Report to the Iowa Department of Natural Resources Nonpoint Source Needs Assessment for Iowa: The Cost of Improving Iowa's Water Quality

Catherine Kling, Silvia Secchi, Manoj Jha, Lyubov Kurkalova, Hongli Feng Hennessy, and Philip Gassman, Center for Agricultural and Rural Development and Department of Economics, Iowa State University

I. Introduction

This technical report describes the methodologies and procedures that researchers from the Center for Agricultural and Rural Development and the Department of Economics employed to estimate the costs of adopting new conservation practices and changing agricultural land use in the state of Iowa with the goal of improving water quality. In brief, economic models and data on land use and conservation practices were combined with a watershed-based hydrological model, the Soil and Water Assessment Tool (SWAT), to estimate the costs of obtaining water quality changes from the hypothetical placement of a broad-based set of conservation practices. The practices analyzed in the assessment include land set-aside, conservation tillage, contour farming, grassed waterways, terraces, and a simple nutrient reduction strategy. The net present value of the total program cost for implementing the set of identified conservation practices in a 10 year program period was estimated to range from \$ 2.414 billion to \$ 4.269 billion, depending on whether only new adopters or old and new adopters were paid and whether low or high cost estimates were used. The corresponding reductions in sediment from the baseline range from 6 to 65% across the watersheds analyzed. Nitrates reductions ranged from 6 to 20%, while total phosphorous decreases varied between 28 to 59%.

As interpreted by the 2000 EPA National Needs Assessment (USEPA 2003) the process of determining the needs of states to address nonpoint source water quality problems is equivalent to identifying the set of conservation practices that should be placed on the landscape, then

estimating the costs of those practices. We follow that basic framework in this analysis. The implicit assumption concerning water quality in such a procedure is that the set of practices identified will achieve the desired water quality improvement. To explicitly assess the likely changes in water quality, we employ a water quality model, SWAT, to project the changes in nitrogen, phosphorous, and sediment loads that might be expected from the identified set of practices. Therefore, the sequence of our analysis is as follows:

1. Identify the set of practices and their location on the landscape.

In consultation with the IDNR the location of the practices was determined based on the potential environmental impact as captured by several indicators, such as proximity to a stream, an erodibility index, and slope. The set of practices chosen is broad and includes terraces, contouring, grassed waterways, conservation tillage, land set-aside, and nutrient management in the form of fertilizer reduction.

2. Estimate the costs of the complete set of practices.

In considering the costs of a practice, it is important to establish as precisely as possible the definition that we are using. We calculate both social and program costs. The IDNR is interested in the program costs that, as a government agency, it would have to incur if the program were implemented. Overall social costs are likely to be different for several reasons, as detailed below. As society as a whole would face the costs of the conservation program differently from the agency that implements it, we report both. Ideally, we wish to estimate the opportunity cost associated with the change in land use or adoption of a conservation practice. The program costs associated with that practices can then be identified. The opportunity cost of an action such as the adoption of conservation tillage or contour farming includes the direct costs of implementing the practice as well as any lost revenue associated with the undertaking the practice relative to

conventional approaches, compensation necessary for any increased risk and/or any other undesirable consequences of the practice for the farmer or landowner. In short, the opportunity cost of a practice is the minimum amount of compensation necessary for the farmer or landowner to voluntarily adopt the practice. For some practices, data limitations or incomplete understanding of the agronomic consequences of a practice mean that direct costs or predictions of lost revenues are used as proxies for the complete opportunity cost. Further discussion of these issues is contained below in the section describing the costs of practices. We also discuss the program costs for the practices chosen and how the opportunity costs differ from the program costs¹.

1. Estimate the water quality benefits associated with these sets of practices.

To estimate the in-stream water quality consequences of a set of conservation practices, we have calibrated the SWAT model for each of the watersheds identified in Figure 1 to baseline levels of adoption. By running the model "after" adoption (i.e., with our hypothetical set of practices in place) we can compute the changes in water quality attributable to the set of practices.

Given that political boundaries and watershed boundaries do not perfectly correspond in Iowa, there is something of a geographic mismatch between our study regions on the cost side and on the water quality side. Figure 1 illustrates the 35 watersheds corresponding to the United States Geological Survey 8-digit Hydrologic Cataloging Units that are largely contained in the state and which are modeled in this study.

¹ Note that identifying and estimating the costs of these conservation practices is independent of the discussion of who might actually pay these costs. Whether the costs were to be imposed on landowners, borne by taxpayers, consumers, or any other groups is a political decision with significant consequences for various groups in society (farmers, taxpayers, etc), but it is an issue that can be considered independently from the computation of the costs.

Figure 1. The study area and watershed delineations

The watersheds correspond to 13 outlets, at which the in-stream water quality is estimated. The water quality indicators of interest are sediment, nitrogen and phosphorus. For the cost analysis we consider placing the identified set of practices all across the state and exclude the pieces of the watersheds that fall outside of the state boundaries (for example the section of the Des Moines river watershed that is in Minnesota). Thus, the costs and water quality benefits we report are not quite consummate: one represents a political boundary (the statewide costs), while the other represents a natural system boundary. Direct comparisons between the aggregate cost and water quality benefit comparisons may be misleading, although the unit costs and benefits (per acre costs and/or per outlet of the watershed measures) can still be appropriately compared.

In the remainder of this report, we describe the procedures used to complete each of these steps, with each step representing a section in the report. Summary estimates of the total costs of the studied practice set are provided in section V. There is a large number of assumptions and data issues that underpin the models and results presented here, and in the final section of the report, we summarize a number of these caveats and indicate which weaknesses in the work the researchers feel are most in need of improvement in future assessments.

II. Identification of the set of practices and their location on the landscape.

In concert with the Iowa Department of Natural Resources, we identified conservation practices on the basis of the physical characteristics of the agricultural land. The practices analyzed include grassed waterways, terraces, strip cropping, contouring, conservation tillage, land set-aside, and nutrient management strategies. The primary data source used in the analysis is the 1997 USDA-NRCS National Resource Inventory (NRI) database (Nusser and Goebel, 1997; <u>http://www.nrcs.usda.gov/technical/NRI/</u>). The NRI provides information on the natural resource characteristics of the land, cropping history, conservation practices used by producers, and other data for some 15,781 cropland and CRP physical points in Iowa. Because the data are statistically reliable for state and multi-county analysis of non-federal land), they are representative of the agricultural land in Iowa. The key unit of our analysis is an NRI point, which is treated as a producer with a farm size equal to the number of acres represented by the point.

As agreed with the IDNR, this was the sequence adopted in identifying the practices for the NRI points²:

² Note that "Western Iowa" refers to all United States Geological Survey 8-digit Hydrologic Unit Codes (HUCs) in the Missouri basin. Unless the criteria distinguish between Western and all other areas of Iowa, the practices were applied uniformly over all basins.

Step 1. Retire all cropland within (<=) 100 ft. of a waterway, placing it in CRP. CRP selection can override any previous conservation practice in place in the 1997 NRI; i.e., terraces, contouring, strip cropping, and grassed waterways.

Step 2. Retire additional land to reach a 10% total land retirement figure statewide (i.e., Step 1 plus Step 2 plus land already in CRP in the 1997 NRI acres equals 10% of the 1997 NRI cropland + 1997 NRI CRP land). This additional land is chosen by beginning with the acreage with the highest Erosion Index (as given in the NRI), until the 10% figure is reached. Again, CRP can override previous conservation practices identified in the 1997 NRI. Points are selected until the next point's area would exceed the 10% criteria.

Step 3. Terraces. For the cropland remaining after Steps 1 and 2, terrace all cropland with slopes above 7% in Western Iowa and above 5% for the remainder of Iowa. This land will also be placed in no till or conservation tillage ---- see step 6. This can override contouring and strip cropping in the 1997 NRI, but not grassed waterways.

Step 4. Contours. Implement contouring on all cropland not covered under Steps 1-3 with slopes above 4%. We do not put contours on baseline areas (1997 NRI) that were in grassed waterways, terraces, strip cropping, or existing contours.

Step 5. Grassed Waterways (GW). For all land not covered under Steps 1-3, and with slopes of 2% or greater (i.e., cropland with slopes from 2 to 7% in Western Iowa and 2 to 5% in the rest of Iowa), place 2% of the cropland in grassed waterways. In modeling the benefits of grassed waterways, assume only 50% of the parcel area with a grassed waterway is benefited by it. Do not override terraces, strip cropping, contours, or existing grassed waterways in the 1997 NRI.
Step 6. Conservation/no till. For all cropland with slopes of 2% or greater that are not retired (Steps 1-2), and not already in conservation tillage, assume 20% of each 8-digit HUC will be in

no till and 80% in conservation tillage. Thus all working cropland with slopes over 2% will be in conservation or no till. Finally, note that the term conservation tillage represents tillage that leaves over 30% residue and no till is used for the tillage practices that leave over 60% residue. Within each 8-digit HUC, points are randomly selected for no till until the next point's area would exceed the 20% criteria, and the remaining are designated as conservation tillage. **Step 7.** Nutrient Management (NM). We assume a 10% reduction in N and P fertilizer rates on all 1997 NRI corn acres for the nutrient management step.

Note that, because we can only simulate a single P factor for any given HRU in SWAT, we can simulate mulch- or no-till in combination with terraces, contouring, and grassed waterways, as currently defined in step 6 of the algorithm in part 3. However, we cannot simulate other conservation practices in combination with each other (e.g., contouring with grassed waterways), This does ignore some real world possibilities, but such combinations can not be incorporated in this present research³.

The acreage involved in this scenario is substantial. Table 1 contains the statewide summaries of both existing and "new" (our set of identified practices) acreage. Note that since multiple practices are possible on the same land, the sum of the acreages in individual practices does not add up to the total acreage in the state⁴. The total existing acres provided are those of the NRI points that indicate the presence of a particular practice. This is likely to overestimate the acreage in which conservation practices are in place, as the NRI only indicates that the

³ In practice, this means that:

- * when an NRI point shows both terraces and contours, we "remove" the contours and only model terraces;
- * when an NRI point shows both terraces and grassed waterways, we model terraces only;
- * when an NRI point shows both contours and strip cropping, we only model contours;
- * when an NRI point shows both contours and grassed waterways, we only model grassed waterways.

⁴ Note also that the existing CRP acres are as of 1995 since that is the most recent data contained in the 1997 NRI.

practice is present on part of the acreage represented by the NRI point and the acreage reported here represents the entire area associated with those points.

Of particular note, the identified set of practices almost triples the amount of acreage that is terraced in the state. The land retired from active production (CRP) increases by almost 50%, while the conservation till acreage is expanded by more than 60%. Nutrient management affects almost half of the acreage in the state. Note that the acreage in grassed waterways is the total cropland acreage affected by the practice. Only 2% of that acreage is actually converted into grassed waterways⁵.

Table 1. Acreage of practices.

	CRP	Mulch till	No till	Contour	GWs	Terraces	NM
New Acres [*]	855,900	5,844,200	1,391,300	1,218,000	7,057,100	3,251,400	12,024,600
Existing Acres	1,739,400	8,959,800	5,036,500	5,146,900	2,131,600	1,932,100	N/A

*"New" acres refers to the acreage affected by the set of identified practices in our scenario. Also note that in the existing acres, it is possible to have several conservation practices on the same piece of land. Therefore, the totals will not add up.

Detailed maps of the geographical placement of the practices by watershed are provided in Appendix A. Some general observations are worth making:

1. The additional CRP acres are located more uniformly across the landscape than the existing CRP acres, which are concentrated more in the South (this presumably has to do with costs). The resulting total CRP acreage is concentrated more heavily in the South and along the Mississippi and Missouri. The more productive and flatter land of the Des Moines Lobe is less affected by this portion of the policy.

⁵ We understand that the 2% factor is arbitrary in the case of the existing acreage reported by the NRI. However, we use it for comparability purposes.

2. In contrast, our models estimate that existing conservation tillage is more widespread in the central part of the state. The additional conservation tillage acres are located quite uniformly across the landscape, therefore the resulting total acreage is relatively high everywhere, with higher peaks in central Iowa.

3. The existing contour acres are concentrated on the eastern and western watersheds flanking the rivers, but the new contour acreage is located in the watersheds adjacent to these in central Iowa.

4. Existing grassed waterways are concentrated in southeast Iowa, but new ones would go into place in northeast and north central Iowa.

5. Existing terraces are mainly located in western Iowa, while the new ones would be put in place in south central Iowa and southeastern Iowa.

III. Estimation of the costs of the identified set of practices.

Social and program costs

The differences between the social and program costs are:

1. Conservation tillage and contour program costs are limited to three years. In practice, it is likely that, for a large fraction of farmers involved in the program, the payments would represent compensation for a real loss in profits that would not disappear in 3 years. The reason is that switching to these practices would entail continued increased costs rather than one-off outlays or risk-premiums. Therefore, in calculating the social costs, we assume that the payments for these practices are annual.

2. Conservation tillage program costs are fixed at \$10/acre for mulch till and \$20/acre for no till. To calculate social costs we draw on the work of Kurkalova et al. (2003) for estimates of

the costs of adopting conservation tillage, as these costs reflect the real opportunity cost of shifting to conservation tillage.

3. Program costs are calculated using a ten year phase-in of the program. For consistency, the same phase-in system is used in the case in which current adopters are also paid. The social costs, on the other hand, are reported as the full annual costs. They are calculated assuming that full implementation of the program is in place.

4. The program cost for terraces is calculated assuming that the whole cost of construction is paid off in full in the first year, and the implementation is staggered in the 10 years of the program. Dave Beck at NRCS in Des Moines estimates that terraces typically have a lifespan of 25 years (Dave Beck, personal communication), therefore in calculating social costs we annualize the terraces' costs for a time horizon of 25 years, with a discount rate of 8%6. For both social and program costs we implicitly assume zero maintenance costs for years subsequent to implementation. Such costs are likely to be substantially smaller than the initial construction costs; however, this assumption may mean that we underestimate the costs of the terraces. For grassed waterways, we use a lifespan of 10 years, which is the one assumed by NRCS (USDA-NRCS, 2003c).

5. In the case of CRP, we use the methodology developed in Feng et al. (2003) to calculate the costs of land retirement7. The cost is based on the rental rate of the land, and therefore represents a true opportunity cost.

Practices costs (per acre)

⁶ The rate was chosen to be consistent with USDA work on conservation practices costs. See for example USDA-NRCS 2003b.

⁷ Our models provided us with information on the rental rate and conservation tillage opportunity cost for 13425 of the NRI points in the state. For the remaining 2355 points we use the average value calculated over the 13425 points.

A unique data source on the costs of conservation practices is not available, therefore we have developed a methodology to combine economic models with available cost data. As noted above, we draw on the procedure developed in Feng *e. al.* (2003) to estimate land retirement's costs, and on Kurkalova *et al.* (2003) for the social cost of adopting conservation tillage. This procedure results in average rental rates for the acres newly enrolled in CRP of \$113.56 (S.D. 23.55). In terms of conservation tillage, using the conservation tillage model instead of the IDNR estimates results in average per acre costs of \$13.52 (S.D. 14.04).

For terraces, contouring, and grassed waterways we gathered data from the Environmental Quality Incentives Program (EQIP) in Iowa to help us bracket the costs, and then used expert opinion to determine the estimates to use. This was necessary because for some practices there are few contracts in the state, and so the average cost is not necessarily meaningful. For example, for contouring there are only 26 contracts statewide. Further, the use of EQIP contract data in general has to be approached with caution since we need to extrapolate the cost of a practice for all farmers from those who have bid for and had contracts accepted. It is likely that the costs for practices to early adopters (such as those who enroll in EQIP) will be less than the equivalent costs for a typical farmer. Finally, since the EQIP data were reported from field offices and appear to have erroneous entries, we use two separate methods for estimating average costs from them. The first is our own calculation of means from the raw data, and the second is from USDA's Economic Research Service (ERS). The original source is the same, but ERS eliminated outliers to calculate averages. Table 2 provides details of the average annual costs per practice from EQIP and the cost estimates we used in agreement with the IDNR. Note that for comparability purposes the cost reported for grassed waterways is the cost per acre of cropland acreage affected by the practice rather than the cost of the actual grassed waterway acreage.

To provide cost estimates for terraces, we translated the per foot cost to a per acre cost. The first basis for the acreage conversion is based on a national report from NRCS which assumes that 435.6 feet of terrace protect 1 acre (USDA-NRCS. 2003a). The second is based on information provided to us by Eric Palas of IDALS, who told us that in parts of Iowa 5,000 feet of terraces will protect 30 acres of cropland. This would amount to 166.67 feet of terrace for 1 acre. The ERS per foot EQIP cost is \$4.36, while the raw EQIP data show an average of \$1.85. Therefore, the per acre installation costs of terraces range from \$308.34 to \$1899.22. Dave Beck at NRCS in Des Moines estimates that terraces typically have a lifespan of 25 years. Therefore, in the social cost analysis we annualize the terraces' costs for a time horizon of 25 years. This results in annualized costs of \$11 in Western Iowa and \$18 per acre in Eastern Iowa. As noted above, for grassed waterways we use a life span of 10 years. For consistency, we use a 8% discount rate here as well. This results in annualized costs of \$1.6 to \$2.4.

Conservation Practice	EQII (per	P costs acre)	DNR cost estimates (per acre)		
Tructice	Low	High	Low	High	
Contouring	\$6.6	\$25.3	\$10	\$20	
Grassed Waterways (structural cost)	\$3.2	\$6.9	\$20	\$30	
Terraces (structural cost)	\$308.3	\$1899.2	\$525(Wes \$875(Eas	stern Iowa) tern Iowa)	

Table 2. Average costs of identified conservation practices.

Fertilizer rate baseline and effect of fertilizer rate reductions

For the nutrient management costs, the baseline levels of fertilizer were estimated drawing on the IDNR's nutrient assessment. Calvin Wolter from IDNR provided us with nitrogen and phosphorus fertilizer usage for the 8-digit HUCs included in the analysis. The amount given by watershed was divided by the corn acreage for each watershed as calculated from the 2002 Land cover / Land use classification of Iowa derived from satellite imagery collected between May 2002 and May 2003 (IDNR - GS 2004). This generated a per acre fertilizer rate. Figure 2 shows the per acre nitrogen rates for the watersheds analyzed. Appendix B lists the nitrogen and phosphorus application rates by watershed for the baseline.

In the analysis, we only consider reductions in the application of nitrogen (N) and phosphorus (P) on corn. While soybeans are an important crop in the state, by far the most fertilizer application is undertaken in the production of corn, so we focus our attention there.

One approach to estimating the cost of reducing N and P application in corn production⁸ is through economic models based on historic data. This approach has the advantage of taking into account other potential behavioral changes by farmers that can mitigate any potential losses from fertilizer changes. For example, Ribaudo *et al.* (2001) estimate that the cost of a 10% reduction in N fertilizer for the Mississippi River Basin is about 0.22 per pound of N loss from fields (as opposed to N applied to fields) and Shaik *et al.* (2002) estimate that the cost of reducing nitrogen applications in Nebraska ranges from 0.91 to 2.21 per pound. Due to time and data limitations, we do not employ such an approach here; however it is useful to note that our estimates are not dramatically different from the estimates of the Shaik *et al.* study.

⁸ Note this might be different from the cost of inducing farmers to agree to reduce the application of fertilizer mainly because the later has to include extra payments when farmers believe that the reduction will have larger yield reducing effects or cause yield to be more volatile.

The method that we use in this project is straightforward; we estimate the direct profit loss due to the reduction of fertilizer. Conceptually, to do this, we need two pieces of information: the reduced cost from less fertilizer and the change in revenue due to any reduced yield. For the former, we need the amount of fertilizer actually reduced and its price. To estimate the effects on revenue, we need the price of corn and the yield impacts due to the reduction in N and P. For both corn and fertilizer, given that prices vary with market situations, only historic prices in recent years will be used.

The estimation of the yield effect is the most important and probably the most controversial/unresolved issue in costing the reduction of fertilizer application due to a number of factors. The yield effect of fertilizer application has been estimated to be almost none, positive, or negative. Some states still recommend more fertilizer for a higher yield goal, while others have discontinued the practice (Lory and Scharf, 2003). It is difficult to estimate the impacts of fertilizer application because the effects may be masked by weather, previous crops, soil condition, etc. In addition, the reduction of fertilizer may have insignificant effect in the short run; however, the long run effect may be large.

Some researchers have concluded that farmers over apply fertilizer so that some reduction in the fertilizer application will not affect crop yield (e.g., Yadav *et al.* 1997). Thus, we use zero net revenue change as one cost estimate for the reduction of the application of N and P. A zero yield effect would literally imply a positive revenue effect due to reduced fertilizer costs. However, fertilizer is quite inexpensive so we assume any cost savings are offset by small yield effects.

For phosphate, recommendations are dependent on the results of soil tests and for soils with high P content, which includes most Iowa soils. Thus, the reduction of P application is viewed as having no yield impact and we assume in turn that there is no cost associated with a 10% reduction in P.

We assume that farmers incur a one-time start-up cost of \$15/acre. This is akin to the cost of initiating a nutrient management plan that would, for example, improve the efficacy of nutrient application through soil testing, so as to avoid yield effects with the lower fertilizer rates. In calculating social costs we annualize this cost assuming a life span of 5 years, because this is the assumption used by NRCS when assessing the cost of nutrient management plans. Such plans require that application rates be based on current soil tests that are not older than 5 years. (USDA-NRCS 2003b). Once again, we use a 8% discount rate.

Total cost analysis

The existing acreage in conservation practices is higher than the acreage that would receive payments if existing adopters were included in the program. The reason is that some of the acreage with existing conservation practices would go into CRP, and some of the acreage in contour would get terraced (and therefore receive payment only for the terrace⁹). Therefore, Table 3 reports both the existing acreage and the existing acreage that would receive payments under our policy scenario.

To calculate the net present value of the program cost we use a 8% discount rate. Table 4 shows that the proposed program analyzed here would result in considerable expense for new terraces. The second most expensive part of the scenario would be land set aside, at over \$315,000,000, while the program costs for conservation tillage would be around \$150,000,000. Table 5 shows how paying existing adopters also would almost double the cost of the program.

⁹ In general, if existing conservation practices are paid, the rule used is that farmers can get paid for several practices for the same piece of land, except for terrace and contour, in which case there are only terrace payments.

The lowest estimate of the net present value of the total program costs (constructed by using the lower costs estimates whenever more than one is identified) is about \$2,414,000,000. The highest estimate, using the higher per acre costs and including existing adopters of conservation practices, is about \$4,269,000,000.

	CRP	Mulch till	No till	Contour	GWs	Terraces	NM
New Acres	855,900	5,844,200	1,391,300	1,218,000	7,057,100	3,251,400	12,024,600
Existing Acres	1,739,400	8,959,800	5,036,500	5,146,900	2,131,600	1,932,100	N/A
Existing acres receiving payments	1,739,400	8,759,600	4,919,200	2,092,600	1,981,100	1,721,500	N/A

Table 3. Acreage of practices used in the cost calculations

The annualized social costs are reported in Table 6. Annualizing the costs of terraces substantially reduces their impact. Land set aside and conservation tillage payments account for the highest outlays. Watershed and county level costs are given in Appendix C.

Table 4. Program costs by practice (\$ millions)

	CRP costs	CT costs	contour costs (LOW)	contour costs (HIGH)	GW costs (LOW)	GW costs (HIGH)	Terraces	NM
New acreage	315	150	21	42	95	142	1,712	121
Existing acreage	640	324	36	73	27	40	709	0
Total acreage	955	474	58	115	121	182	2,421	121

Table 5. Total program costs (\$ millions)

Cost Categories	Cost
New acreage paid only - low estimates	2,414
New acreage paid only - high estimates	2,483
Total acreage paid - low estimates	4,151
Total acreage paid - high estimates	4,269

Table 6. Annualized social costs (\$ millions)

	CRP costs	CT costs	Contour costs (Low)	Contour costs (High)	GW costs (Low)	GW costs (High)	Terrace	NM	Total (Low)	Total (High)
New acreage	96	97	12	24	11	17	53	33	303	321
Existing acreage	196	12	21	42	3	5	22	0	254	276
Total acreage	292	109	33	66	14	22	76	33	557	597

IV. Estimation of the water quality benefits associated with the identified set of practices.

The SWAT model is used to estimate changes in water quality attributed to the new set of conservation practices. SWAT is a conceptual, physically based long-term continuous watershed scale simulation model that operates on a daily time step. The model is capable of simulating a high level of spatial detail by allowing the division of a watershed into a large number of subwatersheds. In SWAT, a watershed is divided into multiple subwatersheds, which are then further subdivided into Hydrologic Response Units (HRUs) that consist of homogeneous land use, management, and soil characteristics. Flow generation, sediment yield, and non-point-source loadings from each HRU in a subwatershed are summed, and the resulting loads are routed through channels, ponds, and/or reservoirs to the watershed outlet. Key components of SWAT include hydrology, plant growth, erosion, nutrient transport and transformation, pesticide transport and management practices. Previous applications of SWAT for flow and/or pollutant loadings have compared favorably with measured data for a variety of watershed scales (Arnold and Allen, 1996; Arnold et al., 1999; Arnold et al., 2000; Saleh et al., 2000; Santhi et al., 2001; Kirsch et al., 2002; Grizzetti et al., 2003; Chaplot et al., 2004). Further details on the SWAT components are presented in Arnold et al. (1998) and Neitsch et al. (2002).

To estimate the water quality changes, it is necessary to calibrate SWAT to existing baseline data on the watersheds and to accurately represent the current land use, land management, and weather conditions of the region, using data obtained from several sources. Modifications in land use are performed using the previously described conservation practice algorithm and discrete choice economic models that take into account price effects and natural resource conditions. A schematic of the modeling system is depicted in Figure 3, including the data flows between the economic models and SWAT.

A key data source for the system is the previously described USDA 1997 NRI database, which contains soil type, landscape features, cropping histories, conservation practices, and other data for roughly 800,000 U.S. nonfederal land "points" including 23,498 in Iowa¹⁰. Each point represents an area that is assumed to consist of homogeneous land use, soil, and other characteristics, which generally ranges from a few hundred to several thousand hectares in size. Crop rotations incorporated in the SWAT simulations are derived from cropping histories reported in the NRI. Other land use delineations required for the simulation, including the locations of baseline conservation practices, are also based on NRI data. The tillage implements simulated for the different levels of tillage (conventional, reduced, mulch, and no) incorporated in the analysis were obtained from the USDA 1990-95 Cropping Practices Survey (CPS) available at <u>http://usda.mannlib.cornell.edu/ usda/ess_entry.html</u>). Historical precipitation, maximum temperature, and minimum temperature data obtained from the Iowa Environmental

¹⁰ These 23,498 points include the previously mentioned 15,781 cropland and CRP points.

Mesonet (<u>http://mesonet.agron.iastate.edu/request /coop/fe. phtml</u>) for the 18-year period (1980-99) were used for the SWAT simulations. The soil layer data required for the SWAT simulations is input from a soil database that contains soil properties consistent with those described by Baumer et al. (1994), with the additional enhancement of ID codes that allow direct linkage to NRI points.

The discrete choice tillage and land retirement economic models were used to estimate tillage and CRP costs, as a function of NRI and CPS data, production costs estimated using methods developed by AAEA (2000), and CRP land rental rates (Figure 3). The cost of the conservation practices were determined as previously discussed. The discrete choice tillage model was further used to determine which tillage level should be assigned to each NRI point for both the baseline and scenario simulations, depending on the soil and climatic characteristics for that point. The selection of which NRI points that land retirement, contouring, grassed

waterways, and terraces should be assigned to, was based on the previously described conservation practices algorithm. New land use distributions predicted by the economic model are then input to SWAT by aggregating NRI points together that possess common land use, soil, and management characteristics (NRI clusters). The NRI clusters serve as Hydrologic Response Units (HRUs) in the SWAT simulations, which are further described in the HRU Development Process section. Nutrient management scenarios such as changes in fertilizer rates or timings are imposed directly on SWAT, rather than first being routed through the economic model. The SWAT executions, including the input and output data, are managed with the interactive SWAT (i_SWAT) software (Gassman et al. (2003); http://www.public.iastate.edu/~elvis), which is currently designed to support applications of SWAT2000 (Figure 3).

HRU Delineation Process

Delineation of each watershed into smaller spatial units required for the SWAT simulations consists of two steps: (1) subdividing each watershed (Figure 1) into either U.S. Geological Survey (USGS) 8-digit Hydrologic Cataloging Unit (HCU) watersheds (Seaber et al., 1987) or smaller 10-digit watersheds (as described in http://www.igsb.uiowa.edu/nrgislibx/newsletters /2004-08%20GIS%20Newsletter%20 Vol%20III.pdf), and (2) creating smaller HRUs within each of the subwatersheds. Larger 8-digit subwatersheds were used for the Des Moines and Iowa River Watersheds (Figure 1), which were the two largest systems included in the analysis. The smaller 10-digit subwatersheds were used for those watersheds that consist of 1 to 3 8-digit watersheds (Figure 1), to avoid potential distortions in predicted pollutant indicators when only a small number of subwatersheds are used in a SWAT application as discussed by Jha et al. (2004).

The HRUs represent "lumped areas" of similar land use and soil types that are distributed throughout each subwatershed; however, exact spatial locations of the HRUs are not incorporated in the SWAT simulation. The HRUs required for the SWAT baseline simulations were created by aggregating NRI points together that possess common land use, soil, and management characteristics. All of the points within a given category were clustered together within each 8-digit watershed for the Des Moines and Iowa River Watershed simulations, except for the cultivated cropland. For the cultivated cropland, the NRI points were first aggregated into different crop rotation land use clusters within each 8-digit watershed, based on the NRI cropping histories. These crop rotation aggregations were then subdivided based on permutations of rotations; e.g., corn-soybean versus soybean-corn.

A more complex procedure was developed to construct the HRUs for the SWAT baseline simulations for the other 11 watersheds, because the NRI data is not spatially referenced at the 10-digit watershed level. To overcome this limitation, Iowa Soil Properties And Interpretations Database (ISPAID) soil data (<u>http://extension.agron.iastate.edu/soils/pdfs/ISP71MAN.pdf</u>) and 2002 IDNR land use data (IDNR-GSB, 2004) were used to help determine which HRUs should be placed in each 10-digit subwatershed. The initial step in the procedure consisted of attempting to match soil IDs shown in the ISPAID soil map for a 10-digit watershed, to soil IDs listed in the NRI for points located within the respective 8-digit watershed that the 10-digit watershed was located in. A positive match indicated that the NRI point could be located in that 10-digit watershed. If a positive match was not obtained, then the respective HRU area was initially split evenly between all the subwatersheds. The 2002 IDNR land use data was then used to determine how much the split HRU areas should be adjusted within each watershed, while maintaining the overall balance of each land area category.

The effect of conservation practices is accounted for by adjusting the "support practice (P) factor", which is one of the factors used in the original USLE equation (Wischmeier and Smith, 1978) and also in the MUSLE equation that is used in SWAT. The P factors used for contouring and terraces are based on values reported by Wischmeier and Smith (1978) as a function of slope range (Table 1). The choice of a P factor value of 0.4 for grassed waterways is based on the methodology used by Gassman et al. (2003) for simulating the impact of grassed waterways in the Mineral Creek Watershed in eastern Iowa. The effect of grassed waterways was further accounted for in SWAT by adjusting the Manning's N values for the affected HRUs.

Slope ranges	Contouring ^a	Terraces ^{a,b}	Grassed Waterways ^c
1 to 2	0.6	0.12	0.4
3 to 5	0.5	0.1	0.4
6 to 8	0.5	0.1	0.4
9 to 12	0.6	0.12	0.4
13 to 16	0.7	0.14	0.4
17 to 20	0.8	0.16	0.4
21 to 25	0.9	0.18	0.4

Table 7. Or	riginal P-factor	values for co	ntouring, strip	o-cropping, and	terraces
-------------	------------------	---------------	-----------------	-----------------	----------

^aSource: Wischmeier and Smith (1978).

^bBased on expected sediment yield for terraces with graded channels and outlets. ^cSource: Gassman et al. (2003).

Results

An calibration and validation exercise was performed with SWAT for the Raccoon River Watershed, to provide guidance as to how key parameters should be set for the simulation of the 13 study watersheds. Further hydrologic testing was performed for the 13 watersheds; however, the nitrate and sediment parameters that were calibrated for the Raccoon River were used for the 13 watersheds without further modification. The results of the Raccoon simulations are reported by Jha et al. (2005). This paper is also included here in Appendix D. Tables 8 and 9 provide points of reference regarding the characteristics of each watershed and the increased amount of conservation practices by watershed for the two sets of scenario simulations, respectively. Table 10 lists the r^2 and model efficiency (E) statistics that were calculated for the streamflow calibration and validation phases for each watershed (further calibration results are shown in Appendix E). The total loadings for the baseline simulations are presented in Table 11 for each watershed for the five principal environmental indicators: sediment, nitrate, organic N, total N, and total P. The impacts of the scenario runs with and without the 10% reduction in fertilizer are reported in Tables 11 and 12, respectively. Figures 4 through 9 present graphical results of selected indicators for both the scenario with nutrient management (with NM) and without (without NM).

The results shown in Table 10 underscore that SWAT accurately replicated the streamflows for each watershed in both the calibration and validation periods. The monthly predictions were less accurate than the annual estimates but the majority of the r² and E values were still strong, especially in the validation period. The impacts of the initial scenario varied substantially between watersheds (Table 12). Predicted sediment decreases ranged from 6% for the Little Sioux River Watershed to 65% for the Nodaway River Watershed. Sediment reductions were greater than 30% for nine of the watersheds and 40% for seven of the watersheds. The nitrate impacts were relatively small; nitrate increases of 1 to 6% were predicted for five of the watersheds and nitrate reductions ranging from 2 to 13% were predicted the other eight watersheds, with the majority of the estimated reductions below 6%. The negative numbers likely reflect that increased nitrate leaching, followed by subsequent increases in nitrate losses via tile drains, can occur with increased levels of conservation tillage and terraces.

Table 8.	Characteristics	of the 1	3 study	watersheds.	

	4.564245	# of		Draina	to Area	Measured data	Key	Land Uses (%	of watershe	ed)
#	Watershed	8-digit	# of	Diamag	ze Alea	from USGS		Grassland		
		watersheds	subwatersheds	mi ²	km ²	station #	Cropland	(CRP and	Forest	Urban
							Same S.	Pasture)	S. A. S.	
1	Floyd	1	5	917	2,376	6600500	84	13	0	3
2	Monona	1	5	947	2,452	6602400	78	19	2	1
3	Little Sioux	2	10	3,553	9,203	6607500	86	13	1	0
4	Boyer	1	5	1,089	2,820	6609500	68	26	4	2
5	Nishnabotna	3	11	2,980	7,718	6810000	84	15	1	0
6	Nodaway	1	7	792	2,051	6817000	52	41	5	3
7	Des Moines	9	9	14,477	37,496	5490500	71	16	6	7
8	Skunk	3	12	4,342	11,246	5474000	69	25	5	1
9	Iowa	9	9	12,663	32,796	5465500	77	12	4	8
10	Wapsipinicon	2	11	2,542	6,582	5422000	77	19	3	1
11	Maquoketa	1	10	1,864	4,827	5418500	56	32	10	3
12	Turkey	1	9	1,699	4,400	5412500	56	25	16	3
13	Upper Iowa	1	7	992	2,569	5388250	51	26	19	3

#	Watershed	New CRP acres	New CT acres	New contour acres	New GW acres	New terrace acres	% increase CRP	% increase CT	% increase contour	% increase GW	% increase terraces
1	Floyd	5,600	170,500	65,400	197,400	26,700	200.0	57.7	149.7	N/A	174.5
2	Monona	26,100	111,100	43,000	47,400	36,400	100.8	44.3	70.4	515.2	136.3
3	Little Sioux	47,200	454,100	83,100	508,600	97,300	65.7	54.4	102.0	1457.3	384.6
4	Boyer	46,300	296,000	38,800	#	109,600	167.1	231.8	36.1	165.9	735.6
5	Nishnabotna	129,600	776,600	41,500	121,000	212,700	330.6	179.9	13.0	79.8	217.0
6	Nodaway	16,700	133,800	22,200	46,600	46,100	75.9	81.4	27.6	45.3	45.3
7	Des Moines	98,200	847,700	199,100	1,688,200	559,400	31.2	22.2	130.2	945.8	316.2
8	Skunk	63,200	569,000	86,600	447,200	353,100	31.6	57.9	118.3	241.2	288.2
9	Iowa	90,800	1,409,300	302,400	2,157,800	713,900	32.1	38.5	94.6	337.2	400.8
10	Wapsipinicon	29,300	314,900	56,900	485,400	111,400	94.2	38.0	63.9	298.9	90.3
11	Maquoketa	42,400	301,800	33,200	241,600	182,800	56.6	75.4	28.0	153.7	38.7
12	Turkey	38,100	249,000	27,100	291,900	192,700	60.9	65.3	61.6	1006.6	341.7
13	Upper Iowa	18,800	149,100	15,700	72,200	67,600	35.1	177.7	43.5	280.9	108.7

Table 9. Increase in CRP, conservation tillage, contouring, grassed waterways, and terraces by watershed.

	Constant Series		b. y	Series and	Statistic	cal Evaluatio	n		4 1 2 2 3
		and the	An	nual			Мо	nthly	10.11
#	Watershed	Calibration (1980-1989)		Valio (1990	Validation (1990-1997)		oration)-1989)	Validation (1990-1997)	
		R ²	E	R ²	E	R ²	E	R ²	E
1	Floyd	0.94	0.91	0.71	0.66	0.68	0.66	0.52	0.49
2	Monona	0.93	0.83	0.78	0.62	0.69	0.67	0.62	0.54
3	Little Sioux	0.94	0.93	0.88	0.86	0.71	0.70	0.75	0.75
4	Boyer	0.91	0.79	0.93	0.91	0.70	0.56	0.81	0.78
5	Nishnabotna	0.93	0.91	0.95	0.93	0.81	0.73	0.83	0.83
6	Nodaway	0.96	0.95	0.93	0.92	0.75	0.74	0.78	0.76
7	Des Moines	0.92	0.92	0.91	0.87	0.62	0.60	0.77	0.75
8	Skunk	0.96	0.96	0.99	0.99	0.63	0.62	0.81	0.81
9	lowa	0.87	0.85	0.95	0.93	0.77	0.76	0.90	0.89
10	Wapsipinicon	0.75	0.74	0.93	0.90	0.58	0.56	0.84	0.84
11	Maquoketa	0.85	0.77	0.89	0.85	0.67	0.49	0.80	0.78
12	Turkey	0.89	0.86	0.91	0.85	0.70	0.64	0.79	0.75
13	Upper Iowa	0.95	0.90	0.81	0.80	0.66	0.59	0.79	0.78

Table 10. Streamflow calibration results for the 13 study watersheds.

Table 11. Annual average baseline loadings in Metric tons (1980-1997).

#	Watershed	Sediment	Nitrate	Org N	Total N	Total P
1	Floyd	244,739	7,315	1,492	8,807	492
2	Monona	192,448	4,971	769	5,740	333
3	Little Sioux	594,045	26,179	3,426	29,596	1,507
4	Boyer	715,817	5,235	2,227	7,461	794
5	Nishnabotna	3,231,484	15,189	6,604	21,793	2,788
6	Nodaway	507,407	3,316	1,364	4,680	530
7	Des Moines	2,202,076	38,146	25,680	63,826	7,217
8	Skunk	4,982,535	30,041	5,015	35,057	2,549
9	Iowa	3,433,834	53,855	54,527	108,383	8,516
10	Wapsipinicon	1,901,955	29,911	3,165	33,077	1,325
11	Maquoketa	1,274,626	14,766	3,597	18,362	1,111
12	Turkey	1,371,444	12,416	2,586	15,003	924
13	Upper Iowa	880,420	3,738	1,189	4,927	426

#	Watershed	Sediment	Nitrate	Org N	Total N	Total P
1	Floyd	30	-1	54	9	51
2	Monona	11	2	41	8	41
3	Little Sioux	6	2	50	7	48
4	Boyer	35	4	53	19	53
5	Nishnabotna	43	13	53	25	51
6	Nodaway	45	6	46	17	45
7	Des Moines	10	-5	40	14	37
8	Skunk	63	5	53	12	51
9	Iowa	14	-5	50	23	47
10	Wapsipinicon	64	1	52	6	49
11	Maquoketa	47	-6	58	6	55
12	Turkey	65	-3	61	8	58
13	Upper Iowa	50	1	38	10	27

Table 12. Percent reduction (proposed conservation practices w/o nutrient management).

Table 13. Percent reduction (proposed conservation practices with nutrient management).

#	Watershed	Sediment	Nitrate	Org N	Total N	Total P
1	Floyd	30	13	54	20	52
2	Monona	10	17	41	20	42
3	Little Sioux	6	11	51	15	49
4	Boyer	35	16	54	27	53
5	Nishnabotna	43	20	53	30	52
6	Nodaway	45	11	47	22	45
7	Des Moines	10	6	41	20	37
8	Skunk	63	13	54	19	51
9	Iowa	13	6	51	29	48
10	Wapsipinicon	64	9	52	14	50
11	Maquoketa	46	9	59	19	56
12	Turkey	65	10	62	19	59
13	Upper Iowa	50	10	40	17	28

The estimated relative reductions for organic N and total P were much greater; the predicted loadings for these three indicators were 27 to 61% lower as compared to the baseline loadings. However, the predicted reductions in total N ranged from only 6 to 25% across the 13 watersheds, indicating that nitrate loads were the dominant component of the overall N losses.

The addition of the 10% reduction in fertilizer resulted in a clear increase in predicted reductions in nitrate losses for the second scenario run (Table 14), which ranged from 6 to 20% less than the baseline loadings for the 13 watersheds. This impact was also reflected in the losses predicted for total N. The impacts on sediment and total P were slight or negligible.

The results shown in Tables 12 and 13, and in Figures 4 through 9, reflect in part differences in initial baseline fertilizer rates and in the adoption rates of conservation practices for the scenario simulations. The size and environmental conditions of each watershed also affect the predicted outcomes. The low sediment reductions predicted for the Des Moines and Iowa River Watersheds reflect the effect of reservoirs in those two systems that trap much of the sediment upstream from the watershed outlets.

Figure 5. % reduction of Total P from the baseline by watershed (with NM)

Figure 6. % reduction of Total N from the baseline by watershed (with NM)

Figure 7. % reduction of Total N from the baseline by watershed (without NM)

Figure 8. % reduction of Nitrates from the baseline by watershed (with NM)

Figure 9. % reduction of Nitrates from the baseline by watershed (without NM)

V. Caveats

In this section, we identify some of the most serious shortcomings and limitations of the study.

1. The hydrologic model, SWAT, does not handle conservation practices that require a fine spatial scale of analysis such as constructed wetlands or riparian buffers. Given this, we did not consider wetlands or riparian buffers as possible practices. Constructed wetlands are likely to be particularly important in controlling nitrogen runoff and therefore biases our findings towards more limited nitrate reductions. This is important when comparing the predicted sediment and nitrate reductions. Currently work is underway to add capacity to SWAT to model wetlands and buffers which can then be considered as options in future work.

2. While the costs reported in this report represent our best, current estimate of the costs of implementing the identified sets of practices, they do not necessarily meet the "need" of a particular level of water quality. Ideally, the target level of water quality would have been

identified and then the set of practices and their location that meets that water quality level at the lowest possible cost would have then been chosen and their cost computed. Instead, the estimates presented here are based on the identification of a set of practices from which we have employed the SWAT model to estimate water quality changes. Whether these water quality changes are the appropriate levels or not and whether the practices employed are the lowest cost options are major questions that are not addressed here.

3. There are no costs attributable to transaction costs associated with implementing a policy that might achieve the implementation of this scenario. Even the most efficient policy design will have some costs of implementation, enforcement, etc.

4. There are a number of limitations related to the quality and quantity of information on conservation practices and their location. For example, we only know if an NRI point is within an 8-digit HUC, but not precisely where within that HUC. Thus, the unit of analysis is quite coarse. The 1997 NRI release does not provide information on conservation tillage adoption so we have predicted adoption from a 1992 NRI estimated model calibrated to aggregate 1997 adoption data. Similarly, the NRI does not provide information on management practices such as fertilizer application and time of planting, so once again we have combined the NRI data with information from other sources.

5. A number of limitations concerning the quality of the cost data used in the analysis exist. While we found a number of potential sources of information related to the costs of conservation practices for various program participants, we were not able to find clearly relevant cost data that could reasonably be applied to the typical, currently non-adopting farmer/landowner. This issue was especially difficult for the costing of the fertilizer reduction.

6. The modeling of the reduction in fertilizer application in the SWAT simulation was overly simplistic. We assumed that there was a uniform rate of fertilizer on all corn acres within

each watershed, and a single spring application. In general, the assumption probably results in a bias toward over application of fertilizer on corn and it obviously eliminates the possibility of fall application of fertilizer by construction.

7. The results may be sensitive to the procedure described in the document concerning the aggregation of the NRI points into SWAT Hydrologic Response Units (HRUs).

References

- AAEA. 2000. Commodity Costs and Return Estimation Handbook. Task Force, American Agricultural Economics Association, Ames, Iowa URL: <u>http://waterhome.brc.tamus.edu/ care/Aaea/</u>.
- Arnold, J.G., R.S. Muttiah, R. Srinivasan, and P.M. Allen. 2000. Regional estimation of base flow and groundwater recharge in the upper Mississippi basin. J. of Hydrology 227(2000):21-40.
- Arnold, J.G., R. Srinivasan, R.S. Muttiah, P.M. Allen and C. Walker. 1999. Continental scale simulation of the hydrologic balance. J. American Water Resources Association 35(5):1037-1052.
- Arnold, J.G., R. Srinivasan, R.S. Muttiah, and J.R. Williams. 1998. Large area hydrologic modeling and assessment part I: model development. J. American Water Resources Association 34(1):73-89.
- Arnold, J.G., and P.M. Allen. 1996. Estimating hydrologic budgets for three Illinois watersheds. J. of Hydrology 176(1996):57-77.
- Baumer, O., P. Kenyon, and J. Bettis. 1994. MUUF v2.14 User's Manual. U.S. Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center, Lincoln, Nebraska.
- Chaplot, V., A. Saleh, D.B. Jaynes, and J. Arnold. 2004. Predicting water, sediment and NO₃-N loads under scenarios of land-use and management practices in a flat watershed *Water, Air, and Soil Pollution* 154 (1-4):271-293.
- Feng, Hongli, Catherine L. Kling, Lyubov A. Kurkalova, and Silvia Secchi, 2003, Subsidies! The Other Incentive-Based Instrument: The Case of the Conservation Reserve Program Center for Agricultural and Rural Development Working Paper 03-WP 345, Center for Agricultural and Rural Development, Iowa State University, Ames, Iowa URL: <u>http://www.card.iastate.edu/publications/DBS/PDFFiles/ 03wp345.pdf</u>.
- Gassman, P.W., A. Saleh, E. Osei, J. Abraham, and J. Rodecap. 2003. Environmental and economic impacts of alternative management scenarios for the Mineral Creek Watershed. Proceedings of the Total maximum Daily Load (TMDL) Environmental Regulations II, 8-12 November, Albuquerque, New Mexico. American Society of Agricultural Engineers, St. Joseph, Michigan. pp. 323-331.
- Grizzetti, B., F. Bouraoui, K. Granlund, S. Rekolainen, and G. Bidoglio. 2003. Modelling diffuse emission and retention of nutrients in the Vantaanjoki watershed (Finland) using the SWAT model. *Ecological Modelling* 169:25-38.
- IDNR-GSB. 2004. Land Cover of the State of Iowa in the Year 2002. Iowa Department of Natural Resources Geological Survey Bureau. URL: <u>ftp://ftp.igsb.uiowa.edu/gis_library/IA_State/</u> Land Description/ Land Cover/Land Cover 2002/lc 2002.zip.
- Jha, M., P.W. Gassman, S. Secchi, and J.G. Arnold. 2005. Nonpoint source needs assessment for Iowa part I: configuration, calibration and validation of SWAT. Watershed Management to Meet Water Quality Standards and Emerging TMDL (Total Maximum Daily Load), Proceedings of the Third Conference 5-9 March 2005 Atlanta, Georgia. ASAE, St. Joseph, Michigan. pp. 511-521.
- Jha, M., P.W. Gassman, S. Secchi, R. Gu, and J. Arnold. 2004. Effect of watershed subdivision on SWAT flow, sediment, and nutrient predictions. J. of Amer. Water Res. Assoc. 40(3):811-825.
- Kirsch, K., A. Kirsch, and J.G. Arnold. 2002. Predicting sediment and phosphorus loads in the Rock River Basin using SWAT. *Trans. ASAE* 45(6):1757-1769.
- Kurkalova, Lyubov A., Catherine L. Kling, and Jinhua Zhao. 2003. Green Subsidies in Agriculture: Estimating the Adoption Costs of Conservation Tillage from Observed Behavior (Revised). Center for Agricultural and Rural Development Working Paper 01-WP 286. Center for Agricultural and Rural Development, Iowa State University, Ames, Iowa. URL: <u>http://www.card.iastate.edu/</u> <u>publications/DBS/PDFFiles/01wp286.pdf</u>.
- Lory, J. A. and P. C. Scharf. 2003. Yield goal versus delta yield for predicting fertilizer nitrogen need in corn. *Agronomy Journal* 95:994–999.
- Neitsch, S.L., J.G. Arnold, J.R. Kiniry, and J.R. Williams. 2002. Soil and Water Assessment Tool Theoretical Documentation, Version 2000 (Draft). Blackland Research Center, Texas Agricultural Experiment Station, Temple, Texas. URL: <u>http://www.brc.tamus.edu/swat/ swat2000doc.html</u>.

- Nusser, S. M., and J.J. Goebel. 1997. The National Resources Inventory: A long-term multi-resource monitoring programme. *Environmental and Ecological Statistics* 4:181-204.
- Ribaudo, M.O., R. Heimlich, R. Claassen, and M. Peters. 2001. Least-cost management of nonpoint source pollution: source reduction versus interception strategies for controlling nitrogen loss in the Mississippi Basin. *Ecological Economics* 37:183–197.
- Saleh, A., J.G. Arnold, P.W. Gassman, L.W. Hauck, W.D. Rosenthal, J.R. Williams, and A.M.S. McFarland. 2000. Application of SWAT for the upper north Bosque watershed. *Trans. ASAE* 43(5):1077-1087.
- Santhi, C., J.G. Arnold, J.R. Williams, W.A. Dugas, and L. Hauck. 2001. Validation of the SWAT model on a large river basin with point and nonpoint sources. *J. of American Water Resources Association* 37(5):1169-1188.
- Shaik, S., G.A. Helmers, and M.R. Langemeier. Direct and indirect shadow price and cost estimates of nitrogen pollution abatement. *Journal of Agricultural and Resource Economics*. 2002. 27 (2): 420-432.
- USEPA. 2003. Clean Watersheds Needs Survey 2000 Report to Congress. URL: <u>http://www.epa.gov/owm/mtb/cwns/2000rtc/toc.htm</u>.
- USDA-NRCS. 2001. 1997 National Resources Inventory (revised December 2000) A GUIDE FOR USERS OF 1997 NRI DATA FILES. CD-ROM Version 1. USDA-NRCS. 2003. (December 2001) United States Department of Agriculture, Washington, D.C.
- USDA-NRCS. 2003a. Environmental Quality Incentives Program: Benefit Cost Analysis. Final Report, May 21, 2003 United States Department of Agriculture, Washington, D.C. URL: http://www.nrcs.usda.gov/programs/Env Assess/EQIP/EQIP EA finals/FINAL BC Analysis.pdf.
- USDA-NRCS. 2003b. Costs Associated with Development and Implementation of Comprehensive Nutrient Management Plans (CNMP): Part I - Nutrient Management, Land Treatment, Manure and Wastewater Handling and Storage, and Recordkeeping. United States Department of Agriculture, Washington, D.C. URL: <u>http://www.nrcs.usda.gov/technical/land/pubs/cnmp1.html</u>
- USDA-NRCS. 2003c. Operation and Maintenance Plan for Grassed Waterway. United States Department of Agriculture, Washington, D.C. URL: <u>http://efotg.nrcs.usda.gov/references/public/VT/</u> Operation&Maintenance GrassedWaterway 6-03.doc
- Wischmeier, W. H. and D. D. Smith. 1978. Predicting rainfall erosion losses A guide to conservation planning. USDA Handbook No. 537. Washington, D. C.
- Yadav, S., W. Peterson, and K.W. Easter. 1997. Do farmers overuse nitrogen fertilizer to the detriment of the environment? *Environmental and Resource Economics* 9: 323–340.
Appendix A: Location of practices on the land by watershed

In this appendix, we summarize the placement of the identified practices within the watersheds. Existing acreage represents the baseline, from the NRI or our models. Policy scenario additional acres represent the new acreage hypothesized from the scenario, and total acreage corresponds to the sum of existing and additional acres used in the SWAT simulation. There are three maps for CRP (existing, additional, and total), conservation tillage, contour farming, terraces and grassed waterways. Note that there is only a single map for nutrient management and that we used the same legend for old, new and total acreage in each practice to allow for an easier comparison of the extent of the policy changes.

Existing CRP acres

Policy scenario additional CRP acres

Policy scenario total CRP acres

Existing conservation tillage acres

Policy scenario additional conservation tillage acres

Policy scenario total conservation tillage acres

Existing contour acres

Policy scenario additional contour acres

Policy scenario total contour acres

Existing grassed waterways acres

Policy scenario additional grassed waterways acres

Policy scenario total grassed waterways acres

Existing terraced acres

Policy scenario additional terraced acres

Policy scenario total terraced acres

Policy scenario total nutrient management acres

Appendix B: Nutrient management assumptions and watershed location

HUC	N lbs/ac	N kgs/ha	P lbs/ac	P kgs/ha
7060002	124.73	139.80	15.93	17.86
7060004	184.14	206.40	23.18	25.98
7060006	181.59	203.53	23.52	26.36
7080102	152.36	170.78	19.95	22.36
7080103	169.87	190.39	21.95	24.61
7080105	155.95	174.80	20.15	22.58
7080106	175.71	196.94	22.51	25.23
7080107	142.20	159.39	17.88	20.04
7080201	96.88	108.58	12.51	14.03
7080202	132.17	148.15	17.22	19.30
7080203	139.71	156.60	18.45	20.68
7080204	154.92	173.65	19.96	22.37
7080205	162.36	181.98	21.07	23.61
7080206	157.90	176.98	20.49	22.97
7080207	142.83	160.09	18.35	20.57
7080208	178.64	200.23	23.09	25.88
7080209	156.76	175.70	20.08	22.50
7100001*	132.30	148.29	17.03	19.09
7100002	130.86	146.67	17.02	19.08
7100003	133.75	149.92	17.04	19.10
7100004	148.36	166.29	19.02	21.32
7100005	151.14	169.40	19.33	21.66
7100006	139.99	156.91	17.84	20.00
7100007	130.13	145.85	16.83	18.86
7100008	170.51	191.12	22.34	25.04
7100009	177.16	198.57	23.57	26.42
10230002	162.99	182.68	20.59	23.08
10230003	142.29	159.48	18.54	20.78
10230004	159.35	178.61	20.59	23.08
10230005	124.27	139.28	15.63	17.52
10230007	153.15	171.66	19.74	22.13
10240002	134.67	150.95	17.59	19.71
10240003	114.86	128.75	14.79	16.58
10240004	84.21	94.39	10.77	12.07
10240009	122.07	136.83	15.33	17.19

Fertilizer application rates by watershed.

*Since 7100001 is outside the Iowa boundaries (and so we do not have information on fertilizer applications for it from IDNR), we used the average fertilizer applications for 7100002 and 7100003 for it.

USGS 8 digit HUC codes

Acr	eage of pra	actices by w	atershed								
HUC	CRP old	CRP new	CT old	CT new	contour	contour new	GW old	GW new	Terraces	Terraces	NM new
	acres	acres	acres	acres	old acres	acres	acres	acres	old acres	new acres	acres
07060002	53500	18800	83900	149100	36100	15700	25700	72200	15300	67600	116400
07060004	62600	38100	381200	249000	44000	27100	29000	291900	23500	192700	410800
07060006	74900	42400	400400	301800	118500	33200	157200	241600	21600	182800	468900
07080102	16900	6200	562500	167900	50600	25500	124700	334900	10700	18000	437000
07080103	14200	23100	267100	147000	38500	31400	37700	150500	1800	93400	266100
07080105	54900	16800	536500	216900	28200	32200	59200	236800	23300	129800	427500
07080106	66400	33300	163300	151700	20800	22600	33700	69600	9300	129000	196200
07080107	78700	13100	283200	200400	24200	31800	92500	140800	48900	94300	345000
07080201	21400	0	342600	101500	3300	7000	23200	271800	6600	9000	270300
07080202	10400	3800	302100	111300	3800	14300	20200	271900	0	13400	218900
07080203	26300	2100	162100	81100	0	15300	1400	127200	0	34500	177500
07080204	26000	4100	313000	111600	4800	24700	20300	223400	9800	30500	231600
07080205	19500	14900	959400	220200	105000	94000	208400	506200	26500	124500	636600
07080206	6300	7000	291600	168300	32300	37000	58900	171000	2800	93100	265700
07080207	10800	8900	561400	141500	29000	32700	46300	283700	15000	87100	432200
07080208	60100	21200	446600	198900	65500	45900	83600	166000	11600	210400	328600
07080209	102100	28800	279800	274900	76100	31500	177700	136600	20600	111400	337300
07100002	19000	2100	330000	80500	0	17300	5000	183400	0	40200	258100
07100003	12200	0	396800	92500	0	11200	0	218700	0	46900	350900
07100004	15400	15200	687600	55700	0	24900	23100	280400	30600	27800	414300
07100005	4600	2000	470800	20900	0	9500	6600	129200	0	15200	334900
07100006	9700	12200	904200	193200	15300	59100	4900	462200	6100	46600	576500
07100007	24300	12900	279400	151400	63400	19800	17200	148000	36000	101800	243400
07100008	103500	27500	581800	108300	50700	35100	96900	189500	74800	167400	302200
07100009	126500	26300	168800	145200	23500	22200	24800	76800	12900	113500	155200
10230002	2800	5600	295400	170500	43700	65400	0	197400	62200	26700	243900

Appendix C: Acreage and costs of practices by watershed and by county

10230003	59300	29400	718600	270600	34700	56400	13400	420900	71800	62400	535300
HUC	CRP old	CRP new	CT old	CT new	contour	contour new	GW old	GW new	Terraces	Terraces	NM new
	acres	acres	acres	acres	old acres	acres	acres	acres	old acres	new acres	acres
10230004	25900	26100	250800	111100	61100	43000	9200	47400	114100	36400	222400
10230005	12500	17800	116900	183500	46800	26700	21500	87700	76600	34900	156100
10230007	27700	46300	127700	296000	107600	38800	38700	64200	93000	109600	233900
10240002	15100	93300	253800	498300	158500	26000	61700	84900	319800	124300	392400
10240003	21300	36300	165800	272800	157900	11700	89900	33600	96200	84400	227400
10240004	2800	0	12100	5500	2400	3800	0	2500	1700	4000	11600
10240009	22000	16700	164400	133800	80500	22200	102800	46600	54100	46100	136200

Note: since we are showing here only the areas for the watersheds included in the SWAT runs, the total acreage is less than for the whole State.

Acreage of practices by county

FIPS	CRP old	CRP new	CT old	CT new	contour	contour new	GW old	GW new	Terraces	Terraces	NM new
	acres	acres	acres	acres	old acres	acres	acres	acres	old acres	new acres	acres
19001	14400	18600	117700	107400	48200	9700	84600	29600	18100	55900	95000
19003	26800	5400	87700	41000	23600	16800	13600	18600	20200	33700	74500
19005	33400	28300	20500	104900	52100	3200	65400	8300	14900	30000	71800
19007	24800	0	12400	53300	2700	10900	13200	17400	2700	11000	31000
19009	14500	22300	64000	119500	80900	7800	0	10000	27400	50800	85400
19011	18600	6700	224700	94300	75200	35000	38100	108200	4300	46800	163700
19013		1500	234500	25900	11900	18300	92900	86600	8900	4900	155200
19015	4100	7300	223500	29200	0	10700	7300	98400	0	12600	136100
19017	2500	0	179600	26000	2000	0	8000	61800	0	6400	129900
19019	2600	4500	192000	82700	41100	9100	79200	112600	0	5100	177400
19021	4000	1700	223400	83400	1400	25100	2000	125300	0	8800	158300
19023	19800	0	196000	85000	6100	20900	17900	161900	4500	15700	148400
19025	1500	2300	265400	29300	0	9600	0	108100	0	13700	142400
19027	600	6500	97800	170100	72600	18900	4100	63300	38800	56300	142700
19029	10200	13600	78900	146700	95100	13100	130700	30300	35700	31100	101600
19031	7100	5100	165200	104400	20400	18700	23900	86000	0	70600	147700
19033	10200	4100	192300	61900	0	12700	6400	135800	0	16700	155200

19035	2800	0	187800	74200	38500	17000	12800	100000	52300	5300	111800
FIPS	CRP old	CRP new	CT old	CT new	contour	contour new	GW old	GW new	Terraces	Terraces	NM new
	acres	acres	acres	acres	old acres	acres	acres	acres	old acres	new acres	acres
19037	11900	0	155400	68400	7900	9200	26800	143500	8200	0	146700
19039	59100	3200	41400	10100	0	7000	0	22100	0	13500	17700
19041	14100	3100	196200	52400	0	19400	3000	92800	1200	1500	134200
19043	43000	23200	160500	67800	27800	3800	5800	34800	17600	137100	163100
19045	25700	37500	135600	107100	17600	26200	1200	84600	0	77200	178300
19047	17500	28100	59400	249300	114100	3900	78000	6800	100600	96600	156000
19049	9000	1700	202400	34600	5400	8000	0	105900	3600	19100	112300
19051	44400	12400	29000	32100	1200	8400	3600	21100	0	16900	22400
19053	49700	0	37500	17600	3500	12100	0	13400	1000	8800	30800
19055	8400	9200	144700	104600	6700	16800	37300	134000	7900	38600	167800
19057	4300	0	79200	35800	3000	7300	4600	42100	0	15100	80700
19059	17800	0	119100	28500	0	12700	0	91500	0	6500	61100
19061	29200	11600	98700	83100	32800	10600	83600	17700	6500	63500	120400
19063	11300	0	121300	39000	0	6100	3300	81600	0	25300	95100
19065	8400	14700	236700	105500	15000	13100	14600	210300	15700	58500	204800
19067	14300	3800	188600	52800	0	5900	21000	162300	0	3100	123200
19069	3000	1600	216900	67700	3400	20600	16900	162700	7100	22000	162500
19071	12000	3300	74000	105900	18600	5400	1700	47100	61200	19000	121100
19073	2100	4700	184800	66900	0	18700	0	158500	0	2100	148200
19075	0	0	264300	31000	11000	16300	33100	168100	8500	14700	164000
19077	19600	9200	156300	42200	27300	7200	11000	57700	7900	61500	108800
19079	0	0	257600	41700	0	6500	10100	132800	0	17100	183200
19081	4800	6900	280400	25500	0	17900	0	98600	0	23600	176500
19083	5400	4500	204300	82800	19700	20600	40900	134500	11000	17500	184800
19085	13300	31200	70000	109000	50100	3200	0	29400	46100	38600	125800
19087	28300	3700	82400	44300	6400	13500	0	45900	3200	28900	91800
19089	25400	2100	159600	58200	6300	4900	2500	154700	0	6500	103600
19091	600	0	179100	17700	0	3300	1700	56500	0	3500	132200
19093	4900	19000	37100	175400	38600	16700	0	22200	107400	29700	109500
19095	49100	16900	70000	115900	82200	2500	140100	11900	20600	7800	111200

19097	48800	16600	42800	86000	33500	2500	44200	8000	1200	71500	82700
FIPS	CRP old	CRP new	CT old	CT new	contour	contour new	GW old	GW new	Terraces	Terraces	NM new
	acres	acres	acres	acres	old acres	acres	acres	acres	old acres	new acres	acres
19099	41000	5600	155000	122200	10400	19400	7100	57000	4400	134700	144400
19101	28600	4200	44000	58900	10800	2300	37900	20400	21800	20100	75100
19103	24200	5900	114100	82900	7100	15300	9100	68700	1000	55100	110000
19105	5900	7700	163100	57700	65900	5500	87500	57000	8700	30900	143600
19107	48900	20700	51500	95800	2400	13300	24000	34700	2400	57300	111400
19109	14100	1600	326400	81500	0	2300	0	179000	0	52200	289100
19111	14400	7000	46900	77800	9300	4900	10200	42200	4400	41100	97500
19113	13400	1700	210900	77300	31500	36000	74000	84600	1600	52500	144200
19115	20500	3300	86000	38300	6200	4800	3100	45500	1600	16600	84600
19117	39900	9800	40300	10300	3500	6500	17700	3500	3300	3600	14000
19119	1300	1600	140200	137300	75300	19100	34200	110500	20200	11000	151900
19121	21300	7100	164300	8100	11200	10900	21400	36800	16900	49500	67400
19123	33600	4500	61700	129800	24200	0	44900	61900	5100	58500	108200
19125	21700	8000	125200	35100	22100	4400	22500	20200	28100	50500	76400
19127	6900	4600	207700	61600	33300	13900	19500	71200	0	103800	127200
19129	4500	8700	69900	97600	11800	12400	0	22000	71100	26300	80700
19131	6700	0	160500	69000	0	1700	2400	165400	5000	3000	151900
19133	12300	6400	42600	79900	17100	4300	10400	18800	21000	34700	164700
19135	13600	1800	10800	37200	3600	5300	0	15100	2000	22000	20600
19137	10800	2900	69400	95700	41100	3200	60500	24500	58900	16500	81000
19139	4200	3700	87700	65500	4600	10200	1300	76200	0	28100	105300
19141	2000	5700	228600	37200	0	4100	2100	156500	0	2000	175000
19143	4000	8300	159900	38800	0	11300	0	84600	0	5000	107800
19145	23800	2100	167700	37900	41300	4900	0	23900	98500	17900	89600
19147	15700	16900	172300	33800	0	12300	0	98700	0	16400	156500
19149	16500	2900	218300	162800	97300	68100	0	50100	123500	36900	187100
19151	0	0	256500	30900	0	8500	0	90600	0	18900	158900
19153	5300	1500	153300	21300	2900	3800	29000	52200	31500	14200	93700
19155	10800	40600	149800	211500	65300	13300	0	30100	152100	74300	225700

19157	30500	20800	173000	52300	2100	23200	10700	37200	0	114200	111000
FIPS	CRP old	CRP new	CT old	CT new	contour	contour new	GW old	GW new	Terraces	Terraces	NM new
	acres	acres	acres	acres	old acres	acres	acres	acres	old acres	new acres	acres
19159	67300	7900	56900	45500	4800	25900	12500	27500	3600	17900	39900
19161	1500	5900	158100	122300	42500	28600	24000	138800	10900	16100	167000
19163	0	0	91200	81000	24600	9400	2600	46400	3000	55200	113700
19165	3500	113800	50500	136100	44700	6500	7200	32100	67700	24500	93700
19167	3800	1700	178800	212800	48800	46600	1000	181600	69400	10700	223000
19169	1100	1500	227600	41100	1600	5100	15800	105200	8200	12300	152200
19171	14800	9600	209100	93900	9000	13800	8800	106300	9300	111800	162800
19173	43800	2500	71000	98100	78500	14400	0	18300	5100	55000	72700
19175	32300	3400	90300	18900	38300	3600	46000	13800	18300	9000	40800
19177	37600	2000	79000	12600	0	5200	2100	25200	5500	20300	29400
19179	24000	8200	46300	42600	5900	8900	9300	21600	19700	20900	63900
19181	25200	1800	155400	13600	10700	13800	0	71600	10600	41000	76000
19183	30000	5700	109500	91600	5800	14900	102700	33600	13100	27400	138600
19185	55800	4000	16000	66600	20200	22500	4400	15500	3200	19500	37500
19187	4800	10500	290900	14800	0	12500	18200	105300	27100	2500	196800
19189	15700	2100	85000	72900	0	9400	0	77100	0	21600	126400
19191	39100	3500	57900	176100	25400	23000	4700	72900	15400	92700	136300
19193	43800	43200	177100	89100	25400	14200	7200	21100	84000	67500	154000
19195	9500	0	159600	32300	0	2500	0	111500	0	9500	96800
19197	3800	0	262300	29500	2200	4200	0	77300	0	27500	200000

Program costs by watershed (\$,000s).

		(C. North				2010				1		Total	
1.1022-1		St 1933	S. C. G.			And States		2.3.628.	11.12.20	5 1 L 9/4		costs -	Total costs
1. 203.0	- 7 C 9 C	CRP	6 T. 15		Contour	Contour	GW old	GW new		지 않는 것	NM	new	-new and
1.5.5.11	CRP old	new	CT old	CT new	old costs	new costs	costs	costs	Terraces	Terraces	new	adopters	old
HUC	costs	costs	costs	costs	(LOW)	(LOW)	(LOW)	(LOW)	old costs	new costs	costs	only	adopters
07060002	60,262	21,421	12,300	17,840	3,610	1,570	5,140	14,440	133,875	591,500	17,460	664,231	879,418
07060004	70,513	42,713	52,130	29,770	4,400	2,710	5,800	58,380	205,625	1,686,125	61,620	1,881,318	2,219,785
07060006	84,367	52,659	55,160	36,020	11,850	3,320	31,440	48,320	189,000	1,599,500	70,335	1,810,154	2,181,971

and the second							128				24-35	Total	
Sec. Ges?		CDD			Contour	Contour	CW ald	CW norm		7.25.23	NIM	costs -	Total costs
	CRP old	new	CT old	CT new	old costs	new costs	GW 01d	Gw new	Terraces	Terraces	NM new	adopters	-new and
HUC	costs	costs	costs	costs	(LOW)	(LOW)	(LOW)	(LOW)	old costs	new costs	costs	only	adopters
07080102	19,036	8,374	75,930	20,100	5,060	2,550	24,940	66,980	93,625	157,500	65,550	321,054	539,645
07080103	15,995	30,874	35,620	17,490	3,850	3,140	7,540	30,100	15,750	817,250	39,915	938,769	1,017,524
07080105	61,839	19,197	71,680	25,900	2,820	3,220	11,840	47,360	203,875	1,135,750	64,125	1,295,552	1,647,606
07080106	74,793	41,282	22,350	18,170	2,080	2,260	6,740	13,920	81,375	1,128,750	29,430	1,233,812	1,421,150
07080107	88,648	14,747	38,390	23,980	2,420	3,180	18,500	28,160	427,875	825,125	51,750	946,942	1,522,774
07080201	24,105	0	46,120	12,080	330	700	4,640	54,360	57,750	78,750	40,545	186,435	319,380
07080202	11,715	4,121	40,730	13,290	380	1,430	4,040	54,380	0	117,250	32,835	223,306	280,170
07080203	29,624	2,914	22,340	9,550	0	1,530	280	25,440	0	301,875	26,625	367,934	420,179
07080204	29,286	5,214	45,090	13,210	480	2,470	4,060	44,680	85,750	266,875	34,740	367,189	531,856
07080205	21,965	22,553	128,290	26,260	10,500	9,400	41,680	101,240	231,875	1,089,375	95,490	1,344,318	1,778,628
07080206	7,096	9,729	37,750	20,110	3,230	3,700	11,780	34,200	24,500	814,625	39,855	922,219	1,006,575
07080207	12,165	11,438	76,280	16,920	2,900	3,270	9,260	56,740	131,250	762,125	64,830	915,323	1,147,178
07080208	67,697	23,971	60,300	23,660	6,550	4,590	16,720	33,200	101,500	1,841,000	49,290	1,975,711	2,228,478
07080209	115,005	29,881	37,610	32,880	7,610	3,150	35,540	27,320	180,250	974,750	50,595	1,118,576	1,494,591
07100002	21,402	2,574	46,620	9,590	0	1,730	1,000	36,680	0	351,750	38,715	441,039	510,060
07100003	13,742	0	55,940	11,020	0	1,120	0	43,740	0	410,375	52,635	518,890	588,572
07100004	17,347	18,059	92,360	6,650	0	2,490	4,620	56,080	267,750	243,250	62,145	388,674	770,750
07100005	5,181	2,910	67,660	2,340	0	950	1,320	25,840	0	133,000	50,235	215,275	289,436
07100006	10,926	15,977	120,110	23,070	1,530	5,910	980	92,440	53,375	407,750	86,475	631,622	818,543
07100007	27,372	18,644	38,330	18,050	6,340	1,980	3,440	29,600	315,000	890,750	36,510	995,534	1,386,016
07100008	116,582	24,735	80,400	12,910	5,070	3,510	19,380	37,900	654,500	1,464,750	45,330	1,589,135	2,465,068
07100009	142,489	24,097	22,440	17,370	2,350	2,220	4,960	15,360	112,875	993,125	23,280	1,075,452	1,360,566
10230002	3,154	5,888	38,890	20,430	4,370	6,540	0	39,480	326,550	140,175	36,585	249,098	622,062
10230003	66,795	36,032	95,940	32,430	3,470	5,640	2,680	84,180	376,950	327,600	80,295	566,177	1,112,013
10230004	29,174	26,210	32,070	13,220	6,110	4,300	1,840	9,480	599,025	191,100	33,360	277,670	945,888
10230005	14,080	22,443	15,720	21,950	4,680	2,670	4,300	17,540	402,150	183,225	23,415	271,243	712,173

			1	142.51			10. H 44		요~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	101-11-11	Sec. Sher	Total	
		2.5	Pr 2012.	1.126 2.111	1.1.1	S. 18.55		1. 18 B		Contraction of the	1.12	costs -	Total costs
		CRP	124 23 201	1.1.1.1.1.1.1.1	Contour	Contour	GW old	GW new			NM	new	-new and
	CRP old	new	CT old	CT new	old costs	new costs	costs	costs	Terraces	Terraces	new	adopters	old
HUC	costs	costs	costs	costs	(LOW)	(LOW)	(LOW)	(LOW)	old costs	new costs	costs	only	adopters
10230007	31,201	53,934	17,610	35,290	10,760	3,880	7,740	12,840	488,250	575,400	35,085	716,429	1,271,990
10240002	17,009	100,766	35,090	59,570	15,850	2,600	12,340	16,980	1,678,950	652,575	58,860	891,351	2,650,590
10240003	23,992	38,016	25,160	32,500	15,790	1,170	17,980	6,720	505,050	443,100	34,110	555,616	1,143,588
10240004	3,154	0	1,870	550	240	380	0	500	8,925	21,000	1,740	24,170	38,359
10240009	24,781	17,672	22,630	15,960	8,050	2,220	20,560	9,320	284,025	242,025	20,430	307,627	667,673

Note: again, since we are showing here only the areas for the watersheds included in the SWAT runs, the total of the costs by practice is less than for the whole State.

Program costs by county (\$,000s).

2 A 1 A 2							14 BY 14					Total	Total
1. 1. 1. 1. 1.	1		1	1	haller in	1. S. M. 1	1	Sec. 1	12.12	1.00		costs -	costs -
	1	126.42		1.1.2.2.2.3	Contour	Contour	GW old	GW new		1.1.2.1.1		new	new and
	CRP old	CRP new	CT old	CT new	old costs	new costs	costs	costs	Terraces	Terraces	NM new	adopters	old
FIPS	costs	costs	costs	costs	(LOW)	(LOW)	(LOW)	(LOW)	old costs	new costs	costs	only	adopters
19001	5,302	5,514	2,759	2,329	840	169	1,135	397	8,185	22,910	956	32,276	50,497
19003	9,867	1,833	2,225	864	411	293	183	250	7,116	11,872	750	15,861	35,662
19005	12,297	10,169	493	2,138	908	56	878	111	8,748	17,614	723	30,810	54,134
19007	9,131	0	319	1,134	47	190	177	234	951	4,251	312	6,120	16,745
19009	5,339	8,333	1,735	2,488	1,409	136	0	134	9,652	17,896	860	29,846	47,981
19011	6,848	2,899	5,066	1,845	1,310	610	511	1,452	2,525	27,478	1,648	35,931	52,191
19013	847	913	5,455	598	207	319	1,247	1,162	5,225	2,877	1,562	7,430	20,411
19015	1,510	2,982	5,244	568	0	186	98	1,321	0	7,398	1,370	13,824	20,675
19017	920	0	4,214	551	35	0	107	829	0	3,758	1,307	6,445	11,722
19019	957	2,056	4,406	1,854	716	159	1,063	1,511	0	2,994	1,786	10,359	17,501
19021	1,473	901	5,359	1,669	24	437	27	1,682	0	4,650	1,593	10,932	17,815
19023	7,290	0	4,768	1,840	106	364	240	2,173	2,642	9,218	1,494	15,088	30,135
19025	552	1,071	5,944	713	0	167	0	1,451	0	8,044	1,433	12,878	19,375

	1.00	2 2 March	n nulči pa									Total	Total
							GUU 11	CIVI				costs -	costs -
	CDD -11	CDD	OT 11	CT	Contour	Contour	GW old	GW new	Татала	Tomosoo	MM	new	new and
FIDC	CRP old	CRP new	CI old	CI new	(LOW)	(LOW)	COSIS (LOW)	(LOW)	ald costs	new costs	NM new	adopters	old
10027	221	3 230	2 303	3 671	(LOW)	(LOW) 329	(LOW) 55	(LOW) 849	10 708	30 449	1 436	30 964	63 606
19027	2 755	1 538	2,505	3,071	1,205	228	1 754	407	12 576	10.056	1,430	20.247	42.051
19029	3,733	4,550	2,001	2,022	255	226	221	1 154	12,570	10,950	1,025	40.141	56 004
19031	2,014	2,090	5,575	2,055	555	220	321	1,134	0	0.805	1,407	49,141	24 652
19033	3,755	1,704	4,444	1,251	0	221	80	1,822	19.424	9,805	1,502	10,300	24,032
19035	1,031	0	4,247	1,580	6/1	296	1/2	1,342	18,424	1,867	1,125	6,211	30,755
19037	4,381	0	3,754	1,434	138	160	360	1,926	4,814	0	1,477	4,996	18,444
19039	21,760	1,282	976	202	0	122	0	297	0	6,423	178	8,504	31,239
19041	5,191	1,084	4,449	1,030	0	338	40	1,245	423	881	1,351	5,929	16,032
19043	15,832	8,478	3,831	1,317	484	66	78	467	10,334	80,496	1,642	92,465	123,024
19045	9,462	16,024	3,120	2,204	307	456	16	1,135	0	45,327	1,795	66,941	79,846
19047	6,443	10,968	1,280	5,171	1,988	68	1,047	91	35,439	34,030	1,570	51,899	98,096
19049	3,314	444	4,538	688	94	139	0	1,421	2,114	11,214	1,130	15,037	25,097
19051	16,347	3,426	711	646	21	146	48	283	0	9,923	225	14,650	31,777
19053	18,299	0	939	350	61	211	0	180	352	3,100	310	4,151	23,802
19055	3,093	3,552	3,448	2,089	117	293	501	1,798	4,638	22,663	1,689	32,083	43,880
19057	1,583	0	1,765	773	52	127	62	565	0	8,866	812	11,144	14,606
19059	6,554	0	2,958	585	0	221	0	1,228	0	2,736	615	5,386	14,897
19061	10,751	4,428	2,430	1,702	571	185	1,122	238	3,816	37,283	1,212	45,047	63,738
19063	4,160	0	2,984	805	0	106	44	1,095	0	14,854	957	17,818	25,007
19065	3,093	5,655	5,366	2,303	261	228	196	2,822	9,218	34,347	2,061	47,417	65,551
19067	5,265	1,347	4,503	1,047	0	103	282	2,178	0	1,820	1,240	7,735	17,785
19069	1,105	618	5,434	1,476	59	359	227	2,183	4,169	12,917	1,636	19,189	30,182
19071	4,418	1,115	1,712	2,315	324	94	23	632	21,559	6,693	1,219	12,069	40,106
19073	773	2,131	4,449	1,294	0	326	0	2,127	0	1,233	1,492	8,603	13,825
19075	0	1,415	6,421	645	192	284	444	2,256	4,991	8,631	1,651	14,881	26,929
19077	7,216	3,849	3,935	864	476	125	148	774	4,638	36,109	1,095	42,817	59,230

									34.4	1		Total	Total
1.					0	0	CW 11	CIV	12 4 2 5 4			costs -	costs -
	CDD ald	CDD now	CT ald	CT now	Contour	Contour	GW old	GW new	Torragas	Torragos	NM now	new	new and
FIPS	CRP 010	CRP new	CI Old	costs	(LOW)	(LOW)	(LOW)	(LOW)	old costs	new costs	costs	adopters	adopters
19079	0	878	6.329	848	0	113	136	1.782	010 00313	10.040	1.844	15.505	21.970
19081	1.767	3,127	6,833	582	0	312	0	1,323	0	13,856	1,776	20,976	29,576
19083	1,988	1,818	4,735	1,761	343	359	549	1,805	6,458	10,275	1,860	17,878	31,952
19085	4,897	11,028	1,591	2,312	873	56	0	395	16,240	13,598	1,266	28,654	52,254
19087	10,420	1,453	2,190	871	111	235	0	616	1,879	16,968	924	21,067	35,667
19089	9,352	841	3,895	1,214	110	85	34	2,076	0	3,816	1,043	9,076	22,467
19091	221	0	4,354	336	0	57	23	758	0	2,055	1,331	4,538	9,135
19093	1,804	7,487	918	3,681	672	291	0	298	37,835	15,042	1,102	27,902	69,131
19095	18,078	5,760	1,674	2,481	1,432	44	1,880	160	12,095	41,980	1,119	51,543	86,702
19097	17,967	6,427	965	1,854	584	44	593	107	705	0	832	9,264	30,078
19099	15,096	1,989	3,444	2,601	181	338	95	765	2,583	79,087	1,453	86,233	107,633
19101	10,530	1,625	1,012	1,267	188	40	509	274	12,799	11,801	756	15,762	40,801
19103	8,910	2,276	2,552	1,730	124	267	122	922	587	32,351	1,107	38,653	50,948
19105	2,172	3,142	3,996	1,228	1,148	96	1,174	765	5,108	18,142	1,445	24,819	38,418
19107	18,004	7,714	1,219	1,981	42	232	322	466	1,409	33,643	1,121	45,157	66,153
19109	5,191	720	7,960	1,686	0	40	0	2,402	0	30,648	2,910	38,406	51,558
19111	5,302	2,747	1,159	1,566	162	85	137	566	2,583	24,131	981	30,078	39,420
19113	4,934	662	4,606	1,589	549	627	993	1,135	939	30,824	1,451	36,290	48,311
19115	7,548	1,011	2,035	791	108	84	42	611	939	9,746	852	13,094	23,766
19117	14,691	2,539	946	211	61	113	238	47	1,938	1,691	141	4,741	22,614
19119	479	558	3,462	2,885	1,312	333	459	1,483	7,116	3,875	1,529	10,663	23,490
19121	7,842	2,121	3,834	172	195	190	287	494	9,923	27,983	678	31,639	53,720
19123	12,371	1,940	1,324	2,641	422	0	603	831	2,994	34,347	1,089	40,848	58,562
19125	7,990	2,523	2,942	793	385	77	302	271	16,498	29,650	769	34,082	62,200
19127	2,540	1,762	5,028	1,380	580	242	262	956	0	60,944	1,280	66,564	74,974
19129	1,657	3,175	1,827	2,009	206	216	0	295	25,047	9,265	812	15,772	44,509

S	(A section	1. 2.3	1.14	24/240		n an Taise			1 1 1 S			Total	Total
1. S.				10.00			GW 11	CIT.	C. S. Star			costs -	costs -
27 J. 12	CDD ald	CDD now	CT ald	CT now	Contour	Contour	GW old	GW new	Torragos	Torragoog	NM norr	new	new and
FIPS	CRP 010	costs	CI Old	costs	(LOW)	(LOW)	(LOW)	(LOW)	old costs	new costs	costs	adopters	adopters
19131	2.467	0	3.946	1.308	(LOW)	30	32	2.220	2.936	1.761	1.529	6 848	16.228
19133	4.529	2.027	1.000	1.512	298	75	140	252	7,398	12.224	1.658	17,748	31,112
19135	5,007	331	223	737	63	92	0	203	1,174	12,635	207	14.205	20,672
19137	3,976	820	1,772	1,953	716	56	812	329	20,749	5,813	815	9,785	37,811
19139	1,546	1,191	2,167	1,364	80	178	17	1,023	0	16,498	1,060	21,314	25,125
19141	736	0	4,970	756	0	71	28	2,100	0	705	1,761	5,394	11,128
19143	1,473	2,084	3,702	956	0	197	0	1,135	0	1,761	1,085	7,219	12,394
19145	8,763	2,754	3,998	768	719	85	0	321	34,700	6,306	902	11,136	59,316
19147	5,781	841	4,136	719	0	214	0	1,325	0	9,629	1,575	14,304	24,220
19149	6,075	6,198	4,904	3,312	1,695	1,186	0	672	43,506	12,999	1,883	26,251	82,431
19151	0	1,162	6,113	660	0	148	0	1,216	0	11,097	1,599	15,882	21,995
19153	1,951	571	3,820	423	51	66	389	701	18,495	8,337	943	11,042	35,748
19155	3,976	14,103	3,604	4,280	1,138	232	0	404	53,582	26,174	2,272	47,465	109,765
19157	11,230	8,040	4,144	984	37	404	144	499	0	67,050	1,117	78,095	93,650
19159	24,779	2,489	1,375	915	84	451	168	369	1,268	6,306	402	10,932	38,605
19161	552	2,486	3,786	2,599	740	498	322	1,863	4,286	6,541	1,681	15,667	25,354
19163	0	5,139	2,200	1,798	429	164	35	623	1,761	32,410	1,144	41,277	45,702
19165	1,289	39,470	1,202	2,843	779	113	97	431	23,849	8,631	943	52,431	79,646
19167	1,399	737	4,151	4,482	850	812	13	2,437	24,448	3,769	2,245	14,482	45,344
19169	405	629	5,444	890	28	89	212	1,412	4,814	7,222	1,532	11,774	22,677
19171	5,449	3,985	4,967	1,880	157	240	118	1,427	5,460	65,641	1,639	74,811	90,963
19173	16,127	592	1,702	2,052	1,368	251	0	246	1,797	19,375	732	23,248	44,241
19175	11,892	1,362	2,143	373	667	63	617	185	6,447	3,171	411	5,564	27,330
19177	13,844	801	1,995	280	0	91	28	338	3,229	11,919	296	13,725	32,821
19179	8,836	3,027	894	847	103	155	125	290	11,567	12,271	643	17,232	38,757
19181	9,278	455	3,638	267	186	240	0	961	6,224	24,072	765	26,760	46,086

and the second of		1963 (SA)	25,200	1922			842.44		or Beach	2.6. 2.5	Section Section	Total	Total
	9 - P () - P - P		aboliting (A State of the	1.1.1.1.1.1.1			E. C. St.			1	costs -	costs -
		10.00			Contour	Contour	GW old	GW new				new	new and
	CRP old	CRP new	CT old	CT new	old costs	new costs	costs	costs	Terraces	Terraces	NM new	adopters	old
FIPS	costs	costs	costs	costs	(LOW)	(LOW)	(LOW)	(LOW)	old costs	new costs	costs	only	adopters
19183	11,046	1,920	2,465	1,944	101	260	1,378	451	7,691	16,087	1,395	22,057	44,739
19185	20,545	885	378	1,305	352	392	59	208	1,127	6,869	377	10,037	32,498
19187	1,767	4,096	6,813	303	0	218	244	1,413	15,911	1,468	1,981	9,478	34,214
19189	5,781	953	2,132	1,399	0	164	0	1,035	0	12,682	1,272	17,504	25,417
19191	14,396	1,067	1,449	3,573	442	401	63	978	9,042	54,427	1,372	61,818	87,211
19193	16,127	14,943	4,012	1,824	442	247	97	283	29,591	23,779	1,550	42,626	92,896
19195	3,498	0	3,742	760	0	44	0	1,496	0	5,578	974	8,852	16,091
19197	1,399	0	6,559	592	38	73	0	1,037	0	16,146	2,013	19,862	27,858

CO NAME	FIPS	CO NAME	FIPS	CO NAME	FIPS
ADAIR	19001	GRUNDY	code	DI VMOLITH	code
ADAMS	19001	GUTUDIE	19073	PLIMOUTH	19149
ALLAMAVEE	19005		19077	POCAHONTAS	19151
ALLAMAKEE	19003	HAMILION	19079	POLK	19153
APPANOOSE	19007	HANCOCK	19081	POTTAWATTAMIE	19155
AUDUBON	19009	HARDIN	19083	POWESHIEK	19157
BENTON	19011	HARRISON	19085	RINGGOLD	19159
BLACK HAWK	19013	HENRY	19087	SAC	19161
BOONE	19015	HOWARD	19089	SCOTT	19163
BREMER	19017	HUMBOLDT	19091	SHELBY	19165
BUCHANAN	19019	IDA	19093	SIOUX	19167
BUENA VISTA	19021	IOWA	19095	STORY	19169
BUTLER	19023	JACKSON	19097	TAMA	19171
CALHOUN	19025	JASPER	19099	TAYLOR	19173
CARROLL	19027	JEFFERSON	19101	UNION	19175
CASS	19029	JOHNSON	19103	VAN BUREN	19177
CEDAR	19031	JONES	19105	WAPELLO	19179
CERRO GORDO	19033	KEOKUK	19107	WARREN	19181
CHEROKEE	19035	KOSSUTH	19109	WASHINGTON	19183
CHICKASAW	19037	LEE	19111	WAYNE	19185
CLARKE	19039	LINN	19113	WEBSTER	19187
CLAY	19041	LOUISA	19115	WINNEBAGO	19189
CLAYTON	19043	LUCAS	19117	WINNESHIEK	19191
CLINTON	19045	LYON	19119	WOODBURY	19193
CRAWFORD	19047	MADISON	19121	WORTH	19195
DALLAS	19049	MAHASKA	19123	WRIGHT	19197
DAVIS	19051	MARION	19125		
DECATUR	19053	MARSHALL	19127		
DELAWARE	19055	MILLS	19129		
DES MOINES	19057	MITCHELL	19131		
DICKINSON	19059	MONONA	19133		1.1.1
DUBUQUE	19061	MONROE	19135		to a sector
EMMET	19063	MONTGOMERY	19137		
FAYETTE	19065	MUSCATINE	19139		
FLOYD	19067	OBRIEN	19141		•
FRANKLIN	19069	OSCEOLA	19143		
FREMONT	19071	PAGE	19145		
GREENE	19073	PALO ALTO	19147		

Appendix D: Description of the calibration process and results for the Raccoon River Watershed; paper originally presented by Jha et al. (2005) that is reprinted here in a slightly modified form (note: the hydrologic calibration results for the 13 watersheds are also shown in the main body of the report or in Appendix E).

Nonpoint Source Needs Assessment for Iowa Part I: Configuration, Calibration and Validation of SWAT

M. Jha, P.W. Gassman, S. Secchi, and J.G. Arnold

ABSTRACT

Calibration and validation of the SWAT model was performed to support an economic and environmental modeling study of mitigating cropland nonpoint source pollution losses in Iowa for the Iowa Department of Natural Resources (IDNR). SWAT was initially tested for the Raccoon River Watershed, which is a major subwatershed of the Des Moines River Watershed (one of the 13 watersheds included in the study). Simulated stream flow, sediment, and nitrate values compared favorably with measured values for the Raccoon. Stream flow R² and Nash-Suttcliffe modeling efficiency (E) values ranged between 0.77 and 0.96 for annual and monthly comparisons during the Raccoon calibration and validation periods. Strong results were also found for the simulated annual sediment loads, for which the R² and E statistics generally exceeded 0.83. The R^2 and E values computed for the comparison between simulated and measured annual sediment losses were greater than 0.90 in the calibration period, but the monthly statistics for the same period were only 0.45. However, all of the comparison statistics computed for the sediment loss comparisons in the validation period were between 0.83 and 0.96. The statistical evaluation for the nitrate predictions yielded a strong correlation as indicated by R^2 and E values of greater than 0.70 for both the annual and monthly results during the calibration and validation periods. The majority of R² and E values computed for annual comparisons between simulated and measured stream flows for the 13 study watersheds exceeded 0.85; the corresponding monthly statistics were usually greater than 0.75.

KEYWORDS. SWAT, modeling, calibration, validation, , sediment, nutrients, stream flow

INTRODUCTION

The USEPA is required to perform a periodic national Clean Watersheds Needs Survey (CWNS) in response to directives that were established in the 1972 U.S. Clean Water Act (USEPA, 2000). The purpose of the survey is to identify all existing water quality or public health problems originating from point or nonpoint sources, and the corresponding mitigation costs. An integrated economic and environmental modeling system has been developed to support an Iowa Department of Natural Resources (IDNR) goal to provide more accurate cost estimates of reducing nonpoint source pollution in Iowa for the 2004 CNWS. A key component of the system is the Soil and Water Assessment Tool (SWAT) watershed model (Arnold et al., 1998; Neitsch et al. 2002), which was used to assess the impact of adopting increased levels of conservation practices on sediment and nutrient losses for 13 major watersheds in Iowa (Figure 1). The

procedures and costs of adopting the conservation practices are discussed in Secchi et al. (2005) while the overall economic and environmental results of the analysis are reported in Gassman et al. (2005). The objective of this study is to present in-depth SWAT calibration and validation results for the Raccoon River Watershed and also for the Des Moines River Watershed. The calibrated parameters were then used for the 13 study watersheds. Stream flow calibration results for those watersheds are also briefly discussed, as well as the baseline sediment, nitrate, total nitrogen (N), and total phosphorus (P) loads that were estimated for each of the watersheds.

WATERSHED DESCRIPTIONS

The SWAT simulations were configured for 13 major watersheds in Iowa that range in size from 792 km² to 14,477 km² and together cover 87% of the state (Figure 1). The key characteristics of each watershed are given in Table 1. The watersheds consist of one to nine U.S. Geological Survey (USGS) 8-digit Hydrologic Cataloging Unit (HCU) watersheds, which are defined by Seaber et al. (1987). The 8-digit watershed boundaries were used to delineate the subwatersheds for the two largest watersheds; more refined subwatershed delineations were used for the other 10 smaller watersheds as discussed in the Simulation Methodology Section. The dominant land uses across the 13 watersheds are cropland and grassland. Forest is also a relatively major land use for the Maquoketa, Turkey, and Upper Iowa watersheds that are located primarily in northeast Iowa.

SWAT MODEL

The SWAT model is a conceptual, physically based long-term continuous watershed scale simulation model that operates on a daily time step. The model is capable of simulating a high level of spatial detail by allowing the division of a watershed into a large number of subwatersheds. In SWAT, a watershed is divided into multiple subwatersheds, which are then

ID	Watershed	# of 8-digit	# of sub-	Drainage	USGS		Major land u	se (%)	
ID	watershed	watersheds	watersheds	(km^2)	station # ^a	Cropland	Grassland ^b	Forest	Urban
1	Floyd	1	5	2,376	6600500	84	13	0	3
2	Monona	1	5	2,452	6602400	78	19	2	1
3	Little Sioux	2	10	9,203	6607500	86	13	1	0
4	Boyer	1	5	2,820	6609500	68	26	4	2
5	Nishnabotna	3	11	7,718	6810000	84	15	1	0
6	Nodaway	1	7	2,051	6817000	52	41	5	3
7	Des Moines	9	9	37,496	5490500	71	16	6	7
8	Skunk	3	12	11,246	5474000	69	25	5	1
9	Iowa	9	9	32,796	5465500	77	12	4	8
10	Wapsipinicon	2	11	6,582	5422000	77	19	3	1
11	Maquoketa	1	10	4,827	5418500	56	32	10	3
12	Turkey	1	9	4,400	5412500	56	25	16	3
13	Upper Iowa	1	7	2,569	5388250	51	26	19	3

Table 1. Characteristics of the 13 study watersheds.

^aThese U.S. Geological Survey monitoring stations are the sources of measured stream flow data used to calibrate SWAT (see Calibration and Validation Section).

^bGrassland includes both Conservation Reserve Program (CRP) and pasture areas.

further subdivided into Hydrologic Response Units (HRUs) that consist of homogeneous land use, management, and soil characteristics. Flow generation, sediment yield, and non-point-source loadings from each HRU in a subwatershed are summed, and the resulting loads are routed through channels, ponds, and/or reservoirs to the watershed outlet. Key components of SWAT include hydrology, plant growth, erosion, nutrient transport and transformation, pesticide transport and management practices. (Arnold and Allen, 1996; Arnold et al., 1999; Arnold et al., 2000; Saleh et al., 2000; Santhi et al., 2001; Kirsch et al., 2002; Grizzetti et al., 2003; Chaplot et al., 2004). Further details on the SWAT components are presented in Arnold et al. (1998) and Neitsch et al. (2002).

Simulation Methodology

The USDA 1997 National Resources Inventory (NRI) database (Nusser and Goebel, 1997; http://www.nrcs.usda.gov/technical/NRI/) is a key data source that was used to perform the SWAT simulations for the 13 watersheds. The NRI contains soil type, landscape features, cropping histories, conservation practices, and other data for roughly 800,000 U.S. nonfederal land "points" including 34,120 in Iowa (14,472 of which are cropland points). Each point represents an area that is assumed to consist of homogeneous land use, soil, and other characteristics, which generally ranges from a few hundred to several thousand hectares in size, and are spatially referenced at the State, Major Land Resource Area (MLRA), county, and 8-digit watershed levels. Crop rotations incorporated in the SWAT simulations are derived from cropping histories reported in the NRI. Other land use delineations required for the simulation, including the locations of baseline conservation practices, are also based on NRI data. The tillage implements simulated for the different levels of tillage (conventional, reduced, mulch, and no) incorporated in the analysis were obtained from the USDA 1990-95 Cropping Practices Survey (CPS), which is accessible at http://usda.mannlib.cornell.edu/usda/ess_entry.html). Historical precipitation, maximum temperature, and minimum temperature data obtained from the Iowa

Environmental Mesonet (<u>http://mesonet.agron.iastate.edu/request/coop/fe.phtml</u>) for the 18-year period (1980-99) were used for the SWAT simulations; the location of the weather stations is shown in Figure 2. The soil layer data required for the SWAT simulations is input from a soil database that contains soil properties consistent with those described by Baumer et al. (1994), with the additional enhancement of ID codes that allow direct linkage to NRI points.

Figure 2. Weather stations used in the SWAT simulations for the 13 Iowa watersheds (Source: Iowa Environmental Mesonet).

Delineation of each watershed into smaller spatial units required for the SWAT simulations consists of two steps: (1) subdividing each watershed (Figure 1) into either 8-digit or smaller 10-digit watersheds (IDNR-IGS, 2004a), and (2) creating smaller HRUs within each of the subwatersheds. Larger 8-digit subwatersheds were used for the Des Moines and Iowa River Watersheds (Figure 1), which were the two largest systems included in the analysis. The HRUs represent "lumped areas" of similar land use and soil types that are distributed throughout each subwatershed; however, exact spatial locations of the HRUs are not incorporated in the SWAT simulation. The HRUs required for the SWAT baseline simulations were created by aggregating NRI points together that possess common land use, soil, and management characteristics. All of the points within a given category were clustered together within each 8-digit watershed for the Des Moines and Iowa River Watershed simulations, except for the cultivated cropland. For the cultivated cropland, the NRI points were first aggregated into different crop rotation land use clusters within each 8-digit watershed, based on the NRI cropping histories. These crop rotation aggregations were then subdivided based on permutations of rotations; e.g., corn-soybean versus soybean-corn.

The smaller 10-digit subwatersheds were used for those watersheds that consist of 1 to 3 8-digit watersheds (Figure 1), to avoid potential distortions in predicted pollutant indicators when only a

small number of subwatersheds are used in a SWAT application as discussed by Jha et al. (2004). A more complex procedure was developed to construct the HRUs for the SWAT baseline simulations for the other 11 watersheds, because the NRI data is not spatially referenced at the 10-digit watershed level. To overcome this limitation, Iowa Soil Properties and Interpretations Database (ISPAID) soil data (http://extension.agron. iastate.edu/soils/pdfs/ISP71MAN.pdf) and IDNR land use data available for 2002 (IDNR-IGS, 2004b) were used to help determine which HRUs should be placed in each 10-digit subwatershed. The initial step in the procedure consisted of attempting to match soil IDs shown in the ISPAID soil map for a 10-digit watershed, to soil IDs listed in the NRI for points located within the respective 8-digit watershed that the 10-digit watershed. The 2002 IDNR land use data was then used to help further verify which 10-digit watershed. The 2002 IDNR land use data was then used to help further verify which 10-digit watershed an NRI point was most likely to be located in, based on whether the land use was cropland, CRP, forest, urban, and so forth. The remaining NRI points were assigned arbitrarily to the 10-digit subwatersheds to ensure that the total land area was accounted for.

An in-depth calibration and validation exercise was performed for the Raccoon River Watershed, which is a major subwatershed of the Des Moines River Watershed (Figure 3). The Raccoon River Watershed was chosen for the intensive calibration and validation phase because of the reliable stream flow, sediment, and nitrate data that is available for the watershed (Lutz, 2004). A total of 26 10-digit subwatersheds were delineated for the Raccoon River simulations. The process of determining which subwatersheds the HRUs should be placed in was similar to the procedures described above for the watersheds that were subdivided with the 10-digit subwatersheds.

RESULTS AND DISCUSSION

To perform the Raccoon River Watershed calibration, baseflow was initially separated from surface flow for the measured daily streamflow data at Van Meter, Iowa (near the outlet of the watershed) using an automated digital filter technique (Arnold and Allen, 1999). The technique estimated the baseflow to be about 65% of the streamflow. Model hydrologic parameters were adjusted from their initial estimates within acceptable ranges to achieve the desired proportion of surface runoff to baseflow. Reducing the curve numbers (CNs) by 8% and the available soil water capacity (SOL_AWC) values by 0.04 mm resulted in a proportion of 60% baseflow and 40% surface runoff on an annual basis. SWAT model calibration was then carried out to match the simulated flow with the measured flow at Van Meter. The calibration (1981-1989) yielded a strong correlation in annual streamflow as indicated by an R² of 0.96 and a modeling efficiency (E) value of 0.95. The calibration time-series comparison (Figure 4) also reveals a good correspondence, with resulting R² and E values of 0.78 and 0.77, respectively. SWAT also performed very well during the validation period (1990-2000) as indicated by annual R² and E values of 0.93 and 0.87, respectively, and corresponding monthly values of 0.86 and 0.82.

Model calibration of sediment yield was performed for channel degradation and deposition. Parameters such as the linear (SPCON) and exponent (SPEXP) components of the sediment equation and channel cover factor were adjusted to match simulated sediment yield with the Figure 3. Location of the Raccoon River Watershed within the Des Moines River Watershed, and delineation of the subwatersheds and location of the weather stations and streams for the SWAT simulation.

measured sediment loads at Van Meter, which were extrapolated from single monthly sediment samples. The calibration process yielded R^2 and E values of 0.90 and 0.88 for the annual results, and 0.46 and 0.44 for the monthly results, respectively. Similarly, the validation process resulted in R^2 and E values of 0.96 and 0.83 for the annual comparison and 0.91 and 0.90 for the monthly comparison, respectively. Overall, the model tracked the monthly sediment yields very well (Figure 5).

Model calibration was also performed for the nitrate loadings at Van Meter. Again, the measured data are extrapolated from single monthly samples. Calibration parameters including the nitrogen percolation coefficient were varied within their acceptable ranges, but the model was not found to be very sensitive to these adjustments. Basically, for the nitrate calibration, the ratio of the surface runoff and baseflow was varied to produce a good match between the simulated and measured values of streamflow and nitrate (Figure 6). The statistical evaluation yielded a strong correlation as indicated by R^2 and E values of greater than 0.70 for both the annual and monthly results during the calibration and validation periods.

The calibrated sediment and nitrate parameters for the Raccoon River simulation were then used for the SWAT simulations performed for the 13 study watersheds, due to a lack of available measured data. Stream flows were calibrated for all 13 watersheds for the period 1981-89, and

Figure 5. Simulated versus measured monthly sediment loads at Van Meter, Iowa for the Raccoon River Watershed.

Figure 6. Simulated versus measured monthly nitrate loads at Van Meter, Iowa for the Raccoon River Watershed.

subsequent validation was performed for 1990-97. Table 2 lists the R^2 and E statistics that were calculated for the streamflow calibration and validation phases for all 13 watersheds; example monthly stream flow time series comparisons are shown in Figures 7 and 8 for the Des Moines and Iowa River Watersheds, respectively. The majority of the annual R^2 and E values calculated for the annual calibration and validation periods exceeded 0.85 (Table 2). The monthly predictions were less accurate than the annual estimates but the majority of the r² and E values were still strong, especially in the validation period in which most of the computed statistics were greater than 0.75. The results shown in Table 2 underscore that SWAT accurately replicated the stream flows for each watershed in both the calibration and validation periods.

ID	Watershed	Annual Statistics				Monthly Statistics				
		Calib (1980	ration -1989)	Valio (1990	lation -1997)	Calib (1980	ration -1989)	Valio (1990	dation -1997)	
1 3	College States	R^2	E	R^2	Е	R^2	E	R ²	E	
1	Floyd	0.94	0.91	0.71	0.68	0.68	0.66	0.52	0.49	
2	Monona	0.93	0.82	0.78	0.65	0.7	0.68	0.63	0.54	
3	Little Sioux	0.93	0.93	0.82	0.81	0.67	0.67	0.72	0.71	
4	Boyer	0.91	0.79	0.93	0.92	0.71	0.56	0.81	0.78	
5	Nishnabotna	0.9	0.89	0.95	0.95	0.8	0.7	0.81	0.81	
6	Nodaway	0.96	0.95	0.93	0.93	0.75	0.74	0.78	0.77	
7	Des Moines	0.92	0.92	0.91	0.88	0.62	0.61	0.77	0.75	
8	Skunk	0.96	0.95	0.98	0.98	0.64	0.64	0.83	0.83	
9	Iowa	0.87	0.86	0.95	0.93	0.77	0.76	0.9	0.89	
10	Wapsipinicon	0.77	0.74	0.92	0.9	0.62	0.6	0.83	0.83	
11	Maquoketa	0.85	0.77	0.9	0.86	0.67	0.49	0.8	0.78	
12	Turkey	0.89	0.85	0.91	0.85	0.7	0.63	0.79	0.75	
13	Upper Iowa	0.95	0.91	0.81	0.8	0.66	0.59	0.79	0.78	

Table 2. Streamflow calibration results for the 13 study watersheds.

Figure 7. Simulated versus measured monthly stream flows during the calibration and validation periods for Des Moines River Watershed at Keosaqua/St Francis.

Figure 8. Simulated versus measured monthly stream flows during the calibration and validation periods for Iowa River Watershed at Wapello.

The total average annual loadings for the baseline simulations are presented in Table 3 for each watershed outlet for four environmental indicators: sediment, nitrate, total N, and total P. The total stream flows and pollutant loadings varied greatly between the 13 watersheds, reflecting differences in size, land use, and soil and climate conditions. The Des Moines and Iowa River Watershed results were also affected by reservoirs that trap large amounts of sediment and some sediment-bound nutrients.

	Watershed	Sediment	Nitrate	Total N	Total P
1	Floyd	241,423	7,125	8,406	405
2	Monona	198,589	4,847	5,605	327
3	Little Sioux	632,456	23,851	28,569	2,067
4	Boyer	777,245	4,947	6,991	709
5	Nishnabotna	1,968,399	8,257	10,656	1,001
6	Nodaway	520,045	3,312	4,656	518
7	Des Moines	2,174,303	38,252	63,349	7,075
8	Skunk	3,800,345	28,122	32,087	2,021
9	Iowa	3,423,237	54,050	103,738	7,786
10	Wapsipinicon	2,238,966	27,533	31,484	1,571
11	Maquoketa	1,218,739	14,781	17,746	919
12	Turkey	1,297,814	12,436	14,842	850
13	Upper Iowa	730,155	3,675	4,683	379

Table 3. Annual average baseline loadings in metric tons for 1980-1997.

CONCLUSION

The calibration and validation results reported for the Raccoon River Watershed indicate that SWAT can effectively replicate streamflow, and associated sediment, and nitrate losses, for large Iowa river watersheds. The additional streamflow calibration and validation results for the Des Moines River Watershed and 11 other watersheds further confirm that SWAT can replicate Iowa river system conditions. These results provide the foundation for the environmental results that are reported in Gassman et al. (2005) for two different scenarios of adopting conservation practices and a fertilizer reduction strategy. Additional calibration and validation work is needed for applying SWAT in Iowa, especially with regards to phosphorus predictions

REREFERENCES

- 1. Arnold, J.G., and P.M. Allen. 1996. Estimating hydrologic budgets for three Illinois watersheds. *J. of Hydrology* 176:57-77.
- Arnold, J.G., R.S. Muttiah, R. Srinivasan, and P.M. Allen. 2000. Regional estimation of base flow and groundwater recharge in the upper Mississippi basin. J. of Hydrology 227:21-40.
- Arnold, J.G., R. Srinivasan, R.S. Muttiah, P.M. Allen and C. Walker. 1999. Continental scale simulation of the hydrologic balance. J. American Water Resources Association 35(5):1037-1052.
- 4. Arnold, J.G., R. Srinivasan, R.S. Muttiah, and J.R. Williams. 1998. Large area hydrologic modeling and assessment part I: model development. *J. Amer. Water Resour. Assoc.* 34(1): 73-89.
- 5. Baumer, O., P. Kenyon, and J. Bettis. 1994. MUUF v2.14 User's Manual. U.S. Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center, Lincoln, Nebraska.
- 6. Chaplot, V., A. Saleh, D.B. Jaynes, and J. Arnold. 2004. Predicting water, sediment and NO₃-N loads under scenarios of land-use and management practices in a flat watershed *Water, Air, and Soil Pollution* 154 (1-4):271-293.
- 7. Gassman, P.W., S. Secchi, M. Jha, L. Kurkalova, H. Feng, and C.L. Kling. 2005. Nonpoint source needs assessment for Iowa part III: economic and environmental outcomes. This issue.
- 8. Grizzetti, B., F. Bouraoui, K. Granlund, S. Rekolainen, and G. Bidoglio. 2003. Modelling diffuse emission and retention of nutrients in the Vantaanjoki watershed (Finland) using the SWAT model. *Ecological Modelling* 169:25-38.
- IDNR-IGS. 2004a. Drainage basin data. What's Happenin', The Iowa Geological Survey's Geographic Information Systems Bi-Monthly Section Newsletter. Available at: <u>http://www.igsb.uiowa.edu/nrgislibx/newsletters/2004-08%20GIS%20Newsletter%20</u> <u>Vol%20III.pdf</u>. Accessed 14 January 2005.
- IDNR-IGS. 2004b. Land Cover of the State of Iowa in the Year 2002. Available at: <u>ftp://ftp.igsb.uiowa.edu/gis_library/IA_State/Land_Description/Land_Cover_2_002/lc_2002.zip</u>. Accessed 8 December 2004.

- 11. Lutz, 2004. Annual Report: Water Quality Studies—Red Rock and Saylorville Reservoirs, Des Moines River, Iowa. Environmental Engineering Section, Department of Civil Engineering, Engineering Research Institute, Iowa State Univ., Ames, Iowa. Available at: <u>http://www.ccee.iastate.edu/research/lutz/homepage.html</u>. Accessed 18 November 2004.
- Neitsch, S.L., J.G. Arnold, J.R. Kiniry, and J.R. Williams. 2002. Soil and Water Assessment Tool Theoretical Documentation, Version 2000 (Draft). Blackland Research Center, Texas Agricultural Experiment Station, Temple, Texas. Available at <u>http://www.brc.tamus.edu/swat/ swat2000doc.html</u>. Accessed in December 2003.
- 13. Nusser, S. M., and J.J. Goebel. 1997. The national resources inventory: a long-term multiresource monitoring programme. *Environ. Ecol. Stat.*. 4: 181-204.
- Saleh, A., J.G. Arnold, P.W. Gassman, L.W. Hauck, W.D. Rosenthal, J.R. Williams, and A.M.S. McFarland. 2000. Application of SWAT for the upper north Bosque watershed. *Trans. ASAE* 43(5):1077-1087.
- 15. Santhi, C., J.G. Arnold, J.R. Williams, W.A. Dugas, and L. Hauck. 2001. Validation of the SWAT model on a large river basin with point and nonpoint sources. *J. of American Water Resources Association* 37(5):1169-1188.
- 16. Seaber, P.R., F.P. Kapinos, and G.L. Knapp. 1987. Hydrologic Units Maps. U.S. Geological Survey, Water-Supply Paper 2294.
- 17. S. Secchi, H.L. Feng, L.A. Kurkalova, C.L. Kling, P.W. Gassman, and M.K. Jha 2005. Nonpoint source needs assessment for Iowa part II: the cost of improving Iowa's water quality. This issue.
- USEPA. 2000. Clean Watersheds Needs Survey. U.S. Environmental Protection Agency, Office of Wasterwater Management, Municipal Support Division, Municipal Policy Branch Washington, D.C. 20460. Available at: <u>http://www.epa.gov/owm/mtb/cwns/2000rtc/toc.htm</u>. Accessed 14 January 2005.

Appendix E: Hydrologic calibration (1980-89) and validation (1990-97) results for all 13 watersheds.

1. Floyd

3. Little Sioux

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

5. Nishnabotna

6. Nodaway

7. Des Moines

77

10. Wapsipinicon

11. Maquoketa

12. Turkey

13. Upper Iowa

