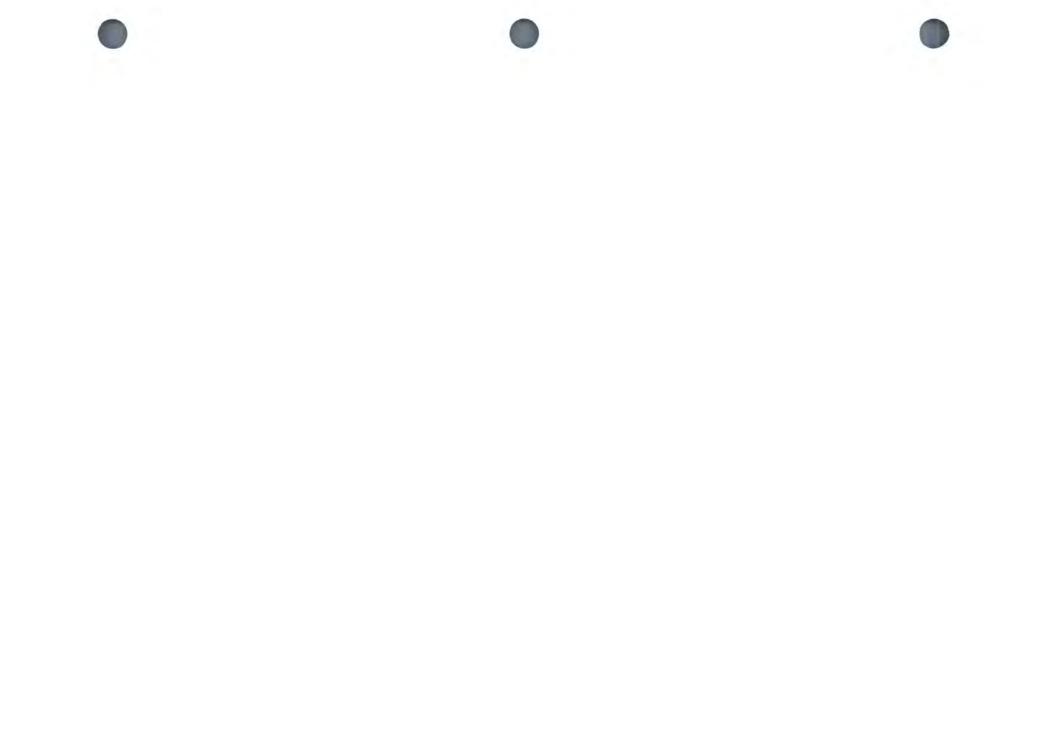
HOT MIX ASPHALT

REFERENCE MANUAL 2008-2009

TECHNICAL TRAINING AND CERTIFICATION PROGRAM



LEVEL 1 HMA CERTIFIED TECHNICIAN REFERENCE MANUAL

- IM 204 Inspection of Construction Project Sampling and Testing
- IM 205 Quality Assurance Program for Construction Overview & Description
- IM 207 Independent Assurance Program for Construction Overview & Description
- IM 208 Materials Laboratory Qualification Program
- IM 213 Asphaltic Concrete & Portland Cement Concrete Certification Program
- IM 216 Guidelines for Verifying Certified Testing Results
- IM 301 Aggregate Sampling Methods and Determination of Minimum Size of Samples for Sieve Analysis
- IM 320 Method of Sampling Compacted Pavement Layers
- IM 321 Method of Test for Compacted Density of Asphaltic Concrete (Displacement Method)
- IM 322 Methods of Sampling Uncompacted Asphalt Concrete
- IM 323 Method of Sampling Asphaltic Materials
- IM 325G Method of Test for Determining the Density of Hot Mix Asphalt (HMA) By Means of the Superpave Gyratory Compactor (SGC)
- IM 337 Determining Thickness of Completed Courses of Base, Sub-base and Asphalt Concrete
- IM 350 Maximum Specific Gravity of Asphalt Paving Mixtures Field Procedure for Central Laboratory Test Method
- IM 351 Method of Determining Asphalt Content in Asphaltic Concrete Mixtures by Calculation
- IM 357 Method of Preparation of Bituminous Mix Samples for Test Specimens
- IM 380 Method of Test for Vacuum Saturated Specific Gravity and Absorption of Combined or Individual Aggregate Sources (Field Procedure for Central Laboratory Test Method No. 220A)

-.....

Iowa Department of Transportation

Office of Materials

Matls. IM 204

October 17, 2006 Supersedes October 19, 2004

GENERAL REWRITE - PLEASE READ CAREFULLY.

INSPECTION OF CONSTRUCTION PROJECT SAMPLING & TESTING

INTRODUCTION

The Iowa Department of Transportation (DOT) has established a Quality Assurance Program (IM 205) to assure that the quality of materials and construction workmanship incorporated into all highway construction projects is in reasonable conformity with the requirements of the approved plans and Specifications, including approved changes. It consists of an Acceptance Program and an Independent Assurance Program (IAP), both of which are based on test results obtained by qualified persons and equipment.

The acceptance portion of the program covers quality control (QC) sampling and testing and verification sampling and testing. The IAP portion of the program covers the evaluation of all sampling and testing procedures, personnel, and equipment used as part of an acceptance decision (includes Contractor, Contracting Agency, and consultant).

ACCEPTANCE PROGRAM FOR MATERIALS

To fulfill the materials acceptance requirements, several methods are used by the DOT.

Sampling & Testing (Test Report) Certification Approved Sources Approved Shop Drawings Approved Catalog Cut Fabrication Report Visual Approval by the Engineer

In many cases more than one method may be required for acceptance in the 204 Appendices and tables in the back of this guide. For some new or special materials, the Materials Engineer may need to determine the most appropriate acceptance requirements.

In order to provide the Contractor the opportunity to construct a project with minimal sampling and testing delays, inspection is performed at the source for many materials. Source inspection may consist of inspecting process control, sampling for laboratory testing or a combination of these procedures. All source-inspected or certified materials are subject to inspection at the project site prior to being incorporated into the work. Project site inspections are for identification of materials with test reports and for any unusual alterations of the characteristics of the material due to handling or other causes. Verification samples secured by project Agency personnel of source-inspected, certified, or project processed materials are also required for some materials in order to secure satisfactory validation for acceptance.

When certification procedures are required, the Contractor may, on the Contractor's own responsibility and at the Contractor's risk, incorporate these materials into the work. Acceptance will be based on satisfactory certification and compliance of the test results of any verification samples. When verification samples are not required, acceptance will be based on satisfactory certification.

A. SAMPLING & TESTING (TEST REPORT)

When a material is sampled and tested, the results will be documented on a construction form or a test report. There is quality control sampling and testing done by the Contractor or producer and verification sampling testing done by the Project Engineer, the District Materials Engineer, the Central Materials Laboratory, or an independent laboratory.

In many cases, in addition to sampling and testing, some other type of acceptance method will also be required. Sampling and testing may be done at the project, supplier, or source depending on which is the most appropriate.

B. CERTIFICATION OF COMPLIANCE

For many materials a fabricator, manufacturer, or supplier is required to provide the Project Engineer with a certification document stating that the material meets the requirements of the plans and specifications. In most cases, the fabricator, manufacturer, or supplier must also be on an approved list in the IM. For some of these materials, sampling and testing is also required before final acceptance. The certification comes in a variety of forms:

- Stamped or preprinted on truck tickets as with aggregates,
- · Stamped or preprinted on invoices as with Portland Cement and asphalt binder,
- Stamped or printed on the Mill Analysis as with reinforcing steel, structural steel, and other metals,
- Furnished as a separate document with each shipment as with zinc-silicate paint, engineering fabrics, epoxy coatings, and dowel baskets,
- Stamped or printed on a list of materials for each shipment as with CMP, concrete pipe, clay tile, and corrugated plastic subdrain,
- In the form of a guaranteed analysis as with seed labels.

The inspector will verify that the certification has been received by documenting it in the project materials book. Certifications are Type A, Type C, Type D, or other type as required by the Engineer or IM.

Type A Certification

A Type A certification is a laboratory report with test results and a certification statement stating that the materials furnished comply with the specifications. The tests may be conducted in the manufacturer laboratory or another qualified laboratory. The test samples must be from the lots of material shipped.

Type C Certification

A Type C certification is a paper prepared by the manufacturer or producer stating that the materials furnished are in accordance wit the specifications. The applicable specification article or Office of Materials IM number is identified in the certification.

Type D Certification

A Type D certification is a letter or paper prepared by an approved manufacturer stating that the materials furnished comply with the applicable specifications of the Iowa Department of Transportation.

C. APPROVED SOURCE

(May also be referred to as "Approved Producer, Approved Supplier, Approved Fabricator, or Approved Brand") The source, producer, and the material must be evaluated and approved by the Office of Materials according to the appropriate Office of Materials IM in order to be used on a project. Once a letter of approval is issued, the source or producer is approved for use on projects (with the exception of steel fabricators). Approved lists are issued biannually for general information only. Approval for a source or producer may be rescinded at any time if it no longer meets the requirements of the IM.

The project inspector will document information about this material such as product name, source, date, producer, and lot number in the project materials book.

Most approved sources also require a certification.

D. APPROVED WAREHOUSE STOCK

For some items made up of miscellaneous materials, inspection and approval will be done by the District Materials Engineer at the supplier's warehouse.

E. APPROVED SHOP DRAWING & APPROVED CATALOG CUT

This information must be submitted to, and reviewed by the Iowa DOT Central Design Offices, before the material can be incorporated in the project.

F. FABRICATION REPORT

The project inspector must have a copy of the final fabrication report prior to incorporating the item into the project. The report will vary depending on the Materials IM requirements for the item fabricated. Final acceptance is by construction personnel at the project site, and is based on the proper documentation and the condition of the component.

G. VISUAL APPROVAL BY PROJECT ENGINEER

(May also be referred to as "As Per Plan, Approved By RCE, or Manufacturer Recommendations") The project inspector must document information about this material such as product name, source, producer, lot number and date produced in the project materials book. The inspector will make sure the material meets the requirements of the plans, the Engineer, or the manufacturer before the material is used. Visual approval requires construction personnel to visually inspect the material to determine if it complies with the specifications. Visual approval is appropriate for non-critical items such as mulch or sod stakes, where compliance can be readily determined by visual means. If there are questions on specification compliance, samples will be taken for testing.

INDEPENDENT ASSURANCE PROGRAM

The IAP evaluates all sampling and testing procedures, personnel, and equipment used as part of an acceptance decision (Includes Contractor, Contracting Agency, and consultant). Independent assurance includes evaluation based on:

Calibration checks Split samples Proficiency samples Observation of sampling and testing performance

The test method and the frequency of test are in the Appendices. Calibration checks and proficiency samples testing is covered in IM 208.

SMALL QUANTITIES

Refer to Appendix X.

IM 204 Appendixes

- Appendix A Roadway & Borrow Excavation & Embankments
- Appendix B Soil Aggregate Subbase
- Appendix C Modified Subbase
- Appendix D Granular Subbase
- Appendix E Portland Cement Concrete Pavement, Pavement Widening, Base Widening, Curb & Gutter & Paved Shoulders
- Appendix F Hot Mix Asphalt (QMA)
- Appendix H Structural Concrete, Reinforcement, Foundations & Substructures, Concrete Structures, Concrete Floors, & Concrete Box, Arch & Circular Culverts
- Appendix I Concrete Drilled Shaft Foundations
- Appendix K Cold-In-Place Recycled Asphalt Pavement
- Appendix L Granular Surfacing/Driveway Surfacing
- Appendix M Concrete Bridge Floor Repair & Overlay & Surfacing
- Appendix P Surface Treatment (Seal Coat, Slurry, Joint Repair, Crack Filling & Fog Seal)
- Appendix T Base Repair, Pavement Repair
- Appendix U Granular Shoulders
- Appendix V Subdrains
- Appendix W Water Pollution Control, Erosion Control
- Appendix X Acceptance of Small Quantities of Materials
- Appendix Z Supplemental Guide, Basis of Acceptance

October 16, 2007 Supersedes October 17, 2006 **ROADWAY & BORROW EXCAVATION & EMBANKMENTS**

Section 2102 & 2107

Matls. IM 204 Appendix A (US) Units

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE		QUA	LITY CONTRO)L					ENT ASSURA			REMARKS
ITEM		& RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
SOURCE INSPECTIO	N													
Special Backfill														
Crushed Stone (4132.02)		AS 209												
Crushed Concrete (4132.02)		209											1	
RAP (2303.02) Gravel (4132.03)		AS 209					-							
Granular Backfill		AS 209												
Engineering Fabric (4196)	Quality	AS 496.01							ne				1	
GRADE INSPECTION			1.1.5											
Special & Select Backfill Compaction Control	Moisture	309, 310						V	RCE	1/lift/ 1500 ft.	1 lb	RCE	Field Book	1
Moisture & Density Compaction Control	Density (Proctor) Moisture	309, 310						V	RCE	1/soil class 1/lift/1500 ft.	25 lb 1lb	RCE	Field Book	
Compacted Materials	Density	311, 326, 334				1		V	RCE	1/lift/mile or 1/1500 cy	4	RCE	Field Book	Unless otherwise specified or directed
									-					
AS-Approved Sou	rce	Cert A	-Type A Cer	rtification		RCE-	Resident Co	onstructio	n Engineer/I	Project Engi	neer		IA-Independen	t Assurance
ASD-Approved Sh S&T-Sampling & T		Cert C Cert D	-Type C Ce -Type D Ce			CTRL	District Mat -Central Ma TR-Contract	aterials Of					V-Verification	

SOIL AGGREGATE SUBBASE

October 16, 2007 Supersedes October 17, 2006

Section 2110

Matls. IM 204 Appendix B

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE		QL	ALITY CONTR	OL					ENT ASSURA			REMARKS
ITEM		& RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	1
SOURCE INSPEC	TION			•					1					
Granular Surfacing Material (4120)		AS 209	1											
				-										1
GRADE INSPECTI										-				
Mixed Materials (2110)	Density (Proctor)	309						V	RCE	2/mile (min. 2/proj.)	5000 gm	RCE	Field Book	Change of Soil type requires additional Proctors
Uncompacted Mixture	Pulverization Moisture	2" Sieve Visual						V	RCE	2/mile		RCE	Field Book	
Compacted Mixture (2110)	Density Thickness Width	311, 312, 334 337				•		V	RCE	2/mile		RCE	Field Book	
Finished Subbase	Cross Section	Stringline						V	RCE	10/mile		RCE	Field Book	Template for secondary park & institutional roads
				•										
AS-Approved So ASD-Approved S S&T-Sampling 8	Shop Drawing		Cert C-Type	A Certificati C Certificati D Certificati	on		RCE-Reside DME-District CTRL-Centra CONTR-Cor	t Materials al Materia	s Engineer	l eer/Projec	t Engineer		IA-Independ V-Verificatio	ent Assurance n

October 17, 2006 Supersedes October 18, 2005

MODIFIED SUBBASE

Section 2115

Matls. IM 204 Appendix C (US) Units

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE			QUALITY CONT	ROL					IDENT ASSURA			REMARKS
ITEM		& RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
SOURCE INSPECTIO	N												0	
Natural Aggregate	Quality Gradation	AS 20	9											
Recycled Products													1	
Composite	Gradation	*As Per Spec.												
PCC Pavement	Gradation	*As Per Spec.												
Rap		*As Per Spec.												
GRADE INSPECTIO	N		_			-		L					_	
Compacted Subbase	Density	*As Per Spec.				T		V	RCE			RCE	Field Book	1
Dimensions	Thickness Width	3:	37					V	RCE	3/2 lane mi.		RCE	Field Book	
	Cross Section (Primary)	Stringline						V	RCE	10/mi.		RCE	Field Book	
	Cross Section (Other)	Template						V	RCE	3/mi.	_	RCE	Field Book	
AS-Approved Sou ASD-Approved S S&T-Sampling &	nop Drawing	(Cert A-Type A Cert C-Type C Cert D-Type D	Certification	on		RCE-Reside DME-Distric CTRL-Centr CONTR-Cor	t Material al Materia	s Engineer	ineer/Project	Engineer		IA-Independen V-Verification	t Assurance

* Use Current Specification for Modified Subbase

October 17, 2006 Supersedes October 18, 2005

GRANULAR SUBBASE

Section 2111

Matls. IM 204 Appendix D (US) Units

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE			QUALITY CONT	ROL		1.	_	ALC MARKED AND A REAL PROPERTY	NT ASSURAN	ICE	-	REMARKS
ITEM		& RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE	FREQ.	SAMPLE	TEST BY	REPORT	
SOURCE INSPECTI	ON				- T							1	-	
Natural Aggregate (4121)	Quality Gradation	AS 209				1745								
PCC Pavement	Gradation	209							100				1	
									-		-			
and the second					-									
GRADE INSPECTIO	N													
Compacted Subbase (2111)	Density	By Specification			1			V	RCE			RCE	Field Book	
Dimensions	Thickness Width	337						V	RCE	3/2 lane mi.		RCE	Field Book	
	Cross Section (Primary)	Stringline						V	RCE	10/ mi.		RCE	Field Book	
	Cross Section (Others)	Template	1		-			V	RCE	3/mi		RCE	Field Book	
AS-Approved Sou ASD-Approved Sh S&T-Sampling &	nop Drawing	Cert	A-Type A C-Type C D-Type D	Certificatio	on	D C	CE-Resident ME-District M TRL-Central I ONTR-Contra	laterials Er Materials (ngineer	r/Project Engi	ineer		IA-Independer V-Verification	It Assurance

PORTLAND CEMENT CONCRETE PAVEMENT, PAVEMENT WIDENING, BASE WIDENING

October 16, 2007 Supersedes April 17, 2007 CURB & GUTTER, & PAVED SHOULDERS Section 2122, 2201, 2213, 2301, 2302, 2310, SS-01046 Matls. IM 204 Appendix E (US) Units

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE		QUAL		DL			INC		T ASSURAN			REMARKS
ITEM		& RELATED IMs	SAMPLE BY	FREQ.	SAMPLE	TEST BY	REPT.	S&T TYPE	SAMPLE	FREQ.	SAMPLE	TEST BY	REPORT	
SOURCE INSPEC	TION													
Aggregates- Fine (4110)		AS 209												
Aggregate- Coarse (4115), Intermediate		AS 209											1	
Portland Cement (4101)	Quality	AS 401	111 -						1					
Fly Ash (4108)	Quality	AS 491.17		-	1		1				-			
GGBFS (Ground Granulated Blast Furnace Slag)	Quality	AS 491.14												
Curing Compounds (4105)	Lab- Tested													
Clear Curing Compounds (4105)		AB 405.07							_				2	
Air Entraining Admixture (4103)	Quality	AB 403												
Water Reducing Admix. (4103)	Quality	AB 403	C.G.					-						
Retarding Admixture (4103)	Quality	AB 403												
Joint Sealer (4136.02)	Lab Tested	436.01, 436.02,436.03												
Backer Rod (4136.02)	Lab Tested	AB 436.04											5	
Mixing Water (4102)	Lab Tested							V	RCE/ CONTR	1/ source	1 pint	CTRL		Not required for potable water from municipal supply
AS-Approved Sou ASD-Approved Sh S&T-Sampling & T	nop Drawing) C	Cert A-Type A Cert C-Type C Cert D-Type D	Certification		DN CT	CE-Resident ME-District M RL-Central	Materials En Materials (Project Eng	gineer	V-'	-Independent / Verification	Assurance

NOTE: RCE/CONTR indicates that the contractor shall assist in the sampling at the direction of and witnessed by the project engineer.

PORTLAND CEMENT CONCRETE PAVEMENT, PAVEMENT WIDENING, BASE WIDENING

CURB & GUTTER, & PAVED SHOULDERS

October 16, 2007 Supersedes April 17, 2007

Section 2122, 2201, 2213, 2301, 2302, 2310, SS-01046

Matls. IM 204 Appendix E (US) Units

MATERIAL OR CONSTRUCTION	TESTS	METHO ACCEPT	ANCE		QU	ALITY CONTRO	DL	_			INDEPENDENT		_		REMARKS
ITEM		& RELATE		SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
SOURCE INSPECT	TION														
Steel Reinforcement (4151)															1.
Dowels	Quality	AS	451												
Tie Bars	Quality	AS	451									1			
General Use	Quality	AS	451										1		
PLANT INSPECTIO	ON						-						1		
Aggregates-Fine (4110/4111)	Grad * QMC	302 306 336		CONTR	1/1500cy	IM 301	CONTR	800240	V V	DME RCE CONTR	1/100,000 sy, sample 1/day, test 1 st day + 2/lot	IM 301 IM 301	DME RCE/ DME		See Notes See IM 213
	Grad * Non-QMC	302 306 336		CONTR	1/day	IM 301	CONTR		IA V	DME RCE/ CONTR	1/100,000 sy, sample 1/day, test 1 st day + 1/lot	IM 301 IM 301	DME RCE/ DME		
	Moist	308, 527		CONTR	1/half day	1000 gm	CONTR]							Not applicable with probe
	Sp. Gr.	307		CONTR	IM 527	1000 gm	CONTR]							
	Quality	AS	209				1946							1.5.5.13	
AS-Approved Sourc ASD-Approved Sho S&T-Sampling & Te	p Drawing		Cert C-	Type A Cert Type C Cert Type D Cert	ification		DME-Distr	ict Materials tral Materia	s Engineer	gineer/Project	Engineer	V	-Verificati		ince nent Concre

* A system approach to independent assurance may be applied, at the discretion of the DME.

NOTE: When Certified Plant Inspection is not provided, the engineer is responsible for performing quality control sampling and testing.

NOTE: RCE/CONTR indicates that the contractor shall assist in the sampling at the direction of and witnessed by the project engineer.

PORTLAND CEMENT CONCRETE PAVEMENT, PAVEMENT WIDENING, BASE WIDENING

October 16, 2007 Supersedes April 17, 2007 CURB & GUTTER, & PAVED SHOULDERS

Section 2122, 2201, 2213, 2301, 2302, 2310, SS-01046

Matls. IM 204 Appendix E (US) Units

MATERIAL OR	TESTS		HOD OF		QUAL	ITY CONTR	OL		-	1	NDEPENDENT AS & VERIFICATI			_	REMARKS
ITEM		RELA	& TED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE	FREQ.	SAMP. SIZE	TEST BY	REPORT	
PLANT INSPECTI	ON									Sec.			2		
Aggregates- Coarse (4115), Intermediate	Grad * QMC	302 306 336		CONTR	QMC 1/1500 cy	IM 301	CONTR	800240	IA V	DME RCE/ CONTR	1/100,000 sy Sample 1/day,test 1 st day+2/lot	IM 301 IM 301	DME RCE/ DME		See Notes
	Grad * Non- QMC	302 306 336		CONTR	1/day	IM 301	CONTR		IA V	DME RCE/ CONTR	1/100,000 sy, sample 1/day, test 1 st day + 1/lot	IM 301 IM 301	DME RCE/ DME		
	Moist	308		CONTR	1/half day	IM 301	CONTR								
	Sp. Gr.	307		CONTR	IM 527	IM 301	CONTR					1		-	
	Quality	AS	209	1.1.1					V	DME	1/100,000 sy	50 lb	CTRL		
Portland Cement (4101)	Quality	AS	Cert D		Each Load			1 1	V	DME	1/100,000 sy	15 lb	CTRL		
(Cement Yield			CONTR	1/10,000 cy		CONTR	820912				1.12			1
Fly Ash	Quality	AS	Cert D		Each Load		1	800240	V	DME	1/100,000 sy	15 lb	CTRL		
GGBFS(Ground Granulated Blast Furnace Slag)	Quality	AS	Cert		Each Load				V	DME	1/100,000 sy	15 lb	CTRL		
Air Admixture	Quality	AS	403						V	DME	1/batch	1 pint	CTRL	1	Sample
Water Reducer	Quality	AS	403						V	DME	1/batch	1 pint	CTRL	1	batches not previously
Retarding Admixture	Quality	AS	403						V	DME	1/batch	1 pint	CTRL		reported or required by DME
AS-Approved Sour ASD-Approved Sh S&T-Sampling & T	op Drawing		C	ert C-Type C	Certification Certification Certification		DMI	-Resident Co E-District Mat RL-Central Ma NTR-Contract	erials Eng aterials Off	ineer	oject Engineer		V-Verifica	endent Assur ation ality Manage	

* A system approach to independent assurance may be applied, at the discretion of the DME.

NOTE: When Certified Plant Inspection is not provided, the engineer is responsible for performing quality control sampling and testing.

NOTE: Quality samples not required when mix quantity is less than 2000 sq. yds., except for curing compound.

NOTE: RCE/CONTR indicates that the contractor shall assist in the sampling at the direction of and witnessed by the project engineer.

PORTLAND CEMENT CONCRETE PAVEMENT, PAVEMENT WIDENING, BASE WIDENING

CURB & GUTTER, & PAVED SHOULDERS

October 16, 2007 Supersedes April 17, 2007

Section 2122, 2201, 2213, 2301, 2302, 2310, SS-01046

Matls. IM 204 Appendix E (US) Units

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE		QUAL		ROL				NDEPENDENT A		E	_	REMARKS
ITEM		& RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPT.	S&T TYPE	SAMP. BY	FREQ.	SAMPLE	TEST	REPT.	
GRADE INSPECT	ION						2							
Chloride Solution	Concentration	373	RCE	1/day						4				
Steel Reinforcement:														
Dowels	Quality	AS 451.03B						V	DME	1/District/Yr	2 ft	CTRL		
Dowel Basket Assembly	Quality	AS 451 Cert D 451.03B]							
Tie Bars	Quality	AS 451						V	DME	1/District/Yr	2 ft	CTRL		
General Use	Quality	AS 451						V	DME	1/District/Yr	48 in	CTRL		
Curing Compound	Quality	Tested 4105						V	DME	1/batch	1/qt	CTRL		Sample batches not previously reported or as required by DME
Plastic Concrete	Air	318 327	QMC CONTR	QMC only 2301.04C 1/350 cy		QMC CONTR	E115	IA V	DME RCE	1/100,000 sy 2301.04C 1/700 cy, 1/100 cy for transit mixer		DME RCE		Min. 1 test/pour
	Slump	317				1.		V	RCE	1/700 cy, min		RCE		For hand finish or
	Grade Yield		RCE	1/1000 cy		RCE				1/pour				fixed form only
	Beams**	316, 327, 328	RCE	2/day		RCE	E115	-					-	
Hardened Concrete	Thickness*	346, 347						IA V	DME RCE/ CONTR	1/2000 sy	10%	DME RCE		
	Smoothness	341 Cert. Test Rept.	CONTR		100%	CONTR		V	DME	1.2	10%	DME		
AS-Approved Sour ASD-Approved Sho S&T-Sampling & To	op Drawing	Cert C-T	ype A Certif ype C Certif ype D Certif	fication		RCE-Resid DME-Distri CTRL-Cen CONTR-Co	ct Material tral Materia	s Engineer		ect Engineer		IA-Indeper V-Verificat QMC-Qua	ion	ement Concrete

*IA thickness cores sent to Central Lab for additional project information testing (Interstate and Primary only.)

**None required when maturity is used. Quality samples not required when mix quantity is less than 2000 sq. yds., except for curing compound.

NOTE: RCE/CONTR indicates that the contractor shall assist in the sampling at the direction of and witnessed by the project engineer. NOTE: Form #E115 available from the Office of Construction.

October 21, 2008 Supersedes April 15, 2008

HOT MIX ASPHALT

Section 2303, 2213, & 2114

Matls. IM 204 Appendix F (US) Units

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE		QL	JALITY CONTRO	DL				INDEPENDENT & VERIFICA		,		REMARKS
ITEM		& RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
SOURCE INSPECTIO	N		5.000							1				
Aggregates-Coarse (4127)		AS 209								1				
Aggregates-Fine (4127)		AS 209				-		-		(*******		0		
Hydrated Lime (4127)		AS 491.04	1. J. I.					-						
Asphalt Binder		AS 437	1.1.1										-	
Emulsions & Cutbacks		AS 437					1							· · · · · · · ·
Release Agent		AB 491.15			-									
PLANT INSPECTION					-		-			1		-		
Aggregates (2303)	Quality							V	DME	1/20,000 Ton	50 lb.	CTRL		
Combined Aggregate (4127)	Gradation		RCE/ CONTR	1/lot	IM 301	CONTR		V IA	RCE/ CONTR	Sample 1/day, Test 1st day + 20% Systems Approach*	IM 301	DME/ RCE	IM 216 IM 216	
	Moisture		CONTR	1 / half day	1000 gm	CONTR								Dryer Drum Plants Only
								-						
1000													-	
AS-Approved Sou ASD-Approved Sh S&T-Sampling & 7	nop Drawing	1	Cert A-Type Cert C-Type Cert D-Type	C Certifica	ation			ct Materi tral Mate	als Engineer rials Office	ineer/Project En	gineer		IA-Inde V-Verifi	pendent Assurance cation

"A project approach may be applied at the discretion of the DME at the frequency 1/project.

NOTE: RCE/CONTR indicates that the Contractor shall assist in the sampling at the direction of and witnessed by the Project Engineer.

HOT MIX ASPHALT

Section 2303, 2213, & 2114

Matls. IM 204 Appendix F (US) Units

October 21, 2008 Supersedes April 15, 2008

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE		QUA	LITY CONTRO	DL				INDEPENDENT AS & VERIFICATI				REMARKS
ITEM		& RELATED IMs	SAMPLE	FREQ.	SAMPLE	TEST BY	REPORT	S&T TYPE	SAMPLE	FREQ.	SAMPLE	TEST	REPORT	
PLANT INSPECTION	1											-	-	
Mineral Filler								V	DME	1/project	5 kg	DME	821278	
Asphalt Binder	DSR Quality	AS Cert D						V V IA	RCE/ CONTR DME	Sample 1/day Test 1 st 3days + 1/week 1/20,000 T of Mix Systems Approach	4 oz tin 1 qt	DME CTRL		Log all shipments
Cutback		AS 329					-							Log all shipments
Emulsion	Residue	AS 360						V	RCE	1/project	1 qt	DME		Plastic bottle required
GRADE INSPECTION	1				100	-							0	
Uncompacted Mixture:	Lab Density & Lab Voids	321, 350 325G	RCE/ CONTR	As per 2303	30 lb	CONTR		V IA	RCE/ CONTR	As per 2303 Test 1/day Systems Approach	30 lb	DME		
Compacted Mixture	Density, Thickness & Voids	320, 321 337						V	RCE/ CONTR DME	Lot 1 lot/project*	7/lot	RCE DME		
	Smoothness	341	CONTR	100%	100%	CONTR		V	DME	10%	1	DME	10000	1.12
AS-Approved Source ASD-Approved Sho S&T-Sampling & Te	p Drawing	C	ert C-Type C	Certification Certification Certification			DME-Dist	rict Mate	rials Enginee erials Office	ngineer/Project Engi er	neer		IA-Indeper V-Verificat	ident Assurance

* A system approach may be applied at the discretion of the DME. <u>NOTE</u>: A Verification sample for asphalt binder quality and aggregate quality not required under 2000 tons of mix. <u>NOTE</u>: RCE/CONTR indicates that the Contractor shall assist in the sampling at the direction of and witnessed by the Project Engineer.

STRUCTURAL CONCRETE, REINFORCEMENT, FOUNDATIONS & SUBSTRUCTURES, CONCRETE STRUCTURES, CONCRETE FLOORS, & CONCRETE BOX,

October 16, 2007 Supersedes April 17, 2007 **ARCH & CIRCULAR CULVERTS**

Sections 2403, 2404, 2405, 2406, 2412, & 2415

Matls. IM 204 Appendix H (US) Units

MATERIAL OR CONSTRUCTION ITEM	TESTS	METHOD OF ACCEPTANCE &		QI	JALITY CONTR	ROL					ENT ASSURA			REMARKS
		RELATED IMs	SAMPLE BY	FREQ.	SAMPLE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE	TEST BY	REPORT	
SOURCE INSPEC	TION													
Aggregate-Fine (4110)		AS 209												
Aggregate-Coarse (4115)		AS 209												
Granular Backfill (4133)		AS 209												
Portland Cement (4101)	Quality	AS 401				(1			
Fly Ash (4108)	Quality	AS 491.17			1		S				1			
Mixing Water (4102)	Quality			2				V	RCE	1/project	1L	CTRL	731	Not required for potable water from Municipal Supply
GGBFS (Ground Granulated Blast Furnace Slag)	Quality	AS 491.14			-									manepu suppry
Air Entraining Admixture	Quality	AS 403												
Retarding Admixture	Quality	AS 403				-							1	
Water reducing Admixture	Quality	AS 403												Sample batches not previously reported or as required by DME
Curing Compound, White (4105)	Lab Tested	AS 405						V	DME	1/batch	1qt	CTRL		
Curing Compound, Clear (4105)		AS 405.07												
AS-Approved Sour ASD-Approved Sho S&T-Sampling & T	op Drawing		Cert A-Type Cert C-Type Cert D-Type	C Certifica	ation		RCE-Reside DME-District CTRL-Centr CONTR-Cor	t Material al Materia	s Engineer	ineer/Proje	ct Engineer			dependent Assurancerification

NOTE: RCE/CONTR indicates that the Contractor shall assist in the sampling at the direction of and witnessed by the Project Engineer.

STRUCTURAL CONCRETE, REINFORCEMENT, FOUNDATIONS & SUBSTRUCTURES,

CONCRETE STRUCTURES, CONCRETE FLOORS, & CONCRETE BOX,

October 16, 2007 Supersedes April 17, 2007 ARCH & CIRCULAR CULVERTS Sections 2403, 2404, 2405, 2406, 2412, & 2415 Matls. IM 204 Appendix H (US) Units

MATERIAL OR CONSTRUCTION ITEM	TESTS	METHOD OF ACCEPTANCE &		QL	IALITY CONT	ROL			IN		ICATION S&T	NCE		REMARKS
TIEM		RELATED IMS	SAMPLE BY	FREQ.	SAMPLE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
SOURCE INSPEC	CTION													
Pre-formed Joint Sealer (4136)	Lab-Tested	AS 436.02 436.05										1.1		
Reinforcing Steel Bars (4151)	Quality	AS 451				-								
Steel Pile (4167)	Quality	467											-	
Concrete Pile (4166)	Quality	AS 570			-	-		-						
Timber Pile (4165)	Quality	Cert A 462 AS												
Timber (4162) & Lumber (4163		Treated-Cert A 462 AS												
Concrete Anchors	Quality	AS 453.09												
Epoxy Grout	Quality	AS 491.11										-		
Concrete Sealer	Quality	AS 491.12								1				
Subdrain Pipe (4143)	Quality	AS 443, 448												
Neoprene Bearing Pads (4195)		AS 495.03								-		2		
Bronze Bearing Plates (4190.03)		AS D/Cert A												
AS-Approved Sour ASD-Approved Sh S&T-Sampling & T	op Drawing	C	ert A-Type A ert C-Type C ert D-Type D	Certificati	on		RCE-Residen DME-District I CTRL-Central CONTR-Cont	Materials E Materials	Engineer	er/Projec	t Engineer		IA-Inde V-Verifi	pendent Assurand cation

NOTE: RCE/CONTR indicates that the Contractor shall assist in the sampling at the direction of and witnessed by the Project Engineer.

STRUCTURAL CONCRETE, REINFORCEMENT, FOUNDATIONS & SUBSTRUCTURES, CONCRETE STRUCTURES, CONCRETE FLOORS, & CONCRETE BOX,

October 16, 2007 Supersedes April 17, 2007 **ARCH & CIRCULAR CULVERTS**

Sections 2403, 2404, 2405, 2406, 2412, & 2415

Matls. IM 204 Appendix H (US) Units

MATERIAL OR CONSTRUCTION ITEM	TESTS	METHOD OF ACCEPTANCE &	-	QL	JALITY CONTI	ROL	L		IN		ENT ASSURAN	ICE	2	REMARKS
TLW		RELATED IMs	SAMPLE BY	FREQ.	SAMPLE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
SOURCE INSPEC	CTION													
Steel Masonry Plate (4152)		ASD/Cert A												
Precast Units (2407)	Quality	AS 570												
Anchor Bolts (lighting, signing, handrail) (4153)	Lab Tested	ASD												
Structural Steel (4152)	Quality	Cert A												Monitor Sample According to plans or other instructions
Aluminum Bridge Rail & Anchor Assembly		ASD											_	
Conduit (Electrical) (4185.10)) Steel	110.00	AS				1					1.0		1.00	
Conduit (Plastic) (4185.10)	Lab Tested							V	DME	1/size	4'	CTRL		
Bentonite		Visual										-		
Flowable Mortar	Lab Tested	Approved 525, 375 Trial Mix										1		Tested by DME
AS-Approved Sou ASD-Approved Sh S&T-Sampling & 1	op Drawing	C	ert A-Type ert C-Type ert D-Type	C Certificat	ion		RCE-Reside DME-District CTRL-Centr CONTR-Cor	t Materials al Materials	Engineer	er/Projec	ct Engineer			dependent Assurance erification

NOTE: RCE/CONTR indicates that the Contractor shall assist in the sampling at the direction of and witnessed by the Project Engineer.

0

STRUCTURAL CONCRETE, REINFORCEMENT, FOUNDATIONS & SUBSTRUCTURES, CONCRETE STRUCTURES, CONCRETE FLOORS, & CONCRETE BOX,

October 16, 2007 Supersedes April 17, 2007 ARCH & CIRCULAR CULVERTS

Sections 2403, 2404, 2405, 2406, 2412, & 2415

Matls. IM 204 Appendix H (US) Units

MATERIAL OR CONSTRUCTION ITEM	TESTS	METHOD OF ACCEPTANCE		Q	UALITY CON	TROL				INDEPENDENT A & VERIFICAT				REMARKS
TIEM		RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
PLANT INSPECT	LION							2 × 1						
Aggregate- Fine (4110)	Gradation Deck	302, 306 336	CONTR	IM 528	IM 301	CONTR	800240	IA V	DME RCE/ CONTR	1/1000 cy Sample & Test 1/deck/wk	IM 301 IM 301	DME RCE		May Use System App.
	Gradation All other		CONTR	IM 528	IM 301	CONTR		IA V	DME RCE/ CONTR	1-1000 cy Sample 1/wk Test 1st day +20%	IM 301 IM 301	RCE		May Use System App.
	Moisture	308, 528	CONTR	1/lot	1000 gm	CONTR	1							See IM 528 if Moisture
	Sp. Gr.	307	CONTR	IM 528	1000 gm	CONTR		-			-			Probe is used
	Quality	AS 209												
Aggregate- Coarse (4115)	Gradation Deck	302, 306 336	CONTR	IM 528	IM 301	CONTR		IA V	DME RCE/ CONTR	1/1000 cy Sample & Test 1/deck/wk	IM 301 IM 301	DME RCE		May Use System App.
	Gradation All other		CONTR	IM 528	IM 301	CONTR		AI V	DME RCE/ CONTR	1/1000 cy Sample 1/wk Test 1 st day +20%	IM 301 IM 301	DME RCE	-	May Use System App.
	Moisture	308, 528	CONTR	1/lot	2000gm	CONTR								1.5
	Sp. Gr.	307	CONTR	IM 528	2000gm	CONTR				1				
	Quality	AS 209						V	DME	1/1000 cy	50 lb	CTR		(1)
Portland Cement	w/c ratio	528	CONTR	1/pour		CONTR						L		
	Quality	AS Cert D						V	DME	1/1000 cy	15 lb	CTR		(1)
AS-Approved Sou ASD-Approved Sh S&T-Sampling & 7	op Drawing	С	ert C-Type	A Certificat C Certifica D Certifica	tion		RCE-Reside DME-District CTRL-Centra CONTR-Con	Materials al Materials	Engineer	I eer/Project Eng	ineer		IA-Inde V-Verifi	pendent Assurance cation

(1) These verification samples for concrete materials not required when mix quantity is less than 50 cu. yd.

NOTE: RCE/CONTR indicates that the Contractor shall assist in the sampling at the direction of and witnessed by the Project Engineer.

STRUCTURAL CONCRETE, REINFORCEMENT, FOUNDATIONS & SUBSTRUCTURES, CONCRETE STRUCTURES, CONCRETE FLOORS, & CONCRETE BOX, ARCH & CIRCULAR CULVERTS

October 16, 2007 Supersedes April 17, 2007

Sections 2403, 2404, 2405, 2406, 2412, & 2415

Matls. IM 204 Appendix H (US) Units

MATERIAL OR CONSTRUCTION	TESTS		METHOD OF ACCEPTANCE		QUA	LITY CONTR	OL				INDEPENDENT & VERIFICA		E		REMARKS
ITEM			& RELATED IMs	SAMPLE	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
PLANT INSPECTION															
Fly Ash	Quality	AS	Cert D		Each Load			800240				10.00			
GGBFS(Ground Granulated Blast Furnace Slag)	Quality	AS	Cert D		Each Load										
Air-Entraining Admixture (4103)		AS	403						V	RCE	1/batch	0.5 L	CTRL	1	(1) Sample lots not
Retarding Admixture		AS	403			1.4			V	RCE	1/batch	0.5 L	CTRL		previously reported of as required by DME
Water Reducing Admixture (4103)		AS	403						V	RCE	1/batch	0.5 L	CTRL		
GRADE INSPECTION			-							-					
Plastic Concrete	Air Content		316, 327		1			E145*	IA V	DME RCE	1/1000 cy 1/30 cy	1.	DME RCE		DME may adjust
	Slump		317, 327						IA V	DME RCE	1/1000 cy 1/30 cy		Witness Only RCE		DME may adjust
	Beams		316, 327, 328			6				RCE	2/placement		RCE		If required per 2403.18 and 2403.19
	Cylinders					1				DME	3/project	11	DME		Primary Projects Only (Information only)
AS-Approved Sou ASD-Approved Sh S&T-Sampling & 1	proved Source pproved Shop Drawing			Cert C-Type	A Certificatio C Certificatio D Certificatio	n		RCE-Reside DME-Distric CTRL-Centr CONTR-Cor	t Materials al Materials	Engineer	er/Project En	gineer		IA-Indep V-Verific	endent Assurance

(1) These verification samples for concrete materials not required when mix quantity is less than 50 cu. yd.

NOTE: RCE/CONTR indicates that the Contractor shall assist in the sampling at the direction of and witnessed by the Project Engineer.

*Available from the Office of Construction.

STRUCTURAL CONCRETE, REINFORCEMENT, FOUNDATIONS & SUBSTRUCTURES, CONCRETE STRUCTURES, CONCRETE FLOORS, & CONCRETE BOX,

October 16, 2007 Supersedes April 17, 2007

ARCH & CIRCULAR CULVERTS

Sections 2403, 2404, 2405, 2406, 2412, & 2415

Matls. IM 204 Appendix H (US) Units

MATERIAL OR CONSTRUCTION	TESTS		THOD OF CEPTANCE		QU	ALITY CONT	ROL					IT ASSURANC	E		REMARKS
ITEM		REL	& ATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TES BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE	TEST BY	REPORT	
GRADE INSPECTION	N														
Reinforcing Steel (4151)	Quality	AS	Cert A		Each Shipment	1		Field Book	V	DME	IM 451	6 ft	CTRL		
Reinforcing Steel Epoxy Coated (4151)	Quality	AS	Cert A	1.0	Each Shipment			Field Book	V	DME	1 bar	6 ft	CTRL	1.20	Will be acceptance tested for coating
Steel Pile (4167)	Quality	AS	Cert A		Each Heat			Field Book		DME	IM 467		CTRL		
Timber Pile (4165)	Quality	AS	462 Cert A						V	DME	IM 467		CTRL		No grade requirement Charge numbers on butt end.
Anchor Bolts (lighting, signing, handrail)	Lab Tested	ASD							V	DME	1/project	1 bolt w/nut & washer	CTRL		Sample only if not source inspected
Steel Masonry Plates (4152)		ASD	Cert A		Each Shipment			Field Book							Approved by Materials Department
Bronze Bearing Plates (4190.03)	Lab Tested			10.0					V	DME	1/project	1 only	CTRL		Sample only if not source inspected
Neoprene Bearing Pads (4195)		AS	495.03		Each Shipment			820905 .							
Alum. Bridge Rail & Anchor Assembly		ASD			Each Shipment	1		Field Book							Approved By Materials Dept.
Drains (Std Steel Pipe)(as per plan)	Dimensions Galvanized	ASD	Visual 332						V	DME	1/project		DME		
AS-Approved Sou ASD-Approved Sh S&T-Sampling & T	op Drawing		(Cert C-Type	A Certification C Certification D Certification	on		RCE-Residen DME-District I CTRL-Central CONTR-Contr	Materials E Materials	Ingineer	er/Project Er	gineer		IA-Indep V-Verific	endent Assurance ation

NOTE: RCE/CONTR indicates that the Contractor shall assist in the sampling at the direction of and witnessed by the Project Engineer.

STRUCTURAL CONCRETE, REINFORCEMENT, FOUNDATIONS & SUBSTRUCTURES, CONCRETE STRUCTURES, CONCRETE FLOORS, & CONCRETE BOX, ARCH & CIRCULAR CULVERTS

October 16, 2007 Supersedes April 17, 2007

Sections 2403, 2404, 2405, 2406, 2412, & 2415

Matls. IM 204 Appendix H (US) Units

MATERIAL OR CONSTRUCTION ITEM	TESTS	METHOD OF ACCEPTANCE &		QU.	ALITY CONTR	ROL	_			INDEPENDEN & VERIFIC	T ASSURANCE	E		REMARKS
ii Liii		RELATED IMs	SAMPLE BY	FREQ.	SAMPLE	TEST BY	REPORT	S&T TYPE	SAMPLE	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
GRADE INSPEC	TION		1											
Timber (4162) & Lumber (4163)	Quality	AS 462 Treated-Cert A						-						
Subdrain Pipe (4143)	Quality	AS Cert D 443, 448	1	Each Shipment										
Flowable Mortar (2506)	Flow Test	375	RCE	As needed for Project Control		RCE	830211		1.1					Mix Design approval by DME
Bentonite	Flow Test	Visual 375				RCE								
Smoothness (2317)	Profilometer	Cert. Test Report 341	CONTR	Each Project	Each Wheelpath	CONTR	821301	V		10%	DME			
AS-Approved Sou ASD-Approved Sh S&T-Sampling &	nop Drawing	C	ert C-Type	A Certification C Certification D Certification	on		RCE-Residen DME-District CTRL-Centra CONTR-Cont	Materials I Materials	Engineer	eer/Project Er	ngineer		IA-Inde V-Verifi	bendent Assurance cation

NOTE: RCE/CONTR indicates that the Contractor shall assist in the sampling at the direction of and witnessed by the Project Engineer.

CONCRETE DRILLED SHAFT FOUNDATIONS

SS-01032

October 17, 2006 Supersedes October 18, 2005

MATERIAL OR CONSTRUCTION ITEM	TESTS	METHOD OF ACCEPTANCE &		QU	ALITY CONTR	OL				EPENDENT & VERIFIC/	ASSURANC	E		REMARKS
IT LW		RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
SOURCE INSPECT	ION										-			
Aggregate-Fine (4110)		AS 209								-				
Aggregate-Coarse (4115)		AS 209												
Portland Cement (4101)	Quality	AS 401		0 = 2			()							
Fly Ash (4108)	Quality	AS 491.17									100			
Mixing Water (4102)	Quality								DME	1/project	1 quart	CTRL	731	Not required for potable water from Municipal Supply
Air Entraining Admixture	Quality	AS 403											-	
Retarding Admixture	Quality	AS 403			1							1		
Reinforcing Steel Bars (4151)	Quality	AS 451										-		
Permanent Casing	Quality	Cert A												According to plans or other instructions
Drilling Slurry		Visual DS-01038								0		1		1
AS-Approved Source ASD-Approved Shop S&T-Sampling & Tes	Drawing	Cert C	A-Type A Ce C-Type C Ce D-Type D Ce	ertification			RCE-Residen DME-District CTRL-Centra CONTR-Cont	Materials E Materials	ingineer	r/Project E	ngineer		IA-Indepen V-Verification	dent Assurance

Quality samples not required when mix quantity is less than 50 cu. yd.

Matls. IM 204 Appendix I

CONCRETE DRILLED SHAFT FOUNDATIONS SS-01032

October 17, 2006 Supersedes October 18, 2005 Matls. IM 204 Appendix I

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE		QU	IALITY CONTR	OL				INDEPENDENT & VERIFICA	and the second se	E		REMARKS
ITEM		& RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
PLANT INSPECTIO	N	1										100		
Aggregate- Fine (4110)	Gradation	302, 306 336	CONTR	3/lot	IM 301	CONTR	800240	IA V	DME RCE/ CONTR	1/1000 cy 1st day+20%	IM 301 IM 301	DME RCE		System Approach Applicable
	Moisture	308, 528	CONTR	1/lot	1000 gm	CONTR								See IM 528 if Moisture Probe is used
	Sp. Gr.	307	CONTR	IM 528	1000 gm	CONTR								
	Quality	AS 209	1.2.2.1				1			1				
Aggregate- Coarse (4115)	Gradation .	302, 306 336	CONTR	3/lot	IM 301	CONTR		IA	DME RCE/ CONTR	1/1000 cy 1st day+20%	IM 301 IM 301	DME RCE		System Approach Applicable
	Moisture	308, 528	CONTR	1/lot	2000gm	CONTR	1			1				
	Sp. Gr.	307	CONTR	IM 528	2000gm	CONTR	1.				1.2			
	Quality	AS 209					1	V	DME	1/1000 cy	50 lb	CTRL		
Portland Cement	w/c ratio	528	CONTR	1/pour		CONTR	1				-			
	Quality	AS Cert D					1.	V	DME	1/1000 cy	15.lb	CTRL		
Fly Ash	Quality	AS Cert D		Each Load			800240							
Air-Entraining Admixture (4103)		AS 403						V	DME	1/batch	1 pint	CTRL		Sample lots not previously reported or as required by DME
Retarding Admixture		AS 403						V	DME	1/batch	1 pint	CTRL		Sample lots not previously reported or as required by DME
AS-Approved Source ASD-Approved Shop S&T-Sampling & Test	Drawing		Cert A-Typ Cert C-Typ Cert D-Typ	e C Certific	cation			ict Materia tral Mater	als Enginee	gineer/Project r	Engineer		IA-Indeper V-Verificat	ion

Quality samples not required when mix quantity is less than 50 cu. yd.

CONCRETE DRILLED SHAFT FOUNDATIONS

SS-01032

October 17, 2006 Supersedes October 18, 2005

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE		QU	ALITY CONTR	OL		_	1		IT ASSURAN	CE		REMARKS
ITEM		& RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE	TEST BY	REPORT	
GRADE INSPECTION														
Plastic Concrete	Air Content	316, 327	-				E145*	IA	RCE	1/30 cy		RCE		DME may adjust
	Slump	317, 327	RCE	1/30 cy		RCE		IA	DME	1/30 cy		RCE		DME may adjust
	Cylinders								DME	3/project		DME		Primary Projects Only (Information only)
Reinforcing Steel (4151)	Quality	AS Cert A		Each Shipment			Field Book						1	
Metal Access Pipe		Visual					1 E							
Drilling Slurry	Density, Viscosity, pH, Sand Content	387	CONTR	1/2 hours		CONTR								1/4 hours if consistent
Crosshole Sonic Log Test		SS-010 <u>32</u>	CONTR	1/shaft		CONTR	Report, Analysis, Inter- pretation							
S-Approved Source SD-Approved Shop &T-Sampling & Test	pproved Shop Drawing C			fication fication fication		DME-Dist CTRL-Ce	ident Const rict Materia ntral Materi Contractor	Is Engine		ect Engine	er		-Independer Verification	nt Assurance

Quality samples not required when mix quantity is less than 50 cu. yd.

*Available from the Office of Construction.

Matls. IM 204 Appendix I

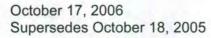
April 15, 2008 Supersedes October 17, 2006

COLD-IN-PLACE RECYCLED ASPHALT PAVEMENT

Section 2318, DS-01076

Matls. IM 204 Appendix K (US) Units

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE		Q	JALITY CONT	ROL		_		& VERIFICA	ASSURANCE			REMARKS
ITEM		& RELATED IMs	SAMPLE BY	FREQ.	SAMPLE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE	TEST BY	REPORT	
SOURCE INSPECTIO	ON										1.1.1			
Asphalt Stabilizing Agent	Quality	AS 4	37											
				1										
	1.000		1.1											
	1		112											
GRADE INSPECTION	N	1	-	1	-						-		1	
RAP (2318.02)	Max Size						1	V	RCE	1st day + 1/week	10 lb	RCE	_	
Stabilizing Agent (Engr. Emulsion)	Quality Residue	Cert D 3	60	1		1	-	V	RCE/CONTR RCE/CONTR	1/project 1/day (2)	1 qt 1 gt	CTRL DME		Must use plastic bottle for emulsion
Stabilizing Agent (Foamed Asphalt)	Quality DSR	Cert D			2		1	V	RCE/CONTR RCE/CONTR	1/project 1/day (2)	1 qt 1 qt	CTRL DME		
Stabilizing Agent (Std. Emulsion)	Quality Residue	Cert D 3	60					V	RCE	1/day(2)	1 qt	DME		Must use plastic bottle for emulsion
Uncompacted Mixture	Moisture Density	5	04 04		1			V	RCE	1/lot	40 lb	DME		Sealed Container
Compacted Mixture	Moisture(1) Density	5	04 CONTR 04 CONTR	10/lot 10/lot		CONTR CONTR								Witnessed by RCE
Smoothness	Jonny	DS-01076 only												
AS-Approved Source ASD-Approved Shop S&T-Sampling & Tes	Drawing	Cert A-Type A Cer Cert C-Type C Cer Cert D-Type D Cer	tification		DME-Distrie	ct Materials E ral Materials	tion Engineer/P Engineer Office	roject Engi	ineer	IA-Indepen V-Verificati	dent Assurance ion	j ce		1


See IM 504 for Day 1 moisture correction factor.
 The sample from the first day and 1/week shall be forwarded to the District Laboratory for testing. The other samples shall be retained for submission in the event of a failing test result.

GRANULAR SURFACING/DRIVEWAY SURFACING

Sections 2312 & 2315

Matls. IM 204 Appendix L (US) Units

MATERIAL OR CONSTRUCTION	TESTS		HOD OF		-	QUALITY CONT	ROL					ENDENT ASSU			REMARKS
ITEM		RELA	& ATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
SOURCE INSPECTIO	N									-					
Class C Gravel (4120.03)	Gradation Quality	AS	209											-	
Class A Crushed Stone (4120.04)	Gradation Quality	AS	209				1								
Class B Crushed Stone (4120.05)	Gradation Quality	AS	209				_	1.51							
Class D Crushed Stone (4120.06)	Gradation Quality	AS	209												
Aggregate for Type B, AC or cold laid Bituminous Concrete (for driveways only)	Gradation Quality	AS	209												
Crushed Stone Base (For driveways only) (4122)	Gradation Quality	AS	209												
GRADE INSPECTION		-	-												
Dimensions	Thickness Width Cross Slope			RCE	3/mi.			Field Book							
							-			1					
										-					
S-Approved Source SD-Approved Shop &T-Sampling & Tes	Drawing		Cert	A-Type A C-Type C D-Type D	Certificat	ion		RCE-Residen DME-District M CTRL-Central CONTR-Contr	Materials E Materials	Engineer	er/Projec	t Engineer		IA-Indepe V-Verifica	endent Assurance ation

April 15, 2008 Supersedes October 16, 2007

CONCRETE BRIDGE FLOOR REPAIR & OVERLAY & SURFACING

Matls. IM 204 Appendix M

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE		(QUALITY CONT	ROL			IN		TASSURAN	CE		REMARKS
ITEM	_	& RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
SOURCE INSPECTIO	N										1000			
Aggregates-Fine (4110)		AS 209						1						1.2
Aggregates-Coarse (4115)		AS 209												
Portland Cement (4101)	Quality	AS 401												
Mixing Water (4102)	Quality	Lab Tested						V	RCE	1/source	1 qt.	CTRL		Not needed for potable Municipal Water
Air Entraining Admixture (4103)	Quality	AS 403												
Water Reducing Admixture (4103)	Quality	AS 403					1							
Retarding Admixture (4103)	1	AS 403					1.9		11	1				
Curing Compound (4105)	Lab Tested	405			-			V	DME	1/batch	1 pt	CTRL		Sample lots not previously reported
PLANT INSPECTION	8.8.8													
Aggregate-Fine (4110)		AS Cert A												
Aggregate-Coarse (4115)	Quality	AS Cert A						V	DME	1/project	50 lb	CTRL		DME may adjust frequency
Portland Cement (4101)	Quality	AS Cert D						۷.	DME	1/project	15 lb	CTRL		
Air Entraining Admixture (4103)		AS 403						V	RCE	Each batch	1 pt	CTRL		Sample if not previously reported
Water Reducing Admixture (4103)		AS 403						V	RCE	Each batch	1 pt	CTRL		Sample if not previously reported
Retarding Admixture (4103)		AS 403						V	RCE	Each batch	1 pt	CTRL		Sample if not previously reported
AS-Approved Source ASD-Approved Sho S&T-Sampling & Te	p Drawing		Cert A-Typ Cert C-Typ Cert D-Typ	e C Certifi	cation		RCE-Reside DME-Distric CTRL-Centr CONTR-Cor	t Materials al Materials	Engineer	eer/Project	Engineer			dependent Assurance arification

Section 2413

CONCRETE BRIDGE FLOOR REPAIR & OVERLAY & SURFACING

Matls. IM 204 Appendix M

April 15, 2008 Supersedes October 16, 2007

Section 2413

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE		(QUALITY CONT	ROL					ENT ASSURA			REMARKS
ITEM		& RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	10.5
GRADE INSPECTIO	N													
Plastic Concrete (2413)	Air	318, 327						V	RCE	1/100 sy		RCE		Freq. 1/load for ready mix
	Slump	317, 327						V	RCE	1/100 sy		RCE		Freq. 1/load for ready mix
	Density	358						V	RCE	See Note		RCE		For Class O PCC only.(1)
	Thickness					1		1.	RCE	3/50 sy		RCE		
	Cylinders			67				V	DME	3/project		DME		Primary Projects only (Information Only)
Concrete Sealer (2413.09)	Quality	AS 491.12					1		1		1		-	
-						1							-	
						-				_				
	3.50			3-	1.0		1						1	
S-Approved Source SD-Approved Sho &T-Sampling & Te	p Drawing		Cert A-Typ Cert C-Typ Cert D-Typ	be C Certifi	cation		RCE-Resider DME-District CTRL-Centra CONTR-Con	Materials E Materials	Engineer	er/Project I	Engineer		IA-Inde V-Verifi	Dendent Assurance cation

(1) Nuclear density testing frequency for each placement shall be one test within 5 feet (1500 mm) of the beginning and end of the placement and additional tests shall be equally spaced a maximum of 100 feet (30 000 mm) throughout the length of the placement. Each placement shall have a minimum of three nuclear density tests.

April 15, 2008 Supersedes October 17, 2006 SURFACE TREATMENT (Seal Coat, Microsurfacing, Slurry, Joint Repair, Crack Filling, Fog Seal)Matls. IM 204 Section 2307, 2319, 2540, 2544, 2306, 2308, SS-01055 Appendix P (US) Units

MATERIAL OR CONSTRUCTION ITEM	TESTS	METHOD OF ACCEPTANCE	QUALITY CONTROL						INDEPENDENT ASSURANCE & VERIFICATION S&T						
		& RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT		
SOURCE INSPECTI	ON														
Aggregates (4125)	Quality Gradation	AS 209					-							-	
Emulsions/ Cutbacks	Quality	AS 437							1						
Emulsion & Aggregate	Compatibility	349							DME	1/ source	1 qt & 10lb	DME/ CTRL		Seal Coat	
Emulsion & Aggregate	Mix Design													Slurry& Microsurfacing	
GRADE INSPECTIC Aggregate	Quality	301						V	DME	1/proj.	50 lb	CTRL		Seal Coat	
Emulsion	Gradation Quality Residue Compatibility	Cert D Cert D 323, 360 349						V V	RCE	1/20,000 gal 1≋ day+ 1/week	1 qt 1 qt & 10 Ib	DME DME	(2)	(1) Seal Coat	
Cutback	Quality Viscosity Anti-Strip	Cert D 323, 329 AS 323, 374													
AS-Approved Sou ASD-Approved Sh &T-Sampling & 1	rce op Drawing	Cert A- Cert C-	Type A Cert Type C Cert Type D Cert	ification		DME- CTRL	Resident Con District Materi -Central Mate	als Engine	eer	oject Engineer			dependent erification	Assurance	

Emulsion samples in plastic bottles only.

No samples required for joint repair, crack filling, and fog seal. Acceptance based on certification only. (1) Sample emulsion for full width placement seal coat, slurry, and microsurfacing only.

(2) Log all shipments

BASE REPAIR (2212), PAVEMENT REPAIR (PATCHES) Sections 2529 & 2530

October 21, 2008 Supersedes October 16, 2007

Matls. IM 204 Appendix T

MATERIAL OR CONSTRUCTION ITEM	TESTS	METHOD OF ACCEPTANCE				QUALITY CONT	ROL			REMARKS					
		R	& RELATED IMs		FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
SOURCE INSPE	CTION														
Aggregates Fine (4110)		AS	209			1				_					
Aggregates Coarse (4115)		AS	209								-				
Portland Cement (4101)	Quality	AS	401							=					
Fly Ash (4108)	Quality	AS	491.17						1.1						
GGBFS (Ground Granulated Blast Furnace Slag)	Quality	AS	491.14												
Curing Compound (4105)	Lab Tested		405												
Air Entraining Admixture (4103)	Quality	AS	403												
Granular Backfill	Gradation Quality	AS AS	CERT CERT				-					-			
Drain Tubing	Quality	AS	443				-								
Epoxy Grout		AS	491.11								-			1	
Joint Seal (4136.02)	Lab Tested	AS	436.01 436.02												
Backer Rod (4136.02)		AS	436.04												
Steel Reinforcing	Quality	AS	451												1-
S-Approved Source SD-Approved Sho &T-Sampling & Te	p Drawing		(Cert A-Type Cert C-Type Cert D-Type	e C Certifi	cation			rict Materia htral Mater	als Engineer		oject Engine	er	IA-Independ V-Verificatio	lent Assurance

October 21, 2008 Supersedes October 16, 2007

BASE REPAIR (2212), PAVEMENT REPAIR (PATCHES) Sections 2529 & 2530

MATERIAL OR CONSTRUCTION ITEM	TESTS		METHOD OI ACCEPTANC &		1	QUA	LITY CONTRO	DL			2	INDEPENDER & VERIFIC	NT ASSURAN CATION S&T	CE		REMARKS
TIEM .		3	RELATED IN	As	SAMPLE BY	FREQ.	SAMPLE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
PLANT INSPECT	ION															
Aggregates-Coarse (4115)	Grad	302	306	336	CONTR	1/lot	IM 301	CONTR		V	RCE/ CONTR	1st day +20%	IM 301	RCE	1	
	Moist			308	CONTR	1 / half day	1000 gm	CONTR		1						
	Sp. Gr.			307	CONTR	IM 527	1000 gm	CONTR			-					
	Quality	AS		209												
Aggregate- Fine (4110)	Gradation		3	02, 306 336	CONTR	1/lot	IM 301	CONTR	830211	V	RCE/ CONTR	1st day+ 20%	IM 301 IM 301	RCE		
	Moisture		3	08, 528	CONTR	1/lot	1000 gm	CONTR	830211							See IM 528 if Moisture Probe is used
	Sp. Gr.			307	CONTR	IM 528	1000 gm	CONTR	830211							
	Quality	AS		209					-							
Portland Cement (4101)	Quality	AS	(CERT D	5	Each Load				13		-				
Fly Ash	Quality	AS	(CERT D		Each Load		1								
Air Entraining Admixture		AS		403						V	DME	1/batch	1 pt	CTRL		Sample lots not previously
Water Reducing Admixture		AS		403	111					V	DME	1/batch	1 pt	CTRL		reported or as directed by DME
Retarding Admixture		AS		403			-			V	DME	1/batch	1 pt	CTRL		
AS-Approved Source ASD-Approved Sho S&T-Sampling & Te	p Drawing			CC	ert C-Type	A Certification C Certification D Certification Intractor	on		DME-Dis		als Engineer	 ineer/Project I	Engineer		IA-Indeper V-Verificat	ndent Assurance iion

BASE REPAIR (2212), PAVEMENT REPAIR (PATCHES) Sections 2529 & 2530

October 21, 2008 Supersedes October 16, 2007

MATERIAL OR CONSTRUCTION ITEM	TESTS	METHOD ACCEPTAN &			QU	ALITY CONTR	ROL					IDENT ASSURA			REMARKS
TEW		RELATED	IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
GRADE INSPEC	TION														
Uncompacted HMA Mixture		Scale ticket with J number	MF												Job Mix Formula (JMF) approved by DME
Plastic Concrete	Air Slump	318 318	327 327						V V	RCE RCE	1/30 cy 1/30 cy		RCE RCE		Minimum 1 per pour
Reinforcing Steel Epoxy-Coated Steel	Quality Quality	AS AS	451 451		Each Shipment										
Calcium Chloride	Concentr.		373	RCE	1/lot		RCE								
Smoothness for Compacted HMA or Hardened Conc. (2529.10)			341	CONTR			CONTR								Approval by DME See Plans/Specs for exclusions
ASD-Approved Shop Drawing Cert C-Type C Certification D S&T-Sampling & Testing Cert D-Type D Certification C						DME-Dist	rict Mater ntral Mate	rials Engine erials Office	er	ject Engineer		IA-Indepen V-Verificati	dent Assurance on		

October 17, 2006 Supersedes October 18, 2005

GRANULAR SHOULDERS

Section 2121

Matls. IM 204 Appendix U (US) Units

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE			QUALITY CONT	TROL					ENDENT ASSU			REMARKS
ITEM		& RELATED IMs	SAMPLE	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
SOURCE INSPECTION	NC										12			
Aggregate (4120.02)	Gradation Quality	AS 2	09		60					1				
Aggregate (Paved Shoulder Fillets) (4120.07)	Gradation Quality	AS 2	09											
-		14				-						_		
GRADE INSPECTIO	N		-		-				-					
Dimensions	Thickness Width Cross Section	Template	RCE	3/mile 3/mile 3/mile		RCE	Field Book							
Aggregate (Paved Shoulder Fillets)	Gradation	Certification												
										-				
									-					
							1.00						1.1	11
AS-Approved Sour ASD-Approved Sh S&T-Sampling & T	op Drawing		Cert A-Ty Cert C-Ty Cert D-Ty	pe C Certi	fication		DME-Dis CTRL-Ce	trict Mater	ials Enginee erials Office	igineer/P er	roject Engine	eer	IA-Indep V-Verific	endent Assurance ation

SUBDRAINS

October 17, 2006 Supersedes April 15, 2003

Section 2502

Matls. IM 204 Appendix V (US) Units

MATERIAL OR CONSTRUCTION	TESTS		METHOD OF ACCEPTANCE		Q	UALITY CONT	ROL		-	_		DENT ASSURA			REMARKS
ITEM			& RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	-
SOURCE INSPEC	CTION										:				
Drain Tubing (4143)	Quality	AS	443												
Rodent Guard (4143.01)		AS	443.01						-						
Subdrain Outlet (4143)		AS													
Porous Backfill (4131)	Quality Gradation	AS	209												
Granular Backfill (4133)	Quality Gradation	AS	209												1
Class A (Outlets) (4120.04)	Quality Gradation	AS	. 209				-				-				
GRADE INSPECT												-			
Drain Tubing (4143)	Quality	AS			1. 1. 1.										
Engineering Fabric (4196)		AS	496.01											12.1	1
Subdrain Outlet	Quality	AS	Cert D				-								
Porous Backfill (4131)	Gradation	AS	Cert A		Each Shipment			÷							S
Granular Backfill (4133)	Gradation	AS	Cert A		Each Shipment										
Class A (Outlets) (4120.04)	Gradation	AS	Cert A		Each Shipment		1	-							
Metal Posts (4154.09)		Visual		RCE				-							
AS-Approved Sour ASD-Approved Sho S&T-Sampling & T	op Drawing		(Cert C-Type	e A Certifica e C Certifica e D Certifica	tion		RCE-Residen DME-District M CTRL-Central CONTR-Contr	Materials E Materials	Engineer	er/Project E	Ingineer		IA-Indepe V-Verifica	ndent Assuran tion

WATER POLLUTION CONTROL EROSION CONTROL Section 2525, 2601

October 17, 2006 Supersedes April 18, 2006

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE	-		QUALITY CONT	ROL		-			NDENT ASSU			REMARKS
ITEM	10	& RELATED IMs	SAMPLE BY	FREQ.	' SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
GRADE INSPECTION														
Seeds 4169.02		Cert A	1		1			1						
Fertilizer 4169.03	1300	AS 469.03										1		
Inoculants 4169.04		Seed Manufacturer Recommendation												
Sticking Agent	1.2	Manufacturer Recommendation			1				- E					
Sod 4169.07		Visual		-		RCE	Field Book							
Mulch 4169.07		Visual				RCE	Field Book							
Stakes for Sod		Visual				RCE	Field Book							
Jute mesh 4169.10a		Visual				RCE	Field Book							
Wire Staples 4169.10b		Visual				RCE	Field Book							
Wood Excelsior Mat 4169.10c		Visual				RCE	Field Book							
Engineering Fabrics		AS IM 496.01					Field Book							
Silt Fence Wire and Posts (Std. Rd. Plan RC-16)		Visual				RCE	Field Book							
AS-Approved Sour ASD-Approved Sh S&T-Sampling & T	op Drawing	3	Cert A-Typ Cert C-Typ Cert D-Typ	e C Certi	fication		RCE-Resider DME-District CTRL-Centra CONTR-Cont	Materials Materials	Engineer	eer/Projee	ct Engineer		IA-Indep V-Verific	endent Assurar ation

****THIS IS A NEW APPENDIX. - PLEASE READ CAREFULLY.****

Sampling & Testing Guide-Minimum Frequency

ACCEPTANCE OF SMALL QUANTITIES OF MATERIALS

Matls. IM 204 Appendix X

October 17, 2006 New Issue

Material	Maximum Quantity	Specifications	Alternate Acceptance Method
Beads, Glass	0.5 mi. application	4184	Visual
Dowel Baskets, Epoxy-coated	25		Visual & Field Check
Fly Ash	5 ton		Approved Source & Type
Hardware for Timber	100 lbs.	4153.07	Visual
Joint Filler, Preformed	50 ft.	4136.03	Visual & Dimension
Lighting Material-Conduit & Fittings	100 ft	4185.10	Visual & Brand Name
Paint, Bridge	5 gal.	4182	Visual & Brand Name
Pipe, Welded Steel for Bridge Railing	100 ft.	4153.05	Letter of Compliance

SUPPLEMENTAL GUIDE - BASIS OF ACCEPTANCE

Material	IM	Spec.	Sample Size	Sampled By	Basis of Acceptance	Cert. Type	Verification	Other Details
Abrasives for Blast Cleaning	482.03				Approved Source			Note brand in field book
Admixture-Air Entraining	403	4103	1 pt.	DME or RCE	Approved Source Batch (Lot)		Project	Contact District Matls.
Admixture-Corrosion Inhibitor	402	4103	1 pt.	DME or RCE	Approved Source Batch (Lot)		Project	Contact District Matls.
Admixture-Retarder	403	4103	1 pt.	DME or RCE	Approved Source Batch (Lot)		Project	Contact District Matls.
Admixture-Water Reducer	403	4103	1 pt.	DME or RCE	Approved Source Batch (Lot)		Project	Contact District Matls.
Aggregates-Non- proportioned	209	4110-4133			Approved Source/Certified Truck Tickets, (Form #821278)	D	Source	Certified Ticket for pay items by weight
Aggregates-Proportioned	209 & 204	4110-4133	IM 301	CONTR/RCE/ DME	Approved Source/Certified Truck Tickets, (Form #821278)	D	Source Project	
Aluminum, Structural	1	4190.01			Approved Shop Drawing & Fabrication Report			
Anchor Bolts	453.08	2522.04, D 4185.02, A 4187.01, C	1 bolt, nut & washer per size, per project	DME	Approved Source/Test Report/Steel Mill Certifications	Α.		
Anchors, Concrete	453.09				Approved Source			
Anti-Strip Agent	491.16				Approved Source	-		
Arrow Panels, Solar-Assisted	486.12	2528.06			Approved Source			
Asphalt Binder	437	4137	1 4-oz. tin	CONTR/DME	Approved Source/Certification/Test Rpt.	D	Source Project	
Asphalt, Cutback	437	4138	1 qt. tin	RCE	Approved Source/Certification/Test Rpt.	D	Source	

SUPPLEMENTAL GUIDE - BASIS OF ACCEPTANCE

Material	IM	Spec.	Sample Size	Sampled By	Basis of Acceptance	Cert. Type	Verification	Other Details
Asphalt, Emulsified	437	4140	1 qt. bottle	RCE	Approved Source/Certification/Test Rpt.	D	Source	Project verification for seal coat
Attenuators -see crash cushion								
Attenuators, Guardrail					As per plan	1		
Backer Rod for Cold Pour Joint Seal	436.04	4136.02, C			Approved Source		-	
Backer Rod for Hot Pour Joint Seal	436.04	4136.02C			Approved Source			
Barrier Rail, Precast Concrete	571	2513			Approved Source/DOT Stamp/Fabrication Report		Source	
Beads, Glass	484	4184	1 qt.	DME	Approved Source		Subcontr.	
Bearing, Bronze		4190.03	1/project	DME	Test Report			
Bearing, Lead		4195.01	-		Certification	D		
Bearing, Neoprene	495.03	4195.02	1/pad	DME	Fabrication Report/Approved Source		Fabricator	
Bentonite Clay					Visual Approval by RCE			_
Bolts, Nuts & Washers, Structural	453.06B	4153.06	Per IM 453.06B	DME	Certification/Rotational Capacity Test/Test Report	A		
Calcium Chloride Solution	373	4194.01	4 lbs. or 1 qt.	RCE	Test by RCE			
Caulking Compound		4192			Visual Approval by RCE			
Concrete, Special Sections	445	4145 4149.02, B			Approved Source, Fabricator's trade mark, Date of Manufacture, Certified stamp,Certification	D	Source	

SUPPLEMENTAL GUIDE – BASIS OF ACCEPTANCE

Material	IM	Spec.	Sample Size	Sampled By	Basis of Acceptance	Cert. Type	Verification	Other Details
Concrete, Modular & Segmental Block	445.04				Approved Source/Certification	D	1	
Concrete, Precast Box Culvert	445.02	2415			Approved source, Approved Shop Drawing, Fabricator's trade mark, Date of Manufacture, Certified stamp, Certification	D	Source	
Concrete, Prestressed, Precast Units	570	2407			Approved Source, Fabricator's trade mark, Date of Manufacture, Certified stamp, Fabrication Report		Source	
Concrete Sealer	491.12	4139			Approved Source			
Conduit - See Lighting Matl.								6
Curing Matls., Burlap		4104	+		Visual Approval by RCE			
Curing Matls., Clear	405.07	4105.07			Approved Source			
Curing Matls., Dark-colored	437	4105.06			Approved Source		Source	
Curing Matls., Plastic Film		4106.02			Visual Approval by RCE			
Curing Matls., White Pigmented	405	4105.05	1 qt.	DME	Batch (Lot) Accept		Source	
Crash Cushion	455	2509			Approved Source, Certification if source not clearly marked	D		
Delineators–See Signing Matls.								
Detectable Warning Panels	411	2511.02			Approved Source			
Dowel-See Steel Reinforcement								

SUPPLEMENTAL GUIDE - BASIS OF ACCEPTANCE

Material	IM	Spec.	Sample Size	Sampled By	Basis of Acceptance	Cert. Type	Verification	Other Details
Drainage Trough, Elastomeric Bridge Joints	494				Approved Source			
Drains, Floor		2406.05			Approved Shop Drawing & Fabrication Report			
Drums, Channelizing	488.02	4188.02			Approved Source		-	-
Epoxy-coated Steel-See Steel Reinforcement								
Epoxy Injection Resin	491.19				Approved Source			
Erosion Control, Fertilizer	469.03	4169.03			Approved Source		12-1	If material is suspect, DME will sample
Erosion Control, Fungicide		4169.05			Seed Manufacturing Recommendation		1.1	
Erosion Control, Inoculant		4169.04		1	Seed Manufacturing Recommendation			
Erosion Control, Jute Mesh	-	4169.10, A			Visual Approval by RCE			
Erosion Control, Mulch		4169.08			Visual Approval by RCE			
Erosion Control, Seed	469.02	4169.02			Certification	Α.		
Erosion Control, Silt Fence Fabric	496.01	4196.01			Approved Source			2 2
Erosion Control, Silt Fence Wire & Posts		Std. Road Plan RC-16 Series			Visual Approval by RCE			
Erosion Control, Sod		4169.07			Visual Approval by RCE			
Erosion Control, Sod Stakes		4169.09		-	Visual Approval by RCE			

October 16, 2007 Supersedes October 17, 2006

SUPPLEMENTAL GUIDE - BASIS OF ACCEPTANCE

Material	IM	Spec.	Sample Size	Sampled By	Basis of Acceptance	Cert. Type	Verification	Other Details
Erosion Control, Sticking Agent		4169.06			Seed Manufacturing Recommendation			
Erosion Control, Wire Staples		4169.10, B			Visual Approval by RCE	1		
Erosion Control, Wood Excelsior Mat	469.10	1.11			Approved Source			
Expansion Device, Steel		4152.02			Approved Shop Drawing & Fabrication Report			
Expansion Tube		4191.01, B			Visual Approval by RCE			
Fabric Engineering	496.01	4196.01			Approved Source	1 20		
Fasteners, Aluminum Structural	486	4190.02			Fabrication Report			
Fence, Barbed Wire		4154.04			Visual Approval by RCE	-		
Fence, Brace for Field Fence		4154.08			Visual Approval by RCE			
Fence, Tie & Tension Wire		4154.05			Visual Approval by RCE			
Fence, Chain Link Fabric	454.10	4154.03	1/source/yr		Approved Source/Certification		Project	
Fence, Chain Link Fittings		4154.11			Visual Approval by RCE			
Fence, Chain Link Posts, Braces, & Rails	454.10	4154.10	1/source/yr		Approved Source/Certification		Project	
Fence, Field Fence Fabric		4154.02			Visual Approval by RCE			
Fence, Gate		4154.12			Visual Approval by RCE			
Fence, Misc. Hardware					Visual Approval by RCE			

SUPPLEMENTAL GUIDE - BASIS OF ACCEPTANCE

Material	IM	Spec.	Sample Size	Sampled By	Basis of Acceptance	Cert. Type	Verification	Other Details
Fence, Orange Mesh Safety	488.03	4188.03			Approved Source			
Fence, Silt-See Erosion Control								
Fence, Staples		4154.06	1		Visual Approval by RCE			
Fence, Steel Line Posts		4154.09			Visual Approval by RCE			
Fence, Wood Fence Post	462	4154.07		1	Approved Source/Certification	D		
Fertilizer-See Erosion Control								
Fly Ash	491.17	4108	10 lbs.	DME	Approved Source/Certification	D	Project Source	Verification on paving only
Galvanized Items		4100.07		DME	Test Report by District Materials			
GGBFS	491.14	4100.08			Approved Source/Certification	D	Source	
Grating (Aluminum)		4187.01, A			Approved Shop Drawing & Fabrication Report		Project	
Grout, Hydraulic Cement	491.13				Approved Source			1
Grout, Polymer	491.11				Approved Source			
Guardrail, Box-beam Median Barrier		4155.06			Approved Shop Drawing & Fabrication Report			
Guardrail, Cable		4155.06	6 ft.	DME	Test Report by Central Lab			
Guardrail, High Tension Cable	455.01	SS-01048			Approved Source/Certification	D		
Guardrail, Formed Steel Beam	455.02	4155.02			Approved Source			

October 16, 2007 Supersedes October 17, 2006

SUPPLEMENTAL GUIDE - BASIS OF ACCEPTANCE

Material	IM	Spec.	Sample Size	Sampled By	Basis of Acceptance	Cert. Type	Verification	Other Details
Guardrail, Steel Posts		4155.05			Mill Test Report	A		
Guardrail, Wood Posts	462	4155.04			Approved Source/Certification	A		
Iron Castings, Utility Access Covers, etc.	453.04	4153.04			Certification & Proper Identification Imprint	A		
Iron Castings, Utility Access Adjustment Rings	449.05				Approved Source/Certification	D		
Iron Bridge Rockers		4153.04			Approved Shop Drawing & Fabrication Report			
Joint Filler, Flexible Foam- Type CF & EF Joints	436.05	4136.03, B 4136.03, D	-		Approved Source			
Joint Filler, Type E Joint	436.03	4136.03, A			Approved Source	-		
Joint Filler, Bituminous	436.03	4136.03, A			Approved Source			
Joint Sealer for Concrete Sewer Pipes	491.09	4149.08			Approved Source			
Joint Sealer, Elastomeric (Neoprene)	436.02	4136.03			Approved Source			
Joint Sealer, Poured	436.01	4136.02, A	-		Approved Source			
Кеуwау		4191.01, A			Visual Approval by RCE			
Lighting Material, Aluminum Poles	557	4185.02, E			Approved Shop Drawing/Approved Source/Certification	D		
Lighting Material, Circuit Test		2523.21		Contractor	Test Report (Contractor) Form #820928			
Lighting Material, Connectors		4185.11			Approved Catalog Cut			
Lighting Material, Contactors		4185.05			Approved Catalog Cut			1

0

October 16, 2007 Supersedes October 17, 2006

SUPPLEMENTAL GUIDE – BASIS OF ACCEPTANCE

Material	IM	Spec.	Sample Size	Sampled By	Basis of Acceptance	Cert. Type	Verification	Other Details
Lighting Material, Control Cabinet		4185.07			Approved Shop Drawing & Catalog Cut			
Lighting Material, Conduit & Fittings, Plastic		4185.10	4'-Plastic	DME	Test Report			
Lighting Material, Conduit & Fittings, Steel	485.10	4185.10			Approved Source			
Lighting Material, Ground Rods & Clamps	1	4185.04			Visual			
Lighting Material, Handholes	445	4185.08			Approved Source, Fabricator's trade mark, Date of Manufacture, Certified stamp, Certification	D	Source	1.5
Lighting Material, Junction Boxes		4185.09			Approved Catalog Cut			
Lighting Material, Lighting Tower	557	2522.04	1.1.1	199	·Approved Shop Drawing/Approved Source/Certification	. D		
Lighting Material, Lowering Device		2522.06			Approved Shop Drawing & Fabrication Report			
Lighting Material, Luminaries		4185.03			Approved Catalog Cut			
Lighting Material, Photoelectric Control		4185.06			Approved Catalog Cut			
Lighting Material, Sealant for Traffic Loop Detectors	491.18				Approved Source			
Lighting Material, Steel Poles	557	4185.02, D			Approved Shop Drawing/Approved Source/Certification	D		

SUPPLEMENTAL GUIDE - BASIS OF ACCEPTANCE

Material	IM	Spec.	Sample Size	Sampled By	Basis of Acceptance	Cert. Type	Verification	Other Details
Lighting Material, Underground Warning Tape		2523.13			Visual Approval by RCE			
Lighting Material, Wire & Cable		4185.12			Approved Catalog Cut & Certification	D		DME may obtain verification samples
Lighting Material, Wood Poles	462	4185.02, F			Approved Source/Certification	D		1.
Lighting Material, Fasteners for Poles	453.09	4185.02, A	1 each type	DME	Test Report & Approved Shop Drawing		-	
Lighting Material, Mastarms	557	4185.02, B	10.0		Approved Shop Drawing/Approved Source/Certification	D		
Lighting Material, Slip Base	557	4185.02			Approved Shop Drawing/Approved Source/Certification	D		
Lighting Material, Transformer Base	557	4185.02, C			Approved Shop Drawing/Approved Source/Certification	D		
Markers (reflective) for Guardrail & Concrete Barrier Rail	486.08	4186.08			Approved Source			1
Markers, Raised Pavement	483.07	2527.02, E			Approved Source	1.75		
Mastarms-See Lighting Materials						1.58		
Paint, Epoxy Aluminum	482.04				Approved Source			
Paint, Traffic-VOC-Compliant Solvent-borne	483.03	4183.03			Approved Source			
Paint, Traffic Waterborne	483.03	4183.04			Approved Source		Subcontr.	

SUPPLEMENTAL GUIDE - BASIS OF ACCEPTANCE

Material	IM	Spec.	Sample	Sampled	Basis of Acceptance	Cert.	Verification	Other Details
			Size	Ву		Туре		
Paint, Waterborne Acrylic Finish (Bridge Paint)	482.05	4182.03			Approved Source/Certification	D		
Paint, Zinc-rich Epoxy	482.02	4182.02			Approved Source/Certification	D		P
Paint, Zinc-silicate Solvent- borne	482.05	4182.02			Approved Source/Certification	D		
Patch Material, Rapid-set Concrete	491.20				Approved Source			
Pedestrian Bridge, Pre-engineered	557				Approved Source/Approved Shop Drawing			
Piling, Concrete	570	4166			Approved Source, Fabricator's trade mark, Date of Manufacture, Certified stamp, Fabrication Report		Source	
Piling, Steel	467	4167			Approved Source/Mill Certification	A	Project	
Pipe, ABS Sewer/PVC	443, 446	4146.04 4146.05			Approved Source/Certification	D	Source	
Pipe, Clay Sewer		4149.02, A	2 each	DME	Test Report			
Pipe, Concrete	445	4145			Approved Fabricator, Fabricator's trade mark, Date of Manufacture, Certified stamp, Certification	D	Source	n di
Pipe, Corrugated Aluminized	441	4141		-	Approved Source/Certification	-		
Pipe, Corrugated Polyethylene 3-10 in.	443	4146.02 4143.02			Approved Source		Source	
Pipe, Corrugated Polyethylene 12-36 in.	446	4146.02			Approved Source/Certification	D	Source	

October 16, 2007 Supersedes October 17, 2006

SUPPLEMENTAL GUIDE - BASIS OF ACCEPTANCE

.

Material	IM	Spec.	Sample Size	Sampled By	Basis of Acceptance	Cert. Type	Verification	Other Details
Pipe, Corrugated Steel	441	4141			Approved Source/Certification	D	Fabricator	
Pipe, Ductile Iron Sewer		4149.02, C			Certification	A		
Pipe, Polyethylene Sewer	443, 446	4146.03			Approved Source/Certification	D	Source	
Pipe, Rodent Guard for PE Pipe	443.01	4143.01, B			Approved Source			
Pipe, Rodent Guard for CMP Pipe	443.01	4143.01, B			Approved Source			
Pipe, Concrete Subdrain Tile	448	4148			Approved Source/Certification	С	Source	
Pipe, Corrugated Metal Subdrain Outlet	441	4141			Approved Source/Certification	D	Fabricator	
Pipe, Corrugated Polyethylene Subdrain	443	4143.01, B			Approved Source		Source	
Pipe, Welded Steel for Bridge Rail (See Railing, Bridge)					•			
Pipe, Horizontal Subdrain	443	4143.01, A			Approved Source		Source	
Plant Material, Fertilizer	469.03	4170.09, B			Approved Source			
Plant Material, Mulch	470	4170.09, D		RCE	Field Review Report			
Plant Materials, Plants	470	4170.01- 4170.08		Roadside Development	Field Review Report			Rpt. Issued-Roadside Development
Portland Cement Concrete Premix Pack	447				Approved Source/Certification	С	Source	
Portland Cement, All Types	401	4101	10 lbs.	DME	Approved Source/Certification	D	Project Source	

SUPPLEMENTAL GUIDE - BASIS OF ACCEPTANCE

Material	IM	Spec.	Sample Size	Sampled By	Basis of Acceptance	Cert. Type	Verification	Other Details
Railing, Bridge		4153.05			Approved Source/Approved Shop Drawing/Fabrication Report			
Reflective Sheeting-See Signing Material			2135					
Release Agent	491.15				Approved Source			
Sealant, Traffic Loop-See Lighting Material								
Seed-See Erosion Control		1.2.1						
Signing Material, Delineator Posts		4186.10, C	1 each supplier	DME	Test Report			
Signing Material, Delineators	486.07	4186.07			Approved Source		Project	
Signing Material, Finished Sign	486	4186			Fabrication Report/Approved Source/Certification	D	Source	2.2.3
Signing Material, Fasteners		4186.06			Fabrication Report			
Signing Material, Reflective	486.03	4186.03	14		Approved Source		Source	1.
Signing Material, Sign Panels		4186.02	1 2		Approved Shop Drawing & Fabrication Report			
Signing Material, Sign Support Structures	557	4187			Approved Source/Approved Shop Drawing/Fabrication Report			
Signing Material, Stainless Steel Fasteners	453.07		1 per size per proj.	DME	Approved Source/Mill Certification	A	Project	
Signing Material, Steel Posts		4186.10		1.00	Approved Shop Drawing & Fabrication Report			

October 16, 2007 Supersedes October 17, 2006

SUPPLEMENTAL GUIDE - BASIS OF ACCEPTANCE

Material	IM	Spec.	Sample	Sampled	Basis of Acceptance	Cert.	Verification	Other Details
			Size	Ву		Туре		
Signing Material, Wood Posts	462	4186.10			Approved Source/Certification	A		
Signing Material, Galvanized Items		4100.07			Test Report by District Materials			
Sod-See Erosion Control								
Steel Castings		4153.03			Approved Source/Catalog Cut			
Steel Masonry Plates		4152.02			Mill Certification	A		
Steel Pile, Welded		4153.05			Approved Shop Drawing & Fabrication Report			
Steel, Pins/Rollers, Cold Finished		4153.02			Approved Source/Catalog Cut			
Steel, Pins/Rollers, Forged		4153.01			Approved Source/Catalog Cut			
Steel Reinforcement, Basket Assemblies	451.03B	4151.02			Approved Source/Certification	D		
Steel Reinforcement, Epoxy- coated	451.03B	4151.03, B	6 ft.	DME	Approved Source/Mill Certifications & Epoxy Certification/Test Report	A	Project	Test sample should be 3 ft. away from end of the bar.
Steel Reinforcement, Epoxy- coated Tie Bars	451.03B	4151.02, A	1 per project per year		Approved Source/Certification	D	Project	
Steel Reinforcement, Epoxy- coated Dowels	451.03B	4151.02	1 per project per year		Approved Source/Certification	D	Project	
Steel Reinforcement, Galvanized	451	4151.03, A	3 ft.	DME	Mill Certifications & Test Report for Galvanizing	A	Project	
Steel Reinforcement, Uncoated	451	4151	*6 ft. of most common	DME	Approved Source/Mill Certification	A	Project	*Proj. quant. under 45T Cert. Only, 45T+ 1 samp.

SUPPLEMENTAL GUIDE - BASIS OF ACCEPTANCE

Material	IM	Spec.	Sample Size	Sampled By	Basis of Acceptance	Cert. Type	Verification	Other Details
Steel Reinforcement, Wire Mesh	451	4151.04	2 ft. x 2 ft.	DME	Approved Supplier or Distributor. Steel Reinforcement/Certification	A	Supplier	1 sample per source per year
Steel Mechanical Splicers for Reinforcement	451				Approved Source/Mill Certification/Epoxy Certification		Project	Need: Certification Statement, Project #, Quantity, Heat #
Steel Structural	557, 561 to 565	2408 4152			Approved Source/Approved Shop Drawing/Fabrication Report/Mill Certifications	A		
Step Irons for Utility Access		4149.06			Fabrication Report			
Structural Items, Other			1.1.1		Approved Shop Drawing & Fabrication Report			
Structural Plate (Arches)	444	4144	Visual	RCE	Approved Source/Certification Statement	С		
Studs, Shear	453.10		1		Approved Source/Certification	А		
Surface Finish, Special	491.10	2403.21, C	15		Approved Source			
Tape, Pavement Marking	483.06	2527.02, A		1	Approved Source			
Torque Calibration Machine (skidmore)		2408.38, C	Calibrate every 6 mo.	CTRL	Test Report .			
Torque Wrench		2408.38, C	Calibrate every 6 mo.	CTRL	Test Report			
Traffic Signalization, Electrical Tests		2525.03, A, 3b 2525.06, A		Contractor	Test Report (Contractor) Form #820928			
Water		4102	1 qt. per source	DME	Test Report or City Water Supply			

October 16, 2007 Supersedes October 17, 2006

SUPPLEMENTAL GUIDE - BASIS OF ACCEPTANCE

Material	IM	Spec.	Sample Size	Sampled By	Basis of Acceptance	Cert. Type	Verification	Other Details
Wire & Cable-See Lighting Material								
Wood, Hardware for Timber Structure	462	4153.07	1 ea. type		Test Report			
Wood, Timber Piles	462	4165			Approved Source/Certification	A		Charge number on butt ends
Wood, Treated Posts	462	4164		1	Approved Source/Certification	A		
Wood, Treated Timber & Lumber	462	4162		-	Approved Source/Certification	A		
Wood, Untreated Timber & Lumber	462	4162	Visual	RCE	Quality grad mark or certification of grade on items requiring grade			

Office of Materials

Iowa Department of Transportation

April 15, 2008 Supersedes April 17, 2007 Matls. IM 205

QUALITY ASSURANCE PROGRAM FOR CONSTRUCTION OVERVIEW & DESCRIPTION

INTRODUCTION

The Iowa Department of Transportation (DOT) has established the following Quality Assurance Program to assure that the quality of materials and construction in all highway construction projects is in reasonable conformity with the requirements of the approved plans and Specifications, including approved changes. The program reflects conformance with the criteria contained in the regulation for Quality Assurance Procedures for Construction, published as 23CFR 637(B) on June 29, 1995. It consists of an Acceptance Program and an Independent Assurance Program (IAP), both of which are based on test results obtained by qualified persons and equipment.

This Quality Assurance Program allows for the use of the Contractor's test results as part of the acceptance decision if satisfactory validation is achieved by the Agency in accordance with IM 216, IM 511, and IM 530. The IAP, as presently structured, is conducted exclusively by the Contracting Agency. The acceptance of all materials and workmanship is the responsibility of the Engineer.

In order to avoid an appearance of a conflict of interest, any qualified non-DOT laboratory shall perform only one of the following types of testing on the same project: Verification testing, quality control testing, IAP testing, or dispute resolution testing.

ACCEPTANCE PROGRAM

Materials incorporated into highway construction projects shall be subject to sampling and testing, including Quality Control (QC) sampling and testing when required by specification. Sampling and testing shall be performed in accordance with location, frequency and procedures identified in IM 204.

A. Quality Control Sampling & Testing

Contractor-performed QC sampling and testing may be used as part of an acceptance decision when required or allowed by specifications. Contractor QC sampling and testing personnel, laboratories, and equipment shall be qualified in accordance with the Iowa DOT Technical Training & Certification Program (IM 213) and the Materials Laboratory Qualification Program (IM 208), and shall be evaluated under the Independent Assurance Program.

If the Contracting Authority eliminates contractor quality control testing from the contract documents, the Contracting Authority shall perform the quality control testing at the frequencies identified in IM 204. Validation of these test results is not required.

B. Verification Sampling & Testing

Verification of quality is performed on critical materials, through independent sampling and testing, at a frequency identified in IM 204. Verification sampling and testing is done by Agency personnel or personnel hired by the Agency excluding the Contractor or vendor. Agency sampling and testing personnel, laboratories, and equipment will be qualified in accordance with the Iowa DOT Technical Training & Certification Program (IM 213) and the Materials Laboratory Qualification Program (IM 208), and will be evaluated under the Independent Assurance Program.

Verification samples will be obtained by agency sampling. For some sampling identified in IM 204, the Contractor shall assist with sampling as directed and witnessed by certified Agency personnel. The sample location and time will be randomly selected by the Agency (except when noted elsewhere) and will only be given to the Contractor immediately prior to sampling. To maintain the integrity of the sample, it will either be transported by Agency personnel or secured by a tamper proof method and transported by the Contractor.

QC test results to be used as part of the acceptance decision will be validated by verification test results. Validation of Contractor test results will be done in accordance with IM 216, IM 511, and IM 530. Contractor test results that fail the lot validation shall not be used for acceptance of that lot unless the dispute resolution system resolves the discrepancy. Verification test results will be used for lot acceptance pending the dispute resolution.

C. Quality Control Plans

When required by the Specifications, a Quality Control Plan (QCP) must be developed by the Contractor or producer and submitted to the Engineer for review. Minimum requirements for the QCP will be provided in an IM or specification.

D. Dispute Resolution System

When QC test results are used as part of the acceptance decision, testing disputes arising between the Contracting Agency and the Contractor shall be resolved in a reliable, unbiased manner or an evaluation performed by the Iowa DOT Central Materials Laboratory. Resolution decisions by the Iowa DOT Central Materials Laboratory will be final.

Unless specified elsewhere, the District Materials Engineer will select some or all of the following steps for the dispute resolution:

- 1. Check all numbers and calculations.
- 2. Review past proficiency and validation data.
- 3. Review sampling and testing procedures.
- 4. Check equipment operation, calibrations and tolerances.
- 5. Perform tests on split samples or reference samples.
- 6. Involve the Central Materials Laboratory.

If the discrepancy cannot be resolved using the steps listed above, or if it is determined that the Contractor's testing is in error, then the Agency test results will be used for the acceptance decision for that lot.

INDEPENDENT ASSURANCE PROGRAM

The Independent Assurance Program (IAP) will evaluate all sampling and testing procedures, personnel, and equipment used as part of an acceptance decision (Includes Contractor, Contracting Agency, and consultant). Testing performed by the Central Materials Laboratory is not subject to IAP. The Central Materials Laboratory maintains accreditation through the AASHTO Materials Reference Laboratory (AMRL) Program.

The IAP includes both system- and project-based approaches defined as follows:

- Project Approach. The frequency of IAP activities is based primarily on quantities of materials being tested and requires minimums (as per IM 204) on every project.
- System Approach. The frequency of IAP activities is based on time intervals, regardless of the number of tests, quantities of materials, or numbers of projects being tested by the individual and equipment being evaluated.

The systems approach for IAP was implemented statewide in 1999 for evaluation of Contractor, consultant, city, county, and state equipment, procedures, and personnel involved with project acceptance. Within implementation of the systems approach, the District Materials Engineer may find it more appropriate to retain use of the project approach for IAP on specific projects when the systems approach cannot be effectively applied.

Independent assurance includes evaluation based on:

Calibration checks Split samples Proficiency samples Observation of sampling and testing procedures

A. IAP Personnel & Equipment

IAP testing equipment must not be the same equipment that was used by the project QC or verification personnel. IAP personnel must not be involved in the project verification testing or QC testing for the sampling and testing procedure they are evaluating on that project.

B. Comparison of Test Results

A prompt comparison of the test results obtained by the individual being evaluated and the IAP tester will be performed by the Engineer. If results of the comparisons do not comply with tolerances provided in IM 216 or criteria in IM 208, Appendix C, a review of the test procedures and equipment shall be performed immediately to determine the source of the discrepancy. Corrective actions must be identified, incorporated as appropriate and followed by additional IAP testing. Test results from all the samples involved in the IAP will be documented and reported in the appropriate District or project files.

C. Annual Report of IAP Results

The Central Materials Office will compose and submit an annual report to the FHWA Division Administrator summarizing the results of the Iowa DOT's systems approach IA Program. This report will identify the number of sampling and testing personnel evaluated by systems approach IA testing, the number of evaluations found to be acceptable and unacceptable, as well as a summary of any significant system-wide corrective actions taken.

SIGNIFICANT DIGITS IN TEST DATA

When comparing test data to the specification limit, a uniform method is used to round the data. When a rounding method is not specified elsewhere for the test data, the method to be used is the Rounding Method in ASTM E29 except that the rounding procedure in section 6.4.3 is replaced as below and 6.4.4 is eliminated.

6.4.3 When the digit next beyond the last place to be retained is 5, and there are no digits beyond this 5, or only zeros, increase by 1 the digit in the last place retained.

When the lowa DOT provides a computer program or spreadsheet for reporting test results, the rounding method will be as reported by the computer software.

Office of Materials

Iowa Department of Transportation

October 16, 2007 New Issue

Matls. IM 207

****THIS IS A NEW IM. - PLEASE READ CAREFULLY.****

INDEPENDENT ASSURANCE PROGRAM FOR CONSTRUCTION OVERVIEW & DESCRIPTION

The Independent Assurance Program (IAP) is a part of the Iowa DOT Quality Assurance Program for Construction. Appendix A contains the details of who is covered and what sampling and testing is covered in the program.

- Purpose of IAP— IAP is an unbiased and independent assessment of all sampling, testing, and testing equipment. This assessment includes evaluation of procedures and equipment used for the acceptance of highway materials and construction. 23 CFR Part 637 requires each state to have an IA Program.
- IAP is distinct from and not intended as an acceptance process or for use in verification of contractor sampling and testing results. IAP is distinct from and not intended for production quality control (QC) purposes. If IAP results indicate a potential problem with quality, the results may be used to initiate additional testing.
- IAP sampling shall be done in such a manner as to minimize variability. In order to eliminate
 material and process variability, split samples should be used. IAP samples may be taken
 independently of Agency verification or Contractor/Producer QC samples, or may be a split
 of a verification or an QC sample.
- Deficiencies in verification or QC processes that are identified through the IAP program must be investigated and resolved.
- IAP is an essential tool that helps to ensure integrity within the quality assurance (QA) program.

The IAP includes both system- and project-based approaches defined as follows:

 Project Approach. The frequency of IAP activities is based <u>primarily on quantities of materials</u> being tested and requires minimums (as per IM 204) on every project. For projects with small quantities, project IAP will not be required:

HMA quantities less than 5000 tons

PCC paving quantities less than 5000 sq. yds.

PCC for structural and miscellaneous less than 50 cu. yds.

Non-Proportioned Aggregate less than 5000 tons.

 System Approach. The frequency of IAP activities is based on time intervals, regardless of the number of tests, quantities of materials, or numbers of projects being tested by the individual and equipment being evaluated. Each active technician should be checked at least 1 time per year. For HMA, the Districts Laboratories perform proficiency testing monthly during the construction season and field HMA laboratories perform proficiency testing up to 3 times per construction season. If a significant deficiency is observed for a technician, a later second check should be made.

Record keeping is required for all IAP observations and tests. The record should include who and what was checked, when, where, and the outcome of the check. An annual report is required by the FHWA detailing the system approach program- how many people for each test were checked, what was found, and how it was resolved. Also any systematic issues should be detailed (i.e. problems with equipment or calibrations, need for additional training, improvements in test procedure instructions.).

1

THIS IS A NEW APPENDIX. - PLEASE READ CAREFULLY.*

IAP Responsibilities

		HMA		
Procedure to Check	To Whom	By Whom	How	Approach(1)
Field Density Sampling	RCE	Training	Computer Program & Training	System
Field Density Testing	RCE	DME	Test same cores- IM 216	Project
Mix Sampling	RCE	DME	Observe	Project
Mix Properties Testing	CONTR, DME	CTRL	Proficiency- IM 208	System
Binder Sampling	RCE	Training or DME	Training or Observe	Both
Binder Properties Testing	DME	CTRL	Proficiency- IM 208	System
Aggregate Grad. Sampling	RCE, CONTR	Training or DME	Training or Observe	Both
Aggregate Grad. Testing	RCE, CONTR, DME(2)	DME, CTRL	Proficiency or Split test IM 208/216	System
Aggregate Quality Sampling	DME	Training/Demo.	Training	System
Aggregate Quality Testing	None	None	None	
Ride Testing	CONTR, DME	CTRL	Yearly Calibration	System

Note 1- The DME may use different approaches for DOT, local agency, and contractor personnel.

Note 2- When the District Laboratory is performing the verification gradation testing for a project.

RCE-Resident Construction Engineer/Project Engineer

DME-District Materials Engineer

CTRL-Central Materials Office

CONTR-Contractor

IAP Responsibilities

	PCC Paving		
To Whom	By Whom	How	Approach(1)
RCE	Training	Training	System
RCE	DME	Test same cores- IM 216	Project
RCE	DME	Observe	System
RCE	DME	Side-by-side tests- IM 216	System
RCE, CONTR(3)	Training or DME	Training or Observe	Both
RCE, CONTR(3), DME(2)	DME	Split Test- IM 216	Both
DME	Training/Demo.	Training	System
None	None		
DME	Training/Demo.	Training	System
None	None		
DME	Training/Demo.	Training	System
None	None		
CONTR, DME	CTRL	Yearly Calibration	System
	RCE RCE RCE RCE, CONTR(3) RCE, CONTR(3), DME(2) DME None DME None DME None DME None	To WhomBy WhomRCETrainingRCEDMERCEDMERCEDMERCE, CONTR(3)Training or DMERCE, CONTR(3),DMEDME(2)Training/Demo.NoneNoneDMETraining/Demo.NoneNoneDMETraining/Demo.NoneNoneDMETraining/Demo.NoneNoneDMETraining/Demo.NoneNoneDMETraining/Demo.NoneNone	To WhomBy WhomHowRCETrainingTrainingRCEDMETest same cores- IM 216RCEDMEObserveRCEDMESide-by-side tests- IM 216RCE, CONTR(3)Training or DMETraining or ObserveRCE, CONTR(3),DMESplit Test- IM 216DME(2)Training/Demo.TrainingDMETraining/Demo.TrainingNoneNoneDMEDMETraining/Demo.TrainingNoneNoneNoneDMETraining/Demo.TrainingNoneNoneNoneDMETraining/Demo.TrainingNoneNoneNoneDMETraining/Demo.TrainingNoneNoneNoneDMETraining/Demo.TrainingNoneNoneNone

Note 1- The DME may use different approaches for DOT, local agency, and contractor personnel.

Note 2- When the District Laboratory is performing the verification gradation testing for a project.

Note 3- QMC projects only.

RCE-Resident Construction Engineer/Project Engineer

DME-District Materials Engineer CTRL-Central Materials Office

CONTR-Contractor

IAP Responsibilities

PCC Structures								
Procedure to Check	To Whom	By Whom	How	Approach(1)				
Slump Sampling	RCE	DME	Observe	System				
Slump Testing	RCE	DME	Observe or side-by-side tests- IM 216	System				
Air Sampling	RCE	DME	Observe	System				
Air Testing	RCE	DME	Side-by-side tests- IM 216	System				
Aggregate Grad. Sampling	RCE	DME	Observe	System				
Aggregate Grad. Testing	RCE	DME	Split tests- IM 216	System				
Aggregate Quality Sampling	DME	Training/Demo.	Training	System				
Aggregate Quality Testing	None	None						
Cementitious Materials Sampling	DME	Training/Demo.	Training	System				
Cementitious Materials Testing	None	None						
Admixtures Sampling	DME	Training/Demo.	Training	System				
Admixtures Testing	None	None						
Ride Testing	CONTR, DME	CTRL	Yearly Calibration	System				
	and the second sec							

Note 1- The DME may use different approaches for DOT, local agency, and contractor personnel.

RCE-Resident Construction Engineer/Project Engineer

DME-District Materials Engineer

CTRL-Central Materials Office

CONTR-Contractor

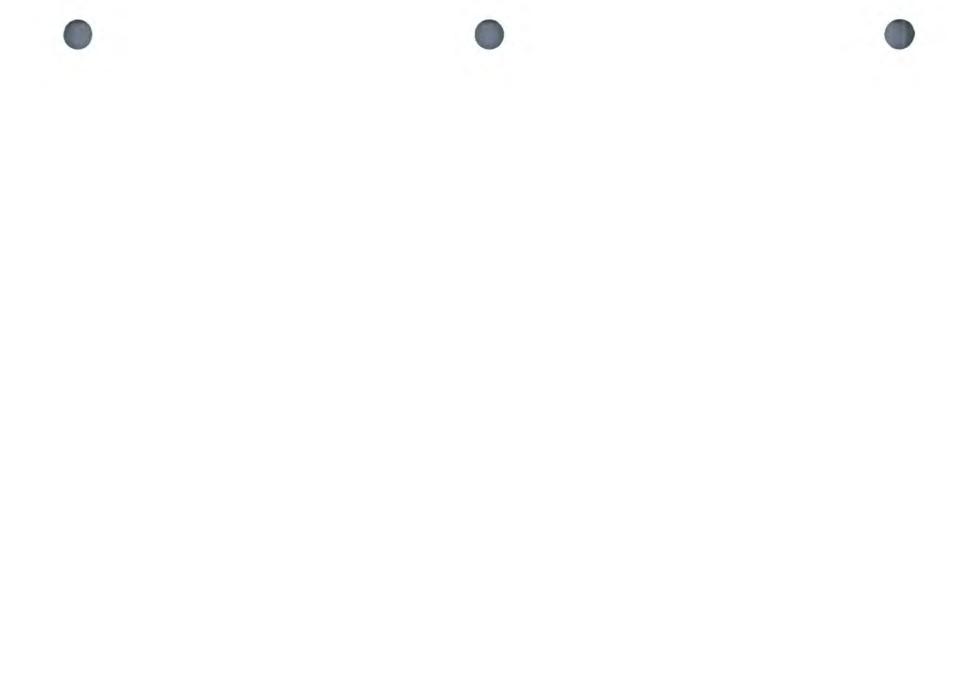
3

IAP Responsibilities

Procedure to Check	To Whom	tioned Aggregates (Inclu By Whom	How	Approach(1)
Procedure to Check		By whom	HOW	Approach(1)
Aggregate Grad. Sampling	CONTR, DME	Training or DME	Training or Observe	Both
Aggregate Grad. Testing	CONTR, DME	DME	Proficiency or Split test IM 208/216	System
Aggregate Quality Sampling	DME	Training/Demo.	Training	System
Aggregate Quality Testing	None	None		

Note 1- The DME may use different approaches for DOT, local agency, and contractor personnel.

RCE-Resident Construction Engineer/Project Engineer


DME-District Materials Engineer

CTRL-Central Materials Office

CONTR-Contractor or Producer

Office of Materials

October 17, 2006 Supersedes October 19, 2004 Matls. IM 208

MATERIALS LABORATORY QUALIFICATION PROGRAM

GENERAL

The FHWA has outlined a Laboratory Qualification Program in the Federal-Aid Policy Guide update published as 23 CFR 637 on June 29, 1995. The updated guide has requirements for laboratories performing testing on Federal-Aid highway projects.

In order to avoid an appearance of a conflict of interest, any qualified non-DOT laboratory shall perform only one of the following types of testing on the same project: Verification testing, quality control testing, IA testing, or dispute resolution testing.

LABORATORIES TO BE QUALIFIED

The following laboratories are included in the qualification program for all Federal-Aid projects:

Central Materials Laboratory 6 District Laboratories District Area Laboratories Resident Construction Laboratories* Aggregate Producer Laboratories Ready Mix Laboratories PCC Contractor Laboratories HMA Contractor Laboratories Consultant and Commercial Laboratories * City and County Laboratories *

* May be qualified at the time of a project.

LABORATORY QUALIFICATION PROCESS

A two-level qualification system is required by the FHWA. Laboratories are either accredited or qualified. The accreditation process is more rigorous than the qualification process.

Accredited Laboratory Process

The Central Materials Laboratory and the six District Laboratories will be accredited as outlined in the 23 CFR 637 guide. The Central Materials Laboratory is accredited through the AASHTO Materials Reference Laboratory Program. The District Materials Laboratories will be accredited by using the Central Materials Staff and equipment to check testing and testing procedures and by using the same calibration and training documentation process. Laboratories will be accredited for a two-year period. In addition, an annual review will be made by the Central Office Staff. Appendix A contains the procedures for accrediting the District Materials Laboratories.

Qualified Laboratory Process

The remaining laboratories will be qualified as outlined below:

The District Materials Offices will qualify laboratories. Laboratories will be qualified for a twoyear period. In addition, an annual review will be made by District Staff. Appendix B contains the procedures for qualifying materials laboratories.

Three laboratory types will be qualified, aggregate laboratories, PC Concrete laboratories and Hot Mix Asphalt laboratories.

Qualified laboratories will have the following:

- 1. Current manuals and test methods to perform the qualified testing available
- 2. A technician certified by the lowa DOT to perform the qualified testing
- Proper equipment to perform the qualified testing (calibrated or checked annually according to Appendix B)
- 4. Satisfactory project and proficiency test results
- 5. Documentation of equipment calibrations, equipment checks, and proficiency results

ADMINISTRATION OF THE PROCESS

The Central Materials Laboratory will be responsible for implementation and operation of the Laboratory Qualification Program. The Central Materials Laboratory will accredit the District Laboratories. The District Materials Offices will qualify laboratories.

NON-COMPLIANCE/DISPUTE RESOLUTION

A laboratory that does not meet the requirements of the IM is subject to elimination from the qualification program.

Disputes concerning calibration and correlation of equipment will be resolved by the office responsible for the qualification. For disputes that cannot be resolved at the District, the Central Materials Laboratory will be the final authority.

DISTRICT LABORATORY ACCREDITATION PROGRAM

The Central Materials Laboratory (CML) will accredit the District Materials Laboratories and maintain records of the accreditation for five years. The CML Staff will check the following prior to accrediting a laboratory:

- 1. Check for current manuals and test procedures covering the accredited testing.
- 2. Check the certification and training records of the testing personnel.
- 3. Document that proper equipment is available to perform qualified testing.
- 4. Check documentation system.

Scheduling of the annual accreditation review will be discussed with the laboratories needing accreditation.

Table 1 is the list of items to be reviewed.

An oral close out on any deficiencies will be held with the testing personnel. Written notice will be sent within two months of the inspection. CML personnel will re-inspect if necessary after correction of any deficiencies.

A report showing the laboratory, the date accredited, and the expiration date will be issued by the Materials Testing Engineer.

NON-COMPLIANCE/DISPUTE RESOLUTION

A laboratory that does not meet the requirements of the IM is subject to elimination from the qualification program.

The CML and the District Materials Engineer will resolve disputes concerning calibration and correlation of equipment.

Matls. IM 208 Appendix A

TABLE 1 - Laboratory Accreditation Checklist

		Minimum Calib./Verif.	Calib./Verif.
	V	Interval	Procedure
Tester Qualifications-Proper Iowa DOT certifications			
Current Test Procedures			
Current Calibration Procedures & Records			
Documentation of correlation results and corrective		-	
actions taken for previous construction season			
Balances		12 months	lowa 917-B
Ovens		12 months	lowa 1501-A
Mechanical Shakers		12 months	lowa 1502-A
Marshall Compactor T-245		12 months	lowa 1504-A
Gyratory Compactor T-312		6 months	lowa 1522-A
Marshall Molds T-245		12 months	lowa 1523-A
Comp. Test Machine T-245		12 months	lowa 1505-A
Sieves		6 months	lowa 1506-A
Thermometers - Test	1	6 months	lowa 1607-A
Thermometers - Ref.		12 months	lowa 1607-A
Timers T-201, T-202		6 months	lowa 1508-A
Sand Equivalent T-176		12 months	lowa 1509-A
Gyratory Compactor Molds T-312		12 months	lowa 1524-A
Vacuum Systems T-209		12 months	lowa 1510-A
Pycnometers T-228, T209		12 months	lowa 1618-A
Fine Aggregate Anularity T-304		12 months	lowa 1525-A
Dynamic Shear Rheometer T-315		6 months	lowa 1612-A
Balance Weights M-231		12 months	
Sample Splitters T-248		12 months	(visual condition)

October 18, 2005 Supersedes April 19, 2005

LABORATORY QUALIFICATION PROGRAM

The District Materials Office will qualify the other laboratories and maintain records of the qualification for three years. The District Staff will check the following prior to qualifying a laboratory:

- 1. Establish the type of laboratory (Aggregate, Hot Mix Asphalt, PC Concrete).
- 2. Check for current manuals and test procedures covering the qualified testing.
- 3. Check the certification of the testing personnel.
- 4. Document that proper equipment is available to perform qualified testing.
- 5. Check documentation system.

Scheduling of the qualification review will be discussed with the laboratories seeking qualification. The District Materials Engineer should be contacted for laboratories that have been qualified in other states. The District Materials Office may qualify a laboratory based on an acceptable qualification report and qualification program from another state transportation agency.

Table 1 and the pages following cover the list of items to be reviewed.

An oral close out on any deficiencies will be held with the testing personnel. Written notice will be sent within two weeks of the inspection. District personnel will re-inspect after correction of any deficiencies.

A form showing the laboratory type, the date qualified, and the expiration date will be issued by the District Materials Engineer.

The list of Qualified Laboratories will be maintained on a database accessible by authorized Materials Personnel.

NON-COMPLIANCE/DISPUTE RESOLUTION

A laboratory that does not meet the requirements of the IM is subject to elimination from the qualification program.

The office responsible for the qualification will resolve disputes concerning calibration and correlation of equipment. For disputes that cannot be resolved at the District level, the Central Materials Laboratory will be the final authority.

1

		Calib./Verif.	Calib./Verif
	V	Interval	Procedure
Tester Qualifications-Proper Iowa DOT certifications			
Current Test Procedures			
Current Calibration Procedures & Records			
Documentation of correlation results and corrective			
actions taken for previous construction season.	-		
Aggregate Laboratory			1000
Balances	1	12 months	lowa 917-B
Sieves- wear, tear, size, and opening size	1	12 months	lowa 1506-A
Splitter- condition	-	12 months	(Visual)
Mechanical Shakers- condition (if used)	-	12 months	lowa 1502-A
Mechanical Shakers- condition (in used)		12 11011015	10wa 1502-A
HMA Laboratory			1
Balances- and water bath		12 months	lowa 917-B
Sieves- wear, tear, size, and opening size		12 months	lowa 1506-A
Splitter- condition		12 months	(Visual)
Mechanical Shakers- condition (if used)		12 months	lowa 1502-A
Rice equipment- vacuum and flask		12 months	IM 350
Thermometers	1	12 months	lowa 1607-A
Ovens- temperatures		12 months	lowa 1501-A
Gyratory Compactor and molds		12 months	lowa 1524-A
Marshall Hammer and molds		12 months	Correlation Checks
PCC Laboratory	-		
Balances		12 months	lowa 917-B
Sieves- wear, tear, size, and opening size		12 months	Iowa 1506-A
Splitter- condition		12 months	(Visual)
Mechanical Shakers- condition (if used)		12 months	Iowa 1502-A
Air Meter		12 months	IM 318
Slump Cone and equipment-condition		12 months	
Beam Breaker		12 months	Central Lab

Table 1 - Laboratory Qualification Checklist

LABORATORY ITEMS

The following list contains, as a minimum, what is required for a qualified asphalt laboratory. The test equipment to perform each of the required tests is contained in the respective IM.

- Field Lab and Office [Suggested size 8 ft. x 44 ft. (2.4 m x 13.41 m)]. Locate the Field Lab so it is convenient to the plant, but outside the influence of plant vibration.
 - Air-conditioned Personal computer Phone Fax machine Copy Machine Sample storage Work table Bulletin board Water available to perform necessary testing Desk and chair Incidental spoon, trowels, pans, pails
- The personal computer shall be capable of running Iowa DOT programs. It is recommended to have at least Windows 2000 or newer software on the computer. Iowa DOT programs have been checked and are capable of running on Windows 2000 and newer software.

3.5" high-density floppy disk drive (CD drive recommended) Color monitor, VGA or better Printer, ink jet recommended.

- Diamond saw for cutting core lifts.
- Diamond core drill (minimum 4" diameter core).

Iowa Department of Transportation æ

MATERIALS LABORATORY QUALIFICATION PROGRAM Laboratory Inspection - per Materials Instructional Memorandum 208

Company Name:			1	
Laboratory name:				
Laboratory type:	Aggregate	HMA	PCC (Circ	cle one)
Laboratory location:				
Laboratory contact person:				
Laboratory technician:		Certification numbe	er:	Expires:
Current manuals and written	test procedures available?			
Current calibration procedure	es and records?			
Proper equipment available to	o perform qualified testing?			
Date of inspection:		Qualification expi	iration date:	
Inspection performed by:	-	Pr	int name	
		Si	gn name	
Inspection received by:		Pr	int name	
	District Number	Si	gn name	

cc: Materials Engineer, Contractor/Producer, Ames, File

lowa Department of Transportation

AGGREGATE LABORATORY INSPECTION QUALITY CONTROL CHECKLIST

Contractor/Producer:		Locati	Location:		
Certified Technician:		Certification No:			
	-1		1.1.1	-	
Balances	(Iowa Test Method S	917-B)	Yes	No	
	Updated balance calibration records	available?			
	Check balance using 500 gm & 1000	0 gm calibrated weights?		_	
	Is balance accurate to 0.1%?				
Sieves					
	Is there adequate correlation history	to qualify?			
	Were go/no-go gauges used to chec				
	Are the sieves in good condition (no	loose frames, holes, or tears)?		-	
Splitter					
	Is the splitter in good condition?		Section 2.	-	
	(i.e., missing shuts, cracked welds,	, or leaking seams)	- 13 A		
Shaker					
	Is shaker apparatus secure and leve	21?		-	
Scale					
	Are the laboratory weights used for routine calibrations accurate? (Use 0.1% difference from our calibrated weights as standard.)				
Comments	6				
		The set of		1	
cc:Materials E	-	Inspected By:			
Contractor/	Producer	Data Inspected			
		Date Inspected:			
File					

lowa Department of Transportation

HMA LABORATORY INSPECTION QUALITY CONTROL CHECKLIST

Contractor/Producer:	Location:		
Certified Technician:	n:Certification No.:		
Thermometers Thermometer Calibration and Doc	(IM 321, IM 325, IM 325G, IM 350)	Yes	No
I nermometer Calibration and Doc	umentation available?		
Temperature of check: State reference thermometer Contractor reference thermom Difference			
Rice Pycnometer Calibration chart and/or document Equipment achieves between 25.5 Mercury is free of bubbles?		=	\equiv
Gyratory/Marshall Compactor Calibration documentation availabl Is equipment generally clean? Documentation of annual mold me		\equiv	=
Ovens Documentation of temperature che General condition satisfactory? Do all parts work as intended?	(IM 325/IM 325G) ecks?	=	=
Water Bath Temperature?	(IM 321)		
Correlation			
Correlation results available for pro	evious year?		
Comments:			
NOTE: HMA labs must also qualify as	an aggregate lab		
	Inspected By:		
cc: Materials Engineer Contractor/Producer Ames File	Date Inspected:		

READY MIX/PCC PAVING LABS QUALITY CONTROL CHECKLIST

Contractor/Producer:Certified Technician:		States and the second			
Inspection Checklist	ttems:		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1727	
Air Meter	(IM 318)		Yes	No	
Check meter usin Is air meter clean Proper rod and m		5.	_	=	
Slump Cone	(IM 317)				
5/8" by 24" tampi Rigid, nonabsorb					
Beam Breaker	(IM 316)				
Current annual ca Equipment clean				=	
Beam Molds	(IM 328)				
Molds clean and General condition			_	_	
Comments				1	
NOTE: PCC labs mus	st also qualify as an	aggregate lab.			
cc: Materials Engine Contractor/Produ		Inspected By:	1	_	
Ames File		Date Inspected:		-	

Matls. IM 208 Appendix C

INDEPENDENT ASSURANCE PROFICIENCY & TESTING FOR HMA

GENERAL

The HMA Proficiency Program is part of the Independent Assurance Program described in IM 205. The HMA Proficiency Program provides participating laboratories with a means to:

- Check both the instrument and the operator under actual testing conditions.
- Compare individual test results with the average of a large body of results so that corrective action may be taken where wide discrepancies occur.
- Evaluate the quality of test results, thereby reducing the risk of dispute due to testing errors.

Each accredited and qualified Laboratory and certified staff shall establish and maintain their proficiency by following program described herein.

A project approach for independent assurance may be used for RCE, county, city, and consultant laboratories.

PROFICIENCY SAMPLE

The Central Materials Laboratory will prepare and send out proficiency samples during the construction season (April through September). The samples and tests for laboratories will be as follows:

- A. District Laboratories
 - 1. Asphalt Binder
 - a. G*/Sin Delta
 - 2. HMA Mix
 - a. G_{mb} Laboratory Density
 - b. G_{mm} Maximum Specific Gravity
 - c. % Binder, Ignition Oven
 - d. Gradation, Ignition Oven
 - 3. Combined Aggregate
 - a. Gradation
 - b. G_{sa} Apparent Specific Gravity (every other sample)

- c. G_{sb} Bulk Specific Gravity (every other sample)
- d. Percent Absorption (every other sample)
- e. Fine Aggregate Angularity (every other sample)
- f. Sand Equivalency (every other sample)
- B. HMA Laboratories
 - 1. HMA Mix
 - a. G_{mb} Laboratory Density
 - b. G_{mm} Maximum Specific Gravity
 - 2. Combined aggregate
 - a. Gradation
- C. Aggregate Laboratories
 - 1. Gradation

PROFICIENCY SAMPLE FREQUENCY

District Laboratories will receive a set of proficiency samples monthly April through September. The samples will be tested and the results reported within 14 calendar days of receipt.

HMA laboratories and HMA aggregate laboratories will pick-up proficiency samples one to three times per year depending on how many projects are done in a particular year. The frequency criteria is as follows:

- A sample shall be picked up for the technician's first HMA project of the construction season.
- At 3 months from the first sample pickup, the technician must pick up a second sample in order to continue performing acceptance testing.
- At 3 months from the second sample pickup, the technician must pick up a third sample in order to continue performing acceptance testing.

Each certified technician routinely working in the laboratory shall perform the proficiency tests and report the results within 14 calendar days of receipt.

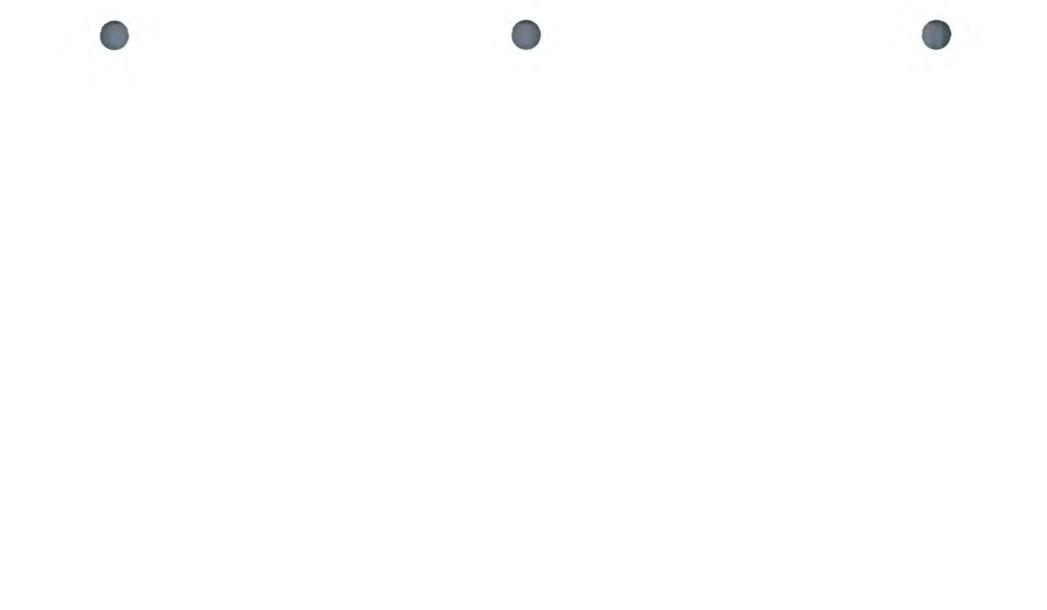
TEST RESULT ANALYSIS

Test results from the proficiency samples will be analyzed using the current AASHTO Material Reference Laboratory (AMRL) procedure. The analysis compares the results from each participant and each District and Central Laboratory to the overall mean. Test results will also be compared to the Central Materials Laboratory results.

October 16, 2007 Supersedes October 17, 2006 Matls. IM 208 Appendix C

Any test result that is 3.0 standard deviations or greater from the mean will be considered failing. Two consecutive proficiency sample results that are 2.0 standard deviations or greater from the mean will be considered failing.

In the event of a small data set or large or small variation within a data set, the individual results will be compared with the Central Laboratory results. IM 216 will be used to compare the results. Proficiency test results beyond the tolerance will be considered failing.


INVESTIGATION OF FAILING TEST RESULTS

The technician with failing test results shall review the calculation, test procedures, and perform a calibration if warranted. When there are two or more consecutive failing results, the Central Materials Laboratory or the District Material Engineer will contact the technician and arrange to conduct an evaluation of the procedures and equipment to correct any deficiencies. More than 3 consecutive failing results by a technician will constitute unsatisfactory performance as defined in IM 213 and become a part of their permanent file.

Iowa Department of Transportation

Office of Materials

October 17, 2006 Supersedes October 18, 2005 Matls. IM 213

TECHNICAL TRAINING & CERTIFICATION PROGRAM

GENERAL

The purpose of the Technical Training & Certification Program is to ensure Quality Control (QC)/Quality Assurance (QA) and Acceptance of Aggregates, Hot Mix Asphalt (HMA), Portland Cement Concrete (PCC), Grade Inspection, Precast and Prestressed Concrete, and Pavement Profiles and to ensure proper documentation of quality control/quality assurance and acceptance procedures and test results by industry and Contracting Authority personnel.

This Instructional Memorandum (IM) explains the requirements to become certified and to remain certified to perform inspection and testing in the State of Iowa. This IM also describes the duties, responsibilities and the authority of persons assigned the position of Certified Technician in any of the above areas for construction or maintenance projects. Appendix C of this IM lists what tests and procedures the technician is qualified to perform for each level of certification they obtain.

Through a cooperative program of training, study, and examination, personnel of the construction industry, State DOT, and other Contracting Authorities will be able to provide quality management and certified inspection. Quality control/quality assurance and acceptance sampling, testing and inspection will be performed by certified personnel and documented in accordance with the IMs.

A technician who is qualified and holds a valid certification(s) shall perform quality control/quality assurance and acceptance at a production site, proportioning plant, or project site. Responsibilities cannot be delegated to non-certified technicians. The duties of a Certified Technician may be assigned to one or more additional Certified Technicians.

The Technical Training & Certification Program will be carried out in accordance with general policy guidelines established or approved by the Highway Division Director. A Board of Certification composed of the following members will advise the Director:

Director – Office of Materials Director – Office of Construction Representative of District Materials Engineers** Representative of District Construction Engineers** Representative of Associated General Contractors (AGC of Iowa) Representative of Iowa Concrete Paving Association (ICPA) Representative of Asphalt Paving Association of Iowa (APAI) Representative of Iowa Ready Mixed Concrete Association (IRMCA) Representative of Iowa Limestone Producers Association (ILPA) Representative of County Engineers Coordinator of Technical Training & Certification Program**

** Appointed by Program Director

The Director of the Office of Materials will be the Program Director. Coordinators will be appointed by the Program Director to assist in administration of the program and to handle such planning, administration, and coordinating functions as may be needed.

TRAINING

The Iowa DOT will provide the training necessary to become certified or an agency approved by the Program Director. Producers/Contractors are encouraged to conduct their own pretraining program. A complete listing of training opportunities is available in the Technical Training & Certification Program's Information and Registration Booklet or at the Technical Training & Certification Program website, www.iowa.gov/dot/materials/training.htm. This book is available at any of the Iowa DOT Materials Offices. They may also be obtained from the ICPA, IRMCA, ILPA, and APAI.

CERTIFICATION REQUIREMENTS

- 1. A candidate must attend instruction and pass the examination(s) for all levels of certification prepared and presented by the Program Director or someone designated by the Program Director. If the new candidate fails the examination, they will have one opportunity to retake the examination. The retake must be completed within six months of the original exam. If they fail the retake of the examination, they will need to attend the training again before taking the examination the third time. If an individual is recertifying they will have only one opportunity to take the examination. If they fail the examination they must take the applicable training before retaking the examination.
- All prerequisites shall be met before the applicant may attend the next level of training for the certification desired. A listing of certification levels and prerequisites is located in Appendix A.
- 3. Once the candidate has met all the criteria and has received certification, it is recommended the Certified Technician work under the supervision of an experienced technician until they become efficient in the inspection and testing methods they will be performing.

An individual requesting to become certified as a Precast/Prestress Concrete Technician is required to obtain forty hours of experience assisting in quality control inspection at an approved plant before certification will be issued. The experience must be documented and shall be approved by the District Materials Engineer. This experience must be completed within two years from the date the individual attended the training.

4. Registered Professional Engineers, engineering graduates, and geology graduates from accredited institutions will be exempt from the training requirement in the areas they have had instruction. In order to obtain certification for any technical level, these persons must pass all applicable tests for the level of certification they wish to obtain. All certificates issued in accordance with these requirements will be subject to the same regulations concerning expiration, recertification, etc., as applies to certificates obtained via training and examinations.

Out-of-state technicians will be issued certifications when the following criteria are met:

- 1. The applicant must be certified in another state or shall have received equivalent training, if the state does not have a certification program, in each level of certification they are requesting.
- 2. The applicant must pass an examination for each level of certification desired, which will be administered by the Iowa Department of Transportation. Failure of the examination shall require the applicant to take the applicable schooling before they can retake the exam.
- 3. The applicant must follow the prerequisite requirements of the Technical Training & Certification Program.

Out-of-state applications should be submitted to the District Materials Office closest to the home location of the applicant. Copies of all the applicant's certifications must accompany the application.

CERTIFICATION

Upon successfully completing the requirements for certification, the Program Director will issue a certificate and a pocket certification card. This certification is not transferable. A certification shall be valid for five years.

CERTIFICATION IDENTIFICATION

The certificate will contain letters that identify the District of record, the certificate holder, certification number, the level of certification, and the expiration date of each level.

The assigned certification number may change if the certificate holder changes their residence.

RENEWAL OF CERTIFICATION

A certification shall be valid through December 31st of the fifth year. A 90-day grace period will be allowed. If the individual has not renewed their certification within the 90-day grace period, they are automatically decertified. The individual may obtain certification by taking the examination for the level of certification they are requesting. If the individual does not take the examination within one year after their certification(s) expire, i.e., 12/31/expiration year, they must retake all applicable schooling and pass the examinations. If an applicant becomes decertified in any level of certification and that certification is a prerequisite for other levels of certification the applicant will also be decertified in those related levels of certification.

All certified technicians will be required to pass an examination in each level of certification they hold before recertification will be issued. Failure of any level shall require the applicant to retake the applicable schooling and pass the test.

The certificate holder shall be responsible for applying for certification renewal and for maintaining a current address on file with the appropriate District Materials Office.

Technicians certified as Level I HMA and/or Level II PCC shall attend a minimum of two update classes each in the five-year period between certification and each recertification. The Iowa DOT or an agency or organization approved by the TTCP will hold these classes. These update classes will be listed in the Technical Training & Certification Program Booklet and on the program website, or the certified technician may contact the Iowa DOT for information. If an individual does not attend the two update classes required before their certification expires, they must take the entire schooling and pass the examination for the certification required.

The certified technician will not receive credit for the following:

- 1. More than one update per training season in each level of certification.
- 2. An update taken during the same training season in which the individual recertified.

UNSATISFACTORY PERFORMANCE NOTICE

A certified technician failing to perform the required specified duties or inadequately performing these duties, will receive an Unsatisfactory Notice (Office of Materials IM 213, Appendix B). The notice will be from the District Materials Engineer in the District where the failure occurred. This notice and all supporting documentation will be placed in the technician's permanent file with the District Materials Office in which the technician resides. The notice will also be placed on the statewide computer file.

SUSPENSION & DECERTIFICATION

A three-month suspension will be given upon receipt of two Unsatisfactory Performance Notices. Technicians that are suspended shall not perform any duties of the applicable certification, including any duties for which the affected certification is a prerequisite.

Technicians are eligible to be reinstated after the three-month suspension and successful completion of the applicable recertification test(s).

Technicians are subject to decertification when they receive a third Unsatisfactory Performance Notice.

Certified Technicians will be decertified for any of the following reasons:

The certificate will become invalid for the following reasons:

- 1. Failure of the certificate holder to renew the certificate prior to regular expiration as described above.
- 2. Use of false or fraudulent information to secure or renew the certificate.
- 3. Use of false or fraudulent actions or documentation by the certificate holder.
- 4. Not performing tests and technician duties properly and in accordance to specifications.

Action will be effective on the date the Program Director issues the suspension or decertification notice.

Technicians that are decertified shall not perform any duties requiring certification. Technicians may request reinstatement after one year.

Appeals and reinstatement requests shall be submitted in writing to the Program Director. Appeals and reinstatement requests will be considered by the Certification Board.

If reinstatement is authorized, the applicant must attend and successfully complete the applicable certification courses.

FUNCTIONS & RESPONSIBILITES

A certificate holder at each production site, project site, proportioning plant, or laboratory will perform duties. The certified technician shall perform quality control testing in accordance with specified frequencies and submit designated reports and records.

The specification requirement for materials testing by a certified technician does not change the supplier's responsibilities to furnish materials compliant with the specification requirements.

The District Materials Engineer and/or Project Engineer will be responsible for monitoring the sampling, testing, production inspection activities and quality control performed by the contractor. A monitor shall have satisfactorily completed the training and be certified for the level of technician they are monitoring.

The District Materials Engineer and/or Project Engineer will have authority and responsibility to question and where necessary, require changes in operations and quality control to ensure specification requirements are met.

QUALITY CONTROL, TESTING, & DOCUMENTATION

The QC Technician shall be present whenever construction work related to production activity, such as stockpiling or other preparatory work, requires record development and/or documentation is in progress. The QC Technician's presence is normally required on a continuing basis beginning one or more days before plant operation begins and ending after plant shut down at the completion of the project. The work shall be performed in a timely manner and at the established frequencies.

The QC Technician's presence is not normally required during temporary plant shut downs caused by conditions, such as material shortages, equipment failures, or inclement weather.

All quality control activities and records shall be available and open for observation and review by representatives of the contracting authority.

Reports, records, and diaries developed during progress of construction activities will be filed as directed by the Contracting Authority and will become the property of the Contracting Authority.

Quality control activities, testing, and records will be monitored regularly by Contracting Authority representatives. The Project Engineer or District Materials Engineer will assign personnel for this function.

Monitor activities will be reported and filed at prescribed intervals with the Project Engineer, District Materials Engineer, producer, contractor, and the contractor's designated producer.

At no time will the monitor inspector issue directions to the contractor, or to the QC Technician. However, the monitor inspector will have the authority and responsibility to question, and where necessary, reject any operation or completed product, which is not in compliance with contract requirements.

ACCEPTANCE

Completed work will be accepted on the basis of specification compliance documented by acceptance test records, and monitor inspection records. Specification noncompliance will require corrective action by the producer, contractor, or by the contractor's designated producer, and review of events and results associated with noncompliance by the Project Engineer.

April 15, 2008 Supersedes October 16, 2007

CERTIFICATION LEVEL

PRE-REQUISITES

CERTIFICATION LEVELS

TITLE

	AGGREGATE	
Level I Aggregate	Certified Sampling Technician	None
Level II Aggregate	Certified Aggregate Technician	Level I Aggregate
	PORTLAND CEMENT CONCRETE	
Level I PCC** Level II PCC	PCC Testing Technician PCC Plant Technician	None Level II Aggregate & Level I PCC
Level III PCC	PCC Mix Design Technician	Level II PCC
**American Concrete Institute Level I PCC training.	e (ACI) Grade I certification will be accep	otable as a portion of the

HOT MIX ASPHALT

HMA Sampler Level I HMA Level II HMA HMA Sampler HMA Technician HMA Mix Design Technician

None Level II Aggregate Level I HMA

PROFILOGRAPH

Profilograph

Prestress

Profilograph Technician

None

PRESTRESS

Prestress Technician

Level I PCC or ACI Grade I If the technician will be performing gradations, they will need to be Aggregate Level II- certified.

SOILS

Soils

Soils Technician

None

UNSATISFACTORY PERFORMANCE NOTICE

Issued To:	Date:

This notice is to inform you that your performance as a Certified Inspector/Technician was unsatisfactory for the reason(s) listed below.

This notice will be placed in your permanent file with the District Materials Office in which you reside. It will also be placed on the statewide computer file.

The goal of the Technical Training and Certification Program (TTCP) is to work with contractors, producers, cities, and counties to continually improve the quality of Iowa's construction projects. We hope you will work with us to achieve this goal.

Unsatisfactory Performance:

District Materials Engineer

cc: Program Director – Materials Engineer, Ames TTCP Coordinator Resident Construction Engineer

CERTIFIED TECHNICIANS QUALIFICATIONS

Tests and Procedures the Certified Technician is qualified to perform for each level of certification.

LEVEL I AGGREGATE

- IM 204 Inspection of Construction Project Sampling & Testing (when material is incorporated)
- IM 209, App. C Aggregate Specification Limits & Sampling & Testing Guide (when material is produced)
- IM 301 Aggregate Sampling Methods

LEVEL II AGGREGATE

- IM 216 Guidelines for Verifying Certified Testing Results
- IM 302 Sieve Analysis of Aggregates
- IM 306 Determining the Amount of Material Finer Than #200 (75µm) Sieve in Aggregate
- IM 307 Determining Specific Gravity of Aggregate
- IM 308 Determining Free Moisture & Absorption of Aggregate
- IM 336 Methods of Reducing Aggregate Field Samples to Test Samples
- IM 344 Determining the Amount of Shale in Fine Aggregate
- IM 345 Determining the Amount of Shale in Coarse Aggregate

LEVEL I PCC

- IM 204 Inspection of Construction Project Sampling & Testing
- IM 208 Materials Laboratory Qualification Program
- IM 216 Guidelines for Verifying Certified Testing Results
- IM 315 Method of Protecting, Curing, Making & Testing Concrete Cylinders
- IM 316 Flexural Strength of Concrete
- IM 317 Slump of Hydraulic Cement Concrete
- IM 318 Air Content of Freshly-Mixed Concrete by Pressure
- IM 327 Sampling Freshly-Mixed Concrete
- IM 328 Making, Protecting, and Curing Concrete Flexural Specimens
- IM 340 Weight Per Cubic Foot, Yield, & Air Content (Gravimetric) of Concrete
- IM 383 Testing the Strength of PCC Using the Maturity Method
- IM 385 Temperature of Freshly-Mixed Concrete
- IM 525 Designing Flowable Mortar
- Iowa 410-B Method of Test for Flow of Grout Mixtures
- AASHTO T97 Third Point Loading

Matls. IM 213 Appendix C

LEVEL II PCC

- IM 527 Paving Plant Inspection
- IM 528 Structural Concrete Plant Inspection
- IM 529 PC Concrete Proportions

LEVEL III PCC

- IM 530 Quality Management & Acceptance of PC Concrete Pavement
- IM 531 Test Method for Combining Aggregate Gradations
- IM 532 Aggregate Proportioning Guide for Portland Cement Concrete Pavement

HMA SAMPLER

- IM 322 Method of Sampling Uncompacted Hot Mix Asphalt
- IM 323 Method of Sampling Asphaltic Materials

LEVEL I HMA

- IM 204 Inspection of Construction Project Sampling & Testing
- IM 208 Materials Laboratory Qualification Program
- IM 216 Guidelines for Verifying Certified Testing Results
- IM 320 Method of Sampling Compacted Asphalt Mixtures
- IM 321 Method of Test for Compacted Density of Hot Mix Asphalt (HMA) (Displacement)
- IM 322 Method of Sampling Uncompacted Hot Mix Asphalt
- IM 323 Method of Sampling Asphaltic Materials
- IM 325G Method of Test for Determining the Density of Hot Mix Asphalt (HMA) Using the Superpave Gyratory Compactor (SGC)
- IM 337 Determining Thickness of Completed Courses of Base, Subbase, & Hot Mix Asphalt
- IM 350 Maximum Specific Gravity of Hot Mix Asphalt (HMA) Mixtures
- IM 357 Preparation of Hot Mix Asphalt (HMA) Mix Samples for Test Specimens
- IM 501 Asphaltic Terminology, Equations & Example Calculations
- IM 508 Hot Mix Asphalt (HMA) Plant Inspection
- IM 509 Tank Measurement & Asphalt Cement Content Determination
- IM 511 Control of Hot Mix Asphalt (HMA) Mixtures

LEVEL II HMA

- IM 380 Vacuum-Saturated Specific Gravity & Absorption of Combined or Individual Aggregate Sources
- IM 510 Method of Design of Hot Mix Asphalt (HMA) Mixes
- AASHTO T176 Plastic Fines in Graded Aggregate & Soils by use of Sand Equivalent Test
- AASHTO T304 Uncompacted Void Content of Fine Aggregate
- ASTM D 4791 Flat Particles, Elongated Particles, or Flat & Elongated Particles in Coarse Aggregate
- AASHTO T283 Resistance of Compacted Hot Mix Asphalt (HMA) to Moisture-Induced Damage

PROFILOGRAPH

IM 341 - Determining Pavement & Bridge Ride Quality

PRESTRESS

IM 570 - Precast & Prestressed Concrete Bridge Units

SOILS

- Test Method No. Iowa 103-D and AASHTO T-99 Moisture-Density Relationship of Soils (Standard Proctor)
- ASTM D-2937 Field density by drive-cylinder method
- ASTM D-4643 Moisture content determination by microwave
- AASHTO T-265 Moisture content determination by oven

AGGREGATE TECHNICIAN DUTIES

Duties of the Aggregate Technician are detailed in IM 209 and the IM 300 Series and consist of, but are not limited to the following:

- A. Sampling
 - 1. Obtain representative samples by approved method(s).
 - 2. Sample at required frequencies.
 - 3. Identify samples with pertinent information such as:
 - a. Type of material
 - b. Intended use
 - c. Production beds working depth
 - d. Sampling method
- B. Gradation Testing
 - 1. Follow appropriate gradation testing methods.
 - 2. Maintain current applicable specifications.
 - 3. Post test results within 24 hours of sampling.
- C. Other Testing as Required (specific gravity, moisture, deleterious material, etc.)
 - 1. Follow appropriate testing methods.
 - 2. Maintain current applicable specifications.
 - 3. Complete required reports.
- D. Sampling & Testing Equipment
 - 1. Clean and check testing sieves for defects.
 - 2. Assure scale accuracy.
 - 3. Maintain sampling and testing equipment.

- E. Communication
 - 1. Notify the District Materials office for production start-up or changes.
 - 2. Relay test results to appropriate production or supervisory personnel.
 - 3. Report failing test results immediately to appropriate personnel (including District Materials office) and assure remedial actions are taken.
- F. General
 - 1. Monitor stockpiling procedures to avoid contamination and excess segregation.
 - 2. Assure proper identification of stockpiles.
 - 3. Assure specification requirements for intended use are met before shipment.
 - 4. Assure sampling locations are safe.
 - 5. Assure proper bedding planes or production depths are maintained.
- G. Documentation
 - 1. Report all production test results of certified aggregates on Form #821278 and distribute as required.
 - 2. Assure "plant production log" is maintained.

PORTLAND CEMENT CONCRETE (PCC) TECHNICIAN DUTIES PAVING & STRUCTURAL CONCRETE

The Quality Control Technician shall have no other duties while performing certified inspection duties. The District Materials Engineer may approve all quality control activities be performed by a single certified technician for low production situations.

Many of the duties of the PCC Level II Technician are detailed in IM 527 (Paving) and IM 528 (Structural) and consist of, but are not limited to the following:

A. Stockpiles

- 1. Assure proper stockpiling procedures.
- 2. Prevent intermingling of aggregates.
- 3. Prevent contamination.
- 4. Prevent segregation.
- B. Plant Facilities
 - 1. Assure safe sampling locations.
 - 2. Check for equipment compliance.
 - 3. Assure proper laboratory location and facilities.
- C. Calibration
 - 1. Be present during calibration (paving).
 - 2. Check plant calibration (structural).
 - 3. Assure proper batch weights.
- D. Cement (Fly Ash) & Aggregate Delivery
 - 1. Check for proper sources and certification.
 - 2. Document quantities delivered.
 - 3. Monitor condition of shipments.

- E. Plant Sampling
 - 1. Check aggregate gradations by obtaining, splitting, and testing samples.
 - 2. Check aggregate moistures and specific gravity.
- F. Proportion Control
 - 1. Check scale weights and operation.
 - 2. Check admixture dispensers.
 - 3. Check mixing time and revolutions.
 - 4. Check cement yield. (Paving plant only, unless over 10,000 cu. yds.)

G. Concrete Tests

- 1. Cure flexural test specimens.
- 2. Test flexural specimens (Contract agency will perform test in structural plant).
- 3. Conduct maturity testing.
- H. Test Equipment
 - 1. Clean and maintain scales, screens, pycnometers and beam molds, and laboratory facility.
- I. Documentation
 - 1. Prepare daily plant reports (paving), weekly plant reports (structures).
 - 2. Document all checks and test results in the field book.
 - 3. Maintain daily diary of work activity.

HOT MIX ASPHALT (HMA) TECHNICIAN INSPECTION DUTIES

The following is a list of the duties that must be performed by the Certified Level I HMA Technicians doing quality control work for the Contractor on all projects where the Quality Management-Asphalt (QM-A) specification applies. The Quality Control Technician shall have no other duties while performing certified inspection duties.

These duties consist of, but are not limited to, the following:

- A. Aggregate Stockpiles.
 - 1. Assure proper stockpiling of aggregate deliveries. (stockpile build & additions)

(daily check list, IM 508)

- a. Prevent intermingling of aggregates.
- b. Check for and prevent contamination.
- c. Prevent segregation.
 - d. Check for oversize material.
 - 2. Document certified aggregate deliveries. (each delivery) (plant book, IM 508)
 - a. Obtain truck tickets.
 - b. Check for proper certification.
 - c. Check for proper approved source.
- d. Enter deliveries in Plant Book Program, Aggregate Certification page.
 - 3. Observe loader operation. (daily) (daily check list, IM 508)
 - a. Check for proper stockpile to bin match-up.
 - b. Check that loader does not get stockpile base material in load.
 - c. Check that loader does not intermingle aggr. by overloading bins.
- B. Asphalt Binder Delivery. (each delivery) (plant report & plant book, IM 508 & 509)
 - 1. Check that material is pumped into correct tank.
 - 2. Document Deliveries.
 - a. Obtain truck tickets.
 - b. Check for proper approved source.
 - c. Check for proper certification.
 - d. Check for proper grade.
 - e. Check for addition of liquid anti-strip if required.
 - f. Check if weight per gallon or specific gravity has changed.
 - g. Enter deliveries into Plant Book Program, Asphalt Binder Shipment Log page.

- C. Plant Operations. (daily)
 - 1. Prepare Plant Report Program for daily entries. (plant report, IM 511)
 - a. Enter Date.
 - b. Enter Report Number.
 - c. Enter expected tonnage for the day.
 - d. Enter any proportion or target changes that apply.
 - 2. Aggregate Delivery System. (daily check list, IM 508)
 - a. Check for proper cold feed gate settings.
 - b. Check for proper cold feed belt speed settings.
 - c. Check for proper moisture setting (drum plants).
 - d. Monitor RAP proportions
 - 3. Mixing System. (daily check list, spec 2303.03, IM 508)
 - a. Check for proper asphalt binder delivery setting.
 - b. Check for proper interlock operation.
 - c. Monitor coating of aggregates.
 - d. Monitor mixing time (batch plants).
 - 4. Loading System. (daily check list, spec 2303.03 & 2001.01, IM 508)
 - a. Check hopper/silo gates for proper open/close
 - b. Check trucks for proper loading and possible segregation.
 - c. Check trucks for diesel fuel contamination in box and remove contaminated trucks from service (5 hrs with box raised).
 - 5. Asphalt Binder Quantity Determination. (plant report, IM 508 & 509)
 - Perform start-up tank stick measurement before mix production begins (if applicable).
 - b. Perform final tank stick measurement after mix production is done (if applicable).
 - c. Perform intermediate tank stick measurements as needed.
 - d. If using meter for quantity, obtain totalizer printout readings and periodically check against tank stick readings.
 - e. If using batch count for quantity, obtain printouts of each batch and add up the asphalt binder used for total quantity.
- D. Plant Operations. (2 hour intervals) (plant report, IM 508)
 - 1. Temperatures.
 - a. Monitor and record mix temperature at discharge into truck box.

Matls. IM 213 Appendix D

- b. Monitor and record asphalt binder temperature.
- c. Monitor and record air temperature.
- 2. Observe plant operation for any irregularities.
- E. Weighing Equipment.
 - 1. Proportioning scales (batch plants). (min. 1/day) (spec 2001.07 & .20)

(daily check list, IM 508)

- a. Perform sensitivity checks of scales.
- b. Check for interference at scale pivot points.
- 2. Pay Quantity Scales. (min. 1/day) (spec 2001.07 & .20, IM 508)

(daily check list, plant book)

- Regularly perform check weighing comparisons with a certified scale as necessary. (min. 1st day and one additional if >5000 tons, and as
- b. Perform sensitivity checks of scales. directed by Engineer)
- c. Check for interference at scale pivot points.
- d. Perform verification weighing (truck platform scales).
- 3. Weigh Belts. (daily) (daily check-list)
 - a. Check weigh belt for excess clinging fines that effects speed reading.
 - b. Check weigh belt for interference at bridge pivot points.
 - c. Check for proper span setting.
- Enter scale checks in Plant Book Program, Daily Check List or Plant Scale Checks page. (daily) (plant book)
- F. Plant Sampling. (daily) (spec 2303.04, IM 204 & 511)
 - Obtain cold-feed gradation samples as directed by Contracting Authority personnel per IM 301and IM 204.
 - Obtain asphalt binder samples as directed by Contracting Authority personnel per IM 323 and IM 204.
 - 3. Enter sample data into Plant Book Program, Sample Log page.
 - 4. Obtain cold-feed moisture samples at a minimum of every 1/2 day (drum mix plants).
- G. Field Sampling (if not performed by others). (daily) (spec 2303.04, IM 204 & 511)
 - 1. Obtain uncompacted mix random samples as directed by Contracting Authority personnel, and identify time, station, lift and side.

- 3. Obtain compacted mix core random samples as directed by Contracting Authority personnel.
- H. Testing. (daily) (spec 2303.04, IM 204 & 511)
 - 1. Field cores.
 - a. Provide properly calibrated equipment for Contracting Authority technician's use.
 - b. Obtain and record core location station and offset information.
 - c. Obtain copy of core thickness measurements from Contracting Authority Technician.
 - d. Obtain copy of core weights from Contracting Authority technician.
 - e. Record weights and thickness in Plant Report Program.
 - f. Enter sample data into Plant Book Program Sample Log page.
 - 2. Uncompacted mix.
 - a. Properly store Contracting Authority secured portion of paired sample.
 - b. Split Contractor half of paired sample into test portions as per IM 357.
 - c. Perform gyratory compaction as per IM 325G.
 - d. Perform bulk specific gravity test of laboratory-compacted specimen as per IM 321.
 - e. Perform maximum specific gravity test as per IM 350.
 - f. Enter test data into Plant Report Program.
 - g. Submit secured samples to DOT District Lab.
 - h. Enter sample data into Plant Book Program, Sample Log page.
 - 3. Aggregate.
 - a. Split one sample each day as directed by Contracting Authority personnel and provide half for testing by Contracting Authority.
 - b. Perform gradation analysis as per IM 302 and enter weights into Plant Report Program.
 - c. Perform moisture tests and enter weights into Plant Book Program, Plant Moistures page (drum mix plants).
 - 4. Testing Lab Qualification. (as needed) (IM 208 & 511)
 - a. Record all HMA sample validations with DOT on form 235.
 - b. Document corrective actions taken when not correlating.
 - c. Document all test equipment calibrations.
 - d. Update IM's, test procedures and specs as required.

Matls. IM 213 Appendix D

- I. Documentation. (daily) (spec 2303.04, plant report, plant book, IM 204, 511 & 508)
 - 1. Prepare computerized Daily Plant Report (form 241).
 - a. Check that all data is correct.
 - b. Check that all data is complete.
 - c. Compute moving averages for gradation and lab voids.
 - d. Compute tons of mix used to date.
 - e. Enter mix adjustment data on report.
 - f. Check for spec compliance.
 - g. Immediately report non-complying results.
 - h. Obtain and record mat temperatures and stationing.
 - i. Provide daily Plant Report printout to DME.
 - 2. Maintain a daily diary of work activity in Plant Report Program.
 - a. Record weather conditions.
 - b. Record daily high and low temperatures.
 - c. Record sunrise and sunset times.
 - d. Record any interruptions to plant production.
 - e. Record any other significant events.
 - 3. Copy and export daily data and paste into control charts program.
 - 4. Enter all asphalt binder or aggregate proportion changes in Plant Book Program, Mix Adjustments page.
 - 5. Enter tack shipment quantities in Plant Book Program, Tack Shipment Log page.
 - Total all truck tickets delivered to project and deduct any waste to determine HMA pay quantity.
- J. Miscellaneous. (daily) (daily check list, IM 208 & 511)
 - 1. Fill out Plant Book Program, Daily Check List page.
 - 2. Clean lab.
 - 3. Back-up computer files.
 - 4. Dispose of samples as directed by District Lab.
 - 5. Clean and maintain lab equipment.

- K. Independent Assurance Duties. (Every 3 months) (IM 205 & 216)
 - 1. Pick up HMA and aggregate proficiency sample from District Lab.
 - 2. Test aggregate proficiency sample for gradation per IM 302.
 - 3. Test HMA proficiency sample per IM 357, 325G, 321 & 350.
 - 4. Report test results on proficiency samples to Central Materials Office per IM 205.
- L. Project Duties. (1/project) (IM 508 & 511)
 - 1. Be in possession of appropriate mix design.
 - 2. Be present during plant calibration.
 - 3. Observe scale calibrations.
 - 4. Perform plant site and set-up inspection and fill out Plant Site Inspection List.
 - 5. Set up Plant Report and Plant Book Programs and enter all project information to create Project Master files at beginning of project.
 - 6. Check that release agents used in truck boxes are on the approved list in IM 491.15
 - Copy all computer files and provide to the Contracting Authority at completion of project.
 - 8. Copy all paperwork and control charts and provide to the Contracting Authority at completion of project.

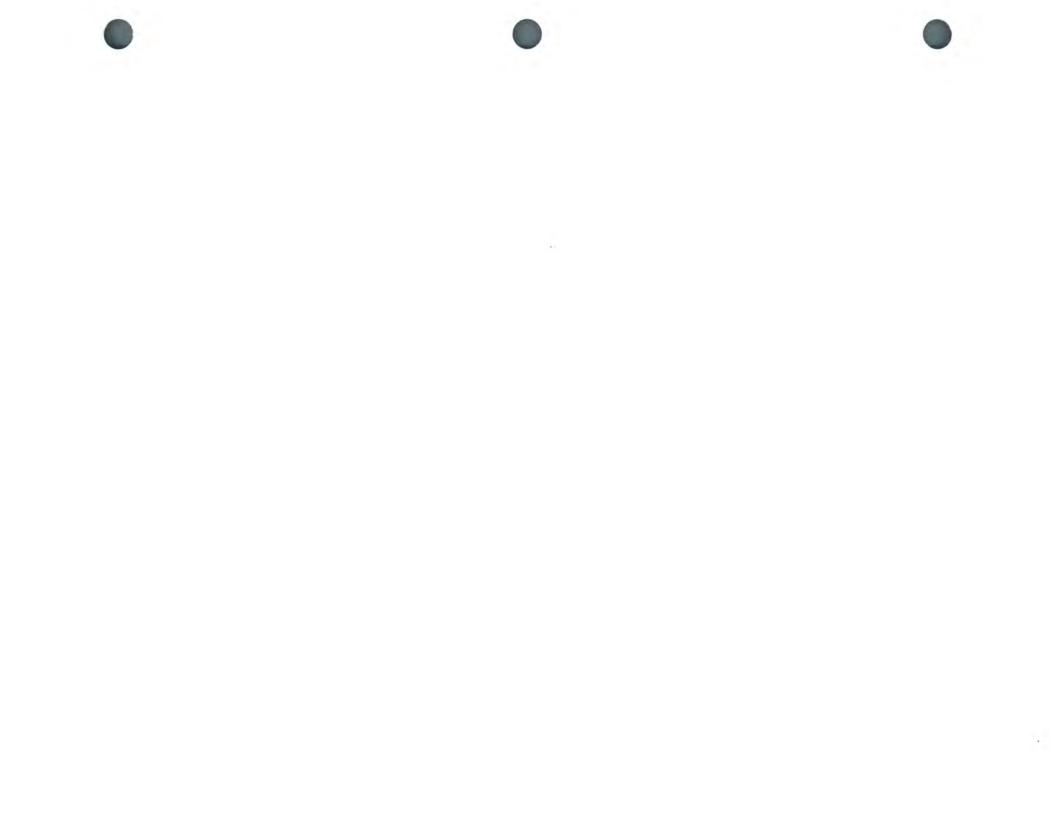
PRESTRESS TECHNICIAN DUTIES

Duties of the Prestress Technician are detailed in IM 570 and consist of, but are not limited to the following:

- A. Pre-pour
 - 1. Identify and document materials requiring outside fabrication inspection.
 - 2. Identify potential fabrication or production problems and notify Iowa DOT inspectors.
 - 3. Verify that all materials incorporated meet the requirements of the contract documents.
 - 4. Review concrete placement documents for strand locations.
 - 5. Check tension calculations.
 - 6. Measure elongation and gauge pressure during tensioning.
 - 7. Check hold down and insert locations.
 - 8. Check stress distributions.
 - 9. Check steel reinforcement and placement.
 - 10. Check strand position.
 - 11. Check condition of pallet.
 - a. Level
 - b. Holes
 - c. Gaps
 - d. Other deformities
 - 12. Determine moisture of aggregates.
 - 13. Check form condition and placement.
 - a. Oil
 - b. Line alignment level
 - c. Tightness

- B. Concrete Placement
 - 1. Check on use of an approved mix design and batching operations (sequence).
 - 2. Assure appropriate placement and proper vibration techniques.
 - 3. Measure and record concrete temperature.
 - 4. Assure test cylinders are properly made.
 - 5. Assure appropriate finish.
 - 6. Assure appropriate curing operations.
- C. Post-pour
 - 1. Check temperature and record during curing process.
 - 2. Assure concrete strength has been met prior to releasing the line.
 - 3. Assure proper detensioning procedure.
 - 4. Check unit for defects and obtain approval for repairs.
 - 5. Identify and store cylinders with the respective units.
 - 6. Check beam ends for fabrication in accordance with the plans.
 - 7. Assure exterior sides of facia beams are grouted.
 - 8. Inspect after patching and desired surfacing.
 - 9. Measure and record overall dimensions of beam.
 - 10. Measure and record camber at release and compare to design camber.
 - 11. Check and/or measure and record lateral sweep before shipping.
 - 12. Assure proper cylinder cure.

PROFILOGRAPH TECHNICIAN DUTIES


Duties of the Profilograph Technician are detailed in IM 341 and consist of, but are not limited to the following:

- A. Test pavement for smoothness criteria.
- B. Evaluate and certify test results.
 - 1. Certified person that reduces trace must sign certified test report.
 - 2. Profilograms become part of permanent project record.

C. Documentation

1. Certified Profilograph Test report must include following statement:

This is to certify that all testing and trace reduction herein described has been performed according to applicable contract specifications and requirements.

Iowa Department of Transportation

Office of Materials

October 21, 2008 Supersedes October 16, 2007 Matls. IM 216

GUIDELINES FOR VALIDATING TEST RESULTS

GENERAL

Agency laboratory and field personnel validate testing by Contractor and producer personnel on a regular basis. Tolerances given herein are for use as guides to flag test result variations that indicate a possible discrepancy.

TOLERANCES

The tolerances shown in the following listing apply to the difference between Contractor and producer test results and verification test results. When the tolerances are exceeded, an immediate investigation must be made to determine possible cause so that any necessary corrections can be made.

TEST NAME	TEST METHOD	TOLERANCE
Slump of PC Concrete	IM 317	1/4 in. (6 mm)
Air Content of PC Concrete	IM 318	0.4%
Length of Concrete Cores	IM 347	0.10 in. (2 mm)
Free Moisture in Aggregate, by Pycnometer	IM 308	0.2%
Specific Gravity of Aggregate, by Pycnometer	IM 307	0.02
Moisture in Aggregate, by Hot Plate		0.3%
Wet Density by Nuclear Gauge, Soils & Bases kg/m³)	IM 334	2.0 lb./ft. ³ (32
G _{mm} Maximum Specific Gravity	IM 350	0.010
G _{mb} Density of HMA Concrete, by Displacement	IM 321	0.020
G*/Sin Delta	T315	10% of mean
% Binder, Ignition Oven	IM 338	0.3%
G _{sa} Apparent Specific Gravity	IM 380	0.010
G _{sb} Bulk Specific Gravity	IM 380	0.028
Percent Absorption	IM 380	0.37%
Fine Aggregate Angularity	T304	2
Sand Equivalency	T176	10 % of mean

October 21, 2008 Supersedes October 16, 2007

Pavement Profile Index (0.2" blanking band) Verification Profile Index Test Result Inches/mile (mm/km) 6.0 (95) or less 6.1 to 20.0 (96 to 315) 20.1 to 40.0 (316 to 630) More than 40.0 (630)	IM 341	1.0 in./mi. (16 mm/km) 2.0 in./mi. (32 mm/km) 3.0 in./mi. (47 mm/km) 5.0 in./mi. (79 mm/km)
Pavement Profile Index (0.0" blanking band)	IM 341	
Verification Profile Index Test Result Inches/mile (mm/km)		
25.0 (395) or less		3.0 in./mi. (47 mm/km)
25.1 to 40.0 (396 to 630)		4.0 in./mi. (63 mm/km)
More than 40.0 (630)		5.0 in./mi. (79 mm/km)
Bridge Profile Index (0.2" blanking band) Verification Profile Index Test Result Inches/mile (mm/km)	IM 341	
6.0 (95) or less		2.0 in./mi. (32 mm/km)
6.1 to 20.0 (96 to 315)		3.0 in./mi. (47 mm/km)
20.1 to 40.0 (316 to 630)		4.0 in./mi. (63 mm/km)
More than 40.0 (630)		6.0 in./mi. (95 mm/km)

TOLERANCES FOR AGGREGATE GRADATIONS

Determining the precision of an aggregate sieve analysis presents a special problem because the result obtained with a sieve is affected by the quantity of material retained on the sieve and by results obtained on sieves coarser than the sieve in question. Tolerances are, therefore, given for different ranges of percentage of aggregate passing one sieve and retained on the next finer sieve used.

Comparisons of test results are made on each fraction of the sample, expressed in percent that occurs between consecutive sieves.

NOTE: Unless otherwise noted, tolerances for aggregate gradations are only valid if the two tests were made on a split sample. Experience has shown that improper sample reduction, as well as differences in test procedures can contribute to results being out of tolerance. When a comparison exceeds the tolerance limits, a review of the test procedures and equipment will be performed. Where practical, additional comparisons will be done with similar equipment and methods.

Table 1 Tolerances for All Aggregates Except HMA-Combined Aggregate

#4 Sieve and larger Fine portion:	Size Fraction Between Consecutive Sieves, %*	Tolerance, %
Coarse Portion:	0.0 to 3.0	2
#4 Sieve and larger	3.1 to 10.0	3
0	10.1 to 20.0	5
	20.1 to 30.0	6
	30.1 to 40.0	7
	40.1 to 50.0	9
Fine portion:	0.0 to 3.0	1
#8 Sieve and smaller	3.1 to 10.0	2
	10.1 to 20.0	3
	20.1 to 30.0	4
	30.1 to 40.0	4

Table 2 Tolerances for All HMA-Combined Aggregate

Tolerances ⁽¹⁾
2
3
5
6
7
9

(1) Minimum tolerance of 5% is applied to all size fractions coarser than the #4 sieve when comparing cold feed to ignition oven as shown on page 3 of Appendix A.

*The verification test analysis fraction is used to find the proper tolerance.

Use of these tolerances is explained in the following examples. Computer spreadsheets to perform the analysis are available on the Iowa DOT Materials Office website. Use of the spreadsheets is preferred when possible. Appendix A contains a copy of the printouts from the spreadsheets.

Sieve Size	DOT Coarse Aggr Percent Passing	Prod./CPI Coarse Aggr Percent Passing	DOT Coarse Aggr Percent Retained	Prod./CPI Coarse Aggr Percent Retained	Fraction Difference	Applicable Tolerance	Complies
1.5"/37.5mm	100.0	100.0	0.0	0.0	0.0	2	Yes
1"/25.0mm	97.1	99.1	2.9	0.9	2.0	2	Yes
3/4"/19.0mm	72.2	65.1	24.9	34.0	9.1	6	No
1/2"/12.5mm	38.1	34.9	34.1	30.2	3.9	7	Yes
3/8"/9.5mm	12.0	8.8	26.1	26.1	0.0	6	Yes
#4/4.75mm	0.6	0.2	11.4	8.6	2.8	5	Yes
#8/2.36mm	0.5	0.2	0.1	0.0	0.1	1	Yes
Minus #200	0.3	0.2	0.3	0.2	0.1	1	Yes

Example 1 - PC Concrete Coarse Aggregate

The size fraction between consecutive sieves is found by calculating the difference between the percent passing reported for the two sieves. For example, the fraction between the 1.5 in. (37.5 mm) and 1 in. (25 mm) sieves for the above verification test is 100.0 - 97.1 = 2.9%. Between the 1/2 in. (12.5 mm) and 3/8 in. (9.5mm) sieves it is 38.1 - 12.0 = 26.1%. Since nothing passes the pan, the size fraction between the #200 sieve and the pan is equal to the percent passing the #200.

The example shows the fraction between each pair of consecutive sieve sizes for both tests and the difference between these fractions for both tests. The difference is compared with the applicable tolerance to determine a disposition. In this example, a suspect result is found in the fraction between the 1 in. (25 mm) and 3/4 in. (19 mm) sieves. Since the suspect difference is due primarily to the percent passing results on the 3/4 in. (19 mm) sieves, it is these results that should at least be investigated first. Only further investigation can determine which 3/4 in. (19 mm) sieve, if any is faulty.

NOTE: The applicable tolerance changes between #4 and #8 size fractions.

Matls. IM 216

Matls.	M	216
--------	---	-----

Sieve Size	DOT Fine Aggregate Percent Passing	Prod./CPI Fine Aggregate Percent Passing	DOT Fine Aggregate Percent Retained	Prod./CPI Fine Aggregate Percent Retained	Fraction	Applicable Tolerance	Complies
3/8"/9.5mm	100.0	100.0	0.0	0.0	0.0	2	Yes
#4/4.75mm	95.0	95.0	5.0	5.0	0.0	3	Yes
#8/2.36mm	87.8	86.3	7.2	8.7	1.5	2	Yes
#16/1.18mm	72.0	71.5	15.8	14.8	1.0	3	Yes
#30/600um	44.0	43.8	28.0	27.7	0.3	4	Yes
#50/300um	12.2	13.0	31.8	30.8	1.0	4	Yes
#100/150um	1.5	1.3	10.7	11.7	1.0	3	Yes
Minus #200	0.4	0.4	0.4	0.4	0.0	1	Yes

Example 2 - PC Concrete Fine Aggregate

Example 3 - HMA Combined Aggregate

	Sieve Sizes										
3.0	1"	3/4"	1/2"	3/8"	4	8	16	30	50	100	200
Specs.											
D.O.T.		100	99.1	87.3	68.8	54.2	41.4	28.2	15.5	9.1	6.9
Prod./C.P.I.		100	98.8	86.1	74.9	56.1	41.9	28.7	15.1	10.9	8.6

D.O.T. % Retained	Prod./C.P.I. % Retained	Diff.	Tol. %	Comply (Y/N)	
NA	NA	0.0	2	Y	
0.9	1.2	0.3	2	Y	
11.8	12.7	0.9	5	Y	
18.5	11.2	7.3	5	N	
14.6	18.8	4.2	5	Y	
12.8	14.2	1.4	5	Y	
13.2	13.2	0.0	5	Y	
12.7	13.6	0.9	5	Y	
6.4	4.2	2.2	3	Y	
2.2	2.3	0.1	2	Y	
6.9	8.6	1.7	3	Y	

D.O.T.	EDD.
D.U.I.	FDR.

Siev	e Frad	tion B	etween	and at a second
Cons	secutiv	ve Sie	ves, %	Tolerance, %
(0.0	То	3.0	2
:	3.1	То	10.0	3
1(0.1	То	20.0	5
20	0.1	То	30.0	6
30	0.1	То	40.0	7
40	0.1	То	50.0	9

NOTE: The applicable tolerance for this combined aggregate sample is from Table 2. In this example, the suspect fractions would indicate a possible problem for two pairs of consecutive sieve sizes involving the #4 (4.75 mm) sieves. This evidence and the difference in the test values found for the #4 (4.75 mm) sieves, strongly point to an error in one of the #4 (4.75 mm) sieve results.

When RAP mixes are used, the comparison data is of the composite gradation results and not of the cold feed.

		Sieve Sizes - Percent Passing												
			1 1/2"	1"	3/4"	1/2"	3/8"	#4	#8	#16	#30	#50	#100	#200
		Specs.	100	100	100	90-100	76-90	50-64	30-40		20-28			3.0-7.
Sample ID		Ign. Oven	100.0	100.0	100.0	92.0	82.0	62.0	40.0	30.0	20.0	15.0	9.0	5.0
Sample ID		Cold-Feed	100.0	100.0	100.0	90.0	80.0	60.0	35.0	27.0	22.0	13.0	7.0	3.0
	Correctio	on Factor	0.0	0.0	0.0	0.0	-0.3	-0.5	-0.5	-0.3	-0.3	-0.2	-0.3	-0.3
	Ign. Oven	Cold-Feed		Tol.	Comply		Correcte	ed Ign. O	ven SA:	5.6	Film Th	ickness:	7.3]
Sieves	% Retained	% Retained	Diff.	%	(Y/N)		Cold-Feed Surface Area:				Film Th	ickness:	8.7	
1 1/2 - 1	0.0	0.0	0.0	2	Y		(Correction	Factor:	-0.1]			
1 - 3/4	0.0	0.0	0.0	2	Y									
3/4 - 1/2	8.0	10.0	2.0	3	Y	1								
1/2 - 3/8	10.3	10.0	0.3	5	Y				Sieve Fra	action E	letween			
3/8 - 4	20.2	20.0	0.2	6	Y				Consecu	tive Sie	ves. %	Toleran	ice, %	
4 - 8	22.0	25.0	3.0	6	Y				0.0	То	3.0		2	
8 - 16	9.8	8.0	1.8	3	Y				3.1	То	10.0		3	
16 - 30	10.0	5.0	5.0	3	N				10.1	То	20.0		5	
30 - 50	4.9	9.0	4.1	3	N				20.1	То	30.0		6	
50 - 100	6.1	6.0	0.1	3	Y				30.1	То	40.0		7	
100 - 200	4.0	4.0	0.0	3	Y				40.1	То	50.0		9	
200	4.7	3.0	1.7	3	Y						num toler		5	

Example 4 HMA Cold-Feed to Ignition Oven Comparison

When comparing an ignition oven extracted gradation to a cold-feed gradation a correction factor must be applied to the ignition oven extracted gradation before comparing it to the cold-feed gradation. The correction factor is determined by calculating the difference between a cold-feed gradation and an ignition oven gradation on the first day of HMA production according to IM 501. The correction factor is then applied to all subsequent comparisons. In the example above, the correction factor was determined on a previous sample. The District Materials Engineer may establish new or average correction factors when needed.

PC CONCRETE GRADATION COMPARISON REPORT (Computer Spreadsheet Available on Iowa DOT Office of Materials Web Site)

	Project No.							Intende	d Use:					
Project No.: Contract ID:						miende	u use.	(Pav	ving, Struc	ture, Pat	ching, Inc	cidenta		
										Good		Fair		Des
Contro							Car	of Equ	uipment:			Fair		Poo
Contra	ctor/Producer:								ocedure:					_
Coarse Ag	. T203 A No.:								ocedure:					
	. T203 A No.:								npletion:					
	er Equipment:						Cicting		utations:					
	licable Specs.								eporting:			100		_
, the	indubic opeco.								sporting.		-			-
DO	T Tested By:					Ce	rt. No.:		1		Date:			
	od. Tested By													
									Percent Pa	-				-
			1 1/2"	1"	3/4"	1/2"	3/8"	#4	#8	#16	#30	#50	#100	#20
Grad No.	Sample ID	Specs	-	-		_				-				
		DOT				_				-	-			-
		Contr./Prod.	-				-					-	-	_
Grad No.	Sample ID		-			Specs								
_		DOT	1	1										
-		Contr./Prod.		-				1	-					
	DOT	Contr./Prod.		Tol.	Comply				Size Fr	raction E	Between			
Sieves	% Retained	% Retained	Diff.	%	(Y/N)						eves, %	I	olerance,	%
1 1/2 - 1	NA	NA	0.0	2	Y	Coars	se Aggre	egate:						
1 - 3/4	NA	NA	0.0	2	Y				0.0	to	3.0		2	
3/4 - 1/2	0.0	0.0	0.0	2	Y				3.1	to	10.0		3	
1/2 - 3/8	0.0	0.0	0.0	2	Y				10.1	to	20.0		5	
. 3/8 - 4	0.0	0.0	0.0	2	Y				20.1	to	30.0		6	
4 - 8	0.0	0.0	0.0	1	Y				30.1	to	40.0		7	
8 - 200	0.0	0.0	0.0	1	Y				40.1	to	50.0		9	
200	0.0	0.0	0.0	1	Y									
							-							
3/8 - 4	0.0	0.0	0.0	2	Y		Fine Ag	gregate					-	
4 - 8	0.0	0.0	0.0	1	Y				0.0		3.0		1	
8 - 16	0.0	0.0	0.0	1	Y				3.1	to	10.0		2	
16 - 30	0.0	0.0	0.0	1	Y				10.1	to	20.0		3	
30 - 50	0.0	0.0	0.0	1	Y				20.1	to	30.0		4	
50 - 100	0.0	0.0	0.0	1	Y				30.1	to	40.0		4	
100 - 200	0.0	0.0	0.0	1	Y									

Distribution Central Materials Dist. Materials Contr./Producer Proj. Engineer Technician

HMA GRADATION COMPARISON REPORT

(Computer Spreadsheet Available on Iowa DOT Office of Materials Web Site)

Rev 05/03 Iowa Department O					nt Of	Of Transportation					For	m 201	
	F	Reporte	d Gra	dation	& IM 2	16 Con	npariso	on Rep	ort				
Proj	ject No.:												
Con	tract ID:		-			_		Intend	led Use:		_		
	County:		_	_		-							
Contractor/Pr	roducer:					_							
Mix Des	ign No.:			_					Good		Fair		Poor
Mix Change	(Y/N):					Car	e of Equ	ipment:					
Date of C	Change:					Samp	ling Pro	cedure:					
Total, % Asph	alt (Pb):					Splitting Procedure:							
Effective % Asphal	t (Pbe):					Sieving	to Com	pletion:					
Proper Equ	ipment:						Compu	tations:					_
Applicable	Specs.:						Re	porting:					
DOT Teste	ed By:					C	ert. No.:				Date:	_	
Contr./Prod. Tes	Cert. No.: Date:												
		Sieve Sizes - Percent Passing						-		-			
	Specs.	1 1/2"	1"	3/4"	1/2"	3/8"	#4	#8	#16	#30	#50	#100	#200
Sample ID	DOT					1	2						
Sample ID	Contr./Prod.								1				

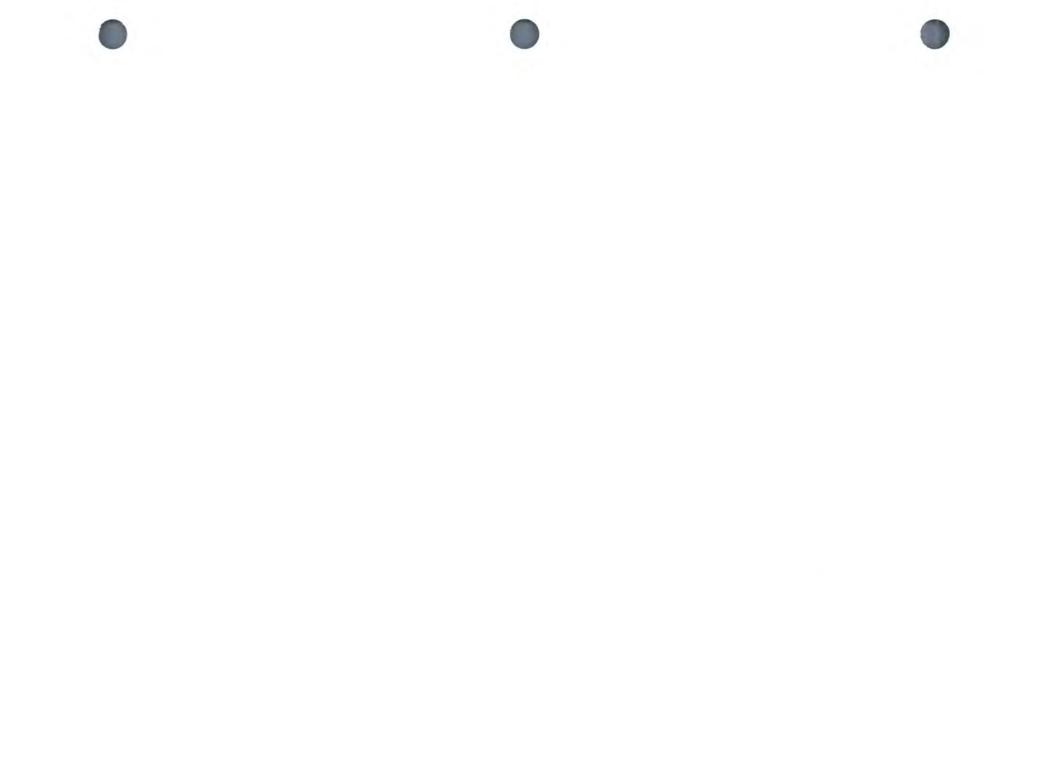
Sieves	DOT % Retained	Contr./Prod. % Retained	Diff.	Tol. %	Comply (Y/N)
1 1/2 - 1	NA	NA	0.0	2	Y
1 - 3/4	NA	NA	0.0	2	Y
3/4 - 1/2	NA	NA	0.0	2	Y
1/2 - 3/8	NA	NA	0.0	2	Y
3/8 - 4	NA	NA	0.0	2	Y
4 - 8	NA	NA	0.0	2	Y
8 - 16	NA	NA	0.0	2	Y
16 - 30	NA	NA	0.0	2	Y
30 - 50	NA	NA	0.0	2	Y
50 - 100	NA	NA	0.0	2	Y
100 - 200	NA	NA	0.0	2	Y
200	NA	NA	0.0	2	Y

DOT Gyratory Filler/Bitumen Ratio 0.00

Sieve Fra	action B	etween	
Consecu	tive Sie	ves, %	Tolerance, %
0.0	То	3.0	2
3.1	То	10.0	3
10.1	То	20.0	5
20.1	То	30.0	6
30.1	То	40.0	7
40.1	То	50.0	9

Remarks:

Distribution ____ Central Materials ____ Dist Materials ____ Contr./Producer ____ Proj. Engineer ____ Technicia


October 21, 2008 Supersedes October 21, 2003

Rev 05/08		Cold-Feed			rtmen ven Grad					on Re	port		Form 201	Modi
	Project No.:													
	Contract ID:			6.21	1. 2.1.2	1941			Intende	ed Use:				
		Same al										1. 24.	1	
Contrac	tor/Producer:													
	Design No.:									Good		Fair		Po
	ange (Y/N):	New Street St					Care	of Equi	ipment:					
	e of Change:								cedure:			6.4		2
	Asphalt (Pb):								cedure:		10000	1		
	sphalt (Pbe):						Sieving							
	r Equipment:								itations:		1			and the second s
	able Specs.:	100 C + 2012							porting:			2		
	n Tested By:						Ce	art. No.:				Date:		
	d Tested By:						•	ert. No.:		and the second	-	Date:		
							Sieve	Sizes - F	Percent P	assing	51-2-2- 2-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2			1.2
			1 1/2"	1"	3/4"	1/2"	3/8"	#4	#8	#16	#30	#50	#100	#2
		Specs.	12-25	1253		-25	-	1.1			Carlos Se		T. color	
Sample ID		Ign. Oven										a constant		
Sample ID	12 marting	Cold-Feed			See.			1.5.20		Marrie			1-11-1	
	Correctio	n Factor	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
	Ign. Oven	Cold-Feed		Tol.	Comply		Correcte	ed Ign. C	ven SA:		Film Th	ickness:]
Sieves	% Retained	% Retained	Diff.	%	(Y/N)		Cold-Feed Surface Area: Film Thickness:			Same.]			
1 1/2 - 1	NA	NA	0.0	5	Y		0	Correction	n Factor:	5				
1 - 3/4	NA	NA .	0.0	5	Y									
3/4 - 1/2	NA	NA	0.0	5	Y									
1/2 - 3/8	NA	NA	0.0	5	Y				Sieve Fi	raction E	Between			
3/8 - 4	NA	NA	0.0	5	Y				Consec	utive Si	eves, %	Tolera	nce, %	
4 - 8	NA	NA	0.0	2	Y				0.0	То	3.0		2	
8 - 16	NA	NA	0.0	2	Y				3.1	То	10.0		3	
16 - 30	NA	NA	0.0	2	Y				10.1	То	20.0		5	
30 - 50	NA	NA	0.0	2	Y				20.1	То	30.0		6	
50 - 100	NA	NA	0.0	2	Y				30.1	То	40.0		7	
100 - 200	NA	NA	0.0	2	Y				40.1	То	50.0		9	
200	NA	NA	0.0	2	Y				+#4 sie	ves min	imum tol	erance =	5	
Remarks											in and in a second s			
	Distribution	Central Mate	erials	Dist M	Aaterials	Ca	ontr./Produce	er	Proj. Engi	neer	Techni	ician		

			QMC	Gradation Correlation I.M	216		
Project No.:			-				
			Contract ID		Date Sampled		
Plant Name			County		Gradation Date		
Contractor			Mix Design Number		Design No.:		
se Aga, Source			Intermediate Agg. Source:		Fine Agg. Source:		
CPI.			Cert. No.		_ Specification.		
Sieve	5.05						
Size	D.O.T. Coarse Agg Percent Passing	Prod. / C. P. I. Coarse Agg Percent Passing		Prod. J C. P. I. Coarse Agg Percent Retained	Fraction Difference	Applicable Tolerance	Complies
1.5"/ 37.5mm							
1" / 25.0mm 3/4" / 19.0mm							
1/2" / 12.5mm							
3/8" / 9.5mm #4 / 4.75mm							
#8 / 2.36mm							
Minus #200							
Sieve Size			D.O.T. Intermediate Aggregate Percent Retained	Prod. / C. P. I. Intermediate Aggregate Percent Retained	Fraction Difference	Applicable Tolerance	Complies
1.5"/ 37.5mm							
1"/25.0mm 3/4"/19.0mm			1				
1/2" / 12.5mm							
3/8" / 9.5mm #4 / 4.75mm		-					
#8 / 2.36mm							/
Minus #200		2		11.01			
		-					
Sieve Size	D.O.T. Fine Aggregate Percent Passing	Prod. / C. P. I. Fine Aggregate Percent Passing	D.O.T. Fine Aggregate Percent Retained	Prod. / C. P. I. Fine Aggregate Percent Retained	Fraction Difference	Applicable Tolerance	Complies
3/8" / 9.5mm							
#4 / 4.75mm #8 / 2.36mm							
#16 / 1.18mm			and the second sec				
#30 / 600um #50 / 300um							
#100 / 150um							
Minus #200							
e of Equipment			E GOOD	EFAIR	E POOR	Comments:	
ling Procedure			F GOOD		E POOR	www.mitherhol.	
ting Procedure			E GOOD		E POOR		
to Completion			IT GOOD		E POOR		
			E GOOD		POOR		
Computations							

.

lowa Department of Transportation Office of Materials

April 15, 2008 Supersedes April 18, 2006 Matls, IM 301

AGGREGATE SAMPLING & MINIMUM SIZE OF SAMPLES FOR SIEVE ANALYSIS

SCOPE

This IM sets forth approved sampling methods and the minimum amount of dry materials necessary for the determination of particle size distribution.

LOCATION FOR SAMPLING

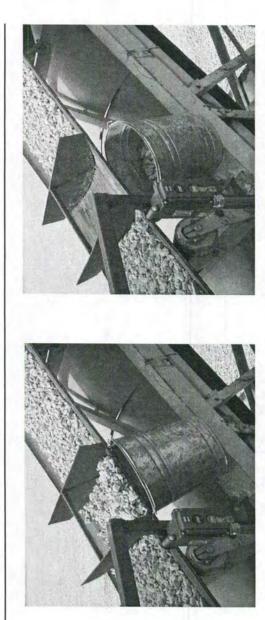
Safety must be foremost when determining sample locations. The Contractor/Producer shall make adequate provisions, satisfactory to the Engineer, for the safety of personnel responsible to obtain representative samples of the aggregate.

Provisions shall include guards for moving belts, pulleys, and wheels near the sampling point, and a stable platform with adequate safety rails when sampling is to be done from an elevated location.

Stopped belt sampling locations must be equipped with an on-off switch near, and in plain view of the sampling location. This switch, when in the off position, must have full control of the belt.

1. Conveyor Belt/Template Method

To obtain an off-the-belt sample: stop the belt, insert a template (as illustrated in the pictures below) at three or more separate locations along the belt, remove all material within the template, and combine it into the sample. In belt sampling, the ends of the template should be spaced just far enough apart to get an increment approximately one-third the minimum mass (weight) of the sample. If the template does not yield the minimum size of sample in three locations, additional locations will be necessary. No less than three separate locations should be used in obtaining one sample.


A minimum of three locations is required when obtaining a sample using this method. Normally, the belt should be recharged for each location to help assure a representative sample. (Review section titled 'Sampling Stockpiles For Gradation Confirmation').

The ends of the template should be spaced to yield approximately one third of the total minimum required sample weight. More increments may be needed to achieve the required minimum weight.

Stop the belt and insert the template as illustrated. Remove all material from the belt contained within the template. A brush or whisk broom will be useful in capturing the finer particles.

The increments are combined together to make one field sample.

2. Stream Flow Method

When obtaining a sample by interception of the aggregate stream flow, care must be exercised, so the sampling device (See picture below.) passes quickly through the entire stream flow and does not overflow. At least three separate passes shall be made with the sampling device when obtaining a sample. Each pass is an increment of the sample. This is normally considered to be the best method to obtain a representative sample of coarse aggregate.

3. Stockpile Method (for fine aggregate only, or as directed by the District Materials Engineer)

Stockpile sampling of fine aggregate may be accomplished by either using a shovel or a sand probe. When obtaining a field sample by the stockpile method, a minimum of three increments shall be taken at different locations around the stockpile. Avoid sampling in areas prone to segregation, such as along the bottom of cone stockpiles.

NOTE: Stockpile sampling of coarse **or combined** aggregate should be avoided. If it becomes absolutely necessary to obtain a sample from a **production** stockpile, consult the District Materials Engineer to help devise an adequate and proper sampling plan.

SAMPLING STOCKPILES FOR GRADATION CONFIRMATION

Stockpile sampling of coarse or mixed coarse and fine aggregate is difficult due to segregation. When sampling to determine gradation compliance of these materials, the Contractor, Producer or Supplier will supply equipment such as a sampling bin or flow-boy to provide a streamflow or stopped conveyor belt sampling location.

An end-loader will open the pile to be sampled in at least three locations. One end-loader bucket from each opened area is then placed into the sampling bin and sampled in a manner to assure representation of the entire quantity.

Alternately, material from each of the opened areas may be combined in a small stockpile, carefully blended to minimize degradation of the aggregate, and placed into the sampling bin.

Avoid obtaining sample increments at the beginning or end of bin discharge due to the natural tendency of segregation through the bin.

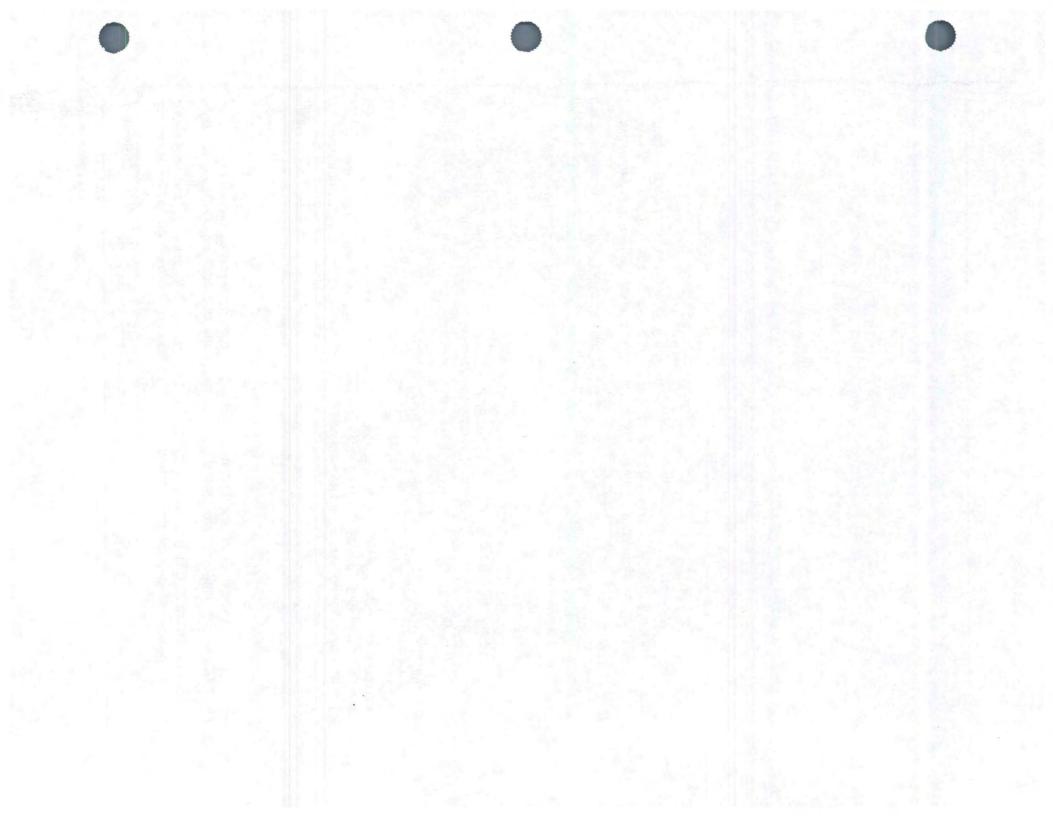
SHIPPING SAMPLES

Transport aggregate samples in bags or other containers constructed to preclude loss or contamination of the sample, or damage to the contents from mishandling during shipment.

Shipping containers for aggregate samples shall each have suitable identification attached and enclosed so that field reporting, laboratory logging and testing may be facilitated.

SAMPLE SIZES

Minimum sample sizes for sieve analysis of aggregates are based on the maximum size of the product and the intended use. The following table lists the required minimum field sample and test sample sizes based on the smallest sieve through which at least 95% of the sample will pass.


SIEVE SIZE	FIELD SAMPLE (lbs./kg)	TEST SAMPLE (gms/kg)
1½ in. (37.5 mm)	50/23.0	5,000/5.0<2>
1 in. (25.0 mm)	30/13.5	3,500/3.5
³ / ₄ in. (19.0 mm)	20/9.0	2,000/2.0
1/2 in. (12.5 mm)	20/9.0	1,500/1.5
³ / ₈ in. (9.5 mm)	10/4.5	1,000/1.0<1>
#4 sieve (4.75mm)	10/4.5	500/0.5
#8 sieve (2.36mm)	10/4.5	200/0.2

(Products with maximum sizes over 1¹/₂ in. (37.5 mm) are normally visually inspected. Contact the appropriate District Materials Engineer.)

- (1) When testing fine aggregate for PC Concrete, the minimum test sample is 500 grams.
- (2) When testing 1¹/₂" aggregate for Special Backfill, Granular Subbase, or Modified Subbase the minimum test sample is 2500 grams.

•

2

•

lowa Department of Transportation

Office of Materials

April 19, 2005 Supersedes April 15, 2003 Matls. IM 320

METHOD OF SAMPLING COMPACTED ASPHALT MIXTURES

SCOPE

This IM provides the procedures used for sampling compacted asphalt mixtures.

REFERENCED DOCUMENTS

IM 204, Inspection of Construction Project Sampling & Testing

APPARATUS

- Core drill suitable for cutting a sample from the mat
- · Core tongs if a core drill is used to cut the sample
- Hammer
- Steel plate 4 in. (100 mm) wide, 4 in. (100 mm) long, 1/8 in. (3.175 mm) thick and curved to fit firmly around the core being taken. A piece of core bit will serve this purpose.
- Wedge A small cold chisel makes a suitable wedge.

PROCEDURE

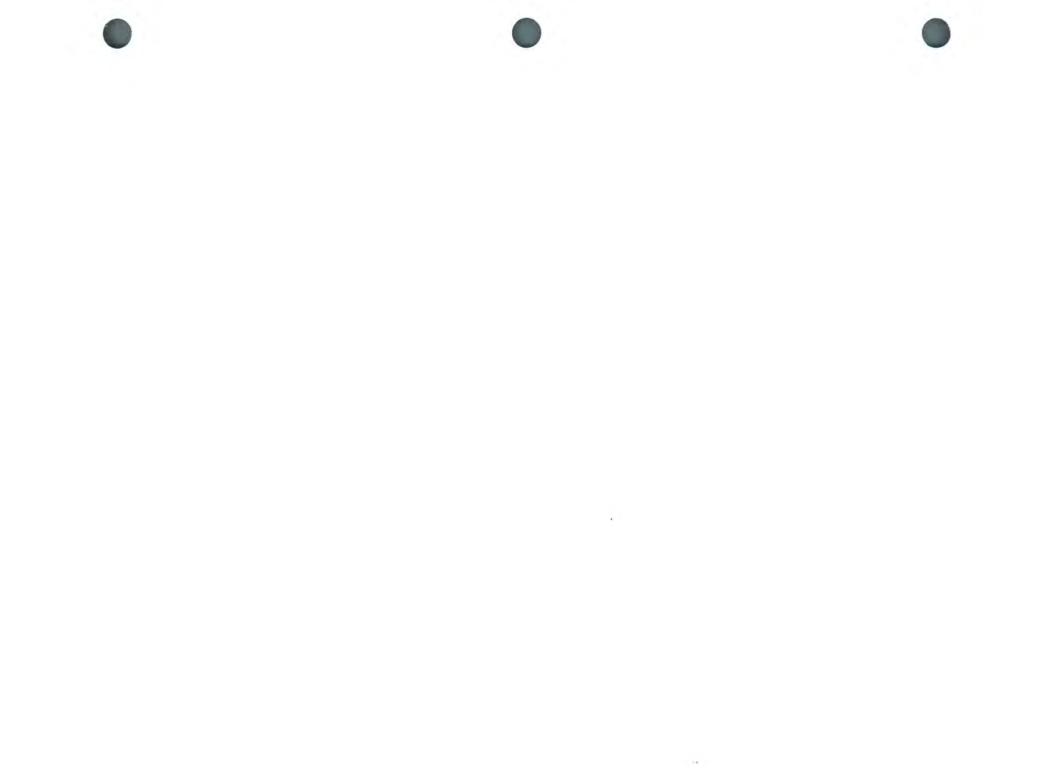
1. Unless otherwise specified, sampling frequency shall comply with IM 204 and sample sites shall be randomly located by the Engineer.

NOTE: Exercise care during sampling, handling, transporting and testing to minimize possibility of damaging the specimens.

2. Drill completely through the layer being sampled.

<u>NOTE</u>: If samples are to be cut from compacted mixtures that are still warm, it may be necessary to subject the sample site to artificial cooling equivalent to surface contact with ice for approximately 20 minutes.

3. Use the curved steel plate for protection of sample. Then place the wedge behind the plate and strike it with a sharp blow from the hammer. This will snap the sample loose.


4. If a layer being sampled adheres to a lower layer such that it is necessary to remove two or more layers during the sampling process, cool the composite sample and remove the extraneous material before testing by sawing or other suitable methods.

NOTE: Under no circumstances shall the cores be submerged in water before testing.

- 5. All samples shall be carefully inspected for damage before testing. Samples that are damaged shall be replaced by additional samples obtained as outlined above.
- 6. Mark the core for later identification.

DOCUMENTATION

Assign a number to each core and record the core number, date sampled, station, and transverse position on the appropriate form.

Iowa Department of Transportation Office of Materials

April 15, 2003 Supersedes April 27, 1999 Matls. IM 321

METHOD OF TEST FOR COMPACTED DENSITY OF HOT MIX ASPHALT (HMA) (DISPLACEMENT METHOD) (General Rewrite)

SCOPE

This IM provides the method of test used in determining the bulk specific gravity (G_{mb}), bulk density, of laboratory-compacted specimens of HMA or cores takes from compacted HMA pavements.

APPARATUS

- A balance having a capacity of 5000 grams or more and accurate to 0.5 gram.
- Water container of sufficient size to allow a submerged sample to not touch the sides or bottom.
- Suspension apparatus (sample holder) "wire suspending the container shall be the smallest practical size to minimize any possible effects of a variable immersed length. The suspension apparatus shall be constructed to enable the container to be immersed to a depth sufficient to cover it and the test sample during weighing. Care should be taken to ensure no trapped air bubbles exist under the specimen" (AASHTO T166-00).
- Spatula or putty knife
- Clean cloth

Balance, Sample Holder, and Water Container

1

PROCEDURE

SAMPLE PREPARATION

Field Cores

- 1. Allow the core to attain laboratory room temperature prior to testing. Cores stored in refrigerated units must be removed and allowed to stand at least 2 hours at room temperature prior to testing. Under no circumstances shall the cores be submerged in water prior to testing.
- Clean off all loose particles, base materials, and prime oils that are stuck to the sample. The portion of the sample that needs to be cleaned may be lightly warmed and scraped with a putty knife.
- 3. If water was used in cutting the sample, the specimen shall be surface-dried before testing.

Laboratory Compacted Specimens

- 1. Cool lab-compacted specimens to laboratory room temperature before testing.
- 2. Clean off all loose particles that are stuck to the specimen.

TEST PROCEDURE FOR DENSITY

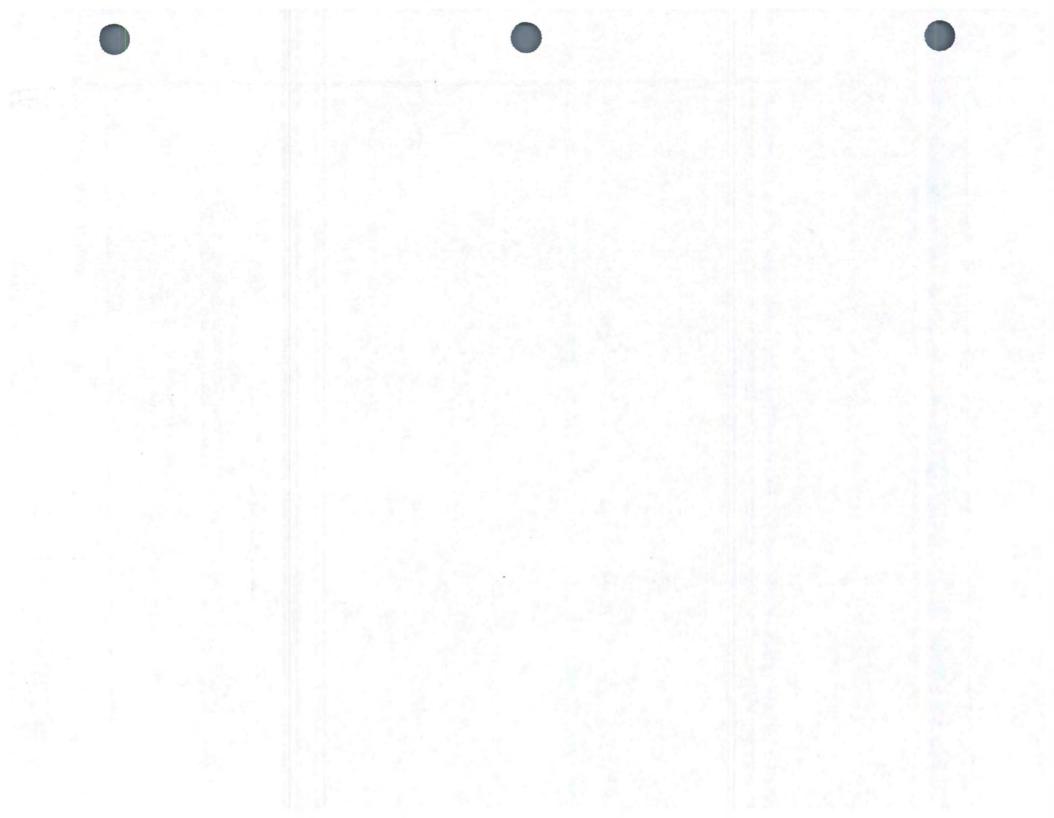
- 1. Fill the water container with water at approximately 77°F (25°C) to a depth sufficient to ensure that the sample holder and sample are completely submerged during testing.
- 2. Connect the wire to the balance at the point provided on the balance.
- Connect the holder to the wire and place in the water bath filled with water and tare the balance.
- 4. Weigh the sample in air (W_1) .
- 5. Weigh the suspended sample completely submerged in water targeted at 77° ± 5°F (25° ± 3°C) (W₂). The reading must be taken when the balance stabilizes.

NOTE: The balance will normally be considered to have stabilized when the weight reading doesn't change by more than 0.1 gram over a 10 to 30 second time span.

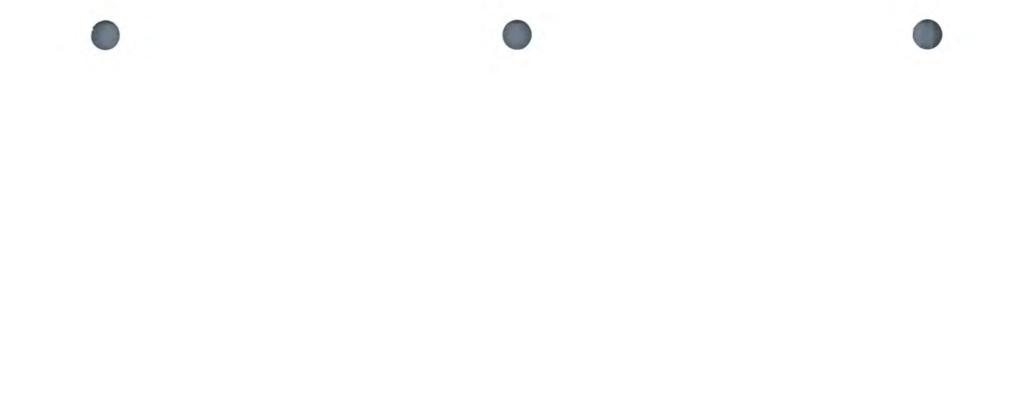
6. Remove the sample from the water, and with a damp cloth; blot the free water from the surface of the sample. Weigh the sample again in air (W_3) .

NOTE: Care should be taken not to rub any particles from the edges or corners when blotting the free water.

7. Calculate the G_{mb} bulk density, and report the result to three decimal places.


CALCULATIONS

The calculation for determining G_{mb} is as follows:


$$G_{mb} = \frac{W_1}{W_3 - W_2}$$

Office of Materials

Iowa Department of Transportation

October 21, 2008 Supersedes October 17, 2006 Matls. IM 322

SAMPLING UNCOMPACTED HOT MIX ASPHALT

SCOPE

Two methods of sampling hot mix asphalt (HMA) are used for sampling mix to be submitted for laboratory tests. The necessary containers for Agency samples are available for purchase by the Contractor from the Iowa Department of Transportation Warehouse in Ames, Iowa.

REFERENCED DOCUMENTS

Standard Specification 2303 Hot Mix Asphalt Mixtures Standard Specification 2309 Surface Recycling by Heater Scarification IM 336 Reducing Aggregate Field Samples to Test Samples IM 357 Preparation of Hot Mix Asphalt (HMA) Mix Samples for Test Specimens

APPARATUS

- Metal Sampling Template, with a minimum area of 64 in.² (410 cm²) & 4 in. (100 mm) deep.
- Laboratory Sampling Scoop (Square Pointed)
- Putty Knife
- 2-gallon (7.5-liter) capacity cardboard box (for Agency samples)
- Sampling Container
- Ruler
- Jabber Sampler (for thick lifts)
- Quartermaster (Optional)
- Square-pointed Shovel

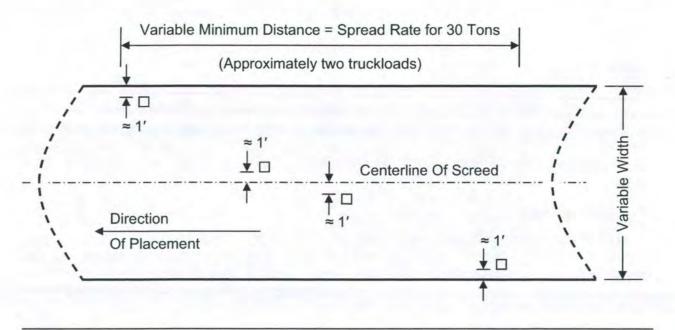
Equipment used for sampling purposes must be clean and free of any materials, which may alter the material properties of the mixture. Extra care should be used when using petroleum distillates or other solvents to clean equipment. If petroleum distillates or other solvents are used to clean equipment, the equipment must be dry prior to use.

PROCEDURE

Sample Size

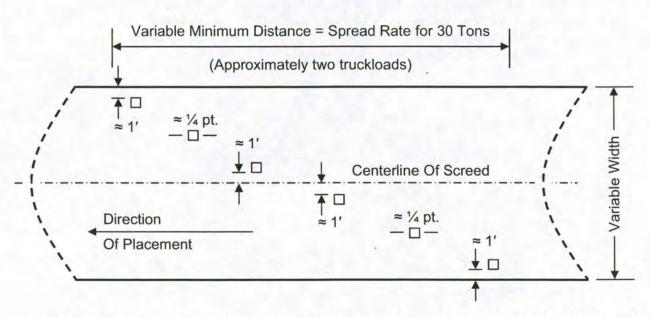
Samples submitted to both laboratories for testing shall be of sufficient size to run each of the required tests (a minimum of 30 pounds (14 kg) for each lab for G_{mm} and G_{mb} or 40 pounds (18 kg) for G_{mm} , G_{mb} and ignition oven). Samples taken from thick layers will be proportionately larger.

Sampling Methods


NOTE: Extreme care shall be taken to minimize segregation of coarse and fine particles while the sample is being taken. **NOTE:** Extreme care shall be taken so as not to contaminate the sample with any foreign matter (Fuel oil, dust, etc.).

Matls. IM 322

A. Pavement Sampling


This method of sampling hot mix asphalt is not to be used in situations involving Heater Scarification Work as stated in Standard Specification 2309.

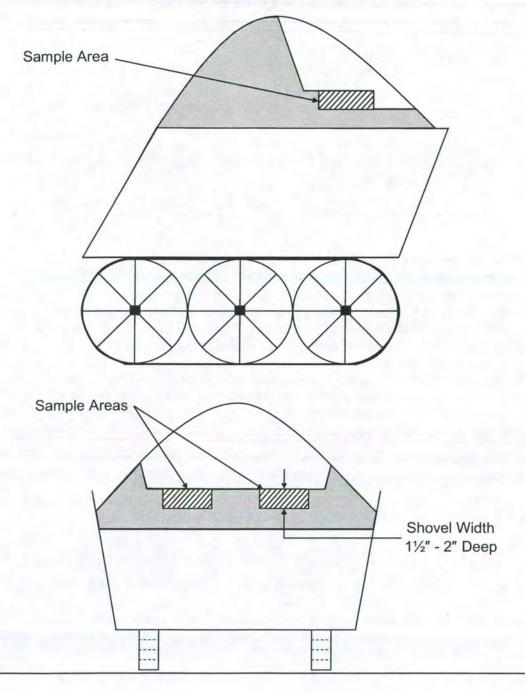
- 1. Samples shall always be taken behind the laydown machine before the material receives any compaction. Sampling shall be distributed over at least 30 tons (30 Mg) of mix placed (approximately two different truckloads).
- 2. The template shall be placed on the mat and forced straight down through the entire depth of the mat being laid. All material inside the template shall be scooped out and placed <u>uniformly</u> in the sample container(s). A square pointed shovel may be used to take the sample from the inside of the template. A scoop can be used to remove the remaining material from along the inside of the template. All the material, which has stuck to both the inside and outside of the scoop, shall be scraped off and added to the sample. The engineer may adjust the details of this procedure when samples are obtained from courses placed on earth subgrades, untreated subbases and bases to prevent contamination. <u>NOTE</u>: Any material adhering to the <u>inside</u> of the template shall be scraped off and added to each template sample.
- 3. Samples shall be taken to represent a cross-section of the mat as follows:
 - a. A minimum of four template samples shall be taken. One approximately 1 foot (0.30 meters) in from the left edge of the mat, one approximately 1 foot (0.30 meters) left of the center of the screed, one approximately 1 foot (0.30 meters) right of the center of the screed, and one approximately 1 foot (0.30 meters) in from the right edge of the mat. (See Diagram 1.)

DIAGRAM 1

b. If six template samples are needed to yield a sample of sufficient size, an additional template sample shall be taken approximately on each quarter point. (See Diagram 2.) If eight or more template samples are needed to yield a sample of sufficient size, two or more repetitions of four or six template samples may be required.

DIAGRAM 2

4. When sampling from thick lifts [generally greater than 3 inches (80 mm) in thickness], obtain the sample in increments as outlined above except a metal straight edge or a square point shovel may be used to delineate the sample sites in lieu of the template. When using the shovel to sample thick lifts, the shovel is first used to delineate the sample area and remove the material that is not part of the sample by creating a vertical face and pulling the shovel and excess material away from the sample area. Then the shovel can be used to remove the sample. The scoop can be used to finish the sampling to be sure that all mix within the delineated area is included in the sample increment. If the four segments required by 3a result in excess mixture, the additional mixture shall be forwarded to the appropriate laboratory. Large samples shall be carefully combined and reduced at the laboratory prior to testing.


A. Hopper Sampling

This method of sampling hot mix asphalt <u>shall</u> be limited to projects using the Heater Scarification Process as stated in Standard Specification 2309.

- 1. The sample shall always be taken from the paver hopper.
- 2. A square pointed shovel shall be used to prepare the sampling area and to take the sample.

- 3. The sample shall be built up from a minimum of 30 tons (30 Mg) of mixture placed (approximately two different truckloads).
- 4. The sample shall be taken from a location, which is as near the center of the mass of a nearly full hopper as practically possible. A flat surface shall be prepared by removing mix downward from the peak until the desired plateau is reached. Just prior to taking the sample, all foreign material shall be scraped from the shovel. The sample shall be removed from the plateau in a manner that will assure collection of material over an area, which is of uniform dimension. In placing material into the box, the material from the front face of the shovel shall be included.

Paired Samples

Field Sampling (Side-by-Side Sampling) to obtain paired samples as required to provide Agency verification samples and Contractor quality control samples.

This method is only to be used when sampling directly from the pavement with a template.

- 1. The Contractor shall obtain HMA samples in accordance with the procedures outlined above, except that, two boxes of at least 30 pounds (14 kg) each (or 40 pounds (18 kg) each if ignition oven testing is required) shall be obtained from each samples site as directed and witnessed by the Engineer.
- 2. After obtaining each template sample for the first box, the template shall be moved longitudinally so that the second template sample site shares a common edge (not more than 4 inches apart) with the first.
- 3. Perform the same procedures as stated above to remove all materials from the adjacent location and place this material in the second box.
- Agency personnel will immediately take possession of one of the two boxes, secure it and fill out a sample identification (Form #193) before retuning the sample to the Contractor for transport to the Agency's testing lab.
- When paired samples are required, but a template is not used to delineate the sample such as for base widening, thick lifts or heater scarification, the Engineer will provide direction on the sampling procedures to be used. Adjacent locations for paired samples will be used whenever practical.

Sample Splitting

These splitting methods are to be used for reducing large field samples to lab sample size and to provide split samples for testing in multiple labs. To reduce samples to test sample size see IM 357.

The order of preference of sample splitting is as follows:

A. Quartermaster (Or Similar Quartering Device)

- 1. Place the entire sample in the Quartermaster. **NOTE**: Take care to avoid segregation when placing material in the Quartermaster.
- 2. Release the gate to split the sample into four smaller samples.
- 3. Take the split material from opposite corners and recombine to obtain two boxes of material.

B. Riffle Splitter

Follow procedure I, Splitting Method, in IM 336 with the following exceptions:

1. Only one cycle of this process is performed to obtain the desired sample size for both labs.

C. Manual Splitting

Follow procedure IV, Quartering Method, in IM 336 with the following exceptions:

1. Only one cycle of this process is performed to obtain the desired sample size for both labs.

Sample Delivery & Retention

- 1. Each sample shall be carefully labeled.
- 2. The Contractor will transport the boxes to the Contractor's QMA laboratory.
- 3. The Contractor's certified technician will test the unsecured box of the paired sample at the Contractor's QMA laboratory for testing.
- 4. The secured box of each paired sample will be retained at the Contractor's QMA laboratory until delivered by the Contractor to the testing lab designated by the Engineer.
- 5. The Contractor shall retain all samples and test specimens for a lot until the Contracting Authority accepts the lot. <u>NOTE</u>: The Contractor should retain all samples until notified by the Contracting Authority that the material is no longer required.

April 15, 2003 Supersedes April 28, 1998 Matls. IM 323

METHOD OF SAMPLING ASPHALTIC MATERIALS (General Rewrite)

SCOPE

This IM provides the procedure used in the sampling of asphaltic materials (asphalt binder, asphalt emulsions, and cutback asphalts) to be submitted for laboratory tests. The necessary sample containers are available for purchase by the contractor from the Iowa Department of Transportation, Ames warehouse.

APPARATUS

- Disposable, unlined, one-quart (one-liter) capacity cardboard sample catching containers.
- 3 oz. (90 mL) ointment tin for asphalt binder.
- One-quart (one-liter) capacity wide-mouth cans with lids for cutback asphalts and complete analysis binder samples.
- One-quart (one-liter) and one gallon (four liter) plastic bottles for asphalt emulsion.
- · Clean, dry cloth.
- 1 pair insulated gloves.

PROCEDURE

- 1. Single samples as follows:
 - a. Binder for DSR stiffness 3 oz. (90 mL) tin
 - b. Binder complete analysis 1 quart (1 liter) metal can
 - c. Cutback asphalts 1 quart (1 liter) metal can
 - d. Asphalt emulsion partial analysis 1 quart (1 liter) must be a plastic bottle – complete analysis – 1 gallon (4 liter) – must be a plastic bottle

SAMPLING PROCEDURE

The various materials shall be drawn from plants, distributors, and storage tanks as required in a safe and reliable manner. Single samples shall be taken at the rate prescribed and by the following methods:

1. Sampling from Mixing Plants

Samples shall be taken from sampling valves located in the pumping line, (line from tank to mixer). A minimum of one-gallon (four liters) of material must be drawn and wasted from the sampling valve before the actual sample is drawn. The plant should be operated a minimum of one hour before samples are taken.

Sample material shall be drawn into the appropriate containers provided for that purpose. DSR samples shall be prepared by pouring the material from the sample catching container into the ointment tins; the tins shall be filled to a depth 1/4" (6 mm) form the top. Material should not be spilled over the sides and edges of the tins. The tins should be covered and allowed to cool in air to handling temperature. The tins should then be capped and marked for shipment. When cutback asphalt or asphalt emulsion samples are obtained from mixing plants, the sample shall be one quart (one liter) or one gallon (four liters) size and may be placed directly in the shipping containers provided.

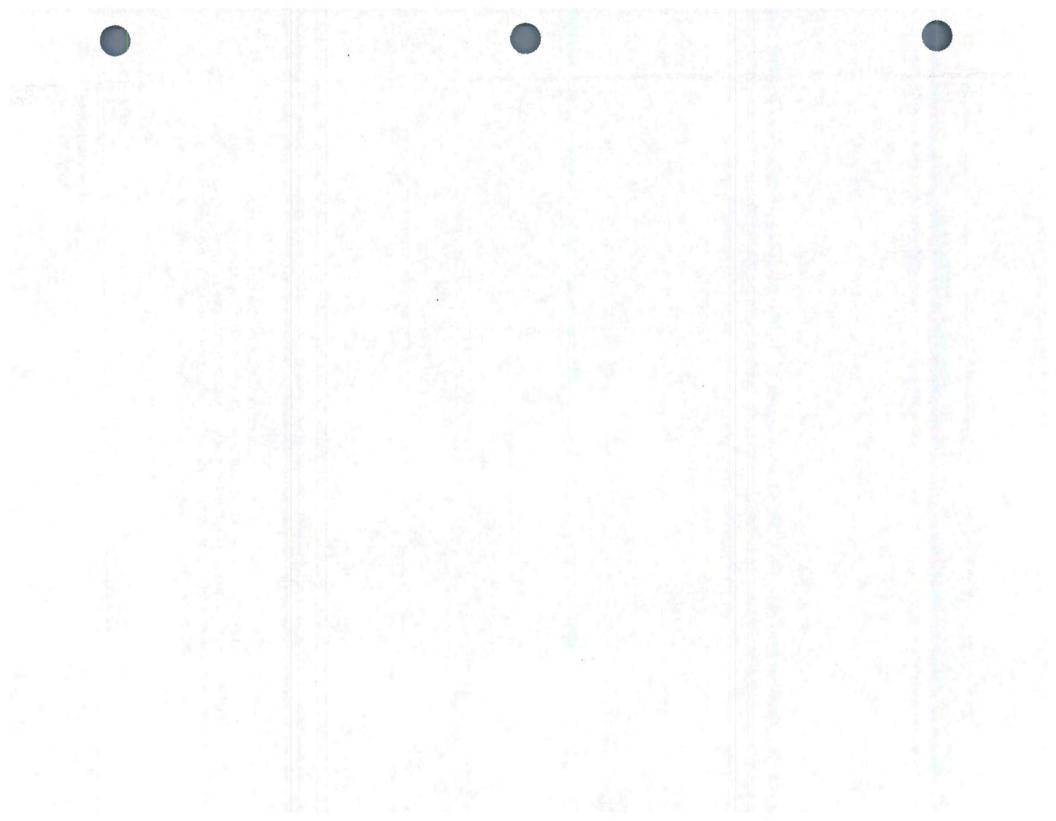
Prior to use, the "uncoated" sample-catching containers and sample storage containers should be inspected and wiped clean of dust and manufacturing residue with a clean, dry cloth. If the containers, which are to be used for shipment, are spattered during the pouring operation, they should be wiped clean with a <u>clean</u>, <u>dry</u> cloth. In case the tins are over filled or otherwise made unusable, they should be disposed of and new tins filled as required. Under no circumstances should any volatile material or contaminants of any kind be allowed to come in contact with the samples, containers, and cleaning cloths.

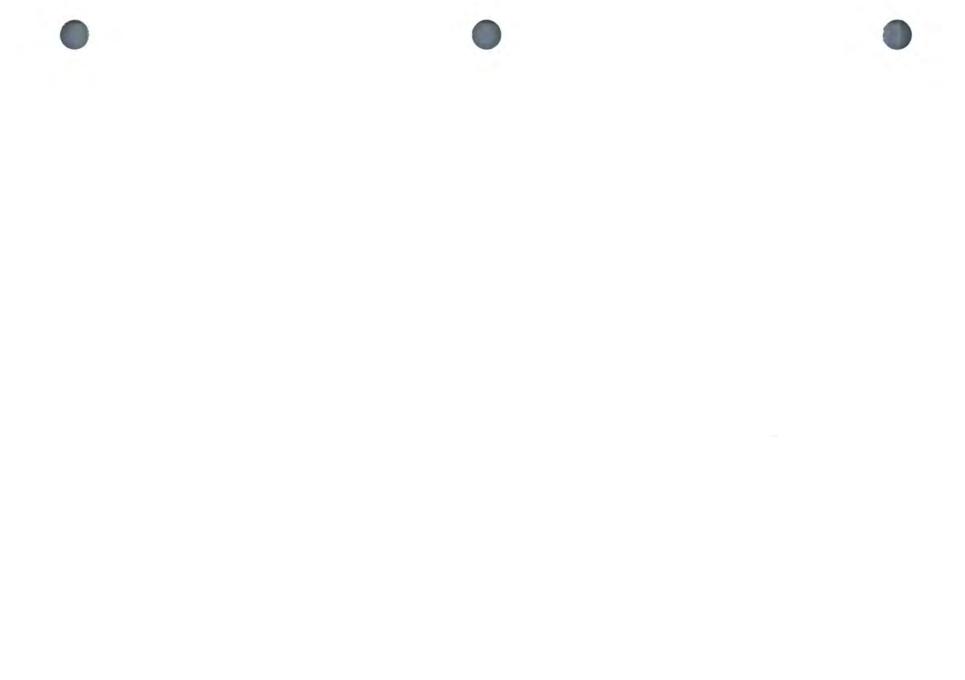
In the event that it is necessary to sample storage tanks by dipping through the dome or top opening of a tank, care should be taken so that the container is not filled entirely with the materials from the top portion of material in storage.

2. Samples from Distributors

Samples should be drawn from the spray bar after heating and recirculation has been completed. The spray bar should be opened and cleared of old or foreign material before the sample is taken. Asphalt emulsion samples should be taken from the spray bar after it has been adjusted to gravity feed. Samples may be drawn directly into sample containers furnished for this purpose.

NOTE: The test results of asphalt emulsion samples can be greatly affected when samples are obtained from the spray bar, under pressure.


NOTE: When asphalt emulsions are diluted for tack coat material, the addition of the water changes the manufacturer's formula. Due to this, very rapid settlement occurs. To obtain a representative sample of the diluted asphalt emulsion, it is essential to obtain the sample immediately after circulating the material.


The precautions listed in the previous section should be observed in this procedure as well. Refer to Section No. 1 for size of samples. 3. Samples from Transports, Rail Cars, Terminal Storage

When samples are to be obtained from hauling units or terminal facilities, sampling methods listed in Section No. 1 above are to apply. Samples shall be drawn from sampling valves located in tank walls or bulkhead, and/or transfer lines when possible. When sampling valves are not provided, samples are to be obtained by inverting sample containers substantially below the surface of the stored material.

Office of Materials

lowa Department of Transportation

April 30, 2002 Supersedes October 2, 2001 Matls. IM 325G

METHOD OF TEST FOR DETERMINING THE DENSITY OF HOT MIX ASPHALT (HMA) USING THE SUPERPAVE GYRATORY COMPACTOR (SGC)

SCOPE

This method describes the procedures for compacting hot mix asphalt samples using the SGC and determining their percent compaction. This method consolidates the provisions of AASHTO TP4 and makes the following exceptions:

- Compaction temp
- Compacting to N_{max} instead of N_{des}
- Use leveling load

REFERENCED DOCUMENTS

Standard Specification 2303 Hot Mix Asphalt

AASHTO TP4 Standard Method for Preparing and Determining the Density of Hot Mix Asphalt (HMA) Specimens by Means of the SHRP Gyratory Compactor

IM 321 Compacted Density of Asphalt Concrete

IM 357 Preparation of Bituminous Samples for Test

APPARATUS

- SGC, including a device for measuring and recording the height of the specimen throughout the compaction process. The compactor may also include a printer or a computer and software for collecting and printing the data.
- Specimen molds (150 mm in diameter)
- Thermometer with a range of 38 to 200°C (100 to 400°F).
- Balance with a minimum capacity of 6,000 gram and readable to at least 1 gram.
- Forced Draft Oven capable of maintaining a constant temperature of 177 ± 3°C (350 ± 5°F) and large enough to hold 2 molds and mix pans.
- Pan between approximately 200 in.² and 300 in.² in size.
- Safety equipment: insulated gloves, long sleeves, apron, etc.

General Equipment:

- Calibration equipment recommended by compactor manufacturer
- Paper discs with a diameter of 150 mm (6 in.).
- Lubricating materials recommended by compactor manufacturer
- Scoop or trowel for moving mixture
- Funnel or other device for ease of loading mixture into mold.

PROCEDURE

CALIBRATION

The means of calibrating the gyratory vary with different manufacturers. Refer to the operation manual of the particular brand and model of gyratory available for use. Calibration of the following items should be verified at the noted intervals unless manufacturer's recommendations are more stringent:

Item	Tolerance	Calibration Interval		
Height	Record to nearest 0.1 mm, Compact to 115 <u>+</u> 5 mm	Daily		
Angle	1.25° <u>+</u> 0.02°	See IM 208		
Pressure	600 <u>+</u> 18 kPa	See IM 208		
Speed of Rotation	30.0 ± 0.5 gyrations per minute	See IM 208		
Mold dimension	149.90 to 150.00 mm	See IM 208		
Platen dimension	149.50 to 149.75 mm	See IM 208		

COMPACTOR PREPARATION

- 1. Turn the compactor on and allow for warm-up before proceeding.
- 2. Lubricate the mold or gyratory parts as recommended by the manufacturer.
- 3. Perform the height calibration per manufacturer's recommendations.
- 4. Set the specified number of gyrations, N_{des} or N_{max}.

TESTING

- 1. Obtain the material for the test specimen by following the procedure in IM 357.
- Weigh into separate pans for each specimen the amount of hot mix asphalt mixture required which will result in a compacted specimen 115 ± 5 mm in height. Spread the material uniformly in the pan to between 1 to 2 in. of thickness.

This will normally be about 4800 grams.

- Heat the pans of mixture in the oven to a temperature of 135 ± 2°C (275 ± 5°F) as checked by a thermometer with the bulb in the center of the mixture sample. The oven temperature may not exceed 143°C (290°F).
 - a) Heat the mold, base plate, top plate (if used) and funnel (if used) in the oven for each specimen compacted for a minimum of 30 minutes. In between tests, a minimum of 5 minutes reheating should be used.
- 4. Place a paper disc in the bottom of the mold.

- 5. Place the mixture into the mold in one lift. A funnel or other device may be used to place the mixture into the mold. Take care to avoid segregating the mix in the mold, but work quickly so that the mixture does not cool excessively during loading. Level the mix in the mold and place a paper disc on top.
- 6. Place the mold in the gyratory.

<u>NOTE</u>: Some gyratories allow charging the mold with mix after the mold has been positioned in the compactor.

- If the desired number of gyrations (N_{des} or N_{max}) has not been entered into the gyratory, do that now. The number of gyrations to apply is determined from the Job Mix Formula (JMF).
- 8. Apply the load to the mixture in the mold.
- 9. Apply the gyratory angle to the specimen.
- 10. Compact to N_{des} or N_{max} as specified.
- 11. After compaction is complete, remove the angle from the specimen, apply the leveling load, and raise the loading ram if needed (this is done automatically on some gyratories).
- 12. Extrude the specimen from the mold. Take care not to distort the specimen when removing the specimen from the mold. Remove the paper discs while the specimen is still warm to avoid excessive sticking.

NOTE: A cooling period of 5 to 10 minutes before extruding the specimen may be necessary with some mixtures; a fan may help speed the cooling process.

- 13. Record or print the height data for each specimen compacted.
- 14.After the specimens have cooled, they may be tested for bulk specific gravity, G_{mb} per IM 321.

CALCULATIONS

To determine the lab density of a compacted specimen at any gyration level (back calculate), use the G_{mb} of the final compacted specimen and the height of the specimen at different numbers of gyrations. The corrected density is calculated as follows:

April 30, 2002 Supersedes October 2, 2001 Matls. IM 325G

$$G_{mb(corrected)} = \frac{G_{mb}h_m}{h_x}$$

Where: $G_{mb(corrected)}$ = Corrected bulk density of the specimen. G_{mb} = Bulk specific gravity of the specimen. h_m = Height of the extruded specimen, mm. h_x = Height of the specimen during compaction at x gyrations, mm.

Report the corrected bulk specific gravity of the specimen, G_{mb(corrected)}, to 3 decimal places.

Given:

 $G_{mb} = 2.369$ $h_m = 117.5 \text{ mm}$

Calculate G_{mb(corrected)} at:

 $N_{ini} = 8$ gyrations $h_8 = 135.4$ mm $N_{des} = 109$ gyrations $h_{109} = 119.4$ mm

 $G_{mb(corrected)} @ N_{ini} = \frac{2.369 \times 117.5 \text{ mm}}{135.4 \text{ mm}} = 2.056$

 $G_{mb(corrected)} @ N_{des} = \frac{2.369 \times 117.5 \text{ mm}}{119.4 \text{ mm}} = 2.331$

Office of Materials

April 15, 2003 Supersedes October 29, 2002 Matls. IM 337

METHOD TO DETERMINE THE THICKNESS OF COMPLETED COURSES OF BASE, SUBBASE & HOT MIX ASPHALT (General Rewrite)

SCOPE

This method covers the sampling and measurement procedures for determining the thickness of completed courses of pavement.

REFERENCED DOCUMENTS:

IM 320, Method of Sampling Compacted Asphalt Mixtures

APPARATUS

- 1. Complete core drilling apparatus as required in IM 320 or as furnished by the contractor.
- 2. Straightedge at least 18 in. (500 mm) long
- 3. Ruler with graduations of 1/16 in. (1 mm)
- 4. Tape measure

PROCEDURES

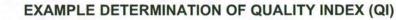
Specifications and instructions require that the thickness of the completed pavement courses be measured to the nearest 1/8 in. (3 mm) by means of cores, measurement of hole depth or measurement of the side of the trench, as directed by the engineer. Sample sites shall be randomly located.

A – THICKNESS DETERMINATION BY CORE MEASUREMENT

- A-1 If the compacted material has sufficient cohesion and strength to permit the drilling and handling required to obtain an undisturbed core, this method should be used.
- A-2 Drill through the course and remove the core. Refer to IM 320 for drilling and removal procedures.
- A-3 Measure with a ruler, to the nearest 1/8 in. (3 mm), the thickness of the pavement course. Make four measurements, along the edge of the core at 90° intervals.
- A-4 Assign a number to the core and record the core number, date drilled, station, transverse position (distance from centerline) and core measurements.

A-5 Retain all samples obtained from lots of construction that are determined to be deficient until final disposition of the lot is made as provided for by the specifications.

B – THICKNESS MEASUREMENTS BY HOLE MEASUREMENT


- B-1 If the core breaks, while drilling or handling, or if it crumbles or disintegrates in the hole while drilling, the hole may be measured.
- B-2 Place a straightedge at least 18 in. (500 mm) long, flat on the surface so as to establish the plane of the surface surrounding the hole.
- B-3 Measure with a ruler, to the nearest 1/8 in. (3 mm), the distance perpendicular from the straightedge, laid across the center of the hole, to the bottom of the hole.
- B-4 Take two measurements along the edges on opposite sides of the hole with the straightedge parallel to the centerline of the road, and two with it perpendicular to the centerline.
- B-5 If the core breaks, but the portion in contact with the subgrade remains intact, remove it and measure to the nearest 1/8 in. (3 mm) the amount of the subgrade material adhering to it at four points on the edge of the core at 90° intervals. Subtract the average depth of subgrade material for the average depth measurement of the entire depth of the hole as made in B-1 to arrive at the average thickness.
- B-6 Record the station, lateral position, date measured, and the depth of hole measurements.

C – THICKNESS DETERMINATION BY SIDE OF TRENCH MEASUREMENT

C-1 If accurate measurements cannot be obtained as outlined in Section A or B, the engineer, at his/her discretion may require the course to be dug open with any hand or mechanical means which will produce an opening large enough, and of sufficient depth, to permit viewing of the pavement course profile and the subgrade immediately under it. Obtain at least four measurements from the surface to the bottom of the course as viewed in the trench as described in Section B.

CALCULATIONS

Average the individual measurements for each core or hole to the nearest 1/8 in. (3 mm), and record in the appropriate field book and report form.

Design thickness 4 in. (101.6 mm)

Individual core averages as determined and recorded per this IM.

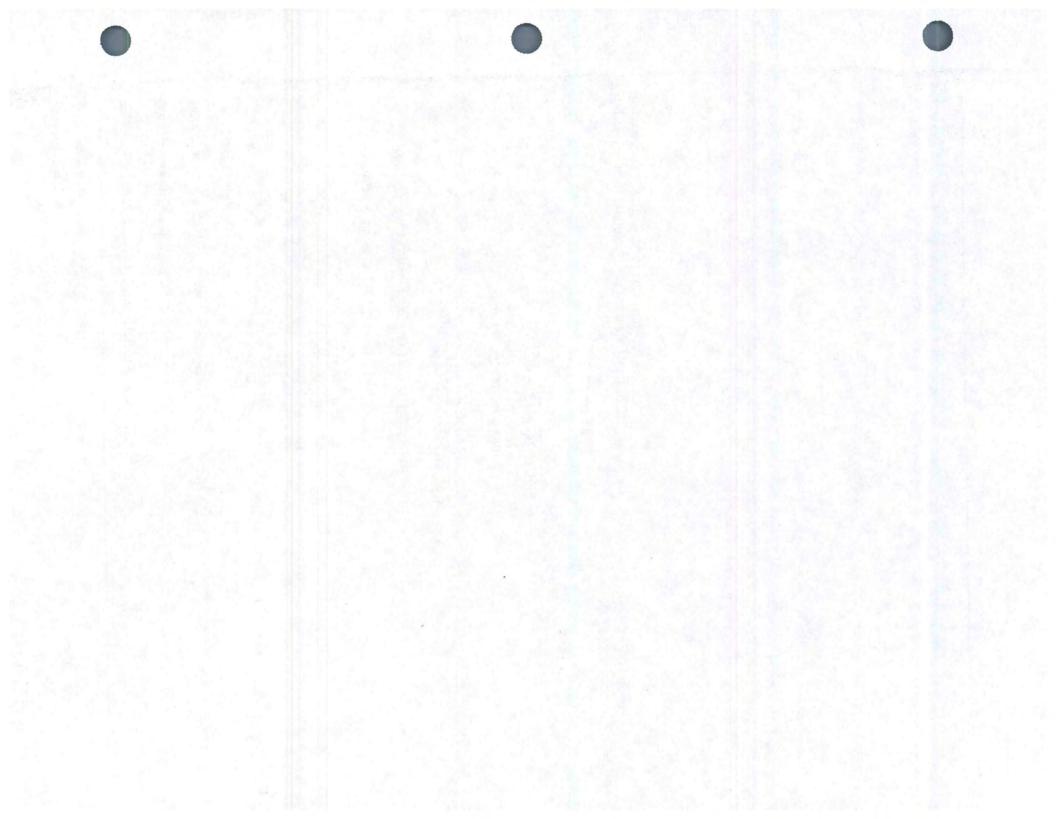
in. (114 mm)

3.75 in. (95 mm) 4.00 in. (102 mm) 4.12 in. (105 mm) 3.50 in. (89 mm) 3.88 in. (99 mm) 4.12 in. (105 mm)

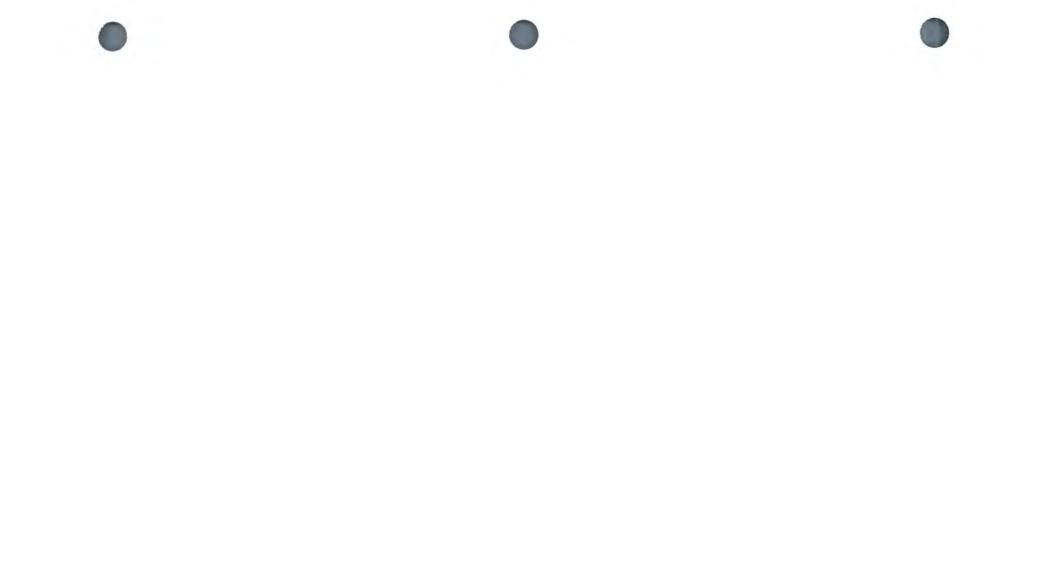
Average = 3.982 in. (101.3 mm)

Range = (high value - low value) = 1 in. (25.4 mm)

 $QI = \frac{Average - (Design - 0.5^*)}{Range}$


*0.5 is used with English units, 12.7 is used with S.I. units.

 $QI = \frac{3.982 - (4.00 - 0.5)}{1.00}$


QI = 0.48

Report QI upon completion of each lot. Refer to applicable specifications for specific details and disposition for each type of construction.

Iowa Department of Transportation Office of Materials

October 17, 2006 Supersedes October 21, 2003 Matls. IM 350

DETERMINING MAXIMUM SPECIFIC GRAVITY OF HOT MIX ASPHALT (HMA) MIXTURES

SCOPE

This test method is intended to determine the maximum specific gravity (G_{mm}) of HMA paving mixtures, commonly referred to as Rice specific gravity. This method uses a flask pycnometer and is based on Iowa Test Method 510 and AASHTO procedure T209-90.

REFERENCED DOCUMENTS

AASHTO T209 Theoretical Maximum Specific Gravity and Density of Bituminous Paving Mixtures

IM 357 Preparation of Bituminous Mix Sample for Test Specimens

lowa Test Method 510 Method of Test for Determining Maximum Specific Gravity of Bituminous Paving Mixtures Using a Flask Pycnometer

APPARATUS

- Balance 10,000-gram minimum capacity and capable of weighing to the nearest 0.1 gram
- Pycnometer (four-liter, thick-walled glass Erlenmeyer flask without side discharge nozzle, with top surface of opening ground plane and smooth, and with rubber stopper hose connection)
- Vacuum pump or water aspirator for evacuating air from the pycnometer
- Manometer for measuring absolute pressure <u>NOTE</u>: The manometer must not be connected to the vacuum tube coming from the pump, but is to be connected to the pycnometer through a separate tube.
- Thermometers, ASTM 15F (30 to 180°F) [ASTM 15C (-2 to 80°C)], softening point and a general purpose – of suitable range – with graduations every 0.5°F (0.2°C)
- Large, flat, weighing pan about 16 in. x 24 in. x 2 3/4 in. (400 mm x 600 mm x 70 mm) with one end formed in the shape of a chute, for cooling and weighing the sample and for transferring the sample into the pycnometer.
- Glass 4 in. x 4 in. (100 mm x 100 mm) cover plate for accurate filling of pycnometer flask
- Scoop, spatula or trowel, and bulb syringe
- Elevated water container, with gravity discharge valve and tubing, of sufficient capacity to conduct a complete test
- Funnel for transferring sample from weighing pan into the pycnometer
- Equipment meeting AASHTO T209 will also be considered acceptable

PROCEDURE

Pycnometer Calibration

Calibration of the pycnometer will be performed prior to being put in service. Pycnometer calibration will be performed by accurately determining the weight of water at $77 \pm 0.5^{\circ}F$ (25 ± 0.2°C) required to fill it. Accurate filling of the pycnometer may be ensured by the use of the cover plate.

The following notes apply to both the Erlenmeyer flask apparatus and the alternate equipment identified in #11.

<u>NOTE</u>: It is recommended that the calibration of the pycnometer be confirmed at least once a week or when a correlation problem exists.

NOTE: Cover plate and pycnometer combinations are not interchangeable. The cover plate used for calibration should also be used for routine testing. If a different cover plate is used, however, the calibrated mass (weight) used in G_{mm} determinations must be appropriately adjusted by the difference in mass (weight) between the original cover plate and its replacement.

Test Procedure

- 1. Obtain and transfer to the large, flat pan a test sample weighing between 2,000 and 2,500 grams by following the procedure in IM 357.
- 2. The ignition oven and density portions of the field sample are normally taken first and the G_{mm} sample obtained from the remainder. When the remaining amount is less than 2,000 grams, additional material may be obtained by re-heating and re-mixing density specimens, or the sample may be obtained solely from density specimens. Results obtained with density specimen material must be so identified on the report.

NOTE: Heat the density specimens only long enough to allow the specimens to be broken up and thoroughly mixed, using care not to overheat.

- 3. Separate the particles of the warmed sample so that the conglomerates of fine aggregate particles are not larger than 1/4 in. (6 mm). Use care not to fracture the aggregate particles. Discard any fractured particles found. Allow to cool to room temperature.
- 4. Add about 2 1/2 in. (60 mm) of water at about the same temperature as the sample to the calibrated pycnometer. Tare the pycnometer and water. Transfer the sample into the pycnometer. Determine the sample weight by weighing the pycnometer to the nearest 0.1 gram. Alternately, the sample weight may be determined by weighing the large, flat pan and sample contents to the nearest 0.1 gram, transferring the sample to the calibrated pycnometer, then weighing the empty pan and determining the difference.
- 5. If necessary, add water to cover the sample. Remove any loosely trapped air by stirring, being sure to avoid the loss of any sample.

6. Fill the pycnometer to about 6 in. (150 mm) from the top with water at the same temperature as that already present.

NOTE: Water may be pulled into the vacuum pump if the pycnometer is filled too high.

NOTE: The general-purpose thermometer, which has been calibrated with the ASTM 15F (15C) thermometer, may be used to determine temperatures for routine testing. The ASTM 15F (15C) thermometer must be used for determining temperatures when calibrating the pycnometer and for referee testing.

- 7. Insert rubber stopper and connect vacuum hose. Apply the vacuum necessary to attain between 1.0 in. and 1.2 in. (25.5 mm and 30 mm) of mercury (H_g) absolute pressure, as measured by a manometer, to the pycnometer contents for 15 minutes. During the vacuum period agitate the pycnometer and contents using a mechanical vibratory device, or occasionally shake the pycnometer manually, or jar it by striking it with an open hand, being careful not to allow material to get vacuumed out. This will facilitate the removal of gas bubbles trapped in the mix and on the interior surface of the pycnometer.
- 8. Remove the vacuum apparatus from the pycnometer and fill with water to the top of the neck of the pycnometer. Allow the water filled pycnometer to stand 10 minutes or until the water level in the neck remains constant (time to reach equilibrium between pycnometer and the water varies with test temperature and room temperature).
- 9. Tip the pycnometer slightly and use a glass cover plate and bulb syringe to add water until the pycnometer is completely full.
- 10. Dry the outside of the pycnometer and glass plate with a clean cloth, chamois or paper towel, and weigh to the nearest 0.1 gram. Immediately after weighing, remove the glass plate and determine the temperature of the water to the nearest 0.5°F (0.2°C) with the general purpose thermometer.
- 11. Pour off water and dispose of sample.

CALCULATIONS

$$G_{mm} = \frac{WR}{W + W_1 - W_2}$$

Where:

- W_1 = Weight of pycnometer filled with water at test temperature, g. (This value must be determined anytime the test temperature changes from the calibration temperature by more than ± 0.5°F (0.2°C).
- W_2 = Weight of pycnometer filled with water and sample, g
- R = Correction multiplier obtained from Table 2

$$R = \frac{d_t}{0.99707}$$

Where: d_t = density of water at test temperature, g/cc

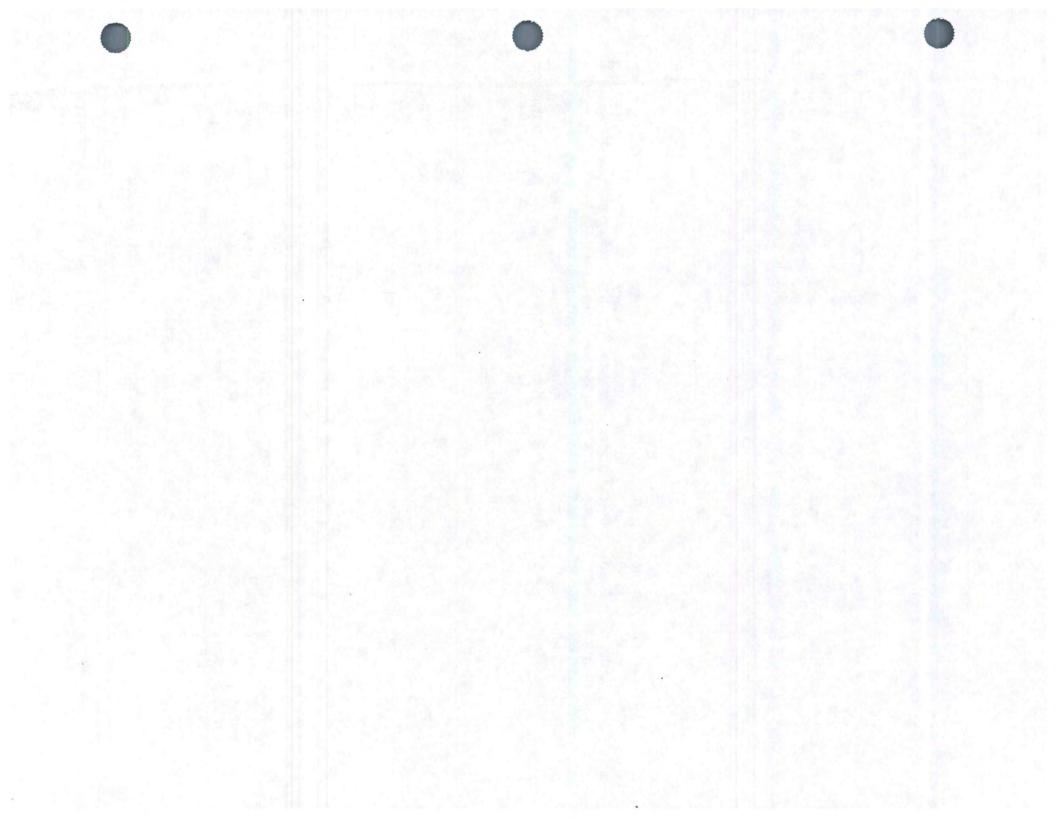
0.99707 = density of water at 77°F (25°C), g/cc

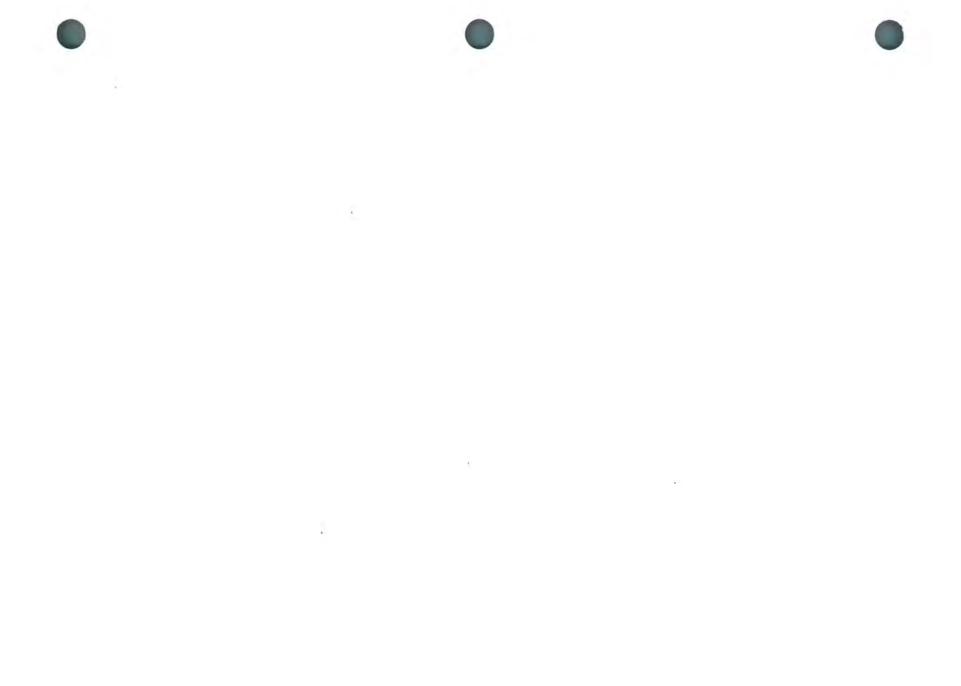
CORRECTION MULTIPLIER FOR SPECIFIC GRAVITY DETERMINATION

TABLE 1 - DENSITY OF WATER (°C)

°C	0	1	2	3	4	5	6	7	8	9
10	0.99973	0.999633	0.999525	0.999404	0.999271	0.999127	0.998971	0.998803	0.998624	0.998435
20	0.99823	0.998023	0.997802	0.997570	0.997329	0.997077	0.996816	0.996545	0.996265	0.995976
30	0.99568	0.995371	0.995056	0.994733	0.994400	0.994061	0.993714	0.993359	0.992996	0.992626
40	0.99225	0.99187	0.99147	0.99107	0.99066	0.99025	0.98982	0.98940	0.98896	0.98852
50	0.98807	0.98762	0.98715	0.98669	0.98621	0.98573				

TABLE 2 – R CORRECTION MULTIPLIER (Correction to 25°C)


°C	0	1	2	3	4	5	6	7	8	9
10	1.0027	1.0026	1.0025	1.0023	1.0022	1.0021	1.0019	1.0017	1.0016	1.0014
20	1.0012	1.0009	1.0007	1.0005	1.0003	1.0000	0.9997	0.9995	0.9992	0.9989
30	0.9986	0.9983	0.9980	0.9976	0.9973	0.9970	0.9966	0.9963	0.9959	0.9955
40	0.9952	0.9948	0.9944	0.9940	0.9936	0.9932	0.9927	0.9923	0.9919	0.9914
50	0.9910	0.9905	0.9900	0.9896	0.9891	0.9886				


TABLE 3 - DENSITY OF WATER (°F)

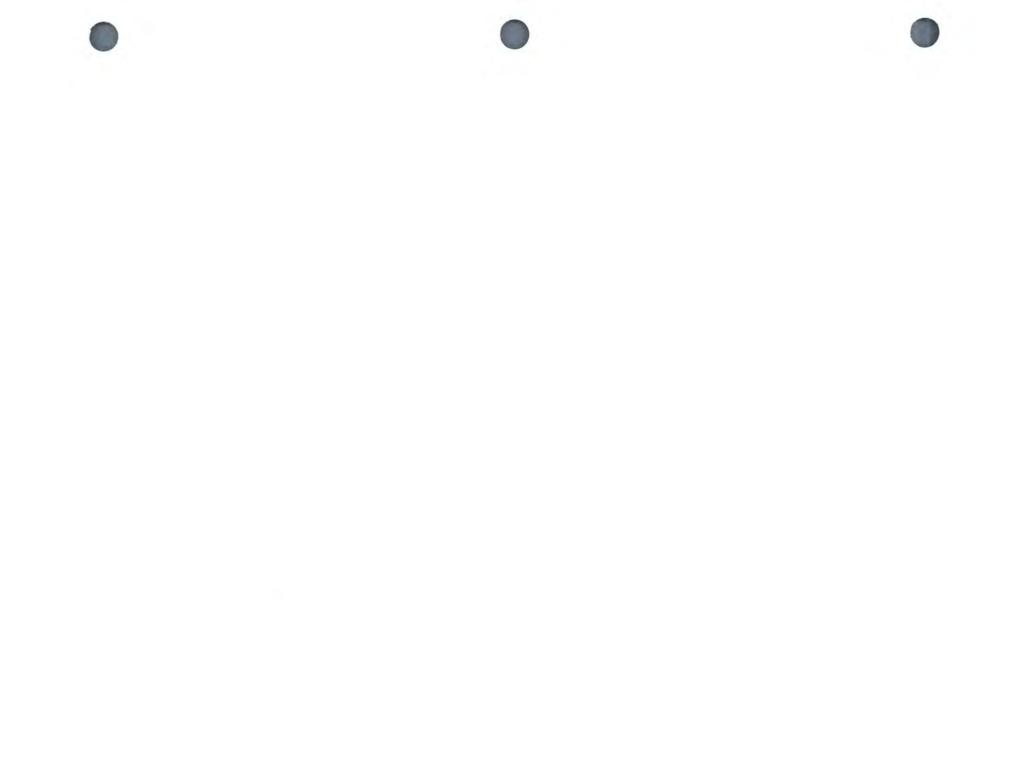

°F	0	1	2	3	4	5	6	7	8	9
60	0.999040	0.998982	0.998859	0.998764	0.998664	0.998562	0.998455	0.998346	0.998232	0.998115
70	0.997997	0.997874	0.997749	0.997619	0.997489	0.997353	0.997216	0.997074	0.996929	0.996783
80	0.996632	0.996481	0.996325	0.996168	0.996006	0.995844	0.995676	0.995505	0.995335	0.995159
90	0.994984	0.994802	0.994622	0.994436	0.994251	0.994059	0.993866	0.993673	0.993475	0.993277
100	0.993074	0.992872	0.992664	0.992458	0.992246	0.992030	0.99182	0.99160	0.99138	0.99116
110	0.99093	0.99071	0.99048	0.99025	0.99001	0.98977	0.98954	0.98930	0.98906	0.98881
120	0.98857	0.98832	0.98807	0.98782	0.98757	0.98731	0.98705	0.98679	0.98653	0.98626
130	0.98606									

TABLE 4 - R CORRECTION MULTIPLIER (Correction to 77°F)

°F	0	1	2	3	4	5	6	7	8	9
60	1.0020	1.0019	1.0018	1.0017	1.0016	1.0015	1.0014	1.0013	1.0012	1.0010
70	1.0009	1.0008	1.0007	1.0005	1.0004	1.0003	1.0001	1.0000	0.9999	0.9997
80	0.9996	0.9994	0.9992	0.9991	0.9989	0.9988	0.9986	0.9984	0.9983	0.9981
90	0.9979	0.9977	0.9975	0.9974	0.9972	0.9970	0.9968	0.9966	0.9964	0.9962
100	0.9960	0.9958	0.9956	0.9954	0.9952	0.9949	0.9947	0.9945	0.9943	0.9941
110	0.9938	0.9936	0.9934	0.9932	0.9929	0.9927	0.9924	0.9922	0.9920	0.9917
120	0.9915	0.9912	0.9910	0.9907	0.9905	0.9902	0.9899	0.9897	0.9894	0.9892
130	0.9890									

Iowa Department of Transportation

Office of Materials

October 17, 2006 Supersedes October 19, 2004 Matls. IM 351

DETERMINING ASPHALT BINDER CONTENT IN HOT MIX ASPHALT (HMA) MIXTURES BY CALCULATION

SCOPE

The percent of binder in hot mix asphalt mixtures can be determined by calculation using test results from IM 350 and IM 369.

REFERENCED DOCUMENTS:

IM 350, Determining Maximum Specific Gravity of Hot Mix Asphalt (HMA) Mixtures

IM 369, Determining Specific Gravity of Asphalt Binder

PROCEDURE

A. Determine the Effective Specific Gravity of the Aggregate, G.

$$G_{se} = \frac{100 - P_{b}}{\frac{100}{G_{mm}} - \frac{P_{b}}{*G_{b}}}$$

*G_b at 77°F/77°F (25°C/25°C)

Throughout the first day of production, obtain at least three (3) samples of HMA, which will represent that day's production. Determine the maximum specific gravities on each of these samples according to IM 350 and determine the average. The binder contents may be obtained by measurements from tank stick or flow meter. The specific gravity of the binder may be obtained from the certification document or by test using IM 369.

B. After G_{se} has been determined it is used throughout the project to calculate the binder content of the mixture. If any proportions are changed G_{se} must be redetermined.

Determine the Binder Content for a given set of proportions, Pb.

$$P_{b} = \frac{(G_{se})^{*}(G_{b}) - (G_{mm})^{*}(G_{b})}{(G_{se})^{*}(G_{mm}) - (G_{mm})^{*}(G_{b})} \times 100$$

REPORTING

The calculated asphalt content is reported to three (3) significant figures.

EXAMPLE CALCULATIONS

Given:

Pb	= 5.75
Gb	= 1.021
G _{mm}	= 2.451

G =	100 -	5.75	94.25
se =	100	5.75	40.80 - 5.63
	2.451	1.021	

$$G_{se} = \frac{94.25}{35.17} = 2.680$$

$$P_{b} = \frac{(G_{se})^{*}(G_{b}) - (G_{mm})^{*}(G_{b})}{(G_{se})^{*}(G_{mm}) - (G_{mm})^{*}(G_{b})} \times 100$$

Given:

 $\begin{array}{ll} G_{se} & = 2.680 \\ G_{b} & = 1.021 \\ G_{mm} & = 2.451 \end{array}$

$$\mathsf{P}_{\mathsf{b}} = \frac{(2.680)(1.021) - (2.451)(1.021)}{(2.680)(2.451) - (2.451)(1.021)} \times 100 = 5.75 \% \text{ Asph.}$$

2

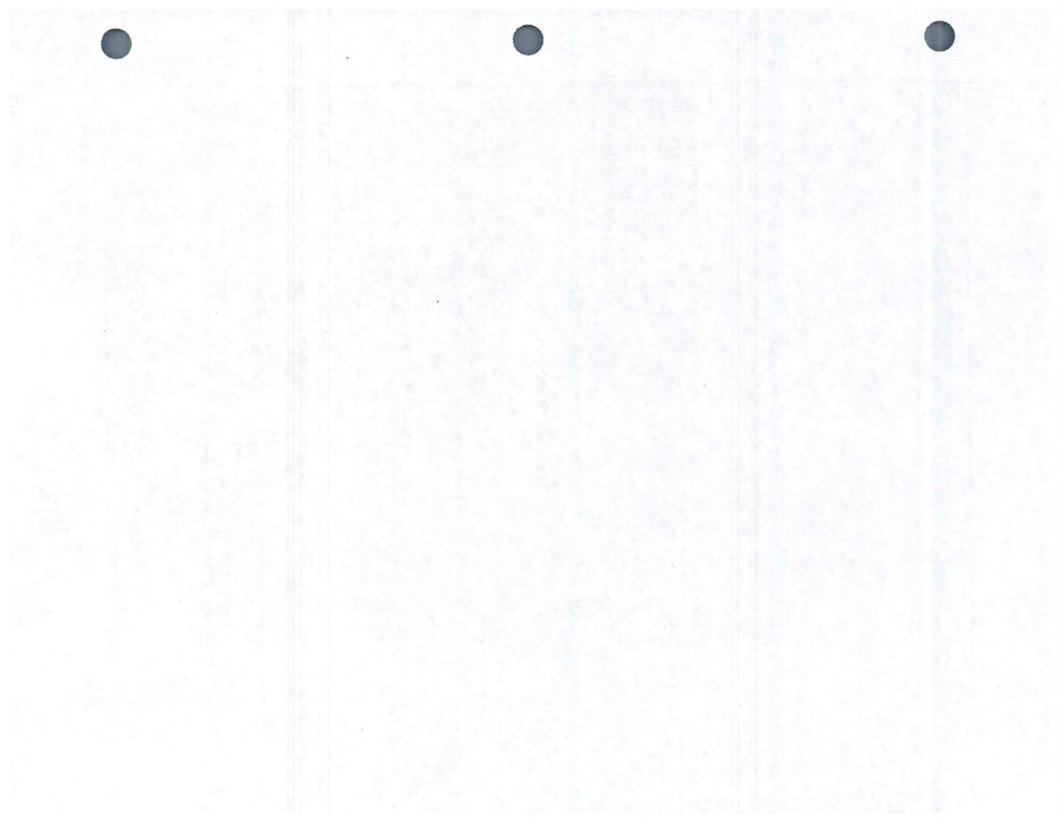
Matls. IM 351

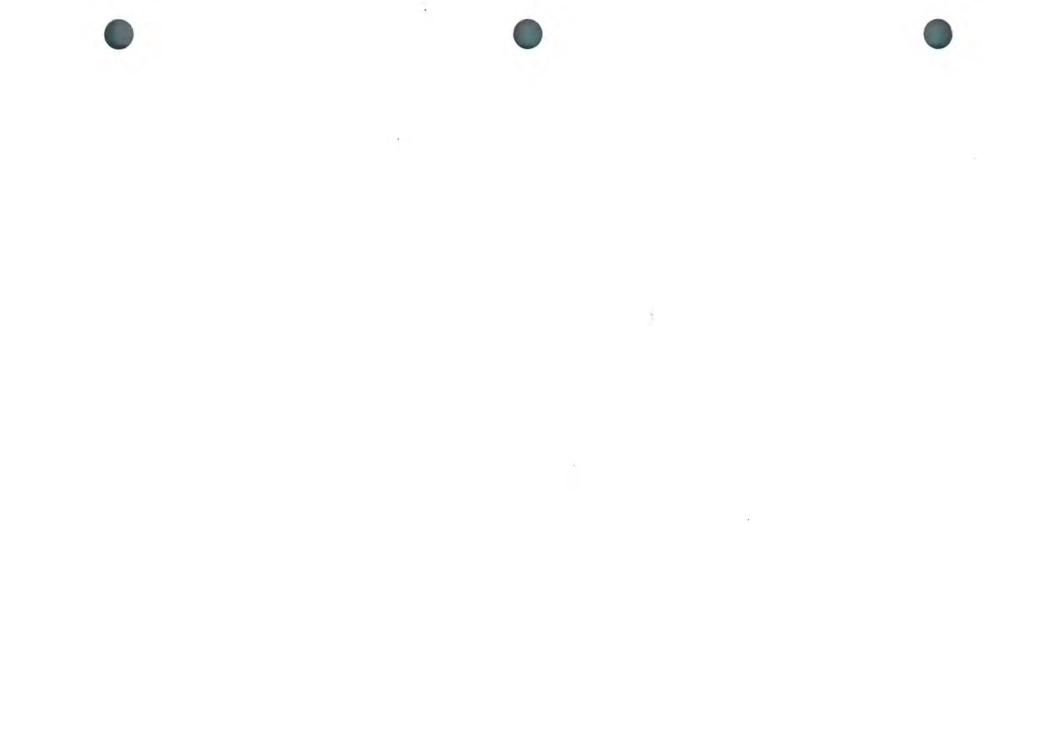
October 19, 2004 Supersedes April 15, 2003

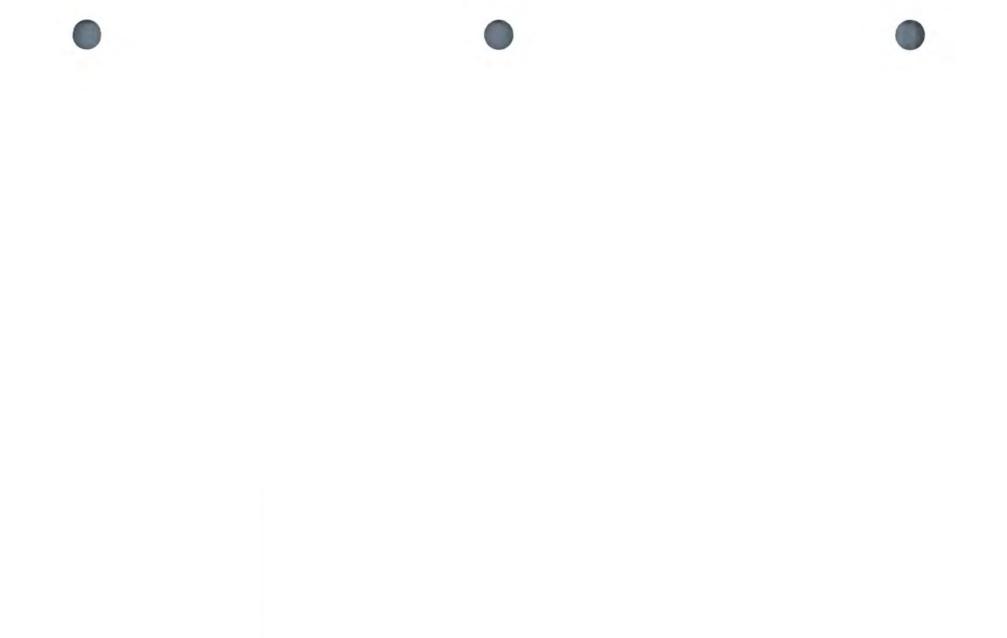
Matls. IM 351 Appendix A

DETERMINATION OF BINDER CONTENT BY CALCULATION FROM G_{mm}

Project No.	Sample ID.	
County	Test No.	
Contractor	Date	
Mix Type	Mix Design #	


CALCULATION OF G_{se}


Р _b (Measurem G _b						
Ps(100 - lin						
P _b / G _b						
	(sample 1 + sa					
Avg. G _{mm} =	(+			=	5)	
		3				
100 / Avg. G _{mm}	(100 / line 5)	(vol. of	mixture)		6)	
Vol. Mixture - Asph.						
G _{se} (line 3						


CALCULATION OF Pb

G _{mm} (from individual G _{mm} test)	9)
G _{se} x G _b (line 8 x line 2)	10)
G _{mm} x G _b (line 9 x line 2)	
G _{se} x G _{mm} (line 8 x line 9)	
G _{se} x G _b - G _{mm} x G _b (line 10 - line 11)	13)
G _{se} x G _{mm} - G _{mm} x G _b (line 12 - line 11)	14)
line 13 / line 14	15)
P _b by calculation(100 x line 15)	16) .

Iowa Department of Transportation

Office of Materials

October 19, 2004 Supersedes April 15, 2003 Matls. IM 357

PREPARATION OF HOT MIX ASPHALT (HMA) MIX SAMPLES FOR TEST SPECIMENS

SCOPE

This IM is intended to provide the procedure for obtaining representative split samples and representative test specimens from a sample of bituminous mix.

APPARATUS

- Ventilated oven capable of maintaining a temperature at 275°F ± 5°F (135°C ± 3°C)
- Masonry trowel
- Balance. (Refer to the appropriate test procedure for the required capacity and accuracy.)
- Pan, not less than 24 in. x 24 in. x 3 in. (600 mm x 600 mm x 75 mm) for approximately 40 lb. (18 kg) samples. Large samples, approximately 80 lb. (36 kg), will require the use of a pan size not less than 27 in. x 36 in. x 4 in. (675 mm x 900 mm x 100 mm).
- Bituminous mix sampling scoop (scoop with vertical sides)

PROCEDURE

- Without removing the sample from the cardboard container, heat it and the trowel in the oven at 275°F ± 5°F (135°C ± 3°C) until the mixture is soft enough to be easily worked with and capable of being thoroughly mixed. Then remove the sample from its container and place in the pan. Samples received in insulated boxes may be placed in the pan without heating providing the material is soft enough to be thoroughly mixed.
- 2. Using the trowel, mix, spread, and flatten the sample to a uniform thickness of approximately 1 1/2 in. (37.5 mm). Then carefully fold the edges of the sample toward the center and press flat with the trowel, so that large particles will not segregate to the edges. Fold and press one trowel load at a time. With a spatula, scrape the fine material off the trowel distributing it over the surface of the sample. Work around the sample in one direction, overlapping each trowel load until all edges have been folded and a truncated cone has been formed. Spread and re-flatten the sample to a uniform thickness as before. If the sample doesn't appear uniform repeat this process until the sample, when flattened to the uniform thickness of approximately 1 1/2 in. (37.5 mm), presents a homogeneous appearance.

NOTE: The above technique will produce a truncated cone. Extreme care must be used to keep the sides of this cone as flat as possible and not allow particles to segregate to the edges. 3. To obtain material for the test specimen, start at the center of the sample and remove a strip with the sampling scoop. This strip should be taken from the center towards the outer edge of the pan and full depth of the sample. Make certain that all material is removed down to the bottom of the pan. (Refer to the appropriate test procedure to determine the amount of material taken, as described above, for the test specimen.)

Alternate Procedures for Large Samples Contained in Two or More Boxes

- 1. The identical procedure is followed, except a large pan is used.
- Each box of material making up the sample is regarded as a separate sample. The identical regular procedure is followed on each box of material through Step 2 in the regular procedure. Step 3 of the regular procedure is replaced with the following:

The material contained in the first box is reduced to about half by removing strips of material with the sampling scoop. The strips are taken by removing the material all the way across and full depth of the sample. Make certain that all the material is removed down to the bottom of the pan. Place the strips of material in another container and continue removing strips of material in the above manner until the proper amount is obtained. Repeat the above procedure for each additional box of mix, adding the strips of material taken to the container holding the material obtained from the first box of mix. The mixture accumulated from the original boxes is now regarded as one sample, and the regular procedure is followed.

Iowa Department of Transportation

Office of Materials

October 19, 2004 Supersedes April 20, 2004 Matls. IM 380

VACUUM-SATURATED SPECIFIC GRAVITY & ABSORPTION OF COMBINED OR INDIVIDUAL AGGREGATE SOURCES

SCOPE

This test method is intended to determine the specific gravity and absorption of combined aggregate for asphalt mix designs only. This method uses a flask pycnometer and a vacuum system.

REFERENCED DOCUMENTS

AASHTO T209 Theoretical Maximum Specific Gravity and Density of Bituminous Paving Mixtures IM 336 Methods of Reducing Aggregate Field Samples to Test Samples

TEST METHOD

- A. Apparatus
 - 1. Balance, 10,000-gram minimum capacity and capable of weighing to the nearest 0.1 gram.
 - 2. Pycnometer, four-liter, thick-walled, glass Erlenmeyer flask (without side discharge nozzle, with top surface of opening ground plane and smooth, and with rubber stopper hose connection) or other suitable pycnometer.
 - 3. Vacuum pump or water aspirator for evacuating air from the pycnometer.
 - Thermometers, ASTM 15F (30°F to 180°F [ASTM 15C (2°C to 80°C)]), softening point and a general-purpose thermometer of suitable range with graduations every 0.5°F (0.2°C).
 - 5. Large, flat weighing pan about 16 in. by 24 in. by 2 3/4 in. (400 mm by 600 mm by 70 mm) with one end formed in the shape of a chute, for cooling and weighing the sample and for transferring the sample into the pycnometer.
 - 6. Glass 4 in. by 4 in. (100 mm by 100 mm) cover plate for accurate filling of pycnometer flask. This is for use with the glass flask.
 - 7. Scoop, spatula or trowel, and bulb syringe.
 - 8. Elevated water container, with gravity discharge valve and tubing, of sufficient capacity to conduct a complete test.
 - 9. Funnel for transferring sample from weighing pan into the pycnometer.

October 19, 2004 Supersedes April 20, 2004 Matls. IM 380

NOTE: The manometer must not be connected to the vacuum tube coming from the pump, but is to be connected to the pycnometer through a separate tube.

- 10. Manometer for measuring absolute pressure.
- 11. Equipment meeting AASHTO T-209 or ASTM D-2041 will also be considered acceptable.
- B. Pycnometer Calibration

Prior to being put in service, a pycnometer calibration will be performed by accurately determining the mass of water at $77^{\circ}F \pm 0.5^{\circ}F$ ($25^{\circ}C \pm 0.2^{\circ}C$) required to fill the pycnometer. Accurate filling of the pycnometer is assured by the use of a cover plate.

NOTE: It is necessary to verify the calibration of each pycnometer before using and to periodically check the calibration thereafter to detect any change in weight due to wear or changes in the mineral content of the water. This is done by accurately filling the pycnometer with water at any temperature recorded on the calibration sheet, drying the outside of the pycnometer, and weighing the pycnometer, water, and proper cover plate.

NOTE: Cover plate and pycnometer combinations are not interchangeable! The cover plate used for calibration should also be used for routine testing. If a different cover plate is used, however, the calibrated weight used in the specific gravity determinations must be appropriately adjusted by the difference in weight between the original cover plate and its replacement.

This applies to both Erlenmeyer flask apparatus and the alternate equipment identified in A11 above.

- C. Specific Gravity Test Procedure
 - Obtain a test sample of at least 2000 grams of oven dried individual source aggregate or combined aggregate. Combined aggregate samples are built up to asphalt mix design proportions by following IM 336.
 - 2. Weigh the oven-dried test sample to the nearest 0.1 gram.
 - 3. Transfer the sample into the calibrated pycnometer, which contains water to a depth of about 2 1/2 in. (65 mm).

- 4. Add water, if necessary to cover the sample. Agitate the sample to remove any loosely trapped air.
- 5. Insert rubber stopper and connect vacuum hose. Apply a vacuum to attain between 1.0 in. and 1.2 in. (25.5 mm and 30 mm) H_g (mercury) absolute pressure, as measured by a manometer, to the flask contents for 30 minutes. During the vacuum time period agitate the flask and contents continually by using a mechanical vibratory device, or manually by shaking and rolling the flask at intervals of about 2 minutes. This will facilitate the removal of air bubbles trapped in the sample and on the interior surface of the glass.
- 6. Remove the vacuum apparatus from the pycnometer and fill with water to the top of the neck of the pycnometer. Allow the water filled pycnometer to stand for 20 minutes.
- 7. Tip the pycnometer slightly and use a glass cover plate and bulb syringe to add water until the pycnometer is completely full.
- 8. Dry the outside of the pycnometer and glass plate with a clean cloth, chamois or paper towel, and weigh to the nearest 0.1 gram. Immediately after weighing, remove the glass plate and determine the temperature of the water to the nearest 0.5°F (0.2°C) degree with the general-purpose thermometer.
- D. Calculation of Vacuum Apparent Specific Gravity (Gsa)

Calculate the vacuum apparent specific gravity (lines 1 through 11 of the data sheet, Appendix A) of the aggregate sample as follows:

Apparent Specific Gravity =
$$\frac{WR}{W + W_1 - W_2}$$

Where: W = weight of dry sample, grams

- W_1 = weight of pycnometer filled with water at test temperature, grams. (This value must be determined anytime the test temperature changes from the calibration temperature by more than ± 0.5°F (± 0.3°C)
- W_2 = weight of pycnometer filled with water and sample, grams
- R = correction multiplier (from table)

$$\mathsf{R} = \frac{\mathsf{d}_{\mathsf{t}}}{0.99707}$$

Where: d_t = density of water at test temperature, grams/cc (from table) 0.99707 = density of water at 77°F (25°C) grams/cc

- E. Absorption Test Procedure
 - After determining the specific gravity, pour water from the sample through a No. 200 (75μm) mesh sieve.
 - Remove the sample from the flask and wash the sample over a No. 200 (75-µm) mesh sieve.
 - 3. Split the sample on a No. 8 (2.36-mm) sieve. This may require using water. If water is used, the wash water from the fine portion is passed through a No. 200 (75-μm) sieve.

NOTE: If less than 10% of the material passes the No. 8 (2.36-mm) sieve, the material passing the No. 8 (2.36-mm) sieve may be discarded.

NOTE: If more than 90% of the material passes the No. 8 (2.36-mm) sieve, the material retained on the No. 8 (2.36-mm) sieve may be discarded.

- 4. Place the coarse portion [plus No. 8 (2.36-mm) sieve] of the sample on a bath towel and roll the sample around by holding on to each end of the towel. (The towel will absorb most of the free water from the aggregate particles.)
- 5. Place the coarse portion of the sample in a large, flat pan or on a clean hard surface. Observe when the particles develop a dull appearance and leave no streaks of moisture when moved indicating a saturated surface-dry (SSD) condition. This usually requires only about 2 to 3 minutes.
- 6. After the coarse particles obtain an SSD appearance immediately weigh to the nearest 0.1 gram.
- 7. Place the fine portion [minus No. 8 (2.36-mm) sieve] in a large pan and dry to a SSD condition by stirring and turning the particles continuously so they will dry evenly. When the material becomes free flowing and there is no tendency for the finer particles to adhere to a cool, dry steel spatula, the material is considered to be in a SSD condition.

To aid the removal of the free water, the fine sample may be placed in a 150-mm or larger Buchner funnel containing an appropriate filter paper. A vacuum is then applied to the flask, which collects the water until the water is dripping from the funnel at a rate of 1 to 2 drops per second. The fine sample is then transferred to the large, flat pan for drying to a SSD condition as above.

The use of a hot plate placed in front of, or in back of, a fan to circulate air over the sample to aid in obtaining an SSD condition is permissible.

<u>NOTE</u>: Free water accumulates at the bottom of the pan. Paper towel may be used to dry the pan. **DO NOT** attempt to dry the sample with the paper towel.

- 8. Immediately after the fine portion of the sample has attained an SSD condition, weigh to the nearest 0.1-gram.
- Re-combine the coarse and fine portions of the saturated-surface-dry sample, dry to a constant weight (mass) on a hot plate or in an oven and weigh to the nearest 0.1-gram (coarse and fine portions may be dried separately).
- F. Calculation of Water Absorption, %Abs (Vacuum Method)

Calculate the water absorption (lines 12 through 17 of the data sheet, Appendix A) of the aggregate sample as follows:

% Abs =
$$\frac{(W_a + W_b - W_c)(100)}{W_c}$$

Where: W_a = saturated surface-dry (SSD) weight of coarse portion W_b = saturated surface-dry (SSD) weight of fine portion W_c = combined dry weight of coarse and fine portion

G. Bulk Dry Specific Gravity (Gsb)

This test method determines the vacuum apparent specific gravity (G_{sa}) of individual or combined aggregate sources. For the purpose of asphalt mix design; the aggregate bulk specific gravity (G_{sb}) is needed. Aggregate bulk specific gravity (lines 18 through 20 of the data sheet, Appendix A) may be determined from apparent specific gravities as follows:

$$G_{sb} = \frac{G_{sa}}{1 + (ABS)(G_{sa})}$$

Where: ABS = %Abs/100 %Abs = percent absorption

CORRECTION MULTIPLIER FOR SPECIFIC GRAVITY DETERMINATION

TABLE 1 – DENSITY OF WATER (°C)

°C	0	1	2	3	4	5	6	7	8	9
10	0.99973	0.999633	0.999525	0.999404	0.999271	0.999127	0.998971	0.998803	0.998624	0.998435
20	0.99823	0.998023	0.997802	0.997570	0.997329	0.997077	0.996816	0.996545	0.996265	0.995976
30	0.99568	0.995371	0.995056	0.994733	0.994400	0.994061	0.993714	0.993359	0.992996	0.992626
40	0.99225	0.99187	0.99147	0.99107	0.99066	0.99025	0.98982	0.98940	0.98896	0.98852
50	0.98807	0.98762	0.98715	0.98669	0.98621	0.98573				

TABLE 2 – R CORRECTION MULTIPLIER (Correction to 25°C)

°C	0	1	2	3	4	5	6	7	8	9
10	1.0027	1.0026	1.0025	1.0023	1.0022	1.0021	1.0019	1.0017	1.0016	1.0014
20	1.0012	1.0009	1.0007	1.0005	1.0003	1.0000	0.9997	0.9995	0.9992	0.9989
30	0.9986	0.9983	0.9980	0.9976	0.9973	0.9970	0.9966	0.9963	0.9959	0.9955
40	0.9952	0.9948	0.9944	0.9940	0.9936	0.9932	0.9927	0.9923	0.9919	0.9914
50	0.9910	0.9905	0.9900	0.9896	0.9891	0.9886				

TABLE 3 - DENSITY OF WATER (°F)

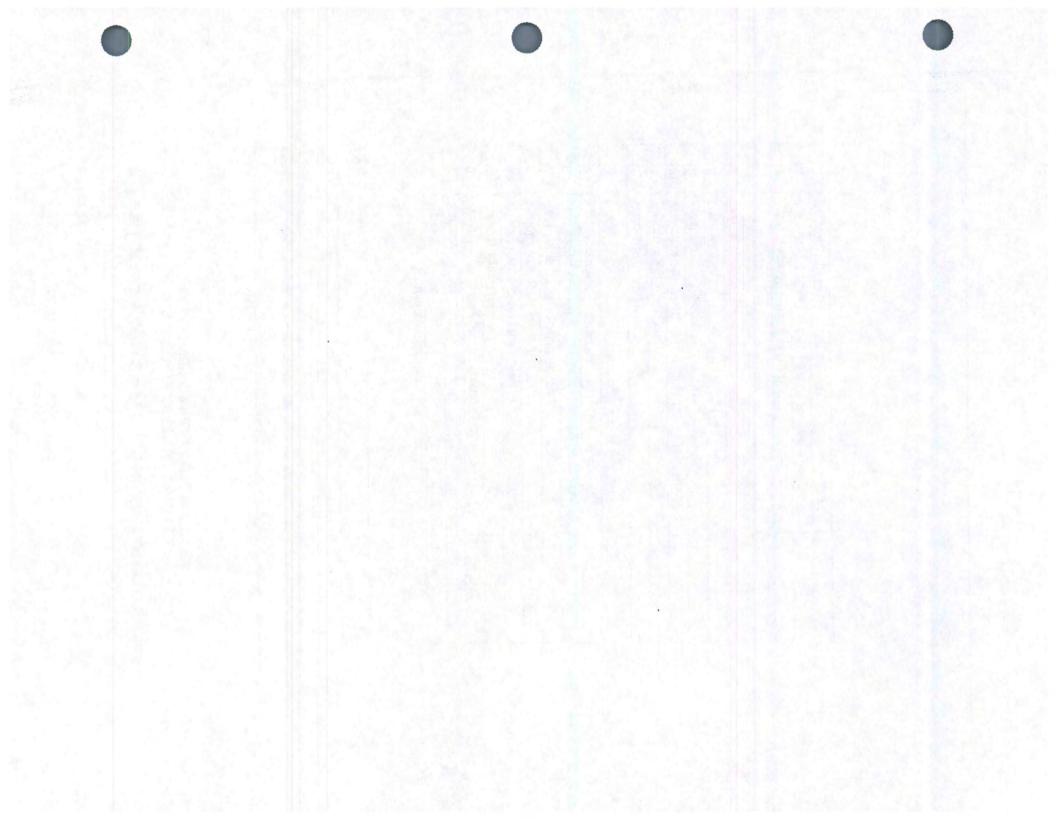
°F	0	1	2	3	4	5	6	7	8	9
60	0.999040	0.998982	0.998859	0.998764	0.998664	0.998562	0.998455	0.998346	0.998232	0.998115
70	0.997997	0.997874	0.997749	0.997619	0.997489	0.997353	0.997216	0.997074	0.996929	0.996783
80	0.996632	0.996481	0.996325	0.996168	0.996006	0.995844	0.995676	0.995505	0.995335	0.995159
90	0.994984	0.994802	0.994622	0.994436	0.994251	0.994059	0.993866	0.993673	0.993475	0.993277
100	0.993074	0.992872	0.992664	0.992458	0.992246	0.992030	0.99182	0.99160	0.99138	0.99116
110	0.99093	0.99071	0.99048	0.99025	0.99001	0.98977	0.98954	0.98930	0.98906	0.98881
120	0.98857	0.98832	0.98807	0.98782	0.98757	0.98731	0.98705	0.98679	0.98653	0.98626
130	0.98606									

TABLE 4 - R CORRECTION MULTIPLIER (Correction to 77°F)

°F	0	1	2	3	4	5	6	7	8	9
60	1.0020	1.0019	1.0018	1.0017	1.0016	1.0015	1.0014	1.0013	1.0012	1.0010
70	1.0009	1.0008	1.0007	1.0005	1.0004	1.0003	1.0001	1.0000	0.9999	0.9997
80	0.9996	0.9994	0.9992	0.9991	0.9989	0.9988	0.9986	0.9984	0.9983	0.9981
90	0.9979	0.9977	0.9975	0.9974	0.9972	0.9970	0.9968	0.9966	0.9964	0.9962
100	0.9960	0.9958	0.9956	0.9954	0.9952	0.9949	0.9947	0.9945	0.9943	0.9941
110	0.9938	0.9936	0.9934	0.9932	0.9929	0.9927	0.9924	0.9922	0.9920	0.9917
120	0.9915	0.9912	0.9910	0.9907	0.9905	0.9902	0.9899	0.9897	0.9894	0.9892
130	0.9890									

GENERAL REWRITE - PLEASE READ CAREFULLY.

AGGREGATE SPECIFIC GRAVITY FOR COMBINED OR INDIVIDUAL SOURCES


County:	Project No .:	Date:	
Project Location:			
Contractor:			
Mix Type:	Course:	Size:	
Aggregate Source	s:	Size:	

1	Pycnometer No.	
2	Sample Weight	W
3	Weight Pyc. & Water@Test Temp. (Calibration	on)W1
4	Total Weight (Line 2 + Line 3)	W+W1
5	Weight Pyc. & Sample & Water	W2
6	Weight Displaced Water (Line 4 - Line 5)	A TO PTO D
7	Test Temp. of Water, (Degrees F)	1 X 1 7 5 5
8	R Multiplier (Chart)	R
9	Vac. Apparent Sp. Gr. {(W) X (R)/(Line 6)}	G _{sa}

		+#8	-#8
10	Weight SSD Material		
11	Weight of Dry Material		
13	Weight of Absorbed Water (Line 10 - Line 11)		
14	Total Weight Absorbed (Line 13 (+#8 + -#8))		
15	Total Weight Dry Material (Line 11 (+#8+ -#8))		
16	% Abs, {(100) X (Line 14)/(Line 15)}	1.1	

17	ABS=%Abs/100, (Line 16/100)		
18	1 + (ABS) X (Gsa), {(1+(Line 17)) X (Line	e 9)}	
19	Bulk Dry Sp. Gr. (Line 9/Line 18)	G _{sb}	

Office of Materials

lowa Department of Transportation

April 19, 2005 Supersedes April 30, 2002 Matls. IM 437

ASPHALT BINDER, CUTBACK ASPHALT & EMULSIFIED ASPHALT

SCOPE

Acceptance of asphalt materials will be based on certification from an approved supplier. Asphalt binders will be certified by the Combined State Binder Group's "Method of Acceptance for Asphalt Binders." The certification of cutbacks and emulsions will be based on Standard Specification 4138 and 4140 respectively.

A Supplier of asphalt binders is defined as one who produces the final product or who makes the blend or modification that alters the final properties of the Performance Graded Asphalt Binder (PGAB). A Supplier shall be a refinery, a terminal or a Hot Mix Asphalt (HMA) producer. If any modification, blending, or blending of PGAB from different sources is made at the HMA plant, the HMA producer must be the approved supplier and must provide the required certification.

A Supplier of cutbacks and emulsions is defined as a refinery or terminal, which produces the final product. A Contractor diluting emulsion in the field will not be considered a supplier.

Approval shall be secured for each source before materials can be furnished as certified material. Approved sources are listed in Appendixes A and B of this IM.

SOURCE APPROVAL

Applications for source approval shall be made, in writing, to the Office of Materials in Ames. The appropriate District Materials Office will recommend the approval when assured that the supplier has met all qualifications. The Office of Materials will issue a formal approval.

Approval of suppliers will be based on compliance with the following requirements:

A. Acceptable Control Laboratory

A control laboratory will be considered acceptable if it shows that test results can be obtained within precision limits established by AASHTO for each test. Precision will be judged by comparison with results obtained by the Central Laboratory in Ames or acceptable performance in an approved round robin testing program. Laboratory facilities and procedures may be inspected and reviewed by Highway Division personnel.

Suppliers not participating in an approved round robin testing program shall submit a minimum of two samples of each type of material from regular production to the Central Laboratory in Ames. Complete sample identification and supplier test results for all specified tests must be submitted for each sample. A comparison of the Central Materials Office test results with the suppliers test results will be made.

B. Acceptable Quality Control Program

The supplier shall submit an outline of the Quality Control Program showing testing frequencies, tests performed, and a typical test report to the Office of Materials.

C. Records & Documentation

A satisfactory program for storage of test reports and shipment records shall be maintained. This program shall enable proper identification and documentation of all shipments made to projects and shall include a file of refinery test reports covering all asphalt binders.

Continued approval of a source will be based on the following:

- A. · Ability to consistently supply material meeting specifications
- B. Ability to meet precision limits for testing or has an acceptable performance on round robin testing.
- C. Continuation of originally approved Quality Control Program.
- D. Maintenance of required records
- E. Proper documentation of shipments

Approval to deliver certified material may be withdrawn for inadequate compliance with these requirements.

MONITORING APPROVED SOURCES

Monitoring activities of suppliers, including inspection of test reports, quality control records and procedures, and shipping records will be conducted by the appropriate District Materials Office in accordance with Appendices C and D of this IM.

All District Materials Office monitoring activities shall be reported to the Central Materials Office.

DOCUMENTATION

Each shipment invoice covering certified materials delivered to a project shall have a signed certification statement as to type and grade, specific gravity or weight per gallon (liter), quantity in load, batch number or other identification, project number, and compliance with the appropriate lowa Department of Transportation Specifications. A copy of this invoice shall be furnished to the Contracting Authority at the time of delivery.

A supplier receiving material shall promptly obtain a report of complete test analysis covering each batch or identifiable lot received.

ACCEPTANCE

Properly identified and certified materials may be incorporated into a project. Final acceptance will be based on the certifications and the results of tests on project samples secured in accordance with IM 204 or in accordance with special requirements when specified. Project samples with noncompliant test results may require additional tests.

NOTE: Emulsions, which are to be shipped to lowa projects, shall be held in storage tanks for a minimum of 24 hours. Certification shall be based on tests made at the time of shipment.

GENERAL REWRITE - PLEASE READ CAREFULLY.

APPROVED SOURCES OF ASPHALT BINDER Method of Acceptance for Asphalt Binders CERTIFIED SUPPLIERS – APRIL 2008

SUPPLIER Asphalt Operating Services, LLC Bartlett, IL		IADOT	MNDOT	NDDOT	NEDOR	SDDOT	WISDOT
Barton Enterprises	Newport, MN		X				
Bituminous Matr'l & Supply	Des Moinse, IA	X		•			
Bituminous Matr'l & Supply	Tama, IA	X					
Border Chemical Co.	Winnipeg, Manitoba		1	X			
BP - Bit Mat Products	South Bend, IN						Х
BP - Jacobus Petroleum	Milwaukee, WI	1	1000				Х
BP Products North America Inc	Whiting, IN	X	1				Х
CHS	Laurel, MT		1.1.1.1	X		Х	
CHS	Grand Forks, ND		X	X			
CHS	Mandan, ND			X		Х	
CHS	Hardin, MT			X			
ConocoPhillips	Forestview, IL						Х
ConocoPhillips Company	Kansas City, MO.	Х	1.		-		
ConocoPhillips Company	Roxanna, IL		1	1.	X	-	
Const Resources Mgmt Inc	Gladstone, MI			1			Х
Const Resources Mgmt Inc	Milwaukee, WI						X
Const Resources Mgmt Inc	Waukesha, WI						X
Const Resources Mgmt Inc	Green Bay, WI						X
Exxon Mobil	Billings, MT			Х		Х	
Flint Hills Resources, LP	Davenport, IA	Х					
Flint Hills Resources, LP	Omaha, NE	Х			X	Х	
Flint Hills Resources, LP	Rosemount, MN	X	X		X	X	Х
Flint Hills Resources, LP	Green Bay, WI						Х
Flint Hills Resources, LP	West Fargo, ND		X	Х		X	
Flint Hills Resources, LP	Stevens Point, WI						Х
Flint Hills Resources, LP	Marshall, MN	Х	Х	х	X	Х	
Flint Hills Resources, LP	Dubuque, IA	X					Х
Flint Hills Resources, LP	Savage, MN	X	X	х	X	Х	X
Flint Hills Resources, LP	Algona, IA	X					
Flint Hills Resources, LP (Omaha II)	Omaha, NE	Х			X		-
Frontier Ref Inc	Cheyenne, WY				X		
H G Meigs LLC	Abbotsford, WI						Х
H G Meigs LLC	Portage, WI		Х				X
Husky Energy	Calgary, Alberta			Х			
Husky Oil	Saskatoon, SASK		Х			Х	
Jebro, Inc.	Corson, SD	Х	X			X	
Jebro, Inc.	Sioux City, IA	X	X	Х	X	X	
Marathon Ashland Petroleum LLC	Utica, IL						Х
Marathon Ashland Petroleum LLC	St Paul Park, MN		X				X
McAsphalt Ind LTD	Thunder Bay, Ontario		x		-		
McAsphalt Ind LTD	Winnipeg, Manitoba		X				

1

April 15, 2008 Supersedes October 16, 2007

Matls. IM 437 Appendix A

SUPPLIER		IADOT	MNDOT	NDDOT	NEDOR	SDDOT	WISDOT
Midwest Industrial Fuels	LaCrosse, WI	X	X				Х
Midwest Industrial Fuels	Rochester, MN	X	X				Х
Monarch Oil	Omaha, NE				X		1. 1. 1. 1. 1. 1.
Moose Jaw Asphalt, Inc	Moose Jaw, Sask	and the second		X		Х	
Murphy Oil USA, Inc.	Rhinelander, WI			1.1.1.2.1.1			Х
Murphy Oil USA, Inc.	Superior, WI		X			C. C. S. T.	Х
Murphy Oil USA, Inc.	Crookston, MN		X	X		Х	
Peoria River Terminal	Peoria, IL			1.4.		and the second	Х
Peoria River Terminal - Ameropan Oil	Chicago, IL						Х
Peoria River Terminal - Bell Oil	Chicago, IL					1000	Х
Pioneer Oil Co.	Billings, MT			X		6. Cat	
Pounders Emulsions	Yorkton, SASK	1.4.2.6.6		X			
Seneca Petroleum, Co.	Portage, IN						Х
Seneca Petroleum, Co.	Lemont, IL	man and the	1	11.12			Х
Sinclair Oil Corp.	Casper, WY	12	en 200		X	Х	1
Texpar Energy LLC	Davenport, IA	X			1.2		
Westway Terminal Company, Inc	St Paul, MN	1.000	X				

APPROVED SOURCES CUTBACK & EMULSIFIED ASPHALT

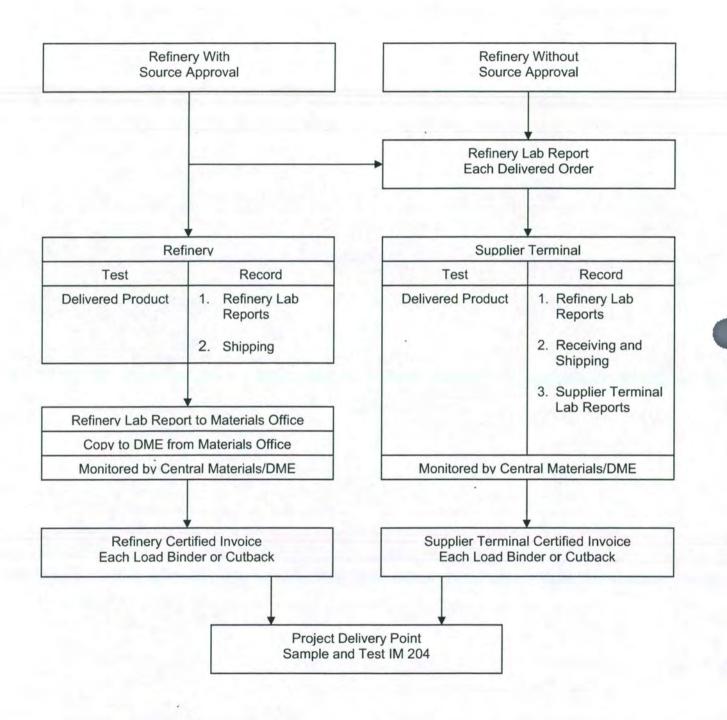
The following sources are approved to furnish Cutback Asphalt based on certification:

SUPPLIER	ADDRESS
Bituminous Materials & Supply Company Bituminous Materials & Supply Company	Des Moines, IA Tama, IA
Coastal Refining & Marketing, Inc.	Eldorado, KS
Illinois Road Contractors Inc.	Meredosia, IL
Jebro, Inc. Jebro, Inc.	Sioux City, IA Sioux Falls, SD
Flint Hills Resources Flint Hills Resources Flint Hills Resources Flint Hills Resources Flint Hills Resources	Algona, IA Dubuque, IA Marshall, MN Omaha, NE St. Paul, MN
L.L. Pelling Company, Inc.	Coralville, IA
Midwest Industrial Fuel Company	La Crosse, WI
The following sources are approved to furnish Emulsified Asph	

SUPPLIER	ADDRESS
Bituminous Materials & Supply Company Bituminous Materials & Supply Company	Des Moines, IA Tama, IA
H.G. Meigs	Portage, WI
Illinois Road Contractors Inc.	Meredosia, IL
Jebro, Inc.	Sioux City, IA
Flint Hills Resources Flint Hills Resources Flint Hills Resources Flint Hills Resources Flint Hills Resources	Algona, IA Dubuque, IA Marshall, MN Omaha, NE St. Paul, MN

SUPPLIER

Monarch Terminal


Vance Brothers, Inc.

ADDRESS

Omaha, NE

Kansas City, MO

ASPHALT BINDER & CUTBACK FLOW CHART

MONITORING GUIDE ASPHALT REFINERIES & TERMINALS

REFINERIES

Refinery monitoring samples will be taken on request by the Central Materials Office or when deemed necessary by the District Materials Engineer. These samples will be taken before the material is incorporated into terminal or contractor storage. The Central Laboratory will conduct all testing of these samples.

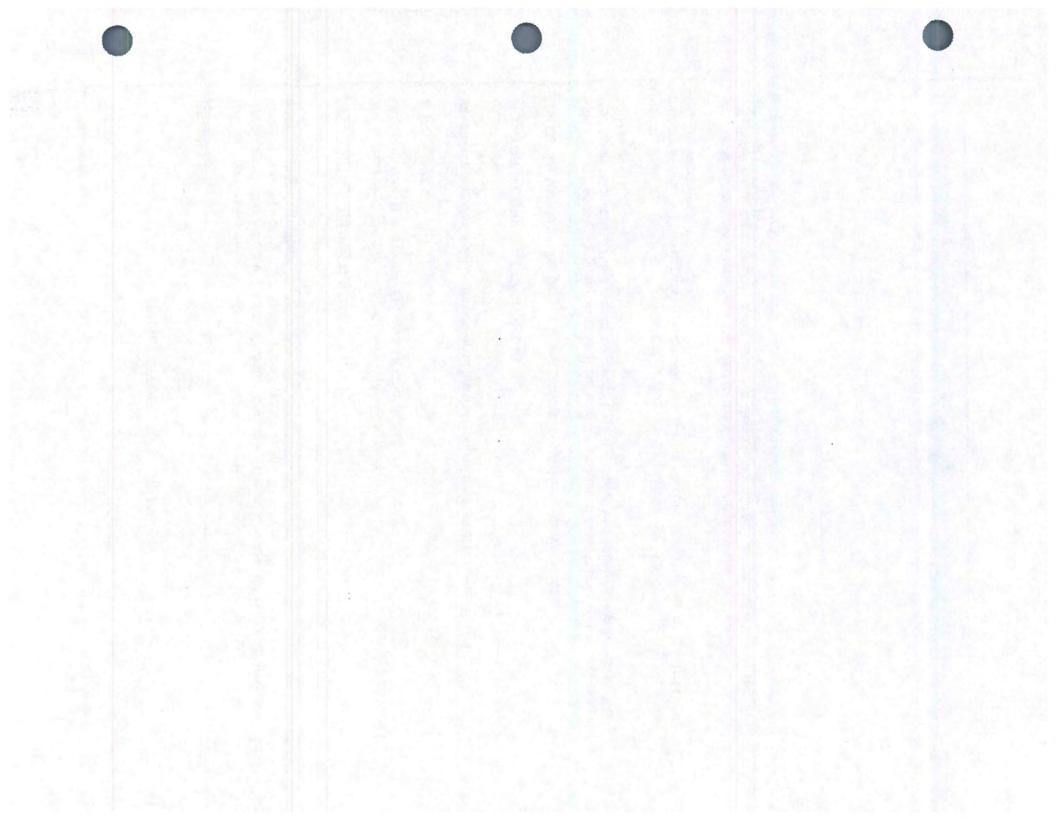
DISTRIBUTION TERMINALS

The appropriate District Materials Office will review terminal procedures and records related to Iowa DOT work each time a terminal is visited for monitoring purposes.

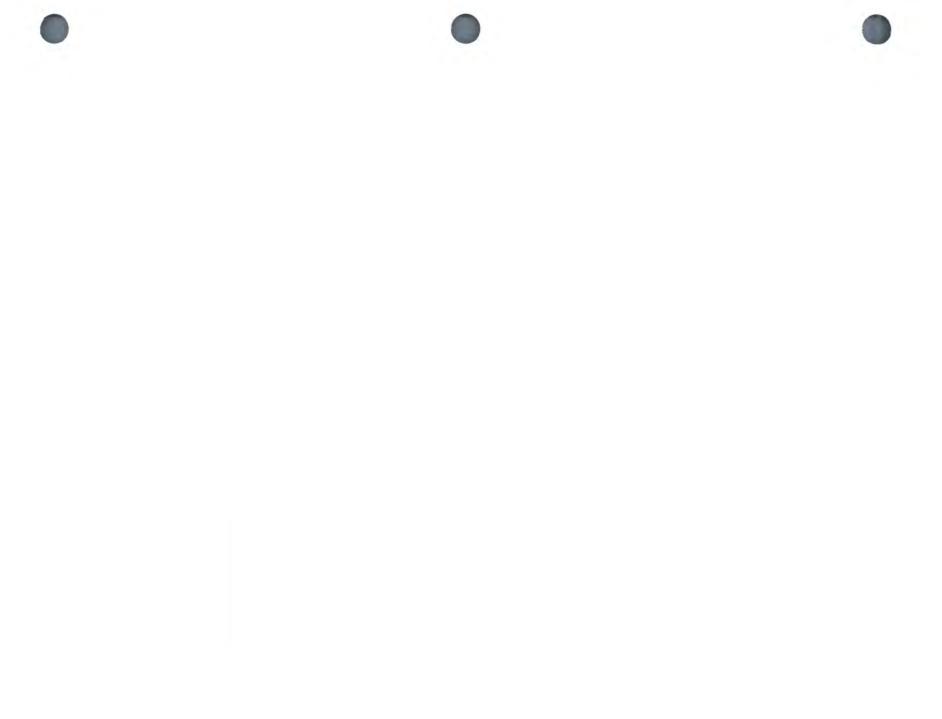
Active suppliers of asphalt products to Iowa DOT projects shall be monitored at least once a year.

Intermittent suppliers shall be monitored at the discretion of the District Materials Engineer.

0


MONITOR & CORRELATION TESTING

The Central Materials Laboratory shall test samples taken during monitor visits.


Monitor samples for binder, emulsion and cutback shall be taken at least once a year beginning in the spring. Monitor samples are to be taken by the supplier and must be witnessed by DOT personnel.

<u>NOTE</u>: Both the Central Materials Office and the supplier for correlation purposes must test monitor samples. The supplier must provide the monitor sample test results to the Central Office in a timely manner.

Monitor samples from a terminal submitted to the Central Laboratory will be used for correlation between the terminal control laboratory and the Central Laboratory. Test reports on these samples will be distributed to the monitoring District Materials Office and the terminal.

Iowa Department of Transportation

Office of Materials

October 21, 2003 Supersedes April 15, 2003 Matls. IM 491.04

INSPECTION & ACCEPTANCE HYDRATED LIME

GENERAL

Hydrated lime for soil stabilization shall meet the requirements of AASHTO M216. Details of use will be shown on the plans.

Hydrated lime used in hot mix asphalt (HMA) mixtures shall meet the requirements of AASHTO M303, except that the gradation shall be determined in accordance with AASHTO T11.

ACCEPTANCE

Acceptance of hydrated lime for use on Department of Transportation projects will be based on approved manufacturer and satisfactory test results on assurance samples.

MANUFACTURER APPROVAL

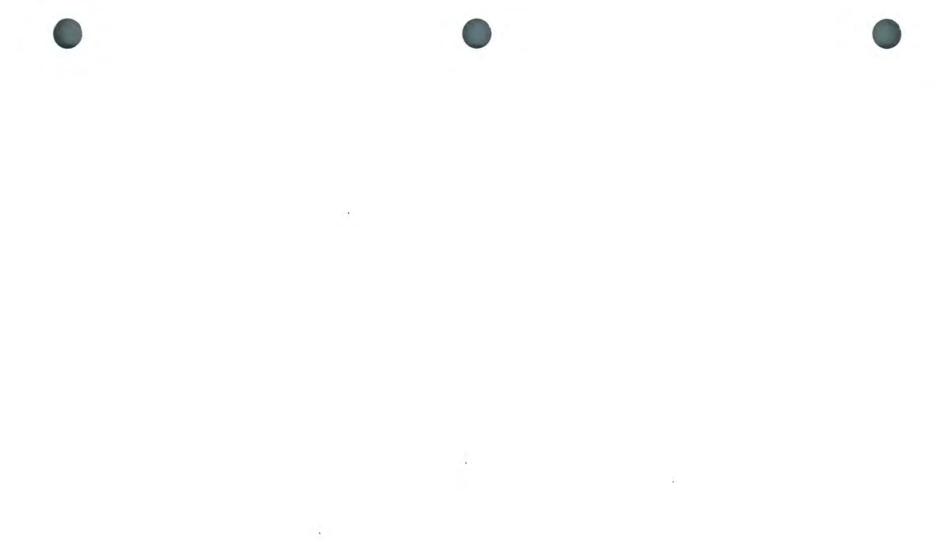
Manufacturer approval will be based on test results obtained on an annual sample submitted by the manufacturer to the Office of Materials for testing and recommendation of the District Materials Engineer after an acceptance of plant facilities and quality control procedures.

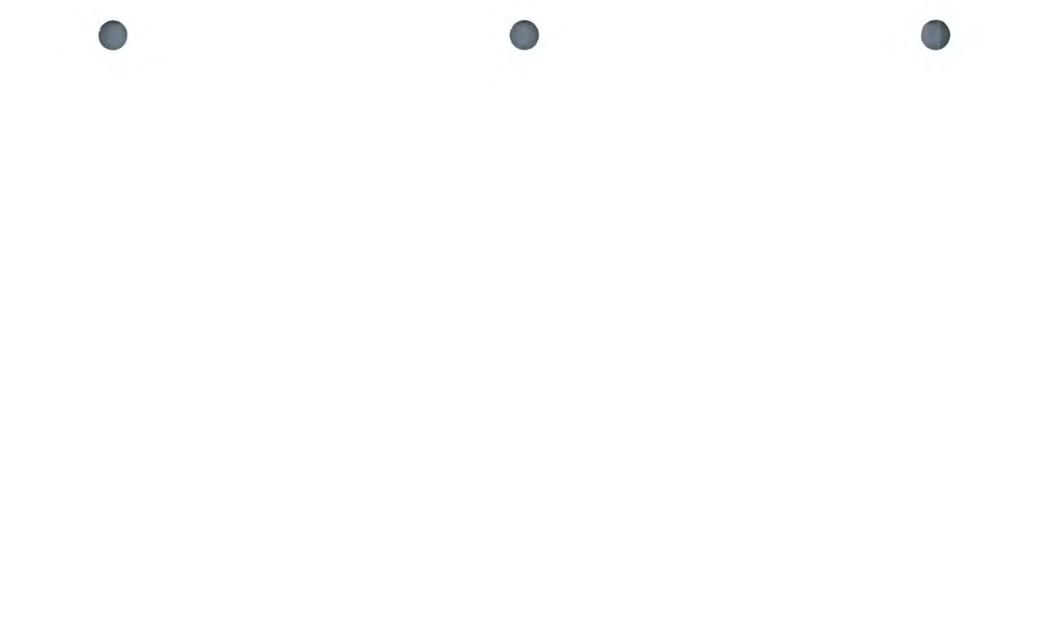
An approval will remain in effect unless withdrawn because of deficient test results on samples submitted.

ASSURANCE & MONITOR SAMPLING

The District Materials Office shall sample and submit for test assurance samples as desired by the Engineer.

The Office of Materials may request additional samples for monitoring purposes.




Matls. IM 491.04 Appendix A

APPROVED SUPPLIERS HYDRATED LIME

SOURCES	SOIL STABILIZATION	ACC MIXTURES
Ash Grove Cement Company Springfield, MO	Yes	Yes
Carmeuse Lime	Yes	Yes
Chicago Heights, IL		
Cutler-Magner Company	Yes	Yes
Duluth, MN		
Linwood Mining & Mineral Company Davenport, IA	Yes	Yes
Mississippi Lime Company St. Genevieve, MO	Yes	Yes
Pete Lien and Sons, Inc.	Yes	Yes
Rapid City, SD	,00	100
Western Lime Corporation West Bend, WI	Yes	Yes

Iowa Department of Transportation

Office of Materials

October 21, 2008 Supersedes October 18, 2005 Matls. IM 491.15

RELEASE AGENTS FOR BITUMINOUS MATERIALS

SCOPE

Release agents used to prevent bituminous materials from adhering to interior surfaces of truck bodies shall meet the requirements of applicable lowa Department of Transportation Specifications.

ACCEPTANCE

Acceptance of release agents for use on lowa Department of Transportation projects is based on manufacturer and brand name approval. Brand names must be identifiable on the containers. Approved manufacturers and brand names are listed in Appendix A.

MANUFACTURER & BRAND NAME APPROVAL

Product approval is based on information supplied by the producer and the results of tests showing the effect on asphalt binder. Requests for approval shall be made to the Office of Materials in Ames, Iowa, and shall be accompanied by a sample of the release agent together with product information including brand name and instructions for use. The release agent shall not alter the G*/sin (delta) results of the asphalt by more than 15%.

MONITOR SAMPLING & TESTING

The Office of Materials may sample and test release agents to verify compliance with specifications.

Matls. IM 491.15 Appendix A

APPROVED SOURCES RELEASE AGENTS FOR BITUMINOUS MATERIALS

PRODUCER

Archer Petroleum Omaha, NE

Arrow Magnolia International LP Dallas, TX

Astec Corporation

BG Chemical, LP Fort Worth, TX

Biospan Technologies

Birco Corp. Henderson, CO

Buckeye International Maryland Heights, MO

Certified Laboratories Fort Worth, TX

Chem Tech, Inc. Albertville, MN

Chem-Tech, Inc. Golden Valley, MN

Chem Tech, Inc. Waukee, IA

ChemStation Dayton, OH

ChemStation of Iowa Des Moines, IA

BRAND NAME

Quick Release

SLIDER SUPER SLICK BIO

Glide Off Sta-Off

Black Magic for Drag Slats Black Magic for Trucks Black Magic for Rubber Black Magic 13

AR3600

Tar-Git

Buckeye Shopmaster

Certisuds

Asphalt Release Plus

Asphalt Release Asphalt Release Plus

ASPHALT RELEASE FG

2061-A 2061-B

Release Agent 1475 Release Agent 2790 Release Agent 5895 Release Agent 6992

PRODUCER

Chevron Lubricants Distributed by Ottsen Oil Company Cedar Rapids, IA

Compound Technologies, Inc. Cartersville, GA

Drummond American Vernon, IL

Emulso Corporation Buffalo, NY

Enviro-Chem Roswell, GA

Du Bois Chemicals Cincinnati, OH

Fine Organics Corporation Lodi, NJ

Franmar Chemical, Inc. Normal, IL

Hydrus Detergents Graetinger, IA

KO Manufacturing Springfield, MO

L & L Quality Products Douglasville, GA

Microblend Morrow, GA

Penetone Corporation Tenafly, NJ

BRAND NAME

Chevron Soluble Oil B.

SPX-7 No. 1 Asphalt Release Agent

Riptide Slip N Slide

AR-92

Exodus Enviro Foam Foamex Super Slick

Liqui-Slip Poly-Slip Slide-eze Slide-All DIVER-SLIP

FO Release FO Release II

BEAN-e-doo®

Grease Cutter 503

KO #4012 KO #4014

G-SLIDE

Gargoyle Tuff-Act

Superload

Matls. IM 491.15 Appendix A

PRODUCER

Presto Chemical Company Roswell, GA

Rhomar Industries, Inc.

Rochester Midland Corp.

Springfield, MO

Rochester, NY

BRAND NAME

E-Z Slip Kwik Release Bio-Kream Syn-Coat

ENVIRO-SLIDE Ultra

SLIPEAZEE SB SLIPEAZEE 2000 SLIPEAZEE 2001 SLIPEAZEE NATURAL

Schaeffer Manufacturing Company St. Louis, MO

SoyClean Brooklyn, IA

Spartan Chemical Company Toledo, OH

Stink Pretty Specialty Fulda, MN

Tec-Team Industries, Inc. Smyrna, GA

Texas Refinery Fort Worth, TX

United Laboratories, Inc. Addison, IL

Wacker Chemical Corporation Adrian, MI

Waco Chemical

4002

Asphalt Release Concentrate

Spartan SD-20

Slickery

Teclon-50 Tec-Shield

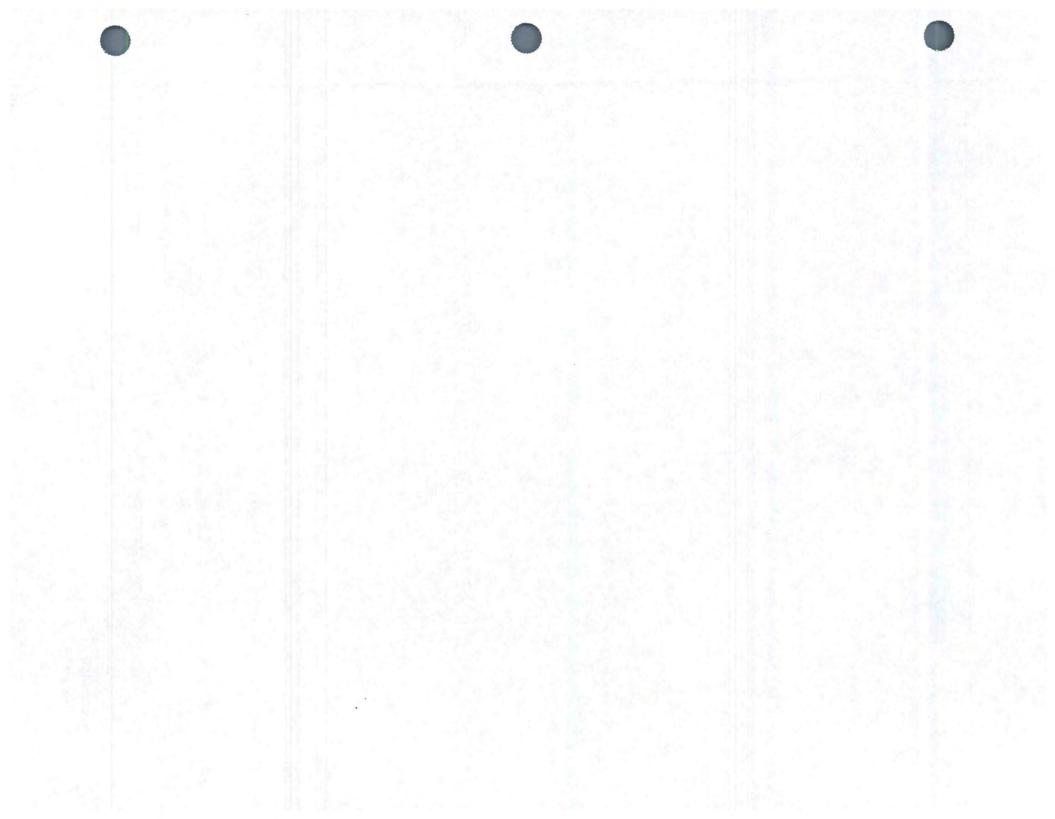
Big Red Cotton Picker Water Tank Oil

U596 E-Z-GO U796 E-Z-GOLD United 596 United 796

E2008

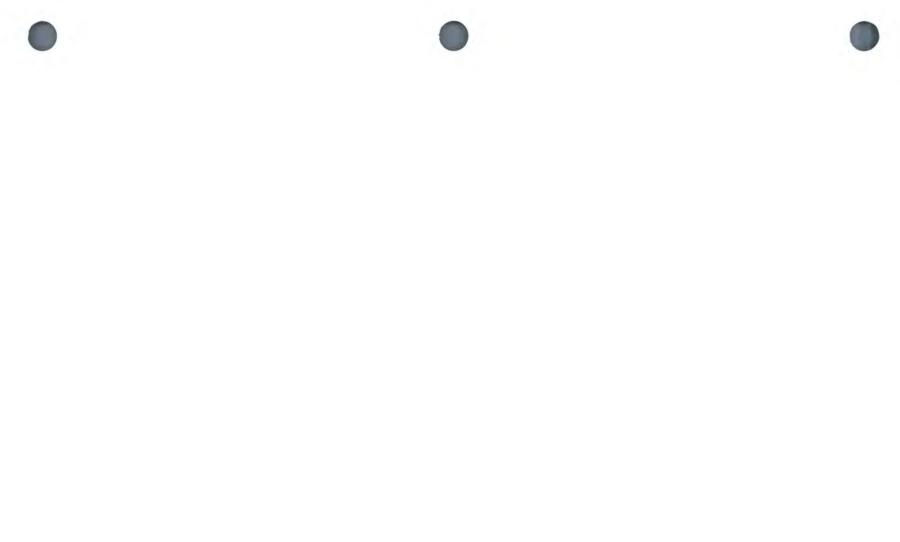
2000 Phalt Free Foam Plus Slide Plus

PRODUCER


Zep Manufacturing Atlanta, GA

BRAND NAME

ZEP R-6690 Freeze Free Release FA Special Mix E2008 X2400



.

Office of Materials

October 17, 2006 Supersedes October 2, 2001 Matls. IM 491.16

ANTI-STRIP AGENTS FOR CUTBACK ASPHALT

GENERAL

Anti-strip agents used in cutback asphalt shall be approved brands. Sources, approved brand names, and approved dosages are listed in Appendix A.

BRAND NAME APPROVAL

Brand approval will be based on information supplied by the producer and the results of antistripping tests. Requests for approval shall be made to the Office of Materials in Ames, Iowa, and shall be accompanied by a sample of the anti-strip agent together with product information including brand name, recommended dosage, and instructions for use. Anti-strip testing shall be in accordance with Laboratory Test Method No. Iowa 629. The treatment shall be heat stable for 24 hours at 250°F (121°C).

MONITOR SAMPLING & TESTING

The Office of Materials may sample and test anti-strip agents to verify results of the original approval.

APPROVED SOURCES ANTI-STRIP FOR CUTBACK ASPHALT

PRODUCER	BRAND NAME	DOSAGE IN %
AKZO Nobel Asphalt Applications	Redicote 82-S Redicote 90-S Kling Beta LV Kling Beta 2550 HM	0.5 0.5 0.25 0.25
ARR-MAZ Products, Inc.	AD-Here CB	0.25
ARR-MAZ Products (Previously Tomah Products, Inc.)	SC-901 Acra-500	0.5 0.5
B.J. Chemical Services	Unichem 8161 Unichem 8162 Unichem 8163 Unichem 8169	0.5 0.5 0.5 0.5
MeadWestvaco Corp.	Pave Bond Special Pave 192 Pave Bond Lite Morelife 2200 PC Morelife 3300 Indulin 814	0.25 0.7 0.5 0.25 & 0.5 0.25 0.5

Iowa Department of Transportation

Office of Materials

October 21, 2008 Supersedes April 15, 2008 Matls. IM 501

ASPHALTIC TERMINOLOGY, EQUATIONS & EXAMPLE CALCULATIONS

SCOPE

This IM describes the terminology and many of the equations associated with asphaltic materials. In addition, there are a number of example calculations showing how to determine various properties.

LIQUID ASPHALT TERMINOLOGY

Asphalt Cement – See Binder

Binder – A dark brown to black cementitious material, which occurs in nature or is obtained in petroleum processing. Also commonly referred to Asphalt Cement (AC).

Bitumen – See Binder

Cutback Asphalt – Liquid asphalt composed of asphalt binder and a petroleum solvent. Cutback asphalts have three types (Rapid Curing (RC), Medium Curing (MC), and Slow Curing (SC)). The petroleum solvent, also called diluents, can have high volatility (RC) to low volatility (SC).

Emulsified Asphalt – Composed of asphalt binder and water, and a small quantity of emulsifying agent, which is similar to detergent. They may be of either the Anionic, electro-negatively-charged asphalt globules, or Cationic, electro-positively-charged asphalt globules types, depending upon the emulsifying agent. Emulsified asphalt is produced in three grades (Rapid-Setting (RS), Medium-Setting (MS), and Slow-Setting (SS)).

Flux or Flux Oil – A thick, relatively nonvolatile fraction of petroleum, which may be used to soften asphalt binder to a desired consistency.

Foamed Asphalt – A combination of high temperature asphalt binder and water to produce foaming.

Gilsonite – A form of natural asphalt, hard and brittle, which is mined.

Modified Binder – These are asphalt binders, which have been physically- and/or chemicallyaltered (usually with an additive) to bring the characteristics of the binder to what is desired for the application. This process includes polymer modification.

Performance Graded Asphalt (PG) – The identification associated with the grading of the binder. Prior identification methods have been penetration and viscosity grading. For example, a PG 64-22 would indicate a performance-graded binder with a high temperature confidence of 64°C and a low temperature confidence of -22°C.

Viscosity – The property of a fluid or semifluid that enables it to resist flow. The higher the viscosity, the greater the resistance to flow.

AGGREGATE TERMINOLOGY

Absorption – The property of an aggregate particle to take in and hold a fluid. For our purposes usually asphalt binder or water.

Aggregate – Any hard, inert, mineral material used for mixing in graduated fragments. It includes sand, gravel, crushed stone, and slag.

Coarse Aggregate - The aggregate particles retained on the #4 (4.75 mm) sieve.

Coarse-Graded Aggregate – A blend of aggregate particles having a continuous grading in sizes of particles from coarse through fine with a predominance of coarse sizes. A gradation below the maximum density line.

Cold-Feed Gradation – The aggregate proportioning system employing calibrated bins to deliver aggregate to the dryer (see IM 508 for additional information).

Fine Aggregate – Aggregate particles passing the #4 (4.75 mm) sieve.

Fine-Graded Aggregate – A blend of aggregate particles having a continuous grading in sizes of particles from coarse through fine with a predominance of fine sizes. A gradation above the maximum density line.

Gradation – The description given to the proportions of aggregate on a series of sieves. Usually defined in terms of the % passing successive sieve sizes.

Lime – A product used to enhance the bond between aggregate and asphalt binder. It is composed of dust from crushed limestone. Hydrated lime is often specified for surface mixes.

Manufactured Sand –The predominately minus #4 (4.75 mm) material produced from crushing ledge rock or gravel.

Mineral Filler – A finely divided mineral product at least 70 percent of which will pass a #200 (75 μ m) sieve. Pulverized limestone is the most commonly manufactured filler, although other stone dust, hydrated lime, Portland cement, fly ash and certain natural deposits of finely divided mineral matter are also used.

Natural Sand - A loose, granular material found in natural deposits.

Open-Graded Aggregate – A blend of aggregate particles containing little or no fine aggregate and mineral filler and the void spaces in the compacted aggregate are relatively large.

Slag – A byproduct of steel production.

Well-Graded Aggregate – Aggregate that is uniformly graded from coarse to fine.

MIX TERMINOLOGY

Asphalt Cement Concrete – See Hot Mix Asphalt

Asphalt Leveling Course – Lift(s) of HMA of variable thickness used to eliminate irregularities in the contour of an existing surface prior to overlay.

Asphalt Overlay – One or more lifts of HMA constructed on an existing pavement. The overlay may include a leveling course to correct the contour of the old pavement, followed by uniform course or courses to provide needed thickness.

Base Course – Lift(s) of HMA pavement placed on the subgrade or subbase on which successive layers are placed.

Binder Course – See Intermediate Course

Full-Depth[®] Asphalt Pavement – The term Full-Depth[®] certifies that the pavement is one in which asphalt mixtures are employed for all courses above the subgrade or improved subgrade. A Full-Depth[®] asphalt pavement is laid directly on the prepared subgrade.

Hot Mix Asphalt (HMA) – Asphalt binder/aggregate mixture produced at a batch or drummixing facility that must be spread and compacted while at an elevated temperature. To dry the aggregate and obtain sufficient fluidity of the binder, both must be heated prior to mixing – giving origin to the term "hot mix."

Intermediate Course – An HMA pavement course between a base course and a surface course.

Job Mix Formula (JMF) – The JMF is the mix design used to begin a HMA project. It is also used as the basis for the control of plant produced mixture. It sets the proportions of the aggregate and amount of asphalt binder.

Mixed-In-Place (Road Mix) – An HMA course produced by mixing mineral aggregate and cutback or emulsified asphalt at the road site by means of travel plants, motor graders, or special road-mixing equipment.

Plant Mix – A mixture, produced in an asphalt mixing facility that consists of mineral aggregate uniformly coated with asphalt binder, emulsified asphalt or cutback asphalt.

Sand Asphalt – A mixture of sand and asphalt binder, cutback or emulsified asphalt. It may be prepared with or without special control of aggregate grading and may or may not contain mineral filler. Either mixed-in-place or plant-mix construction may be employed.

Sheet Asphalt – A hot mixture of binder with clean angular, graded sand and mineral filler.

Surface Course - The top lift(s) of HMA pavement, sometimes called asphalt wearing course.

MISCELLANEOUS TERMINOLOGY

Asphalt Joint Sealer – An asphalt product used for sealing cracks and joints in pavements and other structures.

Cold-In-Place Recycling – A method of rehabilitating the HMA surface by milling, adding a stabilizing agent, relaying and compacting in a continuous operation (see IM 504 for additional information).

Durability – The property of an asphalt paving mixture that describes its ability to resist the detrimental effects of air, water and temperature. Included under weathering are changes in the characteristics of asphalt, such as oxidation and volatilization, and changes in the pavement and aggregate due to the action of water, including freezing and thawing.

Fatigue Resistance – The ability of asphalt pavement to withstand repeated flexing caused by the passage of wheel loads.

Field Density – The density (G_{mb (field)}) of HMA based on field roller compaction.

Flexibility – The ability of an asphalt paving mixture to be able to bend slightly, without cracking, and to conform to gradual settlements and movements of the base and subgrade.

Fog Seal – A light application of emulsion diluted with water that is applied without mineral aggregate cover.

Lab Density – The density (G_{mb (lab)}) of HMA based on laboratory compaction.

Permeability – The resistance that an asphalt pavement has to the passage of air and water into or through the pavement.

Recycled Asphalt Pavement (RAP) – HMA removed and processed, generally by milling. This material may be stored and used on products in addition to virgin aggregate and binder. This is also referred to as Reclaimed Asphalt Pavement.

Seal Coat – A thin asphalt surface treatment used to waterproof and improve the texture of an asphalt wearing surface. Depending on the purpose, seal coats may or may not be covered with aggregate. The main types of seal coats are aggregate seals, fog seals, emulsion slurry seals and sand seals.

Skid Resistance – The ability of asphalt paving surface, particularly when wet, to offer friction against the tire surface.

Slurry Seal – A mixture of emulsified asphalt, fine aggregate and mineral filler, with water added to produce flowing consistency.

Specific Gravity - The weight to volume relationship of material in relation to water.

October 21, 2008 Supersedes April 15, 2008

Stability – The ability of asphalt paving mixtures to resist deformation from imposed loads. Unstable pavements are marked by channeling (ruts), and corrugations (washboarding).

Surface Treatments – A broad term embracing several types of asphalt or asphalt-aggregate applications, usually less than 1 in. (25 mm) thick, to a road surface. The types range from a light application of emulsified or cutback asphalt (Fog seal) to a single or multiple surface layers made up of alternating applications of asphalt and aggregate (chip seal).

Tack Coat – A very light application of asphalt, usually asphalt emulsion diluted with water. It is used to ensure a bond between the existing pavement surface and the overlay.

CONSTRUCTION TERMINOLOGY

Batch Plant – This type of HMA production plant is used to produce individual batches of mix by making use of a pugmill (see IM 508 for additional information).

Certified Plant Inspection (CPI) – A specified method of quality control using a Certified Plant Inspector (see Section 2521 of the Standard Specification for additional information).

Cold-Feed – The device used to combine the various aggregates, in the correct proportions.

Drum Plant – This type of HMA production plant is a continuously operating plant, which mixes the aggregate, asphalt binder and RAP (if used) in the drum (See IM 508 for additional information).

Quality Management of Asphalt (QMA) – A specified quality control procedure where the contractor is responsible for the mix design and the control of the mix properties during production (see IM 511 for additional information). The agency is responsible for quality assurance and verification.

Workability - The ease with which paving mixtures may be placed and compacted.

NAMING CONVENTION

	Gsb	
Volumetric	Material	Туре
Property		b = bulk
	s = stone	e = effective
G = Specific Gravity	b = binder	m = maximum theoretical
V = Volume	m = mix	a = apparent (for G) or
P = Percent	a = air	a = absorbed (for V and P

DEFINITIONS

Pa	=	% of air voids in compacted hot mix asphalt mixture (percent of total volume)
Pb	=	% of asphalt binder in the hot mix asphalt mixture
P _{b(RAP)}	=	% of asphalt binder in RAP material
Ps	=	% of combined aggregate in the hot mix asphalt mixture $100 - P_b$
P _{ba}	=	% of asphalt binder absorbed by aggregate, aggregate basis
Pbe	=	effective asphalt binder, %, mixture basis
% Abs	=	% water absorption of the individual or combined aggregate
ABS	. =	fraction of water absorption of the individual or combined aggregate % Abs/100 ABS is always used in the calculations rather than % Abs.
G _{sa}	=	apparent specific gravity of the aggregate
G _{se}	=	effective specific gravity of the combined aggregate
G _{sb}	=	bulk specific gravity of the aggregate (dry basis)
G _{sb(SSD)}	=	bulk specific gravity of the aggregate (SSD basis) Used for Portland Cement Concrete NOT ASPHALT!!!
G _b	=	specific gravity of the asphalt binder at 25°C (77°F)
G _{mm}	=	maximum specific gravity of the hot mix asphalt mixture. Often referred to as the Rice specific gravity, solid specific gravity or solid density.

G _{mb}	=	bulk specific gravity of compacted hot mix asphalt mixture
Gmb(corrected)	=	corrected G _{mb} at N _{des} , also called Lab Density.
G _{mb(field)}	=	bulk specific gravity of pavement cores
VMA	=	% voids in mineral aggregate, (percent of bulk volume), compacted mix
Vt	=	design target air voids, %
VFA	=	% voids filled with asphalt binder
N _{ini}	=	Number of gyrations used to measure initial compaction.
N _{des}	=	Number of gyrations used to measure design compaction. $G_{\rm mb}$ for Lab Density is determined at $N_{\rm des}.$
N _{max}	=	Number of gyrations used to measure maximum compaction.
N _x	=	Level of compaction, where x is the number of gyrations.
R	=	temperature correction multiplier obtained from IM 350 Table 2 App. A
dt	=	density of water at test temperature, g/cc
h _{max}	=	the height of the specimen at N _{max} , mm
h _{des}	=	the height of the specimen at N _{des} , mm
h _x	=	the height of the specimen at any gyration level N_x , mm
C _x	=	percent of compaction expressed as a percentage of $G_{\rm mm}$ Where x is the number of gyrations (this is normally $N_{\rm ini}$ or $N_{\rm max})$
S	=	slope of the compaction curve
FT	=	Film Thickness, microns
SA	=	Surface Area, m ² /kg
F/B	=	Filler/Bitumen Ratio
σ _{n-1}	=	Sample Standard Deviation
x	=	sample average

FORMULAS

All calculations shown have been rounded for ease of presentation. Normally calculations will involve maintaining more significant figures throughout the intermediate calculations and only rounding the final result. The values generated by the software specified by the DOT will be the accepted results for reporting purposes.

All specific gravity calculations will be reported to 3 decimal places. Binder content is reported to 2 decimal places. Percent voids, VMA and VFA are reported to 1 decimal place.

Unless noted as otherwise, the following information is given to perform the calculations. Any additional needed information will be provided with the sample calculation.

 $P_{\rm b} = 5.75\%$ $G_{sa} = 2.667$ $P_s = 100 - 5.75 = 94.25\%$ $G_{se} = 2.659$ $G_{sb} = 2.572$ % Abs = 1.39 ABS = 1.39/100 = 0.0139 $G_{sb(SSD)} = 2.608$ $G_{\rm b} = 1.031$ G_{mm} = 2.438 % minus #200 (75 µm) sieve = 5.0% % frictional agg. retained on #4 (4.75 mm) = 90% % frictional agg. of total blend = 20% % retained on #4 (4.75 mm) of total blend = 60%

G_{mb (field)} = 2.215 $G_{mb \ (measured)} = 2.310$ G_{mb (corrected)} = 2.273 % RAP = 10.0% $P_{b(RAP)} = 5.00\%$

VOLUMETRIC EQUATIONS

To convert the specific gravity of asphalt binder from one temperature to another, the following two equations are used.

G _b (at 60°F)	$=\frac{G_{b} (at 77^{\circ} F)}{0.9961}$	$=\frac{1.031}{0.9961}=1.035$
G _ь (at 77°F)	= 0.9961×G _b (at 60°F)	= 0.9961 × (1.035) = 1.031
% Abs	$=\frac{W_{a}+W_{b}-W_{c}}{W_{c}}\times100$	

=

$$\frac{1315.7+690.3-2000.0}{2000.0} \times 100 = 0.30\%$$

W_a = Saturated-Surface-Dry (SSD) weight of coarse portion, 1315.7 g Where: W_b = Saturated-Surface-Dry (SSD) weight of fine portion, 690.3 g W_c = Combined dry weight of coarse and fine portion, 2000.0 g

October 21, 2008 Supersedes April 15, 2008

% Abs _(combined)	$= \left[\% \text{ Abs}_1 \times (\text{P}_{s1})\right] +$	$\left[\% \operatorname{Abs}_{2} \times (P_{s2})\right] + \left[\% \operatorname{Abs}_{3} \times (P_{s3})\right] + \dots$
	= 0.67(0.50) + 1.23	(0.05) + 2.21(0.45) = 1.39%
Where:	% Abs ₁ = 0.67% % Abs ₂ = 1.23% % Abs ₃ = 2.21%	$P_{s1} = 50\%$ $P_{s2} = 5\%$ $P_{s3} = 45\%$
G _{sa}	$= \frac{W \times R}{W + W_1 - W_2}$	$=\frac{(2000.0)(1.0000)}{2000.0+6048.0-7298.1}=2.667$
Where:	6048.0 g W ₂ = Sample weight of py	, 2000.0 g cnometer filled with water at test temperature, cnometer filled with water and sample, 7298.1 g mperature to $77^{\circ}F = 1.0000 @ 77^{\circ}F$
G _{sb}	$=\frac{G_{sa}}{1+(ABS)\times(G_{sa})}$	$=\frac{2.667}{1+(0.0139)(2.667)}=2.572$
G_{sb} (combined)	$=\frac{100}{\frac{P_{s1}}{G_{sb1}}+\frac{P_{s2}}{G_{sb2}}+P$	$\frac{100}{\frac{1}{2}} = \frac{100}{\frac{50.0}{2.657} + \frac{5.0}{2.642} + \frac{45.0}{2.640}} = 2.649$
Where:	$P_{s1} = 50.0\%$ $P_{s2} = 5.0\%$ $P_{s3} = 45.0\%$	$G_{sb1} = 2.657$ $G_{sb2} = 2.642$ $G_{sb3} = 2.640$
G _{se}	$=\frac{P_{s}}{\frac{100}{G_{mm}}-\frac{P_{b}}{G_{b}}}$	$=\frac{100-5.75}{\frac{100}{2.438}-\frac{5.75}{1.031}}=2.659$
G _{mm}	$=\frac{W\times R}{W + W_1 - W_2}$	$=\frac{(2020.0)(1.0000)}{2020.0+6048.0-7239.5}=2.438$
Where:	W ₂ = Sample weight of pycno	e, 2020.0 g ometer filled w/water at test temperature, 6048.0 ometer filled w/water and sample, 7239.5 g erature to 77°F = 1.0000 @ 77°F

To correct the density of water to 77°F the R multiplier is used. The value of R is given in the tables in IM's 350 and 380 for temperatures from 60 to 130°F. R is calculated as follows:

R		$=\frac{d_t}{0.99707}$	$=\frac{0.99707}{0.99707}=1.0000$
		0.99707	0.99707
	Where:	dt = density of water at temperature	e t = 0.99707 g/cc at 77°F.
~		W ₁	4800.0 0.010
G _{mb(m}	neasured)	$=\frac{1}{W_3 - W_2}$	$=\frac{4800.0}{4805.6 - 2727.7} = 2.310$
	Where:	W_1 = Sample Dry weight, 4800.0 g W_2 = Sample weight in water, 2727 W_3 = Sample weight in air, SSD, 48	
Pa	(lab voids)	$= \frac{G_{mm} - G_{mb(corrected)}}{G_{mm}} \times 100$	$=\frac{2.438-2.273}{2.438} \times 100 = 6.8\%$
Pa	(field voids)	$= 100 - \left[\frac{G_{mb(field)}}{G_{mm}} \times 100\right]$	$= 100 - \frac{2.215}{2.438} \times 100 = 9.1\%$
VMA		$= 100 - \left[\frac{G_{mb(corrected)} \times P_s}{G_{sb}}\right] =$	$= 100 - \frac{(2.273)(94.25)}{2.572} = 16.7\%$
VFA		$=\frac{VMA - P_a}{VMA} \times 100$	$=\frac{15.4-6.8}{15.4} \times 100 = 55.8\%$
P _{ba}		$=\frac{(G_{se} - G_{sb})}{(G_{se} \times G_{sb})} \times G_{b} \times 100$	$=\frac{2.659-2.572}{(2.659)(2572)} \times 1.031 \times 100 = 1.31\%$
P _{be}		$= P_{b} - \left[\frac{P_{ba} \times P_{s}}{100}\right]$	$= 5.75 - \frac{(1.31)(94.25)}{100} = 4.52\%$
F/B		= Total % of minus #200 m P _{be}	$\frac{\text{material}}{4.52} = 1.11$
	Where.	Total % of minus #200 (75 um) inclu	ides both virgin aggregate and RAP

Where: Total % of minus #200 (75 µm) includes both virgin aggregate and RAP when used.

October 21, 2008 Supersedes April 15, 2008

GYRATORY EQUATIONS

To correct G_{mb} from the measured value at N_{max} to the corrected value at N_{des} :

G_{mb (corrected)} (lab density) = (G_{mb (measured)}) × $\frac{h_{max}}{h_{des}}$ = (2.310) $\frac{117.5}{119.4}$ = 2.273

Where: $h_{max} = 117.5 \text{ mm}$ $h_{des} = 119.4$

To find the percent of maximum specific gravity (%G_{mm}) at a specific gyration (N_x):

$$\mathbf{C_{x}} \quad (\%G_{mm}) = \frac{(G_{mb(measured)}) \times (h_{max})}{(G_{mm}) \times (h_{x})} \times 100$$

	N _{ini} = 8 gyrations	$h_8 = 135.4 \text{ mm}$
Given:	N _{des} = 109 gyrations	h ₁₀₉ = 119.4 mm
	N _{max} = 174 gyrations	$h_{174} = 117.5 \text{ mm}$

C₈

S

C₁₀₉ = $\left(\frac{(2.310) \times (117.5 \text{mm})}{(2.438) \times (119.4 \text{mm})}\right) \times 100 = 93.2\%$

C₁₇₄ =
$$\left(\frac{(2.310) \times (117.5 \text{mm})}{(2.438) \times (117.5 \text{mm})}\right) \times 100 = 94.7\%$$

To find the slope of the gyratory compaction curve:

$$=\frac{(\log(N_{\max}) - \log(N_{\min}))}{C_{\max} - C_{\min}} = \frac{(\log(174) - \log(8))}{0.947 - 0.822} = 10.7$$

 $= \left(\frac{(2.310) \times (117.5 \text{mm})}{(2.438) \times (135.4 \text{mm})}\right) \times 100 = 82.2\%$

Where:

C_{max} and C_{ini} are expressed as decimals.

Matls. IM 501

RAP FORMULAS

P_{b(added)}

 $=\frac{[(100) \times (\text{total intended P}_{b})] - [(\% \text{ RAP}) \times (P_{b(\text{RAP})})]}{100 - [(\% \text{ RAP}) \times (P_{b(\text{RAP})}) \times (0.01)]}$

 $=\frac{(100)(5.75) - (10.0)(5.00)}{100 - (10.0)(5.00)(0.01)} = 5.28\%$

% RAP_(aggregate)

 $\frac{(\% \text{RAP}) \times [1.00 - (P_{b(\text{RAP})} \times 0.01)]}{\% \text{ virgin agg.} + [(\% \text{RAP}) \times (1.00 - (P_{b(\text{RAP})} \times 0.01))]} \times 100$

 $=\frac{(10.0)(1.00 - (5.00)(0.01))}{90.0 + (10.0)(1.00 - (5.00)(0.01))} \times 100 = 9.55\%$

% virgin agg.

 $= \frac{\% \text{ virgin agg.}}{\% \text{ virgin agg. } + [(\% \text{ RAP}) \times (1.00 - (P_{b(\text{RAP})} \times 0.01))]} \times 100$

 $=\frac{90.0}{90.0+(10.0)(1.00-(5.00)(0.01))} \times 100 = 90.45\%$

 $\mathbf{Total} \ \mathbf{P}_{b} = \mathbf{P}_{b(added)} + \left[(\% \ \mathsf{RAP}) \times (\mathbf{P}_{b(\mathsf{RAP})}) \times (0.01)\right] - \left[(\mathbf{P}_{b(added)}) \times (\% \ \mathsf{RAP}) \times (\mathbf{P}_{b(\mathsf{RAP})}) \times (0.0001)\right]$

= 5.28 + (10.0)(5.00)(0.01) - (5.28)(10.0)(5.00)(0.0001) = 5.75%

MISCELLANEOUS

Optimum P_b

 $=\frac{\text{(high voids - target voids)}}{\text{(high voids - low voids)}} \times (\text{high P}_{b} - \text{low P}_{b}) + \text{low P}_{b}$

Where: Target voids = 4.0

	Pb	Pa	
$(low P_b =)$	4.75	5.5	(= high voids)
(high $P_b =$)	5.75	3.0	(= low voids)
	6.75	1.2	

Since the target voids of 4.0% falls between 5.5 and 3.0 they are the high voids and low voids respectively. The asphalt contents associated with those voids are used as the low P_b and high P_b respectively.

 $=\frac{(5.5-4.0)}{(5.5-3.0)} \times (5.75-4.75) + 4.75 = 5.35\%$

= Wet Wt. Sample - Dry Wt. Sample Dry Wt. Sample x 100

Where:

% Moisture

Wet Wt. Sample = 2100.0 g Dry Wt. Sample = 2000.0 g

 $=\frac{2100.0-2000.0}{2000.0} \times 100 = 5.0\%$

To adjust the height of a G_{mb} specimen to reach the intended height, the following equation is used.

Adiu	sted sample weight	_(trial sample weigh	_(trial sample weight) × (intended height)				
Auju	sted sample weight	trial sam	ple height				
		= $\frac{(4775.0)(115.0)}{109.5}$ = 5	5014.8				
G _{sb}	(from $G_{sb(SSD)}$)	$=\frac{G_{sb(SSD)}}{1+ABS}$	$=\frac{2.608}{1+0.0139}=2.572$				

Matls. IM 501

100 = 97.4%

% Frictional Agg. =
$$\frac{(\% \text{ frictional agg. retained on #4}) \times (\% \text{ frictional agg. of total blend})}{(\% \text{ retained on #4 of total blend})}$$

For example: The aggregate blend contains 20% quartzite as the Type 2 friction class aggregate, the quartzite gradation shows 90% **retained** on the #4 sieve, and the combined gradation of the blend shows 60% **retained** on the #4 sieve:

$$=\frac{(90)(20)}{60}=30\%$$

G

Percent of Lab Density

$$\frac{G_{mb(field)}}{2.273} \times 100 = \frac{2.215}{2.273} \times 100$$

$$\mathbf{Min. P_b} = \frac{[(G_b)(G_{se})(VMA - V_t) + (G_b)(100 - VMA)(G_{se} - G_{sb})]}{(G_b)(G_{se})(VMA - V_t) + (G_b)(100 - VMA)(G_{se} - G_{sb}) + (G_{se})(G_{sb})(100 - VMA)} \times 100$$

 $=\frac{[(1.031)(2.659)(15.4 - 4.0) + (1.031)(100 - 15.4)(2.659 - 2.572)]}{(1.031)(2.659)(15.4 - 4.0) + (1.031)(100 - 15.4)(2.659 - 2.572) + (2.659)(2.572)(100 - 15.4)} \times 100 = 6.29\%$

You have 13,000 grams of aggregate and 650 grams of asphalt binder. Determine the asphalt binder content (P_b) of the mixture.

P_b (mix basis)

V

 $= \frac{W_{b}}{W_{s} + W_{b}} \times 100 = \frac{650}{13000 + 650} \times 100 = 4.76\%$

Where: W_b = Weight of the asphalt binder, g W_s = Weight of the aggregate, g $P_b_{(mix basis)}$ = Percent binder of the mix, mix basis

You have 13,000 grams of aggregate. You want to prepare a mixture having 5.5% asphalt binder content based on the total mix. Determine the weight of the asphalt binder you need to add to the aggregate.

$$I_{b \text{ (mix basis)}} = \frac{(P_b) \times (W_s)}{(P_s)} = \frac{(5.5)(13000)}{100 - (5.5)} = 756.6$$

Where:

 $W_{b (mix basis)}$ = Weight of the added binder, mix basis, g W_s = Weight of the aggregate, g

QUALITY INDEX (QI) EXAMPLE:

Given: lab. lot average G_{mb(corrected)} = 2.408

field G_{mb} of individual cores: 2.319, 2.316, 2.310, 2.298, 2.242, 2.340, and 2.345. % of lab density = 94%, 95%, or 96%. For this example 95% is used.

Determine the average field density (G_{mb}) of the seven cores.

=

$$\frac{2.319 + 2.316 + 2.310 + 2.298 + 2.242 + 2.340 + 2.345}{7} = 2.310$$

The sample standard deviation is determined as follows:

$$=\sqrt{\frac{\sum(x-\overline{x})^2}{n-1}} = \sqrt{\frac{0.007}{7-1}} = 0.034$$

σn-1

x

Where:x = individual sample valuen = number of samples $\overline{x} =$ average of all samples

=

The Quality Index for density shall be determined according to the following calculation:

Q.I. (Density) $= \frac{(Avg. G_{mb})_{FIELD LOT} - ((\% Density)_{SPECIFIED} \times (Avg. G_{mb})_{LAB LOT})}{(Std. Dev. G_{mb})_{FIELD LOT}}$

QI

$$\frac{2.310 - (0.95)(2.408)}{0.034} = 0.66$$

The QI is less than 0.72. Check for outliers. To test for a suspected outlier result, apply the appropriate formula.

Suspected High Outlier
$$= \frac{\text{Highest } G_{mb} - \text{Avg. } G_{mb}}{\sigma_{n-1}} = \frac{2.345 - 2.310}{0.034} = 1.03$$

Suspected Low Outlier $= \frac{\text{Avg. } G_{mb} - \text{Lowest } G_{mb}}{\sigma_{n-1}} = \frac{2.310 - 2.242}{0.034} = 1.99$

The highest density or lowest density shall not be included if the suspected outlier result is more than 1.80 for seven samples. The quality index shall then be recalculated for the remaining six samples.

The suspected low outlier result is greater than 1.80 for seven samples, therefore the core with the lowest density, 2.242, is an outlier.

Recalculate the QI for the remaining six densities (excluding the outlier).

Avg. $G_{mb \ (field \ lot)(new)} = 2.321$ $\sigma_{n-1 \ (new)} = 0.018$

$$=\frac{2.321-(0.95)(2.408)}{0.018}=1.88$$

QI(new)

GRADATION EXAMPLE (Combined Gradation):

Assume the proportions of the individual aggregates are as follows: 50% ³/₄" Minus, 5% ³/₈" Chips, and 45% Nat. Sand. Then using the following gradations for the individual aggregates, determine the combined gradation.

% Passing										
Sieve Size	19 mm	12.5 mm	9.5 mm	4.75 mm	2.36 mm	1.18 mm	600 ⊡m	300 🗆 m	150 ⊡m	75 🗆 m
3/4" Minus	100	90	75	43	21	17	15	12	9.8	7.4
3/8" Chip	100	100	70	32	5	1.8	1.5	1.1	0.9	0.7
Nat. Sand	100	100	100	100	80	65	40	9	1.0	0.5
combined							-			

To determine the combined gradation, take each individual material % Passing times the percentage of that material in the blend. For example, take the 50% of the 3/4" Minus material times the % Passing for that material and do the same thing with each of the other aggregates to get the following:

3/4" Minus	50.0	45.0	37.5	21.5	10.5	8.5	7.5	6.0	4.9	3.7
3/8" Chip	5.0	5.0	3.5	1.6	0.3	0.1	0.1	0.1	0.0	0.0
Nat. Sand	45.0	45.0	45.0	45.0	36.0	29.3	18.0	4.1	0.5	0.2

Next, sum the individual sieve sizes to get the combined gradation. This will result in the following combined gradation.

Combined	100.0	95.0	86.0	68.1	46.8	37.9	25.6	10.2	5.4	3.9
----------	-------	------	------	------	------	------	------	------	-----	-----

FILM THICKNESS EXAMPLE:

	2.2				SIEVE	ANALYSI	S % PAS	SING		1			
Sieve	in. (mm)	1 (25.0)	3/4 (19.0)	1/2 (12.5)	3/8 (9.5)	#4 (4.75)	#8 (2.36)	#16 (1.18)	#30 (0.600)	#50 (0.300)	#100 (0.150)	#200 (0.075)	
Combined Grading	-	100	100	95	86	68	47	38	26	10	5.4	3.9	1
Surface Area Coefficient						0.0041	0.0082	0.0164	0.0287	0.0614	0.1229	0.3277	TOTAL
Surface Area	(m^2/kg)		0.	41		0.28	0.39	0.62	0.75	0.61	0.66	1.28	5.00

The surface area is found by taking the % Passing times the Surface Area Coefficient. The Surface Area for the material above the #4 sieve is a constant 0.41. The total surface area is found by adding all of the individual surface area values.

FT		$=\frac{P_{be}}{SA} \times 10$	$=\frac{4.52}{5.00} \times 10 = 9.0$
SA	(for each sieve)	= (% Passing)(Surfac	ce Area Coefficient)
		= (38)(0.0164) = 0.62	2 (for the #16 sieve above)
	Where: Th	e Surface Area Coefficier	nts are constants

BATCHING EXAMPLE:

You have been directed to prepare a 13,000-gram batch of aggregate composed of the aggregates used above with the same proportions. The $\frac{3}{4}$ " Minus has been split into four size fractions by sieving on the 12.5 mm, 9.5 mm and 4.75 mm sieves. The $\frac{3}{6}$ " Chip has been split into three size fractions by sieving on the 9.5 mm and 4.75 mm sieves. The Nat. Sand is one size fractions passing the 4.75 mm sieve. Complete the following batching sheet by determining the mass of each aggregate needed, the percentage of each size fraction and the weight of each size fraction.

³ ⁄ ₄ " Minus @ 50	% =	grams		
% Passing	Size Fraction	% In Size Fraction	Weight Needed Each Fraction	Cumulative Weight
100				
90	-19 + 12.5	-	12	
75	-12.5 + 9.5	-		
43	-9.5 + 4.75 -4.75			
¾" Chip @ 5%	=	grams		
	Size	% In Size	Weight Needed	Cumulative
% Passing	Fraction	Fraction	Each Fraction	Weight
100				
70	-12.5 + 9.5	-		
32	-9.5 + 4.75 -4.75			
Nat. Sand @ 45	5% =	grams		
	Size	% In Size	Weight Needed	Cumulative
% Passing	Fraction	Fraction	Each Fraction	Weight
100	-4.75			
	% Passing 100 90 75 43 % Chip @ 5% % Passing 100 70 32 Nat. Sand @ 48 % Passing	% Passing Fraction 100 90 $-19 + 12.5$ 90 $-12.5 + 9.5$ $-9.5 + 4.75$ 43 $-9.5 + 4.75$ -4.75 %" Chip @ 5% =	Size % In Size % Passing Fraction 100 90 -19 + 12.5 90 -19 + 12.5 -12.5 + 9.5 43 -9.5 + 4.75	Size % PassingSize Fraction% In Size FractionWeight Needed Each Fraction100 90 90 -19 + 12.5 75 43 -9.5 + 4.75 -4.75

The weight of each material is found by taking the percentage of the blend each material is times the total batch weight. For example, the weight of the ³/₄" Minus is found by taking 50% of the 13,000 gram batch, or 6,500 grams.

The % In Size Fraction column is found by subtracting the % Passing from one size by the previous size % Passing. For example, the % In Size Fraction for the -19 + 12.5 Size Fraction is found by subtracting 90% Passing the 12.5 mm sieve from 100% Passing the 19 mm sieve.

This process is repeated for each size fraction. The last line in the % In Size Fraction column is found by adding each of the individual values above it. The total should be 100.0%.

The Weight Needed Each Fraction is found by taking the % In Size Fraction value and multiplying it by the total mass of that aggregate. For example, for the $\frac{3}{4}$ " Minus material, there is 10% in the -19 + 12.5 size fraction. Take this 10% times the mass of 6,500 grams to get the Weight Needed value of 650 grams.

The Cumulative Weight is found by taking the first value in the Weight Needed column and placing it in the first spot for the Cumulative Weight column. For example, there was 650 grams needed in the previous example. This value would go on the first line of the Cumulative Weight column. Each successive line requires adding the corresponding Weight Needed value with the previous Cumulative Weight value. Below are the solutions for the example shown above.

Weight 3/4" Minus @ 50% = 6	6500.0 grams
-----------------------------	--------------

Sieve	% Passing	Size Fraction	% In Size Fraction	Weight Needed Each Fraction	Cumulative Weight
19 mm	100				
12.5 mm	90	-19 + 12.5	10.0	650.0	650.0
9.5 mm	75	-12.5 + 9.5	15.0	975.0	1625.0
4.75 mm	43	-9.5 + 4.75	32.0	2080.0	3705.0
		-4.75	43.0	2795.0	6500.0
			100.0		

Weight ³/₈" Chip @ 5% = <u>650.0</u> grams

Sieve	% Passing	Size Fraction	% In Size Fraction	Weight Needed Each Fraction	Cumulative Weight
12.5 mm	100				
9.5 mm	70	-12.5 + 9.5	30.0	195.0	6695.0
4.75 mm	32	-9.5 + 4.75	38.0	247.0	6942.0
		-4.75	32.0	208.0	7150.0
			100.0		

Weight Nat. Sand @ 45% = <u>5850.0</u> grams

Sieve	% Passing	Size Fraction	% In Size Fraction	Weight Needed Each Fraction	Cumulative Weight
4.75 mm	100	-4.75	100.0	5850.0	13000.0

The Cumulative Weight at the end of the batching should always equal the desired total batch weight.

Determine the tons of asphalt binder used in the mix for a given day using the following information:

Weights of all Binder @ 60°F = 8.67 lbs./gal. Beginning tank stick 18,000 gal. @ 296°F 28.0 tons Binder hauled in during the day's run Ending tank stick 16,000 gal. @ 296°F Volume correction factor for correcting Binder @ 296°F to Binder @ 60°F = 0.9200

The difference between the beginning and ending tank stick readings is the first place to start. There were 2,000 gal. of binder used plus all of the binder hauled in during the day.

To combine these quantities, they must be converted to tons. First the gallons used must be corrected to 60°F. Since the temperature is the same for the beginning and ending tank stick readings the correction can be done on the difference between the two readings. If the temperatures were different for the two readings, the temperature correction would need to be done on the individual readings before the difference is determined.

2,000 gal binder @ 296°F = (2000 gal @ 296°F) × 0.9200 = 1840 gal @ 60°F

This value must then be converted to the tons of binder.

1840 gal @ 60°F = $\frac{(1840 \text{ gal}) \times (8.67 \text{ lbs./gal.})}{2000 \text{ lbs./ton}} = 7.98 \text{ tons}$

This value in addition to the 28.0 tons of binder hauled in during the day is the amount used in the mix that day.

Tons of binder used in mix = 28.0 tons + 7.98 tons = 35.98 tons binder

DETERMINING CORRECTION FACTORS FOR COLD FEED VS. IGNITION OVEN

x

Sieve Sizes - Percent Passing Surface 1 1/2' 3/4" #100 1" 1/2" 3/8" #4 #8 #16 #30 #50 #200 Area SU4-30D Ign. Oven 100.0 100.0 77.0 99.0 89.0 47.0 31.0 20.0 14.0 8.6 6.4 5.2 4.60534 Cold-Feed 4A 100.0 100.0 99.0 89.0 76.0 47.0 19.0 5.6 29.0 13.0 7.8 4.4 4.13424 0.0 0.0 0.0 Correction Factor 0.0 -1.0 0.0 -2.0 -1.0 -1.0 -0.8 -0.8 -0.8 -0.5

The correction factor is determined by taking the percent passing an ignition oven sieve and subtracting it from the percent passing of the corresponding cold-feed sieve. For example, there is 31 percent passing the number #8 sieve for the ignition oven and 29 percent passing the #8 sieve for the cold-feed. The correction factor for this sieve size is -2.0. The correction factor is applied to the ignition oven test results for I.M. 216 comparison.

This same procedure is used regardless of using a single gradation or multiple gradations to determine the correction factors. If multiple gradations are used, the correction factor is determined for each individual result and the resulting correction factors averaged for each sieve.

QUALITY INDEX (QI) EXAMPLE %G_{mm} Method:

Given: Field G_{mb} of individual cores: 2.319, 2.316, 2.310, 2.298, 2.242, 2.340, 2.345, 2.310. Lot Average G_{mm} = 2.501

Determine the average field density (G_{mb}) of the eight cores.

$$=\frac{2.319 + 2.316 + 2.310 + 2.298 + 2.242 + 2.340 + 2.345 + 2.310}{8} = 2.310$$

The sample standard deviation (σ_{n-1}) of G_{mb} for the field lot is determined as follows:

$$\sigma_{n-1} = \sqrt{\frac{\sum (x-\bar{x})^2}{n-1}} = \sqrt{\frac{0.007}{8-1}} = 0.032$$

Where:	x = individual sample value
	n = number of samples
Same and the same same	\overline{x} = average of all samples

Matls. IM 501

The Quality Index for field voids shall be determined according to the following calculation:

QI (Field Voids)
$$= \frac{(Avg. G_{mb})_{FIELDLOT} - (0.915 \times Lot Avg. G_{mm})}{(Std. Dev. G_{mb})_{FIELDLOT}}$$

Example:

QI (Field Voids) =	$=\frac{2.310 - (0.915)(2.501)}{0.000} = 0.6$				
	0.032	0.07			

If the QI results in less than 100% pay check for outliers. To test for a suspected outlier result, apply the appropriate formula.

Suspected High Outlier	_ Highest G _{mb} - Avg. G _{mb}	$=\frac{2.345-2.310}{0.032}=1.09$	
Suspected Thigh Outlier	- σ _{n-1}	0.032	
	_ Avg. G _{mb} - Lowest G _{mb}	2.310 - 2.242 2.12	
Suspected Low Outlier	=σ _{n-1}	$=\frac{2.310-2.242}{0.032}=2.13$	

The highest density or lowest density shall not be included if the suspected outlier result is more than 2.00 for eight samples. The quality index shall then be recalculated for the remaining seven samples.

The suspected low outlier result is greater than 2.00 for eight samples, therefore the core with the lowest density, 2.242, is an outlier.

Recalculate the QI for the remaining seven densities (excluding the outlier).

Avg. G_{mb} (field lot)(new) = 2.320 σ_{n-1} (new) = 0.020

QI_(new) = $\frac{2.320 - (0.915) \times (2.501)}{0.020} = 1.58$

DETERMINING ABSOLUTE AVERAGE DEVIATION (AAD) FOR LAB VOIDS

AAD is calculated by determining the absolute difference between the target and the individual test results and then averaging those values.

Example:

Target Voids $P_a = 4.0$ Individual $P_a = 3.8, 4.2, 4.1, 3.7, 3.5$

Sample	Difference	Deviation from Target	Absolute Deviation from Target
1	(4.0 - 3.8)	0.2	0.2
2	(4.0 - 4.1)	-0.1	0.1
3	(4.0 - 4.2)	-0.2	0.2
4	(4.0 - 3.7)	0.3	0.3
5	(4.0 - 3.5)	0.5	0.5

AAD (Lab Voids)

 $\frac{0.2 + 0.1 + 0.2 + 0.3 + 0.5}{5} = 0.3$

DETERMINATION OF PERCENT WITHIN LIMITS (PWL)

Field Voids

Calculate the QI for field voids. Using Table 6 in AASHTO R 9-97 Appendix C and the QI value, the PWL can be determined using a sample size of N=8. A sample size of N=8 is always used regardless of the actual number of samples. The program provided by the Iowa DOT will calculate the PWL automatically using a best fit equation between QI values.

Lab Voids

Based on the weekly lot of HMA produced with a minimum of eight test values, determine the average and standard deviation for the air voids.

Quality Index for Air Voids Upper Limit (QIu)

$$P_{u} = \frac{(\text{Target } P_{a} + 1) - \text{Avg.} P_{a}}{\text{Std. Dev.} P_{a}}$$

Quality Index for Air Voids Lower Limit (QIL)

 $\mathbf{QI_L} = \frac{\operatorname{Avg.} P_a - (\operatorname{Target} P_a - 1)}{\operatorname{Std.} \operatorname{Dev.} P_a}$

Using Table 6 in AASHTO R 9-97 Appendix C and a sample size of N=8 determine the upper and lower QI limits. A sample size of N=8 is always used regardless of the actual number of samples. The program provided by the Iowa DOT will calculate the PWL automatically using a best fit equation between QI values. No rounding is done until the final PWL is determined.

Example:

Given the following weekly lot air void information and a target air void of 4.0% determine the upper and lower limits for the QI for air voids: 3.1, 3.9, 4.2, 4.5, 4.5, 4.1, 4.3, 4.5

$$P_{a(avg)} = \frac{3.1 + 3.9 + 4.2 + 4.5 + 4.5 + 4.1 + 4.3 + 4.5}{8} = 4.1375$$
Std. Dev. P_a

$$= \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}} = \sqrt{\frac{1.55875}{8 - 1}} = 0.471888$$
Ql_u

$$= \frac{(4.0 + 1) - 4.1375}{0.471888} = 1.827763$$
Ql_L

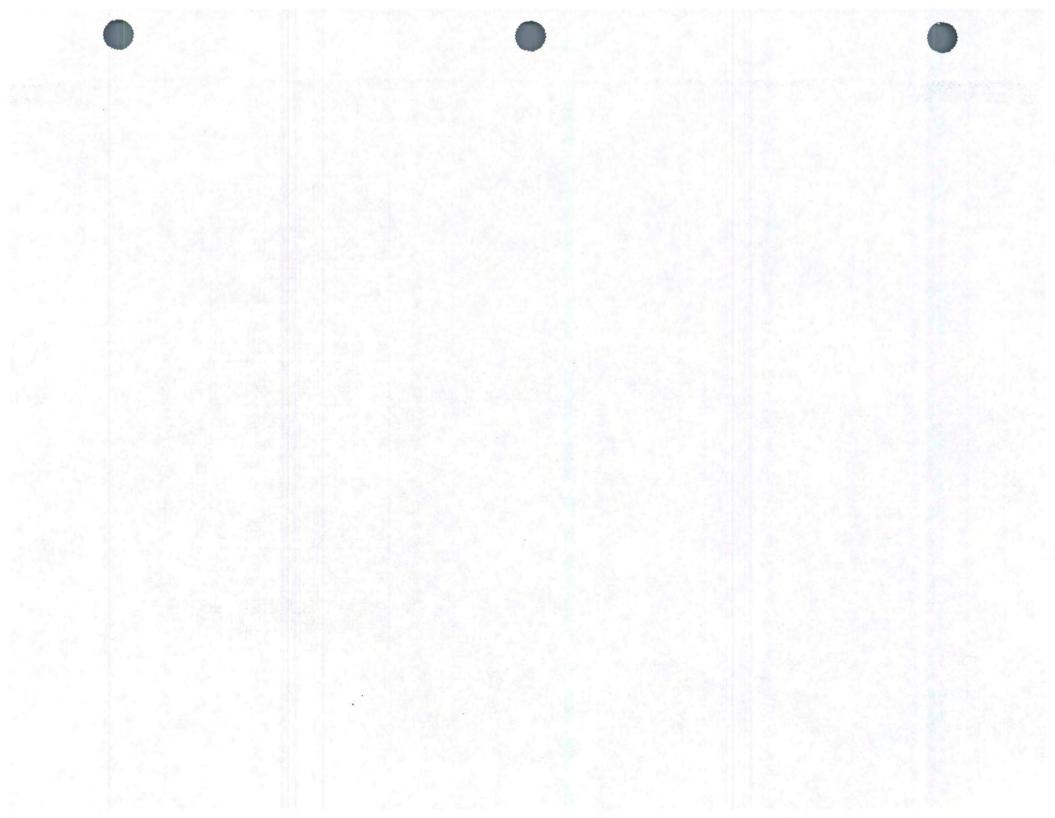
$$= \frac{4.1375 - (4.0 - 1)}{0.471888} = 2.410528$$

Using Table 6 from AASHTO R 9-97 Appendix C a sample size of N=8 and the QI_U and QI_L find the corresponding PWL for the QI_U and QI_L . A sample size of N=8 is always used regardless of the actual number of samples. In this case the PWLs determined by the best fit equation for the QI_U and QI_L are 98.2 and 100.0 respectively.

The PWL used for pay factor determination is based on a combination of the PWLs calculated from the QI_{U} and QI_{L} .

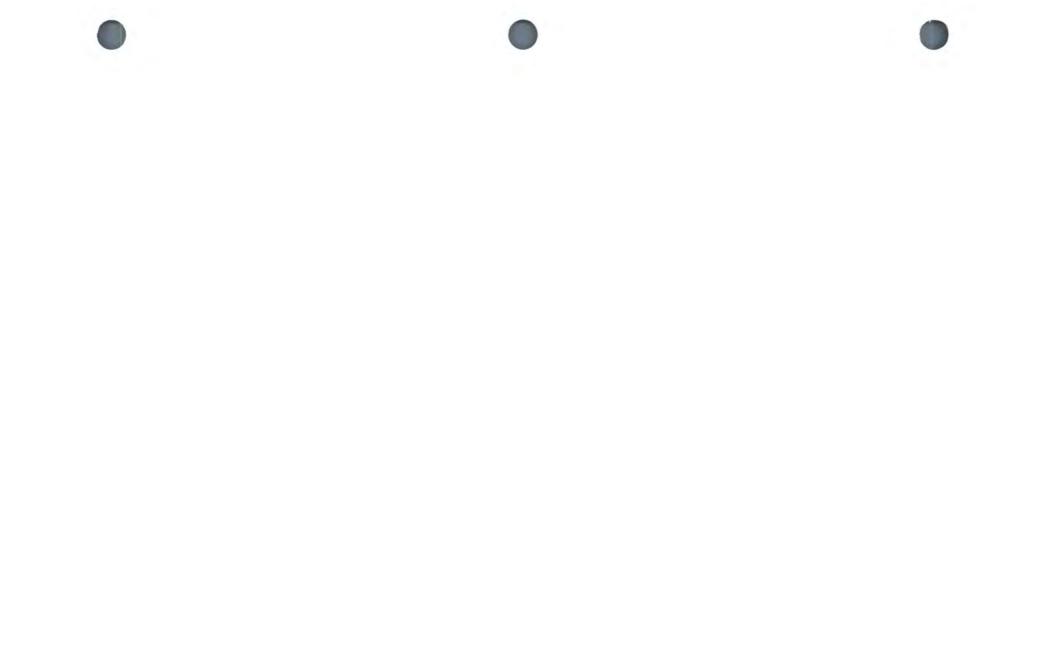
Example:

PWL =
$$(PWL_U + PWL_L) - 100$$
 = $(98.2 + 100.0) - 100 = 98.2$


QI	PWL								
0.00	50.00	0.50	68.43	1.00	83.96	1.50	94.44	2.00	99.24
0.05	51.89	0.55	70.16	1.05	85.26	1.55	95.17	2.05	99.45
0.10	53.78	0.60	71.85	1.10	86.51	1.60	95.84	2.10	99.61
0.15	55.67	0.65	73.51	1.15	87.70	1.65	96.45	2.15	99.74
0.20	57.54	0.70	75.14	1.20	88.83	1.70	97.01	2.20	99.84
0.25	59.41	0.75	76.72	1.25	89.91	1.75	97.51	2.25	99.91
0.30	61.25	0.80	78.26	1.30	90.94	1.80	97.96	2.30	99.96
0.35	63.08	0.85	79.76	1.35	91.90	1.85	98.35	2.35	99.98
0.40	64.89	0.90	81.21	1.40	92.81	1.90	98.69	2.40	100.00
0.45	66.67	0.95	82.61	1.45	93.65	1.95	98.99	2.45	100.00


PWL Table for N=8 (from AASHTO R 9-97 Appendix C Table 6)

Note: For QI values less than zero, subtract the table value from 100.



.

Iowa Department of Transportation

Office of Materials

October 19, 2004 Supersedes October 26, 1999 Matls. IM 508

****GENERAL REWRITE****

HOT MIX ASPHALT (HMA) PLANT INSPECTION

GENERAL

The Contractor's Certified, Level I HMA, Technician should witness the contractor operations, from the initial plant set up to the final shutdown. The contractor plant and method of operations should be examined thoroughly before work begins. Any deficiencies, which are observed with regard to specification compliance or safety, should be reported to the contractor and the engineer.

Normally, two certified technicians are required to perform the various materials quality control tests and plant production control inspection functions. The overall responsibility for plant inspection remains with the Contractor. This section deals primarily with this overall responsibility, therefore, no guidelines will be presented regarding division of duties and functions. The assignment of duties and functions of the inspection monitors are the responsibility of the Resident Construction Engineer and the District Materials Engineer.

PLANT INSPECTOR DUTIES

A. Preliminary

The first phase of the contractor operations consists of preparing the plant site and building stockpiles. The Contractor's certified technician should be assigned to the project prior to this phase of the work so that those procedures, which are governed by the specifications, may be observed and properly controlled.

The general areas or procedures requiring attention are:

- 1. Construction of Stockpiles to:
 - a. Minimize segregation
 - b. Eliminate contamination and intermingling

This is accomplished by constructing the stockpile in lifts, controlling stockpile height, controlling drifting and rolling of material, constructing partitions or bulkheads, and stabilizing the stockpile work area. Refer to the specifications for specific requirements.

NOTE: All aggregate must be properly certified before being placed in the stockpile.

- 2. Plant Erection Which Provides:
 - a. Safe working conditions
 - b. Reliable operation

This is accomplished by proper site preparation, placement of adequate foundations for bins and mixing equipment and constructing safeguards such as berms and drainage ways.

B. Job Mix Formula (JMF)

The job mix formula together with the specifications provide the initial basis for setting up and starting the job, therefore, the plant inspector must be thoroughly familiar with the information provided by the Job Mix Formula Report (Form #956).

Before the laboratory can develop a job mix formula, the contractor, material producers, and District Materials Engineer must make numerous arrangements in the field. The contractor must first select his/her material sources and estimate, in cooperation with the producers, the tentative proportions and gradations of each of the materials. The District Materials Engineer must be consulted before samples of the materials are obtained. The Contractor is responsible for the mix design per IM 510. Adjustments may be necessary in these proposed proportions since the exact gradations may not be known in advance.

If the composite gradation complies with the limits specified for the job mix formula, production limits are set for the individual aggregates by agreement between the Contractor and the Producer and documented on Form #955.

Aggregate production and inspection are covered in detail by IM 204 and IM 209.

If the materials as first analyzed do not consistently meet the specified limits, it may be necessary to adjust the proportion percentages or production limits. Familiarity with the material sources and production methods facilitates setting realistic limits. This reduces the number of trial and error steps and subsequent adjustments. It is advantageous to maintain records of this type for each material source and type.

When changes are made during the design stage, they will be incorporated in the job mix formula report. If changes are found necessary after production begins, they are to be made as provided for in Materials IM 511 unless a complete new job mix formula is required.

A typical Mix Design Report with a description of information is shown on the following pages.

	Monona			& Proc	duction Li	mits For A	erials Aggregates				
County :	Monona		Project	No.:	IM-29-5(89)1061	3-67		Date:	03/12/04	-
Project Location:	Southbour	nd from MP 1	05.61 to 1	12.71			М	ix Design N	No.:	ABD4-00	1
Contract Mix Tonna	age:	500,000	(Course:	Su	rface		Mix Siz	ze (in.):	3/4	
Contractor:	Quality C	Construction		Mix	Type:	HMA 3	0M	Design Lif	fe ESAL's	: 15,000,00	00
Material	Ident #	% in Mix	Pı	oducer	& Locatio	on	Type (A or B)	Friction Type	Beds	Gsb	%Abs
3/4 Cr. Lmst.	A19512	25.0%		Quality	Aggregate		A	4	10-12	2.643	1.75
3/4 Clean Lmst.	A19513	15.0%		Quality	Aggregate		A	4	14-21	2.624	1.21
3/8 Qtz. Chip	A19515	20.0%		Quality	Aggregate		A	2	2-3	2.628	0.34
Man. Sand	A19517	25.0%		Quality	Aggregate		A	4	5-12	2.662	2.09
Natural Sand	A19518	15.0%		Quality	Aggregate		A	4		2.636	0.60
Type and Source of A	Asphalt Bin	nder:	PG 64	-28	Quality E	Binder					
		Indivi	dual Aggre	egates	Sieve Ana	lysis - %	Passing (T	arget)			
Material	1"	3/4"	1/2"	3/8"	#4	#8	#16	#30	#50	#100	#200
3/4 Cr. Lmst.	100	100	89	75	41	26	20	17	14	12	9.9
3/4 Clean Lmst.	100	100	25	5.2	2.6	2.4	2.3	2.2	2.1	2.0	1.7
3/8 Qtz. Chip	100	100	100	100	47	5.7	2.5	1.7	1.1	0.7	0.4
Man. Sand	100	100	100	100	95	63	37	21	11	6.8	4.6

96

85

71

48

15

1.6

0.6

100

100

Upper Tolerance	100	100	93	87	65	42	26	21			6
Comb Grading	100	100	86	80	58	31	26	17	9.0	5.4	4.1
Lower Tolerance	100	93	79	73	51	32		13			2
S.A.sq. m/kg	Total	4.41		+0.41	0.24	0.30	0.42	0.50	0.55	0.66	1.33

Production Limits for Aggregates Approved by the Contractor & Producer.

Sieve Size	25.0% of mix 3/4 Cr. Lmst.		15.0% of mix 3/4 Clean Lmst.		20.0% 3/8 Ot	of mix z. Chip	25.0% Man.	of mix Sand	15.0% of mix Natural Sand		1.10
in.	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
1"	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
3/4"	98.0	100.0	98.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
1/2"	82.0	96.0	18.0	32.0	100.0	100.0	100.0	100.0	100.0	100.0	
3/8"	68.0	82.0	0.0	12.2	98.0	100.0	98.0	100.0	98.0	100.0	
#4	34.0	48.0	0.0	9.6	40.0	54.0	88.0	100.0	89.0	100.0	
#8	21.0	31.0	0.0	7.4	0.7	10.7	58.0	68.0	80.0	90.0	
#30	13.0	21.0	0.0	6.2	0.0	5.7	17.0	25.0	44.0	52.0	
#200	7.9	11.9	0.0	3.7	0.0	2.4	2.6	6.6	0.0	2.6	

Copies to:	Quality Construction	Cent. Lab	RCE	Dist 3	

The above target gradations and production limits have been discussed with and agreed to by an authorized representative of the aggregate producer.

Producer

Signed:

Natural Sand

100

100

Signed:

Contractor

				-	Division - Offic A Gyratory Mix						
County :		Monona		Project	: IM-29-5(89	9)10613-67		Mix No. :	ABD4-00	1	
Mix Size (i	n.) :	3/4	Type A		: Quality Con			Contract No. : 1			
Mix Type:		HMA 30M	L - 2	Design	Life ESAL's :	: 15,000,000		Date R	03/12/04		
Intended U	se :	Surface		Proj	ect Location :	: Southbound :	from MP 10	5.61 to 112.71			
00	regate	% in Mix	Source ID		Source Locat	ion	Beds	Gsb	%Abs	FAA	
	r. Lmst.	25.0%	A19512	Ç	Juality Aggreg	gate	10-12	2.643	1.75	47.	
3/4 Cle	an Lmst.	15.0%	A19513		Juality Aggreg	-	14-21	2.624	1.21	45.	
3/8 Q1	tz. Chip	20.0%	A19515		Juality Aggreg	~	2-3	2.628	0.34	48.	
Man	. Sand	25.0%	A19517	Q	Juality Aggreg	gate	5-12	2.662	2.09	49.	
Natur	al Sand	15.0%	A19518	Q	uality Aggreg	gate		2.636	0.60	41.	
-	_	-	Job Mix I	Formula - (Combined Gra	dation (Sieve	Size in)				
1"	3/4"	1/2"	3/8"	#4	#8	#16	#30	#50	#100	#20	
					Upper Toleran						
100	100	93	87	65	42		21			6.1	
100	100	86	80	58	37	26	17	9.0	5.4	4.1	
100	93	79	73	51	32		13			2.1	
				I	ower Toleran	nce					
Asphalt Bi	nder Sourc	e and Grade:	Q	uality Bind	ler Gyratory Dat	PG 64-28 ta					
9/6	Asphalt Bi	nder	3.85	4.35	4.85	4.87	5.35		Number o	of Gyratic	
	cted Gmb (a		2.347	2.370	2.389	2.390	2.415			Initial	
	x. Sp.Gr. (C		2.532	2.509	2.490	2.490	2.476			8	
	Gmm @ N-		84.8	86.3	87.4	87.5	88.5		N-I	Design	
9/0	Gmm @ N-	Max	93.7	95.5	97.1	97.2	98.8			109	
	% Air Void	ls	7.3	5.5	4.1	4.0	2.5		N-	Max	
	% VMA		14.6	14.2	13.9	13.9	13.5		1	174	
	% VFA		49.8	60.9	70.9	71.2	81.7		Gsb for	Angularit	
1	Film Thickne	ess	7.27	8.56	9.70	9.74	10.69			hod A	
F	Filler Bit. Ra	tio	1.26	1.07	0.95	0.94	0.86			.647	
	Gsb		2.641	2.641	2.641	2.641	2.641		Pba / %	Abs Rati	
	Gse		2.687	2.682	2.682	2.685	2.687	-	0	.49	
	Pbe		3.20	3.78	4.28	4.29	4.71		Slope of (Compact	
	Pba		0.67	0.60	0.60	0.64	0.67			urve	
% N	ew Asphalt	Binder	100.0	100.0	100.0	100.0	100.0		1	3.8	
	Binder Sp.C		1.036	1.036	1.036	1.036	1.036	1		nm Check	
	% Water Al	-	1.30	1.30	1.30	1.30	1.30			ellent	
5	S.A. m^2 / K	g.	4.41	4.41	4.41	4.41	4.41			ge Check	
% + 4 T	ype 4 Agg.	Or Better	100.0	100.0	100.0	100.0	100.0		1.50		
	4 Type 2 or		25.4	25.4	25.4	25.4	25.4		Specifica	tion Chee	
	gularity-meth		45	45	45	45	45		Co	mply	
%	Flat & Elong	gated	0.0	0.0	0.0	0.0	0.0			Check	
S	and Equival	ent	82	82	82	82	82		82.0		
	Disposition	: An asphal	t content of	4.9%	is recomme	nded to start	this project	t		-	
	ta shown in				rom test data		nie projec				
Du	ata shown h	4.0770	column 15 mit	cipolated i	Tom test data						

Copies to : Quality Construction Cent. Lab

12345

Jon Rayson

Mix Designer & Cert.# :

Signed :

RCE

Dist 3

HMA MIX DESIGN

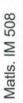
Refer to:

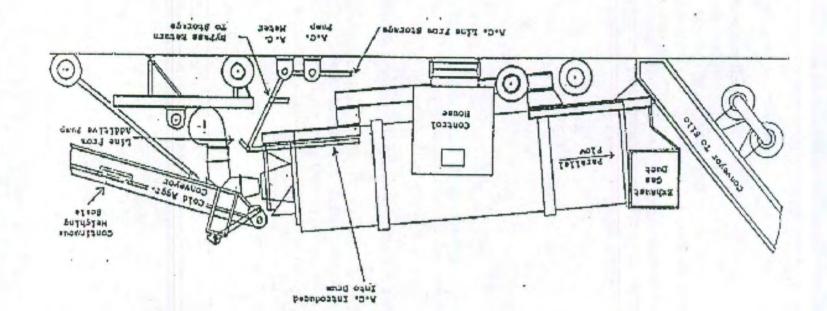
- A JMF aggregate proportions, sources
- B JMF target and design gradation with tolerances.
- C Source and grade of the asphalt binder used in the job mix formula.
- **D** The target asphalt binder content recommended to start mixture production. Expressed as a percent of asphalt binder, based on the total mass of the mixture. Established during the mixture design process.
- C. Sampling and Testing

There are a number of sampling and testing procedures that a plant inspector must be familiar with and perform in order to establish and maintain acceptable quality construction. A number of these tests, measurements, and calculations, in addition to documenting specification compliance, also provide the basis for determining contract pay quantities.

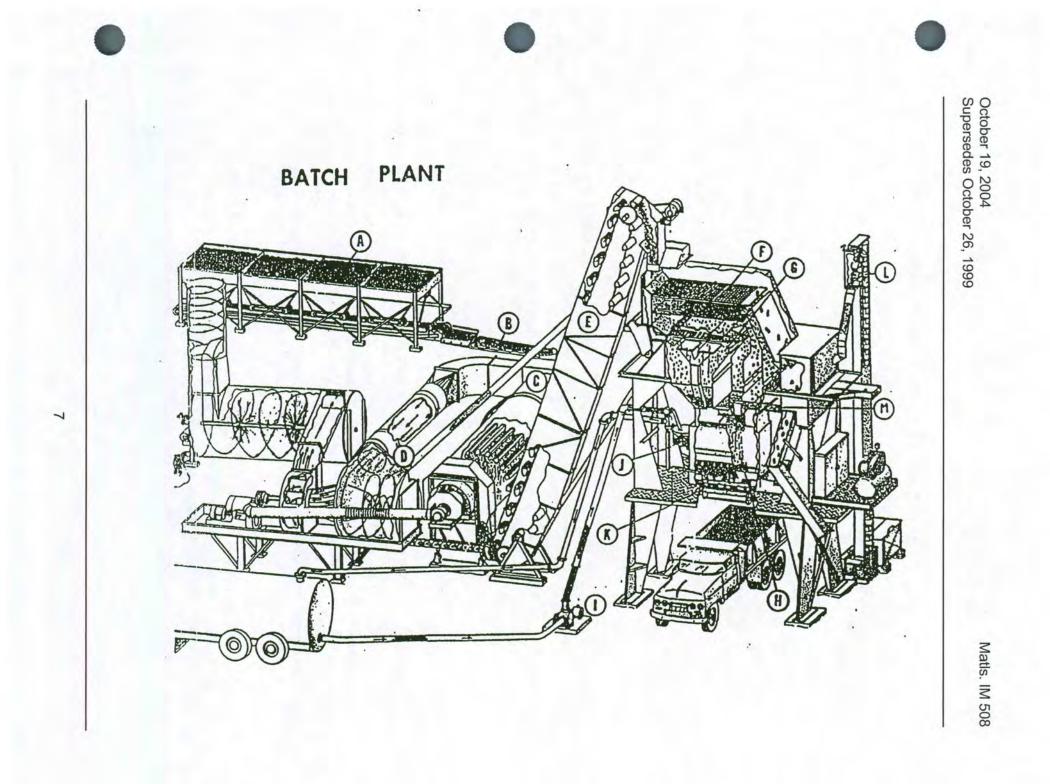
Sampling frequencies are provided for in IM 204 and the Standard Specifications.

Sampling and testing methods are provided for in IM 300 series. IM 511 and the Standard Specifications provide directions on sampling and testing requirements.


D. Plant Equipment


Items of equipment to be checked for specification compliance prior to beginning operations are listed below:

- 1. Truck Scales or weigh hoppers
- 2. Cold Aggregate Feeders
- 3. Dryer
- 4. Dust Collector and Feeder
- 5. Cold-Feed Storage Bins and Feeders
- 6. Revolution Counters, and/or Scales
- 7. Thermometer Equipment.
- 8. Equipment for Heating, Storing and Measuring Asphalt Binder
- 9. Asphalt Pump, Surge Tank, and/or Scales
- 10. Testing Laboratory
- 11. Safety Requirements


Refer to the following plant diagrams and descriptions.

DUIEU DUNW WIXEU

BATCH PLANT MATERIAL FLOW DIAGRAM

- A. Multiple Compartment Cold-feeder
- B. Cold Elevator
- C. Drier
- D. Horizontal Cyclone Dust Collector & Exhaust Washer
- E. Return Hot Aggregate Elevator & Dust
- F. Screening Unit
- G. Hot Aggregate Storage Bins
- H. Aggregate Batcher & Scale
- I. Asphalt Transfer Pump
- J. Asphalt Batcher & Scale
- K. Pugmill Mixer
- L. Optional Mineral Filler Elevator
- M. Optional Mineral Filler Feeder

E. Plant Calibration

The specifications require that all material proportioning equipment be calibrated and checked for accuracy. The job mix formula provides the basis for the calibrations.

The specifications require the contractor to provide personnel, scales, test weights, and equipment for calibrating each delivery component. The plant inspector shall determine moisture contents of the various materials. Use the formula:

% moisture = wet mass - dry mass dry mass

The plant calibration may be monitored by and is subject to the approval of the District Materials Engineer or authorized representative. The plant inspector should be present and observe all procedures. The Contractor will furnish the plant inspector with copies of the calibration results, so adequate information is available for making adjustments when indicated. Should difficulty be experienced during plant calibrations, the District Materials Engineer should be contacted for assistance. Normally, the District Materials Engineer will assign one or more experienced inspectors to monitor the calibration of proportioning and mixing plants. The plant inspector should be thoroughly acquainted with plant operations, so problems are recognized and corrected as early as possible.

A sample calibration has been included as a guide in this section. Due to the wide variation in plant equipment, this example will not cover all situations, but it should provide the basis for understanding the overall procedure.

1. Cold Aggregate Feeders

The first step in calibrating a proportioning plant is the calibration of the cold aggregate feeders. These units determine the final gradation of the mixture.

a. Fixed Speed-Variable Gate Opening Cold-feeders

These feeders are controlled by gates, which meter the flow volumetrically. They are calibrated by weighing the quantity of material, which passes through a given gate opening during a measured time interval. The interval is determined by counting the number of revolutions that the feeder makes while the material is delivered. From the RPM of the feeder and the weight (mass) of the material, the deliver rate in pounds (kg) per minute is calculated (corrected for moisture). The calibration is graphed by plotting the pounds (kg) of dry aggregate delivered per minute at the gate openings used in the calibration.

b. Fixed Gate Opening-Variable Speed Cold-feeders

With this system, a gate opening is selected for each cold-feeder. This gate opening must be maintained throughout the calibration and the job. They are calibrated by weighing the amount of material delivered at several different speeds of the cold-feeder motor over a measured time interval.

The calibration is graphed by plotting the pounds (kg) of dry aggregate delivered per minute at the speeds of the cold-feeder motor used in the calibration.

These cold-feeders are equipped with a master control, which may be used to adjust the production rate. Changing the master control setting changes the speed of all the cold-feeders proportionately.

- c. With either type of cold-feed, the gate setting is very important and should be checked regularly.
- d. Refer to the example calibration forms included.
- 2. Conveyor Scales

The specifications require Drier Drum Mixing Plants be equipped with continuous weighing central conveyor scales that are interlocked with the asphalt deliver system. These scales are checked for accuracy by two methods as follows:

a. The scale is first zeroed while the conveyor is operating at normal operating speed, but unloaded. It is then adjusted to readout a predetermined total weight (mass) using the special scale beam weights and a standard operating time interval. Both of the foregoing procedures are to be performed in accordance with the scale manufacturer's instructions.

b. The second accuracy check requires the comparison of the weight (mass) shown on the totalizing meter, with the weight (mass) actually delivered as determined by running material over the conveyor into a tared truck. The truck tare and loaded weights must be obtained by weighings over certified commercial truck scales, or plant scales that have been checked against certified scales and approved by the Engineer. The conveyor scales should be checked at several delivery rates representing the proposed operating range. The contractor shall adjust the weighing system so that when the plant is operating, the final mixture is uniform and consistently within the specified job mix formula tolerances.

3. Asphalt Pump

Some batch plants, all continuous and drum mixing plants deliver asphalt material to the mixer through volumetric pumps. The pumps are adjusted by changing drive sprockets or movement of a vernier dial control. These volumetric systems must be calibrated throughout the proposed operating range at the normal operating temperature. When totalizing meters are required, they must be adjusted to readout the quantity delivered within the specified deliver tolerance.

If the contractor elects to use in-line flow meter readings for pay, the meter must be accurate to plus or minus 0.2% as demonstrated through the calibrations process or by comparison to tank stick readings if approved by the DME. If this degree of accuracy cannot be attained, measurement for pay shall still be by tank stick.

When a flow meter is used for pay, yield checks will be performed.

4. Hot Aggregate Feeders on Batch Plants

After the various aggregates have been proportioned and dried, they are fed to the mixer unit.

a. On batch plants the hot aggregates are weighed in batches over calibrated scales as described in the following paragraphs and examples.

The dust collected by the dust collector is fed from a calibrated bin or returned directly to the hot aggregate, depending on the type of plant equipment and the specification requirements. If the dust is returned separately, the feeder should be calibrated to feed the required quantity of dust in a uniform manner. If the dust is returned directly to the hot aggregate the weight or volume of dust collected and returned is taken into account automatically in the calibration of the hot aggregate delivery system or batch weights.

When gradation control is by cold-feed samples, and the batch plant is equipped with hot aggregate screening units, they should be removed or covered so that the gradation is not altered by the balance of the hot bin delivery settings. If the Contractor would like to use the hot aggregate screening process, the approval of the DME is required before beginning. If this process is used, the gradation control will be based on samples obtained from the hot aggregate delivery or on the extracted gradation from samples of the hot mix. When hot aggregate screening is used, the delivery of each hot bin must be calibrated similarly to the cold feed bins.

5. Batch Plant Scales

Calibration of batch plant scales as required by the specifications is performed by incrementally loading the scales with standard test weights and partial batches through the operating range of the scales. As each increment of load is applied, the actual observed weight and the required weight are compared. The differences, plus or minus, are determined and converted to percentages of the required weight. If the percentage deviations are less than the tolerance allowed by the specifications and the scales are sensitive to the test loads, the scales will be considered in calibration. If the scales do not meet the various requirements, the contractor is required to make the necessary repairs or adjustments. Recalibration may be ordered by the engineer if the scale equipment malfunctions or if required material quantities do not agree with actual material quantities. If the batch plant scales are to be used for the determination of pay quantity, a scale calibration to the proper accuracy is required.

6. Initial Plant Settings

Three examples of initial plant settings have been provided: one for a drum mix plant, one for a 3000-pound (1,361-kg) batch plant with a volumetric asphalt measurement, and one for a continuous plant with a sprocket type asphalt pump.

The plant inspector is at this point cautioned not to make adjustments or effect settings of plant equipment, and in no way manipulate or operate any equipment at any time. All operations connected with the contractor plant or other equipment are by specification the strict and total responsibility of the contractor.

7. Mixing Rate

The specifications contain requirements regarding the quality and duration of mixing for the various types of mixes and plants. The design, condition, speed and loading of the mixer unit together with the characteristics of the materials being mixed will vary from job to job and need to be taken into account when evaluations are made.

Mixing times are determined in the following manner:

b. Batch Plants. The mixing rate of batch plants is controlled by the batch size and the dry and wet mixing timer settings. The batch size should not exceed the manufacturers rated capacity and the timer should be set to provide the specified mixing time unless more or less time is authorized by the engineer. The accuracy of the timer may be checked with a stopwatch if necessary.

CALIBRA Cold Feed (Con	Dartment TION OF PL and Aspha tinuous - Ba	ANT EOU It Cement atch - Dri	IPMENT Deliver um)	y ,			Pro Da	te	8-30	4-96 4-96	;	
Contractor Cessford Const. Plant Locatio	n_/	Tont	burg	Quar	ry	Material	Ident. & 9	34'6	Last	St Moist	ire Z	.6
Plant Type and Name Cedar Rapids - Drun M.	× Pollutio	n Control	-		/	Material			1	Z Molst		
Mix Type B Binder Class M	Alx Size	3/4	" G:	ate		Material				Z Molst		
Asphail Type and GradeAC-10		ature °F								Plant Set		
Bin Number	7	SAA			And 3		Cr.Z	-		#5	R.A.	P.
Pump vernier setting/gete opening in inches/Dial setting	Dial	- 8	2	Dial	-5.9			1-5		0	à/-	6.1
Run number	1	2	3	1.	2	3	1.	2 .	3	11 .	.5	3
Revolutions delivered/Time delivered												
Total wet weight aggregate delivered/TPH wet	93,6			178.5			->			37.8		
Total weight A.C. delivered Total dry weight aggregate delivered/TPH Dry	90.0			174.0			->			36,0		
Dry weight per revolution												
Dry weight per minute										•		
Average-Sty weight par (Minute Rev.)/Tach set point		88.0)	4	8.0		2	3.0		3	79.	0
Date scale was certified8-4-86	Gat		"		te a	5	Gai The abor Specificat	te 6 ve data is ions for	plant o	Ga ed as set for perations,	for Info	rmationa

The above data is furnished as set forth in the Standard Specifications for plant operations, for informational purposes only. The Contracting Authority makes no representations as to accuracy, either expressed or implied, which are to be construed to relieve the Contractor from the responsibility to comply with the specifications.

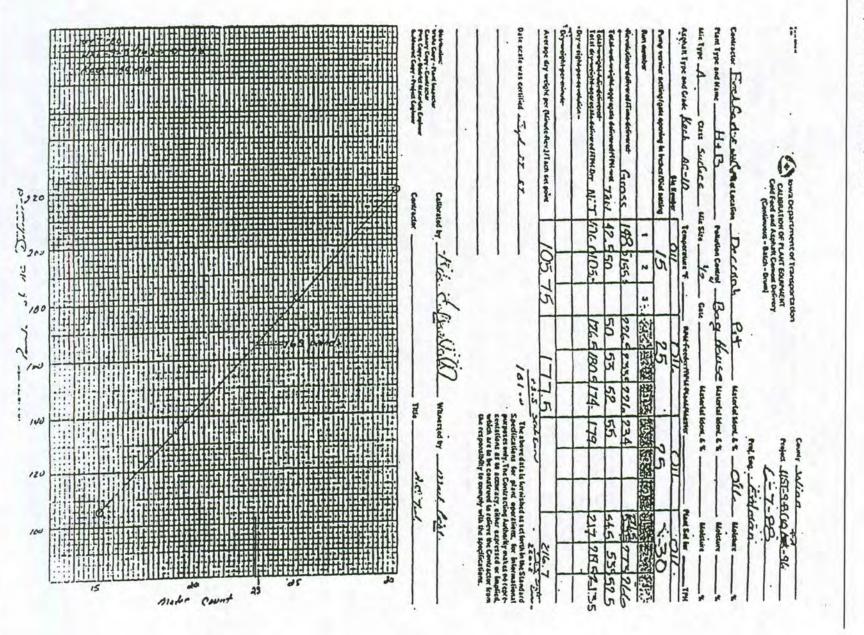
Distribution: While Copy - Plant Inspector Canary Copy - Contor Pink Copy - Di: .aterials Engineer Goldsnrod Copy -, roject Engineer

Calibrated by Theodore Huisman Monitoried by Mark Trueblood

					-						
			2								
M 120215							County	Ta	ma		
							Project	ER-30-	6(44)-	-26-0	96
		Cl		ON OF PLANT EQUIPME RUM MIX PLANT)	NT			8-4			
			(n	nom mix i contij				. Tom			
~ /	11	1 4	1.	N	11	1	P. oj. En	10m	//els		
ontractor	rac	onstr	WETTOM	Plant Location	ontour D	quirr	Y		-		
ant Type and Name	r Kapia	15 Drun	Mix	Pollution Control	Baghov	se					
Ix TypeA	Sur	face		Class			Mix Size	3/4"	-		
sphalt Type and Grade	AC-	10		Temperature °F			A.C. #/Gal.	8.55	-		_
WEIGHT BELT	1			A.C. PUMP	7		WEIGHT S	SILO	1		
的法律的问题的问题	(st-fr	新2 流	教育教会	Run Number	济自治的济	的物理		BRORE	1	1.24	
Span	2541	2578	2578	Meter Er. Gals.	299	300		1			
Fine Zero	5524	5524	5524	Corrected Gals.							•
otal weight aggregate lbs.	17.640	17.460	17,500	Metered lbs.	2556	2565	Total weigh	nt lbs.	28160	28500	
Truck total weight aggregate los.	17.900	17.440	17,490	Truck lbs.	2560	2568	Truck It	S .	28180	28510	
Difference		+20		Difference	-4	- 3	Differen	Ce	- 20	- 10	
% Error	1.45	0.10	0.06	% Error	0.16	0.12	% Erro	r	0.07	0.04	

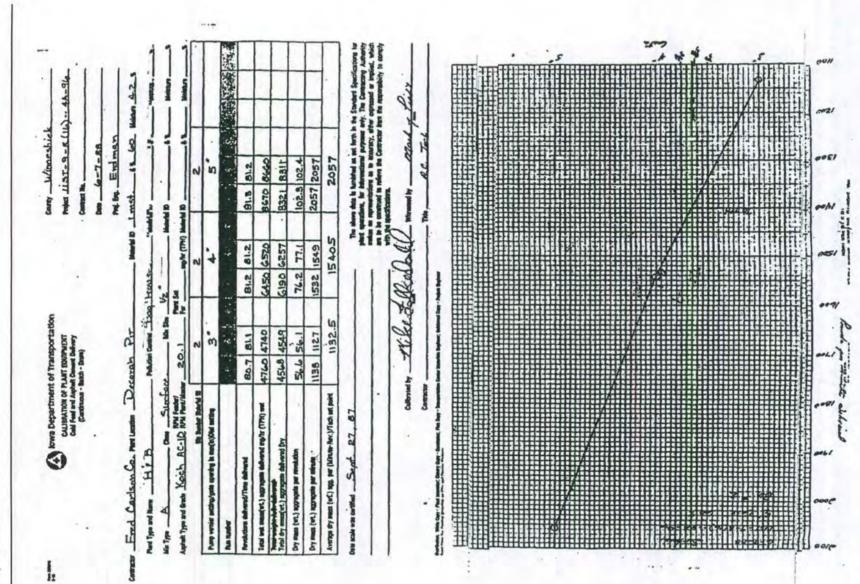
8-4-88 Date scale was certified ____ Sensitivity check on weightsilo was D.K.

The above data is furnished as set forth in the Standard Specifications for plant operations, for informational purposes only. The Contracting Authority makes no representations as to accuracy, either expressed or implied, which are to be construed to relieve the Contractor from the responsibility to comply with the specifications.


Distribution: White Copy . Plant inspector Canary Copy - Contractor Pink Copy - Dist-let Materials Engineer Goldenrod Copy - Project Engineer

13

Calibrated by Ted Huisman Witnessed by Mark Trueblood


October 19, 2004 Supersedes October 26, 1999

	PROJEC					4A-96					
	CONTRA	CTOR:	Free	Co.	Ison				-		
				Г	INTENDEL	A.C.=					
					5.5	× .					
				. L							
	Г	SIZE	OF BA	TCH:	AGGRE	GATE: AS	PHALT				
	Ŀ			-							
							1	1 1	+	f Wen	11.
ASP	UBT	-		LF		AGGR	EGA	TE	S I	CAT.	PRES
PLIED	I	1 .	SCA	P P		RPPLIED	1				L
AD		SCAL	E REAL	DING		LOAD	-	CALE	READ	ING	
	RUNI	#1	#2	#3	#4		RUN:	#1	#2	#3	#4
	-		-				-		Acc.	Error	
						150	-	R			
			1			450	1	+3			
	1	1				600		+2			-
						750		Fly			
	-	1.				400		K			
						1200		-14	-11/2		
	1-	-				1350		-142	-172		-
Note:	120.	to m	Joon	2 51	nle	1500		-7%			
	erro	r no	hat	ches		1650		-7			
	pele	w 2	100	hs u	ill	1400		-7			-
1	be.	pelou	2.001			2100		-7%			
						2250		-6			-
						2400		-3	-45		
						2550		-3		_	
	-					2850		±2_ +4			
	-					3000		2	-4%		-
						Louis					
											-
						0.0.	04		1 11		
SRe			#			SRe	OK		/#		-

October 19, 2004 Supersedes October 26, 1999

(ACA	C
(C	5
l	1	5
	_	
2	2	>
÷	_	=
	u	ó
	u	ó
		ó

	Annual State States	Bile scale was cardined _ 5 g-V - 7 W, A	Bry weight per might per fillunte for fillest set point	Total dry weight aggregate defenered/Titit bry Bry weight per evenlution	Total and weight apprential definered first wei	due samber Barelathan (devent/Time (deband	-	August Tree and English Barch AC- 16.3	Common Eved Carlson Conneros	II See
	current Kike Lall a		RK-B191 108	242 142 - 142 - 1419	210250 102				- Decomb	Occarizment of Transports too polyton of FLART BURNARY foldment - Baich - Broad Condinant - Baich - Broad
	2. P. manped by -	The others did is has Equational and the plan perpense and the form period and the compo- ential are to be compo- ential are to be compo-	204 1 TIK 5	7 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Ana control		· 3". 44	Subariteria Fuezzalara _ 20.5	AT	
Gre	10-1-2-12-12-12-12-12-12-12-12-12-12-12-12	terefished as set form hone Standard faiet "ager rötene. Jer beiegenettenst peironding Authority makes an reget- entry, alber supressed as bagded, typed by before Quantum, form peoply, whit the escherations				なたので、なくのない			1128 x1 x	1.22 - 24 - 24 - 24 - 24 - 24 - 24 - 24 -

INITIAL PLANT SETTING

TYPICAL PLANT COLD-FEED SETTINGS

The following example is based on initial plant output of 70 TPH (63,500 kg/hr) of mix. See example.

Set for 70 TPH (63,500 kg/hr.) total cold-feed aggregate (Dry Weight):

 $\frac{70 \text{ TPH x } 2000 \text{ lbs./ton}}{60 \text{ min./hr.}} = 2333 \text{ lbs./min. of mix}$

 $\frac{63,500 \text{ kg/hr.}}{60 \text{ min./hr.}} = 1,058 \text{ kg/min. of mix}$

Material	<u>% in M</u>	Mix kg	•	Gate Setting	
1/2 in. (12.5 mm) Cr. Stone Sand	60% 40%		1400 933		Approx. 3 5/8 Approx. 2 1/8

DRUM MIXING PLANT

The following example is based on initial plant output of 300 TPH (272,160 kg/hr.). See example.

Set aggregate delivery controls on plant control console to deliver 300 TPH (272,160 kg/hr.) of dry aggregate.

Master control set on maximum.

kg/hr or TPH		kg/hr or TPH
272,160 or (300) x 58% 3/4 inch crushed limestone	=	157,853 174
272,160 or (300) x 30% Sand	=	81,648 90
272,160 or (300) x <u>12%</u> RAP	=	32,659 36
100%		272,160 300

BATCH PLANT SETTINGS

After the aggregate scale and asphalt scale has been checked for accuracy, the batch weights are set and mixing operations are begun. The scales are checked by adding weights to the hopper and observing the scale dial indicators (see examples). Some batch plants are equipped with volumetric asphalt pumps rather than scale buckets; these devices are calibrated the same way that asphalt pumps are calibrated on drum-mix plants, but operated on a batch basis:

<u>Assume</u> 3000 lb. (1,361 kg) batch plant, cold-feeds as cited previously and 5.5% binder content.

SCALE SETTING

Binder: 5.5% x 3000 lbs. (1,361 kg) = 165 lbs. (75 kg) per batch (see example)

Combined Hot Aggr: 3000 lbs. (1,361 kg) – 165 lbs. (75 kg) = 2835 lbs. (1,287 kg) per batch

Asphalt pump (volumetric) = 165 lbs. (75 kg) per batch = 23 counts per batch (see example)

If the dust is returned directly to the hot aggregate, separate computations are not required for the dust being fed since it is automatically included in the hot aggregate delivery.

All gate and scale settings and weighing controls shall be set to target on the required quantities. Offsetting shall not be permitted, except to correct calibration errors.

- F. Production Inspection Duties
 - 1. Temperature Control

It is necessary to observe and control the temperature of the various material components to document specification compliance, to prevent damage to the material, and to produce uniform workable mixtures. The specifications contain the ranges and tolerances for each type and class of mixture. The specification limits for mix temperature are the same for all plant types. Production above or below these limits must be approved in advance by the Engineer, and documented as set out in Section 1108.04 of the Standard Specifications.

Point of Test (Temperature)

Asphalt Binder

Delivery units and storage tanks

Aggregate

- Dryer Pyrometer Truck body at plant
- Final Mixture
 - Final Mixture (on road) Behind Paver

2. Gradation Control

a. Cold-feed Gradation Control

The contractor is responsible for ensuring the gradation of the final mixture consistently complies with the requirements of the job mix formula. Cold-feed proportioning will be monitored and verified as part of the overall plant inspection activity. The final acceptance gradation will normally be based on the cold-feed gradation.

Advisory sampling and testing will be performed at the aggregate sources and after cold-feed combination at the plant site. Cold-feed check samples will be taken daily to verify the accuracy of proportioning and to provide guidance to the contractor with regard to mixture gradation. Addition quality tests above the minimum specified may be run at the option of the District Materials Engineer.

The sampling and testing frequencies are outlined in Materials. IM204. Samples must be secured in a safe and reliable manner as provided In Sections 1108 and 2001 of the Standard Specifications. Testing procedures shall be in accordance with IM Series 300.

The cold-feed samples are to be obtained by incrementally cutting the stream or belt flow of combined aggregate feeding the drier. The contractor is responsible for furnishing a plant set-up that allows representative samples to be obtained. This may require equipment modification.

- b. Non-compliant cold-feed gradation and other production mix irregularities may result from the following causes:
 - Sample not representative of lot (Multiple hot bins)
 - Improper bin balance
 - · Test errors, weights, calculations, etc.
 - Incorrect cold-feed settings
 - Non-uniform cold-feed delivery
 - Stockpile segregation
 - Stockpile contamination
 - Storage bin segregation
 - Intermingling of aggregates in stockpiles and/or feeders
 - Wet, non-uniform stockpiles
 - Degradation

When the sieve analysis test indicates the combined material does not comply with the gradation requirements, the plant inspector shall take the following steps:

- 1. Recheck test procedures and computations.
- 2. Check gate settings and feeder operations.
- 3. Check the materials and material handling procedures.
- 4. Notify the RCE, the DME and the contractor of the results.
- 5. Obtain a second sample and test promptly.

If the gradation tests and/or inspection observations indicate that proportioning irregularities are occurring, the contractor is required to take corrective action immediately. Adjustments in proportions and other job mix formula changes must be documented in writing, in accordance with IM 511.

Several alternatives are normally available to the contractor when difficulties are encountered:

- Change material handling procedures.
- Correct proportioning.
- Change proportions. (Job Mix Formula irregularities change.)
- Waste fines collected by dust.
- Change materials. (New Job Mix Formula collection systems required.)
- Reset Job Mix Formula target.
- Change processing procedures at gradation source.
- 3. Asphalt Content Control (Also refer to Materials IM 509.)

The control of this material component is the most important plant inspection responsibility because the performance of the finished pavement is directly related to the quantity of binder incorporated in the mix. Separate check systems are used for drum-mix and batch plants as follows:

a. Drum Mixing Type Plants

During the first day or two of operations, and during periods when asphalt or aggregate delivery is questionable, it is advisable to perform proportioning validation in addition to the measurements required in IM 204. The specifications require drum-mixing plants to be equipped with totalizing asphalt meters and aggregate scales.

This equipment and information should be utilized for making continuous checks. Total asphalt delivered as indicated by the meter should be periodically compared with quantities used as determined by tank measurements.

Validation Methods:

- (1) Compare asphalt delivered by metering pump or scale with outage shown by 2 or 4 hour tank measurement (compare by pounds (kg), gallons (liters), or percent).
- (2) Compare total mix produced, including waste, to asphalt and aggregate delivered by plant for a given period of time.
- b. Batch Type Plants

The operation of batch type plants should also be verified when work begins on a project. This is done by making intermediate tank measurements at 2-or 4-hour intervals and by checking the operation and sensitivity of the scale equipment.

If the measurements indicate that uniform control is not being maintained, the contractor is required by the specifications to adjust and correct his operations to obtain specification compliance. Such actions may include but not be limited to cleaning, repair, or replacement of equipment, recalibration of pumps and feeders, and training of personnel. In some cases it may be necessary for the contractor to obtain assistance from equipment manufacturers or distributors. Refer to the checklist on pages for possible causes of difficulty.

The inspectors should be aware of the fact that the specifications provide for establishing mutual agreements for determining asphalt quantities on projects involving small quantities, or intermittent or diversified operations.

- c. Plant Inspection Control List
 - 1. Before Calibration
 - a. Check capacity of storage tanks.
 - b. Check tank sticks.
 - i. Be sure they fit the tanks.
 - ii. Determine proper use. (touch stick or dipstick, percent of diameter or inches, etc.)
 - iii. Be sure tanks are level.
 - c. Check piping and type of pumping system.
 - d. Learn the contractor method of operating the system.
 - e. Check the truck scales.
 - 2. During Operation
 - a. Determine percent binder by tank stick measurement method as required.
 - b. Determine percent binder by verification as required.
 - c. Check batch scales for sensitivity.
 - d. Check truck scales for sensitivity and accuracy.
 - 3. If Computed Percent Binder is High:
 - a. Check tank stick readings and computations.
 - b. Check to be sure that all mix produced was included in the computations.
 - c. Check for spilled, wasted, or otherwise used asphalt cement.
 - d. Check to be sure all asphalt listed as added during the period should be included.
 - e. Check truck scales and total mix made.
 - f. Check cold-feed and pump setting.
 - g. Check aggregate delivery level for uniformity.

- 4. If Computed Percent Binder is Low:
 - a. Check tank stick readings and computations.
 - b. Check total mix made.
 - c. Check to be sure that all asphalt added during the period is included.
 - d. Check cold-feed and pump setting.
 - e. Check for plugged nozzle.
 - f. Check pumping pressures.
 - g. Check strainer screen.
 - h. Check truck scales.

IM 509 provides the detail procedure for making tank measurements and determining asphalt content.

- G. Checking Scales
 - 1. Batch Scales

Batch scale sensitivity shall be checked once per day during a normal working day by placing a weight equal to 1/10 percent of the batch weight but not greater than 20 lbs. on the fully loaded scales and observing the movement of the indicator. A properly sensitive scale will exhibit a visible indicator movement when so tested. If no indicator movement is visible, immediate corrective action must be taken by the contractor.

The specified scale delivery tolerance limits should be checked by periodically witnessing the batch weighing operations. Each scale indicator should consistently indicate the required weight within the specified delivery tolerance, and return to zero when unloaded within the specified 0.5 percent tolerance.

When automatic batch weighing equipment is used, the interlock system shall be set at the 1.0 percent limit as specified. They may be manually overridden to continue plant operation if the specified delivery tolerance is not exceeded. When the delivery tolerances are exceeded, the asphalt or aggregate batch sizes shall be adjusted manually to bring the batch into compliance, or it shall be wasted.

The plant superintendent or other authorized contractor representative must make all necessary scale and equipment settings and/or adjustments. Before the plant operation begins or resumes the plant inspector will independently determine for himself that the settings and/or adjustments are accurate and that the weights of material being delivered to the batch are correct.

Normal plant operation causes vibration, which tends to change these adjustments. Accumulation of material clinging to the inside of the weighing hopper can also cause these adjustments to drift. If the amount exceeds one percent of the material batch weight it must be removed and the empty weight readjusted to indicate a zero load.

2. Truck Scales

Truck scales shall be checked as provided in Standard Specification 2001.07.

H. Specification Compliance

All materials shall be inspected prior to being incorporated in a pavement structure. Some materials are being shipped to projects under certification programs and others must have a report. In either case it is necessary to check and file the reports or certifications such that each final product component is properly identified and incorporated with the proper documentation. This is accomplished by obtaining the documents for each lot of material before incorporation. All shipments of all materials incorporated shall be logged as they are received.

A Non-compliance Notice (Form #225) shall be immediately delivered to the acting representative of the contractor for the area of construction involved whenever procedures or tests results on acceptance samples representing material to be incorporated or incorporated in the work indicate non-compliance with the specifications and plans. Appropriate action in accordance with the applicable specifications and Instructional Memorandums shall be taken.

I. Sampling and Testing

The Contractor's Laboratory Technician is responsible for meeting all sampling, testing, and documentation requirements as set forth by Specification 2303 and IM 511.

NOTE: RAP gradation % passing is found on Form #955.

J. Completed Project

When a project is completed, the plant inspector should again check all records and documentation for accuracy and completeness. It is also necessary to determine at this time the net quantity of materials incorporated in the project. The field records and plant records should be compared and final determinations made.

- K. Diary and Report Requirements
 - 1. The diary must be filled out daily.
 - 2. Computer programs are provided to document what is required.

Daily Plant Report. This form is submitted daily to document plant operations, job control testing, and material placement on all hot mix and cold mix construction.

Identification of Sample for Test (Form #193). This form must accompany all samples submitted to the Central Laboratory and District Laboratories. Examples of completed forms have been included in this instruction.

3. Testing Worksheets. All worksheets and other original documents used by

inspection personnel are to include identification of: 1. individuals associated with sampling and testing, 2. County and Project No., 3. Material and sampling point, 4. Date and time of sampling and testing and, 5. Source, producer or contractor. All documents other than field notebooks are to be filed with the appropriate report and retained per the file retention schedule.

L. Mixture Segregation

In addition to determining if all of the required equipment is available, calibrated, and functioning properly, the plant inspector should monitor mixture uniformity for potential problems. One of the most troublesome difficulties encountered during production is mixture segregation, which may be caused by plant equipment or operation. Segregation at the plant may be caused by:

- 1. Pugmill discharge being too high above the truck bodies.
- 2. Depositing into very large truck bodies, causing the mixture to cone and roll. In this case trucks should be moved back and forth during loading.
- 3. Pugmill or storage gates opening improperly. They may not open or close quickly or to the full extent of the opening.
- 4. Inadequate mixing. This may be caused by short mixing cycle, improper mixer paddle positioning, worn paddles, or low level in the mixing chamber.
- 5. Improperly designed, maintained, and operated surge and storage bins and conveyors. Example - material discharge into conveyor must be centered into the bucket or belt.
- 6. Failure to provide near level truck charging platform.

Coarse, lean mixtures are more subject to segregation than fine-rich mixtures; therefore more care must be exercised when coarse mixtures are being produced. Segregation of the mix results in non-uniform distribution of the material in the pavement. This can lead to a patchy appearance as well as early structural distress.

M. Asphalt Binder Contamination

Another potential problem encountered during production is contamination of the asphalt binder. This may be caused by:

- 1. Allowing fuel oil used for cleaning pumps and lines to enter the storage tanks.
- 2. Accepting delivery of non-specification material or material of a different grade.
- 3. Leakage of plant heating oil into the storage tanks.

- 4. Contaminated delivery tanks.
- 5. Improper sampling, and sample catching container, refer to IM 323.

Alert inspection and proper supervision can prevent contamination by the contractor since most of the problems are associated with the use of cleaning fluids and improper material combination.

Form 820193 7-94	6	lowa Departm	ent of Transportatio	Central Lab. No.	ABC4-000
	(Read	IDENTIFICATION C	OF SAMPLE FOR TEST ore taking sample and filling out		
Material U	ncompacted Mix @ 4.9% E	Binder	Send	lers Sample No.	3DR4-001
Intended Use H	MA 30M S 3/4 L-2		Acco	unting ID Number	67-CO67-029
County N	lonona	Group No.	Desi	gn No.	ABD4-001
5	И-29-5(89)10613-67			ract ID Number	12345
			Cont		
Contractor C	uality Construction	(Name)			nito, Iowa Address)
Supplier C	aluality Binder		Source Incognito, Iowa	1	
Producer C	uality Binder		Brand	Lot No.	
Location of Produ	cing Plant				
	Sec.	Twp.	Range	Co.	
				00.	
Unit of Material R	epresented Approximately	Station 105+00. Lift 2	? of 2.		
		Quantity Rep	resented 40 lbs. Box		
Sampled by		Rayson		Incognito, I	owa
Date sampled	06/01/04	ame)		(address)	
Report to District	s) (Check appropriate box (es))			3 4 X	5 6
Report to Resider	ncy (Write appropriate residency r	number)	22		
Report to Countie	es (Write appropriate count numbe	er) —	67		
Report to Other	Rayson			nito, Iowa	
Report to Other	(Name)		((ddress)	(Phone)
	(Name)	(Title) (/	Address)	(Phone)
Report to Other	(Name)	(Title) (/	Address)	(Phone)
Results need by	: Date			al and the second	
Additional Detailed I	nformation: (For paint give analysis pri	nted on container. For tile give	e grade specified, etc.)		" X " Sample Type
Mix Ir	fo: Lab Result	s:	Combined Gradation:		Assurance
Intended %AC	Gmb	1 1/2"	#8		Verification
Target Pa	Gmm	1"	#16	X	Project Information
	Pa	3/4"	#30		Mix Design
# Gyrations		4/01	#50		Dept. Information
# Gyrations _ # Blows _		1/2" _	#50		
-		3/8" _	#100		Warehouse Stock

Form 820193 7-94							Central Lab. No.	APG4-000	D
			owa Depart	tment of	Transpo	rtation	200.110.		
			TIFICATION						
		(Read Instruct	tions on back before	ore taking sa	mple and filling	g out form)			
Material	PG 64 -28				_	Senders Sa	ample No.	3CJP	04-02PG
ntended Use	Verification					Accounting	ID Number	67-C0	067-029
County	Monona		Group No.			Design No.		ABD	04-001
Project	IM-29-5(89)1	10613-67				Contract ID	Number	12	2345
Contractor	Quality Cons	struction	(b)		_			nito, Iowa	
Supplier	Quality Binde	er	(Name)	Source	Incognito,	lowa	⁰	Address)	-
Producer	Quality Binde	er		Brand			Lot No.		
Location of Produ	ucing Plant								
		Sec.	Twp.		Range		Co.		
Unit of Material R	epresented	1 / 80 tons of binder							
				epresented	1 Quart		_		
Sampled by		Jon Rayso	_	oprobotitou	Tadan		Incognite	0	
		(name)					(address)		
ate sampled		06/01/04		. 1	2	3	4	5	6
eport to District(s) (Check appropr	iate box (es))				x			
eport to Residen	ncy (Write appropria	ate residency number)						_	
eport to Countie	s (Write appropriate	e count number)		67	-	-			
Report to Other		Rayson			1	ncognito, lo	owa	(P)	hone)
eport to Other		(Name)		tie)		(Address)	3	-	hone)
eport to Other						1200100			
	Date	(Name)	(Ti	tle)		(Address)		(Pt	hone)
esults need by:					tc.)		-	" X " Sample T	-
	nformation: (For paint	give analysis printed on contain	er. For tile give gra	ade specified, e					
	nformation: (For paint	give analysis printed on contair	er. For tile give gra	ide specified, e				-	ype
	nformation: (For paint	give analysis printed on contain		ide specified, e			-	Assurance	ype
	nformation: (For paint			ide specified, e		-	x	Assurance Verification	
	nformation: (For paint			ide specified, e				Assurance Verification Project Inform	
	nformation: (For paint			ide specified, e				Assurance Verification	nation
Results need by:	nformation: (For paint			ade specified, e				Assurance Verification Project Inform Mix Design	nation

ASPHALTIC CONCRETE EQUIPMENT

MFG. CODE	STOCK NO.	QUANTITY NEEDED	DESCRIPTION
	*	1 each	Box Sieves - 1½ in. (3.75 mm), 1.0 in. (25.0 mm), 3/4 in. (19 mm), 1/2 in. (12.5 mm), 3/8 in. (9.5 mm), #4 (4.75 mm)
1.		1 each	8 in. Round Sieves - #4 (4.75 mm), #8 (2.36 mm), #16 (1.18 mm), #30 (600 μ m), #50 (300 μ m), #100 (150 μ m), #200 (75 μ m), #200 (75 μ m) Wash, Pan and Cover.
	*	1	Box Shaker With Pans
		1	Splitter (With Pans, Scoop & Brush)
		1	Balance With Pan & Weights
		1	Surface Checker With Parts Box
003	318990	24	Paper Cup, Bituminous Sampling
003	059500	25	Cardboard Box (14 in. x 9 in. x 6 in.)
012	733100	24	4-oz. Ointment Tins, Style 22
		3	12-qt. Pails
		6	Round Pans (Approximately 4-qt.)
		6	Round Pans (Approximately 6-qt.)
		1	Short Handle Round Point Shovel
		1	Pointing Trowel
		1	Candy Scoop
		1	Large Spoon
012	530155	6	1-qt. Cans With Lids

April 20, 2004 Supersedes April 27, 1999 Matls. IM 508 Appendix A

MFG. CODE	STOCK NO.	QUANTITY <u>NEEDED</u>	DESCRIPTION	
		1	-30°F to 120°F General Purpose Thermometer	
		2	200°F to 400°F Maximum Registering Thermometers	
		2	100°F to 400°F Asphalt Thermometers	
		1	Electric Sieve Shaker	
		1	Electric Sieve Shaker Timer (Switch)	
		1	Putty Knife	
		1	Sieve Cleaning Brush (Cropped Paint Brush)	

The Office Supply Storeroom stocks the following items:

370	820193	1 Pad	Form #193
000	319200	1 Box	Tag Envelopes
000	480300	1 Box	Shipping Tags G-5

Items Not Coded Are Commercially Available Coded Items Are Available Through the Ames Storeroom *Available to Contractors through the Central Materials Laboratory

WEIGHING EQUIPMENT

GENERAL

Section 2001.07 of the Standard Specifications covers weighing equipment and procedures. Under certain conditions equipment used to determine true net weight must be fully automatic or semiautomatic. Fully automatic systems are those that perform all required functions and print them on a ticket automatically. Semiautomatic systems must, as a minimum, be capable of determining the gross weight and printing it on a ticket automatically. The remaining functions must be entered on the ticket manually by a weighmaster.

Except for asphalt batch type plants, each load ticket is to contain all weight calculations necessary to arrive at a true net weight. This includes a printed gross weight, a printed or manually entered tare weight and a resultant printed or manually entered net weight.

Quantities for batch plants may be determined from batch counts and individual batch weights provided the batching scales have been calibrated to the accuracy required for pay quantity determination. The ticket shall indicate the batch weight, the number of batches and a net weight of the batches in each load. The ticket information may be entered by automatic printers or by a weighmaster. No tare weight is required when batch plant scales are used.

Automatic or semi-automatic printing is required when contract quantities of 10,000 tons (10,000 Mg) or more of HMA is furnished.

Scale tickets, as a minimum, shall identify project number, date, truck number and type of material (for hot mix asphalt materials, this is the mix design number). Additional requirements for specific systems are listed below.

TYPES OF SYSTEMS

A. Batch Plants:

Tickets automatically printed in a batch plant must contain, as a minimum, the total weight of material used in each batch, the number of batches and a total weight of material in each load. Most printing systems will show the aggregates and asphalt separately.

B. Storage Silo with Separate Weigh Hopper:

Tickets prepared automatically for this system shall contain, as a minimum, the gross weight of each drop weighed, a tare weight as a measure of any material left in the weigh hopper and a net weight of the material dropped. Also included shall be a true net weight of the total number of drops in each load.

C. Storage Silo/Weigh Hopper Combination:

Tickets prepared automatically for this system shall contain, as a minimum, the gross weight of material in the bin at the beginning of each weighing increment, the weight of material remaining in the bin at the end of each weighing increment as a tare weight and a resultant net weight of each increment. If weighing is in more than one increment, the ticket shall show the total net weight of all increments included in the load.

D. Truck Scales:

For Automatic Truck Scales - The scale must print the gross weight, tare weight of the truck, and net weight of the load. The tare weight of the truck is to be stored in the system, and not necessarily determined each trip. The operator must identify the truck to the recorder.

For Semiautomatic Truck Scales - The scale must print the gross weight. The tare weight and net weight shall be on the ticket, and may be added by the weighmaster by hand.

Many of the automatic systems are capable of printing much more information than the specified minimum. These are good features that may be beneficial to the contracting authority and the contractor; however, no features may be substituted for those specified.

INSTRUCTIONS FOR COMPLETING DAILY ACC PLANT REPORT

PROJECT NO.

Enter the project number listed on the project plans.

CONTRACT ID

Enter the nine-digit contract number listed on the contract. This is **not** the five-digit accounting ID number.

MIX DESIGN NO.

Enter the mix design number listed on Form #956, for the mix being produced for the day.

COUNTY

Enter the county listed on the project plans.

CONTRACTOR

A group of people or company must perform the work being done, either a prime contractor or a subcontractor. Enter the name of the contractor performing the work. If it is a subcontractor, list this after the contractor name.

RECYCLE SOURCE

When RAP is used on a project, it must come from a known source, list the source of where the RAP material came from. <u>Example:</u> "project grade" - "stockpile."

CLASS

Base courses are classified by class 1 or 2. If no mix class is listed on the Form #956, leave it blank.

SIZE

Each mix is designed at a certain size. <u>Example</u>: 1 in. (26.5 mm), 3/4 in. (19 mm), 1/2 in. (13.2 mm) or 3/8 in. (9.5 mm). Enter the proper mix size listed on the 956 form.

MIX TYPE

List the type of mix specified for the project listed in the contract documents.

PAGE NO.

Leave this line blank; it is used for filing when the project is completed.

Matls. IM 508 Appendix C

REPORT NO.

Start with number 1 at the beginning of work for each contractor on each project for each mix placed. The ending report number shall coincide with the last day of production for each mix. <u>Example:</u> If it takes 15 days to place a binder mix, you shall have to report 1 through 15. If it takes 12 days to place a surface mix, you shall have to report 1 through 12. If work carries over into another construction season, do not start the sequence over; continue the numbering system until work is completed.

DESIGN BLOWS, DESIGN GYRATIONS

Either a mix is designed by using traffic count or ESALs. When the mix being used is based on traffic count, the Form #956 will have a designed Marshall blows and a triple hammer machine will be used for testing. When the mix being used is based on ESALs, the Form #956 will have a designed Gyrations and a Gyratory machine will be used for testing. Report the appropriate information listed on the Form #956.

TEST SUMMARY INFORMATION

This section is located on the left-hand side of the report. This section consists of six columns for data entries. The first column is reserved for target and specification limit information. The second, third, fourth, and fifth columns are reserved for actual test information.

HOT BOX ID NO.

During production each day, a sample of the hot mix is taken from the grade at different intervals according to the amount of mix being produced for each mix type. This sample shall be given a serial identification number for each mix tested. <u>Example:</u> "QMA, QMA-1, QMA-2" or " GYR-1, GYR-2, GYR-3."

DATE SAMPLED

Enter the date the hot box sample is taken and tested.

GRADATION ID

Enter the cold-feed gradation identification number for each sample tested on a given day of production in the second, third, and fourth columns. The fifth column shall say "Avg." if an average is calculated.

1 in. (26.5 mm), 3/4 in. (19 mm), 1/2 in. (13.2 mm), 3/8 in. (9.5 mm), #4 (4.75 mm), #8 (2.36 mm), #16 (1.18 mm), #30 (600 μm), #50 (300 μm), #100 (150 μm), #200 (75 μm).

Enter the specification limits for the proper sieves in the first column. Enter the final % passing for each sieve in the second, third, or fourth column. The second column is for the first test, the third column is for the second test, and the fourth column is for the third test. If RAP is used in the mix, the final composite % passing each sieve shall be entered in the appropriate column. The fifth column is for the average final % passing if needed.

MOVING AVERAGES

The moving averages for the #4 (4.75 mm), #8 (2.36 mm), #30 (600 μ m) and #200 (75 μ m) sieves are based on the last actual four tests performed divided by four. Enter the moving average directly below the gradation. These figures shall be entered in the appropriate rows provided.

COMPLIANCE

After a cold-feed gradation has been tested, it is compared to the specifications for compliance. If the gradation complies, enter a Y in the appropriate column. If the gradation does not comply, enter an N in the appropriate column.

INTENDED ADDED PERCENT AC

Each mix is designed with a percentage of virgin AC added to the mix. This percent is entered in the first column. This percentage is found on Form #956.

ACTUAL ADDED PERCENT AC

The % of virgin AC added to a mix is kept track of by tank stick or by an approved ticket printout. This calculated actual % virgin AC figure shall be entered in the second column.

INTENDED TOTAL PERCENT AC

When RAP is used in a mix, the RAP contains a percentage of AC. This percentage of AC, along with the virgin AC added, equals the total design AC content. Enter this calculated figure in the first column.

ACTUAL TOTAL PERCENT AC

The actual total percent AC is calculated by the percent of actual virgin AC and the percentage of AC in the RAP material. Enter this figure in the second column.

Gmb (BULK SPECIFIC GRAVITY)

This figure is arrived from the hot box samples tested throughout the day of production. The first hot box tested shall have the Gmb data entered in the second column. The second hot box tested shall have the Gmb data entered in the third column.

Gmm (MAXIMUM SPECIFIC GRAVITY)

This figure is also arrived from the hot box samples tested throughout the day of production. Enter the test results the same way as listed for the Gmb test data.

Pa (% OF AIR VOIDS)

The Pa figure is calculated by using the Gmb and Gmm test results. Enter the Pa results in the second, third, fourth, and fifth columns.

MOVING AVERAGE

After four Pa figures have been calculated, a moving average is established for each mix placed. Enter the moving average figure in the appropriate column the average pertains to.

TIME

Enter the time of day each hot box sample is taken from the grade in the second, third, fourth, or fifth columns.

STATION

Enter the station number where each hot box sample is taken.

SIDE

On a two-lane road there is a left and right of centerline looking up station. On a divided or four-lane road, there is northbound, southbound, westbound, and eastbound. Each lane has a left and right looking up station. Enter the side where the hot box sample is taken.

Example: NB LT = northbound left side, RT = right side

SAMPLE MEGAGRAMS (TONS)

Enter the megagrams (tonnage) of mix placed which represents where the hot box sample is taken.

SUBLOT MEGAGRAMS (TONS)

A day's production is divided into sublots according to the amount of mix being produced. Enter the size of each sublot according to IM 511 requirements.

MEGAGRAMS (TONS) TO DATE

The megagrams (tons) to date is a running total of each mix placed on the roadway throughout the project. This running total does not include plant or road waste.

FINES/BITUMEN RATIO

Enter the Fines/Bitumen Ratio calculated from the percent passing #200 (75 μ m) sieve and the total percent AC figure on Marshall mixes. Enter the Fines/Bitumen Ratio calculated from the percent passing #200 (75 μ m) sieve and the Effective % AC figure on Superpave mixes. This calculation is entered in the second column provided on the report. If an average gradation is calculated, show the average Fines/Bitumen Ratio figure in the fifth column.

Gsb

Enter the bulk specific gravity on the combined aggregate listed on Form #956.

4

Gb

Enter the specific gravity of the asphalt cement at 25°C (77°F).

EFFECTIVE % AC

Enter the effective asphalt content %, mix basis.

MIX CHANGE INFO

Enter any mix changes that occur during production of a mix.

Example: An aggregate proportion change was made at 9:05 a.m. today. 235 Mg of mix had been produced before the change.

TEMPERATURES & DENSITY INFORMATION

AIR TEMPERATURE

Record the air temperature at the time intervals shown on the report.

AC TEMPERATURE

Record the virgin AC temperature at the time intervals shown on the report.

MIX TEMPERATURE

Record the mix temperature at the time intervals shown on the report.

DATE PLACED

Enter the date the mix was placed on the roadway.

DATE TESTED

Enter the date the roadway cores are tested.

COURSE PLACED

Enter the mix placed. Example: Base, Binder, and Surface.

TESTED BY

Enter the name of the person testing the roadway cores.

STATION

Enter the station where each roadway core was cut from the mat for testing.

Matls. IM 508 Appendix C

CL REFERENCE

A roadway core is obtained at random, a distance from centerline according to where the mix is placed. Enter the distance and side from centerline where each core is cut.

Example: 4 ft. (1.22 m) RT, 3.05 m (10 ft.) LT, District.

W1 DRY

Enter the mass of each roadway core under the appropriate core number.

W2 in H₂0

Enter the mass of each roadway core under the appropriate core number.

W3 WET

Enter the mass of each core, after excess water has been blotted off.

DIFFERENCE

Enter the figure obtained by subtracting the W2 mass from the W3 mass for each core.

FIELD DENSITY

Enter the field density for each core under the appropriate core number.

PERCENT DENSITY

Enter the percent density for each core under the appropriate core number.

PERCENT VOIDS

Enter the percent voids for each core under the appropriate core number.

THICKNESS

Enter the thickness of each roadway core tested under the appropriate core number.

Gmb (LOT AVG.)

Enter the Marshall specific gravity average by adding the individual test results performed during the day of production, and divide by the number of tests performed that day.

Gmm (LOT AVG.)

Enter the maximum specific gravity average by adding the individual test results performed during the day of production, and dividing by the number of tests performed that day.

DISTRICT LABS Pa

Only use this cell when the District Materials Department does the testing on the hot box samples taken. Enter the percent air voids figure calculated by the District Materials Department.

TARGET % RAP

Enter the target % RAP for each day of production when RAP is used in the mix.

AVERAGE FIELD DENSITY

Enter the average field density by adding the seven individual field density figures together and divide by 7.

AVERAGE PERCENT DENSITY

Enter the average percent density by adding the seven individual percent density figures together and divide by 7.

AVERAGE PERCENT FIELD VOIDS

Enter the average percent field voids obtained by dividing the Average Density by the Maximum Specific Gravity figure and multiply by 100. Then subtract this figure from 100.

SPECIFIED DENSITY PERCENT

Enter the minimum density required by specification for type of compaction. Example: 94, 95, 96.

QUALITY INDEX (QI)

Three numbers are needed to calculate the Quality Index for the roadway cores. Show work.

Enter the Avg. % Density - Enter Specified Density % Enter Standard Deviation

LOW OUTLIER

If the QI result is less than 0.73, a possible low outlier shall be calculated and entered.

Matls. IM 508 Appendix C

HIGH OUTLIER

If the QI result is less than 0.73, a possible high outlier shall be calculated and entered.

NEW QI

If the original QI is below 0.73 and one of the outlier calculations is 1.80 or higher, a new QI shall be calculated by removing the test result data of the lowest density core or highest density core, depending if you have a low outlier or high outlier.

FILM THICKNESS (FT)

Enter the microns calculation.

VMA

Enter the percent Voids in Mineral Aggregates calculation.

REMARKS

Enter remarks of delays at the plant site, non-compliant test results, District. <u>Example:</u> Production was stopped for 35 minutes because of a mechanical problem on the grade.

CPI

Enter the Certified Plant Inspector name. Do not use initials.

CERT NO.

Enter the Certified Plant Inspector certification number.

QMA TECHNICIAN

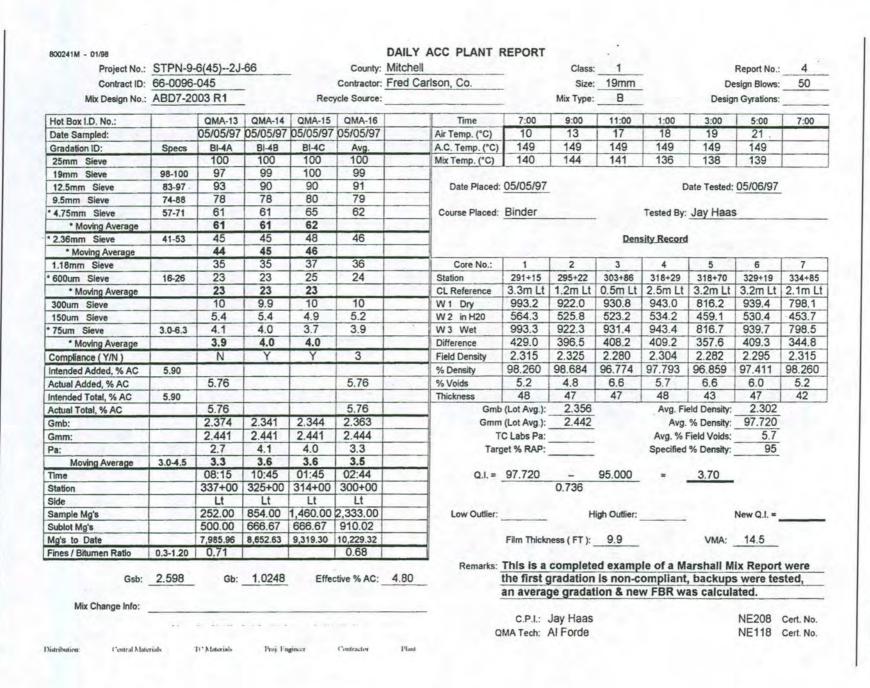
Enter the Quality Management Asphalt Technician name. Do not use initials.

CERT NO.

Enter the Quality Management Asphalt Technician certification number.

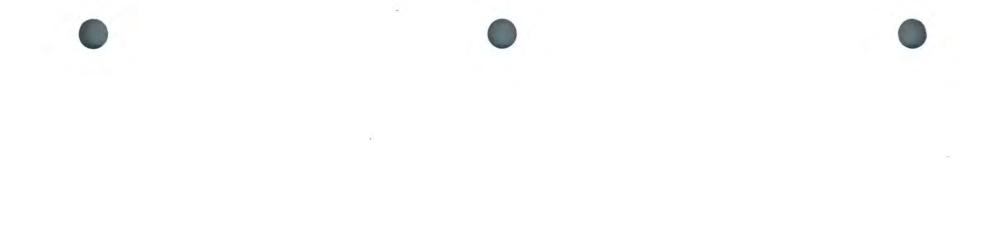
Attached are examples of completed reports for different types of mix. Refer to the Remarks Section on each example for the type of use.

Project No .:	STP-69-	-7(23)2C	-99		County:	Wright			Class:	-			Report No.:	6
Contract ID:	99-0697	-023			Contractor:	Mathy C	onstruction		Size:	19mm		De	sign Blows:	
Mix Design No.:					cle Source:				Mix Type:	A		Desig	n Gyrations:	86
Hot Box I.D. No .:	1	10-1-SP	10-2-SP	10-3-SP	10-4-SP		Time	7:00	9:00	11:00	1:00	3:00	5:00	7:00
Date Sampled:	1000	07/29/97	07/29/97	07/29/97	07/29/97	1.12.001	Air Temp. (°C)	15	19	22	24	25	25	
Gradation ID:	Specs	CF10-1SP					A.C. Temp. (°C)	151	146	149	151	153	154	
25mm Sieve	100	100					Mix Temp. (°C)	146	141	138	139	143	142	
19mm Sieve	90-100	100												
12.5mm Sieve		91	1				Date Placed:	07/29/97			C	ate Tested:	07/30/97	
9.5mm Sieve		77					1							
4.75mm Sieve	1	42					Course Placed:	Surface			Tested By:	George S	Seward	
* Moving Average		41												
2.36mm Sieve	23-35	24					1			Dens	sity Record			
* Moving Average	1	25					1				and the second			
1.18mm Sieve		18					Core No.:	1	2	3	4	5	6	7
600um Sieve		11					Station	46+65	63+95	70+25	91+95	97+98	113+35	128+45
* Moving Average		11					CL Reference		3.0m Rt		2.4m Rt			1.8m R
300um Sieve		6.2					W1 Dry	552.4	656.6	573.4	529.3	608.0	549.3	545.0
150um Sieve		3.8					W 2 in H20	302.3	356.5	316.2	292.3	338.7	298.6	304.4
75um Sieve	2.0-8.0	3.0					W3 Wet	552.5	657.3	573.9	530.2	608.3	550.3	545.6
* Moving Average	2.0.0.0	3.0					Difference	250.2	300.8	257.7	237.9	269.6	251.7	241.2
Compliance (Y/N)		Y					Field Density	2.208	2.183	2.225	2.225	2.255	2.182	2.260
Intended Added, % AC	5.80						% Density	95.833	94.748	96.571	96.571	97.873	94,705	98.090
Actual Added, % AC	5.00	5.81	1.1				% Voids	8.3	9.3	7.6	7.6	6.3	9.3	6.1
Intended Total, % AC	5.80	0.01					Thickness	38	44	38	38	38	38	35
Actual Total, % AC	5.00	5.81							2.304			eld Density:		
Gmb:		2.297	2.321	2.296	2.301		Gmm	(Lot Avg.).	2.407			% Density:		
Gmm:		2.413	2.398	2.402	2.414		Ginin	Labe Da	2.407			Field Voids:	7.0	
Pa:		4.8	3.2	4.4	4.7			et % RAP:				% Density:		
	3.0-5.0	4.0	4.2	4.1	4.7		Targ	el % RAP.			Specified	% Density.	50	
Moving Average	3.0-5.0	07:30	09:30	11:30	02:30		01-	96.342		95.000		0.00		
Time		430+00	380+00				Q.I. =	90.342	1.353	95.000		0.99	ň.,	
Station									1.505					
Side		Rt	Rt	Rt	Rt		1 Outloo							
Sample Mg's		252.00		1,437.00			Low Outlier:		н	ign Outlier:			New Q.I. =	
Sublot Mg's		500.00	833.33	833.33	964.95								447	
Mg's to Date		of the second division of the local division	19,838.33	20,671.66	21,636.61			Film Thick	ness (FT):	14.4		VMA:	14.7	
ines / Bitumen Ratio	0.6-1.20	0.65											-	
Gsb:	2.544	Gb:	1.0250	Effec	tive % AC:	4.64	Remarks:	I NIS IS a	n example	e of a sha	arp mix u	sing the	Gyratory.	
Mix Change Info:	_												- Q	
								C.P.I.:	George S	eward			C1095	Cert. No.


Reissued April 15, 2003 Supersedes April 28, 1998

9

Matls. IM 508 Appendix C


Project No.: Contract ID:					Contractor:	Mitchell Fred Car	Ison Co		Class: Size:	13.2mm			Report No.: sign Blows:	50
Mix Design No.:					cle Source:				Mix Type:				Gyrations:	
Hot Box I.D. No.:		QMA-18	0140.10	0140.20	QMA-21		Time	7:00	9:00	11:00	1:00	3:00	5:00	7:00
				05/30/97	and the second se	-	Air Temp. (°C)	12	16	20	22	23	22	7.00
Date Sampled:	Casta		00100191	SU-7C	03/30/37		A.C. Temp. (°C)	149	149	149	149	149	149	
Gradation ID:	Specs 100	SU-7A 100		100			Mix Temp. (°C)	149	145	145	143	149	145	
25mm Sieve		100		100			Mix Temp. (C)	144	145	144	140	140	144	
19mm Sleve	100			94				70100120					70100107	
12.5mm Sieve	92-100	92					Date Placed:	05/30/97			D	ate Tested:	00/02/97	
9.5mm Sieve	79-92	84		85				Curless				In Lines		
4.75mm Sieve	61-75	68		69			Course Placed:	Sunace			Tested By:	Jay Haas		
* Moving Average		68		68										
2.36mm Sieve	49-59	53		55			-			Dens	ity Record			
* Moving Average		54		54									-	-
1.18mm Sieve		37		38			Core No.:	1	2	3	4	5	6	7
600um Sieve	18-26	24		25			Station	296+12	290+39	275+63	268+82	260+64	252+88	243+21
* Moving Average		24		25			CL Reference		3.2m Lt			0.4m Lt	2.7m Lt	2.1m Lt
300um Sieve		12		13			W1 Dry	977.4	984.6	867.4	889.6	930.8	1,019.5	807.5
150um Sieve		6.7		7.1			W 2 in H20	551.3	556.4	493.3	499.5	520.6	575.5	455.8
75um Sieve	3.0-5.8	4.8		5.0			W3 Wet	977.8	984.9	867.8	889.9	931.3	1,019.9	807.9
* Moving Average		4.5		4.7			Difference	426.5	428.5	374.5	390.4	410.7	444.4	352.1
Compliance (Y/N)		Y		Y			Field Density	2.292	2.298	2.316	2.279	2.266	2.294	2.293
Intended Added, % AC	6.10						% Density	97.366	97.621	98.386	96.814	96.262	97.451	97.409
Actual Added, % AC		5.91				1	% Voids	6.2	5.9	5.2	6.7	7.2	6.1	6.1
Intended Total, % AC	6.10						Thickness		55	48	49	53	56	43
Actual Total, % AC		5.91		_			Gmb	(Lot Avg.):	2.354		Avg. Fi	eld Density:	2.291	
Gmb:		2.355	2.366	2.350	2.344		Gmm	(Lot Avg.):	2.443		Avg	% Density:	97.330	
Gmm:		2.443	2.448	2.439	2.440			C Labs Pa:				Field Voids:		
Pa:		3.6	3.3	3.6	3.9		Tar	get % RAP:			Specified	% Density:	95	
Moving Average	3.0-4.0	3.6	3.5	3.5	3.6			100						
Time		08:00	11:00	02:00	04:30		Q.I. =	97.330	-	95.000		3.52		
Station		289+00	and the second second second second	262+00	249+50		1		0.662					
Side		LT	LT	LT	LT									
Sample Mg's	1	123.00		1.265.00			Low Outlier:			ligh Outlier:			New Q.I. =	
Sublot Mg's	-	500.00	666.67		686.84									
Mg's to Date				11,289.42			-	Film Thick	ness (FT)	9.0		VMA:	15.1	
Fines / Bitumen Ratio	0.3-1.20	Statement of the local division of the local	- sponsili o	11200.42	11010120		1							
and a section rand	0.0-1.20	0.01					Remarks	Die roll q	radation I	ested				
Gsb:	2.609	Gb:	1.0248	Effe	ctive % AC:	4.99	-				for a Ma	mah all Mi	·	
10.0			dian charac		halast			THIS IS a	complet	ed report	TOT a Ma	i Slidii Wi	A.	
Mix Change Info:	00			e was made	before		× .		Inchin				NEGOC	
	production	started toda	iy.						Jay Haas					Cert. No.
							(QMA Tech:	Al Forde				NE118	Cert. No.

Matls. IM 508 Appendix C

Matls. IM 508 Appendix C

Project No.:	STPN-9-	6(45)2J-	-66			Mitchell		REPORT	Class:	1			Report No.:	7
Contract ID:	66-0096-	-045			Contractor:	Fred Car	rlson Co.		Size:	13.2mm		De	sign Blows:	50
Mix Design No.:	ABD7-20	011		Recy	cle Source:				Mix Type:	В		Design	Gyrations:	
lot Box I.D. No .:	T	DS-12A	DS-12B	DS-12C			Time	7:00	9:00	11:00	1:00	3:00	5:00	7:00
ate Sampled:		05/30/97	05/30/97	05/30/97			Air Temp. (°C)	12	16	20	22	23	22	
Bradation ID:	Specs	SU-7A					A.C. Temp. (°C)	149	149	149	149	149	149	
25mm Sieve	100	100					Mix Temp. (°C)	144	145	144	143	140	144	
19mm Sieve	100	100				0								
12.5mm Sieve	92-100	92					Date Placed:	05/30/97			D	ate Tested:	06/02/97	
9.5mm Sieve	79-92	84											-	
4.75mm Sieve	61-75	68					Course Placed:	Surface			Tested By:	Danny St	eenhard	
* Moving Average														
2.36mm Sieve	49-59	53								Dens	sity Record			
* Moving Average							1				-			
1.18mm Sieve		37	-				Core No.:	1	2	3	4	5	6	7
600um Sieve	18-26	24					Station	296+12	290+39	275+63	268+82	260+64	252+88	243+21
* Moving Average						-	CL Reference	2.0m Lt	3.2m Lt			0.4m Lt	2.7m Lt	
300um Sieve		12					W1 Dry	977.4	984.6	867.4	889.6	930.8	1,019.5	807.5
150um Sieve		6.7	-				W 2 in H20	551.3	556.4	493.3	499.5	520.6	575.5	455.8
75um Sieve	3.0-5.8	4.8	-				W3 Wet	977.8	984.9	867.8	889.9	931.3	1.019.9	807.9
* Moving Average	0.0 0.0					-	Difference	426.5	428.5	374.5	390.4	410.7	444.4	352.1
compliance (Y/N)		Y			1		Field Density	2.292	2.298	2.316	2.279	2.266	2.294	2.293
ntended Added, % AC	6.10						% Density	97.366	97.621	98.386	96.814	96.262	97.451	97.409
ctual Added, % AC	0.10	5.91					% Voids	6.2	5.9	5.2	6.7	7.2	6.1	6.1
ntended Total, % AC	6.10	0.01					Thickness	54	55	48	49	53	56	43
Actual Total, % AC	0.10	5.91						(Lot Avg.):				eld Density:		40
Smb:		0.01						(Lot Avg.):				% Density:		
Smm:								C Labs Pa:			_	Field Voids:		
Pa:								get % RAP:				% Density:		
	2040						ran	get % RAP:		-	Specified	1 % Density:	90	
Moving Average	3.0-4.0	08:00	12:00	02:00				97.330		95.000		2 52		
				A REAL PROPERTY AND A REAL			Q.1. =	97.550	0.662	95.000	-	3.52		
Station		289+00					-		0.002					
Side		Rt	Rt	Rt			-							
Sample Mg's		167.00	1,305.00	1,680.00			Low Outlier:		-	high Outlier:			New Q.I. =	
Sublot Mg's			-				-			~ ~			15.4	
Ig's to Date		0.04		9,956.08			-	Film Thick	iness (FT):	9.0		VMA:	15.1	
ines / Bitumen Ratio	0.3-1.20	0.81	-		-									
							Remarks:							
Gsb:	2.609	Gb:	1.0248	Effe	ctive % AC:	4.99	-					n-QMA te		
1								Hot box	testing p	erformed	by TC M	laterials [Departme	nt.
Mix Change Info:	_													
					-	S		C.P.I.:	Jay Haas	3			NE208	Cert. No.
							(MA Tech:	N.E.I.T.C	. Material	S			Cert. No.
stribution: Central Ma	teriale	TC Materials	Proj. E	wincer	Contractor	Plant								
			1109.13	-0-11441	+ sites active	a a tr								

Office of Materials

Iowa Department of Transportation

April 15, 2008 Supersedes October 15, 2005 Matls. IM 509

TANK MEASUREMENT & ASPHALT BINDER CONTENT DETERMINATION

GENERAL

This Instructional Memorandum covers the procedures used by the contracting authority to determine: (1). The quantity of asphalt binder incorporated in a project, and (2) the asphalt binder content of individual production runs of asphalt mixtures. This IM also provides instruction for completing Form #E216 (#M216). The plant inspector is referred to the applicable specifications and instructions for the specified tolerances and measurement frequencies.

Tables are furnished for computing quantities of materials stored in standard horizontal cylindrical tanks, and for correcting volumes to standard temperature. The plant inspector is responsible for checking to see that appropriate gauging tables and calibrated sticks are available prior to beginning work on a project. The contractor is required to furnish the calibrated measuring sticks, and gauging tables, for all storage tanks.

PROCEDURES

Refer to example, Form #E216 (#M216)

PROJECT NO.

Enter the project number listed on the project plans.

CONTRACT ID

Enter the county listed on the project plans.

DATE

Enter the date the tank measurement is recorded.

REPORT NO.

Enter the report number of the Daily HMA Plant Report, which reflects the daily virgin asphalt binder tank stick information.

START OF PERIOD

TANK NO., TANK IDENTIFICATION

Each asphalt binder storage tank shall be identified by a number or letter and listed on the form. If a separate working tank or surge tank is provided, it will be necessary to establish a uniform procedure for determining the quantity or level or material in the tank. It is recommended that the plant inspector arrange with the contractor to maintain a uniform storage level in the surge tank.

Enter the tank number for each tank being used each day of production. Four tanks may be used on a given day and recorded on a single sheet.

TIME

Enter the beginning time for each tank that is measured each day of production.

TANK CAPACITY (A)

The capacity of each tank depends upon its dimensions. The capacity of standard cylindrical tanks may be computed by determining the length and radius from actual measurements. All dimensions must be inside measurements. The volume of a cylindrical tank is obtained by multiplying the length of the tank (L), by the radius of the tank ($\frac{1}{2}$ the diameter) squared, by the constant pi (3.141592). That is, volume (V) = L(pi)r². When measurements are obtained in meters, convert m³ to liters by multiplying by 1,000. When measurements are obtained in feet, convert ft.³ to gallons by multiplying by 7.48 gal./ft.³. The contractor is required to furnish the manufacturer's data for nonstandard tanks. The contractor should not be permitted to allow the level of the asphalt cement to drop below the level of the heating coils, because accurate measurements cannot be made when the cross section of the storage area varies.

Enter the tank capacity in gallons (liters) for each tank being used each day of production.

OUTAGE (PERCENT OF DIAMETER) (B)

The number entered in this row is obtained from the actual tank measurement using the calibrated stick provided for each tank. The measurement is made by placing the stick through the designated tank hatch down to the level of the stored material. The percent outage is read from the stick at the reference elevation, which is normally the inside shell wall. The reference elevation can be checked by placing the stick at the full elevation and checking to see that the zero percentage line and the top of the tank coincide. When the tank shell is full, the outage percentage is zero, and when the tank is empty the outage is 100%.

When non-standard tanks are used, the manufacturer's tables, measuring sticks, and instructions must be followed.

Enter the outage tank stick reading for each tank when the T104 tables are used. If a direct reading measurement is made for a tank stick reading, leave this row blank.

INNAGE (PERCENT OF CAPACITY) (C)

Enter the FILLED PERCENT OF CAPACITY figure from the T104 tables, which coincides with the Outage (Percent of Diameter) (B) figure listed above for each tank used. If a direct reading measurement is made for a tank stick reading, leave this row blank. Refer to the manufacturer tables for non-standard tanks.

DIRECT READING (D)

Enter the direct reading measurement figure that is calculated for each tank being used. If you do not use a direct reading tank measurement stick, leave this row blank.

TEMPERATURE (E)

The temperature of the asphalt binder in each tank must be determined at the time the measurements are made. This is done by lowering a maximum registering thermometer to the approximate center of the asphalt cement stored. The thermometer must be shook down to a temperature less than that of the asphalt cement in the storage tank and must be allowed to adjust to the temperature of the stored material. From 3 to 5 minutes should be allowed for this adjustment. Thermometers mounted permanently in the storage tanks by the manufacturers may be used if they agree with the thermometers checked by the Central Laboratory.

Enter the Fahrenheit (Celsius) temperature at the time each tank is measured.

T102 TEMPERATURE CORRECTION FACTOR (F)

The volume of asphalt in the tank at the time of measurement must be corrected to 60°F (15°C). Refer to tables T102 or T103 to obtain the appropriate four-digit correction factor which corresponds to the Celsius (Fahrenheit) temperature recorded for each tank used.

CORRECTED GALLONS (LITERS) (G)

Enter the corrected gallons (liters) at 60°F (15°C) for each tank being used by multiplying rows A, C, & F or D & F, depending on which method is used to measure the asphalt. Divide result by 100 when C is expressed as a whole number percent. This is the standard temperature at which pay quantities are determined.

TOTAL CORRECTED GALLONS (LITERS) (H)

Enter the total corrected gallons (liters) by adding the corrected gallons (liters) figures for each tank being used.

TOTAL ASPHALT BINDER ADDED

TOTAL POUNDS (KILOGRAMS) (I)

This space provides for entering the total quantity of asphalt added during the production run. Care must be exercised to ensure that weight (mass) tickets are obtained for each load placed in the storage tank during the production run. Each shipment ticket should be logged in the plant book, with the appropriate date and unloading time. The weight (mass) is converted to corrected gallons (liters) at 60°F (15°C) by dividing by the weight (mass) per gallons (liters) coefficient provided by the supplier. Quantities added shall be certified or determined at the job site.

Enter the total pounds (kilograms) added to each tank being used.

WEIGHT (MASS) PER GALLON (LITER) (J)

The asphalt binder supplier provides the average weight (mass) per gallon (liter). If asphalt binder from different sources has been used during the production run, it is necessary to compute a weighted average weight (mass) per gallon (liter) for the total quantity used. If emulsified asphalt or cutback asphalt is being used, it is necessary to reduce the mass of the diluted material to asphalt residue. The quantity of asphalt residue incorporated is determined by multiplying the total mass of emulsion or cutback by the percent residue value furnished by the supplier.

Enter the weight (mass) per gallon (liter) listed on the shipment tickets. The weight (mass) per gallon (liter) cannot change on a given day of production.

TOTAL CORRECTED GALLONS (LITERS) (K)

Enter the total corrected gallons (liters) added during the day by adding the (I) row figures together and dividing by the (J) figure.

END OF PERIOD

TIME

Enter the ending time for each tank that is measured each day of production.

TANK CAPACITY (L)

Enter the tank capacity in gallons (liters) for each tank being used each day of production.

OUTAGE (PERCENT OF DIAMETER) (M)

Enter the outage tank stick reading for each tank when the T104 tables are used. If a direct reading measurement is made for a tank stick reading, leave this row blank.

INNAGE (PERCENT OF CAPACITY) (N)

Enter the FILLED PERCENT OF CAPACITY figure from the T104 tables which coincides with the Outage (Percent of Diameter) (B) figure listed above for each tank used. If a direct reading measurement is made for a tank stick reading, leave this row blank.

DIRECT READING (O)

Enter the direct reading measurement figure that is calculated for each tank being used. If you do not use a direct reading tank measurement stick, leave this row blank.

TEMPERATURE (P)

Enter the Fahrenheit (Celsius) temperature at the time each tank is measured.

T102 TEMPERATURE CORRECTION FACTOR (Q)

The volume of asphalt in the tank at the time of measurement must be corrected to 60°F (15°C). Refer to tables T102 or T103 to obtain the appropriate four-digit correction factor which corresponds to the Fahrenheit (Celsius) temperature recorded for each tank used.

Matls. IM 509

CORRECTED GALLONS (LITERS) (R)

Enter the corrected gallons (liters) at 60°F (15°C) for each tank being used by multiplying rows L, N, & Q or O & Q, depending which method is used to measure the AC. Divide result by 100 when C is expressed as a whole number percent. This is the standard temperature at which pay quantities are determined.

TOTAL CORRECTED GALLONS (LITERS) (S)

Enter the total corrected gallons (liters) by adding the corrected gallons (liters) figures for each tank being used.

CALCULATIONS

TOTAL CORRECTED GALLONS (LITERS) USED (T)

Enter the total corrected gallons (liters) used each day of production by adding (H) and (K), then subtracting (S).

WEIGHT (MASS) PER GALLON (LITER) (U)

Enter the four-digit figure listed in the (J) row from above.

TOTAL POUNDS (KILOGRAMS) OF BINDER USED (V)

This number is obtained by multiplying (T) by (U).

TOTAL POUNDS (KILOGRAMS) OF MIX PRODUCED (W)

Enter the total pounds (kilograms) of mix produced by the plant each day.

The total pounds (kilograms) of mixture are determined by adding the net weight (mass) of all the scale tickets. This total includes all mixture produced, including rejected, wasted, or commercial loads. Mixtures, such as cold mixes, which contain moisture, must be corrected for the moisture content.

TOTAL POUNDS (KILOGRAMS) OF MIX WASTED (X)

Enter the total pounds (kilograms) of mix wasted during the day. This figure includes road waste, plant waste and other mix, which was wasted, sold rejected or otherwise disposed of. All mix so wasted should be weighed, if at all possible. It may be necessary to estimate small quantities of waste in some cases.

TOTAL POUNDS (KILOGRAMS OF BINDER WASTED (Y)

This number is determined by multiplying the percent asphalt (Z) by the total pounds of mix wasted (X). This quantity will not be included in the project pay quantity total.

NET TONS (MEGAGRAMS) OF ASPHALT BINDER INCORPORATED IN THE PROJECT

This is the net quantity of asphalt binder for which the contractor is eligible to receive pay.

This number is obtained by subtracting (Y) from (V) and then dividing by 1000 for Megagrams or 2000 for Tons. THIS FIGURE SHALL BE GIVEN TO THE ROAD INSPECTOR EACH DAY.

NET TONS (MEGAGRAMS) OF MIX INCORPORATED IN THE PROJECT

This number is obtained by subtracting (X) from (W) and then dividing by 2000 for Tons or 1000 for Megagrams. This is the net quantity eligible for payment. **THIS FIGURE SHALL CORRELATE WITH THE ROAD FIGURE EACH DAY.**

PERCENT VIRGIN ASPHALT BINDER, BY TANK MEASUREMENT (Z)

This percent virgin binder is obtained by dividing (V) by (W) and multiplying by 100.

This percentage is obtained by dividing the total net pounds (kilograms) of asphalt binder incorporated (V) by the total net pounds (kilograms) of mix produced (W). The plant inspector is, at this point, directed to refer to appropriate specifications to determine if this percentage is within the allowable tolerance.

COMMENTS

Self-explanatory:

ALL COMPUTATIONS SHOULD BE CHECKED THOROUGHLY AND PROMPTLY; ANY CORRECTIONS SHOULD BE REPORTED TO THE CONTRACTOR AND RECORDED ON THE DAILY REPORT FORMS. UPON COMPLETION OF THE PROJECT THE COMPLETED FORM SHALL BE INCORPORATED IN THE RESIDENT OR COUNTY ENGINEER PROJECT FILE.

Matls. IM 509

Rev 11/07	DAILY			IDEMENT SUCCE	Form E21
Proi	ect No.:		T BINDER TANK MEASU	Date:	
	ract ID.:	-		Report No.:	
		_	Star	t Of Bariad	
	Tank	Nex	Star	t Of Period	
		No.:			
	Tank Capacity (Gallons)	Time:			
	Outage (% of Diameter)				
	T-104 Innage (% of Capacity)				
	Direct Reading (Gallons)		-		
	Temp. °F		-		
	T-102 Temp. Corr. Factor				
Corre	cted Gallons = (A*C/100*F)or(D*F)				
Tota	I Corrected Gallons = (G+G+G+G)	(H):			
			Total Asph	alt Binder Added	
	Total Pounds	(1).			
	Weight Per Gallon				-
Т	otal Corrected Gallons = (I+I+I+I/J)				
			End	Of Period	
	т	ime:			
	Tank Capacity (Gallons)				
	Outage (% of Diameter)				
	T-104 Innage (% of Capacity)				-
	Direct Reading (Gallons)				
	Temp. °F				
	T-102 Temp. Corr. Factor				
Correc	ted Gallons = $(L^*N/100^*Q)or(O^*Q)$	(R):			
Tota	al Corrected Gallons = (R+R+R+R)	(S):			
			·		
		Calcula			
Total C	Corrected Gallons Used = (H+K-S)				
	Average Weight Per Gallon				
Tota	I Pounds Of Binder Used = (T*U)				
	Total Pounds Of Mix Made	(W):			
	Total Pounds Of Mix Wasted	(X):			
	Of Binder Wasted = (X*Z / 100)				
Net Tons Of E	Binder Used On Road = ((V-Y) / 20	00):			
	f Mix Used On Road = ((W-X) / 20				
Percent Virgin Bind	der by Tank Stick = ((V / W) * 100)	(Z):			
Com	ments:				
COM	ments:				

Rev 11/07					Form E21
		VIRGIN	ASPHALT BINDER	TANK MEASUREMENT SHEET	0/0/000
	Project No.: NHSN-63-9(19)2R-45			Date: _	9/8/200
	Contract ID.: 45-0639-019	_		Report No.: _	
				Start Of Period	
	Tank	No.:	1		
	т	ime:	6:47 AM		
	Tank Capacity (Gallons)	(A):	25,000		
	Outage (% of Diameter)	(B):	15.6		
	T-104 Innage (% of Capacity)	(C):	90.0440		
	Direct Reading (Gallons)	(D):	1		
	Temp. °F	(E):	300		
	T-102 Temp. Corr. Factor	(F):	0.9187		-
	Corrected Gallons = (A*C/100*F)or(D*F)	(G):	20,681		
	Total Corrected Gallons = (G+G+G+G)	(H):	20,681		
				Total Asphalt Binder Added	
	Total Pounds	(1):	103,066		
	Weight Per Gallon	(J):	8.5641		
	Total Corrected Gallons = (I+I+I+I/J)	(K):	12,035		
				End Of Period	
	1	ime:	6:58 PM		
	Tank Capacity (Gallons)	E F	25,000		
	Outage (% of Diameter)	-	69.4		
	T-104 Innage (% of Capacity)		25.9350		
	Direct Reading (Gallons)				
	Temp. °F	(P):	295		
	T-102 Temp. Corr. Factor	(Q):	0.9204		
	Corrected Gallons = (L*N/100*Q)or(O*Q)	(R):	5,968		
	Total Corrected Gallons = (R+R+R+R)	(S):	5,968		
			Calculations		
	Total Corrected Gallons Used = (H+K-S)	(T):	26,748		
	Average Weight Per Gallon	(U):	8.5641		
	Total Pounds Of Binder Used = (T*U)	(V):	229,073		
	Total Pounds Of Mix Made	(W):	4,001,650		
	Total Pounds Of Mix Wasted	(X):			
Total I	Pounds Of Binder Wasted = $(X^*Z / 100)$				
	ons Of Binder Used On Road = ((V-Y) / 20		114.54		
	Tons Of Mix Used On Road = ((W-X)/20				
	rgin Binder by Tank Stick = ((V / W) * 100)		5.72		
	Comments: Example using T-104 Tab	les			

9

					Form E21
		ASPHALT BINDER	TANK MEASUREN		
	Project No.: NHSN-63-9(19)2R-45			Date:	9/8/200
	Contract ID.: 45-0639-019			Report No.:	
			Start Of	Period	
	Tank No.:	1	2		
	Time:	6:47 AM	10:05 AM		
	Tank Capacity (Gallons) (A):	25,000	25,000		
	Outage (% of Diameter) (B):				
	T-104 Innage (% of Capacity) (C):			(C) ()	
	Direct Reading (Gallons) (D):	23,450	21,075		
	Temp. °F (E):	300	300		
	T-102 Temp. Corr. Factor (F):	0.9187	0.9187		
	Corrected Gallons = (A*C/100*F)or(D*F) (G):	21,544	19,362		
	Total Corrected Gallons = (G+G+G+G) (H):	40,906			
			Total Asphalt	Binder Added	
	Total Pounds (I):	103,066			
	Weight Per Gallon (J):	8.5641	1.2		
	Total Corrected Gallons = (I+I+I+I/J) (K):	12,035			
			End Of	Period	
	Time:	6:58 PM	2:25 PM		
	Time: Tank Capacity (Gallons) (L):	6:58 PM 25,000	2:25 PM 25,000		
	Tank Capacity (Gallons) (L):				
	Tank Capacity (Gallons) (L): Outage (% of Diameter) (M):				
	Tank Capacity (Gallons) (L): Outage (% of Diameter) (M): T-104 Innage (% of Capacity) (N):	25,000	25,000		
	Tank Capacity (Gallons) (L): Outage (% of Diameter) (M): T-104 Innage (% of Capacity) (N): Direct Reading (Gallons) (O):	25,000 9,750	25,000 23,560		
	Tank Capacity (Gallons) (L): Outage (% of Diameter) (M): T-104 Innage (% of Capacity) (N): Direct Reading (Gallons) (O): Temp. °F (P):	25,000 9,750 295	25,000 23,560 300		
	Tank Capacity (Gallons) (L): Outage (% of Diameter) (M): T-104 Innage (% of Capacity) (N): Direct Reading (Gallons) (O): Temp. °F (P): T-102 Temp. Corr. Factor (Q):	25,000 9,750 295 0.9204	25,000 23,560 300 0.9187		
	Tank Capacity (Gallons) (L): Outage (% of Diameter) (M): T-104 Innage (% of Capacity) (N): Direct Reading (Gallons) (O): Temp. °F (P): T-102 Temp. Corr. Factor (Q): Corrected Gallons = (L*N/100*Q)or(O*Q) (R): Total Corrected Gallons = (R+R+R+R) (S):	25,000 9,750 295 0.9204 8,974 30,619	25,000 23,560 300 0.9187		
	Tank Capacity (Gallons) (L): Outage (% of Diameter) (M): T-104 Innage (% of Capacity) (N): Direct Reading (Gallons) (O): Temp. °F (P): T-102 Temp. Corr. Factor (Q): Corrected Gallons = (L*N/100*Q)or(O*Q) (R): Total Corrected Gallons = (R+R+R+R) (S):	25,000 9,750 295 0.9204 8,974 30,619 Calculations	25,000 23,560 300 0.9187		
	Tank Capacity (Gallons) (L): Outage (% of Diameter) (M): T-104 Innage (% of Capacity) (N): Direct Reading (Gallons) (O): Temp. °F (P): T-102 Temp. Corr. Factor (Q): Corrected Gallons = (L*N/100*Q)or(O*Q) (R): Total Corrected Gallons = (R+R+R+R) (S): Total Corrected Gallons Used = (H+K-S) (T):	25,000 9,750 295 0.9204 8,974 30,619 Calculations 22,322	25,000 23,560 300 0.9187		
	Tank Capacity (Gallons) (L):Outage (% of Diameter) (M):T-104 Innage (% of Capacity) (N):Direct Reading (Gallons) (O):Temp. °F (P):T-102 Temp. Corr. Factor (Q):Corrected Gallons = (L*N/100*Q)or(O*Q) (R):Total Corrected Gallons = (R+R+R+R) (S):Total Corrected Gallons Used = (H+K-S) (T):Average Weight Per Gallon (U):	25,000 9,750 295 0.9204 8,974 30,619 Calculations 22,322 8.5641	25,000 23,560 300 0.9187		
	Tank Capacity (Gallons)(L):Outage (% of Diameter)(M):T-104 Innage (% of Capacity)(N):Direct Reading (Gallons)(O):Temp. °F(P):T-102 Temp. Corr. Factor(Q):Corrected Gallons = (L*N/100*Q)or(O*Q)(R):Total Corrected Gallons = (R+R+R+R)(S):Total Corrected Gallons Used = (H+K-S)(T):Average Weight Per Gallon(U):Total Pounds Of Binder Used = (T*U)(V):	25,000 9,750 295 0.9204 8,974 30,619 Calculations 22,322 8.5641 191,168	25,000 23,560 300 0.9187		
	Tank Capacity (Gallons) (L):Outage (% of Diameter) (M):T-104 Innage (% of Capacity) (N):Direct Reading (Gallons) (O):Temp. °F (P):T-102 Temp. Corr. Factor (Q):Corrected Gallons = (L*N/100*Q)or(O*Q) (R):Total Corrected Gallons = (R+R+R+R) (S):Total Corrected Gallons Used = (H+K-S) (T):Average Weight Per Gallon (U):Total Pounds Of Binder Used = (T*U) (V):Total Pounds Of Mix Made (W):	25,000 9,750 295 0.9204 8,974 30,619 Calculations 22,322 8.5641 191,168 3,207,523	25,000 23,560 300 0.9187		
	Tank Capacity (Gallons)(L):Outage (% of Diameter)(M):T-104 Innage (% of Capacity)(N):Direct Reading (Gallons)(O):Temp. °F(P):T-102 Temp. Corr. Factor(Q):Corrected Gallons = (L*N/100*Q)or(O*Q)(R):Total Corrected Gallons = (R+R+R+R)(S):Total Corrected Gallons Used = (H+K-S)(T):Average Weight Per Gallon(U):Total Pounds Of Binder Used = (T*U)(V):	25,000 9,750 295 0.9204 8,974 30,619 Calculations 22,322 8.5641 191,168	25,000 23,560 300 0.9187		
Tota	Tank Capacity (Gallons) (L):Outage (% of Diameter) (M):T-104 Innage (% of Capacity) (N):Direct Reading (Gallons) (O):Temp. °F (P):T-102 Temp. Corr. Factor (Q):Corrected Gallons = (L*N/100*Q)or(O*Q) (R):Total Corrected Gallons = (R+R+R+R) (S):Total Corrected Gallons Used = (H+K-S) (T):Average Weight Per Gallon (U):Total Pounds Of Binder Used = (T*U) (V):Total Pounds Of Mix Made (W):	25,000 9,750 295 0.9204 8,974 30,619 Calculations 22,322 8.5641 191,168 3,207,523	25,000 23,560 300 0.9187		
	Tank Capacity (Gallons) (L):Outage (% of Diameter) (M):T-104 Innage (% of Capacity) (N):Direct Reading (Gallons) (O):Direct Reading (Gallons) (O):Temp. °F (P):T-102 Temp. Corr. Factor (Q):Corrected Gallons = (L*N/100*Q)or(O*Q) (R):Total Corrected Gallons = (R+R+R+R) (S):Total Corrected Gallons Used = (H+K-S) (T):Average Weight Per Gallon (U):Total Pounds Of Binder Used = (T*U) (V):Total Pounds Of Mix Made (W):Total Pounds Of Mix Wasted (X):	25,000 9,750 295 0.9204 8,974 30,619 Calculations 22,322 8.5641 191,168 3,207,523 10,000	25,000 23,560 300 0.9187		
Net	Tank Capacity (Gallons) (L):Outage (% of Diameter) (M):T-104 Innage (% of Capacity) (N):Direct Reading (Gallons) (O):Temp. °F (P):T-102 Temp. Corr. Factor (Q):Total Corrected Gallons = (L*N/100*Q)or(O*Q) (R):Total Corrected Gallons = (R+R+R+R) (S):Total Corrected Gallons Used = (H+K-S) (T):Average Weight Per Gallon (U):Total Pounds Of Binder Used = (T*U) (V):Total Pounds Of Mix Made (W):Total Pounds Of Mix Wasted (X):I Pounds Of Binder Wasted = (X*Z / 100) (Y):	25,000 9,750 295 0.9204 8,974 30,619 Calculations 22,322 8.5641 191,168 3,207,523 10,000 596	25,000 23,560 300 0.9187		

Comments: Example using Direct Reading

Matls. IM 509

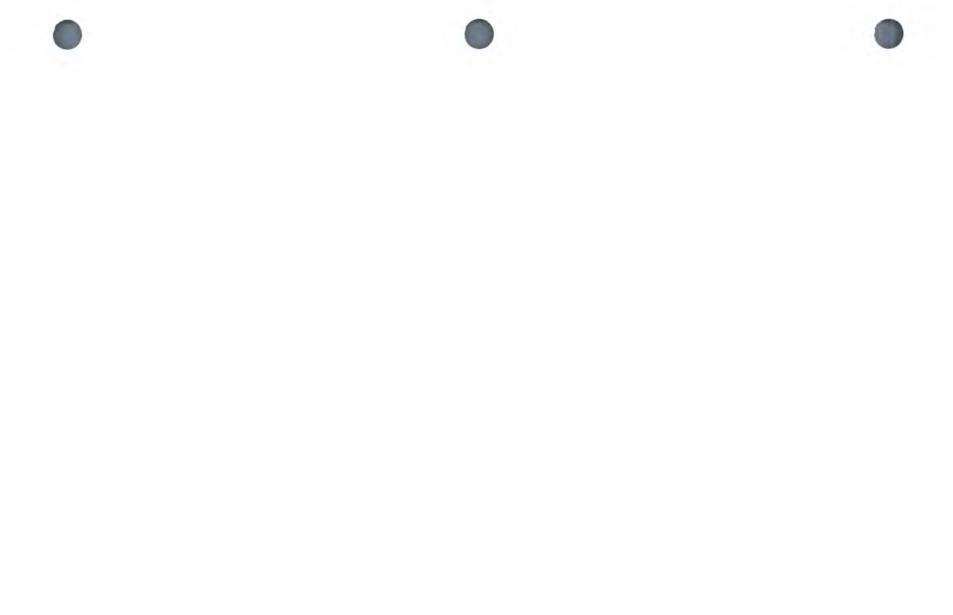
Project No.:			Date Report No.	
			Report No	
		Start C	f Period	
Tank No.:				
Time:				
Tank Capacity (Liters) (A):				
Outage (% of Diameter) (B):				
T-104 Innage (% of Capacity) (C):				
Direct Reading (Liters) (D):				
Temp. *C (E):				
T-102 Temp. Corr. Factor (F): Corrected Liters (G)= (A*C*F)or(D*F):				
			1	1
Total Corrected Liters (H)= (G+G+G+G):		Total A	C Added	
-		TOLAT A	C Added	
Total Kilograms (I):				
Mass Per Liter (J):				
Total Corrected Liters (K)= (I+I+I+I/J):				
		End O	f Period	
Tank Capacity (Liters) (L):			1	
Outage (% of Diameter) (M):				
T-104 Innage (% of Capacity) (N):				
Direct Reading (Liters) (O):			1	-1
Temp. °C (P): T-102 Temp. Corr. Factor (Q):				
Corrected Liters (R)= (L*N*Q)or(O*Q):	1		1	
Total Corrected Liters (S)= (R+R+R+R):				
	Calculations			
Total Corrected Liters Used (T)= (H+K-S):				
Mass Per Liter (U):				
Total Kilograms Of AC Used (V)= (T*U):				
Total Kilograms Of Mix Made (W):				
Total Kilograms Of Mix Wasted (X):				
Total Kilograms Of AC Wasted (Y)= (X*Z):				
Net Mg. Of AC Used On Road = ((V-Y) / 1000):	C. and the second se			
Net Mg. Of Mix Used On Road = ((W-X) / 1000):				
rcent Virgin AC by Tank Stick (Z)= ((V / W) * 100):				
Comments:				

			Form I
	VIRGIN AC TANK ME	EASUREMENT SHEET	
Project No.: NHSN-63-9(19)-2R-45		Date:	09/09/96
Contract ID.: 45-0639-019		Report No.:	1
		Start Of Period	
Tank No.:	1		
Time:	06:30		
Tank Capacity (Liters) (A):	94,635		
Outage (% of Diameter) (B):	10.0		
T-104 Innage (% of Capacity) (C):	94.7960		
Direct Reading (Liters) (D):			
Temp. °C (E):	149		
T-102 Temp. Corr. Factor (F):	0.9183		
Corrected Liters (G)= (A*C*F)or(D*F):	82,381		
Total Corrected Liters (H)= (G+G+G+G):	82,381		
-		Total AC Added	
Total Kilograms (I):	46,750		
Mass Per Liter (J):	1.0262		
Total Corrected Liters (K)= (I+I+I+I/J):	45,556		
The second second second second		End Of Period	
Time:	06:35		j
Tank Capacity (Liters) (L):	94,635		
Outage (% of Diameter) (M):	80.0		
T-104 Innage (% of Capacity) (N):	14.2380	1	4 1
Direct Reading (Liters) (O):			
Temp. °C (P):	149	4	1
T-102 Temp. Corr. Factor (Q):	0.9183		1
Corrected Liters (R)= (L*N*Q)or(O*Q):	12,373		3
Total Corrected Liters (S)= (R+R+R+R):	12,373		

Calculations

	Total Corrected Liters Used (T)= (H+K-S):	115,564
	Mass Per Liter (U):	1.0262
	Total Kilograms Of AC Used (V)= (T*U):	118,592
	Total Kilograms Of Mix Made (W):	2,014,080
	Total Kilograms Of Mix Wasted (X):	12,000
	Total Kilograms Of AC Wasted (Y)= (X*Z):	707
	Net Mg. Of AC Used On Road = ((V-Y) / 1000):	117.89
	Net Mg. Of Mix Used On Road = ((W-X) / 1000):	2,002.08
1	Percent Virgin AC by Tank Stick (Z)= ((V / W) * 100):	5.89

Comments: Example using T-104 tables.


DAILY	IRGIN AC TANK ME	ASUREMENT S	HEET	
Project No .: NHSN-63-9(19)-2R-45			Date:	09/09/96
Contract ID.: 45-0639-019	Rep			1
		Start C	f Period	
Tank No.:	1	2		
Time:	06:30	08:00		
Tank Capacity (Liters) (A):	94,635	94,635		
Outage (% of Diameter) (B):				
T-104 Innage (% of Capacity) (C):				
Direct Reading (Liters) (D):	34,629	74,898		
Temp. °C (E):	149	149		
T-102 Temp. Corr. Factor (F):	0.9183	0.9183		
Corrected Liters (G)= (A*C*F)or(D*F):	31,800	68,779		
Total Corrected Liters (H)= (G+G+G+G):	100,579			
		Total A	C Added	
Total Kilograms (I):	116,782			
Mass Per Liter (J):	1.0262			
Total Corrected Liters (K)= (I+I+I+I/J):	113,800			
12 TO CLARKER TO T		End C	f Period	
Time:	06:35	05:00		
Tank Capacity (Liters) (L):	94,635	94,635		
Outage (% of Diameter) (M):			1	
T-104 Innage (% of Capacity) (N):	- 1			
Direct Reading (Liters) (O):	53,016	59,105		
Temp. °C (P):	149	149	1	
T-102 Temp. Corr. Factor (Q):	0.9183	0.9183	1	
Corrected Liters (R)= (L*N*Q)or(O*Q):	48,685	54,276		
Total Corrected Liters (S)= (R+R+R+R):	102,961			
	Calculations			
Total Corrected Liters Used (T)= (H+K-S):				
Mass Per Liter (U):				
mass for Endi (O).	1.0202			

1.0262	Mass Per Liter (U):
114,337	Total Kilograms Of AC Used (V)= (T*U):
2,014,080	Total Kilograms Of Mix Made (W):
12,000	Total Kilograms Of Mix Wasted (X):
682	Total Kilograms Of AC Wasted (Y)= (X*Z):
113.66	Net Mg. Of AC Used On Road = ((V-Y) / 1000):
2,002.08	Net Mg. Of Mix Used On Road = ((W-X) / 1000):
5.68	Percent Virgin AC by Tank Stick (Z)= ((V / W) * 100):

Comments: Example using Direct Reading.

Iowa Department of Transportation

Office of Materials

April 15, 2008 Supersedes October 18, 2005 Matls. IM 510

METHOD OF DESIGN OF HOT MIX ASPHALT MIXES

SCOPE

The design of hot mix asphalt mixes involves determining an economical blend of aggregates that provides a combined gradation within the limits of the specifications and a determination of the percent of asphalt binder to mix with the aggregate blend, which provides a mix, which meets volumetric specifications. Trial mixes prepared with different binder contents are tested for mix properties and the results are analyzed to select the binder content that is judged to be most satisfactory for the intended use of the mix.

This IM will cover the sample preparation procedure, aggregate blend selection, binder content selection and the evaluation of the test results. Individual test method IMs are referenced for measuring the properties of individual mixes.

<u>NOTE</u>: The aggregate variable and asphalt binder variable blends are important tools needed by the production control technician for field adjustment of the Job Mix Formula (JMF).

Appendix A of this IM contains the criteria for Gyratory mix design.

REFERENCED DOCUMENTS:

Standard Specification 4127 Type A & B Aggregate for Hot Mix Asphalt

AASHTO R-35 Practice for Superpave Volumetric Design for Hot Mix Asphalt (HMA)

- AASHTO T283 Resistance of Compacted Bituminous Mixtures to Moisture Induced Damage IM 302 Sieve Analysis of Aggregates
- IM 306 Determining the Amount of Material Finer than the #200 (75 µm) Sieve in Aggregate
- IM 336 Reducing Aggregate Field Samples to Test Samples
- IM 321 Compacted Density of Hot Mix Asphalt (HMA)(Displacement)
- IM 325G Determining the Density of Hot Mix Asphalt (HMA) Using the Superpave Gyratory Compactor (SGC)
- IM 350 Determining Maximum Specific Gravity of Hot Mix Asphalt (HMA) Mixtures
- IM 357 Preparation of Hot Mix Asphalt (HMA) Mix Samples for Test Specimens
- IM 369 Determining Specific Gravity of Asphalt Binder
- IM 380 Vacuum-Saturated Specific Gravity & Absorption of Combined or Individual Aggregate Sources
- IM 501 Asphaltic Terminology, Equations & Example Calculations
- IM 511 Control of Hot Mix Asphalt Mixtures

APPARATUS

- Thermometers: Armored-glass, dial type or digital thermometer with metal stems is recommended. A range of 50° to 400°F (10° to 200°C) with graduations of 5°F (2°C) is required.
- Balances: 20,000-gram capacity, 0.1 gram resolution for mix design and production testing.
- Forced Draft Oven, 350°F (177°C) minimum with controls sensitive to ± 5°F (3°C), minimum size, 7 cu. ft. for production testing or mix design.

<u>NOTE</u>: Experience has shown that a 15 cu. ft. or larger oven may be desirable.

- Mixer: Hobart 19 liters with Dough Hook, Model A-200 for Mix Design.
- Safety equipment: insulated gloves, long sleeves, apron, etc.
- Pans of sufficient size for splitting and curing of samples.

General Equipment:

Scoop or trowel for moving mixture.

PROCEDURE

A. MATERIALS SELECTION

The aggregate source properties shall comply with Standard Specifications 4126 and 4127.

The Contractor selects the aggregate and Recycled Asphalt Pavement (RAP) sources and the types and source of asphalt binder. Aggregate sources and types, individual gradations, crushed particle amount, aggregate friction type, binder grade, and other specific requirements should be checked prior to submitting materials and Form #820955 to the laboratory. The gradation of the combined aggregate submitted for trial mix testing shall meet the requirements of the Project Plans and Specifications.

The Contractor <u>must</u> notify the District Materials Engineer prior to sampling of the aggregate stockpiles and RAP. The Contractor should estimate, in cooperation with the producers, the tentative proportions and gradations of each of the materials. A stockpile of at least 500 tons (500 Mg), or project amount if less must be produced so that representative samples of the processed material can be obtained. The target gradation, for each source, to be reported on Form #820955 is the average gradation for the stockpile as determined by using the Quality Control and Monitor samples. Enter the target gradation for each source into the SHADES Mix Design program.

Representative RAP samples shall be sent into the laboratory designated by the Engineer for material classification (for State work this is the Central Materials Laboratory). The laboratory will report the results of the tests within 15 working days. The following information will be provided: Fine Aggregate Angularity, Extracted P_b, gradation, and specific gravity of aggregate. The % friction aggregate, % crushed, and types of aggregate will be provided if available.

If the anticipated percent of the total binder contributed by the RAP exceeds 20%, the designated binder grade will drop one step. (If a PG 64-22 was originally specified, PG 58-28 shall be used). If the anticipated RAP binder percent exceeds 30% of the total, the selection of the binder grade shall be based on testing performed by the Contracting Authority.

B. JOB MIX FORMULA (JMF)

The JMF together with the specifications provides the initial basis for setting up and starting the job.

To avoid possible delays in the approval of the JMF, the District Materials Engineer <u>should</u> be notified that the Contractor is preparing a JMF. The District Materials Engineer will normally review the complete trial JMF within five working days. The District Materials Engineer may approve a laboratory mix design outside of the gradation control points, provided the plant produced mixture meets the specifications in all respects. It is expected that this would be considered only when the anticipated aggregate gradation is expected to result in a plant produced mixture within specifications.

C. MATERIAL PREPARATION

Approximately 250 lbs. (114 kilograms) of the combined aggregate will normally be required for the design work. If aggregate variable blends are to be tested prior to the asphalt variable design work, approximately 500 lbs. (228 kilograms) of aggregate may be necessary. This will allow enough material for the following:

1. Four mix samples of a minimum 13,000-gram batch.

<u>NOTE</u>: If a 2nd Rice sample is desired, a minimum of 14,000 grams is recommended.

- 2. One sample of each individual aggregate for vacuum saturated specific gravity and absorption (IM 380).
- Approximately 50 lbs. (23 kilograms) of material will be used for mix design verification when required.

To prepare the aggregate and RAP samples the following steps should be followed:

4. Obtain samples of each individual source material by following the procedure in IM 336. Perform a sieve analysis on each of the individual materials according to IM 302 and IM 306. Weigh the retained and passing portions of the aggregate, and calculate the percent retained on each sieve split by the following equation:

$$Z = \frac{X}{X + Y} \times 100$$

Where: "X" = weight of the retained portion, g

"Y" = weight of the passing portion, g

"Z" = percent of the total sample retained

- Aggregates and RAP must be air dried to a surface dried condition prior to further preparation.
- 6. Review aggregate gradations as indicated on Form# 820955. If the gradation result, for each individual aggregate, found in Step C.4 is within the production tolerance of the gradation indicated on Form #820955, an initial split is made by sieving on the screen size that will most nearly result in a 50-50 percent split. When the screen size selected for the initial split is coarser than the #4 sieve, additional splits shall be made on all sieves down to and including the #4 which retain at least 10% of the material. If the gradation result is outside the production tolerance of the gradation indicated on Form #820955, sieving on each sieve size down to an including the #8 sieve is performed. All sieving must be done to completion.

NOTE: Sieving on each sieve size down to and including the #8 sieve is always an option even if the gradation results found in Step C.4 are within the production tolerances.

- 7. In no case shall any sample or sample portion be split on a #16 or smaller size sieve.
- After sample splitting is complete, dry the individual portions of the aggregate for a minimum of 6 hours in an oven at a temperature of 275° ± 10°F (135° ± 6°C) or until the aggregates reach a constant weight when weighed at 30 minute intervals.

NOTE: RAP is not oven-dried.

9. When a mix designer suspects that the coarse aggregate portion contains excessive fines (dust coatings or clumps), an amount of correction should be established. The procedure used to determine the amount of correction required is found in Appendix B of this IM. 10. Prior to aggregate blend selection, the aggregate source properties, the bulk dry specific gravity and absorption of the individual aggregate samples as well as the specific gravity of the binder at 77°F (25°C) must be determined. In addition, the consensus properties of the individual aggregates may be determined to estimate the combined aggregate properties. Properties of RAP sources are as provided by the Contracting Authority.

<u>NOTE</u>: G_b at 77°F (25°C) may be obtained from certifying documents or test reports (IM 369). Certifying documents may report G_b at 60°F (15°C).

D. AGGREGATE BLEND SELECTION

This section explains the selection of an aggregate blend determined to be the most appropriate blend that will meet the design criteria. The mix designer may establish an aggregate blend based on past experience or by evaluating multiple blends. The shape of the gradation plotted on the 0.45 power gradation chart generally reflects the void space available for asphalt. Gradations that closely follow the maximum density line generally have minimal void space.

- 1. Select a minimum of three blends, which cover a broad range of aggregate properties (shape, texture, gradation, etc...).
- 2. Check the aggregate consensus properties of each blend as specified in Appendix A.
- 3. Select a trial asphalt binder content for each of the proposed blends by one of the five methods below. The asphalt binder used for trial mixes shall be of the same grade as indicated on Form #820955 and shall be from the same source when possible.
 - a. Experience
 - b. SHADES Mix Design Program
 - c. AASHTO R-35
 - d. Calculated surface area of the aggregate (See Note.)

NOTE: The asphalt film thickness obtained at a given binder content is related to the surface area and asphalt absorption of the aggregate. A higher surface area will generally, but not always, require a higher binder content.

e. The following table showing statewide averages

Mixture Size	Aggr. Type	1 inch	3/4 inch	1/2 inch	3/8 inch
Intermediate and Surface	A	4.75	5.50	6.00	6.00
Intermediate and Surface	В	5.25	5.75	6.00	6.25
Base	В	5.25	6.00	6.00	6.25

BASIC ASPHALT BINDER CONTENT, PERCENT

- 4. Check that the trial asphalt binder content selected for each aggregate blend could meet the film thickness and F/B ratio criteria as specified in Appendix A.
- 5. Use the procedure in the "Mixture Batching, Curing & Testing" section to batch, cure and test trial blends.
- 6. Evaluate the mixture properties of each trial blend as specified in Appendix A.

Mixes that meet the design criteria may proceed to asphalt binder variable design. Aggregate blend selection should take into consideration the source availability, ability to adjust field production and source cost.

E. ASPHALT BINDER CONTENT SELECTION

Trial mixes are prepared at a minimum of three different asphalt binder contents to assure close bracketing of the final recommended design binder content. Trial binder contents shall cover a minimum range of 1.0%. The final recommended binder content <u>must</u> be bracketed by trial binder contents within 1.0% above and below. Contractor prepared mix designs may require a mixture prepared at the recommended design binder content for DOT mix design verification.

NOTE: If a four-point design is desired, the trial binder contents shall cover a minimum range of 1.5%.

Select an initial trial asphalt binder content by one of the five methods below. The binder used for trial mixes shall be of the same grade as indicated on Form #820955 and shall be from the same source when possible.

- a. Experience
- b. SHADES Mix Design Program
- c. AASHTO R-35
- d. Calculated surface area of the aggregate (See Note.)

NOTE: The asphalt film thickness obtained at a given binder content is related to the surface area and asphalt absorption of the aggregate. A higher surface area will generally, but not always, require a higher binder content.

e. The basic asphalt binder content table from Step D.3

NOTE: To avoid wasted effort in the laboratory when using unfamiliar materials, the mix designer is encouraged to perform a single point analysis of the volumetric properties prior to performing the complete (multi point or bracketing) analysis. For the purposes of adjusting the trial binder content to the proper void level, the following general rule applies: A 0.2% change in asphalt binder content is approximately a 0.5% change in air voids.

F. MIXTURE BATCHING, CURING & TESTING

The following procedures should be used for the batching, curing and testing of mixes. These procedures are to be used for both the "aggregate blend selection" and "asphalt binder content selection" phases of mix design.

 Accurately batch the aggregates in the correct proportions to obtain the desired batch weight. The desired amount of RAP plus an additional 100 grams, to compensate for moisture loss, will be weighed in a separate pan. The individual aggregate split sample batch weight is determined by the following equation:

Split sample aggregate batch weight = (A)(B)(C)

- Where: A = total aggregate batch weight desired
 - B = individual aggregate in total aggregate batch weight, %
 - C = split portion of individual aggregate, %

NOTE: If RAP is included in the mix, the aggregate proportions must be adjusted for the purpose of determining the combined aggregate gradation and combined specific gravity. Use the formulas in IM 501.

2. Determine the amount of asphalt binder needed for each trial mix batch as follows:

Binder Weight = $\frac{(\text{aggregate batch weight}) \times (\text{Target } P_b)}{(100 - \text{Target } P_b)}$

<u>NOTE</u>: If RAP is included in the mix, the $P_{b \text{ (added)}}$ content must be determined. Use the formulas in IM 501.

 Separately heat the combined aggregate batch and binder to 275° ± 5°F (135° ± 3°C) as checked by a thermometer in the pan of aggregate. The mixing bowl and utensils shall also be heated before mixing operations begin. Always keep the mixing bowl buttered.

NOTE: It generally takes 4 hours to bring aggregates & binder to mixing temperature. RAP will be heated in a separate pan for a maximum of 2 hours to minimize binder aging.

- 4. Weigh the required amount of RAP into the mixing bowl; pour the heated aggregate into the bowl and dry mix for 15 seconds on speed 1. Stop mixer.
- 5. Add the required amount of binder and mix for 15 seconds on speed 1. Stop mixer, shift to speed 2 and continue to mix for 45 seconds. Stop mixer.
- 6. Lower the mixing bowl and clean the dough hook and the bottom and side of the bowl by scraping with a spatula. Incorporate any adhering mixture or binder back into the sample within 2 minutes from the start of the cleaning operation.
- 7. Raise the bowl and continue mixing for 15 seconds on speed 2. Then repeat Step F.6 and again stir any adhering mix or binder back into the sample with the spatula.
- 8. Break the samples down according to IM 357.
 - a. Take 2 samples of approximately 5000 gram each for gyratory compaction.
 - b. Take a sample of a minimum of 2000 gram for G_{mm} determination.
- 9. Spread the material into a pan such that the material is 1 to 2 in. (25 to 50 mm) thick.
- 10. Cure all samples for 2 hours at 275°F (135°C). 1 hour into curing, all samples are removed, thoroughly stirred and placed back into the oven for remainder of curing time.
- 11. Place approximately 4800 grams of material into the mold for gyratory specimens. Compact specimens at 275°F (135°C) per IM 325G.
 - If necessary, adjust the weight of the sample to achieve the required test specimen height.

Adjusted sample weight = $\frac{(trial sample weight)(intended height)}{trial sample height}$

- b. Adjust the weight of the sample 1.25% for every 1% change in binder content.
- 12. Test loose mix at each binder content for maximum specific gravity per IM 350.
- 13. Measure the density (G_{mb}) of the compacted specimens per IM 321.

G. MIXTURE PERFORMANCE EVALUATION

A binder content is selected that will produce percent air voids in the compacted specimens equal to the target air void value. The test data and calculated results at the selected binder content are compared to the criteria specified in Appendix A. Interpolation may be necessary. In addition, the mixture may be checked for moisture susceptibility using AASHTO T-283.

DOCUMENTATION

A copy of the SHADES computer file containing all the test data must be submitted to the DME for approval of the JMF. The signed individual materials report (Form #820955) and JMF report (Form #820956) (including economic justification when required) are required prior to starting the paving.

Distribution of the documents:

District Materials Engineer Project Engineer Contractor Central Materials Office

HOT MIX ASPHALT (HMA) DESIGN CRITERIA

Overview of the HMA Mixture Design Criteria Chart (Table 1)

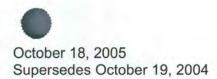
The HMA Mixture Criteria chart identifies the aggregate, mixture volumetric, and laboratory density requirements for mixtures designed under the gyratory mix design system. The chart is formatted to correspond with the bid item designations. The bid item designations classify each mixture by the maximum 20-year traffic load (ESAL), the intended pavement layer (surface, intermediate, base), the mixture size (based on nominal maximum aggregate size), and the surface layer friction requirement. A designation of "HMA 3M S ¹/₂ L-3" describes the HMA mixture for up to 3 million ESALs, surface layer, ¹/₂-inch mixture size, with level 3 friction aggregate.

The columns to the right of the mixture designations define the required level of compaction (N values) and the maximum or target density (expressed as percent of G_{mm}) associated with each level of compaction. Note that the required density of a given level of compaction varies for different traffic levels and pavement layers. For example, the 1M ESAL surface/intermediate 7-76-117 mixture requires 96 percent of G_{mm} (4.0% air voids) at N-design. The 7-76-117 base mixture for 3M ESALs requires 96.5 percent of G_{mm} (3.5% air voids) at N-design.

The middle columns identify the volumetric properties of the compacted HMA mixture when analyzed at the target air voids at N-design.

The aggregate properties are defined in the right columns. The quality of the aggregate (Type A or B) is further specified in Standard Specifications 4126 and 4127. The crush value specifies the minimum amount of crushed aggregate required. The Fine Aggregate Angularity and Sand Equivalent values are consensus properties of the fine aggregate portion of the mix. The friction columns specify the minimum amounts of friction quality coarse aggregate (Type 4, 3, 2) as defined in Materials IM T203. The details of the friction criteria are specified in Standard Specification 2303. Table Note 4 defines the allowable quantity of flat and elongated aggregate for all mixtures.

For any specified HMA mixture, the mix design criteria are found by reading across the table. The HMA mixtures are grouped by ESAL levels.


Gradation Requirements

The individual aggregate gradation requirements for HMA mix designers are contained on Form 955.

The combined aggregate shall meet the gradation requirements on Table 2.

VMA Requirements

The minimum VMA requirements are shown on Table 3.

HMA 100K S-I-B HMA 300K S-I	N _{ini} - N _{des} - N _{max}	Initial Design Maximum % G _{mm} % G _{mm} % G _{mm}	VFA	Film	Filler:	Type 4	Type 3	Type 2	Quality	Crush	gate ⁽³⁾ FAA	Sand				
HMA 300K S-I	7 00 104	(max) (target) (max)		Thickness	Binder	(min)	(min)	(min)	Туре	(min)	(min)	Equiv (min)				
HMA 300K S-I	7 - 68 - 104	92.5 - 97.0 - 98.5	75-85	8.0-13.0	0.6-1.4				B ⁽¹⁾	45 ⁽¹⁾		40				
	7 - 68 - 104	92.0 - 96.5 - 98.0	70-80	0.0.12.0	0.014			1.00	B ⁽¹⁾	15(1)		10				
HMA 300K B	7 - 68 - 104	92.5 - 97.0 - 98.5	75-85	8.0-13.0	0.6-1.4				Bui	45 ⁽¹⁾		40				
HMA 1M S L-4					- 2.4	50	-	1 - A	A ⁽¹⁾	60 ⁽¹⁾	40					
HMA 1M S	7 - 76 - 117	90.5 - 96.0 - 98.0	65-78						A	6017						
HMA 1M I			1	8.0-15.0	0.6-1.4		1000		B ⁽¹⁾	45 ⁽¹⁾		40				
HMA 1M B	7 - 68 - 104	92.0 - 96.5 - 98.0	70-80	0.0-15.0	0.0-1.4				B ⁽¹⁾	45 ⁽¹⁾		40				
HMA 1M B (shld pav sep)	7 - 68 - 104	92.0 - 97.0 - 98.0	75-85					-1.	B ⁽¹⁾	45 ⁽¹⁾						
HMA 3M S L-4				-		50										
HMA 3M S L-3			05 70	-78 8.0-15.0 0		80	45	(30)		75						
HMA 3M S	7 - 86 - 134	89.5 - 96.0 - 98.0	65-78		0.6-1.4		1.2		А		40	40				
HMA 3M I							1			60		1.000				
HMA 3M B	7 - 76 - 117	90.5 - 96.5 - 98.0	65-78			C	-		В	45		-				
HMA 10M S L-3	0 00 150		05.70		1	80	45	(30)		75	42					
HMA 10M I	8 - 96 - 152	89.0 - 96.0 - 98.0	65-78	8.0-15.0	8.0-15.0	8.0-15.0	8.0-15.0	8.0-15.0	0.6-1.4				A	75	43	45
HMA 10M B	7 - 86 - 134	89.5 - 96.0 - 98.0	65-78						В	75	40					
HMA 30M S L-3						80	45	(30)								
HMA 30M S L-2	8 - 109 - 174	89.0 - 96.0 - 98.0	65-75	8.0-15.0	0.6-1.4	80	1	25	Α	85	45					
HMA 30M I				8.0-15.0	0.0-1.4							45				
HMA 30M B	8 - 96 - 152	89.0 - 96.0 - 98.0	65-75						В	75	40					
HMA 100M S L-2	9 - 126 - 204	89.0 - 96.0 - 98.0	65-75			80		25		0.5	45					
HMA 100M I	9 - 120 - 204	89.0 - 96.0 - 98.0	05-75	8.0-15.0	0.6-1.4		-		A	85	45	50				
HMA 100M B	8 - 109 - 174	89.0 - 96.0 - 98.0	65-75			-	1.1		В	75	43					

Table 1 HMA MIXTURE DESIGN CRITERIA

			Table	2									
1	Agg	regate G	radation	Contro	Points								
100		Mix Size - Control Points (% passing)											
	1 inch (25 mm)		3/4 inch (19 mm)		1/2 inch (12.5 mm)		3/8 inch (9.5 mm)						
Sieve Size	min.	max.	min.	max.	min.	max.	min.	max.					
1 1/2 inch (37.5 mm)	100												
1 inch (25 mm)	90	100	100		1	1.1.1							
3/4 inch (19 mm)		90	90	100	100								
1/2 inch (12.5 mm)				90	90	100	100	1					
3/8 inch (9.5 mm)						90	90	100					
No. 4 (4.75 mm)								90					
No. 8 (2.36 mm)	19	45	23	49	28	58	32	67					
No. 16 (1.18 mm) ⁽¹⁾	3.2			28		32							
No. 30 (600 mm) ⁽²⁾				24		25		1					
No. 200 (75 mm)	1	7	2	8	2	10	2	10					

Та	b	e	2

(1) Only applies to surface and intermediate mixtures for HMA 30M and above.

(2) Only applies to surface and intermediate mixtures for HMA 10M.

Table 3

Minimum VMA Criteria ⁽¹⁾										
	Mix Size									
Mix Designation	1 inch (25 mm)	3/4 inch (19 mm)	1/2 inch (12.5 mm)	3/8 inch (9.5 mm)						
HMA 100K										
HMA 300K			1							
HMA 1M	12.0	13.0	14.0	15.0						
HMA 3M										
HMA 10M										
HMA 30M	11 5	10.5	125	14 5						
HMA 100M	11.5	12.5	13.5	14.5						

(1) Applies to all layers in the pavement structure (surface, intermediate and base).

****THIS IS A NEW APPENDIX - PLEASE READ CAREFULLY****

PROCEDURE FOR DETERMINING THE AGGREGATE CORRECTION FOR FINES ADHERING TO COARSE AGGREGATE

PROCEDURE

To compensate for the amount of fine material that adheres to the coarse portion, obtain a coarse aggregate sample of approximately 1000 grams.

Oven dry to a constant weight, weigh, and wash this sample over one size smaller sieve than on which it was initially split. Again dry the coarse portion to constant weight, and weigh. Determine the amount of correction required from the following equation:

$$C = \frac{(A - B)}{A} \times Z$$

Where:

"A" = oven dry sample weight before washing, g "B" = oven dry sample weight after washing, g

B – oven dry sample weight alter washing, g

"C" = % correction added to the % of total sample retained

"Z" = % of total sample retained (from A-4 of Material Preparation)

Round "C" to the nearest whole number and apply the correction to the sample Form #820955 gradation and split sample proportions as necessary when batching.

EXAMPLE

Check on the #8 sieve

X = 45.0 pounds retained Y = 32.5 pounds passing

Determine "Z" using the equation from Step A-9 of Materials Preparation.

$$Z = \frac{45.0}{45.0 + 32.5} \times 100$$

Z = 58.1% retained

A = 983 grams B = 967 grams

Determine "C"

$$C = \frac{(983 - 967)}{983} \times 58.1$$

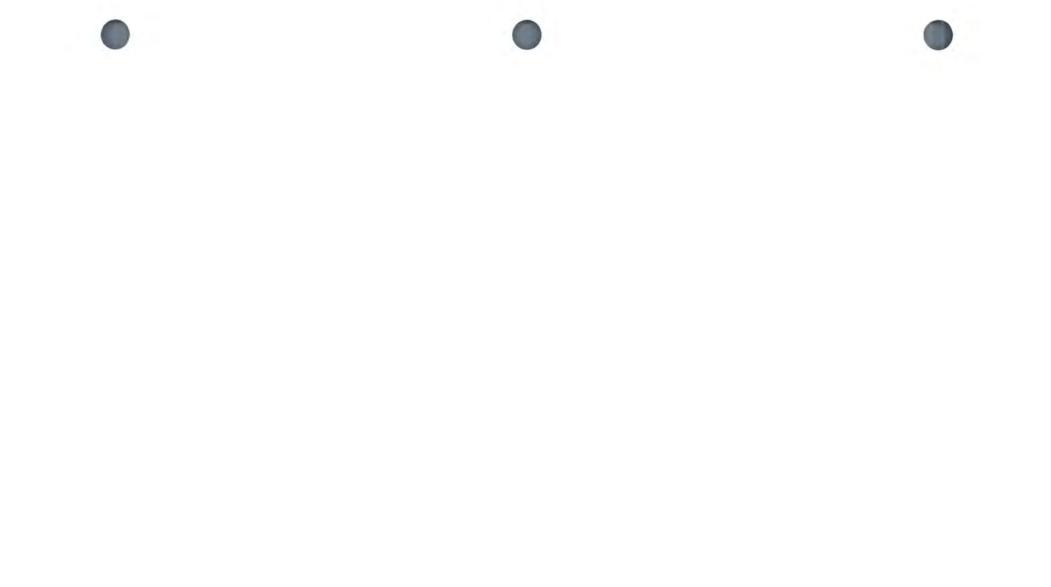
April 15, 2003 New Issue Matls. IM 510 Appendix B

C = 0.95%

This rounds off to 1.0%.

The sieve analysis shows the following gradation:

Sieve	% Passing
1"	100
3/4"	100
1/2"	99
3/8"	86
#4	61
#8	41
#16	20
#30	10
#50	6.2
#100	5.1
#200	4.6


The gradation indicates 59% retained on the #8 sieve.

59% retained on #8 + 1.0% correction equals 60% on #8 sieve.

To obtain the desired amount of coarse aggregate on the plus #8 sieve, the amount of the coarse portion would need to be increased while decreasing the fine portion accordingly.

lowa Department of Transportation

Office of Materials

April 15, 2008 Supersedes October 17, 2006 Matls. IM 511

CONTROL OF HOT MIX ASPHALT MIXTURES

SCOPE

This IM describes the Quality Control/Quality Assurance (QC/QA) procedures for monitoring and controlling plant-produced Hot Mix Asphalt (HMA) on Quality Management of Asphalt (QMA) projects. Because the plant-produced mixtures may not develop test characteristics that meet design criteria, each mixture shall be evaluated during plant production. The evaluation procedures outlined herein are to be carefully followed so that all mix characteristics will conform to the appropriate requirements.

REFERENCE DOCUMENTS

Standard Specification 2303 Hot Mix Asphalt

AASHTO R 9-90 Acceptance Sampling Plans for Highway Construction

- IM 204 Inspection of Construction Project Sampling & Testing
- IM 208 Materials Laboratory Qualification Program
- IM 216 Guidelines for Validating Test Results
- IM 301 Aggregate Sampling & Minimum Size of Samples for Sieve Analysis
- IM 302 Sieve Analysis of Aggregates
- IM 320 Method of Sampling Compacted Asphalt Mixtures
- IM 321 Method of Test for Compacted Density of Hot Mix Asphalt (HMA)(Displacement)
- IM 322 Sampling Uncompacted Hot Mix Asphalt
- IM 323 Method of Sampling Asphaltic Materials
- IM 325 Compacting Asphalt Concrete by the Marshall Method
- IM 325G Method of Test for Determining the Density of Hot Mix Asphalt (HMA) Using the Superpave Gyratory Compactor (SGC)
- IM 336 Reducing Aggregate Field Samples to Test Samples
- IM 337 Method to Determine Thickness of Completed Courses of Base, Subbase & Hot Mix Asphalt
- IM 338 Method of Test to Determine Asphalt Binder Content & Gradation of Hot Mix Asphalt (HMA) by the Ignition Method
- IM 350 Method of Test for Determining the Maximum Specific Gravity of Hot Mix Asphalt (HMA) Mixtures
- IM 357 Hot Mix Asphalt (HMA) Mix Sample for Test Specimens
- IM 510 Method of Design of Hot Mix Asphalt Mixes

RESPONSIBILITIES

Appendix A contains an outline of the responsibilities required for all parties.

The Table of Responsibility, in Appendix A, is broken up into two main categories, Quality Action and Type of Project. The Type of Project is further broken down into two sub-categories, Certified Plant Inspection (CPI) and QMA, and projects with small quantities. The Quality Action is subdivided into the types of work needing to be performed. These areas are General, Asphalt Binder, Aggregate, Loose Hot Mix, Compacted Hot Mix and Revisions. The table is organized in a way to represent how the work would progress during a Hot Mix Asphalt paving operation.

Each Quality Action identifies the group responsible for ensuring the desired action is performed. The groups are the Contractor (CONTR), Resident Construction Office/Project Engineer (RCE), District Materials Office (DME), and the Central Materials Office (CTRL).

In addition, there are certain levels of certification required to perform specific activities. Depending on the Quality Action, an individual might be required to be a HMA Sampler, Level I HMA, Level I AGG, or a Level II AGG Certified Technician.

SAMPLING & TESTING

Samples of the combined aggregate, asphalt binder, and plant-produced mixture are obtained in accordance with IM 204 and analyzed as soon as the operations of the plant stabilize.

Only the information obtained from random samples as directed and witnessed by the Engineer and validated by comparison to one or more of the paired samples tested by the Contracting Authority will be used for specification compliance and included in the moving averages. Additional samples of aggregate and loose hot mix asphalt may be taken to provide better quality control. The results of testing done on additional samples will be for informational purposes only. Any proposed changes in the quality control and verification sampling/testing frequencies require the approval of the District Materials Engineer.

All testing done by the Contractor that is used as part of the acceptance decision shall be performed in qualified labs by certified technicians. On all QMA projects, the Level I HMA-Certified Technician is responsible for making sure that all samples are obtained according to the applicable IMs. Samples of loose HMA and asphalt binder must be taken by someone with a minimum of a HMA Sampler Certification.

Samples taken for acceptance purposes shall be retained until the lot has been accepted.

A. ASPHALT BINDER

The procedure used in the sampling of asphalt binder is found in IM 323. AASHTO procedures are used in the testing of asphalt binder. The frequencies for taking asphalt binder samples are found in IM 204.

B. AGGREGATE

The procedure used in the sampling of aggregate is found in IM 301. The procedures used in the testing of aggregate are found in IM 336 and IM 302. The frequencies for taking aggregate samples are found in IM 204.

When results from one or more sieves of the specified gradation sample are outside the allowable gradation tolerances, the Engineer may direct and witness one additional aggregate sample or process one loose mix sample to include in the gradation acceptance decision.

C. LOOSE HOT MIX

The procedure used in the sampling of loose hot mix asphalt is found in IM 322. The procedures used in the testing of loose hot mix asphalt are found in IM 357, IM 350 IM 325G, and IM 338. The frequencies for taking loose hot mix asphalt samples are found in IM 204.

The first production sample <u>each day</u> shall be obtained within the first 500 tons (500 Mg) of mix produced. Subsequent daily samples will be obtained from the remaining daily production by dividing the anticipated production beyond the first 500 tons (500 Mg) into three sublots and randomly selecting a sampling point within each sub lot. When less than 2000 tons (2000 Mg) of mix is anticipated to be produced in a day, samples shall be obtained at a minimum rate of one per 750 tons (750 Mg), after the first 500 tons (500 Mg) is sampled. In both cases, samples shall not be taken within the first 100 tons (100 Mg) of production. The specific ton or truckload to begin sampling shall be determined by the Engineer using a <u>random number system</u>. The production samples shall be obtained as directed and witnessed by the Engineer.

The laboratory density, G_{mb} , of each production sample will be determined by averaging the densities of the compacted specimens. Two Gyratory specimens are compacted to the specified number of gyrations. The number of gyrations or blows is specified in the project documents.

Laboratory voids, P_a , for each production sample will be determined from the results of laboratory density and the corresponding individual Rice, G_{mm} , results. The moving average of lab voids will be determined by averaging the last four individual lab void values. A separate moving average will be established for each Job Mix Formula (JMF).

The calibration of the Rice pycnometer shall be checked at the beginning of a project and anytime that a correlation problem occurs.

D. COMPACTED HOT MIX

The procedure used in the sampling of compacted hot mix asphalt is found in IM 320. The procedures used in the testing of compacted hot mix asphalt are found in IM 321 and IM 337. The frequencies for taking compacted hot mix asphalt samples are found in IM 204.

The Engineer will provide inspection staff to direct and witness the sampling and perform density measurement during time agreed between the Engineer and the Contractor. The Engineer should make every effort to meet the Contractor's schedule. Results must be determined and reported within the period of time specified in this IM.

The Engineer will transport the cores in accordance with IM 320, or secure the cores for transport by the contractor. The Engineer and Contractor will determine that cores are not damaged. The Engineer will decide if a core is damaged prior to testing.

Field density will be based on the average of the seven density cores taken for each lot. The Quality Index (QI) for density will be determined using the field density compared to the average lab density obtained from samples, which correspond to the pavement from which the cores were taken. Field voids will be determined using the field density and the average of the Rice test results of production samples.

The Quality Index is a statistical measure of the difference between the field density and the minimum required density. The index identifies and compensates for values falling outside the statistical norm (outliers). If the QI results in less than 100% pay, the calculations to identify outliers will be performed. If the calculations identify an outlier at least 1.80 standard deviations from the mean, the outlier will be eliminated and a new QI calculated with the remaining cores. The new QI will be used to determine payment unless it results in a greater penalty. The Quality Index is based on AASHTO R 9-90. The equations used in the determination of the Quality Index are located in the Specifications. Examples on how to calculate the QI as well as outliers are located in IM 501.

VALIDATION

Validation is defined as the ability of two labs to achieve similar (statistically equivalent) test values on split or paired samples (split for aggregate samples and paired for HMA samples). To achieve or reestablish validation, a minimum of two consecutive test results must meet IM 216 tolerances.

When any of the following events occur, validation has not been achieved or maintained.

- The difference between test results on each of two consecutive split/paired samples exceeds the IM 216 tolerance.
- The difference between test results on any two of three consecutive split/paired samples exceeds the IM 216 tolerance.

 The test results in a series of split/paired samples (minimum of 3 samples, normally no more than 5) are not variable and random (results are consistently higher or results are consistently lower) and the difference between each split/paired test result is greater than half of the IM 216 tolerance.

Consecutive samples may be either validation samples tested sequentially with another lab or mix specific samples when other mixes are being tested for validation between the two labs. It may be necessary to examine validation of test results on consecutive samples of the same mix if more than one mix is being tested between the two labs. Validation problems sometimes only occur during testing of specific mix samples.

DISPUTE RESOLUTION

When validation is not achieved or maintained, the District Materials Engineer may apply the following actions as appropriate to resolve split/paired test result differences.

- Retest the same sample
- The District labs will test additional verification samples.
- The District Materials Engineer will review the sampling and testing procedures of both labs
- The District Materials Engineer will immediately test samples sent in by the Contractor without allowing cool down and reheating (hot-to-hot testing).
- Both labs will test samples using comparable reheat periods.
- The District Materials Engineer will establish a correction factor based on the reheat evaluation outlined in Appendix B.
- Both labs will test a sample that was taken and split by the Engineer.
- Both labs and a third laboratory designated by the Contracting Authority will test a sample split three ways. The 3rd lab for state projects will normally be the Central Materials Lab.
- The District Materials Engineer will establish a correction factor for the Contractor's gyratory compactor based on the procedure described in Appendix C. The correction factor for G_{mb} should not exceed 0.030.

Resolution decisions by the lowa DOT Central Materials Laboratory will be final. During the period of production when validation cannot be achieved, the Engineer's test results will be used for acceptance of the lot. The use of the Engineer's test values for acceptance will be retroactive to the time when the first sample exceeded the validation tolerance. Similarly, when validation is regained, the use of the Contractor's test results for acceptance is retroactive to the first test used to reestablish validation.

- If validation cannot be achieved for aggregate gradation, the Engineer's test results will be used for the entire gradation and applied to any calculations involving the gradation for the entire lot.
- If validation cannot be achieved on loose hot mix tests for G_{mm} or G_{mb}, the Engineer's test results will be used for any calculations involving that particular test value for the entire lot.

PRODUCTION TOLERANCES

Production tolerances are listed in the specifications.

Variations between two consecutive test results in G_{mb} or G_{mm} of more than 0.030 shall be investigated promptly since these tests reflect significant changes in binder content, aggregate properties and/or gradation. In some cases variations may be attributed to segregation, thoroughness of mixing, sampling procedure, and changes in aggregate production.

REPORTING

For each production sample of loose HMA the Contractor will determine, report, and plot (per QMA specification), G_{mb}, G_{mm} and P_a. Binder content measurement by an approved method will be determined, reported, and plotted daily. Gradation will be determined, reported and plotted daily. The inter lab correlation reports shall be made available.

Test results are to be recorded and plotted in the computer programs provided by the Iowa DOT. Copies of the completed Daily HMA Plant Report (Form #800241) summarizing all test results including the field density QI shall be provided to the District Materials Engineer and the Engineer within four hours of beginning operations on the next working day. Copies of computer files containing the project information shall be furnished to the Engineer on a CD upon project completion. An additional copy of the files shall be furnished to the DME on a CD.

ADJUSTING (TROUBLESHOOTING)

As stated in Standard Specification 2303, "The Contractor shall be responsible for all aspects of the project, provide Quality Control management and testing, and maintain the quality characteristics specified".

The Contractor is responsible for making changes, as necessary, to achieve target values specified on the JMF. These changes can include adjusting the proportions of aggregate and asphalt binder necessary to meet the JMF. If a change in the target gradation is desired, the Contractor <u>must</u> obtain approval of a new JMF from the District Materials Engineer. Changes in the target gradation cannot be set outside of the control points. The Contractor may change the target binder content to maintain the required mixture characteristics, provided the appropriate documentation and reporting is performed. All changes in proportions <u>must</u> be reported on the Daily HMA Plant Report (Form #800241).

The addition of new materials to the JMF may be approved by the District Materials Engineer

April 15, 2008 Supersedes October 17, 2006

without laboratory tests if the materials are produced from geologically comparable sources, do not constitute more than 15 percent of the total aggregate, meet quality requirements, and produce mixes that meet design criteria. When aggregates are introduced from sources that are not geologically comparable or otherwise differ significantly, complete laboratory mix design testing and approval is required.

Any time the moving average for laboratory voids falls outside the specification tolerance limit, the Contractor <u>must</u> cease operations. The Contractor assumes the responsibility to cease operations, including not incorporating produced material, which has not been placed. Production shall not be started again until the Contractor notifies the Engineer of the corrective action proposed.

Moving averages and the gyratory compaction slope assist in identifying potential problems before they arise. Watch the trends in the moving averages (approaching a specification limit) and the slope of the compaction curve. The slope of the compaction curve of plant-produced material shall be monitored and variations in excess of ± 0.40 of the mixture design gyratory compaction curve slope may indicate potential problems with uniformity of the mixture.

GUIDANCE TABLES

The tables below are intended to provide guidance on dealing with the most common problems, which arise during the production of HMA. The first table deals with problems, which can show up in the laboratory setting and the second table deals with problems, which can appear in the field.

The following example explains how to read the tables. Both tables are read downward. The shaded regions are the items to be considered for adjusting purposes.

Lab Problem Table

The first step is to identify which lab problem is occurring. If "Low Voids" is the identified problem, move down the column to the "Step 1 Check". Assuming the first check is to be made on the "Binder Content", move down the column to "Step 2 If". If the Binder Content is high proceed to "Step 3 Verify". Each of the shaded items identified in the "Step 3 Verify" should be looked at before proceeding further. Assuming that the items in "Step 3 Verify" are on target, go to "Step 4 Do". In this case, the action to be taken in "Step 4 Do" is to "Lower Binder" in the mix.

	LAB PROBLEM	Low Voids	High Voids	Low Film Thickness	High Film Thickness	Low VMA	High VMA
ck	Binder Content				-		
Che	Gradation						
Step 1-Check	Aggr. SG (Gsb)		in the second				
Ste	Aggr. Absorption						
-	Low Binder		State and a state				
-	High Binder						
Step 2-If	Low -200						1
Sti	High -200						
	Off JMF Target						
	Filler Bitumen Ratio						
ify	Film Thickness	1					
-Ver	VMA						
Step 3-Verify	Field Compaction						
Ste	Voids						
	Individual Aggr. Sources						
	Lower Binder				10 10 10 10 10 10		
0	Increase Binder						
4-D(Lower -200					Partie 1	
Step 4-Do	Increase -200						
S	Adjust Aggr. Proportions				- 10 - 1		
	Recompute Volumetrics						

In <u>all</u> cases, the items in the "Step 3 Verify" are assumed to be within the allowable tolerances and won't fall outside of allowable tolerances if the action in "Step 4 Do" is taken.

Field Problem Table

The first step is to identify which field problem is occurring. If "High Field Voids" is the identified problem, move down the column to the "Step 1 Check". Assuming the first check is to be made on the "Lab Voids", move down the column to "Step 2 If". If the Lab Voids are high proceed to "Step 3 Verify". Each of the shaded items identified in the "Step 3 Verify" should be looked at before proceeding further. Assuming that the items in "Step 3 Verify" are on target, go to "Step 4 Do". In this case the process of looking at the "Step 3 Verify" would lead to the Lab Problem Table and cause one of the actions for High Lab Voids to be used.

In <u>all</u> cases, the items in the "Step 3 Verify" are assumed to be within allowable tolerances and won't fall outside of allowable tolerances if the action in "Step 4 Do" is taken.

April 15, 2008 Supersedes October 17, 2006

	FIELD PROBLEM	Low Field Voids	High Field Voids	Tender Mix	Low Density Q.I.	Agglomerates	Uncoated Aggr.	Brown Rock	Stripping
	Stockpiles								
	Aggr. Absorption							10-10-10-10-10-10-10-10-10-10-10-10-10-1	
	Binder Content								-
neck	Lab Voids								
Step 1-Check	Film Thickness								
ep	Mixing Time								
S	Moisture in Mix					-			-
	Mix Temp at Plant					-			
	Mat Temp							-	
#	Low	1.22							
Step 2-If	High			NTE CE		-			
Ste	Yes					1.3			
	Filler/Bitumen Ratio								
	Film Thickness					-			
	Voids					-			
irify	Field Compaction								
3-Ve	Aggr. Breakdown					-			
Step 3-Verify	Individual Aggr. Sources								
St	Moisture					-			
	Amount of Clay Binder				-				
	Go To Lab Problem Table								-
-	Increase Binder						10000		
	Lower Temp		-						
	Increase Temp	A0.55	-						
-Do	Cover Loads		Cana			-			
Step 4-Do	Increase Aggr. Dryer Time	-			-				
Ste	Screen								
	Adjust Aggr. Proportions								
	Increase Wet Mixing Time								

9

GENERAL REWRITE - PLEASE READ CAREFULLY.

	TABLE	OF	RESP	ONSIBIL	ITY.
--	-------	----	------	---------	------

QUALITY ACTION	CPI & QMA	SMALL QT
General		
Use of Qualified Labs & Certified Technicians	CONTR/RCE	CONTR
Use of Certified Labs & Qualified Technicians	DME/CTRL	DME/CTRL
Preparation of the Job Mix Formula (JMF)	CONTR ⁽²⁾	CONTR ⁽²⁾
Approval of the JMF	DME	DME
Calibration of the Plant	CONTR	CONTR
Monitoring of Plant Operations	DME/RCE ⁽¹⁾	DME/RCE ⁽¹⁾
inspection of Plant Operations	CONTR ⁽¹⁾	CONTR ⁽¹⁾
Asphalt Binder		
Direct & Witness Verification Sample of Asphalt Binder	RCE/DME ⁽³⁾	NA
Sample Asphalt Binder	CONTR ⁽³⁾	NA
Secure Verification Sample of Asphalt Binder	RCE/DME	NA
Fransport Verification Sample of Asphalt Binder	CONTR/RCE	NA
Run & Report Verification Sample of Asphalt Binder	DME/CTRL	NA
Aggregate		
Direct & Witness Verification Sample of Combined Aggregate	RCE ⁽⁴⁾	NA
Sample Combined Aggregate	CONTR ⁽⁴⁾	CONTR ⁽⁴⁾
Direct & Witness Splitting of Combined Aggregate Sample	- RCE ⁽⁵⁾	NA
Secure Verification Sample of Combined Aggregate	RCE	NA
ransport Verification Sample of Combined Aggregate	CONTR/RCE	NA
Run & Report QC Tests on Combined Aggregate Gradation	CONTR ⁽⁵⁾	CONTR ⁽⁵⁾
Run & Report Verification Tests on Combined Aggregate Gradat	tion DME/RCE ⁽⁵⁾	NA
Report Validation per IM 216 on Combined Aggregate Gradation		NA
Obtain & Transport Verification Samples of Coarse Aggregate Q		NA
Run & Report Verification Tests on Coarse Aggregate Quality	CTRL	NA
Loose Hot Mix		
Determine Loose Hot Mix Paired Sample Frequency/Location	RCE ⁽³⁾	CONTR
Direct & Witness Verification Sample of Loose Hot Mix	RCE ⁽³⁾	NA
Sample Loose Hot Mix Paired Samples	CONTR ⁽³⁾	CONTR ⁽³⁾
Secure Verification Sample of Loose Hot Mix	RCE	NA
Fransport Verification Sample of Loose Hot Mix	CONTR/RCE	NA
Run & Report QC Tests on Loose Hot Mix Samples	CONTR ⁽¹⁾	CONTR ⁽¹⁾
Run & Report Verification Tests on Loose Hot Mix Samples	DME ⁽¹⁾	NA
Report Validation of Hot Mix Tests	CONTR ⁽¹⁾	NA
valuate Test Results/Take Action when Validation Fails	DME	NA
Compacted Hot Mix		
Determine Density Coring Frequency/Location	RCE ⁽³⁾	RCE ⁽³⁾
Direct & Witness Coring & Transport to QC Lab	RCE ⁽³⁾	RCE ⁽³⁾
Obtain Core Samples & Prepare Samples at the QC Lab	CONTR	CONTR
Run Density Testing on Cores	RCE ⁽³⁾	RCE ⁽³⁾
Record Density Testing Measurements on Cores	RCE ⁽³⁾	RCE ⁽³⁾
Report Density Testing Results on Cores	CONTR ⁽¹⁾	CONTR ⁽¹⁾
Revisions		
Adjust Production to Maintain JMF Targets	CONTR	CONTR
Report Plant Adjustments	CONTR ⁽¹⁾	CONTR ⁽¹⁾
pprove Revisions to JMF Targets	DME	DME
Shut Down Production when Required	CONTR	CONTR
	OUNTR	CONTR

(4) Must be done by Certified Level I Aggr. Technician
 (5) Must be done by Certified Level II Aggr. Technician

Reissued April 18, 2006 Supersedes April 3, 2001

REHEAT EVALUATION

The contractor's QMA laboratory technician shall split the sample selected for correlation. The split will provide material for 3 individual maximum specific gravity, G_{mm} , test samples and material for 3 sets of laboratory density, G_{mb} , specimens.

The contractor's technician will split and retain sufficient material for $2 G_{mm}$ test samples and 2 sets of laboratory density specimens. The remainder of the field sample will be submitted to the DOT laboratory. From this portion the DOT laboratory will split and test an additional G_{mm} sample and an additional set of laboratory density specimens, after reheating.

Immediately after splitting, the contractor's technician will return one set of laboratory density samples to the oven and heat to compaction temperature. Once compaction temperature is reached, this set is removed from the oven, compacted as per IM 325 or IM 325G, cooled to ambient temperature and G_{mb} determined. The second set of samples is cooled to ambient temperature, reheated to compaction temperature then compacted as per IM 325 or IM 325G, cooled to account temperature and G_{mb} determined. This dual testing is intended to indicate the differences in test results, which can be expected, between samples tested on the original heat of the mixture and those tested at a later time (hot-to-cold testing).

The contractor's technician will cool and separate both G_{mm} samples. The contractor's technician will test one G_{mm} sample. The second G_{mm} sample will be sealed in a plastic bag and submitted to the appropriate DOT laboratory for testing. The DOT laboratory will test the sample without any significant reheating (not more than 5 minutes oven reheating to facilitate breaking up sample).

Interlaboratory correlation, as specified in IM 208, will be determined by comparing G_{mm} results obtained by the contractor to those obtained by the DOT laboratory on the G_{mm} samples split by the contractor. The laboratory density obtained by the contractor on the G_{mb} specimens prepared from the reheated portion will be compared to the G_{mb} determined by the DOT laboratory on G_{mb} specimens prepared from the reheated portion of the original split sample. If the test results compared are within the tolerances specified in IM 208, then the reheat procedure shall be performed when required by the District Materials Engineer. If the test results are not within the tolerances specified in IM 208, additional testing on the same or subsequent samples will be required.

The District Materials Engineer may waive the reheat testing if the test results indicate no significant difference caused by reheating of samples. Additional correlation testing may be performed at any time at the request of the contractor or the District Materials Engineer. The information obtained by the dual testing described above may be used when monitoring the daily comparison of contractor's test results to DOT laboratory test results when reheating of samples is involved. All samples shall be retained until permission to discard them is obtained from the DOT laboratory.

1

This outline is to serve only as a guide to the steps in the correlation procedure. All tests noted in this outline must be performed in accordance with the applicable IM.

- 1. Contractor Testing Responsibilities
 - A. Obtain field sample and split to obtain 2 sets of laboratory density, G_{mb}, specimens and 2 Maximum specific gravity, G_{mm}, specimens and submit the remainder of field sample to DOT laboratory for testing.
 - B. Bulk Density Testing
 - Set #1 Immediately after splitting, return specimens to the oven, reheat to compaction temperature, compact specimens as per IM 325 or IM 325G, cool to ambient temperature and test for density.
 - Set #2 Cool to ambient temperature, return to oven, reheat to compaction temperature, compact as per IM 325 or IM 325G, cool to ambient temperature and test for density.
 - 3) Compare values obtained in #1 and #2 to determine possible reheat factor.
 - C. Maximum Density Testing
 - 1) Sample #1 Cool sample and perform Rice Test.
 - Sample #2 Cool sample, place in plastic bag and submit to the DOT laboratory for testing.
 - D. Submit remainder of field sample to DOT laboratory for testing.
- 2. DOT Laboratory Testing Responsibilities
 - A. Bulk Density Testing
 - From the field sample supplied by the contractor, split one set of G_{mb} specimens, place in oven, heat to compaction temperature, compact as per IM 325 or IM 325G, cool to ambient temperature and test for density.
 - B. Maximum Density Testing
 - From the field sample supplied by the contractor, split one G_{mm} specimen and perform Rice Test.
 - 2) Test the G_{mm} sample supplied by the contractor.
 - Compare values obtained in #1 and #2 to determine possible deviation in G_{mm} results that might occur between the Contractor's split G_{mm} sample and the DOT G_{mm} sample split from a field sample.

PROCEDURE FOR ESTABLISHING A CORRECTION FACTOR

The procedure used for establishing a correction factor is as follows:

PROCEDURE A

- Obtain one sample of sufficient plant produced material for 12 G_{mb} specimens and split per IM 357 into 6 specimens each between the contractor and engineer. This should provide enough material that 6 gyratory specimens may be compacted at both labs. The sample should be representative, but sampling procedure IM 322 is not required.
- The material <u>must</u> be handled and compacted in the same manner by the contractor and engineer (hot-to-hot or cold-to-cold).
- 3. Compact the specimens per IM 325G.
- Perform density testing on the compacted specimens per IM 321.
- 5. Average the 6 G_{mb} results for each lab.

The difference between the average G_{mb} results from the two labs will be considered the correction factor. <u>NOTE</u>: Unless otherwise decided on by the Engineer, only 1 correction factor will be established for a given mix design.

PROCEDURE B

The engineer may use the results of 3 consecutive QC/QA split tests in lieu of a single 12 split sample. There can be no significant change to the mix between the 3 tests and no adjustments to the gyratory compactors. The material <u>must</u> be handled and compacted in the same manner by the contractor and engineer (hot-to-hot or cold-to-cold). The contractor's QC results will be averaged and the engineer's QA results will be averaged with the difference being the correction factor to be applied.

October 21, 2008 New Issue

****THIS IS A NEW APPENDIX. - PLEASE READ CAREFULLY.****

Contractor's Quality Control and Testing Plan for HMA Production

Project Number:			
Contractor:			
Anticipated Daily Production Surface (Tons):			-
Anticipated Daily Production Intermediate (Tons):	1		-
Anticipated Daily Production Base (Tons):			
Uncompacted Mix Sampling Frequency:	Standard	Modified]
Proposed Modified Sampling Fre	quency:		
Uncompacted Mix Sampling Timing:	Standard	Modified	
Proposed Modified Sampling Tim	ing:		_
Gradation Control By:	Cold-Feed	Ignition Oven	1
Cold-Feed Sampling Frequency:	1/day	2/day	1
Ignition Oven Testing Frequency:	-		
Surface Test Strip Size (Tons):	a	(Maximum 1/2 Days Production)	(Required on Primary and Interstate)
Intermediate Test Strip Size (Tons):		(Maximum 1/2 Days Production)	(Required on Interstate)
Base Test Strip Size (Tons):		(Maximum 1/2 Days Production)	(Optional)
Other Proposed Sampling and Testing Modification	ns:		and the second
Contractor's Contact for QC/QA Decisions:			Cell No.:
QC Laboratory Identification Number:		QC Laboratory Qualif	
		-	
HMA Level 1 Certified Technician:			Cert. No.:
HMA Level 1 Certified Technician:			Cert. No.:
HMA Sampler Certified Technician:			Cert. No.:
Comments:			
Submitted by: Contractor:		Approved DME:	

1

14.1

Office of Materials

lowa Department of Transportation

October 19, 2004 Supersedes April 20, 2004

Matls. IM 514

CORRELATION OF FIELD DENSITY FOR HOT MIX ASPHALT (HMA) PAVING

GENERAL

Correlation sampling and testing of the field density test result insures that testing equipment is operating properly and the results are within the range of tolerance. Investigations are conducted and corrections made when results do not correlate.

SAMPLE

A sample consists of all the cored specimens of one day's paving production.

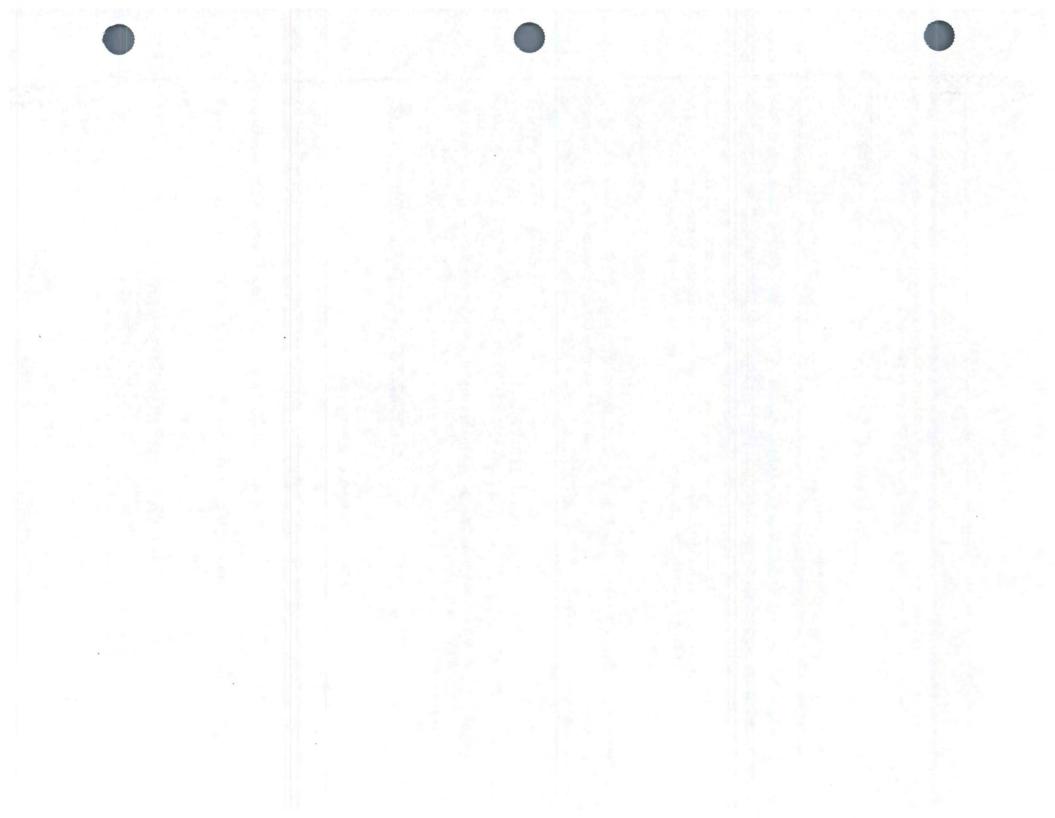
HANDLING, STORING AND SHIPPING SAMPLES

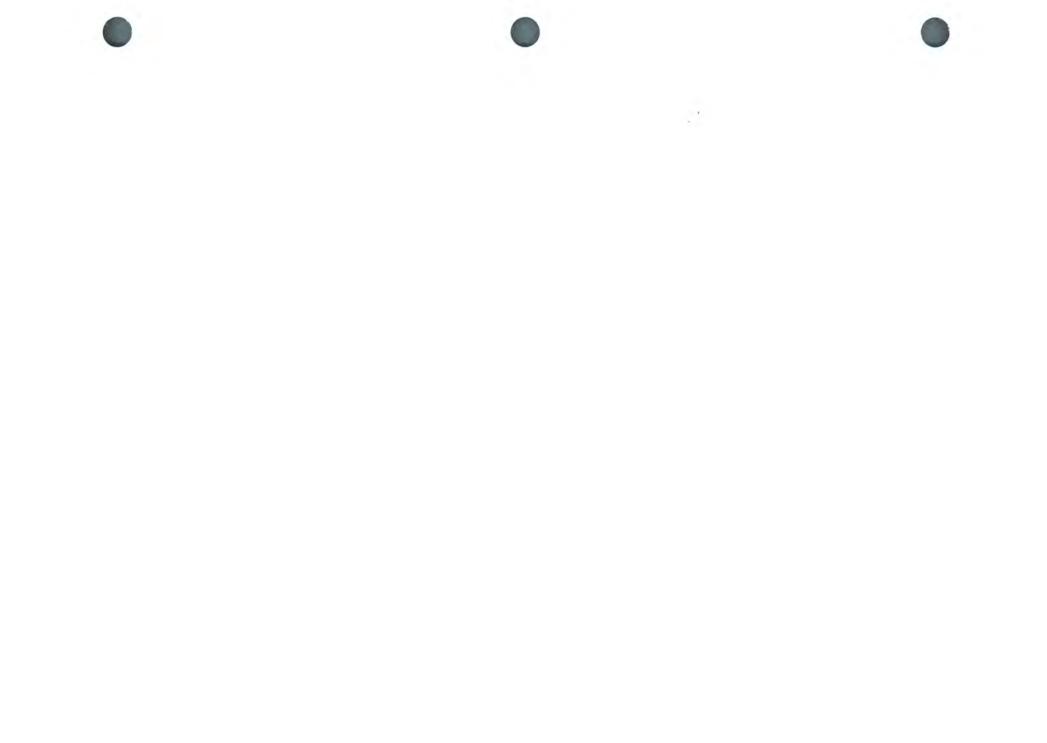
These specimens must be identified and stored in a manner, which will not affect their densities. Upon request from the District Materials Laboratory, cores are to be taken and transported the next working day. A completed Daily Plant Report, Form #800241 shall accompany each set of cores.

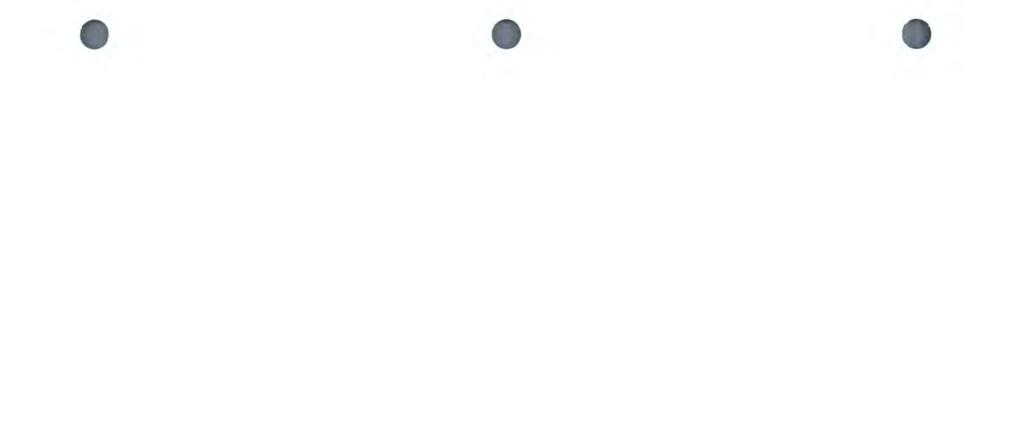
TESTING AND SAMPLING FREQUENCY

The District Materials Office, on a random basis for correlation will select samples as specified. A minimum of one sample per project will be obtained.

CORRELATING THE RESULT


The District Laboratory shall test each specimen of the submitted sample in accordance with IM 321. The test results of each specimen will be compared to each corresponding field test result for correlation. Bulk Specific Gravity (G_{mb}) results that do not correlate to within 0.020 will be considered suspect. Other information gained through this correlation testing, such as trends developing, will also give cause to suspect the results. Immediate investigation must be conducted and correction made on all suspect test results.


NOTE: Each District Laboratory procedure and equipment is accredited and monitored through the established program with the Central Laboratory, which includes Cooperative Testing.


REPORTING

The District Materials Office shall submit reports of the correlation of field density tests to the project file along with the documentation of what action was taken for suspect results.

lowa Department of Transportation

Office of Materials

Reissued October 18, 2005 Supersedes October 3, 2000

Matls. IM T101C Customary Units

					Tons/	Hour					
%	50	60	70	80	90	100	110	120	130	140	150
					Pounds	/Minute					
2.5	42	50	58	67	75	83	92	100	108	117	125
5.0	83	100	117	133	150	167	183	200	217	233	250
7.5	125	150	175	200	225	250	275	300	325	350	375
10.0	167	200	233	267	300	333	367	400	433	467	500
12.5	208	250	292	333	375	417	458	500	542	583	625
15.0	250	300	350	400	450	500	550	600	650	700	750
17.5	292	350	408	467	525	583	642	700	758	817	875
20.0	333	400	467	533	600	667	733	800	867	933	1000
22.5	375	450	525	600	675	750	825	900	975	1050	1125
25.0	417	500	583	667	750	833	917	1000	1083	1167	1250
27.5	458	550	642	733	825	917	1008	1100	1192	1283	1375
30.0	500	600	700	800	900	1000	1100	1200	1300	1400	1500
32.5	542	650	758	867	975	1083	1192	1300	1408	1517	1625
35.0	583	700	817	933	1050	1167	1283	1400	1517	1633	1750
37.5	625	750	875	1000	1125	1250	1375	1500	1625	1750	1875
40.0	667	800	933	1067	1200	1333	1467	1600	1733	1867	2000
42.5	708	850	992	1133	1275	1417	1558	1700	1842	1983	2125
45.0	750	900	1050	1200	1350	1500	1650	1800	1950	2100	2250
47.5	792	950	1108	1267	1425	1583	1742	1900	2058	2217	2375
50.0	833	1000	1167	1333	1500	1667	1833	2000	2167	2333	2500
52.5	875	1050	1225	1400	1575	1750	1925	2100	2275	2450	2625
55.0	917	1100	1283	1467	1650	1833	2017	2200	2383	2567	2750
57.5	958	1150	1342	1533	1725	1917	2108	2300	2492	2683	2875
60.0	1000	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000
62.5	1042	1250	1458	1667	1875	2083	2292	2500	2708	2917	3125
65.0	1083	1300	1517	1733	1950	2167	2383	2600	2817	3033	3250
67.5	1125	1350	1575	1800	2025	2250	2475	.2700	2925	3150	3375
70.0	1167	1400	1633	1867	2100	2333	2567	2800	3033	3267	3500
72.5	1208	1450	1692	1933	2175	2417	2658	2900	3142	3383	3625
75.0	1250	1500	1750	2000	2250	2500	2750	3000	3250	3500	3750
77.5	1292	1550	1808	2067	2325	2583	2842	3100	3358	3617	3875
80.0	1333	1600	1867	2133	2400	2667	2933	3200	3467	3733	4000
82.5	1375	1650	1925	2200	2475	2750	3025	3300	3575	3850	4125
85.0	1417	1700	1983	2267	2550	2833	3117	3400	3683	3967	4250
87.5	1458	1750	2042	2333	2625	2917	3208	3500	3792	4083	4375
90.0	1500	1800	2100	2400	2700	3000	3300	3600	3900	4200	4500
92.5	1542	1850	2158	2467	2775	3083	3392	3700	4008	4317	4625
95.0	1583	1900	2217	2533	2850	3167	3483	3800	4117	4433	4750
97.5	1625	1950	2275	2600	2925	3250	3575	3900	4225	4550	4875
100.0	1667	2000	2333	2667	3000	3333	3667	4000	4333	4667	5000

Matls. IM T101C Customary Units

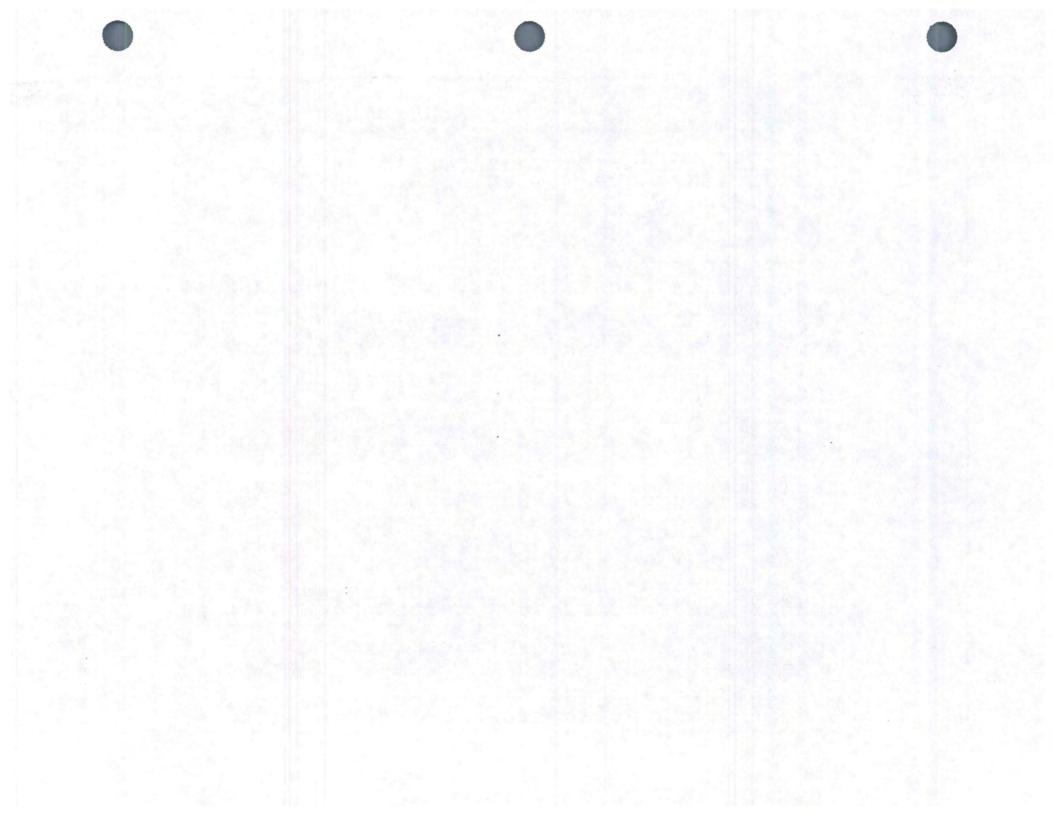
					Tons	/Hour					
%	150	160	170	180	190	200	210	220	230	240	250
					Pound	s/Minute	9				
2.5	125	133	142	150	158	167	175	183	192	200	208
5.0	250	267	283	300	317	333	350	367	383	400	417
7.5	375	400	425	450	475	500	525	550	575	600	625
10.0	500	533	567	600	633	667	700	733	767	800	833
12.5	625	667	708	750	792	833	875	917	958	1000	1042
15.0	750	800	850	900	950	1000	1050	1100	1150	1200	1250
17.5	875	933	992	1050	1108	1167	1225	1283	1342	1400	1458
20.0	1000	1067	1133	1200	1267	1333	1400	1467	1533	1600	1667
22.5	1125	1200	1275	1350	1425	1500	1575	1650	1725	1800	1875
25.0	1250	1333	1417	1500	1583	1667	1750	1833	1917	2000	2083
27.5	1375	1467	1558	1650	1742	1833	1925	2017	2108	2200	2292
30.0	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500
32.5	1625	1733	1842	1950	2058	2167	2275	2383	2492	2600	2708
35.0	1750	1867	1983	2100	2217	2333	2450	2567	2683	2800	2917
37.5	1875	2000	2125	2250	2375	2500	2625	2750	2875	3000	3125
40.0	2000	2133	2267	2400	2533	2667	2800	2933	3067	3200	3333
42.5	2125	2267	2408	2550	2692	2833	2975	3117	3258	3400	3542
45.0	2250	2400	2550	2700	2850	3000	3150	3300	3450	3600	3750
47.5	2375	2533	2692	2850	3008	3167	3325	3483	3642	3800	3958
50.0	2500	2667	2833	3000	3167	3333	3500	3667	3833	4000	4167
52.5	2625	2800	2975	3150	3325	3500	3675	3850	4025	4200	4375
55.0	2750	2933	3117	3300	3483	3667	3850	4033	4217	4400	4583
57.5	2875	3067	3258	3450	3642	3833	4025	4217	4408	4600	4792
60.0	3000	3200	3400	3600	3800	4000	4200	4400	4600	4800	5000
62.5	3125	3333	3542	3750	3958	4167	4375	4583	4792	5000	5208
65.0	3250	3467	3683	3900	4117	4333	4550	4767	4983	5200	5417
67.5	3375	3600	3825	4050	4275	4500	4725	4950	5175	5400	5625
70.0	3500	3733	3967	4200	4433	4667	4900	5133	5367	5600	5833
72.5	3625	3867	4108	4350	4592	4833	5075	5317	5558	5800	6042
75.0	3750	4000	4250	4500	4750	5000	5250	5500	5750	6000	6250
77.5	3875	4133	4392	4650	4908	5167	5425	5683	5942	6200	6458
80.0	4000	4267	4533	4800	5067	5333	5600	5867	6133	6400	6667
82.5	4125	4400	4675	4950	5225	5500	5775	6050	6325	6600	6875
85.0	4250	4533	4817	5100	5383	5667	5950	6233	6517	6800	7083
87.5	4375	4667	4958	5250	5542	5833	6125	6417	6708	7000	7292
90.0	4500	4800	5100	5400	5700	6000	6300	6600	6900	7200	7500
92.5	4625	4933	5242	5550	5858	6167	6475	6783	7092	7400	7708
95.0	4750	5067	5383	5700	6017	6333	6650	6967	7283	7600	7917
97.5	4875	5200	5525	5850	6175	6500	6825	7150	7475	7800	8125
100.0	5000	5333	5667	6000	6333	6667	7000	7333	7667	8000	8333

Matls. IM T101C Customary Units

		1			То	ns/Hour					
%	250	260	270	280	29	0 300	310	320	330	340	350
					Poun	ds/Minute	e				2.0
2.5	208	217	225	233	242	250	258	267	275	283	292
5.0	417	433	450	467	483	500	517	533	550	567	583
7.5	625	650	675	700	725	750	775	800	825	850	875
10.0	833	867	900	933	967	1000	1033	1067	1100	1133	1167
12.5	1042	1083	1125	1167	1208	1250	1292	1333	1375	1417	1458
15.0	1250	1300	1350	1400	1450	1500	1550	1600	1650	1700	1750
17.5	1458	1517	1575	1633	1692	1750	1808	1867	1925	1983	2042
20.0	1667	1733	1800	1867	1933	2000	2067	2133	2200	2267	2333
22.5	1875	1950	2025	2100	2175	2250	2325	2400	2475	2550	2625
25.0	2083	2167	2250	2333	2417	2500	2583	2667	2750	2833	2917
27.5	2292	2383	2475	2567	2658	2750	2842	2933	3025	3117	3208
30.0	2500	2600	2700	2800	2900	3000	3100	3200	3300	3400	3500
32.5	2708	2817	2925	3033	3142	3250	3358	3467	3575	3683	3792
35.0	2917	3033	3150	3267	3383	3500	3617	3733	3850	3967	4083
37.5	3125	3250	3375	3500	3625	3750	3875	4000	4125	4250	4375
40.0	3333	3467	3600	3733	3867	4000	4133	4267	4400	4533	4667
42.5	3542	3683	3825	3967	4108	4250	4392	4533	4675	4817	4958
45.0	3750	3900	4050	4200	4350	4500	4650	4800	4950	5100	5250
47.5	3958	4117	4275	4433	4592	4750	4908	5067	5225	5383	5542
50.0	4167	4333	4500	4667	4833	5000	5167	5333	5500	5667	5833
52.5	4375	4550	4725	4900	5075	5250	5425	5600	5775	5950	6125
55.0	4583	4767	4950	5133	5317	5500	5683	5867	6050	6233	6417
57.5	4792	4983	5175	5367	5558	5750	5942	6133	6325	6517	6708
60.0	5000	5200	5400	5600	5800	6000	6200	6400	6600	6800	7000
62.5	5208	5417	5625	5833	6042	6250	6458	6667	6875	7083	7292
65.0	5417	5633	5850	6067	6283	6500	6717	6933	7150	7367	7583
67.5	5625	5850	6075	6300	6525	6750	6975	7200	7425	7650	7875
70.0	5833	6067	6300	6533	6767	7000	7233	7467	7700	7933	8167
72.5	6042	6283	6525	6767	7008	7250	7492	7733	7975	8217	8458
75.0	6250	6500	6750	7000	7250	7500	7750	8000	8250	8500	8750
77.5	6458	6717	6975	7233	7492	7750	8008	8267	8525	8783	9042
80.0	6667	6933	7200	7467	7733	8000	8267	8533	8800	9067	9333
82.5	6875	7150	7425	7700	7975	8250	8525	8800	9075	9350	9625
85.0	7083	7367	7650	7933	8217	8500	8783	9067	9350	9633	9917
87.5	7292	7583	7875	8167	8458	8750	9042	9333	9625	9917	10208
90.0	7500	7800	8100	5400	8700	9000	9300	9600	9900	10200	10500
92.5	7708	8017	8325	8633	8942	9250	9558	9867	10175	10483	10792
95.0	7917	8233	8550	8867	9183	9500	9817	10133	10450	10767	11083
97.5	8125	8450	8775	9100	9425	9750	10075	10400	10725	11050	11375
100.0	8333	8667	9000	9333	9667	10000	10333	10667	11000	11333	11667

Matls. IM T101C Customary Units

			V.		Tons	/Hour					
%	350	360	370	380	390	400	410	420	430	440	450
					Pounds	/Minute					
2.5	292	300	308	317	325	333	342	350	358	367	375
5.0	583	600	617	633	650	667	683	700	717	733	750
7.5	875	900	925	950	975	1000	1025	1050	1075	1100	1125
10.0	1167	1200	1233	1267	1300	1333	1367	1400	1433	1467	1500
12.5	1458	1500	1542	1583	1625	1667	1708	1750	1792	1833	1875
15.0	1750	1800	1850	1900	1950	2000	2050	2100	2150	2200	2250
17.5	2042	2100	2158	2217	2275	2333	.2392	2450	2508	2567	2625
20.0	2333	2400	2467	2533	2600	2667	2733	2800	2867	2933	3000
22.5	2625	2700	2775	2850	2925	3000	3075	3150	3225	3300	3375
25.0	2917	3000	3083	3167	3250	3333	3417	3500	3583	3667	3750
27.5	3208	3300	3392	3483	3575	3667	3758	3850	3942	4033	4125
30.0	3500	3600	3700	3800	3900	4000	4100	4200	4300	4400	4500
32.5	3792	3900	4008	4117	4225	4333	4442	4550	4658	4767	4875
35.0	4083	4200	4317	4433	4550	4667	4783	4900	5017	5133	5250
37.5	4375	4500	4625	4750	4875	5000	5125	5250	5375	5500	5625
40.0	4667	4800	4933	5067	5200	5333	5467	5600	5733	5867	6000
42.5	4958	5100	5242	5383	5525	5667	5808	5950	6092	6233	6375
45.0	5250	5400	5550	5700	5850	6000	6150	6300	6450	6600	6750
47.5	5542	5700	5858	6017	6175	6333	6492	6650	6808	6967	7125
50.0	5833	6000	6167	6333	6500	6667	6833	7000	7167	7333	7500
52.5	6125	6300	6475	6650	6825	7000	7175	7350	7525	7700	7875
55.0	6417	6600	6783	6967	7150	7333	7517	7700	7883	8067	8250
57.5	6708	6900	7092	7283	7475	7667	7858	8050	8242	8433	8625
60.0	7000	7200	7400	7600	7800	8000	8200	8400	8600	8800	9000
62.5	7292	7500	7708	7917	8125	8333	8542	8750	8958	9167	9375
65.0	7583	7800	8017	8233	8450	8667	8883	9100	9317	9533	9750
67.5	7875	8100	8325	8550	8775	9000	9225	9450	9675	9900	10125
70.0	8167	8400	8633	8867	9100	9333	9567	9800	10033	10267	10500
72.5	8458	8700	8942	9183	9425	9667	9908	10150	10392	10633	10875
75.0	8750	9000	9250	9500	9750	10000	10250	10500	10750	11000	11250
77.5	9042	9300	9558	9817	10075	10333	10592	10850	11108	11367	11625
80.0	9333	9600	9867	10133	10400	10667	10933	11200	11467	11733	12000
82.5	9625	9900	10175	10450	10725	11000	11275	11550	11825	12100	12375
85.0	9917	10200	10483	10767	11050	11333	11617	11900	12183	12467	12750
87.5	10208	10500	10792	11083	11375	11667	11958	12250	12542	12833	13125
90.0	10500	10800	11100	11400	11700	12000	12300	12600	12900	13200	13500
92.5	10792	11100	11408	11717	12025	12333	12642	12950	13258	13567	13875
95.0	11083	11400	11717	12033	12350	12667	12983	13300	13617	13933	14250
97.5	11375	11700	12025	12350	12675	13000	13325	13650	13975	14300	14625
100.0	11667	12000	12333	12667	13000	13333	13367	14000	14333	14667	15000


Matls. IM T101C Customary Units

AGGREGATE DELIVERY CONVERSION TABLE

					Tons/	Hour					
%	450	460	470	480	490	500	510	520	530	540	550
					Pounds						
2.5	375	383	392	400	408	417	425	433	442	450	458
5.0	750	767	783	800	817	833	850	867	883	900	917
7.5	1125	1150	1175	1200	1225	1250	1275	1300	1325	1350	1375
10.0	1500	1533	1567	1600	1633	1667	1700	1733	1767	1800	1833
12.5	1875	1917	1958	2000	2042	2083	2125	2167	2208	2250	2292
15.0	2250	2300	2350	2400	2450	2500	2550	2600	2650	2700	2750
17.5	2625	2683	2742	2800	2858	2917	2975	3033	3092	3150	3208
20.0	3000	3067	3133	3200	3267	3333	3400	3467	3533	3600	3667
22.5	3375	3450	3525	3600	3675	3750	3825	3900	3975	4050	4125
25.0	3750	3833	3917	4000	4083	4167	4250	4333	4417	4500	4583
27.5	4125	4217	4308	4400	4492	4583	4675	4767	4858	4950	5042
30.0	4500	5600	5700	4800	4900	5000	5100	5200	5300	5400	5500
32.5	4875	4983	5092	5200	5308	5417	5525	5633	5742	5850	5958
35.0	5250	5367	5483	5600	5717	5833	5950	6067	6183	6300	6417
37.5	5625	5750	5875	6000	6125	6250	6375	6500	6625	6750	6875
40.0	6000	6133	6267	6400	6533	6667	6800	6933	7067	7200	7333
42.5	6375	6517	6658	6800	6942	7083	7225	7367	7508	7650	7792
45.0	6750	6900	7050	7200	7350	7500	7650	7800	7950	8100	8250
47.5	7125	7283	7442	7600	7758	7917	8075	8233	8392	8550	8708
50.0	7500	7667	7833	8000	8167	8333	8500	8667	8833	9000	9167
52.5	7875	8050	8225	8400	8575	8750	8925	9100	9275	9450	9625
55.0	8250	8433	8617	8800	8983	9167	9350	9533	9717	9900	10083
57.5	8625	8817	9008	9200	9392	9583	9775	9967	10158	10350	10542
60.0	9000	9200	9400	9600	9800	10000	10200	10400	10600	10800	11000
62.5	9375	9583	9792	10000	10208	10417	10625	10833	11042	11250	11458
65.0	9750	9967	10183	10400	10617	10833	11050	11267	11483	11700	11917
67.5	10125	10350	10575	10800	11025	11250	11475	11700	11925	12150	12375
70.0	10500	10733	10967	11200	11433	11667	11900	12133	12367	12600	12833
72.5	10875	11117	11358	11600	11842	12083	12325	12567	12808	13050	13292
75.0	11250	11500	11750	12000	12250	12500	12750	13000	13250	13500	13750
77.5	11625	11883	12142	12400	12658	12917	13175	13433	13692	13950	14208
80.0	12000	12267	12533	12800	13067	13333	13600	13867	14133	14400	14667
82.5	12375	12650	12925	13200	13475	13750	14025	14300	14575	14850	16125
85.0	12750	13033	13317	13600	13883	14167	14450	14733	15017	15300	15583
87.5	13125	13417	13708	14000	14292	14583	14875	15167	15458	15750	16042
90.0	13500	13800	14100	14400	14700	15000	15300	15600	15900	16200	16500
92.5	13875	14183	14492	14800	15108	15417	15725	16033	16342	16650	16958
95.0	14250	14567	14883	15200	15517	15833	16150	16467	16783	17100	17417
97.5	14625	14950	15275	15600	15925	16250	16575	16900	17225	17550	17875
100.0	15000	15333	15667	16000	16333	16667	17000	17333	17667	18000	18333

5

lowa Department of Transportation

Office of Materials

Reissued October 18, 2005 Supersedes October 3, 2000 Matls. IM T101M Metric Units

		1.1		M	egagra	ns/Hour	N	-			
%	45	50	55	60	65	70	75	80	85	90	95
	10.00					s/Minute					-
2.5	19	21	23	25	27	29	31	33	35	38	40
5.0	38	42	46	50	54	58	63	67	71	75	79
7.5	56	63	69	75	81	88	94	100	106	113	119
10.0	75	83	92	100	108	117	125	133	142	150	158
12.5	94	104	115	125	135	146	156	167	177	188	198
15.0	113	125	138	150	163	175	188	200	213	225	238
17.5	131	146	160	175	190	204	219	233	248	263	277
20.0	150	167	183	200	217	233	250	267	283	300	317
22.5	169	188	206	225	244	263	281	300	319	338	356
25.0	188	208	229	250	271	292	313	333	354	375	396
27.5	206	229	252	275	298	321	344	367	390	413	435
30.0	225	250	275	300	325	350	375	400	425	450	475
32.5	244	271	298	325	352	379	406	433	460	488	515
35.0	263	292	321	350	379	408	438	467	496	525	554
37.5	281	313	344	375	406	438	469	500	531	563	594
40.0	300	333	367	400	433	467	500	533	567	600	633
42.5	319	354	390	425	460	496	531	567	602	638	673
45.0	338	375	413	450	488	525	563	600	638	675	713
47.5	356	396	435	475	515	554	594	633	673	713	752
50.0	375	417	458	500	542	583	625	667	708	750	792
52.5	394	438	481	525	569	613	656	700	744	788	831
55.0	413	458	504	550	596	642	688	733	779	825	871
57.5	431	479	527	575	623	671	719	767	815	863	910
60.0	450	500	550	600	650	700	750	800	850	900	950
62.5	469	521	573	625	677	729	781	833	885	938	990
65.0	488	542	596	650	704	758	813	867	921	975	1029
67.5	506	563	619	675	731	788	844	900	956	1013	1069
70.0	525	583	642	700	758	817	875	933	992	1050	1108
72.5	544	604	665	725	785	846	906	967	1027	1088	1148
75.0	563	625	688	750	813	875	938	1000	1063	1125	1188
77.5	581	646	710	775	840	904	969	1033	1098	1163	1227
80.0	600	667	733	800	867	933	1000	1067	1133	1200	1267
82.5	619	688	756	825	894	963	1031	1100	1169	1238	1306
85.0	638	708	779	850	921	992	1063	1133	1204	1275	1346
87.5	656	729	802	875	948	1021	1094	1167	1240	1313	1385
90.0	675	750	825	900	975	1050	1125	1200	1275	1350	1425
92.5	694	771	848	925	1002	1079	1156	1233	1310	1388	1465
95.0	713	792	871	950	1029	1108	1188	1267	1346	1425	1504
97.5	731	813	894	975	1056	1138	1219	1300	1381	1463	1544
100.0	750	833	917	1000	1083	1167	1250	1333	1417	1500	1583

Matls. IM T101M Metric Units

-				N	legagra	ms/Hou	ır				
%	100	105	110	115	120	125	130	135	140	145	150
				۲	Cilogram	ns/Minut	te				
2.5	42	44	46	48	50	52	54	56	58	60	63
5.0	83	88	92	96	100	104	108	113	117	121	125
7.5	125	131	138	144	150	156	163	169	175	181	188
10.0	167	175	183	192	200	208	217	225	233	242	250
12.5	208	219	229	240	250	260	271	281	292	302	313
15.0	250	263	275	288	300	313	325	338	350	363	375
17.5	292	306	321	335	350	365	379	394	408	423	438
20.0	333	350	367	383	400	417	433	450	467	483	500
22.5	375	394	413	431	450	469	488	506	525	544	563
25.0	417	438	458	479	500	521	542	563	583	604	625
27.5	458	481	504	527	550	573	596	619	642	665	688
30.0	500	525	550	575	600	625	650	675	700	725	750
32.5	542	569	596	623	650	677	704	731	758	785	813
35.0	583	613	642	671	700	729	758	788	817	846	875
37.5	625	656	688	719	750	781.	813	844	875	906	938
40.0	667	700	733	767	800	833	867	900	933	967	1000
42.5	708	744	779	815	850	885	921	956	992	1027	1063
45.0	750	788	825	863	900	938	975	1013	1050	1088	1125
47.5	792	831	871	910	950	990	1029	1069	1108	1148	1188
50.0	833	875	917	958	1000	1042	1083	1125	1167	1208	1250
52.5	875	919	963	1006	1050	1094	1138	1181	1225	1269	1313
55.0	917	963	1008	1054	1100	1146	1192	1238	1283	1329	1375
57.5	958	1006	1054	1102	1150	1198	1246	1294	1342	1390	1438
60.0	1000	1050	1100	1150	1200	1250	1300	1350	1400	1450	1500
62.5	1042	1094	1146	1198	1250	1302	1354	1406	1458	1510	1563
65.0	1083	1138	1192	1246	1300	1354	1408	1463	1517	1571	1625
67.5	1125	1181	1238	1294	1350	1406	1463	1519	1575	1631	1688
70.0	1167	1225	1283	1342	1400	1458	1517	1575	1633	1692	1750
72.5	1208	1269	1329	1390	1450	1510	1571	1631	1692	1752	1813
75.0	1250	1313	1375	1438	1500	1563	1625	1688	1750	1813	1875
77.5	1292	1356	1421	1485	1550	1615	1679	1744	1808	1873	1938
80.0	1333	1400	1467	1533	1600	1667	1733	1800	1867	1933	2000
82.5	1375	1444	1513	1581	1650	1719	1788	1856	1925	1994	2063
85.0	1417	1488	1558	1629	1700	1771	1842	1913	1983	2054	2125
87.5	1458	1531	1604	1677	1750	1823	1896	1969	2042	2115	2188
90.0	1500	1575	1650	1725	1800	1875	1950	2025	2100	2175	2250
92.5	1542	1619	1696	1773	1850	1927	2004	2081	2158	2235	2313
95.0	1583	1663	1742	1821	1900	1979	2058	2138	2217	2296	2375
97.5	1625	1706	1788	1869	1950	2031	2113	2194	2275	2356	2438
100.0	1667	1750	1833	1917	2000	2083	2167	2250	2333	2417	2500

				M	egagra	ms/Hou	r				
%	155	160	165	170	175	180	185	190	195	200	205
				K	ilogram	s/Minut	е				
2.5	65	67	69	71	73	75	77	79	81	83	85
5.0	129	133	138	142	146	150	154	158	163	167	171
7.5	194	200	206	213	219	225	231	238	244	250	256
10.0	258	267	275	283	292	300	308	317	325	333	342
12.5	323	333	344	354	365	375	385	396	406	417	427
15.0	388	400	413	425	438	450	463	475	488	500	513
17.5	452	467	481	496	510	525	540	554	569	583	598
20.0	517	533	550	567	583	600	617	633	650	667	683
22.5	581	600	619	638	656	675	694	713	731	750	769
25.0	646	667	688	708	729	750	771	792	813	833	854
27.5	710	733	756	779	802	825	848	871	894	917	940
30.0	775	800	825	850	875	900	925	950	975	1000	1025
32.5	840	867	894	921	948	975	1002	1029	1056	1083	1110
35.0	904	933	963	992	1021	1050	1079	1108	1138	1167	1196
37.5	969	1000	1031	1063	1094	1125	1156	1188	1219	1250	1281
40.0	1033	1067	1100	1133	1167	1200	1233	1267	1300	1333	1367
42.5	1098	1133	1169	1204	1240	1275	1310	1346	1381	1417	1452
45.0	1163	1200	1238	1275	1313	1350	1388	1425	1463	1500	1538
47.5	1227	1267	1306	1346	1385	1425	1465	1504	1544	1583	1623
50.0	1292	1333	1375	1417	1458	1500	1542	1583	1625	1667	1708
52.5	1356	1400	1444	1488	1531	1575	1619	1663	1706	1750	1794
55.0	1421	1467	1513	1558	1604	1650	1696	1742	1788	1833	1879
57.5	1485	1533	1581	1629	1677	1725	1773	1821	1869	1917	1965
60.0	1550	1600	1650	1700	1750	1800	1850	1900	1950	2000	2050
62.5	1615	1667	1719	1771	1823	1875	1927	1979	2031	2083	2135
65.0	1679	1733	1788	1842	1896	1950	2004	2058	2113	2167	2221
67.5	1744	1800	1856	1913	1969	2025	2081	.2138	2194	2250	2306
70.0	1808	1867	1925	1983	2042	2100	2158	2217	2275	2333	2392
72.5	1873	1933	1994	2054	2115	2175	2235	2296	2356	2417	2477
75.0	1938	2000	2063	2125	2188	2250	2313	2375	2438	2500	2563
77.5	2002	2067	2131	2196	2260	2325	2390	2454	2519	2583	2648
80.0	2067	2133	2200	2267	2333	2400	2467	2533	2600	2667	2733
82.5	2131	2200	2269	2338	2406	2475	2544	2613	2681	2750	2819
85.0	2196	2267	2338	2408	2479	2550	2621	2692	2763	2833	2904
87.5	2260	2333	2406	2479	2552	2625	2698	2771	2844	2917	2990
90.0	2325	2400	2475	2550	2625	2700	2775	2850	2925	3000	3075
92.5	2390	2467	2544	2621	2698	2775	2852	2929	3006	3083	3160
95.0	2454	2533	2613	2692	2771	2850	2929	3008	3088	3167	3246
97.5	2519	2600	2681	2763	2844	2925	3006	3088	3169	3250	3331
100.0	2583	2667	2750	2833	2917	3000	3083	3167	3250	3333	3417

Matls. IM T101M Metric Units

AGGREGATE DELIVERY CONVERSION TAB

				N	legagra	ms/Hou	r			1.1.1	
%	210	215	220	225	230	235	240	245	250	255	260
				K	Cilogram	ns/Minut	te				
2.5	88	90	92	94	96	98	100	102	104	106	108
5.0	175	179	183	188	192	196	200	204	208	213	217
7.5	263	269	275	281	288	294	300	306	313	319	325
10.0	350	358	367	375	383	392	400	408	417	425	433
12.5	438	448	458	469	479	490	500	510	521	531	542
15.0	525	538	550	563	575	588	600	613	625	638	650
17.5	613	627	642	656	671	685	700	715	729	744	758
20.0	700	717	733	750	767	783	800	817	833	850	867
22.5	788	806	825	844	863	881	900	919	938	956	975
25.0	875	896	917	938	958	979	1000	1021	1042	1063	1083
27.5	963	985	1008	1031	1054	1077	1100	1123	1146	1169	1192
30.0	1050	1075	1100	1125	1150	1175	1200	1225	1250	1275	1300
32.5	1138	1165	1192	1219	1246	1273	1300	1327	1354	1381	1408
35.0	1225	1254	1283	1313	1342	1371	1400	1429	1458	1488	1517
37.5	1313	1344	1375	1406	1438	1469	1500	1531	1563	1594	1625
40.0	1400	1433	1467	1500	1533	1567	1600	1633	1667	1700	1733
42.5	1488	1523	1558	1594	1629	1665	1700	1735	1771	1806	1842
45.0	1575	1613	1650	1688	1725	1763	1800	1838	1875	1913	1950
47.5	1663	1702	1742	1781	1821	1860	1900	1940	1979	2019	2058
50.0	1750	1792	1833	1875	1917	1958	2000	2042	2083	2125	2167
52.5	1838	1881	1925	1969	2013	2056	2100	2144	2188	2231	2275
55.0	1925	1971	2017	2063	2108	2154	2200	2246	2292	2338	2383
57.5	2013	2060	2108	2156	2204	2252	2300	2348	2396	2444	2492
60.0	2100	2150	2200	2250	2300	2350	2400	2450	2500	2550	2600
62.5	2188	2240	2292	2344	2396	2448	2500	2552	2604	2656	2708
65.0	2275	2329	2383	2438	2492	2546	2600	2654	2708	2763	2817
67.5	2363	2419	2475	2531	2588	2644	2700	2756	2813	2869	2925
70.0	2450	2508	2567	2625	2683	2742	2800	2858	2917	2975	3033
72.5	2538	2598	2658	2719	2779	2840	2900	2960	3021	3081	3142
75.0	2625	2688	2750	2813	2875	2938	3000	3063	3125	3188	3250
77.5	2713	2777	2842	2906	2971	3035	3100	3165	3229	3294	3358
80.0	2800	2867	2933	3000	3067	3133	3200	3267	3333	3400	3467
82.5	2888	2956	3025	3094	3163	3231	3300	3369	3438	3506	3575
85.0	2975	3046	3117	3188	3258	3329	3400	3471	3542	3613	3683
87.5	3063	3135	3208	3281	3354	3427	3500	3573	3646	3719	3792
90.0	3150	3225	3300	3375	3450	3525	3600	3675	3750	3825	3900
92.5	3238	3315	3392	3469	3546	3623	3700	3777	3854	3931	4008
95.0	3325	3404	3483	3563	3642	3721	3800	3879	3958	4038	4117
97.5	3413	3494	3575	3656	3738	3819	3900	3981	4063	4144	4225
100.0	3500	3583	3667	3750	3833	3917	4000	4083	4167	4250	4333

AGGREGATE	DELIVERY	CONVERSION	TABLE

		5.25		M	legagra	ns/Hou	r				
%	265	270	275	280	285	290	295	300	305	310	315
				K	ilogram	s/Minute	e				
2.5	110	113	115	117	119	121	123	125	127	129	131
5.0	221	225	229	233	238	242	246	250	254	258	263
7.5	331	338	344	350	356	363	369	375	381	388	394
10.0	442	450	458	467	475	483	492	500	508	517	525
12.5	552	563	573	583	594	604	615	625	635	646	656
15.0	663	675	688	700	713	725	738	750	763	775	788
17.5	773	788	802	817	831	846	860	875	890	904	919
20.0	883	900	917	933	950	967	983	1000	1017	1033	1050
22.5	994	1013	1031	1050	1069	1088	1106	1125	1144	1163	1181
25.0	1104	1125	1146	1167	1188	1208	1229	1250	1271	1292	1313
27.5	1215	1238	1260	1283	1306	1329	1352	1375	1398	1421	1444
30.0	1325	1350	1375	1400	1425	1450	1475	1500	1525	1550	1575
32.5	1435	1463	1490	1517	1544	1571	1598	1625	1652	1679	1706
35.0	1546	1575	1604	1633	1663	1692	1721	1750	1779	1808	1838
37.5	1656	1688	1719	1750	1781	1813	1844	1875	1906	1938	1969
40.0	1767	1800	1833	1867	1900	1933	1967	2000	2033	2067	2100
42.5	1877	1913	1948	1983	2019	2054	2090	2125	2160	2196	2231
45.0	1988	2025	2063	2100	2138	2175	2213	2250	2288	2325	2363
47.5	2098	2138	2177	2217	2256	2296	2335	2375	2415	2454	2494
50.0	2208	2250	2292	2333	2375	2417	2458	2500	2542	2583	2625
52.5	2319	2363	2406	2450	2494	2538	2581	2625	2669	2713	2756
55.0	2429	2475	2521	2567	2613	2658	2704	2750	2796	2842	2888
57.5	2540	2588	2635	2683	2731	2779	2827	2875	2923	2971	3019
60.0	2650	2700	2750	2800	2850	2900	2950	3000	3050	3100	3150
62.5	2760	2813	2865	2917	2969	3021	3073	3125	3177	3229	3281
65.0	2871	2925	2979	3033	3088	3142	3196	3250	3304	3358	3413
67.5	2981	3038	3094	3150	3206	3263	3319	3375	3431	3488	3544
70.0	3092	3150	3208	3267	3325	3383	3442	3500	3558	3617	3675
72.5	3202	3263	3323	3383	3444	3504	3565	3625	3685	3746	3806
75.0	3313	3375	3438	3500	3563	3625	3688	3750	3813	3875	3938
77.5	3423	3488	3552	3617	3681	3746	3810	3875	3940	4004	4069
80.0	3533	3600	3667	3733	3800	3867	3933	4000	4067	4133	4200
82.5	3644	3713	3781	3850	3919	3988	4056	4125	4194	4263	4331
85.0	3754	3825	3896	3967	4038	4108	4179	4250	4321	4392	4463
87.5	3865	3938	4010	4083	4156	4229	4302	4375	4448	4521	4594
90.0	3975	4050	4125	4200	4275	4350	4425	4500	4575	4650	4725
92.5	4085	4163	4240	4317	4394	4471	4548	4625	4702	4779	4856
95.0	4196	4275	4354	4433	4513	4592	4671	4750	4829	4908	4988
97.5	4306	4388	4469	4550	4631	4713	4794	4875	4956	5038	5119
100.0	4417	4500	4583	4667	4750	4833	4917	5000	5083	5167	5250

Matls. IM T101M Metric Units

				Λ	legagra	ms/Hou	r				
%	320	325	330	335	340	345	350	355	360	365	370
				K	Cilogram	ns/Minut	e				
2.5	133	135	138	140	142	144	146	148	150	152	154
5.0	267	271	275	279	283	288	292	296	300	304	308
7.5	400	406	413	419	425	431	438	444	450	456	463
10.0	533	542	550	558	567	575	583	592	600	608	617
12.5	667	677	688	698	708	719	729	740	750	760	771
15.0	800	813	825	838	850	863	. 875	888	900	913	925
17.5	933	948	963	977	992	1006	1021	1035	1050	1065	1079
20.0	1067	1083	1100	1117	1133	1150	1167	1183	1200	1217	1233
22.5	1200	1219	1238	1256	1275	1294	1313	1331	1350	1369	1388
25.0	1333	1354	1375	1396	1417	1438	1458	1479	1500	1521	1542
27.5	1467	1490	1513	1535	1558	1581	1604	1627	1650	1673	1696
30.0	1600	1625	1650	1675	1700	1725	1750	1775	1800	1825	1850
32.5	1733	1760	1788	1815	1842	1869	1896	1923	1950	1977	2004
35.0	1867	1896	1925	1954	1983	2013	2042	2071	2100	2129	2158
37.5	2000	2031	2063	2094	2125	2156	2188	2219	2250	2281	2313
40.0	2133	2167	2200	2233	2267	2300	2333	2367	2400	2433	2467
42.5	2267	2302	2338	2373	2408	2444	2479	2515	2550	2585	2621
45.0	2400	2438	2475	2513	2550	2588	2625	2663	2700	2738	2775
47.5	2533	2573	2613	2652	2692	2731	2771	2810	2850	2890	2929
50.0	2667	2708	2750	2792	2833	2875	2917	2958	3000	3042	3083
52.5	2800	2844	2888	2931	2975	3019	3063	3106	3150	3194	3238
55.0	2933	2979	3025	3071	3117	3163	3208	3254	3300	3346	3392
57.5	3067	3115	3163	3210	3258	3306	3354	3402	3450	3498	3546
60.0	3200	3250	3300	3350	3400	3450	3500	3550	3600	3650	3700
62.5	3333	3385	3438	3490	3542	3594	3646	3698	3750	3802	3854
65.0	3467	3521	3575	3629	3683	3738	3792	3846	3900	3954	4008
67.5	3600	3656	3713	3769	3825	3881	3938	.3994	4050	4106	4163
70.0	3733	3792	3850	3908	3967	4025	4083	4142	4200	4258	4317
72.5	3867	3927	3988	4048	4108	4169	4229	4290	4350	4410	4471
75.0	4000	4063	4125	4188	4250	4313	4375	4438	4500	4563	4625
77.5	4133	4198	4263	4327	4392	4456	4521	4585	4650	4715	4779
80.0	4267	4333	4400	4467	4533	4600	4667	4733	4800	4867	4933
82.5	4400	4469	4538	4606	4675	4744	4813	4881	4950	5019	5088
85.0	4533	4604	4675	4746	4817	4888	4958	5029	5100	5171	5242
87.5	4667	4740	4813	4885	4958	5031	5104	5177	5250	5323	5396
90.0	4800	4875	4950	5025	5100	5175	5250	5325	5400	5475	5550
92.5	4933	5010	5088	5165	5242	5319	5396	5473	5550	5627	5704
95.0	5067	5146	5225	5304	5383	5463	5542	5621	5700	5779	5858
97.5	5200	5281	5363	5444	5525	5606	5688	5769	5850	5931	6013
100.0	5333	5417	5500	5583	5667	5750	5833	5917	6000	6083	6167

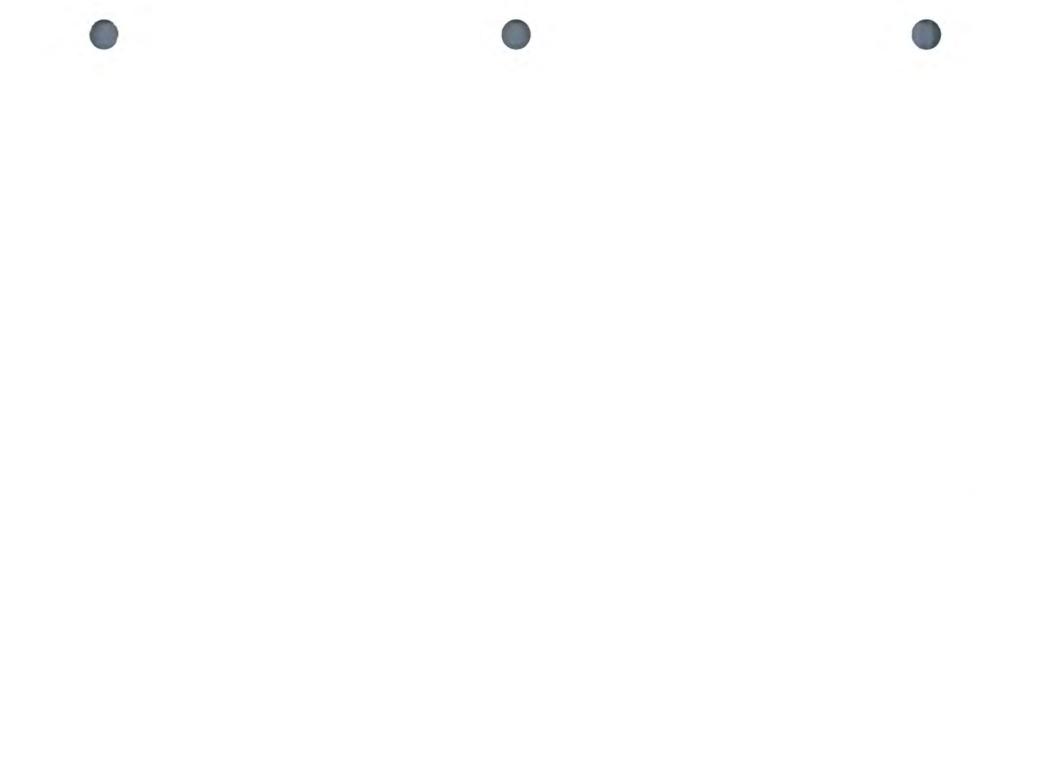
Matls. IM T101M Metric Units

AGGREGATE	DELIVERY	CONVERSION	TABLE

		1		M	legagra	ns/Hou	r		- 15		
%	375	380	385	390	395	400	405	410	415	420	425
				K	ilogram	s/Minut	е				
2.5	156	158	160	163	165	167	169	171	173	175	177
5.0	313	317	321	325	329	333	338	342	346	350	354
7.5	469	475	481	488	494	500	506	513	519	525	531
10.0	625	633	642	650	658	667	675	683	692	700	708
12.5	781	792	802	813	823	833	844	854	865	875	885
15.0	938	950	963	975	988	1000	1013	1025	1038	1050	1063
17.5	1094	1108	1123	1138	1152	1167	1181	1196	1210	1225	1240
20.0	1250	1267	1283	1300	1317	1333	1350	1367	1383	1400	1417
22.5	1406	1425	1444	1463	1481	1500	1519	1538	1556	1575	1594
25.0	1563	1583	1604	1625	1646	1667	1688	1708	1729	1750	1771
27.5	1719	1742	1765	1788	1810	1833	1856	1879	1902	1925	1948
30.0	1875	1900	1925	1950	1975	2000	2025	2050	2075	2100	2125
32.5	2031	2058	2085	2113	2140	2167	2194	2221	2248	2275	2302
35.0	2188	2217	2246	2275	2304	2333	2363	2392	2421	2450	2479
37.5	2344	2375	2406	2438	2469	2500	2531	2563	2594	2625	2656
40.0	2500	2533	2567	2600	2633	2667	2700	2733	2767	2800	2833
42.5	2656	2692	2727	2763	2798	2833	2869	2904	2940	2975	3010
45.0	2813	2850	2888	2925	2963	3000	3038	3075	3113	3150	3188
47.5	2969	3008	3048	3088	3127	3167	3206	3246	3285	3325	3365
50.0	3125	3167	3208	3250	3292	3333	3375	3417	3458	3500	3542
52.5	3281	3325	3369	3413	3456	3500	3544	3588	3631	3675	3719
55.0	3438	3483	3529	3575	3621	3667	3713	3758	3804	3850	3896
57.5	3594	3642	3690	3738	3785	3833	3881	3929	3977	4025	4073
60.0	3750	3800	3850	3900	3950	4000	4050	4100	4150	4200	4250
62.5	3906	3958	4010	4063	4115	4167	4219	4271	4323	4375	4427
65.0	4063	4117	4171	4225	4279	4333	4388	4442	4496	4550	4604
67.5	4219	4275	4331	4388	4444	4500	4556	4613	4669	4725	4781
70.0	4375	4433	4492	4550	4608	4667	4725	4783	4842	4900	4958
72.5	4531	4592	4652	4713	4773	4833	4894	4954	5015	5075	5135
75.0	4688	4750	4813	4875	4938	5000	5063	5125	5188	5250	5313
77.5	4844	4908	4973	5038	5102	5167	5231	5296	5360	5425	5490
80.0	5000	5067	5133	5200	5267	5333	5400	5467	5533	5600	5667
82.5	5156	5225	5294	5363	5431	5500	5569	5638	5706	5775	5844
85.0	5313	5383	5454	5525	5596	5667	5738	5808	5879	5950	6021
87.5	5469	5542	5615	5688	5760	5833	5906	5979	6052	6125	6198
90.0	5625	5700	5775	5850	5925	6000	6075	6150	6225	6300	6375
92.5	5781	5858	5935	6013	6090	6167	6244	6321	6398	6475	6552
95.0	5938	6017	6096	6175	6254	6333	6413	6492	6571	6650	6729
97.5	6094	6175	6256	6338	6419	6500	6581	6663	6744	6825	6906
100.0	6250	6333	6417	6500	6583	6667	6750	6833	6917	7000	7083

Matls. IM T101M Metric Units

			Charles .	N	legagra	ms/Hou	r			2.34	
%	430	435	440	445	450	455	460	465	470	475	480
				H	Cilogram	ns/Minut	te				
2.5	179	181	183	185	188	190	192	194	196	198	200
5.0	358	363	367	371	375	379	383	388	392	396	400
7.5	538	544	550	556	563	569	575	581	588	594	600
10.0	717	725	733	742	750	758	767	775	783	792	800
12.5	896	906	917	927	938	948	958	969	979	990	1000
15.0	1075	1088	1100	1113	1125	1138	1150	1163	1175	1188	1200
17.5	1254	1269	1283	1298	1313	1327	1342	1356	1371	1385	1400
20.0	1433	1450	1467	1483	1500	1517	1533	1550	1567	1583	1600
22.5	1613	1631	1650	1669	1688	1706	1725	1744	1763	1781	1800
25.0	1792	1813	1833	1854	1875	1896	1917	1938	1958	1979	2000
27.5	1971	1994	2017	2040	2063	2085	2108	2131	2154	2177	2200
30.0	2150	2175	2200	2225	2250	2275	2300	2325	2350	2375	2400
32.5	2329	2356	2383	2410	2438	2465	2492	2519	2546	2573	2600
35.0	2508	2538	2567	2596	2625	2654	2683	2713	2742	2771	2800
37.5	2688	2719	2750	2781	2813	2844	2875	2906	2938	2969	3000
40.0	2867	2900	2933	2967	3000	3033	3067	3100	3133	3167	3200
42.5	3046	3081	3117	3152	3188	3223	3258	3294	3329	3365	3400
45.0	3225	3263	3300	3338	3375	3413	3450	3488	3525	3563	3600
47.5	3404	3444	3483	3523	3563	3602	3642	3681	3721	3760	3800
50.0	3583	3625	3667	3708	3750	3792	3833	3875	3917	3958	4000
52.5	3763	3806	3850	3894	3938	3981	4025	4069	4113	4156	4200
55.0	3942	3988	4033	4079	4125	4171	4217	4263	4308	4354	4400
57.5	4121	4169	4217	4265	4313	4360	4408	4456	4504	4552	4600
60.0	4300	4350	4400	4450	4500	4550	4600	4650	4700	4750	4800
62.5	4479	4531	4583	4635	4688	4740	4792	4844	4896	4948	5000
65.0	4658	4713	4767	4821	4875	4929	4983	5038	5092	5146	5200
67.5	4838	4894	4950	5006	5063	5119	5175	5231	5288	5344	5400
70.0	5017	5075	5133	5192	5250	5308	5367	5425	5483	5542	5600
72.5	5196	5256	5317	5377	5438	5498	5558	5619	5679	5740	5800
75.0	5375	5438	5500	5563	5625	5688	5750	5813	5875	5938	6000
77.5	5554	5619	5683	5748	5813	5877	5942	6006	6071	6135	6200
80.0	5733	5800	5867	5933	6000	6067	6133	6200	6267	6333	6400
82.5	5913	5981	6050	6119	6188	6256	6325	6394	6463	6531	6600
85.0	6092	6163	6233	6304	6375	6446	6517	6588	6658	6729	6800
87.5	6271	6344	6417	6490	6563	6635	6708	6781	6854	6927	7000
90.0	6450	6525	6600	6675	6750	6825	6900	6975	7050	7125	7200
92.5	6629	6706	6783	6860	6938	7015	7092	7169	7246	7323	7400
95.0	6808	6888	6967	7046	7125	7204	7283	7363	7442	7521	7600
97.5	6988	7069	7150	7231	7313	7394	7475	7556	7638	7719	7800
100.0	7167	7250	7333	7417	7500	7583	7667	7750	7833	7917	8000



•

·

:

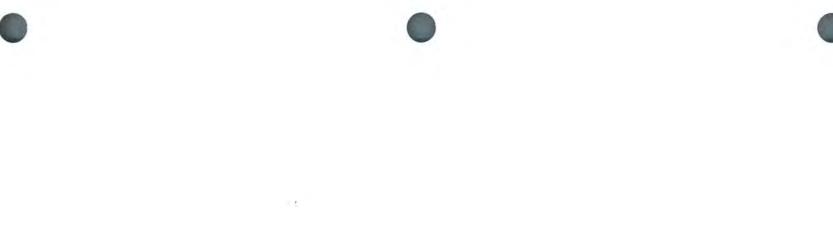
Iowa Department of Transportation

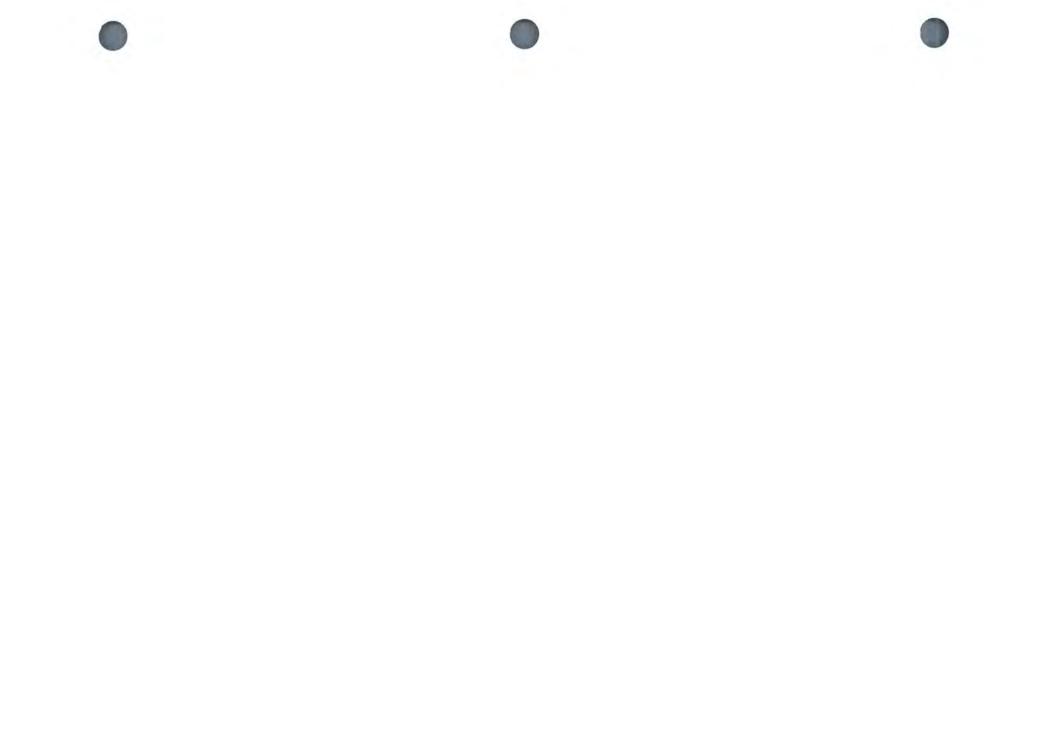
Reissued October 18, 2005 Supersedes October 3, 2000

Matls. IM T102C Customary Units

TEMPERATURE-VOLUME CORRECTIONS FOR ASPHALTIC MATERIALS (CUSTOMARY UNITS)

GROUP 0 – SPECIFIC GRAVITY AT 60°F ABOVE 0.966 LEGEND: t = Observed Temperature in Degrees Fahrenheit M = Multiplier for Correcting Oil Volumes to the Basis of 60°F


t	M	t	M	t	M	t	M	t	M
0	1.0211	50	1.0035	100	0.9861	150	0.9689	200	0.9520
1	1.0208	51	1.0031	101	0.9857	151	0.9686	201	0.9516
2	1.0204	52	1.0028	102	0.9854	152	0.9682	202	0.9513
3	1.0201	53	1.0024	103	0.9851	153	0.9679	203	0.9509
4	1.0197	54	1.0021	104	0.9847	154	0.9675	204	0.9506
5	1.0194	55	1.0017	105	0.9844	155	0.9672	205	0.9503
6	1.0190	56	1.0014	106	0.9840	156	0.9669	206	0.9499
7	1.0186	57	1.0010	107	0.9837	157	0.9665	207	0.9496
8	1.0183	58	1.0007	108	0.9833	158	0.9662	208	0.9493
9	1.0179	59	1.0003	109	0.9830	159	0.9658	209	0.9489
10	1.0176	60	1.0000	110	0.9826	160	0.9655	210	0.9486
11	1.0172	61	0.9997	111	0.9823	161	0.9652	211	0.9483
12	1.0169	62	0.9993	112	0.9819	162	0.9648	212	0.9479
13	1.0165	63	0.9990	113	0.9816	163	0.9645	213	0.9479
14	1.0162	64	0.9986	114	0.9813	164	0.9641	213	0.9478
5	1.0158	65	0.9983	115	0.9809	165	0.9638	214	
16	1.0155	66	0.9979	116	0.9806	166	0.9635		0.9469
17	1.0151	67	0.9976	117	0.9802			216	0.9466
18	1.0148	68	0.9972	118		167	0.9631	217	0.9462
19	1.0148	69			0.9799	168	0.9628	218	0.9459
20			0.9969	119	0.9795	169	0.9624	219	0.9456
	1.0141	70	0.9965	120	0.9792	170	0.9621	220	0.9452
21	1.0137	71	0.9962	121	0.9788	171	0.9618	221	0.9449
22	1.0133	72	0.9958	122	0.9785	172	0.9614	222	0.9446
23	1.0130	73	0.9955	123	0.9782	173	0.9611	223	0.9442
24	1.0126	74	0.9951	124	0.9778	174	0.9607	224	0.9439
25	1.0123	75	0.9948	125	0.9775	175	0.9604	225	0.9436
26	1.0119	76	0.9944	126	0.9771	176	0.9601	226	0.9432
27	1.0116	77	0.9941	127	0.9768	177	0.9597	227	0.9429
28	1.0112	78	0.9937	128	0.9764	178	0.9594	228	0.9426
29	1.0109	79	0.9934	129	0.9761	179	0.9590	229	0.9422
30	1.0105	80	0.9930	130	0.9758	180	0.9587	230	0.9419
31	1.0102	81	0.9927	131	0.9754	181	0.9584	231	0.9416
32	1.0098	82	0.9923	132	0.9751	182	0.9580	232	0.9412
33	1.0095	83	0.9920	133	0.9747	183	0.9577	233	0.9409
34	1.0091	84	0.9916	134	0.9744	184	0.9574	234	0.9405
35	1.0088	85	0.9913	135	0.9740	185	0.9570	235	0.9402
36	1.0084	86	0.9909	136	0.9737	186	0.9567	236	0.9399
37	1.0081	87	0.9906	137	0.9734	187	0.9563	237	0.9395
38	1.0077	88	0.9902	138	0.9730	188	0.9560	238	0.9392
39	1.0074	89	0.9899	139	0.9727	189	0.9557	239	0.9389
10	1.0070	90	0.9896	140	0.9723	190	0.9553	240	0.9385
41	1.0067	91	0.9892	141	0.9720	191	0.9550	241	0.9382
12	1.0063	92	0.9889	142	0.9716	192	0.9547	242	0.9379
13	1.0060	93	0.9885	143	0.9713	193	0.9543	242	0.9375
14	1.0056	94	0.9882	144	0.9710	194	0.9543	243	
45	1.0053	95	0.9878	145	0.9706	194	0.9536	244	0.9372
46	1.0049	96	0.9875	146	0.9703	195	0.9538		0.9369
47	1.0046	97	0.9871	140	0.9699	190		246	0.9365
48	1.0040	98	0.9868	147			0.9530	247	0.9362
49	1.0042	99	0.9864	140	0.9696 0.9693	198	0.9526	248	0.9359
13	1.0000	33	0.9004	149	0.9095	199	0.9523	249	0.9356



TEMPERATURE-VOLUME CORRECTIONS FOR ASPHALTIC MATERIALS (CUSTOMARY UNITS)

GROUP 0 – SPECIFIC GRAVITY AT 60°F ABOVE 0.966 LEGEND: t = Observed Temperature in Degrees Fahrenheit M = Multiplier for Correcting Oil Volumes to the Basis of 60°F

t	М	t	М	t	М	t	M	t-	M
250	0.9352	300	0.9187	350	0.9024	400	0.8864	450	0.8705
251	0.9349	301	0.9184	351	0.9021	401	0.8861	451	0.8702
252	0.9346	302	0.9181	352	0.9018	402	0.8857	452	0.8699
253	0.9342	303	0.9177	353	0.9015	403	0.8854	453	0.8696
254	0.9339	304	0.9174	354	0.9011	404	0.8851	454	0.8693
255	0.9336	305	0.9171	355	0.9008	405 .	0.8848	455	0.8690
256	0.9332	306	0.9167	356	0.9005	406	0.8845	456	0.8687
257	0.9329	307	0.9164	357	0.9002	407	0.8841	457	0.8683
258	0.9326	308	0.9161	358	0.8998	408	0.8838	458	0.8680
259	0.9322	309	0.9158	359	0.8995	409	0.8835	459	0.8677
260	0.9319	310	0.9154	360	0.8992	410	0.8832	460	0.8674
261	0.9316	311	0.9151	361	0.8989	411	0.8829	461	0.8671
262	0.9312	312	0.9148	362	0.8986	412	0.8826	462	0.8668
263	0.9312	313	0.9145	363	0.8982	413	0.8822	463	0.8665
		314	0.9141	364	0.8979	414	0.8819	464	0.8661
264	0.9306	314	0.9141	365	0.8979	414	0.8816	465	0.8658
65	0.9302	315	0.9135	366	0.8973	415	0.8813	466	0.8655
266	0.9299			367	0.8969	410	0.8810	467	0.8652
267	0.9296	317	0.9132	368	0.8966	417	0.8806	468	0.8649
268	0.9293	318	0.9128			419	0.8803	469	0.8646
269	0.9289	319	0.9125	369	0.8963	419	0.8800	409	0.8643
270	0.9286	320	0.9122	370	0.8960		0.8797	471	0.8640
271	0.9283	321	0.9118	371	0.8957	421		472	0.8636
272	0.9279	322	0.9115	372	0.8953	422	0.8794		
273	0.9276	323	0.9112	373	0.8950	423	0.8791	473	0.8633
274	0.9273	324	0.9109	374	0.8947	424	0.8787	474	0.8630
275	0.9269	325	0.9105	375	0.8944	425	0.8784	475	0.8827
276	0.9266	326	0.9102	376	0.8941	426	0.8781	476	0.8624
277	0.9263	327	0.9099	377	0.8937	427	0.8778	477	0.8621
278	0.9259	328	0.9096	378	0.8934	428	0.8775	478	0.8618
279	0.9256	329	0.9092	379	0.8931	429	0.8772	479	0.8615
280	0.9253	330	0.9089	380	0.8928	430	0.8768	480	0.8611
281	0.9250	331	0.9086	381	0.8924	431	0.8765	481	0.8608
282	0.9246	332	0.9083	382	0.8921	432	0.8762	482	0.8605
283	0.9243	333	0.9079	383	0.8918	433	0.8759	483	0.8602
284	0.9240	334	0.9076	384	0.8915	434	0.8756	484	0.8599
285	0.9236	335	0.9073	385	0.8912	435	0.8753	485	0.8596
286	0.9233	336	0.9070	386	0.8908	436	0.8749	486	0.8593
287	0.9230	337	0.9066	387	0.8905	437	0.8746	487	0.8590
288	0.9227	338	0.9063	388	0.8902	438	0.8743	488	0.8587
289	0.9223	339	0.9060	389	0.8899	439	0.8740	489	0.8583
290	0.9220	340	0.9057	390	0.8896	440	0.8737	490	0.8580
291	0.9217	341	0.9053	391	0.8892	441	0.8734	491	0.8577
292	0.9213	342	0.9050	392	0.8889	442	0.8731	492	0.8574
293	0.9210	343	0.9047	393	0.8886	443	0.8727	493	0.8571
294	0.9207	344	0.9044	394	0.8883	444	0.8724	494	0.8568
295	0.9204	345	0.9040	395	0.8880	445	0.8721	495	0.8565
296	0.9200	346	0.9037	396	0.8876	446	0.8718	496	0.8562
297	0.9197	347	0.9034	397	0.8873	447	0.8715	497	0.8559
298	0.9194	348	0.9031	398	0.8870	448	0.8712	498	0.8556
299	0.9194	349	0.9028	399	0.8867	449	0.8709	499	0.8552

lowa Department of Transportation

Office of Materials

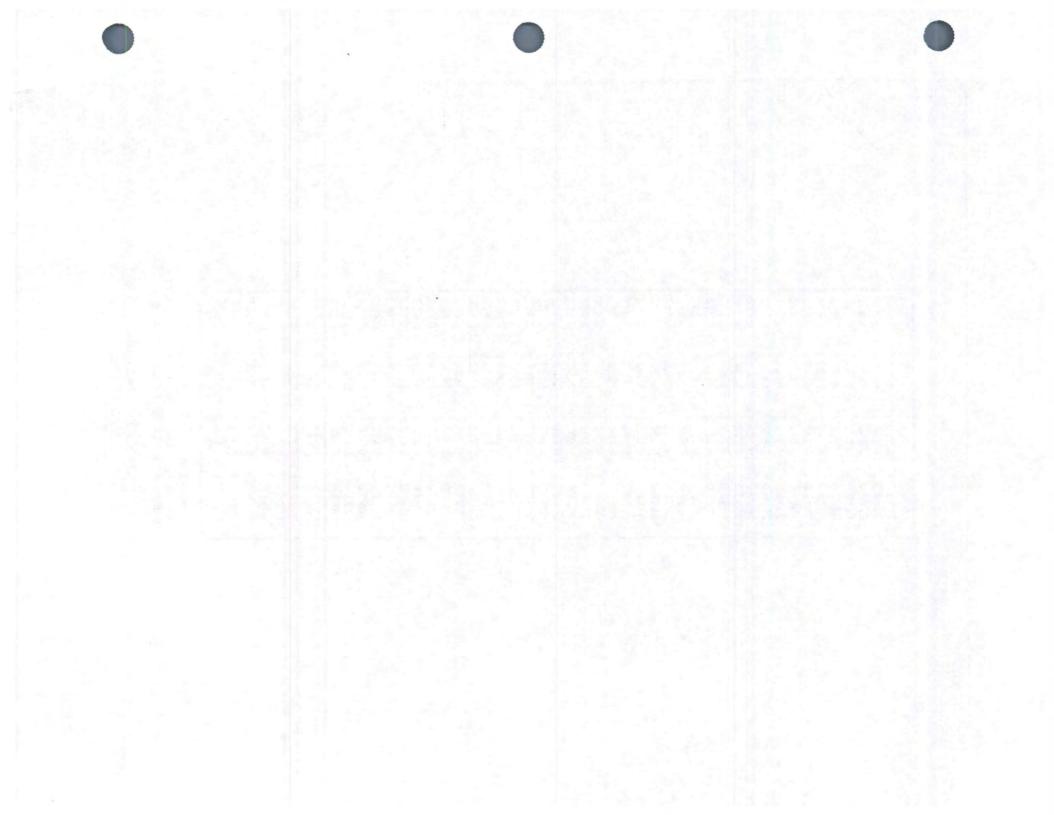
Reissued October 18, 2005 Supersedes October 3, 2000 Matls. IM T102M Metric Units

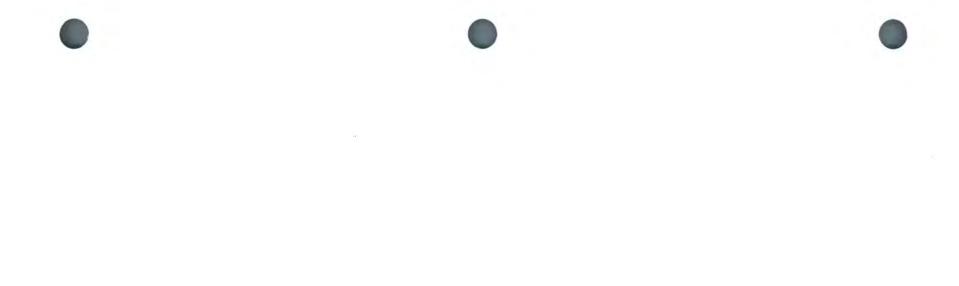
TEMPERATURE-VOLUME CORRECTIONS FOR ASPHALTIC MATERIALS (METRIC UNITS)

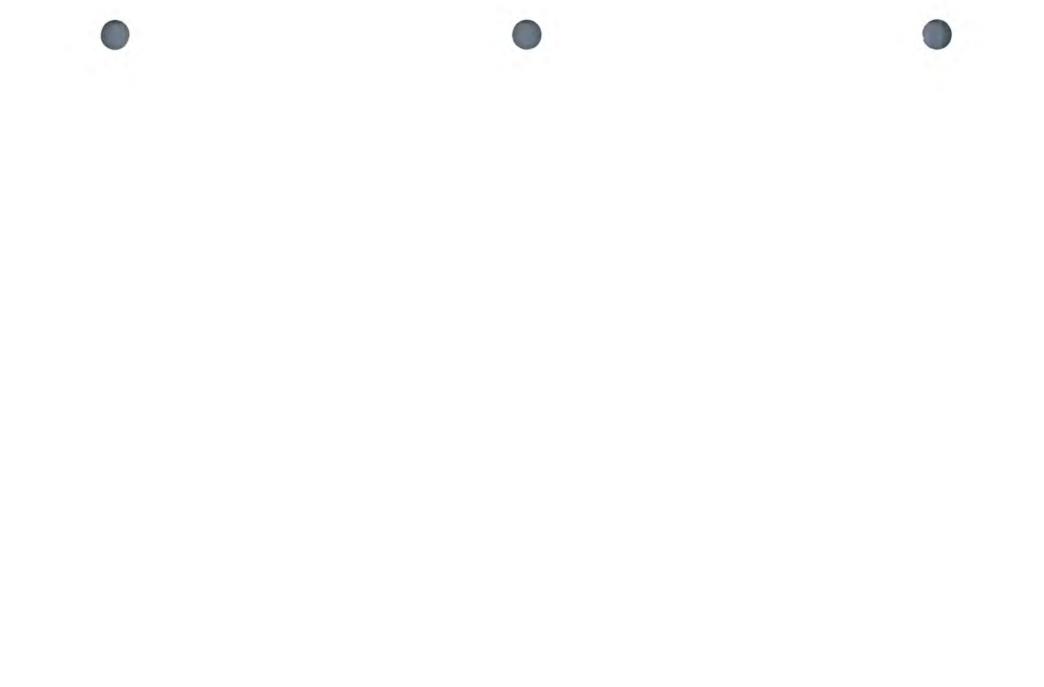
GROUP 0 – DENSITY AT 15°C ABOVE 0.9654 LEGEND: t = Observed Temperature in Degrees Celsius M = Multiplier for Reducing Volume to 15°C

t	M	t	M	t	M	t	М	t	M
25.0	1.0254	0.0	1.0095	25.0	0.9937	50.0	0.9782	75.0	0.9628
24.5	1.0251	0.5	1.0092	25.5	0.9934	50.5	0.9779	75.5	0.9625
24.0	1.0248	1.0	1.0089	26.0	0.9931	51.0	0.9776	76.0	0.9622
23.5	1.0244	1.5	1.0085	26.5	0.9928	51.5	0.9773	76.5	0.9619
23.0	1.0241	2.0	1.0082	27.0	0.9925	52.0	0.9770	77.0	0.9616
22.5	1.0238	2.5	1.0079	27.5	0.9922	52.5	0.9767	77.5	0.9613
22.0	1.0235	3.0	1.0076	28.0	0.9918	53.0	0.9763	78.0	0.9609
21.5	1.0232	3.5	1.0073	28.5	0.9915	53.5	0.9760	78.5	0.9606
21.0	1.0228	4.0	1.0069	29.0	0.9912	54.0	0.9757	79.0	0.9603
20.5	1.0225	4.5	1.0066	29.5	0.9909	54.5	0.9754	79.5	0.9600
20.0	1.0222	5.0	1.0063	30.0	0.9906	55.0	0.9751	80.0	0.9597
19.5	1.0219	5.5	1.0060	30.5	0.9903	55.5	0.9748	80.5	0.9594
19.0	1.0216	6.0	1.0057	31.0	0.9900	56.0	0.9745	81.0	0.9591
18.5	1.0212	6.5	1.0053	31.5	0.9897	56.5	0.9742	81.5	0.9588
18.0	1.0209	7.0	1.0050	32.0	0.9894	57.0	0.9739	82.0	0.9585
17.5	1.0206	7.5	1.0047	32.5	0.9891	57.5	0.9736	82.5	0.9582
17.0	1.0203	8.0	1.0044	33.0	0.9887	58.0	0.9732	83.0	0.9578
16.5	1.0200	8.5	1.0041	33.5	0.9884	58.5	0.9729	83.5	0.9576
16.0	1.0196	9.0	1.0037	34.0	0.9881	59.0	0.9726	84.0	0.9573
15.5	1.0193	9.5	1.0034	34.5	0.9878	59.5	0.9723	84.5	0.9570
15.0	1.0190	10.0	1.0031	35.0	0.9875	60.0	0.9720	85.0	0.9567
14.5	1.0187	10.5	1.0028	35.5	0.9872	60.5	0.9717	85.5	0.9564
14.0	1.0184	11.0	1.0025	36.0	0.9869	61.0	0.9714	86.0	0.9561
13.5	1.0180	11.5	1.0022	36.5	0.9866	61.5	0.9711	86.5	0.9558
13.0	1.0177	12.0	1.0019	37.0	0.9863	62.0	0.9708	87.0	0.9555
12.5	1.0174	12.5	1.0016	37.5	0.9860	62.5	0.9705	87.5	0.9552
12.0	1.0171	13.0	1.0012	38.0	0.9856	63.0	0.9701	88.0	0.9548
11.5	1.0168	13.5	1.0009	38.5	0.9853	63.5	0.9698	88.5	0.9545
11.0	1.0164	14.0	1.0006	39.0	0.9850	64.0	0.9695	89.0	0.9542
10.5	1.0161	14.5	1.0003	39.5	0.9847	64.5	0.9692	89.5	0.9539
10.0	1.0158	15.0	1.0000	40.0	0.9844	65.0	0.9689	90.0	0.9536
9.5	1.0155	15.5	0.9997	40.5	0.9841	65.5	0.9686	90.5	0.9533
9.0	1.0152	16.0	0.9994	41.0	0.9838	66.0	0.9683	91.0	0.9530
8.5	1.0148	16.5	0.9991	41.5	0.9835	66.5	0.9680	91.5	0.9530
8.0	1.0145	17.0	0.9988	42.0	0.9832	67.0	0.9677	92.0	
7.5	1.0142	17.5	0.9985	42.5	0.9829	67.5	0.9674	92.5	0.9524 0.9521
7.0	1.0139	18.0	0.9981	43.0	0.9825	68.0	0.9670	92.5	0.9521
6.5	1.0136	18.5	0.9978	43.5	0.9822	68.5	0.9667	93.5	0.9518
6.0	1.0132	19.0	0.9975	44.0	0.9819	69.0	0.9664	94.0	
5.5	1.0129	19.5	0.9972	44.5	0.9816	69.5	0.9661	94.0	0.9512 0.9509
5.0	1.0126	20.0	0.9969	45.0	0.9813	70.0	0.9658	94.5	
4.5	1.0123	20.5	0.9966	45.5	0.9810	70.5	0.9655		0.9506
4.0	1.0120	21.0	0.9963	46.0	0.9807	71.0	0.9652	95.5 96.0	0.9503
3.5	1.0117	21.5	0.9959	46.5	0.9804	71.5	0.9649	96.5	0.9500
3.0	1.0114	22.0	0.9956	47.0	0.9804	72.0	0.9649		0.9497
2.5	1.0111	22.5	0.9953	47.5	0.9798	72.5		97.0	0.9494
2.0	1.0107	23.0	0.9950	47.5	0.9798	72.5	0.9643	97.5	0.9491
1.5	1.0104	23.5	0.9950	48.5			0.9640	98.0	0.9488
1.0	1.0104	23.5	0.9947	48.5	0.9791	73.5	0.9637	98.5	0.9485
0.5	1.0098	24.0			0.9788	74.0	0.9634	99.0	0.9482
0.0	1.0090	24.5	0.9940	49.5	0.9785	74.5	0.9631	99.5	0.9479

TEMPERATURE-VOLUME CORRECTIONS FOR ASPHALTIC MATERIALS (METRIC UNITS)


GROU	P 0 – DENSITY AT 15°C ABOVE 0.9654
LEGEND:	t = Observed Temperature in Degrees Celsius
	M = Multiplier for Reducing Volume to 15°C


t	M	t	M	t	М	t	М	t	М
100.0	0.9476	125.0	0.9326	150.0	0.9177	175.0	0.9031	200.0	0.8886
100.5	0.9473	125.5	0.9323	150.5	0.9174	175.5	0.9028	200.5	0.8883
01.0	0.9470	126.0	0.9320	151.0	0.9171	176.0	0.9025	201.0	0.8880
01.5	0.9467	126.5	0.9317	151.5	0.9168	176.5	0.9022	201.5	0.8877
02.0	0.9464	127.0	0.9314	152.0	0.9165	177.0	0.9019	202.0	0.8874
02.5	0.9461	127.5	0.9311	152.5	0.9163	177.5	0.9017	202.5	0.8872
103.0	0.9458	128.0	0.9308	153.0	0.9160	178.0	0.9014	203.0	0.8869
103.5	0.9455	128.5	0.9305	153.5	0.9157	178.5	0.9011	203.5	0.8866
104.0	0.9452	129.0	0.9302	154.0	0.9154	179.0	0.9008	204.0	0.8863
104.5	0.9449	129.5	0.9299	154.5	0.9151	179.5	0.9005	204.5	0.8860
105.0	0.9446	130.0	0.9296	155.0	0.9148	180.0	0.9002	205.0	0.8857
105.5	0.9443	130.5	0.9293	155.5	0.9145	180.5	0.8999	205.5	0.8854
106.0	0.9440	131.0	0.9290	156.0	0.9142	181.0	0.8996	206.0	0.8851
106.5	0.9437	131.5	0.9287	156.5	0.9139	181.5	0.8993	206.5	0.8849
107.0	0.9434	132.0	0.9284	157.0	0.9136	182.0	0.8990	207.0	0.8846
107.5	0.9431	132.5	0.9281	157.5	0.9133	182.5	0.8988	207.5	0.8843
108.0	0.9428	133.0	0.9278	158.0	0.9130	183.0	0.8985	208.0	0.8840
108.5	0.9425	133.5	0.9275	158.5	0.9127	183.5	0.8982	208.5	0.8837
109.0	0.9422	134.0	0.9272	159.0	0.9124	184.0	0.8979	209.0	0.8835
109.5	0.9419	134.5	0.9269	159.5	0.9121	184.5	0.8976	209.5	0.8832
110.0	0.9416	135.0	0.9266	160.0	0.9118	185.0	0.8973	210.0	0.8829
110.5	0.9413	135.5	0.9263	160.5	0.9115	185.5	0.8970	210.5	0.8826
111.0	0.9410	136.0	0.9260	161.0	0.9112	186.0	0.8967	211.0	0.8823
111.5	0.9407	136.5	0.9257	161.5	0.9109	186.5	0.8964	211.5	0.8820
112.0	0.9407	137.0	0.9254	162.0	0.9106	187.0	0.8961	212.0	0.8817
	0.9404	137.5	0.9251	162.5	0.9104	187.5	0.8959	212.5	0.8815
112.5		137.5	0.9248	163.0	0.9101	188.0	0.8956	213.0	0.8812
113.0	0.9397		0.9246	163.5	0.9098	188.5	0.8953	213.5	0.8809
113.5	0.9394	138.5			0.9095	189.0	0.8950	214.0	0.8806
114.0	0.9391	139.0	0.9242	164.0 164.5	0.9095	189.5	0.8947	214.5	0.8803
114.5	0.9388	139.5	0.9239			190.0	0.8944	214.5	0.8800
115.0	0.9385	140.0	0.9236	165.0	0.9089 0.9086	190.5	0.8941	215.5	0.8797
115.5	0.9382	140.5	0.9233	165.5			0.8938	215.5	0.8794
116.0	0.9379	141.0	0.9230	166.0	0.9083	191.0			
116.5	0.9376	141.5	0.9227	166.5	0.9080	191.5	0.8935	216.5	0.8792
117.0	0.9373	142.0	0.9224	167.0	0.9077	192.0	0.8932	217.0	0.8789
117.5	0.9371	142.5	0.9222	167.5	0.9075	192.5	0.8930	217.5	0.8786
118.0	0.9368	143.0	0.9219	168.0	0.9072	193.0	0.8927	218.0	0.8783
118.5	0.9365	143.5	0.9216	168.5	0.9069	193.5	0.8924	218.5	0.8780
119.0	0.9362	144.0	0.9213	169.0	0.9066	194.0	0.8921	219.0	0.8778
119.5	0.9359	144.5	0.9210	169.5	0.9063	194.5	0.8918	219.5	0.8775
120.0	0.9356	145.0	0.9207	170.0	0.9060	195.0	0.8915	220.0	0.8772
120.5	0.9353	145.5	0.9204	170.5	0.9057	195.5	0.8912	220.5	0.8769
21.0	0.9350	146.0	0.9201	171.0	0.9054	196.0	0.8909	221.0	0.8766
121.5	0.9347	146.5	0.9198	171.5	0.9051	196.5	0.8906	221.5	0.8763
122.0	0.9344	147.0	0.9195	172.0	0.9048	197.0	0.8903	222.0	0.8760
122.5	0.9341	147.5	0.9192	172.5	0.9046	197.5	0.8901	222.5	0.8758
123.0	0.9338	148.0	0.9189	173.0	0.9043	198.0	0.8898	223.0	0.8755
123.5	0.9335	148.5	0.9186	173.5	0.9040	198.5	0.8895	223.5	0.8752
124.0	0.9332	149.0	0.9183	174.0	0.9037	199.0	0.8892	224.0	0.8749
124.5	0.9329	149.5	0.9180	174.5	0.9034	199.5	0.8889	224.5	0.8746


TEMPERATURE-VOLUME CORRECTIONS FOR ASPHALTIC MATERIALS (METRIC UNITS)

GROUP 0 – DENSITY AT 15°C ABOVE 0.9654 LEGEND: t = Observed Temperature in Degrees Celsius M = Multiplier for Reducing Volume to 15°C

t	M	t	M
225.0	0.8743	250.0	0.8602
225.5	0.8740	250.5	0.8599
226.0	0.8737	251.0	0.8596
226.5	0.8735	251.5	0.8594
227.0	0.8732	252.0	0.8591
227.5	0.8729	252.5	0.8588
228.0	0.8726	253.0	0.8585
228.5	0.8723	253.5	0.8582
229.0	0.8721	254.0	0.8580
229.5	0.8718	254.5	0.8577
230.0	0.8715	255.0	0.8574
230.5	0.8712	255.5	0.8571
231.0	0.8709	256.0	0.8568
231.5	0.8707	256.5	0.8566
232.0	0.8704	257.0	0.8563
232.5	0.8701	257.5	0.8560
233.0	0.8698	258.0	0.8557
233.5	0.8695	258.5	0.8554
234.0	0.8693	259.0	0.8552
234.5	0.8690	259.5	0.8549
235.0	0.8687	260.0	0.8546
235.5	0.8684	260.5	0.8543
236.0	0.8681	261.0	
236.5	0.8678	261.5	0.8540
237.0	0.8675		0.8538
237.5		262.0	0.8535
237.5	0.8673	262.5	0.8532
238.5	0.8670	263.0	0.8529
	0.8667	263.5	0.8526
239.0	0.8664	264.0	0.8524
	0.8661	264.5	0.8521
240.0	0.8658	265.0	0.8518
240.5	0.8655	265.5	0.8515
241.0	0.8652	266.0	0.8512
241.5	0.8650	266.5	0.8510
242.0	0.8647	267.0	0.8507
242.5	0.8644	267.5	0.8504
243.0	0.8641	268.0	0.8501
243.5	0.8638	268.5	0.8498
244.0	0.8636	269.0	0.8496
244.5	0.8633	269.5	0.8493
245.0	0.8630	270.0	0.8490
245.5	0.8627	270.5	0.8487
246.0	0.8624	271.0	0.8484
246.5	0.8622	271.5	0.8482
247.0	0.8619	272.0	0.8479
247.5	0.8616	272.5	0.8476
248.0	0.8613	273.0	0.8473
248.5	0.8610	273.5	0.8470
249.0	0.8608	274.0	0.8468
249.5	0.8605	274.5	0.8465

Office of Materials

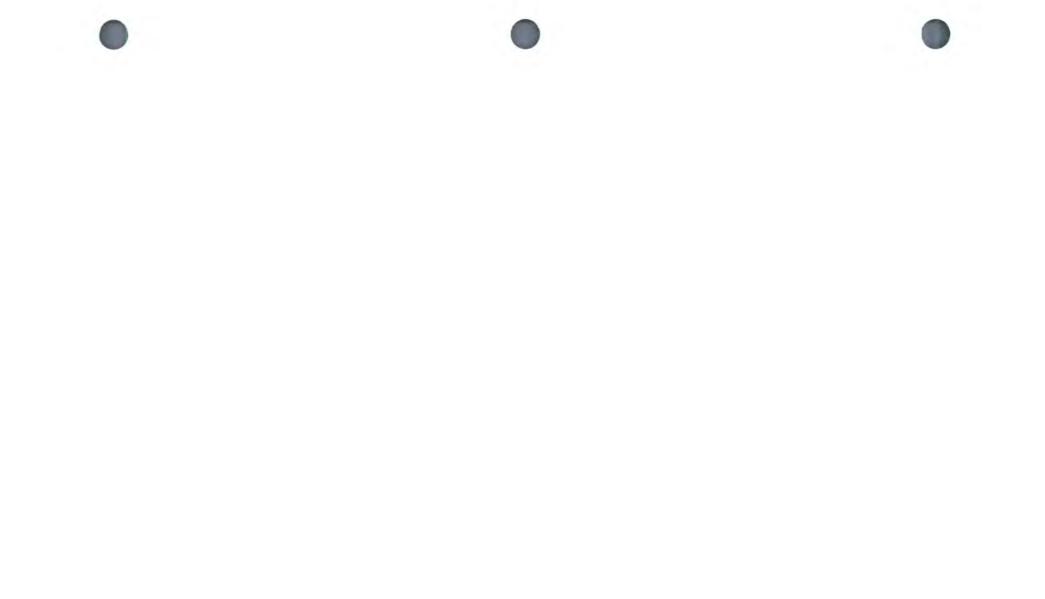
lowa Department of Transportation

Reissued October 18, 2005 Supersedes October 3, 2000

Matls. IM T103C Customary Units

TEMPERATURE-VOLUME CORRECTIONS FOR ASPHALTIC MATERIALS (CUSTOMARY UNITS)

GROUP 0 – SPECIFIC GRAVITY AT 60°F OF 0.850 TO 0.966 LEGEND: t = Observed Temperature in Degrees Fahrenheit M = Multiplier for Correcting Oil Volumes to the Basis of 60°F


t	M	t	M	t	M	t	M	t	M
0	1.0241	50	1.0040	100	0.9842	150	0.9647	200	0.9456
1	1.0237	51	1.0036	101	0.9838	151	0.9643	201	0.9452
2	1.0233	52	1.0032	102	0.9834	152	0.9639	202	0.9448
3	1.0229	53	1.0028	103	0.9830	153	0.9635	203	0.9444
4	1.0225	54	1.0024	104	0.9826	154	0.9632	204	0.9441
5	1.0221	55	1.0020	105	0.9822	155	0.9628	205	0.9437
6	1.0217	56	1.0016	106	0.9818	156	0.9624	206	0.9433
7	1.0213	57	1.0012	107	0.9814	157	0.9620	207	0.9429
8	1.0209	58	1.0008	108	0.9810	158	0.9616	208	0.9425
9	1.0205	- 59	1.0004	109	0.9806	159	0.9612	209	0.9422
10	1.0201	60	1.0000	110	0.9803	160	0.9609	210	0.9418
11	1.0197	61	0.9996	111	0.9799	161	0.9605	211	0.9418
12	1.0193	62	0.9992	112	0.9795	162	0.9601	212	0.9414
13	1.0189	63	0.9988	113	0.9791	163	0.9597	213	
14	1.0185	64	0.9984	114	0.9787	164	0.9593	213	0.9407
15	1.0181	65	0.9980	115	0.9783	165			0.9403
16	1.0177	66	0.9976	116	0.9783	166	0.9589 0.9585	215	0.9399
17	1.0173	67	0.9972	117	0.9775	167		216	0.9395
8	1.0168	68	0.9968	118	0.9775		0.9582	217	0.9391
19	1.0164	69	0.9964	119	0.9771	168	0.9578	218	0.9388
20	1.0160	70	0.9964			169	0.9574	219	0.9384
21	1.0156	71	0.9956	120	0.9763	-170	0.9570	220	0.9380
22	1.0150			121	0.9760	171	0.9566	221	0.9376
23		72	0.9952	122	0.9756	172	0.9562	222	0.9373
24	1.0148	73	0.9948	123	0.9752	173	0.9559	223	0.9369
	1.0144	74	0.9944	124	0.9748	174	0.9555	224	0.9365
25	1.0140	75	0.9940	125	0.9744	175	0.9551	225	0.9361
26	1.0136	76	0.9936	126	0.9740	176	0.9547	226	0.9358
27	1.0132	77	0.9932	127	0.9736	177	0.9543	227	0.9354
28	1.0128	78	0.9929	128	0.9732	178	0.9539	228	0.9350
29	1.0124	79	0.9925	129	0.9728	179	0.9536	229	0.9346
30	1.0120	80	0.9921	130	0.9725	180	0.9532	230	0.9343
31	1.0116	81	0.9917	131	0.9721	181	0.9528	231	0.9339
32	1.0112	82	0.9913	132	0.9717	182	0.9524	232	0.9335
33	1.0108	83	0.9909	133	0.9713	183	0.9520	233	0.9331
34	1.0104	84	0.9905	134	0.9709	184	0.9517	234	0.9328
35	1.0100	85	0.9901	135	0.9705	185	0.9513	235	0.9324
36	1.0096	86	0.9897	136	0.9701	186	0.9509	236	0.9320
37	1.0092	87	0.9893	137	0.9697	187	0.9505	237	0.9316
38	1.0088	88	0.9889	138	0.9693	188	0.9501	238	0.9313
39	1.0084	89	0.9885	139	0.9690	189	0.9498	239	0.9309
40	1.0080	90	0.9881	140	0.9686	190	0.9494	240	0.9305
11	1.0076	91	0.9877	141	0.9682	191	0.9490	241	0.9301
12	1.0072	92	0.9873	142	0.9678	192	0.9486	242	0.9298
13	1.0068	93	0.9869	143	0.9674	193	0.9482	243	0.9294
14	1.0064	94	0.9865	144	0.9670	194	0.9478	244	0.9290
15	1.0060	95	0.9861	145	0.9666	195	0.9475	245	0.9286
46	1.0056	96	0.9857	146	0.9662	196	0.9475	245	0.9283
47	1.0052	97	0.9854	147	0.9659	197	0.9467	240	0.9283
48	1.0048	98	0.9850	148	0.9655	198	0.9463	247	0.9279
49	1.0044	99	0.9846	149	0.9651	199	0.9463	240	0.9275

TEMPERATURE-VOLUME CORRECTIONS FOR ASPHALTIC MATERIALS (CUSTOMARY UNITS)

t	М	t	M	t	M	t	M	t	M
250	0.9268	300	0.9083	350	0.8902	400	0.8724	450	0.8550
251	0.9264	301	0.9080	351	0.8899	401	0.8721	451	0.8547
252	0.9260	302	0.9076	352	0.8895	402	0.8717	452	0.8543
253	0.9257	303	0.9072	353	0.8891	403	0.8714	453	0.8540
254	0.9253	304	0.9069	354	0.8888	404	0.8710	454	0.8536
255	0.9249	305	0.9065	355	0.8884	405	0.8707	455	0.8533
256	0.9245	306	0.9061	356	0.8881	406	0.8703	456	0.8529
257	0.9242	307	0.9058	357	0.8877	407	0.8700	457	0.8526
258	0.9238	308	0.9054	358	0.8873	408	0.8696	458	0.8522
259	0.9234	309	0.9050	359	0.8870	409	0.8693	459	0.8519
260	0.9231	310	0.9047	360	0.8866	410	0.8689	460	0.8516
261	0.9227	311	0.9043	361	0.8863	411	0.8686	461	0.8512
262	0.9223	312	0.9039	362	0.8859	412	0.8682	462	0.8509
263	0.9223	313	0.9036	363	0.8856	413	0.8679	463	0.8505
263	0.9219	314	0.9032	364	0.8852	414	0.8675	464	0.8502
265	0.9210	315	0.9029	365	0.8848	415	0.8672	465	0.8498
	0.9212	316	0.9025	366	0.8845	416	0.8668	466	0.8495
266		317	0.9023	367	0.8841	417	0.8665	467	0.8492
267	0.9205	318	0.9021	368	0.8838	418	0.8661	468	0.8488
268	0.9201	319	0.9018	369	0.8834	419	0.8658	469	0.8485
269	0.9197	319	0.9014	370	0.8831	419	0.8654	470	0.8481
270	0.9194			371	0.8827	421	0.8651	471	0.8478
271	0.9190	321	0.9007		0.8823	421	0.8647	472	0.8474
272	0.9186	322	0.9003	372		422	0.8644	473	0.8471
273	0.9182	323	0.9000	373	0.8820	423	0.8640	474	0.8468
274	0.9179	324	0.8996	374	0.8816	424		475	0.8464
275	0.9175	325	0.8992	375	0.8813		0.8637 0.8633	475	0.8461
276	0.9171	326	0.8989	376	0.8809	426			
277	0.9168	327	0.8985	377	0.8806	427	0.8630	477	0.8457 0.8454
278	0.9164	328	0.8981	378	0.8802	428	0.8626	478	
279	0.9160	329	0.8978	379	0.8799	429	0.8623	479	0.8451
280	0.9157	330	0.8974	380	0.8795	430	0.8619	480	0.8447
281	0.9153	331	0.8971	381	0.8792	431	0.8616	481	0.8444
282	0.9149	332	0.8967	382	0.8788	432	0.8612	482	0.8440
283	0.9146	333	0.8963	383	0.8784	433	- 0.8609	483	0.8437
284	0.9142	334	0.8960	384	0.8781	434	0.8605	484	0.8433
285	0.9138	335	0.8956	385	0.8777	435	0.8602	485	0.8430
286	0.9135	336	0.8952	386	0.8774	436	0.8599	486	0.8427
287	0.9131	337	0.8949	387	0.8770	437	0.8595	487	0.8423
288	0.9127	338	0.8945	388	0.8767	438	0.8592	488	0.8420
289	0.9124	339	0.8942	389	0.8763	439	0.8588	489	0.8416
290	0.9120	340	0.8938	390	0.8760	440	0.8585	490	0.8413
291	0.9116	341	0.8934	391	0.8756	441	0.8581	491	0.8410
292	0.9113	342	0.8931	392	0.8753	442	0.8578	492	0.8406
293	0.9109	343	0.8927	393	0.8749	443	0.8574	493	0.8403
294	0.9105	344	0.8924	394	0.8746	444	0.8571	494	0.8399
295	0.9102	345	0.8920	395	0.8742	445	0.8567	495	0.8396
296	0.9098	346	0.8916	396	0.8738	446	0.8564	496	0.8393
297	0.9094	347	0.8913	397	0.8735	447	0.8560	497	0.8389
298	0.9091	348	0.8909	398	0.8731	448	0.8557	498	0.8386
299	0.9087	349	0.8906	399	0.8728	449	0.8554	499	0.8383

GROUP 0 - SPECIFIC GRAVITY AT 60°F OF 0.850 TO 0.966

Iowa Department of Transportation

Reissued October 18, 2005 Supersedes October 3, 2000

Matls. IM T103M Metric Units

TEMPERATURE-VOLUME CORRECTIONS FOR ASPHALTIC MATERIALS (METRIC UNITS)

GROUP 1 – DENSITY AT 15°C BETWEEN 0.8495 – 0.965 LEGEND: t = Observed Temperature in Degrees Celsius M = Multiplier for Reducing Volume to 15°C

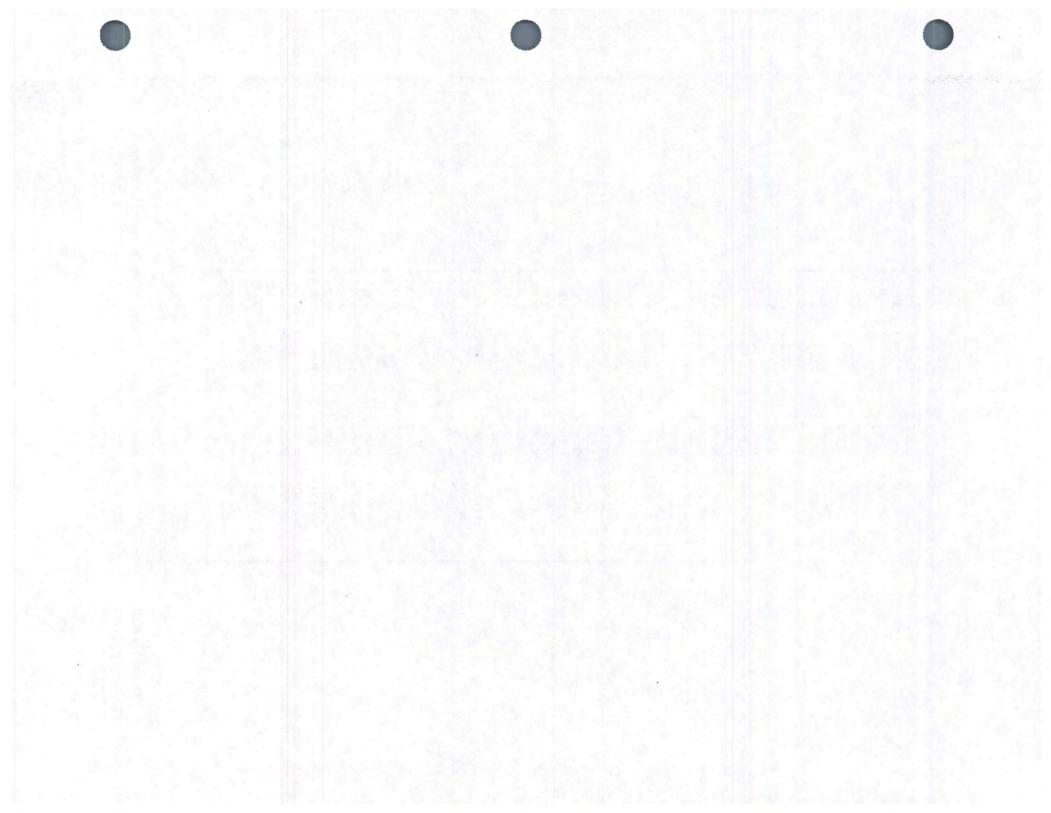
t	M	t	М	t	М	t	М	t	M
-25.0	1.0290	0.0	1.0108	25.0	0.9929	50.0	0.9752	75.0	0.9578
-24.5	1.0286	0.5	1.0104	25.5	0.9925	50.5	0.9749	75.5	0.9575
-24.0	1.0283	1.0	1.0101	26.0	0.9922	51.0	0.9745	76.0	0.9571
-23.5	1.0279	1.5	1.0097	26.5	0.9918	51.5	0.9742	76.5	0.9568
23.0	1.0276	2.0	1.0094	27.0	0.9915	52.0	0.9738	77.0	0.9564
22.5	1.0272	2.5	1.0090	27.5	0.9911	52.5	0.9735	77.5	0.9561
22.0	1.0268	3.0	1.0086	28.0	0.9907	53.0	0.9731	78.0	0.9557
21.5	1.0265	3.5	1.0083	28.5	0.9904	53.5	0.9728	78.5	0.9554
21.0	1.0261	4.0	1.0079	29.0	0.9900	54.0	0.9724	79.0	0.9550
20.5	1.0258	4.5	1.0076	29.5	0.9897	54.5	0.9721	79.5	0.9547
20.0	1.0254	5.0	1.0072	30.0	0.9893	55.0	0.9717	80.0	0.9543
19.5	1.0250	5.5	1.0068	30.5	0.9889	55.5	0.9714	80.5	0.9540
19.0	1.0247	6.0	1.0065	31.0	0.9886	56.0	0.9710	81.0	0.9536
18.5	1.0243	6.5	1.0061	31.5	0.9882	56.5	0.9707	81.5	0.9533
18.0	1.0239	7.0	1.0058	32.0	0.9879	57.0	0.9703	82.0	0.9529
17.5	1.0236	7.5	1.0054	32.5	0.9875	57.5	0.9700	82.5	0.9526
17.0	1.0232	8.0	1.0050	33.0	0.9871	58.0	0.9696	83.0	0.9523
16.5	1.0228	8.5	1.0047	33.5	0.9868	58.5	0.9693	83.5	0.9523
16.0	1.0224	9.0	1.0043	34.0	0.9864	59.0	0.9689	84.0	0.9519
15.5	1.0221	9.5	1.0040	34.5	0.9861	59.5	0.9686	84.5	0.9510
15.0	1.0217	10.0	1.0036	35.0	0.9857	60.0	0.9682	85.0	
14.5	1.0213	10.5	1.0032	35.5	0.9854	60.5	0.9679	85.5	0.9509
14.0	1.0210	11.0	1.0029	36.0	0.9850	and the second			0.9506
3.5	1.0206	11.5	1.0025	36.5	0.9850	61.0	0.9675	86.0	0.9502
13.0	1.0203	12.0	1.0023	37.0		61.5	0.9672	86.5	0.9499
2.5	1.0199	12.5	1.0022	37.5	0.9843	62.0	0.9668	87.0	0.9495
12.0	1.0195	13.0	1.0018		0.9840	62.5	0.9665	87.5	0.9492
11.5				38.0	0.9836	63.0	0.9661	88.0	0.9489
	1.0192	13.5	1.0011	38.5	0.9833	63.5	0.9658	88.5	0.9485
11.0	1.0188	14.0	1.0007	39.0	0.9829	64.0	0.9654	89.0	0.9482
10.5	1.0185	14.5	1.0004	39.5	0.9826	64.5	0.9651	89.5	0.9478
10.0	1.0181	15.0	1.0000	40.0	0.9822	65.0	0.9647	90.0	0.9475
9.5	1.0177	15.5	0.9996	40.5	0.9819	65.5	0.9644	90.5	0.9472
9.0	1.0174	16.0	0.9993	41.0	0.9815	66.0	0.9640	91.0	0.9468
3.5	1.0170	16.5	0.9989	41.5	0.9812	66.5	0.9637	91.5	0.9465
3.0	1.0166	17.0	0.9986	42.0	0.9808	67.0	0.9633	92.0	0.9461
7.5	1.0163	17.5	0.9982	42.5	0.9805	67.5	0.9630	92.5	0.9458
7.0	1.0159	18.0	0.9978	43.0	0.9801	68.0	0.9626	93.0	0.9455
5.5	1.0155	18.5	0.9975	43.5	0.9798	68.5	0.9623	93.5	0.9451
5.0	1.0151	19.0	0.9971	44.0	0.9794	69.0	0.9619	94.0	0.9448
5.5	1.0148	19.5	0.9968	44.5	0.9791	69.5	0.9616	94.5	0.9444
5.0	1.0144	20.0	0.9964	45.0	0.9787	70.0	0.9612	95.0	0.9441
1.5	1.0140	20.5	0.9961	45.5	0.9784	70.5	0.9609	95.5	0.9438
4.0	1.0137	21.0	0.9957	46.0	0.9780	71.0	0.9605	96.0	0.9434
3.5	1.0133	21.5	0.9954	46.5	0.9777	71.5	0.9602	96.5	0.9431
3.0	1.0130	22.0	0.9950	47.0	0.9773	72.0	0.9598	97.0	0.9427
2.5	1.0126	22.5	0.9947	47.5	0.9770	72.5	0.9595	97.5	0.9424
2.0	1.0122	23.0	0.9943	48.0	0.9766	73.0	0.9592	98.0	0.9421
1.5	1.0119	23.5	0.9940	48.5	0.9763	73.5	0.9588	98.5	0.9417
1.0	1.0115	24.0	0.9936	49.0	0.9759	74.0	0.9585	99.0	0.9414
0.5	1.0112	24.5	0.9933	49.5	0.9756	74.5	0.9581	99.5	0.9410

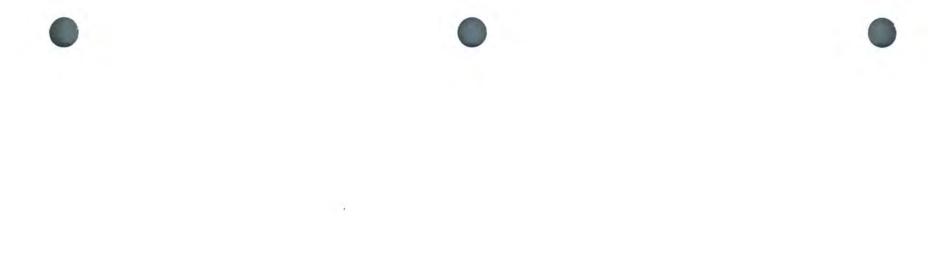
TEMPERATURE-VOLUME CORRECTIONS FOR ASPHALTIC MATERIALS (METRIC UNITS)

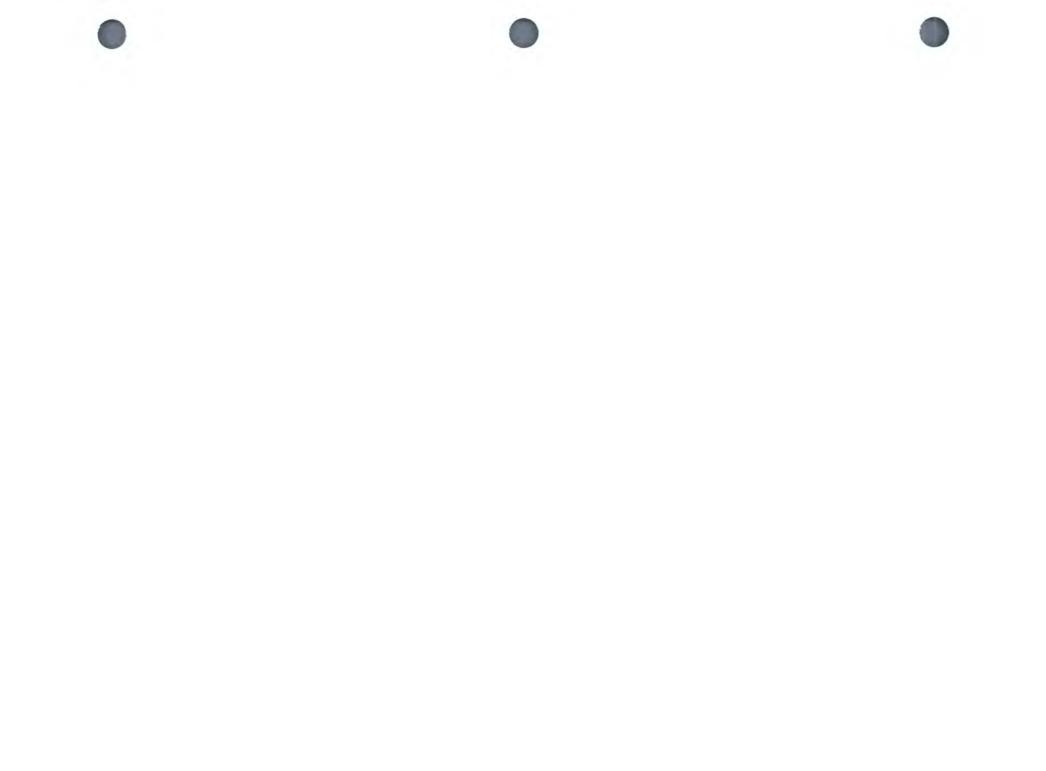
GROUI	P 1 – DENSITY AT 15°C BETWEEN 0.8495 – 0.9653
LEGEND:	t = Observed Temperature in Degrees Celsius
	M = Multiplier for Reducing Volume to 15°C

t	M	t	М	t	М	t	M	t	M
100.0	0.9407	125.0	0.9238	150.0	0.9072	175.0	0.8909	200.0	0.8749
00.5	0.9404	125.5	0.9235	150.5	0.9069	175.5	0.8906	200.5	0.8746
01.0	0.9400	126.0	0.9231	151.0	0.9065	176.0	0.8903	201.0	0.8743
01.5	0.9397	126.5	0.9228	151.5	0.9062	176.5	0.8899	201.5	0.8739
02.0	0.9393	127.0	0.9225	152.0	0.9059	177.0	0.8896	202.0	0.8736
02.5	0.9390	127.5	0.9222	152.5	0.9056	177.5	0.8893	202.5	0.8733
103.0	0.9387	128.0	0.9218	153.0	0.9052	178.0	0.8890	203.0	0.8730
103.5	0.9383	128.5	0.9215	153.5	0.9049	178.5	0.8887	203.5	0.8727
104.0	0.9380	129.0	0.9212	154.0	0.9046	179.0	0.8883	204.0	0.8723
104.5	0.9376	129.5	0.9208	154.5	0.9042	179.5	0.8880	204.5	0.8720
105.0	0.9373	130.0	0.9205	155.0	0.9039	180.0	0.8877	205.0	0.8717
105.5	0.9370	130.5	0.9202	155.5	0.9036	180.5	0.8874	205.5	0.8714
106.0	0.9366	131.0	0.9198	156.0	0.9033	181.0	0.8871	206.0	0.8711
106.5	0.9363	131.5	0.9195	156.5	0.9029	181.5	0.8867	206.5	0.8708
107.0	0.9359	132.0	0.9191	157.0	0.9026	182.0	0.8864	207.0	0.8705
107.5	0.9356	132.5	0.9188	157.5	0.9023	182.5	0.8861	207.5	0.8702
0.80	0.9353	133.0	0.9185	158.0	0.9020	183.0	0.8858	208.0	0.8698
108.5	0.9349	133.5	0.9181	158.5	0.9017	183.5	0.8855	208.5	0.8695
109.0	0.9346	134.0	0.9178	159.0	0.9013	184.0	0.8851	209.0	0.8692
109.5	0.9342	134.5	0.9174	159.5	0.9010	184.5	0.8848	209.5	0.8689
110.0	0.9339	135.0	0.9171	160.0	0.9007	185.0	0.8845	210.0	0.8686
110.5	0.9336	135.5	0.9168	160.5	0.9004	185.5	0.8842	210.5	0.8683
111.0	0.9332	136.0	0.9164	161.0	0.9000	186.0	0.8839	211.0	0.8680
111.5	0.9329	136.5	0.9161	161.5	0.8997	186.5	0.8835	211.5	0.8676
	0.9329	130.5	0.9158	162.0	0.8994	187.0	0.8832	212.0	0.8673
112.0		137.5	0.9155	162.5	0.8991	187.5	0.8829	212.5	0.8670
112.5	0.9322	137.5	0.9155	163.0	0.8987	188.0	0.8826	213.0	0.8667
113.0	0.9319		0.9131	163.5	0.8984	188.5	0.8823	213.5	0.8664
113.5	0.9315	138.5		164.0	0.8981	189.0	0.8819	214.0	0.8660
114.0	0.9312	139.0	0.9145			189.5	0.8816	214.5	0.8657
114.5	0.9308	139.5	0.9141	164.5	0.8977	190.0	0.8813	214.5	0.8654
115.0	0.9305	140.0	0.9138	165.0	0.8974		0.8810	215.5	0.8651
115.5	0.9302	140.5	0.9135	165.5	0.8971	190.5			
16.0	0.9298	141.0	0.9131	166.0	0.8968	191.0	0.8807	216.0	0.8648
116.5	0.9295	141.5	0.9128	166.5	0.8964	191.5	0.8803	216.5	0.8645
117.0	0.9292	142.0	0.9125	167.0	0.8961	192.0	0.8800	217.0	0.8642
117.5	0.9289	142.5	0.9122	167.5	0.8958	192.5	0.8797	217.5	0.8639
118.0	0.9285	143.0	0.9118	168.0	0.8955	193.0	0.8794	218.0	0.8635
118.5	0.9282	143.5	0.9115	168.5	0.8952	193.5	0.8791	218.5	0.8632
119.0	0.9279	144.0	0.9112	169.0	0.8948	194.0	0.8787	219.0	0.8629
119.5	0.9275	144.5	0.9108	169.5	0.8945	194.5	0.8784	219.5	0.8626
120.0	0.9272	145.0	0.9105	170.0	0.8942	195.0	0.8781	220.0	0.8623
120.5	0.9269	145.5	0.9102	170.5	0.8939	195.5	0.8778	220.5	0.8620
21.0	0.9265	146.0	0.9098	171.0	0.8935	196.0	0.8775	221.0	0.8617
21.5	0.9262	146.5	0.9095	171.5	0.8932	196.5	0.8771	221.5	0.8614
122.0	0.9258	147.0	0.9092	172.0	0.8929	197.0	0.8768	222.0	0.8611
22.5	0.9255	147.5	0.9089	172.5	0.8926	197.5	0.8765	222.5	0.8608
123.0	0.9252	148.0	0.9085	173.0	0.8922	198.0	0.8762	223.0	0.8604
123.5	0.9248	148.5	0.9082	173.5	0.8919	198.5	0.8759	223.5	0.8601
124.0	0.9245	149.0	0.9079	174.0	0.8916	199.0	0.8755	224.0	0.8598
124.5	0.9241	149.5	0.9075	174.5	0.8912	199.5	0.8752	224.5	0.8595

TEMPERATURE-VOLUME CORRECTIONS FOR ASPHALTIC MATERIALS (METRIC UNITS)


225.00.8592250.00.8437225.50.8589250.50.8434226.00.8586251.00.8431226.50.8582251.50.8428227.00.8579252.00.8425227.50.8576252.50.8422228.00.8573253.00.8418228.50.8570253.50.8415229.00.8566254.00.8412229.50.8563254.50.8409230.00.8560255.00.8406231.50.8557255.50.8403231.00.8554256.00.8400231.50.8551256.50.8397232.00.8548257.00.8394233.00.8541258.00.8388234.50.8538259.00.8385234.00.8535259.00.8382234.50.8523261.00.8370235.50.8520261.50.8367237.00.8517262.00.8367237.00.8517262.00.8361238.00.8501263.00.8351239.00.8504264.00.8351239.00.8501264.50.8348240.00.8495265.50.8342241.00.8495265.50.8333241.50.8486267.00.8333241.50.8486267.00.8333242.00.8486267.00.8333244.00.8486	t	М	t	M	-
225.50.8589250.50.8434226.00.8586251.00.8431226.50.8582251.50.8428227.00.8579252.00.8425227.50.8576252.50.8422228.00.8573253.00.8415229.00.8566254.00.8412229.50.8563254.50.8409230.00.8564256.00.8406230.50.8557255.50.8403231.00.8554256.50.8397232.00.8548257.00.8394232.50.8545257.50.8391233.00.8541258.00.8388233.50.8532259.50.8379235.00.8532259.50.8379235.00.8529260.00.8376235.50.8520261.50.8373236.00.8517262.00.8361237.00.8517262.00.8361238.00.8510263.00.8357238.50.8507263.50.8361238.00.8510263.50.8361238.50.8507263.50.8348240.00.8498265.50.8336241.50.8489266.50.8336241.00.8492266.00.8333241.50.8486267.00.8333241.50.8486267.00.8333241.50.8468270.00.8320244.50.8477	225.0	0.8592	250.0	0.8437	_
226.50.8582251.50.8428227.00.8579252.00.8425227.50.8576252.50.8422228.00.8573253.00.8418228.50.8570253.50.8415229.00.8566254.00.8412229.50.8563254.50.8409230.00.8560255.00.8406230.50.8557255.50.8403231.00.8554256.00.8400231.50.8551256.50.8397232.00.8548257.00.8394232.50.8545257.50.8391233.00.8541258.00.8388233.50.8532259.00.8382234.50.8532259.00.8379235.00.8529260.00.8376235.50.8526260.50.8373236.00.8523261.00.8367237.00.8517262.00.8364237.50.8514262.50.8361238.60.8507263.50.8354239.00.8504264.00.8351239.10.8501264.50.8348240.00.8498265.00.8333241.50.8483267.50.8333241.50.8483267.50.8333241.50.8483267.50.8333241.50.8483267.50.8333244.00.8477268.50.8326243.50.8465	225.5	0.8589	250.5		
227.00.8579252.00.8425227.50.8576252.50.8422228.00.8573253.00.8418228.50.8570253.50.8415229.00.8566254.00.8412229.50.8563254.50.8409230.00.8560255.00.8406231.00.8554256.00.8400231.00.8554256.00.8400231.50.8551256.50.8397232.00.8548257.00.8394232.50.8545257.50.8391233.00.8541258.00.8388233.50.8532259.00.8382234.50.8532259.00.8379235.00.8523261.00.8376235.50.8526260.50.8373236.00.8523261.00.8367237.00.8517262.00.8364237.50.8507263.50.8364237.50.8507263.50.8354239.00.8507263.50.8354239.00.8504264.00.8351239.50.8507263.50.8345240.00.8498265.00.8333241.50.8489266.50.8336242.00.8486267.00.8333243.50.8477268.50.8326243.50.8477268.50.8323244.00.8486267.00.8333243.50.8465	226.0	0.8586	251.0	0.8431	
227.00.8579252.00.8425227.50.8576252.50.8422228.00.8573253.00.8418228.50.8570253.50.8415229.00.8566254.00.8412229.50.8563254.50.8409230.00.8560255.00.8406230.50.8557255.50.8403231.00.8554256.00.8400231.50.8551256.50.8397232.00.8548257.00.8394232.50.8545257.50.8391233.00.8541258.00.8388233.50.8532259.00.8382234.50.8532259.00.8379235.00.8522259.50.8379235.00.8523261.00.8370236.50.8523261.00.8367237.00.8517262.00.8364237.50.8510263.50.8354239.00.8507263.50.8354239.00.8507263.50.8354239.00.8501264.00.8351239.50.8507263.50.8345240.00.8498265.00.8333241.00.8492266.00.8339241.50.8483267.50.8331242.00.8486267.00.8333243.00.8486267.00.8333244.00.8477268.50.8326243.50.8477	226.5	0.8582	251.5	0.8428	
228.00.8573253.00.8418228.50.8570253.50.8415229.00.8566254.00.8412229.50.8563254.50.8409230.00.8560255.00.8406230.50.8557255.50.8403231.00.8554256.00.8400231.50.8551257.50.8397232.00.8548257.00.8394232.50.8545257.50.8391233.00.8541258.00.8388233.50.8535259.00.8382234.00.8535259.00.8382234.50.8529260.00.8376235.00.8523261.00.8370236.00.8523261.00.8371236.00.8517262.00.8364237.00.8517262.00.8364237.50.8514262.50.8361238.00.8510263.00.8357238.50.8507263.50.8354239.00.8504264.00.8351239.50.8501264.50.8333241.50.8495265.50.8336242.00.8486267.00.8333242.50.8483267.50.8333242.50.8483267.50.8333242.50.8486267.00.8326243.50.8477268.50.8323244.00.8449270.00.8308244.50.8465	227.0	0.8579	252.0		
228.00.8573253.00.8418228.50.8570253.50.8415229.00.8566254.00.8412229.50.8563254.50.8409230.00.8560255.00.8406230.50.8557255.50.8403231.00.8554256.00.8400231.50.8551256.50.8397232.00.8548257.00.8394232.50.8545257.50.8391233.00.8541258.00.8388233.50.8538258.50.8385234.00.8535259.00.8382234.50.8529260.00.8376235.00.8520261.50.8373236.00.8523261.00.8370236.50.8517262.00.8364237.50.8517262.00.8364237.50.8517263.50.8351238.00.8510263.00.8357238.50.8507263.50.8354239.00.8504264.00.8351239.50.8501264.50.8333241.50.8489265.00.8333242.00.8486267.00.8333242.50.8483267.50.8333242.50.8483266.50.8326243.50.8477268.50.8323244.00.8474269.00.8326243.50.8468270.00.8311246.50.8468	227.5	0.8576	252.5	0.8422	
229.00.8566254.00.8412229.50.8563254.50.8409230.00.8560255.00.8406230.50.8557255.50.8403231.00.8554256.00.8400231.50.8551256.50.8397232.00.8548257.00.8394232.50.8545257.50.8391233.00.8541258.00.8388233.50.8538259.00.8382234.00.8535259.00.8382234.50.8532259.50.8379235.00.8529260.00.8376235.50.8520261.50.8371236.00.8517262.00.8364237.50.8514262.50.8361238.00.8510263.00.8351239.00.8504264.00.8351239.00.8504265.50.8348240.00.8498265.50.8345240.50.8483267.50.8333242.50.8483267.50.8333242.50.8483267.50.8333242.50.8483267.50.8323244.00.8474269.00.8323244.50.8477268.50.8323244.50.8465270.00.8311245.50.8465271.00.8305244.50.8465271.50.8305244.50.8465271.50.8305247.50.8459	228.0	0.8573		0.8418	
229.00.8566254.00.8412229.50.8563254.50.8409230.00.8560255.00.8406230.50.8557255.50.8403231.00.8554256.00.8400231.50.8551256.50.8397232.00.8548257.00.8394232.50.8545257.50.8391233.00.8541258.00.8388233.50.8532259.00.8382234.00.8535259.00.8382234.50.8532259.50.8373235.00.8529260.00.8376235.50.8520261.50.8367237.00.8517262.00.8364237.50.8514262.50.8361238.00.8510263.00.8357238.50.8501264.50.8348240.00.8498265.00.8345240.00.8489265.50.8333241.50.8483267.50.8333242.50.8483267.50.8333242.50.8483267.50.8333242.50.8483267.50.8323244.00.8474269.00.8323244.50.8477268.50.8323244.50.8465270.00.8311245.50.8465270.00.8314245.50.8465271.50.8305244.50.8465271.50.8305244.50.8459	228.5	0.8570	253.5	0.8415	
230.0 0.8560 255.0 0.8406 230.5 0.8557 255.5 0.8400 231.0 0.8554 256.5 0.8397 232.0 0.8548 257.0 0.8394 232.5 0.8545 257.5 0.8394 232.5 0.8545 257.5 0.8394 233.0 0.8541 258.0 0.8388 233.5 0.8538 258.5 0.8382 234.0 0.8535 259.0 0.8382 234.5 0.8532 259.5 0.8379 235.0 0.8529 260.0 0.8376 235.5 0.8526 260.5 0.8373 236.0 0.8523 261.0 0.8370 236.5 0.8517 262.0 0.8364 237.5 0.8514 262.5 0.8361 238.0 0.8517 263.5 0.8351 239.0 0.8504 264.0 0.8351 239.0 0.8504 266.5 0.8336 240.5 0.8495 265.5 0.8345 240.5 <td< th=""><th>229.0</th><td>0.8566</td><td>254.0</td><td>0.8412</td><td></td></td<>	229.0	0.8566	254.0	0.8412	
230.50.8557255.50.8403231.00.8554256.00.8400231.50.8551256.50.8397232.00.8548257.00.8394232.50.8545257.50.8391233.00.8541258.00.8388233.50.8538258.50.8385234.00.8535259.00.8382234.50.8532259.50.8379235.00.8529260.00.8376235.50.8526260.50.8373236.00.8523261.00.8370236.50.8520261.50.8364237.00.8517262.00.8364237.50.8514262.50.8361238.00.8510263.00.8357238.50.8507263.50.8354239.00.8504264.00.8351239.50.8501264.50.8348240.00.8498265.00.8345241.00.8492266.00.8333242.00.8486267.00.8333243.00.8480268.00.8320244.50.8477268.50.8317245.00.8468270.00.8314245.50.8465271.50.8308244.50.8465271.00.8308246.50.8459271.50.8305247.00.8456272.00.8302244.50.8453272.50.8299248.00.8449	229.5	0.8563	254.5	0.8409	
230.50.8557255.50.8403231.00.8554256.00.8400231.50.8551256.50.8397232.00.8548257.00.8394232.50.8545257.50.8391233.00.8541258.00.8388233.50.8538258.50.8385234.00.8535259.00.8382234.50.8522259.50.8379235.00.8523261.00.8376235.50.8526260.50.8373236.00.8523261.00.8370236.50.8520261.50.8364237.00.8517262.00.8364237.50.8514262.50.8361238.00.8510263.00.8357238.50.8507263.50.8354239.00.8504264.00.8351239.50.8501264.50.8348240.00.8498265.00.8333241.50.8489266.00.8333242.50.8483267.50.8333243.00.8480268.00.8320244.50.8477268.50.8323244.00.8474269.00.8323244.50.8465270.00.8314245.50.8465270.00.8308246.50.8459271.50.8305247.00.8456272.00.8302244.50.8453272.50.8299248.00.8449	230.0	0.8560	255.0	0.8406	
231.00.8554256.00.8400231.50.8551256.50.8397232.00.8548257.00.8394232.50.8545257.50.8391233.00.8541258.00.8388233.50.8538258.50.8385234.00.8535259.00.8382234.50.8532259.50.8379235.00.8529260.00.8376235.50.8526260.50.8373236.00.8523261.00.8370236.50.8520261.50.8364237.00.8517262.00.8364237.50.8514262.50.8361238.00.8510263.00.8357238.50.8507263.50.8354239.00.8504264.00.8351239.50.8501264.50.8348240.00.8495265.50.8342241.00.8492266.00.8333242.50.8483267.50.8333243.00.8480268.00.8320244.50.8477268.50.8323244.00.8474269.00.8320244.50.8465270.00.8314245.50.8465270.00.8308246.50.8459271.50.8305247.00.8456272.00.8302244.50.8453272.50.8299248.00.8449273.00.8296	230.5	0.8557		0.8403	
231.50.8551256.50.8397232.00.8548257.00.8394232.50.8545257.50.8391233.00.8541258.00.8388233.50.8538258.50.8385234.00.8535259.00.8382234.50.8532259.50.8379235.00.8529260.00.8376235.50.8526260.50.8373236.00.8523261.00.8370236.50.8520261.50.8364237.00.8517262.00.8364237.50.8514262.50.8361238.00.8510263.00.8357238.50.8507263.50.8354239.00.8504264.00.8351239.50.8501264.50.8348240.00.8498265.00.8333241.50.8489266.50.8333242.00.8486267.00.8333243.00.8480268.00.8320244.50.8477268.50.8323244.00.8474269.00.8320244.50.8465270.00.8314245.50.8465270.00.8308246.50.8459271.50.8305247.00.8456272.00.8302244.50.8459271.50.8302244.60.8449273.00.8296	231.0	0.8554			
232.00.8548257.00.8394232.50.8545257.50.8391233.00.8541258.00.8388233.50.8538258.50.8385234.00.8535259.00.8382234.50.8532259.50.8379235.00.8529260.00.8376235.50.8526260.50.8373236.00.8523261.00.8370236.50.8520261.50.8367237.00.8517262.00.8364237.50.8514262.50.8361238.00.8510263.00.8357238.50.8501264.50.8348240.00.8498265.00.8345240.50.8495265.50.8336241.50.8486267.00.8333242.00.8486267.00.8333243.00.8474269.00.8320244.50.8471269.50.8317245.00.8465270.00.8314245.50.8465270.00.8308244.50.8465270.00.8308244.50.8465270.00.8302244.50.8453272.50.8299248.00.8449273.00.8296	231.5				
232.50.8545257.50.8391233.00.8541258.00.8388233.50.8538258.50.8385234.00.8535259.00.8382234.50.8532259.50.8379235.00.8529260.00.8376235.50.8526260.50.8373236.00.8523261.00.8370236.50.8520261.50.8367237.00.8517262.00.8364237.50.8514262.50.8361238.00.8510263.00.8357238.50.8507263.50.8354239.00.8504264.00.8351239.50.8501264.50.8348240.00.8498265.00.8339241.50.8489266.50.8333242.00.8486267.00.8333242.00.8486267.00.8320244.00.8474269.00.8320244.50.8471269.50.8317245.00.8468270.00.8314245.50.8465270.50.8311246.00.8462271.00.8308246.50.8453272.50.8299248.00.8449273.00.8296					
233.00.8541258.00.8388233.50.8538258.50.8385234.00.8535259.00.8382234.50.8532259.50.8379235.00.8529260.00.8376235.50.8526260.50.8373236.00.8523261.00.8370236.50.8520261.50.8367237.00.8517262.00.8364237.50.8514262.50.8361238.00.8510263.00.8357238.50.8507263.50.8354239.00.8504264.00.8351239.50.8501264.50.8348240.00.8498265.00.8339241.50.8489266.50.8336242.00.8486267.00.8333243.00.8486267.00.8333243.00.8474269.00.8323244.50.8471269.50.8317245.00.8468270.00.8314245.50.8465270.50.8311246.00.8462271.00.8308244.50.8465272.00.8302244.50.8453272.50.8299248.00.8449273.00.8296					
233.5 0.8538 258.5 0.8385 234.0 0.8535 259.0 0.8382 234.5 0.8532 259.5 0.8379 235.0 0.8529 260.0 0.8376 235.5 0.8526 260.5 0.8373 236.0 0.8523 261.0 0.8370 236.5 0.8520 261.5 0.8367 237.0 0.8517 262.0 0.8364 237.5 0.8517 263.0 0.8357 238.5 0.8507 263.5 0.8354 239.0 0.8504 264.0 0.8351 239.5 0.8501 264.5 0.8348 240.0 0.8498 265.0 0.8345 240.5 0.8495 266.5 0.8333 241.5 0.8486 267.0 0.8333 242.0 0.8486 267.0 0.8333 242.5 0.8483 266.5 0.8333 242.5 0.8486 267.0 0.8323					
234.00.8535259.00.8382234.50.8532259.50.8379235.00.8529260.00.8376235.50.8526260.50.8373236.00.8523261.00.8370236.50.8520261.50.8367237.00.8517262.00.8364237.50.8514262.50.8361238.00.8510263.00.8357238.50.8507263.50.8354239.00.8504264.00.8351239.50.8501264.50.8348240.00.8498265.00.8345241.00.8492266.00.8339241.50.8486267.00.8333242.00.8486267.00.8333243.00.8480268.00.8320244.50.8471269.50.8317245.00.8465270.00.8314245.50.8465270.00.8308244.50.8465270.00.8308244.50.8465271.00.8308246.50.8453272.50.8299248.00.8449273.00.8296					
234.5 0.8532 259.5 0.8379 235.0 0.8529 260.0 0.8376 235.5 0.8526 260.5 0.8373 236.0 0.8523 261.0 0.8370 236.5 0.8520 261.5 0.8367 237.0 0.8517 262.0 0.8364 237.5 0.8517 263.0 0.8357 238.0 0.8510 263.0 0.8357 238.5 0.8507 263.5 0.8354 239.0 0.8504 264.0 0.8351 239.5 0.8501 264.5 0.8348 240.0 0.8498 265.0 0.8345 240.5 0.8495 265.5 0.8342 241.0 0.8492 266.0 0.8339 241.5 0.8486 267.0 0.8333 242.0 0.8486 267.5 0.8330 243.0 0.8486 266.5 0.8323 244.0 0.8474 269.0 0.8320 244.5 0.8471 269.5 0.8317 245.0 <td< th=""><th></th><td></td><td></td><td></td><td></td></td<>					
235.00.8529260.00.8376235.50.8526260.50.8373236.00.8523261.00.8370236.50.8520261.50.8367237.00.8517262.00.8364237.50.8514262.50.8361238.00.8510263.00.8357238.50.8507263.50.8354239.00.8504264.00.8351239.50.8501264.50.8348240.00.8498265.00.8345241.50.8495265.50.8336242.00.8486267.00.8333242.50.8483267.50.8330243.00.8486267.00.8323244.50.8477268.50.8323244.50.8474269.00.8320244.50.8465270.00.8314245.50.8465270.00.8314245.50.8465270.00.8308244.50.8465271.50.8305244.50.8465272.00.8302244.50.8453272.50.8299248.00.8449273.00.8296					
235.50.8526260.50.8373236.00.8523261.00.8370236.50.8520261.50.8367237.00.8517262.00.8364237.50.8514262.50.8361238.00.8510263.00.8357238.50.8507263.50.8354239.00.8504264.00.8351239.50.8501264.50.8348240.00.8498265.00.8345241.00.8492266.00.8339241.50.8486267.00.8333242.00.8486267.50.8330243.00.8480268.00.8326243.50.8477268.50.8323244.00.8474269.00.8320244.50.8465270.00.8314245.00.8468270.00.8314245.50.8465271.00.8308246.50.8459271.50.8302244.50.8456272.00.8302244.50.8453272.50.8299248.00.8449273.00.8296					
236.00.8523261.00.8370236.50.8520261.50.8367237.00.8517262.00.8364237.50.8514262.50.8361238.00.8510263.00.8357238.50.8507263.50.8354239.00.8504264.00.8351239.50.8501264.50.8348240.00.8498265.00.8345240.50.8495265.50.8332241.50.8486267.00.8333242.50.8483267.50.8330243.00.8480268.00.8326243.50.8477268.50.8323244.00.8474269.00.8320244.50.8465270.00.8314245.50.8465270.00.8314245.50.8465270.00.8308244.50.8465271.50.8305244.50.8462271.00.8308244.50.8465272.00.8302244.50.8469273.00.8296					
236.50.8520261.50.8367237.00.8517262.00.8364237.50.8514262.50.8361238.00.8510263.00.8357238.50.8507263.50.8354239.00.8504264.00.8351239.50.8501264.50.8348240.00.8498265.00.8345240.50.8495265.50.8342241.00.8492266.00.8339241.50.8486267.00.8333242.00.8486267.00.8333242.50.8483268.00.8326243.00.8486269.00.8323244.00.8474269.00.8323244.50.8471269.50.8317245.00.8468270.00.8314245.50.8465270.50.8311246.00.8462271.00.8308246.50.8453272.50.8299248.00.8449273.00.8296					
237.0 0.8517 262.0 0.8364 237.5 0.8514 262.5 0.8361 238.0 0.8510 263.0 0.8357 238.5 0.8507 263.5 0.8354 239.0 0.8504 264.0 0.8351 239.5 0.8501 264.5 0.8348 240.0 0.8498 265.0 0.8345 240.5 0.8495 265.5 0.8342 241.0 0.8492 266.0 0.8339 241.5 0.8486 267.0 0.8333 242.0 0.8486 267.0 0.8333 242.0 0.8486 267.5 0.8330 243.0 0.8480 268.0 0.8326 243.0 0.8480 268.0 0.8323 244.0 0.8474 269.0 0.8320 244.5 0.8471 269.5 0.8317 245.0 0.8468 270.0 0.8314 245.5 0.8465 270.5 0.8311 246.0 0.8462 271.0 0.8308 246.5 <td< th=""><th></th><th></th><th></th><th></th><th></th></td<>					
237.50.8514262.50.8361238.00.8510263.00.8357238.50.8507263.50.8354239.00.8504264.00.8351239.50.8501264.50.8348240.00.8498265.00.8345240.50.8495265.50.8342241.00.8492266.00.8339241.50.8486267.00.8333242.00.8486267.00.8333242.50.8483266.50.8326243.00.8486267.00.8323244.00.8477268.50.8323244.00.8474269.00.8320244.50.8468270.00.8314245.00.8465270.50.8311245.00.8465270.00.8308246.50.8453272.50.8305247.00.8456272.00.8302244.50.8449273.00.8296					
238.00.8510263.00.8357238.50.8507263.50.8354239.00.8504264.00.8351239.50.8501264.50.8348240.00.8498265.00.8345240.50.8495265.50.8342241.00.8492266.00.8339241.50.8486267.00.8333242.00.8486267.00.8333242.50.8483267.50.8330243.00.8480268.00.8326243.50.8477268.50.8323244.00.8474269.00.8320244.50.8465270.00.8314245.50.8465270.00.8314245.50.8465271.50.8308246.50.8453272.50.8302247.50.8453272.50.8299248.00.8449273.00.8296					
238.50.8507263.50.8354239.00.8504264.00.8351239.50.8501264.50.8348240.00.8498265.00.8345240.50.8495265.50.8342241.00.8492266.00.8339241.50.8489266.50.8336242.00.8486267.00.8333242.50.8483267.50.8330243.00.8480268.00.8326243.50.8477268.50.8323244.00.8474269.00.8320244.50.8468270.00.8314245.50.8465270.50.8311245.00.8462271.00.8308246.50.8453272.00.8302244.50.8456272.00.8302244.50.8453272.50.8299248.00.8449273.00.8296					
239.00.8504264.00.8351239.50.8501264.50.8348240.00.8498265.00.8345240.50.8495265.50.8342241.00.8492266.00.8339241.50.8489266.50.8336242.00.8486267.00.8333242.50.8483267.50.8330243.00.8480268.00.8326243.50.8477268.50.8323244.00.8474269.00.8320244.50.8465270.00.8314245.50.8465270.50.8311246.00.8462271.00.8308246.50.8453272.50.8302247.50.8453272.50.8299248.00.8449273.00.8296					
239.50.8501264.50.8348240.00.8498265.00.8345240.50.8495265.50.8342241.00.8492266.00.8339241.50.8489266.50.8336242.00.8486267.00.8333242.50.8483267.50.8330243.00.8480268.00.8326243.50.8477268.50.8323244.00.8474269.00.8320244.50.8465270.00.8314245.50.8465270.50.8311246.00.8462271.00.8308246.50.8456272.00.8302247.50.8453272.50.8299248.00.8449273.00.8296					
240.00.8498265.00.8345240.50.8495265.50.8342241.00.8492266.00.8339241.50.8489266.50.8336242.00.8486267.00.8333242.50.8483267.50.8330243.00.8480268.00.8326243.50.8477268.50.8323244.00.8474269.00.8320244.50.8471269.50.8317245.00.8468270.00.8314245.50.8465270.50.8311246.00.8462271.00.8308246.50.8456272.00.8302247.50.8453272.50.8299248.00.8449273.00.8296					
240.50.8495265.50.8342241.00.8492266.00.8339241.50.8489266.50.8336242.00.8486267.00.8333242.50.8483267.50.8330243.00.8480268.00.8326243.50.8477268.50.8323244.00.8474269.00.8320244.50.8471269.50.8317245.00.8468270.00.8314245.50.8465271.50.8308246.50.8459271.50.8305247.00.8456272.00.8302247.50.8453272.50.8299248.00.8449273.00.8296					
241.00.8492266.00.8339241.50.8489266.50.8336242.00.8486267.00.8333242.50.8483267.50.8330243.00.8480268.00.8326243.50.8477268.50.8323244.00.8474269.00.8320244.50.8471269.50.8317245.00.8468270.00.8314245.50.8465270.50.8311246.00.8462271.00.8308246.50.8459271.50.8305247.00.8456272.00.8302247.50.8453272.50.8299248.00.8449273.00.8296					
241.50.8489266.50.8336242.00.8486267.00.8333242.50.8483267.50.8330243.00.8480268.00.8326243.50.8477268.50.8323244.00.8474269.00.8320244.50.8471269.50.8317245.00.8468270.00.8314245.50.8465270.50.8311246.00.8462271.00.8308246.50.8459271.50.8305247.00.8456272.00.8302247.50.8453272.50.8299248.00.8449273.00.8296					
242.00.8486267.00.8333242.50.8483267.50.8330243.00.8480268.00.8326243.50.8477268.50.8323244.00.8474269.00.8320244.50.8471269.50.8317245.00.8468270.00.8314245.50.8465270.50.8311246.00.8462271.00.8308246.50.8459271.50.8305247.00.8456272.00.8302247.50.8453272.50.8299248.00.8449273.00.8296					
242.50.8483267.50.8330243.00.8480268.00.8326243.50.8477268.50.8323244.00.8474269.00.8320244.50.8471269.50.8317245.00.8468270.00.8314245.50.8465270.50.8311246.00.8462271.00.8308246.50.8459271.50.8305247.00.8456272.00.8302247.50.8453272.50.8299248.00.8449273.00.8296					
243.00.8480268.00.8326243.50.8477268.50.8323244.00.8474269.00.8320244.50.8471269.50.8317245.00.8468270.00.8314245.50.8465270.50.8311246.00.8462271.00.8308246.50.8459271.50.8305247.00.8456272.00.8302247.50.8453272.50.8299248.00.8449273.00.8296					
243.50.8477268.50.8323244.00.8474269.00.8320244.50.8471269.50.8317245.00.8468270.00.8314245.50.8465270.50.8311246.00.8462271.00.8308246.50.8459271.50.8305247.00.8456272.00.8302247.50.8453272.50.8299248.00.8449273.00.8296					
244.00.8474269.00.8320244.50.8471269.50.8317245.00.8468270.00.8314245.50.8465270.50.8311246.00.8462271.00.8308246.50.8459271.50.8305247.00.8456272.00.8302247.50.8453272.50.8299248.00.8449273.00.8296					
244.50.8471269.50.8317245.00.8468270.00.8314245.50.8465270.50.8311246.00.8462271.00.8308246.50.8459271.50.8305247.00.8456272.00.8302247.50.8453272.50.8299248.00.8449273.00.8296					
245.00.8468270.00.8314245.50.8465270.50.8311246.00.8462271.00.8308246.50.8459271.50.8305247.00.8456272.00.8302247.50.8453272.50.8299248.00.8449273.00.8296					
245.50.8465270.50.8311246.00.8462271.00.8308246.50.8459271.50.8305247.00.8456272.00.8302247.50.8453272.50.8299248.00.8449273.00.8296					
246.00.8462271.00.8308246.50.8459271.50.8305247.00.8456272.00.8302247.50.8453272.50.8299248.00.8449273.00.8296					
246.50.8459271.50.8305247.00.8456272.00.8302247.50.8453272.50.8299248.00.8449273.00.8296					
247.00.8456272.00.8302247.50.8453272.50.8299248.00.8449273.00.8296					
247.5 0.8453 272.5 0.8299 248.0 0.8449 273.0 0.8296					
248.0 0.8449 273.0 0.8296					
249.0 0.8443 274.0 0.8290 249.5 0.8440 274.5 0.8287					


GROUP 1 – DENSITY AT 15°C BETWEEN 0.8495 – 0.9653 LEGEND: t = Observed Temperature in Degrees Celsius M = Multiplier for Reducing Volume to 15°C



lowa Department of Transportation

Office of Materials

Reissued October 18, 2005 Supersedes October 3, 2000

Matls. IM T104

GAUGING TABLE FOR HORIZONTAL CYLINDRICAL TANKS

Outage % of Diameter	Filled % of Capacity	Outage % of Diameter	Filled % of Capacity	Outage % of Diameter	Filled % of Capacity	Outage % of Diameter	Filled % of Capacity
0.0	100.0000	5.0	98.1307	10.0	94.7960	15.0	90.5940
0.0	99.9946	5.1	98.0749	10.0	94.7980	15.0	90.5940
0.1	99.9940	5.2	98.0149	10.1	94.6420	15.2	90.3029
0.2	99.9646	5.3	97.9619	10.2	94.5649	15.3	90.3201
0.3	99.9721	5.4	97.9019	10.3	94.3049	15.4	90.3201
0.4	99.9571	5.5	97.9044	10.4	94.4094	15.5	90.2290
0.6	99.9400	5.6	97.7884	10.5	94.3310	15.6	
0.0	99.9212	5.7	97.7297	10.6	94.3310	15.7	90.0440
0.7	99.9008	5.8	97.6703			15.8	89.9515
0.0		5.9		10.8	94.1742		89.8580
	99.8554		97.6106	10.9	94.0946	15.9	89.7657
1.0	99.8308	6.0	97.5503	11.0	94.0152	16.0	89.6730
1.1	99.8048	6.1	97.4897	11.1	93.9352	16.1	89.5790
1.2	99.7776	6.2	97.4285	11.2	93.8555	16.2	89.4850
1.3	99.7494	6.3	97.3669	11.3	93.7746	16.3	89.3913
1.4	99.7200	6.4	97.3048	11.4	93.6940	16.4	89.2970
1.5	99.6896	6.5	97.2422	11.5	93.6128	16.5	89.2028
1.6	99.6581	6.6	97.1789	11.6	93.5315	16.6	89.1070
1.7	99.6256	6.7	97.1158	11.7	93.4497	16.7	89.0133
1.8	99.5923	6.8	97.0517	11.8	93.3680	16.8	88.9180
1.9	99.5579	6.9	96.9875	11.9	93.2854	16.9	88.8229
2.0	99.5227	7.0	96.9229	12.0	93.2030	17.0	88.7270
2.1	99.4866	7.1	96.8576	12.1	93.1199	17.1	88.6310
2.2	99.4497	7.2	96.7920	12.2	93.0370	17.2	88.5350
2.3	99.4119	7.3	96.7260	12.3	92.9532	17.3	88.4390
2.4	99.3734	7.4	96.6591	12.4	92.8695	17.4	88.3430
2.5	99.3340	7.5	96.5926	12.5	92.7853	17.5	88.2460
2.6	99.2939	7.6	96.5251	12.6	92.7010	17.6	88.1490
2.7	99.2530	7.7	96.4577	12.7	92.6163	17.7	88.0510
2.8	99.2113	7.8	96.3894	12.8	92.5320	17.8	87.9540
2.9	99.1690	7.9	96.3211	12.9	92.4462	17.9	87.8570
3.0	99.1258	8.0	96.2520	13.0	92.3610	18.0	87.7600
3.1	99.0821	8.1	96.1829	13.1	92.2749	18.1	87.6620
3.2	99.0376	8.2	96.1131	13.2	92.1890	18.2	87.5630
3.3	98.9924	8.3	96.0432	13.3	92.1025	18.3	87.4650
3.4	98.9466	8.4	95.9724	13.4	92.0160	18.4	87.3670
3.5	98.9002	8.5	95.9019	13.5	91.9290	18.5	87.2680
3.6	98.8530	8.6	95.8304	13.6	91.8420	18.6	87.1690
3.7	98.8053	8.7	95.7591	13.7	91.7544	18.7	87.0700
3.8	98.7569	8.8	95.6869	13.8	91.6670	18.8	86.9700
3.9	98.7079	8.9	95.6148	13.9	91.5788	18.9	86.8700
4.0	98.6582	9.0	95.5418	14.0	91.4910	19.0	86.7710
4.1	98.6081	9.1	95.4691	14.1	91.4021	19.1	86.6710
4.2	98.5573	9.2	95.3955	14.2	91.3140	19.2	86.5710
4.3	98.5059	9.3	95.3219	14.3	91.2243	19.3	86.4710
4.4	98.4540	9.4	95.2475	14.4	91.1355	19.4	86.3700
4.5	98.4014	9.5	95.1733	14.5	91.0455	19.5	86.2690
4.6	98.3484	9.6	95.0985	14.5	90.9560	19.6	86.1680
4.0	98.2948	9.7	95.0233	14.0	90.8656	19.0	86.0660
4.7	98.2940	the second se		14.7	90.8656	the second se	
		9.8	94.9477			19.8	85.9650
4.9	98.1859	9.9	94.8718	14.9	90.6848	19.9	85.8540

GAUGING TABLE FOR HORIZONTAL	CYLINDRICAL TANKS
GAUGING TABLE FOR HORIZONTAL	CILINDRICAL TANKS

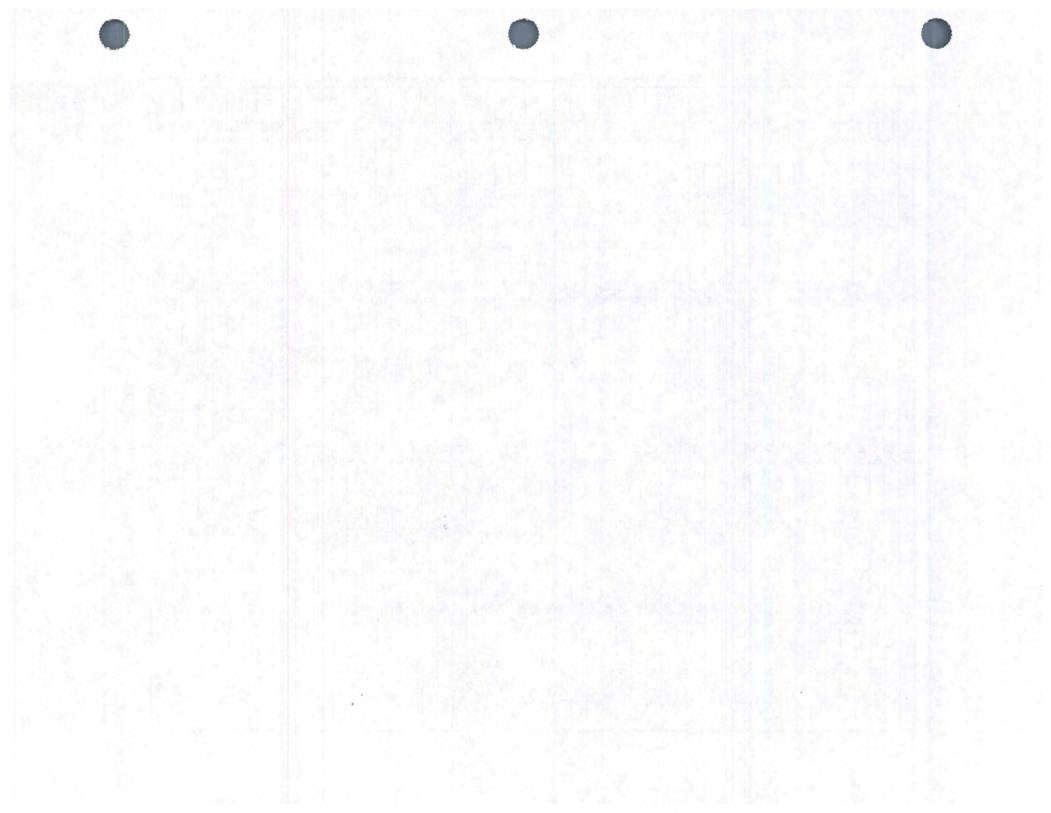
Outage % of	Filled % of	Outage % of	Filled % of	Outage % of	Filled % of	Outage % of	Filled % o
Diameter	Capacity	Diameter	Capacity	Diameter	Capacity	Diameter	Capacity
20.0	85.7620	25.0	80.4490	30.0	74.7670	35.0	68.8080
20.1	85.6590	25.1	80.3380	30.1	74.6500	35.1	68.6860
20.2	85.5560	25.2	80.2270	30.2	74.5330	35.2	68.5640
20.3	85.4530	25.3	80.1160	30.3	74.4160	35.3	68.4420
20.4	85.3510	25.4	80.0050	30.4	74.2990	35.4	68.3200
20.5	85.2490	25.5	79.8940	30.5	74.1820	35.5	68.1980
20.6	85.1460	25.6	79.7830	30.6	74.0650	35.6	68.0760
20.7	85.0430	25.7	79.6720	30.7	73.9470	35.7	67.9540
20.8	84.9400	25.8	79.5610	30.8	73.8300	35.8	67.8320
20.9	84.8370	25.9	79.4500	30.9	73.7120	35.9	67.7100
21.0	84.7330	26.0	79.3390	31.0	73.5930	36.0	67.5880
21.1	84.6290	26.1	79.2270	31.1	73.4760	36.1	67.4660
21.2	84.5250	26.2	79.1140	31.2	73.3580	36.2	67.3430
21.3	84.4210	26.3	79.0020	31.3	73.2400	36.3	67.2200
21.4	84.3170	26.4	78.8900	31.4	73.1220	36.4	67.0980
21.5	84.2130	26.5	78.7780	31.5	73.0040	36.5	66.9750
21.6	84.1080	26.6	78.6660	31.6	72.8860	36.6	66.8530
21.7	84.0020	26.7	78.5530	31.7	72.7680	36.7	66.7310
21.8	83.8990	26.8	78.4400	31.8	72.6490	36.8	66.6080
21.9	83.7940	26.9	78.3280	31.9	72.5300	36.9	66.4850
22.0	83.6880	27.0	78.2150	32.0	72.4110	37.0	. 66.3820
22.1	83.5820	27.1	78.1020	32.1	72.2920	37.1	66.2380
22.2	83.4760	27.2	77.9890	32.2	72.1730	37.2	66.1180
22.3	83.3700	27.3	77.8750	32.3	72.0540	37.3	65.9920
22.4	83.2630	27.4	77.7610	32.4	71.9350	37.4	65.8690
22.5	83.1580	27.5	77.6470	32.5	71.8160	37.5	65.7460
22.6	83.0510	27.6	77.5330	32.6	71.6980	37.6	65.6230
22.7	82.9450	27.7	77.4190	32.7	71.5780	37.7	65.4990
22.8	82.8390	27.8	77.3050	32.8	71.4570	37.8	65.3750
22.9	82.7310	27.9	77.1900	32.9	71.3400	37.9	65.2510
23.0	82.6240	28.0	77.0770	33.0	71.2190	38.0	65.1270
23.1	82.5170	28.1	76.9620	33.1	71.1010	38.1	65.0040
23.2	82.4100	28.2	76.8480	33.2	70.9800	38.2	64.8810
23.3	82.3020	28.3	76.7340	33.3	70.8600	38.3	64.7580
23.4	82.1940	28.4	76.6200	33.4	70.7400	38.4	64.6320
23.5	82.0870	28.5	76.5060	33.5	70.6200	38.5	64.5710
23.6	81.9780	28.6	76.3890	33.6	70.5000	38.6	64.3850
23.7	81.8700	28.7	76.2720	33.7	70.3800	38.7	64.2610
23.8	81.7600	28.8	76.1580	33.8	70.2600	38.8	64.1350
23.9	81.6520	28.9	76.0430	33.9	70.1400	38.9	64.0120
24.0	81.5430	29.0	75.9280	34.0	70.0190	39.0	63.8900
24.1	81.4340	29.1	75.8130	34.1	69.8980	39.1	63.7660
24.2	81.3250	29.2	75.6980	34.2	69.7770	39.2	63.6410
24.3	81.2160	29.3	75.5820	34.3	69.6563	39.3	63.5170
24.4	81.1080	29.4	75.4650	34.4	69.5350	39.4	63.3920
24.5	80.9900	29.5	75.3490	34.5	69.4130	39.5	63.2680
24.6	80.8900	29.6	75.2310	34.6	69.2920	39.6	63.1440
24.7	80.7800	29.7	75.1160	34.7	69.1710	39.7	63.0190
24.8	80.6700	29.8	75.0000	34.8	69.0500	39 .8	62.8940
24.9	80.5600	29.9	74.8840	34.9	68.9290	39.9	62.7700

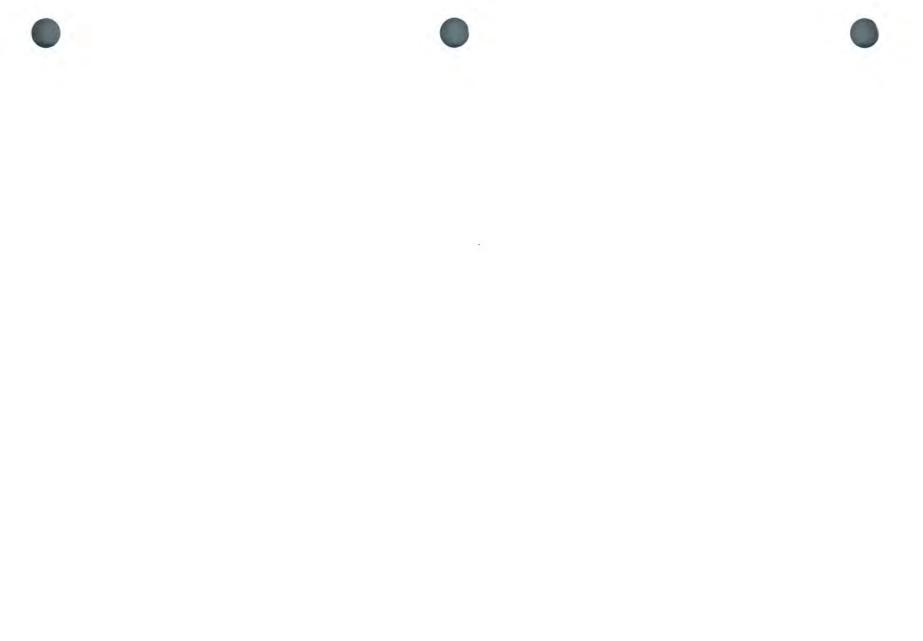
-	

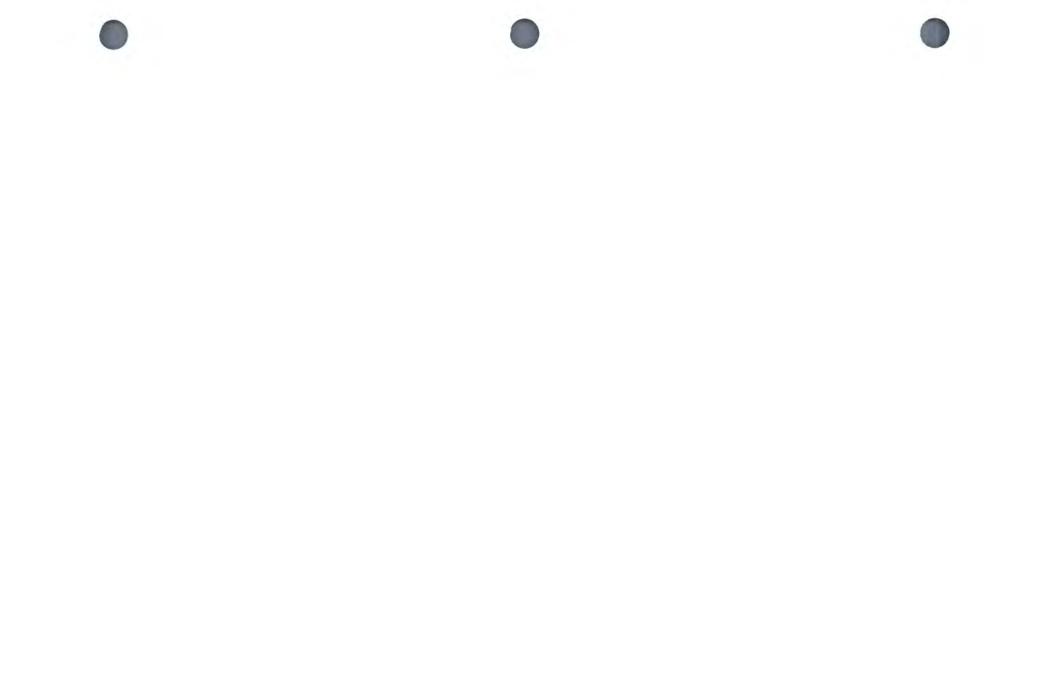
GAUGING TABLE FOR HORIZONTAL CYLINDRICAL TANKS

Outage % of	Filled % of						
Diameter	Capacity	Diameter	Capacity	Diameter	Capacity	Diameter	Capacity
40.0	62.6450	45.0	56.3520	50.0	50.0000	55.0	43.6480
40.1	62.5200	45.1	56.2250	50.1	49.8770	55.1	43.5210
40.2	62.3940	45.2	56.0980	50.2	49.7480	55.2	43.3970
40.3	62.2690	45.3	55.9720	50.3	49.6210	55.3	43.2680
40.4	62.1440	45.4	55.8450	50.4	49.4940	55.4	43.1420
40.5	62.0190	45.5	55.7180	50.5	49.3660	55.5	43.0180
40.6	61.8940	45.6	55.5910	50.6	49.2390	55.6	42.8900
40.7	61.7690	45.7	55.4620	50.7	49.1120	55.7	42.7620
40.8	61.6450	45.8	55.3370	50.8	48.9830	55.8	42.6370
40.9	61.5210	45.9	55.2100	50.9	48.8570	55.9	42.5100
41.0	61.3960	46.0	55.0820	51.0	48.7290	56.0	42.3830
41.1	61.2700	46.1	54.9570	51.1	48.6030	56.1	42.2570
41.2	61.1440	46.2	54.8290	51.2	48.4750	56.2	42.1290
41.3	61.0180	46.3	54.7040	51.3	48.3480	56.3	42.0020
41.4	60.8920	46.4	54.5760	51.4	48.2200	56.4	41.8760
41.5	60.7670	46.5	54.4500	51.5	48.0930	56.5	41.7490
41.6	60.6420	46.6	54.3220	51.6	47.9650	56.6	41.6280
41.7	60.5180	46.7	54.1970	51.7	47.8370	56.7	41.4990
41.8	60.3920	46.8	54.0700	51.8	47.7100	56.8	41.3720
41.9	60.2650	46.9	53.9420	51.9	47.5830	56.9	41.2460
42.0	60.1380	47.0	53.8170	52.0	47.4570	57.0	41.1200
42.1	60.0120	47.1	53.6890	52.1	47.3290	57.1	40.9940
42.2	59.8860	47.2	53.5620	52.2	47.2010	57.2	40.8690
42.3	59.7600	47.3	53.4350	52.3	47.0740	57.3	40.7410
42.4	59.6350	47.4	53.3070	52.4	46.9470	57.4	40.6150
42.5	59.5100	47.5	53.1810	52.5	46.8190	57.5	40.4900
42.6	59.3850	47.6	53.0530	52.6	46.6930	57.6	40.3650
42.7	59.2590	47.7	52.9260	52.7	46.5650	57.7	40.2400
42.8	59.1310	47.8	52.7990	52.8	46.4380	57.8	40.1140
42.9	59.0060	47.9	52.6710	52.9	46.3110	57.9	39.9880
43.0	58.8800	48.0	52.5430	53.0	46.1830	58.0	39.8620
43.1	58.7540	48.1	52.4170	53.1	46.0580	58.1	39.7350
43.2	58.6280	48.2	52.2900	53.2	45.9300	58.2	39.6080
43.3	58.5010	48.3	52.1630	53.3	45.8050	58.3	39.4820
43.4	58.3720	48.4	52.0350	53.4	45.6780	58.4	39.3580
43.5	58.2510	48.5	51.9070	53.5	45.5500	58.5	39.2330
43.6	58.1240	48.6	51.7800	53.6	45.4240	58.6	39.1080
43.7	57.9980	48.7	51.6520	53.7	45.2980	58.7	38.9820
43.8	57.8710	48.8	51.5250	53.8	45.1710	58.8	38.8560
43.9	57.7430	48.9	51.3970	53.9	45.0430	58.9	38.7300
44.0	57.6170	49.0	51.2710	54.0	44.9180	59.0	38.6040
44.1	57.4900	49.1	51.1430	54.1	44.7900	59.1	38.4790
44.2	57.3630	49.2	51.0170	54.2	44.6630	59.2	38.3550
44.3	57.2380	49.3	50.8880	54.3	44.5380	59.3	38.2310
44.4	57.1100	49.4	50.7610	54.4	44.4090	59.4	38.1060
44.5	56.9820	49.5	50.6340	54.5	44.2820	59.5	37.9810
44.6	56.8580	49.6	50.5060	54.6	44.1550	59.6	37.8560
44.7	56.7320	49.7	50.3790	54.7	44.0280	59.7	37.7310
44.8	56.6030	49.8	50.2520	54.8	43.9020	59.8	37.6060
44.9	56.4790	49.9	50.1230	54.9	43.7750	59.9	37.4800

CALICING TARLE FOR HORIZ	NITAL OVI INDRIGAL TANKS
GAUGING TABLE FOR HORIZO	JNIAL CYLINDRICAL TANKS


Outage % of	Filled % of						
Diameter	Capacity	Diameter	Capacity	Diameter	Capacity	Diameter	Capacity
60.0	37.3550	65.0	31.1920	70.0	25.2330	75.0	19.5510
60.1	37.2300	65.1	31.0710	70.1	25.1160	75.1	19.4400
60.2	37.1060	65.2	30.9500	70.2	25.0000	75.2	19.3300
60.3	36.9810	65.3	30.8290	70.3	24.8840	75.3	19.2200
60.4	36.8560	65.4	30.7080	70.4	24.7690	75.4	19.1100
60.5	36.7320	65.5	30.5870	70.5	24.6510	75.5	19.0100
60.6	36.6080	65.6	30.4650	70.6	24.5350	75.6	18.8920
60.7	36.4830	65.7	30.3440	70.7	24.4180	75.7	18.7840
60.8	36.3590	65.8	30.2230	70.8	24.3020	75.8	18.6750
60.9	36.2340	65.9	30.1020	70.9	24.1870	75.9	18.5660
61.0	36.1100	66.0	29.9810	71.0	24.0720	76.0	18.4570
61.1	35.9880	66.1	29.8600	71.1	23,9570	76.1	18.3480
61.2	35.9650	66.2	29.7400	71.2	23.8420	76.2	18.2400
61.3	35.7390	66.3	29.6200	71.3	23.7280	76.3	18.1300
61.4	35.6150	66.4	29.5000	71.4	23.6110	76.4	18.0220
61.5	35.4910	66.5	29.3800	71.5	23.4940	76.5	17.9130
61.6	35.3680	66.6	29.2600	71.6	23.3800	76.6	17.8060
61.7	35.2420	66.7	29.1400	71.7	23.2660	76.7	17.6980
61.8	35.1190	66.8	29.0200	71.8	23.1520	76.8	17.5900
61.9	34.9960	66.9	28.8890	71.9	23.0380	76.9	17.4830
62.0	34.8730	67.1	28.7810	72.0	22.9230	77.0	17.3760
62.1	34.7490	67.2	28.6600	72.1	22.8100	77.1	17.2690
62.2	34.6250	67.3	28.5430	72.2	22.6950	77.2	17.1610
62.3	34.5010	67.4	28.4220	72.3	22.5810	77.3	17.0550
62.4	34.3770	67.5	28.3020	72.4	22.4670	77.4	16.9490
62.5	34.2540	67.6	28.1840	72.5	22.3530	77.5	16.8420
62.6	34.1310	67.7	27.0650	72.6	22.2390	77.6	16.7370
62.7	34.0080	67.8	27.9450	72.7	22.1250	77.7	16.6300
62.8	33.8850	67.9	27.8270	72.8	22.0110	77.8	16.5240
62.9	33.7620	68.0	27.7080	72.9	21.8980	77.9	16.4180
63.0	33.6380	68.1	27.4700	73.0	21.7850	78.0	16.3120
63.1	33.5150	68.2	27.3510	73.1	21.6720	78.1	16.2060
63.2	33.3920	68.3	27.2320	73.2	21.5600	78.2	16.1010
63.3	33.2690	68.4	27.1140	73.3	21.4470	78.3	15.9980
63.4	33.1470	68.5	26.9960	73.4	21.3340	78.4	15.8920
63.5	33.0250	68.6	26.8780	73.5	21.2220	78.5	15.7870
63.6	32.9020	68.7	26.7600	73.6	21.1100	78.6	15.6830
63.7	32.7800	68.8	26.6420	73.7	20.9980	78.7	15.5790
63.8	32.6570	68.9	26.5240	73.8	20.8860	78.8	15.4750
63.9	32.5340	69.0	26.4070	73.9	20.7730	78.9	15.3710
64.0	32.4120	69.1	26.2880	74.0	20.6610	79.0	15.2670
64.1	32.2900	69.2	26.1700	74.1	20.5500	79.1	15.1630
64.2	32.1682	69.3	26.0520	74.2	20.4390	79.2	15.0600
64.3	32.0460	69.4	25.9350	74.3	20.3280	79.3	14.9570
64.4	31.9240	69.5	25.8180	74.4	20.2170	79.4	14.8540
64.5	31.8020	69.6	25.7010	74.5	20.1060	79.5	14.7510
64.6	31.6800	69.7	25.5840	74.6	19.9950	79.6	14.6490
64.7	31.5580	69.8	25.4670	74.7	19.8840	79.7	14.5470
64.8	31.4360	69.9	25.3500	74.8	19.7730	79.8	14.4440
64.9	31.3140	70.0	25.2330	74.9	19.6620	79.9	14.3410


GAUGING TABLE FOR HORIZONTAL CYLIN	NDRICAL TANKS
	istastis traine


Outage % of	Filled % of						
Diameter	Capacity	Diameter	Capacity	Diameter	Capacity	Diameter	Capacity
80.0	14.2380	85.0	9.4060	90.0	5.2040	95.0	1.8693
80.1	14.1460	85.1	9.3152	90.1	5.1282	95.1	1.8141
80.2	14.0350	85.2	9.2240	90.2	5.0523	95.2	1.7594
80.3	13.9340	85.3	9.1344	90.3	4.9767	95.3	1.7052
80.4	13.8320	85.4	9.0440	90.4	4.9015	95.4	1.6516
80.5	13.7310	85.5	8.9545	90.5	4.8267	95.5	1.5986
80.6	13.6300	85.6	8.8645	90.6	4.7525	95.6	1.5460
80.7	13.5290	85.7	8.7757	90.7	4.6781	95.7	1.4941
80.8	13.4290	85.8	8.6860	90.8	4.6045	95.8	1.4427
80.9	13.3290	85.9	8.5979	90.9	4.5309	95.9	1.3919
81.0	13.2290	86.0	8.5090	91.0	4.4582	96.0	1.3418
81.1	13.1300	86.1	8.4212	91.1	4.3851	96.1	1.2921
81.2	13.0300	86.2	8.3330	91.2	4.3131	96.2	1.2431
81.3	12.9300	86.3	8.2456	91.3	4.2409	96.3	1.1947
81.4	12.8310	86.4	8.1580	91.4	4.1696	96.4	1.1470
81.5	12.7320	86.5	8.0710	91.5	4.0981	96.5	1.0998
81.6	12.6330	86.6	7.9840	91.6	4.0276	96.6	1.0534
81.7	12.5350	86.7	7.8975	91.7	3.9568	96.7	1.0076
81.8	12.4370	86.8	7.8110	91.8	3.8869	96.8	0.9624
81.9	12.3380	86.9	7.7251	91.9	3.8171	96.9	0.9179
82.0	12.2400	87.0	7.6390	92.0	3.7480	97.0	0.8742
82.1	12.1430	87.1	7.5538	92.1	3.6789	97.1	0.8310
82.2	12.0460	87.2	7.4680	92.2	3.6106	97.2	0.7887
82.3	11.9490	87.3	7.3837	92.3	3.5423	97.3	0.7470
82.4	11.8510	87.4	7.2990	92.4	3.4749	97.4	0.7061
82.5	11.7540	87.5	7.2147	92.5	3.4074	97.5	0.6660
82.6	11.6570	87.6	7.1305	92.6	3.3408	97.6	0.6266
82.7	11.5610	87.7	7.0468	92.7	3.2740	97.7	0.5881
82.8	11.4650	87.8	6.9630	92.8	3.2085	97.8	0.5503
82.9	11.3690	87.9	6.8801	92.9	3.1424	97.9	0.5134
83.0	11.2730	88.0	6.7970	93.0	3.0771	98.0	0.4773
83.1	11.1771	88.1	6.7146	93.1	3.0125	98.1	0.4421
83.2	11.0820	88.2	6.6320	93.2	2.9483	98.2	0.4077
83.3	11.9867	88.3	6.5503	93.3	2.8842	98.3	0.3744
83.4	10.8930	88.4	6.4685	93.4	2.8211	98.4	0.3419
83.5	10.7972	88.5	6.3872	93.5	2.7578	98.5	0.3104
83.6	10.7030	88.6	6.3060	93.6	2.6952	98.6	0.2800
83.7	10.6087	88.7	6.2254	93.7	2.6331	98.7	0.2506
83.8	10.5150	88.8	6.1445	93.8	2.5715	98.8	0.2224
83.9	10.4210	88.9	6.0648	93.9	2.5103	98.9	0.1952
84.0	10.3270	89.0	5.9848	94.0	2.4497	99.0	0.1692
84.1	10.2343	89.1	5.9054	94.1	2.3894	99.1	0.1446
84.2	10.1420	89.2	5.8258	94.2	2.3297	99.2	0.1212
84.3	10.0485	89.3	5.7473	94.3	2.2703	99.3	0.0992
84.4	9.9560	89.4	5.6690	94.4	2.2116	99.4	0.0788
84.5	9.8637	89.5	5.5906	94.5	2.1532	99.5	0.0600
84.6	9.7710	89.6	5.5122	94.6	2.0956	99.6	0.0429
84.7	9.6799	89.7	5.4351	94.7	2.0381	99.7	0.0279
84.8	9.5880	89.8	5.3580	94.8	1.9814	99.8	0.0152
84.9	9.4971	89.9	5.2810	94.9	1.9251	99.0	0.0054

lowa Department of Transportation

Office of Materials

Reissued October 18, 2005 Supersedes October 3, 2000 Matls. IM T105

OUTAGE OF HORIZONTAL CYLINDRICAL TANKS Gallons per Foot of Length

Outage Inches				Tar		eter in In					
(H)	77	Interval	78	Interval	79	Interval	80	Interval	81	Interval	82
	38.5		39		39.5		40		40.5		41
0.25	0.076	0.000	0.076	0.001	0.077		0.077	0.001	0.078	0.000	0.078
0.50	0.214	0.002	0.216	0.001	0.217		0.219	0.001	0.220	0.001	0.221
0.75	0.394	0.002	0.396	0.003	0.399		0.401	0.003	0.404	0.002	0.406
1.00	0.605	0.004	0.609	0.004	0.613		0.617	0.004	0.621	0.004	0.625
1.25	0.845	0.006	0.851	0.005	0.856		0.862	0.005	0.867	0.006	0.873
1.50	1.110	0.007	1.117	0.008	1.125		1.132	0.007	1.139	0.007	1.146
1.75	1.397	0.010	1.407	0.009	1.416		1.425	0.009	1.434	0.009	1.443
2.00	1.706	0.011	1.717	0.011	1.728		1.739	0.011	1.750	0.011	1.761
2.25	2.033	0.014	2.047	0.013	2.060		2.073	0.013	2.086	0.013	2.099
2.50	2.379	0.016	2.395	0.015	2.410		2.426	0.015	2.441	0.015	2.456
2.75	2.742	0.018	2.760	0.018	2.778		2.796	0.018	2.814	0.017	2.831
3.00	3.121	0.021	3.142	0.020	3.162		3.183	0.020	3.203	0.020	3.223
3.25	3.516	0.023	3.539	0.023	3.562		3.585	0.023	3.608	0.023	3.631
3.50	3.925	0.026	3.951	0.026	3.977		4.003	0.025	4.028	0.026	4.054
3.75	4.349	0.029	4.378	0.028	4.406	0.029	4.435	0.028	4.463	0.029	4.492
4.00	4.786	0.032	4.818	0.032	4.850	0.031	4.881	0.031	4.912	0.032	4.944
4.25	5.236	0.035	5.271	0.035	5.306	0.035	5.341	0.034	5.375	0.034	5.409
4.50	5.699	0.038	5.737	0.038	5.775	0.038	5.813	0.038	5.851	0.037	5.888
4.75	6.174	0.042	6.216	0.041	6.257	0.041	6.298	0.041	6.339	0.040	6.379
5.00	6.661	0.045	6.706	0.045	6.751	0.044	6.795	0.044	6.839	0.044	6.883
5.25	7.160	0.048	7.208	0.048	7.256	0.048	7.304	0.047	7.351	0.047	7.398
5.50	7.669	0.052	7.721	0.052	7.773	0.051	7.824	0.051	7.875	0.050	7.925
5.75	8.190	0.055	8.245	0.056	8.301	0.054	8.355	0.055	8.410	0.054	8.464
6.00	8.721	0.059	8.780	0.059	8.839	0.058	8.897	0.058	8.955	0.058	9.013
6.25	9.262	0.063	9.325	0.063	9.388	0.062	9.450	0.062	9.512	0.061	9.573
6.50	9.813	0.067	9.880	0.066	9.946	0.067	10.013	0.065	10.078	0.065	10.143
6.75	10.374	0.071	10.445	0.070	10.515	0.070	10.585	0.070	10.655	0.069	10.724
7.00	10.944	0.075	11.019	0.075	11.094	0.074	11.168	0.073	11.241	0.073	11.314
7.25	11.524	0.079	11.603	0.078	11.681	0.078	11.759	0.078	11.837	0.077	11.914
7.50	12.112	0.084	12.196	0.082	12.278	0.083	12.361	0.081	12.442	0.081	12.523
7.75	12.710	0.087	12.797	0.087	12.884	0.087	12.971	0.086	13.057	0.085	13.142
8.00	13.316	0.092	13.408	0.091	13.499	0.091	13.590	0.090	13.680	0.089	13.769
	13.930	0.097	14.027	0.095	14.122		14.217		14.312		14.406
	14.553	0.101	14.654	0.100	14.754		14.854		14.952		15.051
	15.184	0.105	15.289	0.105	15.394		15.498		15.601		15.704
	15.822	0.110	15.932	0.110	16.042		16.151		16.258		16.366
	16.469	0.115	16.584	0.114	16.698		16.811		16.924		17.036
9.50	17.123	0.119	17.242	0.119	17.361		17.479		17.597		17.713
9.75	17.784	0.125	17.909	0.124	18.033		18.155		18.278		18.399

OUTAGE OF HORIZONTAL CYLINDRICAL TANKS Gallons per Foot of Length

Outage Inches		Tank Diameter in Inches								
(H)	77 Interval	78	Interval	79	Interval	80	Interval	81	Interval	82
	38.5	39		39.5		40		40.5		41
10.00	18.453 0.129	18.582	0.129	18.711	0.128	18.839	0.127	18.966	0.126	19.092
10.25	19.129 0.134	19.263	0.134	19.397	0.133	19.530	0.132	19.662	0.131	19.793
10.50	19.812 0.139	19.951	0.139	20.090	0.138	20.228	0.137	20.365	0.136	20.501
10.75	20.501 0.145	20.646	0.144	20.790	0.143	20.933	0.142	21.075	0.141	21.216
11.00	21.198 0.150	21.348	0.149	21.497	0.148	21.645	0.147	21.792	0.146	21.938
11.25	21.901 0.156	22.057	0.154	22.211	0.153	22.364	0.152	22.516	0.152	22.668
11.50	22.611 0.161	22.772	0.159	22.931	0.159	23.090	0.157	23.247	0.157	23.404
11.75	23.327 0.166	23.493	0.165	23.658	0.164	23.822	0.163	23.985	0.162	24.147
12.00	24.049 0.172	24.221	0.171	24.392	0.169	24.561	0.168	24.729	0.167	24.896
12.25	24.778 0.177	24.955	0.176	25.131	0.175	25.306	0.174	25.480	0.172	25.652
12.50	25.512 0.183	25.695	0.182	25.877	0.180	26.057	0.180	26.237	0.178	26.415
12.75	26.253 0.188	26.441	0.188	26.629	0.186	26.815	0.185	27.000	0.183	27.183
13.00	26.999 0.194	27.193	0.194	27.387	0.192	27.579	0.190	27.769	0.189	27.958
13.25	27.751 0.200	27.951	0.199	28.150	0.198	28.348	0.196	28.544	0.195	28.739
13.50	28.509 0.206	28.715	0.205	28.920	0.203	29.123	0.203	29.326	0.200	29.526
3.75	29.272 0.212	29.484	0.211	29.695	0.210	29.905	0.207	30.112	0.207	30.319
4.00	30.041 0.218	30.259	0.217	30.476	0.215	30.691	0.214	30.905	0.213	31.118
14.25	30.815 0.224	31.039	0.223	31.262	0.222	31.484	0.219	31.703	0.219	31.922
14.50	31.594 0.231	31.825	0.229	32.054	0.227	32.281	0.215	32.507	0.215	32.732
14.75	32.378 0.237	32.615	0.225	32.851	0.234	33.085	0.220	33.317	0.225	33.547
15.00	33.168 0.243	33.411	0.242	33.653	0.234	33.893	0.232	34.131	0.230	34.368
15.25	33.963 0.249	34.212	0.242	34.460	0.240	34.707	0.230	34.951	0.243	
15.50	34.762 0.256	35.018	0.248	35.273	0.247	35.525		35.776		35.194
							0.251		0.249	36.025
15.75	35.566 0.263	35.829	0.261	36.090	0.259	36.349	0.257	36.606	0.256	36.862
6.00	36.376 0.269	36.645	0.267	36.912	0.266	37.178	0.263	37.441	0.262	37.703
6.25	37.189 0.276	37.465	0.274	37.739	0.272	38.011	0.270	38.281	0.269	38.550
6.50	38.008 0.282	38.290	0.281	38.571	0.279	38.850	0.276	39.126	0.275	39.401
6.75	38.831 0.289	39.120	0.288	39.408	0.285	39.693	0.283	39.976	0.281	40.257
7.00	39.658 0.296	39.954	0.295	40.249	0.292	40.541	0.290	40.831	0.287	41.118
7.25	40.490 0.303	40.793	0.301	41.094	0.299	41.393	0.297	41.690	0.294	41.984
7.50	41.326 0.310	41.636	0.308	41.944	0.306	42.250	0.303	42.553	0.302	42.855
7.75	42.166 0.317	42.483	0.315	42.798	0.313	43.111	0.310	43.421	0.308	43.729
8.00	43.010 0.325		0.322	43.657	0.319	43.976	0.318	44.294	0.315	44.609
	43.859 0.331	44.190		44.520	0.326	44.846	0.325	45.171	0.322	45.493
Contraction of the second s	44.711 0.339	45.050	0.336	45.386	0.334	45.720	0.332	46.052	0.329	46.381
	45.568 0.346	45.914		46.257	0.341	46.598	0.339	46.937	0.336	47.273
9.00	46.428 0.354	46.782		47.132	0.349	47.481	0.345	47.826	0.344	48.170
9.25	47.292 0.361	47.653		48.011	0.356	48.367	0.353	48.720	0.350	49.070
	48.160 0.369	48.529		48.894	0.363	49.257	0.360	49.617	0.358	49.975
	49.032 0.376	49.408		49.781	0.370	50.151	0.368	50.519	0.365	50.884
20.00	49.907 0.384	50.291	0.380	50.671	0.378	51.049	0.375	51.424	0.373	51.797

OUTAGE OF HORIZONTAL CYLINDRICAL TANKS Gallons per Foot of Length

Outage Inches		Tank Diameter in Inches										
(H)	82 Interval	83 Interval	84	Interval	85	Interval	86	Interval	87			
	41	41.5	42		42.5		43	200	43.5			
0.25	0.078 0.001	0.079 0.000	0.079	0.001	0.080	0.000	0.080	0.001	0.081			
0.50	0.221 0.002	0.223 0.001	0.224	0.001	0.225	0.002	0.227	0.001	0.228			
0.75	0.406 0.003	0.409 0.002	0.411	0.003	0.414	0.002	0.416	0.003	0.419			
1.00	0.625 0.004	0.629 0.004	0.633	0.003	0.636	0.004	0.640	0.004	0.644			
1.25	0.873 0.005	0.878 0.005	0.883	0.005	0.888	0.006	0.894	0.005	0.899			
1.50	1.146 0.007	1.153 0.007	1.160	0.007	1.167	0.007	1.174	0.007	1.181			
1.75	1.443 0.009	1.452 0.008	1.460	0.009	1.469	0.009	1.478	0.009	1.487			
2.00	1.761 0.011	1.772 0.011	1.783	0.010	1.793	0.011	1.804	0.011	1.815			
2.25	2.099 0.013	2.112 0.013	2.125	0.013	2.138	0.013	2.151	0.012	2.163			
2.50	2.456 0.016	2.472 0.015	2.487	0.015	2.502	0.015	2.517	0.015	2.532			
2.75	2.831 0.018	2.849 0.017	2.866	0.018	2.884	0.017	2.901	0.017	2.918			
3.00	3.223 0.020	3.243 0.020	3.263	0.020	3.283	0.019	3.302	0.020	3.322			
3.25	3.631 0.022	3.653 0.023	3.676	0.022	3.698	0.022	3.720	0.023	3.743			
3.50	4.054 0.025	4.079 0.025	4.104	0.025	4.129	0.025	4.154	0.025	4.179			
3.75	4.492 0.028	4.520 0.028	4.548	0.027	4.575	0.028	4.603	0.027	4.630			
4.00	4.944 0.031	4.975 0.030	5.005	0.031	5.036	0.030	5.066	0.031	5.097			
4.25	5.409 0.034	5.443 0.034	5.477	0.033	5.510	0.034	5.544	0.033	5.577			
4.50	5.888 0.037	5.925 0.037	5.962	0.036	5.998	0.036	6.034	0.037	6.071			
4.75	6.379 0.040	6.419 0.040	6.459	0.040	6.499	0.039	6.538	0.040	6.578			
5.00	6.883 0.043	6.926 0.043	6.969	0.043	7.012	0.043	7.055	0.042	7.097			
5.25	7.398 0.047	7.445 0.047	7.492	0.046	7.538	0.046	7.584	0.045	7.629			
5.50	7.925 0.051	7.976 0.049	8.025	0.050	8.075	0.049	8.124	0.049	8.173			
5.75	8.464 0.053	8.517 0.054	8.571	0.053	8.624	0.053	8.677	0.052	8.729			
6.00	9.013 0.057	9.070 0.057	9.127	0.057	9.184	0.056	9.240	0.056	9.296			
6.25	9.573 0.061	9.634 0.061	9.695	0.060	9.755	0.060	9.815	0.059	9.874			
6.50	10.143 0.065	10.208 0.064	10.272	0.064	10.336	0.064	10.400	0.063	10.463			
6.75	10.724 0.068	10.792 0.068	10.860	0.068	10.928	0.067	10.995	0.067	11.062			
7.00	11.314 0.072	11.386 0.073	11.459	0.071	11.530	0.071	11.601	0.071	11.672			
7.25	11.914 0.076	11.990 0.076	12.066	0.076	12.142	0.075	12.217	0.075	12.292			
7.50	12.523 0.081	12.604 0.080	12.684	0.079	12.763	0.079	12.842	0.079	12.921			
7.75	13.142 0.084	13.226 0.085	13.311	0.083	13.394	0.083	13.477	0.083	13.560			
8.00	13.769 0.089	13.858 0.089	13.947	0.087	14.034	0.088	14.122	0.086	14.208			
8.25	14.406 0.093	14.499 0.092	14.591	0.093	14.684	0.091	14.775	0.091	14.866			
8.50	15.051 0.097	15.148 0.097	15.245	0.097	15.342	0.095	15.437	0.095	15.532			
8.75	15.704 0.102	15.806 0.101	15.907	0.101	16.008	0.100	16.108	0.100	16.208			
9.00	16.366 0.106	16.472 0.106	16.578	0.105	16.683	0.105	16.788	0.104	16.892			
9.25	17.036 0.111	17.147 0.110	17.257		17.367	0.109	17.476	0.108	17.584			
9.50	17.713 0.116	17.829 0.115	17.944		18.058	0.114	18.172	0.113	18.285			
9.75	18.399 0.120	18.519 0.120	18.639	0.119	18.758	0.118	18.876	0.118	18.994			

OUTAGE OF HORIZONTAL CYLINDRICAL TANKS	;
Gallons per Foot of Length	

Outage Inches		Tank Diameter in Inches									
(H)	82	Interval	83	Interval	84	Interval	85	Interval	86	Interval	87
	41		41.5		42		42.5		43		43.5
10.00	19.092	0.125	19.217	0.125	19.342	0.123	19.465	0.123	19.588	0.122	19.710
10.25	19.793	0.130	19.923	0.129	20.052	0.129	20.181	0.127	20.308	0.127	20.435
10.50	20.501	0.135	20.636	0.134	20.770	0.133	20.903	0.133	21.036	0.131	21.167
10.75	21.216		21.356		21.495	0.138	21.633	0.138	21.771	0.136	21.907
11.00		0.145	22.083		22.228	0.143	22.371	0.142	22.513	0.142	22.65
11.25	22.668	0.150	22.818	0.149	22.967	0.148	23.115	0.148	23.263	0.146	23.409
11.50		0.155	23.559		23.714	0.153	23.867	0.153	24.020	0.151	24.17
11.75	24.147		24.307		24.467	0.159	24.626	0.157	24.783	0.157	24.940
12.00	24.896		25.062		25.227	0.164	25.391	0.163	25.554	0.162	25.716
12.25	25.652		25.824		25.994	0.169	26.163	0.168	26.331	0.167	26.498
12.50	26.415		26.592		26.767	0.175	26.942	0.173	27.115	0.173	27.288
12.75	27.183		27.366		27.547	0.180	27.727	0.179	27.906	0.177	28.083
13.00	27.958		28.146		28.333	0.186	28.519	0.184	28.703	0.183	28.886
13.25	28.739		28.933		29.125	0.191	29.316	0.190	29.506	0.189	29.69
13.50	29.526		29.726		29.924	0.196	30.120	0.196	30.316	0.194	30.510
13.75	30.319		30.524		30.728	0.202	30.930	0.201	31.131	0.200	31.33
14.00	31.118		31.328		31.538	0.202	31.746	0.207	31.953	0.205	32.158
14.25	31.922		32.139		32.354	0.214	32.568	0.213	32.781	0.200	32.992
14.50		0.222	32.954		33.176	0.220	33.396	0.218	33.614	0.217	33.83
14.75		0.229	33.776		34.003	0.226	34.229	0.224	34.453	0.223	34.676
15.00		0.225	34.603		34.836	0.220	35.068	0.224	35.298	0.229	35.527
15.25		0.233	35.435		35.674	0.232	35.912	0.236	36.148	0.225	36.383
15.50	36.025		36.272		36.518	0.238	36.762	0.230	37.004	0.235	
The second se	36.862					0.244	37.617				37.245
15.75 16.00	37.703		37.115 37.963		37.367		38.478	0.249	37.866	0.246	38.112
					38.221	0.257		0.254	38.732	0.253	38.985
16.25	38.550		38.816		39.080	0.263	39.343	0.261	39.604	0.259	39.863
16.50	39.401		39.674		39.945	0.269	40.214	0.267	40.481	0.266	40.747
16.75		0.280	40.537		40.814	0.276	41.090	0.273	41.363	0.272	41.635
17.00		0.286	41.404		41.688	0.282	41.970	0.280	42.250	0.279	42.529
17.25		0.293	42.277	0.290	42.567	0.289	42.856	0.286	43.142	0.285	43.427
17.50	42.855		43.154		43.451	0.295	43.746	0.293	44.039	0.291	44.330
17.75	43.729		44.035		44.339	0.302	44.641	0.300	44.941	0.298	45.239
18.00	44.609		44.922		45.232	0.309	45.541	0.306	45.847	0.305	46.152
8.25		0.319	45.812		46.130		46.445	0.313	46.758	0.311	47.069
8.50		0.326	46.707		47.032	0.322	47.354	0.320	47.674	0.318	47.992
18.75		0.334	47.607		47.938	0.329	48.267	0.327	48.594	0.325	48.919
19.00		0.340	48.510		48.849	0.336	49.185	0.334	49.519	0.331	49.850
19.25		0.348	49.418		49.764	0.343	50.107	0.341	50.448	0.338	50.786
19.50		0.355	50.330		50.683	0.350	51.033	0.348	51.381	0.345	51.726
19.75		0.362	51.246		51.606	0.357	51.963	0.355	52.318	0.353	52.671
20.00	51.797	0.369	52.166	0.367	52.533	0.365	52.898	0.362	53.260	0.359	53.619

OUTAGE OF HORIZONTAL CYLINDRICAL TANKS Gallons per Foot of Length

Outage Inches			Tank Dian	neter in Ir	ches				
(H)	87 Interval	88 Inter	val 89	Interval	90	Interval	91	Interval	92
	43.5	44	44.5		45		45.5		46
0.25	0.081 0.000	0.081 0.00		0.000	0.082	0.001	0.083	0.000	0.083
0.50	0.228 0.001	0.229 0.00		0.001	0.232	0.001	0.233	0.002	0.235
0.75	0.419 0.002	0.421 0.00		0.003	0.426	0.002	0.428	0.002	0.430
1.00	0.644 0.004	0.648 0.00		0.004	0.655	0.004	0.659	0.003	0.662
1.25	0.899 0.005	0.904 0.00		0.005	0.914	0.006	0.920	0.005	0.925
1.50	1.181 0.007	1.188 0.00		0.007	1.201	0.007	1.208	0.007	1.215
1.75	1.487 0.008	1.495 0.00		0.008	1.512	0.009	1.521	0.008	1.529
2.00	1.815 0.010	1.825 0.01		0.010	1.846	0.010	1.856	0.011	1.867
2.25	2.163 0.013	2.176 0.01		0.012	2.201	0.012	2.213	0.013	2.226
2.50	2.532 0.014	2.546 0.01		0.015	2.576	0.014	2.590	0.015	2.605
2.75	2.918 0.017	2.935 0.01		0.017	2.969	0.017	2.986	0.016	3.002
3.00	3.322 0.019	3.341 0.02		0.019	3.380	0.019	3.399	0.019	3.418
3.25	3.743 0.021	3.764 0.02		0.022	3.808	0.022	3.830	0.021	3.851
3.50	4.179 0.024	4.203 0.02		0.024	4.252	0.024	4.276	0.024	4.300
3.75	4.630 0.028	4.658 0.02	4.685	0.027	4.712	0.026	4.738	0.027	4.765
4.00	5.097 0.030	5.127 0.02		0.030	5.186	0.030	5.216	0.029	5.245
4.25	5.577 0.033	5.610 0.03	32 5.642	0.033	5.675	0.032	5.707	0.032	5.739
4.50	6.071 0.035	6.106 0,03	6.142	0.036	6.178	0.035	6.213	0.035	6.248
4.75	6.578 0.039	6.617 0.03			6.694	0.038	6.732	0.038	6.770
5.00	7.097 0.042	7.139 0.04	42 7.181	0.042	7.223	0.041	7.264	0.041	7.305
5.25	7.629 0.046	7.675 0.04	45 7.720	0.045	7.765	0.044	7.809	0.044	7.853
5.50	8.173 0.049	8.222 0.04	48 8.270	0.049	8.319	0.047	8.366	0.048	8.414
5.75	8.729 0.052	8.781 0.0	52 8.833	0.051	8.884	0.052	8.936	0.050	8.986
6.00	9.296 0.056	9.352 0.0	55 9.407	0.055	9.462	0.054	9.516	0.055	9.571
6.25	9.874 0.059	9.933 0.0	59 9.992	0.059	10.051	0.058	10.109	0.057	10.166
6.50	10.463 0.063	10.526 0.00	62 10.588	0.062	10.650	0.062	10.712	0.061	10.773
6.75	11.062 0.067	11.129 0.00	66 11.195	0.066	11.261	0.065	11.326	0.065	11.391
7.00	11.672 0.070	11.742 0.0	70 11.812	0.070	11.882	0.069	11.951	0.068	12.019
7.25	12.292 0.074	12.366 0.0	73 12.439	0.074	12.513	0.073	12.586	0.072	12.658
7.50	12.921 0.078	12.999 0.0	78 13.077	0.077	13.154	0.077	13.231	0.076	13.307
7.75	13.560 0.082	13.642 0.0	82 13.724	0.081	13.805	0.081	13.886	0.080	13.966
8.00	14.208 0.087	14.295 0.0	85 14.380	0.085	14.465	0.085	14.550	0.084	14.634
8.25	14.866 0.090	14.956 0.0	90 15.046	0.089	15.135	0.089	15.224	0.088	15.312
8.50	15.532 0.095	15.627 0.0			15.814	0.093	15.907	0.093	16.000
8.75	16.208 0.099	16.307 0.0			16.503	0.097	16.600	0.096	16.696
9.00	16.892 0.103	16.995 0.1			17.199	0.102	17.301	0.101	17.402
9.25	17.584 0.108	17.692 0.1	07 17.799	0.106	17.905	0.106	18.011	0.105	18.116
9.50	18.285 0.112	18.397 0.1			18.619	0.110	18.729	0.110	18.839
9.75	18.994 0.116	19.110 0.1			19.342	0.114	19.456	0.114	19.570

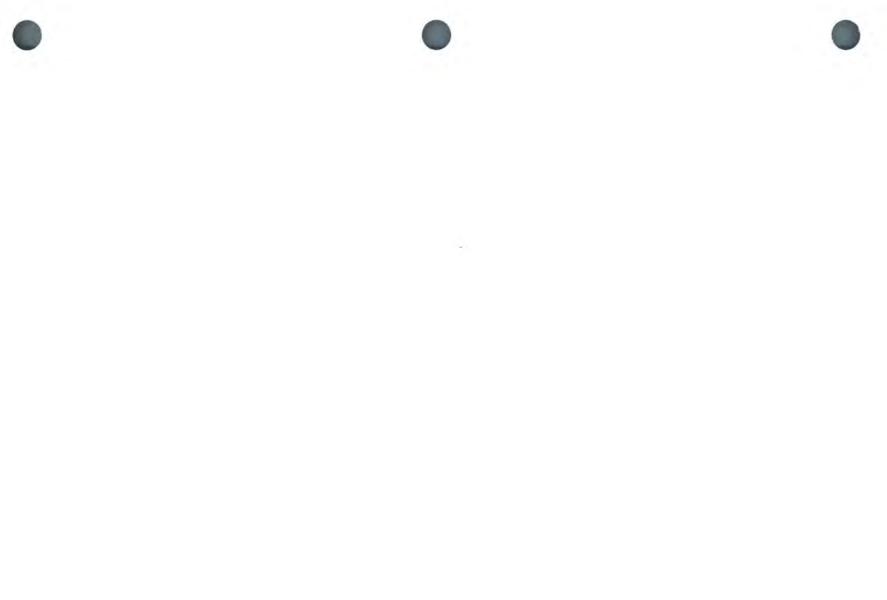
OUTAGE OF HORIZONTAL CYLINDRICAL TANKS Gallons per Foot of Length

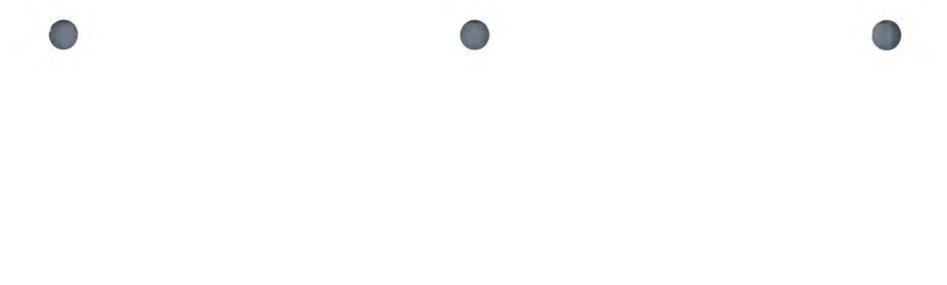
Outage Inches		Tank Diameter in Inches									
(H)	87	Interval	88	Interval	89	Interval	90	Interval	91	Interval	92
	43.5	0.00	44		44.5		45		45.5		46
10.00	19.710	0.122	19.832	0.120	19.952	0.120	20.072	0.119	20.191	0.119	20.310
10.25	20.435	5 0.126	20.561	0.125	20.686	0.125	20.811	0.124	20.935	0.123	21.058
10.50	21.167	0.131	21.298	0.130	21.428	0.129	21.557	0.129	21.686	0.128	21.814
10.75	21.907	0.136	22.043	0.135	22.178	0.134	22.312	0.133	22.445	0.132	22.577
11.00	22.655	5 0.140	22.795	0.140	22.935	0.139	23.074	0.138	23.212	0.137	23.349
11.25	23.409	0.146	23.555	0.144	23.699	0.144	23.843	0.143	23.986	0.142	24.128
11.50	24.171	0.151	24.322	0.149	24.471	0.149	24.620	0.148	24.768	0.146	24.914
11.75	24.940	0.155	25.095	0.155	25.250	0.154	25.404	0.153	25.557	0.151	25.708
12.00	25.716	6 0.160	25.876		26.036	0.159	26.195	0.158	26.353	0.157	26.510
12.25	26.498		26.664		26.829	0.164	26.993	0.163	27.156	0.162	27.318
12.50	27.288		27.459		27.629	0.169	27.798	0.168	27.966	0.167	28.133
12.75	28.083		28.260		28.436	0.174	28.610	0.173	28.783	0.173	28.956
13.00	28.886		29.068		29.249	0.179	29.428	0.179	29.607	0.178	29.785
13.25	29.695		29.882		30.068	0.185	30.253	0.184	30.437	0.183	30.620
13.50		0.193	30.703		30.894	0.191	31.085	0.189	31.274	0.189	31.463
13.75		0.199	31.530		31.727	0.196	31.923	0.195	32.118	0.193	32.311
14.00		0.205	32.363		32.565	0.202	32.767	0.200	32.967	0.199	33.166
14.25		0.210	33.202		33.410	0.207	33.617	0.206	33.823	0.205	34.028
14.50	33.831		34.047		34.261	0.213	34.474	0.211	34.685	0.211	34.896
14.75	34.676		34.897		35.117	0.219	35.336	0.217	35.553	0.216	35.769
15.00	35.527		35.754		35.980	0.224	36.204	0.223	36.427	0.222	36.649
15.25		0.233	36.616		36.848	0.230	37.078	0.229	37.307	0.228	37.535
15.50		0.239	37.484		37.722	0.236	37.958	0.235	38.193	0.233	38.426
15.75		0.246	38.358		38.601	0.243	38.844	0.240	39.084	0.240	39.324
16.00	38.985		39.237		39.486	0.249	39.735	0.246	39.981	0.245	40.226
16.25	39.863		40.121		40.377	0.254	40.631	0.253	40.884	0.251	41.135
	40.747		41.010		41.273	0.260	41.533	0.259	41.792	0.257	42.049
	41.635		41.905		42.174	0.266	42.440	0.265	42.705	0.264	42.969
the second se	42.529		42.805		43.080	0.273	43.353	0.271	43.624	0.269	43.893
	43.427		43.710		43.991	0.279	44.270	0.278	44.548	0.275	44.823
	44.330		44.620		44.907	0.286	45.193	0.284	45.477	0.282	45.759
	45.239		45.535		45.828	0.293	46.121	0.290	46.411	0.288	46.699
and the second		0.302	46.454		46.755	0.298	47.053	0.297	47.350	0.295	47.645
and the second sec			47.379		47.686		47.991	0.303	48.294	0.301	48.595
		0.316	48.308		48.621	0.312	48.933	0.310	49.243	0.307	49.550
		0.322	49.241		49.562	0.318	49.880	0.316	50.196	0.315	50.511
		0.329	50.179		50.507	0.325	50.832	0.323	51.155	0.321	51.476
		0.336	51.122		51.456	0.332	51.788	0.330	52.118	0.327	52.445
A STATE OF A		0.343	52.069		52.410	0.339	52.749	0.336	53.085	0.335	53.420
		0.350	53.021		53.368	0.346	53.714	0.343	54.057	0.341	54.398
		0.357	53.976		54.331	0.353	54.684	0.350	55.034	0.348	55.382

October 18, 2005 Supersedes October 3, 2000

				Gall	ons per F	Foot of L	ength		
Outage Inches				Та	ank Diam	eter in In	ches		
(H)	92	Interval	93	Interval	94	Interval	95	Interval	96
	46		46.5		47		47.5		48
0.25	0.083	0.000	0.083	0.001	0.084	0.000	0.084	0.001	0.085
0.50	0.235	0.001	0.236	0.001	0.237	0.001	0.238	0.002	0.240
0.75	0.430	0.003	0.433	0.002	0.435	0.002	0.437	0.003	0.440
1.00	0.662	0.004	0.666	0.003	0.669	0.004	0.673	0.004	0.677
1.25	0.925	0.005	0.930	0.005	0.935	0.005	0.940	0.005	0.945
1.50	1.215	0.005	1.221	0.007	1.228	0.006	1.234	0.007	1.241
1.75	1.529	0.009	1.538	0.008	1.546	0.008	1.554	0.008	1.562
2.00	1.867	0.010	1.877	0.010	1.887	0.010	1.897	0.010	1.907
2.25	2.226	0.012	2.238	0.012	2.250	0.012	2.262	0.012	2.274
2.50	2.605	0.014		0.014	2.633	0.014	2.647	0.015	2.662
2.75	3.002			0.016	3.035	0.017	3.052	0.016	3.068
3.00	3.418			0.019	3.456	0.019	3.475	0.018	3.493
3.25	3.851				3.894	0.021	3.915	0.021	3.936
3.50	4.300		4.324		4.348	0.023		0.024	4.395
3.75		0.027		0.026	4.818	0.026	4.844	0.026	4.870
4.00	5.245		5.274		5.303	0.029	5.332	0.029	5.361
4.25		0.032	5.771		5.803	0.032	5.835	0.031	5.866
4.50		8 0.035	6.283		6.318	0.034	6.352	0.034	6.386
4.75	6.770			0.038	6.846	0.037	6.883	0.037	6.920
5.00	7.305			0.041	7.387	0.041	7.428	0.040	7.468
5.25		0.045	7.898		7.941	0.044	7.985	0.043	8.028
5.50		0.047	8.461	0.047	8.508	0.047	8.555	0.047	8.602
5.75		6 0.051	9.037		9.087	0.050	9.137	0.050	9.187
6.00	9.571		9.625		9.678	0.054	9.732	0.053	9.785
6.25		6 0.058	10.224		10.281	0.057	10.338	0.056	10.394
6.50	10.773		10.834		10.895	0.060	10.955	0.060	11.015
6.75	11.39		11.456		11.520	0.064	11.584	0.063	11.647
7.00		0.069	12.088		12.155	0.068	12.223,	0.067	12.290
7.25	Contraction of the	3 0.072	12.730		12.802	0.071	12.873	0.071	12.944
7.50		0.072	13.383		13.458	0.075	13.533	0.075	13.608
7.75		6 0.079	14.045		14.125	0.079	14.204	0.078	14.282
8.00		1 0.084	14.718		14.123	0.083	14.884	0.082	14.966
								0.082	
8.25		2 0.088	15.400		15.487 16.183	0.087 0.091	15.574 16.274	0.086	15.660 16.364
8.50			16.091			0.091			
8.75	and the second second	6 0.096		0.096	16.888		16.983	0.094	17.077
9.00		2 0.100		0.100	17.602	0.099	17.701	0.098	17.799
9.25		6 0.104		0.104	18.324	0.104	18.428	0.102	18.530
9.50	11.2 V 19.2	0.109		0.108	19.056	0.108	19.164	0.107	19.271
9.75	19.5/	0.113	19.683	0.113	19.796	0.112	19.908	0.112	20.020

OUTAGE OF HORIZONTAL CYLINDRICAL TANKS Gallons per Foot of Length




.

OUTAGE OF HORIZONTAL CYLINDRICAL TANKS	
Gallons per Foot of Length	

.

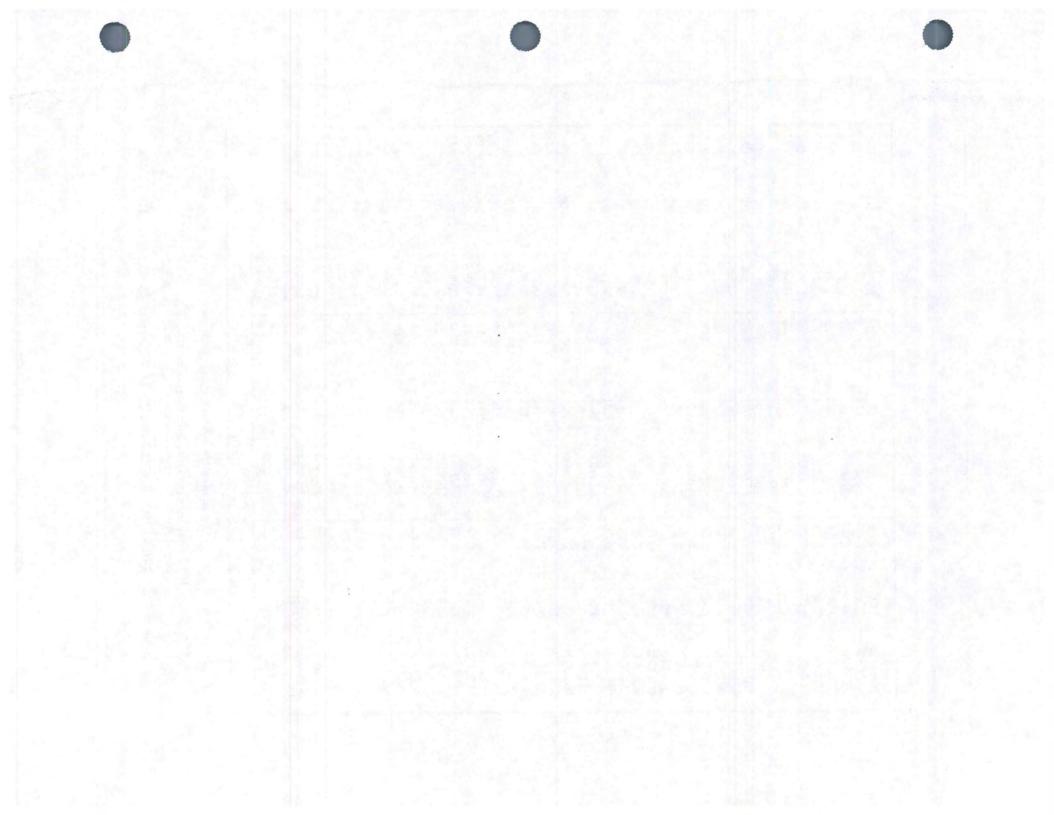
Outage Inches	Tank Diameter in Inches											
(H)	92	Interval	93	Interval	94	Interval	95	Interval	96			
	46		46.5		47		47.5		48			
10.00	20.310	0.118	20.428	0.117	20.545	0.116	20.661	0.116	20.777			
10.25	21.058		21.180	0.122	21.302	0.121	21.423	0.120	21.543			
10.50	21.814	4 0.127	21.941	0.126	22.067	0.125	22.192	0.125	22.317			
10.75	22.577	0.132	22.709	0.131	22.840	0.130	22.970	0.129	23.099			
11.00	23.349	0.136	23.485	0.136	23.621	0.135	23.756	0.134	23.890			
11.25	24.128	3 0.141	24.269	0.140	24.409	0.140	24.549	0.139	24.688			
11.50	24.914	4 0.147	25.061	0.145	25.206	0.144	25.350	0.144	25.494			
11.75	25.708	0.151	25.859	0.150	26.009	0.150	26.159	0.148	26.307			
12.00	26.510	0.156	26.666	0.155	26.821	0.154	26.975	0.153	27.128			
12.25	27.318		27,479		27.639	0.159	27.798	0.158	27.956			
12.50	28.133		28.299	0.166	28.465	0.164	28.629	0.163	28.792			
12.75	28.956		29.127	0.170	29.297	0.169	29.466	0.169	29.635			
13.00	29.785		29.961	0.175	30.136	0.175	30.311	0.173	30.484			
13.25	30.620		30.802	0.181	30.983	0.179	31.162	0.179	31.341			
13.50	31.463		31.650	0.186	31.836	0.185	32.021	0.183	32.204			
13.75	32.311		32.504	0.191	32.695	0.190	32.885	0.190	33.075			
14.00	33.166		33.364	0.197	33.561	0.196	33.757	0.194	33.951			
14.25	34.028		34.231	0.203	34.434	0.201	34.635	0.200	34.835			
14.50	34.896		35.105	0.207	35.312	0.207	35.519	0.205	35.724			
14.75	35.769		35.984	0.213	36.197	0.213	36.410	0.210	36.620			
15.00	36.649		36.869	0.219	37.088	0.218	37.306	0.217	37.523			
15.25	37.535		37.761	0.225	37.986	0.223	38.209	0.222	38.431			
15.50	38.426		38.658	0.231	38.889	0.229	39.118	0.228	39.346			
15.75	39.324		39.561	0.237	39.798	0.225	40.033	0.223	40.266			
16.00	40.226		40.470	0.242	40.712	0.233	40.953	0.239	41.192			
16.25	41.135		41.385	0.242	41.633	0.241	40.955					
and the second				0.240				0.246	42.125			
16.50	42.049		42.305 43.230		42.559	0.252	42.811	0.252	43.063			
16.75	42.969		43.250	0.260	43.490	0.259	43.749	0.257	44.006			
17.00	43.893			0.266	44.427	0.265	44.692	0.263	44.955			
17.25	44.823		45.097	0.273	45.370	0.271	45.641	0.269	45.910			
17.50	45.759		46.039	0.279	46.318	0.277	46.595	0.275	46.870			
17.75	46.699		46.986	0.285	47.271	0.283	47.554	0.281	47.835			
18.00	47.645		47.938	0.291	48.229	0.289	48.518	0.288	48.806			
18.25	48.595		48.894	0.298	49.192	0.296	49.488	0.294	49.782			
18.50	49.550		49.856	0.304	50.160	0.302	50.462	0.301	50.763			
18.75	50.511		50.823	0.310	51.133	0.309	51.442	0.307	51.749			
19.00	51.476		51.794	0.317	52.111	0.315	52.426	0.314	52.740			
19.25	52.445		52.771	0.323	53.094	0.322	53.416	0.320	53.736			
19.50	53.420		53.752	0.330	54.082	0.328	54.410	0.326	54.736			
19.75	54.398		54.737	0.337	55.074	0.335	55.409	0.333	55.742			
20.00 '	55.382	0.346	55.728	0.343	56.071	0.342	56.413	0.339	56.752			

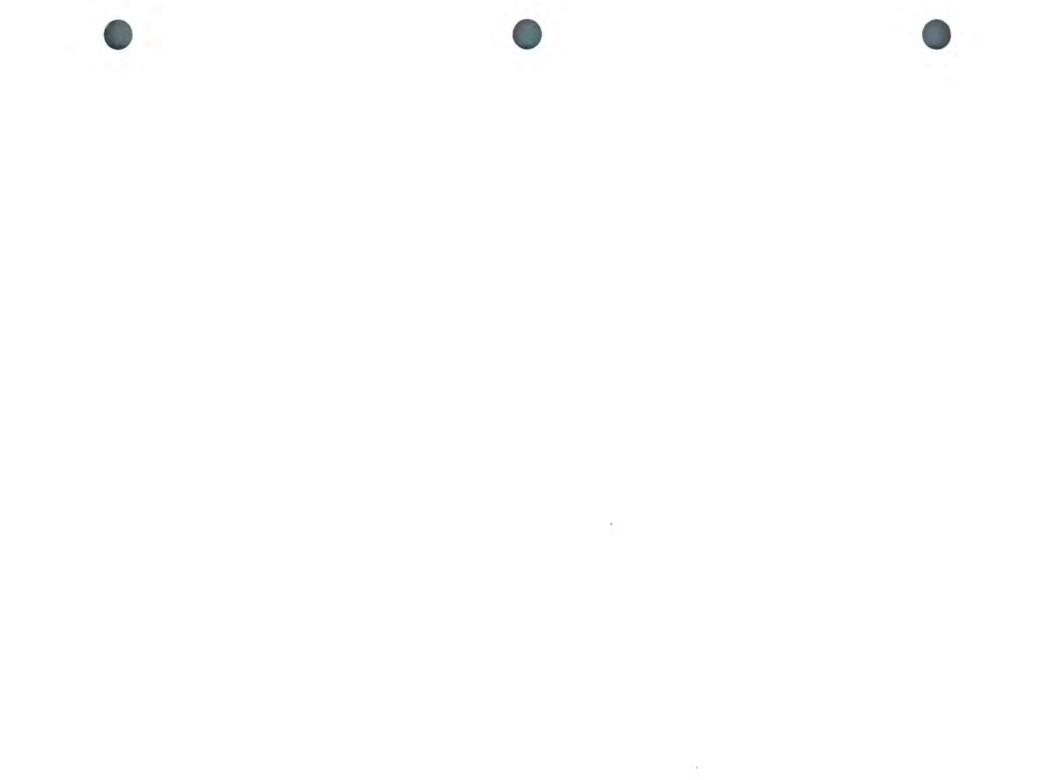
Office of Materials

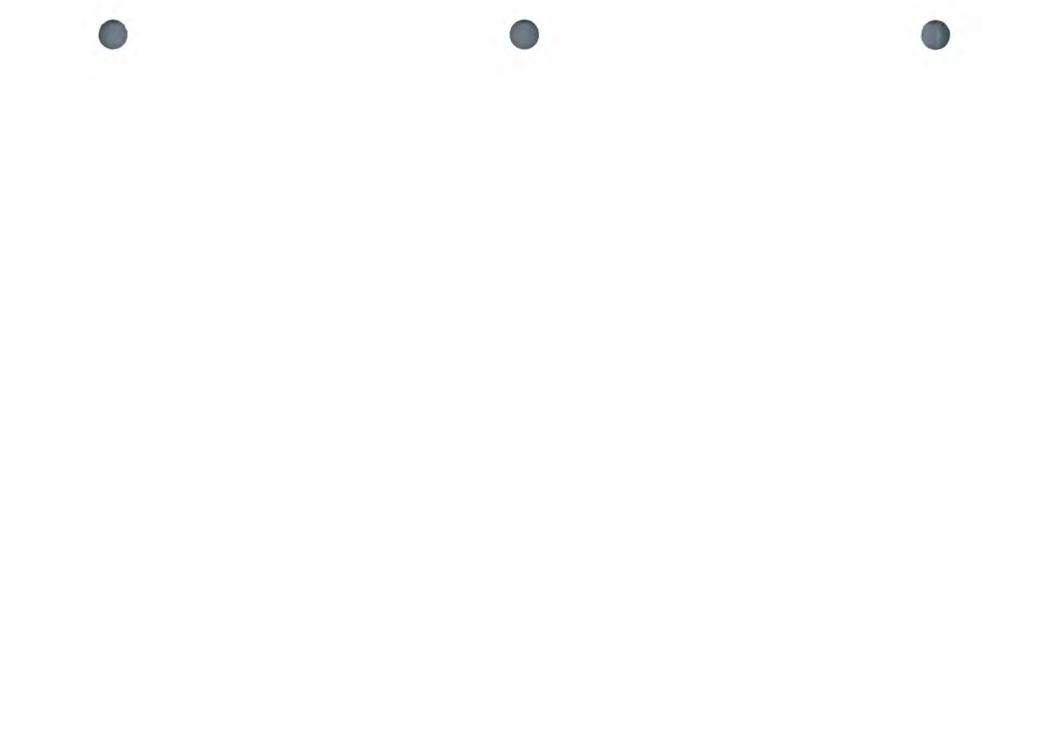
lowa Department of Transportation

Reissued October 18, 2005 Supersedes October 3, 2000

Matls. IM T108


TABLE C1 TEMPERATURE VOLUME CORRECTIONS FOR EMULSIFIED ASPHALT


LEGEND: t = Observed Temperature in Degrees Celsius (Fahrenheit) M = Multiplier for Correcting Volumes to the Basis of 15.6°C (60°F)


*Multiplier (M) for °C is a close approximation.

°ct	°F	M*	°c ^t	°F	M*	°Ct	°F	M*
10.0	50	1.00250	35.0	95	0.99125	60.0	140	0.98000
10.6	51	1.00225	35.6	96	0.99100	60.6	141	0.97975
11.1	52	1.00200	36.1	97	0.99075	61.1	142	0.97950
11.7	53	1.00175	36.7	98	0.99050	61.7	143	0.97925
12.2	54	1.00150	37.2	99	0.99025	62.2	144	0.97900
12.8	55	1.00125	37.8	100	0.99000	62.8	145	0.97875
13.3	56	1.00100	38.3	101	0.98975	63.3	146	0.97850
13.9	57	1.00075	38.9	102	0.98950	63.9	147	0.97825
14.4	58	1.00050	39.4	103	0.98925	64.4	148	0.97800
15.0	59	1.00025	40.0	104	0.98900	65.0	149	0.97775
15.6	60	1.00000	40.6	105	0.98875	65.6	150	0.97750
16.1	61	0.99975	41.1	106	0.98850	66.1	151	0.97725
16.7	62	0.99950	41.7	107	0.98825	66.7	152	0.97700
17.2	63	0.99925	42.2	108	0.98800	67.2	153	0.97675
17.8	64	0.99900	42.8	109	0.98775	67.8	154	0.97650
18.3	65	0.99875	43.3	110	0.98750	68.3	154	0.97625
18.9	66	0.99850	43.9	111	0.98725	68.9	155	
19.4	67	0.99825	44.4	112	0.98725	69.4	156	0.97600
20.0	68	0.99800	45.0	112	0.98700	70.0		0:97575
20.6	69	0.99775	45.6				158	0.97550
20.0	70			114	0.98650	70.6	159	0.97525
21.1	70	0.99750	46.1	115	0.98625	71.1	160	0.97500
22.2	72	0.99725	46.7	116	0.98600	71.7	161	0.97475
		0.99700	47.2	117	0.98575	72.2	162	0.97450
22.8	73	0.99675	47.8	118	0.98550	72.8	163	0.97425
23.3	74	0.99650	48.3	119	0.98525	73.3	164	0.97400
23.9	75	0.99625	48.9	120	0.98500	73.9	165	0.97375
24.4	76	0.99600	49.4	121	0.98475	74.4	166	0.97350
25.0	77	0.99575	50.0	122	0.98450	75.0	167	0.97325
25.6	78	0.99550	50.6	123	0.98425	75.6	168	0.97300
26.1	79	0.99525	51.1	124	0.98400	76.1	169	0.97275
26.7	80	0.99500	51.7	125	0.98375	76.7	170	0.97250
27.2	81	0.99475	52.2	126	0.98350	77.2	171	0.97225
27.8	82	0.99450	52.8	127	0.98325	77.8	172	0.97200
28.3	83	0.99425	53.3	128	0.98300	78.3	173	0.97175
28.9	84	0.99400	53.9	129	0.98275	78.9	174	0.97150
29.4	85	0.99375	54.4	130	0.98250	79.4	175	0.97125
30.0	86	0.99350	55.0	131	0.98225	80.0	176	0.97100
30.6	87	0.99325	55.6	132	0.98200	80.6	177	0.97075
31.1	88	0.99300	56.1	133	0.98175	81.1	178	0.97050
31.7	89	0.99275	56.7	134	0.98150	81.7	179	0.97025
32.2	90	0.99250	57.2	135	0.98125	82.2	180	0.97020
32.8	91	0.99225	57.8	136	0.98100	82.8	181	0.96975
33.3	92	0.99200	58.3	137	0.98100	83.3	182	0.96975
33.9	93	0.99200	58.9	137	0.98075	83.9		
34.4	94	0.99150	59.4	139	0.98025		183	0.96925
04.4	34	0.99150	39.4	129	0.96025	84.4	184	0.96900
Contraction of the second						85.0	185	0.96875

lowa Department of Transportation

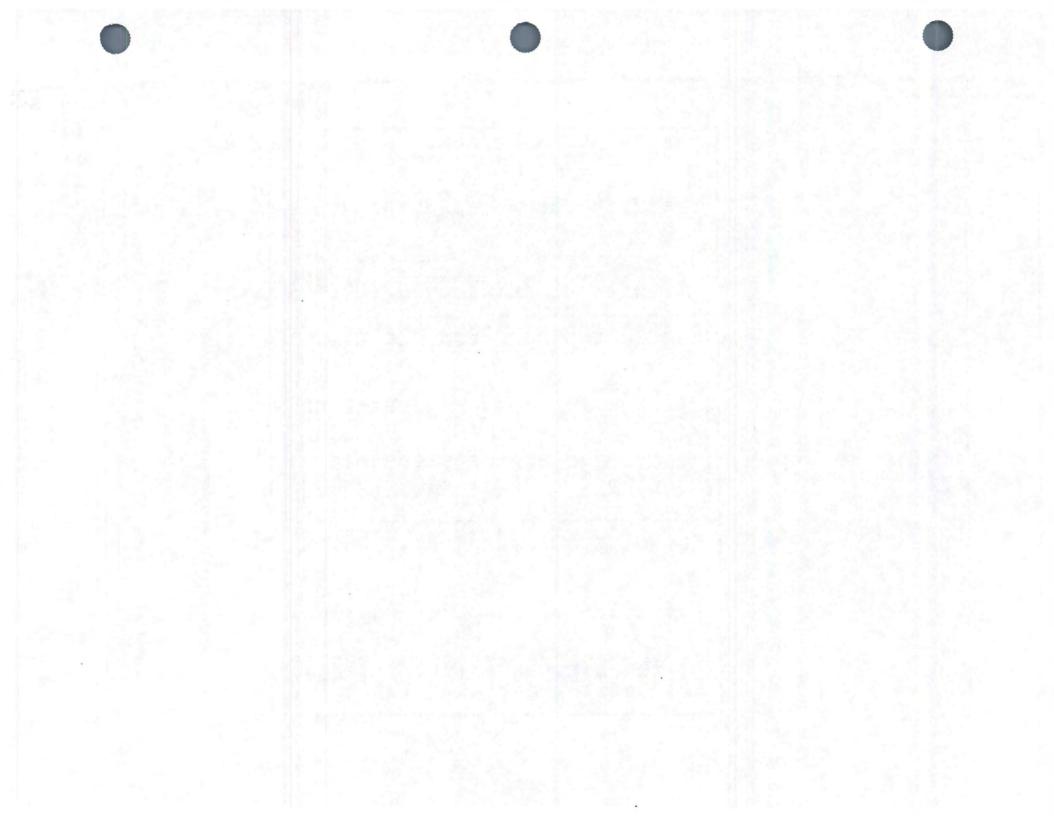
Office of Materials

Reissued October 18, 2005 Supersedes October 3, 2000

\$

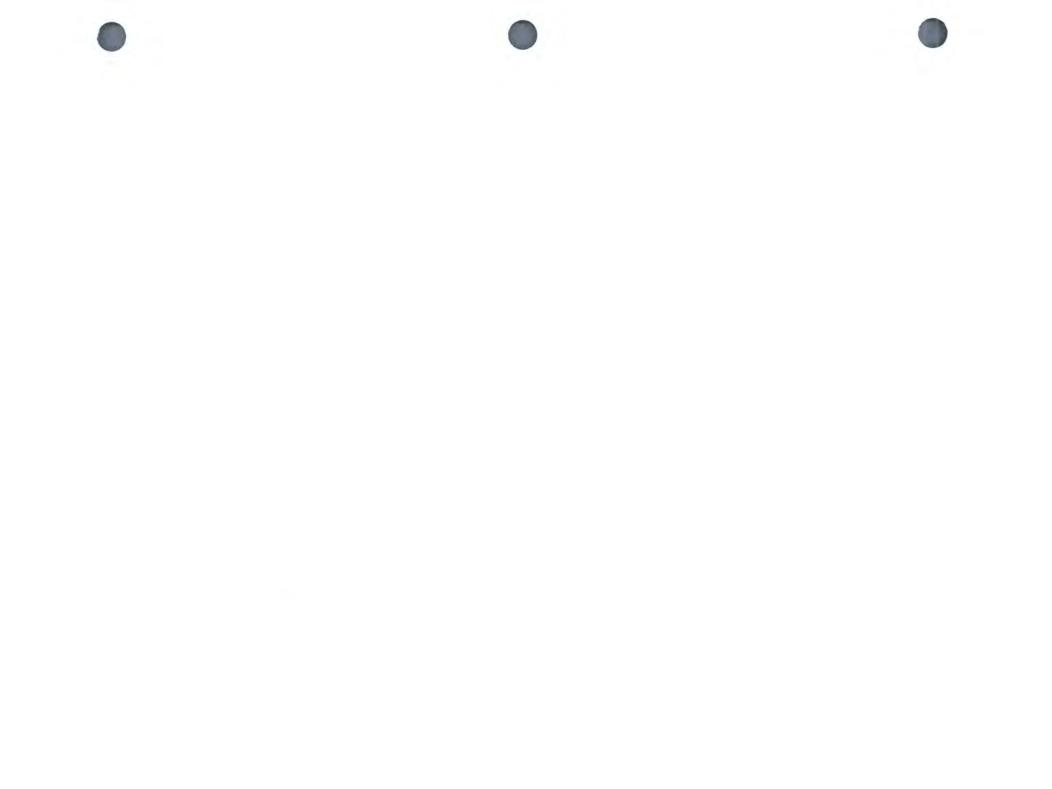
TEMPERATURE-VOLUME CORRECTIONS FOR DILUTED EMULSIFIED ASPHALT

Applicable only for 1 to 1 dilution


LEGEND: °C/°F = Observed Temperature in Degrees Celsius (Fahrenheit) M = Multiplier for Correcting Volumes to the Basis of 15.6°C (60°F)

*Multiplier (M) for °C is a close approximation.

°C	°F	M*	°C	°F	M*	°C	°F	M*
15.6	60	1.00000	32.2	90	0.99422	49.4	121	0.98700
16.1	61	0.99982	32.8	91	0.99400	50.0	122	0.98675
16.7	62	0.99964	33.3	92	0.99378	50.6	123	0.98650
17.2	63	0.99948	33.9	93	0.99356	51.1	124	0.98625
17.8	64	0.99930	34.4	94	0.99334	51.7	125	0.98600
18.3	65	0.99912	35.0	95	0.99312	52.2	126	0.98575
18.9	66	0.99894	35.6	96	0.99290	52.8	127	0.98550
19.4	67	0.99877	36.1	97	0.99268	53.3	128	0.98524
20.0	68	0.99858	36.7	98	0.99245	53.9	129	0.98498
20.6	69	0.99840	37.2	99	0.99222	54.4	130	0.98473
21.1	70	0.99822	37.8	100	0.99200	55.0	131	0.98447
21.7	71	0.99802	38.3	101	0.99177	55.6	132	0.98420
22.2	72	0.99783	38.9	102	0.99154	56.1	133	0.98394
22.8	73	0.99764	39.4	103	0.99131	56.7	134	0.98368
23.3	74	0.99744	40.0	104	0.99108	57.2	135	0.98341
23.9	75	0.99725	40.6	105	0.99085	57.8	136	0.98314
24.4	76	0.99706	41.1	106	0.99062	58.3	137	0.98288
25.0	77	0.99686	41.7	107	0.99039	58.9	138	0.98262
25.6	78	0.99666	42.2	108	0.99016	59.4	139	0.98235
26.1	79	0.99647	42.8	109	0.98992	60.0	140	0.98208
26.7	80	0.99628	43.3	110	0.98969	60.6	141	0.98182
27.2	81	0.99608	43.9	111	0.98945	61.1	142	0.98154
27.8	82	0.99587	44.4	112	0.98921	61.7	143	0.98126
28.3	83	0.99566	45.0	113	0.98896	62.2	144	0.98099
28.9	84	0.99546	45.6	114	0.98872	62.8	145	0.98072
29.4	85	0.99526	46.1	115	0.98848	63.3	146	0.98044
30.0	86	0.99505	46.7	116	0.98823	63.9	147	0.98016
30.6	87	0.99484	47.2	117	0.98798	64.4	148	0.97989
31.1	88	0.99464	47.8	118	0.98774	65.0	149	0.97962
21.7	89	0.99442	48.3	119	0.98750	65.6	150	0.97934
			48.9	120	0.98725		1.1	100 - 10 - 10 - 10 - 10 - 10 - 10 - 10



. . .

- ÷

Iowa Department of Transportation

Office of Materials

October 21, 2008 Supersedes April 15, 2008 Matls. IM T203

GENERAL AGGREGATE SOURCE INFORMATION

GENERAL

Generally, only those sources, which have been sampled or tested within the last ten years, are listed. This listing additionally ranks sources in accordance with a frictional classification as defined herein for aggregates used in Hot Mix Asphalt (HMA) construction, and a durability class for coarse aggregates used in Portland Cement Concrete construction. Upon request, new sources or different combinations of beds within an existing source can be evaluated for classification for either type of use. These rankings do not in any way waive the normal quality requirements for the particular types of aggregates indicated in contract documents.

PORTLAND CEMENT CONCRETE AGGREGATES

Aggregates shall be produced from sources approved in accordance with the requirements of Office of Materials IM 409. The engineer may approve scalping of some portion of the coarser fraction.

All aggregates produced and inspected for intended use in contracts under lowa Department of Transportation Specifications shall be stored in identifiable stockpiles unless they are being delivered as produced.

DURABILITY CLASSIFICATION

The coarse aggregates have been divided into three classes in accordance with their durability level as determined by performance or laboratory testing.

<u>Class 2</u> durability aggregates will produce no deterioration of pavements of the non-interstate segments of the road system after 15 years and only minimal deterioration in pavements after 20 years.

<u>Class 3</u> durability aggregates will produce no deterioration of pavements of non-interstate segments of the road system after 20 years of age and less than 5% deterioration of the joints after 25 years.

<u>Class 3i</u> durability aggregates will produce no deterioration of the interstate road system after 30 years of service and less than 5% deterioration of the joints after 35 years.

NOTE: Those sources with a "B" in their durability class designation may have 1/2 in. Bridge Deck Overlay/Repair material available.

HOT MIX ASPHALT AGGREGATES

Aggregates for HMA construction have been classified into five main functional types in accordance with their frictional characteristics. Those aggregates with the potential to develop the greatest amount of friction under traffic conditions are classified as Type 1 with the potential for friction decreasing as the type number increases. One or more friction types may be specified for use in pavement surface courses. If a type is not specified in the contract documents, Type 5 or better will be acceptable.

When aggregates of friction Type 1 through Type 4 are specified for construction, a source approval including bed limitations is required for each project. Tentative bed limitations are shown in this publication.

The frictional classification types are listed and defined in order of descending quality as follows.

<u>Type 1:</u> Aggregates, which are generally, a heterogeneous combination of minerals with coarsegrained microstructure of very hard particles (generally, a Mohs hardness range of 7 to 9) bonded together by a slightly softer matrix. These aggregates are typified by those developed for and used by the grinding-wheel industry such as calcinated bauxite (synthetic) and emery (natural). They are not available from Iowa sources. Due to their high cost, these aggregates would be specified only for use in extremely critical situations.

<u>Type 2:</u> Natural aggregates in this class are crushed quartzite and granites. The mineral grains in these materials generally have a Mohs hardness range of 5 to 7. Synthetic aggregates in this class are some air-cooled steel furnace slags and others with similar characteristics.

<u>Type 3:</u> Natural aggregates in this class are crushed traprocks, and/or crushed gravels. The crushed gravels shall contain 40% or more igneous and metamorphic particles. Synthetic aggregates in this class are the expanded shales with a Los Angeles abrasion loss less than 35 percent.

<u>Type 4:</u> Aggregates crushed from dolomitic or limestone ledges in which 80 percent of the grains are 20 microns or larger. The mineral grains in the approved ledges for this classification generally have a Mohs hardness range of 3 to 4. For natural gravels, the Type 5 carbonate (see below) particles, as a fraction of the total material, shall not exceed the non-carbonate particles by more than 20 percent.

The Friction Type 4D classification will no longer be a Friction designation. Friction Type 4D aggregates have been reclassified as Friction Type 5. Any source or bed combination can be reevaluated for a different Friction Classification by the Geology Section at the request of the Aggregate Producer.

<u>Type 5:</u> Aggregates crushed from dolomitic or limestone ledges in which 20 percent or more of the grains are 30 microns or smaller.

SOURCE LISTINGS - Explanation

The use of Xs in the PCC or HMA columns indicates use where no classification is required or, if required, has not been made.

	NOTE: - indicates ad	ditional source restrictions	. —	1	-					
	source approval lette	for PCC aggregate are the r. Beds shown for HMA so d or have potential for use n type.	urces a	re th	nose	-				
	<u>Frict</u> ional Classification <u>Hot Mix A</u> sphalt - Typ	on - as indicated on page 2 be \underline{A} and \underline{B}	2 _	-	-	-	-	-	7	
	<u>Dur</u> ability Class for <u>P</u> <u>Coarse Aggregate</u> ("B" indicates accepta Deck Overlay/Repair]			-				
L-[on test requests and	Specific Gravit	y				_			
CODE	(DV OPERATOR			ΑΤΙΟΛ	N		BULK SSD SpGr	DUR PCC CA FA	FRICT HMA A B	N BEDS E
29	DES MOINES DIST 5	CRUSHED STONE		-			1		1	
A29002	L&W QUARRIES INC	MEDIAPOLIS-LEONARD	SE	01	T071	R04W	2.65	3	4 4	15 1 15- 18
A29008	CESSFORD CONST CO	NELSON	NE	26	T072	R02W	2.62	3	5 5 4 4 4	20 21- 24 7- 20 15- 24
A29012	CESSFORD CONST CO	GEODE	NE	01	TO69	R05W			5 5 4 4 5 5	24- 27 11- 12 9- 13
A29502	CESSFORD CONST CO	SAND & GRAVEL SPRING GROVE	SW	36	TO69	R03W	2.66	3 X	4 4	

NOTE 1: AASHTO 57 GRADATION MAXIMUM

		RECENTLY ACT	IVE AGGREO	GATE	SOURC	ES	BULK SSD	DUR PCC		RICT	
CODE	OPERATOR	SOURCE NAME	LOC	ATIO	N		SpGr	CA FA	A		BEDS
01	ADAIR DIST 4	CRUSHED STONE									
A01002	SCHILDBERG CONST CO INC	MENLO	NW	21	T077	R31W			5	5	15 - 16
A01008	SCHILDBERG CONST CO INC	JEFFERSON	NE	17	T077	R31W				4 5 5	14 20 25
02	ADAMS DIST 4	CRUSHED STONE		-				-		-	
02002	SCHILDBERG CONST CO INC	MT ETNA	SW	23	T073	R34W	140.00			4	11 - 13
02004	SCHILDBERG CONST CO INC	CORNING	NE	09	T071	R34W		1		4	3 - 5
		SAND & GRAVEL					-	-	-		-
02502	SCHILDBERG CONST CO INC	MT ETNA	NW	23	T073	R34W	2.67	2	4	4	
-	4.100.0000			_			2.67	X			
3	ALLAMAKEE DIST 2	CRUSHED STONE									
03002	BRUENING ROCK PROD INC	WEXFORD	NE	36	T098	R03W	2.70	3i			1C - 6
03008	BRUENING ROCK PROD INC	MCCABE	NE	06	TO97	R05W		1	4	4	1 - 8
03008	KNIFE RIVER MIDWEST LLC	RUDE	SE	17	T100	R05W				4	1 - 0
03010	BRUENING ROCK PROD INC	HAMMELL-BOONIES	SW	02	TO99	R06W		x	4	4	5 - 6
03018	KNIFE RIVER MIDWEST LLC	SWENSON	SW	17	TO96	R05W		^	4	4	0.0
3022	KNIFE RIVER MIDWEST LLC	LIVINGOOD	SW	07	TO96	R06W			4	4	4 - 7
03028	KNIFE RIVER MIDWEST LLC	WELPER-JOHNSON	SW	35	T099	R04W				4	2 - 7
03028	RIEHM CONST CO INC	WILDE	SE	13	TO99	R04W R05W		x	4	4	1 - 5
03034	BRUENING ROCK PROD INC	SWENSON	SE	19	TO95	R05W		^	4	4	1-5
03038	RIEHM CONST CO INC	RIEHM	SE	07	T100	R04W	DWU	3i	4	4	1 - 4/
03040	BRUENING ROCK PROD INC	DEE	SE	21	TO99	R04W	DWU	3iB	4	4	5A - 5D
)3042	NIEMANN CONST CO	CHURCHTOWN	SW	29	TO99	R04W	Divo	510	7	4	1 - 3
									4	4	3
03046	BRUENING ROCK PROD INC	MOHS	SW	29	TO96	R04W	DWU	2	5	5 5	1 - 2
03048	BRUENING ROCK PROD INC	POSTVILLE	SW	16	TO96	R06W	2.61	3			6 - 8
03050	BRUENING ROCK PROD INC	GREEN	NW	16	T096	R06W	2.63	3	1	4	2 - 5
03050	BRUENING ROCK PROD INC	ROSSVILLE	NE	35	TO98	R05W	DWU	3	4	4	2 - 3A 1 - 5
03052	BRUENING ROCK PROD INC	WEST RIDGE	NE	08	TO98	R06W	DWO		4	4	1-5
03056	NIEMANN CONST CO	WAUKON	SW	05	TO97	R05W					
03060	NIEMANN CONST CO	HANOVER	NE	36	TO99	R06W					
03064	KNIFE RIVER MIDWEST LLC	RAINBOW	SE	26	TO97	R05W					
03066	WILTGEN CONST CO	ELSBERND	NW	29	TO97	R06W	DWU	3			2
3068	WILTGEN CONST CO	JEFFERSON	SW	30	TO97	R05W		1			-
		SAND & GRAVEL		_					1	-	
3502	KNIFE RIVER MIDWEST LLC	HARPERS FERRY	SW	07	T097	R02W	2.67 2.67	3iB X	3	3	
03506	BRUENING ROCK PROD INC	HAMMELL-BOONIES	SW	02	TO99	R06W	2.01	^	4	4	
03510	KNIFE RIVER MIDWEST LLC	LONNING	SE	02	T099	R06W			4	4	
							DWU	Х			
)3512	KNIFE RIVER MIDWEST LLC	ZEZULKA	NE	11	T100	R04W	2.00	v	3	3	
)3516	KNIFE RIVER MIDWEST LLC	HAMMELL	NW	15	T100	R03W	2.66	Х			
3518	BRUENING ROCK PROD INC	IVERSON	NW	09	T099	R05W					
3310	BROEINING ROCK PROD INC	IVERSON	NVV	09	1099	RUUVV		1 1			

		RECENTLY ACT	IVE AGGREG	ATE S	SOURCE	ES	BULK	DU	R	FRI	СТ	
CODE	OPERATOR	SOURCE NAME	LOCA	TION	i i		SSD SpGr	PC CA	C FA	HM A		BEDS
04	APPANOOSE DIST 5	CRUSHED STONE		-		-		1		-		
04016	L&W QUARRIES INC	LEMLEY EAST #5	CT	35	T070	R19W	2.70	2		5 5	5 5	1 - 3
04018 04020	L&W QUARRIES INC TRI-STAR QUARRIES	CLARKDALE #8 PLANO	SE	15 05	TO69 TO69	R18W R19W				5	5	4
)5	AUDUBON DIST 4	SAND & GRAVEL		-				-		-	-	
05506	HALLETT MATERIALS CO	EXIRA	SW	08	T078	R35W	2.68 2.66	3	x	4	4	
06	BENTON DIST 6	CRUSHED STONE		-						-	-	
406002	BMC AGGREGATES LC	SMITH	NW	19	T086	R12W	2.65	2		4	4	21 - 26
406004	WENDLING QUARRIES INC	GARRISON A	SE	28	T085	R11W	2.67	2		4	4	6 - 16
406006	WENDLING QUARRIES INC	GARRISON B	NE	33	T085	R11W	2.64	2		4	4	6 - 16
406008	WENDLING QUARRIES INC	BALLHEIM	NE SW	17 07	T086 T085	R12W	DWU	2			Х	6 1
406012	COOTS MATERIALS CO INC	JABENS	SW	07	1085	R11W	2.63	2		4	4	6 - 1 12 10 - 12
406014	WENDLING QUARRIES INC	VINTON-MILROY	S2	10	T085	R10W			- 1	4	4	10-11
406016	COOTS MATERIALS CO INC	COOTS	SW	36	T086	R11W					x	
406018	WENDLING QUARRIES INC	PORK CHOP-EAST	NW	11	T085	R09W					Х	
406020	WENDLING QUARRIES INC	PORK CHOP-WEST	NE	10	T085	R09W						
406022	WENDLING QUARRIES INC	LONG	SE	13	T084	R09W					Х	
A06502	WENDLING QUARRIES INC	SAND & GRAVEL VINTON-MILROY	S2	10	T085	R10W		+		4	4	
							2.65		X			
406504	COOTS MATERIALS CO INC	MT AUBURN	SW	31	T086	R10W				3	3	
100500		DODK CHOD	CT	11	TOOL	DOOM	2.65		X			
A06506	WENDLING QUARRIES INC	PORK CHOP	СТ	11	T085	R09W	DWU		x	4	4	
07	BLACK HAWK DIST 2	CRUSHED STONE			-						-	
A07004	BMC AGGREGATES LC	WATERLOO SOUTH	NW	18	T087	R12W	DWU	3			1	2
										4 4	4 4	17 - 24 32 - 3
A07008	BMC AGGREGATES LC	MORGAN	NE	15	T089	R12W				5	5 5	5 - 2 1 - 3
A07014	NIEMANN CONST CO	GLORY	NE	36	T087	R11W					5 4	4A - 4 3 - 4
A07018	BMC AGGREGATES LC	RAYMOND-PESKE	SW	01	T088	R12W	2.66	2		4	5	1 - 4 1B - 5
A07020	BMC AGGREGATES LC	STEINBRON	SE	01	T088	R11W	2.62	3i		4 X	4 X	6 - 1
A07022	BMC AGGREGATES LC	MESSERLY	NE	08	T090	R14W	LIGE			~	~	1
		SAND & GRAVEL		_								
A07504	BMC AGGREGATES LC	WATERLOO SAND	SW	09	T089	R13W	2.65		x	3	3	
A07506	MANATT'S INC	ASPRO	NW	01	T088	R13W	2.65			4	4	
A07508	BMC AGGREGATES LC	GILBERTVILLE		16	T088	R12W			X	4	4	
407512	ZEIEN S&G	ZEIEN	NW	23	T087	R12W	2.65		Х			
A07512				14	TO90					3	3	
A07518	NIEMANN CONST CO	JANESVILLE	NE	14	1 UMU	R14W					-1	

NOTE: 1 – AASHTO 67, GRADATION #5, 40% MAXIMUM; RESTRICTION DOES NOT APPLY TO STRUCTURAL CONCRETE

Matls. IM T203

		RECENTLY ACT	IVE AGGREO	GATE	SOURC	ES	BULK	DUR	FR	RICT	
CODE	OPERATOR	SOURCE NAME	LOC	ATIO	N		SSD SpGr	PCC CA FA	HM		BEDS
08	BOONE DIST 1	SAND & GRAVEL					TT			-	
A08504	KNIFE RIVER MIDWEST LLC	JENSEN	SW	36	T085	R25W					-
A08526	KNIFE RIVER MIDWEST LLC	POWERS		29	T084	R28W					
09	BREMER DIST 2	CRUSHED STONE		-							
409002	BMC AGGREGATES LC	FREDERIKA	NE	12	TO93	R13W				5	2 - 8
109004	NIEMANN CONST CO	DENVER-FOELSKE	NE	29	T091	R13W			4	4	4 - 9
109006	NIEMANN CONST CO	TRIPOLI-PLATTE	SW	36		R13W	2.66	3i	4	4	1 - 5
409008	NIEMANN CONST CO	DENVER #2	NE	20	T091	. R13W					
		SAND & GRAVEL		_			-	_	-	_	-
09504	NIEMANN CONST CO	NOLTE	SE	31	T092	R11W			4	4	
						-	2.65	Х			
09508	NIEMANN CONST CO	TRIPOLI-PLATTE	SW	36	T093	R13W	0.00				
409510	CROELL REDI-MIX	PLAINFIELD-ADAMS	NE	32	T093	R14W	2.66	X			
09512	NIEMANN CONST CO	BOEVERS	NE	31	TO92	R11W		Х	_	-	
0	BUCHANAN DIST 6	CRUSHED STONE	_								
10002	NIEMANN CONST CO	WESTON-LAMONT	NW	14	TO90	R07W	2.61	3iB	4	4	1 - 6
10004	NIEMANN CONST CO	BLOOM-JESUP	SW	32	TO89	R10W	2.63	3			2 - 5
									4	4	1 - 7
10008	BRUENING ROCK PROD INC	OELWEIN	NW	02	TO90	R09W	2.65	3i	4	4	4 - 5
									4	4	4 - 6
10010	NIEMANN CONST CO	HAZELTON	NW	11	TO90	R09W	2.60	3iB	4	4	4
10012	NIEMANN CONST CO	INDEPENDENCE	NW	14	T088	R09W				5	
10014	NIEMANN CONST CO	OELWEIN #1	SW	02	TO90	R09W			5	5	1 - 12
10016	NIEMANN CONST CO	OELWEIN #2	SE	03	TO90	R09W	DWU	3i	4	4	13 - 16
10018	NIEMANN CONST CO	EAST AURORA	SE	17	TO90	R07W	1.		4	4	1 - 5
10022	BRUENING ROCK PROD INC	BROOKS	NW	02	T088	R09W	2.60	3i	4	4	7
10024	NIEMANN CONST CO	RASMUSSEN #2	SE	21	T088	R08W				5	1-0
10026	NIEMANN CONST CO	BRANDON	SE	27	T087	R10W				5	
10028	NIEMANN CONST CO	HERTZBERGER	NE	36	T087	R10W				5	
10030	NIEMANN CONST CO	SOUTH AURORA	NW	19	TO90	R07W	2.62	3iB	4	4	1 - 3
10032	NIEMANN CONST CO	SELLS	NW	25	T088	R09W		-		5	
10034	NIEMANN CONST CO	TROY MILLS	SE	30	TO87	R07W					
10036	WENDLING QUARRIES INC	KILER	NW	34	T087	R10W				4	
10038	BMC AGGREGATES LC	WIDGER	SW	07	T088	R10W	2.61	3i			1B
10040	ZUPKE SAND & GRAVEL	ZUPKE-OELWEIN		09	TO90	R09W			4	4	1A - 1B
		SAND & GRAVEL				-					
10504	NIEMANN CONST CO	WARD	NE	14	TO90	R07W	2.65	v	4	4	
10500	MANATT'S INC	CREENIEY	SE	29	TO89	R09W	2.65	Х	4	4	
10506	WANALL SINC	GREENLEY	SE	29	1089	RUSW	2.64	х	4	4	
10510	NIEMANN CONST CO	HUFFMAN	SE	02	T089	R08W	2.04	^	4	4	
0010		TOT LINEAR	JL	UL	1003	10044	2.65	х	-	4	
10514	NIEMANN CONST CO	HOLLERMAN	SE	26	TO90	R07W	2.00	~	4	4	
10516	NIEMANN CONST CO	MILLER	NW	14	TO88	R09W	2.65	х	4		
10518	MANATT'S INC	YEAROUS	SE	19	TO89	R09W	2.65	X			
10520	BRUENING ROCK PROD INC	BROOKS	SW	02	T088	R09W		0			

		RECENTLY ACTI	VE AGGREG	ATE :	SOURCE	S	BULK SSD	DUP		FRI HM		
CODE	OPERATOR	SOURCE NAME	LOCA	TION	l,		SpGr	CA	FA	А	В	BEDS
11	BUENA VISTA DIST 3	SAND & GRAVEL										-
11502	ROHLIN CONST CO INC	ROHLIN	SW	02	TO93	R38W	-	1		4	4	
A11504	MARTIN MARIETTA	RAILROAD	NE	03	TO93	R37W				3	3	
411506	MARTIN MARIETTA	LINN GROVE	NW	25	TO93	R38W				4	4	
A11508	WETHERALL CONST CO	NEWELL	NW	01	TO90	R36W				4	4	
11510	MARTIN MARIETTA	SIOUX RAPIDS		05	TO93	R36W				3	3	
11512	BUENA VISTA COUNTY	MARATHON	SE	19	TO93	R35W				4	4	
11514	LUNDELL CONST	STORM LAKE	SW	18	TO90	R36W				4	4	
411516	HALLETT MATERIALS CO	SIOUX RAPIDS	W2	12	TO93	R37W				3	3	
A11518	KNIFE RIVER MIDWEST LLC	MOLGAARD	NW		TO93	R38W					5	
12	BUTLER DIST 2	CRUSHED STONE		-	-	_	-	-	-		-	
A12004	GREENE LS CO	LUBBEN	NW	25	TO93	R17W			-		5	1 - 21
A12004	GREENE LS CO	FLORRY-STEERE	CT	08	TO93	R17W					5	1 - 11
A12000	CARLSON/BRUENING	CLARKSVILLE-ENGLE	NE	16	TO92	R15W					5	1 - 11
412010	NIEMANN CONST CO	OLTMANN	SE	08	TO91	R16W					х	
12014	GREENE LS CO	WIEGMANN-BRISTOW	SE	23	TO92	R18W				Х	x	1 - 11
412018	GREENE LS CO	NEYMEYER	SW	28	TO90	R18W				A	~	1 - 11
412020	GREENE LS CO	BRUNS #2	NW	21	TO91	R18W						
412020	GREENE LS CO	SAND & GRAVEL	1444	21	1091	RIOW						
A12502	CROELL REDI-MIX	CLARKSVILLE	NW	01	TO92	R16W	2.67	2		4	4	
412302	CRUELL REDI-MIA	GLARKSVILLE	1444	01	1092	RIOW	2.67	4	x	4	4	
A12504	SHELL ROCK PRODUCTS	BROOKS	NE	02	TO91	R15W	2.66	X	^	4	4	
412304	SHELL ROCK PRODUCTS	BROOKS	INL	UZ	1091	RIJW	2.67	^	x	4	4	1 10
12508	GREENE LS CO	AUSTINVILLE	NW	23	TO90	R18W	2.64		x I	3	3	
		DE VRIES	SW	28	TO90	R18W	2.04		^	4	4	
A12514	GREENE LS CO	DE VRIES	SVV	28	1090	RISW	2.63		x	4	4	
12516	CREENELS CO	JENSEN	S2	18	TO93	R16W	2.03		^	4	4	
A12516	GREENE LS CO			03						- C -	4	
A12518	NIEMANN CONST CO	SHELL ROCK-ADAMS	NE	03	TO91	R15W	2.66		x	3	3	
_					_		2.66		^	_		
13	CALHOUN DIST 3	SAND & GRAVEL								-	-	
A13502	KNIFE RIVER MIDWEST LLC	LAKE CITY	NE	26	T086	R34W			_	4	4	1
14	CARROLL DIST 3	SAND & GRAVEL							_			-
A14506	MARTIN MARIETTA	POUND	SE	18	T085	R33W				4	4	
A14510	TIEFENTHALER INC	LANESBORO	NW	17	T085	R33W	2.72	2		4	4	
			14-			-	2.68		Х			
A14512	MARTIN MARIETTA	OPEN	SE	15	T084	R34W				4	4	
A14514	TIEFENTHALER INC	MACKE		06	T085	R33W	2.69	2	v	4	4	
A14516	KNIEE DIVED MIDWEST LLC		NE	22	TOP2	D2214/	2.66		X	4	4	
A14516 A14518	KNIFE RIVER MIDWEST LLC TIEFENTHALER INC	RICHLAND MILLER	NE	23 21	TO83 TO85	R33W R33W				4	4	
15	CASS DIST 4	CRUSHED STONE										
A15008	SCHILDBERG CONST CO INC	ATLANTIC MINE	CIAL	10	T076	DOTIN					5	2

		RECENTLY ACTIV	E AGGRE	GATE	SOURC	ES	BULK	DUR		FRIC	т		
CODE	OPERATOR	SOURCE NAME	LOC	ATIO	N		SSD SpGr	PCC CA	FA	HMA		BEDS	
6	CEDAR DIST 6	CRUSHED STONE											
16002	WENDLING QUARRIES INC	HUNT	SW	10	T081	R04W	DWU	3iB		4	4	1	
16004	WENDLING QUARRIES INC	LOWDEN-SCHNECKLOTH	NW	04	T081	R01W	DWU	3i				1	
10000	WENDLING OUADDIES ING	STONEMUL	CE	14	TODA	DOOM	DIA	2:0		4	4	1 - 3	
16006	WENDLING QUARRIES INC WENDLING QUARRIES INC	STONEMILL PEDEN	SE NE	14 10	TO80 TO79	R03W R03W	DWU	3iB		4	4	4	
16010	WEBER STONE CO INC	ONION GROVE	SE	14	TO79	R02W	2.61	3i		4	4	1 - 7	
16012	WENDLING QUARRIES INC	TOWNSEND	NW	02	T079	R02W	2.01	51		4	4	1 - 1	
16018	WENDLING QUARRIES INC	LOWDEN-MASSILLON	NW	23	T075	R01W							
16022	WENDLING QUARRIES INC	TRICON	N2	09	T082	R04W	DWU	3i		4	4	1	
OULL	WEIDEING GOMMUES ING	SAND & GRAVEL		00	1002		0.00	0.				-	
6502	WENDLING QUARRIES INC	SHARPLISS	NW	12	T079	R03W	1	-		4	4		-
							2.65)	Х				
6506	WEBER STONE CO INC	ONION GROVE	SE	14	T082	R02W	2.65)	Х				
6508	WENDLING QUARRIES INC	MASSILLON	CT	11	T082	R01W	2.65		Х				
7	CERRO GORDO DIST 2	CRUSHED STONE											
17008	MARTIN MARIETTA	PORTLAND WEST	NE	19	TO96	R19W	2.75	3iB		4	4	1 - 8	
7012	MARTIN MARIETTA	UBBEN	SW	26	TO94	R20W	2.68	2				3	
							1.1			5	5	1 - 3	
7020	MARTIN MARIETTA	MASON CITY	NE	29	TO97	R20W	DWU	3i				7	_
							2.73	3				7 - 9	
										4	4	8 - 9	
7000		HOLCIM	C.F.	10	T007	DOOM	DIAL	2		X	Х	1 - 6	
7022	HOLCIM INC	HOLCIM	SE	19	TO97	R20W	DWU DWU	2				1 - 4 11 - 13	
7024	HEARTLAND ASPHALT	RIVERVIEW	NE	29	TO96	R19W	000	2		4	4	1 - 12	
I ULT			NL	20	1000	111011							-
		SAND & GRAVEL											
7506	KNIFE RIVER MIDWEST LLC	NELSON-FORBES	SW	27	TO96	R19W				4	4		
7512	NORTH IOWA S&G INC	WEPKING	NE	15	TO97	R21W	DWU		K	3	3		
7514	MARTIN MARIETTA	HOLCIM SAND	NE	19	TO97	R20W	DWU	2	,	3	3		
7518	HEARTLAND ASPHALT	AIRPORT	NE	08	TO96	R21W	2.65		X	3	3		
-								-	-	-	-		-
0506	CHEROKEE DIST 3 HALLETT MATERIALS CO	SAND & GRAVEL CHEROKEE SOUTH	NE	16	TO91	R40W	2.70	2		3	3		-
8506	HALLETT MATERIALS CU	CHEROKEE SUUTH	INE	10	1091	R40W	2.70	12 >	(5	5		
8512	FABER & SON CONST CO	KILLIAM	SW	20	TO93	R39W	2.00	1	·	4	4		
8514	HIGMAN SAND & GRAVEL	MONTGOMERY	NE2	20	TO93	R39W				4	4		
8516	MARTIN MARIETTA	WASHTA #1	NE	30	TO90	R41W				3	3		
8518	MARTIN MARIETTA	QUIMBY	SW	15	TO90	R41W				3	3		
8520	MARTIN MARIETTA	QUIMBY-EAST	NW	06	TO90	R40W				3	3		
8526	HALLETT MATERIALS CO	CHEROKEE NORTH	SW	23	TO92	R40W	2.70	2		3	3		
							2.67	X	<	-			
8528	HIGMAN SAND & GRAVEL	HSG WASHTA #1	SW	31	TO90	R41W	DWU	2		3	3		
	A secold say that was a first for first					and the	DWU	X	<				
8530	HIGMAN SAND & GRAVEL	PATTERSON		32	T091	R40W	2.69	2					
0520		WALKED		24	TOOO	DATH	DWU	X	(
8532	CHEROKEE COUNTY	WALKER	OT	31	T090	R41W	267	2					
8534	HALLETT MATERIALS CO	NELSON	CT	23	TO92	R40W	2.67	2	,				
			1.2	~ ~	TO93	R39W	2.68	2 ×	`				
8536	HIGMAN SAND & GRAVEL	BECK	NE	30	1/10.2	Distant	DWU						

CODE	OPERATOR		RECENTLY ACTIV	LOC			-5	BULK SSD SpGr	DUR PCC CA		FRI HM A	A	BEDS
CODL	OFERATOR		SOURCE WANTE	LUCI	TION	V	-	Shoi	CA	IA	A	D	DLD3
19	CHICKASAW	DIST 2	CRUSHED STONE		-				-	_	-		
A19002	GREENE LS CO		TRACY	SE	29	T094	R14W	2.55	2		4	4	9 - 10
A19004	BRUENING ROCI	K PROD INC	DEERFIELD-MAHONEY	SE	33	TO97	R14W		100		1	X	
A19006	GREENE LS CO		HUNT	NE	29	TO94	R14W	2.57	2		4	4	9 - 10
A19008	GREENE LS CO		BOICE	NE	16	TO95	R14W					5	
	Section 2.		SAND & GRAVEL		-		_		-			-	
A19504	GREENE LS CO		HUNT	NW	29	TO94	R14W		1		4	4	
A19506	BLAZEK S&G CO		BLAZEK	NW	32	TO96	R11W				4	4	
								2.66		Х			
A19508	KNIFE RIVER MIL	DWEST LLC	BUSTA	SE	23	TO96	R11W	1.1			4	4	
								2.65		Х			
A19510	RIVER BEND EN	TERPRISES	NASHUA	NE	31	T094	R14W				X	Х	
								2.66		X			
A19512	GREENE LS CO		PEARL ROCK	SE	31	TO94	R14W				4	4	
								2.65		Х			
A19514	BRUENING ROCI		NASHUA	SW	33	TO95	R14W	DWU		Х			
A19516	NIEMANN CONS		REWOLDT	NE	25	TO94	R13W	2.64		Х		1	
A19518	KNIFE RIVER MI		AGGLAND		31	TO96	R12W	2.64		Х			
A19520	WILTGEN CONST		ROFONKE	NE SE	16	TO95	R14W		1.00				
A19522	CROELL REDI MI		BUCKY'S	NW	03	TO95	R11W	2.65		Х			
A19524	NIEMANN CONS	TCO	REISNER	SE	23	TO96	R11W	1.2.1					1.1
20	CLARKE	DIST 5	CRUSHED STONE		-						-	-	
A20002	SCHILDBERG CO		OSCEOLA	NW	12	T072	R26W				-	5	1 - 10
ALCOUL	Some Dend of	00100110			12	.1012	NLOW.					X	1 - 4
21	CLAY	DIST 3	SAND & GRAVEL		-	-	-		1	-	-	-	
A21506	DAVE'S S&G		EVERLY	SW	31	TO97	R38W	2.70	2	-	3	3	
121000	DITLOGUO		Evener	511	01	1007	110011	2.68	-	Х			
A21508	MARTIN MARIET	TA	SCHARNBURG	NE	11	TO96	R38W	2.00		~	4	4	
A21510	NORGAARD S&C		DICKENS	NW	20	TO96	R35W				3	3	
	inorities and bac		Distilling		20			2.70		х		~	
A21514	MARTIN MARIET	TA	CORNELL	SW	27	TO94	R36W	2.00			4	4	
A21516	SIEH S&G		SPENCER #1	SW	24	T096	R36W	2.69	2		3	3	
	0.2.1.040		or Enderrary					2.66	-	Х			
A21518	HALLETT MATER	RIALSCO	SPENCER #2	SW	05	TO97	R37W	2.00		~	4	4	2
A21520	MARTIN MARIET		EVERLY	SE	06	T096	R38W				4	4	
A21522	KNIFE RIVER MI		STAINS	02	30	TO97	R38W				4	4	
A21526	ROHLIN CONST		CLAY COUNTY	NW	20	T096	R35W				1		0
A21528	DAVE'S S&G	00 110	GOEKEN	NE	05	TO96	R38W	DWU	2				
A21530	HALLETT MATER	RIALSCO	BRAUNSCHWEIG		16	T094	R36W	0110	-				
A21532	CLAY COUNTY	11120 00	ELSER	СТ	03	T094	R36W						
A21534	HALLETT MATER	RIALSCO	CLARK EVERLY	NW	06	T096	R38W						
A21536	HALLETT MATER		GILLETT GROVE	NE	03	T094	R36W						
22	CLAYTON	DIST 2	CRUSHED STONE								1		
A22002	KUHLMAN CONS	ST CO	TWIN ROCK-SCHRADER	NW	14	T094	R05W				4	4	1 - 1
A 22004		DWESTLLC	DENTE ELVADED WATCON	CIM	10	TOOR	DOGW	2.66	2		4	4	3 - 1
A22004	KNIFE RIVER MI	DWESTLLC	BENTE-ELKADER-WATSON	SW	12	T093	R05W	2.66	2		4	4	6 - 9
A22006	BRUENING ROC		MARQUETTE	NW	16	TO95	R03W	DWU	3i		4	4	1 - 3
A22008	KUHLMAN CONS		ANDEREGG	SE	32	TO95	R02W	DWU	51		4	4	2 - 8
A22008	KUHLMAN CONS		OSTERDOCK	SE	02	T092	R02W R03W	2.67	2		4	4	2 - 0
ALL010	NOTILIWAN CONS	0.00	USILINDUCK	SE	02	1091	ROSW	2.07	2		1	4	
A22012	KUHLMAN CONS	STCO	SCHMIDT	NE	33	TO91	R01W	2.66	3i		4	4	1 - 8 4B - 6
ALLUIZ	NUTLIMAN CONS	51 00	SCHWIDT	INC	22	1091	RUTW	2.00	51		4	4	
								1			4	4	2 - 6

Matls. IM T203

CODE	ODEDATOD					ES	BULK SSD	DUR PCC	FRICT HMA	DEDC
CODE	OPERATOR	SOURCE NAME	LUC	ATIO	N		SpGr	CA FA	A B	BEDS
		CRUCUED STONE								
22 A22014	CLAYTON DIST 2 KNIFE RIVER MIDWEST LLC	CRUSHED STONE BLUME	NE	09	TO93	R03W	2.64	2	-	1 - 7
122014	KINI E KIVEK MIDWEST LEG	DECIME		03	1035	ROSW	2.04	2	4 4	1 - 12
A22016	KUHLMAN CONST CO	GISLESON	NW	06	TO95	R04W	2.66	3i	4 4	1 - 8
122010	KONEMAN CONST CO	GIGLEGON		00	1000	NO TW	2.00	51	4 4	1 - 15
22018	KNIFE RIVER MIDWEST LLC	ZURCHER	SE	01	TO94	R05W		10	4 4	1 10
22020	KUHLMAN CONST CO	MUELLER	NE	30	TO94	R03W	DWU	3i	4 4	1 - 8
22024	MIELKE'S QUARRY	MIELKE'S QUARRY	NE	21	T095	R04W			4 4	1 - 2
122026	KUHLMAN CONST CO	DOERRING-LUANA	SE	05	T095	R05W			4	
22030	KUHLMAN CONST CO	EBERHARDT	NW	27	TO93	R05W	2.72	3	4 4	1 - 5
LLOUU								1	4	1 - 8
22032	KUHLMAN CONST CO	WELLMAN	NW	25	TO92	R06W		X	X 4	1 - 6
22034	KUHLMAN CONST CO	KRUSE	NW	17	TO92	R04W	2.70	3B	4 4	5 - 11
							2.70	2B	4 4	5 - 12
									4 4	2 - 12
22038	KUHLMAN CONST CO	FASSBINDER	SW	09	TO92	R03W	2.67	3i	4 4	2B - 6
22040	KUHLMAN CONST CO	HARTMAN	NW	29	TO91	R06W	2.68	31	4 4	1 - 4
22042	KNIFE RIVER MIDWEST LLC	MORAREND	CT	35	TO92	R03W	2.67	X		1 - 8
			0,						4 4	1 - 10
22044	KUHLMAN CONST CO	BOGE	SW	18	TO91	R02W				
22046	KUHLMAN CONST CO	JOY SPRINGS-BURRACK	NW	19	TO91	R06W	2.65	3i	4 4	1
22048	KNIFE RIVER MIDWEST LLC	TUCKER	SW	18	TO91	R05W				1
22056	KNIFE RIVER MIDWEST LLC	MCGREGOR	NE	34	TO95	R03W			4	
22058	KNIFE RIVER MIDWEST LLC	ST OLAF	SE	25	TO94	R05W				
22060	KNIFE RIVER MIDWEST LLC	JOHNSON	NW	26	TO93	R04W	2.64	3i	4 4	2 - 5
					.000		2.01		4 4	1 - 5
22062	KNIFE RIVER MIDWEST LLC	SNY MAGILL	SE	22	TO94	R03W	2.73	3i	4 4	6 - 10
22066	KNIFE RIVER MIDWEST LLC	PETERSON	NW	09	TO94	R06W				
22068	RIVER CITY STONE INC	MILLVILLE	NW	10	T091	R02W	DWU	3i		1 - 8
22070	KNIFE RIVER MIDWEST LLC	BERNHARD/GIARD	NW	35	TO95	R04W	DWU	3i	4 4	1 - 3
22072	PATTISON BROS	CLAYTON TERMINAL	1444	07	TO93	R02W	DWU	3i	4 4	3 - 4
LUTL				57	1000	THUL T	0.10	3	4 4	1
22074	RIVER CITY STONE INC	STRAWBERRY POINT	NE	19	TO91	R06W	DWU	3i	1. 1	1 - 2
22076	KNIFE RIVER MIDWEST LLC	LARSON	NW	08	TO93	R05W	0.10			
22078	KNIFE RIVER MIDWEST LLC	SMITH		07	TO93	R06W				
22080	KUHLMAN CONST CO	HILINE	NW	08	TO91	R03W				
22082	NIEMANN CONST CO	REIERSON	NW			R06W				
22084	CJ MOYNA & SONS	MOYNA		14	TO93	R05W				
22086	CJ MOYNA & SONS	WILLIE	SW	18	TO93	R02W				
22088	WILTGEN CONST CO	KEPPLER	NW	29	TO94	R05W				
22000		SAND & GRAVEL		20	1034	110044				
22510	KNIFE RIVER MIDWEST LLC	BENTE	SE	15	TO93	R05W	2.66	X	4 4	-
2010	NUM E NIVER MIDWEST LEC	DETTE	JL	15	1000	110511	2.66	X	7 4	
22512	KUHLMAN CONST CO	FAIRGROUND	NE	26	TO93	R05W	2.00	^	4 4	
LLUIL	NOTENAN CONST CO		INC	20	1033	10000	2.66	x	1 1	
22514	KUHLMAN CONST CO	JOY SPRINGS	SW	19	TO91	R06W	2.00	^	x x	
22514	KUHLMAN CONST CO	THURN	CT	25	TO92	R05W			3 3	
22310	RUILINAN CONST CO	THORN .	CI	20	1032	NUJW	2.65	x	5 5	
22520	KUHLMAN CONST CO	WELTERLEN	SE	32	TO91	R05W	2.65	x		
22522	CJ MOYNA & SONS	MOYNA			TO91	R05W	2.05	^		
LLJLL	CJ WOTINA & SUNS	NOTIVA	1	5,24	1093	RUSW				1

)		RECENTLY ACT	IVE AGGREG	ATE	SOURC	ES	BULK SSD	DU PC		FR HM		
CODE	OPERATOR	SOURCE NAME	LOC	ATIO	N		SpGr	CA	FA	А	В	BEDS
23	CLINTON DIS	T 6 CRUSHED STONE									-	
423002	WENDLING QUARRIES I	NC BLOORE-ELWOOD	NW	08	T083	R02E	DWU	3i		4	4	1 - 2
123004	WENDLING QUARRIES I	NC BEHR	SW	02	T081	R03E	2.61	3i		4	4	1 - 2
123006	WENDLING QUARRIES I	NC SHAFFTON	NE	11	T080	R05E	DWU	3i		4	4	16 - 17
							DWU	3		4	4	3 - 14
							DWU	3				19 - 20
000000			CILL	-	TOOR	DOFE				4	4	3 - 15
423010	WENDLING QUARRIES I		SW	22	.T083	R05E				4	4	1 - 10
423012	WENDLING QUARRIES I		SW	03	T083	R06E					4	
423016	WENDLING QUARRIES I		NW	18	T082	R07E					4	
A23026	WENDLING QUARRIES I		NE	22	T082	R06E					4	
423028	WENDLING QUARRIES I		SE	06	T083	R04E						
A23030	WENDLING QUARRIES I			04	T083	R01E						
A23032	ANDERSON S&G	ANDERSON		23	T081	R03E						
A23034	PRESTON READY MIX	TRANSTAR	NE	25	T081	R05E						
100500		SAND & GRAVEL	NE	20	TOOR	DOTE	-	-	-			
A23502	WENDLING QUARRIES I	NC DOYLE	NE	30	T083	R07E	2.67		v	4	4	
122504	WENDLING QUARRIES I	NC REHD	SW	02	T081	R03E	2.67	2	X			
423504	WENDLING QUARRIES I	NC BEHR	SVV	02	1081	RUJE	2.68	2	v	4	4	
A23506	WENDLING QUARRIES I	INC SCHNECKLOTH	S2	10	TO80	R05E	2.68		X	4	4	
A23300	WENDLING QUARKIES I	SCHNECKLOTH	52	10	1080	RUJE	2.67		x	4	4	
A23508	WENDLING QUARRIES I	INC GATEWAY	NE	27	T081	R06E	2.07		^	4	4	
LUUUU		din 2 min	,			HOUL	2.66		X			-
A23510	WENDLING QUARRIES I	INC SHAFFTON	N2	11	TO80	R05E				4	4	
		1					2.66		X			
A23514	ANDERSON S&G	ANDERSON	NW	23	T081	R03E	2.68		X			
A23516	WENDLING QUARRIES I	INC OLSON	NW	23	T081	R02E						
24	CRAWFORD DIS	ST 3 SAND & GRAVEL										
A24512	HALLETT MATERIALS C		SE	27	T082	R41W	2.70	2		3	3	
							2.66		X			
25	DALLAS DIS	ST 4 SAND & GRAVEL		-			1	-		-	-	
A25502	HALLETT MATERIALS C		NW	28	T079	R27W	2.70	2		4	4	
LOUGE		in Eboertoorning (20			2.67	-	X	1		
A25510	HALLETT MATERIALS C	O PERRY	NW	01	T081	R29W	2.70	2		4	4	
							2.67		X			
A25512	HALLETT MATERIALS C	O VAN METER	SE	16	T078	R27W	2.68	2		3	3	
	-						2.66	-	X			
A25514	HALLETT MATERIALS C	O BOONEVILLE	S2	26	TO78	R26W	2.68	2		3	3	
							DWU		X	-		-
A25516	HALLETT MATERIALS C	O VAN METER SOUTH		21.	22T078	R27W	2.68	2		3	3	
							2.66	1	X		~	
A25518	MARTIN MARIETTA	RACCOON RIVER SAND		27.	28T078	R26W	DWU	2				
	and the state of the state of the state						DWU	1	X			1

		RECENTLY AC	TIVE AC	GGRE	GATE	SOURC	ES	BULK SSD	DUR PCC	FR	RICT	
CODE	OPERATOR	SOURCE NAME		LOC	ATIO	N		SpGr	CA FA	А	В	BEDS
26	DAVIS DIST 5	CRUSHED STONE								T		
26004	DOUDS STONE INC	LEWIS		W2	02	TO69	R12W	2.60	3	4	4	1
										5	5	3 - 7
											5	3 - 5
										4	4	6 - 7
26006	DOUDS STONE INC	BROWN	SW	NW	02	TO69	R12W	2.60	3	4	4	1
									150 0	5	5	3 - 7
											5	3 - 5
									1	4	4	6 - 7
		SAND & GRAVEL			_			-	-			
26502	DOUDS STONE INC	ELDON-FRANKLIN		SW	01	T070	R12W	2.67	Х			
7	DECATUR DIST 5	CRUSHED STONE		-		-						
27002	SCHILDBERG CONST CO INC	GRAND RIVER		NW	22	TO70	R27W				5	12 - 14
27008	SCHILDBERG CONST CO INC	DECATUR		SE	32	TO69	R26W				Х	7
21000											5	9 - 15
8	DELAWARE DIST 6	CRUSHED STONE		-	-					-	-	
28002	KUHLMAN CONST CO	SEDGEWICK #2		SW	36	TO90	R06W	2.66	3iB	4	4	3
28002	KUHLMAN CONST CO	SEDGEWICK #1		SW	36	TO90	R06W	2.00	0.0	4	4	1 - 3
28008	KUHLMAN CONST CO	EDGEWOOD WEST		CT	04	TO90	R05W	2.67	3i	1	-	2 - 7
20000	Non-Linni Conor Co			01	04	1000	110011	2.07	U.	4	4	1 - 7
28010	KUHLMAN CONST CO	TIBBOTT		SW	23	TO90	R04W	2.70	3i	1	4	1 - 5
20010				511	20	1000	1.0111	2.70		4	4	1 - 7
28012	KUHLMAN CONST CO	BAUL .		SE	22	- TO89	R06W	2.69	3i	4	4	1 - 4
28014	KUHLMAN CONST CO	LOGAN		SW	10	T088	R05W	2.69	3	1	4	2 - 8
20014	NUTLINAN CONST CO	LOGAN		544	10	1000	110010	2.00	5	4	4	1 - 8
28016	KUHLMAN CONST CO	WHITE		NW	02	T088	R04W	2.72	3i	4	4	1 - 2
28020	BARD CONCRETE CO	DEUTMEYER		SW	13	T088	R03W	DWU	3i	4	4	2 - 6
28030	KUHLMAN CONST CO	GRIEF		NE	18	TO87	R03W	Dire	01	1	4	2 0
28032	RIVER CITY STONE INC	SCHNITTJER-DELHI		NE	35	T088	R04W					
28038	KUHLMAN CONST CO	KUHLMAN		NW	06	TO90	R04W	2.70	3i	4	4	1B - 5
28040	BARD CONCRETE CO	KRAPFL		SE	23	TO89	R03W	2.69	3iB	4	4	4
20040	BARD CONCRETE CO	NNAFTE		JL	23	1005	RUJW	2.03	510	4	4	1 - 4
28042	KUHLMAN CONST CO	WALSTON-MASONVILLE		SE	21	T089	R06W	2.69	3i	7	4	1 - 4
20042	KUTEWAN CONST CO	WILSTON WILSONVILLE		JL	21	1005	ROOM	2.00	51	4	4	1 - 6
28044	NIEMANN CONST CO	DUNDEE		NE	20	TO90	R06W			1	4	
28044	KUHLMAN CONST CO	PINS		NW	27	T088	R03W				1	
28050	KUHLMAN CONST CO	BUCK CREEK		NW	20	T087	R04W					
28052	RIVER CITY STONE INC	MANCHESTER		SW	09	TO88	R05W	DWU	3			5 - 8
28052	RIVER CITY STONE INC	WINCH	NIM	SW	09	T087	R04W	0110				0 - 0
28054	RIVER CITY STONE INC	THORPE	1400	NW	33	TO90	R04W R05W					
28056	RIVER CITY STONE INC	ROSSOW/MANCHESTER	NE	NW	16	TO90	R05W					
20030	RIVER OFF STONE INC	SAND & GRAVEL	NL	1400	10	1000	NUJW					
28502	KUHLMAN CONST CO	SEDGEWICK		SW	36	T090	R06W			4	4	
								2.65	X			
28504	BARD CONCRETE CO	TEGLER		NE	36	T089	R03W			4	4	
								2.65	X			
28506	BARD CONCRETE CO	DYERSVILLE		NW	26	T089	R03W			4	4	
								2.65	X			
28510	KUHLMAN CONST CO	LOGAN		SW	10	T088	R05W	2.65	X			
8514	KUHLMAN CONST CO	FERGESEN		NE	32	TO89	R06W			4	4	
								DWU	X			
28520	RIVER CITY STONE INC	MANCHESTER		SW	10	T088	R05W	2.65	Х	1		
28524	KUHLMAN CONST CO	LAKE DELHI		NW	14	TO88	R05W	2.64	X	1		

NOTE 1: FRICTION TYPE TO BE DETERMINED WHEN USED

		RECENTLY ACTIV	/E AGGREG	ATE	SOURC	ES	BULK	DU	R	FRI	CT	
CODE	OPERATOR	SOURCE NAME	LOCA	NOITA	1		SSD SpGr	PC		HM A	A	BEDS
29	DES MOINES DIST 5	CRUSHED STONE		_	_	-	-	_		-	_	
A29002	L&W QUARRIES INC	MEDIAPOLIS-LEONARD	SE	01	T071	R04W	2.65	3		4	4	15 15 - 18
429008	CESSFORD CONST CO	NELSON	NE	26	T072	R02W	2.62	3		5 4	5	20 21 - 24 7 - 20
429012	CESSFORD CONST CO	GEODE	NE	01	TO69	R05W				5 4 5 4	4 5 4 5 4	15 - 24 24 - 27 11 - 12 9 - 13 17
		SAND & GRAVEL	_									
429502	CESSFORD CONST CO	SPRING GROVE	SW	36	TO69	R03W	DWU 2.66	3	х	4	4	
30	DICKINSON DIST 3	SAND & GRAVEL										
430502	CONCRETE SAND & MATERIAL	S MILFORD		12	T098	•R37W	2.70 2.66	2	х	3	3	
130504	HALLETT MATERIALS CO	ROHLIN	NE	06	T098	R36W				3	3	
A30506 A30508	HUMMEL S&G HALLETT MATERIALS CO	FOSTORIA FOSTORIA/LOST	NE	26 32	TO98 TO98	R37W R37W	2.71	2		4	4	
120200	HALLETT MATERIALS CO	FUSTORIALUST		32	1090	RSTW	2.67	14	х	3	2	
30510	CEMSTONE S&G	EAST	NE	07	T098	R36W	2.71	2		3	3	-1
00540		WEATBORT			TOPO	-	2.66		Х			1.1
A30512 A30514	DICKINSON CO HALLETT MATERIALS CO	WESTPORT MILFORD/LEITH	NE NE	17 04	TO98 TO98	R38W R37W	DWU	2		4	4	
A30516	COHRS CONSTRUCTION INC	CROSBY	NW	21	T1098	R37W R37W	DWU	2				

SE

CT

W2 13 E2

06

14

23

TO98

TO98

T100

R36W

R37W

R36W

DWU

DWU

2

Х

HALLETT MATERIALS CO NOTE 1: AASHTO 57 GRADATION MAXIMUM

HALLETT MATERIALS CO

A30518 COHRS CONSTRUCTION INC

FODNESS

MILFORD/DERNER

SMITH

A30520

A30522

Matls. IM T203

		RECENTLY ACTIV	E AGGREG	DAIL	SUUKC	LJ	BULK	DUR		FR	CT	
CODE	OPERATOR	SOURCE NAME	LOC	ATIO	N		SSD SpGr	PCC CA	FA	HM A	A B	BEDS
								-		_		
31	DUBUQUE DIST 6	CRUSHED STONE						-		-	_	
A31002	RIVER CITY STONE INC	ROSE SPUR		27	TO90	R02E	2.66	3i			4	1 - 8
A31006	KUHLMAN CONST CO	DYERSVILLE-SUNDHEIM	SE	32	T089	R02W	2.66	3i		4 4 4	4	4 - 12
A31008	RIVER CITY STONE INC	KLEIN-RICHARDSVILLE	NW	33	TO90	R01E	DWU	3i			4	1 - 8 3A - 4B
A31010	RIVER CITY STONE INC	BROWN	NW	33	· T089	R02E	2.68	3i		4	4 4	1 - 4 3 - 9A
A31014	BARD CONCRETE CO	KURT	N2	35	T087	R02W	2.70	3iB		4	4	2 - 9 1 - 2
A31014	RIVER CITY STONE INC	MELOY	NW	23	T087	R02W	DWU	31		4	4	1 - 3
				11	TO87		DWU			4	4	
A31020	RIVER CITY STONE INC	SCHLITCHE	SE SW	36	T089	R02W R02W	2.69	3i		4	4	
A31024	KUHLMAN CONST CO	JOHNS CREEK	SVV	30	1088	RUZW	2.09	3i		4	4	3 - 4 1 - 4
A31026	WENDLING QUARRIES INC	ARNSDORF	SE	25	T087	R02E	DWU	3i		4	4	1 - 2
A31028	RIVER CITY STONE INC	THOLE	NW	21	T087	R02E	DWU	31			4	1 - 2
A31030	RIVER CITY STONE INC	KEMP	NE	09	T089	R01W					4	
A31034	RIVER CITY STONE INC	HERMSEN	NE	33	TO90	R02W					4	
A31036	RIVER CITY STONE INC	BALLTOWN	SE	05	T090	R01E					1	
A31038	RIVER CITY STONE INC	HARTBECKE	SW	21	T088	R01W					4	
A31040	RIVER CITY STONE INC	KENNEDY	NW	03	T088	R01W					4	
A31042	RIVER CITY STONE INC	GANSEN	NW	09	T087	R02E					4	
A31046	WENDLING QUARRIES INC	DECKER	SE	24	TO87	R02E	DWU	3i	14	4	4	1 - 5
A31048	RIVER CITY STONE INC	MCDERMOTT	NE	35	T088	R01W	2.65	3i		4	4	2
A31050	RIVER CITY STONE INC	PLOESSEL-DYERSVILLE	N2	07	T088	R02W	2.74	3i		4	4	3 - 5
431052	HORSFIELD CONST INC	EPWORTH-KIDDER	SW	02	T088	R01W	DWU	3i		· · ·		2
A31054	RIVER CITY STONE INC	MERRITT	SE	05	T089	R02E	5.10					-
A31056	RIVER CITY STONE INC	RUBIE	SE	06	T088	R03E	DWU	3iB		4	4	5 - 9
431058	RIVER CITY STONE INC	HOLY CROSS	SW	12	TO90	R02W	0.00					0 0
431060	BARD CONCRETE CO	EAST CASCADE	SE	22	T087	R01W	2.71	3i		4	4	2 - 5
431064	RIVER CITY STONE INC	WEBER	NW	32	T089	R02E	2.67	3i		4	4	3 - 9A
431066	RIVER CITY STONE INC	FILLMORE	SW	26	TO87	R01W	2.70	3i		4	4	2 - 4
101000	River off stone no	SAND & GRAVEL	511	20	1007	KOTW	2.70	51		-	-	2 4
A31502	AGGREGATE MATLSFLYNN	NINE MILE ISLAND	NE	24	T088	R03E	2.66	3i		3	3	1000
							2.66)	(
A31504	BARD CONCRETE CO	SAUSER PROPERTY	NW	36	T087	R02W			11	4	4	1.1
							2.66	>				1.000
431512	BARD CONCRETE CO	BURKLE	SW	19	T089	R02W	2.66					
A31514	RIVER CITY STONE INC	FILLMORE	CT	26	T087	R01W	2.66		(
431516	HORSFIELD MATERIALS INC	CASCADE SAND		25	T087	R02W	DWU		(1.1	5.1	

NOTE 1: TOP 17.0' OF BED 2 NOTE 2: TOP 6.0' OF BED 9

Matls. IM T203

)		RECENTLY ACTIVE AGGREGATE SOURCES					BULK	DUR		FRICT		
CODE	OPERATOR	SOURCE NAME	LOCATION			SSD SpGr	PCC CA			HMA A B	BEDS	
32	EMMET DIST 3	SAND & GRAVEL	-	-				1	-	1	-	
A32502	HALLETT MATERIALS CO	ESTHERVILLE	N2	03	TO99	R34W	2.70 DWU	2	х	3	3	
A32506	EMMET COUNTY	FREY	NW	21	T100	R34W	DWO		A	4	4	_
A32514	BOGGESS CONST	WALLINGFORD		07	TO98	R33W	DWU		x		4	
A32522	ESTHERVILLE ROCK & GRAVEL	OLD ESTHERVILLE S&G		30	T099	R33W	DVVU		~			
A32524	EMMET COUNTY	PETERSON	SW	34	T100	R34W						
A32526	ROHLIN CONST CO INC	DAVID YOUNG	NE	29	T098	R33W				4	4	
A32530	HALLETT MATERIALS CO	ESTHERVILLE/WHITE	SW	16	T100	R34W	DWU	2		4	4	
							DWU		Х			
A32534	COHRS CONSTRUCTION INC	ENERSON		28	T100	R34W	1.00	1.2		4	4	
A32538	ESTHERVILLE ROCK & GRAVEL	JENSEN	NW	03	T099	R34W	DWU	2				
							DWU		Х			
A32540	HALLETT MATERIALS CO	FISHER	NE	33	T098							
A32542	HALLETT MATERIALS CO	GRAETTINGER	SE	33	T098	R33W	DIANU			4	4	
A32544	DUININCK BROS INC	ANDERSON		7,8	T100	R34W	DWU		Х			
33	FAYETTE DIST 2	CRUSHED STONE										
A33002	NIEMANN CONST CO	ELDORADO-JACOBSEN	SW	17	TO95	R08W	2.69	3iB		5	5	4 - 6
A33004	NIEMANN CONST CO	HOUG	SW	11	TO94			1.0		5	5	1 - 9
A33006	NIEMANN CONST CO	MARYVILLE	SE	24	T091		2.69	3i		4	4	1 - 2
A33010	WILTGEN CONST CO	VOSHELL	NW	21	T093		1.1			X	X	1 - 4
A33016	NIEMANN CONST CO	MAYNARD	NE	23	T092						X	
A33018	NIEMANN CONST CO	FAIRBANK	SW	28	T091	R10W		X		4	4	1 - 5
A33020	NIEMANN CONST CO	YEAROUS	SW	19	T093	R08W				4	4	1 - 1
A33022	NIEMANN CONST CO	MILLER	SW	35	T095					4	4	1 - 8
A33024	NIEMANN CONST CO	WAUCOMA	NW	25	T095	R10W	2.69	3iB		5	5	2 - 4
A33026	WILTGEN CONST CO	LYNCH	NW	05	T095		2.00	0.0		4	4	1 - 5
A33030	NIEMANN CONST CO	SCHWEMMAN-ST LUCAS	NE	29	TO95					X	X	
A33032	BRUENING ROCK PROD INC	LANDIS	SE	12	T093			X		4	4	1 - 5
A33034	NIEMANN CONST CO	MCDONOUGH	SE	36	TO94	R08W		17				
A33036	NIEMANN CONST CO	GRAHAM-HAWKEYE	SW	06	T094	R09W		X		4	4	1 - 4
A33038	NIEMANN CONST CO	PAPE	NE	28	T095	R08W	DWU	3iB		5	5	3 - 5
A33040	NIEMANN CONST CO	SINNOTT		25	T093	R09W						
100500	NIEMANNI CONST CO	SAND & GRAVEL		02	TODA	DIOW	2.04	V		+.		-
A33506	NIEMANN CONST CO	ALPHA	NW	03	T094	R10W	2.64 2.64	X	Х	4	4	
A33508	KNIFE RIVER MIDWEST LLC	DURSCHER	NW	03	T094	R07W	2.04		~		4	
A33510	ZUPKE S&G	RANDALIA	NW	29	T093					4	4	
							2.66		Х			
A33512	NIEMANN CONST CO	WADENA	NE	25	T093	R07W	240			4	4	
		and the second se					2.66		Х			
A33518	KUHLMAN CONST CO	BASSETT	SE	11	T091	R07W				4	4	
100500					TOOL	Doolu	2.65		X			
A33520	BRUENING ROCK PROD INC	OELWEIN SAND	NE	09	T091	R09W	2.65		X			
A33522	BRUENING ROCK PROD INC	PAPE	SE	08	T095		2.65		X			
A33524 A33526	CROELL REDI-MIX	ROGERS	NE	04 13	T094		2.66		Х			
A33526 A33528	WILTGEN CONST CO NIEMANN CONST CO	ELDORADO KASEMEIER	NE SE	13	T095	R09W R10W	DWU		х			
H33326	MILIMAININ CONST CO	NAJEWIEIER	SE	19	1093	RIUW	000		~			

		RECENTLY ACTI	VE AGGRE	GATE	SOURC	ES	BULK SSD	DUR PCC	FRICT HMA	
CODE	OPERATOR	SOURCE NAME	LOC	ATIO	N		SpGr	CA FA	A B	BEDS
34	FLOYD DIST 2	CRUSHED STONE								1
A34002	GREENE LS CO	CARVILLE-BUNN	SW	23	TO95	R15W	2.63	2	4 4	1 - 4
A34004	GREENE LS CO	MAXON	SE	07	T094	R17W	2.68	2		4C - 19
								100	5 5	1 - 17
A34006	GREENE LS CO	JOHLAS	SW	07	T094	R15W			Х	
A34008	GREENE LS CO	WARNHOLTZ	SW	09	TO96	R16W	2.70	3i	5 5	1 - 4
							2.68	2	4 4	17 - 18
									Х	1 - 18
A34010	GREENE LS CO	LACOSTA	SE	25	T097	R17W	2.67	3i	5 5	1 - 4
									5 5	1 - 8
								1 1	4 4	9 - 14
A34012	GREENE LS CO	WILLIAMS	NW	29	TO96	R18W				
A34014	BRUENING ROCK PROD INC	HANNMANN	NE	20	TO94	R15W				
A34018	CROELL REDI MIX	JONES	N	26	T097	R17W	DWU	3i		1 - 4
A34020	CROELL REDI MIX	POWERS	SW	25	TO94	R16W				
		SAND & GRAVEL								
434502	GREENE LS CO	ROCKFORD	SE	15	T095	R18W	2.68	2	3 3	
							2.65	X		
A34506	GREENE LS CO	LENT	NE	08	TO96	R16W	1.000	-	4 4	
A34510	GREENE LS CO	BRACKEL	NE	17	T094	R17W			4 4	
A34514	GREENE LS CO	LITTLE CEDAR	NW	01	T095	R15W	2.65	X	3 3	
A34516	GREENE LS CO	CEDAR ACRE RESORTS	E2	17	T095	R15W	2.65	X		
A34518	GREENE LS CO	ENABNIT	NW	21	T094	R17W				
A34520	CROELL REDI MIX	FOOTHILL		26	TO95	R18W	DWU	X		
35	FRANKLIN DIST 2	CRUSHED STONE		-						
A35002	MARTIN MARIETTA	DOWS	NE	30	T091	R22W			4 4	1 - 4
100002	WP UX THY WP UX ET TY	00110	ML	50	1001	INCLUT		1 1	4 4	1 - 12
								1 1	4 4	7 - 12
								1 1	5 5	5 - 6
435006	MARTIN MARIETTA	HIBNESS	SE	22	T091	R20W	2.58	3	0 0	1 - 4A
100000		THE TEO	UL.		1001	112011	2.00	Ŭ,	4 4	1 - 12
A35010	GREENE LS CO	MILLER	NE	13	TO91	R19W			4	1 - 5
135016	GREENE LS CO	AYRES	THE .	01	T092	R19W				
		SAND & GRAVEL		5.						
135502	KNIFE RIVER MIDWEST LLC	GENEVA	SW	07	T091	R19W	2.68	2	3 3	
10000L	AND E RIVER MIDWEST LLO	SEILETT	511	01	1001	111044	2.64	X	0 0	
135508	MARTIN MARIETTA	STUCK	SW	30	TO91	R22W	2.04	^	4 4	
435512	MARTIN MARIETTA	ANDERSON-POPEJOY	NE		TO90		2.68	X	3 3	
A35514	KNIFE RIVER MIDWEST LLC	KOCH	SW	08	TO91	R19W	2.00		4 4	
100014	NUM E NIVER MIDWEST EEG	Noon	500	00	1031	11344	2.69	X	4 4	
A35516	KNIFE RIVER MIDWEST LLC	PETERS	SW	04	T092	R20W	2.00		3 3	
133310	KINI E KIVEK MIDWEST ELG	TETERS	300	04	1032	N20W	2.65	X	5 5	
35518	KNIFE RIVER MIDWEST LLC	REINKE	SW	22	TO91	R20W	2.05	^	4 4	
35520	KNIFE RIVER MIDWEST LLC	BRANDT	N2	34	TO90	R19W			4 4	
133320	KINI E KIVEK MIDWEST LEC	UNANDI	INZ	54	1030	AT3W	2.68	X	4 4	
35522	MARTIN MARIETTA	RASH	SE	27	TO90	D2214/	2.00	^	4 4	
133322	WARTINWARLETTA	MJI	SE	21	1090	KZZWV	2.63	x	4 4	
			-	_			2.05	^	_	
-										
36	FREMONT DIST 4 SCHILDBERG CONST CO INC	CRUSHED STONE THURMAN	NW	23	T070				4	

Matls. IM T203

•		RECENTLY ACTIVE A	GGREG	ATE	SOURCI	ËS	BULK SSD	DUR		FRI			2
CODE	OPERATOR	SOURCE NAME	LOCA	TION	1		SpGr	CA	FA	А	В	BEDS	
37	GREENE DIST 1	SAND & GRAVEL									_		-
A37504	HALLETT MATERIALS CO	JEFFERSON	SW	04	T083	R31W	2.66	2	x	4	4		
A37514	ARCADIA LIMESTONE CO	WRIGHT	NW	05	TO84	R32W				4	4	-	
A37520 A37522	GREENE CO REDI MIX KNIFE RIVER MIDWEST LLC	HAMILTON HAUPERT		27 20	TO83 TO84	R30W R30W	2.66 2.59	1	X X				
38	GRUNDY DIST 1	SAND & GRAVEL											
A38504 A38506	KNIFE RIVER MIDWEST LLC KNIFE RIVER MIDWEST LLC	HERONIMOUS MEESTER NE	SE NE	35 12	TO88 TO88	R17W R17W	2.63 2.63		X X				
39	GUTHRIE DIST 4	SAND & GRAVEL											
439502	KNIFE RIVER MIDWEST LLC	HEILAND	SW	29	T079	R30W				4	4	1	
A39506 A39508	BUTTLER CONST CO MCALISTER AGGREGATES LLC	BAYARD L&L	NE NE	22 33	TO81 TO78	R32W R31W				4	4		
40	HAMILTON DIST 1	CRUSHED STONE											
440006	MARTIN MARIETTA	GRANDGEORGE	SE	18	T089	R25W					5	3 - 5	i
A40512	KNIFE RIVER MIDWEST LLC	SAND & GRAVEL ANDERSON		12	T087	R26W		-				-	_
41	HANCOCK DIST 2	CRUSHED STONE	-				-	-	-		-		-
A41002	BMC AGGREGATES LC	GARNER NORTH	SE	11	TO95	R24W	2.77	3iB		4	4	1 - 4	1
							2.77	3iB		4	4	E	
A41004	BMC AGGREGATES LC	GARNER SOUTH-WIELAND	NW	13	TO95	R24W	2.77 2.77	3iB 3i		4 4	4	1 - 4	4
		SAND & GRAVEL											
A41504	HANCOCK COUNTY	HUTCHINS	E2	27	TO96	R26W					4		
A41506	HANCOCK COUNTY	KLEMME		26 34	TO95 TO96	R24W	DWU	2		3	4		
A41510	NUCKOLL'S CONCRETE SERVICES INC	BRITT		34	1090	R26W	DWU	2	x	3	3		
A41518	HANCOCK COUNTY	AUSTIN	NE	11	TO97	R25W							
42	HARDIN DIST 1	CRUSHED STONE											
A42002	MARTIN MARIETTA	ALDEN	NW	20	T089	R21W	2.59 DWU	3iB 3iB		4	4		3
A42004	GERHKE QUARRIES INC	GIFFORD	NW	04	T086	R19W	DWU	3			5	0 - 1	í.
		SAND & GRAVEL			_	-	-		_				
A42502	WELDON BROS CONST CO	IOWA FALLS	NW	20	T089	R20W	2.65 2.68	2	x	4	4		
A42510	MARTIN MARIETTA	JANSSEN	SE	34	T089	R20W	2.65			4	4		
A42512	HARDIN AGGREGATES INC	GIFFORD	SW	31	T087	R19W	2.65		X	4	4		
A42524	KNIFE RIVER MIDWEST LLC	GRIFFEL	SE	31	T089	R19W	2.66		Х	3	3		
		ONTILL		01	1000	111044				5	0		

NOTE 1: WHEN BED 2 IS VISUALLY APPARENT, IT SHALL NOT EXCEED A THICKNESS OF ONE FOOT IN FULL-FACE OPERATION.

		RECENTLY ACTIV	E AGGREO	GATE	SOURC	ES	BULK SSD	DU		FR HM	ICT	
CODE	OPERATOR	SOURCE NAME	LOC	ATIO	N		SpGr		FA		B	BEDS
43	HARRISON DIST 4	CRUSHED STONE					1	1		1		
A43002	SCHILDBERG CONST CO INC	LOGAN		19	T079	R42W				5	5	25E
										5	5	25C-25E
											4	26
	A CONTRACT OF	SAND & GRAVEL		_			-	-		1	-	
A43506	SCHEMMER LS INC	LOGAN	SE	08	T079	R42W	1.000			3	3	71.71
	Alternation and a second second						DWU	1.1	Х			
A43512	HALLETT MATERIALS CO	WOODBINE-MCCANN	SW	29	T081	R41W	2.68	3		3	3	
				-			2.64		Х	-		
44	HENRY DIST 5	CRUSHED STONE			-	~~~~						
A44002	COOTS MATERIALS CO INC	SMITH	SE	17	T071	R06W						
A44006	HENRY COUNTY	LEEPER	NE	18	T071	R06W	DWU	2		4	4	8 - 11
A44008	DOUDS STONE INC	TWEEDY	SW	36	T071	R06W				4	4	13 - 14
										5	5	9 - 14
_		SAND & GRAVEL			_			-				
A44502	CESSFORD CONST CO	NORTH ROME	SW	29	T072	R07W				4	4	-
							2.66		Х			
A44504	IDEAL SAND CO	ENSMINGER-ROME	NW	32	T072	R07W	2.67		Х			
45	HOWARD DIST 2	CRUSHED STONE			-							
A45002	KNIFE RIVER MIDWEST LLC	ECKERMAN	NW	33	T100	R11W	2.61	2		X	Х	8 - 9
A45006	BRUENING ROCK PROD INC	NELSON	NE	33	T099	R13W	2.54	2		4	4	1 - 3
							2.54	2		4	4	8 - 9
A45008	BRUENING ROCK PROD INC	DOTZLER	NE	23	TO99	R12W	2.50	3		4	4	7 - 10A
A45010	BRUENING ROCK PROD INC	DALEY	NE	11	T098	R11W	2.59	3		4	4	9 - 11
A45014	FALK CONST CO	CECELIA	SE	80	TO97	R14W					5	
A45018	BRUENING ROCK PROD INC	LE ROY	NW	10	T100	R14W					Х	
A45020	BRUENING ROCK PROD INC	RIECKS	NW	24	T100	R11W						
A45022	BRUENING ROCK PROD INC	MAUER	SE	13	T100	R13W						
A45024	BRUENING ROCK PROD INC	MAPLE LEAF	SE	04	T098	R13W						
A45026	BRUENING ROCK PROD INC	BRUENING BROTHERS #1	SE	22	T100	R11W	-					1 - 3
A45028	BRUENING ROCK PROD INC	ELMA	NW	06	T097	R13W	DWU	3		4	4	2 - 3B
A45030	BRUENING ROCK PROD INC	DIEKEN-TANK	SE	24	T100	R13W						1
A45032	KNIFE RIVER MIDWEST LLC	KITCHEN		13	T100	R12W						
A 45500	RELIENING BOCK BROD INC	SAND & GRAVEL	CE	04	TOOO	D12W		-		1	4	
A45502	BRUENING ROCK PROD INC	MAPLE LEAF-POTTER ECKERMAN	SE	04	TO98 T100	R13W R11W	DWU	3		4	4	
A45504	KNIFE RIVER MIDWEST LLC	ECKERIMAN	INVV	33	1100	RIIV		3	v	4	4	
A45508	KNIFE RIVER MIDWEST LLC	SOVEREIGN	SW	01	TO98	R12W	2.65 DWU	3	Х	3	3	
43300	NINITE RIVER WIDWEST LLC	SOVEREIGIN	SVV	01	1090	K12W	2.65	13	X	10	3	
A45514	KNIFE RIVER MIDWEST LLC	EASTLAND	NE	26	T100	R14W	2.05		Х	3	3	
A45516	BRUENING ROCK PROD INC	FREIDERICH	NE	15	TO98	R14W				3	3	
13310	DRUCHING ROCK FROD INC	REDERIOT	NL	15	1030	111400	2.67		х	1	5	
A45518	BRUENING ROCK PROD INC	ELMA	NW	06	TO97	R13W	2.67	1	X	1		

		RECENTLY ACT	IVE AGGREG	ATE	SOURC	ES		2112		107	
CODE	OPERATOR	SOURCE NAME	LOC	NOITA	N		BULK SSD SpGr	DUR PCC CA FA	FR HM A	ICT IA B	BEDS
46	HUMBOLDT DIST 2	CRUSHED STONE		-	-	-			-	-	
A46006	MARTIN MARIETTA	HODGES	NE	32	TO92	R28W	2.60 DWU	3i 3i	4	4	10 - 18 4 - 8
A46014	MARTIN MARIETTA	PEDERSEN	SW	28	TO92	R28W	2.59 2.58 2.57	3i 3i 3i	5 5 5	5 5 5	4 - 13 4 - 20 14 - 20
A46016	KNIFE RIVER MIDWEST LLC	ERICKSON SAND & GRAVEL		30	TO91	R28W	2.07	0.		0	11 20
A46504 A46512 A46516 A46518	MARTIN MARIETTA NORTHWEST MATERIALS KNIFE RIVER MIDWEST LLC MARTIN MARIETTA	PETERSON WARREN ERICKSON PEDERSEN	SW SW SW	27 08 30 28	TO92 TO92 TO91 TO92	R29W R30W R28W R28W	DWU	x	4 X 3	4 X 3	
47 A47502 A47504	IDA DIST 3 HALLETT MATERIALS CO HIGMAN SAND & GRAVEL	SAND & GRAVEL BATTLE CREEK CROCKER	NW	05 06	TO86 TO89	R41W R41W			3	3	
48	IOWA DIST 6	SAND & GRAVEL									
A48502	MARENGO READY MIX	KIMMICH	SE	24	T081	R11W	2.66	x	4	4	
A48506 A48508	WENDLING QUARRIES INC MARENGO READY MIX	MARENGO DISTERHOFF	NW SE	22 34	TO81 TO81	R11W R10W	2.66 2.66	X X			

		RECENTLY ACTI	VE AGGREO	SATE	SOURC	ES	BULK	DUR	FR	ICT	
CODE	OPERATOR	SOURCE NAME	LOC	ATION	J		SSD SpGr	PCC CA FA	HN A	1A	BEDS
				_		_	1			-	
19	JACKSON DIST 6		SW	25	T087	R04E	2.67	3i	4	4	1 - 3
49002	BELLEVUE S&G CO	BELLEVUE	NW	02	TO86	R04L	2.07	51	4	4	1
49004	BELLEVUE S&G CO	LAMOTT					DWU	3i	4	4	3 - 6
49008	WENDLING QUARRIES INC	IRON HILL	SW	16	T085	R02E	DWU	31	4	4	1 - 6
			ADAZ	21	TOOL	DOOF	2.70	3iB	4	4	1B - 3
49010	WENDLING QUARRIES INC	ANDREW	NW	21	T085	R03E	2.70	310	4	4	1 - 7
10040		FROST	CE	16	T084	R03E	DWU	3iB	4	4	1A - 1D
49012	WENDLING QUARRIES INC	FROST	SE	16	1004	RUJE	DWO	510	4	4	1 - 2
49016	WENDLING QUARRIES INC	WEIS	SE	22	T085	. R04E			4	4	
49018	WENDLING QUARRIES INC	PATASKA	NW	23	T085	R05E		1 1		4	
	WENDLING QUARRIES INC	PRESTON	SW	26	T084	R05E	2.67	3i	4	4	7 - 10
19020	WENDLING QUARRIES INC	FRESTON	500	20	1004	RUJL	DWU	3	4	4	1 - 10
0001	RECTON READY MIX	PRESTON R/M	SW	26	T084	R05E	2.67	3i	4	4	7 - 10
19021	PRESTON READY MIX	FILLSTON IVIN	244	20	1004	NUJL	DWU	3	4	4	1 - 10
0000	WENDLING QUARRIES INC	BELLEVUE	SE	23	T086	R04E	UNU		4	4	10
9022		MAQUOKETA EAST	SW	07	T084	R04L	DWU	3i	4	4	1 - 8
9024	WENDLING QUARRIES INC	WAQUURETA EAST	SVV	07	1004	NUJL	2.70	3i	4	4	7 - 8
0000	WENDLING OUADDIES ING	MILES	SW	20	T084	R06E	2.10	51	4	4	1.0
19026	WENDLING QUARRIES INC	MILES FULTON	SW	20	T084	R02E	DWU	3i	4	4	2
49028	WENDLING QUARRIES INC	FULTON	200	20	1005	NULL	000	5	4	4	1 - 2
10000	DELLEVILE SEC CO	SPRINGBROOK		15	T085	R04E			4	4	
19030	BELLEVUE S&G CO	OTTER CREEK-GLAHN	СТ	21	T085	R04E			4	4	
9032	WENDLING QUARRIES INC		NW	21	TO85	R02L					
9034	WENDLING QUARRIES INC		SE	20	T085	R02E			4	4	1 - 3
9040	WENDLING QUARRIES INC	JOINERVILLE-HAMANN	SE	20	T084	R02E			4	4	1 + 2
9042	WENDLING QUARRIES INC	PETERSON	NIM	14	T084	R04E			4	4	1
9044	WENDLING QUARRIES INC	FRANK	NW		TO87	R04E					
9046	WENDLING QUARRIES INC	ROWAN	NE	25	TO85	R03E R06E					
9048	PRESTON READY MIX	DRURY	CT NW	32	TO85	R06E					
9050	RIVER CITY STONE INC	MARSHALL	INVV	01 10	TO84	R05E					
9052	WENDLING QUARRIES INC	STILLMUNKES	E2	33	TO85	R05E					
9054	DUANE KUNDE	KUNDE					2.67	3i	4	4	1
9058	WENDLING QUARRIES INC	61 ROAD CUT	N2	31	T084	R03E	2.67	31	4	4	1
9060	BELLEVUE S&G CO	ST DONATUS		18	TO87	R04E		1 1			
19062	PRESTON READY MIX	JOHNSON		31	T084	R04E		1 1			
19064	BELLEVUE S&G CO	VEACH		01	T085	R02E		1 1			
9066	BELLEVUE S&G CO	MOREHEAD	NW	13	T085	R01E					
		SAND & GRAVEL	NE	20	T007	DOAL			4	4	
9504	WENDLING QUARRIES INC	KNIPELMEYER	NE	36	T087	R04E	2.64	v	4	4	
		DELLEVIUE	50	01	TOOC	DOAE		X 3iB	3	3	
19506	BELLEVUE S&G CO	BELLEVUE	E2	01	T086	RU4E	2.64		3	2	
		MAQUOKETA	NIT	10	TOOM	DOOF	2.68	X		4	
19510	WENDLING QUARRIES INC	MAQUOKETA	NE	13	T084	R02E	265	v	4	4	
		TUDNED	NE	07	TOOL	DOTE	2.65	X	2	3	
9516	WENDLING QUARRIES INC	TURNER	NE	07	T084	R07E	2.63	3iB	3	3	
		DAL DIAMA	-	20	TOOL	DOIL	2.65	X			
9520	WENDLING QUARRIES INC	BALDWIN	SW	28	T084	R01E	2.66	X			
9522	CENTURY READY MIX	EWING	NW	02	T084	R01E	DWU	X			
9524	BELLEVUE S&G CO	GRIEBEL	SE	25	T087	R04E	DWU	3B	4	4	
				-	TOOT	DALE	2.67	X			
9526	BELLEVUE S&G CO	BELLEVUE FARM	SE	25	T087	R04E	DWU	3i			
		and the second se			-	Date	DWU	X			
9528	AGGREGATE MATERIALS CO	STEVENS	NW	02	T084	R01E	2.65	X	4		
9530	PRESTON READY MIX	PETERSEN	SW	18	T084	R07E	DWU	3iB	4	4	
					TOTA	Dear	DWU	X			
19532	WEBER STONE CO INC	IRON HILL MARBURGER	NE	16	T085 T084	R02E	2.65 DWU	X X			
9534	PRESTON READY MIX		SE	13	1/10/	R07E	1 1 1 1 1 1 1	Y I			

			RECENTLY A	ACTIVE AGGREC	ATE	SOURC	ES	BULK SSD	DUI		FRI HM			
CODE	OPERATOR		SOURCE NAME	LOC	ATION	1		SpGr	CA	FA	А	В	BED	S
50	JASPER	DIST 1	CRUSHED STONE											
A50002	MARTIN MARIETT	A	SULLY MINE	SE	16	T079	R17W	2.54	3i	-	4	4	36 - 10 -	
	and the second		SAND & GRAVEL											
A50502	MARTIN MARIETT	A	COLFAX	NE	01	T079	R21W	2.66 2.67	2	x	3	3		
A50504	MARTIN MARIETT	Α	REASNOR	NE	10	T078	R19W	2.07		^	4	4		
130304		~	REASINGIN	NL	10	1070	ICT SVV	2.66		X	4	4		
51	JEFFERSON	DIST 5	CRUSHED STONE					-						
A51006	WINN CORP		JEFFERSON	NE	09	T071	R10W				4	4	10 -	12
52	JOHNSON	DIST 6	CRUSHED STONE											
A52002	WENDLING QUAR		FOUR CO	NW	04	T081	R08W					Х		
A52004	RIVER PRODUCT	S CO	CONKLIN	NW	33	T080	R06W	2.66	3iB		4	4	-	10
								DWU	3i		5 5	5 5	23 - 2 -	24 5
											4	4	6 -	10
											4	4	0	21
A52006	RIVER PRODUCT	SCO	KLEIN	NW	02	T079	R07W	2.66	3iB		4	4	2 -	10
								DWU	3i		5	5	23 -	24
											5	5	2 -	5
											4	4	6 -	
A 5 2000	RIVER PRODUCT	00.2	EDNET	CIM	20	TODO	DOGIA				4	4		21
A52008	RIVER PRODUCT	5.00	ERNST SAND & GRAVEL	· SW	20	• TO80	R05W					Х		
52502	S&G MATERIALS	INC	SHOWERS	NE	27	T079	R06W		1		4	4		-
								2.65		X				
A52506	S&G MATERIALS		BUTLER	SW	33	T079	R06W	DWU		X			-	
A52508	S&G MATERIALS		WILLIAMS	NW	34	T079	R06W	DWU		X				
A52510	RIVER PRODUCT	500	RIVERSIDE #2		34	T078	R06W	DWU		X				

NOTE 1: 1.25 INCH MAXIMUM TOP SIZE

Matls. IM T203

		RECENTLY ACT	IVE A	GGRE	GATE	SOURC	ES	BULK	DUR	FRICT	
CODE	OPERATOR	SOURCE NAME		LOC	ATIO	N		SSD SpGr	PCC CA FA	HMA A B	BEDS
53	JONES DIST 6	CRUSHED STONE	-		-	-		1	1		
A53002	BARD CONCRETE CO	FARMERS-BEHRENDS		NE	14	T086	R03W	2.64	3i	4 4	1 - 5
A53004	WENDLING QUARRIES INC	MONTICELLO		NE	24	TO86	R04W	2.66	31	4 4	1
A53006	WENDLING QUARRIES INC	ANAMOSA		SE	13	TO84	R04W	DWU	3i		1 - 5
										4 4	1 - 6
A53010	WENDLING QUARRIES INC	BALLOU-OLIN		NE	24	T083	R03W	DWU	3iB		3
								DWU	3		2 - 3
								-		4 4	1 - 3
A53012	WENDLING QUARRIES INC	WYOMING			33	T084	R01W	2.69	3iB	4 4	1 - 2C
A53014	WEBER STONE CO INC	JACOBS-SCOTCH GROVE		SW	07	T085	R02W			5	
A53016	WEBER STONE CO INC	STONE CITY				· TO84	R04W	2.45	3i	4 4	2B - 3
A53018	RIVER CITY STONE INC	FINN		NE	06	T085	R01W	DWU	3i	4 4	2 - 5
A53020	WENDLING QUARRIES INC	CANTON		NE	24	T085	R01W			Х	
A53024	RIVER CITY STONE INC	SULLIVAN		NW	14	T086	R03W	DWU	3i		1 - 5
453026	RIVER CITY STONE INC	ANAMOSA		SW	15	T084	R04W				
		SAND & GRAVEL				-					
A53502	WENDLING QUARRIES INC	MONTICELLO		SE	07	T086	R03W			4 4	
						-		2.66	X		
453506	RIVER CITY STONE INC	FINN		N2	06	T085	R01W			4 4	
								2.65	X		
453508	WENDLING QUARRIES INC	ANAMOSA-VERNON		SW	13	T084	R04W			4 4	
						-		2.66	X		
A53510	WENDLING QUARRIES INC	KNAPP		SE	27	T084	R03W	0.05		4 4	
						-	-	2.65	X		
453514	WENDLING QUARRIES INC	FLEMING		NE	12	T083	R03W	0.00		4 4	
	WEDED STOLE OG ING	WERER	0.5	-		TOOL	DOMM	2.66	X		
A53522	WEBER STONE CO INC	WEBER	SE	-	05	T084	R04W	2.66	X		and the
453526	BARD CONCRETE CO	STEPHENS		NW	34	T086	R03W			4 4	
						-	-	2.66	X		
453528	WEBER STONE CO INC	ANAMOSA		NE	14	T084	R04W	2.65	X		
453530	RIVER CITY STONE INC	ANAMOSA-WOOD'S	_	CT	15	T084	R04W	2.66	Х		
54	KEOKUK DIST 5	CRUSHED STONE				_					
454002	DOUDS STONE INC	KESWICK		NW	21	T077	R12W	2.61	2	4 4	13 - 15
	DOUDS STONE ING	01115		CIM	01	TOTA	DINA	200		4 4	13 - 18
A54004	DOUDS STONE INC	OLLIE		SW	01	T074	R11W	2.66	3	4 4	13 - 18
								2.57	3	4 4	27 - 29
										4 4	13 - 19
										4 4	27 - 30
A54008	DOUDS STONE INC	HARPER		SE	11	TOTE	R11W			5 4 4	31 - 33
134008	DOUDS STONE INC	HARPER		SE		1076	RIIW				15 - 24
										4 4	32 - 37
54010	DOUDS STONE INC	LYLE		NW	13	T074	D1214/	DWU	3	4 4 4	38 - 40
454010	DOUDS STONE INC	LILL		1400	15	10/4	RISW	DWU	3		40 36 - 38
154012	WINN COPP	KEOKUK COUNTY OUADDY		NIM	21	T074	D1114			4 4 5 5	30 - 38
454012	WINN CORP	KEOKUK COUNTY QUARRY		NW	21	1014	R11W			5 5	1 - 5
454502	WINN S&G	SAND & GRAVEL WINN	-	SE	06	T074	R10W	2.66	X	-	
1J4JUL	WINN JAO	VVIIVIV		SE	00	1014	RIUW	2.00	^		

NOTE 1: 1.25 INCH MAXIMUM TOP SIZE

Matls. IM T203

		RECENTLY ACT	IVE AGGREG	ATE	SOURC	ES	BULK SSD	DUR	FR HN	ICT 1A		N
CODE	OPERATOR	SOURCE NAME	LOCA	ATION	1		SpGr	CA FA	Α	В	BEDS	E
55 A55506 A55508 A55518 A55536 A55548	KOSSUTHDIST 2KOSSUTH COUNTYKOSSUTH COUNTYREDING S&GHANSEN CONST COMARTIN MARIETTA	SAND & GRAVEL WHITTEMORE IRVINGTON REDING BREESE BORMANN SAND	NW NW NE NW	16 36 02 15 39	TO95 TO95 TO94 TO98 TO94	R30W R29W R29W R30W R29W			4 4	4		
56	LEE DIST 5		NE	10	TOCO	DOCINI		-			1 01	
A56002	CESSFORD CONST CO	HAWKEYE	NE	10 .	T068	R06W	- 3		4	5 4	1 - 21	
A56004	CESSFORD CONST CO	FRANKLIN	NE	25	TO68	R06W	2.49	2			12	2
A56006	CESSFORD CONST CO	ARGYLE	SE	18	TO66	R06W			4	4 4 5	12 - 14 1 - 17 4 - 12	7
A56008	CESSFORD CONST CO	DONNELLSON	SE	05	TO67	R06W	0.0		4	4	13 - 17	
A56012	CESSFORD CONST CO	VINCENNES SAND & GRAVEL	NW	19	TO66	R06W						
A56504	CESSFORD CONST CO	VINCENNES	SE	32	TO66	R06W	2.02	Y	4	4		-
A56506	BROCKMAN SAND CO	FORT MADISON	SW	11	TO67	R05W	2.67	X	4	4		
A56508	SHIPLEY CONTRACTING CORP		SE	11		R05W	2.67 DWU	X X				

NOTE 1: AASHTO 57 GRADATION MAXIMUM

1

Matls. IM T203

		RECENTLY ACTIV	E AGGRE	GATE	SOURC	ES	BULK	DUR	FRICT	(
CODE	OPERATOR	SOURCE NAME	LOC	ATIO	N		SSD SpGr	PCC CA FA	HMA A B	BEDS
57	LINN DIST 6	CRUSHED STONE								
A57002	WENDLING QUARRIES INC	BETENBENDER-COGGON	SW	03	T086	R06W	DWU DWU	3i 2		8 - 9 8 - 10
A57004	WENDLING QUARRIES INC	PLOWER	SE	36	T086	R06W	2.62	3		9 - 11
A57006	WENDLING QUARRIES INC	ROBINS	NE	21	T084	R07W	2.57	3i	4 4 4	1 - 10
A57008	WENDLING QUARRIES INC	BOWSER-SPRINGVILLE	SW	29	T084		DWU	3i	4 4	6 - 7
A57010	WENDLING QUARRIES INC	TROY MILLS	SE	09	T086	R07W	DWU	3i	4 4 X X	8 - 9
A57012	WENDLING QUARRIES INC	MORGAN CREEK	SE	22	T083	R08W			XX	
A57014	WENDLING QUARRIES INC	SWEETING	NW	18	TO85	R08W		1	4	
A57016	WENDLING QUARRIES INC	ALICE	NW	08	T085	R07W			4	1.0
A57018	MARTIN MARIETTA	CEDAR RAPIDS	NE	15	T082		2.64	3i		2 - 9
		1100001			TOOR	DOCIN	DIANU	0.0	4 4	2 - 14
A57020	WENDLING QUARRIES INC	LISBON	NW	24	T082	R05W	DWU	3iB	4 4	1
A57022	CRAWFORD QUARRY CO	LEE CRAWFORD	NW	23	T083	R08W	2.55	3i	4 4	8
A57026	NIEMANN CONST CO	COOK	NW	10	T086	R07W	DIAN			
A57028	WENDLING QUARRIES INC	BEVERLY	NW	07	T082	R07W	DWU	3i	4 4	6 - 7
457030	BRUENING ROCK PROD INC	HENNESSEY	NE	01	T082	R07W	DWU	3i	4 4	4 - 5
457502	WENDLING QUARRIES INC	SAND & GRAVEL SWEETING	NE	18	T085	R08W			4 4	
10700L	WENDERING QUARTIES INC	SHEETING		10	1000	110011	2.64	X	4 4	
A57506	WENDLING QUARRIES INC	CEDAR RAPIDS .	- NE	27	.TO84	R08W			4 4	
457500	WENDLING OUNDDIES ING	FACT MADION	ALE	20	TODA	DOCIM	2.65	X	2 2	
457508	WENDLING QUARRIES INC	EAST MARION	NE	36	T084	R06W	2.65	x	3 3	
A57516	MARTIN MARIETTA	CEDAR RAPIDS SAND	SW	35	TO83	R07W	2.65	X		
457520	WENDLING QUARRIES INC	IVANHOE	NW	29	T082	R05W			4 4	
							2.66	X		
457522	WENDLING QUARRIES INC	CENTRAL CITY	NE	10	T085	R06W			4 4	
		000001		44	TOOC	DOCINI	2.65	Х		
457524	WENDLING QUARRIES INC	COGGON	NW	11	T086	R06W	2.05	v	4 4	
AFTEDC	WENDLING OLIADDIES ING	TROY MILLS	SE	00	T086	R07W	2.65 2.65	X		
457526	WENDLING QUARRIES INC	AGGREGATES INC	SW	09 26	T086		the second se	2B X	3 3	
457528	AGGREGATES INC	AGGREGATES INC	SVV	20	1084	R08W	DWU 2.65	X	3 3	
A57530	WENDLING QUARRIES INC	HESS	SW	04	T082	ROGW	DWU	x		
A57532	CROELL READY MIX	PALO	NE	21	T084	R08W	DWU	x		
A57534	MARTIN MARIETTA	LINN COUNTY SAND	NE	05	T082	R06W	DWU	x		
58	LOUISA DIST 5	CRUSHED STONE								
158002	RIVER PRODUCTS CO	COLUMBUS JUNCTION	NW	03	T074	R05W	2.55	3	-	16 - 19
									4 4	15 - 19
		SAND & GRAVEL							4 4	19 - 21
158504	RIVER PRODUCTS CO	FREDONIA A INLAND	SW	17	T075	R04W			4 4	
100004	KITENT RODOCID CO	PUMPING	544	.,	10/5	NOTW	2.66	X	4 4	
		FREDONIA B RIVER	SW	17	T075	R04W	2.00		4 4	
		PUMPING					2.66	X		

NOTE 1: 1.25 INCH MAXIMUM TOP SIZE NOTE 2: AASHTO 57 GRADATION MAXIMUM

)			RECENTLY ACTIVE				ES	BULK	DU PC	С	FR HM	A		1
CODE	OPERATOR	_	SOURCE NAME	LOCA	ATION	1		SpGr	CA	FA	A	В	BEDS	
60	LYON D	IST 3	SAND & GRAVEL				5.5							
460502	PETTENGILL CONC &	GRAVEL	ROCK RAPIDS #1	NW	33	T100	R45W	2.69	2		3	3		
								2.67		X				
460504	PETTENGILL CONC &	GRAVEL	ROCK RAPIDS #2	NE	09	TO99	R45W	-			3	3		2
A60508	DIETER PIT		DIETER	SE	24	T100	R49W				4	4		
A60510	HALLETT MATERIALS	CO	OLSON	NW	21	T099	R48W				4	4		
460512	JOE'S READY MIX INC		LITTLE ROCK	NW	03	T099	R43W	DWU	2		4	4		
					-			2.66		X				
460514	MARTIN MARIETTA		DOON		21	TO98	R45W	2.00			3	3	1	
460516	MARTIN MARIETTA		OPEN	SW	24	TO98	R46W				3	3		
A60518	ROCK VALLEY GRAVE	0.01	OPEN	NW	17	TO99	R48W				4	4		
A60520	HOGAN	100	WINTER	SE	18	TO99	R43W				4	4		
A60522	HYMANS CONST CO		OPEN	JL	17	TO98	R44W				4	4		
A60522	MARTIN MARIETTA		OPEN		29	T098	R44W				4	4	() · · · · · · · · · · · · · · · · · ·	
			RUDD		29	T1098	R45W				4	4		
A60528	HYMANS CONST CO										4	4		
460530	DUININCK BROS		KOOIKER		28	T099	R45W							
A60534	DUININCK BROS	T 00 110	EGEBO		16	T099	R48W				4	4		
A60540	SOUTHERN MN CONS	of COINC		SE	04	T099	R43W							
A60542	KRUSE PAVING		EBEN	NW	17	T099	R43W							
A60544	DAKOTA ROAD BUILD		ORVE	NE	24	T100	-R49W							
A60546	HALLETT MATERIALS	CO	VANDERBRINK	NW	07	T098	R45W	1.00		-				
61	MADISON D	IST 4	CRUSHED STONE											
A61002	SCHILDBERG CONST	CO INC	EARLY CHAPEL-DAGGETT	SW	03	T076	R29W				5	5		15
												5	1	12
								- · · ·				4		14E
61010	MARTIN MARIETTA		EARLHAM	N2	09	T077	R28W		1			5	2	256
A61012	MARTIN MARIETTA		WINTERSET NORTH	SE	27	T076	R27W					5	2	25
A61013	SCHILDBERG CONST	COINC	WINTERSET WEST	SW	28	T076	R27W					5		258
A61016	PERU QUARRY	000	PERU	NE	27	T075	R27W							
A61018	MARTIN MARIETTA		PAMMEL		08	T075	R28W				5	5	1	15
A61024	MARTIN MARIETTA		PENN-DIXIE	SW	32	T076	R27W					5		25
A61024	MARTIN MARIETTA		MASON	SW	16	T077	R28W					4		20
401020			MASON	244	10	1011	N20W					5		25
A61028	GRIMES ASPHALT & F	DAVING	GRIMES ASPHALT & PAV	SE	04	T074	R27W	1				5		25
		AVING	THRAILKILL	NE	04	T074	R28W			- 0		5 4		20
A61032	MARTIN MARIETTA		INKAILNILL	INE	08	10//	RZÖW							
AC1004		INC	CLANTON ODEEK		10	TOTA	DOTIN					5		25
A61034	BIG STONES QUARRY		CLANTON CREEK	NW	10	T074	R27W			- 9			250.00	
A61036	SCHILDBERG CONST	COINC	MONARCH CEMENT OF IOWA	ŅE	08	T077	R28W				-		25B-25	5E
		DIST 5	CRUSHED STONE											
62	MAHASKA D	101 0	SHOOHED STONE											
	MAHASKA D MARTIN MARIETTA	101 5	GIVEN #2	SE	14	T074	R16W							
62 A62008		101 5		SE	14	T074	R16W	1.50					-	

25

Matls. IM T203

		RECENTLY A	CTIVE AC	GGRE	GATE	SOURC	ES	BULK SSD	DUR PCC	FR	RICT	
CODE	OPERATOR	SOURCE NAME		LOC	ATIO	N		SpGr	CA FA		В	BEDS
63	MARION DIST 5	CRUSHED STONE										
A63002	MARTIN MARIETTA	DURHAM MINE		NE	08	T075	R18W	DWU 2.59	3i 2	4 4 4	4 4 4	10 88 - 95 95 - 96
A63010	BRUENING ROCK PROD INC	S&S SAND & GRAVEL		SE	25	T075	R20W				4	00 00
A63502	PELLA CONST CO LTD	BEAN PROPERTY		NE	02	T075	R18W	2.67	x	4	4	
A63512	MARTIN MARIETTA	NEW HARVEY		NW	12	· T075	R18W	2.67	X		-	
64	MARSHALL DIST 1			_								
A64002	MARTIN MARIETTA	FERGUSON		SW	05	T082	R17W	2.65 2.66 DWU 2.66 DWU	3i 3 2 2 2	4 4 4 4 4 4	4 4 4 4 4 4	10 - 21 10 - 17 8 - 17 8 - 21 2 - 17 1 - 18
464004	CESSFORD CONST CO	LE GRAND		SW	36	T084	R17W	2.58 DWU	3i 2	5 4 4 4	5 4 4 4	1 - 7 19B-31 8 - 19 19B-32
464502	MARTIN MARIETTA	SAND & GRAVEL MARSHALLTOWN		SW	29	T084	R17W	2.66	2	4	4	-
404302	WARTIN WARLETTA	MARSHALLTOWN		300	29	1004	KI/W	2.65	× X	4	4	
464506	KNIFE RIVER MIDWEST LLC	BEACH		NW	09	T085	R20W				Х	
65	MILLS DIST 4	CRUSHED STONE									-	
465006	SCHILDBERG CONST CO INC	MALVERN	NW	SE	31	T072	R41W				Х	1.244
66	MITCHELL DIST 2	CRUSHED STONE		_			_					
466002	FALK CONST CO	DUENOW		SE	08	TO99	R17W	2.77	3iB 3	4	4	5 13 1 - 5 7 - 13
A66006	FALK CONST CO	WILDE		NE	07	T098	R18W	DIALL	2:		5	2
A66014 A66016	FALK CONST CO FALK CONST CO	STAFF LESCH		NE SW	17 12	TO97 TO97	R17W R17W	DWU DWU	3i 3i	5	5 4	3 6 - 7 1 - 8 9 - 14
466018	FALK CONST CO	DYNES		SW	30	TO99	R15W					
466020	FALK CONST CO	ASPEL		NE	03	T099	R15W		x	v	х	
A66022 A66024	FALK CONST CO FALK CONST CO	WAGNER GRUNDEL		NW	29 07	TO98 TO98	R16W R18W		^	Х	X	
66026	CROELL REDI-MIX	KOSTER SAND & GRAVEL		NE	35	TO99	R18W			-		
66502	FALK CONST CO	OSAGE-SCHMIDT		NW	01	TO97	R17W	2.63	x	4	4	
466504	FALK CONST CO	ST ANSGAR-BLAZEK		SW	36	TO99	R18W			3	3	
A66510	FALK CONST CO	NEWBURG		NW	26	T099	R18W			3	3	
A66512 A66514	FALK CONST CO	KLAAHSEN	C.	SW	36	T099	R18W	2.66	X			
00314	FALK CONST CO	LOVIK	SE	SW	12	TO97	KI/W	2.65	X			

NOTE 1: BOTTOM 5.0' ONLY OF BED 95

•		RECENTLY ACTIVE	AGGREG	ATE	SOURC	ES	BULK SSD	DUF		FRI HM		
CODE	OPERATOR	SOURCE NAME	LOCA	ATION	J		SpGr	CA	FA	А	В	BEDS
67 A67502	MONONA DIST 3 HALLETT MATERIALS CO	SAND & GRAVEL RODNEY		02	T085	R44W	DWU	2	-	3	3	
A07502	HALLETT WATERIALS CO	RODNET		02	1005	14440	DWU	14	x	3	5	
A67506	HARGRAVE	HARGRAVE	NE	31	T085	R46W				4	4	
A67508	MIDWEST PAVING CO	ONAWA	SW	09	T082	R45W				4	4	
68	MONROE DIST 5	CRUSHED STONE										
A68004	DOUDS STONE INC	EDDYVILLE SOUTH	SW	02	T073	R16W						
69	MONTGOMERY DIST 4	CRUSHED STONE				1						
A69002	SCHILDBERG CONST CO INC	STENNETT	NE	27	T073	R38W					4	16 - 1
100501		SAND & GRAVEL		10	T070	Daolu		-	-			-
A69504	WESTERN ENGINEERING	ELLIOT	_	13	T073	R38W	-			4	4	-
70	MUSCATINE DIST 5	CRUSHED STONE							-			
A70002	WENDLING QUARRIES INC	MOSCOW	NW	08	T078	R02W	2.66	31		5	5	11 - 1
							2.67	3iB		4	4	21A-2
										5	5	1 - 9
A70006	TUBE CITY IMS CORP	WILTON	SE	02	T078	R02W				2	2	
A70008	HARSCO CORP/HECKETT DIV	MONTPELIER	SE	11	T077	R01E				2	2	
		SAND & GRAVEL								1		1
A70504	WENDLING QUARRIES INC	ATALISSA-MCKILLIP	NW	20	T078	R02W	1000			4	4	
		10115	05	-	T070	Dealth	2.66		X			
A70506	ACME FUEL AND MATERIALS	ACME	SE	22	T076	R02W	2.65		X			
A70508	HAHN S&G NORTHERN GRAVEL CO	HAHN	SE	16 15	T076 T076	R02W R02W						
A70510			_	15	1070	RUZW	-	-	_		_	-
71	O'BRIEN DIST 3	SAND & GRAVEL	SW	16	TO97	R42W	-	-	-	4	4	-
A71508	MARTIN MARIETTA	SHELDON OPEN	SW	29	TO97	R42W R42W				4	4	
A71510 A71512	MARTIN MARIETTA MARTIN MARIETTA	SANBORN	SW	04	T097	R42W				4	4	
A71512	MARTIN MARIETTA	PAULLINA	SE	23	T095	R41W				4	4	
A71516	MARTIN MARIETTA	OPEN	SE	01	T094	R41W				4	4	
A71518	MARTIN MARIETTA	OPEN	JL	17	T095	R39W				4	4	
A71520	MARTIN MARIETTA	PRIMGHAR	NW	04	T095					4	4	
A71522	FABER & SON CONST CO	SHELDON	SE	19	TO97					4	4	
A71526	MARTIN MARIETTA	OPEN	SE	20	TO97	R42W				4	4	
A71528	O'BRIEN COUNTY	COUNTY	NW	27	TO95	R39W				4	4	
A71530	HALLETT MATERIALS CO	ROHLIN	-	14	TO97	R42W				4	4	
A71532	KNIFE RIVER MIDWEST LLC	DOUMA	SE	05	T096	R41W						
A71534	HALLETT MATERIALS CO	SHELDON/KLEINWALTERINK	CT	16	TO97	R42W						

27

			RECENTLY A	CTIVE	E AG	GREC	SATE	SOURC	ES	BULK SSD	DUI		FR HM			
CODE	OPERATOR		SOURCE NAME			LOC	ATIO	V		SpGr	CA	FA	А	В	BEDS	
72	OSCEOLA	DIST 3	SAND & GRAVEL													-
A72504	NORTHWEST R/M		OCHEYEDAN	SE	15	SW	14	TO99	R40W	2.71	2		3	3		7
	nonninzorini	001101110								2.68	1	X				
A72506	HALLETT MATERI	ALS CO	ASHTON			SW	28	TO98	R42W	2.69	2		3	3		
										2.69		X				
A72508	MARTIN MARIETT.	A	THOMAS			NW	36	TO99	R40W				4	4		
A72514	MARTIN MARIETT.	A	OPEN			NW	31	T100	R40W				4	4		
A72518	FABER & SON CO	NST CO	VASS				19	T100	R42W				4	4		
A72520	NORTHWEST R/M		OCHEYEDAN NORTH			NE	23	TO99	R40W	1.1.1	100		4	4		
A72522	HIGMAN SAND & C		KAPPES			NE	11	T098	R42W	DWU	2					
TLULL	THOMPHY SPHID & C	DIVIVEL	1011125			THE .		1000	it i Litt	0.00	1	x				
472524	KNIFE RIVER MID	NESTILC	BOERHAVE			SE	21	TO98	R42W	DWU		X				
472526	NORTHWEST R/M		OCHEYEDAN SOUTH			UL.	19	T099	R39W	0.00		~				
A72528	KNIFE RIVER MID		DIRKS			SW	36	TO99	R40W							
			BOYD			NW	36	TO99	R40W	2.65	2					
A72530	NORTHWEST R/M	CONCINC	BOTD			1444	30	1099	R40W	1000	14	v				
170500		1000				NILA/	22	TOOO	DAOM	2.66		X				
472532	HALLETT MATERIA	ALS CO	OCHEYEDAN/PEDLEY			NW	23	TO99	R40W							
73	PAGE	DIST 4	CRUSHED STONE										(1	-		
A73004	SCHILDBERG COM	IST CO INC	SHAMBAUGH			SW	20	TO67	R36W					4		
			SAND & GRAVEL					-								
A73508	HALLETT MATERIA	ALSCO	SHENANDOAH-CONNELL I	1	1.5	NE	07	T069	R39W	DWU	2		-		-	-
		120 00	one of the officer					1000		2.63	-	X				
74	PALO ALTO	DIST 3	SAND & GRAVEL	-		-	-							-		-
A74502	HALLETT MATERIA		EMMETSBURG S&G				36	TO96	R33W	2.71	2		3	3		
IT IOOL		120 00								2.64	-	X				1
474504	MARTIN MARIETT	A	DORWEILLER			SW	05	TO94	R31W	2.01			3	3		1
17 4304	WUNCTIN WUNCE I II	,	DORWEILLER			5.	00	1001	North	2.67		x	5	5		
74506	MARTIN MARIETT	٥	WEST BEND			NW	08	TO94	R31W	2.07		^	3	3		
474508	MARTIN MARIETT		OPEN			NW	10	TO97	R33W				4	4		
A74508		4	EMMETSBURG			NW	22	TO96	R33W	2.69	2		4	4		
474309	HOFFERT S&G		EWIWEISDURG			INVV	22	1090	KSSVV	2.66	4	x	4	4		
75	PLYMOUTH	DIST 3	SAND & GRAVEL	-	-	-	-				-		-	-		-
	HIGMAN SAND & C		AKRON			NW	01	TO92	R49W	2.70	2	-	3	3	-	-
475502	HIGWAN SAND & C	BRAVEL	AKKON			INVV	01	1092	R49VV	2.67	14	v	2	2		5
175502	EVEDICT INC		AKDON			NE	01	TOOD	DAOW		2	X	2	2		
475503	EVERIST INC		AKRON			NE	01	TO92	R49W	2.69	2	V	3	3		
75500			DEMSEN			CE	02	TOO2	DAMA	2.67		X		4		
175506	MARTIN MARIETT		REMSEN			SE	03	TO92	R44W		1		4	4		
75508	MARTIN MARIETT		ASPEN			NE	11	TO92	R49W		1		3	3		
75510	MARTIN MARIETT		KINGSLEY			NE	35	TO90	R44W				4	4		
75512	HYMANS CONST (KINGSLEY			NE	13	T090	R44W				4	4		
75514	WALKERS EXCAV		OYENS				05	T092	R44W				3	3		
75516	HALLETT MATERIA		BRUNSVILLE				03	TO92	R46W				4	4		
75518	HALLETT MATERIA	ALS CO	HINTON			NW	16	TO90	R46W	DWU	3		3	3		
75520	HALLETT MATERIA	ALS CO	MERRILL				02	TO91	R46W				4	4	8	
	LANA CANID & CDAI	/FLINC	G DIRKSEN #2				31	TO93	R44W	2.65	1	X				
475524	L&M SAND & GRAV															
	L&M SAND & GRAV		FRITZ DIRKSEN				05	TO92	R44W	DWU		X			1.0	

CODE	OPERATOR	RECENTLY SOURCE NAME	ACTIVE AC		ATION		ES	BULK SSD SpGr	DU PC CA		FRI HM	A	BEDS
	POCAHONTAS DIST 3	CRUSHED STONE		_	-				T				
76 476002	MARTIN MARIETTA	GILMORE CITY		NE	36	TO92	R31W	2.64	3iB		5	5	1A - 3
10004		MOODE		CW	25	TOOD	D21W	2.05	2:0		4	4	1B - 3
176004	MARTIN MARIETTA	MOORE		SW	25	TO92	R31W	2.65	3iB		5 4	5 4	1A - 3 3
								-			4	4	1B - 3
											4	4	4 - 10
	and the second s	SAND & GRAVEL			-						0	U	
476506	MARTIN MARIETTA	EGLE		NE	02		- R31W				4	4	
A76508 A76510	MARTIN MARIETTA MARTIN MARIETTA	OPEN ZEAMAN		NE SE	07 13	TO91 TO92	R33W R31W				4	4	
A76512	MARTIN MARIETTA	LIZARD CREEK		JL	13	T090	R31W				4	4	
A76514	BLACKTOP SERVICES	MILLER			12	T093	R31W	DWU		X	4	4	1000
77	POLK DIST 1	SAND & GRAVEL					-						
A77502	MARTIN MARIETTA	JOHNSTON		NW	17	T079	R24W	DWU 2.67	2	x	3	3	
A77504	HALLETT MATERIALS CO	DENNY-JOHNSTON			08	T079	R24W	2.70	2	^	3	3	
								2.67		X	1		
A77508	HALLETT MATERIALS CO	EDM #1-WHITE		SE	18	T078	R23W	1000					
A77514 A77520	HALLETT MATERIALS CO MARTIN MARIETTA	WEST DES MOINES ARMY POST ROAD		SE SW	29 29	TO78 TO78	R25W R25W	2.65	2		3	3	
111320		ARMITT OST KOND		511	20			2.66		X	J		
A77522	HALLETT MATERIALS CO	EDM #2-VANDALIA	NE 07	NW	08	T078	R23W	2.69	2	~	3	3	1
A77526	HALLETT MATERIALS CO	ARMY POST EAST		SE	29	T078	R25W	2.65	2	X	3	3	~
				02				2.65		X			-
A77528	HALLETT MATERIALS	PLEASANT HILL			08	T078	R23W	2.68	2	x	3	3	
A77530	HALLETT MATERIALS CO	NORTH DES MOINES		NE	16	T079	R24W	2.66	2	~			
H11330	TREET MATERIALS CO	NORTH DES MORES		INC.	10	1075	112 100	2.66	1	Х			
A77532	LOUNSBURY S&G	WEST DES MOINES			30	T078	R25W			1			
A77534	MARTIN MARIETTA	SAYLORVILLE SAND			09	T079	R24W	DWU 2.66	2	х			
78	POTTAWATTAMIE DIST 4	CRUSHED STONE			-	-	-		-			-	-
A78002	SCHILDBERG CONST CO INC	CRESCENT			35	T076	R44W				4	4	25B-25
											4	4	25C-25 25A-25
												5	254-25
												4	26A-26
A78006	SCHILDBERG CONST CO INC	MACEDONIA-K&S		NE	28	T074	R40W					4	27A-27
10000	Semebberre const como	SAND & GRAVEL		INC	20		_						
A78504	WESTERN ENGRG CO INC	OAKLAND		SW	23	T075	R40W	2.65	3	х	4	4	
A78506	SCHILDBERG CONST CO INC	CRESCENT		NE	34	T076	R44W	2.00		~	4	4	
79	POWESHIEK DIST 1	CRUSHED STONE								1			
A79002	MARTIN MARIETTA	MALCOM MINE	_	SE	04	T080	R15W	2.60	2		4	4	10 - 13
80	RINGGOLD DIST 4	CRUSHED STONE		CF	10	TOOT	DOOLA					-	-
A80002	SCHILDBERG CONST CO INC	WATTERSON		SE	19	TO67	R29W					5	7

Matls. IM T203

		RECENTLY A	CTIVE AC				ES	BULK SSD	DUI	С	HM		
CODE	OPERATOR	SOURCE NAME		LOC	ATIO	N		SpGr	CA	FA	А	В	BEDS
81	SAC DIST 3	SAND & GRAVEL			-		_					_	
A81502	HALLETT MATERIALS CO	SACTON-LAKEVIEW		S2	08	T086	R36W	2.72	3	×	3	3	
A81504	HALLETT MATERIALS CO	AUBURN		NW	02	T086	R35W	2.67	2	X	4	4	-
A81506	HALLETT MATERIALS CO	SAC CITY		NW	36	T088	R36W	2.64		x x	4	4	
A81508	LAKE VIEW CONCRETE PROD	LAKEVIEW		SE	05	T086	R36W	DWU		^	4	4	
A81514	TIEFENTHALER INC	CARNARVON S&G		NE	16	T086	R36W	2.68	2	100	3	3	1
101500		LIDEN		C.C.	11	T007	DOCIM	2.66		X	2	2	
A81520	KNIFE RIVER MIDWEST LLC	UREN		SE	11	T087	R36W	2.67		x	3	3	
A81522	HALLETT MATERIALS CO	ULMER		SW	28	T087	R35W				4	4	
A81524	KNIFE RIVER MIDWEST LLC	NO NAME		SE	04	T087	R37W				4	4	
A81526 A81528	MARTIN MARIETTA HALLETT MATERIALS CO	BETTIN WALL LAKE		NW	19 18	TO87 TO86	R36W R36W	2.70	3		4	4	
101320	TALLETT WATERIALS CO			1400	10	1000	1.0000	2.67		x			
A81530	HALLETT MATERIALS CO	LEITZ NORTH		SE	29	T087	R35W	DWU		X			
A81532	HIGMAN SAND & GRAVEL	EARLY-THORPE			22	T089	R37W	DWU 2.66	2	x	4	4	
A81534	MARTIN MARIETTA	SAC COUNTY S&G	SE	SE	22	T089	R37W	2.68		x			
A81536	TIEFENTHALER INC	DAIKER		NE	12	TO86	R35W	DWU		X			
A81540	TIEFENTHALER INC	COLBURN			13 13	T087 T086	R35W R37W						
A81542	HALLETT MATERIALS CO	WALL LAKE BOYER			15	1080	RSTW	-	-	_		_	
82	SCOTT DIST 6 RIVERSTONE GROUP INC			W2	17	TO80	R04E	DWU	3i	-	4	4	17 - 19
A82002	RIVERSTONE GROUP INC	MCCAUSLAND (MC 39)		VVZ	17	1080	RU4E	DWU	3		4	4	1 - 16
A82004	RIVERSTONE GROUP INC	NEW LIBERTY (MC 41)		NE	33	TO80	R01E	DWU	3iB		4	4	1 - 2
A82006	RIVERSTONE GROUP INC	LECLAIRE (MC 38)		NW	35	T079	R05E	2.71	3i				14 - 27
								DWU DWU	3i 3				28 - 29 2 - 13
								000	1		4	4	1 - 28
A82008	LINWOOD MINING & MINERALS	LINWOOD MINE		SW	13	T077	R02E	2.67	3i		5	5	20 - 25
								2.69 DWU	3i		5 4	5	27 - 308
								DWU	3i		4	4	33 - 41 19
											4	4	24 - 25
100500	DIVEDGTONE ODOUD INO	SAND & GRAVEL		CIN	17	TODA	DALL	-	-	-		,	
A82502	RIVERSTONE GROUP INC	MCCAUSLAND (MC 43)		SW	17	TO80	R05E	2.66		x	4	4	
33	SHELBY DIST 4	SAND & GRAVEL	-									-	
A83506	HALLETT MATERIALS CO	HARLAN-REINIG		NW	30	T079	R38W	2.65	3				
A83508	BEDROCK GRAVEL CO	JACKSONVILLE			12	T079	D3711	2.65		X			
103300	DEDROCK GRAVEL CO	SHORSONVILLE	_		12	1013	113744						

* TOP 32' OF BED 19 NOTE 1: 1.25-INCH MAXIMUM TOP SIZE

CODE	OPERATOR	RECENTLY AC	TIVE AC	GREG			ES	BULK SSD SpGr	DUI PCC CA		FRI HM A		BEDS	
				_	_	-		1	-	-		-		
B4 A84502	SIOUX DIST 3 VALLEY SAND AND GRAVEL	SAND & GRAVEL		NW	20	T097	R46W	2.69	2	-	3	3	-	+
404302	VALLET SAND AND GRAVEL	VANZEE		INVV	20	1097	R40W	2.67	4	X	2	2		
484504	HYMANS CONST CO	VANDERESCH		SE	20	TO96	R47W	DWU	2	^	3	3		
				SE	07	TO96	R47W	DWO	14		3	3		
484506	HALLETT MATERIALS CO	HUDSON-OSTERCAMP		SE	07	1096	R4/W	2.69		x	3	3		
A84508	JOE'S READY MIX INC	SIOUX CENTER		NW	33	TO95	R45W	2.09		^	4	4		
404300	JUE S READT WIX INC	SIOUX CENTER		1444	22	1095	R4JW	DWU		x	4	4		
A84510	EVERIST INC	HAWARDEN-NORTH	S2	NW	22	TO95	R48W	2.70	2	^	3	3		
404310	EVERISTING	HAWARDEN-NORTH	52	1400	22	1095	R40VV	2.67	4	x	3	5		
A84511	HYMANS CONST CO	HAWARDEN		NE	01	T095	R48W	DWU	2	^	3	3		
	BOYDEN	COUNTY		INE	35	TO95	R46W	DWO	14		3	4		
A84514	MARTIN MARIETTA				35 25	TO97	R44W R48W				4	4		
A84516		NO NAME		C.F.		TO97								
A84518	MARTIN MARIETTA	ALTON		SE	15		R44W				4	4		
A84520	COUNTY PIT	CHATSWORTH		SW	28	T094	R48W				4	4		
A84522	HALLETT MATERIALS CO	HYMAN		SW	31	T096	R47W							
A84524	VALLEY SAND AND GRAVEL	GROTH		NW	36	T097	R48W	-			4	4		
A84526	HIGMAN S&G	JONAS		NE	36	TO94	R44W	DWU		X	4	4		
A84528	HIGMAN S&G	HIGMAN-CHATSWORTH		W2	28	TO94	R48W	2.69	2		4	4		
						and a		DWU		X				
A84530	VALLEY SAND AND GRAVEL	GROENWEG		NW	15	T097	R46W	DWU	2		3	3		
								DWU	1	X				
A84532	KNIFE RIVER MIDWEST LLC	LASSON			32	TO94	R44W	DWU	2					
A84534	KNIFE RIVER MIDWEST LLC	CLEVERINGA		SE	25	TO95	R44W	DWU		Х				
85	STORY DIST 1	CRUSHED STONE	-		-					-		-		-
A85006	MARTIN MARIETTA	AMES MINE		SW	24	T084	R24W	2.57	3i		5	5	19 - 2	5
105000	MARTIN MARIETTA	AMESIMINE		500	24	1004	INC TW	2.07	5		4	4	26,28-3	
								2.68	3iB	21.1	4	4	4	
		SAND & GRAVEL						2.00	510		4	4	4	'
A85510	HALLETT MATERIALS CO	AMES SOUTH			18	T083	R23W	2.66	2	-	3	3		-
A00010	HALLETT MATERIALS CO	AIVIES SOUTH			10	1005	RZSW	2.65	14	Х	2	2	1	
_			_	_	_	_		2.05		^	-	_		_
86	TAMA DIST 1	CRUSHED STONE												
A86002	WENDLING QUARRIES INC	MONTOUR		NW	09	T083	R16W	2.61	3i		5	5	1 - 7	
								2.63	3i		4	4	13 - 2	0
											4	4	8 - 1	2
		SAND & GRAVEL					-			-	1	-		
A86502	MANATT'S INC	FLINT		NW	03	T082	R15W			1	3	3		
								2.65		Х				
87	TAYLOR DIST 4	CRUSHED STONE						-	-	-		-		-
A87004	SCHILDBERG CONST CO INC	102 QUARRY	_	NE	22	TOGO	R34W	1	-	1		4		-
107004	SCHIEDERG CONST CO INC		_	NL	JL	1000	113411					4		
88	UNION DIST 4	CRUSHED STONE												
A88002	SCHILDBERG CONST CO INC	THAYER		NE	35	T072	R28W					5	25A-25	ΰĒ
												5	25	

NOTE 1: THE CONTENT OF BED 26 SHALL NOT BE MORE THAN 50% IN THE OVERALL PRODUCT.

		RECENTLY ACTIVE	AGGRE	GATE	SOURC	ES	BULK	DUF			ICT	
CODE	OPERATOR	SOURCE NAME	LOC	ATIO	N		SSD SpGr	PCC CA		HN A	B	BEDS
89	VAN BUREN DIST 5	CRUSHED STONE	-							-		
A89002 A89006	DOUDS STONE INC CESSFORD CONST CO	DOUDS MINE FARMINGTON-COMANCHE	SE NE	25 05	TO70 TO67	R11W R08W	2.46 2.69 2.52	2 3i 2		4 5 4	4 5 4 4	6 - 13 3 16 - 17 18 - 22
A89008	DOUDS STONE INC	SELMA-GARDNER	NW	16	TO70	R11W	2.69	3		5 4 5 4 4 4	5 4 5 5 4 4	5 - 12 11 7 - 10 7 - 11 14 - 21 22 - 31
90	WAPELLO DIST 5	SAND & GRAVEL										
A90504	DOUDS STONE INC	HOFFMAN	SE	10	T072	R14W	2.05		~	4	4	
A90506	WINN CORP	WAPELLO CO SAND & ROCK		5,6	T071	R13W	2.65 DWU		X X			
92	WASHINGTON DIST 5	CRUSHED STONE										
A92002	DOUDS STONE INC	WEST CHESTER	NE	19	T076	R08W	2.64 DWU	32		4	4	5 - 7 14 - 16
A92006	DOUDS STONE INC	СОРРОСК	NE	30	T074	R07W		-		5	5	3 - 4
A92008	RIVER PRODUCTS CO	PEPPER-KEOTA FIELD	SW	31	T076	R09W						
A92014	DOUDS STONE INC	COPPOCK NORTH SAND & GRAVEL	SE	.19	T074	R07W						(m
A92502	RIVER PRODUCTS CO	RIVERSIDE	NE	10	T077	R06W				4	4	
							2.65	1	X			
94	WEBSTER DIST 1	CRUSHED STONE										
A94002	MARTIN MARIETTA	FT DODGE MINE	SW	24	T089	R29W	2.65	3iB		4	4	36 - 42
A94006	MARTIN MARIETTA	YATES	SW	01	T089	R29W					5	
A94008	KNIFE RIVER MIDWEST LLC	BUSKE SAND & GRAVEL	SE	36	TO90	R29W				5	5	1 - 11
A94502	NORTHWEST MATERIALS	YATES	SW	01	T089	R29W				4	4	
							2.66		X			
A94522	AUTOMATED S&G	CROFT	NW	14	T089	R29W	2.65		X			
A94526	KNIFE RIVER MIDWEST LLC	BUSKE	SE	36	TO90	R29W	2.07		V	3	3	
A94528	KNIFE RIVER MIDWEST LLC	CONDON	NW	19	ТО90	R30W	2.67		X			

		RECENTLY ACTI	VE AGGREG	ATE	SOURC	ES	BULK SSD	DUR		FR HM			
CODE	OPERATOR	SOURCE NAME	LOCA	ATION	J		SpGr	CA			В	BE	DS
96	WINNESHIEK DIST 2	CRUSHED STONE			-						-		
A96002	KNIFE RIVER MIDWEST LLC	KENDALLVILLE	NE	33	T100	R10W	2.68	3B		4	4		- 7
A96003	WILTGEN CONST CO	BROWN	NW	08	TO99	R10W		1			4	1	- 7
A96004	KNIFE RIVER MIDWEST LLC	HOVEY	SW	28	T098	R08W	2.64	3B		4	4		- 4
A96005	BRUENING ROCK PROD INC	MCGEE	NW	19	T099	R10W				4	4	1	- 6
A96007	WILTGEN CONST CO	JACKSON	NE	31	TO96	R10W							
A96008	BRUENING ROCK PROD INC	WELKEN	SW	04	TO98	R07W	2.71	3i		4	4	4	- 8
A96009	KNIFE RIVER MIDWEST LLC	DRACKLEY		15	T099	R08W	1.1.1						
A96010	KNIFE RIVER MIDWEST LLC	ANDERSON	SW	22	T100	R10W	2.65	3B		5	5	1.	- 4
A96014	NIEMANN CONST CO	FESTINA	SW		· TO96	R09W		X		5	5	1	- 3
A96016	BRUENING ROCK PROD INC	SKYLINE A	SE	10	T098	R08W	2.63	3B		5	5		- 3
A96017	BRUENING ROCK PROD INC	SKYLINE B	СТ	10	T098	R08W	2.63	3B		45	4		- 8
A96022	WILTGEN CONST CO	MADISON #2	NE	18	TO98	R08W				4	4	4	- 11
A96022	WILTGEN CONST CO	MADISON #2 MADISON #1	NW	17	TO98	R08W					5		
A96030	KNIFE RIVER MIDWEST LLC	ASK	NE	27	T098	R07W					4		
A96032	KNIFE RIVER MIDWEST LLC	BRUVOLD	NW	20	TO98	R07W					4 X		
A96034	BRUENING ROCK PROD INC	THOMPSON	SE	29	T098	R09W					^		
A96038	KNIFE RIVER MIDWEST LLC	NORDNESS	SE	09	TO98	R08W	1.00				х		
A96040	KNIFE RIVER MIDWEST LLC	LOCUST	NE	11	TO99	R08W							
A96046	BRUENING ROCK PROD INC	SERSLAND-SMORSTAD	SE	09	TO95	R07W				X	XX		
A96048	NIEMANN CONST CO	LOVE #1	NW	30	T096	R10W				^			
96049	NIEMANN CONST CO	LOVE #2	SW	30	TO96	R10W					X X	1	- 10
96050	BRUENING ROCK PROD INC	BULLERMAN-FESTINA	SE	-14	T096	R09W					4		- 3
A96052	KNIFE RIVER MIDWEST LLC	ESTREM	SW	04	TO97	R07W	2.63	3B			4		- 6
		LOTILIN	511	04	1007	10744	2.05	50		5	5		- 8
A96054	KNIFE RIVER MIDWEST LLC	HORSESHOE BEND	SW	20	TO97	R09W					Х		
A96058	BRUENING ROCK PROD INC	BROGHAMMER	SE	26	TO99	R08W					X		
A96060	KNIFE RIVER MIDWEST LLC	BURR OAK	SE	23	T100	R09W				4	4		
A96062	KNIFE RIVER MIDWEST LLC	HOLT HAUS	SE	28	TO98	R08W					Х		
A96064	KNIFE RIVER MIDWEST LLC	STIKA	NW	15	TO97	R10W	DWU	3i		4	4	1	- 4A
A96066	BRUENING ROCK PROD INC	KROSHUS	SW	13	T100	R07W					Х		
A96068	BRUENING ROCK PROD INC	HOLKESVIK	SW	01	T099	R08W							
A96070	WILTGEN CONST CO	KUHN	NW	33	TO96	R08W							
A96072	BRUENING ROCK PROD INC	MCKENNA NORTH	SW	34	T100	R09W							
A96074	WILTGEN CONST CO	OSSIAN	SW	21	TO96	R08W		1					
A96076	KNIFE RIVER MIDWEST LLC	PRASKA	NE	19	TO97	R10W							
A96078	BRUENING ROCK PROD INC	BUSTA	NW	30	TO96	R10W							
A96082	WILTGEN CONST CO	CROW	SW	17	T097	R10W							
A96084	WILTGEN CONST CO	YOUNG	SE	28	T100	R08W							
A96086	BRUENING ROCK PROD INC	BRUVOLD	NE	29	T098	R07W							
A96090	BRUENING ROCK PROD INC	MCKENNA SOUTH	SE	28	T099	R09W	DWU	3iB		5	5	1	- 5
A96092	KNIFE RIVER MIDWEST LLC	HANSON	SE	26	T100	R08W							
A96094	KNIFE RIVER MIDWEST LLC	CAROLAN	SE	27	T099	R09W							
A96100	WILTGEN CONST CO	YOUNG SAND & GRAVEL	NE	05	T098	R07W							
A96502	KNIFE RIVER MIDWEST LLC	DECORAH	NE	22	T098	R08W				4	4	-	-
1000000		EDEEDODT					2.63		Х				
A96506	KNIFE RIVER MIDWEST LLC	FREEPORT	NE	07	T098	R07W	2.65		Х				
A96514	KNIFE RIVER MIDWEST LLC	ELSBERND	NE	16	TO96	R09W	2.66		х	4	4		
A96520	KNIFE RIVER MIDWEST LLC	SWEDES BOTTOM	NE	06	T098	R08W	2.63		x	4	4		
96522	BRUENING ROCK PROD INC	WOHLSEORS	NW	17	T098	R10W	2.00		A	1	7		
A96526	KNIFE RIVER MIDWEST LLC	STIKA	NW	15	T098	R08W						1	

		RECENTLY ACTIVE	E AGGREO	GATE	SOURC	ES	BULK	DU	D	FR	ICT	
CODE	OPERATOR	SOURCE NAME	LOC	ATIO	N		SSD SpGr	PCC		HN		BEDS
96	WINNESHIEK DIST 2	SAND & GRAVEL (CONTI					T	T		-	-	1
A96528 A96530 A96532	BRUENING ROCK PROD INC KNIFE RIVER MIDWEST LLC WILTGEN CONST CO	GJETLEY CARLSON-FREEPORT SCHMITT	NE NE NE	08 13 34	TO98 TO98 TO96	R07W R08W R09W	2.63 2.66		x x	4	4	
97	WOODBURY DIST 3	SAND & GRAVEL										
A97502	HALLETT MATERIALS CO	CORRECTIONVILLE-BUCK	NW	13	T089	R42W	DWU		x	3	3	-
A97508	MARTIN MARIETTA	CORRECTIONVILLE #2	NW	35	T089	R42W				3	3	
A97510	HALLETT MATERIALS CO	CORRECTIONVILLE-COCKBURN	-	11	T088	R43W				3	3	
A97514	PERSINGER S&G	SMITHLAND	NW	25	T086	R44W	DIANA		~	3	3	
A97516	HALLETT MATERIALS CO	ANTHON		05	T087	R43W	DWU 2.72	3	X	3	3	-
A97510	HALLETT MATERIALS CO	ANTHON		05	1007	R43W	2.67	1	x	3	5	
A97518	HALLETT MATERIALS CO	SMITHLAND		35	T086	R44W	2.69	3	~	3	3	
							2.67		X			
A97520	HALLETT MATERIALS CO	CORRECTIONVILLE-BREESIE		01	T088	R43W				4	4	
A97526	FLEWELLING S&G	FLEWELLING	NW	10	T089	R44W	2.67		X			
A97528 A97530	HALLETT MATERIALS CO NELSTAR	EDWARD NELSTAR	SE	23 14	TO89 TO88	R42W R43W						
A97532	KNIFE RIVER MIDWEST LLC	CREASEY	SE	09	T089	R44W	DWU		x			
98	WORTH DIST 2	CRUSHED STONE		-					-	-	-	
A98002	MARTIN MARIETTA	HARRIS	SW	29	T100	R20W	DWU	3i		4	4	10
							2.73	3B		4	4	6 - 7
							DWU	3		4	4	6 - 11
							DWU	2				2 - 11
A98010	BMC AGGREGATES LC	FERTILE	SW	36	T098	R22W	2.73	3B		4	4	2 - 10
A90010	DIME AGGREGATES LC	TENTILE	300	50	1090	NZZVV	DWU	2B		4	4	15 - 29
							DWU	2B				22 - 29
											4	5 - 10
						Donu				4	4	5 - 20
498014	FALK CONST CO	STEVENS	NW	01	T098	R20W	2.77	3			5	8 - 11B
										4	3	1 - 3
A98016	ULLAND BROS CONST	EMIL OLSON-BOLTON	SW	10	T099	R20W	DWU	2				2 - 5A
								X		4	4	3 - 7
		- Contraction ()									5	1 - 7
A98020	FALKSTONE	TRENHAILE	W2 NE	09	T099	R20W	DWU	2				2 - 3
498502	RANDALL TRANSIT MIX	SAND & GRAVEL RANDALL TRANSIT MIX	NW	31	T100	R20W		-	-	4	4	
430302	KANDALL HANSH WIX	INNOALE INVISIT MIX		31	1100	INLOW .	2.66		X	4	-	
498504	BMC AGGREGATES LC	FERTILE	NW	36	T098	R22W				3	3	
					Lall		2.65		X	1		
498506	MARTIN MARIETTA	KNUTSON	SW	30	T100	R20W				4	4	
		COOPER	NE	12	T098	R20W					4	
	FALK CONST CO			20	TOOO	D2214/						
A98518 A98520 A98522	FALK CONST CO HEARTLAND ASPHALT ULLAND BROS CONST	WADDINGTON EMIL OLSON-BOLTON	SW SW	26 10	TO98 TO99	R22W R20W						

Matls. IM T203

		RECENTLY ACTIVE AG	GREG	ATE	SOURCI	ES	BULK	DUR	FRI	CT	
CODE	OPERATOR	SOURCE NAME	LOC	ATION	ı		SSD SpGr	PCC CA FA	HM	A	BEDS
99	WRIGHT DIST 2	CRUSHED STONE									
499002	KNIFE RIVER MIDWEST LLC	VOSS		36	TO90	R26W	2.59	3i	4	4 5	8 3 - 7
00500		SAND & GRAVEL		10	TOOD	DOMM	0.05	-		0	-
199502	WRIGHT MATERIALS	WRIGHT	NW	12	TO93	R24W	2.65 2.63	2 X	3	3	
99510	MARTIN MARIETTA	MEINEKE	NE	14	TO90	R23W	DWU	x	4	4	
A99514 A99516 A99518 A99520	KNIFE RIVER MIDWEST LLC GIESE CONST CO KNIFE RIVER MIDWEST LLC KNIFE RIVER MIDWEST LLC	VOSS MCALPINE REICHTER DENNIS PETERSON	SE NE	36 24 06 15	TO90 TO92 TO92 TO90	R26W R24W R26W R23W	Dwo				
L	ILLINOIS	CRUSHED STONE				DAUL				-	
AILOO2 AILOO6 AILOO8	CESSFORD CONST CO RIVERSTONE GROUP INC RIVERSTONE GROUP INC	BIGGSVILLE, HENDERSON CO MIDWAY (MC 45), ROCK ISLAND CO MCMAHON (MC 08), WHITESIDE CO		17 16 11	TO10 TO18 TO20	R04W R02E R02E	DWU	3iB	4	4	1 - 5
AIL010	RIVERSTONE GROUP INC	ALLIED (MC 30), ROCK ISLAND CO		14	T017	R02W	DWU 2.69 DWU 2.72	3i 3 3 3	4 5 4	4 5 4	18 7 - 13 14 16 - 17
AILO12 AILO14	MATERIAL SERVICES CESSFORD CONST CO	OTTAWA-LIGHTWEIGHT DALLAS CITY, HENDERSON CO	SW	36	TO08	R07W	DWU	3i	4 4	4 4 4	5A - 6 2 - 3
AILO16 AILO18 AILO20	RIVERSTONE GROUP INC MEDUSA AGGREGATES GRAY QUARRIES/W L MILLER	CLEVELAND (MC 31), HENRY CO KANKAKEE, KANKAKEE CO HAMILTON, HANCOCK CO	SW NW NE	31 07 31	TO17 TO30 TO05	R02E R14W R08W	DWU DWU 2.65 DWU DWU	3i 2 3 3 2	X 4 4 4	X 4 4 4	8 - 10 2 4 7
AIL026 AIL028 AIL030 AIL032 AIL034 AIL038 AIL040 AIL040 AIL042	REIN SCHULTZ & DAHL WENDLING QUARRIES INC WENDLING QUARRIES INC GALENA STONE CO GALENA STONE CO COOTS MATERIALS CO INC COOTS MATERIALS CO INC SAVANNA QUARRY INC	EMERSON TURNBAUGH-MT CARROLL, IL HUIZENGA EUSTICE, JO DAVIESS CO VIRTUE, JO DAVIESS CO ROTH, JO DAVIESS CO MONMOUTH, WARREN CO SAVANNA, CARROLL IL SAND & GRAVEL	SE SW NW NE W2 SW SW NW SE	13 10 21 16 24 35 06 13	TO21 TO24 TO21 TO27 TO28 TO29 TO11 TO24		DWU	3	4	4 4 4	3 - 7
AIL502	RIVERSTONE GROUP INC	ALBANY (MC@511), ROCK IS CO	SW	34	TO20	R02E	2.65	3i	3	3	
AIL504	RIVERSTONE GROUP INC	BIG ISLAND (MC 51), ROCK IS CO		16	T017	R02W	2.67 2.67 2.67	3 X	3	3	
AIL506 AIL508 AIL510 AIL514 AIL516 AIL518 AIL520	ILLINOIS-WISCONSIN S&G RIVERSTONE GROUP INC NELSON S&G CO MIDWEST S&G BUILDERS S&G WENDLING QUARRIES INC RIVERSTONE GROUP INC	SOUTH BELOIT BARSTOW (MC 52), ROCK IS CO WHITESIDE COUNTY-SAND HENRY PIT, MARSHALL CO CORDOVA, ROCK ISLAND CO THOMPSON CORDOVA (MC14@508),ROCK IS CO	NW NE SW NW SE SE SE 0 S2	08 34 29 03 33 02 05	TO16 TO18 TO21 TO13 TO21 TO23 TO20	R01E R07E R10E R02E R03E	DWU DWU DWU DWU DWU DWU	3i X 3iB X	4 4 4	4 4 4	
KS	KANSAS	CRUSHED STONE		22	TODO	Daar	-	-	2	2	
AKS002	BINGHAM S&G	BAXTER SPRINGS, CHEROKEE CO		22	TO29	R23E			3	3	

NOTE 1: AASHTO 57 GRADATION MAXIMUM

		RECENTLY A	CTIVE AGGREGATE SOURCES					
				BULK SSD	DUR PCC	FRICT HMA		-
CODE	OPERATOR	SOURCE NAME	LOCATION	SpGr	CA FA	A B	BEDS	E

MN	MINNESOTA	CRUSHED STONE								1			
AMN002	HECTOR CONST CO	NEW ALBIN, HOUSTON CO	NW	09	T101	R04W		X	-	Х	Х		
AMN004	KNIFE RIVER MIDWEST LLC	POOL HILL, HOUSTON CO	SW	33	T101	R04W		X		X	Х		
AMN006	KNIFE RIVER MIDWEST LLC	OTTERNESS, FILLMORE CO	E2	11	T101	R08W	2.75	3i		X	Х	1	- 2
AMN008	NEW ULM QUARTZITE QUARRY	QUARTZITE, BROWN CO	SW	35	T110	R31W				2	2		
	KNIFE RIVER MIDWEST LLC	NEWBURG, FILLMORE CO	NE	08	T101	R08W		X		X	Х		
AMN014	KNIFE RIVER MIDWEST LLC	BIG SPRINGS, FILLMORE CO	SW	09.	T101	R10W					4	1	- 6
AMN016	KNIFE RIVER MIDWEST LLC	EITZEN, HOUSTON CO	SE	20	T101	R05W		X	-	X	Х		
	ULLAND BROS	GRAND MEADOW, MOWER CO	NE	09	T103	R14W				X	Х		
	ED BUNNE	LEROY, MOWER CO	NE	27	T101	R14W				X	Х	1	
AMN022	KNIFE RIVER MIDWEST LLC	UNDERPASS	NE	20	T101	R07W			1				
	MARTIN MARIETTA	YELLOW MEDICINE, YLW MED CO	SW	28	T116	R39W	DWU	3i		2	2		1
AMN026	ORTONVILLE STONE CO	BIG STONE, BIG STONE CO		26	T121	R46W	DWU	3i		2	2	1.1	
	KNIFE RIVER MIDWEST LLC	GENGLER, HOUSTON CO	SW	16	T102	R05W	DWU	3B		4	4	1	- 2
		COTTONWOOD, COTTONWOOD CO		08	T107	R35W	DWU	3i		2	2		-
AMN034		ENGRAV, HOUSTON CO	NE	24	T101	R08W	2			-	-		
	MILESTONE MATERIALS	GOLDBERG, OLMSTEAD CO	SW		T108	R14W				4	4		
AMN038		RIFLE HILL, FILLMORE CO	NW	35	T102	R12W							
		SCOTT, ROCK CO	NW	14	T104	R45W	1			2	2		
	MILESTONE MATERIALS	BIESANZ, WINONA CO	SW	19	T107	R07W	DWU	3i	8	-	-	1	- 2
		43 QUARRY, WINONA CO	NW	16	T106	R07W	DWU	31		1.00		1	
		SAND & GRAVEL			1100	110711	0.00						-
AMN504	BRUENING ROCK PROD INC	NEW ALBIN, HOUSTON CO		09	T101	R04W		1	-	4	4		
	HECTOR CONST CO	LUTTCHENS, HOUSTON CO	NW	23	T101	R04W	2.63	2B		4	4		
	neoron const so			20	1101	nom	2.68	1.0	X				
AMN508	SOUTHERN MN CONST CO INC	HANSON JACKSON CO	NE	34	T101	R34W	2.00		~	4	4		
	WILLETT	WILLETT, JACKSON CO	SW		T102	R35W				4	4		
	MARTIN MARIETTA	MAUDLIN, NOBLES CO	SE		T101	R42W	1.1			4	4		
	ULLAND BROS	OLSON, FREEBORN CO	NW		T102	R20W	DWU		X				
	KNIFE RIVER MIDWEST LLC	LANESBORO, FILLMORE CO	SE		T104	R10W	DWU		X			N	
	BUNNE & RANNELL	BUNNE & RANNELL, FILLMORE CO			T101	R13W	DWU		X				
	AGGREGATE INDUSTRIES	PRAIRIE ISLAND #3, GOODHUE CO	JL		T114	R15W	DWU	2	~				
	AGGREGATE INDUSTRIES	HASTING #2, DAKOTA CO			T114	R17W	010	1					
		LAKEVILLE, DAKOTA CO			T114	R20W							
			NW		T125	R37W							
		LARSON, FREEBORN CO			T102	R21W							
			SW		T102	R03W	DWU		X				
	AGGREGATE INDUSTRIES	ELK RIVER, SHERBURNE CO	344		T033	R26W	DWU	2	^				
10111330	AGGREGATE INDUSTRIES	LER RIVER, SHERBORNE CO		5,10	1033	REUW	DWU	14	X				
AMN538	ULLAND BROS	SHADE, MOWER CO	NW	04	T101	R18W	DWU		x				
		SCOTT, ROCK CO	INVV		T101	R18W	0000		^				
		KIMBALL, STEARNS CO			T104	R44W R29W							
AMN542					T1122	R29W R19W	DWU	2					
41111344	AGGREGATE INDUSTRIES	LAKEVILLE, DAKOTA CO		00	1114	RIAM	DWU	12					

		RECENTLY ACTIVE AG	GREG	ATE	SOURCI	ES	BULK SSD	DUR PCC	FR HM		
CODE	OPERATOR	SOURCE NAME	LOC	ATION	J		SpGr	CA FA	A		BEDS
мо	MISSOURI	CRUSHED STONE			-						
AMO002	L&W QUARRIES INC	KAHOKA, CLARK CO	NE	17	TO65	R07W	DWU	2	4	4	2A - 3B
									4	4	14 - 16
	NORRIS AGGREGATES CO	MERCER, MERCER CO	SE	22	TO66	R23W				5	3 - 5
MO006	GREENE LS CO	TURNER PROP, NODAWAY CO	SW	31	TO67	R34W				5	
MO012	NORRIS AGGREGATES CO	DR JEFFERIES, HARRISON CO	NW	03	TO66	R26W			5	5	25C-25E
MO014	CARTER-WATERS CORP	EXPANDED SHALE, N. MARKET MO					DWU	2	3	3	1.1
MO018	NORRIS AGGREGATES CO	ROUTE C, DAVIESS CO	NE	30	TO61	R28W			5	5	2 - 5
MO022	IRON MT TRAP ROCK CO	IRON MT, ST FRANCOIS CO							3	3	10 C
MO024	CENTRAL STONE CO	HUNTINGTON, RALLS CO	NE	17	TO56	R06W	2.68	3i			6 - 9
							2.68	3	4	4	6 - 11
MO026	MISSOURI PORTABLE STONE	WARRENTON, WARREN CO		15	TO46	R02W			3	3	11
AMO027	ST JOE LEAD	PEA RIDGE MINE, WASH. CO							3	3	
AMO028	PLATTIN MATERIALS CO	PLATTIN, ST GENEVIEVE CO		09	TO39	R07W					
AMO030	KNOX COUNTY STONE CO	EDINA, KNOX CO	NE	25	TO62	R12W			4	4	1 - 9
AMO032	SCHILDBERG CONST CO INC	GRAHAM, NODAWAY CO	NW	36	TO63	R37W		1	4	4	2 - 3
AMO038	CENTRAL STONE CO	GREENSBURG, SCOTLAND CO		22	TO64	R12W	1				
AMO040	S&A CONSTRUCTION	SO ALLENDALE, WORTH CO NW	SW	17	TO65	R30W					
AMO042	TRAGER	GALLATIN, DAVIESS CO		13	TO58	R28W					
AMO044	CENTRAL STONE CO	NEW LONDON, RALLS CO	NE	24	TO56	·R05W					
AMO046	NORRIS AGGREGATES CO	BETHANY, HARRISON CO	SW	01	TO63	R28W				5	
AMO048	NORRIS AGGREGATES CO	BREIT, ANDREWS CO		28	TO59	R35W					
		SAND & GRAVEL									
AMO502	IDEAL SAND CO	WAYLAND, CLARK CO	SW	21	TO65	R06W			4	4	
							2.66	X			
AMO504	MEDUSA AGGREGATES	ALBANY, GENTRY CO		27	TO63	R31W			4	4	
	MILBURN CO	GALLITIN, DAVIESS CO	CT	16	TO59	R27W			4	4	
	TURNER QUARRIES	CLEARMONT, NODAWAY CO	SW	34	TO66	R37W			4	4	
	STONER SAND CO	MT MORIAH, HARRISON CO	1 m	12	TO64	R26W	2.65	X			
	CENTRAL STONE CO	TAYLOR, MARION CO	NW	01	TO59	R06W					

Matls. IM T203

		RECENTLY ACTIVE A	GGRE	GATE	SOURC	ES		2.5				-
CODE	OPERATOR	SOURCE NAME	100	ATIO	N		BULK SSD SpGr	DU PC		HN	ICT IA B	BEDS
	- Participation		LUC				- opoi	T	14	A		
NE ANE002	NEBRASKA MARTIN MARIETTA	CRUSHED STONE WEEPING WATER MINE, CASS CC)	03	TO10	R11E	2.69 DWU DWU	3iB 3iB 2		5 5 5	5 5 5	10A- 10B 9-10A&B 9-10A&B
NE010	FORT CALHOUN STONE CO	FT CALHOUN, WASHINGTON CO	SE	01	T017	R12E	DWO	2		5	555555	25C- 25E 25A- 25C 25F 26A- 26E 27A- 27B
NE012	MARTIN MARIETTA	SPRINGFIELD, SARPY CO SAND & GRAVEL		28	T013	R12E						
NE538	STALP S&G	WEST POINT, CUMING CO	SE	28	T022	R06E	2.64		Х			
		CLASS V AGGREGATE FOR		RET			-	-	_	_	-	
NE502	LYMAN-RICHEY S&G	CULLOM #5, CASS CO	SW	31	T013	R12E	2.62 2.62	3	x	4	4	
NE504	LYMAN-RICHEY S&G	WATERLOO #40, DOUGLAS CO	SE	19	T015	R10E	2.62 2.62	3	x	4	4	
NE514	LYMAN-RICHEY S&G	OREAPOLIS #8, CASS CO	SE	36		R13E	2.62	3	x	4	4	
NE526	WESTERN S&G	FREMONT, DODGE CO	NW	36	T017	R08E	2.62 2.62	3	x	4	4	
NE530	WESTERN S&G	SOUTH BEND, CASS CO	SW	13	T012	R10E	2.62 2.62	3	x	4	4	
NE532	WESTERN S&G	ABEL SPUR, SAUNDERS CO	SW	30	T013	R09E	2.62 2.62	3	x	4	4	
NE534	MALLARD S&G	SPRINGFIELD #3, SARPY CO		32	T013	R12E	2.62 2.62	3	x	4	4	
NE536	MARTIN MARIETTA	GRETNA, SARPY CO		17	T013	R10E	2.62 2.62	3	x	4	4	
NE542	LYMAN-RICHEY S&G	PLANT #47, DODGE CO	NW	07	T017	R09E	2.62 2.62	3	x	4	4	
NE544	MALLARD S&G	VALLEY, DOUGLAS CO	NE	06	T015	R10E	2.62 2.62	3	x	4	4	
NE546	LYMAN-RICHEY S&G		IE SW	27	T011	R09W	2.62		X		- 10	
NE548	MALLARD S&G	PLANT #6, DOUGLAS CO		32	TO15	R10E	2.62	3		4	4	
NE550	LYMAN RICHEY S&G	PLANT #50, SARPY CO		28,2	29TO13	R10E	2.62 2.62	3	x	4	4	
NE552	MALLARD S&G	PLANT #7, DOUGLAS CO	SW	08	TO15	R10E	2.62		X			
NE554	LYMAN-RICHEY S&G	PLANT #7, DOUGLAS CO		36	TO16	R09E	2.62	3	x	4	4	

NOTE 1: IF BED 9 IS INCORPORATED WITH BEDS 10A&B, THE DURABILITY CLASS BECOMES A CLASS 3IB IF THE COARSE AGGREGATE DOES NOT EXCEED 45% OF THE TOTAL AGGREGATE IN THE CONCRETE MIX. NOTE 2: BED 9 CAN'T BE USED BY ITSELF IN PC CONCRETE. IF BED 9 IS INCORPORATED WITH BEDS 10A&B, THE DURABILITY BECOMES A CLASS 2.

		RECENTLY ACTIVE A	AGGREG	AIES	SOURCE	:5	BULK SSD	DUI		FRI HM		
CODE	OPERATOR	SOURCE NAME	LOCA	TION	<u>11</u>		SpGr	CA	FA	А	В	BEDS
SD	SOUTH DAKOTA	CRUSHED STONE										
	EVERIST INC	DELL RAPIDS E. MINNEHAHA CO	SW	10	T104	R49W	2.64	3iB		2	2	
		SIOUX FALLS QUARTZITE		13	T101	R50W	2.64	3iB		2	2	1
	MYRL & ROY'S PAVING INC	EAST SIOUX, MINNEHAHA CO	SE	27	T101	R48W	DWU	3i		2	2	1
	SPENCER QUARRIES INC	SPENCER, HANSON CO		24	T103	R57W	2.04	0.0		2	2	
ASDOTO	EVERIST INC	DELL RAPIDS W. MINNEHAHA CO SAND & GRAVEL	NW	16	T104	R49W	2.64	3iB		2	2	
SD502	BOYER SAND AND GRAVEL	BOYER, UNION CO		10	TO95	R48W	DWU	2		4	4	
	MIDWEST PAVING CO	HAWARDEN, UNION CO	SW	15	TO95	R48W	1000	1		4	4	
SD506	MIDWEST PAVING CO	RICHLAND, UNION CO		20	TO92	R49W				4	4	
SD508	CONCRETE MATERIALS CO	CANTON, LINCOLN CO		17	T089	R48W				4	4	
00540	CONCRETE MATERIAL C.C.O.			00	T101	DIOW	2.68		X			
ASD510		MINNEHAHA CO		02	T101	R49W	DWILL	2				
ASD514 ASD516	HIGMAN S&G HIGMAN S&G	HUDSON, UNION CO VOLIN, CLAY CO		02 12	TO95 TO94	R48W R54W	DWU	2		4	4	1
	MYRL & ROY'S PAVING INC	MCVAY, LINCOLN CO	SE	17	TO94	R45W						
	BOYER SAND AND GRAVEL	BOYER NORTH, UNION CO	NE	01	TO98	R45W						
	EVERIST INC	BROOKINGS, BROOKINGS CO	S2	31	T110	R49W	DWU		x			
ASD524	HIGMAN S&G	SPINK, UNION CO	26		TO93	R50W						
ASD526	CONCRETE MATERIALS CO	CORSON, MINNEHAHA CO		23,2	4T102	R48W	DWU	2				
							DWU	1	X			
NI	WISCONSIN	CRUSHED STONE								100		
WI002	BRYAN DRESSER TRAP ROCK	DRESSER-TRAPROCK								3	3	
WI004	MARTIN MARIETTA	CNWRR-ROCK SPRINGS								2	2	
WI006	KIELER KOWALSKI	TENNYSON, GRANT CO					DWU	3i		4	4	
4WI008	QUALITY STONE INC	WETZEL, CRAWFORD CO	NE	31	TO07	R06W	DWU	3i		4	4	7
AWI010	ED KRAEMER & SONS INC	RICHARDS, GRANT CO	SW		TO01	R02W	DWU	3i		4	4	
AWI012	SCARPELLI MATERIALS	WATERLOO QTZ, DODGE CO	27,28,33		T008	R13E				2	2	
AWI018	RIVER CITY STONE INC	FREESE, GRANT CO	NW	28	T001	R02W						
AW1020	MILESTONE MATERIALS	MEDARY, LA CROSSE CO	NW	27	T016	R07W	DIALL	1.		4	4	1.
AWI022	MILESTONE MATERIALS	KINGS BLUFF, LA CROSSE CO	NE	25	T018	R08W	DWU DWU	3		4	4	1 - 4
AW1030	HAVERLAND STONE CO	HAVERLAND, GRANT CO	NW	26	T002	R02W	0.00	1				
AWI034	ED KRAEMER & SONS INC	HOUSEHOLDER, RICHLAND CO										
AW1036	MILESTONE MATERIALS	TORK, WOOD CO.										
AWI038	ROCKY MTN ENTERPRISES	ATHEN, MARATHON CO	SE	24		R04E		31		2	2	
AWI040	MILESTONE MATERIALS	JACKSON COUNTY IRON MINE	-	22	TO21	R03W		1		2	2	
AWI042	BOON CONSTRUCTION CO		WW SW	13	TO23	R03W	1.000	1		2	2	
AW1044	MILESTONE MATERIALS	SLAMA, CRAWFORD CO SAND & GRAVEL		17,	18TO07	R06W	DWU	3i		4	4	3 - 8
AWI502	PRAIRIE S&G CO	PRAIRIE DU CHIEN, CRAWFORD	CO	24	TO07	R07W	2.67	3i		4	4	
		VOOT FADIL OD WE SO			TOAC	Dage	2.67		Х			
AWI504	HORSFIELD MATERIALS INC	VOGT FARM, GRANT CO		17	TO90	R03E	2.67	31	х	3	3	
AWI506	PRAIRIE S&G CO	KRAMER, CRAWFORD CO	NE	12	TO07	R07W	DWU	X	^	3	3	
							2.68		X			
AWI508	PRAIRIE S&G CO	BARN	SE	12	TO07	R07W	2.68	X				
	DIVED OF CTONE INC	KOUG COMIT CO	-	47	TON	Dogu	2.69		X			
AWI510		KRUG, GRANT CO	SW	17	T001	R02W	DWU		Х			
AWI512		GIBBS	NE	25	TO25	R09W						
AWI514 AWI516	HOLST EXCAVATING MILESTONE MATERIALS	REDWING #7 SCHEER, TREMPEALAU CO	NE	33 19	TO25 TO18	R18W R08W	DWU		v			
	NULE STUDIE WALFRINGS	JUTEER, INCOMPENDAU UU		13	1010	KUOVV	DWU		X			1

39

			ENT STO						
CODE	OPERATOR	SOURCE NAME	LOC	ATIO	N		BEDS	REVETMEN	T CLASS
DISTR	ICT 1								
A40006	MARTIN MARIETTA	GRAND GEORGE	SW	18	T089	R25W	3-5	D	
42002	MARTIN MARIETTA	ALDEN	NW	20	T089	R21W	3	A, B, D, E	
442004	GEHRKE QUARRIES INC	GIFFORD	NW	04	T086	R19W	9-10	A, B, E	
450002	MARTIN MARIETTA	SULLY	SE	16	T079	R17W	36-41	D, E	
100002		U U U U	02				42-47	D, E	
64002	MARTIN MARIETTA	FERGUSON	SW	05	T082	R17W	8-17	E	
							1-7	D, E	
85006	MARTIN MARIETTA	AMES MINE	SW	24	T084	R24W	26	E	
							30-35	E	
							47	A, B, D, E	
486002	WENDLING QUARRIES INC	MONTOUR	NW	09	T083	R06W	8-12	D, E	
94002	MARTIN MARIETTA	FORT DODGE MINE	SW	24	T089	R29W	36-42	A, B, D, E	
DISTR	ICT 2								
03002	BRUENING ROCK PROD INC	WEXFORD	NE	36	TO98	R03W	1B-8	A, B, D, E	
03028	KNIFE RIVER MIDWEST LLC	WELPER-JOHNSON	SW	35	TO99	R04W	FULL FACE	A, B, D, E	
03040	BRUENING ROCK PROD INC	DEE	SE	21	TO99	R04W	5A-5D	A, B, D, E	
03050	BRUENING ROCK PROD INC	GREEN	NW	16	TO96	*R06W	1-3	A, B, D, E	
03066	WILTGEN CONST CO	ELSBERN	NW	29	TO97	R06W	2	A, B, D, E	
07004	BMC AGGREGATES LC	WATERLOO SOUTH	NW	18	T087	R12W	1-23	A, B, D, E	
							17-23	A, B, D, E	
07014	NIEMANN CONST CO	GLORY	NE	36	TO87	R11W	1-TOP 5' OF BED 4	D	
07018	BMC AGGREGATES LC	RAYMOND-PESKE	SW	01	TO88	R12W	1B-5	A, B, D, E	1.54
							1B-10	A, B, D, E	
							6-10	A, B, D, E	
09004	NIEMANN CONST CO	DENVER-FOELSKE	NE	29	TO91	R13W	BOTTOM 8' BED 12-TOP 9' BED	A, B, D, E 13	
09006	NIEMANN CONST CO	TRIPOLI-PLATTE	SW	36	TO93	R13W	1-4	A, B, D, E	
12004	GREENE LIMESTONE CO	LUBBEN	NW	25	TO93	R17W	1-20	D	
12014	NIEMANN CONST CO	OLTMANN	SE	08	TO91	R16W	1-TOP ½ BED 10	D	
12020	GREENE LIMESTONE CO	BRUNS #2	NW	21	TO91	R18W	1-5	D	
17008	MARTIN MARIETTA	PORTLAND WEST		19	TO96	R19W	1-8	A, B, D, E	
17020	MARTIN MARIETTA	MASON CITY	NE	29	TO97	R20W	1-6, 7-9	A, B, D, E	
19002	GREENE LIMESTONE CO	TRACY	SE	29	TO94	R11W	9-10	A, B, D, E	
22002	KUHLMAN CONST CO	TWIN ROCK-SCHRADER	NW	14	TO94	R05W	3-11	A, B, D, E	
22004	KNIFE RIVER MIDWEST LLC	BENTE/ELKADER/WATSON	SW	12	TO93	R05W	5-9	A, B, D, E	
22008	KUHLMAN CONST CO	ANDEREGG	SE	32	TO92	R02W	2-8	A, B, D, E	
22010	KUHLMAN CONST CO	OSTERDOCK	SE	02	TO91	R03W	3-8	A, B, D, E	
22012	KUHLMAN CONST CO	SCHMIDT	NE	33	TO91	R01W	2-6	A, B, D, E	
22014	KNIFE RIVER MIDWEST LLC	BLUME	NE	09	TO93	R03W	1-12	A, B, D, E	
22016	KUHLMAN CONST CO	GISLESON	NW	06	TO95	R04W	1-15	A, B, D, E	
22020	KUHLMAN CONST CO	MUELLER	NE	30	TO94	R03W	1-8	A, B, D, E	
22026	KUHLMAN CONST CO	DOERRING-LUANA	SE	05	TO95	R05W	3-5	A, B, D, E	
22030	KUHLMAN CONST CO	EBERHARDT	NW	27	TO93	R05W	1-6	A, B, D, E	
22034	KUHLMAN CONST CO	KRUSE	NW	17	TO92	R04W	5-12	A, B, D, E	
22038	KUHLMAN CONST CO	FASSBINDER	SW	09	TO92	R03W	2-6	A, B, D, E	
22040	KUHLMAN CONST CO	HARTMAN	NW	29	TO91	R06W	1-4	A, B, D, E	
22042	KNIFE RIVER MIDWEST LLC	MORAREND	CT	35	TO92	R03W	1-9	A, B, D, E	
22046	KUHLMAN CONST CO	JOY SPRINGS-BURRACK	NW	19	TO91	R06W	1-2	A, B, D, E	
22048	KNIFE RIVER MIDWEST LLC	TUCKER	SW	18	TO91	R05W	1-3	D	
22060	KNIFE RIVER MIDWEST LLC	JOHNSON	NW	26	T093	R04W	2-5	A, B, D, E	
22062	KNIFE RIVER MIDWEST LLC	SNY MAGILL	SE	22	TO94	R03W	6-10	A, B, D, E	
22070	KNIFE RIVER MIDWEST LLC	BERNHARD/GIARD	NW	35	T095	R04W	1-3	A, B, D, E	6
22074	RIVER CITY STONE CO	STRAWBERRY POINT	NE	19	T091	R06W	1-2	A, B, D, E	
22082	NIEMANN CONST CO	REIERSON	NW	20	TO94	R06W	1	D	-

			APPROVA					
CODE	OPERATOR	SOURCE NAME	LOCA	ATION	1		BEDS	REVETMENT CLAS
DISTR	ICT 2 (Continued)							
A22084	CJ MOYNA & SONS	MOYNA		14	TO93	R05W	6-9	A, B, D, E
A33002	NIEMANN CONST CO	ELDORADO-JACOBSON	SW	17	TO95	R08W	4-6B	A, B, D, E
A33004	NIEMANN CONST CO	HOUG	SW	11	TO94	R08W	3-8	A, B, D, E
A33006	NIEMANN CONST CO	MARYVILLE	S2	24	TO91	R07W	1-2	A, B, D, E
A33010	WILTGEN CONST CO	VOSHELL	NW	21	TO93	R07W	1-4	A, B, D, E
A33016	NIEMANN CONST CO	MAYNARD	NE	23	TO92	R09W	FULL FACE	D
A33018	NIEMANN CONST CO	FAIRBANK	SW	28	TO91	R10W	1-5C	D
							5A-5C	A, B, D, E
A33020	NIEMANN CONST CO	YEAROUS	SW	19	TO93	R08W	1-10C	D
A33022	NIEMANN CONST CO	MILLER	SW	35	TO95	R10W	1-6	D
A33024	NIEMANN CONST CO	WAUCOMA	NW	25	TO95	R10W	1-TOP 4' BED 5	A, B, D, E
A33026	WILTGEN CONST CO	LYNCH	NW	05	TO95	R10W	6-8	A, B, D, E
A33030	NIEMANN CONST CO	SCHWAMMAN-ST LUCAS	NE	29	TO95	R09W	FULL FACE	A, B, D, E
A33032	BRUENING ROCK PROD INC	LANDIS	SE	12	TO93	R08W	1-5	A, B, D, E
A33034	NIEMANN CONST CO	MCDONOUGH	SE	36	TO94	R08W	1-3	D
A33036	NIEMANN CONST CO	GRAHAM-HAWKEYE	SW	06	TO94	R09W	1-4	A, B, D, E
A33038	NIEMANN CONST CO	PAPE	NE	28	TO95	R08W	1-3	A, B, D, E
100000		Thu E	ne	20	1000	Room	3-5	A, B, D, E
A34004	GREENE LIMESTONE CO	MAXON	SE	07	TO94	R17W	4C-19	A, B, D, E
A34004	GREENE LIMESTONE CO	JOHLAS	SW	07	T094	R15W	1-7	D, D, D, C
A34008	GREENE LIMESTONE CO	WARNHOLTZ	SW	09	T094	R16W	5-16	D
A34000	GREENE LIMESTONE CO	WARNIOLIZ	300	05	1030	KIOW	17-18	A, B, D, E
A35002	MARTIN MARIETTA	DOWS	NE	30	TO91	R22W	1-12	A, B, D, E
A33002	MARTIN MARIETTA	DOWS	INL	30	1091	RZZVV	1-12	D, D, D, E
A35006	MARTIN MARIETTA	HIBNESS	SE	22	T091	R20W	1-12A	A, B, D, E
A41002	BMC AGGREGATES LC	GARNER NORTH	SE	11	TO91	R24W	6	A, B, D, E A, B, D, E
	BMC AGGREGATES LC	GARNER SOUTH-WIELAND	NW	13	T095	R24W	6	A, B, D, E A, B, D, E
A41004 A45002	KNIFE RIVER MIDWEST LLC	ECKERMAN	NW	33	T1095	R11W	7-9	A, B, D, E A, B, D, E
		NELSON	NE	33	T099	R13W	8-9	
A45006 A45008	BRUENING ROCK PROD INC BRUENING ROCK PROD INC	DOTZLER	NE	23	T099	R13W	7-10A	A, B, D, E
	BRUENING ROCK PROD INC	DALEY	NE	11	T099	R12W		A, B, D, E A, B, D, E
A45010 A46006	MARTIN MARIETTA	HODGES	NE	32	T098	R28W	9-10 4-18	
					T092	R28W		D D
A46014	MARTIN MARIETTA FALK CONST CO	PEDERSEN	SW SE	28 08	T092		4-13, 4-20	
A66002		DUENOW		36	T099	R17W	6-8	A, B, D, E
A76002	MARTIN MARIETTA	GILMORE CITY	NE				1A-3	A, B, D, E
A76004	MARTIN MARIETTA	MOORE	SW	25	T092		1A-3	A, B, D, E
A96002	KNIFE RIVER MIDWEST LLC	KENDALLVILLE	NE	33	T100	R10W	2-9	A, B, D, E
A96004	KNIFE RIVER MIDWEST LLC	HOVEY	SW	28	T098	R08W	2-6	A, B, D, E
A96014	NIEMANN CONST CO	FESTINA	SW	26	T096	R09W	1-3	A, B, D, E
A96017	BRUENING ROCK PROD INC	SKYLINE B	CT	10	T098	R08W	4-11	A, B, D, E
A96048	NIEMANN CONST CO	LOVE #1	NW	30	T096	R10W	1-10	D
A96049	NIEMANN CONST CO	LOVE #2	NW	30	T096	R10W	1-10	D
A96052	KNIFE RIVER MIDWEST LLC	ESTREM	SW	04	T097	R07W	2-8	A, B, D, E
A96060	KNIFE RIVER MIDWEST LLC	BURR OAK	SE	23	T100	R09W	3-5	A, B, D, E
A96064	KNIFE RIVER MIDWEST LLC	STIKA	NW	15	T097	R10W	5A-8B	A, B, D, E
A98002	MARTIN MARIETTA	HARRIS	SW	29	T100	R20W	6-11	A, B, D, E
A98016	ULLAND BROS	EMIL OLSON-BOLTON	SW	10	T099	R20W	2-5B	A, B, D, E
A98010	BMC AGGREGATES LC	FERTILE	SW	36	T098		15-20	A, B, D, E
A99002	KNIFE RIVER MIDWEST LLC	VOSS		36	TO90		8	A, B, D, E
AMN004		POOL HILL, HOUSTON CO	SW	33	T101	R04W	1-8	A, B, D, E
AMN030		GENGLER, HOUSTON CO	SW	16	T102	R05W	1-4	A, B, D, E
AMN034	KNIFE RIVER MIDWEST LLC	ENGRAV, HOUSTON CO	NW	24	T101	R08W	1A-2B	A, B, D, E

REVETMENT STONE SOURCE APPROVAL									
CODE	OPERATOR	SOURCE NAME	LOC	ATIO	N		BEDS	REVETMENT CLASS	
				*					
DISTR	ICT 3								
MN024	MARTIN MARIETTA	YELLOW MEDICINE, YELLOW MED	SW	28	T116	R39W	GRANITE	A, B, D, E	
MN032	SIOUX ROCK PRODUCTS	COTTONWOOD, COTTONWOOD CO) SE	08	T107	R35W	ENTIRE LEDGE*	A, B, D, E	
SD002		DELL RAPIDS, MINNEHAHA CO	SW	10	T104	R49W	ENTIRE LEDGE*	A, B, D, E	
SD004		SIOUX FALLS QUARTZITE		13	T101	R50W	ENTIRE LEDGE*	A, B, D, E	
SD006	MYRL & ROY'S PAVING INC	EAST SIOUX, MINNEHAHA CO	SE	27	T101	R48W	ENTIRE LEDGE*	A, B, D, E	
SD008	SPENCER QUARRIES INC	SPENCER, HANSON CO		24	T103	R57W	ENTIRE LEDGE*	A, B, D, E	
ISTR	CT A								
		MENLO	SE	17	T077	D31W/	154.150	BDE	
01002	SCHILDBERG CONST CO INC	MENLO HOWE	SE SW	17 01	T077 T076	R31W R31W	15A-15C 25B-25E	B, D, E D	
01002 01006		MENLO HOWE JEFFERSON	SE SW NE	17 01 17	T077 T076 T077	R31W R31W R31W	15A-15C 25B-25E 25B-25E	B, D, E D D	
01002 01006 01008	SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC	HOWE	SW	01	T076	R31W R31W	25B-25E	D	
01002 01006 01008 02002 02004	SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC	HOWE JEFFERSON	SW NE	01 17	TO76 TO77 TO73 TO71	R31W R31W	25B-25E 25B-25E 11-13 3-5	D D D D	
01002 01006 01008 02002 02004 15008	SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC	HOWE JEFFERSON MT ETNA CORNING ATLANTIC MINE	SW NE SW NE	01 17 23 10 13	TO76 TO77 TO73 TO71 TO76	R31W R31W R34W R34W R37W	25B-25E 25B-25E 11-13 3-5 25B-25E	D D D D D	
01002 01006 01008 02002 02004 15008 36002	SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC	HOWE JEFFERSON MT ETNA CORNING ATLANTIC MINE THURMAN	SW NE SW	01 17 23 10 13 23	T076 T077 T073 T071 T076 T070	R31W R31W R34W R34W R37W R43W	25B-25E 25B-25E 11-13 3-5 25B-25E 18	D D D D D D	
01002 01006 01008 02002 02004 15008 36002 43002	SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC SCHLDBERG CONST CO INC	HOWE JEFFERSON MT ETNA CORNING ATLANTIC MINE THURMAN LOGAN	SW NE SW NE	01 17 23 10 13 23 19	T076 T077 T073 T071 T076 T070 T079	R31W R31W R34W R34W R37W R43W R42W	25B-25E 25B-25E 11-13 3-5 25B-25E 18 25B-25E & 3' OF 26	D D D D D B, D, E	
01002 01006 01008 02002 02004 15008 36002 43002 43002	SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC SCHLDBERG CONST CO INC WESTERN IA LIMESTONE	HOWE JEFFERSON MT ETNA CORNING ATLANTIC MINE THURMAN LOGAN LOGAN	SW NE SW NE NW	01 17 23 10 13 23 19 17	T076 T077 T073 T071 T076 T070 T079 T079	R31W R31W R34W R34W R37W R43W R42W R42W	25B-25E 25B-25E 11-13 3-5 25B-25E 18 25B-25E & 3' OF 26 25B-25E & 3' OF 26	D D D D D B, D, E B, D, E	
01002 01006 01008 02002 02004 15008 36002 43002 43002 43004 61002	SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC SCHLDBERG CONST CO INC WESTERN IA LIMESTONE SCHILDBERG CONST CO INC	HOWE JEFFERSON MT ETNA CORNING ATLANTIC MINE THURMAN LOGAN LOGAN EARLY CHAPEL-DAGGETT	SW NE SW NE NW	01 17 23 10 13 23 19 17 10	T076 T077 T073 T071 T076 T076 T079 T079 T079	R31W R31W R34W R34W R37W R43W R42W R42W R42W R29W	25B-25E 25B-25E 11-13 3-5 25B-25E 18 25B-25E & 3' OF 26 25B-25E & 3' OF 26 14B	D D D D D B, D, E B, D, E B, D, E	
01002 01006 01008 02002 02004 15008 36002 43002 43002 43004 61002 61024	SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC SCHLDBERG CONST CO INC WESTERN IA LIMESTONE SCHILDBERG CONST CO INC MARTIN MARIETTA	HOWE JEFFERSON MT ETNA CORNING ATLANTIC MINE THURMAN LOGAN LOGAN EARLY CHAPEL-DAGGETT PENN-DIXIE	SW NE SW NE NW	01 17 23 10 13 23 19 17	T076 T077 T073 T071 T076 T070 T079 T079 T076 T076	R31W R31W R34W R34W R37W R43W R42W R42W R42W R29W R27W	25B-25E 25B-25E 11-13 3-5 25B-25E 18 25B-25E & 3' OF 26 25B-25E & 3' OF 26 14B TOP 4' OF BED 20A	D D D D B, D, E B, D, E B, D, E D, E D, E	
01002 01006 01008 02002 02004 15008 36002 43002 43002 43004 61002 61024 61026	SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC SCHLDBERG CONST CO INC WESTERN IA LIMESTONE SCHILDBERG CONST CO INC	HOWE JEFFERSON MT ETNA CORNING ATLANTIC MINE THURMAN LOGAN LOGAN EARLY CHAPEL-DAGGETT	SW NE SW NE NW	01 17 23 10 13 23 19 17 10 32	T076 T077 T073 T071 T076 T076 T079 T079 T079	R31W R31W R34W R34W R37W R43W R42W R42W R42W R29W	25B-25E 25B-25E 11-13 3-5 25B-25E 18 25B-25E & 3' OF 26 25B-25E & 3' OF 26 14B	D D D D D B, D, E B, D, E B, D, E	
01002 01006 01008 02002 02004 15008 36002 43002 43002 43004 61002 61024 61026 69002 73004	SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC SCHLDBERG CONST CO INC WESTERN IA LIMESTONE SCHILDBERG CONST CO INC MARTIN MARIETTA MARTIN MARIETTA	HOWE JEFFERSON MT ETNA CORNING ATLANTIC MINE THURMAN LOGAN LOGAN EARLY CHAPEL-DAGGETT PENN-DIXIE MASON	SW NE SW NE NW SW SW	01 17 23 10 13 23 19 17 10 32 16 27 20	T076 T077 T073 T071 T076 T070 T079 T079 T076 T076 T076 T077 T073 T067	R31W R31W R34W R34W R37W R43W R42W R42W R29W R27W R29W R27W R28W R38W R36W	25B-25E 25B-25E 11-13 3-5 25B-25E 18 25B-25E & 3' OF 26 25B-25E & 3' OF 26 14B TOP 4' OF BED 20A TOP 4' OF BED 20A	D D D D D B, D, E B, D, E B, D, E D, E D, E D, E	
01002 01006 01008 02002 02004 15008 36002 43002 43002 43004 61002 61024 61026 69002 73004 78002	SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC WESTERN IA LIMESTONE SCHILDBERG CONST CO INC MARTIN MARIETTA MARTIN MARIETTA SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC	HOWE JEFFERSON MT ETNA CORNING ATLANTIC MINE THURMAN LOGAN LOGAN EARLY CHAPEL-DAGGETT PENN-DIXIE MASON STENNETT SHAMBAUGH CRESCENT	SW NE SW NE NW SW SW SW SW SW	01 17 23 10 13 23 19 17 10 32 16 27 20 35	T076 T077 T073 T071 T076 T070 T079 T076 T076 T076 T076 T077 T073 T067 T076	R31W R31W R34W R34W R37W R43W R42W R42W R42W R29W R27W R28W R28W R38W R36W R24W	25B-25E 25B-25E 11-13 3-5 25B-25E 18 25B-25E & 3' OF 26 25B-25E & 3' OF 26 14B TOP 4' OF BED 20A TOP 4' OF BED 20A KERFORD 4-6 25B-25E	D D D D D D B, D, E B, D, E B, D, E D, E D, E D D D D D, E	
01002 01006 01008 02002 02004 15008 36002 43002 43002 43002 61002 61024 61026 69002 73004 78002 78006	SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC WESTERN IA LIMESTONE SCHILDBERG CONST CO INC MARTIN MARIETTA MARTIN MARIETTA SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC	HOWE JEFFERSON MT ETNA CORNING ATLANTIC MINE THURMAN LOGAN LOGAN EARLY CHAPEL-DAGGETT PENN-DIXIE MASON STENNETT SHAMBAUGH CRESCENT MACEDONIA	SW NE SW NE NW SW SW SW NE SW NE	01 17 23 10 13 23 19 17 10 32 16 27 20 35 28	T076 T077 T073 T071 T076 T070 T079 T076 T076 T076 T077 T073 T067 T076 T076 T074	R31W R31W R34W R34W R34W R42W R42W R42W R29W R27W R28W R28W R38W R36W R24W R40W	25B-25E 25B-25E 11-13 3-5 25B-25E 18 25B-25E & 3' OF 26 25B-25E & 3' OF 26 14B TOP 4' OF BED 20A TOP 4' OF BED 20A KERFORD 4-6 25B-25E 16	D D D D D D B, D, E B, D, E B, D, E D, E D, E D D D D D D D	
01002 01006 01008 02002 02004 15008 36002 43002 43002 43004 61002 61024 61026 69002 73004 78002 78006 87004	SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC WESTERN IA LIMESTONE SCHILDBERG CONST CO INC MARTIN MARIETTA MARTIN MARIETTA SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC	HOWE JEFFERSON MT ETNA CORNING ATLANTIC MINE THURMAN LOGAN LOGAN EARLY CHAPEL-DAGGETT PENN-DIXIE MASON STENNETT SHAMBAUGH CRESCENT MACEDONIA 102 QUARRY	SW NE SW NE NW SW SW SW NE SW NE SW	01 17 23 10 13 23 19 17 10 32 16 27 20 35 28 32	T076 T077 T073 T071 T076 T070 T079 T076 T076 T076 T077 T073 T067 T076 T074 T074 T068	R31W R31W R34W R34W R34W R42W R42W R42W R29W R27W R28W R28W R38W R36W R36W R24W R40W R34W	25B-25E 25B-25E 11-13 3-5 25B-25E 18 25B-25E & 3' OF 26 25B-25E & 3' OF 26 14B TOP 4' OF BED 20A TOP 4' OF BED 20A KERFORD 4-6 25B-25E 16 1	D D D D D B, D, E B, D, E B, D, E D, E D, E D, E D D D D D	
DISTR 01002 01006 01008 02002 02004 15008 36002 43002 43002 43004 61002 61024 61026 69002 73004 78006 87004 88002	SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC WESTERN IA LIMESTONE SCHILDBERG CONST CO INC MARTIN MARIETTA MARTIN MARIETTA SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC	HOWE JEFFERSON MT ETNA CORNING ATLANTIC MINE THURMAN LOGAN LOGAN EARLY CHAPEL-DAGGETT PENN-DIXIE MASON STENNETT SHAMBAUGH CRESCENT MACEDONIA	SW NE SW NE NW SW SW SW NE SW NE	01 17 23 10 13 23 19 17 10 32 16 27 20 35 28	T076 T077 T073 T071 T076 T070 T079 T076 T076 T076 T077 T073 T067 T076 T074 T074 T068	R31W R31W R34W R34W R34W R42W R42W R42W R29W R27W R28W R28W R38W R36W R24W R40W	25B-25E 25B-25E 11-13 3-5 25B-25E 18 25B-25E & 3' OF 26 25B-25E & 3' OF 26 14B TOP 4' OF BED 20A TOP 4' OF BED 20A TOP 4' OF BED 20A KERFORD 4-6 25B-25E 16 1 20B	D D D D D D D B, D, E B, D, E B, D, E D, E D, E D D D D D D	
01002 01006 01008 02002 02004 15008 36002 43002 43002 43004 61002 61024 61026 69002 73004 78002 78006 87004 88002	SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC WESTERN IA LIMESTONE SCHILDBERG CONST CO INC MARTIN MARIETTA MARTIN MARIETTA SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC	HOWE JEFFERSON MT ETNA CORNING ATLANTIC MINE THURMAN LOGAN EARLY CHAPEL-DAGGETT PENN-DIXIE MASON STENNETT SHAMBAUGH CRESCENT MACEDONIA 102 QUARRY THAYER	SW NE SW NW NW SW SW SW NE SW NE NE NE	01 17 23 10 13 23 19 17 10 32 16 27 20 35 28 32 35	T076 T077 T073 T071 T076 T070 T079 T079 T076 T076 T076 T077 T073 T067 T076 T074 T078 T074	R31W R31W R34W R34W R43W R42W R42W R29W R27W R28W R38W R36W R24W R40W R34W R28W	25B-25E 25B-25E 11-13 3-5 25B-25E 18 25B-25E & 3' OF 26 25B-25E & 3' OF 26 14B TOP 4' OF BED 20A TOP 4' OF BED 20A TOP 4' OF BED 20A KERFORD 4-6 25B-25E 16 1 20B 25B-25E	D D D D D B, D, E B, D, E B, D, E D, E D, E D D D D D D B, E	
01002 01006 01008 02002 02004 15008 36002 43002 43002 43002 61002 61002 61024 61026 69002 73004 78002 78006 87004 88002	SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC WESTERN IA LIMESTONE SCHILDBERG CONST CO INC MARTIN MARIETTA MARTIN MARIETTA SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC	HOWE JEFFERSON MT ETNA CORNING ATLANTIC MINE THURMAN LOGAN EARLY CHAPEL-DAGGETT PENN-DIXIE MASON STENNETT SHAMBAUGH CRESCENT MACEDONIA 102 QUARRY THAYER SOUTH ALLENDALE, WORTH CO	SW NE SW NE NW SW SW SW NE SW NE SW	01 17 23 10 13 23 19 17 10 32 16 27 20 35 28 32 35 17	T076 T077 T073 T071 T076 T070 T079 T079 T076 T076 T076 T076 T077 T073 T067 T076 T074 T068 T072 T065	R31W R31W R34W R34W R43W R42W R42W R42W R29W R27W R28W R38W R36W R24W R36W R24W R40W R34W R34W R36W	25B-25E 25B-25E 11-13 3-5 25B-25E 18 25B-25E & 3' OF 26 25B-25E & 3' OF 26 14B TOP 4' OF BED 20A TOP 4' OF BED 20A TOP 4' OF BED 20A KERFORD 4-6 25B-25E 16 1 20B 25B-25E CAPTAIN CREEK	D D D D D B, D, E B, D, E B, D, E D, E D, E D D D D D B, E B, D, E	
01002 01006 01008 02002 02004 15008 36002 43002 43002 43004 61002 61024 61026 69002 73004 78002 78006 87004 88002	SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC WESTERN IA LIMESTONE SCHILDBERG CONST CO INC MARTIN MARIETTA MARTIN MARIETTA SCHILDBERG CONST CO INC SCHILDBERG CONST CO INC	HOWE JEFFERSON MT ETNA CORNING ATLANTIC MINE THURMAN LOGAN EARLY CHAPEL-DAGGETT PENN-DIXIE MASON STENNETT SHAMBAUGH CRESCENT MACEDONIA 102 QUARRY THAYER	SW NE SW NW NW SW SW SW NE SW NE NE NE	01 17 23 10 13 23 19 17 10 32 16 27 20 35 28 32 35	T076 T077 T073 T071 T076 T070 T079 T079 T076 T076 T076 T077 T073 T067 T076 T074 T078 T074	R31W R31W R34W R34W R43W R42W R42W R29W R27W R28W R38W R36W R24W R40W R34W R28W	25B-25E 25B-25E 11-13 3-5 25B-25E 18 25B-25E & 3' OF 26 25B-25E & 3' OF 26 14B TOP 4' OF BED 20A TOP 4' OF BED 20A TOP 4' OF BED 20A KERFORD 4-6 25B-25E 16 1 20B 25B-25E	D D D D D B, D, E B, D, E B, D, E D, E D, E D D D D D D B, E	

			EVETMENT						
CODE	OPERATOR	SOURCE NAME		LOC	ATION	l.		BEDS	REVETMENT CLAS
DISTR	ICT 5								
A04004	L&W QUARRIES	MARTIN #3		E2	20	TO70	R19W	1-3	D
								6	D, E
A04016	L&W QUARRIES	LEMLEY EAST #5		СТ	35	TO70	R19W	1-3	D
A04018	L&W QUARRIES	CLARKDALE #8		SE	15	TO69	R18W	6 1A	A, B, D, E D, E
704010	Law QUARRIES	CLARRDALL #0		JL	15	1005	KIOW	10	A, B, D, E
								4	D
A20002	SCHILDBERG CONST CO INC	OSCEOLA		NW	12	T072	R26W	1-10	D
								20A	D
A26004	DOUDS STONE INC	LEWIS		W2	02	TO69	R12W	3-5	D
								6-7 3-7	D, E D, E
A26006	DOUDS STONE INC	BROWN	SW	NW	02	TO69	R12W	1	D, E
TIL OUCO	boobs broke into	Ditotiti	0		0L			3-7	D, E
A27002	SCHILDBERG CONST CO INC	GRAND RIVER		NW	22	TO70	R27W	17	D
A27008	SCHILDBERG CONST CO INC	DECATUR		SE	32	TO69	R27W	7	D
					~		Danu	13-14	D
A29002	L&W QUARRIES	MEDIAPOLIS		SE	01	T071	R04W	3-7	A, B, D, E
A29008	CESSFORD CONST CO	NELSON		NE	26	T072	R02W	15-18 7-14	A, B, D, E A, B, D, E
A29000	CESSFORD CONST CO	NELSON		INL	20	1012	RUZW	7-20	A, B, D, E
								15-20	D
								15-24	D
								21-24	A, B, D, E
						-		25-27	D
A29012	CESSFORD CONST CO	GEODE		NE	01	TO69	R05W	1-5	D, E
								9-13 REEF	D, E E
A44008	DOUDS STONE INC	NELSON-TWEEDY		SE	36	T071	R06W	9-14	D, E
				01	00			13-14	D, E
A51006	WINN CORP	JEFFERSON		NE	09	T071	R10W	5-8	A, B, D, E
								LOWER 4' OF BED 8	A, B, D, E
4.5.1000	DOUDO CTONE INO	VERMON			0.4	T077	DADIM	10-12	A, B, D, E
A54002	DOUDS STONE INC	KESWICK		NW	21	T077	R12W	13-15 13-17	A, B, D, E D
A54004	DOUDS STONE INC	OLLIE		SW	01	TO74	R11W	9-12	A, B, D, E
7,54004	DOODS STONE INC	OLLIC		5	01	1014	1.11.00	9-13	D
								9-18	A, B, D, E
								13-18	A, B, D, E
								19-26	D
								27-29	A, B, D, E
A54008	DOUDS STONE INC	HARPER		SE	11	TO76	R11W	30-33 13-22	D A, B, D, E
AJ4000	DOODS STONE INC			JL		1070	IXT I VV	32-37	A, B, D, E
								38-40	A, B, D, E
A54010	DOUDS STONE INC	LYLE		NW	13	T074	R13W	36-38	A, B, D, E
							-	40	A, B, D, E
A56002	CESSFORD CONST CO	HAWKEYE		NE	10	T068	R06W	1-21	D
A56008	CESSFORD CONST CO	DONNELLSON		SE	05	TO67	R06W	22-27 10-13	A, B, D, E A, B, D, E
A56008	MARTIN MARIETTA	GIVEN #2		SE	14	T074		2-6	A, D, D, E D
A63002	MARTIN MARIETTA	DURHAM MINE		NE	08	T075	R18W	88-95	D, E
								95-96	D, E
63010	BRUENING ROCK PROD INC	S&S		SE	25	T075	R20W	25	A, B, D, E

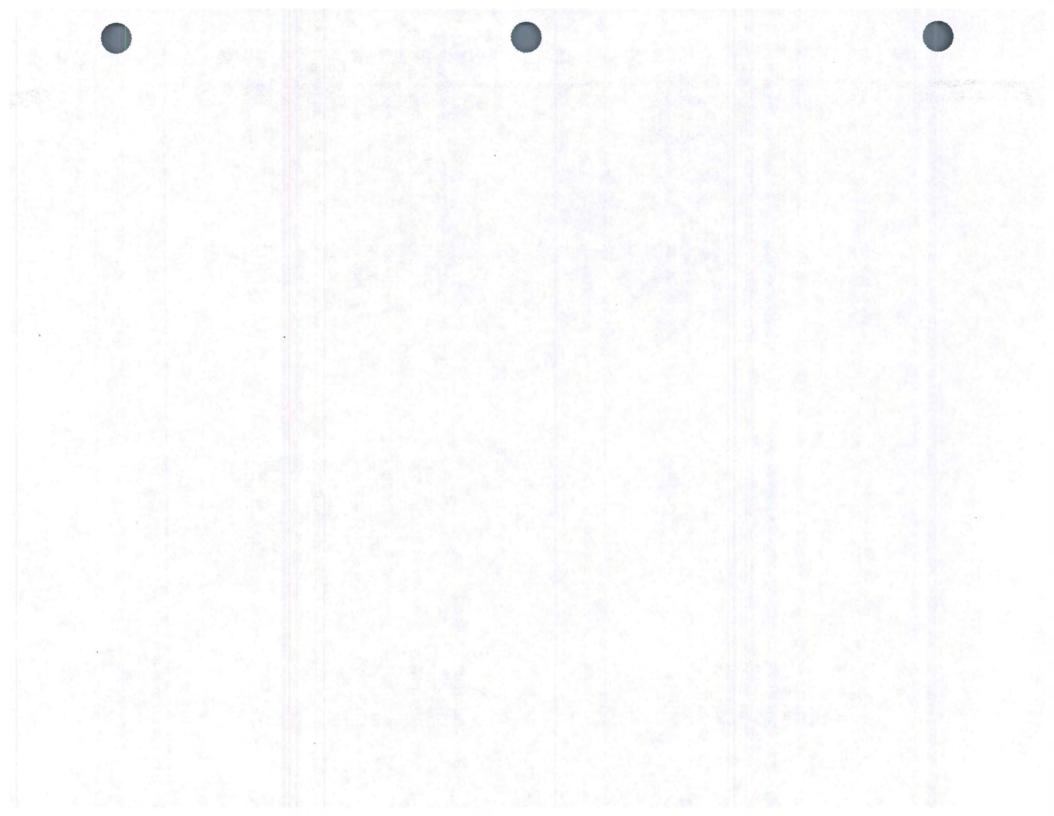
		REVETMEN SOURCE A						
CODE	OPERATOR	SOURCE NAME	LOC	ATIO	N		BEDS	REVETMENT CLASS
DISTR	ICT 5 (Continued)							
A89002 A89006	DOUDS STONE INC CESSFORD CONST CO	DOUDS MINE FARMINGTON-COMANCHE	SE NE	25 05	TO70 TO67		5-13 5-12 14-15 16-17	D, E D D A, B, D, E
89008	DOUDS STONE INC	SELMA-GARDNER	NW	16	TO70	R11W	18-23 14-21 14-31	D A, B, D, E A, B, D, E
492002 492008	DOUDS STONE INC RIVER PRODUCTS CO	WESTCHESTER PEPPER-KEOTA FIELD	NE SW	19 31	TO76 TO76	R08W R09W	22-31 15-16 2-20 22-28 29-36	A, B, D, E D, E D D D
AMO012	CESSFORD CONST CO GRAY QUARRY INC L&W QUARRIES NORRIS AGGREGATES CO CENTRAL STONE	DALLAS CITY, HENDERSON CO GRAY, HANCOCK CO KAHOKA, CLARK CO JEFFERIES, HARRISON CO HUNTINGTON, RALLS CO	SW NE NE NW NE	36 31 17 03 17	TO08 TO05 TO65 TO66 TO56	R07W R08W R07W R26W R06W	29-30 5-6 2 2A-3B 25C-25D 6-11	A, B, D, E A, B, D, E A, B, D, E D, E A, B, D, E
								-
DISTR 06006	ICT 6 WENDLING QUARRIES INC	GARRISON B	NE	33	T085	R11W	6-TOP 2' OF BED 27 6-32	A, B, D, E EROSION
06012	COOTS MATERIALS CO INC	JABENS	SW	07	T085	R11W	6-11, 12 20-23	A, B, D, E A, B, D, E
06014 06016	WENDLING QUARRIES INC COOTS MATERIALS CO INC	VINTON-MILROY COOTS	S2 SW	10 36	TO85 TO86	R10W R11W	1-7 2A ON DOWN	D D
10002 10004	NIEMANN CONST CO NIEMANN CONST CO	LAMONT-WESTON JESUP-BLOOM	NW SW	14 32	TO90 TO89	R07W R10W	1-6 2-5 2-8	A, B, D, E A, B, E D
10008 10010	BRUENING ROCK PROD INC NIEMANN CONST CO	OELWEIN-MISHLER HAZELTON	NW NW	02 11	TO90 TO90	R09W R09W	4-5 4A-4D	A, B, D, E A, B, D, E
10016 10022 10024	NIEMANN CONST CO BRUENING ROCK PROD INC NIEMANN CONST CO	OELWEIN #2 BROOKS RASMUSSEN #2	SE NW SE	03 02 21	TO90 TO88 TO88	R09W R09W R08W	13-17 4-5 1-6 + QUARRY FLR	A, B, D, E EROSION D
10030	NIEMANN CONST CO	AURORA-SOUTH			TO90		1-3	A, B, D, E
16004 16006 16010	WENDLING QUARRIES INC WENDLING QUARRIES INC WENDLING QUARRIES INC	LOWDEN-SCHNECKLOTH STONEMILL PEDEN	NW SE NE	04 14 10	TO81 TO80 TO79	R01W R03W R03W	1 4A-4D 1-3	A, B, D, E A, B, D, E D, EROSION
16012 16014 16022	WEBER STONE CO WENDLING QUARRIES INC WENDLING QUARRIES INC	ONION GROVE TOWNSEND TRICON	SE NW N2	14 02 09	TO82 TO79 TO82	R02W R02W R04W	1-7 2-10 1	A, B, D, E A, B, D, E A, B, D, E
23002 23004 23006	WENDLING QUARRIES INC WENDLING QUARRIES INC WENDLING QUARRIES INC WENDLING QUARRIES INC	BLOORE-ELWOOD BEHR SHAFFTON	NW SW NE	08 02 11	TO83 TO81 TO80	R02E R03E R05E	1-2 1-2 16-20	A, B, D, E A, B, D, E A, B, D, E A, B, D, E
23010	WENDLING QUARRIES INC	GOOSE LAKE	SW	22	T083	R05E	3-14 2-4	D, EROSION E
23012 23016	WENDLING QUARRIES INC WENDLING QUARRIES INC	TEEDS GROVE LYONS	SW NW	03 18	T083 T082	R06E R07E	2-4 UPPER OR LOWER LEDGE	A, B, D, E E
28008	KUHLMAN CONST KUHLMAN CONST	EDGEWOOD WEST TIBBOTT	CT SW	04 23	TO90 TO90	R05W R04W	2-7 1-5	A, B, D, E A, B, D, E
28014 28016 28020	KUHLMAN CONST KUHLMAN CONST BARD CONCRETE	LOGAN WHITE DEUTMEYER	SW NW SW	10 02 13	TO88 TO88 TO88	R05W R04W R03W	2-8 1-2 1-6	A, B, D, E A, B, D, E A, B, D

)			E APPROVA					
CODE	OPERATOR	SOURCE NAME	LOC	ATION	N		BEDS	REVETMENT CLASS
DISTR	ICT 6 (Continued)							
A28030	KUHLMAN CONST	GRIEF	NE	18	T087	R03W	1-2	A, B, D, E
A28038	KUHLMAN CONST	EDGEWOOD EAST	NW	06	TO90	R04W	1B-5 2-6	A, B, D, E E
A28040	BARD CONCRETE	KRAPFL	SE	23	T089	R03W	1-5 4	A, B, D
A28052	RIVER CITY STONE CO	MANCHESTER	SW	09	TO88 GES – NO	R05W	6-8	Е
A 20056	RIVER CITY STONE CO	THORPE	NW		TO90	R05W	FULL FACE	A, B, D, E
A28056 A28058	RIVER CITY STONE CO	ROSSOW/MANCHESTER	NW		· TO88	R05W	2-8	A, B, D, E A, B, D, E
A31002	RIVER CITY STONE CO	ROSE SPUR	INVV	27	TO90	R02E	1-8	A, B, D, E
A31002	KUHLMAN CONST	DYERSVILLE	SE	32	TO89	R02W	4-12	A, B, D, E
A31008	RIVER CITY STONE CO	KLEIN-RICHARDSVILLE	NW	33	TO90	R01E	2-4B	A, B, D
A31000	RIVER CITT STONE CO	RELIN-RICHARDSVILLE	1400	55	1050	NUTL	3A-4B	E.
A31010	RIVER CITY STONE CO	BROWN	NW	33	T089	R02E	FULL FACE	D
ASTOTO	RIVER GITT STONE CO	BROWN		55	1005	NULL	3-9	A, B, E
A31014	BARD CONCRETE	KURT	N2	35	T087	R02W	1-2	A, B, D, E
A31018	RIVER CITY STONE CO	MELOY	NW	23	T087	R01E	FULL FACE	A, B, D
A31010	RIVER OTTI STONE CO	MELOT		20	1007	ROTE	1-3	E.
A31020	RIVER CITY STONE CO	SCHLITCHE	SE	11	T089	R02W	1-4	A, B, D, E
A31026	WENDLING QUARRIES INC	ARNSDORF	SE	25	T087	R02E	1-2	A, B, D, E
A31028	RIVER CITY STONE CO	THOLE	NW	21	T087	R02E	2-3	A, B
A31020	RIVER OFFI STORE CO	MOLE		21	1007	NULL	3	D, E
131034	RIVER CITY STONE CO	HERMSEN	NE	33	TO90	R02W	1-2	A, B, D, E
A31036	RIVER CITY STONE CO	BALLTOWN	SE	.05	TO90	R01E	1-7	A, B, D, E
A31040	RIVER CITY STONE CO	KENNEDY	NW	03	T088	R01W	FULL FACE	A, B, D, E
A31044	RIVER CITY STONE CO	GASSMAN	SE	07	T088	R03E	2-9	A
101011	NIVER ON P STORE OU	Gridolinit	02	0,	1000	HOUL	2-10	B, D
							5-9	E
A31050	RIVER CITY STONE CO	PLOESSEL-DYERSVILLE	N2	07	TO88	R02W	2-5	A, B, D
1101000		· LOLGOLL DILIGHELL		0.			3-5	E
A31052	WEBER STONE CO	EPWORTH-KIDDER	SW	02	TO88	R01W	FULL FACE	A, B, D, E
A31056	RIVER CITY STONE CO.	RUBIE	SE	06	TO88	R03E	5-9	A, B, E
							FULL FACE	D
A31058	RIVER CITY STONE CO	HOLY CROSS	SW	12	TO90	R02W	FULL FACE	A, B, D, E
A31060	BARD CONCRETE	CASCADE EAST	SE	22	T087	R01W	1-5	A, B, D
							2-5	E
A31064	RIVER CITY STONE CO	WEBER	NE	32	T089	R02E	3-9A	A, B, D, E
A31066	RIVER CITY STONE CO	FILLMORE	SW	26	T087	R01W	FULL FACE	A, B, D
							2-4	E
A49002	BELLEVUE S & G CO	BELLEVUE	SW	25	T087	R04E	1-3	A, B, D, E
A49008	WENDLING QUARRIES INC	IRON HILL	SW	16	T085	R02E	1-6	A, B, D, E
A49010		ANDREW	NW	21	T085		1B-5B	A, B, D, E
A49012		FROST	SE	16	T084	R03E	1A-1E	A, B, D, E
A49016		WEIS	SE	22	T085		7	A, B, D, E
A49018		PATASKA	NW	23	T085		1	A, B, D, E
A49020	WENDLING QUARRIES INC	PRESTON	SW	26	T084	R05E	1-10	D, E
							7-10	A, B, D, E
A49021	PRESTON READY MIX	PRESTON R/M	SW	26	T084		7-10	A, B, D, E
A49022		BELLEVUE	SE	23	T086		1B-3	A, B, D, E
A49024		MAQUOKETA EAST	SW	07	T084		1-8	A, B, D, E
A49040		JOINERVILLE	SE	20			1-3	A, B, D, E
A52002		FOUR COUNTY	NW	04	T081		9-16	D
53002		FARMERS-BEHRENDS	NE	14	T086		1-5	A, B, D, E
A53004	WENDLING QUARRIES INC	MONTICELLO	NE	24	T086	R04W	FULL FACE	A, B, D, E

		REVETMENT SOURCE AP									
CODE OPERATOR SOURCE NAME LOCATION BEDS REVET											
DISTRICT 6 (Continued)											
A53010 A53012	WENDLING QUARRIES INC WENDLING QUARRIES INC	BALLOU-OLIN WYOMING	NE	24 33	T083 T084	R03W R01W	FULL FACE 1-2C	A, B, D, E A, B, D, E			
53012	WEBER STONE CO	JACOBS-SCOTCH GROVE	SW	07	T085	R02W	FULL FACE	A, B, D, E			
53016	WEBER STONE CO	STONE CITY	E2	06	T084	R04W	1, 3	A, B, D, E			
53018	RIVER CITY STONE CO	FINN	NE	06	T085	R01W	2-5	A, B, E			
							FULL FACE	D			
							4-5	E			
53024	RIVER CITY STONE CO	SULLIVAN	NW	14	T086	R03W	FULL FACE	A, B, D, E			
53026	RIVER CITY STONE CO	ANAMOSA	SW	15	T084	R04W	REEF MATERIAL	A, B, D, E			
57002	WENDLING QUARRIES INC	BETENBENDER-COGGON	SW	03	T086	R06W	1-10	A, B, D, E			
57006	WENDLING QUARRIES INC	ROBINS	NE	21	T084	R07W	1-3	D			
57008	WENDLING QUARRIES INC	BOWSER-SPRINGVILLE	SW	29	T084	R05W	1-8	A, B, D, E			
57010	WENDLING QUARRIES INC	TROY MILLS	SE	09	T086	R07W	FULL FACE	D			
57014	WENDLING QUARRIES INC	SWEETING	NW	18	T085	R08W	1-4	D			
57018	MARTIN MARIETTA	CEDAR RAPIDS	NE	15	T082	R06W	2-9	A, B, D, E			
57028	WENDLING QUARRIES INC	BEVERLY	NW	07	T082	R07W	6-7 1-7	A, B, E			
57030	BRUENING ROCK PROD INC	HENNESSEY	NE	01	T082	R07W	9-14, 15-16	D D			
70002	WENDLING QUARRIES INC	MOSCOW	NW	08	T078	R02W	11-17	D, E			
10002	WENDLING QUARKIES INC	MOSCOW	1444	00	1070	NULW	21A-24	A, B, D, E			
							1-9	EROSION			
							8-17	EROSION			
82002	RIVERSTONE GROUP INC	MCCAUSLAND	W2	17	TO80	R04E	1-19	A, B, D, E			
82004	RIVERSTONE GROUP INC	NEW LIBERTY	NE	33	T080	R01E	1-2	A, B, D, E			
82006	RIVERSTONE GROUP INC	LECLAIRE	NW	35	T079	R05E	2-32	A, B, D, E			
IL006	RIVERSTONE GROUP INC	MIDWAY (MC 45), ROCK IS CO	SW	16	TO18	R02E	0-160'	A, B, D, E			
IL010	RIVERSTONE GROUP INC	ALLIED (MC 30), ROCK ISLAND CO		14	T017	R02W	16'-173'	A, B, D, E			
IL016	RIVERSTONE GROUP INC	CLEVELAND (MC 31), HENRY CO	SW	31	T017	R02E	10'-215'	A, B, D, E			

APPROVED PRODUCERS WITH QC PROGRAMS							
RODUCER	STREET ADDRESS	CITY, STATE, ZIP	PHONE/FAX NUME				
4							
-LINE CRUSHING SERVICE	808 DEARBORN AVE	WATERLOO, IA 50703	319-232-3889				
CME FUEL & MATERIALS CO	2544 PETTIBONE AVENUE	MUSCATINE, IA 52761	563-263-1105				
GGREGATE INDUSTRIES	2915 WATERS ROAD STE 105	EAGAN, MN 55121	651-686-2302				
GGREGATE MATERIALS CO	1400 E 12 TH STREET	DUBUQUE, IA 52001	563-583-6642				
GGREGATES INC	6101 BLAIRS FERRY ROAD NE	CEDAR RAPIDS, IA 52411	319-395-0050				
NDERSON SAND & GRAVEL CO RCADIA LIMESTONE CO	2578 270 TH AVENUE 19011 CRYSTAL AVENUE	DEWITT, IA 52742 ARCADIA, IA 51430	563-659-5506 712-689-2299				
	19011 CRISTAL AVENUE	ARCADIA, IA 51450	712-009-2299				
3	Contraction of the second second	and and the state of the second	1.1.1.1.1.1.1.1				
MC AGGREGATES LC	101 BMC DRIVE	ELK RUN HEIGHTS, IA 50707	319-235-6583				
ADD CONCRETE CO	2021 325 [™] AVENUE	DYERSVILLE, IA 52040	319-235-7065 (FA				
ARD CONCRETE CO	2021 325 WAVENUE	DYERSVILLE, IA 52040	563-875-7145				
EDROCK GRAVEL CO	1002 HWY 59 SOUTH	SCHLESWIG, IA 51461	563-875-7860 (FA 712-676-3752				
ELLCO OF NEBRASKA INC	2826 SOUTH AVENUE	COUNCIL BLUFFS, IA 51503	712-322-8501				
ELECO OF NEDRASKA INC	2020 SOUTHAVENUE	COUNCIE BEULT 3, IA 31303	712-322-8526 (FA				
ELLEVUE SAND & GRAVEL CO	29427 HWY 52	BELLEVUE, IA 52031	563-872-3886				
ENTON'S SAND & GRAVEL	815 CENTER STREET	CEDAR FALLS, IA 50613	319-266-2621				
	ore deliver officer	OLDART ALLO, AT OUTS	319-266-5926 (F/				
IG STONES QUARRY, INC	2487 290TH STREET	PERU, IA 50222	515-988-4106				
			515-440-0944 (FA				
LAZEK CORPORATION	1830 RIDGEWAY BLVD	LAWLER, IA 52154	563-238-7150				
OGGESS CONST CO	321 NORTH 17 TH COURT	ESTHERVILLE, IA 51334	712-867-4516				
OON CONSTRUCTION CO	N 5399 STATE HWY 73	NEILLSVILLE, WI 54456					
OYER SAND & ROCK INC	4162 BIRCH AVENUE	HAWARDEN, IA 51023	712-552-2308				
ROCKMAN SAND CO	2397 263RD AVENUE-POB 312	FORT MADISON, IA 52627	319-372-7138				
RUENING ROCK PRODUCTS INC	325 WASHINGTON STREET-POB 127	DECORAH, IA 52101	563-382-2933				
/SKYLINE CONSTRUCTION			563-382-8375 (F/				
UILDERS SAND & CEMENT CO	104 WESTERN AVENUE	DAVENPORT, IA 52801	563-322-1757				
C							
. J. MOYNA & SONS INC	24412 HWY 13	ELKADER, IA 52043	563-245-1442				
ARNARVON SAND & GRAVEL	811 N 10 TH ST	DENISON, IA 51442	712-664-2511				
EMSTONE PRODUCTS COMPANY	2025 CENTRE POINT BLVD- SUITE 300	MENDOTA SPRINGS, MN 55120-1221	651-688-9292				
CENTRAL STONE CO #1	RR 1-POB 236	HANNIBAL, MO 63401-9622	573-735-4525				
CESSFORD CONST CO	2320 ZELLER AVENUE	LE GRAND, IA 50142	641-479-2695				
			641-479-2003 (F				
CESSFORD CONST CO - SE DIV	3808 OLD HWY 61	BURLINGTON, IA 52601	319-753-2297				
			319-753-0926 (F				
COHRS CONSTRUCTION INC	15700 NORTH TRADEWIND DRIVE	SPIRIT LAKE, IA 51360	712-832-3714				
CONCRETE INC	POB 54	GIFFORD, IA 50259	641-858-3637				
CONCRETE MATERIALS CO	1201 WEST RUSSELL	SIOUX FALLS, SD 57104	605-357-6000				
CONRECO INC	4901 G STREET	OMAHA, NE 68117	402-733-4100				
COOTS MATERIALS CO INC	1700 WEST D STREET	VINTON, IA 52349	402-733-5774 (F) 319-472-4480				
SUOTS WATERIALS CO INC	1100 WEST D STREET	VIINT ON, IA 32343	319-472-4480 319-472-4485 (Fr				
CORELL RECYCLING	200 SOUTH 13TH STREET	WEST DES MOINES, IA 50265	515-223-8010				
CRAWFORD QUARRY CO	HWY 94 NW-POB 1027	CEDAR RAPIDS, IA 52046	319-396-5705				
		NEW HAMPTON, IA 50659	010-000-0100				

	APPROVED PRO WITH QC PROC		
PRODUCER	STREET ADDRESS	CITY, STATE, ZIP	PHONE/FAX NUMBER
D			
DAVE'S SAND & GRAVEL INC	RR 2-POB 58A	HARTLEY, IA 51346	712-834-2515
ELONG RECYCLING, INC	1320 N 8 TH AVENUE, POB 488	WASHINGTON, IA 52353	319-653-3334
OUDS STONE INC	13133 ANGLE RD SUITE B-POB 187	OTTUMWA, IA 52501	641-683-1671 641-683-1673 (FAX)
UININCK BROS INC	408 6 TH ST-POB 208	PRINSBURG, MN 56281	320-978-6011
STHERVILLE ROCK & GRAVEL CO	POB 97	ESTHERVILLE, IA 51344-0097	712-362-3506
STHERVILLE ROOK & GRAVEL CO	100 37	ESTIERVILLE, IN 31344-0037	800-379-7263 (T-F)
5			
ALK L R- CONSTRUCTION CO	227 W 4 TH STREET-POB 189	ST ANSGAR, IA 50472-0189	641-713-4569
ALKSTONE LLC	227 W 4 TH STREET-POB 189	ST ANSGAR, IA 50472-0189	641-713-4569
LEWELLING SAND & GRAVEL	1157 HWY 140	MOVILLE, IA 51039	712-873-3174
OYD RIVER MATERIALS	32138 HICKORY AVE	SIOUX CITY, IA 51101	712-233-1111
ORT CALHOUN STONE CO	7001 US HWY 75-POB 284	BLAIR, NE 68008	402-426-4254
			402-468-4380
			402-468-4388 (FAX)
ORT DODGE ASPHALT CO	2516 7TH AVENUE SOUTH	FORT DODGE, IA 50501	515-573-3124
3			
EHRKE QUARRIES INC	POB 521	.ELDORA, IA 50627	641-858-3821
			641-858-2564 (FAX)
RAY QUARRIES INC	POB 386	HAMILTON, IL 62341	217-847-2712
REENE LIMESTONE CO	1211 SOUTH MAIN ST-POB 687	CHARLES CITY, IA 50616	641-228-4255
			641-228-4061 (Shop)
1			
AHN READY MIX	POB 1107	MUSCATINE, IA 52761	563-263-6467
ALLETT MATERIALS CO	5550 NE 22ND STREET-POB3365	DES MOINES, IA 50316	515-266-9928
			515-266-9857 (FAX)
ANK STALD CDAVEL CO	1500 DIVED DOAD	WEST DOWNT ME COZOO	800-838-2615 (WIA)
ANK STALP GRAVEL CO	1598 RIVER ROAD	WEST POINT, NE 68788	402-372-5491 900-272-5491 (T.E)
			800-372-5491 (T-F) 402-372-5477 (FAX)
EARTLAND ASPHALT INC	2601 SOUTH FEDERAL AVENUE	MASON CITY, IA 50401	641-424-1733
ECKETT MULTISERV WEST	C/O NSW-POB 474	STERLING, IL 61081	815-626-3316
LONETT WOLTIGERY WEST	0,0 100 100 111	STEREING, IE OTOOT	815-626-9306 (FAX)
EIMES EXCAVATING & UTIL CO	9144 SOUTH 147 TH STREET	OMAHA, NE 68138	402-894-1000
GMAN SAND & GRAVEL INC	16485 HWY 12-POB 109	AKRON, IA 51001	712-568-2181
DRSFIELD MATERIALS, INC.	505 EAST MAIN ST-POB 305	EPWORTH, IA 52045	563-876-3335
	and the second se	and a second	
EAL SAND CO	3902 MT PLEASANT ST-POB 416	WEST BURLINGTON, IA 52655	319-754-4747
WA DRAINAGE INC	703 E. GILMAN ST- POB 7	SHEFFIELD, IA 50475	641-892-4330
ON MOUNTAIN TRAPROCK CO	POB 9137	IRON MOUNTAIN, MO 63650	573-734-6106
V READY MIX & CONST	3111 270 TH STREET	SAC CITY, IA 50583	712-662-4239
	STILLIO STILLI		112 002 1200


Matls. IM T203

	APPROVED PRO WITH QC PROC			
PRODUCER	STREET ADDRESS	CITY, STATE, ZIP	PHONE/FAX N	UMBE
к				
KNIFE RIVER MIDWEST LLC	P.O BOX 48	DECORAH, IA 52101	563-382-4249 563-382-9225	(FAX
KNOCKS BUILDING SUPPLIES KRUSE PAVING INC	302 NORTH SIDE POB 899	PARKERSBURG, IA 50665 LAKEFIELD, MN 56150	319-278-4868 507-662-5205	
KRUSE ROCK & GRAVEL	1401 T AVENUE-POB 466	MILFORD, IA 51351	507-662-6725 712-338-9084 888-808-7625	
KUHLMAN CONSTRUCTION CO	325 MAIN-POB 126	COLESBURG, IA 52035	712-338-2031 563-856-3535	(FAX
			800-772-1731 563-856-5505	(T-F (FAX
L G EVERIST INC	POB 9	DELL RAPIDS, SD 57022	605-428-5419	
L&M SAND & GRAVEL INC	426 2 ND AVENUE NE POB 335	LE MARS, IA 51031	605-428-3012 712-546-5359 641-437-4830	(FA)
L&W QUARRIES INC LA HARV CONST CO INC	POB 267	CENTERVILLE, IA 52544 FOREST CITY, IA 50436	641-437-4837 641-437-4837 641-581-3643	(FA)
LESSARD CONTRACTING INC LINWOOD MINING & MINERALS CORP	POB 705 5401 VICTORIA AVE, SUITE 110	SERGEANT BLUFF, IA 51054 DAVENPORT, IA 52807	712-252-4131	(7.1
LOUNSBURY LANDSCAPING	6000 RACCOON RIVER DR	WEST DES MOINES, IA 50266	800-798-8251 563-344-3730 515-225-7100	
LUNDELL CONSTRUCTION CO., INC LYMAN-RICHEY SAND & GRAVEL	1420 EAST RICHLAND 4315 CUMING STREET	STORM LAKE, IA 50588 OMAHA, NE 68131	712-732-4059 402-558-2727	
M				
MALLARD SAND & GRAVEL MANATT'S INC	POB 638 1755 OLD 6 ROAD-POB 535	VALLEY, NE 68064 BROOKLYN, IA 52211	402-359-5287 641-522-9206 641-522-9407 641-522-5594	
MANATT'S SAND & GRAVEL MARENGO READY MIX INC MARTIN MARIETTA AGGREGATES	1928 340 TH STREET-POB 87 POB 121 11252 AURORA AVENUE	TAMA, IA 52339 MARENGO, IA 52301-0121 DES MOINES, IA 50322	641-484-4022 319-642-3811 515-254-0030	
			800-332-5433 515-254-0035	(T-
MARTIN MARETTA AGGREGATES MATX INC MCALISTER AGGREGATES LLC	POB 629 110 CLUBRIDGE PLACE 1924 HWY 141- POB 157	VALLEY, NE 68064 COLORADO SPRINGS, CO 80906 BAYARD, IA 50029	402-359-4088 800-642-6653	
MIELKE'S QUARRY	13303 SPOOK CAVE RD	MCGREGOR, IA 52157	712-651-2018 563-539-4227	(FA
MILESTONE MATERIALS MOBERLY STONE CO	920 10 TH AVE NORTH-POB 189 POB 582	ONALASKA, WI 54650 MOBERLY, MO 65270	608-783-6411 608-783-4311 660-277-4419	(FA
MYRL & ROY'S PAVING INC	1300 NORTH BAHNSON AVENUE	SIOUX FALLS, SD 57103	660-277-4790 605-334-3204	(FA

49

	APPROVED PRODU WITH QC PROGR		
PRODUCER	STREET ADDRESS	CITY, STATE, ZIP	PHONE/FAX NUMBE
N			
NELSTAR	210 WALNUT	MERIDEN, IA 51037	712-443-8832
NEW ULM QUARTZITE QUARRY	ROUTE 5-POB 21	NEW ULM, MN 56073	507-354-2925
			507-359-7870 (FAX)
NORRIS AGGREGATES CO	219 3RD ST-POB 190	CAMERON, MO 64429	816-324-0310
NORTH IA SAND & GRAVEL INC	18237 KILLDEER AVENUE	MASON CITY, IA 50401	641-424-5591
			641-423-1894 (FAX)
NORTHWEST MATERIALS	1648 LAINSON AVENUE 6340 180 TH STREET	FORT DODGE, IA 50501 OCHEYEDAN, IA 51354	515-573-8921 712-758-3683
NU AGGREGATES	300 NORKA DRIVE	AKRON, IA 51001	712-568-2181
	SOUTION DRIVE		112 300 2101
0			
ORTONVILLE STONE CO	POB 67	ORTONVILLE, MN 56278	320-839-6131
P			
ATRICK M. PINNEY CONTRACTORS	1915 FLOYD BLVD-POB 5107	SIOUX CITY, IA 51102	710 250 2774
PAUL NIEMANN CONST CO	24541 150 TH STREET-POB 128	SUMNER, IA 50674-0128	712-252-2774 563-578-3261
ADE NIEMANN CONST CO	24341130 311121100120	50MINER, IA 50074-0120	563-578-3263 (FAX)
PBI CONST	4953 D AVE	MARCUS, IA 51035	712-376-4886
PELLA CONST CO LTD	POB 25	PELLA, IA 50219	641-628-3840
PERSINGER SAND & GRAVEL	3281 LUCAS AVENUE	SMITHLAND, IA 51056	712-889-2258
PERU QUARRY	2431 ST. CHARLES ROAD	WINTERSET, IA 50273	515-462-4801
PETERSON CONTRACTORS INC	104 BLACKHAWK-POB A	REINBECK, IA 50669	319-345-2713
PETTENGILL CONC & GRAVEL INC PRAIRIE SAND & GRAVEL	800 NORTH BOONE POB 210	ROCK RAPIDS, IA 51246 PRAIRIE DU CHIEN, WI 53821	712-472-2571 608-326-6471
PRESTON READY MIX CORP	POB 399	PRESTON, IA 52069	563-689-3381
Q			
QUALITY CONCRETE CO	327 17TH AVENUE SOUTH	CLINTON, IA 52732	563-242-3524
		SERVICE, IN SERVICE	505 LAE 5524
R			
RANDALL TRANSIT MIX CO	1343 HWY 105-POB 153	NORTHWOOD, IA 50459-0153	641-324-1063
RECYCLED AGGREGATE PROD CO	2131 18 TH STREET	SIOUX CITY, IA 51105	712-252-7732
REDINGS GRAVEL & EXCAVATING CO	2001 EAST OAK STREET	ALGONA, IA 50511	515-295-3661
REILLY CONSTRUCTION CO	110 MAIN STREET-POB 99	OSSIAN, IA 52161	563-532-9211 563-532-9759 (FAX)
RIEHM CONSTRUCTION CO INC	2340 9TH STREET SW	WAUKON, IA 52172	563-568-3314
RIVER BEND ENTERPRISES	3000 ASHERTON AVENUE	NASHUA, IA 50658	641-435-2436
RIVER CITY STONE INC	3747 CONSTRUCTORS COURT-POB 160	KEILER, WI 53812-0160	608-568-3433
RIVER PRODUCTS CO INC	3273 DUBUQUE ST NE- POB 2120	IOWA CITY, IA 52244-2120	319-354-1090
		MOUNT IN CLOSE	319-353-6606 (FAX)
RIVERSTONE GROUP INC	1701 5 TH AVENUE	MOLINE, IL 61265	309-757-8250 200 757 8257 (FAV)
OCK HARD CONCRETE RECYCLING	214 E. MAIN ST-POB 217	WEST BRANCH, IA 52358	309-757-8257 (FAX) 319-631-3903
COCK VALLEY GRAVEL CO	1315 17 TH AVENUE-POB 9	ROCK VALLEY, IA 51247	712-476-2063
ROCKY MOUNTAIN ENTERPRISES	6515 COUNTY HIGHWAY H	ATHENS, WI 54411	715-257-1440
	And a state substance of	See States - Charles and 12	715-257-1140 (FAX)

APPROVED PRODUCERS WITH QC PROGRAMS			
RODUCER	STREET ADDRESS	CITY, STATE, ZIP	PHONE/FAX NUMBE
5			
&A CONSTRUCTION LTD	POB 20	ALLENDALE, MO 64420	660-786-2233
&G MATERIALS	4213 SAND ROAD SE	IOWA CITY, IA 52240	319-354-1667
CHILDBERG CONSTRUCTION CO	POB 358	GREENFIELD, IA 50849	641-743-2131
CHMILLEN CONST INC	4772 C AVENUE	MARCUS, IA 51035-0488	712-376-2249
SHELL ROCK PRODUCTS	22281 WALNUT AVENUE	SHELL ROCK, IA 50670	319-885-4302
HIPLEY CONTRACTING	2671 240 TH STREET	FORT MADISON, IA 52625	319-372-1804
SIEH SAND & GRAVEL	101 WEST 18TH STREET-POB 1503	SPENCER, IA 51301	712-836-2244
			712-262-4580
OUTHERN MN CONST CO, INC.	1100 MARCUS ST-POB1100	FAIRMONT, MN 56031	507-235-3321
SPENCER QUARRIES	25341 430 TH AVENUE	SPENCER, SD 57374	605-246-2344
STENSLAND GRAVEL CO	1741 ASHLEY AVE	LARCHWOOD, IA 51241	712-477-2280
STERZINGER CRUSHING INC	3273 290 TH AVE	TAUNTON, MN 56291	
STONER SAND	RR 2	RIDGEWAY, MO 64481	660-824-4211
STRONG ROCK & GRAVEL	721 SOUTH FRONT ST	LANSING, IA 52151	563-538-4603
WAN ROCK & SAND PRODUCTS, LLC		EDDYVILLE, IA 52553	641-658-2474
			641-777-1233 (CELI
r			011 111 1200 (022)
and the second se	11975 HAWTHORNE AVENUE-POB 157	BREDA, IA 51436	712-673-2686
TIEFENTHALER AG-LIME INC			/12-0/3-2000
RISTAR QUARRIES	11278 474 TH ST 1500 WEST 3 RD STREET	PLANO, IA 52581 WILTON, IA 52778	E62 722 4010
UBE CITY IMS CORP	1500 WEST 3ND STREET	WILTON, IA 52778	563-732-4010
U			
JLLAND BROTHERS INC	2400 MYERS ROAD	ALBERT LEE, MN 56007	507-373-1960
			507-433-1819
			545 205 5572
WAYNE T HANSEN CORP	13 COUNTRY ESTATES	ALGONA, IA 50511	515-295-5573
WEATHERTON CONTRACTING	307 N 16 TH ST-POB151	BERESFORD, SD 57004	605-763-2078
WEBER STONE CO INC	12791 STONE CITY ROAD	ANAMOSA, IA 52205	319-462-3581
WELDEN ACODECATES INC	DOD 022	IONIA FALLS IN FOLOS	319-462-3585 (FA
WELDEN AGGREGATES INC	POB 832	IOWA FALLS, IA 50126	641-648-5142
WENDLING QUARRIES INC	DOD 000	DEWITT IN COTAD	641-648-5142 (FA)
	POB 230	DEWITT, IA 52742	563-659-9181
NEAT DEC MOINES CAND OO	10500 CW COND CTDEET	DEC MOINES IN FARE	563-659-3393 (FA
WEST DES MOINES SAND CO	10500 SW 52ND STREET	DES MOINES, IA 50265	515-287-2340
WESTERN ENGINEERING COMPANY	POB 350	HARLAN, IA 51537	712-755-5191
WETHERELL EXCAV & TRUCKING	POB 582	STORM LAKE, IA 50588	712-732-4059
AN TOTAL CONCEPTION CO	112 FACT MAIN CTDEET DOD 017	CALMAD IA 52122	712-732-2839 (FA
WILTGEN CONSTRUCTION CO	113 EAST MAIN STREET-POB 817	CALMAR, IA 52132	563-562-3301
			800-365-3301 (T-
WINN CORP SAND & GRAVEL WRIGHT MATERIALS CO	28825 290 TH STREET 1127 HWY 69-POB 244	OLLIE, IA 52576 BELMOND, IA 50421	641-667-3471 641-444-3920
Z			

1.5

The term "material allowance" is used to designate material which will later be incorporated in the project and ultimately paid at contract unit prices. The term "unincorporated material" is used for material ordered for use on the project, but not used. Payment for material ordered, but not used and taken over by the contracting authority must be paid by change order. (Refer to *Construction Manual 2.36* for procedure used to process a change order.)

2.52 PAYMENT FOR UNEXPECTED CLASS 12 ROCK EXCAVATION

When Class 12 excavation is unexpectedly encountered and there is no contract item for Class 12, the quantity of Class 12 will be paid for as Extra Work. (Refer to *Construction Manual 2.36* for procedure used to process a Change Order.)

Approval for Work

- CASE I (Contract has an item for Class 10.) Specification 2102.14A establishes a price of ten times the Class 10 contract unit price for unexpected Class 12 excavation.
- CASE II (Contract does not have an item for Class 10.) In this case a change order price will have to be negotiated.

NOTE: When the contract contains items for special categories of Class 12, such as Class 12 (channel) or Class 12 (boulders), these items are not considered as representing normal Class 12 roadway and borrow excavation work.

2.53 PRICE ADJUSTMENT GUIDE FOR REASONABLY CLOSE CONFORMING, REASONABLY ACCEPTABLE, AND DEFICIENT WORK

Every effort should be made to prevent substandard work and/or noncomplying material from being incorporated into the project. However, when work and/or materials are deemed to be noncomplying, *Specifications 1105 and 1101* give authority to the project engineer for determining if construction work or materials are acceptable and/or within reasonably close conformity to the plans and specifications. Therefore, the project engineer must decide whether deficient work is to be removed and replaced or left in place with a price adjustment. Unusual situations or circumstances may warrant consultation with the Office of Construction and the Office of Materials.

NOTE: A price adjustment is no substitute for specification compliance and "unacceptable work" shall always be removed and replaced with acceptable work. Further, contractors need to be given an option of removing deficient work and replacing with acceptable work in lieu of a price adjustment.

Price adjustments of \$100 or less need not be formalized in a change order.

Guide Schedules for Price Adjustments

A. Gradation

Unless otherwise specified, variations in the gradation of aggregates shall be price adjusted as prescribed by "Aggregate Deviation Price Adjustments," in *Appendix* 2-34(A). These adjustments apply to variations in gradations for:

- Portland Cement Concrete
- Hot Mix Asphalt

When aggregates are mixed with asphaltic materials, price adjustments shall apply to the mix only.

- B. PCC Slump, Air Content, and Rain Damage
 - Concrete Slump Price Adjustments are prescribed in *Appendix 2-34(B)*. Concrete Air Content, Water Cement Ratio, Vibrator Frequency, Certified Plant Inspection, and Late Curing Application Price Adjustments are prescribed in *Appendix 2-34(C)*.
 - 2. Rain Damaged Portland Cement Concrete

When rain damage occurs, removal and replacement may be required by the project engineer in accordance with *Specification 2301.19*. However, damage must be determined to be severe enough to warrant such action. Contact the District Construction Engineer and the Office of Construction for assistance, if needed.

If work is allowed to remain, *Specification 1109.03* C requires the project engineer to determine "... a modification of the contract unit price." The following CASES shall be used for determining rain damage price adjustments. NOTE: Price adjustments are applied to an entire area encompassing the damage. (This means full width placed when damage occurred, beginning at the first transverse joint before any damage and ending at the first transverse joint after damage.)

ADJUSTMENT SCHEDULE

CASE I (Payment is 95% of contract unit price.)

Texture is absent from practically all of surface area. Surface appearance may have a "sandy" appearance or may be "pock" marked from the rain droplets. An occasional edge repair may be required due to excess edge slump or from edge rounding. Small areas along edge may have coarser particles of fine aggregate exposed. Surfaces finished in the rain or after a rain are also included in Case I.

CASE II (Payment is 90% of contract unit price.)

Texture is totally absent from the surface and cement mortar has been eroded to an extent that coarser particles of the fine aggregate fraction are generally exposed. Some slight troughs or depressions are apparent, exposing coarse aggregate particles, but this damage is confined to a limited area or randomly spread intermittently throughout damaged area. Some edge repairs may be required to restore eroded edges. Surface mortar that was removed by rain water, but later replaced or supplemented with plastic concrete is included in Case II since a cold joint or sand lens with minimal portland cement paste contact may have been inadvertently incorporated into the slab.

CASE III (Payment is 85% of contract unit price.)

Surface mortar has been practically all removed to an extent that coarse particles of the coarse aggregate fraction are visible. Considerable erosion of edges has occurred, but not to an extent that pavement width is affected. Intermittent edge repair may be required as well as some surface patching of slight troughs or depressions that may have formed in pavement surface due to flowing water. Pavement that has been rain damaged with no attempt of covering or protection by the contractor is also included in Case III. Severe rain damage may require "localized area" repair by bridge deck overlay procedures. Full depth removal and replacement may be required if edge damage is severe. Severe cases of rain damage should be referred to the Office of Construction for review prior to determination of repair or replacement.

In addition to above described price adjustments and repairs, slab surfaces with missing, omitted, or damaged texturing shall have texture re-established by grinding prior to acceptance by project engineer.

C. "L" Joint Tie Steel Deficiencies

Tolerance problems with "L" joint tie steel shall be corrected according to procedures established in *Construction Manual 9.26*. (Note: "BT" and "KT" deficiencies usually require field correction.)

An adjustment in the contract unit price shall be made for out of tolerance "L" joint tie steel areas. This price adjustment should be a reduction of 5% to the contract unit price per m² (sq. yd.) for affected areas. It should be applied to a computed effective area bounded by one half the distance to closest adjacent "in tolerance" (in each direction) multiplied by the placement width. This price adjustment is intended not to apply to individual out of tolerance tie steel.

- D. Bridge Floor Overlay price adjustments are prescribed in Appendix 2-34(D).
- E. Macro texture adjustments will be determined by the project engineer on a case-by-case basis depending on severity and amount of surface area involved.

For texture depth measurement criteria, refer to *Construction Manual* 9.43. Texture depths less than 1.5 mm 1/16 inch) shall be corrected by sawing in grooving or diamond grinding. Texture depth exceeding 4.5 mm (3/16 inch) may require price adjustment as directed by the project engineer. Price adjustments for over depth grooving are found in *Appendix* 2-34(*E*).

- F. Traffic Control
 - Price adjustments may be applied for failure to comply with traffic control requirements in the contract documents. Contract price adjustments will be determined by the project engineer, based on magnitude and frequency of violations. A suggested sliding scale is \$250 for the first violation, \$500 for the second violation, \$1000 for the third, etc. progressively doubling the amount of each following violation. See flowchart in <u>Appendix 2-15</u> for further guidance.

Price adjustment violations will be counted from first violation through last violation for an entire contract. It is a prime contractor's responsibility to ensure a safe work zone for all construction activities regardless of work in progress or who is doing that work. Therefore, violations will accumulate against the "contract" and not be separated or individualized by subcontractor.

Examples of situations where a price adjustment would be appropriate include:

- Failure to maintain traffic control devices (costs incurred by the contracting authority may be recovered against this item)
- Working without proper traffic control setup
- Unauthorized crossing of interstate or other multilane divided highway median

- Use of unauthorized, substandard, or non-standard traffic control items such as incorrect sign sheeting or unapproved floodlights
- Violations of, or failure to comply with, traffic control requirements in the contract documents

It is not intended that minor deficiencies be price adjusted if corrected in a timely manner. In addition to price adjustments, project engineers may suspend work for irresponsible and/or repeated failure to conduct construction activities using proper traffic control procedures.

2. Failure to maintain traffic control devices and signs on a daily basis continues to be a concern of the Department. Price adjustments are appropriate for failure to adequately maintain these devices and signs. To determine an appropriate daily price adjustment for lack of maintenance, the total bid price for the traffic control item should be divided by the number of working days allowed on the contract. This calculated amount should then be divided in two to determine an appropriate daily maintenance value. This daily maintenance value would be the appropriate price adjustment for failure to maintain traffic control devices and signs.

The daily maintenance price adjustment calculated below is in addition to other traffic control price adjustments.

An example calculation to determine this daily maintenance value follows:

Traffic control bid item amount (TC) = \$25,000Number of contract working days (WD) = 100 Daily maintenance price adjustment (PA) PA = (TC/WD)/2 PA = (\$25,000/100)/2 = (250)/2 = \$125PA = \$125

- Occasionally contractors fail to provide the required traffic control technician or have the daily traffic control diary completed during the construction of the project.
 - An appropriate price adjustment for failure to provide a traffic control technician is 5% of the traffic control bid item price or \$250, whichever is greater.
 - An appropriate price adjustment for failure to provide a traffic control diary for review during construction activities is an additional 5% of the traffic control bid item or \$250, whichever is less.
 - An appropriate price adjustment for failure to submit to the engineer upon project completion a traffic control diary is an additional 5% of the traffic control bid item price or \$250, whichever is greater.
 - These price adjustments are independent of each other and are also in addition to other traffic control price adjustments.
- 4. When a flagger is incorrectly flagging according to the Flagger's Handbook, as referenced in Standard Specification 2528.10, the project should have the Flagger bid item price adjusted. This price adjustment should be one half of the daily unit bid price for the Flagger item.

Examples of situations where a flagger price adjustment would be appropriate include:

- Incorrect flagging procedures
- Nighttime flagging without a correctly lighted flagger station or without appropriate nighttime flagging equipment or apparel
- Incorrect, inappropriate, or incomplete flagger attire
- Use of incorrect STOP/SLOW paddle
- Failure to carry their flagger training card

When an untrained flagger is used in violation of the specifications, the flagger shall not be measured and paid. The flagger shall continue to flag for the remainder of the day and a trained flagger shall be substituted the next day. Unattended flagger stations are a severe violation of the specifications and should be price adjusted per Item 1 price adjustments.

These price adjustments are also in addition to other traffic control price adjustments.

G. Asphalt

- 1. Liquid Asphalt
 - a. Viscosity or Penetration

When noncomplying tests occur, determine the quantity affected. Average all noncomplying quality control tests and use that average in conjunction with *Appendix 2-34(F)* to determine if, or how much, price adjustment is warranted.

b. Residue

The determination of compliance for emulsions used as tack coats shall be based on residue percentage. Undiluted emulsion contains a minimum of 57% asphalt residue. Emulsion diluted with one part emulsion to one part water shall contain a minimum of 28.5% residue.

When noncomplying tests occur, determine the quantity affected. Average all noncomplying quality control tests and use that average in conjunction with *Appendix 2-34(G)* to determine if, or how much, price adjustment is warranted.

2. Asphalt Binder - Viscosity

When a noncomplying viscosity test occurs, establish the quantity of material affected. This quantity may be the total asphalt binder used that day, unless intermediate quality measurements have been made during the day. The quantity affected shall be in relation to the proportion of noncomplying samples to the total number of asphalt binder samples obtained that day.

Example:

Total samples taken during the day	=	5
Number of failing samples for the day	=	2
Total asphalt binder used that day	=	200 Mg (tons)
Quantity affected = $(2 \div 5) \times 200$	=	80 Mg (tons)

Noncomplying test results for the day shall be averaged to determine the amount of deviation from specification requirements. This average will be used to apply

the appropriate percent of payment for the quantity affected. Use Price Adjustment schedule in *Appendix 2-34(H)* to obtain the applicable payment adjustment.

The materials, both liquid asphalt and asphalt binder, are used on the basis of certification. The follow-up acceptance testing is performed to verify the compliance so work will not be delayed pending the test results. However, if the material has not been incorporated and acceptance tests indicate noncompliance, the material will be rejected.

Unless indicated otherwise in the contract documents, the contractor must use performance graded (PG) asphalt binders. If a PG asphalt binder is used but the properties do not comply with specifications, consult with the Office of Materials, the Office of Construction, and the District Materials Engineer for appropriate resolution. A price adjustment may or may not be appropriate depending upon the circumstances involving each situation.

3. Asphalt Binder Content

The determination for compliance with the specifications of the asphalt binder content control shall be made for periods not exceeding one day in length. Determinations shall be made for shorter time intervals when noncompliance for the shorter intervals has occurred.

The specifications for hot mix asphalt construction require the contractor to maintain the asphalt binder content within plus or minus 0.3 percentage points of the percent intended. The percent intended is given on the job-mix formula sheet issued by the Office of Materials in Ames.

If the tank stick results indicate that a noncomplying asphalt binder content has been obtained and a price adjustment is necessary, it is recommended that the Guide for Adjustment in *Appendix 2-34(I)* be used to determine an adjustment. The adjustment will be made on the quantity of HMA mixture affected. It is not applied to the asphalt binder. No payment will be made for asphalt binder used in a mixture in excess of tolerance specified.

Excessive asphalt binder content can result in low lab voids which can, in turn, result in a high potential for pavement failure due to flushing and rutting. When the deviation from intended asphalt binder content is greater than 0.3% and the lab voids for the lot are extremely low, the District Materials Engineer should be consulted regarding the rutting potential of the pavement. In cases where severe rutting or flushing develops or is likely to develop, removal and replacement of the noncomplying HMA pavement should be considered in lieu of price adjustment.

The Guide for Adjustment in *Appendix 2-34(I)* is intended to be used for tank-stick measurement results. When the asphalt binder quantity involved is 200 Mg (tons) or less, tank-stick measurements lack precision and cannot be used as a basis for determining asphalt binder content, noncompliance, and assigning price adjustments. In this case, the average of tank-stick measurement results from the day before and the day after may be used to provide further verification.

The procedures listed in *Materials I.M. 508* and *I.M. 509* should be followed closely in making tank-stick measurement calculations.

The contractors are cautioned to observe the following procedures in order to help insure accuracy of the determinations:

- a. Keep the storage tank level and in good condition
- b. Make sure that the asphalt binder in the surge tank is exactly the same level each time that measurements are made
- c. Try not to drain the asphalt binder level in the tanks into the heater coil area when measurements are made
- d. See that rail cars and transport trucks are completely unloaded or any unused asphalt binder returned is weighed or measured

To eliminate misunderstandings and uncertainties, it is strongly urged that an authorized representative of the contractor observe all sampling and tank-stick measurements and check all calculations. A contractor's representative should also be requested to initial or sign the field book or record sheet containing the measurements and results as they are made.

4. Segregation in Hot Mix Asphalt Pavement

When mixture segregation occurs in the pavement such that the composition and quality of the mixture required by specification are not uniformly attained, the sections judged deficient may be required to be removed and replaced as defective work. An adjustment in contract price may be made for deficient work for the cases described in the following schedule.

a. Pavement Surface

The adjustments in contract price are to be applied to the entire paver lane width and lift thickness between extreme areas of segregation. Price adjustment shall apply only to the payment for the HMA mixture. Price adjustments are defined in *Appendices* 2-34(K.1) and 2-34(K.2).

ADJUSTMENT SCHEDULE

Case I (Payment is 80% of contract unit price.)

When uniform surface texture and mixture composition is evident (by visual observation) except for occasional and random areas of segregation, the mix shall be subject to price adjustment if the area determined segregated equals or exceeds 3 square meters per metric station (1 sq. yard per station) per paver width (length determined by longitudinal distance both directions from segregated area).

Case II (Payment is 50% of contract unit price.)

When a nonuniform surface texture and mixture composition is evident (by visual observation) and there is a regular interval of numerous areas of segregation connected or nearly connected with longitudinal traces of segregation, the mix shall be subject to price adjustment if the total area segregated equals or exceeds 9 square meters per metric station (3 sq. yards per station) per paver lane width (length determined by longitudinal distance both directions from the extreme ends of areas of segregation).

Case III Longitudinal Streaks (Payment is 80% of contract unit price.) When a nonuniform surface texture and mixture composition is evident (by visual observation) and in the form of longitudinal streaks of 75 mm (3 inches) or more in width, the mix shall be subject to price adjustment if the segregation occurs at a rate that exceeds 3 square meters per metric station (1 sq. yard- per station). The rate is determined by multiplying approximate width by length of the streaks to determine area and dividing by the length of the streaks (in stations). Longitudinal streaks most commonly occur with the windrow-pickup process, particularly when resurfacing superelevated curves. Streaks are typically seen in the wheelpath areas and occasionally in the center of the lane. Streak widths typically vary from 75 to 300 mm (3 to 12 inches) and may be continuous or intermittent. This type of segregation results in longitudinal cracking.

More severe surface and mixture segregation may require corrective procedures as:

- full width thin layer 25 mm (1 inch) thick resurfacing or
- removal of HMA mixture course with no extra payment and replacement with construction that fully complies

Note: Determination of segregation in HMA pavement is by visual examination in accordance with current specifications. The engineer may consider further verification through coring and extraction tests. Segregation case examples, with corresponding price adjustment calculations, are illustrated in *Appendices* 2-34(K.1) and 2-34(K.2).

b. Fillets & Runouts

This price adjustment procedure does not apply to fillets, bridge runouts, or other hand-worked areas outside of the normal paver lane width.

c. Base & Intermediate Courses

The price adjustment percentages shall be reduced as indicated in Appendices 2-34(K.1) and 2-34(K.2) for all base or intermediate courses, except when such mixture is specified and used as the surface course.

d. Procedure for Determination of Price Adjusted Quantities

The segregation case examples shown in *Appendices 2-34(K.1)* and 2.34(K.2) illustrate a concept that may be used to define the severity of segregation and appropriate price adjustment factor. It is not required, however, to physically measure each area of segregation to determine a quantity of HMA mixture that is subject to price adjustment. The intent is to define the quantity subject to price adjustment by identifying the number of truckloads in which segregated areas are evident. This obviously takes some judgment to decide how large or severe an area must be before it is price adjusted. The 1 square meter (sq. yard) area shown in examples is a "rule-of-thumb." Most importantly, segregated areas that exhibit an obvious concentration of coarse aggregate resulting in a nonuniform open texture should be price adjusted.

Whenever segregation occurs, the contractor shall be advised immediately and the inspector must document the deficiency with a Noncompliance Notice. The notice should reference the applicable specification and indicate

the project engineer will review the work to determine the acceptability of the work. It is recommended that a Noncompliance Notice be issued when segregation is initially observed with final evaluation and price adjustment determined later but prior to project acceptance.

Timeliness is important for two reasons. First, the contractor must take corrective action immediately. Failure to do so should result in suspension of work. Secondly, early identification of unacceptable work allows for resolution of any disputes before there is an "implied" acceptance. *Construction Manual 1.12* discusses the enhancement of working relationships by timely notification of unacceptable work.

For streak type segregation, it will be necessary to identify and tabulate the location and length of the segregated streak areas subject to price adjustment and base the price adjustment on the mix quantity within the beginning and ending station limits of the streaks.

Normally this procedure should be repeated for each day from header to header on the day following placement. Each day's run can be tabulated showing a summary of affected Megagrams (tons) of HMA mixture subject to price adjustment.

5. Filler/Bitumen Ratio

For Marshall mixes, the filler/bitumen ratio is determined by dividing the percentage of cold feed material passing the 75 μ m (#200) sieve by the total percentage of asphalt binder used, as determined by tank stick or by actual mass (weight) of asphalt binder used. For Gyratory mixes, the filler/bitumen ratio is determined by dividing the cold feed material passing the 75 μ m (#200) sieve by the "effective" percentage of asphalt binder used, which takes into account asphalt binder absorbed by the aggregate. See *Materials I.M. 501* for additional information, including applicable equations and example calculations.

For recycled mixes, the percentage of asphalt binder is to be determined by addition of percent by tank-stick plus percent in salvaged material as set by job mix (% intended less additional).

The determination for compliance with the specification shall be made for periods not exceeding one day in length. The average of all tests for the lot shall be used to determine the filler/bitumen ratio.

When the filler/bitumen ratio for an HMA mixture exceeds the maximum established by specification for that material, the affected material will be considered noncomplying and subject to price adjustment.

The adjustment schedules in *Appendix* 2-34(J) are to be used as a guide for price adjustment of the quantity of material affected. The adjustment is applied to the HMA mixture only.

The above schedules are to be applied in lieu of the 75 μ m (#200) sieve adjustment for excess or lack of fines listed under Gradation.

6. Field Density

Compaction requirements and price adjustments for noncomplying field density are covered in the current specifications for Hot Mix Asphalt Mixtures. The price adjustment is applied to the unit price for HMA mixture only.

H. Adjustments for Other Contract Administration Issues

Price adjustments for noncomplying work are occasionally appropriate when the issue relates to other incidental items in the contract documents. Price adjustments shall not be considered unless there is willful or repeated reoccurrences indicating lack of due consideration on the contractor's part. In such cases, the following will apply:

- Provide a clear and concise notification to all parties involved with the incident. (This could be a verbal notification or a written noncompliance without price adjustment.)
- Subsequent violations would result in additional noncompliances and could be reason for price adjustments starting at \$100, then \$250, \$500 etc. (progressively doubling the amount of each following violation).

NOTE: It is NOT intended that minor deficiencies be price adjusted if corrected in a timely manner. Situations and circumstances will dictate how this portion should be applied.

I. Steel H-Pile Weight Deficiency

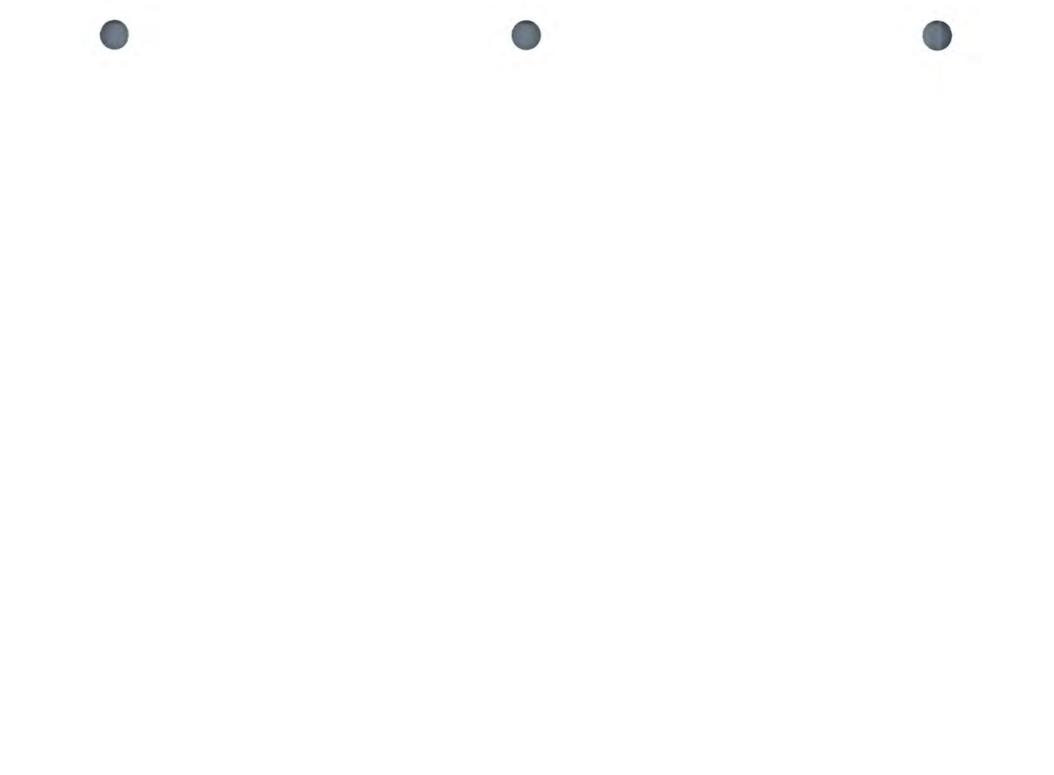
Materials I.M. 467 specifies a mass tolerance of 2.5 percent on steel H-pile weight deficiency. Steel H-pile that are deficient by more than 2.5 percent of theoretical weight should not be accepted for incorporation into the work except when:

- The need for the steel H-pile is immediate and considered critical by the project engineer.
- Replacement of steel H-pile is not reasonably possible due to short supply and availability.

In the above cases, the project engineer may decide to approve the use of deficient steel H-pile and apply a price adjustment in contract unit price for the material as prescribed by "Steel H-Pile Weight Deficiency Price Adjustments" in *Appendix 2-34(L)*.

2.54 PRICE ADJUSTMENT CHANGE ORDERS

Price adjustment deductions are processed by change orders using an 8xxx change number. If additional price adjustments come up later, a second change order must be prepared; but such increases or decreases are processed as 7xxx change numbers. (Refer to *Construction Manual 2.36* for information about processing change orders.)


2.55 FINAL PAYMENT TO CONTRACTOR

lowa Code allows a maximum of 5 percent to be retained until a contract is completed. lowa DOT specifications require that 3 percent will be retained on the first \$1,000,000 paid on a contract.

This retainage is specifically withheld to cover:

 Unpaid creditors who file claims against a contract. The lowa DOT is obligated by lowa Code, Section 573, to withhold at least double the amount of any claims on file. If retention is reduced just to avoid paying interest, the lowa DOT could be responsible to pay these claims.

3.07 REQUIREMENTS FOR MONITORING THE CERTIFIED PLANT INSPECTION PROGRAM AND QUALITY MANAGEMENT - ASPHALT (QM-A)

The monitoring requirements listed in the appendices are intended to be the minimum for HMA or PCC plant operation. Field problems may necessitate increased monitoring. For PCC plant inspection, all monitoring requirements, except for plant calibration, will be performed by construction personnel. For HMA projects, monitoring responsibilities are shared between the plant monitor, grade inspector, and materials personnel. Materials personnel will primarily monitor activities involved with HMA materials production process and quality such as plant calibration, QM-A lab operation, contractor field process control, and for QM-A projects, will resolve discrepancies between the District Materials Lab and Contractor Lab results. Construction personnel will be primarily involved in administration and inspection activities. Materials engineers and resident construction engineers may mutually coordinate and shift responsibilities between personnel on an individual project basis to achieve the most efficient use of their respective personnel and minimize unproductive time spent at the contractor's HMA plant. See *Construction Manual 3.20* for responsibilities of project acceptance sampling and testing.

On certified plant inspection projects, it is a requirement for the plant monitor to be a certified technician for the type of work involved.

QM-A requirements can be considered an expansion of the certified plant program for HMA. In addition to normal certified plant inspection duties, under QM-A the contractor is also required to design and submit their own mix designs for agency approval. At the plant, the contractor is required to analyze and control mix production properties through frequent field testing, based on specified gyratory or Marshall mix design criteria.

For a QM-A project, the plant monitor must be a certified HMA technician. This certification is obtained by attending the Level I HMA course and passing the required examinations.

It is imperative that project engineers maintain an adequate staff of trained, experienced plant monitors. This can be accomplished by having employees participate in the appropriate technician training and certification programs and pass the examinations.

Certified plant inspection will apply to items of work as defined in *Specification 2521.03*. Any items of work excluded from certified plant inspection will be as noted in contract documents. Work excluded from certified plant inspection will also be excluded from QM-A requirements.

In the event the contractor's certified HMA technician is absent, the contractor must contact consultants or other available certified technicians to arrange for inspection.

For duties performed by the certified HMA technician on QM-A projects, the contractor must also contact consultants or other sources for available certified technicians in cases of absenteeism. Because of the laboratory skills necessary to perform this work and the decision making authority as a representative of the contractor, it is not possible or appropriate for the project engineer to provide certified HMA technician services to the contractor in cases of unexpected absences. If the contractor fails to provide certified HMA technicians as required by specification, work covered by QM-A shall be suspended until the project is properly staffed.

Portland Cement Concrete Paving Plant Monitoring

Appendix 3-2 lists the minimum monitoring requirements. A plant monitor will normally be assigned to each project with duties split between plant and grade inspection. Plant monitor should schedule work so the plant can be visited daily during production. The amount of time spent at the plant will depend on the overall quality control at the production plant.

Test beams for determining flexural strengths are to be transported from the grade to the plant site by contracting agency personnel.

Structural Concrete Plant Monitoring

Appendix 3-3 lists the minimum monitoring requirements. The project engineer and contractor should agree in advance whether aggregate gradations, moisture, and specific gravity tests will be waived for concrete which is furnished at a maximum rate of 20 m³ (25 cubic yards) per day. This determination should be in accordance with *Materials I.M.* 528.

Ready mix tickets shall be prepared and signed by the certified plant inspector.

Test beams for determining flexural strengths are to be transported from the grade to the plant site by contracting agency personnel. The certified plant inspector is responsible for curing and storage of the beams. Contracting agency personnel are responsible for testing and reporting results.

Hot Mix Asphalt Paving Plant Monitoring

Appendix 3-4 lists the monitoring requirements. Responsibilities are shared between the plant monitor, grade inspector, and materials personnel. A plant monitor will normally be assigned to each project with duties split between plant and grade inspection, and may also be assigned to multiple projects under construction at the same time. The plant monitor should schedule work so that the plant can be visited daily during production, as required by *Appendix 3-4*. The amount of time spent at the plant, beyond minimum requirements, will depend on the overall quality control at the production plant. The project inspector will be providing production and placement information to be entered on the daily plant report.

Visits by the project inspector to the plant laboratory for exchange of information and to perform administrative activities will normally be done daily.

The plant monitor will typically be responsible for performing the density testing on HMA core samples.

Plant Reports

The project engineer should make arrangements with the certified technician for timely distribution of plant reports. On QM-A projects, the contractor shall FAX a copy of the daily plant report and QM-A Summary Sheet to the District Materials Engineer on a daily basis. The original and all copies of the plant report shall be kept at the plant until all documentation is completed. Normally, this will be the day following the end of the reporting period. Review and distribution of the reports will be made by the project engineer. This distribution will include a copy to be returned to the certified technician. Prompt consultation with the certified technician and monitor shall follow any significant error or omission.

Documentation

A documentation sample for the plant monitor is contained in *Appendix 3-5*. A separate field book should be set up on each project to document plant inspection. Some flexibility in the suggested format may be necessary depending on project size, type of plant, and if QM-A applies. It is important to document discrepancies and corrective action taken by contractor.

A copy of this documentation must be furnished to the District Materials Engineer (DME) at the time of project acceptance. Also include the certified technician's name, certificate number, and statement from the monitor regarding the work performance of certified technician. It may be necessary to consult with the DME regarding contractor technician performance for Marshall testing duties on a QM-A project. A sample format for providing this documentation is contained in *Appendix 3-6*.

Specification Violations

Failing test results are to be recorded on the daily plant report by the plant inspector. Verbal notification of such failing results shall precede completion of paperwork to assure timely changes.

Failing test results on QM-A projects related to specified moving averages will be noted on the certified HMA technician data sheets and quality control charts. Special notes on these failures will also be reported in the comment section of the daily plant report. When average points move outside the specification limit, HMA mix production operations shall cease until the contractor proposes meaningful corrective action. The corrective action must be discussed with the DME prior to production start-up.

The plant monitor will convey to the responsible project inspector all specification violations, discrepancies in results with the plant inspector, and improper procedures and equipment used by the plant inspector. The project inspector will issue noncompliance notices for failing test results and inadequate testing procedures or equipment.

In order to use the contractor quality control test results for the acceptance decision, they must be validated by agency verification tests. It is important to notify the contractor and the DME when the results do not compare within the validation criteria in the Materials IM. The lot of material cannot be accepted until the validation issue is resolved by the DME.

Construction Manual

All improper procedures, unresolved test discrepancies, or failure to perform inspection duties will be considered by the DME for possible decertification or other appropriate corrective action.

The role of the plant monitor is vital in assuring the DME is aware of any deficient or otherwise unsatisfactory work of the certified technician.

Testing Equipment & Supplies

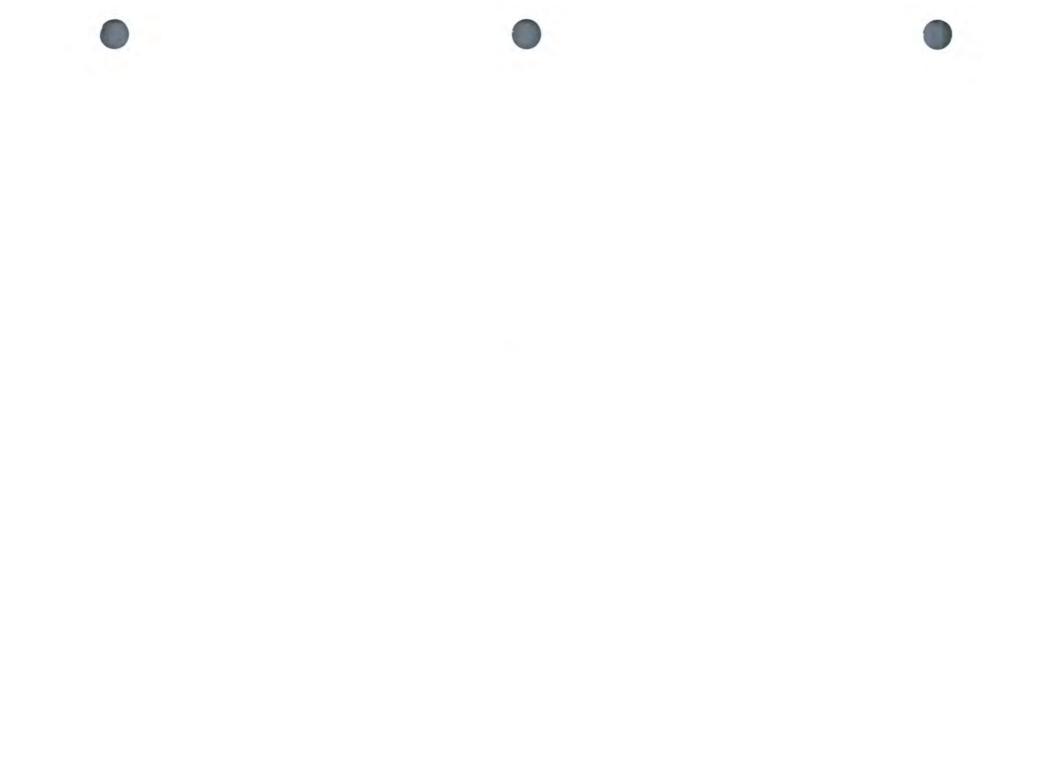
Certain testing equipment is available for purchase from Department stock. Producers should refer to HMA and PCC Plant Inspection Manuals for specific information and Office of Materials Lab contacts. A list of equipment suppliers is included in the plant manuals.

Necessary plant inspection forms will be furnished to the producer at no cost. The producer can request these through the DME or project engineer. It is a good idea for the plant monitor to carry a supply of forms and make these available to the producers as needed.

The plant monitor can utilize contractor-furnished equipment for testing required at the plant site. HMA core density testing will most likely be done using the same balance, water bath, and thermometer as the contractor. Verification gradation testing should be done at a separate laboratory from the contractor's if possible.

Samples

Verification samples are to be taken by agency personnel or by contractor personnel when directed and witnessed by agency personnel. Materials IM 204 will indicate when contractor sampling assistance is required.


Verification samples that are not tested should be retained until the lot has been accepted.

If required by contract documents, transportation of secured verification samples to the District Materials Lab shall be performed by the contractor.

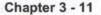
Construction Manual

It is also important to note that each individual holding a certification and performing sampling and testing that is included in the acceptance process must participate in the Independent Assurance Program. While it is the responsibility of the Central and/or District Materials Offices to track independent assurance testing that has been performed, it is the responsibility of the individual holding the certification to ensure that they are being included in the IAP.

Example: An individual is certified in AGG I & II, PCC I & II and HMA I or HMA Sampler. The individual maintains all of the certifications over a three year period but is only involved in verification testing for HMA including aggregate gradations, sampling of HMA mix on the grade, and sampling and testing of HMA density cores during that timeframe. The individual should be sure that they are being included in the IAP for each of the sampling and testing tasks that they perform throughout that three year period. This would include sampling and testing of aggregates, sampling of HMA, and sampling and testing of HMA density cores. The individual would not need to be included in the IAP for the PCC certifications that they hold unless sampling and testing is being performed using those certifications.

3.22 CONTRACTOR ASSISTED SAMPLING AND VALIDATION OF CONTRACTOR TEST RESULTS

Verification sampling of the following materials will be done by contractor personnel as directed and witnessed by agency personnel:


PCC and Compacted HMA Cores Aggregates for gradation Asphalt Binder Uncompacted HMA Mixture from behind the paver

Materials IM 204 lists the minimum frequency and IM method to be used for sampling. If the contractor is required to transport the samples, the agency personnel will seal the sample with a security tag before giving it contractor.

Quality control sampling and testing for the following materials and tests may be used in the acceptance decision:

HMA Mixture properties	IM 511
Aggregate gradation	IM 511 or IM 527 and IM 528
Smoothness testing	IM 341

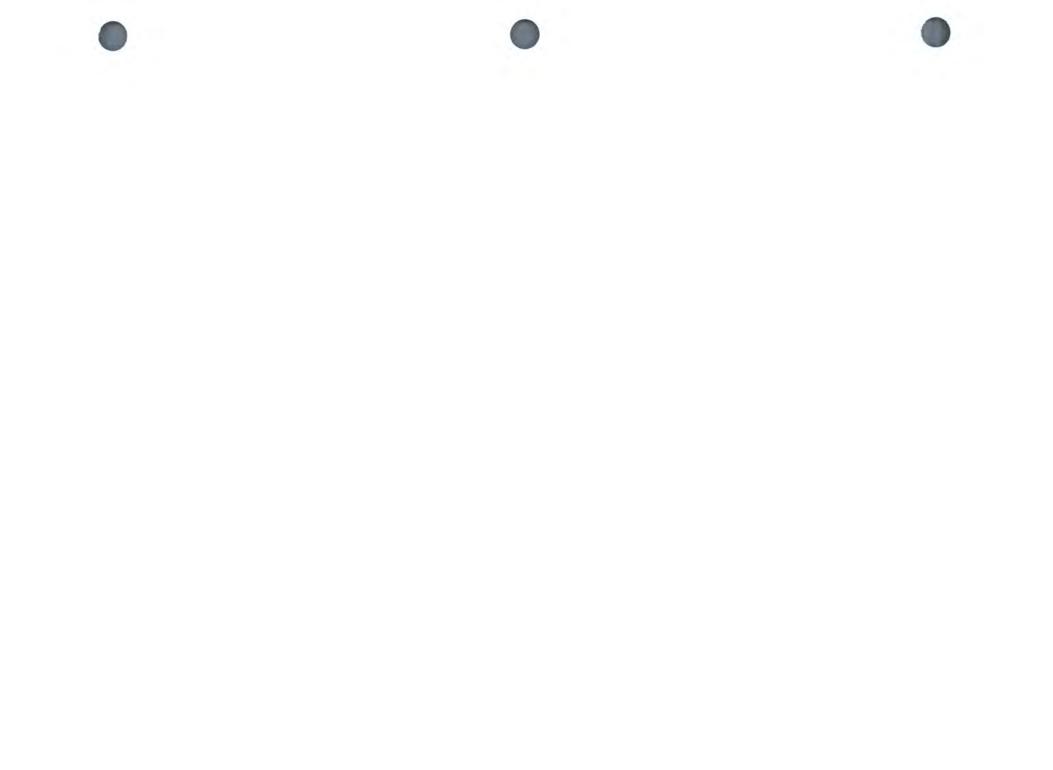
For the quality control test result to be used in the acceptance decision, it must be compared to the agency verification test result. Unless the test results compare satisfactorily (are validated), the quality control test results can not be used in the acceptance decision. There is a dispute resolution process the Engineer or District Materials Engineer can use to resolve the test result differences.



Evaluation of Test Results

Specification 1105.04 requires project engineers to determine if project work is acceptable and within reasonably close conformity with contract documents. If the work is not in reasonably close conformity, the project engineer is permitted to allow the work to remain in place if it is reasonably acceptable and to provide an adjustment in the contract unit price for work that is deficient. However, the contractor may elect to remove the deficient work with no extra payment and replace it with construction that complies.

Whenever deviations from specification limits or tolerances occur, whether the deviation is to the extent that payment adjustments will be made or not, the contractor shall take immediate corrective action that will insure subsequent compliance. If immediate corrective action is not taken, the inspector will stop the work.


When test results are within specifications but continuously near the limits or tolerances on any sieve, the inspector will inform the contractor that corrective action would be advisable and document this advice in the project diary. Work will not be stopped, pending such corrective action, unless noncompliance has occurred.

3.50 WEIGHING EQUIPMENT FOR DETERMINATION OF PAY QUANTITIES

Specification 2001.07 describes equipment and procedures to be used when payment for an item of the contract is based on actual weight. Aggregates are generally weighed in the delivery vehicle on a platform scale. Hot Mix Asphalt mixtures may be weighed over platform scales, in silos on load cells, in weigh hoppers, or by counting batches. The specifications no longer provide for converting volume measurements to weight.

Weight Tickets

The contractor shall provide a weight ticket for each load showing the required weight information for the procedure being used, the project number or contract description, the truck number, the date, and the type of material.

The required data to be automatically printed on the weight tickets will vary according to the method of measurement (weigh hopper, silos on load cells, batch scales, or platform scales) and type of system (automatic or semi-automatic).

Automatic or Semi-Automatic Weighing

- For weigh hoppers, batch scales, or silos on load cells, all tickets printed automatically shall include the gross weight, empty weight of the hopper or weight not discharged, net weight of material for each drop, and the total net weight for the load. When weighed under the semi-automatic procedure, the weighmaster may include on the ticket the calculated total net weight.
- For batch scales, the batch weight and batch count are to be automatically printed under both procedures. The total net weight may be printed with a system or calculated by a weighmaster with a semi-automatic system.
- For truck platform scales, all scale tickets printed automatically shall include gross weight, tare weight of the truck, and net weight of the load. For semi-automatic weighing the printer shall print the gross weight, and the weighmaster shall conduct all weighing and may enter by hand or by printer the tare weight of the truck and calculate the true net weight.

Manual Weighing

For manual weighing of loaded trucks (project quantities less than 10,000 Mg [10,000 tons]), scale equipment on truck platform scales may or may not include a mechanical ticket printer. A weighmaster shall include the gross and tare weights and calculate the net weight on the scale ticket. The engineer may arrange for weighing to be witnessed.

The inspector will collect the accompanying load ticket for each load of material on its arrival at the work site and check to see that the ticket has been validated by the scale inspector when such scale inspection is required. The inspector will observe each load of delivered material to detect any obvious deficiencies in quality or in quantity and reject any loads which are unsatisfactory.

The inspector will sign or initial the scale ticket for each accepted load to verify the material was delivered and accumulate the tickets on a daily basis for determination of pay quantities. Quantities for each day's operation shall be totaled and checked against the contract records and any discrepancy promptly resolved.

The requirement that an inspector personally receive all load tickets at the time of delivery may be relaxed only in cases of very small quantities or intermittent deliveries

under conditions where the project engineer or inspector can visually determine the approximate quantity delivered.

On hot mix asphalt projects, it is permissible for a contractor's employee to collect the tickets and place them on a clipboard. An inspector must be present at the laydown operations at all times and observe the collection of the tickets.

Truck Platform Scale Approval

The specifications require that scales for weighing loaded trucks shall meet the requirements of the Iowa Department of Agriculture. A platform scale used for measurement of items such as crushed stone, base and subbase material, and hot mix asphalt mixtures, contracted for and measured by the Megagram (ton), shall be inspected by the Iowa Department of Agriculture.

Permanent scales, so inspected, have an official stamp conspicuously displayed.

Temporary scales, so inspected, have the same official stamp. If the scale is at a temporary plant location or quarry, the inspection may be identified by a certified report and affidavit. A copy of the "Portable Scale Report" to be used for portable scales is included in *Appendix 3-7*. Use of the certified report and affidavit is subject to the following special limitations, and with these limitations inspection is official by the Iowa Department of Agriculture.

- The scale is inspected by a registered scale technician. A report is then prepared that certifies the scale complies with State of Iowa regulations. A copy of the report shall be forwarded to the Iowa Department of Agriculture.
- It is effective for 90 days at the same location; however, the effective period does not extend beyond the spring thaw.
- Inspections made in the spring are after frost leaves the ground.
- The certified report and affidavit shall expire when the scale is moved.

Weigh Hopper, Batch Scales, & Load Cell Approval

Weigh hoppers, batch scales, and load cells will be checked for accuracy against truck platform scales that meet the requirements of the Iowa Department of Agriculture during calibration and during use as described below.

The contractor shall have, reasonably available upon request, at least 10 standard 25 kg (50 pound) test weights for the purpose of testing and calibrating weighing equipment. Whenever scales are checked with standard weights, the data showing scale readings versus increments of known standard loads should be recorded in the field notebook or on a calibration form and become a part of the permanent job record. It is the intention that contractor's personnel will be responsible for adding and removing the weights. Inspection personnel shall witness and document calibration or other scale checks.

When automatic or semi-automatic weighing is used, continuous direct observation of the weighing process by a scale inspector is not required. When weighing is not continuously observed, sufficient random checks should be made to assure the project engineer that the contractor's weighing procedures are accurate and the true net weight is recorded. This includes both verification weighing and check weighing.

Verification weighing is defined as a second weighing of the same load on the same scale, and applies only to truck platform scales. At least one verification weighing should be made daily when the pay quantity is weighed on truck platform scales.

Verification weighings are made to determine the repeatability of truck platform scales. The verification weight should not be different from the initial weight by more than 0.1%.

Check weighing is defined as a second weighing of the same load on another certified truck platform scale. Check weighings shall be made to determine the accuracy for all types of weighing equipment. For check weighing of weigh hoppers, load cells or batch weight tickets, it will be necessary to also get the tare weight of the delivery truck and consider a suitable fuel adjustment to determine the accuracy of the total net weight. Recognizing that in a batch plant some material may remain in the mixing chamber after a drop, the results of two check weighings may be averaged.

Check weighing for truck platform scales should not be different from the initial weight by more than 3%. Check weighing for weigh hoppers, batch scales, and silos on load cells shall not be less than the initial weight by more than 45 kg (100 pounds).

One check weighing should be performed on the first day of hot mix asphalt production or aggregate weighing. One additional random check weighing should be performed for project quantities exceeding 4,536 Mg (5,000 tons). If these check comparisons had been made for another project within the time stipulated, documentation in the project diary will be satisfactory and separate checks will not be required.

If the check shows weighings that compare within the tolerances allowed, the scales should be considered satisfactory.

If the check shows weighings that do not compare within the tolerances allowed, the scales should be considered satisfactory only after the following additional investigations show it as warranted:

- (1) The scale can be checked against another platform scale.
- (2) The deviation of each scale from the true weight can be determined from the scale calibration prepared during the inspection if available. The scale operator is given this calibration, but is not required to keep it. The tolerance to be maintained is 1.8 kg per 900 kg (2 pounds per 1,000 pounds).

If one scale is heavy just within this tolerance and the other scale is light just within this tolerance, a difference in compared weights for a 23 Mg (50,000 pounds) load can be 90 kg (200 pounds) and still be legal and satisfactory. Some allowance should be made for actual difference in weight because of gasoline 0.84 kg/L (7 pounds/gallon) if there is sufficient distance between scales.

For true verification and check weighing, selection of random loads shall be done without advance warning to the contractor. Allow a reasonable fuel adjustment, if appropriate.

Where random checks show errors beyond the tolerances specified in the specifications, the project engineer should review the weighing procedures used by the contractor and may require that the scales be inspected. The contractor shall take prompt action to make necessary repairs. Should errors continue to be discovered, it will be necessary to suspend further weighing until the weighing procedures are correct and accurate. Further investigation is necessary when the error exceeds the tolerance in either the plus or minus direction.

Scale Checks for Sensitivity

Batch Scale, Hopper Scale, and Load Cells

The sensitivity should be checked at least once during a normal working day by placing a weight equal to one-tenth percent the batch weight on the fully loaded scales and observing the movement of the indicator. A properly sensitive scale will exhibit a visible indicator movement when so tested. If no indicator movement is visible, immediate corrective action must be taken by the contractor.

Specified scale tolerance limits should be checked by periodically witnessing the batch weighing operation. Each scale indicator should consistently indicate the required weight within the specified delivery tolerance and return to zero when unloaded within the specified 0.5 percent tolerance.

Refer to *Materials I.M. 508* for automatic batch weighing equipment settings and/or adjustments.

Truck Platform Scales

The following paragraphs apply to permanent platform scales as well as portable platform scales.

- A. The working parts of scales (platform and beam linkage) must operate freely to preserve the scales accuracy and sensitivity. The scale should be kept clean on and under the platform to assure accuracy.
- B. Each scale should be checked for sensitivity initially (0.1 percent of the quantity being weighed) and at least once each working day by carefully balancing the scale, then observing if movement of the equilibrium indicator is discernible upon application of a weight equal to one of the minimum gradations but not more than 9 kg (20 pounds).

Truck Platform Scale Use

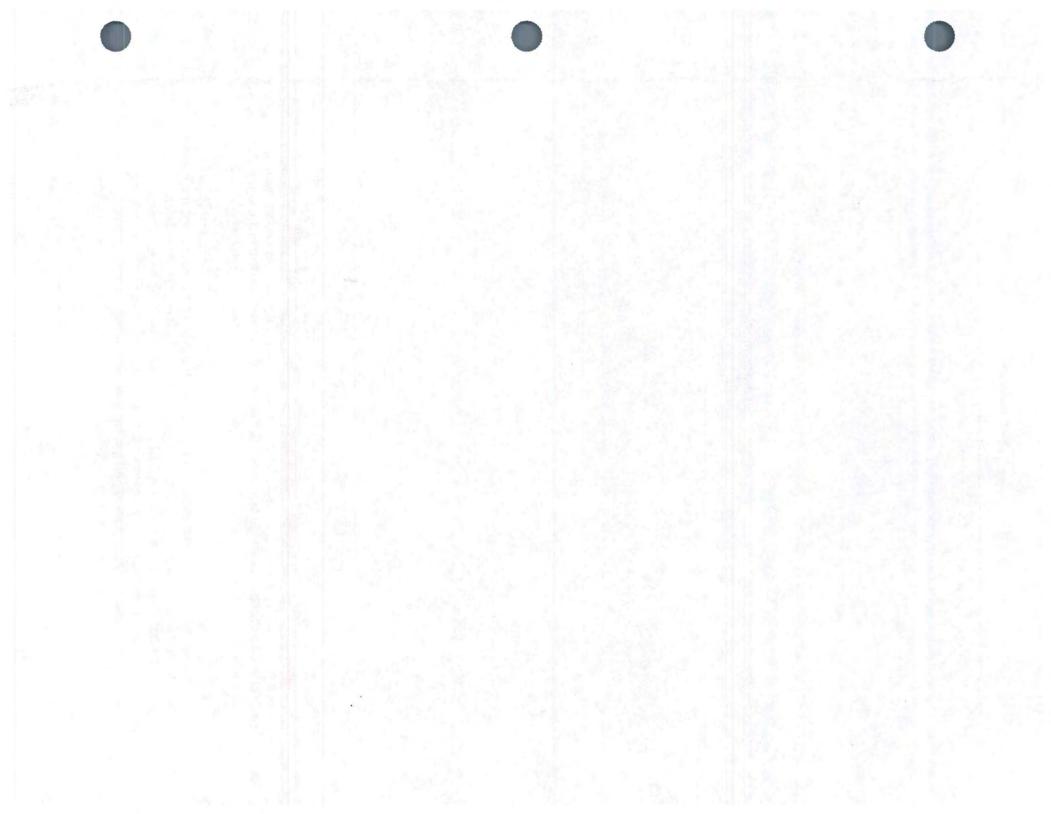
Each truck to be weighed shall be tared daily. Taring of trucks should be on a random basis during the day's operation, using the previous day's tare weight until a new tare weight for that day is determined. No truck may be used for hauling material paid for on a weight basis until tared.

Use of Weighmasters

In order to make more productive use of contract inspection personnel, a program has been implemented whereby contractors and/or producers will furnish weighmasters *(Code of Iowa, Chapter 214, Section 6-8)* to conduct the weighing of highway construction materials. The specifications presently limit the weighmaster requirement to weighing of hot mix asphalt mixtures and aggregates under procedures for semi-automatic weighing and manual weighing of loaded trucks.

Weighmaster's Oath

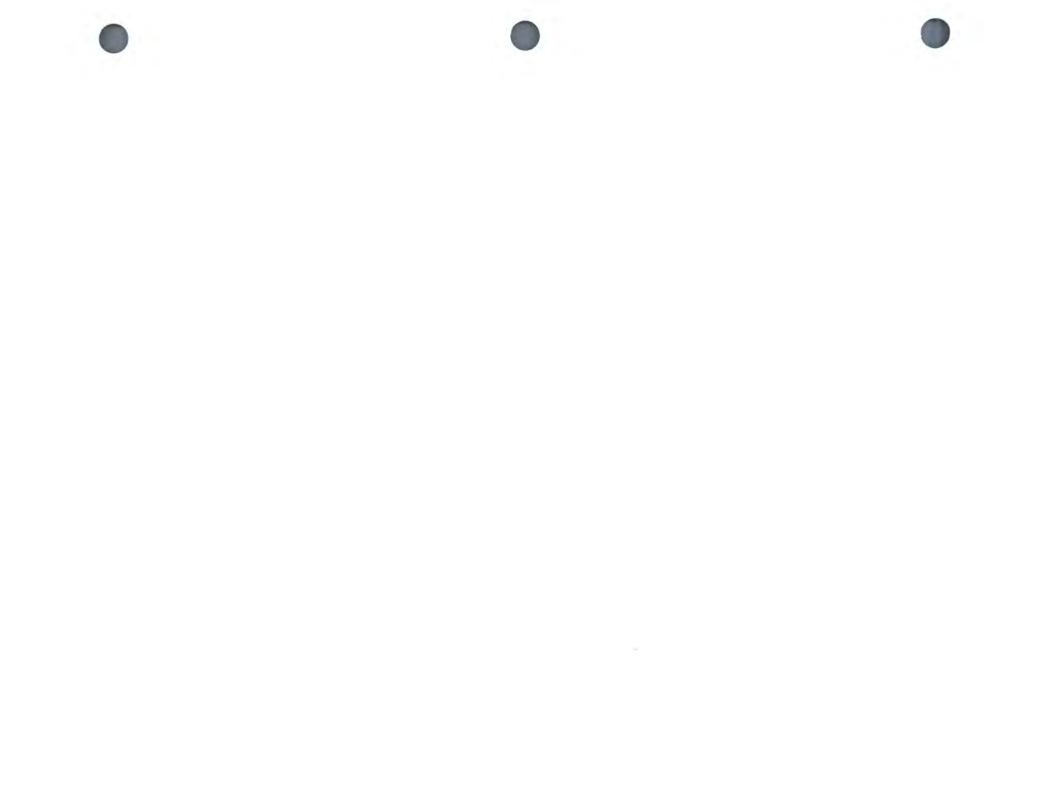
To be qualified, a weighmaster must sign an oath. A copy of the "Oath of Weighmaster" is included in *Appendix 3-8*. Personnel desiring to become a weighmaster may obtain additional forms and procedures from the Iowa Department of Agriculture's Division of Weights and Measures, Des Moines, Iowa.


Responsibilities

The weighmaster must be the person actually operating the weighing and recording equipment. He/she shall include on the scale ticket the tare weight and the calculated true net weight. The weighmaster shall sign the ticket for the first weighing each day and initial subsequent tickets. The project engineer may arrange for weighing to be witnessed. If witnessed, the witness will also initial the ticket.

Weighmaster will daily establish tare weights of all delivery vehicles weighed in a truck platform scale. These tare weights will be established at random times throughout the day in accordance with procedures set up with project inspection personnel. A list of these weights will be provided to the engineer on request. When weighing in trucks, the weighmaster shall enter the truck tare weight by hand or this information can be printed out where it can be entered directly to the automatic weigh recorder.

Misrepresentation of weights or weighing equipment that is known to be inaccurate will result in the removal of the weighmaster from the approved list maintained by the Iowa Department of Agriculture. No further material will be hauled to the project from the site of the infraction until another weighmaster is provided or the equipment repaired to meet the standards of the Department of Agriculture Certification Program.



2.0

CHAPTER 8

HOT MIX ASPHALT (HMA) PAVEMENT, BASES, AND SUBBASES

8.00 TABLES AND REPORT FORMS

8.01 TABLES FOR BITUMINOUS MATERIALS AND HMA CONSTRUCTION

Reference tables are included in *Office of Materials Instructional Memorandum (I.M.) Volume II.* Available tables include:

Number Description

- T-101 Aggregate Delivery Conversion Table
- T-102 Temperature-Volume Corrections for Asphaltic Materials
- T-103 Temperature-Volume Corrections for Asphaltic Materials
- T-104 Gauging Table for Horizontal Cylindrical Tanks
- T-108 Temperature-Volume Corrections for Emulsified Asphalts
- T-108A Temperature-Volume Corrections for Diluted Emulsified Asphalts
- T-203 General Aggregate Source Information

8.02 REPORT FORMS

Construction inspection personnel are responsible for field sampling and testing in accordance with requirements of *Materials I.M. 204* and those outlined in *Construction Manual Chapters 2 and 3*. Forms are supplied for reporting test results, submitting samples, and as inspector work sheets.

Under the certified plant inspector program and Quality Management - Asphalt (QM-A) program, specific sampling and testing will be done by contractor's representative (as directed and witnessed by contracting authority) per *Materials I.M. 213 and Construction Manual 3.07, 3.21, & 3.22.* Plant inspectors and other certified HMA technicians must also be familiar with applicable Materials I.M.'s.

Form Identification and Use

- "Daily HMA Plant Report" (Form 800241) documents daily plant operation, job control testing, HMA mix property results, and material placement for HMA production and placement. A computerized version of this form is available and its use should be encouraged to reduce errors although the handwritten form is still available. Copies should be sent to the Office of Materials, the District Materials Office, the project engineer, and the contractor. A copy of the form is included in *Appendix 8-3*.
- "Identification of Sample for Test" (Form 820193) must accompany all samples submitted to Central Materials Laboratory and District Materials Laboratories.
- "Noncompliance Notice" (Form 830245) is used to report project test results, workmanship, or other items in violation of specifications. Copies are to be given to project engineer and contractor.

8.10 ACCEPTANCE AND TESTING

8.11 FIELD TESTS AND CERTIFICATION OF MATERIALS

Sampling and testing are required to determine whether quality of materials and construction are in reasonably close conformance with plans and specifications.

Project inspectors shall identify and inspect all materials received on a project before they are incorporated into work. Inspectors shall determine that proper inspection reports or certifications are on hand, and that no unusual alterations in characteristics of materials due to handling or other causes occurred.

Guide schedules attached to *Materials I.M. 204* contain various field tests and sampling frequencies on asphalt materials and mixtures.

The Quality Management - Asphalt (QM-A) program was started in 1992 with the goal of improving the overall quality of HMA produced and giving the contractor the responsibility for mix design, sampling, testing, and making mix adjustments. In other words, contractors assumed start-to-finish responsibility for the product they produce and place. QM-A is the implementation of contractor process control for HMA mix production and placement. Field tests and certifications are the same for conventionally administered projects and QM-A projects. The major differences are the increased frequency of HMA sampling and testing, who performs the work, and contractor responsibility for conceiving and implementing mix changes to achieve specification compliance. Most administrative questions involving QM-A projects can be answered by referring to *Materials I.M. 511* and the current specifications for Hot Mix Asphalt Mixtures.

Nearly all primary and interstate HMA tonnage is typically constructed under QM-A specifications. It is intended that QM-A be applied to HMA on all interstate contracts and all other contracts with more than 5000 Mg (tons) of HMA. State park, institution, maintenance and other projects utilizing small HMA quantities will not typically be QM-A.

Asphalt Materials

Acceptance of asphalt materials will be on the basis of certification from an approved refinery or distribution terminal source. Formal approval of a source is to be issued by the Office of Materials. Refer to *Materials I.M. 437* for additional information.

Each shipment invoice covering certified materials delivered to a project shall have a signed certification statement as to type and grade, specific gravity or mass per liter, load quantity, batch number or other identification, project number, and compliance with appropriate lowa DOT specifications. Copy of this invoice shall be furnished to project engineer or project inspector for review and filing.

Aggregates

Aggregate production and inspection are covered in detail by *Materials I.M.'s 204 and 209.* Acceptance for quality will be based on source monitoring and test results on assurance or project samples. Acceptance of mixture gradation is outlined in *Construction Manual 2.53 and 3.22.*

8.12 RESPONSIBILITY AND DOCUMENTING HMA MIXTURE PROPORTIONING CHANGES

Specification 2303 and Materials I.M.'s 510 and 511 give explicit guidelines that shall be followed for controlling HMA mixtures. They establish job mix criteria and corrective procedures to be followed when mixture characteristics are changed from the job mix formula during mix production.

District Materials Engineers have primary responsibility for authorizing changes made by the contractor to keep the mixture characteristics within all *Specification* and *I.M.* guidelines. They will inform project engineer of changes and follow up with written documentation. Each of these parties may designate a representative to approve desired change.

On QM-A projects, contractor has sole responsibility for making mix changes; however, District Materials Engineer or project engineer must be kept informed and involved in these changes. Mix change decisions must be an interactive process between contractor and agency.

The project engineer must also insure that required changes are implemented as soon as possible when mixture characteristics fall outside *Specification 2303* and *Materials I.M. 510 Appendix A* limits. On each working day, project engineer shall determine if work for previous working day was within *Specification* and *I.M.* guidelines. If not, immediately consult with District Materials and the contractor to assure corrective action is taken.

Adjusting Asphalt Binder Contents

For determining whether asphalt binder content is within required guidelines, refer to *Specification 2303.* Limits are given for the air voids that are determined daily on a specimen in the District Materials Laboratory. This will be calculated by District Materials according to *Materials I.M.'s 321* and *501*, based on the Rice Procedure as per *Materials I.M. 350.* Project engineer or designated representative (probably plant inspector) must get these air voids daily from District Materials.

When test results for air voids (field and/or lab) are outside the limits given in *Specification 2303*, project engineer needs to contact District Materials to initiate changes in HMA mixture. When asphalt binder content changes are considered to adjust air voids, caution must be used to assure that adequate film thickness required in *Materials I.M. 510 Appendix A, Table 1* is maintained. When the resulting film thickness is outside the specified range, procedures given in *Construction Manual Appendix 2-34 (Table M)* should be used to determine the appropriate price adjustment. Reductions in asphalt binder content must not reduce the target below the calculated minimum allowable asphalt binder content. Documentation of changes should be on "Daily HMA Plant Report" (Form 800241).

On QM-A projects, job mix control is done essentially the same way except the contractor is responsible for sampling, testing, reporting results, and making appropriate mix changes. Also, HMA mix sampling and testing is performed up to four times per day at the HMA plant site so immediate results are available. For QM-A, the contractor is responsible for making meaningful mix changes before the lab void running average goes out of compliance. When a lab void running average goes out of compliance, the contractor must shut down and implement changes intended to correct the

Construction Manual

noncomplying voids. If the contractor fails to shut down voluntarily, the project engineer may shut down the contractor until corrective action is taken. A price adjustment for failure to shut down or make timely and meaningful mix proportion changes may be appropriate. The project engineer should coordinate closely with the District Materials Engineer for a resolution when lab voids are noncomplying on a QM-A project. Lab voids will be monitored daily by District Materials, but the project engineer must also remain informed of the test results.

Work using HMA mixtures with air voids outside the limits shall be avoided. If District Materials cannot be reached in a timely manner, project engineer shall change asphalt binder content as necessary to stay within *Specification 2303* guidelines and report this change to District Materials as soon as possible. Such changes will be reviewed later by District Materials and shall be documented by plant inspector on "Daily HMA Plant Report."

Documenting Corrective Action for Noncomplying Air Voids Test on Specimens Taken from Constructed Pavement

Materials I.M. 204 also requires project engineers to report tests for field air voids on mix samples from compacted roadway on "Daily HMA Plant Report." *Specification 2303* stipulates the required range for these tests.

Range given for these voids is the average of all tests for each day's construction calculated by plant inspector.

When tests for these air voids are outside required range, density results shall first be reviewed. Example: If density results are on lower end of range but still passing, perhaps air voids will fall within range specified by increasing density. After review of density and testing procedures, Materials forces shall be notified to consider changes in mix proportions. If conflicts develop between lab and field voids, concentrate on achieving proper lab voids. Generally there won't be a problem keeping field voids within specification if lab voids are on target.

When noncomplying tests for air voids in specimens taken from constructed pavement occur, project engineer will notify District Materials. Plant inspector will document noncompliance on "Daily HMA Plant Report" containing the noncomplying test results.

In response, District Materials Engineer will inform project engineer what changes in mix proportions, if any, should be made. District Materials Engineers will furnish project personnel written documentation for the decision or action taken.

Adjusting Aggregate Proportions

Contractor must occasionally adjust aggregate proportions to consistently comply with job mix target gradation tolerance and to correct calibration errors.

Contractors shall initiate and make changes necessary to insure compliance under guidelines set forth by *Specification 2303* and *Materials I.M.'s 510* and *511*. Contractor shall not be allowed to make such changes without prior approval of project engineer.

For QM-A projects, the contractor shall also initiate and make appropriate changes. Although this must be done as an interactive procedure with project engineer, approval of the project engineer for these changes is not necessary as long as results are within the constraints of specifications and *Materials I.M.*'s. Proportion changes of up to 5 percent for each material may be approved without delaying operations for qualifying tests. District Materials should be contacted when desired change is between 5 and 10 percent for each material. Single changes greater than 10 percent require a new mix design unless waived by project engineer.

Specification 2303 and *I.M.*'s 510 and 511 provide many of the guidelines needed for making mix change decisions. Project engineers are expected to reference these documents and communicate closely with District Materials prior to, during, and after the need for decisions concerning mix proportion changes so problems can be avoided.

Proportion changes shall be documented by plant inspector on "Daily HMA Plant Report."

Filler/Bitumen Ratio

Specification 2303 and Materials I.M. 510 Appendix A give explicit guidelines that shall be followed in relation to filler/bitumen ratio. For Marshall mixes, the filler/bitumen ratio is determined by dividing the percentage of cold feed material passing the 75 μ m (#200) sieve by the total percentage of asphalt binder used, as determined by tank stick or by actual mass (weight). For Gyratory mixes, the filler/bitumen ratio is determined by the cold feed material passing the 75 μ m (#200) sieve by the "effective" percentage of asphalt binder used, taking into account asphalt binder absorbed by the aggregate. See Materials I.M. 501 for additional information, including applicable equations and example calculations.

Plant inspector should determine how a proportion change will affect the filler/bitumen ratio before allowing contractor to make such a change.

If filler/bitumen ratio is outside the limits established in *Specification 2303 and I.M. 510 Appendix A*, a "Noncompliance Notice" (Form 820245) shall be issued immediately. If additional verification samples are taken, they must be run and an average calculated.

Plant inspector will then refer to *Construction Manual 2.53*. The average of all verification tests for the lot shall be used to determine filler/bitumen ratio.

When filler/bitumen ratio for an HMA mixture falls outside the limits established by specification for that material, the affected material will be considered noncomplying and subject to price adjustment. See *Construction Manual Appendix 2-34 (Table J)* for additional guidance.

8.13 DENSITY CONTROLS FOR HMA CONSTRUCTION Uncompacted HMA Samples

Specifications for HMA require each layer to be compacted to a density not less than a given percentage of laboratory density representing that particular lot.

On non QM-A projects, a comparative laboratory density shall be determined for each lot from mixture samples obtained as prescribed by *Materials I.M. 322*. The contract documents will normally require that the contractor transport samples to the District Materials Lab. Such deliveries shall be done promptly. Prompt delivery requires that the contractor obtain hot box samples within several hours after daily production begins for immediate delivery to the District Materials Lab. Normally, the first hot box sample must be delivered by noon to report results the same day. District Materials personnel

will perform the laboratory density tests. The contractor should deliver the first split aggregate sample with the hot box each day if gradation acceptance testing is performed in the District Materials Lab.

District Materials will promptly communicate test results back to inspection forces so they may be used to calculate comparative percentages. If more than one sample is used to determine laboratory densities for any lot with the same mixture, an average of that lot's laboratory densities shall be used.

If a laboratory density is not available from District Materials for a particular day's sample, the daily control shall be based on laboratory density for previous day's construction using the same mixture.

On QM-A projects, up to four paired hot box samples per day will be obtained by the contractor, as directed and witnessed by certified agency personnel (HMA Level I or HMA Sampler). One of each paired sample is then transported to the field lab for quality control testing. The hot box samples must be taken from behind the paver as prescribed by *I.M. 322*, by a technician with either HMA Level I or HMA Sampler certification. The grade inspector or plant monitor directs and witnesses contractor sampling to ensure it is properly done by appropriately certified personnel. The contractor will also transport the verification portion of the paired hot box samples, the split cold feed verification samples, and asphalt binder verification samples to the District Materials Lab on a daily basis. The inspector or plant monitor must properly identify and secure all verification samples with tamper-proof devices prior to transport by contractor personnel. No security measures are required if custody of samples is maintained by agency personnel.

An average of all laboratory compacted specimens from the daily hot box samples will be used to determine the degree of field density. The specification for Hot Mix Asphalt Mixtures describes how to calculate laboratory density for the lot when less than four hot box samples are obtained for a lot.

Compacted HMA Samples

Density of pavement is determined from core samples cut by contractor, normally on the next working day following construction.

Seven samples shall be cut from each lot of construction. For surface courses designed 25 mm (1 inch) or less in thickness, each one-half day's construction is designated as a lot. Each full day's production may be separated into two lots for determinations of quality index (density). This must be agreed to at preconstruction conference.

Specifications also describe a statistical procedure for field density evaluation together with a formula and schedule for payment adjustments when noncompliance occurs. Project inspection personnel shall observe the following when using the statistical procedure. These procedures are valid for all HMA projects.

Contractor is required to take prescribed number of samples at locations selected and marked out by project inspector. Project inspector or monitor (HMA Level I or HMA Sampler certified) will direct and witness the core sampling. A circle approximately 400 mm (16") in diameter is adequate for identification of sampling location. The core should be taken from within the area identified. It is not appropriate for contractor to use a nuclear device to "hunt" for a particular spot to sample; coring locations are no longer random when a nuclear device is used in this fashion.

- Sample locations should be selected randomly within areas designated by specifications. This may be accomplished by casting a die, using a random number generator, table of random numbers, or drawing lots. If lots are used, the lot drawn shall be replaced each time before drawing again to insure that the same relative location has a chance to be selected for each individual drawing. A core will not be taken less than 300 mm (1 foot) from the edge of a given pass of the finishing machine. Procedure for identifying random locations should provide for the potential to obtain a core sample at any distance 300 mm (1 foot) or greater from the edge. Similarly, random cores are not to be taken within 300 mm (1 foot) of runouts, day's work joints or structures. For pavement sections with a paved (or partially paved) shoulder placed concurrently with mainline lane, the random location should be based on a distance 300 mm (1 foot) or greater from the random core sampling area (lot) for the mainline lane. A spreadsheet for determining random core sample locations is available from the Office of Construction.
- If layer being sampled adheres to a lower layer, it may be necessary to sample through two or more layers or full depth. Contractor will need to remove the extra depth by sawing the sample with a masonry saw. It may be necessary to cool sample by refrigeration or ice to prevent damage during sawing. It is important that core bits be kept sharp.
- Each sample shall be inspected carefully by the contractor and inspector prior to testing (preferably at the time of core drilling). Be sure core sample is representative of density of mixture placed. If damage is noticeable or if sample is thinner or thicker than specifications allow, discard without testing and take another to replace it.
- The project inspector or plant monitor is responsible for performing tests required to determine density of core samples. This typically involves measuring, placing in water bath, drying, and weighing of cores. For most efficient use of time, other plant monitor duties may be performed while the core samples are drying. To be qualified to perform core density testing, the inspector or plant monitor must have obtained either HMA Level I or HMA Sampler certification.
- If test indicates that density is less than specified percentage, sample shall be retested to insure accuracy. However, after a sample is tested, resampling of individual locations shall not be done.
- Tests on density samples give lower results if samples are damaged during handling. Contractors and project inspectors are advised to use extreme care when taking, transporting, and preparing cores for testing.
- Samples should be transported on hard flat surfaces to avoid loss of density by distortion. Core samples must be identified and secured by the inspector in a tamper-proof container prior to transport by contractor personnel. If necessary to store samples, storage should be in a cool place and on a hard flat surface.
- Specifications also require contractor to take density samples as promptly as practical. Samples should be taken no later than the next working day following construction. If contractors are unable to comply with this timing, project inspectors shall stop construction until contractors are able to do so.

- Refer to Materials I.M.'s 501 and 508 and Specifications for determination of "outlier" field density values.
- Project inspector shall report lot failures to project engineer and contractor on the day tests are performed.

Procedures for Construction of Test Strips

The specification entitled "Test Strip Construction for Class 1A and 1B Compaction" requires the contractor to construct a test strip for both intermediate and surface course mixtures subject to Class 1A compaction. Specifications further require test strips for surface course mixes requiring Class 1B (primary road) compaction. Test strips are used to evaluate properties of HMA mixture and identify an effective rolling pattern. For Class 1B compaction, field density compliance is not typically a problem, therefore documentation of a test strip rolling pattern and nuclear gauge evaluation is optional for the contractor. Test strips for Class 1B compaction on surface courses are required primarily to allow evaluation and adjustment of mix properties, particularly lab voids, before the mix is placed as a surface course.

Proper construction and documentation of test strip is the responsibility of the contractor. Documentation of test strip development and final rolling pattern should be provided by contractor to inspector.

The specifications outline several steps that must be followed to construct a test strip. Documentation of this procedure is required. If properly performed, compacting a control test strip using a nuclear gauge will establish a rolling pattern that achieves required density. Personnel participating in tests must include roller operators, nuclear gauge operator, paving supervisor, project inspector, and District Materials personnel. The following procedure describes steps to be taken by the contractor to effectively construct a test strip.

Pre-size roller train

It is extremely important to properly balance roller capacity with paver speed. The paver speed is generally controlled by asphalt plant production rate in megagrams (tons) per hour. This assumes adequate trucks are available for continuous production. Determine paver speed by considering megagrams (tons) delivered to paver and mat thickness and width. Assume paver operates 50 minutes each hour.

Vibratory rollers are typically used for breakdown rolling. Determine frequency (vibrations per minute) of roller which establishes maximum permissible rolling speed in meters (feet) per minute to assure 35 impacts/m (10 impacts per foot). Contractor should provide this roller information. It can be checked with a tachometer available from the Central Materials Office.

Estimate number of coverages of each roller to achieve required density. Determine number of passes necessary to accomplish estimated coverages considering width of roller. A coverage requires sufficient side-by-side passes to cover entire mat width once. Include the catch-up pass.

Knowing maximum roller speed and number of coverages estimated to achieve density, determine total meters per minute (m/min) of full width mat that roller can effectively compact. Assume 80% roller efficiency.

m/min (completed) = <u>roller speed (m/min)</u> number of passes for estimated coverages required

Compare m/min completed of roller to paver speed. If m/min completed is greater than paver speed in m/min, roller is adequate. If m/min completed is less than paver speed, additional rollers must be provided or paver speed must be reduced to equal or less than roller capacity.

Example: Mat width = 3.5 m (11.5 feet) Compacted thickness = .05 m (2 inches) Production rate = 135 Mg/h (150 tons/hour) Roller width = 1.83 m (6 feet) Frequency = 2400 VPM

Assumptions: Paver will operate 50 minutes per hour. Roller efficiency is 80%. Compacted density equals 2 350 kg/cu m (146.7 pcf). Density will be achieved with 3 coverages.

A. Determine paver speed to match production

<u>135 Mg/h (150 tons/hour)</u> = 2.25 Mg/min (2.5 tons/min.) 60 mins./hour

<u>2.25 Mg/min (2.5 tons/min.)</u> = .96 cu m/min (34.08 cubic ft./min.) 2.350 Mg/cu m

<u>.96 cu m/min</u> = 5.5 m/min 3.5 m (mat width) x .05 m (thickness)

Minimum paver speed = (60/50) (5.5 m/min) = 6.6 m/min (21.65 ft./min.)

B. Determine maximum permissible speed of roller

<u>2400 VPM</u> = 68 m/min (207 ft./min.) 35 impacts/m

C. Determine total m/min of full width mat that can be compacted with three coverages.

Roller width = 1.83 m (6 feet) A 0.15 m overlap per pass requires three passes per coverage. Nine passes required for three coverages.

Note: A catch-up pass is not needed in this case because third pass on third coverage will end at paver end of compacted area.

Completed m/min= <u>68 m/min</u> x 0.80 (efficiency) = 6 m/min (18 ft./min.) 9 passes

Paver speed 6.6 m/min. Roller capacity is inadequate for the indicated paver speed, and appropriate changes to increase roller capacity will be necessary.

Above example considers a vibratory breakdown roller. From experience, we know a rubber-tired intermediate roller is typically needed to achieve interstate density requirements. Same procedure can be used to calculate capacity of rubber roller and compare to paver speed. The only difference is that roller speed is not based on impacts per meter, but rather effectiveness as determined by nuclear gauge testing.

Uniform operation of paver is a critical factor in obtaining consistent density results and smooth pavement. If paver is operated at erratic or excessive speed in short intervals, satisfactory results are difficult to achieve. When an excessive number of trucks arrive at paver simultaneously, paver operators are tempted to increase paver speed and quickly unload all waiting trucks, then stop paver, and await their return or next group. It is better to maintain appropriate paver speed and thereby assist in respacing the trucks. This does not sacrifice production, but maintains uniform rate of production which allows roller operator to maintain rolling speed and still keep up with paver.

- Estimate lab density of plant produced mix May be slightly higher than job mix lab density depending on aggregate gradation control, aggregate degradation in dryer, and asphalt binder control.
- Check equipment

Determine and record sizes of all rollers to be used for project. Vibration frequency (discussed earlier), amplitude setting, roller scale weights, tire inflation pressures, tire sizes and contact pressure must be known and documented. Minimum of 550 kPa (80 psi) contact pressure is required. The specifications require an information plate attached to each roller which shows tire size and ply; and correlation of wheel load and tire pressure with contact pressure.

Select test site

Wait until approximately 90 Mg (100 tons) of mix have been produced so plant has stabilized. Test area should be about 100 m (328 feet) long where roller may be tested without being interrupted by ramps, bridges, interchanges, etc. Mark off section and record stationing.

Establish at least three points where nuclear testing will occur. Record location of these points.

Establish preliminary rolling pattern

Remember, goal is to establish a roller pattern which will consistently obtain required density. To meet this requirement, it will be necessary to adjust operating techniques until desired results are obtained. Variables may include vibration frequency, amplitude, roller speed, contact pressure, number of coverages, and roller operating zone.

Change only one variable at a time. Always select a combination that will allow rollers to complete at least the same m/min of completed mat as the paver is producing.

All operating techniques are governed by mix behavior during the rolling process. It will vary from job-to-job and from lift-to-lift.

Running test

Using predetermined rolling pattern and placing roller in preselected roller zone, begin compacting mat. Locate nuclear gauge on mat at established locations and take reading. Short nuclear counts are normally used initially, so testing does not interfere with rolling.

Continue rolling and checking density until effective pattern is established. Develop density growth curves for each roller pattern used. Plot density vs. number of passes on graph paper. Contractor should provide copies of this documentation, including description and location of pattern used, to project inspector.

After a successful pattern is identified, complete rolling pattern again in another area and take longer nuclear counts to verify results. Document the successful pattern to be used in field book.

Test strip needs to be established under the same production conditions that will prevail during normal paving operations, such as mix temperature and production rate.

Cut cores

After mat has cooled or been iced, cut cores for acceptance. Specifications allow one extra core (8 total) to be cut in test strip area. Lowest core density is discarded. This recognizes the potential for inconsistent results when performing a test strip.

- Correlate nuclear readings with core results Allows for more accurate monitoring of density with nuclear device during production.
- Monitor Use of Selected Pattern Each day project inspector shall check rolling pattern, including paver speed and roller coverages, and record in field book.

Resolving Density - Void Conflicts

Project inspector should be aware that field laboratory and compacted voids will be tightly controlled. This may require more compactive effort and even higher average density for compliance. Field control will allow no more than 8% voids in compacted layer. Become familiar with other controls by reading *Materials I.M. 511* and asking questions of District Materials personnel.

For the case where specified density is met, but field laboratory voids or pavement voids are outside designated limits for more than one day, inspector should request a test strip. Test area should be a straight run of about 100 m (110 yards). Contractor will select combination of rollers to be used and preliminary rolling pattern. Nuclear gauge readings would normally be taken after each pass or series of passes.

Inspector would only observe this process. Documentation of type and amount of compactive effort shall be recorded. Inspector will then select and mark out 5 random core sites within test site. Density cores taken by contractor would be tested and results reported as soon as possible.

Construction Manual

Cooperation between project inspector, District Materials, and contractor is essential to reach a timely solution. If all anticipated results are not met, further experimenting with a different combination of rollers and operation should be performed. Changes in gradation may be one of the first items looked at by District Materials. Changes in asphalt binder content would be one of the last items. Relief from minimum laboratory voids specified may only be approved by Office of Materials.

8.14 TESTING FOR SMOOTHNESS

Appropriate references for acceptable smoothness of HMA surfaces are *Specification* 2316 and Materials I.M. 341.

Equipment for smoothness testing includes the 7.6 m (25-foot) California profilograph, rolling surface checker (bump cart), and 3 m (10-foot) straightedge. Pavement surfaces to be tested for smoothness with the 7.6 m (25-foot) profilograph are identified in *Specification 2316.01*. The contractor may choose to use a profilograph, in lieu of bump cart or straight edge, to check additional pavement areas for bumps. Unless the contract documents specifically indicate otherwise, paved shoulders are not considered part of the pavement surface and therefore are excluded from profilograph or bump cart testing, although reasonable smoothness from a workmanship standpoint would still apply. The contractor is responsible for providing the profilograph and for performing the testing.

Contractor should be encouraged to test directly behind the finish roller to allow correction of an identified 13 mm (0.5 inch) bump by re-rolling while mixture is still hot enough to be affected.

Use of Straightedge and Rolling Surface Checker

Pavement smoothness specification does not relieve contractor of responsibility for proper rolling and workmanship. Each pavement layer is to be inspected visually to insure that surface is free of roller marks and distortion. Transverse joints are to be checked with a 3 m (10-foot) straightedge. Surface courses inspected with a rolling surface checker shall meet 3 mm (1/8 inch) tolerance. For lower courses, 6 mm (1/4 inch) smoothness tolerance may be used.

Contracting authority will continue to provide rolling surface checker and conduct testing on all surfaces not tested by profilograph. However, corrections for surface irregularities shall be made, if possible, before mixture has cooled to 66 degrees C (150 degrees F). A large percentage of irregularities can be corrected by finish rollers above this temperature.

When rolling surface checker is used, it should be operated immediately behind finish rollers. Mixture buildup on the wheels of surface checking straightedge should be regularly removed.

The inspector operating the surface checking straightedge should also observe surface to insure that all roller marks or roller wheel depressions are smoothed out during the finish rolling. The inspector should observe the longitudinal joints carefully to insure that they have been smoothly rolled as specifications require. If surface is not being finished as specifications require, inspector shall stop construction until contractor takes corrective action.

8.15 CHECKING TRANSVERSE JOINTS FOR SMOOTHNESS

The specifications require use of a 3 m (10-foot) straightedge for checking surface, intermediate, and base course transverse joints for smoothness. Inspectors shall use straightedge according to the following procedure:

 The first check with the straightedge is made before saw cut. Straightedge is used to determine where full thickness of layer ends and tapered portion begins. Inspector shall require that saw cut be located in full thickness of layer. All of the layer extending beyond the saw cut, including tapered portion, is then removed.

While the joint is being constructed and checked, inspector shall require the finishing machine to be stopped approximately 10 to 15 m (30 to 50 feet) from the joint. Construction shall not be permitted to continue until the checking has been completed. This permits repaying of the joint, with finishing machine, if straightedge should indicate a poor riding surface has been constructed.

- 2. The second check with the straightedge is made after finishing machine has constructed the new layer, but before rolling. Straightedge is used to locate irregularities in newly constructed layer and any irregularities found that must be corrected by hand tools. When straightedge indicates no high or low spots, compaction should be permitted with initial roller.
- 3. The third check with the straightedge is across the joint between cold pavement and hot mixture after compacted with initial roller. This third check indicates whether the correct amount of material has been placed. For instance, if freshly rolled layer is too high, it indicates too much material has been placed. If freshly rolled layer is too low, it indicates not enough hot mixture has been placed.

For that reason, high or low transverse joints are not usually corrected by additional rolling. Instead, corrections should be made by cutting or filling rolled surface while mixture is still warm and can be manipulated. If there are unusually high or low areas after rolling, paths must be shoveled through the pavement for finishing machine tracks. Finishing machine is then backed up to the joint and paving operation is started again.

Above procedure shall be repeated as necessary until straightedge indicates that a good riding joint has been constructed. If repeated repaying operations cause mixture to cool to the extent that reuse becomes impractical, it should be removed and wasted.

4. The final procedure for insuring proper construction at transverse joints is checking for true edge alignment. Edge of the freshly rolled layer should be carefully trimmed by hand tools until it matches the alignment of adjoining cold pavement.

8.20 MEASUREMENTS AND PAYMENT COMPUTATIONS

8.21 ASPHALT BINDER

When payment for an HMA mixture is based on megagrams (tons), payment will be made for asphalt binder as a separate item. Compensation will be made for all megagrams (tons) of asphalt binder incorporated into the construction within specification tolerances. This includes payment for asphalt binder from Recycled Asphalt Pavement (RAP) that is incorporated into the project. The specifications address payment for asphalt binder in Classified or Unclassified RAP when provided from a contractor-owned stockpile or from RAP furnished by the contracting authority.

Megagrams (tons) of asphalt binder paid for is not deducted from megagrams (tons) of HMA mixture measured for payment. When payment for HMA mixture is based on square meters (square yards), no separate payment is made for asphalt binder. The contractor includes cost of asphalt binder as part of cost per unit area.

Asphalt binder will be measured for payment by tank stick measurement or calibrated meter reading. Asphalt binder supplier weigh tickets for liters (gallons) of asphalt binder delivered to the plant site are not acceptable for pay quantity, but the asphalt binder quantity added to the storage tank shall be computed from a supplier certified transport ticket accompanying each load. Use of supplier certified transport tickets makes it unnecessary for the contractor to have a second asphalt binder storage tank on site for sticking asphalt binder deliveries or for the transports to weigh at a nearby scale before and after delivery.

Under the certified plant inspection program, the plant monitor will observe tank stick measurements on the first day of mix production and a minimum of once per week thereafter. When a flow meter is used for measuring the quantity, the plant monitor will observe a 4-hour tank measurement and compare the outage to the 4-hour metered quantity.

When small quantities, normally 45 Mg (50 tons) or less, of asphalt binder are involved, design plan may state that asphalt binder is considered incidental to HMA. Check bid item subnotes for this reference.

For specific mixes used as patching materials, or in an alternate bid situation, no payment will be made for asphalt binder. Examples include surface patches, partial depth patches, full depth patches, and detour pavement.

Tank Measurement and Asphalt Binder Content Determination

For continuous plants, drum mixing plants, or batch plants where asphalt binder is proportioned through a calibrated metering pump, certified plant inspectors measure the asphalt binder for payment. This shall be done by daily initial and final tank stick measurement or meter readings, and computing asphalt binder added to the storage tank during the day from certified supplier transport tickets.

At batch plants, automatic or semi-automatic printouts record actual weight of asphalt binder in each separate batch, this quantity may be used for payment.

Volume measurements will be converted to weights by computation. The amount in storage at beginning of project will be measured or estimated by inspector and added to

amount measured for payment. Asphalt binder remaining in storage at end of project and amount otherwise not used in the work will be measured or estimated by inspector and deducted from amount measured for payment.

Refer to *Materials I.M. 509* for correct procedures in tank stick measurement and asphalt binder determination. "Daily Virgin AC Tank Measurement Sheet" (Forms E216 and M216) is to be used by plant inspector to compute final net asphalt binder pay quantity and percent asphalt binder by tank stick.

Any corrections should be reported to contractor and recorded on daily report forms. Upon project completion, the completed "Daily Virgin AC Tank Measurement Sheet" (Forms E216 and M216) shall be incorporated in project file.

Measuring Asphalt Binder for Small Quantities

By mutual agreement, the method of measuring asphalt binder for payment may be modified when small quantities or intermittent operations are involved.

If a recorded weight is not available, quantity may be calculated from intended asphalt binder percent with HMA plant meter results providing further verification. For small quantities on a given day, the previous day's tank stick may be used as a check.

Project inspector should document procedure selected and reasons for doing so.

Asphalt Binder Quantities and Pay Adjustments

Asphalt binder contract quantities for a project are estimated based on a basic asphalt binder content for mixture size and type. Target asphalt binder percentage to be used is then set by job mix formula. Where it is anticipated that quantity of asphalt binder used will result in a substantial change as defined in *Construction Manual 2.36*, a change order shall be written prior to accomplishing the work. Project engineer is responsible for checking asphalt binder percentage established by job mix and initiating the change order.

When noncomplying Dynamic Shear Rheometer (DSR) Stiffness tests occur, payment for asphalt binder incorporated into affected HMA mixture is subject to price adjustment per the provisions of *Construction Manual 2.53*. Also, refer to this section for the guide schedule for adjustment in HMA mixture payment for deviation in asphalt binder content from specified tolerance.

8.22 TARGET VALUES FOR ASPHALT BINDER CONTENT IN JOB MIXES

The 0.3 percent tolerance specified for asphalt binder content is provided for reasonable individual variances only. Whenever regular and repeated variances from target values occur, project engineer shall insist on quick and corrective action by contractor to secure proportions at target values, not simply within tolerance.

The previous paragraph applies specifically to asphalt binder content, but similar specification requirements and definitions also apply to aggregate tolerance and target values. Refer to *Materials I.M. 508*.

8.23 WEIGHING OF HMA MATERIALS

Specification 2001.07B covers equipment and procedures for weighing of HMA materials. When automatic or semi-automatic weighing is used, continuous direct observation of the weighing process by a scale inspector is not required. For manual weighing of loaded trucks, project engineer may assign a scale inspector. This normally occurs only when accuracy in the weighing procedures is in question.

When witnessing is required, scale inspector should be positioned near contractor's scale operator so weighing can be closely observed. Contractor's representative shall write the scale tickets and present them individually to scale inspectors for their signatures or initials before each truck leaves the plant.

Inspection personnel should refer to *Construction Manual 3.50* and *Materials I.M. 508* for witnessing and verification requirements and inspector duties.

8.30 EQUIPMENT USE AND INSPECTION

8.31 INSPECTION AT HMA PLANTS

District Materials Engineers typically provide oversight responsibilities for inspection and/or monitoring at HMA plants. They should assure themselves that plant inspectors are qualified and have been informed about their specific duties. This should include, but not be limited to, frequency of tests, information to be recorded, and samples to be obtained and submitted to Central Materials and District Materials Laboratories.

Plant inspectors should be placed in charge of all plant inspection. Their personal duties include checks of stockpile handling, equipment settings, mixture appearance, and supervision of scale inspectors and assistant plant inspectors. Plant inspectors should be instructed to avoid spending prolonged periods in the laboratory trailer.

Refer to *Materials I.M. 508 and Construction Manual 3.07* for HMA plant inspection requirements and documentation.

All HMA production, including HMA for patching, will be covered by certified plant inspection unless otherwise excluded by contract documents. The contractor shall furnish and be responsible for certified plant inspection in accordance with *Materials I.M. 213*. There is no certified plant inspection exclusion for small amounts of HMA; however, the project engineer may approve combining several days of low production into a single lot for sampling, testing, and acceptance. This is commonly done for patching projects where up to a weeks' worth of low daily HMA production may be combined into a single lot. Plant monitor requirements are identified in *Construction Manual 3.07*.

On Quality Management - Asphalt (QM-A) projects, the contractor's certified HMA technician is responsible for meeting all sampling, testing, and documentation requirements as set forth by the current specification. For some contractors, this person may also be responsible for certified plant inspector duties as well. It should be possible for two people to handle both QM-A and Certified Plant Inspection (CPI) responsibilities on a typical HMA resurfacing or paving project. If the contractor fails to staff a project adequately for QM-A and CPI activities to be accomplished in a thorough, timely, and proper manner, a noncompliance should be issued. It is not a requirement that the certified HMA technician personally obtain the hot box samples from behind the paver. This operation can be assigned to any of the contractor's personnel as long as that person is a certified HMA sampler. This allows the certified HMA technicians to spend their time in the lab rather than on the road, providing for more efficient use of technician time as well as timelier test results. The certified HMA technician should maintain good communication with the plant monitor and District Materials personnel on test results and mix changes.

Plant monitor requirements for QM-A projects are also described in *Construction Manual* 3.07.

8.32 INSPECTING THE MIXING TIME OF HMA PLANTS

Project engineer is responsible to insure that mixing time is inspected on continuous plants and on batch plants.

Necessary action shall be taken to insure compliance with mixing time requirements. Inspectors shall check mixing time when work begins on the project and thereafter as they consider necessary to insure compliance. Inspector's diary must show when it is done and calculations used. Inspection procedure is described in *Materials I.M. 508* and should be followed carefully.

If mixing time is found to be deficient, inspector shall see that contractor increases it to specified amount. For continuous plants, this is done by decreasing megagrams (tons) output or by increasing pugmill contents.

Materials personnel will give assistance in determining the mixing time as a component of the plant calibration process.

8.40 GENERAL CONSTRUCTION

8.41 UNSTABLE SUBGRADES AND SUBBASES

Specification 2109.03 for natural subgrade and various types of subbases requires contractor to immediately repair rutting or other damage occurring from hauling operations. Inspectors shall not permit HMA to be placed over any distorted subgrade or subbase.

Whenever batch trucks or other paving equipment cause rutting of subbase or subgrade in HMA placement area, such that layer being placed does not conform to design dimensions, inspectors shall immediately stop construction. Construction shall not be permitted to resume until distorted subgrade or subbase is repaired.

Locating Unstable Areas

Contractors and inspectors are required to locate by proof rolling, unstable areas in advance to avoid distortion under equipment. Wet, unstable areas can be dried out before starting placement of HMA to avoid unanticipated and costly work shutdowns.

Locating wet or soft areas in advance can be accomplished by testing finished subgrade or subbase with a loaded truck. When distortions are observed under truck, subbase and subgrade can be dried out and reworked (*Specification 2109.03*).

Construction of HMA pavement should not proceed unless testing gives a reasonable indication that distortions will not occur during construction of overlying pavement.

Determining Cause

During spring and early summer, unstable subgrades caused by high moisture contents are encountered statewide. This condition is usually seasonal and tends to improve as warmer, dryer summer weather stabilizes subgrade. Additional pavement thickness is not justified to bridge over these particular soft subgrades because of their seasonal nature.

When evaluating individual cases of instability, experienced judgment is advisable because of the similarity in outward appearances between moisture in subgrade due to seasonal conditions and more serious causes such as frost boil, unsuitable material, etc.

If excess seasonal moisture is encountered, dry subgrade by overdepth aeration and recompaction.

Overdepth Aeration and Recompaction

Treatment may be paid by change order provided project engineer authorizes its use, and work is closely monitored by inspector.

Specification 2109.03 requires contractors to aerate and recompact distorted areas in subbase at their expense. For a natural subgrade, contractors are required, if necessary, to repair distorted areas by scarifying to a depth up to 150 mm (6 inches), aerating, and recompacting at their expense. Overdepth aeration and recompaction below the top 150 mm (6 inches) shall be paid for as extra work.

When repair, aeration, and recompaction are required to correct damage from contractor's operation, all necessary repair will normally be done at contractor's

expense. However, if project engineer determines that additional depth of aeration and recompaction are needed, that should be paid by change order.

Information accompanying such change order shall include a breakdown of time and equipment involved with authorized extra work.

Special Treatments

When unusual problems are encountered with unstable subgrades or subbases, District should contact Office of Construction for assistance.

8.42 STAKING METHOD FOR HMA PAVEMENTS

Refer to "Inspector's Handbook for Construction Survey" for instructions on construction staking for HMA paving.

8.43 GUIDELINE STRINGS AND EDGE ALIGNMENT

Inspector should make frequent measurements to insure guideline string has been correctly set and maintained. Nails used to secure guideline string shall be at intervals close enough to eliminate chords on curves and other irregularities.

Guideline strings placed on two-lane HMA pavement should be located by measuring from redhead nails placed on centerline. Placement of lower HMA layer will cover redheads. For succeeding lifts, guideline string should be located by measuring from exposed nails used to hold string for each previous lift.

When resurfacing two-lane PCC pavement, contractors may locate guideline strings on shoulders along outer edges. This is done by measuring out from one of the pavement edges at intervals of approximately 150 m (500 feet), then tightening string and using intermediate nails to secure string. To insure that parallel alignment is used for adjacent lane, guideline string for that lane shall be located by measuring across pavement from nails used to secure first string.

When city streets or other multilane pavements are being surfaced, guideline strings shall be inspected according to procedure described in *Construction Manual 8.54*.

True edge alignment controls correct lap at longitudinal joint. If insufficient lap, joint will lack density resulting in raveling and joint deterioration. Excessive lap produces an objectionable wide scab of mixture on the surface next to the centerline joint, resulting in unacceptable appearance.

An intended lap of 25 mm (1 inch) with a variance of 12.5 mm (1/2 inch) will normally be the optimum overlap for longitudinal joint construction. To maintain these close variances, adjacent lane must be constructed with true edge alignment.

Finishing machine operator shall follow guideline string exactly. If machine goes off line for any reason, it shall be adjusted back onto the line immediately. It is incorrect to smooth out the edge alignment by coming back onto the line gradually. This results in long stretches where incorrect lap at longitudinal joint will occur. When batch trucks bump finishing machines off line on curves, movement is usually down slope of curve. If machine is brought back on line gradually, an objectionable, long, straight chord will result in what is supposed to be curved edge alignment.

Irregular edge alignment due to any cause, including adjustments of finishing machine, shall be corrected at once by hand tools. When corrections in edge alignment are unable to be made promptly after they occur, inspector shall require finishing machine to be stopped until workers catch up with making corrections.

When constructing handworked areas such as driveway run outs and bridge approach tapers, edge alignment may become irregular during rolling because small high and low spots in handworked surface tend to extend in width unevenly. Edge alignment of handworked areas can be made true by first rolling the surface with a steel-tired roller, then immediately trimming the edge with hand tools while mixture is still hot and workable.

8.44 LONGITUDINAL JOINTS

To obtain adequate compaction at longitudinal joints, contractor shall place sufficient thickness of mix to compensate for 20 to 25 percent reduction in thickness that normally occurs from rolling. If thickness is insufficient prior to rolling, joint will usually be smooth in appearance but lack density because of inadequate compaction.

The vertical face of exposed, longitudinal joints must be tacked before the adjacent lane is placed. If a Notched Wedge Joint configuration is used, the tacked area also includes the sloping "wedge" face placed in conjunction with the first lane. This treatment is very important to insure a seal at the joint. No tack coat shall be sprayed on surface of lane being matched. Shields on distributor spray bar will help protect adjacent lane.

If overlap is maintained at approximately 25 mm (1 inch) and thickness of joint is correct, brooming or raking is not necessary to obtain a good joint. However, occasional corrections with hand tools may be necessary. When handwork is completed, excess material should be wasted as opposed to scattered on lane being constructed.

When automatic screed controls are used, short joint matching shoe shall not be permitted except when placing a single lift of 38 mm (1 1/2 inches) in thickness or less; or for placement in conjunction with heater scarification work. The specified 9 m (30-foot) ski device shall be used for joint matching on each layer for all other situations.

Short joint matching shoes produce joints with smoother appearances than 9 m (30-foot) ski devices. However, they do not contribute toward a smoother riding surface.

Careful adherence to inspection procedures described in *Construction Manual* 8.43 will insure true edge alignment, which is essential for correct construction of longitudinal joints.

8.45 TACK COATS USING EMULSIONS

For Dilution

SS-1, SS-1H, CSS-1, and CSS-1H grades are specified. Dilution of emulsion is required if non-uniform tack applications are experienced. Dilute at 1:1 ratio, i.e., 1 L emulsion to 1 L water (1 gallon emulsion to 1 gallon water).

Application Rate for Diluted Emulsion

For diluted material, double the rates of undiluted material application. Example: 0.14 to 0.23 L/sq m (0.03 to 0.05 gallons/square yard) undiluted increased to 0.272 to 0.454 L/sq m (0.06 to 0.10 gallons/square yard) dilute emulsion.

Sample for Compliance

Sample emulsion at spray bar of distributor with bar valve in a circulating position.

Measurement for Pay

Net liters (gallons) of undiluted emulsion.

Keep in mind, undiluted emulsion must contain a minimum of 57% asphalt residue; therefore, diluted emulsion must contain a minimum of 28.5% residue.

Settlement of Diluted Emulsions

Varying residue rates of diluted emulsion may be related to blending of original emulsion or settlement while in storage. To minimize this problem, the following steps are recommended:

- Contractor emulsion delivered to storage should be gently circulated prior to pumping into distributor truck.
- If contractor obtains emulsion directly from terminal, the emulsion should be gently circulated prior to use each day.

Material in a storage tank can be circulated with a large diameter, slow turning propeller, or by pumping from top to bottom. Only a small amount of agitation is necessary. Forced air should not be used for agitation since it may cause the emulsion to break.

8.50 BASE, INTERMEDIATE, AND SURFACE COURSES

8.51 HMA WEDGE CONSTRUCTION FOR SUPERELEVATION OF CURVES

HMA wedge courses are placed on resurfacing projects to correct or increase the superelevation of existing roadway curves. Project plans will identify required rate of super and transition lengths. To establish wedge thickness and sequence of placement, the existing transition, super, and profile must be determined by field measurements. For survey and staking procedures, refer to "Inspector's Handbook for Construction Survey."

Placement of wedge courses should be with single lane width finishing machines. Use of full width pavers can result in excess wedge material on the low side of curve, plus crown correction problems in the transition. When correcting superelevation on resurfacing projects, 70% of transitioning will normally be accomplished in advance of curve PC and beyond curve PT, 30% will be in curve.

Newer method of wedge construction utilizes automatic screed and slope features of HMA finisher. This method requires less survey and grade reference.

Automatic Slope Control

Present day finishing machines have automatic screed controls which allow desired cross slope to be set and then varied during machine movement.

Existing super and desired super must be known prior to wedging. Difference in cross slope percentage determines amount of wedge material. Total proposed thickness of finished wedge at the high side divided by 75 mm (3 inches) will give the number of course passes in wedge operation. Total percent of slope change divided by number of course passes will establish slope percentage for each pass.

EXAMPLE:

Proposed Superelevation Rate		8%
Minus Existing Superelevation Rate		4%
TOTAL PERCENT CHANGE	=	4%

Total Proposed Wedge Thickness on High Side of Curve 4% x 7.2 m (24 feet) = 288 mm (11.5 inches)

Number of Proposed 75 mm (3-Inch) Passes to Construct Wedge <u>288 mm (11.5 inches)</u> = 3.84 Passes (Use 4 Passes) 75 mm (3 inches)

Percent Slope Change Each Pass = $\frac{4\%}{4 \text{ Passes}}$ = 1% Per Pass

Proposed Schedule for Laying with Automatic Slope Control:

Pass No.	Percent	High SideThickness	
Existing	4		
1	5	63 mm (2.5 inches)	
2	6	75 mm (3 inches)	
3	7	75 mm (3 inches)	
4	8	_75 mm (3 inches)	
	тс	DTAL = 288 mm (11.5 inches)	

Lath are placed on shoulder to mark beginning of transition, "X" distance, "Y" distance, and each 1% of change in slope percentage.

Placement of Wedge

To insure that each wedge of curve is constructed in its proper place, a guideline string shall be used for each lift. Top of final wedge for curve is directly over outside edge of pavement. Since edge of wedge has a 1:1 slope, the remaining inches of mat thickness to be laid are also the distance from edge of base to edge of lift being laid.

EXAMPLE:

If total thickness of wedge on the high side is 200 mm (8 inches) on first pass of 75 mm (3 inches), screed will have to be extended 125 mm (5 inches) beyond edge of base.

On second pass of 75 mm (3 inches), screed will have to be extended 50 mm (2 inches) beyond edge of base.

On third pass of 50 mm (2 inches), screed should be same width as the original pavement's edge.

Sequence of Placement

First pass should be in transition section on the high side. Assuming proposed transition is 70 m (230 feet) and 4 total passes are proposed, start first pass approximately 75% or 52.5 m (172 feet) of this length into transition; second pass at 50% or 35 m (115 feet); and third pass at 25% or 17.5 m (57 feet). Each beginning pass is started with automatic slope control set at existing slope.

As laydown machine moves forward, dial slope into screed proportionally until desired slope for that pass is obtained. Check actual slope obtained and make very small adjustments if necessary. Let this slope ride the full length of curve. Reverse procedure for end of curve transition.

First pass is a leveling type operation. High and low spots on existing pavement will result in variable mat thickness. Average depth as per above example will be 63 mm (2.5 inch) thickness at the high side and a 5% slope to centerline. Because of existing super and crown in pavement, two passes of the high side of curve could be done before one pass of the lower side would be necessary, thus also preventing inverse crown situations.

An additional 15 mm (1/2 inch) thickness should be placed at centerline, so longitudinal joint may be constructed and rolled with flat steel rollers on curve. This will give a slight crown to superelevated section.

Construction Manual

Inspector should be constantly checking slope using 1 m (4 foot) level and ruler. If desired slope is not obtained on a pass, then adjust slope and thickness of next pass. Final pass should always be made at final superelevation rate.

8.52 LAYING WIDTHS FOR HMA

Plans for HMA projects will show the overall dimensions of finished pavement.

When spreading layers of HMA 38 to 50 mm (1.5 to 2 inches) in thickness, a typical 7.2 m (24 feet) pavement will broaden 50 to 100 mm (2 to 4 inches) in width during rolling. Therefore, laydown width before rolling would typically require 75 mm (3 inches) less than final design width. An intended lap of 25 to 50 mm (1 to 2 inches) at longitudinal joint is necessary for proper joint construction. Use of a cutoff shoe when matching a longitudinal joint is not acceptable.

When using finishing machines that spread pavement full width, inspectors shall insure that contractors adjust spreading width so final dimensions conform to dimensions specified in project documents.

Finishing machine screed extensions are usually available in 150 mm (6 inch) increments. Where standard screed extensions are utilized to increase paver width by more than 300 mm (1 foot), paver auger shall also be extended. Many newer pavers are equipped with automatic screed extensions which can be adjusted to conform to required width for most resurfacing situations. Some paver models have automatic auger extensions as well.

The specifications require longitudinal joints on multi-lift resurfacing projects to be stacked directly over each other rather than offset. For full depth HMA paving, offset must be no more than 75 mm (3 inches). A diagram of properly stacked joints is in *Appendix 8-1*.

When city streets or other multilane pavements are being surfaced, laying widths shall be inspected according to procedure described in *Construction Manual 8.54*.

8.53 SPREAD RATES FOR HMA BASE, INTERMEDIATE, AND SURFACE COURSES Inspector shall check contract quantities for accuracy.

In general, spread rates for HMA shall be determined using contract megagrams (tons) as a basis. Estimated unit weight from design standards used to calculate contract quantities will provide sufficient material for construction of design thickness for most mixtures used in the state.

Where "average thickness" is specified on plans, the spread rate shall not be increased. This avoids construction of spots which are significantly more than design thickness, provided contract quantities have been calculated correctly.

If contract quantity is not sufficient to construct required thickness, notify the District. The District will adjust the spread rate as necessary to attain design thickness.

For lower layers on resurfacing projects, automatic controls should not be adjusted repeatedly based on megagram (ton) yields taken at short intervals. Automatic controls should be allowed to correct for irregularities in underlying base without frequent adjustments. Accordingly, the spread rate for individual truckloads will sometimes vary

substantially from contract rate because of irregularities in old base. However, over longer distances, 500 m (1640 feet) or more, taking both sides of the pavement into account, inspectors should select a general spread rate that compares as closely as possible with contract quantities.

For paved shoulders or other construction where dimensions are controlled by specified elevations, existing structures, or other unusual requirements, spread rates shall be adjusted as necessary.

8.54 HMA RESURFACING ON CITY STREETS

When a city street or other pavement involving more than two lanes for finishing machine is surfaced with HMA, certain procedures and principles produce a finished product with a high quality appearance and smooth riding qualities. Although details may vary in individual projects, the preferred approach utilizes procedures described in this section.

In addition to basic work of base repair, cleaning, and tacking, leveling shall be spread to correct lack of drainage, poor riding qualities, and ensure that no longitudinal joints occur in an inverted crown (except in rare cases when drainage is not adjacent to curb).

Correct construction of longitudinal joints is associated with straight lines and a uniform minimum lap of each lane over adjacent lanes.

Preliminary Layout

- Establish working centerline by dividing street at end of each block.
- If laying HMA to face of curb is required at 30.5 m (100-foot) intervals on right and left sides, measure and record distance from working centerline to face of curb.
- Offset working centerline to stakes in parking area or to painted X's on sidewalk. Also cross-tie all fixtures to be covered with HMA.
- Plan the laying procedure using measurements from working centerline to face of right and left curbs. Planned procedure should be drawn up showing width of each lane, cutoff necessary from entire machine width, and guideline string offset from established centerline.
- Guideline string for planning purposes should be 300 mm (1 foot) from edge of screed. At least 75 mm (3 inches) should be allowed between each curb and edge of screed for irregularities.

If possible, plan the laying procedures so all street widths can be resurfaced with both intermediate and surface courses using the same basic machine width. This eliminates installing and removing screed extensions during construction. Use cut-off shoe for varying the widths, but make the last lane the entire machine width with no cutoff used.

Most laydown machines are now equipped with hydraulic screed extensions, eliminating the concern of matching lane widths to fixed screed extensions and greatly simplifying layout procedures.

Width of lanes for different width streets should be planned so inside lanes may be laid continuously. This eliminates many transverse joints and gives the job a better continuous appearance.

Inspector shall adapt designed cross section to existing street measurements. Lane widths should be planned to ensure screed edge will not drag on face of curb.

Provisions should be made to ensure straight longitudinal joints with a uniform lap of approximately 25 mm (1 inch) of each lane over adjacent lanes.

Because the narrowest dimension from working centerline to face of curb controls the above factors, that dimension shall be used as the basis for construction. All wider dimensions are filled with HMA along the curb by bleeding the mix from outer edge of finishing machine as necessary.

Construction

Inspector shall carefully lay out and thoroughly check lane widths and guideline string offsets before construction begins. This eliminates errors which cause time loss to contractor. Basic purposes of layout are to:

- Provide straight longitudinal joints with a uniform minimum lap of one lane over adjacent lanes.
- Keep edge of screed from dragging on face of curb.

Although all construction should work toward those ends, it is often necessary to vary procedures as work progresses. Lane widths shown on plans are widths of at least one of the lanes after the first lane is placed and before the last one is placed. Lane with adjusted width is normally the next-to-last lane placed. This is important if closing lane (which must be the entire machine width without a cutoff shoe) is to be placed without an excessive, unsightly lap at longitudinal joints. Because of widening under rolling, it is also necessary to vary width between guideline string and edge of screed to provide desired joint lap.

A lap of 25 mm (1 inch) at longitudinal joint is recommended. To eliminate confusion, guideline string should be placed as shown on planned procedure. On all but the first lane placed, measurement between edge of screed and guideline should be adjusted until desired 25 mm (1 inch) lap is obtained. On the first lane placed, edge of screed should be exactly 300 mm (1 foot) from guideline string.

Use of guideline string is required by specification. Curb, gutterline, or edge of previously constructed lane are not acceptable substitutes. String shall be accurately set and maintained. Contractor shall appoint a knowledgeable full-time person each day to mark working centerline from offset line with crayon. Guideline string is then set by measuring from working centerline.

Hard steel nails are the only thing which can usually be driven between bricks or cracks in old pavement to hold guideline string.

Edge alignment of each lane determines trueness of longitudinal joints. For satisfactory joint construction and uniform alignment, inspector shall require handwork wherever needed to straighten unevenly placed edges.

When resurfacing an old street, the shape of finished pavement should be kept in mind. It is nearly impossible to make a longitudinal joint inversely crowned without leaving objectionable roller marks. It may be necessary to raise inside edge of certain lanes more than intended thickness to provide slight crown at joint.

When the street under construction makes a right angle turn, paving shall proceed through intersection. Finishing machine will make a joint along the edge (which shall be sawed if allowed to cool) instead of turning the corner.

Thickness Taper at Curb Line

Thickness tapers are sometimes designed at outer edges of HMA resurfacing adjacent to existing curbs to maintain gutter depth and still permit full resurfacing thickness as wide as possible.

Thickness tapered sections of surface layers shall be constructed with finishing machines whenever possible. Thickness tapers at outer edges of intermediate layers may be constructed by hand methods or a wing plate, since they will be covered by surface layers and not affect drainage.

Inspector shall insure that finishing machines are used for constructing tapers whenever plans provide sufficient width.

Extending Paver Width

Many HMA paving machines are now equipped with hydraulic strikeoff extensions. If extensions do not contain a screed plate with vibration as required under *Specification 2001.19*, they shall not be used to increase width of spread of HMA mixture except in lieu of a wing blade or handwork, and for short irregular areas.

8.55 COLD WEATHER HMA CONSTRUCTION

The specifications contain limitations for placement of HMA and liquid bitumen under cold weather conditions. These restrictions apply to pavement surface temperature and time of year, and vary according to whether layer is surface course, lower intermediate, or base course, and nominal lift thickness.

Cold weather construction problems may show up in the form of mat raveling, low density, high voids, segregation, slippage, or failure of tack coat to break. Project engineer and inspector should be aware of other weather-related conditions which may further limit placement.

After October 1, it is appropriate to require tarping and insulation of truck bodies especially if hauls exceed 20 –25 km (approximately 12 –15 miles). Cold pockets of mix in trucks or in corners of the paver hopper can pass through the paver without breaking up. These cold clumps can drag under the screed and disfigure the mat. Clumps of cold material should be removed from the mat and the mat surface repaired before being compacted. Insulated truck bodies can help minimize or reduce this problem.

Rubber tired rollers must be well skirted and the tires kept hot during cold weather construction to prevent pick-up of fines from the mat surface. Rubber tire rollers should be kept moving as much as possible on the hot mat so the tires don't cool down and start picking up. Rapid cooling of the mix due to placement on a cold base can also result in checking (hairline cracks) in the mat surface under the action of the steel rollers.

Base temperature is the single greatest factor in the rate of cool down for freshly placed HMA mat. Consequently, base temperature has direct affect on recommended minimum laydown temperature and rolling time available to obtain specified density. See tables in Appendix 8-2, developed by National Asphalt Pavement Association, which illustrate this relationship.

Wind velocity, air temperature, and cloud cover are additional factors that affect the cooling rate of HMA. "PaveCool" is a software program that may be used to determine

approximate cooling rates and resulting "time available for compaction" for hot mix asphalt pavement considering these variables. The latest version of the program is available to download through links provided on the Construction Office websites found on DOTNET and world wide web (www), or by clicking this <u>PaveCool</u> link on the Electronic Reference Library (ERL) version of this document. A disk copy of the program may be obtained by contacting the Central Construction Office.

Use of emulsion tack coats is required prior to October 1. For work after that date, a cutback asphalt may be used. Cold surface temperatures cause emulsions to lose tackiness and increase breakage (curing) time resulting in higher risk of mat slippage.

Temperature Determination for Placing HMA and Liquid Bitumens

The specifications limit the placement of HMA or liquid bitumens when a shaded portion on road surface is less than a specified temperature.

The following method shall be used to determine the temperature on road surface:

- Select representative portion of road surface to be covered by HMA or liquid bitumen. If all of road surface is subjected to direct sunlight, test location should be in sunlight. If portions of road surface are shaded, test location should be in shade.
- Lay thermometer directly on road surface in test location and shade test location temporarily while taking temperature. Inspector performing test may need to stand so thermometer is shaded by shadow. To insure a condition of equilibrium, thermometer should remain in test location no less than five minutes.

8.56 RELEASE AGENTS AND SOLVENTS

HMA mixing, transporting, and placement equipment, particularly truck bodies and paver hoppers, must be kept clean and free from HMA buildup. *Specifications 2001.01 and 2001.03* address approved methods and materials. Diesel fuel or distillate is not approved for use in any fashion as an HMA release agent for truck bodies, paving equipment, or tools on DOT projects since contamination from petroleum based solvents is extremely detrimental to the performance of HMA. Approved release agents listed in *Materials I.M. 491.15* should be used to keep HMA from building up in truck bodies and other equipment.

Release agents are not solvents. They are generally not effective as cleaning agents. There may be times when a contractor must resort to use of a petroleum based solvent for cleaning certain items of equipment. This is not allowed on DOT property due to concerns with contamination of property or HMA. Truck bodies or paving equipment cleaned with a distillate should not be allowed for use for HMA hauling or placement for a minimum of 5 hours after cleaning.

8.60 RUMBLE STRIPS IN HMA SHOULDERS

8.61 CONSTRUCTION CONSIDERATIONS – MILLED RUMBLE STRIPS

Milling has become the method of choice for installing rumble strips in HMA shoulders. The process utilizes a milling machine to produce shallow concave depressions in the HMA shoulder surface. The milled surface is then sealed with asphalt emulsion to prevent intrusion of water into the HMA shoulder. Milling provides the benefits of a more consistent pattern and depth, while increasing the "rumbling" warning to errant motorists. Milling allows for better compaction of the HMA shoulder, and eliminates the problem of tearing and raveling associated with other methods of producing shoulder rumble strips. While this technique overcomes many of the previous problems with rumble strip construction, there are other issues requiring the attention of both contractor and inspector in order to achieve the desired results.

Standard Road Plan RH-64 shows configurations and details for milled shoulder rumble strips on interstates and expressways. Details for rumble strips on paved shoulders of two-lane roadways are also shown on *Standard Road Plan RH-64*. The grinding pattern itself is the same for all three situations, utilizing an industry standard width, depth, and spacing. Similarly, the offset distance from the paintline is the same for the three applications. Difference lies in the "skip" pattern specified for two-lane roadways and the outside shoulder of expressways versus the continuous pattern for interstates. Grinding dimensions and alignment of the pattern should be randomly checked and adjusted, if necessary. Rumble strips are typically placed on mainline HMA shoulders only, with the pattern omitted at specified locations near intersections and ramps & loops.

Milling equipment variations can result in differences in the rumble strip construction operation. The cutting head must be capable of providing a smooth cut, without tearing or snagging the HMA pavement. Multiple cutting heads and electronic controls can speed the process and eliminate variability in milling depth and pattern, especially at the beginning of each set of strips on shoulders of two-lane roadways and the outside shoulder of expressways.

All loose material resulting from the milling operation must be removed from the shoulder on a daily basis. Some milling machines are equipped with a vacuum system to assist in this effort. Millings may be used as fillet material adjacent to the paved shoulder or may become property of the contractor and properly disposed of off the project. Specific plans may require the millings to be taken to a designated location.

Bituminous Fog Seal, meeting the requirements of *Specification 2308*, is used to coat the rumble strips and thereby reduce premature deterioration of the milled surface. Asphalt emulsion is typically placed on the milled rumble strips only, unless the contract documents call for sealing the entire shoulder.

8.62 CONSTRUCTION CONSIDERATIONS – ROLLED RUMBLE STRIPS

Numerous variables associated with constructing rolled rumble strips have contributed to moderate inconsistency in depth and tearing that occur during placement. These deficiencies, combined with advantages provided by other recently adopted installation methods, have nearly eliminated use of rolled rumble strips on HMA shoulders. Rolled rumble strips are only to be used when specifically called for in the contract documents.

After the first day of shoulder resurfacing, most contractors/inspectors should be able to

identify adjustments needed to produce uniform indentations in fresh HMA. Contractor may "practice" construction of rolled rumble strips while placing lower lifts of shoulder resurfacing. This is a good idea for inexperienced project personnel or unfamiliar mixes.

Two primary problems associated with constructing rolled rumble strips in HMA shoulders are groove depth uniformity and mat tearing/cracking.

Groove depth uniformity is dependent upon uniformity of mat density and temperature at the time rumble strips are placed. Class 2 compaction is required for shoulders. This is simply a specified roller pattern. Normal overlap associated with compaction operations tends to produce short areas where indentations are shallow compared to the majority of grooves. This is not objectionable as long as length is minimized and limited to 7.5± m (25± feet).

For mainline surface mixes placed on the inside shoulder, it's more difficult to achieve adequate depths of grooves. It may be necessary to reduce the number of passes of the rubber-tired roller so 30 mm (0.1 foot) depth is achieved. Typically, this reduction would be one pass, from six passes down to five passes.

Higher mat temperatures are required to get adequate groove depth for mainline surface mixes with high crushed particle contents. Rolling with the rumble strip drum roller should generally follow immediately behind the intermediate rubber-tired roller.

Lower temperatures are appropriate for base mixes on the outside shoulder. Temperatures ranging from 60 to 65 degrees C (140 - 150 degrees F) should produce acceptable depths.

Mat tearing/cracking is also controlled by placement of rumble strips at appropriate temperatures. Rolling at high temperatures tends to induce more cracking than lower temperatures. Forward speed of roller must also be as slow as possible to help minimize tearing of hot HMA. Some contractors are now using a steel roller with projections on the drive drum rather than a small diameter trailer drum. This type of equipment is less sensitive to mat temperature and tends to produce more uniform indentations with less cracking and tearing. When the trailer drum system is used, a narrow temperature range may exist to achieve adequate depth without excessive tearing.

Excessive tearing can usually be partially closed by a static pass with a steel-tired roller. Again, it is very important to make this pass while mat is warm enough to close cracks without eliminating groove depths.

Some contractors have also added supplemental weights to the rumble strip roller to assist in producing acceptable groove depth. This may be accomplished by adding water to rear drum or fastening metal weights to rear of roller.

Most contractors have added a third drum to a conventional two-axle tandem steel roller. This supplemental drum has half sections of pipe welded at 200 mm (8 inch) spacing with tapered ends to produce grooves. It is mounted on rear of roller so it can be hydraulically pushed down onto fresh HMA mat. Amount of downward force is generally limited by maintaining enough weight in drive axle to move roller; therefore, additional weight as noted above is usually beneficial.

A lift thickness of at least 50 mm (2 inches) is needed to produce acceptable groove depths without weakening bond with lower layer. 75 mm (3 inches) should provide further protection against cracks developing through the entire lift.

8.70 INSPECTOR'S GUIDE - HMA PAVING & RESURFACING

Review all applicable plans, Specifications, Road Standards, Materials I.M.'s, and Construction Manual chapters. Prepare field books.

Check traffic control, work zone length, flaggers, signing, pilot car operations.

Check project quantities to insure accuracy.

Are job mix designs approved?

Obtain necessary inspection equipment and review sampling & testing procedures (*Materials I.M.'s 322, 323, & 337*) & frequencies (*Materials I.M. 204*).

Locate and reference fixtures to be adjusted prior to placing final layer (Specification 2303.03G).

Stake wedge courses (Construction Manual 8.51).

Does equipment meet applicable requirements? Trucks (Specification 2001.03) Tampers (Specification 2001.04) Rollers (Specification 2001.05) Material Bins (Specification 2001.06) Weighing Equip. (Specification 2001.07) Distributors (Specification 2001.12) Spreaders (Specification 2001.13) Brooms (Specification 2001.14) Trenchers (Specification 2001.18) Pavers (Specification 2001.19)

Check paver screed for proper crown and excessive wear. Are automatic grade and slope controls operational (*Specification 2001.19*)?

Check frequency of vibratory rollers to assure 30-40 impacts/m (10-12 impacts/foot) with a reed-type tachometer.

Is rubber-tired roller required? Verify 550 kpa (80 psi) contact pressure (Specification 2001.05).

Are enough rollers in use to obtain required density and smooth out bumps, ridges, and marks in surface?

Are tarps or insulated truck boxes required? Check for improper use of cleaning solvents (*Specifications 2001.01, 2001.03, and 2303.03D, Materials I.M. 491.15*).

Check hand equipment. Lutes, rakes, and shovels should be of the type designed for use on HMA mixtures and heavy enough to do the job.

Check distributor spray bar height and nozzle angle. Is the distributor tank calibrated (*Specification 2001.12*)?

Determine if correct type and rate of tack coat is being applied (*Specifications 2303.02E* and 2303.03B).

Is the tack coat coverage continuous and uniform? Is the exposed vertical face (first side placed) of longitudinal joint properly tacked (*Specification 2303.03B*)? For a Notched Wedge Joint configuration, tack is also applied to the sloping "wedge" face.

Check each truckload of mix for proper weigh ticket (Specification 2001.07).

Is existing surface properly cleaned, tacked and free of excess moisture (*Specifications* 2212.04A and 2303.03C)?

Is mix being placed at correct temperature range? Check mixture temperature and existing road surface temperature (*Specifications 2303.03C and 2303.03D, and Construction Manual 8.55*).

Is paver hopper near full at all times? Check flow gates and augers. Lifting paver hopper wings should only occur when the hopper is relatively full and the mix in the wings is not excessively cool. Crusted mix in the hopper wings should be wasted.

Compare paver speed to plant output to reduce amount of stopping. Consistent speed results in more consistent pavement properties.

Check width, depth, and cross-slope, and compare to spread width typical and typical section as per plan.

Check and record yield based on megagrams (tons) of mix required compared to megagrams (tons) of mix used. (Recommend checks at 2-hour intervals)

Is guideline string accurately set and maintained (Construction Manual 8.43)?

Are transverse and longitudinal joints constructed properly (*Construction Manual 8.15, 8.43, and 8.44*)? Check transverse joints with a 10' straightedge; contractor must make necessary corrections with hand tools prior to compaction (*Specification 2303.03F*).

Is surface texture uniform, dense, and free from irregularities, tearing, steel roller marks, check cracks, solvent spots, and segregation (*Specifications 2303.03D and 2303.03E, and Construction Manual 2.53*)?

Check smoothness with surface checker when profilometer smoothness (*Specification* 2316.01B) is not required. Encourage profilometer use in these areas when possible.

Are temporary runouts and fillets in compliance with applicable standards, with appropriate dimensions for lift thickness?

Is granular shoulder or temporary granular fillet in place prior to opening adjacent lane to traffic (*Specification 2121.07B*)? Is fillet placed without damaging edge of pavement? Blading existing aggregate up to form the fillet is not acceptable.

Direct and witness hot box (loose mix) samples (*Materials I.M. 322*) and tack sample (*Materials I.M. 323*). Identify and secure verification samples for transport.

Determine and mark random core locations. Direct and witness core drilling by the

contractor. Inspect and verify the validity of cores for testing (proper thickness & condition). Be sure core holes are properly filled. Take possession of cores, transport cores to field laboratory, and perform density testing (*Construction Manual Appendix 3-4*). The core samples may be transported by the contractor with proper sample identification and tamper-proof security measures in place.

Timeliness of core sampling, transportation, and density testing is critical to the contractor's operations. Good communication between the inspector and the contractor is essential for success!

Think safety! Use proper equipment, wear protective clothing, and be aware of contractor's operations.

Do milled shoulder rumble strips conform to *Standard Road Plan RH-64*? Check rumble strip dimensions for depth, width, and alignment (offset from paintline). Verify removal of milled material and uniform application of asphalt emulsion (fog seal) when specified.

Additional Requirements for Interstate Projects

Is the rolling pattern established by the test strip maintained and documented *(Construction Manual 8.13)*? Are HMA properties determined to be acceptable prior to proceeding?

Do inside and outside shoulder tapers and maximum drop-off comply with plan details?

Additional Requirements for Full-Depth Paving

Has grade and alignment staking been completed and checked?

Is subgrade constructed according to plan, stable, and corrected to within tolerance (*Specification 2109*)? Check subgrade according to *Construction Manual 8.41*.

Are stringline offsets referenced to permanent stakes?

Additional Requirements for Winter Shutdown

Are all scarified surfaces covered with at least one full lift of HMA (Specification 2214.05)?

Are all cold-in-place recycled surfaces covered with at least on full lift of HMA (Specification 2318.05)?

Are temporary runouts properly constructed, with length of runout appropriate for lift thickness, and located adjacent to one another (*Specification 2303.03F*)?

Has granular shoulder material been brought up to the pavement edge, at full shoulder width and design cross-slope (*Specification 2121.07*)?

Has the contractor placed all required edgelines and symbols (Specification 2527.03)?

8.80 USE OF SPECIAL EQUIPMENT

Material Transfer Vehicles

Material transfer vehicles (MTVs) provide mix surge capacity, which allows more constant paver speed and more efficient paving operation. These vehicles operate in front of or beside the paver and receive loads of hot HMA from delivery trucks. They perform as a mobile 20 - 30 Mg (22 - 33 tons) HMA surge bin that re-mixes HMA and continually feeds the paver hopper. Use of these vehicles results in smoother pavement by minimizing paver stops and eliminating trucks bumping into the paver. More uniform surface texture and pavement density is also achieved, as mixture and temperature segregation are virtually eliminated by remixing capabilities of common MTV models.

Use of MTVs is restricted to closed construction work zones. Applicable permits must be obtained for moving the vehicles to and from the project on the open highway for compliance with Code of lowa weight laws. Do not allow the contractor to operate this equipment on the open road.

There is currently one model of MTV approved for use in Iowa. The equipment and limitations are as follows:

BARBER-GREENE MTV-3500

This vehicle weighs 34 500 kg (76,600 pounds) empty with a maximum additional 31 500 kg (35 tons) mix storage capacity. It has four axles with large flotation tires. The front two axles have 17.5R x 25 flotation tires and rear two axles have 20.5R x 25 flotation tires. Tire pressure is 345 - 450 kpa (50 - 65 psi) inflation.

An empty MTV-3500 can safely cross all bridges that are not load-restricted, subject to the following conditions:

- Vehicle cannot be centered in its own lane.
- Gross weight cannot exceed listed empty weight of 34 500 kg (76,600 pounds).
- Vehicle speed cannot exceed 8 kph (5 mph).

A partially loaded MTV-3500 can safely cross all bridges that are not load-restricted, subject to the following conditions:

- Vehicle must be centered on bridge with no other vehicles on the bridge.
- Gross weight cannot exceed 45 000 kg (100,000 pounds) approximately one-third hopper.

NOTE: This situation should be avoided. We prefer the contractors anticipate the need to cross a bridge and have the MTV empty by the time they reach the bridge.

- Speed of the vehicle on the bridge cannot exceed 8 kph (5 mph).
- An MTV-3500 shall not cross any load-restricted bridge without prior approval from the Office of Construction.
- Pavement on which the MTV-3500 operates must be at least 200 mm (8 inches) in thickness. It shall not be operated on shoulders, subbases, or lower lifts of HMA pavement without prior approval from the project engineer.

Other Material Transfer Vehicles

Due to the possibly excessive high axle loads and tire contact pressure, material transfer vehicles other than the Barber Greene MTV-3500 must be approved by the Office of Design and Office of Bridges and Structures prior to use on a particular project. Approval for use can be requested through the Office of Construction.

Pavements

Conditions and restrictions for use of other MTVs on primary and interstate pavements are similar to those for the MTV-3500 as described in the previous section. An analysis of the existing pavement structural numbers by the Office of Design is required prior to MTV approval. This analysis is requested by the contractor through the project engineer.

Bridges

An analysis by the Office of Bridges and Structures of each bridge to be crossed is required if the vehicle exceeds the allowable weight formula for bridges. This evaluation is based on the MTV in an unloaded condition and must be performed prior to crossing any bridges. The analysis is also requested by the contractor through the project engineer.

Following are the procedures to be followed in regards to obtaining MTV approval:

- Contractor requests permission from project engineer to use MTV on a specific project, preferably no later than at the preconstruction meeting. The contractor must provide the make and model of MTV, and any additional information needed for analysis.
- 2. Project engineer forwards the request to Central Construction, who will arrange for reviews, as needed, by the Office of Bridges & Structures and Office of Design.
- 3. The Office of Bridges & Structures will perform an analysis of existing bridge structures within the project limits and provide specific requirements regarding MTV operation across the structures. Please note that unless specifically stated otherwise, the MTV must be near empty when crossing all bridge structures.
- 4. The Office of Design (Pavement section) will analyze the existing pavement and provide recommended hopper loads and suitability of MTV use for placing underlying base and intermediate HMA courses. Similar analysis will be made for surface course of single-lift resurfacing projects.
- 5. Central Construction will report results of above analyses to project engineer, who informs the contractor.

The DOT intends to take a "permissive" approach in regards to allowing MTV use on the surface course of multiple lift HMA resurfacing projects. This will provide increased potential for continuous MTV use in the area of the pavement where the MTV's improvements to mat quality are most beneficial. However, the MTV hopper load may be limited, based on results of the pavement analysis.

MTV use in conjunction with HMA placement must be closely monitored, and discontinued if evidence of detrimental distresses in the base or underlying pavement result. Such distresses would typically show up as deformation or rutting of base in full depth paving, or cracking and joint movement in existing pavement during an overlay. The contractor is responsible for repairing any damage to existing pavement or base caused by MTV operation.

Mat Smoothness Machine

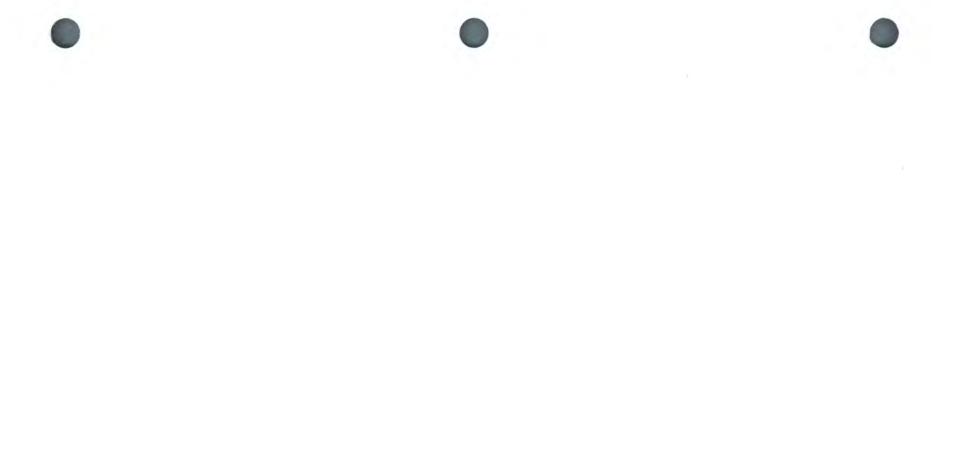
Several contractors have used Cedarapids CR MS-3 or MS-4 Mat Smoothness Machines on paving and resurfacing projects. This is an HMA material receiving hopper and elevator that deposits hot HMA into the paver hopper. Use of this equipment allows for a more consistent paver operation by providing some surge capacity for paver, only on a much smaller scale than MTVs. In some cases, it can also help re-mix material and minimize segregation.

It weighs approximately 8 500 kg (18,800 pounds) empty and has a hopper capacity of 1.7 cu m (2.22 cubic yards). Weight restrictions are not a concern with this piece of equipment.

When using Mat Smoothness Machines (or MTVs), the paver hopper should be kept relatively full at all times. If the hopper is allowed to draw down too far, coarse aggregate collected in the sides and corners of the paver hopper might be drawn down and create streaks of segregation in the mat surface.

Windrow Pick-Up Equipment

Many lowa contractors are equipped to construct HMA resurfacing and paving projects using windrow pick-up equipment. This process is allowed by specification.


With this process, hot HMA is deposited in a windrow onto the pavement surface using bottom dump trailers. A windrow pick-up elevator deposits the material into the paver hopper. Again, the primary advantages are contractor efficiency, uniform speed of operation, and elimination of delivery trucks bumping into the paver.

Segregation has occurred on several projects on which this equipment was used. Truckload and longitudinal strip type segregation are potential problems. The contractor should balance their HMA delivery with the mat placement rate to keep the paver hopper at a nearly uniform level, which helps avoid segregation. Balancing delivery and placement also minimizes the need to either feed the hopper additional mix or remove excess windrow material with a mini-loader. The windrow should be placed to feed the center of the windrow pick-up machine. A windrow that is improperly located can place an eccentric force on the pick-up machine, which can force the paver to lose proper centerline alignment. It is also important for the contractor to pick up all windrow material from the pavement surface, and not allow the windrow to extend more than two truckloads in front of the paver to avoid excessive cooling of the mix.

Normal HMA laydown temperature limitations apply to this process.

It has been shown that this process can be used successfully for the lower lift of a full depth pavement; however, it is important to make sure the pick-up machine does not disturb (pick up) the subgrade or subbase material.

If streak type segregation is suspected, a trench can be sawed transversely across the lane and the profile viewed for voids and/or a non-uniform aggregate matrix. Cores can also be cut to ascertain if segregation is present. If segregation is determined to exist, costs of the coring or sawing will be at the contractor's expense.

Section 2001. General Equipment Requirements

2001.01 GENERAL.

Equipment shall be subject to approval of the Engineer and shall be maintained in satisfactory working condition. Except as provided in Article 1105.12, G, equipment operating on pavement or on primed or unprimed subgrade, subbase, or base course shall not exceed the legal axle load, as defined herein. Tractors with lugs shall not be used for manipulating or spreading subbase or base material except when traveling on uncompacted material deposited by spreaders or spreader boxes.

Equipment that comes in contact with bituminous materials or bituminous mixtures shall be kept clean by heating, scraping, or by the use of an approved release agent described in Materials I.M. 491.15. When kerosene, distillates, or other solvents are used, the equipment shall be allowed to drain for a minimum of 5 hours after cleaning. Cleaning agents shall be collected and disposed of in accordance with Federal and State regulations.

2001.02 FIELD LABORATORY.

Field laboratories shall comply with requirements of Section 2520.

2001.03 TRUCKS FOR TRANSPORTING BITUMINOUS MIXTURES.

Trucks for transporting bituminous mixtures shall be motor trucks with tight metal or metal lined dump bodies. For hot mixes on unusually long hauls or for work after October 1, the Engineer may require the truck bodies to be insulated adequately to retain heat in the mixture. All trucks for transporting hot mixes shall have a cover of canvas or other suitable material, but covering will not normally be required between May 15 and October 1.

2001.04 MECHANICAL TAMPERS.

In areas inaccessible to rollers where compaction is required and hand tamping is not permitted, a mechanical tamper of a size suitable for the work shall be used. Pneumatic tampers shall not be operated at pressures lower than recommended by the manufacturer.

2001.05 ROLLERS.

Rollers shall be subject to restrictions imposed in the specifications for the various types of construction. Rollers which are not in good repair, or which are not designed to do the work required fully and satisfactorily, shall not be used. They shall be subject to approval of the Engineer. Rollers shall comply with the following requirements:

A. Soil Compaction Rollers.

Sheepsfoot type rollers shall consist of one or more drums having studs or feet projecting not less than 6-1/2 inches (165 mm) from the surface of the drum. The roller shall be loaded so that not less than 200 psi (140 g/mm²) is exerted on a single row of feet parallel to the axle of the drum.

B. Self Propelled, Smooth, Steel Tired Rollers.

Self propelled, smooth, steel tired rollers may be of the 3 wheel type, 2 axle tandem type, or 3 axle tandem type. For natural subgrade, rollers shall not be less than the 3 ton (2.7 Mg) weight class.

For hot asphalt mixtures, the driving drum shall not be less than 60 inches (1500 mm) in diameter. On tandem type rollers, the driving drum shall be capable of being filled with liquid ballast, and the Engineer may require that it be partially or entirely filled.

For all other types of work, the rollers shall be of a weight class not less than 8 tons (7.3 MG), and the driving drum shall be loaded to produce a compactive effort not less than 200 pounds per inch (3.5 kg/mm) of width of the roller. When required by the Engineer, the steering drum shall also be weighted to 200 pounds per inch (3.5 kg/mm) of width of the steering drum.

C. Self Propelled, Pneumatic Tired Rollers.

Self propelled, pneumatic tired rollers shall have tires not smaller than the 7.50 x 15 size.

For hot asphalt mixtures, the rollers shall be capable of producing contact pressures of 80 psi (550 kPa) and shall be operated when specified or directed by the Engineer. The 80 psi (550 kPa) contact pressure shall be obtainable with a legal axle load.

For all other types of work, the rollers shall be loaded to produce a compactive effort not less than 200 pounds per inch (3.5 kg/mm) of width of the roller, based on the maximum ground contact width. The tire inflation pressure used shall not be less than 60 psi (410 kPa). Rollers complying with the requirements for hot asphalt mixtures may also be used.

The tire pressures shall not vary more than 5 psi (35 kPa). An information plate shall be attached to each roller, which shows the tire size and ply and the correlation of wheel load and tire pressure with contact pressure. The roller shall be equipped with wheel sprinklers, scrapers, or mats, and during cooler weather, protective skirting around the tires.

D. Pull Type, Pneumatic Tired Rollers.

Pull type, pneumatic tired rollers shall have tires not smaller than the 7.50 x 15 size. The rollers shall be loaded to produce a compactive effort not less than 200 pounds per inch (3.5 kg/mm) of width of the roller, based on the maximum ground contact width. The tire inflation pressure used shall not be less than 60 psi (410 kPa).

E. Trench Rollers.

Trench rollers used in trench operations shall have a compacting roller of a width not less than 15 inches (380 mm). The rollers shall be equipped with a leveling mechanism to maintain the compacting surface of the roller in the desired plane while compacting surfaces below the edge of the old pavement. If used only to compact the bottom of a trench for widening, the leveling mechanism will not be required, provided the roller is built to fit the slope of the trench bottom.

The Engineer may require the roller loaded to produce the compactive effort best adapted to the work, to a maximum of 250 pounds per inch (4.5 kg/mm) of width of the tire. Pneumatic tired rollers shall be operated with an inflation pressure not less than 60 psi (410 kPa).

F. Self Propelled Vibratory Rollers.

Self propelled vibratory rollers shall be suitable for the use intended. The manufacturer's handbook should be available to the operator. The speed of the roller shall be controlled so there is a minimum of 10 impacts per linear foot (35 impacts per meter).

Other types of rollers will be considered for approval by the Engineer.

2001.06 MATERIAL BINS.

For the purpose of this Article, the word "bin" shall be defined as any structure in which materials are stored. The requirements shall apply to any bin that an inspector, while performing sampling or inspection duties, might work upon or beneath.

Each part of each bin, including foundations and connections, shall have adequate strength to withstand any stress to which it might be subjected while in use.

The Engineer may inspect each portable bin each time it is erected. The Engineer may reject the use of any bin that does not perform as intended, or otherwise exhibits any unsafe condition.

2001.07 WEIGHING EQUIPMENT AND PROCEDURES.

This Article describes equipment capability and procedures to be used when payment for an item is based on weight (mass).

A. Weighing Equipment.

Weighing equipment for measuring a pay item shall meet requirements of the lowa Department of Agriculture. Truck weighing equipment shall be of sufficient length to weigh, at one time, the maximum truck and trailer combination, or separate equipment shall be situated so that both truck and trailer can be weighed at the same time. Upon request, the Contractor shall make available, at least 10 standard 50 pound (22.68 kg) test weights and suitable cradles and platforms for the purpose of testing weighing equipment.

Weighing equipment shall be accurate to 2 pounds per 1000 pounds of weight (2 kg per 1000 kg) sensitive to a weight (mass) equal to 0.1% of the quantity being weighed but not less than a weight (mass) equal to one of the minimum graduations on a beam or dial scale and not to exceed 20 pounds (10 kg). When electronic devices such as load cells, computers, and printers are a part of the weighing equipment, they shall be sealed or otherwise protected to prevent any unauthorized adjustment. Any weighing system which has been tampered with may be rejected from further use until the system has been checked and/or recalibrated. Contractors using electronic type weighing equipment and devices shall furnish a copy of the manufacturer's detailed step by step instructions for adjusting and/or checking for accuracy, sensitivity, and tolerance of the equipment.

All trucks to be weighed shall be initially tared before being loaded. These trucks shall be tared daily thereafter, preferably on a random time basis. The tare for the previous day shall be used until a new tare is determined.

A scale ticket shall accompany each load to be furnished to the Engineer for project records. A scale ticket shall also be furnished when tares are determined, for verification and check weighing. Verification weighing is defined as a second weighing of the same load on the same equipment. Check weighing shall be performed on a certified truck scale. Scale tickets, as a minimum, shall identify project number, date, truck number and type of material. They also shall include a total net weight (mass).

Except for automatic weighing, a weighmaster, as defined in Chapter 214, Code of Iowa, shall weigh all loads or load increments. The weigh master, or operator for automatic weighing, shall sign the first scale ticket of each day and shall initial all subsequent tickets or cause them to be printed by automatic equipment.

Check weighing and verification weighing may be made at any time as directed by the Engineer. The Engineer may check the operation of the equipment at any time.

The verification weight (mass) should not be different from the initial weight (mass) by more than 0.1%. When check weighing on a platform scale, the check weight (mass) should not be different from the initial weight (mass) by more than 0.3%. When the material is not weighed in the truck, (such as weighing in a weigh hopper or from initial and final weighing of a weigh silo) check weighing shall be made on a certified truck scale and the net check weight (mass) should not be different from the initial net weight (mass) by more than 100 pounds (45 kg). A suitable fuel adjustment may be made.

If the weight (mass) is not within these tolerances, the Engineer may adjust the weight (mass) of loads previously weighed on the weighing equipment that day and the previous day by the difference greater than the specified tolerance. Verification and check weighings shall be made at no additional cost to the Contracting Authority.

B. Special Procedures for Asphalt Mixtures, Aggregates, and Binders.

Automatic or semi automatic weighing shall be used on projects with contract quantities of asphalt mixtures totaling 10,000 tons (10,000 Mg) or more; or aggregates totaling 10,000 tons (10,000 Mg) or more from a single source.

1. Automatic Weighing.

The weighing equipment shall be self balancing and shall include an automatic weight (mass) recorder. All tickets shall be printed automatically with net weight (mass) and all weights (mass) needed to determine total net weight (mass).

2. Semi Automatic Weighing.

The weighing equipment may be self balancing or manually balanced. Equipment shall include an automatic weight (mass) recorder which will not print until the equipment is balanced, and which prints the gross weight (mass) or the batch weights (mass) and number of batches. For weigh hoppers, the printout shall include the empty weight (mass) after each discharge.

For measurement of asphalt binders by tank stick or in-line flow meter, the Contractor shall meet the requirements of Materials I.M. 509 for calibration and measurement.

For asphalt mixtures, the Contractor shall furnish to the Engineer each day, a total quantity of mixture used for the project. The Contractor shall furnish daily totals to the Engineer for all mixture quantities produced and not incorporated into the project. This total shall also identify the quantity of asphalt binder used but not incorporated.

2001.08 EQUIPMENT FOR PREWETTING AGGREGATES AND AGGREGATE MIXTURES.

The equipment shall comply with one of the following:

A. Standard Mixer.

The equipment used for this purpose shall provide accurate control of the proportions of water and aggregate, and positive, thorough mixing of the materials. Dow boxes will be approved as a Standard Mixer.

B. Pugmill Mixer.

When this equipment is specified, it shall provide accurate control of the proportions of water and aggregate and shall be designed so that the material can be retained in the mixing chamber under vigorous mixing action for at least 15 seconds. If the mixer is the continuous flow type, it shall have twin mixing shafts and shall be equipped with a hopper or bin at the discharge end of the mixer designed to minimize segregation of the mixed materials.

2001.09 WATER DISTRIBUTORS.

A distributor mounted on a truck or trailer equipped with pneumatic tires shall be used for applying water to the roadway.

The distributor shall be equipped with an adequate pressure pump and flush or spray bars to distribute water evenly over the intended area.

Distributors shall have a spray bar with correct size and pattern of nozzles, a means to maintain uniform nozzle pressure, a means to control application rates between 0.05 to 0.50 gallon per square yard (0.20 to 2.50 L/m^2), and a positive sprayer shutoff mechanism.

Distributors used for trench operations shall have an offset spray bar with replaceable nozzles so the width to which water is applied can be adjusted to the work.

2001.10 WATER SUPPLY EQUIPMENT.

Water supply equipment, including pipe lines and water trucks, shall be of a capacity and nature to insure an ample supply and sufficient pressure for all the requirements of the work. When pumping is necessary, backup pumping equipment may be required.

2001.11 EQUIPMENT FOR HEATING BITUMINOUS MATERIALS.

Equipment for heating bituminous material shall have adequate capacity to heat the material to the temperatures specified. Heating shall be under control and shall be accomplished by circulating steam or

a liquid through coils in the car or tank, by electric heat, by circulating the bituminous material through a separate heating unit, or by other means so that no flame is applied to metal with which the bituminous material comes in contact. The heating equipment shall be equipped with an accurate thermometer which will indicate the temperature of the bituminous material in the unit in which heat is being applied. The heating equipment shall not damage the bituminous material by local overheating or by contamination with the material used for the transfer of heat.

Equipment for heating asphalt binder shall insure continuous circulation between the storage tank and the mixer during the operating period. All pipe lines shall be jacketed or insulated to prevent heat loss.

2001.12 EQUIPMENT FOR DISTRIBUTING BITUMEN.

Distributors shall be mounted on motor trucks or trailers. They shall be subject to the restrictions imposed in the specifications for the various types of construction. Distributors which are not in good repair or which are not designed to do the work required shall not be used. Distributors and trucks shall be subject to the approval of the Engineer.

Distributors shall be equipped with adequately sized burners and flues for heating the bituminous material and with means for circulating the material in the tank when the burners are in operation. They shall be equipped with adequate and safe catwalks or ladders for use in making stick measurements.

Each unit shall be equipped with an accurate thermometer for indicating the temperature of the bitumen in the tank, a tachometer operated by a wheel independent of the truck wheels, a calibrated or verified measuring stick, a quick opening gate in the dome of the distributor tank, and quick cutoff valves at the nozzles or other means for reversing the direction of flow through the nozzles.

The power for the pressure pump shall be supplied by a unit independent of the one which provides motive power for the distributor. However, pressure equipment which is dependent on the motive power may be approved provided special devices are installed to insure that variation from the designated rates of application will not exceed 0.02 gallon per square yard (0.10 L/m^2) . The pressure system shall have capacity sufficient to produce a uniform, fine, even spray from all the nozzles for the maximum width of the spray bar used. It shall be capable of distributing bitumen at rates varying from 0.03 to 0.50 gallon per square yard $(0.15 \text{ to } 2.50 \text{ L/m}^2)$. The size of the nozzles shall be such that bitumen may be spread in a uniform coating without the forward speed exceeding 20 mph (30 km/h).

The spray bars shall be adjustable for the widths of application required by the work. They shall be equipped with a means of lateral shifting during the application of bitumen of at least 6 inches (150 mm) each way from the center position. They shall be adjustable vertically to insure uniform transverse application of the bitumen. Distributors used for applying bituminous seal coat binder bitumen shall be equipped with a positive means for maintaining a constant nozzle height, within \pm 1/2 inch (15 mm), during discharge of the load. If dollies are used for maintaining the constant nozzle height, the spray bar mounting shall be adjustable vertically.

The Contractor shall provide, with each distributor, the manufacturer's instructions for use which shall include specific recommendations for the following:

- 1. Spray bar height above road surface.
- 2. Nozzle size and angle of spray fan with spray bar axis.
- 3. Tables showing rates of distribution in gallons per square yard (liters per square meter) for tachometer readings, spray bar pressure, or pump revolutions, and for various widths of spray bars.

The tanks of all distributors that have not been previously checked shall be calibrated or verified before being initially used and after any damage or alteration which may affect the calibration. Distributors shall be calibrated initially at the Iowa DOT Materials Laboratory. Verification of a manufacturer's calibration may be made by the Iowa DOT Materials Laboratory or by a District Materials Office. Distributor calibrations shall be certified annually by either the Iowa DOT Materials Laboratory or District materials personnel; if they are found to have inaccurate calibrations, they shall be recalibrated by the Iowa DOT Materials Laboratory before further use.

2001.13 SPREADERS.

This article applies to equipment used for distribution of certain materials, other than liquids, where it is required that the material be distributed on a roadbed at a specified uniform rate.

A. Non-Self-Propelled Cover Aggregate Spreaders.

Non-self-propelled cover aggregate spreaders shall have a mechanical feed of a length at least equal to the width to which aggregate is spread at a single passage of the spreader. They shall be capable of depositing aggregate from the transporting vehicle directly upon freshly applied bitumen in a smooth, uniform layer, at the rate required and in a manner that equipment will not come in contact with the bitumen until the bitumen is covered with a layer of aggregate. The spreaders shall be equipped so that they may be filled and moved without discharging aggregate.

B. Self-Propelled Cover Aggregate Spreaders.

Self-propelled cover aggregate spreaders shall, in addition to the requirements of Article 2001.13, A, comply with the following:

- 1. They shall be self-propelled and shall be mounted on pneumatic tires.
- 2. The width of spread shall be not less than 13 feet (3.9 m).

3. Cutoff plates shall be provided to permit the width of spread to be reduced in increments of 1 foot (0.3 m) from the maximum to 4 feet (1.2 m).

4. The unit shall be capable of spreading aggregate of 1 inch (25 mm) maximum size at any rate desired from 3 to 50 pounds per square yard (1.5 to 27 kg/m²) of surface covered.

5. A hopper having a capacity not less than 5 tons (4.5 Mg), integral with the spreader unit, shall be provided to receive aggregate from transporting vehicles without the wheels of such vehicles coming in contact with uncovered bitumen on the road surface. Suitable conveyors shall convey the aggregate from the hopper to the spreading element. Augers or agitators shall distribute aggregate uniformly to the spreading element without segregation of aggregate particles.

6. Power shall be adequate to propel the spreader at uniform speed on gradients up to 6%.

C. Sand Spreader.

The spreader used for sand cover of tack and seal coat shall have one or more horizontal rotating disk fed by a conveyor and driven by power takeoff or by a separate unit.

D. Materials Spreader for Base Widening Work.

The material used in base widening shall be placed by machine without being dumped on the pavement. The machine shall spread the base materials in a uniform layer of the desired thickness and width in a uniformly loose condition. Wheels of the spreader shall be located so they do not operate on the 1 foot (0.3 m) width of pavement where curb has been removed.

2001.14 BROOMS.

Brooms shall be of the rotary type, and the broom shall be driven by an auxiliary motor or by a power takeoff from the power plant of the unit propelling the broom.

2001.15 MOTOR GRADERS.

Motor graders used in trimming edges of subbases or bases shall be equipped with an offset blade with supplementary cutting edge designed so the wheels of the motor grader will be operated entirely on the surface of the base or subbase.

2001.16 SCARIFYING EQUIPMENT.

Scarifying equipment used shall be designed and operated to loosen the material to the depth specified.

2001.17 PULVERIZING EQUIPMENT.

Pulverizing equipment shall be designed and operated to pulverize the material to the degree specified.

2001.18 TRENCH EXCAVATING MACHINES.

The equipment used shall be a machine designed for the required purpose. The equipment used to excavate shall be capable of excavating the material to the full, normal design depth and suitable width.

2001.19 ASPHALT PAVING MACHINE.

All asphalt mixtures to be placed 8 feet (2.4 m) or more in width shall be spread by a self- propelled finishing machine which will receive the hot mixture and spread the mixture in a layer of uniform density to the desired elevation.

The finishing machine shall consist of a tractor unit and a screed unit.

The tractor unit will provide the motive power and may be mounted on crawler treads or pneumatic tires. If mounted on pneumatic tires, sufficient inflation pressure shall be maintained to keep vertical movement to a minimum. The length of crawler treads or distance between axles, if mounted on pneumatic tires, shall be sufficient to allow the tractor unit to pass over small irregularities in the base without abrupt vertical movement. The tractor unit shall have dual controls to permit operation of the finishing machine from either side.

The screed unit shall be attached to the tractor unit in such a manner that it is free floating on the mixtures being placed. It shall be equipped with vibrators or tampers for giving the initial consolidation to the material, and this equipment shall be operated at the frequency recommended by the manufacturer. The screed unit shall be adjustable to the crown of the finished surface, and shall be equipped with an approved device which will indicate the slope of crown. A screed extension may be used, provided it has a screed plate with vibration. If the extension exceeds 1 foot (0.3 m), the auger shall also be extended. Other extensions will be allowed only for use in placing fillets or short or irregular tapers. The screed unit operation shall produce a smooth surface, free from surface tears or voids, and within the permissible variation specified for the type of work involved.

Machines which operate with rollers on the freshly placed mixture shall not be used.

At least a 2 foot (0.6 m) straightedge shall be provided for checking the installation of screed extensions.

Unless otherwise provided, the finishing machine shall have automatic screed controls, except for the following uses:

- 1. Wedge courses.
- 2. Curb fill resurfacing.
- 3. Urban type sections containing fixtures or other permanent grade control features.
- 4. Surface layers 1 inch (25 mm) or less in thickness.

5. Special leveling course in which the screed rests entirely on the high spots of the underlying base during the paving procedure.

6. Single course resurfacing on Secondary projects.

The automatic controls shall have grade and slope control systems which shall operate with an approved grade reference system. The controls shall work in conjunction with a ski type device, traveling stringline, or other approved, self contained grade referencing system. The self contained grade referencing system shall not be less than 30 feet (9 m) in length. Both the grade and slope controls shall be adequately sensitive and in proper working order at all times, however, during malfunctions the Engineer may permit the completion of the day's work using manual controls. When placing a single lift only, with a thickness of 1 1/2 inches (40 mm) or less, or for placement in conjunction with heater scarification work, a special commercial joint matching shoe may be used when constructing longitudinal joints on surface courses.

Finishing machines or pavement widening machines for placing the final lift of paved shoulders shall have an automatic grade and slope control system approved by the Engineer. The joint matching shoe may be used when placing any paved shoulder.

Machines for spreading mixtures on other areas less than 8 feet (2.4 m) in width shall be subject to approval of the Engineer. Machines which are less than standard size for highway work shall not be used except with permission of the Engineer.

Use of material transfer vehicles shall be subject to approval by the Engineer based on bridge and pavement structural evaluation of resultant axle and wheel loads.

When a windrow pick-up process is used, the process shall be controlled to produce a windrow that is uniform and does not extend more than two truck dumps ahead of the paver. All hot mix material shall be picked up from the windrow and deposited in the paver. Windrow placement shall be balanced to maintain a uniform quantity of material in the paver hopper.

2001.20 EQUIPMENT FOR WEIGHING AND PROPORTIONING PORTLAND CEMENT CONCRETE MATERIALS.

Weighing and proportioning equipment shall meet the requirements of this Article. The Engineer shall be allowed every opportunity to witness calibration of the equipment during the Engineer's normal working hours, or at a mutually agreeable time. This schedule limitation will be modified, if necessary, for work to be done according to an accelerated work schedule. This equipment may be used on miscellaneous concrete pours, described in Materials I.M. 534, less than 50 cubic yards (50 cubic meters) per day. The Engineer may consider a report concerning equipment and its calibration certified by a Professional Engineer licensed in the State of Iowa in lieu of this calibration. The Engineer may, at any time, perform such tests or checks as necessary to verify a report or to assure continued compliance. Coarse aggregate sampling facilities which permit collecting representative portions of a ribbon or stream will be required at the proportioning plant site. The sampling point shall be as designated by the Engineer and shall be prior to loss of individual material identity in the proportioning mixing process and after delivery to the plant or after delivery to a plant site stockpile, whichever is nearest the mixer. Personnel, test weights, and equipment for calibration of the plant and for verifying accuracy of proportions shall be furnished by the Contractor. Arrangements for weighing water to calibrate the water meter shall be made by the Contractor.

A. Proportioning Equipment.

Proportioning equipment shall comply with the following requirements:

1. The equipment shall be accurate to 0.5% of the batch weight (mass).

2. The equipment shall be sufficiently sensitive so that 0.1% of the batch weight (mass) or 2 pounds (1 kilogram), whichever is greater, will be detectable.

3. The equipment shall weigh each individual material within \pm 1.0% of the batch weight (mass) and return to zero within \pm 0.5% of the batch weight (mass).

4. The equipment shall be protected from air currents, vibration, etc. which may affect the accuracy of weighing. All fulcrums, clevises, and similar working parts shall be kept clean and in proper working condition.

5. There shall be reasonably available upon request, at the plant site, standard test weights for calibrating weight equipment according to the following table:

Nominal Scale Capacity Ib (kg)	Minimum Test Weights (Mass) Required Total Ib (kg)	
0 to 500 (0 to 225)	2 @ 50 lbs. Ea (2 @ 22.68 kg ea.)	
Over 500 to 5000 (Over 225 to 2250)	500 (225)	
Over 5000 to 10,000 (Over 2250 to 4500)	1000 (450)	
Over 10,000 (Over 4500)	2000 (900)	

Suitable devices shall be made available for conveniently applying test loads.

6. Cement shall be weighed in an independent hopper. The weigh hoppers shall have a dust tight seal between the charging mechanism and the batching hopper which will not affect the accuracy of weighing, and a discharge hose or device which will prevent the loss of cement during discharge. Any part of the discharge device which comes in contact with the receiving equipment shall not be supported by the weigh hopper. Cement hoppers shall be equipped with a vibrator and with a vent which will adequately release any air pressure which may affect weighing.

7. Fly ash and GGBFS shall be weighed in accordance with the requirements of weighing cement. Fly ash and GGBFS may be weighed in the same hopper as the cement, provided the cement is introduced into and weighed in the hopper first.

8. Automatic weighing equipment shall be set and operated with the following interlocks:

a) The charging mechanism cannot be opened until the equipment has returned to zero balance within \pm 0.5% of the batch weight (mass).

b) The charging mechanism cannot be opened if the discharge mechanism is open.

c) The discharge mechanism cannot be opened if the amount in the hopper is over or under by more than 1.0% of the batch weight (mass).

When automatic weighing equipment is required, manual controls may be used for emergencies. Manual controls will be permitted no longer than 1 working day after automatic batching equipment failure.

When automatic weighing equipment is required, fly ash shall be weighed in accordance with the requirements for cement.

B. Water Measuring Equipment.

Water shall be measured with equipment which will clearly indicate the volume or weight (mass) being measured with an accuracy of 2 pounds (1 kg) or \pm 1.0%, whichever is greater. The equipment shall be arranged so that the accuracy of the measurement will not be affected by variations in pressure of the water supply line. Unless water is measured by weight (mass), the Contractor shall provide containers in which the entire quantity of water required for one batch of concrete may be weighed for calibration purposes.

Equipment that measures moisture in the fine aggregate and adjusts the batch amounts of fine aggregate and batch water on a continuous basis will be allowed provided satisfactory calibration and correlation procedures are met.

C. Equipment for Admixtures.

Equipment for dispensing liquid admixtures shall be accurate within \pm 3.0% of the quantity required. The visual inspecting chamber requirement may be waived in lieu of admixture dispensing systems utilizing positive electronic flow metering and computer controlled delivery that prevents improper admixture incorporation into the mix. Dispensing equipment shall have a means for routine diversion of a measured quantity into a suitable vessel for calibration and for periodic verification of the batch quantity.

When liquid admixtures are proportioned and introduced into the mix, the equipment and procedures shall meet the following requirements:

1. Each individual admixture shall be measured and automatically introduced separately into the mixer with the mixing water.

2. The dispenser shall be equipped with a measuring chamber which provides a means of determining the batch quantity by visual inspection.

D. Equipment for Volumetric Proportioning.

Volumetric proportioning equipment shall meet the applicable requirements of ASTM C 685, Sections 5, 6, 7, and 8 and the applicable requirements of Article 2413.03, B. This equipment shall be calibrated each time, when in the opinion of the Engineer, material or condition changes may affect the calibration. It is not intended that this equipment be used in lieu of conventional drum mixing equipment normally used for structures and paving applications. Equipment used on miscellaneous pours shall be equipped with a batch ticket printer to include the cement, coarse and fine aggregate, and water count. Equipment used in accordance with Section 2413 shall be equipped with a batch ticket printer for the cement count.

2001.21 PORTLAND CEMENT CONCRETE MIXING EQUIPMENT.

The mixing equipment shall meet requirements of this Article for the type specified. The Engineer shall be allowed every opportunity to witness the calibration of the equipment during the Engineer's normal working hours, or at a mutually agreeable time. This schedule limitation will be modified, if necessary, for work to be done under an accelerated work schedule.

A. Construction or Stationary Mixer.

Only batch type mixers shall be used.

The total volume of the batch shall not exceed the designated size of the mixer or the rated capacity as shown on the manufacturer's rating plate.

After all solid materials are assembled in the drum, the mixing time shall be a minimum of 60 seconds and a maximum of 5 minutes. The mixing time may be increased by the Engineer if the mixer efficiency tests show that the concrete is not satisfactory for uniformity or strength. The minimum mixing time shall be indicated by an accurate timing device which shall be automatically started when the mixer is fully charged, and when applicable, shall lock the discharge chute until the expiration of the required time. Mixers shall be operated at the speed recommended by the manufacturer as mixing speed. The batch shall be charged into the mixer so that some water will enter in advance of cement and aggregates, and all water shall be in the mixing chamber by the end of the first 25% of the specified mixing time.

The mixing drums of tilting drum mixers shall be operated at an angle no steeper than that recommended by the mixer manufacturer. Mixers shall not be used if the drum is not clean or if the mixing blades are damaged or badly worn.

When a construction or stationary mixer is used for mixing pavement concrete the quantities of fine aggregate, coarse aggregate, cement, mineral admixture, liquid admixture and water for each batch shall be automatically documented on individual batch tickets or on a daily summary. The time of discharge for each batch shall also be recorded automatically. These proportioning documents shall become property of the Contracting Authority.

B. Truck Mixer and Agitator.

The capacities and mixing capabilities shall be as defined in ASTM C 94, and each unit shall have an attached plate containing the information described therein. The plate may be issued by the Truck Mixer Manufacturers Bureau; if not, compliance shall be determined by an independent, recognized laboratory as defined in Article 4103.01, and complete test results may be required. The mixer or agitator capacity shall not be exceeded, and the mixing and agitator speeds shall be within the designated limits. Truck mixers shall be equipped with a reliable reset revolution counter. If truck mixers are used for mixing while in transit, the revolution counter shall register the number of revolutions at mixing speed.

An authorized representative of the concrete producer shall certify that the interior of the mixer drum is clean and reasonably free of hardened concrete, that the fins or paddles are not broken or worn excessively, that the other parts are in proper working order, and that the unit has been checked by the representative within the previous 30 calendar day period to substantiate this certification. The current, signed certification shall be with the unit at all times.

For bridge floor concrete, the required mixing shall be between 70 and 90 revolutions. For other structural concrete and pavement concrete, the required mixing shall be between 60 and 90 revolutions with satisfactory preblending of the materials or between 70 and 90 revolutions without preblending. The mixing shall be at the rate designated by the manufacturer. The mixing rate shall be of a duration between the above stated limits, to produce uniform, thoroughly mixed concrete.

The Engineer may inspect mixer units at any time to assure compliance with certification requirements, and removal of inspection ports may be required. Should the Engineer question the quality of mixing, the Engineer may check the slump variation within the batch. Should the slump variation between two samples taken, one after approximately 20% discharge and one after approximately 90% discharge of the batch, show a variation greater than 3/4 inch (20 mm) or 25% of the average of the two, whichever is greater, the Engineer may require the mixing to be increased, the batch size reduced, or the unit removed from the work.

C. Continuous Mixer.

A continuous mixer used in conjunction with volumetric proportioning may be approved as provided in Article 2001.20, D.

2001.22 PLANT EQUIPMENT FOR HOT MIX ASPHALT MIXTURES.

The plant equipment shall proportion each aggregate, dry and heat the aggregate, except mineral filler, proportion the aggregate and hot asphalt, and mix all materials. The plant may be of a batch type, continuous type, or drum mixing type, and it shall be equipped to produce uniform mixtures of required composition, heated to the desired temperature. The plant shall conform to the following requirements for the respective type.

A. Aggregate Feeders for Dryer or Drum Mixer.

Except for mineral filler added without heating, each aggregate shall be accurately fed by a mechanical means to a central elevator or conveyor in the proportion prescribed by the formula. Feeders shall be of the belt type and be equipped with adjustable gates or adjustable drive systems that can be calibrated and controlled satisfactorily. The feeder throats shall be of sufficient size to insure positive and continuous flow. All feeders shall be mechanically or electrically interlocked during operation. On some types of feeders, revolution counters capable of registering to a tenth of a revolution may be necessary for accurate calibration and control and may be required. When drum

mixing plants are used, the central conveyor shall be equipped with a continuous weighing system with a recorder that can be monitored by the plant operator. The weighing system shall be interlocked with the asphalt control unit.

If a drum mixing plant is used for recycling, a dual weigh belt system will be required to control delivery of virgin aggregates and recycled material to the dryer. The system shall be equipped with interlocking control mechanisms in a manner that will assure positive and accurate delivery of recycled and virgin materials in proper proportions at all times. Included in this system shall be recorders that will record the total amount of material being delivered by each belt system separately. The belt weighing controls shall be connected to a totalizer which is interlocked with the asphalt delivery system in a manner which will assure that asphalt delivered to the mix is at all times within $\pm 0.3\%$ of the intended amount. The system shall be subject to approval of the Engineer. A schematic diagram of the control system shall be furnished for the Engineer's information prior to plant calibration.

B. Dryer and Drum Mixer.

The plant shall be equipped with means for drying and heating the aggregate and/or mixture. Heating shall be controlled to avoid damage to the aggregate and asphalt. Operation of the equipment shall be controlled so the desired temperature is maintained as specified.

C. Screens.

The plant shall be equipped with adequate means to remove objectionable oversize and foreign material from the aggregate before entering into the hot aggregate bin or drum.

D. Bins.

The plant shall have aggregate bins of sufficient capacity to insure uniform and continuous operation. The aggregate storage shall be provided with sufficient ventilation by means of a stack or connection to the dust collection system so that moisture from the hot aggregate will be removed before condensing in the aggregate storage. When mineral filler is added without heating, adequate additional dry storage shall be provided for the mineral filler, and provisions shall be made for proportioning the filler uniformly in the desired proportion for the mixture.

E. Equipment for Heating and Storing Bituminous Materials.

Article 2001.11 shall apply. Unless the asphalt binder is supplied to the project from transports measured by weight (mass), duplicate storage facilities shall be provided, each of sufficient capacity to permit complete unloading of a tank car or truck transport at a single operation. Filling and withdrawal of material from each tank shall be conducted as a separate, definite operation which will permit the Engineer to measure the quantity of asphalt binder used from each tank for each cycle of operation. Each storage tank shall be installed and maintained in a level position. Measurement devices and gauging tables shall be furnished so accurate determinations of quantities used and stored can be made at regular intervals.

Suitable means shall be provided for maintaining the specified temperature of the asphalt binder in the pipe lines, meters, weighing buckets, spray bars, and other containers and flow lines.

The system shall include a spigot for removing asphalt samples from the delivery line to the mixer before the asphalt binder is metered into the mixer or weighed.

F. Asphalt Binder Control Unit.

Satisfactory means, by weighing, metering, or volumetric measurements, shall be provided to obtain the proper amount of asphalt binder. All measuring devices shall be operated within a delivery tolerance of 1.5%.

1. Batch Plants.

For batch plants, the quantity of asphalt binder for each batch shall be weighed on equipment meeting the appropriate requirements of Article 2001.07, A, or shall be measured by an approved

automatic batch metering system. When used for proportioning only, the equipment shall meet the appropriate requirements of Article 2001.20.

The means of heating shall be sufficiently flexible so it will not affect the weighing. The container shall be arranged so that it will deliver the asphalt binder in a thin, uniform sheet or in multiple streams the full width of the mixer, except in the case of a mixer into which the asphalt binder is sprayed. If deposited on a flow or spreader sheet, the sheet shall be heated and shall have sufficient slope to discharge promptly into the mixer.

2. Continuous Plants.

Continuous plants shall use a pump to supply asphalt binder to the mixer, which is constructed to be under a positive pressure sufficient to maintain uniform delivery from the pump. The pressure shall be maintained within \pm 0.5 psi (5 kPa) of the mean operating pressure.

Accurate pressure gauges shall be installed in readily accessible locations in lines feeding the metering pump and the mixer spray bars. The gauges shall be such size that the normal operating pressure can be easily read to the nearest psi (10 kPa).

The mixer unit shall be equipped with a surge tank or a deaeration chamber for supplying a constant pressure flow of asphalt binder to the metering pump. The surge tank or the deaeration chamber shall be approved by the Engineer and shall be of dimensions and capacity to provide the pressure specified. The capacity shall be at least a 6 minute supply of asphalt binder at the normal mixing rate of the mixer unit. The surge tank or the deaeration chamber shall be fitted with baffles and other appurtenances necessary to prevent the incorporation of air bubbles into the asphalt binder as the tank is being filled to ensure deaeration and escape of any air bubbles that may be present. When the surge tank system is used, the pressure at the spray bar shall not be greater than 20 psi (140 kPa). When a deaeration chamber system is used, the pressure difference between the return line and the spray bar shall not be greater than 20 psi (140 kPa). Separate return lines shall be provided for each tank.

3. Drum Mixing Plants.

Drum mixing plants shall use a pump to supply asphalt binder to the mixer, which is constructed to be under positive pressure sufficient to maintain uniform delivery from the pump. A totalizing flow meter shall be placed in the line between the metering pump and mixer unit. The asphalt control unit shall be interlocked with the aggregate weighing system specified in Article 2001.22, A, and shall be equipped to automatically adjust for variation in aggregate delivery. The plant shall be operated with automatic controls except when approved by the Engineer. The asphalt control unit shall be equipped so the plant operator can monitor and adjust the flow rate of aggregate or asphalt binder.

G. Thermometer Equipment.

An accurate, registering pyrometer or other approved thermometric instrument shall be installed in the discharge chute of the dryer or drum mixer in a manner so that the temperature of the heated aggregate or mixture is automatically indicated. This instrument shall be located where it is in clear view of the plant or dryer operator and readily accessible to the Engineer.

H. Control of Mixer Capacity and Mixing Time.

The plant shall be equipped with positive means to govern and maintain the time of mixing.

I. Dust Collector.

Proper housings, mixer covers, and dust collecting systems and returns shall be installed and properly maintained. The method of returning dust collected by dry type collection systems to the hot aggregate mixture shall be subject to the approval of the Engineer. If not required in the mixture, the bag house fines shall be removed from the project and plant site. When wet type collection systems are used, the Contractor shall remove all wet material from the project and plant site.

J. Hot Aggregate Proportioning.

Batch plant equipment shall include a means for accurately weighing the mineral filler and dried aggregate from each bin in a weighing hopper that is of ample size to hold a full batch without hand raking or running over. The weighing hopper shall be supported so it will not be easily thrown out of alignment or adjustment. Gates on bins and hoppers shall be constructed to prevent leakage when closed.

Mineral filler which is added cold shall be proportioned separately from a hopper and arranged to be fed uniformly into the heated aggregate before delivery to the feeder for the mixer.

For batch plants, the quantity of aggregate for each batch shall be weighed on equipment meeting the appropriate requirements of Article 2001.07, A. When used for proportioning only, the equipment shall meet the appropriate requirements of Article 2001.20.

The requirements of this Paragraph J do not apply to drum mixing plants.

K. Mixer.

The mixer shall comply with the following:

1. Batch Mixer.

A batch mixer shall be a twin shaft pugmill and shall be capable of producing a uniform mixture within the job mix or other specified limits. The clearance of the blades from all fixed and moving parts shall not exceed 3/4 inch (20 mm), and the orientation of the blades shall be as recommended by the manufacturer. If not enclosed, the mixer shall be equipped with a dust hood to prevent loss of dust by dispersion. The mixer shall be constructed to prevent leakage of contents until the batch is to be discharged. The mixer shall have an accurate time lock to control the operation of a complete mixing cycle by locking the weighing hopper gate when the mixer is charged and until the mixer gate is closed at the completion of the cycle. It shall also lock the outlet of the asphalt binder delivery system throughout the dry mixing period and the mixer gate throughout the dry and wet mixing periods.

The dry mixing period is the interval of time between the opening of the weighing hopper gate and the application of asphalt binder. The wet mixing period is the interval of time between the application of asphalt binder and the opening of the mixer gate. Control of the timing shall be flexible and capable of being set at intervals of not more than 5 seconds. A mechanical batch counter shall be installed as part of the timing device and shall be designed to register only completely mixed batches.

For recycling, batch plant equipment shall be modified to provide for accurate proportioning of the recycled material and for adding it directly into the weigh hopper, with weighing as a separate increment of the total batch, and with no preheating necessary.

The recycled material may be added to the hot elevator with no preheating necessary. In any method where preheating is being done, the equipment must be specifically designed for this purpose.

Any proportioning system shall also meet the requirements of Paragraph A.

When the heat transfer method is used, the new aggregate shall be superheated so that, when combined with the recycled material, the temperature of the resultant mixture will meet all requirements for mixing and placing the hot mixture.

Each plant modified for recycling mixtures shall initially be subject to approval of the Engineer.

2. Continuous Mixer.

A continuous mixer shall be an approved twin shaft pugmill capable of producing uniform mixtures within the job mix or other specified limits. The paddles shall be of a type adjustable for angular position on the shafts and reversible to retard the flow of mix. The mixer shall be equipped with a discharge hopper holding approximately 1 ton (1 Mg) and discharging intermittently by means of quick acting gates. Distance to the receiving vehicle shall be regulated to minimize segregation.

Satisfactory means shall be provided to afford positive interlocking control between the flow of aggregate from the bins and the flow of asphalt binder from the meter or other proportioning source. This control shall be accomplished by interlocking mechanical means or by any positive method for accurate control. The equipment shall include an accurate revolution counter, operating continuously during production.

The plant shall be equipped with positive means to govern and maintain a constant time of mixing.

3. Drum Mixer.

A drum mixer shall be capable of producing uniform mixtures within the job mix or other specified limits. The aggregate, asphalt binder, and additives, when furnished, shall be introduced continuously and uniformly and shall be subject to control of the plant operator. The mixture shall be discharged continuously and uniformly onto an elevator or conveyor that discharges into a hot mixture storage unit meeting requirements of Article 2001.22, L. The mixing shall be continued until the asphalt binder is uniformly distributed, and the aggregate particles are uniformly coated.

The plant may be modified with a pugmill coater added to the drum mixer. When so modified, the coater must be inclined and positioned as an integral built-in unit, located between the drum and the hot elevator of the plant setup. The asphalt binder, and additives when furnished, shall be introduced continuously and uniformly at the lower end of the coater, subject to control by the plant operator. Each modified plant shall be initially subject to approval of the Engineer.

For recycling, drum mixing equipment shall be modified to process recycled mixtures in accordance with Paragraph A.

L. Hot Mixture Storage.

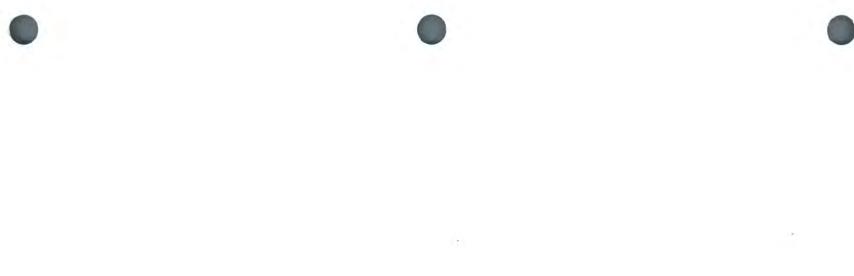
When the hot mixture is not hauled immediately to the project and placed, suitable bins shall be provided. These bins shall be either surge bins to balance production capacity with hauling and placing capacity, or storage bins which are heated and/or insulated and which have a controlled atmosphere around the mixture. Either type of bin shall be round or octagonal in shape, shall be designed for the intended use, shall fill using an enclosed system unless skip conveyors are used. shall dump material directly into trucks through quick opening and quick closing gates, and shall not result in significant segregation, damage, or cooling. Affixed to each bin and visible to the loading operator shall be an indicating or control device which will allow control of material remaining in the bin.

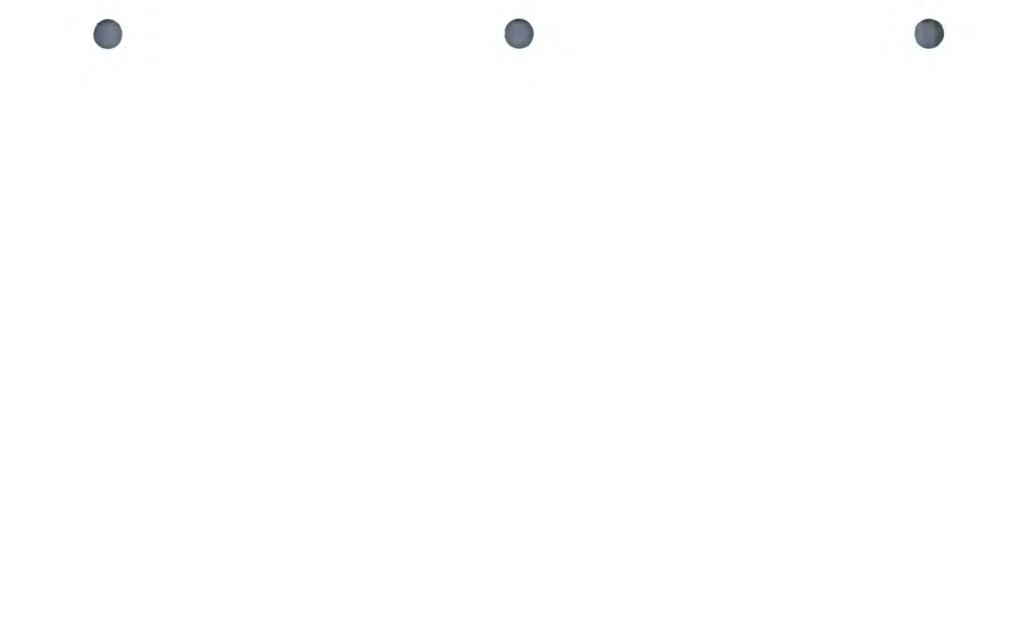
When surge bins are used, the holding time shall be limited to 4 hours.

Hot mixture placed in storage bins shall be used within 24 hours of production unless otherwise approved by the Engineer.

M. Safety Requirements.

Adequate and safe stairways, platforms, and guarded ladders to plant units shall be placed at points required for accessibility to sampling locations and other plant operations. All gears, pulleys, chains, sprockets, and other moving parts shall be guarded and protected. Ample and unobstructed passage for personnel shall be maintained at all times in and around the truck loading area. This area shall be protected from falling material. Bins shall comply with requirements of Article 2001.06.





N. Plant Calibrations.

Personnel, weighing devices, test weights, and equipment for calibration of the plant and for verifying accuracy of proportions shall be furnished by the Contractor. Sufficient space shall be provided between aggregate feeds and elevators to permit taking of samples of the discharge for accurate calibration and control of rate of feed. Samples of sufficient size, for calibration and checking of proportions, shall be weighed. Truck sampling and weighing will be acceptable. The Engineer shall be allowed every opportunity to witness calibration of the equipment during the Engineer's normal working hours, or at a mutually agreeable time. This schedule limitation will be modified, if necessary, for work to be done under an accelerated work schedule. The Engineer's representative shall indicate witnessing the calibration by signing the calibration documents and charts.

Section 2303. Hot Mix Asphalt Mixtures

2303.01 DESCRIPTION.

This work shall consist of mixture design, production, placement, and compaction of HMA using proper quality control practices for the construction of surface, intermediate, or base course on a prepared subbase, base, or pavement, to the proper dimensions specified in the contract documents.

Supplemental Specifications for Quality Control Program for Small HMA Paving Quantities shall apply for HMA bid items with 1000 tons (1000 Mg) or less.

The Contractor shall be responsible for all aspects of the project, provide quality control management and testing, and maintain the quality characteristics specified.

Quality Management - Asphalt (QM-A) shall apply to contracts with HMA quantities of 5000 tons (5000 Mg) or greater and all Interstate contracts. The Contractor shall follow the procedures and meet the criteria established in Article 2303.02, Section 2521, and Materials I.M. 510 and 511.

For contracts with less than 5000 tons (5000 Mg) quality control will be the responsibility of the Engineer. The Contractor shall be responsible for the mix design. This does not change the mix requirements from gyratory to Marshall, unless specified in the contract documents.

2303.02 MATERIALS AND EQUIPMENT.

Materials used in these mixtures shall meet the following requirements:

A. Asphalt Binder.

The Performance Graded asphalt binder, PG XX –XX, will be specified in the contract documents to meet the climate, traffic, and pavement conditions. The asphalt binder shall meet the requirements of Section 4137.

B. Aggregates.

1. Individual Aggregates.

Virgin mineral aggregate shall meet the following requirements:

VIRGIN	MINERAL AGGRE	GATES
Mixture	Aggregate Type	Aggregate Requirements
Base	Туре В	Section 4127
Intermediate and Surface	Туре В	Section 4127
Intermediate and Surface	Туре А	Section 4127

When the frictional classification of the coarse aggregate is required, the contract documents will specify the friction level and location. The friction aggregate shall be furnished from sources identified in Materials I.M. T-203.

For friction classification L-2, at least 80% of the combined aggregate retained on the No. 4 (4.75 mm) sieve shall be Type 4 or better friction aggregate; and at least 25% of the combined aggregate retined on the No. 4 (4.75 mm) sieve shall be Type 2 or better friction aggregate.

For friction classification L-3, at least 80% of the combined aggregate retained on the No. 4 (4.75 mm) sieve shall be Type 4 or better friction aggregate; and at least 45% of the combined aggregate retained on the No. 4 (4.75 mm) sieve shall be Type 3 or better friction aggregate. If Type 2 is used in place of Type 3, the minimum shall be 30% of the combined aggregate retained on the No. 4 (4.75 mm) sieve.

For friction classification L-4, at least 50% of the combined aggregate retained on the No. 4 (4.75 mm) sieve shall be Type 4 or better friction aggregate.

2. Blended Aggregates.

The blended aggregates shall meet the combined aggregate requirements in Materials I.M. 510.

When mixtures include RAP, the blended mineral aggregate gradation shall be a mixture of extracted RAP aggregate combined with virgin aggregate.

C. Recycled Asphalt Pavement.

RAP shall be from a source designated in the contract documents, a certified stockpile, or unclassified RAP furnished by the Contractor subject to the following limitations:

1. Designated RAP.

When RAP is taken from a project, or is furnished by the Contracting Authority, the contract documents will indicate quantity of RAP expected to be available. The Contractor is responsible for salvaging this material unless otherwise specified in the contract documents. The RAP not used shall be incorporated into other parts of the project or placed in active stockpiles as directed in the contract documents.

The Contracting Authority will test samples of this material. For mix design purposes, the amount of asphalt binder in the RAP will be based on extraction tests. The Contractor shall designate the exact proportions of RAP material in the hot mix within the allowable range.

When the work is completed, the Contractor shall return unused material to the stockpile or other designated location, rebuild the stockpile, and restore the area, in accordance with Article 1104.08.

Test information, if known, will be included in the contract documents.

2. Certified RAP

The RAP shall be from a known source and of the proper quality for the intended use, with no material added from other sources during the time in stockpile. The Contractor shall certify to this before use. RAP from not more than two known sources at a time will be allowed.

Certified RAP may be used in the base and intermediate course of mixes for which the RAP aggregate qualifies. RAP may also be used in surface courses when authorized by the Engineer. Not more than 30% of the asphalt binder in a final surface course mixture shall come from the RAP.

A certified RAP stockpile shall be sealed or protected in accordance with Materials I.M. 505.

3. Unclassified RAP.

Up to 10% of unclassified RAP may be incorporated into intermediate mixes for under 3,000,000 ESALs and all base mixes with the following safeguards:

a. Unclassified RAP shall not be used in surface courses.

b. Unclassified RAP shall not be used in intermediate or base mixtures containing designated or certified RAP.

c. The Engineer will inspect the unclassified RAP stockpile visually for uniformity. Unclassified RAP stockpiles containing concrete chunks, grass, dirt, wood, metal, coal tar, or other foreign or environmentally restricted materials shall not be used, unless approved by the Engineer. If foreign material is discovered in any unclassified stockpile, the Engineer may stop the continued use of the pile.

d. Representative samples will be taken by the Engineer. These samples are to be tested for gradation and asphalt content.

e. No credit will be given for crushed particles.

f. Stockpiles, when used, shall be worked in such a manner that the materials removed are representative of a cross section of the pile as approved by the Engineer.

D. Hot Mix Asphalt Mixture.

The surface course is the upper lift for a wearing surface of a designated thickness. The intermediate course is the next lower lift or lifts of a designated thickness. Leveling, strengthening, and wedge courses shall be of the intermediate course mixture. The base course is the lift or lifts placed on a prepared subgrade or subbase.

The job mix formula (JMF) is the percentage of each material, including the asphalt binder, to be used in the HMA mixture. The JMF gradation shall be within the control points specified for the particular mixture designated and shall establish a single percentage of aggregate passing each required sieve size.

If the asphalt binder demand for the combination of aggregates submitted for an acceptable mix design exceeds the basic asphalt binder content by more than 0.75%, the mix design will include an economic evaluation prepared by the Contractor. This evaluation will be based on past job mix history, possible aggregate proportion changes, and aggregate availability and haul costs for any changes or substitutions considered.

The basic asphalt binder content is the historical, nominal mixture asphalt binder content, expressed as percent by weight (mass) of the asphalt binder in the total mixture. The following values, based on mixture size and type, shall apply.

Mixture Size	Aggr. Type	1 inch (25 mm)	3/4 inch (19 mm)	1/2 inch (12.5 mm)	3/8 inch (9.5 mm)
Intermediate and Surface	Туре А	4.75	5.50	6.00	6.00
Intermediate and Surface	Type B	5.25	5.75	6.00	6.25
Base	Туре В	5.25	6.00	6.00	6.25

The HMA mixture designed shall meet gyratory design and mixture criteria corresponding to the design level specified in the contract documents. The Engineer may approve the substitution of any mixture which meets requirements for a higher mixture than specified in the contract documents at no additional cost to the Contracting Authority. Shoulders placed as a separate operation shall be HMA 2,000,000 ESAL base mixture. For outside shoulders on Interstate projects, the Contractor has the option to substitute the mainline intermediate or surface mixture for a specified base mixture at the Contractor's expense.

The Contractor shall prepare gyratory HMA mixture designs for all base, intermediate, and surface mixtures. The gyratory design procedure used shall follow the procedure outlined in Materials I.M. 510. The gyratory mixture designs submitted shall comply with Materials I.M. 510.

The gyratory compactor used for design and field control shall meet the AASHTO protocol for Superpave gyratory compactors. Compactors for which compliance with this protocol is pending may be used at the discretion of the District Materials Engineer.

E. Other Materials.

1. Tack Coat.

Tack coat may be SS-1, SS-1H, CSS-1, or CSS-1H. Mixing of CSS and SS grades will not be permitted. RC-70 and MC-70 may also be used after October 1, at the Contractor's option.

2. Anti-strip Agent.

On Primary highways designated for over 10,000,000 ESALs and all Interstate highways, if 25% or more of the plus No. 4 (4.75 mm) (virgin and RAP) aggregate is gravel, quartzite, granite, trap rock, steel slag, or other siliceous aggregate (not a limestone or dolomite), anti-strip agent will be required in the affected mixture unless the minimum requirements for moisture sensitivity are met.

On all other Primary highways, if 25% or more of the plus No. 4 (4.75 mm) (virgin and RAP) aggregates or more than 40% of the total (virgin and RAP) aggregates is quartzite, granite, or other siliceous aggregates (not limestone or dolomite) which is obtained by crushing from ledge rock, anti-strip agent will be required in the affected mixtures requiring Type A aggregate unless the minimum requirements for moisture sensitivity are met.

Anti-strip agent will not be required for base repair, patching, or temporary pavement.

When anti-strip agent is required based on aggregate source, the Contractor may arrange for moisture sensitivity evaluation of the proposed HMA mixture design according to AASHTO T 283, "Resistance of Compacted Bituminous Mixture to Moisture-Induced Damage." When results of this evaluation on mixtures without anti-strip agent indicate the minimum requirements for moisture sensitivity of 80% tensile strength ratio (TSR) with visual confirmation are met, anti-strip agent will not be required. Confirmation of AASHTO T 283 test results will be completed by the Central Materials Laboratory during the initial production and placement of the mix. The Contractor will be subject to the provisions of Section 1105 for mixture placed without anti-strip agent prior to completion of the AASHTO T 283 confirmation testing.

When a liquid anti-strip additive or aggregate treatment is used, confirmation of the AASHTO T 283 test results will be completed by the Central Materials Laboratory during the initial production and placement of the mix. The Contractor will be subject to the provisions of Section 1105 for mixture placed with liquid anti-strip additive or aggregate treatment prior to completion of the AASHTO T 283 confirmation testing.

One of the following anti-strip agents shall be used:

a. Hydrated Lime.

Hydrated lime shall meet the requirements of AASHTO M 303, Type I. Section 4193 shall not apply. Hydrated lime will not be considered part of the aggregate when determining the job mix formula and the filler/bitumen ratio.

b. Liquid Anti-strip Additives.

Liquid anti-strip additives blended into the asphalt binder shall be approved for each JMF. The approval will be based on the following conditions:

1) Asphalt binder supplier shall provide test results that the additive does not negatively impact the asphalt binder properties, including short term and long term aged properties.

2) The AASHTO T 283 test is required and must satisfy 80% TSR when compared to the dry strength of specimens prepared with asphalt binder not containing the anti-strip additive. The design shall establish the optimum additive rate.

3) A change in the source of asphalt binder or aggregates will require a re-evaluation of the AASHTO T 283 test. When there is a significant change in the aggregate proportions, the Engineer may require a re-evaluation of the AASHTO T 283 test.

c. Polymer-based Liquid Aggregate Treatments.

Polymer-based liquid aggregate treatments shall be approved for each JMF. The approval will be based on the following conditions:

1) The AASHTO T 283 test is required and shall satisfy 80% TSR when compared to the dry strength of specimens prepared with and without the aggregate treatment. The design shall establish the optimum additive rate.

2) A change in the source of asphalt binder or aggregates will require a re-evaluation of the AASHTO T 283 test.

3. Sand for Tack Coats.

Sand shall meet requirements of Section 4109, Gradation No. 1.

4. Fabric Reinforcement.

Fabric reinforcement shall meet requirements of Article 4196.01, D.

F. Equipment

The Contractor shall provide sufficient equipment of the various types required to produce, place, and compact each layer of HMA mixture as specified.

Equipment shall meet requirements of Section 2001 with the following modifications:

1. Plant Calibration.

Each plant scale and metering system shall be calibrated before work on a contract begins. Calibration equipment shall meet the manufacturer's guidelines and Materials I.M. 508. The Engineer may waive calibration of permanent plant scales when a satisfactory operational history is available. The engineer may require any scale or metering system to be recalibrated if operations indicate it is necessary. Calibration data shall be available at the plant.

Each aggregate feed shall be calibrated throughout an operating range wide enough to cover the proportion of that material required in the JMF. A new calibration shall be made each time there is a change in size or source of any aggregate being used.

For continuous and drum mixing plants, the asphalt binder metering pump shall be calibrated at the operating temperature and with the outlet under pressure equal to that occurring in normal operations.

Each plant scale and metering system shall be calibrated before work on a contract begins. The Engineer may waive calibration of permanent plant scales when a satisfactory operational history is available. The Engineer may require any scale or metering system to be recalibrated if operations indicate it is necessary.

Calibration curves shall be available in the plant laboratory. New calibration curves shall be made each time there is a change in size or source of any aggregate being used. On all plants, aggregate samples shall be taken in accordance with Materials I.M. 204 to determine that materials are being proportioned in accordance with the specifications.

2. Paver.

Article 2001.19 shall apply. Spreaders, as described in Article 2001.13, D, may be used to place paved shoulders. Spreaders used to place the final lift of paved shoulders shall meet additional requirements of Article 2001.19.

3. Rollers.

For initial and intermediate rolling, self-propelled, steel tired, pneumatic tired, or vibratory rollers meeting requirements of Article 2001.05, B, C, or F, shall be used. Their weight (mass) or tire pressure may be adjusted when justified by conditions.

For finish rolling, self propelled, steel tired rollers or vibratory rollers in the static mode meeting requirements of Article 2001.05, B or F, shall be used.

4. Scales.

Article 2001.07, B, shall apply to all paving operations regardless of the method of measurement.

2303.03 CONSTRUCTION.

A. Maintenance of the Subgrade and Subbase.

The Contractor is responsible for the maintenance of the completed subgrade and subbase to the required density, true cross section, and smooth condition, prior to and during subsequent construction activities. If rutting or any other damage occurs to the subgrade or subbase as a result of hauling operations, the Contractor shall immediately repair the subgrade and subbase, and such repair will include, if necessary, removal and replacement at the Contractor's expense.

Should traffic by others authorized to do work on the project be specifically permitted by the Engineer to use loads which exceed the Contractor's established limit, the Contracting Authority will pay repair costs for repairs directed by the Engineer, representing an increase in cost of repair of damage, if any, caused by such traffic.

B. Preparation of Existing Surfaces.

1. Cleaning.

The existing surface shall be cleaned and prepared in accordance with Article 2212.04, A.

2. Tack Coats.

Tack coats shall be applied when the entire surface area on which the coat is to be applied is free of moisture. They shall not be applied when the temperature on the surface being covered is less than 25° F (-4°C).

The Contractor shall place a tack coat to form a continuous, uniform film on the area to be covered. Unless otherwise directed, the tack coat shall be spread at an undiluted rate of 0.02 to 0.05 gallon per square yard (0.1 to 0.2 L/m^2). The tack coat emulsion may be diluted with water to improve application.

Tack coat shall be adequately cured prior to placement of the HMA to assure bond to the underlying surface and avoid damage of the HMA being placed. If the tack coat surface becomes dirty from weather or traffic, the surface shall be thoroughly cleaned and, if necessary, retacked. A light application of sand cover may also be required, but this is anticipated only for excessive application rates, breakdowns, and short sections remaining at the end of a day's run.

On highways being constructed under traffic, safety and convenience to the public without soiling their vehicles shall be a controlling factor. Tack coat applications shall be limited in length, to minimize inconvenience to the public. They shall be kept within the hot mixture placing work area that is controlled by flaggers at each end, and shall be planned so that they will be covered with hot mixture when the work area is opened to traffic at the end of the day's work.

The vertical face of exposed, longitudinal joints shall be tacked as a separate operation, before the adjoining lift is placed, at a rate from 0.10 to 0.15 gallon per square yard (0.5 to 0.7 L/m^2). The vertical surfaces of all fixtures, curbs, bridges, or cold mixture with which the hot mixture will come in contact shall be lightly painted or sprayed to facilitate a tight joint with the fresh mixture.

3. Fabric Reinforcement.

When fabric reinforcement is required, the locations will be designated in the contract documents. Fabric shall not be placed on a wet or damp surface or when the road surface is less than 50°F (10°C). Fiberglass fabric shall be applied only with an adhesive recommended by the manufacturer. Fabrics with an adhesive backing shall be placed in accordance with the manufacturer's recommendations.

Other fabrics shall be placed with a heavy coat of the asphalt binder grade used in the HMA applied at a rate of 0.20 to 0.25 gallons per square yard (0.9 to 1.1 L/m²) and at a temperature between 295°F and 315°F (145°C and 160°C).

The fabric reinforcement shall be placed in accordance with the contract documents (full width or individual crack or joint treatment). The fabric shall be placed immediately following the adhesive or asphalt binder placement under the fabric. Placement may be by hand or by a mechanical method specifically designed for this purpose. Precautions shall be taken to avoid wrinkles in the fabric and to insure that air bubbles are removed without breaking the fabric. Wrinkles or folds which cannot be removed by brushing shall be cut and lapped to provide a smooth surface.

Additional adhesive or asphalt binder may be required to produce a tight, bonded surface. When applied full lane width, the minimum transverse and longitudinal lap shall be 12 inches (300 mm).

The Contractor shall avoid application of the tack coat over longitudinally placed fabric. Traffic shall not be allowed over the fabric during placement and during curing of the adhesive material to avoid damage to the fabric. A light application of HMA mix material may be hand sprinkled on the fabric to prevent damage from necessary equipment traffic.

Fabric that is damaged or soiled prior to HMA overlay shall be repaired at no additional cost, when directed by the Engineer. Sanding, at no additional cost, may also be required by the Engineer during this period.

C. Handling, Production, and Delivery.

1. Hot Mix Asphalt Plant Operation.

The plant operation shall comply with the following requirements:

a. Handling Mineral Aggregate and RAP.

The various aggregate products used shall be kept separate, and adequate provisions shall be made to prevent intermingling. Stockpiling and processing shall be handled in a manner that will ensure uniform incorporation of the aggregate into the mix.

The various aggregates shall be separately fed by feeders to the cold elevator in their proper proportions and at a rate to permit correct and uniform temperature control of heating and drying operations.

b. Handling Asphalt Binder.

The asphalt binder shall be brought to a temperature of 260°F to 330°F (125°C to 165°C) before being measured for mixing with the aggregates. The temperature between these limits may be further regulated according to the characteristics of the mixture, method of proportioning, and viscosity of the asphalt binder. Modified asphalt binder should be heated according to the suppliers recommendations.

c. Handling Anti-stripAgnets.

1) Hydrated Lime.

The lime shall be accurately proportioned by a method acceptable to the Engineer.

a) Added to a Drum Mixer.

The hydrated lime shall be added at the rate of 0.75% by weight (mass) of the total aggregate (virgin and RAP) for Interstate and Primary projects. The hydrated lime shall be added to a drum mixer by one of the following methods:

(1) Added to the virgin aggregate on the primary feed belt, as a lime water slurry.(2) Thoroughly mixed with the total combined aggregate if the aggregate contains at least 3% total moisture.

(3) Added to the Type 2 or Type 3 virgin aggregate in a moist condition, and then mixed with the total combined virgin aggregate.

Alternative methods for mixing must be reviewed and approved by the Engineer. Hydrated lime shall not be introduced directly into a drum mixer by blowing or auguring.

b) Added to a Batch Plant.

Hydrated lime shall be added at the rate of 0.5% by weight (mass) of total aggregate (virgin and RAP) for Interstate and Primary projects. It shall be introduced to a batch plant by one of the following methods:

- (1) Placed on the recycle belt which leads directly into the weigh hopper.
- (2) Added directly into the pugmill.

(3) Added directly into the hot aggregate elevator into the hot aggregate stream. In any case, the lime must be introduced prior to the start of the dry mix cycle.

c) Added to the Aggregate Stockpile.

Hydrated lime shall be added at a rate established by the AASHTO T 283 test. The hydrated lime shall be added to the source aggregates defined in Article 2303.02, E, 2, thoroughly mixed with sufficient moisture to achieve aggregate coating, and then placed in the stockpile.

When either method b or c above for a batch plant is used, the hydrated lime will be considered part of the JMF.

2) Liquid.

When liquid anti-strip additives are used, the equipment used to store, measure, and blend the additive with the asphalt binder shall comply with the anti-strip supplier's recommended practice. The additive may be injected into the asphalt binder by the

asphalt supplier or the Contractor. If the Contractor elects to add the liquid anti-strip additive, the Contractor assumes the material certification responsibilities of the asphalt binder supplier. The shipping ticket shall report the type and amount of additive and the time of injection. The asphalt supplier shall provide the Contractor and Engineer with the shelf life criteria defining when the anti-strip additive maintains its effectiveness. Binder that has exceeded the shelf life criteria shall not be used.

When polymer-based liquid aggregate treatment is used, the Contractor shall comply with the manufacturer's current recommended specifications and guidelines.

d. Production of Hot Mix Asphalt Mixtures.

The exact proportions of the various materials shall be regulated within the limits specified so as to produce a satisfactory bituminous coating and mixture. The aggregates shall first be mixed dry, then the asphalt binder shall be added. In batch plants, the asphalt binder shall be added in an evenly spread sheet over the full length of the mixer box. In continuous plants, the asphalt binder shall be sprayed evenly into the aggregate by a positive pressure spray within the first 30% of the length of the mixer box. In drum mixing plants, the asphalt binder shall be added, subject to approval of the Engineer.

The mixer shall be operated so that the mixture is of consistently uniform temperature and, as discharged from the mixer, will not vary more than 20°F (11°C). The temperature of the mixtures shall not exceed 330°F (165°C) unless approved by the Engineer.

The rate of production shall not exceed the manufacturer's rated capacity of the mixer and shall provide uniform coating. Dry mixing time for batch mixers shall be not less than 5 seconds. Wet mixing time for batch mixers shall be not less than 25 seconds. For continuous mixers, the mixing time shall be at least 30 seconds.

All handling and manipulation of the hot mixture from the mixer to the final spread on the road shall be controlled so that a uniform composition is maintained and segregation of coarser particles is minimized. The segregation shall be minimized to the extent that it cannot be visibly observed in the compacted surface. The Contractor shall only apply approved release agents to trucks and equipment as specified in Article 2001.01.

The mixture temperature shall be sufficient to allow for the specified compaction and density to be attained. HMA shall not be discharged into the paver hopper when its temperature is less than 245°F (120°C) for a nominal layer thickness of 1 1/2 inches (40 mm) or less and 225°F (110°C) for a nominal layer thickness of more than 1 1/2 inches (40 mm).

Except for an unavoidable delay or breakdown, delivery of hot HMA to any individual spreading unit shall be continuous and uniform and at a rate sufficient to provide as continuous an operation of the spreading unit as practical. The paver hopper shall, at all times, be kept sufficiently full to prevent non-uniform flow of the mixture to the screed.

D. Placement.

The surface of each layer shall be cleaned in accordance with Article 2212.04, A, and, if necessary, retacked to provide bond with the succeeding course. If bumps or other significant irregularities appear or are evident in the intermediate course or other lower course, they are to be corrected before the final lift is placed.

HMA mixtures shall not be placed on a wet or damp surface and shall not be placed when the temperature of the road surface is less than shown in the table below. The Engineer may further limit placement if, in the Engineer's judgment, other conditions are detrimental to quality work. HMA mixtures shall not be placed after November 15, except with approval of the Engineer.

ALL BASE AND INTERMEDIATE COURSE LIFTS OF HMA MIXTURES		
Nominal Thickness - inches (mm)	Road Surface Temperature, °F (°C)	
1 1/2 (40)	40 (4)	
2-3 (50-80)	35 (2)	
Over 3 (Over 80)	25 (-4)	

Nominal Thickness - inches (mm)	Road Surface Temperature, °F (°C)	
1 (30)	50 (10)	
1 1/2 (40)	45 (7)	
2 and greater (50 and greater)	40 (4)	

When placing the mixture, the forward speed of the finishing machine shall be at a rate to provide a continuous uniform operation with the least amount of stopping.

A wire or string line shall be used to guide the finishing machine and to maintain alignment. Edge alignment irregularities shall be corrected by hand methods immediately after they occur.

The contract documents will show the total thickness to be placed. Spreading of the mixture shall be at such a rate that, when compacted, the layer(s) will be substantially of the thickness and dimensions required to produce the required thickness. The minimum layer thickness shall be based on the following:

Design Mix Size - inches (mm)	Minimum Lift Thickness - inches (mm)	
3/8 (9.5)	1 (25)	
1/2 (12.5)	1 1/2 (40)	
3/4 (19)	2 (50)	
1 (25)	3 (75)	

The compacted thickness of the top layer shall not be greater than 3 inches (75 mm). This restriction shall not apply to HMA shoulders. The maximum compacted thickness of lower layers may exceed 4 inches (100 mm) if it is demonstrated that the thicker layers have satisfactory density. The riding characteristics of the thicker layers shall be within reasonably close conformance to that expected from a 3 inch (75 mm) layer. Each layer shall be completed to full width before succeeding layers are placed.

While operating on the road surface, use of kerosene, distillate, other petroleum fractions, or other solvents, for cleaning hand tools or for spraying the paver hopper will not be permitted. Containers of cleaning solution shall not be carried on or near the paver. When a solvent is used, the paver shall not be used for at least 5 hours after this cleaning. The Contractor shall be responsible for collecting and removing all cleaning materials and cleaning residue from the project and plant site. The cleaning material and residue shall become the property of the Contractor.

Whenever practicable, all mixtures shall be spread by a finishing machine. Irregular areas may be spread by hand methods. The hot mixture shall be spread uniformly to the desired depth with hot shovels and rakes. Loads shall not be dumped faster than they can be spread properly. Workers shall not stand on the loose mixture while spreading. After spreading, the hot mixture shall be carefully smoothed to remove all segregated coarse aggregate and rake marks. Rakes and lutes used for hand spreading and smoothing shall be of the type designed for use on HMA mixtures.

Unless stated elsewhere in the contract documents when placing two adjacent lanes, not more than one day of normal plant production shall be paved in a lane before the adjacent lane(s) is paved. The adjacent lane shall be placed to match the first lane during the next day of plant production. The Contractor shall not spread more mixture than can be compacted in the specified working hours of the same working day. At the close of each working day, the roadbed shall be free of any construction equipment.

Prior to opening a lane to traffic, fillets or full width granular shoulders shall be placed in accordance with Article 2121.07, B. The material shall be placed adjacent to and equal in thickness to the resurfacing. Fillet removal shall be incidental to the HMA mixture.

E. Compaction.

Each layer shall be promptly and thoroughly compacted. Mechanical tampers shall be used for areas inaccessible to the rollers.

The overall rolling procedure and compactive effort shall produce a surface free of ridges, marks, or bumps and shall be subject to approval of the Engineer.

There are two classes of compaction, Class I and Class II. Class I compaction is intended for use on Interstate highways, and most Primary and Secondary highways. Class II compaction is intended for paved shoulders, temporary crossovers, onsite detours, and for other situations where Class I is not specified.

For Class I compaction, the roadway density (percent of laboratory density) will be based on the density obtained from the Quality Control Program for that day's mixture.

1. Class I Compaction.

(1) Class IA Compaction.

Class IA compaction shall be used for intermediate and surface courses for the traffic lanes of Interstate highways, including Interstate-to-Interstate ramps, and Primary highways as specified. Compaction shall be a minimum of 96% of laboratory density. The average air void level of the roadway density specimens shall not exceed 8.0%.

(2) Class IB Compaction.

Class IB compaction shall be used for all Interstate and Primary bases. Class IB will also be required on Primary travel lanes intermediate and surface courses, and ramps connecting to Interstate and Primary highways when Class IA compaction is not specified. Compaction shall be to a minimum of 95% of laboratory density. The average air void level of the roadway density specimens shall not exceed 8.0%.

c. Class IC Compaction.

Class IC compaction shall be used for HMA base widening, shoulder resurfacing when specified, traffic lanes of Secondary highways and any other traffic lanes when Class IA and IB are not specified. Compaction shall be a minimum of 94% of laboratory density. The average air void level of the roadway density specimens shall not exceed 8.0%.

d. Test Strip Construction for Class IA and IB Compaction.

For Class IA compaction at the start of intermediate course placement and for Class IA and Class IB compaction prior to the start of surface course placement, the Contractor shall construct a test strip for the purpose of evaluating properties of the HMA mixtures and for identifying an effective rolling pattern. For multiple lifts using the same mix requiring Class IA compaction, when the thickness of the second lift varies from the first lift by 1 1/2 inches (40 mm) or more, a test strip for the second lift shall be performed. When the contract documents specify both intermediate and surface courses, a surface course test strip shall be placed in lieu of intermediate mix in a section of intermediate course prior to actual surface course placement. The test strip shall be applied to each mixture which has a plan quantity of at least 3000 tons (3000 Mg).

The quantity of HMA mixture subject to Class IA compaction, produced and placed for test strip production, will be limited to 750 tons (750 Mg) for lift thicknesses of 2 inches (50 mm) or less, and 1000 tons (1000 Mg) for lift thicknesses greater than 2 inches (50 mm). After test strip placement, further mixing and laydown operations will be suspended until the laboratory test results of the plant produced mixture and core densities are available.

Only one test strip will be allowed for each mixture. At the direction of the Engineer, additional test strips may be required if a complying HMA mixture or rolling pattern was not established.

Procedures and documentation to be followed during construction of the test strip shall allow the Engineer and the Contractor to confirm mixture design properties and effectiveness of compaction procedures.

The test strip production control shall meet the requirements of Article 2303.04, B, 2. The number of density core samples obtained for the test strip will be increased by one and the low core result will not be used in the Quality Index (Q.I.) density formula for payment for the test strip quantity.

2. Class II Compaction.

For all rollers, the initial contact with the hot mixture shall be made by the power driven wheels or roll.

The initial rolling shall be done at a temperature so the mixture will compact without excessive distortion. Except on longitudinal joints and super-elevated curves, rolling with the initial roller shall begin at the outer edges of the pavement, and each successive pass shall progress inward toward the center line. Each reverse trip shall lap all but 4 to 6 inches (100 to 150 mm) of the previous track. When reversing direction, the initial roller shall stop at an angle with the longitudinal direction.

Following the initial rolling, the layer shall be given an intermediate rolling with a pneumatic tired roller before the temperature falls below 225°F (110°C). The intermediate roller shall cover the entire area not less than six times. A finish, steel tired roller shall be used to smooth out all marks and roughness in the surface.

Mechanical tampers or other approved compaction methods shall be used for areas inaccessible to the rollers.

F. Joints and Runouts.

Longitudinal joints for courses on resurfacing projects shall be constructed directly above the longitudinal joint in the existing pavement. The offset distance between longitudinal joints in succeeding courses of full depth HMA paving shall be not more than 3 inches (75 mm). The spreading of hot mixtures along longitudinal joints shall be adjusted to secure complete joint closure and full compression of the mixture with a smooth surface and joint after compaction.

Transverse construction joints in succeeding courses shall be separated by not less than 6 feet (1.6 m). The use of wood or metal headers to form the edge of the joint during rolling of the fresh mixture will not be permitted. The header shall be sawed to a straight line at right angles to the center line so that a full thickness vertical edge will be provided before continuing paving. The Contractor shall provide a 10 foot (3 m) straightedge for checking transverse construction joints for smoothness. Variations in the surface at transverse joints, as indicated by the straightedge, shall be corrected by hand methods before compaction.

When a transverse construction joint is open to traffic, a temporary runout of 10 feet (3 m) in length per 1 inch (25 mm) of lift thickness shall be installed. Suitable paper or burlap should be used under the taper to prevent adhesion. Sand, dirt, or wood shall not be used for this purpose.

When required to end paving for winter shutdown, runouts shall be located adjacent to each other. A winter shutdown runout of 25 feet (8 m) in length per 1 inch (25 mm) of lift thickness shall be installed.

For temporary runouts open to traffic for periods greater than 4 weeks and winter shutdown runouts, the Contractor may reduce the amount of top size aggregate in the transition taper. The temporary runouts and winter shutdown runouts shall be removed before commencement of paving. Runout removal shall be incidental to the HMA mixture.

G. Miscellaneous Operations.

1. Leveling and Strengthening Courses.

The contract documents will show the thickness of the courses to be placed. Strengthening and leveling courses will be placed as indicated in the contract documents. These courses shall be of the same mixture specified for the base or intermediate course.

When the width of any strengthening or leveling layer is 8 feet (2.4 m) or more, the layer shall be spread by a finishing machine.

Leveling courses shall be compacted using Class II compaction procedures, except all passes shall be made with a pneumatic roller.

2. Wedge Courses.

Wedge courses used to secure desired super-elevation of curves shall be constructed of the base or intermediate mixture, and when possible, shall be spread by a finishing machine. In placing wedge course, the maximum thickness of individual layers, when compacted, shall not exceed 3 inches (75 mm), and care shall be used to avoid crushing the coarse aggregate. Wedge courses shall be placed to the full width of pavement.

On curves which require the placement of wedge courses, the Contractor will be required to stage the shoulder construction on the super elevated curves. After completion of each day's wedge placement operations and prior to suspending construction activities for that day, a full width shoulder shall be constructed on the high side up to the elevation of the completed wedge course. All necessary staging of shoulder construction will be considered incidental to shoulder construction.

3. Fixtures in the Pavement Surface.

All utility accesses, intakes, or other fixtures encountered within the area to be covered by HMA shall be adjusted to conform to the final adjacent finished surface. Unless otherwise indicated in the plans, the Contractor shall have the option of adjusting fixtures between placement of the surface course and the layer preceding the surface course, or adjusting the fixture after placement of the surface course using a composite patch or PCC patch.

PCC and HMA patch material shall conform to the requirements of Section 2529. Patches shall be of sufficient size to accommodate the structure being adjusted.

Patches shall be square in shape and oriented diagonally to the direction of traffic flow. Elevation of the adjusted fixture and patch shall not be higher than or more than 1/4 inch (6 mm) below that of the surrounding pavement surface.

4. Fillets for Intersecting Roads and Driveways.

When fillets are designated in the contract documents for driveways to homesteads and commercial establishments and at intersecting roads, the surface adjacent to the pavement being surfaced shall be shaped, cleaned of loose material, and tack coated. On this coated surface, the hot mixture shall be placed and compacted in layers equal to the adjacent layer and extended from the edge of pavement as shown in the plans. Fillets at intersecting roads shall be placed and compacted at the same time as the adjacent layer. Entrance fillets that are 8 feet (2.4 m) or wider may be placed as a separate operation. Paving of fillets 8 feet (2.4 m) or more in width shall be with a self propelled finishing machine described in Article 2001.19. The Engineer may approve other equipment for placement of fillets, based on a demonstration of satisfactory results.

5. Stop Sign Rumble Strips.

If the plans include the bid item Rumble Strip Panel (In Full Depth Patch), Section 2529 shall apply. To meet the requirements of placing Stop Sign Rumble Strips before opening roadway sections to traffic, the Contractor may construct temporary rumble strip panels meeting the final pattern and location of the Stop Sign Rumble Strip indicated in the plans.

6. Paved HMA Shoulders.

Compaction of paved HMA shoulders shall be accomplished using one of the following methods:

a. Class II compaction (Article 2303.03, E, 2),

b. Rolling pattern established during the first day of shoulder placement to achieve Class 1C compaction (Article 2303.03, E, 1), or

c. Same rolling pattern established for mainline lanes, as determined by density coring.

Shoulder area will not be included in calculations for density price adjustment on mainline. Shoulder area may be subject to price adjustment for failure to adhere to the established roller pattern.

2303.04 QUALITY CONTROL PROGRAM.

A. Mix Design – Job Mix Formula.

The JMF for each mixture shall be the responsibility of the Contractor.

The Contractor shall submit completed JMF using the computer format of Form 956 to the materials laboratory designated by the Contracting Authority for approval. The Contractor shall submit supporting documentation demonstrating the design process was followed and how the recommended JMF was determined, including an economic evaluation when required. Documentation shall include trial and final proposed aggregate proportions (Form 955) and corresponding gyratory data. The Contractor shall also submit sufficient loose mixture and individual material samples for approval of the design.

The JMF shall be prepared by personnel who are Iowa DOT certified in bituminous mix design.

If the JMF is not satisfactory, the Contractor shall submit another JMF for review. An approved JMF will be required prior to beginning plant production. The Contractor will be charged \$1000 for each JMF approval requested and performed which exceeds two per mix size, type, and proposal item on any individual project or group of tied projects.

B. Plant Production.

The Contractor shall perform the sampling and testing to provide the quality control of the mixture during plant production. Certified Plant Inspection as described in Section 2521 will be required on all HMA plant production. All personnel performing production quality control testing shall be certified by the Department.

Easy and safe access shall be provided to the location in the plant where samples are to be taken.

A "significant mix change" is defined as a single occurrence of an aggregate interchange of greater than 5%, a single occurrence of an asphalt content change greater than 0.2%, or any deletion or introduction of a new material into the mix.

1. Sampling and Testing.

Asphalt binder shall be sampled and tested to verify the quality of the binder grade. Asphalt binder samples shall be taken, at random times, as directed and witnessed by the Engineer in accordance with Materials I.M. 204.

Aggregate gradation control shall be based on cold feed gradation.

Aggregate samples shall be taken, at random times, as directed and witnessed by the Engineer in accordance with Materials I.M. 204 and secured in accordance with I.M. 511 to determine that materials are being proportioned in accordance with the specifications.

The hot HMA mixture shall be sampled, at random locations, as directed and witnessed by the engineer, in accordance with Materials I.M. 322 and secured in accordance with Materials I.M. 511.

The Contractor shall provide the Engineer assistance with material sampling for verification testing. When the Engineer notifies the Contractor that a sample shall be taken, the Contractor shall obtain the sample within 15 minutes.

Each day's production of a mix design shall be considered a lot. When the anticipated quantity for the day is 2000 tons (2000 Mg) or more, that day's production shall be divided into four sublots, the first sublot of each day shall be the first 500 tons (500 Mg) produced. The remaining anticipated quantity for the day shall be divided into three sublots of equal size.

When the anticipated mix design quantity for the day is less than 2000 tons (2000 Mg), the first daily sublot shall be the first 500 tons (500 Mg) produced. Additional daily sublots of 750 tons (750 Mg) each will be established for mix production exceeding the first 500 tons (500 Mg).

The maximum number of paired hot HMA mixture samples required for acceptance of a lot will not exceed four.

Paired samples shall not be taken from the first 100 tons (100 Mg) of mix produced each day or the first 100 tons (100 Mg) of mix following a significant mix change.

The Contractor shall test the quality control sample of each production paired sample as follows:

Two gyratory specimens shall be prepared and compacted in accordance with Materials I.M. 325G and the results averaged to determine sample results.

Density shall be determined for each specimen in accordance with Materials I.M. 321.

The Contractor's field quality control laboratory compaction shall be used for field density control. The laboratory density for field control will be the bulk specific gravity of compacted

mixture (G_{mb}) at N_{design} . Bulk specific gravity at N_{design} will be determined by compacting specimens to N_{max} and back calculating the bulk specific gravity at N_{design} .

The Theoretical Maximum Specific Gravity of the uncompacted mixture shall be determined in accordance with Materials I.M. 350 or other test methods recognized by AASHTO or ASTM.

The laboratory air voids shall be determined in accordance with Materials I.M. 501.

When liquid anti-strip additives are used, the Contractor shall satisfy one of the following methods to regulate the quantity of additive.

a. The Contractor shall present Certification that the equipment used to measure and blend the liquid anti-strip additive meets the anti-strip supplier's recommended practice, that the equipment is directly tied to the asphalt binder supply system, and that the equipment has been calibrated to the equipment manufacturer's guidelines.

b. The Contractor shall test the binder to measure the quantity of liquid anti-strip additive in the binder every 5000 tons (5000 Mg) of HMA production. The supplier's test method shall be approved by the Engineer prior to use of the test.

c. The Contractor shall run AASHTO T 283 during production. If the Contractor is unable to certify or test for the presence and quality, the Contractor shall run AASHTO T 283 each 10,000 tons (10,000 Mg) of production to measure the effectiveness of the additive. The test results shall satisfy 80% TSR when compared to the dry strength of specimens prepared with asphalt binder containing the anti-strip additive.

2. Production Control.

After the JMF is established, the combined aggregate furnished for the project, the quantity of asphalt binder and laboratory air voids should consistently conform to the JMF, as target values, and shall be controlled within the production tolerances given in Table 2. Plant production must be controlled such that the plant produced HMA mixture will meet mixture design criteria for Air Voids and VMA at N_{design} gyrations of the gyratory compactor within the test tolerances give in the table. The slope of the gyratory compaction curve of plant produced material shall be monitored and variations in excess of ± 0.40 of the mixture design gyratory compaction curve slope may indicate potential problems with uniformity of the mixture.

The gyratory mix design gradation control points for the size mixture designated in the project plans will not apply to plant production control.

Measured Characteristic	Target value	Specification Tolerance
Cold feed gradation No. 4 (4.75 mm) and larger sieves	by JMF	± 7.0
Cold feed gradation No. 8 (2.36 mm)	by JMF	± 5.0
Cold feed gradation No. 30 (600 µm)	by JMF	± 4.0
Cold feed gradation No. 200 (75 μ m)	by JMF	± 2.0 ⁽¹⁾
Daily asphalt binder content	by JMF	± 0.3
Field laboratory air voids	4.0 (2)	-0.5 / +1.0 (3)
VMA ⁽⁴⁾	by JMF	± 1.0 ⁽⁵⁾

(2)	The filler/bitumen ratio of the plant produced mixture will be maintained between 0.6 and 1.4.
(3)	Unless otherwise specified
(4)	Based on the moving average of four test values
(5)	Restricted to an asphalt film thickness as specified for the level of HMA mixture
(6)	Based on the daily lot average

The Contractor shall strive for the target value of the percent air void and asphalt binder by adjusting gradation and asphalt binder content.

The Contractor shall produce a mixture of uniform composition conforming to the JMF. If, during production, the Contractor determines from quality control testing that adjustments are necessary to the JMF to achieve the specified properties, adjustments to the JMF target gradation and asphalt binder content values may be made.

Adjustments to the JMF aggregate proportions and asphalt binder content shall be made as a result of the interactive process between the Contractor and the Engineer. The Contractor's adjustment recommendations shall prevail, provided all specifications and established mix design criteria are being met for plant production.

The voids in the mineral aggregate (VMA) and estimated film thickness shall be measured for specification compliance every day of HMA production.

Quality control charts in accordance with Materials I.M. 511 shall be available and kept current showing both individual test results and moving average values. Moving averages shall be based on four consecutive test results. Moving averages may only restart in the event of a mandatory plant shutdown for failure to maintain the average within the production tolerance. Control charts shall include a target value and specification tolerances.

Laboratory voids for individual tests shall be calculated according to Materials I.M. 501, using the individual density and individual maximum specific gravity determined for each sample. The moving average of laboratory voids shall be the average of the last four individual laboratory voids.

The Contractor shall monitor the test results and to make mix adjustments, when appropriate, to keep the mixture near the target values. The Contractor shall notify the Engineer whenever the process approaches a specification tolerance limit. One moving average point for laboratory air voids outside the specification tolerance limit shall be cause to cease operations. The Contractor shall assume the responsibility to cease operations, including not incorporating produced material which has not been placed. The process shall not be started again until the Contractor notifies the Engineer of the corrective action proposed.

C. Construction.

1. Density.

Density samples shall be taken from the compacted mixture and tested not later than the next working day following placement and compaction.

A lot shall be considered as one layer of one mixture placed during a day's operation. The Engineer may approve classifying multiple layers of construction placed during a single day as a lot provided only one mixture was used.

The Engineer may waive sampling for density provided compaction has been thorough and effective in the following situations:

- a. when the day's operation is not more than 2500 square yards (2500 m²),
- b. when the day's operation is not more than 500 tons (500 Mg),
- c. when the mixture is being placed in irregular areas, or
- d. when placing wedge or strengthening courses.

Density samples shall be taken and will be tested for each lot in accordance with Materials I.M. 204. The length laid in each lot will be divided into approximately equal sublots and one sample shall be obtained at a random location, as directed and witnessed by the Engineer in each sublot.

If a sample is damaged or measures less than 70% or more than 150% of the intended thickness, an alternate sampling location will be determined and used. Samples shall not be taken less than 1 foot (300 mm) from the edge of a given pass of the placing equipment, from run-outs or from day's work joints or structures.

The quality index for density of each lot shall be determined by the following formula:

$$QI_{DENSITY} = \frac{\left(\text{Average } G_{mb}\right)_{\text{FIELD LOT}} - \left(\left(\% \text{ Density}\right)_{\text{SPECIFIED}} \times \left(\text{Average } G_{mb}\right)_{\text{ LAB LOT}}\right)}{\left(\text{Standard Deviation } G_{mb}\right)_{\text{FIELD LOT}}}$$

where $QI_{Density} = Quality$ Index for density $G_{mb} = bulk$ Specific Gravity of the mixture

When the quality index falls below 0.00, the Engineer may declare the lot or parts of the lot defective.

If one of the density test values from a lot is an outlier, identified in accordance with the procedure described in Materials I.M. 501, the outlier value shall not be used to determine the quality index. The quality index shall be determined using the remaining density test values.

If only one laboratory density value is obtained that day, combine that value with the next day's test results to evaluate both days' production. If two or more laboratory density values are obtained that day, then the average of those tests alone shall be used. If a significant mix change has been made, only the appropriate laboratory density values should be used with the corresponding density cores.

2. Thickness.

The thickness of the completed course will be measured to the nearest 1/8 inch (3 mm), exclusive of seal coat, by measurement of cores. All areas of uniform and similar thickness and width for the project will be divided into lots.

The frequency specified for taking density samples from the surface lift will be used when measuring for completed thickness. However, samples that may not be tested for density because they are less than 70% of the intended thickness shall be used for thickness, and in these particular instances, the additional samples of sufficient thickness that are used for density tests shall not be measured for thickness. Thickness samples will be taken full depth of the completed course and after measurement, the density samples for the top layer shall be removed by the Contractor from the core. If any of the measurements for a lot is less than the designated thickness, the quality index for thickness of that lot will be determined by the following formula:

(English)

$$Q.I._{Thickness} = \frac{AvgerageThickness_{Measured} - (Thickness_{Plan} - 0.5)}{Max.Thickness_{Measured} - MinimumThickness_{Measured}}$$

(Metric)

$$Q.I._{Thickness} = \frac{AverageThickness_{Measured} (Thickness_{Plan} - 12.7)}{Max.Thickness_{Measured}} = MinimumThickness_{Measured}$$

When the day's operation is 2500 square yards (2500 m2) or less, or the mixture is being placed in irregular areas or next to structures, the Engineer may waive sampling for thickness provided there is reasonable assurance that the pavement conforms to the required thickness. When the quality index falls below 0.00, the Engineer may declare the lot or parts of the lot defective.

3. Smoothness

Section 2317 shall apply to all HMA surface mixture bid items of a Primary project if any individual HMA mixture bid item is 1000 tons (1000 Mg) or greater or 5000 square yards (4200 m²) or greater. Section 2316 shall apply to all other Primary projects with a surface course and when specifically required for other projects.

D. Sampling and Testing.

The Contractor shall maintain and calibrate the quality control testing equipment with prescribed procedures. Sampling and testing shall conform to specified procedures as listed in the applicable Materials I.M. and Specifications. When the results from a Contractor's quality control lab are used as part of product acceptance, the lab shall be qualified.

All quality control samples and field lab gyratory specimens used for acceptance shall be identified, stored, and retained by the contractor until the lot is accepted. The Contracting Authority will prescribe the method of securing the identity and integrity of the verification samples in accordance with Materials I.M. 511. All verification samples shall be stored by the contractor for the Contracting Authority until delivery to the Contracting Authority's lab.

All samples shall be identified by a system approved by the Engineer.

1. Individual Materials and Loose Mixture.

All samples of asphalt binder, aggregate, and tack coat material, shall be identified, secured, and promptly delivered to the appropriate laboratory, as designated by the Engineer.

Paired samples of loose HMA mixture shall be taken in accordance with Materials I.M. 322, each box of the pair weighing at least 30 pounds (14 kg). The Contractor's quality control tests for mixture properties shall be conducted on representative portions of the mix, from the quality control sample of each sublot.

Samples shall be split for specimen preparation in accordance with Materials I.M. 357.

Paired sampling may also be accomplished by taking a bulk sample and immediately splitting the sample in accordance with Materials I.M. 322 on the grade.

All test results and calculations shall be recorded and documented on data sheets approved by the Contracting Authority. Specific test results shall be recorded on the Daily Plant Report provided by the Contracting Authority. The Daily Plant Report shall also include a description of quality control actions taken (adjustment of cold feed percentages, changes in JMF, etc.). The Contractor shall FAX, or deliver by other method approved by the Engineer, the Daily Plant Report to the Engineer and designated laboratory daily. A copy of the electronic file containing

project information generated during the progress of the work shall be furnished to the Engineer at project completion.

When sampling for AASHTO T 283, the Contractor shall obtain a 50 pound (25 kg) sample in accordance with Materials I.M. 322. The Engineer will select, at random, the sample location. The Contractor shall split the sample and deliver half to the Central Materials Laboratory.

2. Compacted Pavement Cores.

The Contractor shall cut and trim samples under the direction of and witnessed by the Engineer for tests of density, thickness, or composition, by sawing with a power driven masonry saw or by drilling a minimum 4 inch nominal diameter core. The surfaces shall be restored by the Contractor the same day. The core holes shall be dried, filled with the same type of material, and the material properly compacted. Pavement core samples will be identified, taken possession of by the Engineer, and delivered to the Contractor's quality control field laboratory.

The Engineer may either:

- · Transport the cores directly to the lab, or
- Secure the cores and allow the Contractor to transport the cores to the lab.

The compacted HMA pavement will be tested in a timely manner by the engineer's personnel who are lowa DOT Certified to perform the test.

The minimum number of cores taken shall be in accordance with Materials I.M. 204, Appendix F.

The core locations will be determined by the Engineer.

The cores shall be prepared and tested in accordance with Materials I.M. 320, 321, and 337.

3. Verification, and Independent Assurance Testing.

The Contractor's quality control test results from paired samples will be validated by the Engineer's verification test results on a regular basis using guidelines and tolerances set forth in Materials I.M. 216 and 511.

If the Engineer's verification test results validate the contractor's test results, the Contractor's results will be used for material acceptance. Disputes between the Contractor's and Engineer's test results will be resolved in accordance with Materials I.M. 511.

The Engineer will select, at random, one or more of the daily hot mix production verification samples. Some or all of the samples selected will be tested in the materials laboratory designated by the Engineer. The Engineer will use the verification test results to determine if the Contractor's test results can be used for acceptance.

The Engineer will test each lot of cores. These will be tested at the Contractor's field quality control laboratory. Cores may also be tested by the Contractor, but the Contractor's test results will not be used for material acceptance.

All personnel and laboratories performing tests used in the acceptance of material shall participate in the statewide Independent Assurance Program in accordance with Materials I.M. 208.

2303.05 METHOD OF MEASUREMENT.

- A. Hot Mix Asphalt Mixture.
 - 1. Measurement by Weight (Mass).

When measurement is by weight (mass), the quantity of Hot Mix Asphalt Mixture of the type specified will be expressed in tons (megagrams) and determined from the weight (mass) of individual loads, including fillets, measured to the nearest 0.01 tons (0.01 Mg).

Loads may be weighed in trucks, weigh hoppers, or from the weight (mass) from batch plants computed by count of batches in each truck and batch weight (mass). Article 2001.07 applies. The weights (mass) of various loads shall be segregated into the quantities for each pay item.

2. Measurement by Area.

When payment is based on square yards (square meters), the quantity of Hot Mix Asphalt Mixture of the type specified, will be the quantity shown in the contract documents to the nearest 0.1 square yard (0.1 m^2) .

When constructing shoulders on a basis of payment of square yards (square meters), inspection of the profile and elevation will be based on the completed work relative to the pavement edge; the Contractor shall be responsible for the profile and elevation of the subgrade and for thickness.

If the Contractor chooses to place intermediate or surface mixture in lieu of base for the outside shoulders, the quantity will be calculated from the pavement and shoulder template, or when placed as a separate operation, from scale tickets. If the substitute mixture placed on the shoulder is for an intermediate course fillet only, the quantity in the fillet shall be included for payment in the quantity placed in the adjacent intermediate course.

Removal of fillets shall be incidental to the contract unit price for the mixture.

B. Asphalt Binder.

The amount of asphalt binder used from batch plants, continuous plants, or drum mixing plants, shall be by stick measurement in the Contractor's storage tank or by in-line flow meter reading, in accordance with Article 2001.07, B. The asphalt binder quantity added to the storage tank shall be computed from a supplier certified transport ticket accompanying each load. The quantity of asphalt binder not used in the work will be deducted.

When the quantity of asphalt binder in a batch is measured by weight (mass) and is separately identified by automatic or semi-automatic printout, the Engineer may compute from this printout the quantity of asphalt binder used.

By mutual agreement, this method may be modified when small quantities or intermittent operations are involved.

The Engineer will calculate and exclude the quantity of asphalt binder used in mixtures in excess of the tolerance specified in Article 2303.04, B, 2.

When payment for HMA is based on area, the quantity of asphalt binder used will not be measured separately for payment.

C. Recycled Asphalt Pavement.

The quantity of asphalt binder in RAP, which is incorporated into the mix, will be calculated in tons (megagrams) of asphalt binder in the RAP, based on an assumed asphalt binder content of 5% of the dry RAP weight (mass).

The quantity of asphalt binder in RAP, which is incorporated into the mix, will be included in the quantity of asphalt binder used.

The quantity of asphalt binder in unclassified RAP will not be measured for payment.

D. Anti-strip Agent.

Hydrated lime incorporated in HMA mixtures will not be measured separately. The quantity will be based on tons (megagrams) of HMA mixture with anti-strip agent added.

E. Tack Coat.

Tack Coat shall be considered incidental to HMA, and will not be measured separately.

F. Fabric Reinforcement.

The quantity of Fabric Reinforcement, in square yards (square meters), to the nearest 0.1 square yard (0.1 m^2) , will be the quantity shown in the contract documents.

G. Adjustment of Fixtures.

The Engineer will count the number of fixtures adjusted to the finished grade.

H. Hot Mix Asphalt Pavement Samples.

HMA Pavement Samples of any finished pavement furnished according to Article 2303.04 D, or required elsewhere in the contract documents, will not be individually counted for payment.

2303.06 BASIS OF PAYMENT.

The costs of designing, producing, placing, and testing bituminous mixtures and the cost of furnishing and equipping the QM-A field laboratory shall not be paid for separately, but shall be included in the contract unit price for the HMA mixes used. The application of tack coat, and sand cover aggregate are incidental and will not be paid for separately. Any pollution control testing shall be at the Contractor's expense. The installation of temporary Stop Sign Rumble Strips will not be paid for separately, but shall be considered incidental to the price bid for the HMA course for which it is applied.

A. Hot Mix Asphalt Mixture.

The Contractor will be paid the contract unit price for Hot Mix Asphalt Mixture of the type specified per ton (megagram) or square yard (square meter).

Surface course test strip placement in an intermediate lift will be paid for at the contract unit price for Hot Mix Asphalt Mixture, Surface Course, per ton (megagram).

Payment will be adjusted by the following percentages for the quality index for density determined for the lot:

Quality Index (Density) 7 Samples ⁽¹⁾	Percent of Full Paymen		
greater than 0.72	100		
0.40 to 0.72	95		
0.00 to 0.39	85		
Less than 0.00	75 Maximum		
	Samples ⁽¹⁾ greater than 0.72 0.40 to 0.72 0.00 to 0.39		

⁽¹⁾ Or 6 samples and 1 outlier. Only one outlier will be allowed.

When the basis of payment is by area, payment will be further adjusted by the appropriate percentage according to the quality index for thickness determined for that lot and the following table:

Quality Index (Thickness) 7 Samples	Percent of Payment (Previously Adjusted for Density)
greater than 0.34	100
0.14 to 0.34	95
0.00 to 0.13	85

75 Maximum		
D	iximum	

Courses for which quality index (thickness) is not determined because of size or shape, and courses which are found to be deficient in average width, will be paid for according to Article 1105.04.

When liquid anti-strip agent is used and production quality control testing for AASHTO T 283 is required, the payment for HMA will be adjusted according to the following table:

Percent TSR	Percent of Full
Greater than 79	100
79 to 70	90
Less than 70	75 maximum

B. Asphalt Binder.

Γ

For the number of tons (megagrams) of asphalt binder used in the work, measured as provided in Article 2303.05, B, the Contractor will be paid the contract unit price per ton (megagram).

Payment for asphalt binder will be for all new asphalt binder and the asphalt binder in RAP salvaged from the project, the Contracting Authority owned stockpile, or certified Contractor owned stockpiles, which is incorporated in the mixture.

When scarification of asphalt material is required and is paid for on the basis of square yards (square meters) and no other use of the RAP is specified, the RAP shall become the property of the Contractor, and the Contractor shall not be charged for the asphalt binder in that material.

When the basis of payment for HMA is in square yards (square meters), compensation for asphalt binder will be included in the contract unit price per square yard (square meter).

C. Recycled Asphalt Pavement.

RAP which is owned by the Contracting Authority will be made available to the Contractor for the recycled mixture at no cost to the Contractor other than loading, hauling, and processing as required for incorporation into the mix.

D. Anti-strip Agent.

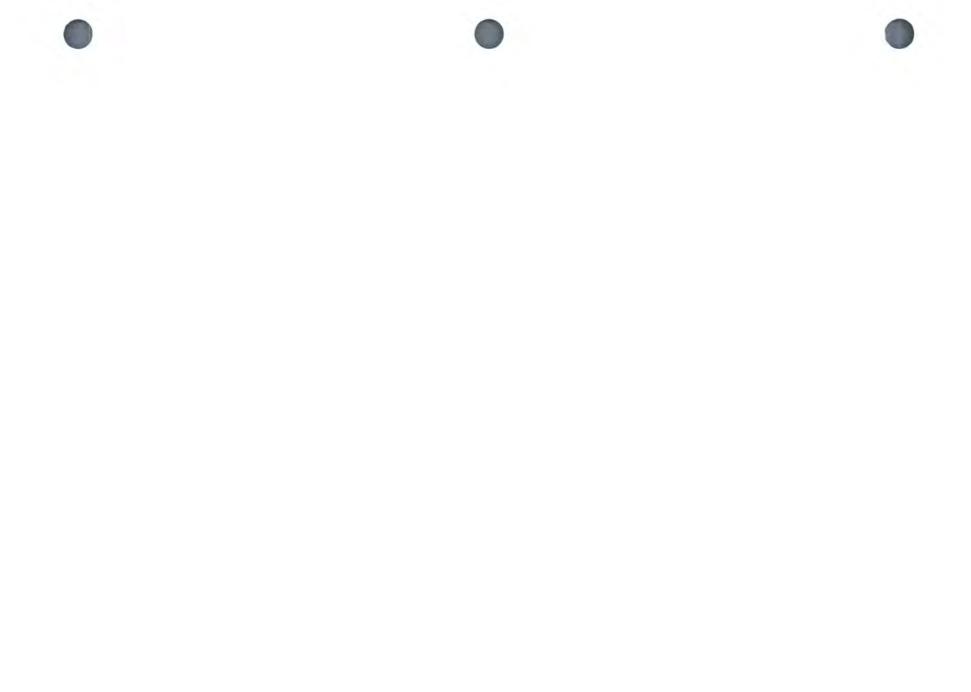
When anti-strip agent is required according to Article 2303.02, E, 2, the incorporation of the anti-strip agent into the HMA mixture will be considered as extra work ordered by the Engineer. Payment will be made at the rate of \$1.00 per ton (megagram) of HMA mixture in which the anti-strip agent is incorporated. This payment will be full compensation for designing, adding, and testing for anti-strip agent.

E. Fabric Reinforcement.

The Contractor will be paid the contract unit price for Fabric Reinforcement per square yard (square meter). This payment shall be full compensation for furnishing all materials, labor, and equipment necessary for installing the fabric as required, including the adhesive or heavy tack coat of asphalt binder used as the adhesive.

F. Adjustment of Fixtures.

For the number of fixtures adjusted to the finished grade line, the Contractor will be paid the contract unit price for each. If the contract contains no price for adjustment of fixtures, this work will be paid for as provided in Article 1109.03, B.


G. Hot Mix Asphalt Pavement Samples.

For cutting HMA pavement samples to determine density or thickness according to the specifications, when either of these is the responsibility of the Contractor, and elsewhere when required by the

contract documents, the Contractor will be paid the lump sum contract price. This lump sum payment shall be full compensation for furnishing all such samples for all courses or items of work, and for delivery of samples as specified in Article 2303.04, D.

SS-01045 (Replaces SS-01039)

lowa Department of Transportation

SPECIFICATIONS

FOR

RECYCLED ASPHALT PAVEMENT (RAP)

Effective Date October 17, 2006

THE STANDARD SPECIFICATIONS, SERIES 2001, ARE AMENDED BY THE FOLLOWING MODIFICATIONS AND ADDITIONS. THESE ARE SUPPLEMENTAL SPECIFICATIONS AND THEY SHALL PREVAIL OVER THOSE PUBLISHED IN THE STANDARD SPECIFICATIONS.

This specification applies to projects on the Primary Road System only. It may apply to other projects when specifically identified in the contract documents.

Replace all of Article 2303.02, C with the following:

C. Recycled Asphalt Pavement.

RAP is salvaged asphalt pavement. RAP shall be from a source designated in the contract documents, a Classified RAP stockpile, or Unclassified RAP furnished by the Contractor. The designations Classified and Unclassified are exclusively for the use of RAP in HMA.

The Contractor shall identify each RAP stockpile and document Classified RAP stockpiles as directed in Appendix A. Information required for documentation of Classified RAP material in a stockpile for future use in HMA shall include identification of the project from which the material was removed; mix data from the original project including mixture type, aggregate classification, location and depth in the pavement structure; extracted gradation information, if available; and description of stockpile location and quantity. Additional material shall not be added to a Classified RAP stockpile without the approval of the District Materials Engineer.

The Engineer may reject a RAP stockpile for non-uniformity based on visual inspection. Stockpiles shall be worked in such a manner that the materials removed are representative of a cross section of the pile.

Stockpiles of RAP shall be placed on a base sufficient to prevent contamination as directed in Appendix A. RAP stockpiles containing concrete chunks, grass, dirt, wood, metal, coal tar, or other foreign or environmentally restricted materials shall not be used. RAP stockpiles may include PCC patches (not to exceed 10% of the stockpile pavement surface area) from patches or composite pavement that was milled as part of the asphalt pavement may be included in the stockpile.

When RAP is taken from a project, or is furnished by the Contracting Authority, the contract documents will indicate quantity of RAP expected to be available and test information, if known. The Contractor is responsible for salvaging this material. Unless otherwise specified in the contract documents, RAP not used in HMA shall become the property of the Contractor.

For HMA mix design purposes, the Contracting Authority will test samples of the RAP. The aggregate gradation and amount of asphalt binder in the RAP will be based on the Contract Authority's extraction tests. When the amount of RAP binder exceeds 20% of the total asphalt binder, the asphalt binder grade shall be changed as directed in Materials I.M. 510.

1. Classified RAP.

Classified RAP is from a documented source with the aggregate meeting the appropriate quality requirements in Materials I.M. 510, and properly stockpiled.

Classified RAP may be used in the base, intermediate, and surface mixtures for which the RAP aggregate qualifies. The surface course may use up to 15% of Classified RAP. The Contractor may shall obtain the Engineer's approval to use more than 15% of Classified RAP for the surface course when there is quality control sampling and testing of the RAP meeting the requirements in Appendix A. Not more than 30% of the total asphalt binder in the surface mix shall come from the RAP.

2. Unclassified RAP.

Any stockpiled RAP not meeting the requirements of Classified RAP or from an unknown source shall be designated as Unclassified RAP. For Interstate and Primary projects, up to 10% Unclassified RAP may be used in HMA base and shoulder mixtures. For Primary projects, up to 10% Unclassified RAP may be used for equal to or less than 1,000,000 ESAL intermediate mixtures. For all other projects, up to 10% Unclassified RAP may be used in HMA base, intermediate, and shoulder mixtures. There will be is no friction aggregate credit or aggregate crushed particles credit for Unclassified RAP.

When an Unclassified RAP stockpile is characterized by sampling and testing for mix design, no material can be added to the stockpile until the project is completed.

Replace all of Article 2303.05, C with the following:

C. Recycled Asphalt Pavement.

The quantity of asphalt binder in classified or unclassified RAP, which is incorporated into the mix, will be calculated in tons (megagrams) of asphalt binder in the RAP, based on the actual asphalt binder content determined for the mix design from the results of the Engineer's extraction test.

The quantity of asphalt binder in classified or unclassified RAP, which is incorporated into the mix, will be included in the quantity of asphalt binder used.

Replace the second paragraph of Article 2303.06, B with the following:

Payment for asphalt binder will be for all new asphalt binder and the asphalt binder in the RAP which is incorporated in the mixture.

The quantity of asphalt binder in classified or unclassified RAP, which is incorporated into the mix, will be calculated in tons (megagrams) of asphalt binder in the RAP. This will be based on the actual asphalt binder content determined for the mix design from the results of the Engineer's extraction test.

Appendix A - Instructions for RAP for HMA Mixtures (Supersedes Materials I.M. 505)

GENERAL

This Appendix describes requirements for processing, storing, documenting, and sampling & testing of RAP intended for use in HMA mixtures.

All notifications and documentation shall be submitted to the District Materials Engineer based on the District responsible for the location of the initial RAP stockpile.

PROCESSING

RAP suitable for HMA shall be processed by milling and/or crushing to a maximum particle size of 1.5 inches (37.5 mm). The Contractor shall notify the Engineer and District Materials Engineer 48 hours before processing begins.

Additional screening or blending may be done to achieve a more uniform stockpile. This processing may be done as the stockpile is built or as part of the HMA plant production. Additional actions that may improve the consistency of the RAP include further crushing to reduce top size, screening into coarse and fine fractions, or blending by proportioning through a two-bin cold feed.

STORAGE

Stockpiles shall be placed on a base with adequate drainage, constructed in layers to minimize RAP segregation and ensure a workable face.

To meet Classified RAP criteria, separate stockpiles shall be constructed for each source of RAP based on the quality of aggregate, type and quantity of asphalt binder, and size of processed material.

All RAP stockpiles shall be identified by maps of stockpile areas and signs placed in or near each stockpile.

DOCUMENTATION of CLASSIFIED RAP STOCKPILES

Stockpiled RAP material will only be considered Classified RAP when the following documentation requirements are met. No documentation is required when the RAP is used on the project it came from, or a tied project.

- Form 820009r (see Appendix B) is completed by the RAP owner and a copy is forwarded to the District Materials Engineer within 10 calendar days of completing the stockpile.
- Any special handling, treatment or conditions of the RAP or it's use should be described on this form.
- Maps shall provide details that depict the stockpile site, including adjacent stockpiles of RAP or aggregates, permanent plant equipment, and landmarks.
- Maps and signs shall identify the stockpile by RAP Identification Number.

The District Materials Engineer will review Form 820009r for accuracy. Portions of the form including assigning the RAP identification number, aggregate quality type, crushed particle and friction type credit, average values for extracted aggregate gradation, aggregate bulk specific gravity, aggregate absorption and asphalt binder content will be completed by the District Materials Engineer.

Notify the District Materials Engineer at least 48 hours before relocating or reprocessing a classified RAP stockpile for future use (not intended for a specific project). The notification shall include the estimated quantity of RAP being relocated or reprocessed and the new location of the stockpile. Relocation of RAP shall be reported on Form 820009r and submitted to the District Materials Engineer within 10 calendar days of completing the relocation. Reprocessing a Classified RAP stockpile may require additional sampling, testing, and new Form 820009r with reassignment of a RAP Identification Number.

Before January 1st of each year, the Contractor shall update Form 820009r on the status of each Classified RAP stockpile. Report the estimated quantity of RAP removed for the construction season completed and the available RAP in each stockpile for future use.

SAMPLING AND TESTING

Mix Design

A certified Level I Aggregate Technician shall obtain the samples. Samples for mix design testing shall be obtained from at least 3 locations. Significant mixture differences in the pavement to be recycled may require separate stockpiles and samples. A sampling plan shall be developed by the Contractor and approved by the District Materials Engineer prior to sampling.

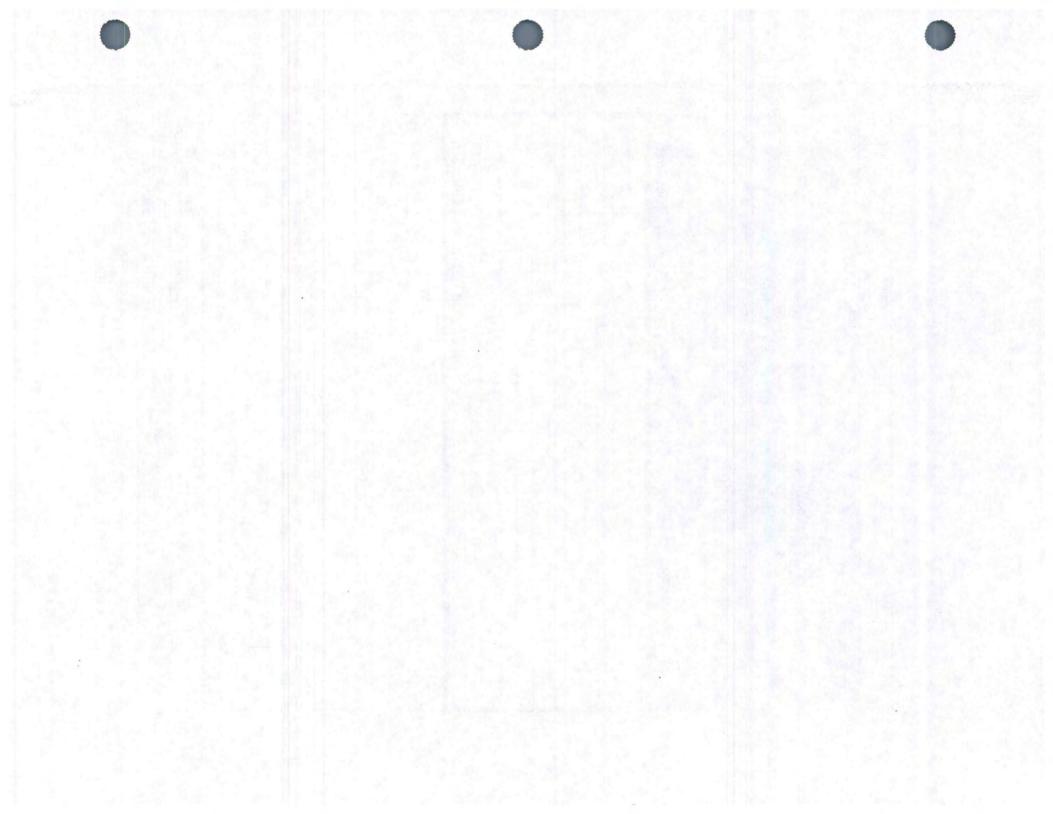
Samples for mix design obtained from the RAP stockpile are the most representative, but not always possible when the mix designs are performed. When stockpile samples are not available, RAP samples shall be obtained by milling a minimum of 50 feet (15 m) of project length at each sample location. Other methods of sampling for mix design, including coring or air-hammer patch areas, may only be used with the approval of the District Materials Engineer.

Obtain sufficient material for contractor mix design testing and owner agency RAP extraction testing as recommended in Materials I.M. 510. A representative 30 pound (15 kg) sample split from the total sample shall be delivered to the District Materials Laboratory for extraction testing. Results of the extraction test will be provided to the Contractor within 4 weeks of sample delivery.

Quality Control

When RAP quality control is required, the Contractor shall use one of the following quality control sampling programs. A certified Level I Aggregate Technician shall obtain the samples.

- Stockpiles The Contractor shall obtain a representative sample of RAP from the stockpile for each 1000 tons of RAP placed in the stockpile.
- HMA Plant The Contractor shall obtain a representative sample of RAP from the HMA plant RAP feed belt for each lot of HMA produced.


The Contractor shall use the ignition oven (Materials I.M. 338) or chemical extraction (AASHTO T 164) to extract the aggregate from the RAP sample. Calibration of the asphalt binder content from the ignition oven extraction is not required for the RAP quality control program. The gradation of the extracted RAP aggregate and the un-calibrated asphalt binder content shall be logged and charted within 24 hours of sampling.


Appendix B - Classified RAP Stockpile Report (Form 820009r)

820009r (De							
		RAP Stockpile Rep	ort	RAP	Stocknile	ID #	
Stockpile Owner.			IVAI	AP Stockpile ID #			
SOURCE OF RAP Project No.					of Removal		
Route No.	No. From			То			
-			Ad. T.	- 1	Orechard Day	t'-l- 0/	
Removal Depth JMF No(s) Mix Ty Size		Mix Typ	e/	Crushed Par	ticle %		
	-		Size				
	-						
LOCATION	OF I	RAP STOCKPILE:					
County		Section		T	ownship	Rang	e
	of sto	ockpile base:				1.10.19	
Processing	rema	arks:					
j							
STOCK		QUANTITY INVENT	OBVIOC				
Date	FILE	Quantity	UKTLUG		ition (Project N	(agu bre o	
Date	-		al initial st			io. and use)	
	-	1010	ii initiai st	оскрпе	quantity		
	-			-			
	-						
	-						
	-			-			
				-			-
	-	1.1					
1				-			
				-			
Avera	ae E)	TRACTION TEST	RESULTS		Anna	ata Characte	victics
		Report nos	s.	Aggrega	ate Characte	insucs	
3/4					Aggregate Tu		1
1/2					Aggregate Ty	pe	
3/8	4	Ph =	Ph =		Crushed Particles		
No. 4		10-	Pb =				%
No. 8	1. 1	Gsb =	Gsh =		Aggr Friction Type 2		%
No. 16		000				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A Statement of the second s
No. 30	12 P= 3	Abs% =	Abs% =		Aggr Friction Type 3		%
No. 50	1						
No. 100		FAA =	- FAA =		Aggr Friction Type 4		%
No. 200	The second	and the set of the set	o complete	d by the	and the second second		
Stocknik		Shaded boxes to b ner Representative	e complete	u by the l	District Materials	Date	
					19.0	Date	
District Materials Representative						Duto	

SS-01049 (Replaces SS-01036)

Iowa Department of Transportation

SUPPLEMENTAL SPECIFICATIONS

FOR

QUALITY CONTROL PROGRAM FOR SMALL HMA PAVING QUANTITIES

Effective Date April 17, 2007

THE STANDARD SPECIFICATIONS, SERIES 2001, ARE AMENDED BY THE FOLLOWING MODIFICATIONS AND ADDITIONS. THESE ARE SUPPLEMENTAL SPECIFICATIONS AND THEY SHALL PREVAIL OVER THOSE PUBLISHED IN THE STANDARD SPECIFICATIONS.

01049.01 GENERAL.

This Supplemental Specification applies to work on the Interstate, Primary, and Secondary road systems and defines the quality control programs for contracts with HMA mixtures. These requirements will not apply to mixtures used for HMA patching.

For each approved HMA job mix formula applied to a combined contract quantity HMA mixture bid item of more than 1000 tons (1000 Mg), all requirements of Article 2303.04 of the Standard Specifications shall apply.

For each approved HMA job mix formula applied to a combined contract quantity HMA mixture bid item of 1000 tons (1000 Mg) or less shall be defined as small quantities and shall meet the requirements of this Supplemental Specification.

01049.02 QUALITY CONTROL FOR SMALL QUANTITIES.

A. Mix Design.

The Job Mix Formula (JMF) shall be prepared by the Contractor and approved by the Engineer prior to HMA production. The mix design shall comply with Article 2303.02 of the Standard Specifications and Materials I.M. 510.

B. Plant Production.

The calibration of the HMA production plant for the JMF shall be current and not more than 12 months old.

The Contractor shall use certified asphalt binder and approved aggregate sources meeting the JMF. The plant shall maintain an asphalt binder log to track the date and time of binder delivery. The HMA delivery tickets shall identify the JMF.

The Contractor shall monitor the quality control test results and make adjustments to keep the mixture near the target JMF values.

C. Construction.

Density measurements shall be taken of the compacted mixture, except when Class II compaction is specified. The Contractor's field quality control laboratory compaction shall be used for field density control as specified in Article 2303.04 of the Standard Specifications. The Engineer may accept the density of the compacted layer based on cores or density gauge. The Engineer may waive density measurement provided the compaction has been thorough and effective. Density measurements of the compacted mixture shall be taken no later than the next working day following placement and compaction.

For small quantities, a lot will be the entire quantity of each HMA mixture bid item.

The quality index for density will not apply to small quantities.

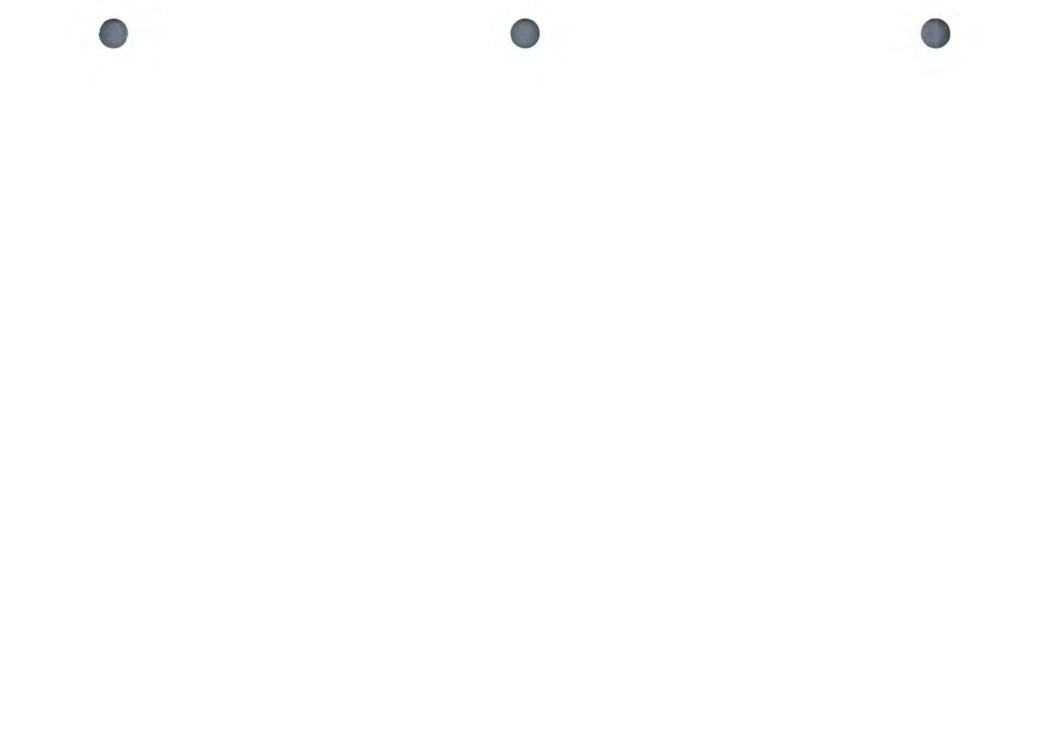
D. Sampling and Testing.

Material sampling and testing is for production quality control only. Acceptance of mixture is based on Contractor certification. The Contractor shall perform a minimum of one aggregate cold-feed and one loose HMA test per lot. Sampling and testing of loose HMA is only required for mechanically placed mixture. All sampling and testing procedures shall follow the Standard Specifications and Materials I.M.s using certified technicians and qualified testing equipment. The Engineer may approve alternative sampling procedures. The sample shall be taken between the first 100 to 200 tons (100 to 200 Mg) of production. No split samples for agency cerrelation verification testing are required.

Asphalt binder will be accepted based on the asphalt supplier's shipment certification. No binder sampling or testing is required.

No material sampling or testing is required for daily HMA production of less than 100 tons (100 Mg) on any project.

E. Certification.


The Contractor shall provide a certification for the production of any mixture in which the requirements in this Supplemental Specification for small quantities are applied. The test results and certification statement shall be placed on the Daily HMA Plant Report (Form 800241). The Daily HMA Plant Report for certified HMA may be submitted at the end of the project for all certified HMA quantities, or submitted at intervals for portions of the certified quantity. The certification statement shall be as follows:

"The HMA mixture contains certified asphalt binder and approved aggregate as specified in the approved mix design and was produced in compliance with the provisions of SS-01049.02, Quality Control for Small HMA Paving Quantities."

01049.03 METHOD OF MEASUREMENT AND BASIS OF PAYMENT.

A completed Daily HMA Plant Report with the certification statement is required for acceptance measurement and payment for Contractor Certified HMA. The quantity of asphalt binder will be based on the approved JMF and any plant production quality control adjustments. Payment for the quality control requirements for small quantities will not be measured separately and shall be considered incidental to the items of HMA mixtures in the contract.

DS-01003 (New)

lowa Department of Transportation

DEVELOPMENTAL SPECIFICATIONS

FOR

HOT MIX ASPHALT MIXTURES - JOB MIX FORMULA APPROVAL BY TEST STRIP METHOD

Effective Date August 20, 2002

THE STANDARD SPECIFICATIONS, SERIES 2001, ARE AMENDED BY THE FOLLOWING MODIFICATIONS AND ADDITIONS. THESE ARE DEVELOPMENTAL SPECIFICATIONS AND THEY SHALL PREVAIL OVER THOSE PUBLISHED IN THE STANDARD SPECIFICATIONS.

01003.01 DESCRIPTION

This work shall consist of the production of HMA mixture by the Contractor in limited amounts for the purpose of confirming the properties of the mixture and subsequent approval of the Job Mix Formula (JMF). This procedure shall apply to all paving mixtures with plan quantities of at least 5000 tons (5000 Mg) except shoulders, detours, temporary pavement, patching, or base widening. A JMF approved for a project may be used on other projects without additional test strip confirmation, provided that production quality control test results show consistent compliance with the requirements. These Developmental Specifications are intended to modify the specification requirements for test strips to establish roller patterns in Article 2303.03, D, of the Standard Specifications and the requirements for JMF approval in Article 2303.04, A, of the Standard Specifications.

Prior to constructing the test strip, the Contractor must submit a laboratory tested JMF for each mixture to be approved for use on the project.

01003.02 MATERIALS

The aggregates and asphalt binder used in the construction of the test strip shall be the same materials as identified on the laboratory JMF.

01003.03 CONSTRUCTION

The Contractor has the option of constructing a test strip on the project, or off site. When constructed on the project, the test strip for the intermediate course shall be placed as part of the base course or intermediate course; and test strips for surface courses shall be placed as part of the intermediate course. Test strips on the project will be limited to a maximum of 1250 tons (1250 Mg). The Contractor may elect to make adjustments to the mixture proportions during the construction of the test strip in order to refine the JMF. Upon completion of the test strip, production of the JMF mixture being evaluated shall cease for the project until test results are provided to the Engineer and the JMF is approved.

The Contractor shall provide documentation of the compaction procedures used. At the direction of the Engineer, additional test strips may be required if a successful rolling pattern was not established.

01003.04 QUALITY CONTROL

A. Sampling

The Contractor must notify the Engineer at least 24 hours in advance of placing the test strip. The Contractor shall obtain at least three 60 pound (27 kg) loose HMA samples from the test strip in accordance with Materials I.M. 322. The Contractor shall obtain at least one sample of the cold feed aggregate for gradation testing. If a change is made to the aggregate proportions during the placement of the test strip the Engineer may require additional cold feed samples. All samples shall be split and retained for verification

The Engineer may require the Contractor to submit samples of the individual aggregate stockpiles, when needed to confirm the aggregate properties shown on the JMF.

The number of density core samples obtained for the test strip will be increased by one and the low core result will not be used in the Quality Index (Q.I.) density formula for payment for the test strip quantity.

If the specifications for the surface mixture require an anti-strip agent, the test strip for the surface mixture will be used to evaluate the effectiveness of, or need for, the anti-strip agent. When moisture sensitivity testing is required, approval of the JMF includes compliance of the moisture sensitivity testing. In this case, the Contractor must construct the surface test strip far enough in advance of placing the surface course so that moisture sensitivity testing can be completed prior to placing the surface course. The Engineer may require extra mixture samples be obtained for the evaluation of anti-strip agents.

B. Testing

The Contractor shall test at least two of the uncompacted HMA samples obtained for JMF analysis and approval. The Contractor shall test at least one cold feed aggregate sample for gradation. The Engineer will select split samples to test for JMF review.

If the Contractor has agreed to use the ignition oven method for gradation control, calibration of the oven for each mixture shall be accomplished prior to or during test strip construction. The Contractor shall test at least one of the uncompacted HMA samples in the ignition oven and perform a gradation of the resulting aggregate sample.

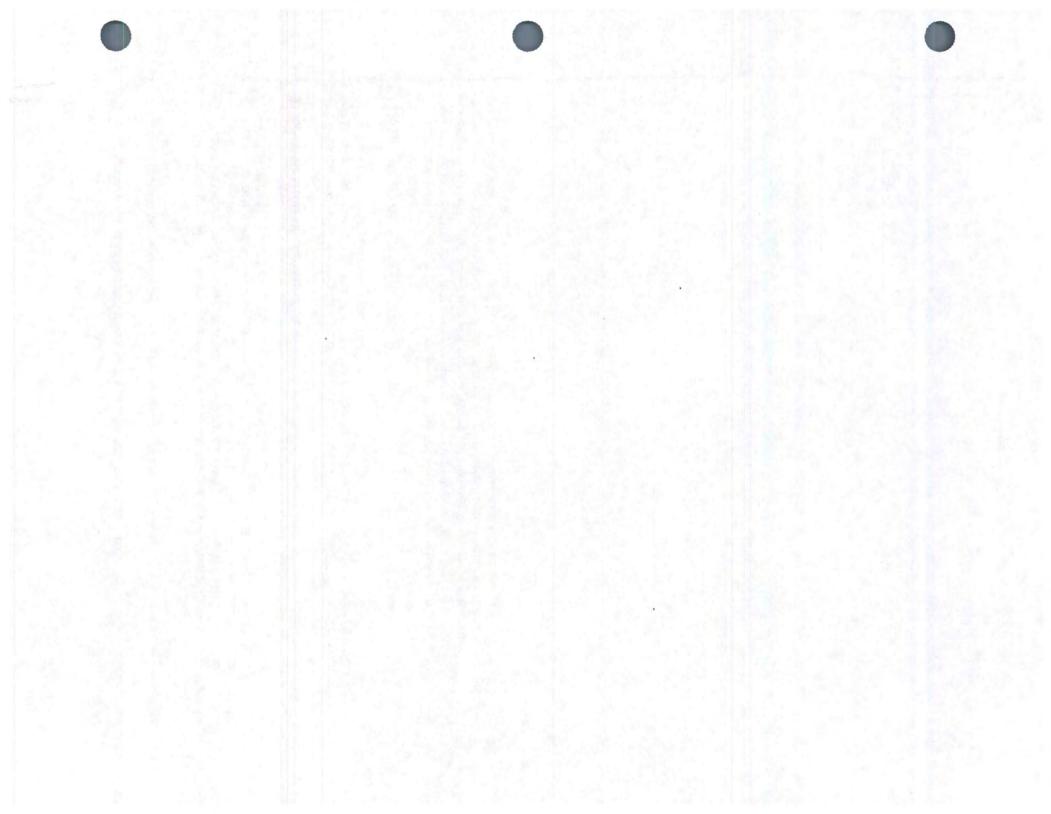
C. JMF Approval

Approval of the JMF will be based on testing of plant produced mixture for compliance with Article 2303.02 of the Standard Specifications.

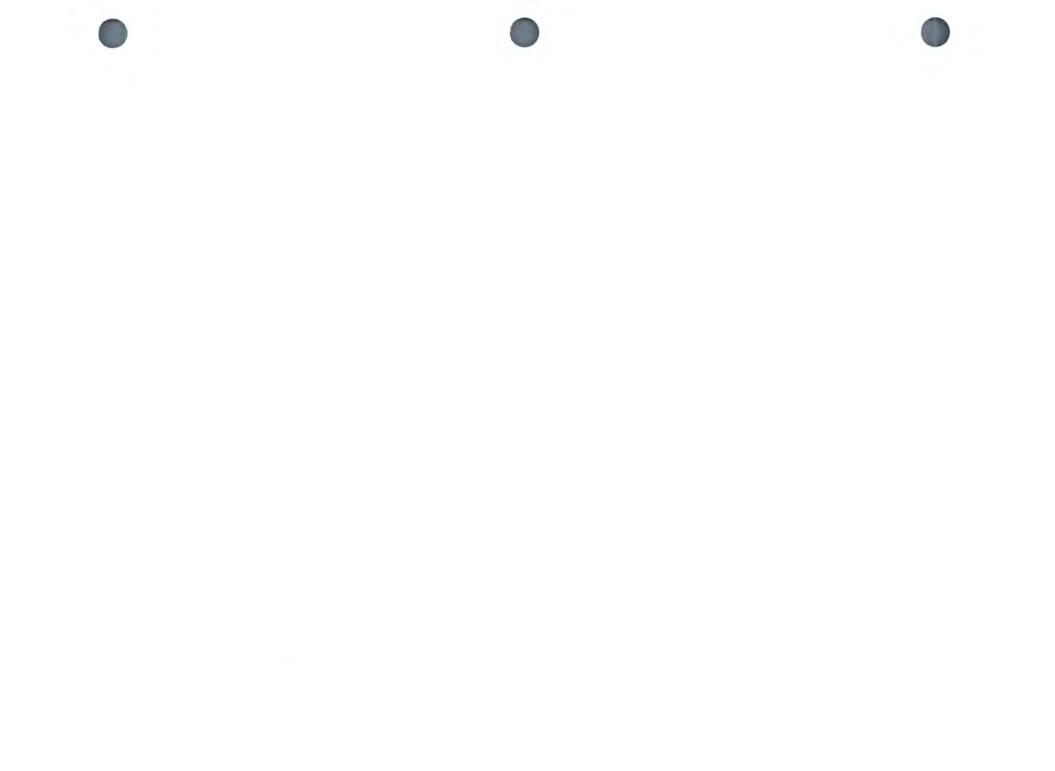
- If the test strip test results show reasonable compliance with the mix design requirements, the JMF will be approved and the Contractor may proceed with full production.
- If the tests indicate the JMF needs adjustment and the Contractor can demonstrate a
 reasonable probability to meet the requirements, the Contractor will be allowed one days full
 production to adjust the mixture and establish compliance with the specified mixture criteria. If
 compliance is not established after one day's production, the Contractor shall construct
 additional test strips as needed to prove the acceptability of the JMF.
- If the test strip test results indicate that extraordinary adjustments are needed to bring the
 mixture into compliance, the Contractor shall construct a second test strip to prove the
 acceptability of the JMF. If the test strip results from the second test strip fail to comply, the
 Contractor shall submit a new laboratory tested JMF prior to placing a third test strip for
 approval.

 If the Contractor elects to change aggregate sources, a new laboratory tested JMF must be submitted prior to constructing a test strip for approval of the JMF.

JMF approval will normally be granted the same day that acceptable test results are provided to the Engineer.


The Engineer may examine the correlation of test results between the Contractor and the District Materials Laboratory; however, noncorrelation will not be used as the sole basis for rejection of the JMF. When noncorrelation occurs for one or more tests, the District Materials Laboratory test results for those tests will be used for evaluation of the JMF. Correlation will be established before the Contractor's test results can be used for acceptance of the mixture.

01003.05 METHOD OF MEASUREMENT


The Engineer will measure the quantities of the various items of work involved in the construction of the test strips in accordance with Article 2303.05 of the Standard Specifications. Test strips constructed off site will not be measured for payment.

01003.06 BASIS OF PAYMENT

The Contractor will be paid the contract unit price for the HMA mixture and the asphalt binder incorporated into the test strip on the project in accordance with Article 2303.06 of the Standard Specifications. Test strips constructed off site will not be paid for. Intermediate course mixture incorporated into the base course as a test strip will be paid for at the contract unit price for intermediate mixture. Surface mixture incorporated into the intermediate course as a test strip will be paid for at the contract unit price for at the contract unit price for at the contract unit price for surface mixture.

DS-01118 (New)

lowa Department of Transportation

DEVELOPMENTAL SPECIFICATIONS FOR HOT MIX ASPHALT MIXTURES

Effective Date November 18, 2008

THE STANDARD SPECIFICATIONS, SERIES 2001, ARE AMENDED BY THE FOLLOWING MODIFICATIONS AND ADDITIONS. THESE ARE DEVELOPMENTAL SPECIFICATIONS AND THEY SHALL PREVAIL OVER THOSE PUBLISHED IN THE STANDARD SPECIFICATIONS.

Replace all of Section 2303 of the Standard Specifications with the following:

01118.01 DESCRIPTION.

This work shall consist of mixture design, production, placement, and compaction of HMA using proper quality control practices for the construction of surface, intermediate, or base course on a prepared subbase, base, or pavement, to the proper dimensions specified in the contract documents.

The Contractor shall be responsible for all aspects of the project, provide Quality Control management and testing, and maintain the quality characteristics specified.

Supplemental Specifications for Quality Control Program for Small HMA Paving Quantities shall apply for HMA bid items with 1000 tons (1000 Mg) or less.

The Contractor shall be responsible for all aspects of the project, provide quality control management and testing, and maintain the quality characteristics specified.

Quality Management - Asphalt (QM-A) This specification shall apply to contracts with HMA bid items greater than 1000 tons (1000 Mg) quantities of 5000 (5000 Mg) or greater and all Interstate contracts. The Contractor shall follow the procedures and meet the criteria established in Article 01118.02, Section 2521 of the Standard Specifications, and Materials I.M. 510, and 511 Appendix A of this specification.

For contracts with less than 5000 tons (5000 Mg) quality control will be the responsibility of the Engineer. The Contractor shall be responsible for the mix design. This does not change the mix requirements from gyratory to Marshall, unless specified in the contract documents.

01118.02 MATERIALS AND EQUIPMENT.

Materials used in these mixtures shall meet the following requirements:

A. Asphalt Binder.

The Performance Graded asphalt binder, PG XX -XX, will be specified in the contract documents to meet the climate, traffic, and pavement conditions. The asphalt binder shall meet the requirements of Section 4137 of the Standard Specifications.

B. Aggregates.

1. Individual Aggregates.

Virgin mineral aggregate shall meet the following requirements:

	VIRGIN MINER	AL AGGREGATES
Mixture	Aggregate Type	Aggregate Requirements
Base	Type B	Section 4127 of the Standard Specifications
Intermediate and Surface	Type B	Section 4127 of the Standard Specifications
Intermediate and Surface	Type A	Section 4127 of the Standard Specifications

When frictional classification of the coarse aggregate is required, the contract documents will specify the friction level and location. The friction aggregate shall be furnished from sources identified in Materials I.M. T203.

For friction classification L-2, at least 80% of the combined aggregate retained on the No. 4 (4.75 mm) sieve shall be Type 4 or better friction aggregate; and at least 25% of the combined aggregate retained on the No. 4 (4.75 mm) sieve shall be Type 2 or better friction aggregate.

For friction classification L-3, at least 80% of the combined aggregate retained on the No. 4 (4.75 mm) sieve shall be Type 4 or better friction aggregate; and at least 45% of the combined aggregate retained on the No. 4 (4.75 mm) sieve shall be Type 3 or better friction aggregate. If Type 2 is used in place of Type 3, the minimum shall be 30 25% of the combined aggregate retained on the No. 4 (4.75 mm) sieve.

For friction classification L-4, at least 50% of the combined aggregate retained on the No. 4 (4.75 mm) sieve shall be Type 4 or better friction aggregate.

2. Blended Aggregates.

The blended aggregates shall meet the combined aggregate requirements in Materials I.M. 510.

When mixtures include RAP, the blended mineral aggregate gradation shall be a mixture of extracted RAP aggregate combined with virgin aggregate.

C. Recycled Asphalt Pavement.

1. Designated RAP.

When RAP is taken from a project, or is furnished by the Contracting Authority, the contract documents will indicate quantity of RAP expected to be available. The Contractor is responsible for salvaging this material unless otherwise specified in the contract documents. The RAP not used shall be incorporated into other parts of the project or placed in active stockpiles as directed in the contract documents.

The Contracting Authority will test samples of this material. For mix design purposes, the amount of asphalt binder in the RAP will be based on extraction tests. The Contractor shall designate the exact proportions of RAP material in the hot mix within the allowable range.

When the work is completed, the Contractor shall return unused material to the stockpile or other designated location, rebuild the stockpile, and restore the area, in accordance with Article 1104.08 of the Standard Specifications.

Test information, if known, will be included in the contract documents.

2. Certified RAP

The RAP shall be from a known source and of the proper quality for the intended use, with no material added from other sources during the time in stockpile. The Contractor shall certify to this before use. RAP from not more than two known sources at a time will be allowed.

Certified RAP may be used in the base and intermediate course of mixes for which the RAP aggregate qualifies. RAP may also be used in surface courses when authorized by the Engineer. Not more than 30% of the asphalt binder in a final surface course mixture shall come from the RAP.

A certified RAP stockpile shall be sealed or protected in accordance with Materials I.M. 505.

3. Unclassified RAP.

Up to 10% of unclassified RAP may be incorporated into intermediate mixes for under 3,000,000 ESALs and all base mixes with the following safeguards:

a. Unclassified RAP shall not be used in surface courses.

b. Unclassified RAP shall not be used in intermediate or base mixtures containing designated or certified RAP.

c. The Engineer will inspect the unclassified RAP stockpile visually for uniformity. Unclassified RAP stockpiles containing concrete chunks, grass, dirt, wood, metal, coal tar, or other foreign or environmentally restricted materials shall not be used, unless approved by the Engineer. If foreign material is discovered in any unclassified stockpile, the Engineer may stop the continued use of the pile.

d. Representative samples will be taken by the Engineer. These samples are to be tested for gradation and asphalt content.

e. No credit will be given for crushed particles.

f. Stockpiles, when used, shall be worked in such a manner that the materials removed are representative of a cross section of the pile as approved by the Engineer.

D. Hot Mix Asphalt Mixture.

The surface course is the upper lift for a wearing surface of a designated thickness. The intermediate course is the next lower lift or lifts of a designated thickness. Leveling, strengthening, and wedge courses shall be of the intermediate course mixture. The base course is the lift or lifts placed on a prepared subgrade or subbase.

The job mix formula (JMF) is the percentage of each material, including the asphalt binder, to be used in the HMA mixture. The JMF gradation shall be within the control points specified for the particular mixture designated and shall establish a single percentage of aggregate passing each required sieve size.

If the asphalt binder demand for the combination of aggregates submitted for an acceptable mix design exceeds the basic asphalt binder content by more than 0.75%, the mix design will include an economic evaluation prepared by the Contractor. This evaluation will be based on past job mix history, possible aggregate proportion changes, and aggregate availability and haul costs for any changes or substitutions considered.

The basic asphalt binder content is the historical, nominal mixture asphalt binder content, expressed as percent by weight (mass) of the asphalt binder in the total mixture. The following values, based on mixture size and type, shall apply.

BASIC ASPHAL	T BINDER CO	ONTENT (%)			
Aggregate Type	1 inch (25 mm)	3/4 inch (19 mm)	1/2 inch (12.5 mm)	3/8 inch (9.5 mm)	
Type A	4.75	5.50	6.00	6.00	
Type B	5.25	5.75	6.00	6.25	
Type B	5.25	6.00	6.00	6.25	
	Aggregate Type Type A Type B	Aggregate 1 inch Type (25 mm) Type A 4.75 Type B 5.25	Aggregate 1 inch 3/4 inch Type (25 mm) (19 mm) Type A 4.75 5.50 Type B 5.25 5.75	Type (25 mm) (19 mm) (12.5 mm) Type A 4.75 5.50 6.00 Type B 5.25 5.75 6.00	Aggregate Type 1 inch (25 mm) 3/4 inch (19 mm) 1/2 inch (12.5 mm) 3/8 inch (9.5 mm) Type A 4.75 5.50 6.00 6.00 Type B 5.25 5.75 6.00 6.25

The HMA mixture designed shall meet gyratory design and mixture criteria corresponding to the design level specified in the contract documents. The Engineer may approve the substitution of any mixture which meets requirements for a higher mixture than specified in the contract documents at no additional cost to the Contracting Authority. Shoulders placed as a separate operation shall be HMA 1,000,000 ESAL base mixture. For outside shoulders on Interstate projects, the Contractor has the option to substitute the mainline intermediate or surface mixture for a specified base mixture at the Contractor's expense.

The Contractor shall prepare gyratory HMA mixture designs for all base, intermediate, and surface mixtures. The gyratory design procedure used shall follow the procedure outlined in Materials I.M. 510. The gyratory mixture designs submitted shall comply with Materials I.M. 510.

The gyratory compactor used for design and field control shall meet the AASHTO protocol for Superpave gyratory compactors. Compactors for which compliance with this protocol is pending may be used at the discretion of the District Materials Engineer.

E. Other Materials.

1. Tack Coat.

Tack coat may be SS-1, SS-1H, CSS-1, or CSS-1H. Mixing of CSS and SS grades will not be permitted. RC-70 and MC-70 may also be used after October 1, at the Contractor's option.

2. Anti-strip Agent.

On Primary highways designed for over 10,000,000 ESALs and all Interstate highways, if 25% or more of the plus No. 4 (4.75 mm) (virgin and RAP) aggregate is gravel, quartzite, granite, trap rock, steel slag, or other siliceous aggregate (not a limestone or dolomite), anti-strip agent will be required in the affected mixture unless the minimum requirements for moisture sensitivity are met.

On all other Primary highways, if 25% or more of the plus No. 4 (4.75 mm) (virgin and RAP) aggregates or more than 40% of the total (virgin and RAP) aggregates is quartzite, granite, or other siliceous aggregates (not limestone or dolomite) which is obtained by crushing from ledge rock, anti-strip agent will be required in the affected mixtures requiring Type A aggregate unless the minimum requirements for moisture sensitivity are met.

Anti-strip agent will not be required for base repair, patching, or temporary pavement.

When anti-strip agent is required based on aggregate source, the Contractor may arrange for moisture sensitivity evaluation of the proposed HMA mixture design according to AASHTO T 283, "Resistance of Compacted Bituminous Mixture to Moisture-Induced Damage." When results of this evaluation on mixtures without anti-strip agent indicate the minimum requirements for moisture sensitivity of 80% tensile strength ratio (TSR) with visual confirmation are met, anti-strip agent will not be required. Confirmation of AASHTO T 283 test results will be completed by the Central Materials Laboratory during the initial production and placement of the mix. The Contactor will be subject to the provisions of Section 1105 of the Standard Specifications for mixture placed without anti-strip agent prior to completion of the AASHTO T 283 confirmation testing.

When a liquid anti-strip additive or aggregate treatment is used, confirmation of the AASHTO T 283 test results will be completed by the Central Materials Laboratory during the initial production and placement of the mix. The Contractor will be subject to the provisions of Section 1105 of the Standard Specifications for mixture placed with liquid anti-strip additive or aggregate treatment prior to completion of the AASHTO T 283 confirmation testing.

One of the following anti-strip agents shall be used.

a. Hydrated Lime.

Hydrated lime shall meet the requirements of AASHTO M 303, Type I. Section 4193 of the Standard Specifications shall not apply. Hydrated lime will not be considered part of the aggregate when determining the job mix formula and the filler/bitumen ratio.

b. Liquid Anti-strip Additives.

Liquid anti-strip additives blended into the asphalt binder shall be approved for each JMF. The approval will be based on the following conditions:

1) Asphalt binder supplier shall provide test results that the additive does not negatively impact the asphalt binder properties, including short term and long term aged properties.

2) The AASHTO T 283 test is required and must satisfy 80% TSR when compared to the dry strength of specimens prepared with asphalt binder not containing the anti-strip additive. The design shall establish the optimum additive rate.

3) A change in the source of asphalt binder or aggregates will require a re-evaluation of the AASHTO T 283 test. When there is a significant change in the aggregate proportions, the Engineer may require a re-evaluation of the AASHTO T 283 test.

c. Polymer-based Liquid Aggregate Treatments.

Polymer-based liquid aggregate treatments shall be approved for each JMF. The approval will be based on the following conditions:

1) The AASHTO T 283 test is required and shall satisfy 80% TSR when compared to the dry strength of specimens prepared with and without the aggregate treatment. The design shall establish the optimum additive rate.

2) A change in the source of asphalt binder or aggregates will require a re-evaluation of the AASHTO T 283 test.

3. Sand for Tack Coats.

Sand shall meet requirements of Section 4109 of the Standard Specifications, Gradation No. 1.

4. Fabric Reinforcement.

Fabric reinforcement shall meet requirements of Article 4196.01, D, of the Standard Specifications.

F. Equipment

The Contractor shall provide sufficient equipment of the various types required to produce, place, and compact each layer of HMA mixture as specified.

Equipment shall meet requirements of Section 2001 of the Standard Specifications with the following modifications:

1. Plant Calibration.

Each plant scale and metering system shall be calibrated before work on a contract begins. Calibration equipment shall meet the manufacturer's guidelines and Materials I.M. 508. The Engineer may waive calibration of permanent plant scales when a satisfactory operational history is available. The Engineer may require any scale or metering system to be recalibrated if operations indicate it is necessary. Calibration data shall be available at the plant.

Each aggregate feed shall be calibrated throughout an operating range wide enough to cover the proportion of that material required in the JMF. A new calibration shall be made each time there is a change in size or source of any aggregate being used.

For continuous and drum mixing plants, the asphalt binder metering pump shall be calibrated at the operating temperature and with the outlet under pressure equal to that occurring in normal operations.

2. Paver.

Article 2001.19 of the Standard Specifications shall apply. Spreaders, as described in Article 2001.13, D, of the Standard Specifications may be used to place paved shoulders. Spreaders used to place the final lift of paved shoulders shall meet additional requirements of Article 2001.19 of the Standard Specifications.

3. Rollers.

For initial and intermediate rolling, self-propelled, steel tired, pneumatic tired, or vibratory rollers meeting requirements of Article 2001.05, B, C, or F, of the Standard Specifications shall be used. Their weight (mass) or tire pressure may be adjusted when justified by conditions.

For finish rolling, self propelled, steel tired rollers or vibratory rollers in the static mode meeting requirements of Article 2001.05, B, or F, of the Standard Specifications shall be used.

4. Scales.

Article 2001.07, B, of the Standard Specifications shall apply to all paving operations regardless of the method of measurement.

01118.03 CONSTRUCTION.

A. Maintenance of the Subgrade and Subbase.

The Contractor is responsible for the maintenance of the completed subgrade and subbase to the required density, true cross section, and smooth condition, prior to and during subsequent construction activities. If rutting or any other damage occurs to the subgrade or subbase as a result of hauling operations, the Contractor shall immediately repair the subgrade and subbase, and such repair will include, if necessary, removal and replacement at the Contractor's expense.

Should traffic by others authorized to do work on the project be specifically permitted by the Engineer to use loads which exceed the Contractor's established limit, the Contracting Authority will pay repair costs for repairs directed by the Engineer.

B. Preparation of Existing Surfaces.

1. Cleaning.

The existing surface shall be cleaned and prepared in accordance with Article 2212.04, A, of the Standard Specifications.

2. Tack Coats.

Tack coats shall be applied when the entire surface area on which the coat is to be applied is free of moisture. They shall not be applied when the temperature on the surface being covered is less than 25° F (-4°C).

The Contractor shall place a tack coat to form a continuous, uniform film on the area to be covered. Unless otherwise directed, the tack coat shall be spread at an undiluted rate of 0.02 to 0.05 gallon per square yard (0.1 to 0.2 L/m^2). The tack coat emulsion may be diluted with water to improve application.

Tack coat shall be adequately cured prior to placement of the HMA to assure bond to the underlying surface and avoid damage of the HMA being placed. If the tack coat surface becomes dirty from weather or traffic, the surface shall be thoroughly cleaned and, if necessary, retacked. A light application of sand cover may also be required, but this is anticipated only for excessive application rates, breakdowns, and short sections remaining at the end of a day's run.

On highways being constructed under traffic, safety and convenience to the public without soiling their vehicles shall be a controlling factor. Tack coat applications shall be limited in length, to minimize inconvenience to the public. They shall be kept within the hot mixture placing work area that is controlled by flaggers at each end, and shall be planned so that they will be covered with hot mixture when the work area is opened to traffic at the end of the day's work.

The vertical face of exposed, longitudinal joints shall be tacked as a separate operation, before the adjoining lift is placed, at a rate from 0.10 to 0.15 gallon per square yard (0.5 to 0.7 L/m^2). The vertical surfaces of all fixtures, curbs, bridges, or cold mixture with which the hot mixture will come in contact shall be lightly painted or sprayed to facilitate a tight joint with the fresh mixture.

3. Fabric Reinforcement.

When fabric reinforcement is required, the locations will be designated in the contract documents. Fabric shall not be placed on a wet or damp surface or when the road surface is less than 50°F (10°C). Fiberglass fabric shall be applied only with an adhesive recommended by the manufacturer. Fabrics with an adhesive backing shall be placed in accordance with the manufacturer's recommendations.

Other fabrics shall be placed with a heavy coat of the asphalt binder grade used in the HMA applied at a rate of 0.20 to 0.25 gallons per square yard (0.9 to 1.1 L/m²) and at a temperature between 295°F and 315°F (145°C and 160°C).

The fabric reinforcement shall be placed in accordance with the contract documents (full width or individual crack or joint treatment). The fabric shall be placed immediately following the adhesive or asphalt binder placement under the fabric. Placement may be by hand or by a mechanical method specifically designed for this purpose. Precautions shall be taken to avoid wrinkles in the fabric and to insure that air bubbles are removed without breaking the fabric. Wrinkles or folds which cannot be removed by brushing shall be cut and lapped to provide a smooth surface.

Additional adhesive or asphalt binder may be required to produce a tight, bonded surface. When applied full lane width, the minimum transverse and longitudinal lap shall be 12 inches (300 mm).

The Contractor shall avoid application of the tack coat over longitudinally placed fabric. Traffic shall not be allowed over the fabric during placement and during curing of the adhesive material to avoid damage to the fabric. A light application of HMA mix material may be hand sprinkled on the fabric to prevent damage from necessary equipment traffic.

Fabric that is damaged or soiled prior to HMA overlay shall be repaired at no additional cost, when directed by the Engineer. Sanding, at no additional cost, may also be required by the Engineer during this period.

C. Handling, Production, and Delivery.

1. Hot Mix Asphalt Plant Operation.

The plant operation shall comply with the following requirements:

a. Handling Mineral Aggregate and RAP.

The various aggregate products used shall be kept separate, and adequate provisions shall be made to prevent intermingling. Stockpiling and processing shall be handled in a manner that will ensure uniform incorporation of the aggregate into the mix.

The various aggregates shall be separately fed by feeders to the cold elevator in their proper proportions and at a rate to permit correct and uniform temperature control of heating and drying operations.

b. Handling Asphalt Binder.

The asphalt binder shall be brought to a temperature of 260°F to 330°F (125°C to 165°C) before being measured for mixing with the aggregates. The temperature between these limits may be further regulated according to the characteristics of the mixture, method of proportioning, and viscosity of the asphalt binder. Modified asphalt binder should shall be heated according to the supplier's recommendations.

c. Handling Anti-strip Agents.

1) Hydrated Lime.

The lime shall be accurately proportioned by a method acceptable to the Engineer.

a) Added to a Drum Mixer.

The hydrated lime shall be added at the rate of 0.75% by weight (mass) of the total aggregate (virgin and RAP) for Interstate and Primary projects. The hydrated lime shall be added to a drum mixer by one of the following methods:

(1) Added to the virgin aggregate on the primary feed belt, as a lime water slurry.

(2) Thoroughly mixed with the total combined aggregate if the aggregate contains at least 3% total moisture.

(3) Added to the Type 2 or Type 3 virgin aggregate in a moist condition, and then mixed with the total combined virgin aggregate.

Alternative methods for mixing must be reviewed and approved by the Engineer. Hydrated lime shall not be introduced directly into a drum mixer by blowing or auguring.

b) Added to a Batch Plant.

Hydrated lime shall be added at the rate of 0.5% by weight (mass) of total aggregate (virgin and RAP) for Interstate and Primary projects. It shall be introduced to a batch plant by one of the following methods:

(1) Placed on the recycle belt which leads directly into the weigh hopper.

(2) Added directly into the pugmill.

(3) Added directly into the hot aggregate elevator into the hot aggregate stream. In any case, the lime must be introduced prior to the start of the dry mix cycle.

c) Added to the Aggregate Stockpile.

Hydrated lime shall be added at a rate established by the AASHTO T 283 test. The hydrated lime shall be added to the source aggregates defined in Article DS-01118.02, E, 2, thoroughly mixed with sufficient moisture to achieve aggregate coating, and then placed in the stockpile.

When either method b or c above for a batch plant is used, the hydrated lime will be considered part of the JMF.

2) Liquid.

When liquid anti-strip additives are used, the equipment used to store, measure, and blend the additive with the asphalt binder shall comply with the anti-strip supplier's recommended practice. The additive may be injected into the asphalt binder by the asphalt supplier or the Contractor. If the Contractor elects to add the liquid anti-strip additive, the Contractor assumes the material certification responsibilities of the asphalt

binder supplier. The shipping ticket shall report the type and amount of additive and the time of injection. The asphalt supplier shall provide the Contractor and Engineer with the shelf life criteria defining when the anti-strip additive maintains its effectiveness. Binder that has exceeded the shelf life criteria shall not be used.

When polymer-based liquid aggregate treatment is used, the Contractor shall comply with the manufacturer's current recommended specifications and guidelines.

d. Production of Hot Mix Asphalt Mixtures.

The exact proportions of the various materials shall be regulated within the limits specified so as to produce a satisfactory bituminous coating and mixture. The aggregates shall first be mixed dry, then the asphalt binder shall be added. In batch plants, the asphalt binder shall be added in an evenly spread sheet over the full length of the mixer box. In continuous plants, the asphalt binder shall be sprayed evenly into the aggregate by a positive pressure spray within the first 30% of the length of the mixer box. In drum mixing plants, the asphalt binder shall be added, subject to approval of the Engineer.

The mixer shall be operated so that the mixture is of consistently uniform temperature and, as discharged from the mixer, will not vary more than 20°F (11°C). The temperature of the mixtures shall not exceed 330°F (165°C) unless approved by the Engineer.

The rate of production shall not exceed the manufacturer's rated capacity of the mixer and shall provide uniform coating. Dry mixing time for batch mixers shall be not less than 5 seconds. Wet mixing time for batch mixers shall be not less than 25 seconds. For continuous mixers, the mixing time shall be at least 30 seconds.

All handling and manipulation of the hot mixture from the mixer to the final spread on the road shall be controlled so that a uniform composition is maintained and segregation of coarser particles is minimized. The segregation shall be minimized to the extent that it cannot be visibly observed in the compacted surface. The Contractor shall only apply approved release agents to trucks and equipment as specified in Article 2001.01 of the Standard Specifications.

The mixture temperature shall be sufficient to allow for the specified compaction and density to be attained. HMA shall not be discharged into the paver hopper when its temperature is less than 245°F (120°C) for a nominal layer thickness of 1 1/2 inches (40 mm) or less and 225°F (110°C) for a nominal layer thickness of more than 1 1/2 inches (40 mm). Except for an unavoidable delay or breakdown, delivery of hot HMA to any individual spreading unit shall be continuous and uniform and at a rate sufficient to provide as continuous an operation of the spreading unit as practical. The paver hopper shall, at all times, be kept sufficiently full to prevent non-uniform flow of the mixture to the screed.

D. Placement.

The surface of each layer shall be cleaned in accordance with Article 2212.04, A, of the Standard Specifications and, if necessary, retacked to provide bond with the succeeding course. If bumps or other significant irregularities appear or are evident in the intermediate course or other lower course, they are to be corrected before the final lift is placed.

HMA mixtures shall not be placed on a wet or damp surface and shall not be placed when the temperature of the road surface is less than shown in the table below. The Engineer may further limit placement if, in the Engineer's judgment, other conditions are detrimental to quality work. HMA mixtures shall not be placed after November 15, except with approval of the Engineer.

ALL BASE AND INTERMEDIATE C	OURSE LIFTS OF HMA MIXTURES
Nominal Thickness - inches (mm)	Road Surface Temperature, °F (°C)
1 1/2 (40)	40 (4)
2 - 3 (60 50-80)	35 (2)
Over 3 (Over 80)	25 (-4)

ALL SURFACE COURSE L	IFTS OF HMA MIXTURES
Nominal Thickness - inches (mm)	Road Surface Temperature, °F (°C)
1 (30)	50 (10)
1 1/2 (40)	45 (7)
2 and greater (50 and greater)	40 (4)

When placing the mixture, the forward speed of the finishing machine shall be at a rate to provide a continuous uniform operation with the least amount of stopping.

A wire or string line shall be used to guide the finishing machine and to maintain alignment. Edge alignment irregularities shall be corrected by hand methods immediately after they occur.

The contract documents will show the total thickness to be placed. Spreading of the mixture shall be at such a rate that, when compacted, the layer(s) will be substantially of the thickness and dimensions required to produce the required thickness. The minimum layer thickness shall be based on the following:

Design Mix Size - inches (mm)	Minimum Lift Thickness - inches (mm)
3/8 (9.5)	1 (25)
1/2 (12.5)	1 1/2 (40)
3/4 (19)	2 (50)
1 (25)	3 (75)

The compacted thickness of the top layer shall not be greater than 3 inches (75 mm). This restriction shall not apply to HMA shoulders. The maximum compacted thickness of lower layers may exceed 4 inches (100 mm) if it is demonstrated that the thicker layers have satisfactory density. The riding characteristics of the thicker layers shall be within reasonably close conformance to that expected from a 3 inch (75 mm) layer. Each layer shall be completed to full width before succeeding layers are placed.

While operating on the road surface, use of kerosene, distillate, other petroleum fractions, or other solvents, for cleaning hand tools or for spraying the paver hopper will not be permitted. Containers of cleaning solution shall not be carried on or near the paver. When a solvent is used, the paver shall not be used for at least 5 hours after this cleaning. The Contractor shall be responsible for collecting and removing all cleaning materials and cleaning residue from the project and plant site. The cleaning material and residue shall become the property of the Contractor.

Whenever practicable, all mixtures shall be spread by a finishing machine. Irregular areas may be spread by hand methods. The hot mixture shall be spread uniformly to the desired depth with hot shovels and rakes. Loads shall not be dumped faster than they can be spread properly. Workers shall not stand on the loose mixture while spreading. After spreading, the hot mixture shall be carefully smoothed to remove all segregated coarse aggregate and rake marks. Rakes and lutes used for hand spreading and smoothing shall be of the type designed for use on HMA mixtures.

Unless stated elsewhere in the contract documents when placing two adjacent lanes, not more than 1 day of normal plant production shall be paved in a lane before the adjacent lane(s) is paved. The adjacent lane shall be placed to match the first lane during the next day of plant production. The Contractor shall not spread more mixture than can be compacted in the specified working hours of the same working day. At the close of each working day, the roadbed shall be free of any construction equipment.

Prior to opening a lane to traffic, fillets or full width granular shoulders shall be placed in accordance with Article 2121.07, B, of the Standard Specifications. The material shall be placed adjacent to and equal in thickness to the resurfacing. Fillet removal shall be incidental to the HMA mixture.

E. Compaction.

Each layer shall be promptly and thoroughly compacted. Mechanical tampers shall be used for areas inaccessible to the rollers.

The overall rolling procedure and compactive effort shall produce a surface free of ridges, marks, or bumps and shall be subject to approval of the Engineer.

There are two classes of compaction, Class I and Class II. Class I compaction is intended for use on Interstate highways, and most Primary and Secondary highways. Class II compaction is intended for paved shoulders, temporary crossovers, onsite detours, and for other situations where Class I is not specified.

For Class I compaction, the roadway field voids density (percent of laboratory density) will be based on the theoretical maximum specific gravity (G_{mm}) density obtained from the Quality Control Program for that day's mixture.

1. Class I Compaction.

Class I Compaction shall be used for base, intermediate, and surface courses for traffic lanes, ramps, and loops.

a. Class IA Compaction.

Class IA compaction shall be used for intermediate and surface courses for the traffic lanes of Interstate highways, including Interstate to Interstate ramps, and Primary highways as specified. Compaction shall be a minimum of 96% of laboratory density. The average air void level of the roadway density specimens shall not exceed 8.0%.

b. Class IB Compaction.

Class IB compaction shall be used for all Interstate and Primary bases. Class IB will also be required on Primary travel lanes intermediate and surface courses, and ramps connecting to Interstate and Primary highways when Class IA compaction is not specified. Compaction shall be to a minimum of 95% of laboratory density. The average air void level of the roadway density specimens shall not exceed 8.0%.

c. Class IC Compaction.

Class IC compaction shall be used for HMA base widening, shoulder resurfacing when specified, traffic lanes of Secondary highways and any other traffic lanes when Class IA and IB are not specified. Compaction shall be a minimum of 94% of laboratory density. The average air void level of the roadway density specimens shall not exceed 8.0%.

d2. Test Strip Construction for Class IA and IB Compaction.

A test strip will be required at the start of intermediate course placement on Interstate highways, including Interstate-to-Interstate ramps. Test strips will be required prior to the start of the surface course placement on Interstate and Primary highways and ramps connecting to Interstate and Primary highways. The Contractor may elect to construct a test strip at the start of other HMA mixture bid items. These test strips shall be established at the preconstruction conference.

For Class IA compaction at the start of intermediate course placement and for Class IA and Class IB compaction prior to the start of surface course placement, the Contractor shall construct a test strip for the purpose of evaluating properties of the HMA mixtures and for identifying an effective rolling pattern. For multiple lifts using the same mix requiring Class IA compaction, when the thickness of the second lift varies from the first lift by 1 1/2 inches (40 mm) or more, a test strip for the second lift shall be performed. When the contract documents specify both intermediate and surface courses, a surface course test strip shall be placed in lieu of intermediate mix in a section of intermediate course prior to actual surface course placement. The test strip shall be applied to each mixture with more than a single days placement with a plan quantity of at least 3000 tons (3000 Mg).

The quantity of HMA mixture subject to the test strip shall be limited to a half day's estimated production. This quantity shall be pre-established with the engineer. The quantity of HMA

mixture subject to Class IA compaction, produced and placed for test strip production, will be limited to 750 tons (750 Mg) for lift thicknesses of 2 inches (50 mm) or less, and 1000 tons (1000 Mg) for lift thicknesses greater than 2 inches (50 mm). After test strip placement, further mixing and laydown operations will be suspended until the laboratory test results of the plant produced mixture and core densities are available.

Only one test strip will be allowed for each mixture. At the direction of the Engineer, additional test strips may be required if a complying HMA mixture or rolling pattern was not established.

Procedures and documentation to be followed during construction of the test strip shall allow the Engineer and the Contractor to confirm mixture design properties and effectiveness of compaction procedures.

The test strip production control shall meet the requirements of Article DS-01118.04, B, 2. The number of density core samples obtained for the test strip will be increased by one and the low core result will not be used in the Quality Index (Q.I.) density formula for payment for the test strip quantity. The test strip will be an independent lot. The determination of sublots for testing shall meet the requirements of Article DS-01118.04, B, 1.

23. Class II Compaction.

For all rollers, the initial contact with the hot mixture shall be made by the power driven wheels or roll.

The initial rolling shall be done at a temperature so the mixture will compact without excessive distortion. Except on longitudinal joints and super-elevated curves, rolling with the initial roller shall begin at the outer edges of the pavement, and each successive pass shall progress inward toward the center line. Each reverse trip shall lap all but 4 to 6 inches (100 to 150 mm) of the previous track. When reversing direction, the initial roller shall stop at an angle with the longitudinal direction.

Following the initial rolling, the layer shall be given an intermediate rolling with a pneumatic tired roller before the temperature falls below 225°F (110°C). The intermediate roller shall cover the entire area not less than six times. A finish, steel tired roller shall be used to smooth out all marks and roughness in the surface.

Mechanical tampers or other approved compaction methods shall be used for areas inaccessible to the rollers.

F. Joints and Runouts.

Longitudinal joints for courses on resurfacing projects shall be constructed directly above the longitudinal joint in the existing pavement. The offset distance between longitudinal joints in succeeding courses of full depth HMA paving shall be not more than 3 inches (75 mm). The spreading of hot mixtures along longitudinal joints shall be adjusted to secure complete joint closure and full compression of the mixture with a smooth surface and joint after compaction.

Transverse construction joints in succeeding courses shall be separated by not less than 6 feet (1.6 m). The use of wood or metal headers to form the edge of the joint during rolling of the fresh mixture will not be permitted. The header shall be sawed to a straight line at right angles to the center line so that a full thickness vertical edge will be provided before continuing paving. The Contractor shall provide a 10 foot (3 m) straightedge for checking transverse construction joints for smoothness. Variations in the surface at transverse construction joints, as indicated by the straightedge, shall be corrected by hand methods before compaction.

When a transverse construction joint is open to traffic, a temporary runout of 10 feet (3 m) in length per 1 inch (25 mm) of lift thickness shall be installed. Suitable paper or burlap should be used under the taper to prevent adhesion. Sand, dirt, or wood shall not be used for this purpose.

When required to end paving for winter shutdown, runouts shall be located adjacent to each other. A winter shutdown runout of 25 feet (8 m) in length per 1 inch (25 mm) of lift thickness shall be installed.

For temporary runouts open to traffic for periods greater than 4 weeks and winter shutdown runouts, the Contractor may reduce the amount of top size aggregate in the transition taper. The temporary runouts and winter shutdown runouts shall be removed before commencement of paving. Runout removal shall be incidental to the HMA mixture.

G. Miscellaneous Operations.

1. Leveling and Strengthening Courses.

The contract documents will show the thickness of the courses to be placed. Strengthening and leveling courses will be placed as indicated in the contract documents. These courses shall be of the same mixture specified for the base or intermediate course.

When the width of any strengthening or leveling layer is 8 feet (2.4 m) or more, the layer shall be spread by a finishing machine.

Leveling courses shall be compacted using Class II compaction procedures, except all passes shall be made with a pneumatic roller.

2. Wedge Courses.

Wedge courses used to secure desired super-elevation of curves shall be constructed of the base or intermediate mixture, and when possible, shall be spread by a finishing machine. In placing wedge course, the maximum thickness of individual layers, when compacted, shall not exceed 3 inches (75 mm), and care shall be used to avoid crushing the coarse aggregate. Wedge courses shall be placed to the full width of pavement.

On curves which require the placement of wedge courses, the Contractor will be required to stage the shoulder construction on the super elevated curves. After completion of each day's wedge placement operations and prior to suspending construction activities for that day, a full width shoulder shall be constructed on the high side up to the elevation of the completed wedge course. All necessary staging of shoulder construction will be considered incidental to shoulder construction.

3. Fixtures in the Pavement Surface.

All utility accesses, intakes, or other fixtures encountered within the area to be covered by HMA shall be adjusted to conform to the final adjacent finished surface. Unless otherwise indicated in the plans, the Contractor shall have the option of adjusting fixtures between placement of the surface course and the layer preceding the surface course, or adjusting the fixture after placement of the surface course using a composite patch or PCC patch.

PCC and HMA patch material shall conform to the requirements of Section 2529 of the Standard Specifications. Patches shall be of sufficient size to accommodate the structure being adjusted.

Patches shall be square in shape and oriented diagonally to the direction of traffic flow. Elevation of the adjusted fixture and patch shall not be higher than or more than 1/4 inch (6 mm) below that of the surrounding pavement surface.

4. Fillets for Intersecting Roads and Driveways.

When fillets are designated in the contract documents for driveways to homesteads and commercial establishments and at intersecting roads, the surface adjacent to the pavement being surfaced shall be shaped, cleaned of loose material, and tack coated. On this coated surface, the hot mixture shall be placed and compacted in layers equal to the adjacent layer and extended from the edge of pavement as shown in the plans. Fillets at intersecting roads shall be placed and

compacted at the same time as the adjacent layer. Entrance fillets that are 8 feet (2.4 m) or wider may be placed as a separate operation. Paving of fillets 8 feet (2.4 m) or more in width shall be with a self propelled finishing machine described in Article 2001.19 of the Standard Specifications. The Engineer may approve other equipment for placement of fillets, based on a demonstration of satisfactory results.

5. Stop Sign Rumble Strips.

If the plans include the bid item Rumble Strip Panel (In Full Depth Patch), Section 2529 of the Standard Specifications shall apply. To meet the requirements of placing Stop Sign Rumble Strips before opening roadway sections to traffic, the Contractor may construct temporary rumble strip panels meeting the final pattern and location of the Stop Sign Rumble Strip indicated in the plans.

6. Paved HMA Shoulders.

Compaction of paved HMA shoulders shall be accomplished using one of the following methods:

a. Class II compaction (Article DS-01118.03, E, 3),

b. Rolling pattern established during the first day of shoulder placement to achieve Class IC compaction (Article DS-01118.03, E, 1), or

c. Same rolling pattern established for mainline lanes, as determined by density coring.

Shoulder area will not be included in calculations for the pay factor for field voids density price adjustment on mainline. Shoulder area may be subject to price adjustment for failure to adhere to the established roller pattern.

01118.04 QUALITY ASSURANCE PROGRAM.

A. Mix Design - Job Mix Formula.

The JMF for each mixture shall be the responsibility of the Contractor.

The Contractor shall submit completed JMF using the computer format of Form 956 to the materials laboratory designated by the Contracting Authority for approval. The Contractor shall submit supporting documentation demonstrating the design process was followed and how the recommended JMF was determined, including an economic evaluation when required. Documentation shall include trial and final proposed aggregate proportions (Form 955) and corresponding gyratory data. The Contractor shall also submit sufficient loose mixture and individual material samples for approval of the design.

The JMF shall be prepared by personnel who are Iowa DOT certified in bituminous mix design.

If the JMF is not satisfactory, the Contractor shall submit another JMF for review. An approved JMF will be required prior to beginning plant production. The Contractor will be charged \$1000 for each JMF approval requested and performed which exceeds two per mix size, type, and proposal item on any individual project or group of tied projects.

B. Plant Production.

The Contractor shall perform the sampling and testing to provide the quality control of the mixture during plant production. Certified Plant Inspection as described in Section 2521 of the Standard Specifications will be required on all HMA plant production. All personnel performing production quality control testing shall be certified by the Department.

Easy and safe access shall be provided to the location in the plant where samples are to be taken.

A "significant mix change" is defined as a single occurrence of an aggregate interchange of greater than 5%, a single occurrence of an asphalt content change greater than 0.2%, or any deletion or introduction of a new material into the mix.

1. Sampling and Testing.

The Contractor shall submit a testing plan prior to the preconstruction meeting. The testing plan shall meet the requirements of Materials I.M. 511, Appendix D

Asphalt binder shall be sampled and tested to verify the quality of the binder grade. Asphalt binder samples shall be taken, at random times, as directed and witnessed by the Engineer in accordance with Materials I.M. 204.

Aggregate gradation control shall be based on cold feed gradation.

Aggregate quality control samples shall be taken, at random times, as directed and witnessed by the Engineer in accordance with Materials I.M. 204 and secured in accordance with I.M. 511 to determine that materials are being proportioned in accordance with the specifications. A minimum of one aggregate gradation shall be taken for each day's production that exceeds 100 tons (Mg). The Contractor may elect to have a predetermined quality control plan that indicates a higher testing frequency. This testing plan shall be pre-approved by the Engineer. If there is more than one gradation in a day, the gradations shall be averaged for compliance measurements of the daily lot.

On the first day's production of each mix, the Contractor and Engineer shall split a cold feed sample. The Engineer will determine the need for a correction factor for the cold feed gradation based on the Engineer's cold feed gradation and ignition oven results. The Engineer may require additional cold feed split samples to evaluate the need or value of a correction factor for the cold feed gradation.

Aggregate gradations transported by the contractor for determining the ignition oven correction factor shall be secured in accordance with Appendix A of this specification.

The hot HMA mixture shall be sampled, at random locations, as directed and witnessed by the Engineer, in accordance with Materials I.M. 322 and secured in accordance with Materials I.M. 511 Appendix A of this specification.

The Contractor shall provide the Engineer assistance with material sampling for verification testing. When the Engineer notifies the Contractor that a sample shall be taken, the Contractor shall initiate sampling within 15 minutes obtain the sample within 15 minutes. The sampling should normally be completed within 30 minutes.

Each day's production of a mix design shall be considered a lot. The number of sublots will be determined by the days estimated tonnage for each mix placed as given in Table DS-01118.04-1.

Table DS-01118.04-1: Ucompa	acted Mixture Sublot Size
Estimated Tons (Mg)	Number of Sublots
101-500	1
501-1250	2
1251-2000	3
2001-4500	4
Over 4500	5

When the anticipated quantity for the day is 2000 tons (2000 Mg) or more, that day's production shall be divided into four sublots, the first sublot of each day shall be the first 500 tons (500 Mg) produced. The remaining anticipated quantity for the day shall be divided into three sublots of equal size.

When the anticipated mix design quantity for the day is less than 2000 tons (2000 Mg), the first daily sublot shall be the first 500 tons (500 Mg) produced. Additional daily sublots of 750 tons (750 Mg) each will be established for mix production exceeding the first 500 tons (500 Mg).

The maximum number of paired hot HMA mixture samples required for acceptance of a lot day's production will not exceed four.

Paired samples shall not be taken from the first 100 tons (100 Mg) of mix produced each day or the first 100 tons (100 Mg) of mix following a significant mix change.

The Contractor shall test the quality control sample of each production paired sample as follows:

Two gyratory specimens shall be prepared and compacted in accordance with Materials I.M. 325G and the results averaged to determine sample results.

Density shall be determined for each specimen in accordance with Materials I.M. 321.

The Contractor's field quality control laboratory compaction shall be used for field density control. The laboratory density for field control will be the bulk specific gravity of compacted mixture (G_{mb}) at N_{design}. Bulk specific gravity at N_{design} will be determined by compacting specimens to N_{max} and back calculating the bulk specific gravity at N_{design}.

The Theoretical Maximum Specific Gravity of the uncompacted mixture shall be determined in accordance with Materials I.M. 350 or other test methods recognized by AASHTO or ASTM.

The laboratory air voids shall be determined in accordance with Materials I.M. 501.

When liquid anti-strip additives are used, the Contractor shall satisfy one of the following methods to regulate the quantity of additive.

a. The Contractor shall present Certification that the equipment used to measure and blend the liquid anti-strip additive meets the anti-strip supplier's recommended practice, that the equipment is directly tied to the asphalt binder supply system, and that the equipment has been calibrated to the equipment manufacturer's guidelines.

b. The Contractor shall test the binder to measure the quantity of liquid anti-strip additive in the binder every 5000 tons (5000 Mg) of HMA production. The supplier's test method shall be approved by the Engineer prior to use of the test.

c. The Contractor shall run AASHTO T 283 during production. If the Contractor is unable to certify or test for the presence and quality, the Contractor shall run AASHTO T 283 each 10,000 tons (10,000 Mg) of production to measure the effectiveness of the additive. The test results shall satisfy 80% TSR when compared to the dry strength of specimens prepared with asphalt binder containing the anti-strip additive.

2. Production Control.

After the JMF is established, the combined aggregate furnished for the project, the quantity of asphalt binder and laboratory air voids should consistently conform to the JMF, as target values, and shall be controlled within the production tolerances given in Table 2. Plant production must be controlled such that the plant produced HMA mixture will meet mixture design criteria for Air Voids and VMA at N_{design} gyrations of the gyratory compactor within the test tolerances given in the table. The slope of the gyratory compaction curve of plant produced material shall be monitored and variations in excess of ± 0.40 of the mixture design gyratory compaction curve slope may indicate potential problems with uniformity of the mixture.

The gyratory mix design gradation control points for the size mixture designated in the project plans will not apply to plant production control.

Table DS-0	1118-2 - Production Toleranc	es
MEASURED CHARACTERISTIC	TARGET VALUE (%)	SPECIFICATION TOLERANCE (%) ⁽¹⁾
Cold feed gradation No. 4 (4.75 mm) and larger sieves	by JMF	± 7.0
Cold feed gradation No. 8 (2.36 mm)	by JMF	± 5.0
Cold feed gradation No. 30 (600 µm)	by JMF	± 4.0
Cold feed gradation No. 200 (75 µm)	by JMF	± 2.0 (2)
Daily asphalt binder content	by JMF	± 0.3
Field laboratory air voids	4.0-(3)	-0.5/+1.0 (4)
VMA (5)(3)	by JMF	$\pm 1.0^{(6)(4)}$

⁽¹⁾ - Based on single test unless otherwise noted.

⁽²⁾ - The filler/bitumen ratio of the plant produced mixture will be maintained between 0.6 and 1.4.

(a) - Unless otherwise specified.

(4)-Based on the moving average of four test values.

(6)(3) - Restricted to an asphalt film thickness as specified for the level of HMA mixture.

(6)(4) - Based on the daily lot average.

The Contractor shall strive for the target value of the percent air void and asphalt binder by adjusting gradation and asphalt binder content.

The Contractor shall produce a mixture of uniform composition conforming to the JMF. If, during production, the Contractor determines from quality control testing that adjustments are necessary to the JMF to achieve the specified properties, adjustments to the JMF target gradation and asphalt binder content values may be made.

If the average daily gradation for a mixture bid item is outside the production tolerances, the Contractor shall notify the engineer. The Contractor can request a gradation target change if other production tolerances and mixture requirements of Materials I.M. 510 Appendix A are acceptable. If the production tolerances and mixture requirements are not being met, a JMF change shall be required.

If the filler/bitumen ratio exceeds the limits listed in Table DS-01118-2, the Contractor shall make a mixture change to the JMF at the start of the next day's production for that mixture.

Adjustments to the JMF aggregate proportions and asphalt binder content shall be made as a result of the interactive process between the Contractor and the Engineer. The Contractor's adjustment recommendations shall prevail, provided all specifications and established mix design criteria are being met for plant production.

The voids in the mineral aggregate (VMA) and estimated film thickness shall be measured for specification compliance every day of HMA production.

Quality control charts in accordance with Materials I.M. 511 Appendix A of this specification shall be available and kept current showing both individual test results and moving average values. Moving averages shall be based on four consecutive test results. Moving averages may only restart in the event of a mandatory plant shutdown for failure to maintain the average within the production tolerance. Control charts shall include a target value and specification tolerances.

Laboratory voids for individual tests shall be calculated according to Materials I.M. 501, using the individual density and individual maximum specific gravity determined for each sample. The moving average of laboratory voids shall be the average of the last four individual laboratory voids.

The Contractor shall monitor the test results and to make mix adjustments, when appropriate, to keep the mixture near the target values. The Contractor shall notify the Engineer whenever the process approaches a specification tolerance limit. One moving average point for laboratory air voids outside the specification tolerance limit shall be cause to cease operations. The Contractor shall assume the responsibility to cease operations, including not incorporating produced material which has not been placed. The process shall not be started again until the Contractor notifies the Engineer of the corrective action proposed.

C. Construction.

1. Field Voids Density for Class I Compaction.

Density samples to determine field voids shall be taken from the compacted mixture and tested not later than the next working day following placement and compaction.

A lot shall be considered as one layer of one mixture placed during a day's operation. The Engineer may approve classifying multiple layers of construction placed during a single day as a lot provided only one mixture was used.

The Engineer may waive sampling for density provided compaction has been thorough and effective in the following situations:

- 1. when the day's operation is not more than 2500 square yards (2500 m²),
- 2. when the day's operation is not more than 500 tons (500 Mg),
- 3. when the mixture is being placed in irregular areas, or
- 4. when placing wedge or strengthening courses.

Eight Defensity samples shall be taken and will be tested for each lot in accordance with Materials I.M. 204. The length laid in each lot will be divided into approximately equal sublots and one sample shall be obtained at a random location, as directed and witnessed by the Engineer in each sublot.

If a sample is damaged or measures less than 70% or more than 150% of the intended thickness, an alternate sampling location will be determined and used. Samples shall not be taken less than 1 foot (300 mm) from the edge of a given pass of the placing equipment, from run-outs, or from day's work joints or structures.

The percent within limit (PWL) will be determined as defined in Materials I.M. 501. The PWL shall be determined with an upper specification limit (USL) of 8.5% voids.

If the PWL falls below 50.0, the Engineer may declare the lot or parts of the lot deficient or unacceptable.

The quality index for density of each lot shall be determined by the following formula:

QIDensity= (Ave

(Average Gmb)Field Lot - ((% Density)Specified x (Average Gmb) Lab Lot) (Standard Deviation - Gmb) Field Lot

where QIDensity = Quality Index for density

Gmb = bulk Specific Gravity of the mixture

When the quality index falls below 0.00, the Engineer may declare the lot or parts of the lot defective.

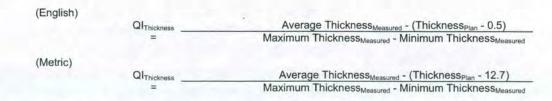
If the PWL is less than 75.0, the lot of cores for field voids may be checked for outliers. An outlier shall be determined using the procedures described in Materials I.M. 501 with 2.0 standard deviations as the measure. Only one core may be considered an outlier in a lot. The PWL shall be revised using the remaining seven field density values if an outlier is found. The larger of the original or revised PWL shall be used to determine the Contractor's pay factor.

If one of the density test values from a lot an outlier, identified in accordance with the procedure described in Materials I.M. 501, the outlier value shall not be used to determine the quality index. The quality index shall be determined using the remaining density test values.

If only one laboratory density value is obtained that day, combine that value with the next day's test results to evaluate both days' production. If two or more laboratory density values are obtained that day, then the average of those tests alone shall be used. If a significant mix change has been made, only the appropriate laboratory density values should be used with the corresponding density cores.

2. Laboratory Voids

The target laboratory voids shall be as listed in Materials I.M. 510 Appendix A unless otherwise specified in the contract documents.


If there are less than 8 sublots for the mixture bid item, the pay factor shall be determined using the absolute average deviation (AAD) procedure described in Materials I.M. 501. The Contractor may elect to have a predetermined quality control plan that indicates a higher testing frequency. This testing plan shall be pre-approved by the Engineer.

The PWL shall be determined as defined in Materials I.M. 501 for each weekly lot. The PWL shall be determined using the specification limits of -1.0% and +1.0% voids from the target laboratory voids. The beginning of the lot shall be predetermined between the Engineer and Contractor. If a weekly lot has less than 8 sublots, it shall be included in the following weekly lot. If the last lot has less than 8 sublots, it shall be included in the preceding weekly lot and a new PWL shall be determined.

23. Thickness.

The thickness of the completed course will be measured to the nearest 1/8 inch (3 mm), exclusive of seal coat, by measurement of cores. All areas of uniform and similar thickness and width for the project will be divided into lots.

The frequency specified for taking density samples from the surface lift will be used when measuring for completed thickness. However, samples that may not be tested for voids density because they are less than 70% of the intended thickness shall be used for thickness, and in these particular instances, the additional samples of sufficient thickness that are used for density tests shall not be measured for thickness. Thickness samples will be taken full depth of the completed course, and after measurement, the density samples for the top layer shall be removed by the Contractor from the core. If any of the measurements for a lot is less than the designated thickness, the quality index for thickness of that lot will be determined by the following formula:

When the day's operation is 2500 square yards (2500 m²) or less, or the mixture is being placed in irregular areas or next to structures, the Engineer may waive sampling for thickness provided

there is reasonable assurance that the pavement conforms to the required thickness. When the quality index falls below 0.00, the Engineer may declare the lot or parts of the lot defective.

34. Smoothness.

Section 2317 of the Standard Specifications shall apply to all HMA surface mixture bid items of a Primary project if any individual HMA mixture bid item is 1000 tons (1000 Mg) or greater or 5000 square yards (4200 m²) or greater. Section 2316 of the Standard Specifications shall apply to all other Primary projects with a surface course and when specifically required for other projects.

D. Sampling and Testing.

The Contractor shall maintain and calibrate the quality control testing equipment with prescribed procedures. Sampling and testing shall conform to specified procedures as listed in the applicable Materials I.M. and Specifications. When the results from a Contractor's quality control lab are used as part of product acceptance, the lab shall be qualified.

All quality control samples and field lab gyratory specimens used for acceptance shall be identified, stored, and retained by the Contractor until the lot is accepted. The Contracting Authority will prescribe the method of securing the identity and integrity of the verification samples in accordance with Materials I.M. 511 Appendix A of this specification. All verification samples shall be stored by the Contractor for the Contracting Authority until delivery to the Contracting Authority's lab.

All samples shall be identified by a system approved by the Engineer.

1. Individual Materials and Loose Mixture.

All samples of asphalt binder, aggregate, and tack coat material, shall be identified, secured, and promptly delivered to the appropriate laboratory, as designated by the Engineer.

Paired samples of loose HMA mixture shall be taken in accordance with Materials I.M. 322, each box of the pair weighing at least 30 pounds (14 kg). The Contractor's quality control tests for mixture properties shall be conducted on representative portions of the mix, from the quality control sample of each sublot.

Samples shall be split for specimen preparation in accordance with Materials I.M. 357.

Paired sampling may also be accomplished by taking a bulk sample and immediately splitting the sample in accordance with Materials I.M. 322 on the grade.

All test results and calculations shall be recorded and documented on data sheets approved by the Contracting Authority. Specific test results shall be recorded on the Daily Plant Report provided by the Contracting Authority. The Daily Plant Report shall also include a description of quality control actions taken (adjustment of cold feed percentages, changes in JMF, etc.). The Contractor shall FAX, or deliver by other method approved by the Engineer, the Daily Plant Report to the Engineer and designated laboratory daily. A copy of the electronic file containing project information generated during the progress of the work shall be furnished to the Engineer at project completion.

When sampling for AASHTO T 283, the Contractor shall obtain a 50 pound (25 kg) sample in accordance with Materials I.M. 322. The Engineer will select, at random, the sample location. The Contractor shall split the sample and deliver half to the Central Materials Laboratory.

2. Compacted Pavement Cores.

The Contractor shall cut and trim samples under the direction of and witnessed by the Engineer for tests of density, thickness, or composition, by sawing with a power driven masonry saw or by drilling a minimum 4 inch nominal diameter core. The surfaces shall be restored by the Contractor the same day. The core holes shall be dried, filled with the same type of material, and the

material properly compacted. Pavement core samples will be identified, taken possession of by the Engineer, and delivered to the Contractor's quality control field laboratory.

The Engineer may either:

- Transport the cores directly to the lab, or
- Secure the cores and allow the Contractor to transport the cores to the lab.

The compacted HMA pavement will be tested in a timely manner by the Engineer's personnel who are lowa DOT Certified to perform the test.

The minimum number of cores taken shall be in accordance with Materials I.M. 204, Appendix F.

The core locations will be determined by the Engineer.

The cores shall be prepared and tested in accordance with Materials I.M. 320, 321, and 337.

3. Verification and Independent Assurance Testing.

The Contractor's quality control test results from paired samples will be validated by the Engineer's verification test results on a regular basis using guidelines and tolerances set forth in Materials I.M. 216 and 511 Appendix A of this specification.

If the Engineer's verification test results validate the Contractor's test results, the Contractor's results will be used for material acceptance. Disputes between the Contractor's and Engineer's test results will be resolved in accordance with Materials I.M. 511 Appendix A of this specification.

The Engineer will select, at random, one or more of the daily hot mix production verification samples. Some or all of the samples selected will be tested in the materials laboratory designated by the Engineer. The Engineer will use the verification test results to determine if the Contractor's test results can be used for acceptance.

The Engineer will test each lot of cores. These will be tested at the Contractor's field quality control laboratory. Cores may also be tested by the Contractor, but the Contractor's test results will not be used for material acceptance.

All personnel and laboratories performing tests used in the acceptance of material shall participate in the statewide Independent Assurance Program in accordance with Materials I.M. 208.

01118.05 METHOD OF MEASUREMENT.

A. Hot Mix Asphalt Mixture.

1. Measurement by Weight (Mass).

When measurement is by weight (mass), the quantity of Hot Mix Asphalt Mixture of the type specified will be expressed in tons (megagrams) and determined from the weight (mass) of individual loads, including fillets, measured to the nearest 0.01 tons (0.01 Mg).

Loads may be weighed in trucks, weigh hoppers, or from the weight (mass) from batch plants computed by count of batches in each truck and batch weight (mass). Article 2001.07 of the Standard Specifications applies. The weights (mass) of various loads shall be segregated into the quantities for each pay item.

2. Measurement by Area.

When payment is based on square yards (square meters), the quantity of Hot Mix Asphalt Mixture

of the type specified, will be the quantity shown in the contract documents to the nearest 0.1 square yard (0.1 m^2).

When constructing shoulders on a basis of payment of square yards (square meters), inspection of the profile and elevation will be based on the completed work relative to the pavement edge; the Contractor shall be responsible for the profile and elevation of the subgrade and for thickness.

If the Contractor chooses to place intermediate or surface mixture in lieu of base for the outside shoulders, the quantity will be calculated from the pavement and shoulder template, or when placed as a separate operation, from scale tickets. If the substitute mixture placed on the shoulder is for an intermediate course fillet only, the quantity in the fillet shall be included for payment in the quantity placed in the adjacent intermediate course.

Removal of fillets shall be incidental to the contract unit price for the mixture.

B. Asphalt Binder.

The amount of asphalt binder used from batch plants, continuous plants, or drum mixing plants, shall be by stick measurement in the Contractor's storage tank or by in-line flow meter reading, in accordance with Article 2001.07, B, of the Standard Specifications. The asphalt binder quantity added to the storage tank shall be computed from a supplier certified transport ticket accompanying each load. The quantity of asphalt binder not used in the work will be deducted.

When the quantity of asphalt binder in a batch is measured by weight (mass) and is separately identified by automatic or semi-automatic printout, the Engineer may compute from this printout the quantity of asphalt binder used.

By mutual agreement, this method may be modified when small quantities or intermittent operations are involved.

The Engineer will calculate and exclude the quantity of asphalt binder used in mixtures in excess of the tolerance specified in Article DS-01118.04, B, 2.

When payment for HMA is based on area, the quantity of asphalt binder used will not be measured separately for payment.

C. Recycled Asphalt Pavement.

The quantity of asphalt binder in RAP, which is incorporated into the mix, will be calculated in tons (megagrams) of asphalt binder in the RAP, based on an assumed asphalt binder content of 5% of the dry RAP weight (mass).

The quantity of asphalt binder in RAP, which is incorporated into the mix, will be included in the quantity of asphalt binder used.

The quantity of asphalt binder in unclassified RAP will not be measured for payment.

D. Anti-strip Agent.

Anti-strip agent incorporated in HMA mixtures will not be measured separately. The quantity will be based on tons (megagrams) of HMA mixture with anti-strip agent added.

E. Tack Coat.

Tack Coat shall be considered incidental to HMA, and will not be measured separately.

F. Fabric Reinforcement.

The quantity of Fabric Reinforcement, in square yards (square meters), to the nearest 0.1 square yard (0.1 m^2) , will be the quantity shown in the contract documents.

G. Adjustment of Fixtures.

The Engineer will count the number of fixtures adjusted to the finished grade.

H. Hot Mix Asphalt Pavement Samples.

HMA Pavement Samples of any finished pavement furnished according to Article DS-01118.04, D, or required elsewhere in the contract documents, will not be individually counted for payment.

01118.06 BASIS OF PAYMENT.

The costs of designing, producing, placing, and testing bituminous mixtures and the cost of furnishing and equipping the QM-A field laboratory shall not be paid for separately, but shall be included in the contract unit price for the HMA mixes used. The application of tack coat, and sand cover aggregate are incidental and will not be paid for separately. Any pollution control testing shall be at the Contractor's expense. The installation of temporary Stop Sign Rumble Strips will not be paid for separately, but shall be considered incidental to the price bid for the HMA course for which it is applied.

. A. Hot Mix Asphalt Mixture.

The Contractor will be paid the contract unit price for Hot Mix Asphalt Mixture of the type specified per ton (megagram) or square yard (square meter).

Surface course test strip placement in an intermediate lift will be paid for at the contract unit price for Hot Mix Asphalt Mixture, Surface Course, per ton (megagram).

Payment will be adjusted by the following percentages Pay Factor for the quality index field voids and laboratory voids density determined for the lot.

 Quality Index (Density) 7 Samples.⁽¹⁾
 Percent of Full Payment

 Greater than 0.72
 400

 0.40 to 0.72
 95

 0.00 to 0.39
 85

 Less than 0.00
 75 maximum

 (⁴⁾ Or 6 samples and 1 outlier. Only one outlier will be allowed.

The unit price for HMA mixture shall be multiplied by the Pay Factor. The pay factor shall be rounded to 3 decimal places for payment.

1. Laboratory Voids. Payment when PWL is used for acceptance.

PWL	Pay Factor
100.0 to 95.1	0.0060×PWL+0.430
95.0 to 80.0	1.000
50.0 to 79.9	0.008333×PWL+0.3333
Less than 50.0	0.750 maximum

When the PWL is less than 50.0, the Engineer may declare the lot or parts of the lot deficient or unacceptable.

Payment when AAD is used for acceptance.

AAD from Target Air Void 0.0 to 1.0 1.1 to 1.5 1.6 to 2.0 Over 2.0 Pay Factor 1.000 0.900 0.750 0.500 maximum

When the AAD is more than 2.0, the Engineer may declare the lot or parts of the lot deficient or unacceptable.

2. Field Voids.

Payment when PWL is used for acceptance.

PWL 100 to 90.1 75.0 to 90.0 50.0 to 74.9 Less then 50.0 Pay Factor 0.003×PWL+0.730 1.000 0.010×PWL+0.250 0.750 maximum

When the PWL is less than 50.0, the Engineer may declare the lot or parts of the lot deficient or unacceptable.

Payment when a test strip is constructed.

Pay Factor 1.000 0.900 0.750 0.500 maximum

When the Average Field Voids in a test strip exceed 9.5% air, the Engineer may declare the lot or parts of the lot deficient or unacceptable.

When the basis of payment is by area, payment will be further adjusted by the appropriate percentage according to the quality index for thickness determined for that lot and the following table:

Quality Index (Thickness) 78 Samples Greater than 0.34 0.14 to 0.34 0.00 to 0.13 Less than 0.00 Percent of Payment (Previously Adjusted for Density) 100 95 85 75 maximum

Courses for which quality index (thickness) is not determined because of size or shape, and courses which are found to be deficient in average width, will be paid for according to Article 1105.04 of the Standard Specifications.

When liquid anti-strip agent is used and production quality control testing for AASHTO T 283 is required, the payment for HMA will be adjusted according to the following table:

Percent TSR	Percent of Full
Greater than 79	100
79 to 70	90
Less than 70	75 maximum

B. Asphalt Binder.

For the number of tons (megagrams) of asphalt binder used in the work, measured as provided in Article DS-01118.05, B, the Contractor will be paid the contract unit price per ton (megagram).

Payment for asphalt binder will be for all new asphalt binder and the asphalt binder in RAP salvaged from the project, the Contracting Authority owned stockpile, or certified Contractor owned stockpiles, which is incorporated in the mixture.

When scarification of asphalt material is required and is paid for on the basis of square yards (square meters) and no other use of the RAP is specified, the RAP shall become the property of the Contractor, and the Contractor shall not be charged for the asphalt binder in that material.

When the basis of payment for HMA is in square yards (square meters), compensation for asphalt binder will be included in the contract unit price per square yard (square meter).

C. Recycled Asphalt Pavement.

RAP which is owned by the Contracting Authority will be made available to the Contractor for the recycled mixture at no cost to the Contractor other than loading, hauling, and processing as required for incorporation into the mix.

D. Anti-strip Agent.

When anti-strip agent is required according to Article DS-01118.02, E, 2, the incorporation of the antistrip agent into the HMA mixture will be considered as extra work ordered by the Engineer. Payment will be made at the rate of \$1.00 per ton (megagram) of HMA mixture in which the anti-strip agent is incorporated. This payment will be full compensation for designing, adding, and testing for anti-strip agent.

E. Fabric Reinforcement.

The Contractor will be paid the contract unit price for Fabric Reinforcement per square yard (square meter). This payment shall be full compensation for furnishing all materials, labor, and equipment necessary for installing the fabric as required, including the adhesive or heavy tack coat of asphalt binder used as the adhesive.

F. Adjustment of Fixtures.

For the number of fixtures adjusted to the finished grade line, the Contractor will be paid the contract unit price for each. If the contract contains no price for adjustment of fixtures, this work will be paid for as provided in Article 1109.03, B, of the Standard Specifications.

G. Hot Mix Asphalt Pavement Samples.

For cutting HMA pavement samples to determine density or thickness according to the specifications, when either of these is the responsibility of the Contractor, and elsewhere when required by the contract documents, the Contractor will be paid the lump sum contract price. This lump sum payment shall be full compensation for furnishing all such samples for all courses or items of work, and for delivery of samples as specified in Article DS-01118.04, D.

Appendix A

Replace Materials I.M. 511 and Materials I.M. 204 Appendix F with the following:

This IM appendix describes the Quality Control/Quality Assurance (QC/QA) procedures for monitoring and controlling plant-produced Hot Mix Asphalt (HMA) on Quality Management of Asphalt (QMA) projects. Because the plant-produced mixtures may not develop test characteristics that meet design criteria, each mixture shall be evaluated during plant production. The evaluation procedures outlined herein are to be carefully followed so that all mix characteristics will conform to the appropriate requirements.

REFERENCE DOCUMENTS

Standard Specification 2303 Hot Mix Asphalt AASHTO R 9-90 Acceptance Sampling Plans for Highway Construction Inspection of Construction Project Sampling & Testing Materials I.M. 204 Materials I.M. 204 208 Materials Laboratory Qualification Program Materials I.M. 204 216 Guidelines for Validating Test Results Materials I.M. 204 301 Aggregate Sampling & Minimum Size of Samples for Sieve Analysis Sieve Analysis of Aggregates Materials I.M. 302 Materials I.M. 320 Method of Sampling Compacted Asphalt Mixtures Materials I.M. 321 Method of Test for Compacted Density of Hot Mix Asphalt (HMA)(Displacement) Materials I.M. 322 Sampling Uncompacted Hot Mix Asphalt Materials I.M. 323 Method of Sampling Asphaltic Materials Compacting Asphalt Concrete by the Marshall Method Materials I.M. 325 Method of Test for Determining the Density of Hot Mix Asphalt (HMA) Using the Materials I.M. 325G Superpave Gyratory Compactor (SGC) Reducing Aggregate Field Samples to Test Samples Materials I.M. 336 Materials I.M. 337 Method to Determine Thickness of Completed Courses of Base, Subbase & Hot Mix Asphalt Method of Test to Determine Asphalt Binder Content & Gradation of Hot Mix Materials I.M. 338 Asphalt (HMA) by the Ignition Method Materials I.M. 350 Method of Test for Determining the Maximum Specific Gravity of Hot Mix Asphalt (HMA) Mixtures Hot Mix Asphalt (HMA) Mix Sample for Test Specimens Materials I.M. 357 Method of Design of Hot Mix Asphalt Mixes Materials I.M. 510

RESPONSIBILITIES

Materials I.M. 511 Appendix A contains an outline of the responsibilities required for all parties.

The Table of Responsibility, in Materials I.M. 511 Appendix A, is broken up into two main categories, Quality Action and Type of Project. The Type of Project is further broken down into two sub-categories, Certified Plant Inspection (CPI) and QMA, and projects with small quantities. The Quality Action is subdivided into the types of work needing to be performed. These areas are General, Asphalt Binder, Aggregate, Loose Hot Mix, Compacted Hot Mix and Revisions. The table is organized in a way to represent how the work would progress during a Hot Mix Asphalt paving operation.

Each Quality Action identifies the group responsible for ensuring the desired action is performed. The groups are the Contractor (CONTR), Resident Construction Office/Project Engineer (RCE), District Materials Office (DME), and the Central Materials Office (CTRL).

In accordance with Materials I.M. 205, the Contractor shall submit a Quality Control Plan to the Engineer prior to the preconstruction meeting. This plan shall include as a minimum the items mentioned in Materials I.M. 511 Appendix D.

In addition, there are certain levels of certification required to perform specific activities. Depending on the Quality Action, an individual might be required to be a HMA Sampler, Level I HMA, Level I HMA, Level I AGG, or a Level II AGG Certified Technician.

SAMPLING & TESTING

Samples of the combined aggregate, asphalt binder, and plant-produced mixture are obtained in accordance with Materials I.M. 204 and analyzed as soon as the operations of the plant stabilize.

Only the information obtained from random samples as directed and witnessed by the Engineer and validated by comparison to one or more of the paired samples tested by the Contracting Authority will be used for specification compliance and included in the moving averages. Additional samples of aggregate and loose hot mix asphalt may be taken to provide better quality control. The results of testing done on additional samples will be for informational purposes only. Any proposed changes in the quality control and verification sampling/testing frequencies require the approval of the District Materials Engineer.

All testing done by the Contractor that is used as part of the acceptance decision shall be performed in qualified labs by certified technicians. On all QMA projects, the Level I HMA-Certified Technician is responsible for making sure that all samples are obtained according to the applicable Materials I.M.s. Samples of loose HMA and asphalt binder must be taken by someone with a minimum of a HMA Sampler Certification.

Samples taken for acceptance purposes shall be retained until the lot has been accepted.

A. ASPHALT BINDER

The procedure used in the sampling of asphalt binder is found in Materials I.M. 323. AASHTO procedures are used in the testing of asphalt binder. The frequencies for taking asphalt binder samples are found in Materials I.M. 204.

B. AGGREGATE

The procedure used in the sampling of aggregate is found in Materials I.M. 301. The procedures used in the testing of aggregate are found in Materials I.M. 336 and Materials I.M. 302. The frequencies for taking aggregate samples are found in Materials I.M. 204.

When results from one or more sieves of the specified gradation sample are outside the allowable gradation tolerances, the Engineer may direct and witness one additional aggregate sample or process one loose mix sample to include in the gradation acceptance decision.

C. LOOSE HOT MIX

The procedure used in the sampling of loose hot mix asphalt is found in Materials I.M. 322. The procedures used in the testing of loose hot mix asphalt are found in Materials I.M. 357, Materials I.M. 350, Materials I.M. 325G, and Materials I.M. 338. The frequencies for taking loose hot mix asphalt samples are found in Materials I.M. 204.

The first production sample <u>each day</u> shall be obtained within the first 500 tons (500 Mg) of mix produced. Subsequent daily samples will be obtained from the remaining daily production by dividing the anticipated production beyond the first 500 tons (500 Mg) into three sublets and randomly selecting a sampling point within each sub let. When less than 2000 tons (2000 Mg) of mix is anticipated to be produced in a day, samples shall be obtained at a minimum rate of one per 750 tons (750 Mg), after the first 500 tons (500 Mg) is sampled. In both cases, samples shall not be taken within the first 100 tons (100 Mg) of production. Table DS-01118.04-1 Uncompacted Mixture Sublet Size shall be used for determining the sublets unless otherwise approved by the Engineer. For the PWL analysis of lab voids, as determined in Materials I.M. 501, a week shall constitute a lot. If fewer than 8 tests are run in a week, include those tests with the following week if available or the prior week if needed. If fewer than eight tests are available for the entire production of a bid item, use the AAD analysis in Materials I.M. 501. The specific ton (megagram) or truckload to begin sampling shall be determined by the Engineer using a <u>random number system</u>. The production samples shall be obtained as directed and witnessed by the Engineer.

The laboratory density, G_{mb}, of each production sample will be determined by averaging the densities of the compacted specimens. Two Gyratory specimens are compacted to the specified number of gyrations. The number of gyrations or blows is specified in the project documents.

Laboratory voids, P_a, for each production sample will be determined from the results of laboratory density and the corresponding individual Rice, G_{mm}, results. The moving average of lab voids will be determined by averaging the last four individual lab void values. A separate moving average will be established for each Job Mix Formula (JMF).

The calibration of the Rice pycnometer shall be checked at the beginning of a project and anytime that a correlation problem occurs.

D. COMPACTED HOT MIX

The procedure used in the sampling of compacted hot mix asphalt is found in Materials I.M. 320. The procedures used in the testing of compacted hot mix asphalt are found in Materials I.M. 321 and Materials I.M. 337. The frequencies for taking compacted hot mix asphalt samples are found in Materials I.M. 204.

The Engineer will provide inspection staff to direct and witness the sampling and perform density measurement during time agreed between the Engineer and the Contractor. The Engineer should make every effort to meet the Contractor's schedule. Results must be determined and reported within the period of time specified in this Materials I.M.

The Engineer will transport the cores in accordance with Materials I.M. 320, or secure the cores for transport by the contractor. The Engineer and Contractor will determine that cores are not damaged. The Engineer will decide if a core is damaged prior to testing.

Field density will be based on the average of the 8 seven density cores taken for each lot. The Quality Index (QI) for field voids density will be determined using the average field density compared to the average maximum theoretical specific gravity, G_{mm}, lab density obtained from samples, which correspond to the pavement from which the cores were taken. Field voids will be determined using the field density and the average of the Rice test results of production samples.

The Quality Index is a statistical measure of the difference between the field density and the minimum required density. The index identifies and compensates for values falling outside the statistical norm (outliers). If the QI results in less than 100% pay, the calculations to identify outliers will be performed. If the calculations identify an outlier at least 2.00 1.80 standard deviations from the mean, the outlier will be eliminated and a new QI calculated with the remaining cores. The new QI will be used to determine payment unless it results in a greater penalty. The Quality Index is based on AASHTO R 9-90. The equations used in the determination of the Quality Index are located in IM 501 Article DS-01118.04, C, 3. Examples on how to calculate the QI as well as outliers are located in Materials I.M. 501.

VALIDATION

Validation is defined as the ability of two labs to achieve similar (statistically equivalent) test values on split or paired samples (split for aggregate samples and paired for HMA samples). When comparing the cold-feed gradation to the ignition oven extracted gradation, a correction factor to adjust the extracted gradation must be determined according to the procedure in Materials I.M. 501. Validation of the cold-feed gradation will be determined by comparing the cold-feed gradation and the corrected extracted gradation as shown on the comparison report for Cold-Feed & Ignition Oven in Materials I.M. 216 Appendix A. The correction factors will be established by comparing an Agency cold-feed sample to an Agency ignition oven extracted sample. To achieve or reestablish validation, a minimum of two consecutive test results must meet Materials I.M. 216 tolerances.

- When any of the following events occur, validation has not been achieved or maintained.
- The difference between test results on each of two consecutive split/paired samples exceeds the Materials I.M. 216 tolerance.

 The difference between test results on any two of three consecutive split/paired samples exceeds the Materials I.M. 216 tolerance.

The test results in a series of split/paired samples (minimum of 3 samples, normally no more than 5) are not variable and random (results are consistently higher or results are consistently lower) and the difference between each split/paired test result is greater than half of the Materials I.M. 216 tolerance.

Consecutive samples may be either validation samples tested sequentially with another lab or mix specific samples when other mixes are being tested for validation between the two labs. It may be necessary to examine validation of test results on consecutive samples of the same mix if more than one mix is being tested between the two labs. Validation problems sometimes only occur during testing of specific mix samples.

DISPUTE RESOLUTION

When validation is not achieved or maintained, the District Materials Engineer may apply the following actions as appropriate to resolve split/paired test result differences.

- Retest the same sample
- The District labs will test additional verification samples.
- The District Materials Engineer will review the sampling and testing procedures of both labs
- The District Materials Engineer will immediately test samples sent in by the Contractor without allowing cool down and reheating (hot-to-hot testing).
- · Both labs will test samples using comparable reheat periods.
- The District Materials Engineer will establish a correction factor based on the reheat evaluation outlined in Materials I.M. 511 Appendix B.
- Both labs will test a sample that was taken and split by the Engineer.
- Both labs and a third laboratory designated by the Contracting Authority will test a sample split three ways. The 3rd lab for state projects will normally be the Central Materials Lab.
- The District Materials Engineer will establish a correction factor for the Contractor's gyratory compactor based on the procedure described in Materials I.M. 511 Appendix C. The correction factor for Gmb should not exceed 0.030.

Resolution decisions by the Iowa DOT Central Materials Laboratory will be final. During the period of production when validation cannot be achieved, the Engineer's test results will be used for acceptance of the lot. The use of the Engineer's test values for acceptance will be retroactive to the time when the first sample exceeded the validation tolerance. Similarly, when validation is regained, the use of the Contractor's test results for acceptance is retroactive to the first test used to reestablish validation.

- If validation cannot be achieved for aggregate gradation, the Engineer's test results will be used for the entire gradation and applied to any calculations involving the gradation for the entire lot.
- If validation cannot be achieved between the ignition oven extracted gradation and the Contractor's cold-feed gradation, the Agency will run cold-feed gradations for validation in place of the ignition oven.
- If validation cannot be achieved on loose hot mix tests for G_{mm} or G_{mb}, the Engineer's test results will be used for any calculations involving that particular test value for the entire lot.

PRODUCTION TOLERANCES

Production tolerances are listed in the specifications.

Variations between two consecutive test results in G_{mb} or G_{mm} of more than 0.030 shall be investigated promptly since these tests reflect significant changes in binder content, aggregate properties and/or gradation. In some cases variations may be attributed to segregation, thoroughness of mixing, sampling procedure, and changes in aggregate production.

REPORTING

For each production sample of loose HMA the Contractor will determine, report, and plot (per QMA specification), G_{mb}, G_{mm} and P_a. Binder content measurement by an approved method will be determined, reported, and plotted daily. Gradation will be determined, reported and plotted daily. The inter lab correlation reports shall be made available.

Test results are to be recorded and plotted in the computer programs provided by the Iowa DOT. Copies of the completed Daily HMA Plant Report (Form #800241) summarizing all test results including the field density QI shall be provided to the District Materials Engineer and the Engineer within four 4 hours of beginning operations on the next working day. Copies of computer files containing the project information shall be furnished to the Engineer on a CD upon project completion. An additional copy of the files shall be furnished to the DME on a CD.

ADJUSTING (TROUBLESHOOTING)

As stated in Standard Specification 2303 Article 01118.01, "The Contractor shall be responsible for all aspects of the project, provide Quality Control management and testing, and maintain the quality characteristics specified".

The Contractor is responsible for making changes, as necessary, to achieve target values specified on the JMF. These changes can include adjusting the proportions of aggregate and asphalt binder necessary to meet the JMF. If a change in the target gradation is desired, the Contractor must shall obtain approval of a new JMF from the District Materials Engineer. Changes in the target gradation cannot be set outside of the control points. The Contractor may change the target binder content to maintain the required mixture characteristics, provided the appropriate documentation and reporting is performed. All changes in proportions must shall be reported on the Daily HMA Plant Report (Form #800241).

The addition of new materials to the JMF may be approved by the District Materials Engineer without laboratory tests if the materials are produced from geologically comparable sources, do not constitute more than 15% percent of the total aggregate, meet quality requirements, and produce mixes that meet design criteria. When aggregates are introduced from sources that are not geologically comparable or otherwise differ significantly, complete laboratory mix design testing and approval is required.

Any time the moving average for laboratory voids falls outside the specification tolerance limit, the Contractor must shall cease operations. The Contractor assumes the responsibility to cease operations, including not incorporating produced material, which has not been placed. Production shall not be started again until the Contractor notifies the Engineer of the corrective action proposed.

Moving averages and the gyratory compaction slope assist in identifying potential problems before they arise. Watch the trends in the moving averages (approaching a specification limit) and the slope of the compaction curve. The slope of the compaction curve of plant-produced material shall be monitored and variations in excess of \pm 0.40 of the mixture design gyratory compaction curve slope may indicate potential problems with uniformity of the mixture.

GUIDANCE TABLES

The tables below are intended to provide guidance on dealing with the most common problems, which arise during the production of HMA. The first table deals with problems, which can show up in the laboratory setting and the second table deals with problems, which can appear in the field.

The following example explains how to read the tables. Both tables are read downward. The shaded regions are the items to be considered for adjusting purposes.

Lab Problem Table

The first step is to identify which lab problem is occurring. If "Low Voids" is the identified problem, move down the column to the "Step 1 Check". Assuming the first check is to be made on the "Binder Content", move down the column to "Step 2 If". If the Binder Content is high proceed to "Step 3 Verify". Each of the

shaded items identified in the "Step 3 Verify" should be looked at before proceeding further. Assuming that the items in "Step 3 Verify" are on target, go to "Step 4 Do". In this case, the action to be taken in "Step 4 Do" is to "Lower Binder" in the mix.

In all cases, the items in the "Step 3 Verify" are assumed to be within the allowable tolerances and won't fall outside of allowable tolerances if the action in "Step 4 Do" is taken.

I	AB PROBLEM	Low Voids	High Voids	Low Film Thickness	High Film Thickness	Low VMA	High VMA
sck	Binder Content			Jacobie Contraction			
Che	Gradation			Level States			
Step 1-Check	Aggr. SG (Gsb)						
Ste	Aggr. Absorption						
	Low Binder						
=	High Binder						
Step 2-If	Low -200						
Ste	High -200						
	Off JMF Target						
	Filler Bitumen Ratio						
fy	Film Thickness	1					
Veri	VMA						
Step 3-Verify	Field Compaction						
Ste	Voids						
	Individual Aggr. Sources		1	•	She al		
	Lower Binder						
-	Increase Binder			100			
Step 4-Do	Lower -200						
tep 4	Increase -200						
S	Adjust Aggr. Proportions	A ST ST ST					Section 1
	Recompute Volumetrics			Des 1			

Field Problem Table

The first step is to identify which field problem is occurring. If "High Field Voids" is the identified problem, move down the column to the "Step 1 Check". Assuming the first check is to be made on the "Lab Voids", move down the column to "Step 2 If". If the Lab Voids are high proceed to "Step 3 Verify". Each of the shaded items identified in the "Step 3 Verify" should be looked at before proceeding further. Assuming that the items in "Step 3 Verify" are on target, go to "Step 4 Do". In this case the process of looking at the "Step 3 Verify" would lead to the Lab Problem Table and cause one of the actions for High Lab Voids to be used.

In all cases, the items in the "Step 3 Verify" are assumed to be within allowable tolerances and won't fall outside of allowable tolerances if the action in "Step 4 Do" is taken.

	FIELD PROBLEM	Low Field Voids	High Field Voids	Tender Mix	Low Density Q.I.	Agglomerates	Uncoated Aggr.	Brown Rock	Stripping
-	Stockpiles								
	Aggr. Absorption								
	Binder Content						1.E		
sck	Lab Voids								
Step 1-Check	Film Thickness								
Step	Mixing Time								
	Moisture in Mix								
	Mix Temp at Plant								
	Mat Temp								
	Low								
Step 2-If	High								
Ste	Yes								
-	Filler/Bitumen Ratio								
	Film Thickness							4	
	Voids								
fy	Field Compaction								
3-Veri	Aggr. Breakdown								
Step 3-Verify	Individual Aggr. Sources								
	Moisture								
	Amount of Clay Binder					10			
	Go To Lab Problem Table					Longer 1			
	Increase Binder							1923	
	Lower Temp								
	Increase Temp								
ß	Cover Loads								
Step 4-Do	Increase Aggr. Dryer Time		7						
St	Screen								
	Adjust Aggr. Proportions								-
	Increase Wet Mixing Time					-			

DS-01118, Page 33 of 36

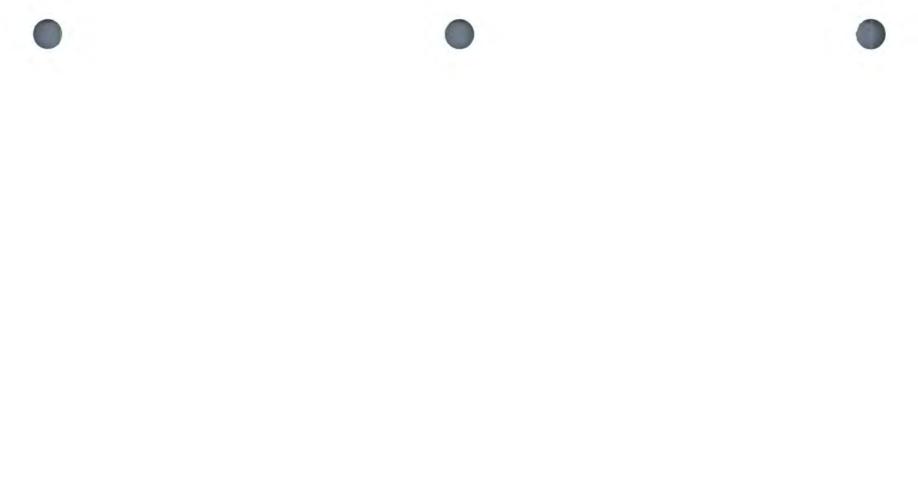
MATERIAL OR CONSTRUCTION ITEM	TESTS	ACCE	HOD OF PTANCE &		QU	ALITY CONTR	OL			INDEPEN	IDENT ASSURAN	CE, & VERIFIC	CATION S&T		REMARKS
2424	-		LATED RIALS I.M.S	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ. Note 1	SAMPLE SIZE	TEST BY	REPORT	
SOURCE INSPEC	TION														
Aggregates-Coarse (4127)		AS	209		-										
Aggregates-Fine (4127)		AS	209	-						1		t	1.1		-
Hydrated Lime (4127)		AS	491.04												
Asphalt Binder		AS	437												100
Emulsions & Cutbacks		AS	437												
Release Agent		AB	491.15			1			-			-			
PLANT INSPECT	Quality		-	RCF/	1/lot	IM 301	CONTR	800241	V	DME	1/20,000 Ton	50 lb.	CTRL DMF/RCF	IM 216	DMF may
Combined Aggregate (4127)	Gradation			RCE/ CONTR	1/lot	IM 301	CONTR	800241	IA	RCE/ CONTR	Sample 1/day, Test 1* day + 20% Sample and Test 1* day Systems Approach*	IM 301	DME/RCE DME	IM 216 IM 216	DME may modify
	Moisture			CONTR	1/half day	1000 gm	CONTR				Арргоаст				Dryer Drum Plants Only
AS-Approved Sour	rce			Cert A-Type A	Certificatio	n	-	RCE-Reside	ent Cons	truction Engin	neer/Project Eng	ineer	IA	Independe	nt Assurance

*A project approach may be applied at the discretion of the DME at the frequency 1/project. <u>NOTE</u>: RCE/CONTR indicates that the Contractor shall assist in the sampling at the direction of and witnessed by the Engineer.

MATERIAL OR CONSTRUCTION ITEM	TESTS	ACCE	THOD OF PTANCE &		QUAL	ITY CONTRO)L			INDEPE	NDENT ASSURANCE,	& VERIFICA	TION S&T		REMARKS
			ELATED RIALS IMS	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
PLANT INSPECT	ION										:				
Mineral Filler									V	DME	1/project	5 kg	DME	821278	
Asphalt Binder	DSR Quality	AS	Cert D						V V IA	RCE/ CONTR DME	Sample 1/day Test 1st 3days + 1/week 1/20,000 T of Mix Systems Approach	4 oz tin 1 qt	DME		Log all shipments
Cutback		AS	329												Log all shipments
Emulsion	Residue	AS	360						V	RCE	1/project	1 qt	DME		Plastic bottle required
GRADE INSPECT Uncompacted Mixture:	Lab Density & Lab Voids		321, 350 325G	RCE/ CONTR	As per 2303 Spec.	30 40 lb	CONTR	800241	V	RCE/ CONTR	As per 2303 Spec Test 1/day Systems Approach	30 40 lb	DME		May be adjusted by DME as per
	1.000				1				14						2303
	Extracted Gradation		338, 331			2			V		Test 1 [≭] day + 20%				When ignition oven is used for gradation validation
Compacted Mixture	Density, Thickness & Voids		320, 321 337						V IA	RCE/ CONTR DME	Lot 1 lot/project*	7 8/lot	RCE DME		
	Smoothness		341	CONTR	100%	100%	CONTR	1.	V	DME	10%		DME		10000
AS-Approved Sour ASD-Approved Sho S&T-Sampling & To	op Drawing		Ce	rt C-Type C	Certification Certification Certification			DME-Dist	trict Mate	erials Engine terials Office		ineer		Independen Verification	t Assurance

* A system approach may be applied at the discretion of the DME. <u>NOTE</u>: A Verification sample for asphalt binder quality and aggregate quality not required under 2000 tons of mix. <u>NOTE</u>: RCE/CONTR indicates that the Contractor shall assist in the sampling at the direction of and witnessed by the Engineer.

DS-01118, Page 35 of 36


MATERIAL OR CONSTRUCTION ITEM	TESTS	METHOD OF ACCEPTANCE & RELATED		QU	ALITY CONTR	OL		INDEPENDENT ASSURANCE, & VERIFICATION S&T							
		MATERIALS IMS	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ. Note 1	SAMPLE SIZE	TEST BY	REPORT		
SOURCE INSPE	CTION														
Aggregates- Coarse (4127)		AS 209				-									
Aggregates-Fine (4127)		AS 209				-		-							
Hydrated Lime (4127)		AS 491.04													
Asphalt Binder		AS 437		1000	1.000	1.2									
Emulsions & Cutbacks		AS 437								-					
Release Agent		AS 491.15	-	-		1.1			-						
PLANT INSPEC Aggregates	TION Quality							V	DME	1/20,000 Mg	22 kg	CTRL			
Combined Aggregate (4127)	Gradation		RCE/ CONTR	1/lot	IM 301	CONTR	800241	V IA	RCE/ CONTR	Sample 1/day, Test 1* day + 20% Sample and Test 1* day Systems Approach*	IM 301	DME/RCE DME	IM 216 IM 216	DME may modify	
	Moisture		CONTR	1/halfday	1000 gm	CONTR								Dryer Drum Plants Only	
S-Approved Sour	се	Cer	t A-Type A C	Certification			RCE-Reside	ent Constru	uction Engin	eer/Project Eng	gineer		A-Independe		
SD-Approved Sh &T-Sampling & T	esting	Cert Cert	t C-Type C C t D-Type D C	Certification			DME-Distric CTRL-Centre CONTR-Co	ral Materia	s Engineer Is Office			,	V-Verificatior	1	

*A project approach may be applied at the discretion of the DME at the frequency 1/project. <u>NOTE</u>: RCE/CONTR indicates that the Contractor shall assist in the sampling at the direction of and witnessed by the Engineer.

MATERIAL OR CONSTRUCTION ITEM	TESTS	METHOD OF ACCEPTANCE & RELATED MATERIALS IMS	QUALITY CONTROL				INDEPENDENT ASSURANCE, & VERIFICATION S&T						REMARKS	
			SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	S&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	TEST BY	REPORT	
PLANT INSPECT	ION													
Mineral Filler			-					V	DME	1/project	5 kg	DME	821278	
Asphalt Binder	DSR Quality	AS Cert D						v v	RCE/ CONTR DME	Sample 1/day, Test 1ª 3 days + 1/week 1/20,000 Mg of Mix	120 ml 1 L	DME		Log all shipments
							0	IA		Systems Approach				
Cutback	Quality Viscosity	AS 329										1		Log all shipments
Emulsion	Residue	AS 360					120	V	RCE	1/project	1L	DME		Plastic bottle required
GRADE INSPECT	1327.02						000014							
Uncompacted Mixture:	Lab Density & Lab Voids	321, 350 325G	RCE/ CONTR	As per 2303 Spec	14 18 kg	CONTR	800241	V IA	RCE/ CONTR	As per 2303 Spec Test 1/day Systems Approach	14 18 kg	DME		May be adjusted by DME as per 2303
	Extracted Gradation	338, 331						V		Test 1 st day + 20%				When ignition oven is used for gradation validation
Compacted Mixture	Density Thickness Voids	320, 321 337						V IA	RCE/ CONTR DME	Lot 1 lot/project*	78 /lot	RCE DME		
	Smoothness	341	CONTR	100%	100%	CONTR		V	DME	10%	0	DME		
AS-Approved Sourd ASD-Approved Sho S&T-Sampling & Te	op Drawing esting	Ce	rt C-Type C rt D-Type D	Certification Certification Certification			DME-Distri	ct Mater tral Mate	ials Enginee erials Office	ngineer/Project Engi er	neer		IA-Indeper V-Verificat	ndent Assurance ion

* A system approach may be applied at the discretion of the DME. <u>NOTE</u>: A Verification sample for asphalt binder quality and aggregate quality not required under 2000 Mg of mix. <u>NOTE</u>: RCE/CONTR indicates that the Contractor shall assist in the sampling at the direction of and witnessed by the Engineer.

SP-010223 (New)

lowa Department of Transportation

SPECIAL PROVISION

FOR

HMA 100M ESAL INTERMEDIATE AND SURFACE MIXTURES

Adair County IM-080-2(169)87--13-01

lowa County IM-080-6(241)205--13-48

> Effective Date March 15, 2005

THE STANDARD SPECIFICATIONS, SERIES OF 2001, ARE AMENDED BY THE FOLLOWING ADDITIONS AND MODIFICATIONS. THESE ARE SPECIAL PROVISIONS AND THEY SHALL PREVAIL OVER THOSE PUBLISHED IN THE STANDARD SPECIFICATIONS.

010223.01 DESCRIPTION

This specification contains provisions that shall modify, supplement, and expand the requirements of the Contract Plans, Section 2303 of the Standard Specifications including its supplements for Hot Mix Asphalt Mixtures, and DS-01003, Hot Mix Asphalt Mixtures – Job Mix Formula Approval by Test Strip Method.

010223.02 BLENDED AGGREGATES.

Article 2303.02, B, of the Standard Specifications shall be modified as follows: The gradation maximum control point at the No. 8 sieve for surface and intermediate mixtures shall be 34% passing for the ³/₄-inch mixture size and 39% for the ¹/₂-inch mixture size. All other control points as specified in Materials I.M. 510 still apply.

010223.03 CONSTRUCTION DENSITY

Article 2303.04, C, of the Standard Specifications shall be modified as follows: Field density results shall be reported within 4 hours of the start of the next work day. If the density quality index (QI) is less than 0.00, the Contractor shall immediately perform a new test strip on the next 1250 tons to demonstrate that the paving operation can achieve a density QI above 0.72. Placement of HMA shall cease until the results of the test strip are reported and approved by the Engineer.

010223.04 JOB MIX APPROVAL BY TEST STRIP METHOD

DS-01003, Job Mix Approval by Test Strip Method shall be modified as follows:

- The initial test strip for the intermediate mixture will be limited to one day of full production, not to exceed 2500 tons. If a second test strip is required for the intermediate mixture, it will be limited to 1250 tons.
- The initial test strip for the intermediate mixture shall be sampled and tested at the normal frequencies specified in Article 2303.04, B, 1, of the Standard Specifications. One additional sample shall be taken during the first 1250 tons of initial test strip production.
- If the second test strip for the intermediate mixture fails, the third test strip shall be placed in the adjacent lane.
- 4. Documentation of the rolling pattern during construction of any test strip shall include mix temperature behind the paver, density growth curves, and any mixture or compaction adjustments.

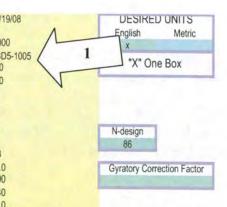
•

INSTRUCTIONS FOR USING THE IOWA DOT HMA PLANT REPORT PROGRAM VERSION 3.5.X

Iowa D.O.T. HMA Plant QC Program - 2009 ver. 3.5	By: Danny Steenhard & John Hinrichsen
--	---------------------------------------

Project & Mix Information	Info			
Daily Sublot & Sampling Locations	Sublots			
Daily Tank Stick For Virgin Asphalt Content	Tank			
Gmb Gmm Pa - Test Data Screen	Gyratory			
Sieve Analysis Worksheet With RAP (sample # 1)	Grad 1			
Sieve Analysis Worksheet With RAP (sample # 2)	Grad 2			
Sieve Analysis Worksheet With RAP (sample # 3)	Grad 3			
Road Core Density & Air Voids & Stationing	Cores			
Plant Temperatures	Temps			
Daily HMA Plant Report Screen	Report			
Film Thickness & VMA	Film VMA			
Daily Diary	Dairy			
Daily Production Summary	Summary			
Data (For copy and paste to Graph Program)	Data			
Quality Index based on % of Gmm	GmmQI			
Determination Of Asphalt Content By (Gmm)	Gmm			
Export Data to Another Program or Database	Export			

The HMA Plant Report Program is a Microsoft Excel spreadsheet workbook that is supplied to the contractor by the Iowa DOT for the purposes of reporting and storing the project data generated during the production of HMA mixtures for projects let under Iowa DOT specifications. The specifications require the contractor to use this software and provide copies of the completed files to the Engineer. Most of the entries in the software are self explanatory, however some explanation of the proper use of the software is necessary. These instructions are intended to provide the information the user needs to efficiently and accurately complete the required documentation.


If the user is not familiar with the use of Microsoft Excel worksheets, the user should review the documentation and instructions for use of the Excel software product. The user also needs to know how to use a mouse to navigate and select items displayed on the screen. When the term "click" is used in these instructions it refers to pressing the left button on the mouse. When entering percentages, enter only the numbers without the "%" sign.

The menu shown above is the first screen in the program. It is intended only to provide an explanation of the function of each of the spreadsheets included in the program and display the version number. Each spreadsheet in the program is named in the right column above and is accessed by clicking on the tab with that name at the bottom of the Excel screen. For example, the spreadsheet used for entering the "Project & Mix Information" is named "Info" and is accessed by clicking on the Info tab (the second tab) as shown in the following example:

n Edit Yew Insert Format Iools Data Window Help		Anal	+ 12 + 1 B 7	11字写書(1)	ersters för belg / -	- A
191 - Stopics and de sale lacture		Concession in the second se			 	-
1 * & Iowa D.O.T. HMA Plant OC Program	2007 ver 3.4	ALC: NOT THE REAL				
A way D. O. T. HMA Plant OC Program - 2007 ver. 3.4 (provide Laker information way build be determined for address way be det	B By Danny Strenchard & John Hang	D E	FO	H	ĸ	L
Click						
Here						

Clicking on the Info tab brings up the following spreadsheet used for entering the information about the Job Mix Formula (JMF) and the project. The first three entries on this screen: date, report number and the expected tonnage for the day are obviously entries that must be made every day because that information changes daily. The rest of the information on the Info sheet, however, is the basic data on the project, the specifications and the JMF. Most of this information does not change often during the course of production of the HMA mixture. <u>Complete this sheet and save it under a unique name then recall the file every day and enter the daily data on the blank sheets without having to fill in this Info again.</u> Create a file with a completed Info page for each mix design to be used before beginning production. When starting a new day, always recall the file with only the Info page completed, do not attempt to overwrite a previous days completed file. The first thing the user must do, then, is enter all the information shown on the JMF form 956 into the Info sheet beginning with the Mix Design Number cell as indicated by the number 1 arrow. A brief explanation of each entry follows:

Todays Date: 06/19/08 Report No.: 2 Expected Tons Produced For The Day: 4,000 Mix Design Number: ABD5-1005 Target Gradation 1 in. (25 mm) sieve: 100 Target Gradation 3/4 in. (19 mm) sieve: 100 Target Gradation 1/2 in. (12.5 mm) sieve: 90 Target Gradation 3/8 in. (9.5 mm) sieve: 83 Target Gradation #4 (4.75 mm) sieve: 50 Target Gradation #8 (2.36 mm) sieve: 28 Target Gradation #30 (600 um) sieve: 11 Target Gradation #200 (75 um) sieve: 3.3 % RAP in mix: 10.0 Intended Added % Binder: 4.90 Intended Total % Binder: 5.40 % Aggregate No. 1 in Mix: 40.0 % Aggregate No. 2 in Mix: 22.0 % Aggregate No. 3 in Mix: 23.0 % Aggregate No. 4 in Mix: 5.0 % Aggregate No. 5 in Mix: % Aggregate No. 6 in Mix: % Aggregate No. 7 in Mix: % Aggregate No. 8 in Mix: Aggregate No. 1 Type & Source: 3/4 Cr. Lmst. A35002 Aggregate No. 2 Type & Source: 3/8 Lmst. Chip A42002 Aggregate No. 3 Type & Source: Man. Sand A17008 Aggregate No. 4 Type & Source: Natural Sand A35512 Aggregate No. 5 Type & Source: Aggregate No. 6 Type & Source: Aggregate No. 7 Type & Source: Aggregate No. 8 Type & Source: Cold Feed Sampled By: Ray Johnson Cold Feed Tested By: Ray Johnson Cold Feed Sampling Location: stream flow Contract ID: County: Polk Target Lab Voids: 4.0 Course Placed: Surface Film Thickness Specifications: 8.0-15.0 Filler Bitumen Ratio Specifications: 0.6-1.4 Gsb From 956: 2.598 VMA at Recommended %Binder from 956: 13.7 Certified Technician's Name: Ray Johnson Certification No.: C1213 Certification No.: C1213 Certificat Technician's Name: John Rayson Certification No.: C1312 % Binder in the RAP: 5.62 RAP Source: From Project RAP Gradation 1 1/2 in. (37.5 mm) Sieve: 100.0 RAP Gradation 1 in. (25 mm) Sieve: 100.0 RAP Gradation 3/4 in. (19 mm) Sieve: 100.0 RAP Gradation 1/2 in. (12.5 mm) Sieve: 95.0 RAP Gradation 3/8 in. (9.5 mm) Sieve: 80.0 RAP Gradation #4 (4.75 mm) Sieve: 71.0 RAP Gradation #8 (2.36 mm) Sieve: 59.0 RAP Gradation #16 (1.18 mm) Sieve: 48.0 RAP Gradation #30 (600 um) Sieve: 37.0 RAP Gradation #50 (300 um) Sieve: 26.0 RAP Gradation #100 (150 um) Sieve: 15.0 RAP Gradation #200 (75 um) Sieve: 8.9

Project No .: NHS-6-3(41)--12-77 77-0006-41 Contractor: Quality Asphalt, Inc. Mix Type: HMA 3M ESAL Mix Size: 3/4"

Gradation Tolerances 100 93-100(100) 83-97(90) 76-90(83) 43-5/(50)

23-33(28) /-15(11) 1.3-5.3(3.3)

% Binder Tolerance 5.10-5.70

Lab Voids Tolerance 3.5-5.0

VMA Tolerance 12.7-14.7

Mix Design Number: This number is found in the upper right corner of form 956 which is often referred to as the JMF or mix design. It is designated "Mix No.:" on form 956.

Target Gradation ...: There are eight entries for the gradation targets. The target gradation is shown on form 956. Enter only the target value, the program will then calculate the tolerances, display them to the right of the entries and enter them on the report screen.

% RAP in mix: If RAP is included as an aggregate in the mix on form 956, enter the percentage of RAP shown in the "% in Mix" column on form 956. (Reminder: enter only the number, do not enter a "%" sign when asked to enter a percentage). It is essential that this value be provided in order for the computer to perform proper calculations for mixtures with RAP.

Intended Added % Binder: If there is RAP in the mix, near the bottom of form 956 just above the comments will be a line that shows "The % ADD AC to start the project is" followed by a percentage. Enter the number shown.

Intended Total % Binder: Near the bottom of form 956 is a line titled "Disposition" which will state the total asphalt content recommended to start the project. Enter the asphalt binder content shown. The program will calculate the tolerances, display them to the right of the entry and enter them on the report screen.

% Aggregate No. ...: There are cells for entering up to eight aggregate stockpile proportions. Enter the percentage of each aggregate in the mix as shown in the "% in Mix" column in the aggregate area of the form 956. Enter the aggregates in the same order as shown on the form 956. Do not enter the RAP percentage here, enter the RAP percentage as explained above for the "% RAP in mix" entry.

Aggregate No. ... Type & Source: There are also eight cells for entering the aggregate sources. The aggregate area of form 956 contains two columns that identify the "Aggregate" and the "Source ID" number. The type of aggregate is listed in the Aggregate column and is typically a simple description such as "sand", "man. sand", "3/8 chip" or "1/2 cr. Imst." The Source ID is a unique identifier number assigned to each quarry or pit approved to provide aggregate to projects as shown in IM T203. The source ID is usually an "A" followed by a five digit number. Sources located in other states will have an abbreviation for the state after the "A" and a three digit number. Enter the type of aggregate followed by the source ID number for each aggregate stockpile in the same order as shown on the form 956. RAP does not have a source ID but is usually identified by the lab number assigned when it was tested in the Central Laboratory, such as ABC7-105.

Cold Feed Sampled By: Enter the name of the certified technician assigned to the task of obtaining aggregate samples from the cold feed belt.

Cold Feed Tested By: Enter the name of the certified technician assigned to the task of performing the sieve analysis gradation of the cold feed sample.

Cold Feed Sampling Location: Enter the point where the cold feed sample is obtained. This is normally either "stream flow" or "stopped belt".

Project No.: Enter the project number. The project number is a combination of letters and numbers shown on all the contract documents and is also shown at the top of form 956.

Contract ID: Enter the contract ID number. The contract ID number is shown on the contract and is composed of the two digit county number and a dash followed by a four digit route identifier and a dash and then a three digit project identifier.

County: Enter the county identified on the contract. The county is shown on form 956.

Contractor: Enter the name of the Prime Contractor or, if the mix is being produced by a sub-contractor enter the name of the sub.

Target Lab Voids: Enter the target value for lab voids from form 956. The program will calculate the allowable tolerances, display them to the right of the entry and enter them on the report screen.

Mix Type: Enter the type of mix from form 956. For example: "HMA 3M L-3".

Mix Size: Enter the size of mix shown of form 956. For example: "1/2 Type A".

Course Placed: Enter the course or "lift" the mixture is used for. For example: "surface" for a surface course or "inter/surf" if the mixture is used for both the intermediate and surface courses.

Film Thickness Specifications: Enter the range of film thickness allowed by the specifications. The range will be either 8.0-13.0 or 8.0-15.0 depending on the ESAL level of the mix design. The range is 8.0-13.0 for 100K and 300K mixes and 8.0-15.0 for all other mixes.

Filler Bitumen Ratio Specifications: The Filler Bitumen Ratio is currently specified as 0.6-1.4 for all mixtures.

Gsb From 956: Enter the bulk dry specific gravity of the combined aggregate designated as "Gsb" on form 956. Do not enter the G_{sb} value shown in the aggregate area of form 956 for the individual aggregate sources. Enter the G_{sb} shown with the mix data and identified by "Gsb" in the left most column of form 956. It is essential that this value be provided in order for the computer to perform proper calculations.

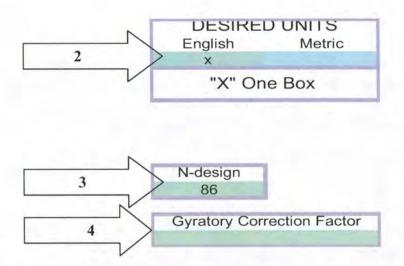
VMA at Recommended %Binder from 956: Enter the %VMA value from form 956 shown in the bold column of mix data. The program will calculate the tolerances, display them to the right of the entry and enter them on the report screen.

Certified Technician's Name: There are two cells that are entries to record the certified technician's name(s).

Certification No.: Enter the certification number for each technician entered. The certification number is shown on the card provided to each technician at the time they are certified/recertified.

% Binder in the RAP: Enter the binder content of the RAP. The RAP binder content is usually on the form 956 in the description of the RAP or in the comments area. This is another value that is essential to be provided in order for the computer to perform proper calculations when RAP is used in the mixture.

RAP Source: Enter what is shown on form 956 as the "Source Location" for the RAP.


RAP Gradation: There are twelve cells for entering the extracted gradation of the RAP from the 1 ½" to the #200 sieve. The extracted gradation of the RAP is provided by the Iowa DOT Central Laboratory to the mix designer and is found on form 955 which shows the Proportion & Production Limits For Aggregates. Enter the percent passing for each sieve size as shown on form 955. When RAP is used in the mixture, all the RAP gradation cells must be completed in order for the computer to perform proper calculations.

There are three additional boxes at the top right of the Info screen. Two of these boxes must be completed in order for the computer to display the information in the proper format. Below is a blow-up of this area of the Info screen with arrows numbered 2 thru 4 to designate where the data is entered.

Desired Units: Place an "X" in the box below the type of units required for the project. Most projects are now let in English units, however <u>the program will default to metric</u> units if there is no "X" in the English box designated by <u>arrow 2</u>.

N-design: Enter the design number of gyrations in the box under "N-design" designated by **arrow 3**. The design number of gyrations is shown on form 956 in the right most column of the mix data.

Gyratory Correction Factor: Do not enter a value in this cell unless directed to do so by the District Materials Engineer. When it is required to correct the contractor's gyratory compaction values, the DME will determine the correction and provide the value for entry in the cell designated by arrow 4.

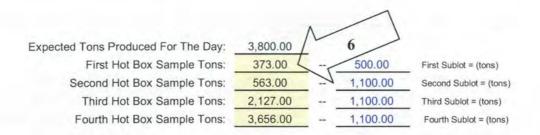
Once all the data is entered on the Info screen, the user should save the file under a unique name such as "NHS-6-surf.xls" to indicate the surface mix on project NHS-6-xxx. Do not overwrite the original blank file. Always keep a copy of the original blank file on hand in case of problems.

Entering Daily Data

Before beginning to enter daily sample and test data, the user should check to be sure that there are no required changes to the data on the Info screen. The intended added % binder and the intended total % binder are values that may change from day to day because the contractor is adjusting to produce mix as close as possible to the target values. The % aggregate for each stockpile and/or the % RAP in the mix may also change occasionally as the contractor adjusts the mixture. When aggregate % changes, the G_{sb} of the aggregate may also need to be adjusted based on the individual G_{sb} values for each aggregate shown on form 956 or form 955. The target values for the gradation may also change if the DME approves them. If changes have been made to any of the proportions or target values, the user should change those values on the Info screen and save the file under a new name so that it can be recalled each day with the new values already entered.

As noted earlier, the first three entries on the Info page are for Today's Date, Report No. and Expected Tons Produced for the Day. These are the first entries made each day.

Todays Date: Enter the date the mixture is produced.


Report No.: Enter a unique report number. A simple consecutive numbering system is acceptable, but some technicians like to include an abbreviation for the course being laid such as "SU-1" for the first day of surface mixture. This is especially helpful when the plant is often switching between different mixes.

Expected Tons Produced for the Day: Enter the contractor's anticipated plant production for the day. This number is used by the agency's inspectors to determine preliminary sample locations for the day.

Sublots:

Clicking on the "Sublots" tab brings up the following screen. Four entries are available on the sublots screen to identify when each HMA sample was taken. This information is usually written right on the box of mixture or on a sample ID form sent with the sample. Enter the approximate starting tonnage where each sample was taken as designated by arrow 6.

Tank:

Clicking on the "Tank" tab brings up the screen used for determining the amount of asphalt binder used each day. Information can be entered from tank stick readings, asphalt meter totalizer readings or batch weight totals. Tank stick readings are the normal values used unless one of the other methods has been approved by the Engineer. There are two types of tank sticks in common use. One type is called the "outage" stick and the other is called a "direct reading" stick. It is important for the user to be sure which type of tank stick information is being supplied. The tank screen also has the ability to handle up to four tanks providing binder to the plant. Contractors seldom use more than one tank at a time, but occasionally additional tanks are used.

Starting Time: Enter the time the tank stick reading was taken before plant production began.

Tank Capacity ...: Enter the total capacity of the tank. <u>This information is essential if</u> using an outage stick.

Outage (% of Diameter): If using an outage tank stick, enter the value read from the stick at the top of the tank with the stick just touching the surface of the asphalt binder in the tank. If using a direct reading tank stick do not make an entry in this cell.

Direct Reading ...: If using a direct reading tank stick, enter the value from the stick calibration chart that is matched to the stick reading. If using an outage stick do not make an entry in this cell.

Beginning Temp. ...: Enter the temperature of the asphalt binder in the tank at the time of the tank stick reading. Tanks must have a visible and accurate temperature display.

This completes the determination of the amount of asphalt binder in the tank before production begins. The program will calculate and display the beginning corrected gallons in the tank. The next step is to record the deliveries of asphalt binder pumped into the tank during the day.

Total Pounds Binder Added During Day: Enter the total net weight of the certified truck tickets for all loads of binder delivered and added to the tank during production.

Pounds/Gallon: Enter weight per gallon of the asphalt binder shown on the certified truck tickets. If this value changes during the day enter the weighted average value.

This completes the determination of the amount of asphalt binder delivered during the day's production. The program will calculate and display the gallons of binder added. The final step in determining the amount of asphalt binder used is the same as the beginning step; sticking the tank after production ends for the day. The same information is required as above for time, tank capacity, stick reading, and temperature. Once all the ending readings are entered the program calculates and displays the amount of asphalt binder left in the tank after production ended. The program then calculates the total corrected gallons used by adding the beginning gallons to the added gallons and subtracting the ending gallons. This number is then converted to weight and displayed as "Total Pounds of Binder Used". Two more entries are required so that the computer can calculate the pay quantities.

Total Pounds Of Mix Made: Enter the total of the net weights of mixture from all truck loads of mix from the plant that day, including any mix that was not incorporated into the project.

Total Pounds Of Mix Wasted: Enter the total amount of mix produced that was not incorporated into the project. This would include mix diverted to other work, rejected loads and any mix left over after construction of the run-out at the end of the day.

Once all the tank stick and mix production values are entered, the program will calculate and display the pay quantities for asphalt binder as "Net Tons Of Binder Used On Road" and HMA mixture as "Net Tons Of Mix Used On Road". It will also calculate the percent of binder in the mix for comparison to the target value and allowed tolerances.

There are three boxes in the lower right corner of the tank screen. The first box indicated by arrow 7 must always be entered in order for the computer to calculate properly.

Asphalt Binder Sp. Gr. (Gb): Enter the specific gravity of the asphalt binder at 77° F in the box indicated by arrow 7. The specific gravity is shown on the certified truck ticket that accompanies each load of asphalt.

Total Pounds Of Binder Used By FlowMeter or Batch Totals: If the Engineer has approved using the totalizer printout from the calibrated flow meter on a drum mix plant or the total binder determined by adding up the binder weight printed out for each batch in a batch plant, the total value is entered here as indicated by arrow 8. Do not place an entry in this box if tank sticks are being used for binder quantity determination.

Tons of Dry RAP Used (Totalizer): Enter the totalizer value corrected to dry weight for the amount of RAP delivered to the mixer from the totalizer printout at the end of production for the day in the box indicated by arrow 9. If the RAP is not weighed on a weigh belt, as may be the case in a batch plant, this value may be calculated from the batch weights or from percent of total production. <u>This value must be provided in</u> <u>order for the program to calculate the combined gradation, film thickness,</u> <u>filler/bitumen ratio and binder pay quantity when RAP is used in the mix.</u>

Gyratory:

Clicking on the "Gyratory" tab brings up the testing screen for determining G_{mb} (also called "lab density") and G_{mm} (also called "maximum specific gravity" or "Rice value"). Some of the information on this screen is transferred from the Info screen and Sublots screen.

Gmb - Test Data	Test 1	Test 1
Hot Box ID Number:	SU6-18A	
Hot Box Sample Tons:	373	
Time:	7:05 AM	
Station:	112+55	
Side:	WB	
Compaction Temp. °F:	275	
Specimen ID No.:	1-1A	1-1B
Design No. of Gyrations:	86	86
"W1", Mass In Air:	4,798.3	4,799.1
"W2", Mass In Water:	2,820.0	2,818.2
"W3", Mass SSD:	4,801.2	4,803.1
Gyratory Height @ N Initial:	133.2	133.5
Gyratory Height @ N Design:	117.4	117.5
Gyratory Height @ N Max (Optional):	115.1	115.2
Measured Density :	2.422	2.418
Height Ratio Hmax/Hdes:	0.9804	0.9804
Corrected Density N Design:	2.375	2.37
Avg. Corrected Gyratory Density (Gmb):	[2.373
Gmm - Test Data		
Description		

Onini - rest Data			
Pycnometer No.:		1	
Mass; Container & Sample:		2,020.2	-
Mass; Container:			10
"W", Sample Mass:		2,020.2	
W1", Mass Pyc. & H2O @ Test Temp.:		7,229.5	
Total Mass:		9,249.7	
"W2", Mass Pyc. & Water & Sample:		8,431.5	
Mass Displaced Water:		818.2	
Test Temperature Of Water (°F):		77	
R Multiplier (chart):		1.0000	
(Gmm):		2.469	
Pa - Test Data:		3.9	
Gyratory Slope:	11.148	11.148	
Average Slope:		11.15	
% Gmm @ N Ini. & N Max.:	84.63	98.02	

There are spaces for entering up to four samples on this screen designated by "Test 1" thru "Test 4" at the top of the screen. It may be necessary to scroll right on the screen to see all entries. Two columns of data entry cells are assigned to each test to accommodate the two gyratory specimens required for each test.

Hot Box ID Number: Enter the identification number assigned to the field sample. This ID is normally an abbreviation for the course being laid (such as "SU" for surface, "IN" for intermediate or "BA" for base) followed by the month and day separated by a dash and then an "A", "B", "C" or "D" to designate the first, second, third or fourth sample of the day.

Hot Box Sample Tons: This cell is filled in by the program from the data entered on the Sublots screen.

Time: Enter the time the sample was taken. This information should accompany the sample.

Station: Enter the station where the sample was taken. This information should accompany the sample.

Side: Enter the direction and/or lane where the sample was taken. This information should accompany the sample.

Compaction Temp....: Enter the temperature at which the gyratory specimens were compacted. This is normally 275 degrees F., but could be changed if the asphalt binder supplier recommends a different temperature and the DME approves.

Specimen ID No: Enter the identification number assigned to the specimen. Each specimen compacted in the gyratory compactor must have a unique identifier, just using "1" for the first specimen every day is not unique. Specimens may be numbered sequentially through the entire project, but the preferred system is to use the report number and a sequential number for that day such as SU-1-1 for the first specimen compacted on the first day of surface mix.

Design No. of Gyrations: This cell is filled in by the program from the data entered on the Info screen.

"W1", Mass In Air: Enter the weight of the gyratory specimen in air to the nearest 0.1 gram as per IM 321.

"W2", Mass In Water: Enter the weight of the gyratory specimen submerged in water to the nearest 0.1 gram as per IM 321.

"W3", Mass SSD: Enter the weight of the gyratory specimen after patting the surface dry to the nearest 0.1 gram as per IM 321.

Gyratory Height (a) N Initial: Enter the height of the gyratory specimen as recorded by the compactor at the initial number of gyrations. The initial number of gyrations (N initial) is shown on form 956 in the far right column of mix data.

Gyratory Height @ N Design: Enter the height of the gyratory specimen as recorded by the compactor at the design number of gyrations. N design gyrations was previously entered on the Info screen.

Gyratory Height (a) N **Max (Optional):** Enter the height of the gyratory specimen as recorded by the compactor at the maximum number of gyrations. N max is the final gyration recorded. The Iowa test procedures require that the specimen be compacted to N max and this entry is not optional at this time, it is required.

This completes the entries for one specimen for determination of G_{mb} . Two specimens must be tested for each sample. The program then calculates the measured density, the height ratio and corrected density at N design, and then displays the average corrected density of the two specimens.

Just below the cells for entering the G_{mb} test data is the area for entering the G_{mm} test data for each sample. One G_{mm} test must be performed on each sublot sample.

Pycnometer No.: Enter the pycnometer number assigned to the pyc being used for the test. Every pycnometer is individually calibrated and the calibrations are not interchangeable, so it is important to record which pyc is used.

Mass; Container & Sample: There are several methods that can be used for determining the original mass of the test sample. The preferred method is to tare the pycnometer on the scale, remove the pyc from the scale and place the sample into the pyc, then return the pyc and sample to the scale and directly read the weight of the sample. This is the method used by the Iowa DOT Laboratories. When this method is used, enter the weight of the sample to the nearest 0.1 gram in this cell.

Another method is to weigh the pan containing the sample, place the sample in the pyc, then weigh the empty pan and determine the weight of the sample by subtracting the empty pan weight from the weight of the pan with the sample in it. If this method is used, enter the weight of the pan with the sample in it to the nearest 0.1 gram.

Mass, Container: If using the preferred method described above, do not make an entry in this cell indicated by arrow 10. If using the other method, enter the weight of the empty pan after placing the test sample into the pyc. The technician may also weigh the empty pyc and enter the weight here then place the sample in the pyc and record the total weight and enter it in the "Mass; Container & Sample" cell so the program can determine the sample weight by subtraction.

"W", **Sample Mass:** The program will transfer the weight of the sample from the Mass; Container & Sample cell if using the preferred method. If using the other methods, the program will do the subtraction and display the result as the sample mass.

"W1", Mass Pyc. & H20 @ Test Temp.: Enter the weight of the pycnometer filled with water from the calibration chart for that pyc that corresponds to the temperature determined at the end of the test as per IM 350.

Total Mass: The program will add W + W1 and display the result in this cell.

"W2", Mass Pyc. & Water & Sample: Enter the final weight of the pycnometer with the sample inside and completely filled with water after completion of the 15 min. vacuum and 10 min. rest periods as per IM 350.

Mass Displaced Water: The program will subtract W2 from the total mass and display the result in this cell.

Test Temperature Of Water...: Enter the temperature of the water in the pycnometer at the completion of the test to the nearest 0.5 degree as per IM 350.

R Multiplier (chart): The program will look up the appropriate correction factor for temperature (referred to as the R multiplier) and display it in this cell.

(Gmm): The program will calculate the maximum specific gravity of the mix (G_{mm}) and display it in this cell.

Pa – **Test Data:** Once all the information needed for determination of G_{mb} and G_{mm} has been entered, the program will calculate the percent air voids in the gyratory compacted specimens and display it in this cell.

Below the air voids value are three more lines of information displayed by the program: Gyratory Slope, Average Slope, and % G_{mm} @ N ini. & N max. This data is for information only and is related to the mix design. These values may be of interest to the Quality Control Technician, as a sudden change in these values may indicate changes in the mixture volumetrics.

Grad 1:

There are three tabs labeled "Grad 1", "Grad 2" and "Grad 3" for entering gradation test data. All three screens work the same. The sample weights and weights of material retained on each sieve are entered on this screen and the program calculates the combined gradation. Data may be entered from a gradation performed on twelve inch sieves using the total sample, or from a gradation performed on eight inch sieves using a reduced minus #4 sample portion as per IM 302. The green colored cells are to be used only if the reduced minus #4 sample test method is used.

Lab. No		Grad 2-A]				
Orig. Dry M		2,558.3						
Dry Mass W		2,450.1	1		Only use g	green colore	d cells when	1
Total Minus #4	4 (W1):		1	1	(Using Box	& 8 in. Siev	ves).	
Reduced Minus	#4 (W2):			1				
Conversion F	actor:		V					_
	Reduced	Total or Calc	%	%	Reported	Composite	Reported	
Sieve Size	Minus #4	Mass Retd.	Retd.	Passing	Final	% Psg.	Final	Specs.
1 1/2 in.		Sec.		100.0	100	100.0	100	
1 in.				100.0	100	100.0	100	100
3/4 in.		15.4	0.6	99.4	99	99.1	99	93-100
1/2 in.		275.6	10.8	88.6	89	89.6	90	83-97
3/8 in.	ALC: NOT OF	325.5	12.7	75.9	76	76.4	76	76-90
#4	and the second	740.0	28.8	47.1	47	49.3	49	43-57
#8	1000	456.0	17.8	29.3	29	31.9	32	23-33
#16		255.4	10.0	19.3	19	21.7	22	-
#30		163.3	6.4	12.9	13	15.3	15	7-15
#50		130.5	5.1	7.8	7.8	9.6	9.6	
#100	1	55.7	2.2	5.6	5.6	6.5	6.5	
#200		30.5	1.2	4.4	4.4	4.8	4.8	1.3-5.3
Pan		3.3	4.4		·			
Wash		108.2						
Totals	ZZ	2,559.4	100.0					
Tolerances		100.0		-				

Lab No.: Enter the lab number assigned to the aggregate sample. Use a unique identifier for each sample.

Orig. Dry Mass: Enter the original dry weight of the sample to the nearest 0.1 gram as per IM 306.

Dry Mass Washed: Enter the dry weight of the sample after washing over a #200 sieve to the nearest 0.1 gram as per IM 306.

Total Minus #4 (W1): Do not make an entry in the green cells indicated by arrow 11 if the total minus #4 portion of the sample is sieved. If using the reduced minus #4 testing method as per IM 302, enter the total amount of minus #4 material left after performing the coarse portion of the sieve analysis to the nearest 0.1 gram.

Reduced Minus #4 (W2): If using the reduced minus #4 testing method as per IM 302, enter the amount of minus #4 material left after reducing the fine portion of the sample to the nearest 0.1 gram. This is the amount of material actually placed in the fine sieves.

Conversion Factor: The program will calculate the ratio of the reduced minus #4 portion to the total minus #4 and display it in this cell.

Individual sieve entries:

There are two columns of cells that may be used for entering the weights retained on each sieve. Notice that for the coarse portion of the sieve analysis (1 $\frac{1}{2}$ inch thru the #4 sieve) only yellow cells under "Total or Calc. Mass Retd." are available for input. Enter the weight retained on each sieve that retained any material to the nearest 0.1 gram.

For the #8 thru the pan, use the green colored cells indicated by arrow 12 only if using the reduced minus #4 sample test method as per IM 302. If sieving the total minus #4, use only the yellow cells. Enter the weight retained on each sieve to the nearest 0.1 gram.

Once all the weights have been entered, the program will calculate the cold-feed gradation and display the results. If the mix contains RAP, the RAP totalizer reading and total amounts of binder and mix must be entered on the Tank screen before the program will calculate and display the combined gradation including the RAP.

For convenience, the specified tolerances for each sieve are transferred from the Info screen and placed in the far right column on the gradation screens.

Cores:

Clicking on the "Cores" tab brings up the screen for entering the data on the cores and the placement stationing. The core data is supplied by the agency's inspector who performs the density and thickness testing of the cores.

Core No.:	1	2	3	4	5	6	7
Station	110+66	144+35	166+81	198+45	212+16	238+77	254+75
CL Reference	1.0 RT	6.0 LT	2.8 LT	1.9 RT	2.8 LT	8.0 RT	2.8 RT
W 1 Dry	1,205.5	1,236.6	1,388.5	1,279.4	1,145.5	1,401.0	1,215.8
W 2 in H20	685.9	701.6	799.6	736.1	648.2	795.5	696.1
W 3 Wet	1,206.6	1,238.1	1,389.6	1,280.9	1,147.0	1,402.5	1,217.1
Thickness (in.)	1 5/8	1 3/4	2	1 3/4	1 1/2	2	1 3/4
Date Tested:	06/19/05	1.00		Intended Lift	Thickness:	2 IN.	
Tested Du	Dat Andara	0		a second second second		-	

Density Record

Tested By: Bob Anderson Required Density:

Placement Record

95.0

From Station	To Station	Lane
100+00	155+25	WB
156+95	267+45	WB
		1000

Information Only									
% Density	97.638	97.216	99.241	99.030	96.879	97.343	98.439		
% Voids	6.5	6.9	5.0	5.2	7.2	6.8	5.7		

Density Record: Seven columns of input cells are provided for entering the location and test data on each core.

Station: Enter the station to the nearest foot where the core was sampled.

CL Reference: Enter the offset from the center line to the nearest 0.1 foot where the core was sampled.

W1 Dry: Enter the original dry weight of the core to the nearest 0.1 gram as per IM 321.

W2 in H2O: Enter the weight of the core submerged in water to the nearest 0.1 gram as per IM 321.

W3 Wet: Enter the final weight of the core after the surface is patted dry to the nearest 0.1 gram as per IM 321.

Thickness...: Enter the average of four measurements of the core to the nearest 1/8 inch as per IM 337. Entries can be made as fractions or decimals.

Date Tested: Enter the date the cores were tested. This is often the day after the mix was produced and placed.

Intended Lift Thickness: Enter the design lift thickness for the course from which the cores were sampled. The intended lift thickness is shown on the plans.

Tested By: Enter the name of the certified technician who tested the cores.

Required Density: Enter the applicable density requirement for the lift from which the cores were sampled. This will be 94, 95 or 96 depending on the location and type of project. The class of compaction is normally shown on the plans and is explained in the specification 2303.03.

Placement Record: Five rows of cells are provided for entering the stationing that defines the area where the mix was placed. When equations or other breaks in stationing occur each area of continuous stations should be entered separately.

From Station: Enter the beginning station of each section or area placed.

To Station: Enter the ending station of each section or area placed.

Lane: Enter the direction and/or lane for each section or area placed.

Below the placement record is an area marked "Information Only". Once all the data is provided for the cores, and the test data for G_{mb} and G_{mm} has been entered on the

Gyratory tab, the program will calculate the percent of lab density and percent voids for each core and display it here.

Temps:

Clicking on the "Temps" tab brings up the screen where the temperatures of the air, binder and mix are entered. Temperatures must be obtained at two hour intervals during production.

		_	Ie	mperatur	es		
Time	7:00	9:00	11:00	1:00	3:00	5:00	7:00
Air Temp. °F	65	70	72	74	74	72	70
Binder Temp. °F	300	305	305	300	305	305	305
Mix Temp. °F	295	300	310	300	295	295	300
Mat Temp. °F	275	285	290	280	285	275	280

Air Temp....: Enter the temperature in the shade at the plant site.

Binder Temp....: Enter temperature of the asphalt binder in the tank being used.

Mix Temp....: Enter the temperature of the mixture as discharged from the plant into the truck. This temperature is normally obtained by checking the temperature of the mass of material in the loaded truck.

Mat Temp....: Enter the temperature of the mat obtained behind the laydown machine. This information is relayed back to the plant from personnel at the placement operation.

Report:

Clicking on the "Report" tab brings up the screen that summarizes the daily production and quality control data. This report must be completed and sent to the DME within four hours after beginning plant production on the next working day. Most of the information shown on the Report screen is transferred from the other screens, however there are a few entries that the user must make to complete the report. The entries that must be made on the report are the moving averages, gradation compliance, production tonnage, mix changes, and any remarks. There is also an area on the report where the user may enter the District Lab test data. The DME may require the District Lab test data to be on the report. This is especially important when there are test validation issues between the District Lab and the contractor's QC lab.

The following example shows the left half of the report screen. Because this program is a daily spreadsheet it cannot look back at the previous day's data that is needed to calculate moving averages. The user must calculate and enter the moving average of the current test with the previous three test results (always the last four available test results).

-6-3(41)' 006-41 5-1005 0 0 0 0 0 0 0 0 0 0 0 0 0	SU6-19A D6/19/08 Grad 2-A 100 99 90 76 49 48 32 28 22 15 12 9.6 6.5 4.8	SU6-19B 06/19/08	Rec SU6-19C 06/19/08	County: ycle Source: SU6-19D 06/19/08 17	
00 00(100) 97(90) 90(83) 57(50) 33(28) 5(11)	06/19/08 Grad 2-A 100 99 90 76 49 48 32 28 22 15 12 9.6 6.5 4.8	06/19/08	SU6-19C	SU6-19D 06/19/08	SU6-19A 06/19/08 Grad 2-A 100 98 87 75 45 28 28
pecs 100 00(100) 97(90) 90(83) 57(50) 33(28) 5(11)	06/19/08 Grad 2-A 100 99 90 76 49 48 32 28 22 15 12 9.6 6.5 4.8	06/19/08		06/19/08	06/19/08 Grad 2-A 100 98 87 75 45 28 28 18
pecs 100 00(100) 97(90) 90(83) 57(50) 33(28) 5(11)	Grad 2-A 100 99 90 76 49 48 32 28 22 15 12 9.6 6.5 4.8	1			Grad 2-A 100 98 87 75 45 28 18
100 00(100) 97(90) 90(83) 57(50) 33(28) 5(11)	100 99 90 76 49 48 32 28 22 15 12 9.6 6.5 4.8	13 13		17	100 98 87 75 45 28 18
00(100) 97(90) 90(83) 57(50) 33(28) 5(11)	99 90 76 49 48 32 28 22 15 12 9.6 6.5 4.8	13		17	98 87 75 45 28 18
97(90) 90(83) 57(50) 33(28) 5(11)	90 76 49 48 32 28 22 15 12 9.6 6.5 4.8	13 N			87 75 45 28 18
90(83) 57(50) 33(28) 5(11)	76 49 48 32 28 22 15 12 9.6 6.5 4.8				75 45 28 18
57(50) 33(28) 5(11)	49 48 32 28 22 15 15 12 9.6 6.5 4.8				45 28 18
33(28)	48 32 28 22 15 12 9.6 6.5 4.8				28 18
5(11)	32 28 22 15 12 9.6 6.5 4.8	13			18
5(11)	28 22 15 12 9.6 6.5 4.8	<u>ا</u>			18
	22 15 12 9.6 6.5 4.8				
	15 12 9.6 6.5 4.8				
	15 12 9.6 6.5 4.8				12
	12 9.6 6.5 4.8				
5.3(3.3)	6.5 4.8			-	
5.3(3.3)	6.5 4.8	1			7.5
5.3(3.3)	4.8				5.5
			7		4.5
	4.2 /	14	1		
	YX		1		N
.90		% Binder	from RAP		
	4.91	9.79%			
.40		Actual % RAP			
0-5.70	5.44	9.97%			5.44
	2.382	2.381	2.406	2.385	2.396
N A	2.471	2.476	2.484	2.475	2.480
15 -1		3.8	3.1		3.4
5-5.07			the second se		
					This
					Column
					Is For
					Dist. Lab
			- N		Test
	000.00	1,100.07			Results
614	1.18		16	0,031,33	1.11
.0-1.4	1.10		V		1.11
.598	Gb:	1.0240	Effective %	Binder (Pbe):	4.07
			the second se		
regate inte					1
	115 30-30-7	20-5 to more	ase volds an	AIVIVIA	
	6-1.4 598 Tons of	15 2.471 3.6 3.6 5-5.0 4.2 7:30 AM 266+66 WB 346.00 500.00 500.00 6-1.4 1.18 .598 Gb: Tons of Mix for Pay regate interchange	15 2.471 2.476 3.6 3.8 3.8 5-5.0 4.2 4.0 7:30 AM 9:15 AM 266+66 296+55 WB WB 346.00 845.00 500.00 1,166.67 6-1.4 1.18 .598 Gb: 1.0240 Tons of Mix for Pay: 4436.86	15 2.471 2.476 2.484 3.6 3.8 3.1 5-5.0 4.2 4.0 3.7 7:30 AM 9:15 AM 12:35 PM 266+66 296+55 333+33 WB WB WB 346.00 845.00 1,852.00 500.00 1,166.67 1,166 6-1.4 1.18 16 .598 Gb: 1.0240 Effective % I Tons of Mix for Pay: 4436.86 Tons of B	15 2.471 2.476 2.484 2.475 3.6 3.8 3.1 3.6 5-5.0 4.2 4.0 3.7 3.5 7:30 AM 9:15 AM 12:35 PM 5:00 PM 266+66 296+55 333+33 366+66 WB WB WB WB 346.00 845.00 1,852.00 3,787.00 500.00 1,166.67 1,166 1,603.52 8,631.35 16 8,631.35 6-1.4 1.18 1.0240 Effective % Binder (Pbe):

* Moving Average: Arrow 13 designates the first of four moving average entries required for the gradation (shown in bold). There is a moving average entry required for the four sieves: #4, #8, #30 and #200. As soon as four gradation tests have been completed for the mix, begin calculating the moving average of four tests and continue to calculate a new moving average for each new test added. Enter the moving averages of the gradation for the four sieves designated by * in the rows designated by "* Moving Average".

Compliance (Y/N): Enter a "Y" or a "N" in the cell designated by arrow 14 to indicate whether the gradation was within specification limits or not. If more than one official gradation is run, make an entry for compliance for each gradation.

Notice there is a yellow colored cell in the next to last column of mix data on the Compliance line. This cell is used for averaging the daily gradations when more than one official gradation is performed for a lot. If two gradations have been recorded enter a "2" in the yellow cell and if three gradations have been recorded enter a "3". The program will then average the gradations and display the results in the column above the yellow cell. Do not make an entry in this cell unless more than one gradation has been entered into the program.

Moving Average: Arrow 15 designates the area where the user must enter the moving average of laboratory air voids (P_a). As soon as four G_{mb} and G_{mm} tests have been completed for the mix, begin calculating the moving average of four P_a values and continue to calculate a new moving average for each new test added. Enter the moving average of P_a after each test in the row designated by "Moving Average".

Tons to Date: Arrow 16 designates the entry for the cumulative tonnage of the mix. Enter the running total of mixture incorporated (pay quantity) for the course(s) being constructed with this mix.

This Column Is For Dist. Lab Test Results: The far right column of the mix data designated by arrow 17 is for entering the test results produced by the District Laboratory on the paired or split samples for the lot being reported. Data entered in this area should correspond to the sample(s) tested and reported by the contractor on the same report.

Enter the HMA and cold-feed sample ID numbers and the date sampled at the top of the column. Enter the aggregate gradation but do not include in the moving averages. Enter a compliance Y/N for the District Lab gradation. Enter the District Lab G_{mb} , G_{mm} and P_a results on the HMA sample but do not include in the moving average. This data is normally for information only, but may be used as the acceptance test values under certain circumstances.

There may be instances where the contractor's average test data is entered for some of the cells in the Dist. Lab column. More information on this will be presented in the instructions for use of the "D.O.T. Results Used" cell in the next section.

Mix Change Information: Arrow 18 designates the area where any adjustments to the mix proportions are recorded. Any changes to the aggregate proportions or asphalt binder content must be recorded here along with the time the change took effect.

A PLANT REP nalt, Inc.		JMF VMA:	13.7			Report No.:	2
		Size:	3/4"	150.11		voids Target:	4.0
ot		Mix Type:	HMA 3N	TESAL	Desig	n Gyrations:	86
Time	7:00	9:00	11:00	1:00	3:00	5:00	7:00
Air Temp. °F	60	65	70	72	73	75	72
Binder Temp. °F	295	300	302	305	302	300	298
Mix Temp. °F	297	302	310	305	302	300	301
Mat Temp. °F	265	275	280	285	285	275	280
From Station	To Station	Lane	Placeme	ent And		Date Placed:	06/19/08
265+25	300+00	WB	Density			Date Tested:	06/20/08
303+55	381+45	WB		Co	urse Placed:	Surface	
		100 million (1990)		Intended Lift	Thickness:	2 IN.	
				Tested By:	Bob Ander	rson	
Core No.:	1	2	3	4	5	6	7
Station	261+21	287+55	299+10	324+15	335+05	355+00	374+12
CL Reference	1.0 LT	1.9 RT	2.9 RT	1.9 RT	1.0 LT	2.9 LT	1.0 RT
W1 Dry	1,212.2	1,240.0	1,390.5	1,285.1	1,155.2	1,412.3	1,221.8
W 2 in H20	689.9	700.0	800.2	738.5	645.8	799.9	703.6
W3 Wet	1,213.5	1,242.0	1,392.1	1,287.5	1,157.7	1,414.1	1,223.2
Difference	523.6	542.0	591.9	549.0	511.9	614.2	519.6
Field Density	2.315	2.288	2.349	2.341	2.257	2.299	2.351
% Density	96.902	95.772	98.326	97.991	94.475	96.233	98.409
% Voids	6.5	7.6	5.2	5.5	8.9	7.2	5.1
Thickness (in.)	1 3/4	1 3/4	2	1 3/4	1 5/8	2	1 3/4
	b (Lot Avg.):	2.389			ield Density:	2.314	
	m (Lot Avg.):	2.477			. % Density:	96.873	1.
	a (Lot Avg.):	3.5			Field Voids:	6.6	1
	rget % RAP:	10.0			d % Density:	95	
No.L =	2.314	- (0.95	x	2.389) =	1.27
21			0.035	0	2.000		
Low Outlier:			High Outlier:			New Q.I. =	
Film Thic	kness (FT):	8.8	VMA:	13	D.O.T.	Results Used	
N		8.0-15.0		12.7-14.7		5	7
Remarks	Gradation	and hot box	<pre>< correlation</pre>	I-OK	_	20	J
19					5	1	
	-				1		
Certified Tech	Ray Johns	on		-	C1213	Cert. No.	1
	John Rays				C1312		

21

Above is an example of the right half of the report screen. Only two entries are allowed here, the rest of the information shown is transferred from other screens or calculated from previously entered data.

Remarks: Arrow 19 designates the area the user may enter any comments that apply to the days work.

D.O.T. Results Used: The box designated by **arrow 20** is to be used only when instructed to do so by the DME. Placing an "X" in this box causes the program to use the data supplied in the Dist. Lab Test Results column discussed above, and ignore the contractor's data. This is normally only done when the District Lab is unable to validate the contractor's test results as detailed in IM 511. There are several scenarios in which the Dist Lab Test Results column would be used.

If, for some reason, all of the contractor's test results are considered invalid for the lot, then enter all the District Lab test results in the column designated by arrow 17. This would occur, for example, if the contractor's lab was not qualified, or the technicians were not properly certified. Enter an "X" in the box designated by arrow 20 to force the program to use the Dist. Lab results.

If only one test result is not validated, the contractor's test results for the other tests that have been validated should be entered into the Dist. Lab column and only the Dist. Lab result for the test in question should be entered there. For example, if the District Lab does not correlate on the G_{mm} test two days in a row, but has correlated on all other tests, the entries in the Dist. Lab Test Results column would be: the contractor's gradation (or average gradation if more than one on the lot), the contractor's lot average G_{mb} , and the Dist. Lab's G_{mm} . Then when an "X" is placed in the box the program will use the contractor's data for gradation and G_{mb} and the Dist. Lab data for G_{mm} to calculate the required values. Indicate in the remarks which test data was used.

The QI, Low Outlier, High outlier, and New QI values are calculated from the mix data and core data entered previously. Arrow 21 designates the area of the report where the QI values are shown. If the QI result is 0.72 or less the program will check for low and high outliers and display the results in the cells for each calculation. If one of the outlier values is 1.80 or greater, the program will then eliminate the outlier from the data set and recalculate the QI and display it in the New QI cell. If neither outlier value is 1.80 or greater, the program will not calculate a New QI and the original QI value is used. If there is a value shown in the New QI cell, it is the value used for determining pay as per Standard Specification 2303.06, unless the New QI value is less than the original QI value.

Film VMA:

Clicking on the "Film VMA" tab brings up a screen that displays the entire calculation of the film thickness and VMA values. No data is input on this screen, it is for information only.

Diary:

Clicking on the "Diary" tab brings up a screen where the user may enter the weather conditions and document any significant events that occurred that day.

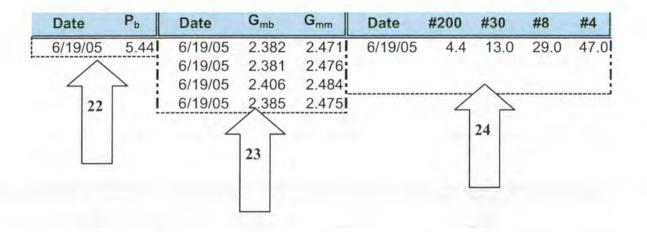
	Daily Diary									
Sunrise:	06:21									
Sunset:	20:37									
Low:	59	(°F)	High:	75	(°F)					
Weather:	partly cloudy				and the second second					
	Plant shut do	wn from 1:30	to 2:10 silo full	working	on intersections					
	began hauling	g in 3/4" crush	ned Limestone a	at 10:00 a	dding to stockpile					

Sunrise: Enter the sunrise time for the day.

Sunset: Enter the sunset time for the day.

Low: Enter the low temperature for the day. The program will display the high temperature from the entries on the Temp screen.

Weather: Enter a description of the day's weather.


The rest of the Diary page is for recording significant events that occurred that day, such as interruptions to production, breakdowns, rain delays, material delivery changes, equipment changes, instructions issued by the Engineer, etc. Anything that the technician feels may be important to document should be placed in the diary.

Summary:

Clicking on the "Summary" tab brings up the daily production summary screen that displays the quantities of materials used that day and the stationing placed. There are no entries made on this screen, it is for information only. This page documents the pay quantities for asphalt binder and HMA mixture. This page also documents the estimated amount of each aggregate stockpile used that day. This information is valuable to the technician for tracking the amounts of materials used for comparison to the quantities certified.

Data:

Clicking on the "Data" tab brings up the screen used for a copy and paste function to transfer data to the charting program. The Iowa DOT provides another Excel spreadsheet workbook that produces the QC charts from the data entered or pasted from this plant report program.

All of the information on the Data screen is transferred from the Report screen. The user must have both this plant report program and the OC charting program loaded into Excel so that each program can be brought to the front of the screen as needed. The user must do three separate copy commands and paste special commands in order to transfer all the data from this screen to the charting program. The first copy command is made for the information designated by arrow 22. Highlight the date and asphalt content shown then click on the copy icon in the tool bar or click on edit then copy from the Excel menu at the top left portion of the screen. Do not highlight the headings in the blue colored cells, only the data displayed below them. Highlighting is accomplished by pointing the mouse at the first cell then holding down the left mouse button and moving to the last cell before releasing the button. The charting program is then brought to the front of the screen by clicking on the file name at the bottom of the screen or clicking on "Window" at the top of the screen then clicking on the file name. The user then needs to click on the "Data" tab in the charting program and click on the first blank date cell under "% Asphalt". Finally, the user must select "File" from the Excel menu at the top left of the screen, then select "Paste Special" then select "Values" then select "OK" and the data should be copied. If any error occurs, simply click "File" and select "Undo Paste Special" to return the screen to the way it was. More detailed information for pasting data into the charting program is provided in the Instructions for use of the QC Charting Program.

Next, return to the Plant Report Program and highlight the information in the box designated by arrow 23. Highlight the dates, G_{mb} 's and G_{mm} 's then click on copy. Up to four lines of data may be copied at once. Follow the same procedures as above for pasting the data into the "HMA Test Data" columns of the charting program.

The gradation data designated by arrow 24 is the final information copied from this screen and transferred to the charting program. Highlight the date and the percent passing data for the four screens then copy it. Up to three lines of data may be copied at once. Paste it into the gradation data area of the charting program as explained above.

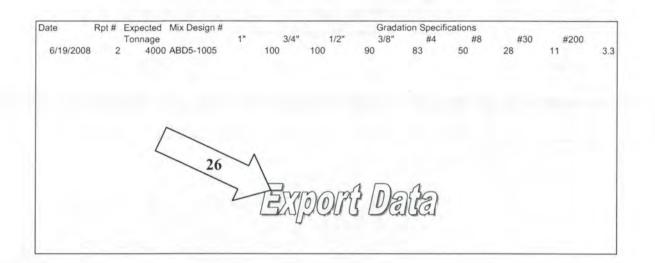
GmmQI:

Clicking on the "Gmm QI" tab brings up a screen that displays the core densities and two calculated quality indexes based on the percent of G_{mm} rather than the percent of G_{mb} .

Date	Core G _{mb}	Avg. G _{mm}	QI	G _{mm} QI@92%	G _{mm} QI@91%
6/19/05	2.315	2.477	1.27	1.00	1.71
6/19/05	2.288				
6/19/05	2.349				
6/19/05	2.341	I			
6/19/05	2.257				
6/19/05	2.299				
6/19/05	2.351				
Avg. S	2.314 0.035	25			

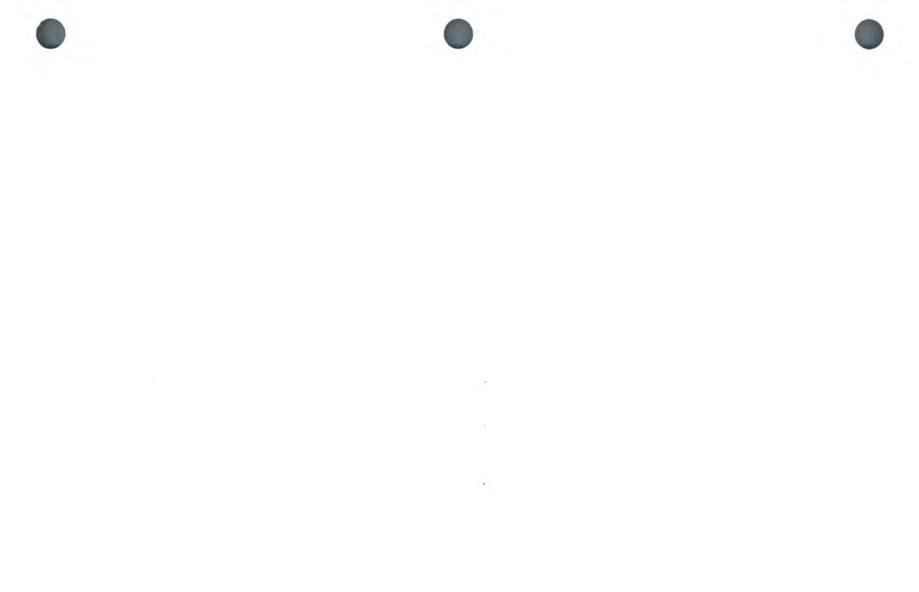
No information is entered on this screen, the data is transferred from the Report screen. The core density data in the box designated by arrow 25 can be copied and pasted into the charting program in the same manner as the information on the Data screen detailed above. The G_{mm} QI's shown on this screen are for information relating to the use of this calculation.

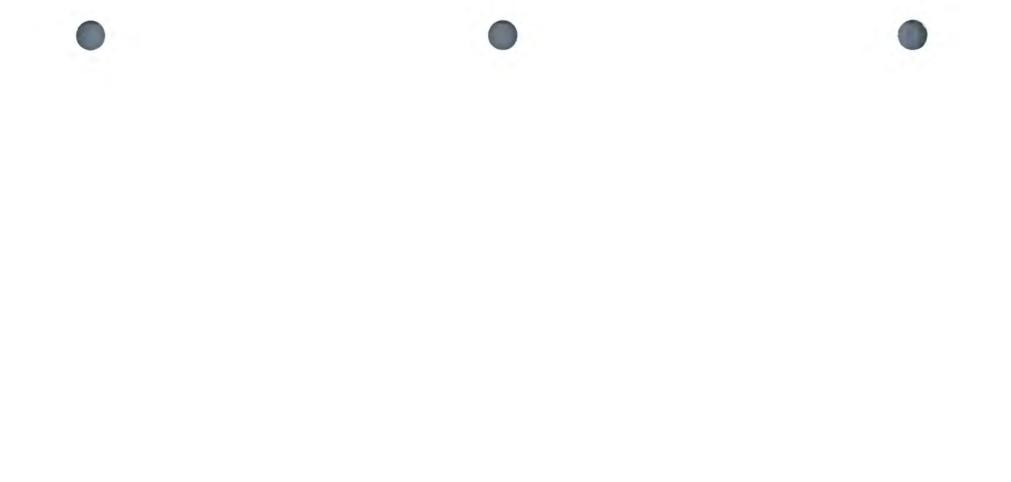
Gmm:


Clicking on the "Gmm" tab brings up a screen where the asphalt binder content is calculated for each HMA sample based on the G_{mm} value determined for that sample. No entries are made on this screen, it is for information only. This information is valuable to the technician because it may indicate asphalt content variations in the plant production that are not visible in the tank stick data.

Determination Of Asphalt Binder	Content By (Gn	nm)		
Total % Asphalt Binder (Pb):	5.44			
Asphalt Binder Specific Gravity (Gb) @ 77 °F:	1.024	1		
Average Maximum Sp. Gr. (Gmm):	2.477]		
Sample Identification:	SU6-19A	SU6-19B	SU6-19C	SU6-19D
Maximum Sp. Gr. (Gmm) individual test	2.471	2.476	2.484	2.475
% Asphalt Binder by Calculation (Pb):	5.61	5.48	5.25	5.51

Export:


Clicking on the "Export" tab brings up a screen that contains one long line of data extracted from the other screens. This data must also be pasted into the QC charting program. This screen contains a Macro that will automatically copy the data.



To use the macro to copy the data, simply click on the large text "*Export Data*" in the middle of the screen as designated by arrow 26. This will highlight and copy the entire line of data from column A to column IS. If the computer being used does not allow the use of macros due to being set for high security, the user can still copy the data and paste it into the charting program. One method is to reset the Excel security to medium or low to allow the use of macros. This is done by selecting "Tools" and "Options" then selecting the security tab and clicking on the "macro security" button and selecting medium or low security. The user will need to exit the Excel program and reload it for the change in macro security it is still possible to copy and paste the data, but the copy must be done by using the mouse to highlight all of line 3 on the Export screen from column A and scrolling several screens to the right all the way to column IS. If manually copying, it is important to highlight the entire line 3 from column A to IS then click on copy.

Once the data on line 3 has been copied either by the macro or manually, it must be pasted into the Charting program. Bring the Charting program to the front by clicking on the file name at the bottom of the screen then clicking on the "Import" tab. Click on the first empty cell in column A under "Date" then paste the same way as the other data, by selecting "Edit" from the menu at the top of the screen, then selecting "Paste Special" then "Values" then "OK". Exporting the data to the charting program is the last step that must be done once all the data has been entered into the Plant Report program and checked for accuracy.

More detailed information for pasting data into the charting program is provided in the Instructions for use of the QC Charting Program.

Instructions for the Use of the Iowa DOT QC Charting Software for HMA Version 3.3.X

The HMA QC Charting Program is a Microsoft Excel spreadsheet workbook that is supplied to the contractor by the Iowa DOT for the purposes of reporting and storing the project data generated during the production of HMA mixtures for projects let under Iowa DOT specifications. When used in conjunction with the HMA Plant Report Program, this software will produce quality control charts as required by the specifications. Version 3.3 of this software also accumulates the mixture data for analysis and for producing paving histories. The specifications require the contractor to use this software and provide copies of the completed files to the Engineers. These instructions are intended to provide the information the user needs to efficiently and accurately complete the required documentation.

If the user is not familiar with the use of Microsoft Excel worksheets, the user should review the documentation and instructions for use of the Excel software product. The user also needs to know how to use a mouse to navigate and select items displayed on the screen. When the term "click" is used in these instructions it refers to pressing the left button on the mouse. When entering percentages, enter only the numbers without the "%" sign.

Contractor:	Quality Asphalt, Inc.
Project Number:	NHS-6-3(41)12-77
Contract ID No.:	77-0006-41
County:	Polk
Mix Design No.:	ABD5-1005
Course:	Surface
Target Lab Voids (P _a):	4.0
Initial Target % Passing #200:	3.3
Initial Target % Passing #30:	11.0
Initial Target % Passing #8:	28.0
Initial Target % Passing #4:	50.0
Initial Target Binder Content (P _b):	5.40

Info.:

Once the QCcharts program is loaded into Excel, the tabs at the bottom of the Excel screen are used to select the different spreadsheets included in the software. The first tab labeled "Info." brings up a screen where the project and mix design information is entered. The entries on the Info screen are all taken from the Form 956 (the JMF). The left side of the Info screen is shown above. A brief description of each entry follows:

Contractor: Enter the name of the prime contractor and sub if applicable.

Project Number: Enter the project number. The project number is a combination of letters and numbers shown on all the contract documents and is also shown at the top of form 956.

Contract ID No.: Enter the contract ID number. The contract ID number is shown on the contract and is composed of the two digit county number and a dash followed by a four digit route identifier and a dash and then a three digit project identifier.

County: Enter the county identified on the contract. The county is shown on form 956.

Mix Design No.: This number is found in the upper right corner of form 956 which is often referred to as the JMF or mix design. It is designated "Mix No.:" on form 956.

Course: Enter the course or "lift" the mixture is used for. For example: "surface" for a surface course or "intermediate/surface" if the mixture is used for both the intermediate and surface courses.

Target Lab Voids (P_a): Enter the target voids for the mix. The target voids can be found in the bold column of mix data on the form 956 designated as "% Air Voids".

Initial Target % Passing...: There are eleven entries for the target gradation on the Info screen. Enter the percent passing for each sieve size as shown for the target gradation on form 956.

Initial Target Binder Content (P_b): Also called the "intended asphalt content". Near the bottom of form 956 is a line titled "Disposition" which will state the total asphalt content recommended to start the project. Enter the asphalt binder content shown.

Initial Target % Passing 1":	100.0
Initial Target % Passing 3/4":	100.0
Initial Target % Passing 1/2":	90.0
Initial Target % Passing 3/8":	83.0
Initial Target % Passing #16:	17.0
Initial Target % Passing #50:	6.7
Initial Target % Passing #100:	4.1
Initial Film Thickness:	12.24
Initial Corrected G _{mb} @ N _{des} :	2.369
Initial Maximum Sp. Gr. G _{mm} :	2.468
Initial Filler/Bitumen Ratio:	0.79
Initial % Effective Binder P _{be} :	4.21

The right side of the Info screen is shown above. The first seven entries are a continuation of entering the target gradation as explained previously. The rest of the entries are taken from the bold column of mix data on form 956. The bold column contains the mix design data at the intended asphalt content.

Initial Film Thickness: Enter the film thickness at the intended asphalt content from the mix design.

Initial Corrected G_{mb} @ N_{des} : Enter the corrected G_{mb} @ N_{des} at the intended asphalt content from the mix design.

Initial Maximum Sp. Gr. G_{mm}: Enter the Max. Sp. Gr. (G_{mm}) at the intended asphalt content from the mix design.

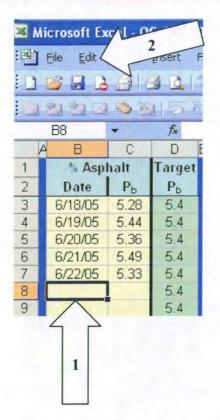
Initial Filler/Bitumen Ratio: Enter the Filler Bit. Ratio at the intended asphalt content from the mix design.

Initial % Effective Binder P_{be} : Enter the P_{be} at the intended asphalt content from the mix design.

Once all the entries have been completed on the Info screen, the file should be saved under a unique name. <u>Do not overwrite the original blank file</u>. Always keep a copy of the <u>original blank file on hand in case of problems</u>. This file can be recalled every day and the day's data added to the file.

Data:

Clicking on the "Data" tab brings up the following screen where the daily data can be pasted from the Plant Report Program or manually entered. It is easy to copy and paste the data from the Plant Report Program, but some specific procedures must be followed.


% Asp	halt	Target	HMA	Test Da	ita	Grad	ation -	Percent	t Passi	ng	Target	Target	Target	Target	Test		Core
Date	Pb	Pb	Date	Gmb	Gmm	Date	#200	#30	#8	#4	#200	#30	#8	#4	No.	Date	Gmb
6/18/05	5.28	5.4	6/18/05	2.373	2.469	6/18/05	4.2	13.0	29.0	47.0	3.3	11.0	28.0	50.0	1	6/18/05	2.315
6/19/05	5.44	5.4	6/18/05	2.365	2.477	6/19/05	4.4	13.0	29.0	47.0	3.3	11.0	28.0	50.0	2	6/18/05	2.305
6/20/05	5.36	5.4	6/18/05	2.375	2.480	6/20/05	4.1	12.0	30.0	46.0	3.3	11.0	28.0	50.0	3	6/18/05	2.353
6/21/05	5.49	5.4	6/18/05	2.371	2,478	6/21/05	4.9	14.0	32.0	51.0	3.3	11.0	28.0	50.0	4	6/18/05	2.348
6/22/05	5.33	5,4	6/19/05	2.382	2.471	6/22/05	4.3	13.0	28.0	45.0	3.3	11.0	28.0	50.0	5	6/18/05	2.297
		5.4	6/19/05	2.381	2.476						3.3	11.0	28.0	50.0	6	6/18/05	2.308
1.000		5.4	6/19/05	2.406	2.484		-				3.3	11.0	28.0	50.0	7	6/18/05	2.334
		5.4	6/19/05	2.385	2.475	· · · · ·	1				3.3	11.0	28.0	50.0	8	6/19/05	2.315
		5.4	6/20/05	2.379	2.481				-		3.3	11.0	28.0	50.0	9	6/19/05	2.288
		5.4	6/20/05	2.388	2.477			-			3.3	11.0	28.0	50.0	10	6/19/05	2.349
		5.4	6/20/05	2.374	2.488		200.00				3.3	11.0	28.0	50.0	11	6/19/05	2.341
		5.4	6/20/05	2.391	2.479		1				3.3	11.0	28.0	50.0	12	6/19/05	2.257
		5.4	6/21/05	2.385	2.483		1	-			3.3	11.0	28.0	50.0	13	6/19/05	2.299
		5.4	6/21/05	2.379	2.475	-	1				3.3	11.0	28.0	50.0	14	6/19/05	2.351
The second	100	5.4	6/22/05	2.377	2.477	_		-	-	-	3.3	11.0	28.0	50.0	15	6/20/05	2.301
· · · · · · · · · · · · · · · · · · ·		5.4	-	1.			_	1			3.3	11.0	28.0	50.0	16	6/20/05	2.312
-		5.4	-					1.5		-	3.3	11.0	28.0	50.0	17	6/20/05	2.333
1	-	5.4			1		-				3.3	11.0	28.0	50.0	18	6/20/05	2.298
		5.4				-	-	1			3.3	11.0	28.0	50.0	19	6/20/05	2.289
		5.4				-	1			-	3.3	11.0	28.0	50.0	20	6/20/05	2.311
		5.4				_		1	_	-	3.3	11.0	28.0	50.0	21	6/20/05	2.308
		5.4				_	1	1			3.3	11.0	28.0	50.0	22	6/21/05	2.323
		5.4		1					-		3.3	11.0	28.0	50.0	23	6/21/05	2.344
-		5.4		1			-				3.3	11.0	28.0	50.0	24	6/21/05	2.321
	-	5.4		-					-		3.3	11.0	28.0	50.0	25	6/21/05	2.298
-		5.4		-		-					3.3	11.0	28.0	50.0	26	6/21/05	2.315
	-	5.4			-		-				3.3	11.0	28.0	50.0	27	6/21/05	2.305
		5,4		1				1		1	3.3	11.0	28.0	50.0	28	6/21/05	2.295

Instructions for how to copy the data from "Data" tab in the Plant Report Program can be found in the Instructions for that program. Both the Plant Report Program and the QCcharting program must be loaded into Excel before beginning the copy and paste procedure. Pasting the data into the charting program must be done using the "Paste Special" command from the Edit menu.

% Asphalt:

The first data copied is the total asphalt content. Once the date and P_b have been copied from the Plant Report Program the user switches to the QCcharts program and clicks on the first blank cell under "% Asphalt" and "Date" (column B) as shown by arrow 1. Next the user clicks on "Edit" at the top of the screen as indicated by arrow 2.

4

Then select "Paste Special" from the menu as indicated by arrow 3.

1	File	Edit	View	Insert	Format	Too			
10	1	R	Can't Un	do	Ctrl+Z	×			
3	3		Paste Sp	ecial		l _{al}			
	B8	\mathcal{V}	Fill		,				
1	2		Delete						
1	9	Move or Copy Sheet							
2	D		-	×					
3	6/1	0/00	0.20	0.7	0/10	5			
4	6/1	9/05	5.44	5.4	6/18	/05			
5	6/2	0/05	5.36	5.4	6/18	/05			
6	6/2	1/05	5.49	5.4	6/18.	/05			
7	6/2	2/05	5.33	5.4	6/19.	/05			
8			1	5.4	6/19	/05			
9				5.4	6/19.	/05			

1	3.2 20.0 15.0	22 442 202 522
	Paste Special	? 🔀
	Paste	
-		Validation
-	○ Eormulas	O All except borders
4	> • Values	Column widths
-	✓ ○ Formats	O Formulas and number formats
	Comments	O Values and number formats
	Operation	
	None	O Multiply
	A₫d	O Dįvide
	<u>Subtract</u>	
	Skip <u>b</u> lanks	Transpose 5
	Paste Link	OK Cancel
		3.3 11.0 28.0 50.0

Then select "Values" as indicated by arrow 4 and click "OK" as indicated by arrow 5.

The date and asphalt content should then appear. If an error occurs, click on "<u>E</u>dit" again and select "Undo Paste Special" to return the screen to its original content. <u>Do not leave</u> <u>blank lines between entries or attempt to line up all the data by date.</u> The "% Asphalt" columns should be continuous data. The Plant Report Program only records the final total asphalt content for the day. If the contractor is taking intermediate tank stick or totalizer readings, they may be entered manually, but the reported asphalt content should be entered as the final entry for that date.

Target Pb:

The next column after the asphalt content is labeled "Target P_b ". The target asphalt binder content entered on the Info screen is transferred here. When a change is made to the target asphalt content simply overwrite the value shown in this column for the date the change took place. **Do not change the target values shown on the Info Screen**. The program will then change all the target values from that point on to the new value but leave the previous entries unchanged. This can be done every time a change is made to the target asphalt content. This is necessary because the chart of the asphalt content shows the deviation from target, not the actual asphalt content.

HMA Test Data:

The next three columns are for entering the G_{mb} and G_{mm} test results. The information is copied from the "Data" tab in the Plant Report Program. Up to four sets of test results may be copied and pasted at once. After the data is copied from the Plant Report Program, it is pasted into the QCcharts program using the paste special command the

same way as explained above for the asphalt content data, except the location to paste is selected as the first blank cell in the Date column under "HMA Test Data" (column F). The program uses this data to calculate and chart the percent air voids in the mix (lab voids).

Do not leave blank lines between entries unless there has been a mandatory shutdown caused by the moving average of air voids going outside the tolerances. Leaving a blank line between entries will cause the program to restart the moving average displayed on the charts. This is the only time a blank line should be left in any of the data columns. None of the other columns should ever contain a blank line between entries.

Gradation – Percent Passing:

There are five columns for recording the gradation data. The date and the percent passing the #200, #30, #8 and #4 sieves are entered here. This data can be copied and pasted from the Data tab in the Plant Report Program as explained above. Again, do not leave blank lines in the gradation data or the moving average will not appear on the charts.

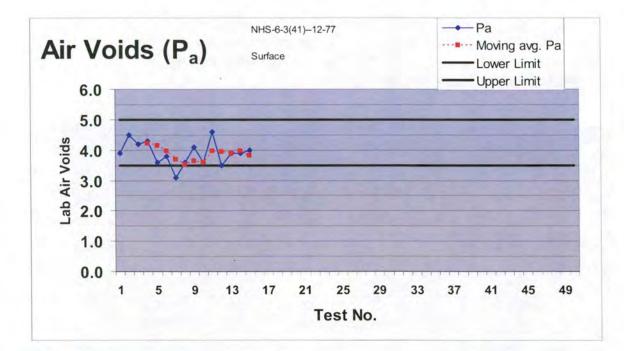
Target...:

The next four columns display the target values for the four sieve sizes being charted. These values are transferred from the Info screen. As explained above for the target P_b , the target values can be changed on the data screen if a new gradation target has been approved by the DME. Change the target values on the same line as the date that the change took place. All the targets from that point on will change to the new value but the previous targets will remain unchanged.

Test No.:

This column is just for reference and simply numbers the lines to indicate how many tests have been performed. This is the X axis on the charts.

Core G_{mb}:


The last two columns are for recording the field density data obtained from the core testing. The date and the individual core densities can be copied and pasted from the GmmQI tab in the Plant Report Program. The specifications do not require that this data be charted, however it is provided here for information that may be valuable to the Quality Control of the mix.

The next eight tabs will access the charts.

Binder:

Displays the chart showing deviation from target for the asphalt binder content. **VOIDS:**

Displays the chart showing individual lab voids values and computes and displays the moving average of the last four test results and the limits. (Example follows)

GmbGmm:

Displays the chart showing individual test values for lab density and maximum specific gravity.

-#4:

Displays the chart showing individual test values deviation from target for the percent passing the #4 sieve and computes and displays the moving average and the limits. -#8:

Displays the chart showing individual test values deviation from target for the percent passing the #8 sieve and computes and displays the moving average and the limits. -#30:

Displays the chart showing individual test values deviation from target for the percent passing the #30 sieve and computes and displays the moving average and the limits. **-#200:**

Displays the chart showing individual test values deviation from target for the percent passing the #200 sieve and computes and displays the moving average and the limits. **Cores:**

Displays the chart showing individual core density values.

Import:

The last tab labeled "Import" brings up the following screen where all the data for the day is pasted. Copy the data from the Export tab in the Plant Report Program using the *Export Data* macro as explained in the instructions for that program. This is one line of data that stretches over several screens. Paste it into the Import screen by clicking on the first blank line in the date column (column A) as indicated by arrow 6 and selecting "Edit", "Paste Special", "Values", and "OK" to complete the paste function as shown before. Again, if an error is made, simply select "Edit" and "Undo Paste Special" to return the

screen to its previous condition. If a corrected report is issued after the data has already been pasted into the charting program, simply paste the new data over the old data to replace it. <u>It is important that this data be provided daily as this is used to summarize the project materials testing.</u>

	Eile Edit View	Insert	Format T	ools <u>D</u> ata <u>W</u> indo	w <u>H</u> elp		
	🗃 🖬 🖪 🔒		1 485 K	🎽 🛍 • 🛷	1-12-	🔒 Σ +	
1		215	ろし」」	L DE TYPReply wit	h Changes	End Review.	
	A5 👻	fx				_	
	A	В	С	D	E	F	0
1	Date	Rpt #	Expected	Mix Design #			
2			Tonnage		1"	3/4"	1/2"
3	6/18/2005	1	3800	ABD5-1005	100	93-100	83-97
4	6/19/2005	2	4000	ABD5-1005	100	93-100	83-97
5	<u>^</u>						
6							
7			100				
З							
	6						

At the completion of the project, check to be sure that all the daily data generated on the project has been entered into the charting program before providing the files to the Engineer. If the files are incomplete, they may be returned for correction. It is now required that all the computer files be placed on a CD and one copy provided to the Project Engineer and another copy provided to the District Materials Engineer.

