO INC MARTIN MARIETTA	JEFFERSON MT ETNA CORNING ATLANTIC MINE THURMAN LOGAN LOGAN EARLY CHAPEL-DAGGETT PENN-DIXIE	NE SW NE NW SW	17 23 10 13 23 19 17 10 32	T077 T073 T071 T076 T070 T079 T079 T076 T076	R31W R34W R34W R37W R43W R42W R42W R42W R29W R27W	25B-25E 11-13 3-5 25B-25E 18 25B-25E & 3' OF 26 25B-25E & 3' OF 26 14B TOP 4' OF BED 20A	D D D D B, D, E B, D, E B, D, E B, D, E D, E
A01006 A01008 A02002 A02004 A15008 A36002 A43002 A43004 A61002 A61024 A61026 A69002	SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC SCHLDBERG CONST CO INC WESTERN IA LIMESTONE SCHILDBERG CONST CO INC MARTIN MARIETTA MARTIN MARIETTA SCHILDBERG CONST CO INC	JEFFERSON MT ETNA CORNING ATLANTIC MINE THURMAN LOGAN EARLY CHAPEL-DAGGETT PENN-DIXIE MASON STENNETT	NE SW NE NW SW SW SW NE	17 23 10 13 23 19 17 10 32 16 27	T077 T073 T071 T076 T070 T079 T079 T076 T076 T076 T077 T073	R31W R34W R34W R43W R42W R42W R42W R29W R27W R27W R28W R38W	25B-25E 11-13 3-5 25B-25E 18 25B-25E & 3' OF 26 25B-25E & 3' OF 26 14B TOP 4' OF BED 20A TOP 4' OF BED 20A KERFORD	D D D D B, D, E B, D, E B, D, E D, E D, E D, E D
A01006 A01008 A02002 A02004 A15008 A36002 A43002 A43004 A61002 A61026 A61026 A69002 A73004 A78002 A78006	SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC WESTERN IA LIMESTONE SCHILDBERG CONST CO INC MARTIN MARIETTA MARTIN MARIETTA SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC	JEFFERSON MT ETNA CORNING ATLANTIC MINE THURMAN LOGAN LOGAN EARLY CHAPEL-DAGGETT PENN-DIXIE MASON STENNETT SHAMBAUGH CRESCENT MACEDONIA	NE SW NE NW SW SW SW SW SW NE SW	17 23 10 13 23 19 17 10 32 16 27 20 35 28	T077 T073 T071 T076 T070 T079 T076 T076 T076 T077 T073 T067 T076 T076 T074	R31W R34W R34W R43W R42W R42W R42W R29W R27W R28W R28W R38W R36W R24W R40W	25B-25E 11-13 3-5 25B-25E 18 25B-25E & 3' OF 26 25B-25E & 3' OF 26 14B TOP 4' OF BED 20A TOP 4' OF BED 20A KERFORD 4-6 25B-25E 16	D D D D B, D, E B, D, E B, D, E D, E D, E D, E D D D D D D D
A01006 A01008 A02002 A02004 A15008 A36002 A43002 A43004 A61002 A61024 A61026 A69002 A73004 A78002	SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC WESTERN IA LIMESTONE SCHILDBERG CONST CO INC MARTIN MARIETTA MARTIN MARIETTA SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC	JEFFERSON MT ETNA CORNING ATLANTIC MINE THURMAN LOGAN EARLY CHAPEL-DAGGETT PENN-DIXIE MASON STENNETT SHAMBAUGH CRESCENT	NE SW NE NW SW SW SW SW SW	17 23 10 13 23 19 17 10 32 16 27 20 35 28 32	T077 T073 T071 T076 T070 T079 T076 T076 T076 T077 T073 T067 T076 T076 T074 T068	R31W R34W R34W R43W R42W R42W R29W R27W R27W R28W R38W R36W R24W	25B-25E 11-13 3-5 25B-25E 18 25B-25E & 3' OF 26 25B-25E & 3' OF 26 14B TOP 4' OF BED 20A TOP 4' OF BED 20A KERFORD 4-6 25B-25E 16 1 20B	D D D D B, D, E B, D, E B, D, E D, E D, E D D D D D D D
A01006 A01008 A02002 A02004 A15008 A36002 A43002 A43002 A43004 A61002 A61026 A61026 A69002 A73004 A78002 A78006 A87004 A88002	SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC WESTERN IA LIMESTONE SCHILDBERG CONST CO INC MARTIN MARIETTA MARTIN MARIETTA SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC	JEFFERSON MT ETNA CORNING ATLANTIC MINE THURMAN LOGAN LOGAN EARLY CHAPEL-DAGGETT PENN-DIXIE MASON STENNETT SHAMBAUGH CRESCENT MACEDONIA 102 QUARRY	NE SW NW SW SW SW NE SW NE SW	17 23 10 13 23 19 17 10 32 16 27 20 35 28 32 35	T077 T073 T071 T076 T070 T079 T076 T076 T076 T077 T073 T067 T076 T076 T074 T068	R31W R34W R34W R43W R42W R42W R42W R29W R27W R28W R38W R36W R24W R40W R34W R34W R28W	25B-25E 11-13 3-5 25B-25E 18 25B-25E & 3' OF 26 25B-25E & 3' OF 26 14B TOP 4' OF BED 20A TOP 4' OF BED 20A KERFORD 4-6 25B-25E 16 1	D D D D B, D, E B, D, E B, D, E D, E D, E D, E D D D D D D D

			EVETMENT						
CODE	OPERATOR	SOURCE NAME		LOC	ATION	1		BEDS	REVETMENT CLAS
DISTR				50	20	T070	DADU		
A04004	L&W QUARRIES	MARTIN #3		E2	20	1070	R19W	1-3 6	D D, E
A04016	L&W QUARRIES	LEMLEY EAST #5		СТ	35	T070	R19W	1-3	D, E
101010	Edit Contracto	ELMEET ENOT #0		01	50	1070	IN OW	6	D, E
A04018	L&W QUARRIES	CLARKDALE #8		SE	15	TO69	R18W	1A	D, E
								10	D, E
1 20002		0000014		AILA/	10	T072	DOCIM	4	D
A20002	MARTIN MARIETTA	OSCEOLA		NW	12	T072	R26W	1-10 20A	D D
A26004	DOUDS STONE INC	LEWIS		W2	02	T069	R12W	3-5	D
								6-7	D, E
								3-7	D, E
A26006	DOUDS STONE INC	BROWN	SW	NW	02	TO69	R12W	1	D, E
A27002	MARTIN MARIETTA	GRAND RIVER		NW	22	T070	R27W	17	D
A27008	MARTIN MARIETTA	DECATUR		SE	32	T069	R27W	7	D
A29002	L&W QUARRIES	MEDIAPOLIS		SE	01	T071	R04W	13-14 3-7	D D, E
A23002	Law QUARRIES	WILDIAF OLIS		JL	01	10/1	10400	15-18	D, E
A29008	CESSFORD CONST CO	NELSON		NE	26	T072	R02W	7-14	D, E
								7-20	D, E
								15-20	D
								15-24	D
								21-24	D, E D
A29012	CESSFORD CONST CO	GEODE		NE	01	TO69	R05W	25-27 1-5	D, E
A23012	CE3510RD CONST CO	OLODL		IVL	01	1005	ROJW	9-13	D, E
								REEF	E
A44008	DOUDS STONE INC	NELSON-TWEEDY		SE	36	T071	R06W	9-14	D, E
					1			13-14	D, E
A51006	WINN CORP	JEFFERSON		NE	09	T071	R10W	5-8	D, E
								LOWER 4' OF BED 8 10-12	D, E D, E
A54002	DOUDS STONE INC	KESWICK		NW	21	T077	R12W	13-15	D, E
I TO TOOL	boobo of one mo	RESTRON			21	10//		13-17	D
A54004	DOUDS STONE INC	OLLIE		SW	01	TO74	R11W	9-12	D, E
								9-13	D
								9-18	D, E
								13-18 19-26	D, E D
								27-29	D, E
								30-33	D
A54008	DOUDS STONE INC	HARPER		SE	11	TO76	R11W	13-22	D, E
								32-37	D, E
	DOUDO CTONE INO	110.5				TOT	Danua	38-40	D, E
A54010	DOUDS STONE INC	LYLE		NW	13	T074	R13W	36-38	D, E
A56002	CESSFORD CONST CO	HAWKEYE		NE	10	T068	R06W	40 1-21	D, E D
100002				HL.	10	1000	110044	22-27	D, E
A56008	CESSFORD CONST CO	DONNELLSON		SE	05	TO67	R06W	10-13	D, E
A62008	MARTIN MARIETTA	GIVEN #2		SE	14	T074	R16W	2-6	D
A63002	MARTIN MARIETTA	DURHAM MINE		NE	08	T075	R18W	88-95	D, E
62010	PDUENING DOOK DOOD ING	202		CL.	25	TOT	DOOM	95-96	D, E
A63010 A89002	BRUENING ROCK PROD INC DOUDS STONE INC	S&S DOUDS MINE		SE SE	25 25	T075	R20W R11W	25 5-13	D, E D, E
A89002	DOODS STONE INC	DOODS MINE		SE	20	1070	RIIW	5-13	D, E

		REVETMEI SOURCE A						(
CODE	OPERATOR	SOURCE NAME	LOC	ATIO	N		BEDS	REVETMENT CLAS
DISTR	ICT 5 (Continued)							
489006	CESSFORD CONST CO	FARMINGTON-COMANCHE	NE	05	TO67	R08W	5-12 14-15 16-17 18-23	D D D, E D
89008	DOUDS STONE INC	SELMA-GARDNER	NW	16	TO70	R11W	14-21 14-31 22-31	D, E D, E D, E
492002 492008	DOUDS STONE INC RIVER PRODUCTS CO	WESTCHESTER PEPPER-KEOTA FIELD	NE SW	19 31	TO76 TO76	R08W R09W	15-16 2-20 22-28 29-36	D, E D D D D
	CESSFORD CONST CO GRAY QUARRY INC L&W QUARRIES NORRIS AGGREGATES CO CENTRAL STONE	DALLAS CITY, HENDERSON CO GRAY, HANCOCK CO KAHOKA, CLARK CO JEFFERIES, HARRISON CO HUNTINGTON, RALLS CO	SW NE NE NW NE	36 31 17 03 17	TO08 TO05 TO65 TO66 TO56	R07W R08W R07W R26W R06W	5-6 2 2A-3B 25C-25D 6-11	D, E D, E D, E D, E D, E D, E
06006	WENDLING QUARRIES INC.	GARRISON B	NE	33	TO85	R11W	6-23 6-36	A, B, D, E EROSION
06012	COOTS MATERIALS CO INC	JABENS	SW	07	TO85	R11W	6-11, 12	A, B, D, E
06014	WENDLING QUARRIES INC	VINTON-MILROY	S2	10	T085	R10W	1-7	D
06016	COOTS MATERIALS CO INC	COOTS	SW	36	T086	R11W	2A ON DOWN	D
10002 10004	NIEMANN CONST CO NIEMANN CONST CO	LAMONT-WESTON JESUP-BLOOM	NW SW	14 32	TO90 TO89	R07W R10W	1-6 2-5 2-8	A, B, D, E A, B, E D
10008	BRUENING ROCK PROD INC	OELWEIN-MISHLER	NW	02	TO90	R09W	4-5	A, B, D, E
10010	NIEMANN CONST CO	HAZELTON	NW	11	TO90	R09W	4A-4D	A, B, D, E
10016	NIEMANN CONST CO	OELWEIN #2	SE	03	TO90	R09W	13-17	A, B, D, E
10022	BRUENING ROCK PROD INC	BROOKS	NW	02	T088	R09W	4-5	EROSION
10024 10030	NIEMANN CONST CO NIEMANN CONST CO	RASMUSSEN #2 AURORA-SOUTH	SE NW	21 19	TO88 TO90	R08W R07W	1-6 + QUARRY FLR 1-3	D A, B, D, E
16004	WENDLING QUARRIES INC	LOWDEN-SCHNECKLOTH	NW	04	T081	R01W	1	A, B, D, E
16006 16010	WENDLING QUARRIES INC WENDLING QUARRIES INC	STONEMILL PEDEN	SE NE	14 10	TO80 TO79	R03W R03W	4A-4D 1-3	A, B, D, E D, EROSION
16012	WEBER STONE CO	ONION GROVE	SE	14	TO82	R02W	1-7	A, B, D, E
16014	WENDLING QUARRIES INC	TOWNSEND	NW	02	T079	R02W	2-10	A, B, D, E
16022	WENDLING QUARRIES INC	TRICON	N2	09	T082	R04W	1	A, B, D, E
23002	WENDLING QUARRIES INC	BLOORE-ELWOOD	NW	08	T083	R02E	1-2	A, B, D, E
23004 23006	WENDLING QUARRIES INC WENDLING QUARRIES INC	BEHR SHAFFTON	SW NE	02 11	TO81 TO80	R03E R05E	1-2 16-20 3-14	A, B, D, E A, B, D, E D, EROSION
23010	WENDLING QUARRIES INC	GOOSE LAKE	SW	22	T083	R05E	2-4	E
23012 23016	WENDLING QUARRIES INC WENDLING QUARRIES INC	TEEDS GROVE LYONS	SW NW	03 18	T083 T082	R06E R07E	2-4 UPPER OR LOWER LEDGE	A, B, D, E E
28008	KUHLMAN CONST	EDGEWOOD WEST	CT	04	TO90	R05W	2-7	A, B, D, E
28010	KUHLMAN CONST	TIBBOTT	SW	23	T090	R04W	1-5	A, B, D, E
28014	KUHLMAN CONST	LOGAN	SW	10	T088	R05W	2-8	A, B, D, E
28016	KUHLMAN CONST BARD CONCRETE	WHITE DEUTMEYER	NW SW	02	T088 T088	R04W	1-2	A, B, D, E A, B, D
28020				13	1(100	R03W	1-6	

CODE OPERATOR SOURCE NAME LOCATION BEDS DISTRUCT 6 (CONTINUED) A20038 KUHLMAN CONST EDGEWOOD EAST NW 06 TO90 ROW 18.5 A20038 KUHLMAN CONST EDGEWOOD EAST NW 06 TO90 ROW 1.5 A20052 RIVER CITY STONE CO MANCHESTER SW 09 TO88 ROW 6.8 A20055 RIVER CITY STONE CO THORPE NW 16 TO91 EDGES NORTH A20056 RIVER CITY STONE CO THORPE NW 16 TO88 ROW 4.2 A31008 RIVER CITY STONE CO KLEIN-RICHARDSVILLE SE 2.2 TO89 ROZW 4.12 A31008 RIVER CITY STONE CO BROWN NW 33 TO89 ROZW 1.2 A31010 RIVER CITY STONE CO BROWN NW 33 TO89 ROZW 1.4 A31020 RIVER CITY STONE CO BRUEDY NW 33 TO87 ROZE						ENT STON			
A28038 KUHLMAN CONST EDGEWOOD EAST NW 06 T090 R04W 18-5 A28040 BARD CONCRETE KRAPFL SE 23 T089 R03W 1.5 A28052 RIVER CITY STONE CO MANCHESTER SW 09 T088 R05W 2.6 A28056 RIVER CITY STONE CO THORPE NW 33 T090 R05W 2.4 A31002 RIVER CITY STONE CO ROSSOWMANCHESTER NW 16 T088 R05W 2.4 A31003 RIVER CITY STONE CO RESSOWMANCHESTER NW 33 T090 R01E 2.4B A31004 RIVER CITY STONE CO BROWN NW 33 T090 R01E 2.4B A31010 RIVER CITY STONE CO BROWN NW 33 T089 R02W 1.2 A31014 BARD CONCRETE KURT NZ 35 T087 R02W 1.2 A31020 RIVER CITY STONE CO SCHUITCHE SE 25 T0	REVETMENT CLASS	BEDS			TION	LOCA	SOURCE NAME	OPERATOR	CODE
A28038 KUHLMAN CONST EDGEWOOD EAST NW 06 T090 R04W 18-5 A28040 BARD CONCRETE KRAPFL SE 23 T089 R03W 1.5 A28052 RIVER CITY STONE CO MANCHESTER SW 09 T088 R05W 2.6 A28056 RIVER CITY STONE CO THORPE NW 33 T090 R05W 2.4 A31002 RIVER CITY STONE CO ROSSOWMANCHESTER NW 16 T088 R05W 2.4 A31003 RIVER CITY STONE CO RESSOWMANCHESTER NW 33 T090 R01E 2.4B A31004 RIVER CITY STONE CO BROWN NW 33 T090 R01E 2.4B A31010 RIVER CITY STONE CO BROWN NW 33 T089 R02W 1.2 A31014 BARD CONCRETE KURT NZ 35 T087 R02W 1.2 A31020 RIVER CITY STONE CO SCHUITCHE SE 25 T0								CT 6 (Continued)	DISTR
A28040 BARD CONCRETE KRAPFL SE 23 TOB9 R03W 1-5 A28052 RIVER CITY STONE CO MANCHESTER SW 09 TOB8 ROSW 6-8 A28056 RIVER CITY STONE CO THORPE NW 16 TOB0 ROSW 2-8 A31002 RIVER CITY STONE CO ROSS OW/MANCHESTER NW 16 TOB9 ROSW 2-8 A31006 KURE CITY STONE CO ROSS OV/MANCHESTER NW 33 TOB9 ROJE 2-48 A31008 RIVER CITY STONE CO BROWN NW 33 TOB9 ROZE FULL FACE A31010 RIVER CITY STONE CO BROWN NW 33 TOB9 ROZE FULL FACE A31010 RIVER CITY STONE CO BROWN NW 33 TOB9 ROZE FULL FACE A31020 RIVER CITY STONE CO SCHLITCHE SE 10 ROZW 1-2 A31020 RIVER CITY STONE CO SCHLITCHE SE 25	A, B, D, E E		R04W	TO90	06	NW	EDGEWOOD EAST		
A28052 RIVER CITY STONE CO MANCHESTER SW 09 TOP LEDGES - NORTH A28056 RIVER CITY STONE CO THORPE NW 16 TOB ROSW FULL FACE A28056 RIVER CITY STONE CO ROSSOW/MANCHESTER NW 16 TOB ROSW 2-8 A31002 RIVER CITY STONE CO ROSSOW/MANCHESTER NW 16 TOB ROSW 2-8 A31008 RIVER CITY STONE CO BROWN NW 33 TOB9 RO2W 4-12 A31008 RIVER CITY STONE CO BROWN NW 33 TOB9 RO2E FULL FACE A31010 RIVER CITY STONE CO BROWN NW 33 TOB9 RO2E FULL FACE A31010 RIVER CITY STONE CO BROWN NW 33 TOB9 RO2W 1-2 A31020 RIVER CITY STONE CO SCHLITCHE SE 10 TOB8 RO2W 1-2 A31020 RIVER CITY STONE CO SCHLITCHE NW 21 TOB7 RO2E 2-3	A, B, D E	1-5	R03W	T089	23	SE	KRAPFL	BARD CONCRETE	A28040
A28056 RIVER CITY STONE CO THORPE NW 33 TO98 ROSW FULLFACE A28058 RIVER CITY STONE CO ROSSOW/MANCHESTER NW 16 TO88 ROSW Full A31002 RIVER CITY STONE CO ROSE SPUR 27 TO90 ROZE 1-8 A31003 RIVER CITY STONE CO DYERSVILLE SE 32 TO89 ROZE 1-8 A31004 RIVER CITY STONE CO BROWN NW 33 TO90 ROZE 2-48 A31018 RIVER CITY STONE CO BROWN NW 33 TO89 ROZE FULL FACE A31018 RIVER CITY STONE CO MELOY NW 23 TO87 ROZW 1-2 A31028 RIVER CITY STONE CO SCHLITCHE SE 1 TO89 ROZW 1-4 A31028 RIVER CITY STONE CO THOLE NW 21 TO87 ROZE 1-2 A31036 RIVER CITY STONE CO HERMSEN NE 33 TO90 <td>А, В, Е D</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>MANCHESTER</td> <td>RIVER CITY STONE CO</td> <td>A28052</td>	А, В, Е D						MANCHESTER	RIVER CITY STONE CO	A28052
A28058 RIVER CITY STONE CO ROSS WIMAANCHESTER NW 16 TOB8 ROSW 2.8 A31002 RIVER CITY STONE CO ROSE SPUR 27 TO90 R02E 1-8 A31006 RIVER CITY STONE CO KLEIN-RICHARDSVILLE SE 30 RUER 24-8 A31006 RIVER CITY STONE CO BROWN NW 33 TO89 R02E FULL FACE A31010 RIVER CITY STONE CO BROWN NW 23 TO87 R02W 1-2 A31018 RIVER CITY STONE CO MELOY NW 23 TO87 R02W 1-4 A31020 RIVER CITY STONE CO SCHLITCHE SE 1 TO89 R02W 1-4 A31020 RIVER CITY STONE CO SCHLITCHE NW 2 TO87 R02E 1-2 A31030 RIVER CITY STONE CO HERMSEN NE 3 TO80 R02W 1-2 A31031 RIVER CITY STONE CO HERMSEN NE 3 TO80 R							THOPPE	DIVED CITY STONE CO	1200000
A31002 RIVER CITY STONE CO ROSE SPUR 27 TO90 RO2E 1-8 A31006 KUHLMAN CONST DYERSVILLE SE 32 TO89 RO2W 4-12 A31007 RIVER CITY STONE CO BROWN NW 33 TO90 RO2E FULL FACE A31010 RIVER CITY STONE CO BROWN NW 33 TO89 RO2E FULL FACE A31014 BARD CONCRETE KURT N2 35 TO87 RO2W 1-2 A31020 RIVER CITY STONE CO SCHLITCHE SE 1 TO89 RO2W 1-4 A31028 RIVER CITY STONE CO SCHLITCHE SE 25 TO87 RO2E 1-2 A31028 RIVER CITY STONE CO HENSEN NE 33 TO90 RO2E 1-2 A31036 RIVER CITY STONE CO HENSEN NE 33 TO80 RO2W 1-2 A31036 RIVER CITY STONE CO HENSEN NE 33 TO80 RO2W </td <td>A, B, D, E</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	A, B, D, E								
A31006 KUHUMAN CONST DYERSVILLE SE 32 T089 R02W 4-12 A31008 RIVER CITY STONE CO KLEIN-RICHARDSVILLE NW 33 T090 R01E 2.48 A31010 RIVER CITY STONE CO BROWN NW 33 T089 R02E FULL FACE A31018 BARD CONCRETE KURT N2 35 T087 R02W 1-2 A31018 RIVER CITY STONE CO SCHITCHE SE 11 T088 R02W 1-4 A31020 RIVER CITY STONE CO SCHITCHE SE 1087 R02E 2.3 A31028 RIVER CITY STONE CO HERMSEN NE 33 T090 R02W 1-2 A31036 RIVER CITY STONE CO HERMSEN NE 33 T090 R02W 1-2 A31036 RIVER CITY STONE CO BALTOWN SE 05 T090 R01E 1-7 A31036 RIVER CITY STONE CO PLOESSEL-DYERSVILLE NU 207 T088 </td <td>A, B, D, E</td> <td></td> <td></td> <td></td> <td></td> <td>NVV</td> <td></td> <td></td> <td></td>	A, B, D, E					NVV			
A31008 RIVER CITY STONE CO KLEIN-RICHARDSVILLE NW 33 TO90 R01E 2-48 A31010 RIVER CITY STONE CO BROWN NW 33 TO89 R02E FULL FACE A31018 RIVER CITY STONE CO BROWN NW 33 TO87 R02W 1-2 A31018 RIVER CITY STONE CO MELOY NW 23 TO87 R02W 1-4 A31020 RIVER CITY STONE CO SCHLITCHE SE 11 TO88 R02E 1-2 A31020 RIVER CITY STONE CO SCHLITCHE SE 11 TO87 R02E 1-2 A31028 RIVER CITY STONE CO HEMSEN NE 33 TO87 R02E 1-2 A31036 RIVER CITY STONE CO HEMSEN NE 33 TO88 R01W FULL FACE A31036 RIVER CITY STONE CO BALLTOWN SE 05 TO88 R01W FULL FACE A31050 RIVER CITY STONE CO PLOESSEL-DYERSVILLE N2	A, B, D, E								
A31010 RIVER CITY STONE CO BROWN NW 33 TO89 R02E FULL FACE 3.9 A31014 BARD CONCRETE KURT N2 35 TO87 R02W 1-2 A31018 RIVER CITY STONE CO MELOY NW 23 TO87 R02W 1-2 A31020 RIVER CITY STONE CO SCHLITCHE SE 11 TO89 R02W 1-4 A31020 RIVER CITY STONE CO SCHLITCHE SE 15 TO87 R02E 2-3 A31028 RIVER CITY STONE CO HERMSEN NE 33 TO90 R02W 1-2 A31034 RIVER CITY STONE CO BALTOWN SE 05 T090 R01E 1-7 A31035 RIVER CITY STONE CO BALTOWN SE 07 TO88 R03E 2-9 A31050 RIVER CITY STONE CO PLOESSEL-DYERSVILLE N2 07 TO88 R03E 2-9 A31050 RIVER CITY STONE CO RUBIE SE 06	A, B, D, E								
A31010 RIVER CITY STONE CO BROWN NW 33 TO89 RO2E FULL FACE A31014 BARD CONCRETE KURT N2 35 TO87 RO2W 1-2 A31018 RIVER CITY STONE CO MELOY NW 23 TO87 RO2W 1-2 A31020 RIVER CITY STONE CO SCHLITCHE SE 11 TO89 RO2W 1-4 A31026 WENDLING QUARRIES INC ARNSDORF SE 25 TO87 RO2E 1-2 A31028 RIVER CITY STONE CO HEMSEN NE 33 TO80 RO2E 2-3 A31036 RIVER CITY STONE CO HEMSEN NE 35 TO87 RO2E 2-9 A1040 RIVER CITY STONE CO HEMSEN NE 35 TO88 RO1W FULL FACE A31050 RIVER CITY STONE CO HEMSEN NE 33 TO88 RO1W FULL FACE A31050 RIVER CITY STONE CO PLOESSEL-DYERSVILLE N2 7	A, B, D E		R01E	TO90	33	NW	KLEIN-RICHARDSVILLE	RIVER CITY STONE CO	A31008
A31014 BARD CONCRETE KURT N2 35 T087 R02W 1-2 A31018 RIVER CITY STONE CO MELOY NW 23 T087 R01E FULL FACE A31020 RIVER CITY STONE CO SCHLITCHE SE 11 T089 R02W 1-4 A31028 RIVER CITY STONE CO THOLE W 21 T087 R02E 1-2 A31034 RIVER CITY STONE CO THOLE W 21 T087 R02E 2-3 A31036 RIVER CITY STONE CO HERMSEN NE 33 T030 R02W 1-2 A31036 RIVER CITY STONE CO BALLTOWN SE 05 T090 R01E 1-7 A31050 RIVER CITY STONE CO BALLTOWN SE 07 T088 R03E 2-9 A31050 RIVER CITY STONE CO PLOESSEL-DYERSVILLE N2 07 T088 R02W 2-5 A31050 RIVER CITY STONE CO RUBIE SE 05 T088	D A, B, E	FULL FACE	R02E	T089	33	NW	BROWN	RIVER CITY STONE CO	A31010
A31018 RIVER CITY STONE CO MELOY NW 23 T087 R01E FULL FACE A31020 RIVER CITY STONE CO SCHLITCHE SE 11 T089 R02E 1-2 A31020 RIVER CITY STONE CO ARNSDORF SE 25 T087 R02E 1-2 A31028 RIVER CITY STONE CO HERMSEN NE 33 T090 R02W 1-2 A31034 RIVER CITY STONE CO HERMSEN NE 33 T090 R02W 1-2 A31036 RIVER CITY STONE CO BALLTOWN SE 05 T090 R01E 1-7 A31036 RIVER CITY STONE CO KENNEDY NW 03 R038 R01W FULL FACE 1040 RIVER CITY STONE CO GASSMAN SE 07 T088 R02W 2-9 1043 RIVER CITY STONE CO PLOESSEL-DYERSVILLE N2 07 T088 R03E 5-9 A31050 RIVER CITY STONE CO RUBIE SE 06 T088 R03E 5-9 A31056 RIVER CITY STONE CO <t< td=""><td></td><td></td><td>DOOM</td><td>TOOT</td><td>25</td><td>ND</td><td>KUDT</td><td>DADD CONCDETE</td><td>401014</td></t<>			DOOM	TOOT	25	ND	KUDT	DADD CONCDETE	401014
A31020 RIVER CITY STONE CO SCHLITCHE SE 11 T089 R02W 1-4 A31028 RIVER CITY STONE CO ARNSDORF SE 25 T087 R02E 1-2 A31028 RIVER CITY STONE CO THOLE NW 21 T087 R02E 2-3 A31034 RIVER CITY STONE CO BALLTOWN SE 05 T090 R01E 1-7 A31030 RIVER CITY STONE CO BALLTOWN SE 05 T090 R01E 1-7 A31050 RIVER CITY STONE CO KENNEDY NW 03 T088 R01W FULL FACE A31050 RIVER CITY STONE CO PLOESSEL-DYERSVILLE N2 07 T088 R02W 2-5 A31052 WEBER STONE CO PLOESSEL-DYERSVILLE N2 07 T088 R01W FULL FACE A31056 RIVER CITY STONE CO PLOESSEL-DYERSVILLE N2 T090 R02W 2-5 A31056 RIVER CITY STONE CO HOLY CROSS SW <t< td=""><td>A, B, D, E</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	A, B, D, E								
A31026 WENDLING QUARRIES INC ARNSDORF SE 25 T087 R02E 1-2 A31028 RIVER CITY STONE CO THOLE NW 21 T087 R02E 2-3 A31034 RIVER CITY STONE CO HERMSEN NE 33 T090 R02W 1-2 A31036 RIVER CITY STONE CO BALLTOWN SE 05 T090 R01E 1-7 1040 RIVER CITY STONE CO KENNEDY NW 03 T088 R01W FULL FACE 1044 RIVER CITY STONE CO GASSMAN SE 07 T088 R03E 2-9 -2-10 SE 07 T088 R02W 2-5 3-5 A31050 RIVER CITY STONE CO PLOESSEL-DYERSVILLE N2 07 T088 R03E 5-9 A31056 RIVER CITY STONE CO RUBIE SE 06 T088 R03E 5-9 A31058 RIVER CITY STONE CO RUBIE SE 20 T087 R01W	A, B, D E								A31018
A31028 RIVER CITY STONE CO THOLE NW 21 T087 R02E 2.3 A31034 RIVER CITY STONE CO HERMSEN NE 33 TO90 R02W 1-2 A31036 RIVER CITY STONE CO BALLTOWN SE 05 TO90 R01E 1-7 A31036 RIVER CITY STONE CO BALLTOWN SE 05 TO90 R01E 1-7 A31044 RIVER CITY STONE CO GASSMAN SE 07 TO88 R01W FULL FACE A31050 RIVER CITY STONE CO PLOESSEL-DYERSVILLE N2 07 TO88 R02W 2-5 A31050 RIVER CITY STONE CO PLOESSEL-DYERSVILLE N2 07 TO88 R01W FULL FACE A31050 RIVER CITY STONE CO RUBIE SE 06 T088 R03E 5-9 A31050 RIVER CITY STONE CO HOLY CROSS SW 12 TO90 R02W FULL FACE A31066 RIVER CITY STONE CO HELLEVUE SW 22 TO87 R01W -5 A31066 RIVER CITY	A, B, D, E	1-4					SCHLITCHE	RIVER CITY STONE CO	A31020
A31034 A31034RIVER CITY STONE CO RIVER CITY STONE COHERMSEN BALLTOWN KENNEDY GASSMANNE33 33 3008 3008TO90 ROIE 1-7 7088 3-51-7 7088 2-9 	A, B, D, E	1-2	R02E	T087	25	SE	ARNSDORF	WENDLING QUARRIES INC	A31026
A31034 RIVER CITY STONE CO HERMSEN NE 33 TO90 R02W 1-2 A31036 RIVER CITY STONE CO BALLTOWN SE 05 TO90 R01E 1-7 040 RIVER CITY STONE CO KENNEDY NW 03 T088 R01W FULL FACE 044 RIVER CITY STONE CO GASSMAN SE 07 T088 R02W 2-9 A31050 RIVER CITY STONE CO PLOESSEL-DYERSVILLE N2 07 T088 R02W 2-5 A31050 RIVER CITY STONE CO PLOESSEL-DYERSVILLE N2 07 T088 R02W 2-5 A31056 RIVER CITY STONE CO PLOESSEL-DYERSVILLE N2 07 T088 R03E 5-9 A31056 RIVER CITY STONE CO RUBIE SE 06 R038 5-9 FULL FACE A31050 BARD CONCRETE CASCADE EAST SE 22 T088 R03E 2-9 A31066 RIVER CITY STONE CO WEBER NE 32 T089 R02E 3-9A A31066 RIVER CITY STON	A, B D, E		R02E	T087	21	NW	THOLE	RIVER CITY STONE CO	A31028
A31036 RIVER CITY STONE CO BALLTOWN SE 05 T090 R01E 1-7 1044 RIVER CITY STONE CO KENNEDY NW 03 T088 R01W FULL FACE 1044 RIVER CITY STONE CO GASSMAN SE 07 T088 R02W 2-9 A31050 RIVER CITY STONE CO PLOESSEL-DYERSVILLE N2 07 T088 R02W 2-5 A31050 RIVER CITY STONE CO PLOESSEL-DYERSVILLE N2 07 T088 R01W FULL FACE A31056 RIVER CITY STONE CO RUBIE SE 06 T088 R03E 5-9 A31056 RIVER CITY STONE CO HOLY CROSS SW 12 T090 R02W FULL FACE A31060 BARD CONCRETE CASCADE EAST SE 22 T087 R01W 1-5 A31066 RIVER CITY STONE CO WEBER NE 32 T087 R01W 1-5 A31066 RIVER CITY STONE CO FILLMORE SW	A, B, D, E		R02W	T090	33	NF	HERMSEN	RIVER CITY STONE CO	A31034
1040 1044RIVER CITY STONE CO RIVER CITY STONE COKENNEDY GASSMANNW03T088 	A, B, D, E								
1044RIVER CITY STONE COGASSMANSE07T088R03E2-9 2-10A31050RIVER CITY STONE COPLOESSEL-DYERSVILLEN207T088R02W2-5 3-5A31052WEBER STONE COEPWORTH-KIDDER RUER CITY STONE COSW02T088R01WFULL FACEA31056RIVER CITY STONE CORUBIESE06T088R03E5-9 FULL FACEA31058RIVER CITY STONE COHOLY CROSSSW12T090R02WFULL FACEA31060BARD CONCRETECASCADE EASTSE22T087R01W1-5 2-5A31066RIVER CITY STONE COWEBERNE32T089R02E3-9AA31066RIVER CITY STONE COFILLMORESW26T087R01WFULL FACE 2-4A49002BELLEVUE S & G COBELLEVUESW25T087R04E1-3A49003WENDLING QUARRIES INCIRON HILLSW16T085R02E1-6A49010WENDLING QUARRIES INCFROSTSE16T084R03E1A-1EA49016WENDLING QUARRIES INCPATASKANW23T085R05E1A49020WENDLING QUARRIES INCPRESTON RMSW26T084R05E1-10 7-10A49021PRESTON READY MIX PRESTON READY MIXPRESTON RMSW26T084R05E1-10 7-10A49024WENDLING QUARRIES INCMAQUOKETA EASTSE23 <td>A, B, D, E</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	A, B, D, E								
A31050RIVER CITY STONE COPLOESSEL-DYERSVILLEN207T088R02W2-5A31052WEBER STONE COEPWORTH-KIDDERSW02T088R01WFULL FACEA31056RIVER CITY STONE CORUBIESE06T088R03E5-9A31058RIVER CITY STONE COHOLY CROSSSW12T090R02WFULL FACEA31060BARD CONCRETECASCADE EASTSE22T087R01W1-5A31066RIVER CITY STONE COHOLY CROSSSW12T090R02WFULL FACEA31066RIVER CITY STONE COHOLY CROSSSW26T087R01W1-5A31066RIVER CITY STONE COFILLMORESW26T087R01WFULL FACEA49002BELLEVUE S & G COBELLEVUESW25T087R04E1-3A49003WENDLING QUARRIES INCIRON HILLSW26T084R03E1A-1EA49016WENDLING QUARRIES INCFROSTSE16T084R03E1A-1EA49012WENDLING QUARRIES INCPATASKANW23T085R05E1A49020WENDLING QUARRIES INCPRESTON R/MSW26T084R05E1-10A49021PRESTON READY MIXPRESTON R/MSW26T084R05E1-10A49024WENDLING QUARRIES INCBELLEVUESE23T086R04E1-3A49024WENDLING QUARRIES INC									1 T T T T
A31050RIVER CITY STONE COPLOESSEL-DYERSVILLEN207T088R02W2-5 3-5A31052WEBER STONE COEPWORTH-KIDDER RUBIESW02T088R01WFULL FACE FULL FACEA31056RIVER CITY STONE CORUBIESE06T088R03E5-9 FULL FACEA31058RIVER CITY STONE COHOLY CROSS CASCADE EASTSW12T090R02WFULL FACE FULL FACEA31060BARD CONCRETECASCADE EASTSE22T087R01W1-5 2-5A31066RIVER CITY STONE COWEBER FILLMORENE32T089R02E3-9AA31066RIVER CITY STONE COFILLMORESW26T087R01WFULL FACE 2-5A31064RIVER CITY STONE COFILLMORESW25T087R04E1-3A49002BELLEVUE S & G COBELLEVUESW25T087R04E1-3A49003WENDLING QUARRIES INCANDREWNW21T085R03E1A-1EA49010WENDLING QUARRIES INCANDREWNW21T085R04E7A49011WENDLING QUARRIES INCFROSTSE16T084R03E1A-1EA49020WENDLING QUARRIES INCPATASKANW23T085R05E1A49021PRESTON READY MIXPRESTON R/MSW26T084R05E1-10A49021PRESTON READY MIXPRESTON R/MSW26T084<	A B, D		RUSE	1088	07	SE	GASSIVIAN	RIVER CITY STONE CO	1044
A31052WEBER STONE CO RIVER CITY STONE COEPWORTH-KIDDER RUBIESW02T088 R03ER01WFULL FACE 	E	5-9							
A31052WEBER STONE CO RIVER CITY STONE COEPWORTH-KIDDER RUBIESW SE02T088 06R01W T088 R03EFULL FACE S-9 FULL FACEA31056RIVER CITY STONE CO A31060HOLY CROSS BARD CONCRETESW CASCADE EAST12T090 SER02WFULL FACE SEA31064RIVER CITY STONE CO BARD CONCRETEHOLY CROSS CASCADE EASTSW SE12T089 SER02E3-9A S-9 2-5A31066RIVER CITY STONE CO RIVER CITY STONE COWEBER FILLMORENE SW 2632T087 T087R01WFULL FACE 2-5A49002BELLEVUE S & G CO WENDLING QUARRIES INC WENDLING QUARRIES INCBELLEVUE RON HILLSW 2516T088 T085R02E1-6 R04EA49003WENDLING QUARRIES INC WENDLING QUARRIES INCANDREW FROSTNW SE16T085 T084 R03E1A-1EA49010WENDLING QUARRIES INC WENDLING QUARRIES INCPATASKA PRESTONNW SW 26T084 T084 R03ER04E7A49013WENDLING QUARRIES INC WENDLING QUARRIES INCPRESTON R/M PRESTON READY MIX A49020PRESTON READY MIX MAQUOKETA EASTSW SW 267084 T084 R03ER05E1-10 7-10A49024WENDLING QUARRIES INC MAQUOKETA EASTSW SW 267084 T084 R03E1-8A49024WENDLING QUARRIES INC MAQUOKETA EASTSW SW 207084 T084 R03E1-8A49024WENDLING QUARRIES INC MAQUOKETA EASTSW SW 	A, B, D E		R02W	T088	07	N2	PLOESSEL-DYERSVILLE	RIVER CITY STONE CO	A31050
A31056RIVER CITY STONE CORUBIESE06T088R03E5-9 FULL FACEA31058RIVER CITY STONE COHOLY CROSSSW12T090R02WFULL FACEA31060BARD CONCRETECASCADE EASTSE22T087R01W1-5 2-5A31064RIVER CITY STONE COWEBERNE32T089R02E3-9AA31066RIVER CITY STONE COWEBERSW26T087R01WFULL FACEA49002BELLEVUE S & G COBELLEVUESW25T087R04E1-3A49008WENDLING QUARRIES INCIRON HILLSW16T085R02E1-6A49010WENDLING QUARRIES INCFROSTSE16T084R03E1A-1EA49012WENDLING QUARRIES INCFROSTSE16T084R03E1A-1EA49014WENDLING QUARRIES INCPATASKANW23T085R05E1A49020WENDLING QUARRIES INCPRESTON R/MSW26T084R05E1-10 7-10A49021PRESTON READY MIX 	A, B, D, E		R01W	TOSS	02	SW	FPWORTH-KIDDER	WEBER STONE CO	A31052
A31058 A31060RIVER CITY STONE CO BARD CONCRETEHOLY CROSS CASCADE EASTSW12TO90 TO87R02WFULL FACE FULL FACEA31064RIVER CITY STONE CO RIVER CITY STONE COWEBER FILLMORENE32TO89 TO87R02E3-9AA31066RIVER CITY STONE CO RIVER CITY STONE COWEBER FILLMORENE32TO89 TO87R01WFULL FACE 2-5A49002BELLEVUE S & G CO WENDLING QUARRIES INCBELLEVUE IRON HILLSW25T087 TO85R04E1-3A49008WENDLING QUARRIES INC WENDLING QUARRIES INCIRON HILL FROSTSW25T085 TO85R02E1-6A49010WENDLING QUARRIES INC WENDLING QUARRIES INC WENDLING QUARRIES INC FROSTFROST SE16TO84 TO84 R03ER03E1A-1EA49016WENDLING QUARRIES INC WENDLING QUARRIES INC A49020PRESTON READY MIX WENDLING QUARRIES INC PRESTON READY MIX PRESTON READY MIX A49022PRESTON READY MIX MAQUOKETA EASTPRESTOR R04E SE1-10 7-10A49021 A49022PRESTON READY MIX WENDLING QUARRIES INC A49024PRESTON READY MIX MAQUOKETA EASTSW26T084 R03ER03E1-8A49040 WENDLING QUARRIES INC A49024JOINERVILLE MAQUOKETA EASTSW07T084 R03ER03E1-8A49040 WENDLING QUARRIES INC A49024JOINERVILLE MAQUOKETA EASTSW07T084 R03ER03E1-8A49040 WENDLING QUARRIES INC A49024JOINERVILLE	A, B, E								
A31058RIVER CITY STONE CO BARD CONCRETEHOLY CROSS CASCADE EASTSW12TO90 SER02WFULL FACE 2-5A31064RIVER CITY STONE CO RIVER CITY STONE COWEBER FILLMORENE32T089 26R02E3-9AA31066RIVER CITY STONE CO RIVER CITY STONE COFILLMORESW26T087R01WFULL FACE 2-4A49002BELLEVUE S & G CO WENDLING QUARRIES INCBELLEVUE IRON HILLSW16T085 T085R02E1-6A49010WENDLING QUARRIES INC WENDLING QUARRIES INCIRON HILL FROSTSW21T085 T085R03E1B-5BA49012WENDLING QUARRIES INC WENDLING QUARRIES INCFROST FROSTSE16T084 T084R03E1A-1EA49016WENDLING QUARRIES INC WENDLING QUARRIES INCPATASKA PRESTONSW26T084 T085R05E1A49020WENDLING QUARRIES INC WENDLING QUARRIES INCPRESTON R/M BELLEVUESE23T086 T084R05E1-10 7-10A49021PRESTON READY MIX PRESTON R/MPRESTON R/M BELLEVUESE23T086 T084R03E1-8A49024WENDLING QUARRIES INC PRESTINCDINERVILLE DOINERVILLESE20T084 R03ER03E1-8A49020WENDLING QUARRIES INC PRESTON R/MDINERVILLE SE20T084 R03ER03E1-8A49024WENDLING QUARRIES INC PRESTONJOINERVILLE SE20T084 R03E <t< td=""><td>D, L</td><td></td><td>RUJE</td><td>1000</td><td>00</td><td>JL</td><td>RUDIL</td><td>RIVER CITT STONE CO</td><td>A31030</td></t<>	D, L		RUJE	1000	00	JL	RUDIL	RIVER CITT STONE CO	A31030
A31060BARD CONCRETECASCADE EASTSE22T087R01W1-5 2-5A31064RIVER CITY STONE COWEBERNE32T089R02E3-9AA31066RIVER CITY STONE COFILLMORESW26T087R01WFULL FACE 2-4A49002BELLEVUE S & G COBELLEVUESW25T087R04E1-3A49008WENDLING QUARRIES INCIRON HILLSW16T085R02E1-6A49010WENDLING QUARRIES INCANDREWNW21T085R03E1B-5BA49012WENDLING QUARRIES INCFROSTSE16T084R03E1A-1EA49016WENDLING QUARRIES INCFROSTSE22T085R04E7A49018WENDLING QUARRIES INCPATASKANW23T085R05E1A49020WENDLING QUARRIES INCPRESTONSW26T084R05E1-10A49021PRESTON READY MIXPRESTON R/MSW26T084R05E7-10A49022WENDLING QUARRIES INCBELLEVUESE23T086R04E1B-3A49024WENDLING QUARRIES INCMAQUOKETA EASTSW07T084R03E1-8A49040WENDLING QUARRIES INCJOINERVILLESE20T084R02E1-3A52002WENDLING QUARRIES INCJOINERVILLESE20T084R03E1-8			DOOM	TOOO	12	CIM	HOLV CROSS	DIVED CITY STONE CO	121050
A31064 A31066RIVER CITY STONE CO RIVER CITY STONE COWEBER FILLMORENE SW 2632 TO87R02E R01W3-9A FULL FACE 2-4A49002 A49008BELLEVUE S & G CO WENDLING QUARRIES INC WENDLING QUARRIES INC A49010BELLEVUE IRON HILLSW SW 25TO87 TO87R04E R04E1-3A49010 A49010 WENDLING QUARRIES INC WENDLING QUARRIES INC A49010 WENDLING QUARRIES INC WENDLING QUARRIES INC FROSTIRON HILL FROST FROSTSW SE 16 TO85R02E TO87 R04E1-3A49016 A49016 WENDLING QUARRIES INC WENDLING QUARRIES INC PATASKAFROST PATASKASE SE 22 TO85 TO87 SW 26TO84 TO84 R05ER04E T A1-1EA49020 A49020 WENDLING QUARRIES INC PRESTON READY MIX A49022 WENDLING QUARRIES INC PRESTON READY MIX PRESTON R/M A49024 WENDLING QUARRIES INC WENDLING QUARRIES INC PRESTON RADY MIX PRESTON R/M BELLEVUE SE PRESTON READY MIX PRESTON RADY MIX PRESTON R/M PRESTON R/M SW PA4902 SE SE 23 23 23 24<	A, B, D, E								
A31064 A31066RIVER CITY STONE CO RIVER CITY STONE COWEBER FILLMORENE SW32 26T089 T087R02E R01W3-9A FULL FACE 2-4A49002 A49008BELLEVUE S & G CO WENDLING QUARRIES INCBELLEVUE IRON HILLSW25 26T087 T085R04E1-3A49008 A49010WENDLING QUARRIES INC WENDLING QUARRIES INCIRON HILL ANDREWSW16 1085T085 R02ER02E1-6A49010 A49010WENDLING QUARRIES INC WENDLING QUARRIES INC WENDLING QUARRIES INCFROST FROSTSE SE16 1084T084 R03E1A-1EA49016 A49018WENDLING QUARRIES INC WENDLING QUARRIES INC WENDLING QUARRIES INCPATASKA PRESTONNW SU23 26 20T084 R05E7A49020 A49020WENDLING QUARRIES INC WENDLING QUARRIES INC PRESTON READY MIX PRESTON READY MIX A49022PRESTON R/M BELLEVUESW 26 23 26 26T084 26 26 23 206100 27-10A49024 A49024 WENDLING QUARRIES INC A49024 WENDLING QUARRIES INC A49024 WENDLING QUARRIES INC A49024 WENDLING QUARRIES INC MAQUOKETA EAST A49040 WENDLING QUARRIES INC MAQUOKETA EASTSW 26 20 <td>A, B, D</td> <td></td> <td>RUIW</td> <td>1087</td> <td>22</td> <td>SE</td> <td>CASCADE EAST</td> <td>BARD CONCRETE</td> <td>A31060</td>	A, B, D		RUIW	1087	22	SE	CASCADE EAST	BARD CONCRETE	A31060
A31066RIVER CITY STONE COFILLMORESW26T087R01WFULL FACE 2-4A49002BELLEVUE S & G COBELLEVUESW25T087R04E1-3A49008WENDLING QUARRIES INCIRON HILLSW16T085R02E1-6A49010WENDLING QUARRIES INCANDREWNW21T085R03E1B-5BA49012WENDLING QUARRIES INCFROSTSE16T084R03E1A-1EA49016WENDLING QUARRIES INCFROSTSE22T085R04E7A49018WENDLING QUARRIES INCPATASKANW23T085R05E1A49020WENDLING QUARRIES INCPRESTONSW26T084R05E1-10A49021PRESTON READY MIXPRESTON R/MSW26T084R05E7-10A49022WENDLING QUARRIES INCBELLEVUESE23T086R04E1B-3A49024WENDLING QUARRIES INCMAQUOKETA EASTSW07T084R03E1-8A49040WENDLING QUARRIES INCJOINERVILLESE20T084R02E1-3A52002WENDLING QUARRIES INCFOUR COUNTYNW04T081R08W9-16	E		DOOF	TOOO	20	NE	WEDED	DIVED OITV STONE CO	101001
A49002BELLEVUE S & G COBELLEVUESW25T087R04E1-3A49008WENDLING QUARRIES INCIRON HILLSW16T085R02E1-6A49010WENDLING QUARRIES INCANDREWNW21T085R03E1B-5BA49012WENDLING QUARRIES INCFROSTSE16T084R03E1A-1EA49016WENDLING QUARRIES INCFROSTSE22T085R04E7A49018WENDLING QUARRIES INCPATASKANW23T085R05E1A49020WENDLING QUARRIES INCPRESTONSW26T084R05E1-10A49021PRESTON READY MIXPRESTON R/MSW26T084R05E7-10A49022WENDLING QUARRIES INCBELLEVUESE23T086R04E1B-3A49024WENDLING QUARRIES INCMAQUOKETA EASTSW07T084R03E1-8A49040WENDLING QUARRIES INCJOINERVILLESE20T084R02E1-3A52002WENDLING QUARRIES INCFOUR COUNTYNW04T081R08W9-16	A, B, D, E								
A49002BELLEVUE S & G COBELLEVUESW25T087R04E1-3A49008WENDLING QUARRIES INCIRON HILLSW16T085R02E1-6A49010WENDLING QUARRIES INCANDREWNW21T085R03E1B-5BA49012WENDLING QUARRIES INCFROSTSE16T084R03E1A-1EA49016WENDLING QUARRIES INCFROSTSE22T085R04E7A49018WENDLING QUARRIES INCPATASKANW23T085R05E1A49020WENDLING QUARRIES INCPRESTONSW26T084R05E1-10A49021PRESTON READY MIXPRESTON R/MSW26T084R05E7-10A49022WENDLING QUARRIES INCBELLEVUESE23T086R04E1B-3A49024WENDLING QUARRIES INCMAQUOKETA EASTSW07T084R03E1-8A49040WENDLING QUARRIES INCJOINERVILLESE20T084R02E1-3A52002WENDLING QUARRIES INCFOUR COUNTYNW04T081R08W9-16	A, B, D		ROTW	1081	26	SW	FILLMORE	RIVER CITY STONE CO	A31066
A49008WENDLING QUARRIES INCIRON HILLSW16T085R02E1-6A49010WENDLING QUARRIES INCANDREWNW21T085R03E1B-5BA49012WENDLING QUARRIES INCFROSTSE16T084R03E1A-1EA49016WENDLING QUARRIES INCFROSTSE22T085R04E7A49018WENDLING QUARRIES INCPATASKANW23T085R05E1A49020WENDLING QUARRIES INCPRESTONSW26T084R05E1-10A49021PRESTON READY MIXPRESTON R/MSW26T084R05E7-10A49022WENDLING QUARRIES INCBELLEVUESE23T086R04E1B-3A49024WENDLING QUARRIES INCMAQUOKETA EASTSW07T084R03E1-8A49040WENDLING QUARRIES INCJOINERVILLESE20T084R02E1-3A52002WENDLING QUARRIES INCFOUR COUNTYNW04T081R08W9-16	E		-	-					
A49010WENDLING QUARRIES INCANDREWNW21T085R03E1B-5BA49012WENDLING QUARRIES INCFROSTSE16T084R03E1A-1EA49016WENDLING QUARRIES INCWEISSE22T085R04E7A49018WENDLING QUARRIES INCPATASKANW23T085R05E1A49020WENDLING QUARRIES INCPRESTONSW26T084R05E1-10A49021PRESTON READY MIXPRESTON R/MSW26T084R05E7-10A49022WENDLING QUARRIES INCBELLEVUESE23T086R04E1B-3A49024WENDLING QUARRIES INCMAQUOKETA EASTSW07T084R03E1-8A49040WENDLING QUARRIES INCJOINERVILLESE20T084R02E1-3A52002WENDLING QUARRIES INCFOUR COUNTYNW04T081R08W9-16	A, B, D, E								
A49012WENDLING QUARRIES INCFROSTSE16T084R03E1A-1EA49016WENDLING QUARRIES INCWEISSE22T085R04E7A49018WENDLING QUARRIES INCPATASKANW23T085R05E1A49020WENDLING QUARRIES INCPRESTONSW26T084R05E1-10A49021PRESTON READY MIXPRESTON R/MSW26T084R05E7-10A49022WENDLING QUARRIES INCBELLEVUESE23T086R04E1B-3A49024WENDLING QUARRIES INCMAQUOKETA EASTSW07T084R03E1-8A49040WENDLING QUARRIES INCJOINERVILLESE20T084R02E1-3A52002WENDLING QUARRIES INCFOUR COUNTYNW04T081R08W9-16	A, B, D, E	1-6	R02E		16	SW	IRON HILL	WENDLING QUARRIES INC	A49008
A49012WENDLING QUARRIES INCFROSTSE16T084R03E1A-1EA49016WENDLING QUARRIES INCWEISSE22T085R04E7A49018WENDLING QUARRIES INCPATASKANW23T085R05E1A49020WENDLING QUARRIES INCPRESTONSW26T084R05E1-10A49021PRESTON READY MIXPRESTON R/MSW26T084R05E7-10A49022WENDLING QUARRIES INCBELLEVUESE23T086R04E1B-3A49024WENDLING QUARRIES INCMAQUOKETA EASTSW07T084R03E1-8A49040WENDLING QUARRIES INCJOINERVILLESE20T084R02E1-3A52002WENDLING QUARRIES INCFOUR COUNTYNW04T081R08W9-16	A, B, D, E	1B-5B	R03E	T085	21		ANDREW	WENDLING QUARRIES INC	A49010
A49016WENDLING QUARRIES INCWEISSE22T085R04E7A49018WENDLING QUARRIES INCPATASKANW23T085R05E1A49020WENDLING QUARRIES INCPRESTONSW26T084R05E1-10A49021PRESTON READY MIXPRESTON R/MSW26T084R05E7-10A49022WENDLING QUARRIES INCBELLEVUESE23T086R04E1B-3A49024WENDLING QUARRIES INCMAQUOKETA EASTSW07T084R03E1-8A49040WENDLING QUARRIES INCJOINERVILLESE20T084R02E1-3A52002WENDLING QUARRIES INCFOUR COUNTYNW04T081R08W9-16	A, B, D, E						FROST	WENDLING QUARRIES INC	
A49018 A49020WENDLING QUARRIES INC WENDLING QUARRIES INCPATASKA PRESTONNW23T085R05E1A49021 A49021PRESTON READY MIX WENDLING QUARRIES INCPRESTON R/M BELLEVUESW26T084R05E1-10 7-10A49022 A49024WENDLING QUARRIES INC WENDLING QUARRIES INCPRESTON R/M BELLEVUESE23T086R04E1B-3A49024 A49024WENDLING QUARRIES INC WENDLING QUARRIES INCMAQUOKETA EAST JOINERVILLESW07T084R03E1-8A49040 A52002WENDLING QUARRIES INC WENDLING QUARRIES INCJOINERVILLE FOUR COUNTYSE20T084R02E1-3	A, B, D, E								
A49020WENDLING QUARRIES INCPRESTONSW26T084R05E1-10A49021PRESTON READY MIXPRESTON R/MSW26T084R05E7-10A49022WENDLING QUARRIES INCBELLEVUESE23T086R04E1B-3A49024WENDLING QUARRIES INCMAQUOKETA EASTSW07T084R03E1-8A49040WENDLING QUARRIES INCJOINERVILLESE20T084R02E1-3A52002WENDLING QUARRIES INCFOUR COUNTYNW04T081R08W9-16	A, B, D, E								
A49021PRESTON READY MIXPRESTON R/MSW26T084R05E7-10A49022WENDLING QUARRIES INCBELLEVUESE23T086R04E1B-3A49024WENDLING QUARRIES INCMAQUOKETA EASTSW07T084R03E1-8A49040WENDLING QUARRIES INCJOINERVILLESE20T084R02E1-3A52002WENDLING QUARRIES INCFOUR COUNTYNW04T081R08W9-16	D, E								
A49021PRESTON READY MIXPRESTON R/MSW26T084R05E7-10A49022WENDLING QUARRIES INCBELLEVUESE23T086R04E1B-3A49024WENDLING QUARRIES INCMAQUOKETA EASTSW07T084R03E1-8A49040WENDLING QUARRIES INCJOINERVILLESE20T084R02E1-3A52002WENDLING QUARRIES INCFOUR COUNTYNW04T081R08W9-16			RUJE	1004	20	SW	TRESTON	WEINDLING QUARKIES INC	A49020
A49022WENDLING QUARRIES INCBELLEVUESE23T086R04E1B-3A49024WENDLING QUARRIES INCMAQUOKETA EASTSW07T084R03E1-8A49040WENDLING QUARRIES INCJOINERVILLESE20T084R02E1-3A52002WENDLING QUARRIES INCFOUR COUNTYNW04T081R08W9-16	A, B, D, E		DOCE	TODA	20	CIM	DRESTON D/M	PRESTON READY MIN	A 40004
A49024WENDLING QUARRIES INCMAQUOKETA EASTSW07T084R03E1-8A49040WENDLING QUARRIES INCJOINERVILLESE20T084R02E1-3A52002WENDLING QUARRIES INCFOUR COUNTYNW04T081R08W9-16	A, B, D, E								
A49040WENDLING QUARRIES INCJOINERVILLESE20TO84R02E1-3A52002WENDLING QUARRIES INCFOUR COUNTYNW04TO81R08W9-16	A, B, D, E								
A52002 WENDLING QUARRIES INC FOUR COUNTY NW 04 TO81 R08W 9-16	A, B, D, E								
	A, B, D, E	1-3	R02E	T084	20	SE	JOINERVILLE	WENDLING QUARRIES INC	A49040
	D	9-16	R08W	T081	04	NW	FOUR COUNTY	WENDLING QUARRIES INC	A52002
	A, B, D, E	1-5	R03W	T086	14	NE	FARMERS-BEHRENDS	BARD CONCRETE	A53002
A53004 WENDLING QUARRIES INC MONTICELLO NE 24 TO86 R04W FULL FACE	A, B, D, E								
010 WENDLING QUARRIES INC BALLOU-OLIN NE 24 TO83 R03W FULL FACE	A, B, D, E								
3012 WENDLING QUARRIES INC WYOMING 33 TO84 R01W 1-2C	A, B, D, E					INC			

		REVETMEN SOURCE AP						
CODE	OPERATOR	SOURCE NAME	LOC	ATIO	N		BEDS	REVETMENT CLASS
DISTR A53014 A53016 A53018	ICT 6 (Continued) WEBER STONE CO WEBER STONE CO RIVER CITY STONE CO	JACOBS-SCOTCH GROVE STONE CITY FINN	SW E2 NE	07 06 06	T085 T084 T085	R02W R04W R01W	FULL FACE 1, 3 2-5	A, B, D, E A, B, D, E A, B, E
							FULL FACE 4-5	D E
A53024 A53026	RIVER CITY STONE CO RIVER CITY STONE CO	SULLIVAN ANAMOSA	NW SW	14 15	T086 T084	R03W R04W	FULL FACE	A, B, D, E
453026	WENDLING QUARRIES INC	BETENBENDER-COGGON	SW	03	TO84	R04W	REEF MATERIAL 1-10	A, B, D, E A, B, D, E
457002	WENDLING QUARRIES INC	ROBINS	NE	21	T084	R07W	1-3	А, В, D, E D
457008	WENDLING QUARRIES INC	BOWSER-SPRINGVILLE	SW	29	T084	R05W	1-8	A, B, D, E
457010	WENDLING QUARRIES INC	TROY MILLS	SE	09	T086	R07W	FULL FACE	D, D, D, L
457014	WENDLING QUARRIES INC	SWEETING	NW	18	T085	R08W	1-4	D
457018	MARTIN MARIETTA	CEDAR RAPIDS	NE	15	T082	R06W	2-9	A, B, D, E
457028	WENDLING QUARRIES INC	BEVERLY	NW	07	T082	R07W	6-7 1-7	A, B, E D
457030	BRUENING ROCK PROD INC	HENNESSEY	NE	01	T082	R07W	9-14, 15-16	D
470002	WENDLING QUARRIES INC	MOSCOW	NW	08	TO78	R02W	11-17 21A-24 1-9	D, E A, B, D, E EROSION
482002	RIVERSTONE GROUP INC	MCCAUSLAND	W2	17	TO80	R04E	1-19	A, B, D, E
82004	RIVERSTONE GROUP INC	NEW LIBERTY	NE	33	TO80	R01E	1-2	A, B, D, E
82006	RIVERSTONE GROUP INC	LECLAIRE	NW	35	TO79	R05E	2-32	A, B, D, E
AIL006	RIVERSTONE GROUP INC	MIDWAY (MC 45), ROCK IS CO	SW	16	TO18	R02E	0-160'	A, B, D, E
AIL010	RIVERSTONE GROUP INC	ALLIED (MC 30), ROCK ISLAND CO		14	TO17	R02W	16'-173'	A, B, D, E
AIL016	RIVERSTONE GROUP INC	CLEVELAND (MC 31), HENRY CO	SW	31	TO17	R02E	10'-215'	A, B, D, E

.

Matls. IM T203

	APPROVED PRODU WITH QC PROGR		
PRODUCER	STREET ADDRESS	CITY, STATE, ZIP	PHONE/FAX NUMB
A			
A-LINE CRUSHING SERVICE	808 DEARBORN AVE	WATERLOO, IA 50703	319-232-3889
ACME FUEL & MATERIALS CO	2544 PETTIBONE AVENUE	MUSCATINE, IA 52761	563-263-1105
AGGREGATE INDUSTRIES	2915 WATERS ROAD STE 105	EAGAN, MN 55121	651-686-2302
AGGREGATE MATERIALS CO	1400 E 12 TH STREET	DUBUQUE, IA 52001	563-583-6642
AGGREGATES INC	6101 BLAIRS FERRY ROAD NE	CEDAR RAPIDS, IA 52411	319-395-0050
ANDERSON SAND & GRAVEL CO	2578 270 TH AVENUE	DEWITT, IA 52742	563-659-5506
ARCADIA LIMESTONE CO	19011 CRYSTAL AVENUE	ARCADIA, IA 51430	712-689-2299
B			
BMC AGGREGATES LC	101 BMC DRIVE	ELK RUN HEIGHTS, IA 50707	319-235-6583
			319-235-7065 (FA
BARD CONCRETE CO	2021 325 TH AVENUE	DYERSVILLE, IA 52040	563-875-7145
			563-875-7860 (FA
BEDROCK GRAVEL CO	3527 320 TH STREET	AUBURN, IA 51433	712-688-2418
BELLCO OF NEBRASKA INC	2826 SOUTH AVENUE	COUNCIL BLUFFS, IA 51503	712-322-8501
			712-322-8526 (FA
ELLEVUE SAND & GRAVEL CO	29427 HWY 52	BELLEVUE, IA 52031	563-872-3886
ENTON'S SAND & GRAVEL	815 CENTER STREET	CEDAR FALLS, IA 50613	319-266-2621
			319-266-5926 (FA
IG STONES QUARRY, INC	2487 290 TH STREET	PERU, IA 50222	515-988-4106
A ATEN CORDORATION	1000 DIDOGWAY DI VD		515-440-0944 (FA
LAZEK CORPORATION	1830 RIDGEWAY BLVD	LAWLER, IA 52154	563-238-7150
OGGESS CONST CO	321 NORTH 17 TH COURT	ESTHERVILLE, IA 51334	712-867-4516
SOON CONSTRUCTION CO	N 5399 STATE HWY 73	NEILLSVILLE, WI 54456	710 550 0000
OYER SAND & ROCK INC	4162 BIRCH AVENUE	HAWARDEN, IA 51023	712-552-2308
ROCKMAN SAND CO	2397 263RD AVENUE-POB 312	FORT MADISON, IA 52627	319-372-7138
RUENING ROCK PRODUCTS INC	325 WASHINGTON STREET-POB 127	DECORAH, IA 52101	563-382-2933
/SKYLINE CONSTRUCTION SUILDERS SAND & CEMENT CO	104 WESTERN AVENUE	DAVENPORT, IA 52801	563-382-8375 (FA 563-322-1757
	104 WESTERN AVENUE	DAVENFORT, IA 52001	303-322-1737
C			
C. J. MOYNA & SONS INC	24412 HWY 13	ELKADER, IA 52043	563-245-1442
CARNARVON SAND & GRAVEL	811 N 10 TH ST	DENISON, IA 51442	712-664-2511
EMSTONE PRODUCTS COMPANY	2025 CENTRE POINT BLVD- SUITE 300	MENDOTA SPRINGS, MN 55120-1221	651-688-9292
CENTRAL STONE CO #1	RR 1-POB 236	HANNIBAL, MO 63401-9622	573-735-4525
CESSFORD CONST CO	2320 ZELLER AVENUE	LE GRAND, IA 50142	641-479-2695
ESSEARD CONST CO. SE DIV	2808 OLD LIMOX 61	BUDUNCTON IA 52601	641-479-2003 (FA
CESSFORD CONST CO - SE DIV	3808 OLD HWY 61	BURLINGTON, IA 52601	319-753-2297
COHRS CONSTRUCTION INC	15700 NORTH TRADEWIND DRIVE	SPIRIT LAKE, IA 51360	319-753-0926 (FA 712-832-3714
CONCRETE INC	POB 54	GIFFORD, IA 50259	
CONCRETE MATERIALS CO	1201 WEST RUSSELL	SIOUX FALLS, SD 57104	641-858-3637 605-357-6000
CONRECO INC	4901 G STREET	OMAHA, NE 68117	402-733-4100
	SULC STREET	UNALIA, NE UUTI/	402-733-5774 (FA
COOTS MATERIALS CO INC	1700 WEST D STREET	VINTON, IA 52349	319-472-4480
SOULD WINTERIALS OU ING	HOUND STREET	11100, 1102010	319-472-4485 (FA
CORELL RECYCLING	200 SOUTH 13TH STREET	WEST DES MOINES, IA 50265	515-223-8010
CRAWFORD QUARRY CO	HWY 94 NW-POB 1027	CEDAR RAPIDS, IA 52046	319-396-5705
CROELL REDI MIX	POB 430	NEW HAMPTON, IA 50659	641-394-3770

47

	APPROVED PRO WITH QC PROC		(
PRODUCER	STREET ADDRESS	CITY, STATE, ZIP	PHONE/FAX NUMBER
D			
DAVE'S SAND & GRAVEL INC DOUDS STONE INC	RR 2-POB 58A 13133 ANGLE RD SUITE B-POB 187	HARTLEY, IA 51346 OTTUMWA, IA 52501	712-834-2515 641-683-1671
DUININCK BROS INC	408 6 TH ST-POB 208	PRINSBURG, MN 56281	641-683-1673 (FAX) 320-978-6011
E			
ESTHERVILLE ROCK & GRAVEL CO	POB 97	ESTHERVILLE, IA 51344-0097	712-362-3506 800-379-7263 (T-F)
F			
FALK L R- CONSTRUCTION CO FALKSTONE LLC FLEWELLING SAND & GRAVEL FLOYD RIVER MATERIALS FORT CALHOUN STONE CO	227 W 4 TH STREET-POB 189 227 W 4 TH STREET-POB 189 1157 HWY 140 32138 HICKORY AVE 7001 US HWY 75-POB 284	ST ANSGAR, IA 50472-0189 ST ANSGAR, IA 50472-0189 MOVILLE, IA 51039 SIOUX CITY, IA 51101 BLAIR, NE 68008	641-713-4569 641-713-4569 712-873-3174 712-233-1111 402-426-4254 402-468-4380 402-468-4388 (FAX)
ORT DODGE ASPHALT CO RED CARLSON COMPANY	2516 7 TH AVENUE SOUTH POB 48	FORT DODGE, IA 50501 DECORAH, IA 52101	515-573-3124 563-382-4249
G			and the second second
GEHRKE QUARRIES INC	POB 521	ELDORA, IA 50627	641-858-3821 641-858-2564 (FAX)
GRAY QUARRIES INC GREENE LIMESTONE CO	POB 386 1211 SOUTH MAIN ST-POB 687	HAMILTON, IL 62341 CHARLES CITY, IA 50616	217-847-2712 641-228-4255 641-228-4061 (Shop)
н			
IAHN READY MIX HALLETT MATERIALS CO	POB 1107 5550 NE 22 ND STREET-POB3365	MUSCATINE, IA 52761 DES MOINES, IA 50316	563-263-6467 515-266-9928 515-266-9857 (FAX)
IANK STALP GRAVEL CO	1598 RIVER ROAD	WEST POINT, NE 68788	800-838-2615 (WIA) 402-372-5491 800-372-5491 (T-F)
IEARTLAND ASPHALT INC IECKETT-MULTISERV	2601 SOUTH FEDERAL AVENUE C/O NSS-HWY 38 & GREENS ROAD	MASON CITY, IA 50401 WILTON, IA 52778	402-372-5477 (FAX) 641-424-1733 563-732-4010
ECKETT MULTISERV WEST	C/O NSW-POB 474	STERLING, IL 61081	563-732-4011 (FAX) 815-626-3316 815-626-9306 (FAX)
EIMES EXCAVATING & UTIL CO HGMAN SAND & GRAVEL INC HORSFIELD MATERIALS, INC.	9144 SOUTH 147 TH STREET 16485 HWY 12-POB 109 505 EAST MAIN ST-POB 305	OMAHA, NE 68138 AKRON, IA 51001 EPWORTH, IA 52045	402-894-1000 712-568-2181 563-876-3335
I DEAL SAND CO DWA DRAINAGE INC RON MOUNTAIN TRAPROCK CO	3902 MT PLEASANT ST-POB 416 703 E. GILMAN ST- POB 7 POB 9137	WEST BURLINGTON, IA 52655 SHEFFIELD, IA 50475 IRON MOUNTAIN, MO 63650	319-754-4747 641-892-4330 573-734-6106
J			
W READY MIX & CONST	3111 270 TH STREET	SAC CITY, IA 50583	712-662-4239

APPROVED PRODUCERS WITH QC PROGRAMS

	WITH QC PROC	GRAMS		
PRODUCER	STREET ADDRESS	CITY, STATE, ZIP	PHONE/FAX N	UMBER
к				
KERFORD LIMESTONE CO	36110 FLETCHER STREET	WEEPING WATER, NE 68463	402-267-2415	(EAV)
KNIFE RIVER	POB 229	STRATFORD, IA 50249	402-267-5240 515-838-2475 515-838-2472	
KNOCKS BUILDING SUPPLIES KRUSE PAVING INC	302 NORTH SIDE POB 899	PARKERSBURG, IA 50665 LAKEFIELD, MN 56150	319-278-4868 507-662-5205	
KRUSE ROCK & GRAVEL	1401 T AVENUE-POB 466	MILFORD, IA 51351	507-662-6725 712-338-9084 888-808-7625	(FAX) (T-F)
KUHLMAN CONSTRUCTION CO	325 MAIN-POB 126	COLESBURG, IA 52035	712-338-2031 563-856-3535	(FAX)
			800-772-1731 563-856-5505	(T-F) (FAX)
	POB 9	DELL RAPIDS, SD 57022	605-428-5419	
L&M SAND & GRAVEL INC	426 2 ND AVENUE NE	LE MARS, IA 51031	605-428-3012 712-546-5359	(FAX)
L&W QUARRIES INC	POB 335	CENTERVILLE, IA 52544	641-437-4830 641-437-4837	(FAX)
LA HARV CONST CO INC LESSARD CONTRACTING INC LINWOOD MINING & MINERALS CORP	POB 267 POB 705 5401 VICTORIA AVE, SUITE 110	FOREST CITY, IA 50436 SERGEANT BLUFF, IA 51054 DAVENPORT, IA 52807	641-581-3643 712-252-4131 563-359-8251	
			800-798-8251 563-344-3730	
LOUNSBURY LANDSCAPING LUNDELL CONSTRUCTION CO., INC LYMAN-RICHEY SAND & GRAVEL	6000 RACCOON RIVER DR 1420 EAST RICHLAND 4315 CUMING STREET	WEST DES MOINES, IA 50266 STORM LAKE, IA 50588 OMAHA, NE 68131	515-225-7100 712-732-4059 402-558-2727	
M				
MALLARD SAND & GRAVEL MANATT'S INC	POB 638 1755 OLD 6 ROAD-POB 535	VALLEY, NE 68064 BROOKLYN, IA 52211	402-359-5287 641-522-9206 641-522-9407	(FAX)
MANATT'S SAND & GRAVEL MARENGO READY MIX INC MARTIN MARIETTA AGGREGATES	1928 340 TH STREET-POB 87 POB 121 11252 AURORA AVENUE	TAMA, IA 52339 MARENGO, IA 52301-0121 DES MOINES, IA 50322	641-522-5594 641-484-4022 319-642-3811 515-254-0030	(FAX
			800-332-5433 515-254-0035	(T-F (FAX
MARTIN MARETTA AGGREGATES MATX INC MCALISTER AGGREGATES LLC	POB 629 110 CLUBRIDGE PLACE 1924 HWY 141- POB 157	VALLEY, NE 68064 COLORADO SPRINGS, CO 80906 BAYARD, IA 50029	402-359-4088 800-642-6653	
MIELKE'S QUARRY	13303 SPOOK CAVE RD	MCGREGOR, IA 52157	712-651-2018 563-539-4227	(FAX
MILESTONE MATERIALS MOBERLY STONE CO	920 10 TH AVE NORTH-POB 189 POB 582	ONALASKA, WI 54650 MOBERLY, MO 65270	608-783-6411 608-783-4311 660-277-4419	(FAX
MOLO SAND & GRAVEL CO	123 SOUTHERN AVENUE	DUBUQUE, IA 52001	660-277-4790 563-557-7540	(FAX
MYRL & ROY'S PAVING INC	1300 NORTH BAHNSON AVENUE	SIOUX FALLS, SD 57103	605-334-3204 605-334-0468	(FAX

Matls.	IM	T203

APPROVED PRODUCERS WITH QC PROGRAMS				
PRODUCER	STREET ADDRESS	CITY, STATE, ZIP	PHONE/FAX NUMBE	
N				
NATURAL MATERIALS, L.L.C.	1408A HWY 44, SUITE 800	HARLAN, IA 51537	712-755-2563 712-755-5344 (FAX)	
NELSTAR NEW ULM QUARTZITE QUARRY	210 WALNUT ROUTE 5-POB 21	MERIDEN, IA 51037 NEW ULM, MN 56073	712-443-8832 507-354-2925	
IORRIS AGGREGATES CO IORTH IA SAND & GRAVEL INC	219 3 RD ST-POB 190 18237 KILLDEER AVENUE	CAMERON, MO 64429 MASON CITY, IA 50401	507-359-7870 (FAX) 816-324-0310 641-424-5591 641-422-1804 (FAX)	
NORTHWEST MATERIALS NORTHWEST R/M CONCRETE INC NU AGGREGATES	1648 LAINSON AVENUE 6340 180 [™] STREET 300 NORKA DRIVE	FORT DODGE, IA 50501 OCHEYEDAN, IA 51354 AKRON, IA 51001	641-423-1894 (FAX) 515-573-8921 712-758-3683 712-568-2181	
0				
ORTONVILLE STONE CO	POB 67	ORTONVILLE, MN 56278	320-839-6131	
Ρ				
ATRICK M. PINNEY CONTRACTORS AUL NIEMANN CONST CO	1915 FLOYD BLVD-POB 5107 24541 150 TH STREET-POB 128	SIOUX CITY, IA 51102 SUMNER, IA 50674-0128	712-252-2774 563-578-3261 563-578-3263 (FAX)	
BI CONST EDERSON BROTHERS ELLA CONST CO LTD ERSINGER SAND & GRAVEL ERU QUARRY ETERSON CONTRACTORS INC ETTENGILL CONC & GRAVEL INC RAIRIE SAND & GRAVEL	4953 D AVE POB 606 POB 25 3281 LUCAS AVENUE 2431 ST. CHARLES ROAD 104 BLACKHAWK-POB A 800 NORTH BOONE POB 210	MARCUS, IA 51035 HARMONY, MN 55939-0606 PELLA, IA 50219 SMITHLAND, IA 51056 WINTERSET, IA 50273 REINBECK, IA 50669 ROCK RAPIDS, IA 51246 PRAIRIE DU CHIEN, WI 53821	712-376-4886 507-498-3377 641-628-3840 712-889-2258 515-462-4801 319-345-2713 712-472-2571 608-326-6471	
RESTON READY MIX CORP	POB 399	PRESTON, IA 52069	563-689-3381	
2	ANT ATTU ANTANI CONTIN		500 010 0501	
UALITY CONCRETE CO	327 17 TH AVENUE SOUTH	CLINTON, IA 52732	563-242-3524	
RANDALL TRANSIT MIX CO RECYCLED AGGREGATE PROD CO REDINGS GRAVEL & EXCAVATING CO REILLY CONSTRUCTION CO	1343 HWY 105-POB 153 2131 18 TH STREET 2001 EAST OAK STREET 110 MAIN STREET-POB 99	NORTHWOOD, IA 50459-0153 SIOUX CITY, IA 51105 ALGONA, IA 50511 OSSIAN, IA 52161	641-324-1063 712-252-7732 515-295-3661 563-532-9211	
RIEHM CONSTRUCTION CO INC RIVER BEND ENTERPRISES RIVER CITY STONE INC RIVER PRODUCTS CO INC	2340 9 TH STREET SW 3000 ASHERTON AVENUE 3747 CONSTRUCTORS COURT-POB 160 3273 DUBUQUE ST NE- POB 2120	WAUKON, IA 52172 NASHUA, IA 50658 KEILER, WI 53812-0160 IOWA CITY, IA 52244-2120	563-532-9759 (FAX) 563-568-3314 641-435-2436 608-568-3433 319-354-1090	
IVERSTONE GROUP INC	1701 5 TH AVENUE	MOLINE, IL 61265	319-353-6606 (FAX) 309-757-8250	
OCK VALLEY GRAVEL CO OCKY MOUNTAIN ENTERPRISES	1315 17 TH AVENUE-POB 9 6515 COUNTY HIGHWAY H	ROCK VALLEY, IA 51247 ATHENS, WI 54411	309-757-8257 (FAX) 712-476-2063 715-257-1440	
OHLIN CONST CO INC OVERUD CONST CO INC	POB 137 601 E. MAIN ST-POB 606	ESTHERVILLE, IA 51344 SPRING GROVE, MN 55974	715-257-1140 (FAX) 712-362-3549 507-498-3376	
			800-622-7625 (T-F) 507-498-5835 (FA)	

APPROVED PRODUCERS WITH QC PROGRAMS			
PRODUCER	STREET ADDRESS	CITY, STATE, ZIP	PHONE/FAX NUMB
S			
S&A CONSTRUCTION LTD S&G MATERIALS SCHILDBERG CONSTRUCTION CO SCHMILLEN CONST INC SHELL ROCK PRODUCTS SHIPLEY CONTRACTING SIEH SAND & GRAVEL	POB 20 4213 SAND ROAD SE POB 358 4772 C AVENUE 22281 WALNUT AVENUE 2671 240 TH STREET 101 WEST 18 TH STREET-POB 1503	ALLENDALE, MO 64420 IOWA CITY, IA 52240 GREENFIELD, IA 50849 MARCUS, IA 51035-0488 SHELL ROCK, IA 50670 FORT MADISON, IA 52625 SPENCER, IA 51301	660-786-2233 319-354-1667 641-743-2131 712-376-2249 319-885-4302 319-372-1804 712-836-2244
SOUTHERN MN CONST CO, INC. SPENCER QUARRIES STENSLAND GRAVEL CO STERZINGER CRUSHING INC	1100 MARCUS ST-POB1100 25341 430 TH AVENUE 1741 ASHLEY AVE 3273 290 TH AVE	FAIRMONT, MN 56031 SPENCER, SD 57374 LARCHWOOD, IA 51241 TAUNTON, MN 56291	712-262-4580 507-235-3321 605-246-2344 712-477-2280
STONER SAND SWAN ROCK & SAND PRODUCTS, LLC	RR 2 27453 210 [™] AVE-POB125	RIDGEWAY, MO 64481 EDDYVILLE, IA 52553	660-824-4211 641-658-2474 641-777-1233 (CELI
■ TEFENTHALER AG-LIME INC	11975 HAWTHORNE AVENUE-POB 157	BREDA, IA 51436	712-673-2686
μ			
JLLAND BROTHERS INC	2400 MYERS ROAD	ALBERT LEE, MN 56007	507-373-1960 507-433-1819
w			
NAYNE T HANSEN CORP NEATHERTON CONTRACTING NEBER STONE CO INC	13 COUNTRY ESTATES 307 N 16 [™] ST-POB151 12791 STONE CITY ROAD	ALGONA, IA 50511 BERESFORD, SD 57004 ANAMOSA, IA 52205	515-295-5573 605-763-2078 319-462-3581 319-462-3585 (FA
WELDEN AGGREGATES INC	POB 832	IOWA FALLS, IA 50126	641-648-5142 641-648-5142 (FA
VENDLING QUARRIES INC	POB 230	DEWITT, IA 52742	563-659-9181 563-659-3393 (FA
WEST DES MOINES SAND CO WESTERN ENGINEERING COMPANY WETHERELL EXCAV & TRUCKING	10500 SW 52ND STREET POB 350 POB 582	DES MOINES, IA 50265 HARLAN, IA 51537 STORM LAKE, IA 50588	515-287-2340 712-755-5191 712-732-4059 712-732-2839 (FA
WILTGEN CONSTRUCTION CO	113 EAST MAIN STREET-POB 817	CALMAR, IA 52132	712-732-2839 (F/ 563-562-3301 800-365-3301 (T-
VINN CORP SAND & GRAVEL WRIGHT MATERIALS CO	28825 290 TH STREET 1127 HWY 69-POB 244	OLLIE, IA 52576 BELMOND, IA 50421	641-667-3471 641-444-3920
z			
ZUPKE SAND & GRAVEL	17963 150 TH STREET	RANDALIA, IA 52164	563-428-4444

Section 2301. Portland Cement Concrete Pavement

2301.01 DESCRIPTION.

Concrete pavement shall consist of a single course of PCC of the type and class specified in the contract. If the class of concrete is not specified, Class C concrete shall be used.

2301.02 TYPE OF PAVEMENT.

Concrete pavement shall be one of two types, Standard or Slip Form.

A. Standard Concrete Pavement.

Standard concrete pavement may be reinforced or nonreinforced, and shall consist of concrete of the class specified in the contract documents, reinforced as shown in the contract documents, placed within fixed forms, and consolidated and finished by equipment operating on forms.

B. Slip Form Pavement.

Slip form pavement may be reinforced or nonreinforced, and shall consist of concrete of the class specified in the contract documents, reinforced as shown in the contract documents, placed, consolidated, and finished without the use of fixed forms.

Irregularly shaped areas of either type of pavement may be formed and finished by hand methods.

When the contract allows standard or slip form pavement, the type is an option of the Contractor. When the contract allows only one type, the type specified shall be used. When the slip form type is specified, small or irregular areas may be constructed with fixed forms.

Reinforced bridge approach sections shall be placed in accordance with the details and limits shown in the contract documents.

2301.03 MATERIALS.

All materials shall meet requirements for the respective items in Division 41. Unless otherwise specified, coarse aggregate shall be of the durability class required by Article 4115.04.

Compatibility of all material combinations shall be the responsibility of the Contractor. If the concrete materials are not producing a workable concrete mixture, a change in the material may be required. Any changes will be at no additional cost to the Contracting Authority.

2301.04 PORTLAND CEMENT CONCRETE PAVEMENT.

Materials for pavement concrete shall be proportioned in any one of the mixtures identified in the current Materials I.M. 529 for the class of concrete specified in the contract documents. Any of the mixtures may be used, at the Contractor's option, provided the gradation of the separate aggregates complies with the gradation required for that mixture. C-5 and C-6 concrete mix proportions will not be used for pavements on Interstate and Primary highways.

After October 31, all items of concrete pavement specified to be constructed with Class B concrete shall be constructed with Class A concrete. The Engineer either will require completion by continuing placement operations past October 31 or will allow the Contractor the option of a winter shutdown. When completion is required, the Contracting Authority will pay the net increase in cost of materials resulting from the change in proportions for any pavement placed within the contract period or authorized extensions thereof, and other increases in cost shall be at the Contractor's expense.

If use of combined fine and coarse aggregate is approved, the proportions will be fixed on the basis of the relative amounts of fine and coarse aggregate contained, so as to be equivalent to one of the appropriate mixes specified for screened aggregates.

The foregoing proportions are based on a specific gravity of 2.62 for Class V aggregate and 2.65 for other aggregates. If the material furnished shows an average specific gravity other than these values, the proportions will be adjusted by the ratio which the actual average specific gravity bears to the foregoing values.

B. Water, Consistency, and Batch Yield.

The amount of mixing water used shall be that which will produce workable concrete of uniform consistency. Except as specifically modified by the Engineer, the slump, measured in accordance with Materials I.M. 317, shall not be less than 1/2 inch (15 mm) or more than 4 inches (100 mm). Slump requirements will not apply to slip form paving.

If it is found impossible to produce concrete having the required consistency without exceeding the maximum allowable water cement ratio specified, the cement content may be increased or water reducing admixture may be added as approved by the Engineer so that the maximum water cement ratio will not be exceeded. Any additional cement or water reducer will be considered incidental, and no additional payment will be allowed.

The basic absolute volume of water per unit volume of concrete is based on average conditions. If characteristics of the material are such that the total quantity of water used to secure the required consistency is such that the batch yield, computed on the basis of absolute volumes of the batch quantities used, is deficient by more than 2.0%, the proportions may be adjusted by the Engineer to correct the yield. Adjustment described in this paragraph will not be a basis for adjustment of the contract unit price.

C. Entrained Air Content.

Air entrainment shall be accomplished by addition of an approved air entraining agent. Air content as determined by Materials I.M. 318, will be determined on each day of production as early and as frequently as necessary until the air content is consistently acceptable. The intended air content of finished concrete is 6.0%. Acceptance for entrained air content will be before consolidation.

1. Slip form projects greater than 7500 square yards (6000 m²). The target air content will be determined to account for air loss during consolidation of concrete during slip form paving. The difference between before and after the paver air contents for a given location shall be considered the air loss.

On the first day of paving, air loss and target air content will be established during placement of the first eleven loads of concrete. The procedure will be as follows:

a. Central Batch Plant: the air content before the paver shall be between 8.0% and 12.0% until the target air content has been established.

b. Ready Mixed Concrete: the air content before the paver shall be 7.5% plus 1.5% or minus 1.0%, until target air content has been established.

Thereafter, the air loss and target air content will be established once per half day paving. The target air content shall be 6.5%, plus the air loss rounded to the next higher 0.5%, with a tolerance of plus or minus 1.5%. A new target air content before the paver will be established if the air loss deviates by more than 0.5% from the last air loss.

After the first day of paving, the target air content from the previous day will be used until a new target air content is determined.

2. Slip form projects less than 7500 square yards (6000 m²).

The air content before the paver shall be 7.5% plus 1.5% or minus 1.0%. At the option of the Engineer, the target air content may be established using the air loss.

The air content for non slip form paving shall be 7.0% plus 1.5% or minus 1.0%.

D. Admixtures.

When authorized by the Engineer, approved admixtures complying with Section 4103 may be used.

E. Use of Fly Ash and GGBFS.

The maximum allowable fly ash substitution rate shall be 20%. The GGBFS substitution rate shall be not more than 35% by weight (mass). The total mineral admixture substitution rate shall not exceed 40%. When Type IP or IS cement is used in the concrete mixture, only fly ash substitution will be permitted. Substitution of Type I/II cement with both GGBFS and fly ash will be permitted in ready mix concrete mixtures only. Between October 16 and March 15, fly ash substitution will be allowed only when maturity method is used to determine time of opening.

2301.05 EQUIPMENT GENERAL.

The Contractor shall provide sufficient equipment to perform all operations necessary to complete the work. Equipment shall meet the appropriate requirements of Section 2001 and the following provisions.

2301.06 PROPORTIONING AND MIXING EQUIPMENT.

Equipment used for proportioning and mixing concrete materials shall comply with the following:

A. Weighing and Proportioning Equipment.

Article 2001.20 shall apply.

B. Mixing Equipment.

Article 2001.21 shall apply.

C. Bins.

Article 2001.06 shall apply.

2301.13 PROPORTIONING AND MIXING OF CONCRETE MATERIALS.

The proportioning and mixing materials shall meet the following requirements:

A. Storage and Handling of Aggregates.

Aggregates shall be stored and handled to avoid contamination and frequent variations in specific gravity, gradation, or moisture content of the materials used.

1. Fine and coarse aggregate stored in piles or bins shall be kept entirely separate. When aggregates are trucked to the proportioning plant, the trucks shall dump off a ramp or into a walled pit. In either case, they shall dump onto a floored area. This floor shall consist of a substantial platform or a layer of similar aggregate at least 18 inches (0.5 m) thick placed entirely below the elevation of the surrounding ground.

2. The number of changes from one material to another having different frictional characteristics, class of durability, or average specific gravity shall be reduced to the minimum which the Engineer considers practical.

3. The moisture content of aggregates at time of proportioning or placement in proportioning bins shall be so that water will not drain or drip from a moisture sample.

Aggregates shall be handled in a manner that will prevent variations of more than 0.5% in moisture content of successive batches. Coarse aggregates having an absorption greater than 0.5% shall be thoroughly wetted and allowed to drain for at least 1 hour before being used.

- 4. Fine aggregate shall be drained at least 24 hours after washing and before batching.
- 5. Aggregates from two sources shall not be commingled in stockpiles or in the finished pavement, except with approval of the Engineer.

B. Storage and Handling of Cement and Fly Ash.

Cement shall be stored in suitable weatherproof enclosures and shall be handled to prevent loss. Section 4101 shall apply to cement which has developed lumps or which has been stored for extended periods.

Fly ash shall be transported and stored in suitable weatherproof enclosures in a manner to keep it dry. Proportioning equipment shall meet requirements of Article 2001.20, A.

C. Measurement of Materials.

Measurement of materials shall be in accordance with requirements for the type of equipment used and the following additional requirements:

1. Cement scales shall be operated within a delivery tolerance of 1.0% of the mass of cement per batch. When operated manually, scales shall be balanced to tare before each batch is weighed and after each batch is discharged. On all bid items involving more than 6000 square yards (5000 m²) of pavement or base, except items made up of irregular areas such as crossovers, turn lanes, and etc., the cement and fly ash scales shall have automatic controls which meet the requirements of Article 2001.20, A. Use of manual controls will not be permitted for a period longer than 1 working day after a failure of the automatic controls, except with permission of the Engineer.

On work requiring automatic cement scales, the performance of the scale will be determined near the end of the first full day of production and thereafter at a frequency not to exceed each 10,000 cubic yards (10,000 m³) of concrete produced, by comparing the accumulated mass of cement proportioned with the corresponding accumulated mass of cement shipped to the project. The cooperation of the Contractor will be required. Cement scale performance determinations are not required when a permanent, commercial ready mix plant is used to furnish less than 10,000 cubic yards (10,000 m³) of concrete for a contract.

The performance of a fly ash scale, if present, will be determined as above.

2. Aggregate scales shall be operated within a delivery tolerance of 1.0% for each aggregate.

3. Water shall be measured within a delivery tolerance of 1.0% of the intended quantity.

4. Admixtures shall be measured with approved equipment and procedures that assure the quantity measured shall be within a delivery tolerance of 3.0% of the batch quantity. Mechanical dispensing equipment shall be cleaned and flushed out daily and at more frequent intervals if necessary to ensure proper operation.

D. Mixing of Materials.

Concrete materials shall be either mixed at the site of placement or mixed in a construction or stationary mixer to be used for work on the project only, or ready mixed or transit mixed concrete. During any one individual placement; the same cement, aggregates, and

admixtures shall be used throughout the placement unless otherwise approved by the Engineer. With approval of the Engineer, concrete mixtures may be furnished from multiple plants provided the same materials are used in each mixture and mix consistency can be maintained.

1. Concrete Mixed in a Construction or Stationary Mixer.

Concrete materials shall be mixed as provided in Article 2001.21 for the equipment used. The method of handling batches and charging the mixer shall assure complete introduction of each batch separately without loss of materials.

The concrete, as discharged from the mixer, shall be uniform in composition and consistency. If this condition is not produced because of the size of the batch, the size of the batch may be reduced or the mixing time increased, or both, until this result is obtained.

Concrete transported without continuous agitation shall not be used if the period elapsed between the time the concrete is mixed and the time it is placed is greater than 30 minutes. With the approval of the Engineer, an approved retarding admixture may be used at the rate prescribed in Materials I.M. 403, and the mixed-to-placed time period may be extended an additional 30 minutes.

Concrete transported with agitation shall not be used when the time between start of mixing and placement is more than 90 minutes.

The methods of delivering and handling the concrete shall be so that objectionable segregation or damage to the concrete will not occur, and that which will facilitate placing with a minimum of handling.

The compartment in which concrete is transported to the work site shall be thoroughly cleaned and flushed with water at intervals which may be necessary to insure that hardened concrete will not accumulate in the compartment. Flushing water shall be discharged from the compartment before it is charged with the next batch.

Plant operation and procedures shall be subject to the Engineer's approval.

2. Ready Mixed Concrete.

Ready mixed concrete is defined as concrete for which the required materials are as follows:

a. Proportioned in a central plant and mixed in a stationary mixer for transportation in trucks with or without agitation.

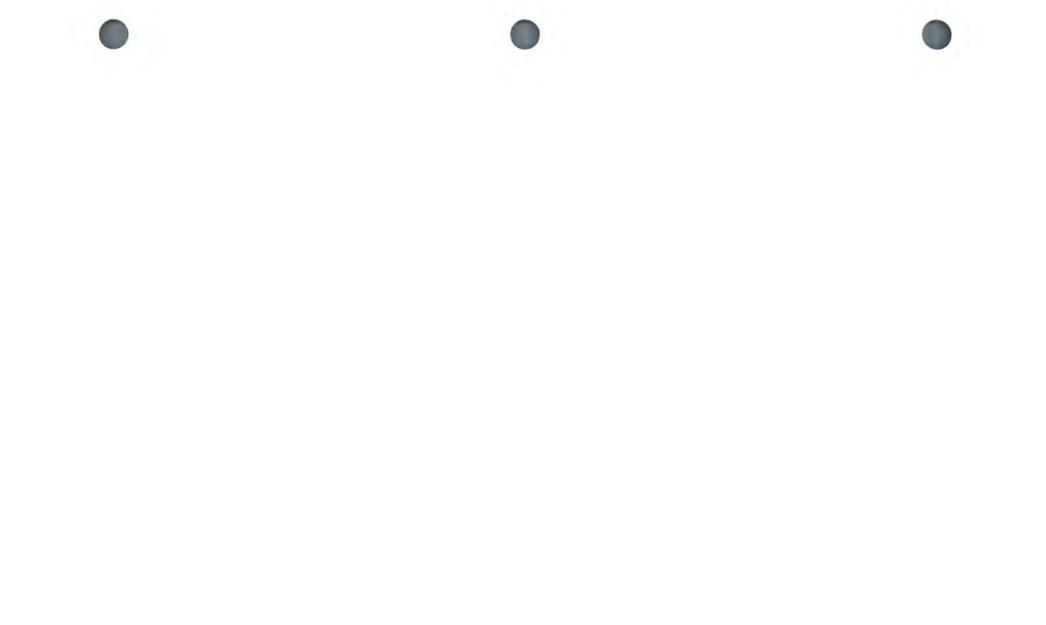
b. Proportioned and then mixed in a transit mixer prior to or during transit.

Concrete material shall be mixed as provided in Article 2001.21 for the type of equipment used. When necessary to add additional mixing water at the site of placement, the batch shall be mixed at least an additional 30 revolutions of the drum at mixing speed.

For main portions of the work designed to support public vehicular traffic, it must be demonstrated to the Engineer before the work starts that each vehicle in which concrete will be delivered to the work is capable of discharging concrete having a slump not over 2 inches (50 mm) at an overall rate for its entire load of not less than 1.25 cubic yards (1 m³) per minute. The concrete shall be delivered at a rate sufficient to maintain a sustained rate of progress of not less than 100 feet (30 m) per hour for the width and depth of slab to be placed. The Engineer shall be assured that an adequate and properly staffed dispatching system will be utilized.

Ready mixed or transit mixed concrete may be used for other portions of the work under other restrictions specified for bid items involving 6000 square yards (5000 m²) of pavement or less, and may be used for irregular pavement areas such as crossovers and turn lanes.

Concrete transported without continuous agitation shall not be used if the period elapsed between the time the concrete is mixed and the time it is placed is greater than 30 minutes. With the approval of the Engineer, an approved retarding admixture may be used at the rate prescribed in Materials I.M. 403, and the mixed-to-placed time period may be extended an additional 30 minutes.


Concrete transported with agitation shall not be used when the time between start of mixing and placement is more than 90 minutes.

The methods of delivering and handling the concrete shall be such that objectionable segregation or damage to the concrete will not occur, and that which will facilitate placing with a minimum of rehandling.

The compartment in which concrete is transported to the work shall be thoroughly cleaned and flushed with water at intervals that are necessary to ensure that hardened concrete will not accumulate in the compartment. Flushing water shall be discharged from the compartment before it is charged with the next batch.

Plant equipment, operation, and procedures shall be subject to the Engineer's approval.

Section 2403. Structural Concrete

2403.01 DESCRIPTION.

Concrete shall be composed of Portland cement, fine and coarse aggregate, specified or permitted admixtures, and water mixed in proportions specified herein for the various classes.

Unless otherwise specified, structural concrete shall be as follows:

A. Class D Concrete.

Bridge barrier rails shall be Class BR or Class C concrete.

B. Class X Concrete.

Concrete seal courses shall be Class X concrete.

C. Class C Concrete.

Refer to Article 24412.02 for concrete used for one course bridge floors and the first course of two course bridge floors. All other structural concrete, including concrete for bridge curbs, bridge medians, and bridge sidewalks, shall also be Class C concrete.

2403.02 MATERIALS.

All materials used shall meet the requirements for the respective items in Division 41.

Unless otherwise specified, Class 2 durability coarse aggregate, or better, as defined in Article 4115.04, shall be used in structural concrete.

2403.03 PROPORTIONS FOR STRUCTURAL CONCRETE.

Materials for structural concrete may be mixed in proportions for any of the mixes allowed for the class of concrete specified in the contract documents and the current Materials I.M. 529, provided the gradation of each aggregate conforms to the gradation required for that proportion. The contract documents will indicate where each class is to be used and the approximate quantities of each class. At the Contractor's option, Class D or Class M mixtures may be substituted for Class C proportions except in bridge floors.

A. Water and Consistency.

Structural Concrete shall be placed with a slump between 1 inch and 3 inches (25 mm and 75 mm) as a target range, allowing a maximum of 4 inches (100 mm) as a tolerance.

If the characteristics of the materials used are so that the total quantity of water used (including free water in aggregate) to secure the required consistency reduces by more than 2% the batch volume computed on the basis of absolute volumes of the batch quantities used, the proportions may be adjusted accordingly.

If the characteristics of the materials used are so that the required consistency is not secured within the specified maximum water content, the proportions of cement to aggregate shall be increased as necessary to secure the required consistency within the specified maximum water content. Any additional cement will be considered as incidental, and no additional payment will be allowed. The total of mixing water and free moisture in the aggregate shall not exceed the following:

Class of Concrete	Pounds (kg) of Water per Pound (kg) of Cementitious Material	
C Separated Aggregate	0.488	
X Separated Aggregate C with Class V Aggregate	0.444 0.444	

X with Class V Aggregate	0.422
D57	0.437

When the structural concrete is to be placed in drilled shafts, the concrete shall have a slump of 8 inches " 1 1/2 inches (200 mm " 40 mm) if the drilled hole was constructed using drilling slurry, and a slump of 6 inches " 1 1/2 inches (150 mm " 40 mm) if it is a dry hole.

B. Entrained Air Content.

Air entrainment shall be accomplished by addition of an approved air entraining agent complying with Section 4103. Air content will be tested in accordance with Materials I.M. 318. The intended air entrainment is 6%. To allow for loss during placement, the air content of fresh, unvibrated structural concrete shall be 6.5%, as a target value, with a maximum variation of - 1.0% and + 1.5%.

C. Other Admixtures.

Other approved admixtures may be used with the approval of the Engineer.

Approved retarding admixture complying with Section 4103 may be required by the contract documents or by the Engineer. The retarding admixture shall be used in amounts recommended by the manufacturer for conditions which prevail on the project and as approved by the engineer. When used, it shall be introduced into the mixer after all other ingredients are in the mixer. Other procedures may be approved by the Engineer.

All retarding admixtures used shall be compatible with the air entraining agent used. Previous experience, satisfactory to the Engineer, will be required to indicate the approximate adjustments necessary by the addition of the admixture and compatibility with other materials to be used. The retarding admixture shall be agitated prior to and during its use.

Calcium chloride will not be allowed where reinforcing steel is used.

D. Use of Fly Ash and GGBFS.

The Contractor may use fly ash or GGBFS as a substitute for a portion of the Portland cement in structural concrete. he fly ash and GGBFS shall meet the requirements of Section 4108. The maximum allowable substitution rates shall be 20% for fly ash and 35% for GGBFS with a maximum total mineral admixture substitution rate of 50%.

2403.04 PROPORTIONS FOR LIGHTWEIGHT STRUCTURAL CONCRETE.

When lightweight concrete is specified, the aggregate quality, proportions, mixture characteristics, and controls will be included in the contract documents.

2403.05 EQUIPMENT GENERAL.

Equipment shall meet requirements of Section 2001 and the following articles:

A. Weighing and Proportioning Equipment.

Article 2001.20 shall apply.

B. Mixing Equipment.

Article 2001.21 shall apply.

C. Bins.

Article 2001.06 shall apply.

D. Field Laboratory or Field Office. Section 2520 shall apply.

2403.06 PROPORTIONING AND MIXING OF CONCRETE.

The respective paragraphs of Article 2301.13 shall apply regarding storage and handling of cement, fly ash, aggregates, measurement of materials, and ready mixed concrete, except for the truck dumping area required in Article 2301.13, A, 1.

A. Mixing of Materials.

Materials shall be thoroughly mixed in an approved mixer at the site of placement or by an approved ready mix plant. The Engineer may withhold approval of use of ready mixed concrete from any plant which has a previous record of unsatisfactory performance.

B. Concrete Mixed on the Site.

Materials mixed in approved mixers at the site of placement shall be mixed in accordance with the specific requirements for the equipment used. The mixing capacity shall be such that finishing operations can proceed at a steady pace with final finishing completed before concrete starts its initial set.

Concrete, as discharged from the mixer, shall be uniform in composition and consistency. Each batch of concrete shall be thoroughly discharged from the mixer before the next batch is introduced. Upon cessation of mixing for any considerable length of time, the mixer shall be thoroughly cleaned and flushed with water.

C. Heating Aggregates.

When aggregates are heated, they shall be heated and handled to avoid damage by overheating and to insure uniform moisture content of aggregate entering the mixer. Aggregates may be heated by steam pipes or coils through aggregate piles. Aggregates shall not be heated by direct, dry heat unless they are mechanically agitated during the heating process.

2403.08 PLACING CONCRETE.

Concrete mixed at the site of the work shall be placed immediately after mixing. Ready mixed concrete shall be placed as soon as practical after delivery, but in all cases within the specified time limit for the equipment used for delivery.

Concrete shall be placed in a manner which will avoid segregation or separation of the ingredients. In placing concrete, all the following precautions shall be observed:

A. In handling concrete from the mixer to the place of deposit, care shall be taken to avoid segregation.

B. When concrete is deposited through a chute, the slope of the chute shall be sloped to allow concrete to flow slowly without segregation. The delivery point of the chute shall be as close as possible to the point of deposit. Chutes and spouts shall be kept clean. They shall be thoroughly flushed with water before and after each run, and the water shall be discharged outside the forms.

Concrete shall not be pumped through aluminum conduit or tubing.

C. A tremie is not required when filling steel shell piles or encasing steel H-piles, but a tremie shall be used whenever the distance through which other concrete must be dropped vertically exceeds 6 feet (2 m), except a 3 foot (1 m) drop shall not be exceeded for bridge floors and culvert slabs. A tremie will not be required for concrete placement of elements which have a maximum dimension no greater than 12 inches (300 mm) provided that the following Part D is adhered to and concrete is placed in lifts.

D. Concrete shall not be deposited in large quantities at a single point and then caused to flow along inside the forms.

E. In depositing concrete, care shall be taken to entirely fill the form without bulging the form or disturbing its alignment.

F. Concrete shall be manipulated and vibrated in a manner to bring a thick layer of mortar into contact with forms and reinforcement and to prevent formation of pockets of coarse aggregate.

G. Concrete shall not be placed in flowing water within the area of a footing. Such flowing water shall be controlled in pipes or trenches outside the forms. In extreme cases, a seal course may be ordered to overcome this difficulty.

H. Structural Concrete placed when the air temperature is at or below 40EF (4EC) shall be protected as provided in Article 2403.11.

An adequate supply of water suitable for washing testing equipment shall be maintained at a convenient location, as directed by the Engineer, near the site of concrete placing operations.

When concrete is being placed during cold weather, the Contractor shall provide an approved, conveniently located shelter, suitable for use in performing on the site tests of the concrete being placed. The shelter shall have a cover, shall be enclosed on at least three sides, and shall be placed to provide maximum protection from the weather.

2403.19 SUBJECTING CONCRETE TO EXTERIOR LOADS.

Concrete may not be subjected to loads other than the load caused by the weight (mass) of the concrete itself except as follows:

A. Loads Producing Simple Compressive Stress Only.

Concrete may be subjected to simple compressive stress as soon as it has set sufficiently to prevent the surface being marred or the edges being chipped from the effect of such loads.

B. Loads Producing Flexural Stresses.

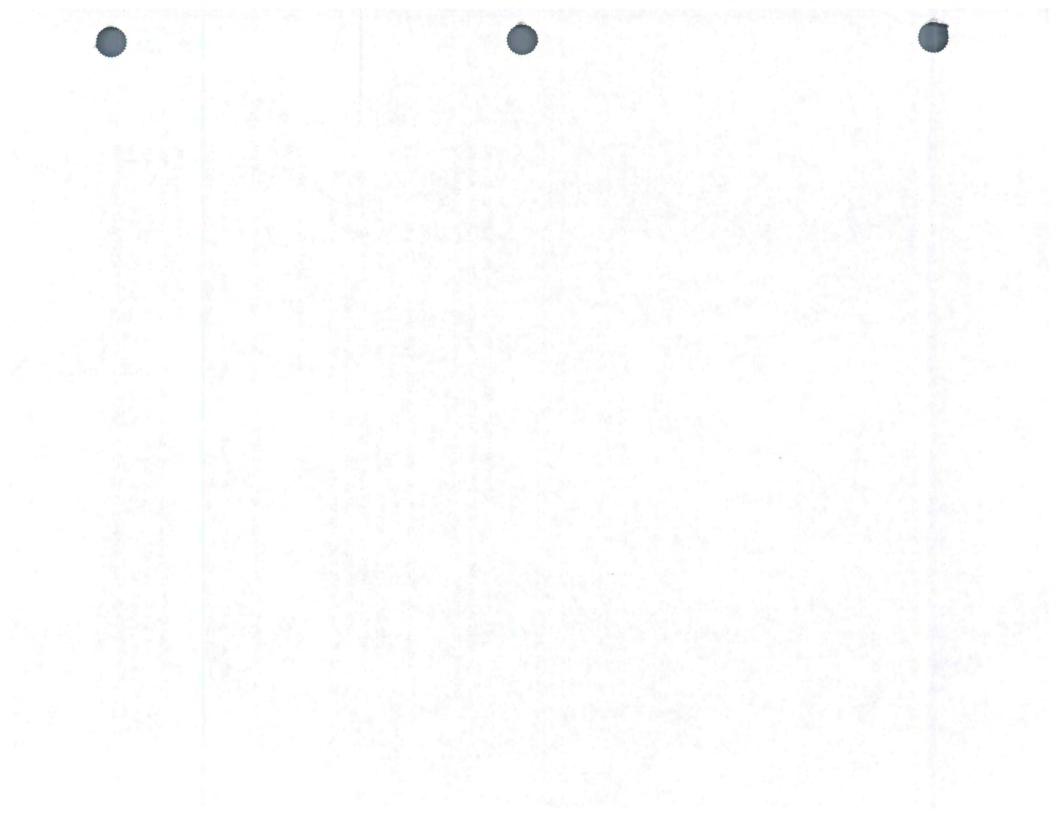
Unless otherwise indicated in the contract documents, concrete may be subjected to loads due to backfilling or to legal traffic when the concrete has reached the minimum age stipulated below and has developed a flexural strength of 550 psi (3.8 MPa) or more:

Minimum Age for Concrete

Portland cement (Type I and Type II with or without Class C fly ash)	7 calendar days
With Class F fly ash substitution	8 calendar days
Class M mix (with or without Class C or Class F fly ash)	3 calendar days
If strength is not determined (regardless of type of cement days or class of fly ash)	14 calendar

The flexural strength shall be determined by testing, in accordance with Materials I.M. 316, specimens of concrete used in the part of the structure in question, cured under conditions similar to those of the concrete in the structure.

Footings for piers supported by piling may be subjected to loads of subsequent pier stem concrete placement not less than 18 hours after footing placement is complete, with no minimum strength requirements.


Unless otherwise specified in the contract documents, at the Contractor's option, the time for subjecting to loads may be determined through the use of the maturity method as described in Materials I.M. 383. When the maturity method is used, the time for loading will be based on strength requirements only, as specified above. The Contractor shall furnish all labor, equipment, and materials necessary for the development of the maturity-strength relationship as described in Materials I.M. 383.

Determining that sufficient strength has been achieved for loading a part of a structure shall remain the responsibility of the Engineer when the maturity method is used. The Contractor's maturity testing may be used as the basis for this determination. The Contractor shall provide sufficient documentation of maturity testing before a part of a structure may be loaded or opened to traffic.

The following shall apply when the maturity method is used:

- Should circumstances arise which are beyond the Contractor's or Engineer's control and strength cannot be determined by maturity method, the minimum age, minimum flexural strength, and fly ash restrictions shall apply. Flexural strength specimens shall be cured under conditions similar to those of the concrete in the structure.
- 2. Any changes of a material source or proportion in the concrete mixture shall require a new maturity curve.

Personnel performing maturity testing shall be Level 1 PCC certified technicians, with training for maturity testing. This certified technician may supervise other persons who may then perform the temperature testing of the constructed structure.

