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SUMMARY

Autocorrelated errors are recognized as potentially
troublesome in regression analysis. Because of the com-
putational problems encountered, however, few econ-
omists have estimated equations under the assumption of
autocorrelated errors. Recently, relatively economical
procedures have been developed for estimating equations
containing autocorrelated errors. In this study, one of
these procedures—autoregressive least squares (A.L.S.)
—is applied to equations describing the behavior of var-
ious economic agents, by using different unit observation
periods—year, quarter and month. Some of the results
have been published elsewhere; some are published here.
In addition to presenting some results of autoregressive
error estimation, this report summarizes experience with
the use of A.L.S. Some equations presented here were
estimated by a simultaneous equations method under the
assumption of autocorrelated errors.

The results of four different tests for autocorrelation
in errors were compared: Durbin-Watson d statistic,
Theil-Nagar d, Hart-von Neumann ratio and A.L.S.
Essentially, the Theil-Nagar d test classes as significant
those values of d that are significant or inconclusive in
the Durbin-Watson test. The Theil-Nagar d yielded ev-
idence of autocorrelated errors most frequently; A.L.S.,
second most frequently; Hart-von Neumann ratio, third
most frequently; and Durbin-Watson test, least frequent-
ly. The proportions of the equations in which each test
provided significant evidence of autocorrelated errors
are: Theil-Nagar d, 66 percent; autoregressive least
squares, 51 percent; Hart-von Neumann ratio, 37 per-
cent; Durbin-Watson test, 26 percent.

Each test provided evidence of significant autocor-
relation more frequently in equations not containing the
lagged dependent variable, y.;, than in equations con-
taining the lagged dependent variable. In equations not
containing y,_;, the Theil-Nagar d appears to be a rea-
sonably efficient test, with the disadvantage, however, of
fairly frequent Type-I error. In equations containing
yi-1, none of the three tests using residuals (estimated
errors) to test for autocorrelation seems satisfactory.
Theil-Nagar d appears to make frequent Type-I errors
and also frequent Type-II errors. The other two make
frequent Type-II errors.

There appears to be no good way to use residuals
to compute the autoregressive properties of errors. Auto-
regressive coefficients computed from residuals appear
inefficient and biased toward zero.

When using L.S. or some simultaneous equations pro-
cedure and finding a significant (or inconclusive) value
of d, econometricians commonly conclude that caution is
necessary in interpreting the results from that equation.
The results of this study indicate that this is insufficient.
We do not know what bias or inefficiency exists in the
coefficients or in the tests of significance. Re-estimation
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by a procedure that allows for temporal dependence in
the disturbances will, in many cases, make substantial
differences in the coefficients and in their levels of signif-
icance.

In equations in which A.L.S. produced significant
evidence of autocorrelated errors, one-fourth of the
AL.S. coefficients differed from the corresponding least
squares (L.S.) coefficients by two or more L.S. standard
errors; one-fourth differed by one to two L.S. standard
errors; half differed by less than one L.S. standard error.
In these same equations, one-fourth of the estimated co-
efficients were significant by one method of estimation
and nonsignificant by the other.

It is known that, under certain assumptions, L.S.
coefficients are unbiased even through errors are auto-
correlated. The empirical A.L.S. results raise a question
as to whether the necessary assumptions are generally
satisfied. The results suggest the possibility that auto-
correlated errors are not distributed independently of
the independent variables. Because of the intercorrela-
tions among time series, autocorrelated errors arising
from the omission of relevant variables are likely cor-
related with included independent variables. Autocor-
related errors arising from incorrect specification of the
functional form may be similarly correlated with includ-
ed independent variables.

Omission of relevant variables is recognized as a
possible source of autocorrelated errors. Under certain
conditions, the addition of a variable can introduce auto-
correlation into the errors. The addition of y,, intro-
duces autocorrelation into the errors fairly regularly; the
addition of other variables has this effect infrequently.
The coefficient of y,_, is highly sensitive to the presence
of autocorrelated errors.

Several equations which had been estimated by as-
suming first-order autoregressive errors were re-estimated
by assuming second-order autoregressive errors. In half,
there was significant evidence of second-order autore-
gression. Differences between results obtained by assum-
ing second-order autoregression and those obtained by
assuming first-order autoregression were much smaller
than the differences between results obtained by assum-
ing first-order autoregression and those obtained by L.S.

In a nonlinear regression problem such as that cre-
ated by the presence of autoregressive errors, there exists
the possibility of multiple minima in the residual sum
of squares (multiple maxima in the likelihood function).
Twenty-one different equations were investigated for
the existence of multiple minima: multiple minima were
found in four, all containing y. ;. Multiple minima are
rare in equations that do not contain y;,, but not so
rare in equations that do contain y.;. Here is evidence
of another kind of interaction between autocorrelated
errors and yii.



Experiments With Autoregressive Error

Estimation!

by George W. Ladd

When estimating behavioral equations or production
functions from time series data, economists usually use
an estimation procedure that assumes the errors to be
temporally independent. Work of Orcutt (36) and
Cochrane and Orcutt (6) suggested that this assumption
frequently is not satisfied. Recent empirical work by
Hildreth and Lu (23) provides evidence that autocor-
related errors may be common. Even though autocor-
related errors are common, econometricians need not be
concerned about them unless their presence seriously
affects the statistical results. If the lagged value of the
dependent variable is not among the independent var-
iables, the presence of autocorrelated errors does not bias
least-squares estimates of the coefficients (19; 59, p.
211), although it does make least-squares coefficients
inefficient (19, 57, 58), and it does lead to biased (57)
but consistent (59, pp. 211-212) estimates of the error
variance and standard errors.? If the lagged value of the
dependent variable is among the independent variables,
autocorrelated errors bias the least-squares estimates of
the coefficients (14, 17).

Little work has been done to analyze the effects of
autocorrelated errors on simultaneous equations esti-
mates. The results describing the undesirable effects of
autocorrelated errors on least-squares estimates are
asymptotically applicable to two-stage least squares.
Examination of the work of Sargan (38) indicates that
autocorrelated errors will bias limited-information single-
equation estimates through the effect of autocorrelation
on the two residual sums of squares whose ratio is min-
imized.

Granted that autocorrelated errors do exist and do
have undesirable effects, two questions remain: (a) How
common are autocorrelated errors? (b) Is the magnitude
of the undesirable effects generally negligible or 51zable?
Each of these questions, in turn, gives rise to several
subsidiary questions. Are autocorrelated errors common
with certain kinds of equations or certain types of data
and uncommon with other equations or data? Are the
undesirable effects greater with some kinds of data than
with other data? These questions are important because
of the computational problems and expense involved in
applying estimation procedures that allow for temporal
1 Project 1355 of the lowa Agricultural and Home Economics Experiment

Station. This research was partially financed by a grant from the Na-
tional Science Foundation.

~Su‘rinma.r1es of the effect of autocorrelated errors can be found in (12)
an

dependence in the errors. If autocorrelated errors are
relatively rare, or if their impact is numerically small, it
will usually not be worthwhile to assume temporal de-
pendence in the errors and to estimate the equations
accordingly.

The research reported here was carried out to pro-
vide some evidence on the frequency of autocorrelated
errors in various kinds of economic behavioral equations
estimated with different unit observation periods—year,
quarter and month—and to obtain measures of the
magnitude of the effects of autocorrelated errors. Results
were obtained by a relatively economical estimation pro-
cedure which assumes autocorrelation in the errors.?

To accomplish the listed objectives, the first step re-
quired was the development of an economical estimation
procedure. Such a procedure—autoregressive least
squares—was developed by Fuller and Martin (see next
section). This procedure was applied to a number of
equations and various types of data. (a) Annual aggre-
gate consumer demands for several groups of food items
in the United Kingdom were estimated and published
(15). All other equations were estimated with United
States data. (b) Annual aggregate consumer demands
for several foods were analyzed. Some results are pub-
lished in this report. (¢) Annual demands for auto-
mobiles and housing were analyzed. The results are pub-
lished here. (d) Quarterly and monthly consumer de-
mand was studied. Quarterly and monthly estimates of
food demands of the Michigan State University con-
sumer panel were analyzed (29, 30). Aggregate quarterly
beef and pork demand and quarterly consumer’s expend-
itures on durable goods, nondurable goods and services
were studied. The beef and pork results were published
previously (14). (e) Equations describing annual aggre-
gate factor demands and product supplies by farmers
were estimated. Some results are reported here. (f)
Business behavior was studied with the use of quarterly
aggregate data. Beef and pork inventories and prices
were studied and reported (14). Business plant and
equipment expenditures and nonfarm inventory invest-
ment components of gross national product and depart-
ment store inventories were analyzed.

The general procedure was to estimate an equation
by least squares and compute the d statistic. Then auto-
® A temporally dependent error is an error in which each observation is

correlated with previous values of itself, with errors in other equations

or with both. An autocorrelated error is correlated with previous values
of itself.
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regressive least-squares estimates were obtained. Various
comparisons were made between the least-squares and
the autoregressive least-squares results. This was the gen-
eral, not the universal, procedure; some equations were
estimated only one way.

Since economic data are generated by a dynamic
economic system, it is possible that static equilibrium
theory is not adequate for explaining observed behavior.
To investigate this possibility, both static and dynamic
versions of a number of equations were estimated. Here,
a static equation is one in which all variables refer to
the same time period; one or more lagged variables ap-
pear in a dynamic equation. The most commonly used
dynamic equation was the type of equation proposed by
Koyck and Nerlove for the estimation of long-run elas-
ticities (26, 34). In some contexts, this equation can
also be interpreted as representing behavior affected by
expected price or expected income (34). In a number
of cases, a static equation was estimated by least squares
and autoregressive least squares; then, its dynamic corre-
spondent also was estimated both ways. Results from
these four regressions were then compared.

ESTIMATION PROCEDURES

Four different estimation procedures were used in
this study. Each corresponds to a different set of assump-
tions about the error terms in the structural equations
estimated. Detailed discussion of the procedures and
their properties are not presented here because they are

covered elsewhere (12, 24, 15, 16, 30).

Least Squares (L.S.)

The L.S. model may be written, using matrix nota-
tion, as

(1.1) Yi=XA+ ¢

(1.2) Ef(e) =0

(1.3) E(etei) =0, all is£0

(L) " Eife®) =ro? forall t

(1.5) Elements of X, distributed independently of

€t.

Y is a column vector of N observations on the de-
pendent variable; X isan N X (M + 1) vector of obser-
vations on m independent variables and a column of
ones; Aisan (m + 1) X 1 column vector of coefficients;
e is an N X 1 vector of errors.

Autoregressive Least Squares (A.L.S.)

As we are concerned with autocorrelated errors, as-
sumption 1.3 is the part of the model of interest here.
The simplest way to generalize 1.3 is to assume

L6 e = Bierr hus o =le=p =1
1.7) E(u) =0
1.8) E(uiue;) =0 forjs%0

1.9) E(u?) =o®

1.10)  u distributed independently of X

for all t
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(1.11)

A generalization of this is to replace equation 1.6 by

1125 and 1113:
(112) €& — ,81€t—1 == Igzit-g == U

(1.13) Roots of x* = B;x + B, less than unity in
absolute value.

u; distributed independently of Yj, j = 1.

Write the t-th row of equation 1.1 as
(1.14) Y, = XA + ¢

Substituting equation 1.6 and equation 1.14 lagged one
period into equation 1.14 we obtain

(1.15) Y. = X.A—X2AB: + B:Ye + ue.

Substituting equation 1.12 and equation 1.14 lagged one
period and two periods into 1.14, we obtain

(1.16)  Yi = X A=K AR K o AR+
,81Yn~1 <+ BZYt~2 Sl

Equations 1.15 and 1.16 illustrate why the assumption of
autocorrelated errors creates serious computational prob-
lems: the equations are nonlinear in the parameters.
First-order autoregressive least squares (A.L.S.-1) is an
iterative procedure for obtaining simultaneous estimates
of A and B, in equation 1.15. Second-order autoregres-
sive least squares (A.L.S.-2) is an iterative procedure for
obtaining simultaneous estimates of A and of 8; and .
in equation 1.16. These procedures are discussed in de-
tail in (15), (16) and (30). A brief exposition is con-
tained in the Appendix of this report. Both procedures
are special cases of modified Gauss-Newton nonlinear
least squares (21).

A.L.S. is an iterative procedure which starts with an
initial set of estimates of the parameters and proceeds to
improve on these estimates. Usually the L.S. estimates
were used as the initial set of estimates of A, and the
initial estimate of B; was computed from d. Several
equations were started with two different sets of initial
estimates to see whether both would converge to the
same final solution. The ones of these equations that are
presented later are footnoted.

Hildreth and Lu (23) developed a method for ob-
taining maximum likelihood estimates of A and 3,. Ladd
and Martin estimated some equations with this proce-
dure and with A.L.S.-1. Estimates obtained from the two
methods were virtually identical (29).

Other estimation procedures have been proposed by
Theil and Nagar (41), Durbin (10) and Klein (25, pp.
85-89).

Two-Stage Least Squares (T.S.L.S.)

Various methods of estimation have been developed
to apply to equations in which assumption 1.5 is not met
because the equation under consideration is part of a
system of simultaneous equations. One is the two-stage
least-squares procedure. Some of the equations in this
study were estimated by T.S.L.S.



Autoregressive Two-Stage Least Squares (A.T.S.)

This procedure is a synthesis of A.L.S. and T.S.L.S.
appropriate for situations where the errors are believed
to satisfy equations 1.6 to 1.11 or equations 1.7 to 1.10
and 1.12 and 1.13 and where the endogenous variables
are generated by a system of simultaneous equations. A
brief exposition is presented in the Appendix.

Sargan (38) has developed a procedure for esti-
mating simultaneous equations having auto- and serial-
correlated errors.

FOOD DEMAND

All tables of results in this report follow the same
basic format. All equations are numbered. If the equa-
tion is copied from another study, the number is fol-
lowed by the final initial of the original investigator.
All equations containing the same observed independent
variables have the same number. A.L.S. and A.T.S. esti-
mates are denoted by a number followed by A.1 or A.2
to indicate first- or second-order autoregressive error as-
sumption, respectively. Equations estimated by me by
L.S. or T.S.L.S. are identified only by number. Some
equations not shown in tables will be discussed. They
will be numbered as though they were in the tables. For
each equation, coefficients are presented. A single super-
script asterisk, ¥, by a coefficient indicates significance
of the coefficient at the 10-percent level; ** indicates
significance at the 5-percent level (referred to in the
text as significant) ; **¥ indicates significance at the 1-
percent level (referred to in the text as highly signif-
icant) ; superscript s indicates that the coefficient exceeds
its standard error in absolute value. For each equation
estimated by A.L.S. or A'T.S., the number of iterations
required for the solution is shown in the last column.
The IBM program used to obtain these estimates does
not compute the value of the intercept. Some intercepts
were computed on a desk calculator. A blank indicates
that the intercept was not computed.

The two-tailed Durbin-Watson d test was used in

Table 1.

tests of autocorrelation in the errors of L.S. and T.S.L.5.
equations. The results are presented in the columns
labelled d and in footnotes

The sample period used is given in footnotes, using
the time subscript on the dependent variable as refer-
ence. If, for example, 1921-41 (N = 21) is indicated
as the sample period, this means that the first observa-
tion on the dependent variable was for 1921 and that
the last was for 1941. Observations on some variables
for 1919 or 1920 may have been used in the estimation
process. Where I have refitted equations estimated by
other investigators, my sample period is shorter than
theirs because of the data requirements of the A.L.S.
procedure.

For all foods discussed in this section, except oranges,
the sample period was 1921-41, 1947-58 (N = 32).
With the exception of oranges, the estimates were ob-
tained by T.S.L.S. and A.T.S. Demand equations for
oranges were estimated by L.S. and A.L.S.

The analyses presented here constitute an updating
with revised data of T.S.L.S. analyses carried out for
the sample period 1921-41, 1947-49 by Tedford (40).

Table 1 presents results of analyses of annual per-
capita demand for beef, pork and lamb and mutton.
The variables are:

Cy¢ = per-capita beef consumption, pounds, carcass-
weight equivalent (44, 45); 1934-36 data adjusted to
exclude relief distribution (60, p. 91).

Cp( = per-capita pork consumption, pounds, carcass-
weight equivalent (44, 45); 1933-34 and 1939-41 data
adjusted to exclude relief distribution (60, p. 91).

Cr: = per-capita lamb and mutton consumption,
pounds, carcass-weight equivalent (44, 45) ; 1935 figure
adjusted to exclude relief distribution (60, p. 91).

Py = deflated average retail price per pound, retail-
weight equivalent, all grades of beef (50, p. 24). (The
deflator used throughout this section was the Bureau of
Labor Statistics consumer price index, 1947-49: 100.)

Pp, = deflated average retail price per pound of
pork (43, p. 272; 47).

Selected statistical results from annual per-capita beef, pork and lamb and mutton demand analyses.

Coefficients

Lagged
Equation Dependent consump- Number of
number variable Pt Pret Pr¢ I¢ t tion 1 B1 Bz d R?  iterations
—0.88%*# 0.26%* —0.10 Dosgesw - L i R n RS SR L SR 066 0905 @ e
—1.02% %% 0.25% —0.06 (R ok LSS R S 42,74  0.50%** _—0,31%*% 0.927 4
—1.09%** 0.16% 0.46* 0.023%* 0.50%%x. 0).03%2 IO i i ol 1356 0 EH32 . L e
—0.99% ¥ (67 e QLOGBYER - 0.06 3996 04T —03" 0.927 6
—0.04 —0.77%** Q90%%E = 0008 Lt e BRI | i e 0.768 D531 i
0.10 —0.86%** 0.28 D008 g T 67:98" SOBEENR S it e 0.764 8
0.40* —0.61%** 0.09 0.020* e 1 b B k7 0 TR 148 07% @ ...
0.21s —0 857 ** 0.30 0.015s —0.14s 0.14s B3:28 . OT2XN | e 0.797 8
0.067%** 0.047*%* (. 16%** _0.0019%** = .. PO ) EHMR 0902 @ o
0.061 %% QOA6HN* ., —f I5WE  _O0OIRMRE - e 9:.26 = O.IEE L TS LET e 0.913 5
0.056%*#* 0.039%**  —0.14*%** . 0016%** 0.17s B8 Lol 1306 0908 - Lcao
01057 %% 0.031* —Q.17%%%  __0i0018%*% - ... —0.17 013 DR T T 0.915 10

a Significant at 2-, 5- and 10-percent levels.

b Estimated twice with two different sets of initial estimates. Both sets converged to the same final solution,

¢ Inconclusive at 2-, 5- and 10-percent levels.
4 Inconclusive at 2- and H-percent levels, significant at 10-percent level.
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P, = deflated average retail price per pound, choice
grade lamb (43, p. 273; 47).

I, = deflated disposable personal income per capita
(45).

t = year minus 1920.

The d statistic in equation 1 and the estimates of f3,
and B. both indicate the presence of autocorrelated
errors in the static beef demand equation. The d statis-
tic in equation 4 and the estimate of B, in equation
4A.1 likewise agree. The d statistics in equations 2 and 5
and estimated f; in equations 2A.1 and 5A.1 are not in
similar agreement. Equations 2 and 5 are the first of
many examples to be presented of inconsistency between
d and A.L.S. Inconsistency is more frequent in equations
containing the lagged dependent variable.

Coefficients of lagged consumption and time were
always significant or highly significant in T.S.L.S. esti-
mates of beef and pork demand equations. They were
always nonsignificant in A.T.S. equations. A.T.S equa-
tions always contained significant evidence of autocor-
related errors. F tests indicated that adding lagged con-
sumption and time to A.L.S. beef and pork demand
equations did not significantly increase the value of RZ.
Equations 4A.1 and 5A.1 are an example. Equation 6A.2
(not shown) was obtained by deleting time and lagged
consumption from equation 5A.1. The resulting estimate
of B, was significant, although estimated 3. was non-
significant in 5A.2. Evidently there is a lag in annual
beef demand and in annual pork demand. The lag in
beef demand is explainable by the use of time and lag-
ged consumption or by the use of a static equation and
second-order autocorrelation in the errors. The lag in
pork demand is also explainable by lagged consumption
and time or by a static equation with second-order auto-
correlation in the errors.

Estimated f3; in equation 5A.1 is almost equal to the
sum, estimated (B; + B.), in equation 5A.2. Estimated
(B: + B2») = 0.73. This near equality almost invariably
holds in A.L.S.-1 and A.L.S.-2 equations.

The shift variable D; = 0 for 1921 = t = 1941 and
D, = 1 for t = 1947 was added to a pork demand equa-
tion containing time to test for a sharp change in con-
sumer demand for pork during World War II. The
coefficient of D, had a t ratio of only 0.04.

The evidence that beef and pork are competitive
with lamb and mutton in lamb and mutton demand is
much stronger than is the evidence that lamb and mut-
ton are competitive with beef and pork in demand for
the latter two foods. Although Tedford (40) obtained
a highly significant coefficient of Cy;, for a sample

period ending with 1949, the coefficient of Cy; was
nonsignificant in every equation fitted to the longer
sample period used in this study. The coefficients of
time were also nonsignificant.

Estimated B, was significant at only the 10-percent
level in equation 7A.1, and the coefficients were only
slightly different from those in equation 7. Judging from
equation 8A.1, the introduction of lagged consumption
increased the autocorrelation in the errors. Some cases
will be presented later in which estimated 8; was non-
significant in the static equation (equation not contain-
ing the lagged dependent variable—y, ;) and was sig-
nificant in the dynamic equation (equation containing
yi-1). One reason for the presence of autocorrelated
errors is commonly agreed to be the omission of a rel-
evant variable. It appears that the addition of a variable
may also introduce autocorrelation.

Results of analyses of per-capita chicken demand are
shown in table 2. The variables are:

C;;, — per-capita chicken consumption,
ready-to-cook basis (44, 45).

P;. = deflated average retail price per pound of
chicken (3, 51).

P.r¢ = deflated average retail price of canned fish:
1921-34, canned red salmon price divided by 1935-36
average price (53); 1935-58, pink canned salmon di-
vided by 1935-36 average (53).

Py, = deflated average retail price per pound, retail-
weight equivalent, for pork, all beef, veal, lamb and mut-
ton, (50); 1919-20 values estimated from 1921-30 re-
gression of Py, on average retail price per pound of all
red meat in 1935-39 prices (p.¢) and 1919-20 values of
Pmt (60, P- 9%\

The addition of C;_, effectively eliminated the auto-
correlation in the errors of equation 1. C;;-; was non-
significant in Tedford’s analysis of a shorter period (40).
A.T.S. estimation of equation 2 resulted in a nonsignif-
icant estimate of B; and made the coefficients little
different from their values in equation 2. A time trend
variable was included in a few equations and was non-
significant.

A large number of iterations was required for a stable
solution in equation 1A.l1. This is five-and-one-half
times as many iterations as the mean number of itera-
tions required for a stable solution in equations estimated
to date with A.L.S. The large number of iterations re-
quired evidently results from the magnitude of B,. This
is one of only two equations estimated to date by A.L.S.-1
in which estimated f; exceeds unity in absolute value.
A.L.S.-1 equations with large estimates of B; do not

pounds,

Table 2. Selected statistical results from annual per-capita chicken demand analyses.
Equation Coefficients Number of
number Prt Pert Pmt It Crt-1 1 B1 R2 iterations
1 —{).23%%x 0.026%** —0.063 0.0059%** (0 gl i el 0.928 0.933 & a iy Tate
BASIN R RN s —0.15% —0.009s 0.050 0:0049s - .. 16.72 ] e SR 0.951 39
2 —0.14** 0.012* —0.013 2.11v 095955 | SURTA

0.0022

0.60%** a6 ST

a Significant at 2-, 5- and 10-percent levels.
b Nonsignificant at 2-, 5- and 10-percent levels.
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Table 3. Selected statistical results from annual per-capita evaporated and condensed milk demand and per-capita fluid milk demand

analyses.
Coefficients
5 : Lagged =
Equation Dependent consump- Number of
number  variable Pyt Pt Pkt It tion 1 B1 d R? iterations
1.98% %% —0.058 600268 . L —~a Y 0.712 0794 L e T
0.17 0.03s —0.0080s ... 15 (/543 Qoo e SRS e 0.953 14
(12 o R g - —0L0017%%%  QuopeRe 7 2.16 0.96
s e A A e 0:083% K% 0 L 2000 oty 1.08¢ RGBOAT, - repns= St
—3.72%% Q0318 oo 352 [V SRR 0.859 3
—0.91 0.016%%* 0.48%** J61% L 0o 2.06> 0.868
A X e R R 0.016%** 0.47%%* 169 B2, o el 0.868 4

a Significant at 2-, 5- and 10-percent levels.
b Nonsignificant at 2-, 5- and 10-percent levels.

¢ Inconclusive at 2-percent level, significant at 5- and 10-percent levels.

d Estimated twice with two different sets of initial estimates of the coefficients. Both sets converged to the same final solutions.

always require a much larger than average number of
iterations. A.L.S.-1 equations that require an unusually
large number of iterations frequently do have large
absolute values of the estimate of f3;.

Results of analyses of per-capita demand for evap-
orated and condensed milk and fluid milk are presented
in table 3. Variables are:

C,. = per-capita consumption of evaporated and
condensed milk, pounds (44, 45) ; 1935-40 data adjusted
to exclude relief distribution (52).

P, = deflated average retail price per 1414, ounce
can of evaporated milk in leading cities (42, 46).

P,. = deflated average retail price per quart of fresh
home delivered milk in leading cities (42, 46).

Py = deflated average retail price per pound of
coffee in leading cities: 1919-21 data from (37); 1922-
56 data from (8); 1957-58 prices—average of reported
prices of coffee in bags and in vacuum packs (53).

Cy¢ = pounds of milk consumed as fluid milk and
cream per capita (44, 45) ; 1918-23 data estimated from
post-1923 relation between this series and fresh whole
milk consumption and cream consumption and 1918-23
values of these latter two variables (44).

In analyses using the sample period 1920-41, 1947-
49, Tedford (40) found a significant negative coefficient
of Pg, in evaporated and condensed milk demand equa-
tions. In the analyses for the longer period ending with
1958, the coefficient was never significant.

Cyi-1 was highly significant in every equation; esti-
mated B; was highly significant in 1A.1 and nonsignif-

1 and 1A.1 and equations 3 and 3A.1. A.L.S. estimation
reduced the coefficient of Py to nonsignificance in the
static evaporated milk demand equations, while it raised
the coefficient of P, to significance and reduced the
coefficient of Py, to nonsignificance in the static fluid
milk demand equation.

We also have examples of interaction between lag-
ged consumption and other coefficients. In equations 1
and 2, the addition of C,;; reduced the coefficient of
P, to nonsignificance and raised the coefficient of I,
to significance. In equations 3 and 4 the addition of
Cui1 reduced the coefficient of P,; to nonsignificance.

In equations fitted by T.S.L.S., time had a signif-
icant coefficient when Cy; was not in the equation and
a nonsignificant coefficient when Cy, was in the equa-
tion. Cy-, had a significant coefficient when both were
included. The coefficient of time was nonsignificant in
the fluid milk demand equations.

Under the federal government’s low-cost milk pro-
gram (1937-43), school lunch milk program (since
1940) and special milk program (since 1954), recipients
obtain milk at special low prices. Per-capita consump-
tion from these three sources (48) was included as an
exogenous variable in some regressions to see if these
programs have had a measurable effect on total con-
sumption. Apparently they have not because the co-
efficient was negative and smaller than its standard
error.

Results of analyses of per-capita cheese and egg de-
mand are presented in table 4. The variables are:

icant in 2A.1. The use of C,; ; eliminated the autocor- C.i = per-capita consumption of all cheese, pounds
relation in the errors. The use of Cy¢-; also eliminated (45457
the autocorrelation in the errors in the fluid milk de- Cei = per-capita egg consumption, number of eggs
mand equation. But, apparently, there is some interac- (44, 45).
tion between C,; and ;. The addition of B; to an P., = deflated average retail price per dozen eggs

equation containing Ci; results in a nonsignificant
estimate of 8; and a nonsignificant increase in the R
The addition of Cy to an equation containing f8; does
not significantly increase the value of R* but drops the
estimate of 3, to nonsignificance.

We have two examples in this table of the way in
which the presence of autocorrelated errors can have a
sizable impact on the estimated coefficients: equations

as computed by the Agricultural Marketing Service
(51).

P.. = deflated average retail price per pound of
cheese in leading cities (42, 46).

Pyrp: = deflated Bureau of Labor Statistics index
of retail prices of meat, poultry and fish, 1947-49: 100
(53).

The d statistic and A.T.S. estimation agreed in in-
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Table 4. Selected statistical results from annual per-capita cheese and egg demand analyses.
Coefficients Ea
Lagged
Equation Dependent consump- Number of
number variable Pet Pet Pumrpt It t tion 1o r=® B1 d R2 iterations
—0.032%%  —0.024 0.040%%%  0.0029%%*% M A 0.99% e e A
—0.038%%  —0.015 0.038%**  0.0027%%* . 517 0.57%%% 0.970 5
0.0185  —0.003 —0.005 0.0003 0.056%%  0.55%% 086 - a 2,39 (opaR Tl aEr
0.023%+ —0.004 —0.008s —0.0005 0.060%* 0.86%%*%* —2.91 —0.42%% . 0.983 4
—0.46 G 0.568 GO, vl T T 12200 0.732 0.856
—1.34%** 1.26% 0.56 0.045s O N 333 (BH12 Tt T 0.954 7
—1.22%* 1.16* 1i15* %% 0.054%%* D ]3%*s 0.56%#** GRS 1.45¢ 9690 e arenint
a Significant at 2-, 5- and 10-percent levels.
b Nlonsignificant at 2-percent level, inconclusive at 5- and 10-percent levels.
¢ Inconclusive at 2-, 5- and 10-percent levels.
dicating autocorrelated errors present in both static de- shortening: 1921-52 Agricultural Marketing Service

mand equations. In the dynamic equations, both d tests
were inconclusive at the 5-percent level, whereas esti-
mated 8; was significant in equation 2A.1 but was non-
significant in equation 4A.1. The addition of lagged con-
sumption and time to the egg demand equation elim-
inated the autocorrelation in the errors. The addition of
lagged consumption and time to the cheese demand
equation did not eliminate the autocorrelation in the
errors; it changed the estimate of 8, from positive to
negative and had an unfavorable effect on the other
coefficients.

The addition of B; to equations 1 and 2 had a rela-
tively small effect on the coefficients; its addition to
equation 3 had a larger effect on the coefficients.

In several of the postwar years, there have been sub-
stantial amounts of cheese distributed from United States
Department of Agriculture stocks through relief and wel-
fare agencies. The variable G., which equals per-capita
consumption from United States Department of Agricul-
ture stocks or bought wholly or partially with government
funds (48), was included as an exogenous variable in
some equations. Its coefficient was positive but non-
significant. Evidently consumption from government
stocks has not been large enough to significantly affect
total cheese consumption.

Some results of analyses of lard and shortening de-
mand are presented in table 5. The variables are.

Cr¢ = per-capita lard consumption, pounds (44,
451

Cs¢ = per-capita shortening consumption, pounds
(44 AT

P, = deflated average retail price per pound of

Table 5. Selected statistical results from analyses of per-capita

price in all communities (1) ; 1953-58, prices in leading
cities (1, 49).

Pr; = deflated average retail price per pound of
lard in leading cities (1, 49).
C,: = per-capita consumption of white and whole-

wheat flour, corn flour and cornmeal, potatoes and
sweetpotatoes (44, 45).

In equations 1 and 1A.1 and equations 3 and 3A.1,
the results of the d statistic and A.T.S. estimation were
in agreement at the 5-percent level of significance.
Cy,-; was significant in equations 2 and 2A.1. Estimated
B:1 was smaller than its standard error in equation 2A.1.
Csi1 was significant in equations 4 and 4A.1, and esti-
mated B, was smaller than its standard error in equa-
tion 4A.1.

Potato and bakery products consumption has been
undergoing a downward trend. In a previous study, Cy,
was used successfully in explaining part of the down-
ward trend in butter and margarine consumption (27).
C,¢ was included in these equations since potatoes and
bakery products may be complementary with lard and
shortening. The coefficients in the lard demand equa-
tions are consistent with this hypothesis; the coefficients
in the shortening demand equations are not.

In these analyses, there were examples of: (a)
omission of a relevant variable not causing autocorre-
lated errors, (b) omission of a relevant variable causing
autocorrelated errors and (c) introduction of a non-
significant variable introducing autocorrelation. The
omission of Cr,, from equations 1 and 1A.1 did not
introduce autocorrelation into the errors. The omission
of C,; from equation 5A.1 did introduce autocorrela-

lard and shortening demand.

Coefficients
Lagged
Equation Dependent consump- Number of
number  variable Pst Prt Cpt I¢ tion 1 B1 d R2 iterations
1 Crt 0.39%%% (. 3gR%R 0.052%%* 0.0062%%% . —15.0 1.758 0.772
0.33%%% ) 34%% 0.044%** 0.0054% %% 0,25%* —13.9 2.102 0.802

—0.16* 0.26%** 0 050*** —0.0059** ... 31.2 1.00 B2 o - SRS

—0.13* 0.20%**  —0.005 B et e SRRl 5 SRS 0.696 6

—0.15%* 0.21*%**  —0.029%*  —0.0039* 0.60%#* | 7 S 1.982 (3357 1, £ IR0 R - )

—0.14* {1194 n% 0.0009 0.12 9.3 (768 % 8 ¥ RS s 0.700 4

& Nonsignificant at 2-, 5- and 10-percent levels.

b Significant at 2-, 5- and 10-percent levels.
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tion into the errors. It also reduced Cg,; to nonsig-
nificance. An index of the prices of butter and mar-
garine was added to equation 4A.1. Its coefficient was
only one-fourth the size of its standard error. Estimated
B1, which was nonsignificant in equation 4A.1, became
highly significant. The addition of the butter and mar-
garine price index to equation 2A.1 had little effect
on the other coefficients; its coefficient was nonsignifi-
cant.

Table 6 presents results of analyses of demand for
oranges. All analyses used the data published by Ner-
love and Waugh (35), who estimated the first equa-
tion in the table. The variables are:

V = log of per-capita farm value of sales of oranges
deflated by consumer price index.
= dependent variable
Y, = log of per capita personal disposable income
deflated by the consumer price index.
Q. = log of per-capita marketings of oranges, boxes.

by Sunkist Growers and the Florida Citrus Commis-
sion, deflated by consumer price index.
Although estimated 3, is significant in equation

1A.1 and the coeffieient of V, is significant in equa-
tion 2, neither is significant in equation 2A.1. The sum
of the two, however, is significant in 2A.1. There is a
lag, but the data do not permit us to identify it as a
lag in consumer adjustment or as autocorrelation in
the errors. Equations 2A.1 and 3A.1 provide an exam-
ple of a case in which the omission of a relevant var-
iable introduces autocorrelation into the errors. An F

test indicated that the elimination of A, and A, from
equations 2 and 2A.1 did significantly reduce the value
of R% Equations 3 and 3A.1 are an example of what
Griliches (17) and Fuller and Ladd (14) discussed: The
L.S. coefficient of the lagged dependent variable picked
up the autocorrelation in the errors.

CONSUMER DURABLES DEMAND

A, = log a, Chow (5) and Muth (32) have published studies
S “t- x .
of demand for automobiles and nonfarm housing. I
1710 used their data, which they published, and re-estimated
R SR some of their equations. My L.S. results differ from
A, = log 5 A : E y e
Pty theirs because I had to use a shorter sample period in
order to apply A.L.S.
a; = per-capita advertising expenditures for oranges Four automobile demand functions obtained by
Table 6. Selected statistical results from annual orange demand analyses.
Equation Coefficients Number of
number Xt Ot At At Vi-1 1 B d R? iterations
0.92%%  _0.3%% 0.23%% DLy S W e Sk 0.85
0.92%%% 046« 0.21% 0.19%# —1.88 1.390 0.720
0.90%%%  _0,39* 0.18+ 0.20%# S hi0da’ T ol T0EoeE LS s 0.751
0.73%%% (430 0.175 0.16%* 0.33%* L 1.94¢ 0.757 :
0.77%%%  _0.43%* 0.175 0.17% 0.26 —1.37 D0 M R 0.758 5
0.50%% DD R ] g o L 1.92¢ 0.682
FASICRE SEE) G5t REE Bl LD R R R S e —0.20s —0.15 (117 it 0.712 4

@ From: Marc Nerlove and Frederick V. Waugh. Advertising without supply control. Jour. Farm Econ. 43:813-837. 1961.

Based on sample period of

1909-10 to 1940-41, 1946-47 to 1958-59. Other equations were estimated using 1911-12 to 1940-41, 1948-49 to 1958-59 data.

b Inconclusive at 2-, 5- and 10-percent levels.
¢ Nonsignificant at 2-, 5- and 10-percent levels.

Table 7. Selected statistical results from automobile demand analyses.

Equation Dependent Coefficients Number of

number variable Pt Iat Tet X1 1 B1 B2 d R2 iterations
BERT0 0, 10 it AN VAL 174 i RIS AT LB n -y e T g o o 0850, -
=D 0300FE 0 SRR U et B Q220 e 0.730 0.889
—0.008s UOTERES F L 5:23 0.969
—0.049%** 0.025%** —0.72 P 0.895
—0.055%** .. Q026 M = o 0.43 1.96¢ 0.931
—0.010s Q205§ BN e 5.64 0.973 4
—0.020%*%*  (.012%** —{.23 % 0.08 0.858
—0.022¥%%  (),012%** —0.22%*% == U2 e A et 0:872° -« i
~.0T5%%%: 00148 %= . —0.39%** LA SORGGERES ol e e 0.884 12
—0.026%** 0.014***  —0.30*** 0.40 0.628
—0.038%** 0.017%%%  —(,35%** R o 0.719
—0.011s 0.019%%*  —0,62%%* e i S et S SR e 0.754 7

a From: Gregory C. Chow. Statistical demand functions for automobiles and their use for forecasting. In: Arnold C. Harberger (ed.). The demand for

durable goods. Univ. of |
period was 1923-57, excluding 1942-48.

b Significant at 2-, 5- and 10-percent levels.
¢ Nonsignificant at 2-, 5- and 10-percent levels.

d Inconclusive at 2-, 5- and 10-percent levels.

Chicago Press, Chicago. 1960. Chapter IV. Sample period was 1921-53 excluding 1942-46. For other equations, the sample
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Chow are presented in table 7. The variables are (5,
pp. 156-157, 164):

X = per-capita stock of automobiles = weighted
per-capita sum of registrations of passenger automobiles
of various ages at end of year t, in hundredths of a
unit.

X' = per-capita number of new automobiles pur-
chased in year t, in hundredths.

P; = price index of automobiles deflated by Gross
National Product deflator and set at 100 in 1937.

Ia. = per-capita disposable personal income deflated
by GNP deflator, 1937 = 1.00.

I.; = real expected per-capita income in 1937 dol-
lars.

Equations 2.C and 4.C differ from 1.C and 3.C in
the income variable used. Equations 1.C and 3.C use
current income; 2.C and 4.C use expected income,
Friedman’s empirical approximation of permanent in-
come (13). Expected income is defined as a weighted
average of current and past real disposable incomes per
capita.

The results in equations 1, 2, 3 and 4 agree with
Chow’s finding that expected income performs better
than disposable income in explaining variations in
stocks but disposable income performs better in ex-
plaining variations in purchases.

The value of R* for equation 1 is less than the val-
ue of R* for equation 2. The values of R? for equations
1A.1 and 2A.1 are nearly identical, as are the values
of R* for equations 1A.2 and 2A.2. Estimated B, is
nonsignificant in 1A.2. In every case, A.L.S. estima-
tion yielded evidence of autocorrelation in the errors.
It reduced the absolute size and level of significance
of the coefficient of P, in the stock demand equations
and in equation 4.

Three housing equations estimated by Muth (32)
are presented along with some comparisons in table
8. The variables are (32, p. 84):

h;¢ = end-of-year per-capita nonfarm housing stock.

p: = Boeckh index of residential construction cost

(brick).
ypt = Friedman’s per-capita expected income series.
r. = Durand’s basic yield of 10-year corporate bonds.

h’,; = per-capita gross rate of nonfarm residential

construction.

yet = per-capita current income.

Monetary magnitudes were deflated by BLS con-
sumer price index, 1935-39 = 100.

Muth did not estimate stock demand equations using
Vet, and neither did I.

About all we can conclude from the A.L.S. esti-
mates is that housing demand adjusts to changing con-
ditions with a lag, and that the housing demand func-
tions possess highly autocorrelated errors. This is much
less than Muth could conclude: that p¢, ypt Or yer, It
and h;¢; affect housing demand. The A.L.S. estimates
suggest that the 51gmf1cant estimates obtained by Muth
were spuriously significant.

In an iterative procedure such as A.L.S., the final
results will be affected by the choice of initial estimates of
the parameters if the likelihood function has multiple
maxima (i.e., if the residual sum of squares possesses mul-
tiple minima). It seemed possible that such had happen-
ed here. Equations 1A.2 and 2A.2 were each estimated
twice, using greatly different start vectors each time.
For each equation, both sets of initial estimates yielded
final results that were equal in coefficients, standard
errors and R* to 3 significant digits or more. Hence,
the A.L.S. results here do not appear to be the result
of an unfortunate selection of initial estimates.

Muth (32, p. 54) estimated an equation like 2.M
containing a time trend. The coefficient of time was
only significant at the 30-percent level. It is possible
that including a time trend in equations 2A.2 and 3A.2
would have reduced (but not have eliminated) the
autocorrelation in the errors, yielded a significant co-
efficient of time, and improved the estimates of the
other coefficients.

A.L.S. estimation more than doubled the size of the
coefficient of lagged stock.

FARM FACTOR DEMAND

Cromarty (7) has analyzed demand for tractors
and farm machinery, and Hildreth and Jarrett (22)
studied demand for protein feed. Their results and re-

Table 8. Selected statistical results from nonfarm housing demand analyses.

Equation  Dependent Coefficients Number of
number variable pt Yot yet Tt hrt-1 1 B1 B2 d R? iterations
—4.66%%* pRaneE = AT B T ) S TR oA T L (7152 1 S S
—4.57%* 0.80%** —21.58 2 SR e SR I T 0.39> {052 SR e
0.002 ~006 s —4.7% 1.69%** —0.84%%* . 0.983 5
—2.4g%x (17 S S —=Bg% TE T GRRRIEal L L i e e XN S DBRIETY Ses
—2,32%%x 0.47%%* —5.4 /7 A e AL L e, B 0.854 i g RS S
0.002s 0.05 3 =08 L GG L0 0BGy Lo 0.967 §
—1.49%%* (. 25%#% = 10 0 Dl = v, R e R R R D P e L Sl OGS 2y | e
—1.45%% pLgjeen 2.79 £ RO E T, PN e e 0.894 0.760
O005% Jr el 0.06%* —0.87 124 1.72%w U ok AN 0.977 10

8 From: Richard F. Muth. The demand for

Chicago.

b Significant at 2-, 5- and 10-percent levels.

nonfarm_housing. In:

¢ Estimated twice with two different sets of initial estimates. Both converged to the same final solution.

4 Inconclusive at 2-percent level, significant at 5- and 10-percent levels.
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Table 9. Selected statistical results from farm machinery demand analyses.

Equation 5" Coefficients Number of

number Zot Zst Zat Zst Zst Zat Zot Y Yit-1 1,000 B d R? iterations
—1,206%** 29 J6*** 39* 1,233 —433%%% 7035 ... 2,398 R e S (37 IR
—1,043%%* 78 16%** ] 2,727s —-288% — 9578 ... 1,911 e 1.32¢ (G S
— 9658 —T78 2 —5 1,711 — 5 — 895 oo L st {080 O T 0.938 14
—1,098%** 1GAxx 13 247 —308*** ] 444%* 4,043 1.48¢ 0.913
—1,011% 65 19 — 68 — 30 y 9 247 e o 1,575 Q7% 8¥ 0.933 11
—  649%* > 7 —1,308s —128s — 814+ DG PEL3030 0 T i 2.26¢ 0:9520~ L.
= O2BN® L 7% 6 —1,340s —141s — 7278 0.67%** 3390 —— | S S 0.954 5

a From: William A.

Cromarty. The demand for farm machinery and tractors. Mich. Agr. Exp. Sta. Tech. Bul. 275, 1959. Estimated using sample period

of 1923-54. Other equations in table were estimated with a sample period of 1926-56.

b Adjusted for degrees of freedom.
¢ Inconclusive at 2-, 5- and 10-percent levels.

4 Estimated with two different sets of initial estimates. Both converged to the same final solution.

sults obtained from L.S. and A.L.S. estimation for a
shorter sample period are presented in tables 9, 10 and
11

Results of analyses of demand for farm machinery
are presented in table 9. The variables are (7, pp. 38-
39, 70):

Y,. = value of manufacturers’ sales of farm ma-
chinery and equipment for use on farms deflated by
wholesale price index for farm machinery including
tractors, 1947-49 = 1,000.

= dependent variable.

Y, = wholesale price index for farm machinery in-
cluding tractors, 1947-49 = 1,000.

Z,, = index of prices received by farmers for crops
and livestock, 1910-14 = 1,000.

Z,;, = index of prices paid by farmers for items used
in production, excluding wages, farm machinery and
motor vehicles, 1910-14 = 1,000.

Z,, — value of farm machinery on farms at the
beginning of the year in millions of dollars.

Z;. = asset position of farmers at beginning of year
in millions of dollars.

Zs — realized net farm income for the previous
year, in millions of dollars.

Z., = average acreage of cropland per farm,
tenths of acres.

Zy = an index of farm labor costs, 1910-14 = 1,000.

Yeoi, Zoty, Zar, Zst, Zsy and Zy, were deflated by the

in

Table 10. Selected statistical results from tractor demand analyses.

wholesale price index for all commodities, 1947-49 =
100.

There are substantial differences between the co-
efficients in equations 1 and 1.C. These are due to dif-
ferences in the sample period. The d statistics for equa-
tions 1 and 2 are inconclusive, whereas estimated /3,
in equations- 1A.1 and 2A.1 are highly significant.
AL.S. estimaticn made a number of changes in the
size and significance of the coefficients in equations 1
and 2. Equation 1 is of the same type of equation used
by Chow (5) and Muth (32) in analyzing purchases
of automobiles and new houses: an incomplete adjust-
ment model. Equation 2 might be termed a complete
adjustment model. Equation 3 represents another type
of incomplete adjustment model: the Koyck-Nerlove
type. Adding the lagged dependent variable significantly
increased the value of R?; it also reduced the level of
significance of most of the coefficients. It is not un-
common to have the addition of the lagged dependent
variable do this. Equation 2, a static equation, con-
tains autocorrelated errors. Equation 1, a dynamic equa-
tion, also contains autocorrelated errors. Equation 3,
also a dynamic equation, does not contain autocorre-
lated errors.

In the tractor demand analyses, table 10, the situation
is somewhat different. Equation 3, which contains the
lagged dependent variable, has autocorrelated errors;
however, equation 2 does not.

Coefficients

Equation Y ) Number of
number X1 t  Xat Xat Xot Xot Yit-1 1 B1 d R2 iterations
i i d 0.092s 1.43%%* — 99k - L 2,211 0.78> e s

0.105* 1, 27% %% —0.97%%* 2,906 1.87¢ 0.885

0.040s I s 22(eese —O78ME S 2,337 s 2.644 0.943

0.036s 141w 4 U —0.81%** 2,374 —0.39s 0.951
B3 DBl 218** 0.25s 15628 S s 1.61f 0849 - ol
3A.1 B16* & i S2EHe —0.26 - 0.49%* 0.867 2

& From: William A. Cromarty. The demand for farm machinery and tractors. Mich. Ag:

r. Exp. Sta. Tech. Bul. 275. 1959. Estimated using sample period

of 1926-56, excluding 1943. Other equations in table estimated using sample period of 1929-42, 1946-36.

b Adjusted for degrees of freedom.

¢ Nonsignificant at 2-, 5- and 10-percent levels.

=

4 Inconclusive at 2-, 5- and 10-percent levels.

¢ Estimated with two different sets of initial estimates. Both converged to the same final solution.

f Nonsignificant at 2-percent level, inconclusive at 5- and 10-percent levels.
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Table 10 presents results of analyses of demand for
tractors. The variables are (7, pp. 43, 47, 72):

Y« = manufacturer’s shipments of wheel-type trac-
tors (excluding garden) for domestic farm use, in hun-
dreds.

= dependent variable.

(Y./X;) = ratio of retail price of farm tractors
(1937-41 = 1,000) to the prices received by farmers
for crops and livestock (1910-14 = 1.00).

X,¢ = net cash receipts received by farmers during
the previous year, thousands of dollars.

Xy¢ = 8-year weighted average of number of trac-
tors on farms, in thousands.

Xs¢ = a quantified measure of farm price-support
programs.

Xy = average tractor sales for the previous 5 and
6 years, in thousands.

The differences between equations 1 and 1.C are
due to the change in the sample period. The coefficients
in equation 1A.1 were almost identical to those in equa-
tion 1, which might be expected because of the small
size and nonsignificance of estimated f;.

In some other equations which he ran, Cromarty
obtained significant positive coefficients for X, He
concluded . .. farm purchases have tended to be
higher when a combination of high, fixed price sup-
ports, no soil bank and a Democratic president are in
operation” (7, p. 43). The results of equations 3 and
3A.1 are in agreement with his findings. These coef-
ficients of X;, impute a greater effect to government
programs than did Cromarty’s results, being much larger
than his coefficient of X;.

Equations 2A.1 in table 10 and 3A.1 in table 9 il-
lustrate a common result of A.L.S. estimation. When
estimated 3, is nonsignificant, A.L.S. estimates differ
little from L.S. estimates.

Hildreth and Jarrett (22) estimated farmer’s de-
mand for protein feed by using L.S. and limited-infor-
mation single-equation methods of estimation. Their
L.S. results are presented in table 11 along with other
results.

The variables are (22, pp. 60-63) :

Y;. = log of price of protein feeds in dollars per
1,000 pounds total digestible nutrients.

= dependent variable.

Y., = log of price of feed grains in dollars per 1,000
pounds total digestible nutrients.

Y;. = log of<«index of the price of livestock and
livestock products.

Y. = log of total quantity of protein feeds fed in
million pounds total digestible nutrients.

Z,, = log of Jan. 1 inventory of livestock in million
dollars of estimated potential production.

Z; = log of quantity of roughage fed in million
pounds total digestible nutrients.

Hildreth and Jarrett interpreted the results of their
livestock supply equation (presented in next section)
to represent farmers’ reactions to anticipated prices (22,
pp. 104-106). Equations 2 to 5 in table 11 were esti-
mated in a search for anticipatory elements in protein
feed demand. These equations are consistent with the
hypotheses that anticipatory elements do play a role. An
increase in livestock prices (AY;,>0) generates antici-
pations of further increases, or at least of no immediate
decreases. Farmers, therefore, are willing to pay more
for protein feed. The coefficient of AY,; may be simi-
larly interpreted. Neither Y, nor Y.;, are significant,
though both Y;; and Y;,, are significant.

A.L.S. found evidence of autocorrelation in the er-
rors of equation 1 but not in the errors of equation 2.
The main effect of A.L.S. estimation of equation 1 was
to increase the size of the coefficient of Z;;. A.L.S.
estimation of equation 3 also changed the coefficient of
Z,: and also affected some of the other coefficients.

Neither equation 2 nor equation 2A.1 contain evi-
dence of autocorrelated errors. Neither does equation
3, and the coefficient of Y;;; in equation 3 is signifi-
cant at only the 10-percent level. Yet both estimated
B: and the coefficient of Yj., are highly significant
in equation 3A.1. This situation has also been observed
elsewhere (29). An equation not containing y;; shows
no evidence of autocorrelated errors, and L.S. estima-
tion of the corresponding equation containing y-; yields
a nonsignificant coefficient of y,; and a nonsignificant
or inconclusive value of d. But the A.L.S. estimates
of both B8, and the coefficient of y;; are significant.
Such situations are examples of the interrelation between

Table Il. Selected statistical results from protein feed demand analyses.
Equation Coefficients Number of
number Yot Yot-1 AYat Yst Yst-1 AYst Yot Zat Zst Yat-1 1 B1 d R2  iterations
1H & J& ... (U BN S T s —0.53%%* 0.34s 068, .l IRl e 0.965. il
0.09% —0.56%** 0.40s 0.06 . 1.95 1.66> 0.963 @ ..
<20 D A e —0.54%%% 0.64* —0.20 ... 2.06 0.37* iy 0.965 7.
0.24** (:91%%* 0.59*** —0.48%** .12 (SECf e oo 2.87 0.976. .
0.23%* D:73%%= 0.60%** —0.30%*  —0.16 0.06  0.31* 279 0.979 ¢ v
0.28%*% 0.54%** 0.46%** —0.20%*  —0.43%* 0315 0i50¥%% 1,79 0.986 4
(3242 %% 0.90%** 0.61%** o Y s N s okl e g 3.23 0.975 4
........ (.26 (:56*=% 051 —0.28%** 0.38*%*%  2.64 0.979 3

& From: Clifford Hildreth and F. G. Jarrett. A statistical study of livestock production and marketing. John Wiley and Sons, Inc., New York. 1955. Sam-

ple period was 1920-49; for other equations the sample period was 1922-49.
b Nonsignificant at 2-percent level; inconclusive at 5- and 10-percent levels.
¢ Nonsignificant at 2-, 5- and 10-percent levels.

4 Inconclusive at 2-, 5- and 10-percent levels.
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vi-1 and autocorrelated errors that was discussed by
Griliches (17) and by Fuller and Ladd (14). These
results show how sensitive the coefficient of y., can
be to the assumption made about the properties of the
errors.

Deleting Yai-1, Ziy and Zi, from equations 2 and
2A.1 had a negligible effect on the other coefficients,
on the value of R* and on the estimate of B, (see equa-
tion 4A.1). Deleting these variables from equations 3
and 3A.1 eliminated the autocorrelation in the errors
(see equation 5A.1). Here is another case in which the
inclusion of nonsignificant variables introduced autocor-
relation into the errors.

SUPPLY OF FARM PRODUCTS

Hildreth and Jarrett (22) estimated the supply of
livestock and livestock products by L.S. and limited-
information single-equation methods. Their L.S. re-
sults are summarized in table 12. The variables are (22,
pp. 60-63):

Y, = log of sales of livestock and livestock products
in million dollars at average prices.

= dependent variable.

Y,: = log of production of livestock and livestock

products in million dollars at average prices.

Y.; = log of price of feed grains in dollars per
1,000 pounds total digestible nutrients.
Y;: = log of price of protein feeds in dollars per

1,000 pounds total digestible nutrients.

Y;: = log of index of prices of livestock and live-
stock products.

Z,;. = log of Jan. 1 inventory of livestock in mil-
lion dollars of estimated potential production.

Zsi = log of cash farm wage in cents per hour.

The values of d in equations 1 and 2 are inconclu-
sive, but the estimates of 3, in equations 1A.1 and 2A.1
are both significant. The coefficients in equation 1A.1
are not appreciably different from those in equation 1.
There are substantial differences between the coefficients
of Y and Z;;, in equations 2 and 2A.1, however.
There are a number of differences between the co-
efficients in equations 3 and 3A.1, notably in the co-
efficients of Yai1, Zit-2 and Zg;.

Hildreth and Jarrett (22, pp. 105-106) interpret
the coefficients of Y., Ys;; and Zs as representing
farmers’ reactions to anticipated prices. Anticipated
prices were assumed to be functions of current prices.
As future prices of feed grains and labor are expected
to rise, current marketings increase. As future prices of
livestock products are expected to rise, current market-
ings decline. The negative coefficient of Y3 is inter-
preted in a different way.

Equations 3 and 3A.1 are derived from a Nerlove
(34) type of price expectation model. Several variants
of this type of equation were estimated, of which equa-
tion 3 is one. None was an improvement over equation
1, either in terms of the size of the R* or the magnitude
and significance of the coefficients. The coefficients of
Y., were nonsignificant.

In every A.L.S. equation, the estimate of (; was
negative. It was highly significant in all but equation
1A.1.

Table 13 presents results on spring farrowings in
the United States. The variables are (9, p. 578) :

Y. = number of spring farrowings, United States,
in 1,000 litters.

= dependent variable.

X,; = United States average hog-corn price ratio,
October, November and December of year t—1.

Xot = St-1— St + 15.

S = oats, barley and grain sorghum as a percent
of corn production.

X4 = ratio between average price of 500-800 pound
good-choice stockers and feeders at Omaha and the
average United States hog price in October, November
and December of year t— 1.

Equations 1 and 2 are like the equations that Dean
and Heady estimated (9). The differences are that they
used AY, as the dependent variable, obtained larger
values of R? (0.93 and 0.76 for equations 1 and 2,
respectively) and obtained a nonsignificant coefficient
of Y in equation 2. In equation 2, they tested a hy-
pothesis that farrowings respond to expected price ratios.

Although d in equation 1 is inconclusive, estimated
B is significant in equation 1A.1. The absence of auto-
correlated errors in equation 2 is probably due to the

Table 12. Selected statistical results from analyses of supply of livestock and livestock products.
Equation Coefficients Number of
number Yit Yot Yt Yst Zit Zit-1 Zst Yat-1 1 B1 d R® iterations
1.H & J2..0.800* (.4r%r  _043% () 14x% 0088 0.12%* (Dt RS (U A S ©
1 g 0.13*** —0.15%%  —0.10s 0.18s (.1 2%%% RgH 2.89v B892 1 et
1A.1 0.76%%* QiI4x*® ——(l15%% 0. 11* 0.128 QIERE o ek s o S USTRE T e Bl 0.994 3
DR 0.84%*% (. 14%%* _(,10% —OIBPE 0.06 0.11%* 0.23 3.06¢ R E (et SRS e
2A.1 N0 S TR O B SR 0 Ve — 10 1 g O W 0.12%* (1007 e, SR SRS o e O e S S 0.994 3
Yet-1 Y-y Yst-1 Zit-2
0.02 —0.15% 0.08 —0.04 0.42%%*  0.06s —0.12 0.16 3.204 01986 = - sty
0.04* —0.14%* - 001 —0.16* .34 0 0.0g%ke 0:085% = oot — Q77 0.993 8

a From: Clifford Hildreth and F. G. Jarrett. A statistical study of livestock

to sample period of 1920-49; other equations fitted to sample period of 192
b Inconclusive at 2-, 5- and 10-percent levels.
¢ Significant at 10-percent level, inconclusive at 2- and 5-percent levels.

4 Significant at 5- and 10-percent levels, inconclusive at 2-percent level.

(Fzgduction and marketing. John Wiley and Sons, Inc., New York. 1955. Fitted
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Table 13.

Selected statistical results from analyses of spring farrowings.

Equation Coefficients Number of
number Xit Xot Xat Yt-1 1 B d R* iterations
L e 3,709 738E L 4 R 3855 T et 1.22v T (3 e e .
269*** 4,368% i SR 4,824 O 0.708 6
96 #4% 573+ 0.51%* AR ey LT, 1.98¢ (37157 7 e S S & 1
2664%¢ 594s Q.5awe —1,184 —0.09 0.652 9
a Equations estimated with sample period of 1939-41, 1945-56.
b Inconclusive at 2-, 5- and 10-percent levels.
¢ Nonsignificant at 2-, 5- and 10-percent levels.
Table 14. Selected statistical results from analyses of farm supply of all crops, 1925-57.
Equation Coefficients Number of
number Py Wi t At-1 Sea 1 B1 d R* iterations
0:564%* R SRS ot e IR R S OIS st 20 NS 1.59+ DB 2 T e
0.52%%% 0.004*#* 0 o e Lo i 2.302 0:888 75, SLSNSETRE
0.45%*%* 0.0030% QALY T —0.45%* ... 0.900 5
DA - 0.65%** —0.46 2.10» (177 7 SRS
0.52%%% —1.09s 1.70% —0.63 2.30 0801 - e
03659 —0.845 EGEE T e ol —0.46%* ... 0.821 7

s Nonsignificant at 2- and 5-percent levels; inconclusive at 10-percent level.

b Nonsignificant at 2-, 5- and 10-percent levels.

addition of Y, although, as previous experience has
shown, it could be due to the exclusion of X..

Results of analyses of farm supply of all crops are
presented in table 14. The variables are:
S; = log of index of output of all crops (56, p. 31).
= dependent variable.

100 Pct]

P, = log [ P
pt

P.. = index number of prices received for all crops,
March 15, year t (55, p. 15).

P,. = index number of prices paid, interest, taxes
and wage rates, March 15, year t (54, p. 58).

W, = log of index of influence of weather on total
index of crop production (39).

t = year minus 1923.

These variables are intended to duplicate the vari-
ables Griliches used (18), although the sample period
used here is quite different from the ones he used.

A, = log of index number of crop production per
acre, year t—1 (56, p. 52).

Griliches obtained a significant coefficient of S¢
for 1911-58 but not for 1911-34 or 1935-58. The co-
efficient of S, is significant here, but the addition of
S.; introduced negative autocorrelation into the dis-
turbances. The results of equations 4 and 4A.1 are hardly
credible, however. The coefficients of S;-; exceed unity.
This means that the ultimate response to an increase
in prices or weather index is an explosive, unlimited
expansion of output and the response to a decline in
these variables is an explosive decline in output. The
d statistic and A.L.S. estimation yielded nonsignificant
evidence of autocorrelation in the errors in equations
1 and 3. Estimates of B, in equations 2A.1 and 4A.1
are both significant, although the d statistics in equa-
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tions 2 and 4 are nonsignificant. This is illustrative of
the low power of the d statistic when used on equations
containing the lagged dependent variable.

A, was tried as a replacement for trend. It yielded
a smaller value of R? made the coefficients of P,
significant and had little effect on the autoregressive
properties of the errors. The addition of S;; made the
coefficient of A.; nonsignificant.

Cromarty’s political price program variable (Xg; in
the tractor demand equations) was included in some
analyses. Its coefficient was about equal to or smaller
than the standard error in both static and dynamic
equations.

COMPARISONS OF RESULTS

This section summarizes results from several dif-
ferent studies that used A.L.S. In addition to the re-
sults discussed previously in this report, results from the
following other studies are summarized: (a) studies
of monthly and quarterly demand for seven food items
by the cooperators on the Michigan State University
consumer panel, (b) analyses of annual food demands
in the United Kingdom, (c¢) a quarterly model of the
national income accounts of the United States and (d)
analyses of demand for commercial fertilizer and ad-
ditional analyses of supply of livestock.

The results obtained in the Michigan consumer
panel studies have been reported elsewhere (29, 30).
In these analyses, static and dynamic equations, like
the annual food demand equations discussed earlier in
this report, were estimated by L.S. and A.L.S. The de-
pendent variable was per-capita consumption. Inde-
pendent variables were per-capita income, own price,
prices of related products and seasonal 0-1 shift vari-
ables.

In the United Kingdom analyses, static demand



equations were estimated by L.S.; dynamic equations
were estimated by L.S. and A.L.S. Per-capita consump-
tion was the dependent variable; per-capita income and
own price were independent variables. These results
have been published in (15).

In the quarterly national income model, the equa-
tions estimated were: (a) durable goods, nondurable
goods and services, static and dynamic consumption
functions, (b) a depreciation equation, (c) static and
dynamic capital investment equations and (d) inven-
tory investment equations. Quarterly, seasonally ad-
justed, data were used.

These studies are all covered in this statistical sum-
mary to report cumulative experience to date with
A.L.S. estimation. This summary covers some 150 equa-
tions that have been estimated by A.L.S. or A'T.S. No
distinction will be made between A.L.S. and A.T.S.
results; nor will any be made between L.S. and T.S.L.S.
results.

Comparison of Tests for Autocorrelated Errors

Two tests commonly used to check for autocorrela-
tion in errors are the von Neumann-Hart ratio, 42%/S?
(20) and the Durbin-Watson d statistic (11). To ap-
ply these tests, coefficients are first estimated under
the assumption of zero autocorrelation in the errors,
and the residuals (estimated errors) are used to test
for autocorrelation. In the A.L.S. procedure, testing the
significance of B; (in A.L.S—1) or of B; and B. (in
A.L.S.—2) tests for autocorrelation in the errors. Table
15 compares results from the three different tests ap-
plied to 97 different equations.

One disadvantage of the tabulated Durbin-Watson
d test is that it may not yield a definite answer. Some
values of d are in an inconclusive range. For any equa-
tion whose d value is in this range, the tabulated tests
permit neither acceptance nor rejection of the null hy-
pothesis. To avoid this indeterminacy, Theil and Nagar
(41) have published an alternative set of significance
levels that does not contain an inconclusive range. Their
significance values are almost exactly equal to the limits
of the inconclusive range of the Durbin-Watson test.
Hence, the Theil-Nagar test classes as significant all
values of d that are significant in the Durbin-Watson
tables plus virtually all values of d that are in the in-
conclusive range in the latter tables. The Theil-Nagar
table is set up only for testing the null hypothesis against

the alternative hypothesis of positive autocorrelation. By
assuming symmetry about 2.00, the expected value of
d if the null hypothesis is true, the Theil-Nagar table
can be used to make a two-tailed test, and it was so
used here. In the remainder of this discussion, those
values of d that are inconclusive in table 1 will be
treated as significant, as they would in the Theil-Nagar
test.

In equations not containing the lagged dependent
variable vy ;, autocorrelation showed up much more
frequently in the annual analyses than in the quarterly
and monthly analyses. Of the equations estimated with
annual data, 76 percent had significant autocorrelation
in the errors according to the A.L.S. results; of the
equations estimated with monthly or quarterly data, 33
percent had autocorrelated errors. Of the equations con-
taining the lagged dependent variable, the difference
was not so great, the proportions being 45 and 38 per-
cent, respectively. The other tests also indicated auto-
correlation in a larger proportion of the annual equa-
tions. The comparative performance of the tests for
autocorrelated errors did not vary appreciably between
the longer and shorter unit observation periods. The
Theil-Nagar d yielded evidence of autocorrelation more
often than did the other tests. The Durbin-Watson d
yielded inconclusive values more frequently in dynamic
than static equations. A.L.S. and the other tests were
in agreement more often in static than in dynamic
equations.

Both d and A?/S? appear to be fairly reliable tests
for autocorrelated errors in equations not containing
the lagged dependent variable. Suppose we had used
the following research strategy on the equations not
containing the lagged dependent variable: (a) Com-
pute the regression, assuming temporally independent
errors, (b) compute d, (c¢) if Theil-Nagar d is significant,
re-estimate by A.L.S. We would have applied A.L.S.
estimation to 30 of the 32 equations in which estimated
B, is significant and to 11 of the 22 equations in which
B1 is nonsignificant. Thirteen equations would not
have been estimated, two of which have significant
values of B;. Suppose we had used A?/S* instead of
d in our strategy. We would have re-estimated 26 of
the 32 equations in which B, is significant and 4 equa-
tions in which B; is nonsignificant. Twenty-four equa-
tions, 6 of which yield significant values of B; would
not have been re-estimated.

When structural estimation is the objective, either

Table I15. Comparative performance of three different tests for autocorrelation in the errors.

Equations containing lagged dependent variable

Equations not containing lagged dependent variable

Estimated B significant

Estimated B nonsignificant

Estimated B significant Estimated B nonsignificant

at 5 percent at 5 percent at 5 percent at 5 percent
Status of (A/SE D?/S A?/S? D*/S? L AZ/S? AF/SE A?/S? N*/8?
Durbin-Watson Significant Nonsignificant ~ Significant  Nonsignificant  Significant  Nonsignificant  Significant Nonsignificant

d at 5 percent at 5 percent

at 5 percent at 5 percent at 5 percent

at 5 percent at 5 percent at 5 percent at 5 percent

Significant 3

Inconclusive 2 10 2

NONSIHTFHCARY it oo mnseabristommaaes — +
Total 5 14 2

(number of equations)

21 2

6 5 4 2 7
16 2 1
22 26 6 4 18

345



of these strategies would be an improvement over the
strategy of computing d and A*®/S* and then quitting.
One’s choice between /A\*/S? and Theil-Nagar d would
be determined by considerations of costs of Type I and
Type II errors and costs of computation. A Type 1l
error would be made if we accepted the null hypothesis
of zero autocorrelation in the errors when the errors
were autocorrelated. Such an error will lead to ineffi-
cient estimates of the coefficients and biased estimates
of standard errors and residual mean square. Empirical
evidence on the magnitudes of these effects will be pre-
sented later. It appears that the use of A?/S* will lead
to Type II errors more often than will the use of the
Theil-Nagar d.

In equations containing y-, neither of these strate-
gies would be as useful as they would be in equations
not containing y,;. The use of d to determine which
equations to re-estimate would have missed one-fifth
of the equations with significant values of B;. The use
of A?/S* would have missed four-fifths of them.

We also need to consider Type I errors. Is the
probability of making a Type I error (with a nominal
5-percent critical level) substantially greater in A.L.S.
estimation of B3, than in the d or AZ?/S* statistics?
Other evidence suggests not: /A*/S* is designed for
testing observed sequences; when applied to residuals,
it would be appropriate to make some adjustment to
allow for sampling error in the estimated coefficients.
The d statistic is based on the assumption of fixed in-
dependent variables; it is not appropriate for equations
containing the lagged dependent variable as an inde-
pendent variable (11). There is experimental evidence
that the von Neumann-Hart ratio and the d statistic
are biased toward too-frequent acceptance of the null
hypothesis (6, 28, 33).

One might hope that the inconclusive values of
Durbin-Watson d falling close to the nonsignificance
limits would be in equations with non-significant esti-
mates of 8 and that those close to the significance limits
would be in equations with significant estimates of f.
Such is not the case. There seems to be no relation be-
tween the position of d in the inconclusive range and
significance of ;.

In their work with autocorrelated errors in demand
equations, which was published before the Theil-Nagar
d test became available, Hildreth and Lu (23) studied
equations that did not contain the lagged values of
the dependent variable. The reasonably good perform-
ance of A?/S* in their work lead them to suggest the
possibility of modifying the von Neumann-Hart test to
obtain a test for autocorrelated errors. The results in
table 1 indicate that a reasonably good and economical
test 1s now available for equations not containing y; ;:
the Theil-Nagar d test.

It does not appear possible to obtain good estimates
of the autoregressive parameters from L.S. residuals.
(Residuals are estimates of the errors.) The residuals
are biased somewhat toward randomness. Estimates of
B1 computed from residuals are not closely correlated
with A.L.S. estimates of f,. Regressing the A.L.S. esti-
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mate of B8; on the L.S. value of d for equations not con-
taining y-; in which estimated 8, was significant yielded
the results:

(3.1) Est By = 1.30—0.61d + v; r* = 0.73.

In equations containing y,_,, the relation

(3.2) Est B, =183-0.82d +v; r2=0.55

was found. F tests indicated that both of these differ
significantly from Est 8, = 1.0 —0.5d, which is an ap-
proximate relation between B, and d obtained by ig-
noring end-effects. Relations 3.1 and 3.2 do not differ
significantly from the relation Theil and Nagar derive

(41)

NSt -l N* d-
N2— (m+1)2 2|N*— (m+1)?]

(33) B.=

However, equation 3.3 is not a very useful estimation pro-

A
cedure. The mean square differences (= (B8;—estfB:)?/
n)* were 0.46 for equations containing y;, and 0.28
for equations not containing y.;. The mean values of

A
| B1—est B; | were 0.38 and 0.22, respectively, for equa-
tions containing and not containing y ;.

An F test indicated that relations 3.1 and 3.2 are
not significantly different from each other. Pooling the
data yielded

(3.4) Est 8, =1.37-0.63d + v; r>= 0.64.

This does differ significantly from 1—0.5d and from
equation 3.3. The simple correlation between the cur-
rent and just lagged residual, r,, was also computed
as an estimate of the autoregressive coefficient and com-
pared with 3, but is not very useful since r; consistently
underestimated ;.

Effect of A.L.S. Estimation

Define D; as the absolute difference between the L.S.
and A.L.S. (or T.S.L.S. and A.T.S.) estimates of the i-th
coefficient, and define E; as D; divided by the L.S. (or
T.S.LL.S.) estimate of the coefficient. In their study of
demand relations with autocorrelated errors, Hildreth
and Lu (23) classified equations into three groups ac-
cording to values of E; where D; was the difference
between the L.S. estimate of a coefficient and the esti-
mate obtained by their autoregressive error estimation
procedure. The groups were:

I. Negligible difference. None of the re-estimated
coefficients differ from the corresponding L.S. estimates
by as much as 20 percent.

II. Noticeable difference. Some, but fewer than half,
of the coefficients change by at least 20 percent.

III. Substantial difference. Half or more of the co-
efficients change by at least 20 percent.

Of 17 equations, they placed 7 in class I, 5 in class
II and 5 in class III. Monthly and quarterly food-de-
mand equations estimated by A.L.S. were classified on



the same basis (29). Of the 15 equations in which esti-
mated B was significant at the 10-percent level, none
were in class I, 2 were in class II, and 13 were in
class III. Of the 18 equations in which estimated /3,
was nonsignificant at the 10-percent level, 6 were in
class I, 9 were in class II, and only 3 were in class 111

Define A; as D; divided by the L.S. estimate of
the standard error of the i-th coefficient. Tables 16 and
17 classify the values of /\; in equations with signifi-
cant estimates of 8 according to the result of the d
statistic. About half of the A.L.S. estimates differ from
the corresponding L.S. estimates by more than one
L.S. standard error. About one-fourth of the coefficients
whose A\ ; exceeds unity are in equations with non-
significant values of d.

Tables 18 and 19 summarize results on the com-
parative significance status of L.S. and A.L.S. coef-
ficients. The two methods of estimation lead to dif-
ferent conclusions concerning significance of 23 percent
of the coefficients in equations containing y,_, and 37
percent of the coefficients in equations not containing
yia. In equations containing y,;, 55 percent of the
changes were from nonsignificant L.S. estimates to sig-
nificant A.L.S. estimates. In equations not containing
vi1. one-third of the changes were of this kind. One-
fiftth of the changes in significance status occurred in
equations in which d was nonsignificant.

Values of D; were also tabulated separately for
equations containing y,; and equations not containing
yi-1. The two distributions of D; were not significantly
different. The mean and median values of D; were
somewhat larger in equations not containing yi ;.

The 17 equations classified by Hildreth and Lu (23)
did not contain y, ;. The proportion of coefficients for
which A exceeds unity is the same in tables 16 and
17. The proportion of coefficients whose significance
status was changed is larger in table 18 than in table
19. The empirical evidence all supports the conclusion
that the effect of autocorrelated errors is equally serious
in equations containing y,-, and in equations not con-
taining y,;. One might expect the result to be more
serious in equations containing y ;. It has been argued
that autocorrelated errors cause L.S. coefficients to be
inefficient but unbiased in equations not containing
yi1 (19, 57) and to be inefficient and biased in equa-
tions containing y:., (14, 17, 19, 57, 58).

The conclusion that L.S. estimates of equations con-
taining autocorrelated errors are unbiased is derived
on the assumption of fixed independent variables or
of independence between the independent variables and
the errors. One source of errors is the omission of rele-
vant autocorrelated variables. If the intercorrelations
among the omitted and the included variables are of
the same order of magnitude as the intercorrelations
among the included variables, as seems likely, the as-
sumption of independence will not be satisfied, and
biased L.S. coefficients will be the result. If the auto-
correlated errors arise from incorrect specification of
the form of the fitted function, it is again quite possible
that the errors will be correlated with the independent

variables, with a resulting bias in the coefficients. This
argument suggests that tables 17 and 19 reflect L.S.
bias and inefficiency arising from autocorrelated errors
and that tables 16 and 18 reflect L.S. bias resulting
from correlation between errors and independent vari-
ables and also reflect inefficiency resulting from auto-
correlated errors.

The proposed hypothesis can be tested. Suppose we
wish to estimate

(3.5) Vi SaiXiy T e

under the assumptions 1.6 to 1.11. We can use A.L.S.
(or some similar procedure) to estimate the coefficients

m

(‘36) V= BIY(—I = zai(xit_ﬁlxitﬂ) + u

The ¢ can then be estimated from

({37) v =Yt XaiX;L

Table 16. Values of A; cross-classified by d-test result, 31 equa-
tions not containing y, ,, with estimated B significant
at 5-percent level.

Status of d

at 5 percent At =10 L0V Xy = 2007 2.0 N1 To'tal

Significant ... 13 21 52

Inconclusive 5 3 43

Nonsignificant ... 6 8 22
i [RSTE BE e 61 24 32 117

Table 17. Values of A, cross-classified by d-test result, 23 equa-

tions containing y, ,, with estimated 8 significant at
5-percent level.

Status of d

at 5 percent Ag = LU0 1.0 Ne =200 20 < At Total

BIgIHCANE, = it 2 6 16

Inconclusive 19 12 68

Nonsignificant 8 9 27
Total 55 29 27 111

Table 18. Coefficients in 31 equations not containing y, , in which
estimated 8 was significant at 5-percent level classified
by values of A, and changes in significance status of
coefficients at 5-percent level.

L. S. estimate significant Both estimates
and A.L.S. estimate significant or

Valve of Ai nonsignificant or vice versa  both nonsignificant Total

DNr=1.0 50 61

1.0 < A1 =20 . 15 24

SN e e 8 32

FEOtRlE e 3 117

Table 19. Coefficients in 23 equations containing y, , in which es-
timated 8 was significant at 5-percent level classified by
values of A, and changes in significance status of co-
efficients at 5-percent level.

L.S. estimate significant Both estimates
and A.L.S, estimate significant or
Value of /Ai nonsignificant or vice versa both nonsignificant  Total
45 55
24 29
18 27

87 111
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where a; is the estimate of «;, and the null hypothesis
of E(Xiie) = 0 can be tested.

It would be fortunate and useful to know if equa-
tions having inconclusive values of d and simultaneously
having some coefficients with large values of /\; also
had significant values of the Hart-von Neumann ratio.
Such does not appear to be the case. In the equations
estimated in this study in which estimated 8, was sig-
nificant and d was inconclusive, there was no tendency
for large values of /\; to be concentrated in the equa-
tions with significant values of the Hart-von Neumann
ratio. The average value of /\; in equations with in-
conclusive values of d and nonsignificant values of the
Hart-von Neumann ratio exceeded the average value
of /i in equations with inconclusive values of d and
significant values of the Hart-von Neumann ratio. This
was true whether the mean or the median was the aver-
age used in the comparison.

In 60 percent of the equations in which estimates
of B were significant, A.L.S. made some standard er-
rors larger and some smaller. The proportions varied
from equation to equation; about half of the standard
errors in these equations rose, and the other half fell.
In 20 percent of the equations, A.L.S. made all stand-
ard errors larger; in another 20 percent it made all
standard errors smaller. In equations with significant
estimates of B, A.L.S. increased the size of exactly
half of the standard errors. These proportions did not
vary appreciably between equations containing y; and
equations not containing yi ;.

Some insight into the changes of significance status
at the 5-percent level for the 68 coefficients in tables
18 and 19 can be obtained by considering the four t
ratios: t = b;/si; t' = bai/si; ta =bai/sai; t”7 = bi/sai
where b; and s; represent L.S. estimates of a coefficient
and its standard error and b,; and s,; denote A.L.5.
estimates of the same coefficient and its standard er-
ror. There are eight different configurations of these
ratios for the cases in which t and t, lead to different
conclusions concerning significance. These eight are
shown in table 20. Derivation of the last column in the
table will be explained by examples. Take the first row.
The difference between t and t’ indicates that the dif-
ference between the L.S. and A.L.S. coefficients was
sufficient to change the significance status of the esti-
mate; the difference between t, and t” suggests the

Table 20. Values of t ratios.®

bi bai bai bi Change in_significance
t = t = ta=—— "= of coefficient due
si si sai sai to change in
s n n s coefficient
n s s n coefficient
s s n n standard error
n n s s standard error
s s n s 2
s n n n ?
n n s n ?
n s s s ?

& 1 indicates t ratio nonsignificant at 5 percent; s indicates t ratio significant
at 5 percent.
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same thing. A comparison of t' and t, indicates that
the change in the standard errors did not change the
significance status, as does a comparison of t and t”.
Now consider the fifth row. Comparison of t, and t” in-
dicates the change in the coefficient to have been respon-
sible for the change in significance status; comparison
of t and t’ indicates that the change in the coefficient
was not sufficient to change the significance. Compari-
son of t" with t, and t with t”” is similarly contradictory
concerning the role of the change in the standard
errors.

These four different ratios were computed for each
of 68 coefficients whose significance status was different.
By the criteria in table 20: in 43 pairs of coefficients,
the difference in the coefficients was responsible for the
change in significance; in 10 pairs, the change in the
standard errors was responsible; 15 pairs could not be
assigned to one cause or the other.

According to the arguments of Griliches (17) and
of Fuller and Ladd (14), we can expect to find the
estimated coefficients of y,, sensitive to the presence
of autocorrelation in the errors. We do find this. Some
examples were presented in earlier tables: equations
5 and 5A.1 in table 1, equations 2 and 2A.1 in table
4, equations 3 and 3A.1 in table 6 and equations 3
and 3A.1 in table 11.

In 80 percent of the equations containing y;, in
which estimated B, was significant, /\; for the coeffi-
cient of y,, exceeded unity; in no case was it the only
coefficient whose /\; exceeded unity in the equation.
In tables 17 and 19, of the 56 values of /\; exceeding
unity, one-third are for coefficients of y,,. Additional
results are presented in table 21.

This table presents results from 58 sets of equations.
In 52 sets of equations, the static equation was estimated
by L.S. and AL.S. (or by T.SL.S. and by AT.S.};
the dynamic equation was also estimated both ways. In
6 sets of 3 equations, the static equation was estimated
by L.S. and AL.S. (or by TSL.S. and AT.S.); the
dynamic equation was estimated only by A.L.S. (or
A.T.S.). The dynamic equation was obtained by adding
yi-» as an independent variable. In 30 cases, there
was evidence of autocorrelation in the errors of
the static equation. In 16 of the 52 quadruples, A.L.S.
leads to different conclusions concerning the significance
of yiy. In only 9 of these 16, was estimated f signifi-
cant. In 2 of the 7 cases in which both estimated S
and y,, were nonsignificant, however, the sum of the
two coefficients was significant. In these two equations,
there was either an autocorrelated error or a lag in be-
havior, but the data could not identify which was pre-
sent. In two other equations in which both estimated
coefficients of y, ; were significant, the L.S. coefficient
was positive, and the A.L.S. coefficient was negative.

The omission of relevant variables is one possible
source of autocorrelated errors. In 14 of the 30 static
equations with autocorrelated errors, the addition of
yi-1 eliminated the autocorrelation. In 9 of the 19 static
equations not possessing autocorrelated errors, the addi-



Table 21.

Relation between autocorrelation in errors and coefficient of y, |

using 5-percent level of significance.

Est B significant in static equation

Est B significant Est B nonsignificant
in dynamic in dynamic

Est B nonsignificant in static equation
Est B significant Est B nonsignificant
in dynamic « in dynamic

equation equation equation equation Total
(Number of equations)
yt-1 significant in L.S. and
AL equations ‘oo i i B 10 1 2 17
yt-1 nonsignificant in L.S. and
AL.S: equations a0 2 11 19
yt-1 significant in L.S., non-
significant in A.L.S. equation ... 2 4 1 7
yt-1 nonsignificant in L.S.,
significant in A.L.S. equation ... 1 5 3 9
Dynamic equation not estimated by L.S.
yt-1 nonsignificant in A.L.S. . 3 5
yt-1 significant in A.L.S. ... i
Total 16 14 9 19 58

tion of y,, apparently introduced autocorrelation into
the errors.

The lagged dependent variable is not the only var-
iable whose addition may introduce autocorrelation into
the errors. Two examples were mentioned earlier:
equations 3A.1 and 4A.l1 in table 11 and the use of
a butter and margarine price index in a shortening-
demand equation. In an analysis of quarterly beef de-
mand using consumer panel data, static and dynamic
equations containing average quarterly temperature
were estimated. The coefficient of temperature and esti-
mated 8, were highly significant. Deleting temperature
led to a nonsignificant estimate of B;. Hildreth and
Lu reported a case in which the introduction of a quad-
ratic trend term introduced positive autocorrelation into
thelerrors e (23, p..22n):

Suppose the true model is, in matrix notation,

(38) Y| == X‘A + €t — (X“.X;HX:;[)A + €t,

where ¢ is distributed independently of X ; and e,
for all values of i, and suppose the equation estimated is

(3.9) Y. = XuA + u.
Then
(310) My= thAg + XHtAS + €ty

and the autocovariance of u, is
(311) E(ut’uH) = E(A/X,/X,1A. + AKX,/
XahlAs e A3,X3[’X2t—lA2 I A3’X3t’X3t-1A3)

Suppose the equation is re-estimated with additional
variables,

(3.12) Y. = X iA; + XA, + vy
Then v, = X;3:A; + e,
and

(3.13) E(vivia) = E(AsXs:/X311A3) .

It is possible for equation 3.11 to be zero or approxi-
mately zero, while equation 3.13 is not zero.

Further insight may be gained—at the price of gen-
erality—by considering the special case in which X,
and X, each are a single variable. Then equation 3.11
reduces to

(3.14) E(ufui,) =

E[A222x2(x21—1 SF AzAs(Exﬂxsm
'*'Zx:nx:tw) = Aagzxmxstﬂ]-

Having the observations on the variables and having
A,, does there exist an A, such that E(u/u,.,) =0
and E(A;23x3X3¢-1) % 07 Set equation 3.14 equal to
zero, assuming the fixed X or regression model, and
treat as a quadratic in A;. Let r.. be the autocorrelation
between x.; and X, 1; rs; be the autocorrelation between
X3 and Xs.1; T3 be the serial correlation between x.,
and x;,.1; and rs» be the serial correlation between x.;

and X. (. Assume a circular universe so that 3x;*? =

2
SE (el

~Ag(2xgt22x3t2) %(rzs =t 1'32)

3.15 A, =
( ) K 2r333X3”
[ Ap?SiXp ¢ 28X (rag® + rae? + 2raerss — 4rsorss) 1%
2r333x3¢”

Equation 3.15 gives a value of A; which will make
equation 3.14 equal to zero. A (real number) solution
will exist if rz3% + rss® + 2rpares — 4rsorss = 0.

Most economic variables will not satisfy this in-
equality. Since we are dealing with a circular universe,
we can set ry; = ry. Then the inequality is

(3.16)  4(ras® — roeres) = 0.

The autocorrelation within economic variables usually
substantially exceeds the serial correlation among series,
Generally, there will exist no (real valued) A, that
will make equation 3.14 zero.

There is, however, one situation in which the serial
correlation may be large enough so that 3.16 will be
satisfied; when x,; is the lagged dependent variable
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and a temporal aggregation problem exists. Mundlak
(31) studied a Koyck-Nerlove type of model assuming
the adjustment period to be a month and assuming a
year to contain k months. Let monthly equilibrium de-
mand be q*, a function of observed variables such as
current monthly prices and income. Let the monthly
adjustment be

(317 @)
(3.17 .b)

=gy — y(q" —qi)
qe = vq¢* + (1-y) 1.

If the regression were to be run with annual data, Mund-
lak showed that the appropriate function would be

(3.18) Q.=
(1-Cy) Q¢* + BQi-y + B(kqt~1.k—Qt-1)~

Here Q" is the sum of the k monthly values of q;
-1,k 1s consumption in the last month of the previous
year; C; is a function of time.

In estimating a static demand function with annual
data, the first term on the right hand-side of equation
3.18 is the equation we are estimating. Let Q; = Xy

and kqi1c — Qi1 = Qe x — Qi1 = X3i. Then in terms
of equations 3.15 and 3.16, we have
22 = 1(Qu-15 Qez)
(3.19)  rss = r(Q:- m—Ql 13 Quok— Qie)
= 1(Qu-15 Qezi — Quz)
52 = I(Qe2; Qeae— Q).

In this particular situation, it is possible that the pres-
ence of trend and seasonal components would cause
r.; and ry to be large enough to satisfy inequality 3.16.
This argument is admittedly oversimplified. For one
thing, it takes no account of sampling variation; sample
estimates of equations 3.11 and 3.14 may be nonsignifi-
cant, even though quite large. If we equate 3.14, not
to zero, but to some number p, then [A,*Sx.*Sxs®
(ras® + T3 + 2raarss — 4raaras) + 4'Pr:;323’(:n2]1/é needs to
be non-negative. This term will more frequently be
non-negative than will the corresponding term in equa-
tion 3.15. Although oversimplified, we may have here the
basic explanatlon of why the addition of the lagged
dependent variable to an equation sometimes 1ntroduces
autocorrelation into the errors, although the addition of
other variables rarely introduces autocorrelation.

Effect of A.L.S.-2 Estimation

The previous section presented comparisons between
L.S. and A.L.S. results. This section presents a few
comparisons between A.L.S.-1 and A.L.S.-2 results.

Twenty-three equations were selected for estimation
under the assumption of second-order autoregressive
errors. The equations were selected because there was
reason to expect the existence of second-order autore-
gression.

In 13 of these 23 equations, estimated [, was sig-
nificant at the 5-percent level; in 8, estimated B, was
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nonsignificant. The other two possessed multiple min-
ima, with the residual sum of squares being nearly identi-
cal at the two minima. Each minimum corresponded to
a different set of, estimates of the parameters. Since it
was not possible to select either set of estimates as su-
perior, these two equations are excluded from further
comparisons.

The differences between A.L.S.-1 and A.L.S.-2 esti-
mates were much smaller than the differences between
A.L.S.-1 and L.S. estimates. Define A/\; as

|ALS. 1 coefficient - A.L.S. 2 coefficient |

A.L.S. 1 standard error

One-fourth of the values of A/\; exceeded unity; 6
percent exceeded two. By contrast, half of the values of
A exceeded unity and one-fourth exceeded two. Nearly
all coefficients for which A/A; > 1.0 were significant
or nonsignificant under both types of estimation. Under
AL.S.-2, 16 percent of the coefficients had a signif-
icance status at the 5-percent level that was different
from the significance status under A.L.S.-1; for one-
third of these, A/A; > 1.0. By contrast, 30 percent
of the A.L.S.-1 coefficients had a significance status at
the 5-percent level different from the L.S. coefficients.
For two-thirds of these, /A; > 1.0.

It appears that, in general, the results of an econo-
metrician who assumes first-order autoregressive errors
will not suffer appreciably even if the errors follow a
second-order autoregressive process. This still leaves the
possibility that the errors are generated by a moving-
average Process.

AN =

When an equation was estimated by A.L.S.-1 and
A.LS.-2, the sum of the A.L.S.-2 estimates of 3, and
B: almost invariably was within a few percent of the
A L.S.-1 estimate of fB;.

Multiple Minima

In the previous section, two equations were men-
tioned in which multiple minima were encountered.
In nonlinear regression problems, which is what we have
in the case of autoregressive errors, this possibility of
multiple minima exists. The existence of multiple mini-
ma means that there are two (or more) local minima
in the residual sum of squares (two or more local max-
ima in the likelihood function).

In the 17 equations re-estimated by Hildreth and Lu
(23), no examples of multiple minima were encountered.
In our applications of A.L.S., 21 separate equations
were selected at random for investigation for the ex-
istence of multiple minima. These were selected at ran-
dom, not in the sense of random sampling, but in the
sense that there was no a priori reason for expecting
multiple minima to be more or less likely in these than
in other equations. The procedure was to select two
different start vectors for the initiation of A.L.S. The
fact that two different start vectors converge to the same
solution 1is, of course, no assurance that a third start
vector would have converged to the same solution. We



would expect that most cases of multiple minima would
be found by the use of two sufficiently different start
vectors, however.

Of the 21 equations, 4 had dual minima. The L.S.
estimates of two of these equations had only 13 degrees
of freedom (15). The dual minima might have disap-
peared with more degrees of freedom. The L.S. esti-
mates of the other two equations, however, had about
35 degrees of freedom. In these two equations, the de-
pendent variable was quarterly seasonally adjusted de-
partment-store inventories; the independent variables
were also seasonally adjusted. One equation contained
a time trend; the other did not.

Of a total of 38 equations (Hildreth and Lu’s 17,
plus 21 A.L.S.) 15 contained y,, 23 did not. Of the
15 containing y, 4 possessed dual minima; of the 23
not containing y,-;, none possessed dual minima. Evi-
dently multiple minima are rare in equations not con-
taining y,, and not so rare in equations containing

Yt-1.

SUGGESTIONS FOR FURTHER WORK

To evaluate the adequacy of the work reported here
and to consider possible future work, it is useful to con-
ceive of a population of economic equations, all ac-
ceptable on the grounds of prior knowledge. In this
study, interest centered on the temporal dependence
properties of the errors in equations from this popu-
lation. It may be more realistic to conceive of various
populations of a priori acceptable equations. This report
then covers samples from five such populations: (1)
the population of annual and quarterly national aggre-
gate food demand equations; (2) the population of
monthly and quarterly Michigan consumer panel food
demand equations; (3) population of national con-
sumers’ durable goods demand equations; (4) popula-
tion of farmers’ factor demand equations; and (5)
population of farmers’ product supply equations. Sam-
ples of 40, 50, 15, 15 and 15 equations, respectively,
were drawn from these populations. (The remainder of
the equations are from a variety of other populations.)
These cannot be considered as random samples of inde-
pendent observations since in many cases the results
from one equation suggested additional equations.

It may, however, be useful to assume these to be
random samples of independent drawings. The last
two columns in table 22 are computed on this assump-
tion. On this assumption the values of p from the first
two populations are barely significantly different from
each other at the 5-percent level. The results are con-
sistent with the hypothesis that the true value of p is

Table 22. Statistics computed on assumption equations represent
random samples of independent items.
Population p = Proportion of sample 95-percent
of equations with Standard confidence
equations significant values of 8 error of p interval for p
(percent) (percent) (percent)

National aggregate

food demand .........62 8 46 to 78
Consumer panel

food demand ............ 40 7 26 to 54
Consumer durables

demand ... 67 12 41 to 93
Farm factor

demand 41 to 93
Farm supply .. 41 to 93

more than 0.5 in each population; i.e., that the errors
in more than half of the equations from these popula-
tions do possess significant autocorrelation when tested
by A.L.S. This is not the same thing as saying that
half or more of the equations from these populations
do possess autocorrelated errors. When these results are
combined with the findings of Cochrane and Orcutt
(6), Hildreth and Lu (23), Orcutt (36), and Wold
(59), however, we do have sufficient evidence for con-
cluding that autocorrelated errors are common.

Further work on autocorrelated errors is needed. It
would be desirable to investigate possible modifications
of the Theil-Nagar d test for application to equations
not containing y; to reduce the frequency of Type I
errors. Research, perhaps using the Monte Carlo tech-
nique, is needed to study the small sample properties
of AL.S. Hildreth and Lu (23), Durbin (10), and
Klein (25, pp. 85-89) estimates of equations contain-
ing autocorrelated errors. Similar work is needed on
A.TS. and Sargan (38) estimates of systems of equa-
tions containing autocorrelated errors.

A third problem which seems to merit further work
arises from the existence of multiple minima in equa-
tions containing yi_;. In 4 out of 15 such equations exam-
ined, multiple minima were encountered. The ques-
tion of multiple minima in equations not containing
yi-1 seems less serious. No cases of multiple minima
were encountered in the examination of 23 such equa-
tions. If we assume that these represent independent
random drawings from a binomial population, we can
derive certain limits. Let p represent the probability
of occurence of multiple minima and let success repre-
sent a case of multiple minima. What is the largest value
of p such that, in a sample of 23 items, the probability
of zero successes will be greater than or equal to 5 per-
cent? Application of the binomial formula yields a max-
imum value of p of 0.12. The value of p which makes
the probability of zero successes greater than or equal
to 20 percent is 0.07.
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APPENDIX: ESTIMATION PROCEDURES

Adequate discussions of T.S.I..S. and A.L.S. can
be found elsewhere (2, 15, 16, 24, 30). They will be
briefly summarized here only to lay the groundwork
for presenting the A.T.S. method, which is a synthesis of
the two.

The T.S.L.S. procedure is as follows, where Y, is
a T X M matrix of M endogenous variables, A is an
M X M matrix of coefficients, Z; is a T X N vector
of N predetermined variables, I' is an N X M matrix
of coefficients, and ¢ is a T X M matrix of disturbances.
The system of equations is

(AL VA=ZT Y e

Suppose the equation in which we are interested is the
first equation,

(A2)  yie = YaeAr + Zui Ty + 6 = XilAwx + €
The first step is to compute the least squares estimates,
(A3) P = (ZJZ)Z Y
and
(A.4) est Yir = Z(P.

Estimates of A« are obtained from

’ ’ , ’ 5
(A5) est A= [PZaZtP PZtZ*t] 1

22 P Zy'Zs:

[ P'Zt’)ﬁ t

LtV ] = (XatXKat) " Xt yaee

Standard errors are computed from

7
(AB) V(Aw) = (X*t’X*l)‘lﬁ
where
(A7) e.= yie— Yar(est Ay) —Zsi(est Ty)

and Nx and My are the number of predetermined and
endogenous variables in equation A.2.

Let the equation we want to estimate by A.L.S.-1 be
(A.8)
(A.9)

Yit = Z*tI‘l + €1t Where

€1 = Pier1 T Uy =
,31}’1(—1 = Blz*t—lrt + uyy.

Then u,; can be written

(A~10) Ut == Yag — (YIPI,Z*t,Z*t—l) (B,Flg —,BIH)'
= Vit _‘X'_C.

Expand u;; in a Taylor’s series about a set of initial esti-
mates of the coefficients, =; = (fB:,T1i), ignoring all
terms of higher order than the first.
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fi = g — (YL—1, Ly, Z*t—i)

i 0
o e

= i — XA A

(A.11)

where u,;, is obtained from (A.10) by substituting the
elements of =; into C to obtain C;.

Taking the partial derivatives of f;/f;; with respect
to A=’ and equating to zero, we obtain

(A12) Ami=(AYX¢XA) AKX (y1 — X Ci).
Am; is the least squares solution of the regression,
(A.13)  est uyy = XA Am + we
From /Aw; compute
(A.14) 7 =m + kiAm

where the value of k; may be selected in various ways
to assure convergence. In the IBM program used in
this study, k; is selected as the largest value of 0.5,
j=0, 1, ..., which yields a reduction in the residual
sum of squares. This process is continued until the dif-
ference between successive estimates is satisfactorily
small. Here, it was continued until every coefficient in
the equation met the t-square test,

(APy)* !
——_Jc < 0.001 for all j,

V(P;)
where V(P;) is the estimated variance of the j-th co-
efficient. The matrix of variances and covariances of
the coefficients is obtained from

(A.15) €=

(eSt uu)' (eSt ult) )
T-N-1

where N + 1 is the total number of variables in the
equation.

(A.16) (A/XIXA))

In our system of equations A.l, suppose e; follows
the first-order autoregressive scheme.

(A17) e = e-1B + uy = (YiiA—=ZiaT) B + uy,
where B is a diagonal matrix.

AT.S. proceeds as follows. Obtain L.S estimates
of pi, p: and p; in
(A.18) est Yy = (est Yxrest Yuxt)
T lel s Yt—lpz =15 Zt—1p3-
Substituting for €, the first equation A.2 can be
written

(A.19) Vit = Biyiear T+ (Yar— Yur-1B81) Ar +

(Z*t = Z*t—lﬁl)rl e



Table A-1.

Number of iterations required for convergence.

Number of iterations

required for convergence Number of equations

Mean, 7.4
Median, 6

Estimate by A.L.S. the coefficients in

(A.20) Vit = BiYit—1 T (est Y — Yui-181) Ay
+ (Zsy =Zar-281) Ty + vyt

At the end of each iteration, compute the variances
and covariances as the product of the elements of the
inverse matrix and (est uy;¢)’(est uyi¢)/T-N-1

where

(A.21) est uygy

=Y ,81th—1 Sl (Y*t i Y*t»lﬁxi)
Ali_(Z*t —2*1—1,811)T1i-
A.L.S. is an iterative technique, and the extra cost

of using it over using L.S. is determined by the number
of iterations required for convergence to a solution.

Table A-1 presents the number of iterations required
for convergence in 81 equations estimated by A.L.S.
The number of iterations required was not affected
by the number of ipdependent variables or by the
presence or absence of the lagged dependent variable.
In every case in which an equation was estimated by
ALS.-1 and AL.S.-2, AL.S.-2 required fewer itera-
tions.

Commonly, when a large number of iterations was
required for a stable solution, changes in the coefficients
were alternately positive and negative and declining in
absolute magnitude from one iteration to the next. This
type of oscillation could usually be stopped and con-
vergence obtained rather quickly (usually in one or
two iterations) by taking the averages of the solutions
from two successive iterations as an estimate of the co-
efficients.

The number of iterations required is affected by
how close the initial set of estimates is to the final solu-
tion. For equations not containing the lagged dependent
variable, the initial estimate of B, was almost always
computed as (2-d)/2, where d was obtained from the
L.S. estimate of the equation. The L.S. estimates of
the coefficients were almost always used as the initial
estimates of the other coefficients. For equations con-
taining the lagged dependent variable, different pro-
cedures were used. Sometimes the initial estimates of
B: and the other coefficients were taken directly from
the L.S. equation. Other times, when d was highly sig-
nificant, the initial estimate of the lagged dependent
variable was taken from the L.S. estimate of the equa-
tion, and initial estimates of 8, and other coefficients
were taken from L.S. or A.L.S. estimates of the cor-
responding equation which did not contain the lagged
dependent variable.
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