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Solving Tile Drainage Problems 

by Using Model Data1 

by Ben L. Grover2 and Don Kirkham 3 

Our purpose in this bulletin is to report, to analyze, 
and to use in problem solving, extensive model data 
of tile drainage of land. 

The data were obtained with a glassbead-glycerol 
model ( Grover et al. , 1960; Grover and Kirkham, 
1961) and include: (a) values of depths and of cor
responding times of fall of the surface of saturation 
to these depths at various distances from the drain 
tubes and ( b ) values of the drain tube discharge 
rates. The zero reference time for the fall of the sur
face of saturation and also for the discharge rate is 
the instant at which the surface of saturation passes 
through the simulated soil surface from a ponded con
dition. 

Models were made of 109 different combinations of 
drain depth, drain spacing and soil strati£cation. For 
each of these 109 model conditions, the surfaces of 
saturation were photographed at about eight different 
depths through the transparent front face of the 
model. Photographs were read under a magnifying · 
glass to obtain distances and times of fall. Times were 
obtained from a clock tha t was started at the zero 
reference time and photographed with the water 
tables. 

A glycerol-water solution is used in the model to 
provide the fluid or "water" to obey Darcy's law which 
is applicable to ground water seeping to drain tubes 
in the Beld ( Lu thin , 1957). The glycerol, because of 
its viscosity, slows the fluid movement which would 
be too rapid to obey Darcy's law in the model if water 
alone were used. Glass beads are used instead of soil 
to provide a porous medium of small capillary rise, 
and 16-mesh-per-inch wovenwire drain tubes are used 
instead of clay tile drain tubes. The bottom of the 
model simulates an impermeable subsoil layer, called 
a barrier. 

The model data are reported in the "Results" sec
tion. Formulas are derived and detailed examples for 
using the model data for solving fi eld drainage prob
lems aw presented in the "Discussion" section. 

'Projects 998 and 1003, Iowa Agricultural and Home Economics Ex
periment Sta tion. 

2F onn e rly resea rch assoc iate, D ep artm en t of Agronomy ~u1d D epart
m ent of Agricultura l Engin eering, I owa State University. Present address: 
University of Galifon1ia Citrus Experim ent Station, Riverside~ Calif. 

:-: Professor of so i1 s and p h ys ics, Iowa Sta te Univers ity. 

GEOMETRIES OF DRAINAGE CONDITIONS 

Part A of fig. 1 represents a typical water table 
geometry as it might be in the £eld and gives symbols 
2r, x, y, z, Z, a/ 2, cl, h and h-d, needed ( in part) to 
describe the geometry. Part B of fig. 1 illustrates a 
front elevation of the model and gives model dimen
sions. In Bg. 1, drain "tiles" are designated by small 
circles; these "tiles" can be opened or closed by stop
cocks to give four spacings and two distances of the 
tile centers to the barrier. The scale of the model 
ordinarily is : 1 cm. in the model equals 1 ft. in the 
field. But other scales are useful, and just as valid, as 
long as relative dimensions in the field correspond to 
those in the model. 

Symbols not indicated in Part A of fig. 1 are: 

L, length of drain tubes ("tiles"); 
K, hydraulic conductivity of the porous med

ium 
Ki, K2, hydraulic conductivities, respectively, of an 

upper stratum and of a lower stratum of a 
two-layered porous medium, when one is 
used; 

0 

f, drainable porosity ( drainable fraction ) of 
the upper layer [the drainable porosity of 

SURFACE OF SOIL 

d 

0 2r 0 

a a 
2 2 

IMPERMEABLE LAYER 

FIG. l. Schematic diagrams of drai11age conditions: ( A ) field 
geometry, ( B ) model geometry ( not to scale). 
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the lower layer doesn't enter into calcula
tions] ; and 

t, time for the water table to fall the distance 
Z ( and z) of fig. 1. ( Some other symbols will 
be defined when introduced. ) 

Thsee sizes of glass beads, ½, 2 and 5 mm., were 
used as porous media for the model. Beads of 2 mm. 
diameter were used for homogeneous, nonstratified 
soil; and the pair sizes, 2 mm. and Jf mm., and 2 mm. 
and 5 mm. , were used for stratified soil. Only soils of 
one or two layers were considered, not counting an 
impermeable soil layer represented by the imperme
able tank bottom of the model. Since temperature was 
carefully controlled ( to less than 1 ° C) and since the 
glycerol density also was controlled, K1 and K2 were 
constant. The values were: 

K= K1 = 1.23 crn. / min. ( when 2 mm. beads, only, 
were in the model ) 

Ki/K2 = 20 ( when Jf mm. beads were in the sub
layer and 2 mm. beads, in the sur
face layer ) 

Ki/K2= 0.4 ( when 5 mm. beads were in the sub
layer and 2 mm. beads, in the sur
fa.ce layer ) 

The drainable porosity f of the surface layer of porous 
medium was always 0.4 cm.3 of air space per cm.3 of 
bulk medium. Therefore, we have, for the model, 

f = 0.4 cm. 3 / cm. 3 

The drainable porosities of the sublayers were not ob
served. The sublayer porosities are not needed because 
the water table fall was observed ( and analyzed) 
only when it existed in the surface layer of beads . 

The width of . the porous medium was the same as 
the length of the drain tubes, 

L = 1.9 cm. 

Drain Tubes 
The drain tubes need particular comment. The 

radius r of the drains of the model was always 
r = 0.25 cm. 

The drains flowed full, with negligible loss of head 
over their length compared with the loss of head in 
the beads, and the drains outletted into a trough con
taining glycerol-water solution standing at the level 
of the drain axes. With the drains outletting at the 
level of their axes, one would expect air to back up into 
the drains and cause a surface of seepage ( difficult 
to deal with in models ) to develop at the upper part 
of the drain tube-bead interface. Air did not back up, 
however, and surfaces of seepage, therefore, did not 
develop because (a) at the higher discharge rates, the 
drains ran full in all events and (b ) at the lower dis
charge rates, a capillary fringe effect ( discussed in the 
next section) prevented air backflow. The outflow 
reference level for the hydraulic head was taken at the 
level of the axes of the drain tubes. 
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The radius, r = 0.25 cm., in the model corresponds 
to a single field condition of 6-inch diameter drain 
tubes, when the model scale is 1 cm. of model to 1 
foot in the field. Iff in the model, we had used drain 
tubes half or twice as large, then, the rates of fall of 
the water table would not have differed more than 
about 18.3 percent from those reported here.• Thus, 
our model results should apply ( without making a 
drain size correction ) with an accuracy of about 20 
percent to field drain tubes of 3 to 12 inch diameter 
when the model scale is 1 cm. of model to 1 ft. in the 
field. 

If field drains run partially full , as they ordinarily 
do, the water tables will be lower in the field than is 
indicated by the model results. Therefore, applica
tion of the model results to field drainage design ordi
narily will be on the "safe" side. That is, the field 
water table, after drain tile installation should not be 
as high as the design height. The model drain tubes 
were formed of wire screen to correspond to a field 
condition of drain tile being surrounded by highly 
permeable material, such as coarse gravel or large 
stable soil aggregates. If, in the field, gravel or coarse 
soil aggregates do not surround the tile, the water 
tables in the field will be higher than those indicated 
by the model data ( see Kirkham, 1950; or Luthin, 
1957, pp. 302-303). 

Drainage Cases 
Table 1 provides an index and gives further details 

of the drainage cases studied. The first column in the 
table gives the source figures of photographs as num
bered in Grover ( 1959 ) . These photographs are the 
raw data. The second column gives general geometry 
designations, A, B, ... , for reference. The symbols d , 
a, y, h and r are as in fi g. 1. In table 1, distances from 
the drain axes to the barrier, or to the interface of 
different layers of beads, are given as 12, 6, 3, 0.5 and 
0.25 cm. The values 12, 6 and 3 cm., although so found 
in the model, are not so recorded in Grover. By error, 
Grover gives 11, 5.5 and 2.75 cm. ( No computations 
were made in the work cited with these incorrectly 
recorded values. ) In table 1, the words "isotropic sys
tem" in the subheadings may imply that "anisoh·opic 
systems" are included in the sh1dy when they are not. 
For application of the data to anisotropic conditions, 
see Maasland ( 1957 ) and references cited there. 

Capillary Fringe 
The glass beads and glycerol in the model were used 

to minimize the height of a capillary fringe. By capil
lary fringe, we mean the fluid-sah1rated medium above 
the "water table" ( that is, glycerol-water table) . The 
upper surface of the capillary fringe is called the sur
face of saturation. 

4'The influence of drain size on water tabl e fall will be brought out in 
th e "Discussion" section , Problem 6; th e v alue of 18.3 percent ,vill be 
found as 1 minus 0.817 of eq. 80. 



Table 1. Index of drainage cases photographed ; compare fig. 1. 
Drain Grover 

fig. 
No. 11 

depth d Dram spacmg a 
Case (cm . ) (cm.) (cm.) (cm.) (cm.) 

HOMOGE EOUS ISOTROPIC SYSTEM, K = CONS""T~.~~~ 
(a) Barrier at y = - ( h-d ) = 12 cm. below drain centers 

24 . . . . . . . . . . . A 2 50 100 2 00 
25 A 4 50 100 200 
26 . . . . . . . A 6 50 100 200 
27 . . . . . . . . . . . A 8 50 100 200 
( b ) Barrier a t y = - 2 r = 0.5 cm. below drain centers 

28 B 2 50 100 
29 B 4 50 100 
30 B 6 50 100 
31 B 8 50 100 

200 
200 
200 

400 
400 
4 00 
400 

400 
400 
400 

TWO-LAYER ISOTROPIC SYSTEM, K1 / K2 = 0. 4 
(UPPER LAYER ONLY 4 / 10 ·AS CONDUCTIVE AS THE LOWER) 

BARRIER AT y - -( h - d ) - 12 cm. BELOW DRAIN CENTERS 
1 

(a) Interface of soil laye rs at y = - -( h-d ) = 6 cm. below drain centers 
2 

:32 E 2 
33 .. . .... . . . . E 4 
34 E 6 
35 E 8 

1 

50 
50 
50 
50 

100 
100 
100 
100 

200 
200 
200 
200 

400 
400 
400 
400 

( b ) Inte ,face of soi.I laye rs at y = - - ( h-d) = 3 cm. below drain centers 
4 

3H F 2 50 100 200 400 
37 F 4 50 100 200 400 
38 F 6 50 100 200 400 
39 . . F 8 50 100 200 400 
( c) Interface o f so il laye rs at y == -r == 0.25 cm . below d ra in centeTS 

40 G 2 50 100 200 400 
4 1 G 4 50 100 200 400 
il G 6 ~ ~ ~ ~ 
43 G 8 50 100 200 400 

TWO-LAYEH ISOTHOPIC SYSTEM, K1/ K, = 20 
(UPPER LAYEH 20 TIMES MORE CONDUCTIVE THAN THE 

LOWER) 
BARHIEH AT y = -( h-d ) = 12 cm. BELOW DR AIN CENTERS 

1 
(a) Interface of soil layers at y=--( h-d ) = 6 cm. below d rafo centers 

2 
44 
45 
46 
47 

C 
C 
C 
C 

2 
4 
6 
8 

1 

50 
50 
50 
50 

100 
100 
100 
100 

200 
200 
200 
200 

400 
400 
400 
4 00 

( b ) Interface of soil layers at y= -- ( h-d )=3cm. below drain cente rs 
4 

28c 
48 
49 
50 

D 
D 
D 
D 

2 
4 
6 
8 

.50 
50 
50 
50 

100 
100 
100 

200 
200 
200 

400 
400 
400 

SYSTEM WITH DRAINS AT GREAT (19 cm.) D EPTH 
BAHHlER AT y = -2r = 0 .50 cm . . BELOW DHATN CENTERS 

( a )H om oge neous system, K = Const . 
. 51 H 19 100 200 ... 
( b ) T wo-l ayer system w ith K1 / K 2 = 0.4 , and with the interface at 
y == 11 cm. above the drain centers, th at is, 8 cn1 . below th e so il surface. 
51 I 19 200 
a Numbers under "Grover fig . No." a.re numbers of source photographs jn 
Grover (1959). 

Although fairly large beads ( 2 mm. diameter ) were 
used to minimize the height of the capillary fringe, 
the beads were silicone treated as a further preventa
tive of capillary rise. Neverth eless, a pseudo eapillary 
fringe could not be avoided. Experiments ( Grover and 
Kirkham, 1961 ) showed that a suction head of 0.7,5 
cm. of glycerol was required to pull the glycerol 
through the beads. ( But the glycerol will not rise 0.75 
cm. in the beads by capillarity-hence the term, "pseu
do.") That is, with the drain tubes outletting, as they 
did, at the level of their centers, the surface of the 
glycerol in the beads would never get lower than 
0.75 cm. above the drain tube centers. This 0.75 cm. 
level could correspond to a capillary fringe height of 
about 0.75 ft. in the field, when 1 cm. in the model is 
1 ft. in the field. The height, 0.75 ft. , is realistic, at 
least for "stru ctureless" ( slightly aggregated ) field 
soil-because, by the well-known capillary rise form-

ub, the diameter of a glass tu be in which water will 
rise to a height of 0.75 ft. is 2[ (2x73) / ( 0.75x30x980 ) ] 
. 132 microns, tht value 132 microns ( 0.132 mm.) be
mg about the same size as cavities in fine sand. In 
aggregated field soils where the aggregates are larger 
than for fine sand, the capillary fringe height will b e 
smaller than 0.75 ft. 

The symbol c is used to represent capillary fringe 
height. This height is the same as the cm. of capillary 
suction at the surface of saturation. Thus, for the 
model, we have 

c = height of capillary fringe = 0.75 cm. 

When the height of a capillary fringe in the field does 
not correspond to the fixed capillary fringe height of 
the model, a correction must be made. This correction 
is clesc1ibed in a later section . 5 

RESULTS 

The sets of photographs of the (modeled ) \vater 
tables, as they vary with time, are th e raw data for the 
results; fi g. 2 is a sample set. Other photographs are 
not reproduced here because ( aside from the space 
requirement ) the screening necessary to make a half
tone engraving for printed reproduction confounds 
images of screen mesh points with images of beads so 
that one could not locate the correct depth of the 
surface of saturation. In fig. 2 there are four photo
graphs, and each photograph contains eight strips 
called subphotographs ( cut and remounted from orig
inal photographs ) of the different depths of water 
tables. In each of the subphotographs of fig. 2, a grid 
may be seen superposed on the front of the model. 
The grid mesh is 2 cm. vertical by 5 cm. horizontal. 
The depth of fall of the water table at various dis
tances from the drain tubes was determined with the 
aid of this grid. For these determinations, larger photo
graphs than those shown in fig. 2 were used. They 
were such· that 200 cm. of the actual model distance 
was 8.9 cm. distance on the photograph. On such 
photographs the depths of fall could be and were 
read, with the aid of a magnifying glass, to within 
about 1 mm. of actual distance of glycerol fall. 

Depth to Su rface of Satu ration 

Versus Time Re lations 

Because it was not practical to reproduce the ( 109 x 
8=872) photographs and since, in any event, numer
ical values are needed--not just photographs-we ( t\vo 
readers working independently) have read from the 
photographs, like those of fig. 2, numerical values of 
z, the depth of fluid fall, for the various times t . An 
example of such readings is presented as table 2. 
Notice in this table that the values of z of the two 
readers do not agree to within 1 mm. This is because 

:-, s ee Pl'olJlems 4 and 6. 
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TWO LAYER 
SYSTEM 

SURFACE LAYER PERMEABILITY 
LESS THAN SUBLAYER 

TILE DEPTH (d ) = 6 TILE SPACING (a)= 50 
TOP OF SUBSURFACE LAYER A1 Y = -1/4 (h-d ) 

TWO LAYER 
SYSTEM 

SURFACE LAYER PERMEABILITY 
LESS Tl-1AN SUBLAYER 

~ ~-»- - * 
. . 

T ILE DEPTH (d) = 6 TILE SPACING (a)=200 
TOP OF SUBSURFACE LAYER A1 Y = - 1/4 {h-d) 

TWO LAYER 
SYSTEM 

SURFACE LAYER PERMEABILITY 
LESS THAN SUBLAYER 

T ILE DEPTH (d )= 6 TILE SPACING(a) = 100 
TOP OF SUBSURFACE LAYER A1 Y = - 1 /4 ( h-d) 

TWO LAYER 
SYSTEM 

SURFACE LAYER PERMEABILITY 
LESS Tl-1AN SUBLAYER 

TILE DEPTH (d ) = 6 T ILE SPACING (a)= 400 
TOP OF SUBSURFACE LAYER A1 Y = - 1/4 (h-dJ 

FIG. 2. Sets of falling water tables for the fou r spacings of drain tubes of Case F (cl = 6 cm.) of table 1. Note that th e clock runs 
counterclockwise. The long vertical striations are due to joining plates on the model front. 

different drain tu bes were used by each reader for the 
reference position of x ( fig. 1 ) . Use of different drain 
tubes as reference positions for measuring x prevents 
bias in the (averaged) results. 

Table A-1, of Appendix A, with 109 subtables 
designated by the numbers 24a, 24b, 24c, 24d, 25a, 
etc. , gives the values of depth of fall z as a fu nction of 
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x and t , as obtained from average values, such as those 
shown in table 2 for the 1096 conditions of table 1. 
The values of x are: x= 0, x=0.la, x= 0.2a and x= 
0.5a. The letters a, b, c and d, attached to the num
bers 24, 25, 26, etc. , in the subtable headings, refer, 
respectively, to the spacings 50, 100, 200 and 400 cm. 

•Case A, 16; case B, 14 ; C , 16; D , 12 ; E, 16; F, 16; G , Hi; H , 2 ; 
and l , 1 --total 109. 



Table 2. Sample table of values of z for x/ a = 0.1 and 0.9 ; 
for Case A of table 1 when d = 2 cm. and a = 50 cm. Theo
retically, because of symmetry, the values of z for x/ a = 0.1 
and x/ a = 0.9 should be the same. For meaning of x, a, d 
and z, see fig. 1. 

Clock 
reading 

60 
58 
56 
54 
50 
48 
46 
44 
42 

F irst Reade r 
Horiz. dist. from drain 

Lapsed x/ a= 0.l x/ a=0.9 
time ( x=5 cm. ) ( x=45cm.) 

( min . ) (cm. ) ( cm. ) 
0 0 0 
2 0 .3 0.5 
4 0.6 0 .5 
6 0 .9 0 7 

. 10 0.9 0 .7 

. 12 0.9 0 .8 
.. . 14 0.9 0 .8 

. .. . .. . 16 0.9 0 .85 
. 18 0.9 0 .95 

Second Reader 
Hor fa. dist. 0 from drain 

x/a=0.l x/a=0.9 Aver
( x= 5 cm. ) ( x= 45 cm. ) age 

(cm. ) (cm. ) (cm .) 
0 0 0 
0.4 0 .4 0.4 
0.6 1 .0 0.7 
0 .7 0 .9 0.8 
1.0 1.1 0 .9 
1.0 1.0 0 .9 
0 .9 1.0 0.9 
1.0 1.1 1.0 
1.1 1.1 LO 

0 A different drain tube was u sed as reference ( for x = 0 ) b y the 
second reader ( see text ) . 

in table 1. Thus, subtable 24a is for 50 cm. spacing. 
In table A-1, subtable 24a, the numbers, 0.4, 0.7, 0.8, 
etc., in the third column ( for x=0.la ) are the same 
numbers, 0, 0.4, 0.7, 0.8, etc., occurring in the 1ight 
hand column of table 2. The zero value of z at t= 0 is 
to be understood in subtable 24a and in all the other 
subtables in table A-1. 

DEPTH 6 CM. 

3.0 RADIUS 0.25 CM. 

BARRIER 
2.5 0.25 CM. BELOW 

2.0 
DRAIN BOTTOM 0 

Observe two other points about table A-1. vVhen 
x= 0.5a, we have, in accordance with fig. 1, the rela
tion z= Z, Z being the maximum water table height; 
so table A-1 includes values of Z versus t as well as 
of z versus t. 

Time for the Surface of Saturation 
to Fall Unit Depth 

Figure 3 is a chart of values of Z ( z at x=0.5a ) 
versus t prepared, respectively, from the first and last 
columns of data of each of subtables 30a, 30b, 30c and 
30d of table A-1 of Appendix A. The figure is for case 
B, d=6 cm. of table 1, and is presented to show some 
typical results as well as to show how one may, from 
such curves as are shown, obtain the values of the 
time for the mid-drain surface of saturation to fall a 
unit depth, Z= l cm., ( or to fall other depths) from 
the just-ponded or just-unponded condition. The times 
for Z= l cm. for fig. 3 are seen to be: 7.8, 31.5, 108 
and 454 min. , respectively. These four times and other 
times for Z= l cm. are given in Appendix B, table B-1, 

DRAIN 

00 SPACINGS (CM.) 

0 50 □ 200 
t:::. 100 • 400 

-~ 1.5 u -
N 

~I 
0 I 

1.0 

0.5 

0.0 

~ 

/ Mly MIN/ MIN. MIN. 
0/ _/4 / • 

~_,,,, _g_...-a 

rt--rf 'TT71-·~,, , 1 " 

2 3 5 7 10 20 

t 
50 

(MIN) 
100 500 1000 

FIG. 3. Semilogarithmic curves of distance Z of water table fa ll midway between drains versus time t, for the four drain spac-· 
ings of Case B (d = 6 cm.) of table 1. The intersections of the h orizontal dashed line with the curves yield values of t for a 
unit fa ll , Z = 1 cm., of the surface of saturation midway be tween drains. 
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columns 8, 9, 10 and 11. Table B-1 also includes the 
times for Z= 0.5 ( columns 4, 5, 6, 7 ), 1.5 ( columns 12, 
13, 14, 15 ), and 2 cm. ( columns 16, 17, 18, 19 ), which 
were obtained in the same way as were the times for 
Z= l cm. 

In table B-1, the time values for Z= l cm., corres
ponding ordinarily to the field value Z= l ft ., are of 
particular interest because ( compare Lu thin , 1957, p . 
387) drainage sys tems are generally considered satis
factory if the water table falls 1 ft . below the soil 
surface in a reasonable time ( 24 to 48 hours). But we 
emphasize that the times for the field cases corres
ponding to table B-1 cannot be read from table B-1 
directly. vVe shall see in later sections how to calculate 
the field times from the model data. In table B-1 the 
numbers are not accurate to more than 2 or 3 signifi
cant figures. 

Since the values of the times for Z= l cm. in table 
B-1 are of particular interest, we have prepared graphs 
( .fig. 4) of the drain spacing, a, versus the expression 
( tK/ fZ) ½ for Z= l cm. The expression ( tK/ fZ ) ½ is 
used for several reasons . It is dimensionless; in it, t / Z 
is an average reciprocal velocity of fall; the exponent 
½ is used since Kirkham and Gaskell ( 1951 ) found 
theoretically, at least in a certain range of values, that 
a was proportional to t½ for Z=constant. The expres
sion ( tK/ fZ ) ½ is easy to obtain for the abscissas of 
.fig. 4 for which Z= l cm. Since we have K= l.23 cm./ 

a 

::: .--A_d_P' 
200 / 11.i □ ~-=di= 12 

I 00 ~ K=C0NST 

.J<ru 

0 10 20 30 0 10 20 30 

✓t K/fZ 
400 El Fm 300 ~ 36 

a 34 39 3 7 
~ Z = I Z= I 

200 ... t:.□ ~[O 
h- d = 12 

Pf1 h-d=l2 

y= - 6 y=-3 

min., f= 0.4 and Z= l cm. , we obtain the expression 
by multiplying the time periods in table B-1 by 1 .23/ 
0.4=3.075 and taking the square root of the product. 
The significance ot the grouped symbols tK/ fZ will 
be brought out furth er in the "Discussion" ( see espe
cially eq. 35). 

Fig. 4 is for Z= l cm. Curves like fig . 4 for Z= 0.5, 
1.5 and 2 cm. are given for comparison with fig. 4 in 
Appendix C, .figs. C-1, C-2 and C-3. When fig. 4 and 
fi g. C-1 (drawn to the same scale) were superposed, 
the curves for Z= 0.5 cm. and Z= l cm. would super
pose very nearly, which was also true in some cases 
for Z= l and Z= l .5, but not for Z= l and Z=2 cm. 
The reason for the superposition, vvhen it occurred, 
was that Z varied directly with t, making Z/ t constant. 
This direct variation of Z with t usually occurred only 
when the values of Z and of Z/ (d-Z) were both simul
taneously small. Values of t for the "water table" to 
fall from the depth Z= 0.5 to depth Z= l.0 cm. may 
be obtained by subtracting the time for Z= 0.5 cm. 
from the time for Z= l cm. ; similarly for other depths, 
as for Z= 0.5 cm. to Z= l..5 cm. One sees in the curves 
for Z=0.5 cm. in fig. C-1 that the influence of the 0.75 
cm. "capillary" frin ge is more marked for the curves 
for d= 2 cm. than for the curves for d= 4, 6 and 8 cm. 
The more marked effect of "capillarity" is seen espe
cially a t the large values oft where the curves ford= 
2 cm. are abnormall y steep compared with the steep-

0 10 20 30 0 10 20 30 

H 19/ 

40 
7 
I 

I 
Z=I I Z- 1 

0 

Ii 
h-d =1 2 

I 
h-d= 0.5 

y=-0.25 K=CONST. fl 2/ 
100 -&.[] /. K1/ K2 =0.4 iii.JI KifK2= 0.4 .4(l 0 K/K2 =0.4 0 

I I ; R Ill flt I I 
-,fJ 0 £1 Li'ilO 

0 10 20 30 0 10 20 30 0 10 20 3 0 0 10 20 30 

✓t K /fZ 
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ness of the curves for d= 4, 6 and 8 cm. See especially 
cases A, F and G of fi g. C-1. 

In fig. 4, the curves do not, theoretically, go through 
the origin (where a=O, t= O) even though they seem 
to in some cases. To prove that the curves do not go 
through the origin, consider the following reasoning 
and calculations, where we shall take a general value 
of Z rather than resh·icting ourselves to Z= l cm. as 
in fig. 4. We first observe that the situation, a = 0, 
that is, zero drain spacing, corresponds physically 
to an infinite plane sink under the soil at the tile 
depth. Therefore, with the tiles outletting at at
mospheric pressure into this infinite plane sink, we 
see that the Darcy velocity v, of v=Ki, will, because 
the hydraulic gradient i is now unity, just be K, the 
hydraulic conductivity. The velocity of water table 
fall will be K/ f, and th e time for the water table to 
fall the Z cm. will be t= Z/ ( K/ f ). But we want tK/ fZ. 
Therefore, we multiply both sides of the last equation 
by K/ fZ and find, after simplification, the result, tK/ 
fZ = l. Therefore, we have the interesting result: 

( tK/ fZ ) ½=l , when a= O; 
which is the same as 

300 
200 

100 
70 

Z = I h- d = 0.5 

HOMOGENEOUS 

(tK/ fZ)½=l , when a/ d = O, for all values of Z. (1) 

ln words, the intercept on the (tK/ fZ)½ axis of all the 
curves of fig. 4 ~hould theoretically be 1-if capillary 
effects are negligible. When they are not negligible 
the values of (tK/ fZ)½ will be greater than 1 (Swart
zendmber and Kirkham, 1956). 

Approximate Equations fo r Water Table Depths 
To see if data such as those in fig. 4 could be further 

compressed, logarithmic plots were made of a/ d 
versus tK/ fZ, one of which (fig. 5) is shown for Case 
B (d=2 cm. excluded) of fi g. 4. 

The data points in fig. 5 do not fall on a single 
curve but on three separate curves, one curve for 
each value of cl. Theoretically, the data points cannot 
be expected to fall on a single curve, because as a/ d 
varies, the depth below the tiles of the barrier, h - d, 
remains constant, as is seen in fig . 1, rather than vary
ing proportionately with a and d. Thus, the "popula
tion" of the drain cases, statistically speaking, is not 
homogeneous . Nevertheless, for a given value of tK/ 
fZ in fig . 5, a/ cl does not change much from curve to 
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curve. So the middle curve may be taken as an ap
proximation for each of the relations for Case B. The 
equation of this middle curve is 

a/ d= l .61 (tK/ fZ)0 •517, (2) 

which is the same as 
log10 (tK/ fZ)= - 0.400+ 1.933 log10 a/ d. (3) 

Equations like eq . 3 have been prepared, using 
logarithmic regression, for all seven cases, A, B, C, 
.. . , of table 1. These equations are presented as eqs. 
4-10. In them, eq. 5 corresponds to, but is not the 

same as, eq . 3. When eqs. 3 and 5 are each solved for 
a/ cl, in the range of interest, they each yield approxi
mately the same result. The equations do not give 
identical results b~cause eq. 5 is based on three times 
more data than is eq. 3. 

The equations for cases A, B, .. . , G, are (for Z= l 
cm.)·as follows: 

A: log1o(tK/ fZ)= - 0.487 + l.606 log10(a/ d) (4) 
B: log10(tK/ fZ)= - 0.555+ 1.986 log10(a/ d) (5) 
C: log1o(tK/ fZ)= - 0.547 + 1.696 log10(a/ d) (6) 
D: log1 0(tK/ fZ)= - 0.563+1.759 log1 0(a/ d) (7) 
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F IG. 6. Q/KLd versus ( tK/a)½ for cases A and C of table l ; Q is the drain discharge ra te in cm.3/min. ; the other symbols 
are as before. 
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E: log10(tK/ fZ)= - 0.787+1.361 log10(a/ d) (8) 
F: log10(tK/ fZ)= - 0.649+1.199 log10(a/ d) (9) 
G: log10(tK/ fZ)= -0.996+1.376 log10(a/ d) (10) 

The correlation coefficients r, for the logarithmic 
regression equations, eqs. 4-10, have been computed. 
The value of r in each case was 0.99 except for case 
G, where r was 0.97. But these high correlation co
efficients do not mean theoretically, as we saw in fig. 
5, that there is just one curve for all of the individual 

depths, and an r value of 0.99 does not mean a 99-
percent accurate result. 

Drain Discharge Rate Versus Time Relations 
Let Q be the discharge rate (cm.3 / min.) of one of 

the drain tubes, and let t, as before, be the lapsed 
time after opening the drain tubes, at the instant the 
ponded Ruid disappears, for one of the geometries. 
Then the results for the discharge rat<o are as in figs. 
6 and 7. Here, instead of plotting Q versus t, we have 
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FIG. 7. Same as fi g. 6 except for cases B, D and H of table l . Discharge data were not taken for cases E , F and G of table 1. 
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plotted Q/ KLd versus (tK/ a)½. The exponent Jf tends 
to make the data linear. A better independent variable 
would be (tK/ af)½. The values of Q were obtained 
during the experiments by collecting the discharge 
.6q of the drains at small time intervals .6 t and by 
calculating the ratio, ,6. q/ ,6. t (=Q). The experi
mental points are not shown on figs. 6 and 7. There 
were, in all cases, at least 10 points per curve ap
proximately equally distributed over the curves. The 
curves were made by connecting successive points 
with straight lines. A duplicate run (not shown here) 
was made for Case D , a= lO0 cm. , d=8 cm. The 
duplicate curves agreed to within less than 0.05 unit 
in Q/ KLd except in the part of the curve where (tK/ 
a)½ was less than 0.2. In this part of the curve, the 
discrepancy in duplicate-run values was less than 0.10 
unit. 

DISCUSSION 

In this discussion, we shall derive fundamental 
equations connecting model and fi eld results and shall 
use these relations to solve, as examples, some fi eld 
problems. Also, we shall compare briefly some of our 
model data with data of other workers. W e assume 
that we may deal with the pseudo capillary fringe in 
the model as if it were a true capillary fringe. \Ve 
therefore drop the term "pseudo." Ligon et al. (1962) 
have made a study of the glycerol fringe in glass 
beads . 

Equations Connecting Model and 
Field Drawdown Data 

In fig. 8, consider one of the model geometries, and 
its associated streamline pattern, at the instant the 
surface of saturation has fallen midway between drain 
tubes from its just-unponded condition to a depth Z. 
In the streamline pattern, fix attention on the stream
line ABCD, midway between a pair of drains , and 
on an adjacent streamline EFG. Now imagine, at the 
instant the surface of saturation has reached Z, that 
we have placed infinitesimally thin, fictitious sheets 
of rigid, impervious material perpendicular to the 
plane of the paper and coincident with the two 
streamlines ABCD and EFG. Imagine also that we 
have placed other such sheets coincident with all 
other streamlines, such as NH and MI starting at 
about depth z. Imagine further, that all these sheets 
are consh·ained to remain fixed while the water table 
falls midway between drain h1bes from Z to a slight
ly greater depth, z+ L, Z, during a time .6 T. H ere 
,6.Z is small but arbitrary, and we use T for time in
stead of t because we wish to reserve t for times re
ferred to an initial, just-ponded condition rather than 
to an initial time when the water table is a t a sub
surface position JMNEAP shown in the figure. 

Now let .6 q be the volume of water that discharges, 
between the stream surfaces ABCD and EFG, into the 
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FIG. 8. Streamlines ABCD and EFG for an instantaneous 
position of the water table. 

drain tube, for the full length of the tube L (not per 
unit length ) and during .6 T. Next, remember that, 
in the model, the hydraulic head level where the drain 
tu be discharges is a distance cl below the surface of 
the beads so that the head difference existing across 
AD of ABCD and across EG of EFG will, for .6 T , 
be, on the average and taking the capillary fringe 
height (pull) c into account, [(cl - Z - c) -- .6Z/ 2]. 
H ence obtain, by inspection, the relation, 

f f=K[( d-Z-c)- .6Z/ 2]G. ( 11 ) 

Here c, the capillary fringe height, is just equal to 
the centimeters of glycerol-water suction existing at 
the surface of saturation; G is a geometrical constant; 
and the product KG may b e called, analogous with 
elech-ical nomenclature, the hydraulic conductance of 
the medium ABCDEFG. That is, we have 

KG= hydraulic conductance. (12) 
In eqs. 11 and 12 remember, for the corresponding 
electricity Row problem, that ,6. q / !>:, T would con:es
pond to I , the electric current, that [ ( d - Z-c )
,6. Z/ 2] would correspond to the average voltage diff
erence across the medium and that KG would corres
pond to 1/ R where R is the electrical resistance. The 
writing down of eq. 11 "by inspection" implies that, as 
for elech·ic cnrrent Row, a linear Row law (here 
Darcy's law ) governs the soil water Row. 

Now, in fig. 8, abbreviate the distance AE by 

AE= w 
and see, then, that we may express .6q by 

.6q = fLw .6Z, ( 13 ) 

where f is the drainable porosity. 
Now return to eq. 11 and take .6Z small enough to 

be negligible compared with d- Z- c. Then solve for 
.6q to find 

.6 q= K( d- Z- c)G .6 T. ( 14 ) 



Next, equate the right sides of eqs. 13 and 14 and 
find, when the time is 6. T, the result 

fLw 6 Z= K(d- Z- c)G 6. T, (15) 

which is true for any Z, if 6.Z and 6. T, but not 
,0,Z/ 6. T, approach zero. 

To emphasize that eq. 15 has been derived to apply 
to the model, place a subscript m on each symbol to 
obtain from eq. 15 the expression, 

frnL mwm6. Zm= Km ( dm- Zm-Cm) Gm 6. Tm· ( 16 ) 

For a field situation, not one necessarily geometri
cally similar to the model situation, instead of eq . 16, 
we could have found the expression 

frLrwt 6.Zr=Kt( dt- Zt- cr)G,6. T r• ( 17 ) 

vVe have been discussing conditions about the flow 
region between streamlines ABCD and EFG of fig. 8. 
If we had singled out the streamlines NH and MI in 
fig. 8 rather than ABCD and EFG, we should have 
obtained equations exactly like the last two, except 
that Zm and Zr would appear instead of Zm and Zr, Now 
consider again the flow region between the stream
lines ABCD and EFG. 

In eqs. 16 and 17, no special relation between pairs 
of quantities as elm and dr needs to exist. But suppose 
that the shape of the field geometry, for which we 
have written down eq. 17, now is similar to the shape 
of the model geometiy so that each dimension in the 
field is n times that of the model ( that is, the scale 
factor is n); and suppose further that the capillary 
suction distances cr and c111 are related by the same 
similarity factor. ( VVhen cr and c111 are not so related, 
one can make a correction, as is done later in Problem 
4, provided that the surface of saturation is near the 
just-unponded condition. ) Then, by definition of 
"similarity," we may write an expression which de
fines n and includes Zr and z111 and other quantities. 
The expression is 

Cc 2rr L t' Wr ar dr 

Cm 2r,,, Lm Wm am dm 

hr h r - d r Zr Zr 
n, ( 18 ) 

hm hm - dm Z m Zm 
where n is a constant. 

Relation Connecting Gr and Gm 
We have yet to find a relation connecting Ge and Gm 

of eqs. 16 and 17. To find it, first imagine, referring 
to fig. 8 ( which we are taking to pertain to the model ), 
that the space between the streamlines ABCD and 
EFG, in addition to having the many stream surfaces, 
also has a large number of equipotential surfaces with 
these se ts of surfaces dividing the space into volume 
elements. Next, let a typical volume element have (a) 
a length 6. S in the direction of the fluid flo w, ( b ) a 

breadth 6. b and ( c) a length perpendicular to the 
plane of the paper L. Now imagine that each dimen
sion of th e model, as a111 and d 111 , and each flow region 
length of the m~del, as d ill - Zm and d ill - Zm, is 
magnified by the factor n of eqs. 18 to bring the model 
up to field size. Then, the volume element which had 
a base area L L\b and a length 6, S will now have a 
base area n2 L 6,b and a length n 6, S. Remember that 
G is a geometrical constant and that the values of Gm 
and Gr, therefore, will not depend on hydraulic con
ductivities. Therefore, we take, for the moment, Kr= 
Km=K which could be accomplished physically by 
using glycerol and ( the same size of ) glass beads in 
both the original model and in the magnified model. 
Therefore, the hydraulic conductance of the original 
volume element will be, by our definition , eq. 12, and 
by Darcy's law, KL ,0, b / 6, S. And the hydraulic con
ductance of the magnified element will be Kn2L 6. b/ 
( n L, S ); the ratio of the latter conductance to the 
form er will be simply n. But since this factor n will 
also apply to every volume element constituting the 
space between the streamlines ABCD and EFG, we 
see that the whole space between ABCD and EFG 
will have its conductance increased by a factor n. 
That is, we find 

KGr 
K-G = n, 

Ill 

or, 

g~ = n, ( 19 ) 

which is the needed relation connecting Gr and Gm -
like the relations in eq. 18. 

Condition Imposed on the 6. Z's 

We next impose a condition which relates 6.Zr and 
6 Zm, , ve can do this because up to now, although 
we have imposed the conditions given by eqs. 18 ( and 
the condition that the 6,Z's be small) , we still have 
kept, if tacitly, 6.Z111 and 6. Z, arbitrary. The condition 
imposed is that we must choose 6 Zr and 6 Zm such 
that the relation, 

( 20 ) 

is satisfied. Eq. 20 does not imply that 6. Tr will be 
equal to n6. Tm, But we can quickly obtain a needed 
relation connecting 6. Tr and 6 T 111 • We find from eqs. 
18, 19 and 20 the values: Cr=llCm, L 1= nLm, Wr= nw,,,, 
6.Zr=n 6 Zm, Gr=nGm, These are put into eq . 17 to 
find 

f 1°llLmllW111n 6, Z,,,=Krn ( d,,,- Zm-Cm )nGm 6. T,; 

wh ich , when divided by eq. 16 and solved for L,. Tr, 
yields 

fr Km 
6 Tr = 11 ~---6Tm, 

fm Kr 
wh ich is the needed relation. 

(21 ) 
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Eq. 21 may be abbreviated to 
6. Tr= A 6. Tm, 

where A is given by 

A=n(fr/fm) ( Km/ Kr) , 

(22 ) 

(23) 

The constant A in eq. 23 is a geometrical-physical 
constant, through the factors f, n, Km and Kr ( Km and 
Kt are now not equal, as in the paragraph below eqs. 
18) . The constant A does not depend on the time be
cause the porosities and conductivities have been 
taken to be constants with respect to both space and 
time. 

Completion of Drawdown Derivations 

vVith eqs . 21, 22 and 23, we can continue our deriva
tion which must relate total times of fall, not just in
cremental times, to the total distances of fall in model 
and field. First, we notice that eq. 21 is valid for any 
pair of water table situations that are similar for model 
and field. In particular, eq . 21 is valid if the water 
table initially is an infinitesimal distance below the 
soil surface when the term cr and the term Cm involved 
in the derivation enter. In this event, the increment 
6.Zr of eq. 20 will refer to a small drop in the water 
table starting from the just-unponded condition ( mid
way between drains ;; we r'.esignate this :first incre
ment by the notation 6. Zu. Corresponding to this 
6. Zr1 , we will have from eq. 22 

(24) 

where T and t now both have the same significance. 
Next let us compute the time increment 6. tr2 for a 

second increment of time. Imagine, at the instant the 
water has fallen the distance 6. Z0 , that the fictitious 
impermeable sheets coincident with ABCD and EFG 
are instantaneously removed so that the pressures in 
the flow mediums, model and field, will adjust them
selves essentially instantaneously, see Muskat ( 1946 ), 
to a new steady-state condition that has a correspond
ing new set of sh·eamlines. Now, instantane·ously in
sert the sheets again along the new set of streamlines 
and then let the water table fall a distance .6Zt2, 
Corresponding to 6.Zn, we will have a time 6 tr2 
given by 

( 25 ) 

where A, as is seen in eq. 23, remains the same con
stant as in eq. 24. Repeat the procedures of eqs. 24 
and 25 for a number of increments 6.Zrn, L Zr4, 
6 Zrr., where 6. Zrr, is the last increment, to find 

6 tn=A 6. tm1 
6. tr2=A 6 tm2 

6. trr.=A 6. tml.• 
(26 ) 

Now add all the 6. tr and 6Zr to find , respectively, 

6. to + 6. tr~+ . . . + 6. tn.= tr, ( 27 ) 

;34 

6 Zu+ 6.Zr2+ ... + 6 Zn,= Zr, (28 ) 

where, in eq. 27, tr is the total time lapsed in the fi eld 
case for the watey table to fall the distance Zr of eq. 
28. 

Now put eqs. 26 in eq. 27 to find 
A[ 6 t rn1+6tm2+ .. , +6tru r,]=tr (29 ) 

But, if tm is defined as the time for the surface of 
saturation in the model to fall from the just-unponded 
condition to the position Zr of eq. 28, we have 

6 tml + 6. trn2+ , , , + 6 tmL= tm; ( 30 ) 

and eqs. 29 and 30 yield 

From eqs. 23 and 31 we now find 

tr= n(fr/fm) ( Km/ Kr) tm, 

But, by expression 18, we have 

n= Zr/Zm. 

Therefore , from eqs. 32 and 33 we find, finally , 

Zr f f Km 
tr=--- tm, 

Zm fm Kr 

(31 ) 

(32 ) 

( 33 ) 

(34 ) 

which is a final important result connecting model 
time tm and field time tr, 

Three comments about eq. 34 are pertinent. First, 
rearranging eq. 34 we can write 

trKt tmKm 
-- = -- (subject to eqs . 18) , (35) 

frZr fmZm 

which is dimensionless on each side arid has on each 
side the same value for field and model. The equa
tion shows why a number of results may profitably be 
expressed, as they have been, in terms of the expres
sion tK/ fZ, or as a function of it. 

Second, in eqs. 34 and 35, it is basic to remember 
that Zm and Zr must be connected by the relations of 
eqs. 18. Third, if, in eqs . 24 through 35, we had 
started measuring times from the instant the surface 
of saturation was at any position JMNEAP in fig . 8 
and had added up increments 6. Z referred to this 
same position JMNEAP, we would have found, in
stead of eq. 35, the result 

T rKt TrnKm 
-- = -- (subject to eqs. 18), (36) 

frZ'r fmZ'm 

where the primes on the Z's are to indicate that we 
now have distances that are referred to the mid-water
table height at T=0 ( not t= 0 ). Eq. 36 would b e true 
for any shape of the surface of saturation at time T = 
0 - even shapes including mounds. Mounds might be 
due to ponded depressions in the soil surface through 
which water would seep after the soil surface was, 
in general, free of ponded water. Eq. 36 is valid only 
if eqs. ] 8 are valid. 



Equations Connecting Model and 
Field Discharge Data 

Eq. 35 connects distances Zm, Zr and times tm and tr 
of the fall of the surface of saturation for model and 
.6eld. vVe can get a similar relation connecting dis
charge by proceeding somewhat as in the last section . 

In fi g. 8, imagine two streamlines such as NH and 
MI starting at the surface of saturation JMNEAP, re
spectively at x = xi and at x = xi + 6 xi, Take the 
average depth of the starting points M and N of the 
two streamlines to be zi. Assume that these two 
streamlines and other features about fig . 8 apply to a 
model situation. Imagine, as we did for the stream
lines ABCD and EFG, that fictitious impervious sheets 
are coincident with the presently singled out sh·eam
lines; and let the volume of water per unit time pass
ing between them be 6 Qi. Then, as for eq. 11, we 
may write ( since we now assume, as we did before, 
that the tube is emptying a distance cl helow the soil 
surface ) the expression, 

6 Qi = K(d - Z; - c )G; . (37 ) 
The total discharge per unit time is obtained by 

summing over the index i, in eq. 37, to cover all pairs 
of streamlines. Let there be j - 1 streamlines between 
x = 0 and x = a, the 0-th line being at x = 0 and the 
j-th at x = a; then, the total volume per unit time dis
charging into half a drain tube at x - _ 0 and into half 
a drain tube at x = a.:- is (with i = 0, 1, 2, .. . , j ) , 

i i 
Q = l 6 Q; = ~ K ( d - Z; __:_ Ct ) G; , (38 ) 

i= l i= l 
where the subscript i on c may be dropped, if c, as 
assumed here, is constant. To emphasize that expres
sion 38 applies to the model, write it in the form , 

Qm = ~ 6, Qim = ::S Km( dm - Zim - Cim) Gim• (39 ) 
i= l i= l 

For a field situation, the last expression would become 

i i 
Qr = 1 6 Qir = ::S Kr( dr - Zit - Cir)Gir- ( 40) 

i= l i= l 
Now we suppose that the dimensions and capillary 
fringe heights of the model and field are similar so 
that, from eqs. 18 and 19, we have 

dr Cir Zu Cir 
- = - = - = - = n. (41 ) 
dm Cim Zi 111 Gin, 

Next, using values of eqs . 41 in the last member of 
eqs. 40 we find 

i 
Qr = l Kr( nd,11 - nZim - nCi m)nGim· ( 42 ) 

i= l 
In eq. 42, since n and Kr are constants , we can write 

i 
Qr= Krn2 ::S ( elm - Zim - Cim )Gim · ( 43 ) 

i= l 

Divide eq. 43 by the first and last members of eqs. 39, 
remembering in eqs. 39 that Km is a constant. Find, 
after simplification, the basic result, 

• 
Qt Kr 
- - - n2 (44 ) 
Qm - Km , 

where n is given by any and all expressions of eqs. 18. 
Notice nvo points about eq . 44: ( 1 ) The drainable 

porosities of field and model, whatever they may be, 
do not mathematically enter, explicitly, in eq. 44 ( but 
do enter physically and implicitly through the expres
sion, Cr = ncm, and through the values Kr and Km). 
( 2 ) Equation 44 says, when applied to two field situa
tions ( we could use subscripts f1 and f2 to denote 
them instead of f and m as in eq. 44), that the dis
charge rates in similar drainage systems-i.e., systems 
which satisfy eqs. 18- vary as the square of the ratio 
of corresponding dimensions. 

Only a few more equations are necessary to com
plete the derivations. 

fn eq. 44 we find it convenient to take, from eqs. 18, 

Ltdr 
112 

so that eq. 44 becomes 

Qr 

Qm Km Lmdm 
Rearranging we find 

Qr Qm 
( subject to eqs. 18 ) , (45 ) 

an expression in which the left-hand side and right
hand side are dimensionless. 

The left -hand side of eq . 44 applies to a certain 
model time and, the right-hand side, to a certain field 
time. These times may be related because, if tm is the 
known model time pertinent to the rate Qm, th en the 
corresponding field time tr is given by eq. 32 in which 
n is given by one of eqs. 18. For example, if we take 
n = ar/ am, we see from eq. 32 that tr, at the instant 
of validity of the left-hand side of eq. 45, is 

t r = - - - tm, ( 46 ) 
am fm Kr 

an expression which involves both the model and field 
porosities. 

Eq. -16 may be written 
trKf tmKrn 

( 47 ) 

each side of which is dimensionless. Eqs. 45 and 47 
indicate that, in presenting model data, one may prof
itably plot Qm/ KmLmdm versus tmKm/ an.Em, or functions 
of these quantities. Actually, because we did not know 
eq. 47 when the model data were collected, we plotted 
( fi gs . 6 and 7 ) the expression Q / KLd versus ( tK/ a)½. 
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The latter factor should have had an f in the denomi
nator. 

It is common in model work to derive equations by 
using "dimensional analysis." VVe did not use dimen
sional analysis in the conventional sense ( see Ligon, 
1961) to derive our key eqs. 35, 36 and 45. In essence, 
we developed our key equations from "the equation 
of continuity" ( see eq. 13 ) and Darcy's law ( see eq. 
14, and text following eqs. 18). 

Our results are for a sharp surf ace of saturation and 
for a constant drainable porosity. In the field, the sur
face of saturation is not sharp, and some conductivity 
occurs above it. This conductivity is known to be small 
( Swartzendruber and Kirkham, 1956 ). For considera
tion of the variability in the drainable porosity, see 
Taylor ( 1960 ). For measuring Kr for eqs. 35, 36 and 
45, see Kirkham ( 1946, 1955 ). 

Solving Field Problems by Using Model Data 

Time of drawdown prob lems 

PROBLEM 1. Suppose we wish to know the time 
it will take for the water table midway between each 
pair of a series of equally spaced drains to drop 1 ft. 
from the just unponded condition when the drains are 
100 ft. apart, 4 ft. deep, have diameter 0.5 ft. , there is 
a barrier 12 ft. below the drain tube centers and when 
the soil properties are: capillaiy fringe height, 0.75 ft. 
( capillary fringe height is analytically also a geometri
cal property ); drainable porosity, 5.4 percent; and hy
draulic conductivity, 0.81 ft. per day. 

Solution. Given data are: Zr = 1 ft. , a1 = 100 ft., 
dr = 4 ft. , 2rr = 0.5 ft. , hr - dr = 12 ft. (so hr= 16 
ft.), Cr = 0.75 ft ., fr = 0.054 and Kr = 0.81 ft ./ day 
(Kr/ fr= 15) . We want t r. 

To solve, we first see that Zf, ar, etc., and the other 
geometrical quantities obviously have been chosen to 
correspond to Case A of fig. 4, provided the scale is 
1 ft. in the field for 1 cm. in the model. So we take 
this scale. In particular we note that the capillaiy 
fringe height c1 = 0.75 ft. has been chosen to corre
spond to the 0.75 cm. model value. The problem does 
not involve the length of the field drains; one must 
assume that the fi eld drains are long compared with 
their spacing, the situation for which the model was 
designed. 

So we use Case A of fig. 4, and, to deal with its "x 
axis," we have from our field data and eq. 35 the ex
pression, 

tr( 0.81 ft. / day) tmKm 
(48 ) 

( 0.054 ) ( 1 ft. ) f11 ,Z111 
To get the right-hand side of eq. 48, draw a horizontal 
line through the "y axis" point, a = 100 cm. on fig. 4, 
Case A, and, where this line intersects the curve d = 
4 cm., read off on the "x axis," the value 

( t111 KnJ fmZm ) ½ = 7.0. ( 49 ) 
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From eqs. 48 and 49, now find 
tr ( 0.81 ft./ day) 
----- = 7.02

, (50 ) 
(0.054)(1 ft.) 

which, when solved for tr, yields 

tr= 3.27 days. (Answer Problem 1) (51 ) 

PROBLEM 2. The given data are as in Problem 1 
except that we take Kr as 8.1 ft. / day rather than 0.81 
ft. / day. We want t r. 

Solution. Since the geometry is that of Problem 1, 
we use the right-hand side of eq. 50, modifying only 
the left-hand side to find, in keeping with eq. 35, the 
result, 

tr(8.l ft. / day) 
------ = 1.0~, 
(0.054) (1 ft. ) 

which, when solved for tr, yields 
tr = 0.327 day. (Answer Problem 2) 

(52 ) 

PROBLEM 3. The given data are as in Problem 1 
except that fr = 0.027. We want tr. 

Solution. Since the geomehy is as in Problem 1, 
we use the right-hand side of eq. 50, modifying only 
the left-hand side to find, in keeping with eq. 35, the 
result, 

t,(0.81 ft./day) 
------=7.02, 

( 0.027 )( 1 ft.) 
which, when solved for tr, yields ( half the value of 
eq. 51 ) 

tr = 1.63 days. ( Answer Problem 3) 

PROBLEM 4. The given data are as in Problem 1, 
except that cr = 0.375 ft. rather than 0.75 ft. We want 
t r. 

Solution. Our model was not designed to give dif
ferent capillary fringe heights. Therefore, we cannot 
give an exact model solution. Two approximate solu
tions are possible. The first is to say that, with the 
lessened capillary pull across the top of the fl.ow me
dium , the time for the fall of the 1 ft. will be less 
than, but approximately equal to, the 3.27 days of 
Problem 1. The second approximate solution, but a 
more accurate one, is obtained as follows: First return 
to eqs. 11 and 13 to find from them 

fLwn 6 Z = K(d - Z - c - .6. Z/ 2)G11 .6. T, (53 ) 
where the subscript a has been added to w and to G 
to show that average values of w and G are required 
for exactness of eqs. 11 and 13 if finite space and time 
intervals 6. Z and 6 t, as here, are used . Notice that 
the "6. Z/ 2" takes care of the average value of Z in 
eq. 53. 

Next apply eq . 53 to the just-unponded condition of 
Problem 1 to find ( changing only T to t in eq. 53 ) 
the result, 

fLwn 6 Z = K(d - Z - c - 6 Z/ 2)G,. 6 t. (54) 



Next apply eq. 54 to the data of Problem 1 to £nd 

(0.054 )Lwa( l ft. ) = 
(0.81 ft. / day)(4 ft. -· 1 ft. - 0.75 ft. -

1 ft. / 2 )Ga L\ t. ( 55 ) 

Next apply eq. 54 to the data of Problem 4, to £nd 
(0.054 )Lwa' ( l ft.) = 

( 0.81 ft. / day ) ( 4 ft. - 1 ft. - 0.375 ft. -
1 ft. / 2 )Ga' 6 t' , ( 56 ) 

where the primes show that wa', Ga' and 6 t' are not, 
as is evident physically, the same as w,., Gn and 6 t of 
eq. 55. 

Next notice, by physical consideration of flo wnet 
changes which occur in the interval L\ t of eq. ,55, 
as compared with the corresponding changes that oc
cur for the interval 6 t' of eq . 56, that w,. and Gn will 
be approximately equal to wa' and G,.' , respectively, 
if the £rst parenthetical expression to the left of G, 
in eq . 55 is approximately equal to the corresponding 
parenthetical expression in eq. ,56. Now, since these 
parenthetical expressions are approximately equal , di
vide eq. 55 by eq. 56, taking C,, = G,, ' and w ,, = wn'. 
Then £ncl , after simpli£cation and solving for I\ t' , the 
result, 

( 4 ft. - 1 ft. -- 0.75 ft. - 1 ft. / 2 ) 
L\ t' = - ------- L, t ; ( 57 ) 

( 4 ft. - 1 ft. - 0.375 ft. - 1 ft. / 2 ) 
That is, £nd 

6 t' = [(1.75 ft.) / (2.12,5 ft.)] 6 t = 0.823 L\ t. ( 58) 

But the 6 t of eqs. 58 is just equal to tr = 3.27 days 
of Problem 1 ( eq. 51 ); and the 6 t' of eq . 57 is just 
equal to t r of our present Problem 4. So Rnd, £nally, 
from eqs. 57 and the noted values 

t r = 0.823 X 3.27 days = 2.69 clays. 
(Answer Problem 4) 

Comment 1: Comparing the answer of Problem 1 
with the answer of Problem 4, we see that the ch ange 
in the capillary fringe height from 0.75 ft. ( 9 in. ) to 
0.375 ft. ( 4.,5 in .) caused the time needed for the sur
face of saturation to fall 1 ft. to change from 3.27 days 
to 2.69 days. 

Comment 2: \ ,Ve have given considerable detail in 
solving Problem 4 since the problem shows that capil
lary fringe effects on drawdown times (a) may be im
portant and (b) may need to be taken into account for 
a variety of fringe heights , even though our model 
data are based on a single capillary fringe height, 0.75 
cm. 

Comment on problems 1-4: If, in problems 1-4, we 
had dr = 5 ft. instead of 4 ft. , we should then have 
worked from an interpolated line, cl = 5 cm., on £g. 4, 
Case A, instead of from the line d = 4 cm. For other 
depths, the procedure would be similar. 

PROBLEi\lI 5. Suppose all £eld data are as for 
Problem 1 except that the barrier is 0.50 ft. below th e 

center of the drain tube; i.e., h r - cl 1 = 0.5 ft. What 
is tr then? 

Solution. \Ve proceed as for Problem 1 except that 
we use Case B of Rg. 4. From it we £nd ( for a = 100 
cm. and cl = 4 cm. ) the value, 

( tmKm/ fmZm) 1/o = 13, 
so that eq . 48 becomes 

tr( 0.81 ft. / day ) 
------- = 132

, 

( 0.054 ) ( 1 ft. ) 
from which we £nd 

tr = ( 169/ 15 ) days = 11.27 days. ( 59 ) 
(Answer Problem 5) 

Comment: The result of eq . 59 shows, when com
pared with that of eq . 51, that "raising" the barrier 
from 12 ft. below the drain centers to 0.5 ft. below 
their centers increases the drawdown time for the 1 ft. 
from 3.27 clays to 11.27 days. 

PROBLEM 6. Suppose the £eld data are as in 
Problem l except that we have hr - dr = 6 ft. ( and 
except, since dr = 4 ft. , we have hr = 10 ft. ) . What 
will tr then be? 

Solution. \Ve do not have model data for hm - elm 
= 6 cm. , when ,ve take, as we have taken so far, 1 cm. 
of model to correspond to 1 ft. in the Reld. But 1 cm. 
of model does not have to be 1 ft. in the Reld. \Ve can 
use instead ( see eqs . 18) the relations 

hr - dr 6 ft. 1 ft. 
--- = -- = -- = n. (60 ) 
hm - dm 12 cm. 2 cm. 

Then, the geometrical Reld values, namely, Zr = 1 ft., 
ar = 100 ft. , dr = 4 ft., 2rr = 0.5 ft. , h r - df = 6 ft. 
( with deduced value hi' = 10 ft. ) and C( = 0.75 ft. , 
needed on the model would be : 

2rm - - 1 cm., h 111 - dm - 12 cm., ( 61 ) 
Z 111 • 2_:m. , am = 200 cm.~111 = 8 cm., } 

hm = 20 cm., Crn = 0.375 cm. 
The dos.es t model case we have, corresponding to 

eqs. 61, is that of part A of fig. C-3 ( when d = 8 cm., 
and a = 200 cm. ) for which we have 

21 111 - 0.5 cm., hm - dm - 12 cm. , ( 62 ) 
Zill _ :_Cm., am = 200 cm., dm = 8 cm., } 

h,, , = 20 cm., c111 = 0.75 cm. 

So, keeping in mind the discrepancies in 2rm and Cm 

in eqs . 61 and 62, let us use Rg. C-3, part A, and its 
associated conditions, eqs. 62; and then see if the re
sult we obtain can be modi£ed to Rt eqs . 61. 

Drawing a horizontal line through the "y axis" of 
Rg. C-3, part A, at a = 200 cm. and reading, on the 
"x axis," the value corresponding to the intersection 
of the horizontal line ,vith the curve cl = 8 cm., we 
obtain 

( t, 11 K11,/f 111Zm) ½ = 8.5; 
that is, we have 

( 63 ) 
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or, using subscripts 2 to denote conditions of eqs. 62, 
we have 

t2K2/ f2Z2 = 72.25, ( 2r2 = 0.5 cm., ( 64 ) 
C2 = 0.75 cm. ). 

Now we ask: How can eq. 64 be modified for the 
conditions of eqs. 61? 

To get the answer, we call upon a result of Kirkham 
( 1949, p. 376, eq. 16 ) which shows that the rate of 
intake Q' of water per unit area into the soil, at any 
distance x from the drain and so at x = a/ 2 as for our 
present case, in a just-ponded condition, is directly to 
proportional to a quantity Q ( not the Q of our eq. 38). 
This Q is the outflow rate per unit length of drain 
tube, and is given by Kirkham ( 19,19, p . 374, eq. 11) as 

Q = 21rK(t + d - r )/D, (65 ) 

in which ( with m = 1,2, ... , oo ) D is defined by 
tan[1r(2d - r) / 4h] 

D = ln --------
tan ( m / 4h ) 

m7Ta 1rr 
oo cosh -- + cos -

2h 2h 
+ l ln --------

m1ra 1rr 
m=l cosh -- -- cos -

2h 2h 

m1ra 1r( 2d - r ) 
cosh - - cos ----

2h 2h 
(66 ) 

m1ra 1r( 2d - r ) 
cosh - + cos ----

2h 2h 

In eqs. 65 and 66, we remark that Kirkham's nota
tion is the same as ours except that he uses t for thick
ness of ponded surface water, whereas we use t for 
time; he also uses Q for discharge volume per unit 
time per unit length of drain tube, whereas we use 
Q / L. Kirkham' s t must, for our case, be replaced by 
-c, since we are concerned with water that has just 
become unponded. Also, Kirkham's r in the expression 
for head difference, "t + d - - r," must be replaced by 
zero, since Kirkham's drains discharged at the level 
y = r, and ours discharge at y = 0. 

So eq. 65 in our notation should read ( Q now being 
as in eq. 38, etc.) 

Q/ L = 21rK(d - c) / D, ( 67 ) 

where 
D = right-hand side of eq. 66. ( 68 ) 

In eq. 67 notice that 21rK./D is the hydraulic con
ductance of the flow medium and that d-- c is the 
d1iving head. 

For eq . 67 to apply, we have seen that there could 
exist no ponded surface fluid, so that Q/ L now be
comes proportional to the amount of fluid passing unit 

area per unit time through the soil, as the surface of 
saturation falls . But this amount of fluid, for small Z 
and t is equal to ( Z/ t )f. So, in view of our statement 
preceding eq. 6!5 we can say, for geometries as in
dicated by :fig. 8 ( but with Z much smaller than in fig . 
8) that (Z/ t )f is , if Lis constant, given by 

(Z/ t )f = B 21rK(d - c) / D, 

where B is a constant of proportionality. Or, we can 
say, for two models, 1 and 2, in which L is equal and 
Z is small , that we have 

t1Ki/f1Z1 

t2Kd f2Z2 

D1 ( d2 - c2) 

D2( d1 - C1 ) 
( 69 ) 

Now, consistent with our use of subscripts in eq. 64, 
we may write 

subscripts 1 apply to eqs. 61 ( 70 ) 

subscripts 2 apply to eqs. 62 ( 71 ) 

From statements 70 and 71 and eqs. 64 and 69, we 
now have 

(72) 
72.25 D 2 ( 8 - 0.375 ) 

in which D1 and D 2 need to be determined. 
For D1 we find, in view of eq. 66 and statement 70 

tan[1r ( l6 - 0.5) / 80] 
D1 = ln -------- + sums, ( 73 ) 

tan( 7T 0.5/ 80 ) 

where the "sums" involve a1 = 200 cm., and are here 
negligible. 

So performing the operations in eq. 73 and ignoring 
the stuns we find 

D1 = 3.56. 

Likewise, we find from eq. 66 and statement 71 
tan[1r(l6 - 0.25) / 80] 

D 2 = ln --------- = 4.28 
tan( 7T 0.25/ 80) 

( 74 ) 

(75) 

Putting the right-hand side of eqs. 74 and 75 in eq. 
72 we find 

t1K1 3.56 7.25 
72.25- --

f1Z1 4.28 7.625 

( 72.25 ) ( 0.832) ( 0.951 ) = 57.1 ( 76 ) 

which is the sought-for result for the conditions of 
eq. 61. Eq. 76 shows, in keeping with our physical in
tuition, that: (a) for the larger drain tube, the draw
down time is reduced (here by the factor, 3.56/ 4.28 
= 0.832, see eq. 7 4 and 75 ) ; and ( b ) for the smaller 
capillary pull, the drawdown time is also reduced 
( here by the factor, 7.2.5/ 7.625 = 0.951, see eq. 72 ). 
Our result ( b ), that the smaller the capillary fringe 
the faster is the drawdown, has been observed in an 
electric analogue model by Childs ( 1947 ). 



The value of t1Ki/f1Z1 given by eq. 76, is not as 
accurate a value as we can obtain because our correc
tion factors 3.56/ 4.28 and 7.25/ 7.625 in eq. 76 were 
based on the conditions for Z = 0 ( just unponded 
fluid) ; whereas our time t1 of eq. 76 depends on the 
continuously changing conditions of the Row medium 
as it changes from the condition when Z = 0 to the 
condition when Z = 2 cm. To get better correction 
factors, we refer to table A-1, subtable 27c, which ap
plies to fig . C-3. In subtable 27c, in the fifth and 
second columns and for t = 58 min., we see that the 
surface of saturation falls from Z = 0 to Z = 2.3 cm. 
- say 2 cm. - midway between drains; while over 
the drain ( x = 0 ), we see that the surface of satura
tion drops from z = 0 to z = 6.1 cm. - say 6.0 cm. 
Thus, this subtable shows that a space and time aver
age value of d ( for the equivalent rectangular flow 
medium of Kirkham ) to use in our correction factors 
D1 and D 2 in the right-hand side of eq. 72 should be 
equal to [8 + ( 6 + 2 )/ 2] / 2 = 6 cm. rather than the 
8 cm. we used. 

So the right-hand side of eq. 73 would be replaced 
by ( neglecting the sums ) 

tan 1r( 12 - 0.5 ) / 80 
In------ = 3.21 ( 77 ) 

tan 1T 0.5/ 80 
and the "In" expression in eq. 75 would be replaced 
by 

tan 1r( 12 - 0.25 ) / 80 
In ------= 3.93. ( 78 ) 

tan 1T 0.25/ 80 
It would seem now offhand that the ratio ( d2 - c:!) 

/ ( d 1 - ci) for our improved correction factor, right
hand side of eq. 69, should be (6 - 0.75)/ (6 -- 0.375). 
But this is not h·ue because ( d" •- c1 ) / ( d1 - c 1) 
should apply to the central flow line of our interest, 
ABCD of fig . 8-not to an average ( with space ancl. 
time) flow line starting somewhere between A and J 
of fig. 8. So we consider the average head across the 
flow line ABCD which, for our case of 2 cm. fall , is 
( 8 + 6 ) / 2 = 7 cm., if we ignore capillary pull for 
the moment. Taking the capillary pull into account, 
our head correction ratio becomes 

(7 - 0.75 )/ (7 - 0.375 ) = 6.25/ 6.675; ( 79 ) 
and instead of eq. 76 we now have, using, in eq. 72, 
the right-hand sides of eqs. 77, 78 and 79, the result 

t1K1 3.21 6.25 
- = 72.25--- = 
f1Z1 3.93 6.675 

( 72.25 ) ( 0.817 ) ( 0.937 ) = 55.3. ( 80) 
\,Ve may now quickly obtain the answer to Problem 

6. Since eq. 80 applies to a model with the conditions 
of eq . 61, we may write, in keeping with our notation 
in problems 1-5, the equations, 

tmKm trKr 
-- = 55.3 = - , (81) 

f,,,Zm fr Zr 

where the right-hand side applies to the field condi
tions given above eqs. 61 and where Kt and fr are as 
given in Problem). So we have 

tr( 0.81 ft. / day ) 
----- = 55.3. 

(0.054) (1 ft. ) 
That is, we have t r = ( 55.3) ( 0.15 ), or 

tr = 8.30 days. ( Answer Problem 6 ) ( 82) 

Barrier effect prob lem (Problem 7) 

PROBLEM 7. Noting that the answers tr, to prob
lems 1, 5 and 6 are all for Zr = I ft. , ar = 100 ft., dr = 
4 ft. , 2rr = 0.5 ft. , cr = 0.75 ft. , fr = 0.054, and Kr = 
0.81 ft. / day, but for hr - dr are, respectively, 12 ft ., 
0.5 ft. and 6.0 ft. , determine the "barrier effect," that 
is, obtain a plot of tr versus h1 - dr. 

Solution. We first prepare the following schedule: 
Prob. No. Eq. No. h r - dr tr 

5 59 0.5 ft. 11.27 days 
6 82 6.0 ft. 8.30 days 
I 51 12.0 ft. 3.27 days 

and then make the curve of fig. 9 which is the Answer, 
Problem 7. 
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F IC . 9. Time t , in the field for the water table to fall 1 ft. 
from the just-ponded condition for various depths ( h , - d,) of 
the barrier layer below the tile centers when a, = 100 ft ., 
d , = 4 ft., 2r, = 0.5 ft., f, = 0.054 and K, = 0.81 ft ./day. 
Theorectically, t, should become constant as h , - d, becomes 
large. 

Drain tube discharge problem (Problem 8) 

PROBLEM 8. Suppose we wish to know the cubic 
ft. per sec. of water discharging from each drain tube 
of Problem I per 100 ft. of drain tube length at the 
instant when Zr is I ft. Our problem thus is: Find Qr 
when Zr = I ft. and Lr = 100 ft. 

Solution. We observe that fig. 6, Case A, a = 100 
cm., applies; and that, to obtain values for its "x axis," 
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we should use eq. 47. Therefore, we put our data from 
Problem 1 into eq. 47 to find 

( 3.27 days) ( 0.81 ft./ day ) 

( 100 ft.) ( 0.054) 

trnKw 
= 0.490 = -

which gives, since for our model we have f111 = 0.4, 
the result, 

tmKm/ am = (0.4)( 0.490 ) = 0.1960, 
or 

( tmKm/ am) \'2 = 0.443. 

We now spot this "x axis" value 0.443 on fig. 6, Case 
A, for the spacing a = 100 cm., and read off for cl = 
dm = 4 cm., the "y axis" value 

Q/ KLd = Qm/ KmLmdm = 0.38. ( 83) 

Next, looking at eqs. 45 and 83_, we ,vrite down 

Qt/KrLrdr = 0 .. 38, 

which yields, with our given field data, 

Qr= (0.38 )( 0.81 ft. / day )( lOO ft. )( 4 ft. ) 
= 123 ft. 3/ day. (Answer Problem 8.) 

This is a small rate, but it is the value of Q as found 
a fairly long time, 3.27 days, after surface water dis
appeared, and it is a value for the low conductivity 
Kr = 0.81 ft. / day. The largest value of Q would be 
for t = O; but we cannot extrapolate this largest value 
from figs. 6 and 7. The maximum value of Q can be 
obtained by using the ponded water drainage formulas 
given in Kirkham' s article in Lu thin ( 1957) . 

Problem Solution by an Alternate Method 
The problem examples have all been for Case A or B 

of table 1. Principles, however, have been brought out 
for solving field problems for the other cases . \Ve con
clude our problem examples by solving Problem 1 by 
an alternate method using eq. 4. 

First put the data of Problem 1 in eq. 4 to find 

log1o(tK/ fZ ) = - 0.487 + 1.606 log10(100/ 4) ; 

which yields 

( tK/ fZ ) ½ = 7.52. (84) 

Now replace 7.0 in eqs. 49 and 50 by the 7.52 of eq . 
84 to find upon solving the resulting eq. 50 for the 
time, now denoted by tr' rather than tr, the result 

tr'= 3.77 days. 

Here tr' is larger than tr = 3.27 days of eq . 51, be
cause in eq. 4 all the model values for a/ d for Case A, 
table 1, were combined into a single equation. The 
latter value, 3.77 days, is more straightforward to cal
culate but is not as accurate as the former value, 3.27 
days, because the 3.77 value resulted from combining 
data not accurately belonging to the same statistical 
population, seen before eq. 2. 
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Test of Model Data With Glover's Theory; 
Other Theories and Data 

To keep this report within bounds, we test our data 
against only one theory, namely, Glover's "first equa
tion," as repmted by van Schilfgaarde, et al. ( 1956, 
esp . eq. 17 ). The Glover equation for the drain spacing 
a is 

[ 

k(h - d + O.5d )t 7½ 
a - ------J (85 ) 

- f ln ( 4/ ?T )d/ ( d - Z) ' 

which may be written in the form, 

a = Af"', (86 ) 

where A is the coefficient of t½ in the right-hand side 
of eq. 85. The test consists of comparing slopes A of 
experimentally obtained graphs ( fig. 10) , values, 40, 
32 and 26, with the corresponding slopes, 36.2, 32.8 
and 28.4 ( fig. 10, the inset table), computed from eq . 
85. The agreement is considered good in view of 
Glover's limitations which are: Equation 85 should 
have h - d = d << a (we have, for fig. 10, h - d 
= 12 cm. and a = 50 to 400 cm.) and should have 
cl < < h - d ( we have for fig. 10, d = 4, 6 and 8 cm. 
and have always h - d = 12 cm.) ; and should have 
no capillary fringe ( we have 0.75 cm. fringe) and, 
finally, should have the time period t sufficiently large 
that the second and subsequent terms can be dropped 
from an infinite series which occurs in the derivation 
of eq. 86 ( the times we used made the second tenn of 
the series about 12 percent of the first ) . Notice that 
eq. 86 is not of the form a/ d = At½, a form which 
would be correct only if the coefficient of log10 (a/ cl ) 
in eq . 4 were 1/ 0.500 = 2.000, instead of 1.606, as 
there. But eq. 5, Case B ( but not the other cases) 
gives the form a/ cl = At½, ve1y nearly, since the co
efficient 1.986 in eq. 5 is ve1y nearly 2.000. 

The veTification of eq. 86 indicates that ( under the 
conditions of fig. 10 ) drain spacing increases as the 
square root of time. Thus, if a crop, such as potatoes 
(see Luth.in 1957, p. 540), needs 1 ft. of drawdown in 
36 hrs., and alfalfa needs 1 ft. of drawdown in 72 hrs ., 
then the drain spacing for the alfalfa could be ( 72/ 
36) ½ = 1.41 times as great ( not twice as great) as 
that for potatoes. Little is known, however, about 
drawdown times needed by different crops. 

Equation 86 may be called a "drawdown law." The 
law appears to apply well to most of the cases of fig. 
4 and of figs. C-1, C-2 and C-3. But the fact that a 
square root of time law appears valid for most of the 
cases does not mean that the coefficient A of eq. 86 can 
be computed from eq. 85 in all cases. 

The "drawdown law" may be inte11)reted a different 
way. Sometimes a field may be tiled at large spacing, 
with the thought that if drainage is not adequate, til es 
may be placed midway beween the original ones. The 
law indicates that such halving of the spacing would 
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FIG . 10. Comparison of experimental slopes of cmves of model data with slopes computed by Glover's theory ( see van 
Schilfgaarde et al. , 1956 ) . The data points a re for the three tile d epths, cl = 4, 6 and 8 cm., of case A of t able B-1 where Z = 
1 c'm. The depth of the tile barrier below the tile centers is 12 cm. 

cut the time period for a certain draw<lown to one
fourth the time for this same clrawdown und er tlw 
conditions of the original tiling. 

Some other theories and other data, which in future 
work may be compared and analyzed with those of 
this report, may be mentioned as follows : Childs 
( 1947 ); Kirkham and Gaskell ( 1951 ) ; Wesseling 
( 1956 ); Visser ( see Lu thin, 1957, pp. 96-98 ); Isher
wood ( 1959 ); Breitenoder and Zanker ( 1960 ) [ who 
used a "H ele-Shaw model," one in which a viscous 
fluid flows , under gravity, bet\veen plane sheets a 
small distance apart-a description of a recently made 
Hele-Shaw model is given by van '\Vijk ( 1960 ) ]; Brut-

saert, Taylor and Lu thin ( 1961 ); Brooks ( 1961 ); and 
Visser ( 1962 ). One finds that the data in these refer
ences are generally for narrower spacings of drains 
than we used and, thus, are not usually applicable in 
practice, except where close spacings ( less than 50 ft. 
-our data go to 400 ft. ) drains are used. The most 
extensive data cited are those of Breitenoder and 
Zanker ( 1960 ) who consider drain spacings up to 15 
meters. The data in the cited literature are mainly for 
the wa ter table height midway between drains and 
seldom cover conditions over the whole water table 
arch ( as does our table A-1 ); layered soils are not 
considered. 

SUMMARY 
Over 800 "water tables," in a glassbead-glycerol 

model , have been photographed. Data from them 
have been tabulated and, in part, graphed to show 
how water tables fall with time for a large number 
( 109 ) of different geometries in simulated tile-drained 
soil. The "soil" is either homogeneous or stratified . The 
tabulated basic data are depths to water table versus 
time for positions (a) midway between pairs of drain 
tile, ( b ) above the tiles and ( c) at two intermediate 
points, so that the whole water table arch is denned . 
The tile spacings are 50, 100, 200 and 400 cm.; depths 
below the tile axes to an impermeable barrier are 12 
cm . and 0.5 cm. One cm. of model may be convenient-
ly taken as 1 foot in the fi eld , but other scales arc 

shown to be suitable. For about half of the 109 geo
metries, til e discharge rates were measured as they 
varied with time of water table fall ; these discharge 
rates are presented graphically. The water table and 
discharge data are for spacings up to 400 ft .; previous 
model data usually have been for spacings less than 
50 ft. 

Convenient, dimensionless equations are derived 
which relate the model data to field conditions. Eight 
examples of field problems are worked out in numer
ical detail by use of the derived equations. The 
tables, graphs and derived equations aid in under
standing and in solving practical drainage problems; 
furth ermore the tables and graphs furni sh a source of 
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experimental data for checking theories of falling 
water tables yet to be discovered. One "defect" which 
could not be avoided in the data is the approximately 
0.75 cm. high "capillary" fringe ( apparently resulting 
more from viscosity than capillarity) of the model. 
This 0.75 cm. fringe corresponds to about 0.75 ft . of 

capillary fringe in the field for one modeling scale 
noted, and about 0.375 ft. for another. Corrections for 
other capillary fringe heights may be made. The exist
ence of a capill~ry fringe increases drawdown time. 
A square-root-of-time "drawdown law" is indicated by 
the data for many tile drainage situations. 

LITERATURE CITED 

1. Breitenoder, M. and K. Zanker. Der Entzug des in 
Mineralboden eingedrungenen Niederschlags
wassers durch die Dranung. In, Schriftenreihe 
des Kuratoriums for Kulturbauwesen, vol. 8. 
Verlag Wasser und Boden, Hamburg. 1960. 

2. Brooks, R.H. Unsteady flow of ground water into 
drain tile. Journal of the Irrigation and Drain
age Division, Proc. Amer. Soc. Civil Eng. Sepa
rate 2836, Vol. 87, No. IR 2, pp. 27-37, June 
1961; and Discussion, Separate 3011, same vol. , 
No. IR 4, p. 85, Dec. 1961, with Russian work 
cited there. 

3. Brutsaert, Wilfried, G. S. Taylor and J. N. Luthin. 
Predicted and experimental water table draw
down during tile drainage. Hilgardia 31:389-
418. 1961. 

4. Childs, E. C. The water table equipotentials and 
streamlines in drained land. V. The moving 
water table. Soil Sci. 63:361-376. 1947. 

5. Grover, Ben L. Non-steady state water tables of 
tile drainage. Unpublished Ph.D. thesis. Iowa 
State University Library, Ames, Iowa. 1959. 

6. ----- and Don Kirkham. A glassbead-glycerol 
model for non-steady-state tile drainage. Soil 
Sci. Soc. Amer. Proc. 25 :91-94. 1961. 

7. - ----, J. T. Ligon and Don Kirkham. Opera
tional characteristics of the laterals near the 
edge of a tile drainage system. J our. Geophys. 
Res. 65 :3733-37.38. 1960. 

8. Isherwood, J. D. Water-table recession in tile
drained land. Jour. Geophys. Res . 64:795-804. 
1959. 

9. Kirkham, Don. Proposed method for field meas
urement of permeability of soil below the water 
table. Soil Sci. Soc. Amer. Proc. of 1945. 10: 
58-68. 1946. 

10. -----. Potential flow into circumferential open
ings in drain tubes. Jour. Applied Phys. 21: 
655-660. 1950. 

11. -----. Seepage of steady rainfall through soil 
into drains. Trans. Amer. Geophys. Union 39: 
892-908. 1958. 

12. -----. Measurement of tl1e hydraulic conduc
tivity of soil in place. Symposium on permea-

42 

bility of soils. Special Technical Publ. 163, 
Am. Soc. for Testing Materials, pp. 80-97. 1955. 

13. ---- - and R. E. Gaskell. The falling water ta
ble in tile and ditch drainage. Soil Sci. Soc. 
Amer. Proc. 15:37-42. 1951. 

14. Ligon, J. T. Models of unsteady state flow in por
ous media applied to soil drainage. Unpub
lished Ph.D. thesis. Iowa State University Li
brary, Ames, Iowa. 1961. 

15. -----, H. P. Johnson and Don Kirkham. Un
steady-state drainage of fluid from a vertical 
column of porous material. Jour. Geophys. Res. 
67 :5199-5204. 1962. 

16. Luthin, J. N. (ed.). Drainage of agricultural land. 
Amer. Soc. Agron., Madison, Wisconsin. 1957. 

17. -----. The falling water table in tile drainage. 
II. Trans. Amer. Soc. Agr. Eng. 2:44-45. 1959. 
(See also part III in the same issue and part I 
cited.) 

18. Maasland, M. Article in: Drainage of agricultural 
lands, J. N. Luthin (ed.) . Amer. Soc. Agron. , 
Madison, Wisconsin. 1957. 

19. Muskat, M. The flow of homogeneous fluids 
through porous media. J. W. Edwards, Ann 
Arbor, Mich. 1946. (Esp. pp. 134 and 621.) 

20. Swartzendruber, D. and Don Kirkham. Capillary 
fringe and flow of water in soil. Soil Sci. 63: 
473-484. 1956. 

21. Taylor, G. S. Drainable porosity evaluation from 
outflow measurement and its use in drawdown 
equations. Soil Sci. 90:338-343. 1960. 

22. van Schilfgaarde, J., Don Kirkham and R. K. Fre
ve1t. Physical and mathematical theories of tile 
and ditch drainage and their usefulness in de
sign. Iowa Agr. Exp. Sta. Res . Bul. 436. 1956. 

23. van vVijk, vV. R. Simple models for demonstration 
of flow of groundwater. Netherlands Jour. Agr. 
Sci. 5:176-179. 1957. 

24. Visser, W. C. Wie beeinflusst das Speichenmgs
vermogen den Dranabstand. Zeitschrift for 
Kultmtechnik, Vol. 3, No. 2, pp. 84-90. 1962. 

25. Wesseling, J. Tile drainage research. Netherlands 
Jour. Agr. Sci. 2:254-259. 1956. 



~PPENDIX A 

Table A-1. Value of z (cm.) versus x (cf. prut A of £g. 1) for x = 0, O.la, 0.2a and 0.5a, for the various clock times t (min. ) of 
the photographed falling surfaces of sa turation for the conditions listed in table 1. 

X 

0 O.l a 0.2a 0.5a 
min. cm. cm . cm. cm. 

24a; 0 d=2cm., a=50cm. 

2 
4 
6 

10 
12 
14 
16 
18 

2 
4 
6 
8 

10 
12 
14 
16 

2 
4 
6 
R 

10 
12 
14 
16 

2 
4 
6 
8 

10 
12 

2 
6 

10 
14 
18 
22 
26 
30 

2 
4 
6 

10 
14 
18 
26 
34 

2 
6 

10 
14 
18 
22 
26 
30 

4 
6 

10 
15 
lR 
26 

1 
2 
4 
6 
8 

10 
12 
14 

0.8 
1.1 
1.2 
1.3 
1.4 
1.4 
1.4 
1.4 

0.4 
0 .7 
0.8 
0.9 
0 .9 
0 .9 
1.0 
1.0 

0.3 
0.3 
0.4 
0 .7 
0 .7 
0.7 
0 .7 
0 .8 

25a; 0 d =4, a=50 
1.9 1.1 0 .5 
2 .0 1.6 1.2 
2. 1 1.9 1.5 
2 .4 2.0 1.8 
2.4 2 0 Ul 
2.4 2.1 2.0 
2.5 2.3 2.1 
2.5 2.4 2.2 

26a; d= 6, 
2.2 1.8 
3.1 2.2 
3 .7 3.0 
3 .R 3.2 
4.0 3.4 
4.0 3 .7 
4.0 3 .8 
4.1 4.0 

27a; d= R, 
2.2 2 0 
3.7 2.9 
4.5 3.9 
4.9 4.2 
5.3 4.8 
5.8 5.0 

28a; d=2. 
0 .8 0.1 
1.0 0.5 
1.0 0.8 
1.2 0 .8 
1.3 0 'l 
1.3 0 .9 
1.4 1.0 
1.4 1.0 

29a; d=4, 
1.6 0.7 
2.1 1.1 
2.3 1.4 
2.5 1.9 
2.7 2 .0 
2.9 2.4 
3.0 2.5 
.3 .0 2.7 

2.3 1.3 
.3.5 2.3 
3 .9 2.9 
4 . .3 3.1 
4 .6 .3 .2 
4.7 .3 . .3 
4 .7 .3.6 
4 .9 3 .7 

31a; d=8. 
4.2 2.6 
4.8 3 .0 
,5.6 4.0 
,5,9 4.5 
R.] 4.R 
6.8 5.2 

32a; d=2, 
0 .4 o.o 
0.8 0.1 
1.2 0 . .3 
1..3 0 .5 
1.4 0.7 
1.5 0 .8 
1.5 0 .9 
1.6 1.1 

a= 50 
1.2 
1.9 
2.1 
2 .7 
3.0 
3 .3 
3 .7 
3 .9 

1..5 
2.3 
3. 1 
3 .7 
4.1 
4.4 

a= 50 
0 .0 
0 .2 
0 .4 
0 .5 
0 r, 
0 .6 
o.s 
0 .8 

n=.50 
0 .2 
0 .7 
0.9 
1.1 
1.4 
1.6 
2.0 
2.2 

0 .7 
1.8 
2.3 
2.7 
2.9 
.3.0 
,3, ] 
3.2 

a= 50 
1.7 
2.2 
2.9 
3.7 
!l.9 
4.7 

0.0 
0 .1 
0.2 
0 .5 
0 .6 
0.9 
1.0 
1.1 

0 .0 
0.1 
0 .2 
0.4 
0 5 
0 . .5 
0 .fl 
0.6 

0 .2 
0 .7 
1.1 
1.5 
l.7 
1.8 
2.0 
2.0 

0.f! 
1.3 
1.9 
20 
2 .6 
3 .0 
3.3 
3.3 

0.<1 
1.8 
2.3 
3.1 
3.8 
4.0 

0 .0 
0 .1 
0.1 
0.2 
fl .!1 
0 .3 
0.4 
0 .. 5 

0.0 
0 .2 
0 .,3 
0 .8 
l.O 
l.l 
1.4 
1.7 

0.2 
0.8 
1.2 
1.5 
2.1 
2.7 
3 .0 
3 .0 

0 .7 
1.0 
1.9 
3 .2 
,3 ,3 
4.4 

0.0 
0 .0 
01 
0 3 
0 .5 
0.7 
0.7 
0 .9 

X 

0 O.l a 0.2a 0 .5a 
min . cm. cm. crn. cm. 

2 
4 
6 

10 
14 
18 
26 
42 

2 
4 
6 

10 
14 
18 
42 
.58 

2 
4 
6 

10 
14 
]fl 
26 
,34 

18 
22 
26 
34 

2 
6 

10 

18 
26 
40 
.58 

2 
6 

10 
l'l 
42 
58 
90 

120 

3 
6 

lO 
18 
26 
34 
42 
.58 

6 
10 
15 
19 
26 
42 
58 
90 

2 
4 
6 
8 

12 
16 
20 
30 

24h; 0 d=2cm ., n= l00cm. 

0 .3 
0 .5 
0.6 
0 .8 
0 .8 
0.8 
0.8 
0.9 

0 .1 
0.3 
0.4 
0.4 
0.5 
0.6 
0.7 
0 .9 

25b; 0 d= 4, 
1.6 0.4 
2.0 0 .9 
2.2 1.3 
9..2 1.6 
2.3 1.7 
2.4 L.9 
0,,7 2.3 
2.8 2 . .5 

0 .0 
0 .1 
0.1 
0.2 
0 .3 
0 .4 
0 .6 
0 .9 

a= lOO 
0 .1 
0.4 
0.7 
1.0 
1.4 
1.5 
2.0 
2.2 

26b; d= 6. a= lOO 
2.1--1.0- ·- 0 _3-
2.9 1.8 0 .9 
3.4 2.0 1.4 
3 .9 2.3 l.!'l 
4 .0 2.9 2 1 
4.1 3.2 2.5 
4 .2 3.9 3.0 
4.3 3.9 3 .7 

27b; d= 8 , a= lOO 
.5 ,2--4 .1--3.,3 
5.R 4.4 3.9 
5.8 4.7 4.0 
fi.O .5.1 4.7 

28 h; <l= 2. a= IOO 
0 .7 0 .0 0 0 
0.9 0.1 0 0 
1.0 0.2 0.0 

1.0 
1.0 
10 
1.0 

0.6 
0 .6 
0 ~ 
0.9 

29b; d=4 , 
1..5 0.2 
2.8 0.9 
2.9 1.1 
a.o 1.r, 
3.2 2.3 
3 .2 2.3 
3.2 2 .5 
3.2 2.7 

.30b; d=6, 
2.4 0 .8 
3 .6 1.4 
4.2 2.0 
4,4 2.7 
4.7 2.7 
4 .8 2 .9 
4.9 3.0 
4.9 3 . .3 

3 1b ; d= 8. 
4.7 2 .0 
5 .2 2.8 
5.7 3.1 
6.0 3.4 
6.3 3.9 
6 .7 4.6 
6.7 4.9 
6.8 5 .2 

32b; d=2, 
0.5 0 0 
0 .8 0.1 
0 .8 0.2 
0 .9 0.3 
1.0 0 .5 
1.1 0 .5 
1.1 0 .7 
1.1 0.9 

0.1 
0 .2 
04 
0.6 

a=lOO 
0 .0 
0 .1 
0 .4 
0.8 
1.3 
1.6 
2. l 
2 .3 

a= lOO 
0 3 
0 .8 
1.0 
1.5 
2.0 
2 . .3 
2.5 
2 .8 

a= lOO 
1.0 
1. .3 
1.9 
2.3 
2.8 
3.!l 
3 .9 
4.9 

a=lOO 
0 .0 
0 .1 
0 .1 
0.2 
0 . .3 
0 . .3 
0 .4 
0 .7 

o.o 
0.0 
0 .0 
0.1 
0 .2 
0.3 
03 
0.7 

0.0 
0.0 
0.1 
0.3 
O.R 
0 .9 
l.9 
2.0 

00 
0.2 
0.4 
l.1 
l r, 
2 0 
2.4 
3.0 

2 . .5 
3.0 
3 .4 
4.0 

o.o 
0.0 
0.0 

0 .0 
no 
0 9. 
0.2 

o.o 
0 .0 
0.1 
02 
0 .8 
1.1 
l.4 
l.8 

0.0 
0 .l 
0 .2 
0.6 
0 .9 
1.0 
l.2 
1.7 

0. 2 
05 
0 9 
1.0 
l.3 
2.5 
3 .0 
3.9 

0 .0 
0.0 
0 .1 
0 .2 
0 .2 
0 3 
0 .,5 
0 .7 

X X 

0 0.l a 0 .2a 0 .5a 0 O.la 0.2a 0 .5a 
min. cm. cm. cm , cm. min. cm. cm. cm. cm. 

__g_4c; d=2cm., a=2~- 24d; d=2cm., a=400cm. 

2 0.6 
6 0 .8 

0.2 
0 .2 
0.3 
0 .5 
0 .6 
0.8 
1.0 
1.1 

o.o 
0.1 
0.2 
0 .3 
0.5 
0.5 
0 .8 
0 .9 

10 0 .9 
18 0.9 
42 0 .9 
.58 0.9 
90 0 .9 

120 0 .9 

2 
6 

12 
18 
43 
58 
90 

120 

6 
10 
18 
26 
42 
58 
90 

2 
6 

10 
18 
26 
42 
.5 ~ 
90 

4 
LO 
26 
42 
58 

120 
1''0 
280 

4 

10 
LS 
i n 
42 
58 

120 
180 

3 
14 
26 
42 
.58 
90 

180 
240 

2 
4 
6 
8 

10 
20 
30 
59 

2.5c; d=4, 
1.9 0 .2 
2.4 0 .6 
2.6 1.3 
2.8 1.5 
2 .ll 2.0 
2.8 2.1 
2 .9 2.3 
2.9 2.4 

26c; d= 6, 
3 .2 1.2 
3.7 1.8 
4 .0 2.2 
4.0 2.5 
4.2 3 .3 
4 .2 3.4 
4.3 3.8 

a=200 
0 

0 .1 
0.3 
0 .7 
1.5 
1.8 
2.0 
2.2 

='200 
0~ 
0 .6 
1.4 
1.9 
2.J 
2.7 
3.4 

27c; d =8, a= 200 
2.2--0.6--0.1 
4.2 1.8 0.5 
4 .9 2.3 1.2 
5.7 3 .2 1.9 
5.8 3 .7 2.3 
6.0 4.2 3 .1 
R,J 4.6 3 .8 
6.1 .5.2 4.4 

29c; d = 4. 
1.7 O.l 
2.2 o .. 5 
2 .5 1.0 
2.7 1.1 
2.8 1.2 
2 .8 2.1 
2.8 2.2 
2.9 2 . .3 

9 fl O !l 
3 .6 0.9 
4 0 l _4 
4.] 1 .8 
4 .4 2.1 
4.7 2.6 
4 .7 .3.0 
4 .8 3.1 

31c; cl=8. 
3 .0 0.4 
5.3 1.8 
5.9 2.8 
6.2 3 .0 
6 .5 .3 .4 
6.6 .3 .7 
6 .7 4.6 
6 .8 5.0 

.32c; d=2, 
0 .6--0- 0 
0.7 0.0 
0 .7 0 .1 
0 .7 0.2 
0 .8 0 .2 
0 .9 0 .4 
1.0 0.5 
1.1 0 .7 

a=200 
o.o 
00 
0.3 
0 .7 
0.9 
1.1 
l .4 
1.6 

0 l 
0.2 
0 4 
0 8 
l.l 
1.3 
2.2 
2 .. 5 

a=200 
0.1 
0.6 
1.1 
1.8 
2.0 
2.7 
3.2 
4.0 

a=200 
00 
0 .0 
0 .0 
0 .1 
0 .1 
0 . .3 
0.-t 
0.6 

00 
0.0 
0 .1 
02 
0.3 
0.5 
0 .6 
0.8 

0.0 
0.0 
0.0 
0.2 
0 8 
1.1 
1.6 
1.9 

0.0 
0 .1 
0. 2 
0 .5 
1.5 
1.R 
2.7 

0.0 
00 
0.1 
0.4 
09 
1.8 
2.3 
3.G 

0.0 
0 .0 
0 .1 
0 .2 
0 .3 
1.0 
l.l 
1.2 

0.0 
0,0 
0 1 
0 .1 
0 3 
0 .6 
1.1 
1.6 

0.0 
0.1 
0.2 
0 .6 
0.8 
l.l 
2 .8 
3.4 

0 .0 
00 
0 .1 
0.1 
0 .1 
0 .1 
0 .3 
0.6 

4 0 .0 0 .0 
0 .0 
0.1 
0 .2 
0.2 
0.3 
0.5 
0.6 

0 .0 
0.0 
0.0 
0 .0 
0.1 
0 .1 
0 .2 
0.3 

10 0 .7 
18 0.8 
26 0 .9 
42 0.9 
.58 1.0 
91 l.O 

120 1.0 

4 
10 
18 
26 
4'1. 
58 

1:1,0 
720 

4 
10 
LR 
42 
58 
90 

240 

2 
R 

10 
18 
26 
42 
.58 

100 
11'0 
300 

26 
60 

120 
180 
240 
780 

2 
6 

14 
P l 
30 
.~R 

180 
420 

2 
6 

14 
30 
58 
90 

300 
600 

1 
4 
5 

25d; 
2.3 
2.8 
2.9 
3.0 
.u 
3.3 
3.4 
3.4 

d=4 , 
0.1 
0.3 
0.7 
1.1 
1.4 
1.6 
2.0 
2.5 

n=400 
0.0 
0 .0 
0.1 
0.2 
0 4 
0 .7 
1.3 
2.2 

26 __ d~; _d_==--='6,~=--...,4C"COO 
3.7 0 .1 0.0 
4.0 0 .8 0 .0 
4.6 1.5 0 .1 
4.6 2.1 0 .9 
4 .9 2.5 1.4 
4 .8 2.9 2.0 

5.0 

27d; 
2 .7 
.5 !l 
5.8 
6 .1 
6.4 
6.4 
6.5 
6.5 
6.5 
6 .5 

29d; 
3.6 
3 .6 
.3.6 
3.9 
3.9 
3.9 

30d; 
.3 .0 
4.6 
5.0 
.5 0 
5.0 
50 
5.1 
5.1 

.3 ld ; 
3 . .3 
6 .2 
7.0 
70 
7 .0 
7.1 
7 .2 
7.2 

3.7 

0.0 
0.6 
1.l 
2.0 
2.3 
3.1 
3.6 
4 .1 
4.3 
5.2 

d =4, 
0 .2 
0 .9 
1.1 
1.2 
1..3 
1.9 

o.o 
0.1 
0 .3 
0 ,5 
0.8 
1.2 
2 .2 
2.9 

0.0 
0 .1 
0.5 
1.2 
2.1 
2.3 
3 .6 
4.6 

3.0 

n=400 
0 .0 
00 
0.0 
0 .3 
0.8 
1.5 
2.4 
3.2 
.3.8 
4.4 

a=400 
o.o 
0.1 
0 .6 
0.9 
1.0 
1.3 

a=400 
0 .0 
0 .0 
0.0 
00 
0.1 
0.3 
1.0 
1.8 

a=400 
0.0 
00 
0.0 
0 .2 
0 .8 
1.0 
2.9 
3.4 

32d; d= 2, a=400 
0 .4 0.2 0.0 
0.6 0 .2 0.0 
0 .9 0.2 0.1 

0 .0 
0 .0 
0.0 
0 .0 
0 .1 
0 .1 
0 .1 
0. 2 

0.0 
00 
0 .0 
0.1 
0.1 
0.2 
0.5 
2.2 

0.0 
0.0 
00 
0.0 
0 .1 
0 .3 

1.8 

o.o 
0 .0 
0 .0 
00 
0.1 
0.2 
0 . .3 
1.0 
2 .1 
3.4 

0 .0 
0 .0 
0.1 
0 .2 
0.3 
1.1 

0 .0 
0.0 
0.0 
o.o 
0 .0 
00 
0 .2 
0 .9 

0.0 
0.0 
0.0 
0.0 
0 .1 
0 .1 
0 .9 
2.3 

0 .0 
0 .1 
0. 1 

43 



Table A-1. Continued. 
X 

0 0.la 0.2a 
min. cm. cm. cm . 

1 
2 
4 
6 
8 

10 
12 
14 

1 
2 
4 
6 

10 
14 
18 
26 

3 
4 
6 

10 
14 
18 

2 
4 
6 
8 

10 
12 
18 

2 
6 
8 

10 
12 
14 
16 

2 
4 ½ 
6 
8 

10 
12 
14 
16 

2 

t 
8 

10 
12 
14 
16 

2 
4 
6 
8 

10 
12 
14 
16 

2 
4 
5 
6 
8 

10 
12 
14 

1 
2 
4 
6 
8 

10 
12 
14 

3 3a; d = 4, 
0.7 0.4 
1.6 0 .8 
2.2 1.4 
2 .5 1.9 
2.5 2.0 
2.7 2.2 
2 .8 2.4 
2.8 2.4 

34a; d=6, 
1.2 0.8 
2 .1 1.4 
3.2 2.3 
3.9 2 .6 
4.2 3.6 
4 .5 4.0 
4 .7 4 .1 
4.8 4.5 

35a; d=8, 
3.4 2.5 
4.0 3 .1 
5.0 4.1 
6.1 5.1 
6.3 5.8 
6.7 6.1 

a=50 
0.0 
0.3 
0 .9 
1.3 
1.8 
2 .0 
2.1 
2.3 

a=50 
0.4 
o.s 
Ul 
2.4 
3 .3 
3.9 
4 .0 
4.4 

a= 50 
2 .0 
2.4 
3.3 
4.5 
5.4 
.5.9 

0.4 
0.6 
0.6 
0 .6 
0.7 
0.7 

0.2 0.2 
0.4 0.4 
0.5 0.4 
0.6 0 .5 
0.7 0.6 
0.7 0 .7 

37a; d=4 , 
1.5 0.8 
2.2 1.9 
2 .3 2.1 
2.4 2.1 
2 .6 2 .2 
2 .6 2.2 
2.7 2.4 

38a; d=6, 
1.5 1.2 
2.6 2.1 
3 .0 2.4 
3.4 2.7 
3.8 3.1 
4.0 3.4 
4.1 3.6 
4.2 3.9 

39a; d=8 , 
2.2 1.8 
3 .5 2.9 
4.5 3 .9 
5.0 , 4.4 
5.5 4 .7 
5.6 5 .3 
6.0 5.6 
6 .1 5 .8 

40a; cl = 2 
0.7 0.4 
0 .9 0.6 
1.1 0.8 
1.1 0 .8 
1.2 0 .9 
1.2 1.0 
1.2 1.4 
1.5 1.4 

.4l a; d=4 
1.6 1.2 
2.1 1.8 
2.2 2.0 
2.3 2.1 
2.4 2.2 
2 .5 2.4 
2.7 2.5 
2.8 2 .6 

1.2 0 .9 
2.1 1.8 
3 .4 2 .5 
3.9 3 .3 
4 .2 3 .9 
4.3 4.0 
4.5 4 .2 
4 .6 4.3 

a= 50 
0.4 
1.5 
1.9 
2.0 
2.1 
2.1 
2.3 

a= 50 
0.8 
1.8 
2.0 
2.4 
2 .8 
3.1 
3.2 
3.6 

a= 50 
1.3 
2 .2 
3.2 
4.0 
4.2 
4.8 
5 .0 
5.2 

a= 50 
0 .2 
0.5 
0 .8 
0.9 
0.9 
1.0 
1.1 
1.5 

a= 50 
0.8 
1.5 
1.8 
2.0 
2.1 
2.2 
2.4 
2.6 

a= .50 
0.6 
1.4 
2 .1 
3 .0 
3 .7 
3 .9 
4 .0 
4 .2 

0.5a 
cm. 

0.1 
0.2 
0.7 
1.3 
1.7 
1.9 
2 .0 
2 .2 

0.2 
0 .6 
1.5 
2 .0 
2.9 
3 .8 
4.0 
4.3 

1.5 
2.0 
2.5 
4.1 
5.1 
5 .8 

0.1 
0.1 
0 3 
0.5 
0.6 
0.7 

0.2 
1.3 
1.8 
2.0 
2 .0 
2.1 
2 .3 

0 .5 
1.5 
1.9 
2.1 
2.6 
2 .9 
3.1 
3.5 

1.1 
2.1 
2.8 
3 .7 
3 .7 
4.5 
4 .9 
5 .2 

0 .2 
0.4 
0 .6 
0 .8 
0.9 
0.9 
LO 
1.4 

0.7 
1.4 
1.6 
1.9 
2.0 
2.2 
2.4 
2 .5 

0.5 
1.0 
2 .0 
2.6 
3 .4 
3 .8 
4 .0 
4 .1 

X 

0 O.la 0.2a 
min. cm , cm. 

1 
2 
4 
6 

10 
14 
20 
30 

1 
2 
4 
6 

10 
14 
18 
26 

1 
4 
6 

10 
14 
18 
22 
26 

2 
4 
6 

10 
14 
18 
22 
26 

2 
4 
6 

10 
14 
18 
22 
26 

2 
6 

10 
14 
18 
22 
26 
30 

2 
4 
6 

10 
14 
18 
22 
26 

2 
4 
6 
8 

10 
14 
18 
22 

2 
4 
6 
8 

10 
14 
18 
22 

2 
6 

10 
14 
18 
22 
26 
30 

33b; d=4, 
0.6 o.o 
1.3 0 .1 
2.0 0.5 
2.2 0.7 
2.3 1.4 
2.5 1.8 
2.6 2.0 
2.7 2.2 

34b; d= 6, 
1.3 0.3 
2 .0 0.8 
2.8 1.7 
3 .4 1.9 
3 .7 2.3 
4.0 2.7 
4.2 3.2 
4.3 3 .7 

35b; d=8 , 
1.1 0.6 
3.6 1.9 
4.2 3.0 
5 .3 3 .7 
5 .9 4.4 
6.0 4.8 
6.2 5 .0 
6.3 5.3 

36b; d=2 , 
0.2 0.1 
0.4 0.2 
0.5 0.2 
0.6 0.4 
0.7 0.4 
0 .7 0.4 
0.8 0 .6 
0.8 0 .6 

37b; cl= 4 , 
1.5 0.2 
2.0 0.7 
2.1 1.1 
2.2 1.5 
2.2 1.9 
2.3 2.0 
2.4 2.0 
2.4 2.1 

38b; d=6, 
1.2 0.4 
2.6 1.7 
3 .2 2 .0 
3.6 2.4 
3.9 2 .9 
4 .0 3.2 
4.2 3.5 
4.2 3.7 

39b; d=8 , 
1.8 0 .9 
2.7 1.8 
3.4 2.1 
4 .3 3.0 
4.9 3.8 
5 .3 4 .1 
5.7 4.4 
6.0 4.8 

40b; <1= 2, 
0.7 0.2 
0.9 0.6 
1.1 0 .6 
1.3 0.8 
1.3 0.9 
1.4 0 .9 
1.4 1.0 
1.5 1.1 

4 1b; <l= 4 , 
1.4 0.5 
2.0 1.2 
2.1 1.5 
2.1 1.7 
2.2 1.7 
2.3 2.0 
2.4 2.2 
2.4 2.3 

42b; d= 6, 
1.8 0 .9 
3.3 2.1 
3.9 2 .8 
4.1 3 .3 
4.2 3.7 
4.3 3.9 
4.4 4 .1 
4.5 4.2 

cm. 
a=lOO 
0 .0 
0.0 
0.2 
0 .3 
0 .8 
1.3 
1.8 
2.0 

a= lOO 
0.2 
0.3 
1.0 
1.5 
2 .0 
2.3 
2.6 
3.3 

a= lOO 
0.1-
1.4 
1.9 
2 .7 
3.6 
4.0 
4 .5 
5.0 

a=lOO 
0 .1 
0.2 
0.3 
0.4 
0.4 
0.4 
0.5 
0.5 

a=lOO 
0.1 
0.4 
0 .7 
1.2 
1.6 
1.9 
2.0 
2.0 

a= lOO 
0.2 
1.2 
1.9 
2.2 
2.6 
2.9 
3.4 
3.7 

a= lOO 
0 .4 
1.0 
1.8 
2 .4 
3.3 
3 .9 
4.2 
4.6 

a= lOO 
0.2 
0.4 
0.5 
0.6 
0.7 
0 .9 
0.9 
1.0 

a= lOO 
0.2 
0.7 
1.1 
1.4 
1.7 
1.9 
2.1 
2.2 

a= lOO 
0 .5-
1.8 
2 .4 
3 .0 
3 .5 
3 .8 
4 .1 
4 .t 

0 .5 a 
cm. 

0.0 
0.0 
0 .1 
0.2 
0.5 
1.0 
1.7 
2 .0 

0 .2 
0 .3 
0.6 
0.9 
1.5 
2 .0 
2.3 
3.2 

0.1 
0 .6 
1.0 
2 .0 
2.7 
3.4 
4 .0 
4.2 

0.1 
0.1 
0.2 
0 .3 
0.3 
0.4 
0.5 
0 .5 

0.0 
0.2 
0.4 
0.9 
1.3 
1.6 
UJ 
2.0 

0.2 
0.9 
1.5 
1.8 
2 .3 
2 .6 
3.0 
3 .3 

0.2 
0 .6 
1.1 
2.0 
2 .8 
3 .4 
4.0 
4.4 

0.2 
0 .2 
0.3 
0.4 
0.5 
0.7 
0.9 
1.0 

0.2 
0.4 
0 .7 
1.1 
1.4 
1.8 
2.0 
2.1 

0.3 
1.6 
2 .0 
2J3 
3 .3 
3 .7 
4.0 
4 .0 

0 0.la 0.2a 
min . cm . cm. era . 

2 
4 
6 

10 
19 
30 
46 
62 

2 
6 

10 
18 
26 
34 
42 
58 

2 

6 
10 
18 
26 
42 
58 

2 
6 

10 
14 
18 
26 
43 

3 
4 

10 
14 
18 
26 
42 
58 

2 
6 

10 
14½ 
18 
26 
42 
58 

2 
6 

10 
18 
26 
34 
42 

2 
4 
6 

10 
14 
18 
26 
42 

2 
4 
6 

10 
14 
18 
26 
42 

2 
4 
6 

10 
14 
18 
26 
4 2 

33c; d= 4 , 
1.5 0.3 
2.0 0.4 
2.2 0.6 
2.3 1.2 
2.7 1.7 
2.8 1.9 
3.0 2.0 
3.1 2.3 

34c; d= 6, 
2.0 0.2 
3.4 0.9 
3.9 1.6 
4.1 2 .2 
4 .3 2.6 
4.4 3.0 
4.5 3.4 
4.6 3 .8 

a= 200 
0.0 
0.1 
0.2 
0.4 
1.0 
1.5 
1.9 
2.0 

a= 200 
0.1 
0 .3 
0 .8 
1.7 
2.0 
2.2 
2 .5 
3.2 

35c; d = 8, a= 200 
2 .2 0.6 0.1 

4 .2 
5.2 
6.0 
6.2 
6 .6 
6.7 

1.9 
2.4 
3.5 
4.1 
4.7 
5.3 

36c; d= 2, 
0.0 0.0 
0.5 0 .2 
0.7 0 .3 
0.8 0.4 
0.9 0.6 
0.9 0 .8 
1.0 1.2 

37c; d=4 , 
1.8 0.1 
2 .0 0.2 
2.3 1.0 
2.3 1 .3 
2.4 1.6 
2.4 1.8 
2.5 2 .1 
2.8 2.2 

38c; d=6, 
1.8 0 .4 
2.8 1.2 
3.4 1.8 
3.9 2.1 
3 .9 2.2 
4.0 2 .5 
4.1 3.3 
4.3 3.4 

39c; d=8, 
2.1 0.5 
3.6 1.6 
4 .3 2.3 
5 .0 3.0 
5.4 3.8 
5.9 4.1 
5.9 4.4 

40c; <l=2, 
1.1 0.2 
1.3 0.4 
1.5 0 .4 
1.5 0.6 
1.5 0.6 
1.5 0.8 
1.5 0.9 
1.5 1.1 

0.7 
1.3 
2.2 
3.1 
4.1 
4.7 

a=200 
0.0 
0.1 
0 .2 
0.4 
0.4 
0 .5 
0.8 

a= 200 
0.1 
0 .1 
0.5 
0 .8 
1.1 
1.4 
2.0 
2.0 

a=200 
0 .2-
0.5 
1.0 
1.4 
1.7 
2.1 
2.6 
3.3 

a=200 
0.2 
0.9 
1.5 
2.1 
2 .8 
3 .5 
3.9 

a= 200 
0.1 
0 .2 
0.2 
0.3 
0.4 
0.5 
0.7 
1.9 

41c; cl= 4, a=200 
1.8--0.2--0. 1 
2 .2 0 .8 0.2 
2 .8 1.0 0 .6 
3 .1 1.6 1.1 
3.3 1.9 1.6 
3.4 2.1 1.8 
3.4 2.4 2.0 
3 .4 2 .8 2.4 

42c; cl= 6, a= 200 
2 .0 0.5 0 .2 
2 .9 1.1 0.5 
3 .4 1.7 0.9 
3.9 2.1 1.6 
4.0 2 .5 2.0 
4.1 2.8 2 .1 
4.2 3.3 2.7 
4 .4 4.1 3 .7 

0.5a 
CJll, 

0.0 
0 .0 
0 .1 
0.2 
0.5 
1.0 
1.6 
1.9 

0.0 
0 .1 
0.3 
1.1 
1.5 
1.9 
2.2 
2 .8 

0 .0 

0 .1 
0.4 
1.3 
2.0 
2 .9 
4 .0 

min. 

2 
6 

10 

18 

86 
106 

1 
4 

10 
18 
26 
34 
42 
58 

4 
10 
22 
26 
42 
58 
74 
90 

X 

0 O.la 0.2a 
('fll. c_rn. cm. 

33d; d=4, a=400 
2.0 0.0 0.0 
2.2 0.1 0 .0 
2.5 0.2 0 .0 

3 .1 0.5 0.1 

3.2 0.8 0.2 
3.4 1.9 1.9 

34d; d= 6, a= 400 
1.8 0.1 0.0 
3 .5 0.2 0 1 
4 .1 0 .9 0.2 
4 .3 1.8 0.6 
4.4 1.9 1.0 
4.9 2.1 1.5 
4.9 2.3 1.7 
4.9 2.8 2.0 

35d; d=8 , a= 400 
3.5 0.2 0.1 
5.1 1.2 0.3 
6.0 2.3 1.1 
6.0 2.5 1.4 
6.6 3 .6 2 .1 
6.6 4.0 2.7 
6.7 4.2 3.2 
6 .7 4.6 3.8 

____ ----=.3.:.;6d::..,;_ d= 2, a= 400 
0.0 4 1.0 0 .1 0 .0 
0 .0 10 1.4 0.1 0 .1 
0.1 18 1.6 0.2 0.2 
0.2 26 1.5 0.3 0.4 
0.3 42 1.6 0.4 0.5 
0.4 58 1.6 0.5 0 .6 
0 .9 90 1.6 0 .8 0.9 

0 .0 
0.1 
0.1 
0.3 
0.3 
0.8 
1.5 
1.9 

0 .0 
0 .2 
04 
0 .8 
1.1 
1.6 
2 .2 
2 .7 

0.1 
0.3 
0.7 
1.8 
2.0 
2 .7 
3.3 

0.0 
0.1 
0.1 
0 .2 
0.4 
0.4 
0.5 
0 .8 

0.0 
0 .1 
0.1 
0 .4 
0 .8 
1.2 
1.7 
2.2 

0.1 
0.1 
0.2 
0.7 
1.2 
l.5 
2.0 
3.1 

122 1.6 0.9 1.1 

4 
10 
19 
26 
42 
58 
90 

122 

4 
10 
18 ½ 
26 
42 
58 
90 

122 

4 
10 
18 
26 
42 
58 
74 
90 

2 
6 

10 
14 
18 
26½ 
42 
58 

2 
6 

10 
18 
26 

42 
59 

2 
10 
18 
26 
40 
58 
90 

120 

37<1; d= 4, a= 400 
2.3 0.1 0.0 
2.7 0.6 0.2 
2.7 1.0 0.6 
2.7 1.4 0.8 
2.8 1.7 1.2 
2.8 1.9 1.4 
2.9 2 .0 1.9 
3 .0 2.2 2.0 

38d; d=6, a=400 
3.0 0.4 0.2 
4.1 1.2 0.5 
4.4 1.9 1.0 
4 .8 2 .0 1.4 
5.1 2.6 2.0 
5.1 3.1 2.2 
5.1 3.5 2.9 
4.8 3.9 3.4 

39d; d=8, a= 400 
3.2 0.5 0.1 
4 .9 1.5 0.6 
5 .4 2 .0 1.0 
6.0 2.4 1.8 
6.1 3 .0 2.3 
6 .3 3 .6 2.6 
6.7 4.0 3 .3 
6.8 4.3 3 .8 

40d; d= 2, a= 400 
0.8 0.2 0.1 
1.4 0 .3 0 .1 
1.5 0 .3 0 .1 
1.6 0.4 02 
1.6 0.5 0.2 
1.6 0 .7 0 .3 
1.7 0 .7 0.7 
1.7 0 .8 0.9 

4
7

l __ d~;~d~=~4~, _a_= 400 
1.9 0.1 0.0-
2.4 0.3 0 .1 
2.7 1.1 0.2 
3 .0 1.3 0.4 
3.1 1.4 1.0 

3.1 1.9 1.5 
3.1 2 .0 1.6 

42d ; d= 6, a=400 
2 .1--0.3--0 .0-
4.0 1.4 0.6 
4 .2 1.9 0.9 
4 .6 2 .2 1.2 
4 .9 2 .8 2.1 
4.9 3.2 2 .5 
5.1 3.8 2.9 
5.2 4 .3 4.2 

0 .5a 
cm. 

0.0 
0.0 
0 .0 

o.o 
0.0 
1.2 

0 .0 
o.o 
0.1 
0 .1 
0.2 
0 .3 
0.5 
1.0 

0.0 
0.1 
0 .3 
0.4 
1.0 
1.5 
1.9 
2 .2 

o.o 
0 .1 
0.2 
0.4 
0.4 
0 .6 
0 .9 
1.2 

0.0 
0.1 
0.1 
0.2 
0.6 
08 
1.7 
2.0 

0.1 
0.1 
0.3 
0.4 
1.0 
1.9 
2 .2 
2 .9 

0.1 
0 .3 
0.4 
0 .8 
1.4 
1.9 
2.2 
2 .8 

0.0 
0.1 
0 .1 
0 .2 
02 
0.2 
0.5 
0 .8 

0.0 
0.0 
0.0 
0 .1 
0 .2 

0 .5 
0 .7 

0 .0 
0.1 
0 .2 
0.2 
0 .7 
1.4 
2 .0 
4.0 



Table A-1. Continued. 

min. 

1 
2 
3 
4 
6 
8 

10 
12 

2 
6 
8 

10 
12 
14 
18 
20 

2 
6 
8 

10 
12 
14 
16 

2 
4 
6 
8 

10 
12 
14 
16 

2 
3 
4 
6 
7 
8 
9 

10 
11 
12 

1 
4 
6 
8 

10 
12 
16 
20 

1 
2 
4 
6 
9 

12 
16 
20 

2 
4 
6 
8 

10 
12 
14 
16 
18 

4 
6 

10 
14 
18 
26 
42 
58 

X 

0 0.la 0.2a 
cm. crr1. 

43a; d=8 , 
1.4 1.1 
2.3 1.9 
3.3 2 .7 
4 .1 3 .5 
5 .0 4.3 
5.9 4 .9 
5.9 5.3 
6.2 5.8 

44a; _d=2 , 
0 .7 0.1 
0.8 0 .4 
0.9 0 .5 
0 .9 0 .5 
1.0 0 .6 
1.0 0.7 
1.1 0.7 
1.0 0.7 

cm. 
a=50 
0 .8 
1.7 
2.2 
3 .0 
4.0 
4 .5 
5.0 
5.5 

a=50 
0 .1 
0 .3 
0 .3 
0.3 
0.4 
0.4 
0.5 
0.5 

45a; d=4, a=50 
1.4 - 0.8--0.4 
2.1 1.6 1.2 
2 .3 1.8 1.4 
2.3 1.9 1.6 
2.4 2.1 1.7 
2.4 2 .1 1.7 
2.5 2.1 1.8 

46a; cl=6, a=50 
2 .5 --1- .8--1.0-
3 .9 2.3 2.0 
4.1 2.8 2.2 
4 .3 3.2 2.8 
4.3 3.5 2.9 
4.3 3 .7 3.3 
4.4 3 .9 3.6 
4.5 3 .9 3 .8 

47a; d= 8 , 
3 .1 2 .1 
4.3 ;> .• 8 
4.9 3.4 
5.5 4.0 
5.7 4.2 
5.8 4.5 
6.0 4.8 
6 .0 5 0 
6.0 5 .0 
6.0 5.3 

48a; d=4 , 
1.9 0 .8 
3.3 1.9 
3 .4 2 .0 
3.4 2.0 
3 .4 2 .1 
3 .5 2 .2 
3.5 2.4 
3 .5 2.5 

49a; d = 6 , 
1.7 1.4 
2.2 1.8 
3.4 2 .3 
3.7 2.9 
4.0 3 .3 
4.1 3.6 
4.3 3 .7 
4.4 4.1 

50a; d=8, 
2.9 2.1 
4.3 3.2 
5.3 4.0 
5 .7 4.4 
6.0 4.8 
6.3 .5.2 
6.3 5.3 
6 .3 .5.6 
6.3 5.8 

51a; d= l9 , 
4,9 3 .il 
6.4 4.9 
9.0 6.6 

10.5 8.4 
12.0 9 .3 
14.1 10.9 
16.0 13.1 
16.8 14.1 

a= 50 
1.6 
2 .0 
2.4 
3.4 
3 .5 
3.9 
4.1 
4.2 
4.3 
4.6 

a= 50 
0.3 
1.2 
1.5 
1.8 
l 9 
2 .0 
2 .2 
2 .. 3 

a= 50 
0.9 
1.0 
1.8 
2.1 
2 .6 
2.8 
3.4 
3.8 
a= 50 
1.4 
2.4 
3.2 
3.7 
4.1 
4 .6 
4 .7 
5 .0 
5.2 
a= lOO 
2 .2 
3.3 
4.8 
6.0 
7 .0 
8 .8 

11.3 
12.6 

0.5a 
cm. 

0 .5 
1.5 
2.0 
2 .6 
3.8 
4.3 
4 .9 
5.2 

0 .0 
0 .1 
0.2 
0 .2 
0 .3 
0.3 
0.4 
0.4 

0.1 
0.8 
1.0 
l.4 
1.5 
1.7 
1.9 

0.3 
1.3 
1.8 
2 .1 
2.4 
2 .8 
3.2 
3.4 

0.9 
1.4 
1.9 
2.4 
2 .8 
3.2 
3.6 
3.8 
3.7 
4.0 

o.o 
0 .5 
1.0 
1.3 
1.4 
1.7 
2.0 
2.0 

0.3 
0.3 
0.9 
1.5 
2.0 
2.4 
3.0 
3.2 

0.8 
1.4 
2.l 
2 .9 
3.6 
4.0 
40 
4.5 
4.8 

0 8 
1.6 
2.7 
3 .9 
4 .9 
6 .8 
9.5 

11.4 

m in . 

2 
4 
6 
8 

10 
14 
18 
22 

2 
6 

14 
18 
26 
34 
42 

2 
6 

10 
18 
26 
34 
42 

2 
4 
6 

10 
14 
18 
26 
34 
.58 

2 
4 
6 
9 

16 
25 
30 
36 
,5,5 

I 
4 
9 

L6 
25 
36 
49 
64 

L 
4 
9 

16 
25 
36 
49 
64 

I 
4 
9 

16 
26 
36 
49 
64 

2 
6 

10 
14 
18 
26 
42 
58 
90 

120 
180 

0 0.la 0.2a 
cm. cm . 

43b; d=S, 
2.0 1.3 
3.1 2.1 
4.0 3.0 
4.3 3 .1 
4 .8 3 .8 
5.6 4.3 
5.8 4.7 
6.0 5.1 

cm . 

a= lOO 
1.0 
1.7 
2.1 
2 .7 
3.2 
4.0 
4.4 
5.0 

44b; d= 2. a= lOO 
0.5 0 .1 0 .0 
0.7 0.3 0.1 

0.8 
0.8 
0 .8 
0 .8 
0.8 

0.4 
0.5 
0.5 
0 .6 
0 .6 

0.2 
0.3 
0.4 
0.5 
0.6 

45b; d=4, a= lOO 
l.5 - -0.3--0 .1 
2.1 1.1 0.4 
2.1 1.5 0 .7 
2.2 1.8 1.5 
2.5 2.0 1.7 
2.5 2.1 1.9 
2.6 2.1 2.0 

46b; d=B. 
1.9 0.9 
2.9 1.8 
3.3 1.8 
3 .8 2.3 
4.1 2.7 
4,1 3 .0 
4.2 3.5 
4.3 3 .6 
4.5 4.0 

a= lOO 
0 2 
0.7 
l.O 
l.7 
2 .0 
2.2 
2.8 
3 .2 
3 .8 

47h; d=8, a= lOO 
2.9 1.5 0.5 
4.1 20 1.1 
4.7 2 ,7 1.7 
.5.2 3 .4 2,2 
6.0 4 .0 3 .3 
6.1 4.8 3 .9 
6.2 5 .0 4 .2 
6.2 .5.4 4.6 
fl .5 5.9 ,5.5 

48b ; d= 4, a= JOO 
1.2--0 .4-- 0.0 
2.4 1.2 0.2 
2.5 l.5 0.5 
2 .8 2.1 l.J 
2.9 2 .3 1.8 
2.9 2 .3 2.0 
,3.0 2 .5 2.} 
,3.0 2.6 2.3 

49b; d= 6 , a= lOO 
1. 7 0.3 
3 .1 l. 6 
3 8 2.2 
4 .1 2.9 
4.2 3.5 
4.4 3.8 
4.6 4.0 
4 .7 4.2 

50b; d=8, 
1 .8 0 .9 
4.0 2 .2 
5.4 3 .5 
5.9 4.1 
6.1 4 .7 
6.4 5.3 
6.5 5.8 
6.5 5.9 

.5 lb, cl= l9 , 
2.2 0.9 
5.7 2.6 
7.2 3.5 
9.5 4.7 

10.8 5 .7 
12.3 7.7 
14 2 9 0 
15.2 9.7 
16.0 11.1 
16.7 12.l 
17 .0 13.6 

0 .1 
0.7 
1..5 
2 .0 
2.5 
3.3 
:3 .7 
4.0 

a=lOO 
0 .2 
1.2 
2.2 
3.2 
4.0 
4.5 
.5.2 
5.5 

a= 200 
0.1 
0.8 
1.7 
2.0 
2.8 
4.0 
5 4 
7 .0 
8 .6 

10.0 
11.8 

0 .5 a 
cm . 

0.5 
1.0 
2 .0 
2.1 
2.9 
3 .6 
4 .1 
4.8 

0.0 
0.1 

0.2 
0 .2 
0.2 
0 .3 
0.4 

0 .1 
0 .3 
0.5 
1.1 
1.4 
1.6 
2.0 

0.1 
0 .2 
0 .2 
0 .5 
1.0 
1.4 
2.2 
2.6 
:3 ,5 

0.0 
0 2 
0.4 
1.0 
20 
3 .2 
3 .9 
4.0 
5.3 

0 .0 
0.0 
0 .1 
0.3 
0 .9 
1 2 
1.6 
1.8 

0 .0 
0 .1 
04 
1.1 
2 .0 
2 .5 
3 .3 
3.4 

0.0 
0 .1 
0.6 
1.8 
2.6 
3.7 
4.3 
4.9 

0.0 
O.l 
0 .1 
0 .3 
0 .8 
1.6 
2.!--1 
4 0 
6 .3 
7.9 

10 0 

0 0.la 0.2a 
min . l.! 111. en, en,. 

2 
4 
6 

43c; d=8, a=!foO 
2 .2--o:s-o:;r-
3 .3 1.6 0 .9 
3 .9 2.0 1.2 

10 
14 
18 
26 
42 

4,6 2 .6 1.6 
.5.3 3 .1 2.2 
5 .6 3 .7 2.7 
5 .8 4.1 3 .4 
6.2 5.1 4.5 

6 
L4 
26 
4'2 
58 
PO 

120 
180 

4 
lO 
18 
26 
42 
58 
60 

120 

2 
6 

10 
18 
26 
42 
58 
90 

4 
18 
26 
42 
49 
64 
81 

100 

44c; d= 2, 
0.8 •0 ,2 
1.0 0.4 
1.1 0 .5 
1.2 0 .8 
1.3 0.9 
1.3 1.0 
1.4 1.2 
1.4 1.1 

45c; d= 4 , 
2. 1 0.2 
2 .5 0 .7 
2 .7 1.0 
2.7 1.4 
2.7 1.6 
2.8 2 .2 
2 .8 2 .2 
3 .0 2.4 

46c; d= 6, 
2.0 0.2 
3 .6 0 .5 
3.9 1.6 
4.0 9,.1 
4.0 2.6 
4.3 2.9 
4.4 3 .1 
4.4 3 .6 

4 7c; d =8, 
4.1 1.4 
5 .9 . 3.4 
6.1 3.8 
6.3 4.2 
6.3 4.3 
6.4 4.7 
6.5 5 .0 
6 .. 5 .5.4 

48c; d= 4, 
I 1.0 00 
4 2.2 0.3 
9 2.9 0 7 

16 2.9 1.3 
25 2.9 1.5 
36 2.9 1.8 
49 3.0 1.9 
64 3.0 2.0 

100 3.0 2.1 
144 3 .0 2.2 

49c; d= 6 , 
l 1.9 0 :1 
4 3 5 0 .7 
9 4.3 1.5 

16 4.4 2.0 
36 4 .7 2 . .5 
64 4.9 ,3 .2 

LOO 4.9 3.6 
144 5.0 3.9 

50c; d=8, 
1 1.6 0.2 
4 4.4 1.2 
9 5.5 2.0 

lfl 5 .8 2.'J 
26 6 .2 ,3 .7 
36 6 .3 3.9 
49 6.3 4 .1 

51c; K, / Ks=0.4 , 
l 2 .7 1.7 
2 4.9 2.7 
:1 6.2 3.5 
4 7.3 4.1 
6 9 .1 6.3 

10 11.0 7.7 
14 12.0 9.2 
18 13.2 10 .1 
26 14.4 11.7 

a= 200 
0 .1 
0.1 
0.3 
0 3 
0.4 
0.4 
0.6 
0.8 

a= 200 
0.0 
0.2 
0.4 
0.6 
0.9 
1.7 
1 9 
2.2 

a= 200 
0.0 
0.2 
0.4 
1 1 
1.6 
1.9 
2.1 
2.8 

a= 200 
0.4 
1.9 
2.1 
2.8 
3.3 
3.8 
4.0 
-l..5 

a= 200 
0.0-
0 .0 
0 1 
0 .3 
0.7 
0.9 
1.3 
1.5 
1.8 
2.0 

a=200 
0.0 
0 1 
0.3 
0 .8 
1.7 
2.1 
2 .7 
3.3 

a= 200 
0.0 
0 .1 
0 .1 
0.7 
1.4 
2.0 
2 .4 

d= l9, 
0.9 
1.6 
2.0 
2.2 
,3 ,1 
4.8 
6.2 
7.2 
9.7 

0.5a 
cm . 

0.2 
0.3 
0.6 
1 1 
1.6 
l.9 
2 .7 
4.0 

0 .0 
0.1 
0.1 
04 
0.3 
0 .6 
0 .7 
0.9 

0.0 
0.1 
0 .1 
0.3 
0 .5 
0 .8 
1.8 
2.0 

0 .0 
0.0 
0.1 
0~ 
0 .5 
0.9 
1.8 
2.1 

0 .1 
0.4 
0 .9 
1.9 
2 .0 
2.6 
3.1 
3.8 

0 .0 
0 .0 
00 
0 .1 
0.2 
0.2 
0 .3 
0.6 
1.2 
1.6 

0.0 
00 
0.1 
0.1 
0 .6 
l.1 
2 .0 
2.5 

0 .0 
0.0 
0.0 
0 .1 
0 .1 
05 
l.O 

a= 200 
0.3 
0.5 
0 .9 
1.1 
l.6 
2.4 
3 .8 
5.0 
7.3 

min . 

2 ¼ 
6 

10 
18 
26 
42 
58 
90 

4 
10 
26 
42 
58 

130 
240 
360 

6 
12 
18 
26 
42 
58 
90 

396 

4 
10 
26 
58 

120 
180 
420 

4 
16 
25 
36 
64 

100 
144 
196 

l 
4 
9 

16 
25 
36 
49 
64 

121 
257 
480 

1 
4 
9 

26 
49 

121 
196 

l 
4 
q 

16 
36 
64 

100 
225 
441. 

X 

0 0.la 0 .2a 
cm . cm. cm. 
43d; d=8, a=400 

2.3 - 0.4--0 .i 
4.3 1.2 0 .3 
5 .0 1.9 0.7 
5.9 2.7 1.4 
6.0 3.3 1.9 
6.2 4.2 2 .6 
6.4 4.3 3.4 
6 .8 5.0 4.0 

44d; 
0.7 
0.8 
1.2 
1.5 
1.5 
1.5 
1.5 
1.5 

4-~d ; 
3.0 
3 .6 
3 .7 
3 .7 
3.7 
3.7 
3.7 
3.7 
4 6d; 
3.8 
4 .2 
4.5 
4 .5 
4.5 
4 . .5 
4.6 

d=2, 
0 .0 
0.0 
0.1 
0.1 
0.1 
0 .2 
0.3 
0.3 

d=4, 
0 1 
0.2 
0.7 
0.8 
0.9 
1.4 
1.6 
1.8 

d=6, 
0.2 
0 .5 
1.9 
2.0 
2 .7 
3.0 
3 .6 

a=400 
0.0 
0 .0 
0 .0 
o.o 
0.1 
0 .2 
0 .3 
0 .4 

a= 400 
0.0 
0 .1 
0 .2 
0.2 
0 .3 
0.4 
0.9 
1.6 

a= 400 
0.0 
0 .0 
0 .2 
1.0 
1.9 
2.0 
3 .1 

47d; cl=8, a=400 
6.0 0.3 0 0 
6 .6 1.8 0 .2 
6.6 2 .1 0 .6 
6.6 2 .7 1.0 
6.6 3.4 1.9 
7 .0 3 .9 2.1 
7.0 4.1 2 .9 
7.0 4.6 3.4 

48d; 
2.1 
2.7 
3.0 
3 .1 
3 .2 
3.1 
3.2 
3.2 
3 .2 
3 .2 
3 .2 
49d; 
2.0 
4 .0 
4.8 
4.9 
5.0 
5 .0 
5.1 

50d; 
2 .0 
5.4 
60 
6.3 
7.1 
7.2 
7 .3 
7.4 
7.3 

d =4, 
0.0 
0 .1 
0.4 
0.7 
0.9 
1.8 
1.9 
2.0 
2 .0 
2 .0 
2.0 

d=6, 
0 .0 
0 .1 
0 .5 
1.3 
1.8 
2.5 
2.9 

d=8, 
0.0 
0 .1 
0.6 
1.6 
2 .3 
3 .0 
3 .9 
4.3 
,5.2 

a= 400 
o.o 
0.0 
0.0 
0.1 
0.2 
0.4 
0 .8 
1.1 
1.2 
1.5 
1.9 

a=400 
0.0 
0 .0 
0.0 
0.1 
0.6 
1.7 
1.8 

a= 400 
0.0 
0 .0 
00 
0 .1 
0 .8 
1.6 
1.9 
3.4 
4.4 

0 .5a 
cm. 

0.0 
0 .1 
0 .1 
0.3 
0.5 
1.1 
2.0 
2.9 

0.0 
0.0 
0.0 
0 .0 
0 .0 
0 .1 
0.1 
0 .3 

0.0 
0.0 
o.o 
0 .0 
0.1 
0 .2 
0.2 
1.1 

0.0 
0.0 
0.0 
0 .1 
0 .3 
1.2 
2 .. 5 

o.o 
0.0 
0.1 
0 .2 
0.3 
06 
1.6 
2.5 

o.o 
0.0 
0.0 
0 .0 
0. l 
0 .1 
01 
0 .2 
0.3 
0 .9 
1.4 

o.o 
00 
0 .0 
0.0 
0 .1 
0 .3 
1.0 

0 .0 
0 .0 
00 
0.0 
0 .1 
O.l 
0.4 
1.9 
3.8 

0 The subtable Nos. 24a, 24b, 24c, 24d, 25a, 25b, ., e tc. , correspond to "Grover flg. Nos." 24, 25, etc. of table 1, where the a, b , c and d 
added on 24, 25 .. . a re for drain spacings, 50, 100, 200 an d 400 cm . 
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APPENDIX B 

Table B-1. Time in minutes for the surface of saturation to fall a distance Z (see fig. l ) when Z = 0.5, 1.0, 1.5 and 2.0 cm., for various depths d and spacings a and geometry 
as otherwise described in table 1. 

Ddth Z=0.5 cm. Z = 1.0 cm. Z = 1.5 cm. Z=2.0 cm. 
fig. Case Spacing a (cm. ) Spacing a (cm.) Spacing a (cm.) Spacing a (cm.) 
No. 11 (cm.) 50 100 200 400 50 100 200 400 50 100 200 400 50 100 200 400 

Minutes Minutes Minutes Minutes 
24 .. . A 2 13.0 28.9 60 .0 
25 .. A 4 3 .2 12.7 30.8 120.0 5 .4 19 .5 52.0 25·0.o 8.0 28.7 81 .. 8 420.0 15.0 4'5',o 133 .0 632.0 
26 . . . . . . . . . A 6 1.8 6.1 25.9 107.0 3.0 9.3 36.0 167.0 4 .8 13.3 48 .9 232.0 7.1 18.0 65.0 300.0 
27 . . A 8 18.5 64.0 2.2 28.2 97.0 3.3 10.2 39.0 l:JO.O 4.5 13.8 50.2 177.0 

28 . . B 2 30 .0 
29 . . B 4 7.8 29.0 70.0 350.0 15.4 56.0 170.0 fro·.o 26.6 93 .. 0 

1·6·.2 30 .... .. B 6 4.3 15.8 54.3 290.0 7.8 31.5 108.0 454.0 11.8 54 .0 18·7.0 
35.0 3 1 .. ... B 8 3 .0 10.0 42.1 190.0 5.4 19.0 75.0 350.0 7 .8 27.4 106.0 498'.0 10.3 128.0 620.0 

32 . . . . . . . . E 2 8.6 22.5 48.8 16.0 
17.8 42'.6 i'l'.7 12'.o 33 E 4 3.4 10.0 19.0 58.7 5.0 14.0 30.0 82.0 7.0 30.0 

34 . . . . . . . . E 6 1.8 3.4 10.4 43.0 3.2 6.5 17.6 58.0 4.6 10.0 26.0 6.2 14.0 36.0 
35 . . E 8 1.3 3.6 10 .9 28.5 2.0 6 .0 15 .6 42.0 3.0 8 .2 20.8 57.9 4 .4 10.5 26.7 78 .0 

36 . .. F 2 9.8 25.0 28.6 50 .0 43 .0 99.0 43.0 
37 . F 4 2.7 6.8 20 .5 40.3 4.4 10.9 30.0 58.0 6.5 16.5 43.0 77 .3 11.0 26.0 63.0 122.0 
38 . . F 6 2.0 3 .8 10.8 26.3 3.2 6.8 16.8 42.0 4.8 10.6 24.2 60.2 6.8 15.1 35.2 8 1.0 
39 ... . . . F 8 1.0 3.6 7.8 18.7 1.8 5.6 12.5 30 .5 2.7 7 .8 17.7 43.3 3.8 10.0 23 .9 59.5 

40 . .. G 2 5.0 10.0 21.8 41.9 13.5 22.0 
4 1 G 4 4 .5 10.8 41.7 2.7 7.4 16 .0 

s ·o.o 
4.3 10.1 22.0 7 .2 17.1 

24.5 42 .. G 6 1.0 2 .5 8.4 33.5 1.8 4.2 13.0 2 .8 6.6 18.3 65.4 4 .2 9.7 78 .3 
43 G 8 1.0 2 .0 5.1 25.9 1.5 4.0 8.9 39.5 2.4 5.4 13 .8 49.0 2.9 6.8 19.4 58.0 

44 C 2 79.0 
129 .0 '7',3 12'.i 1's'.s 194.0 45 C 4 4 .0 9.2 43 .1 17.7 80.0 250.0 28.2 130.0 

226.0 
50.0 

46 .. C 6 2.3 10.1 26.2 117 .0 3.4 14.7 45.0 171.0 5.0 17.7 61.0 7.3 24.0 77 .0 256.0 
47 . . . . . . . . . .. c 8 1.4 6.8 18 .9 8 1.8 2.2 10.3 28 .3 119.0 3.4 13.6 38.0 150.0 4.6 16.8 50.0 176.0 

xx 
1·8 .7 58 .0 178.0 6 .2 8.6 .. 0 9 .8 1's'.o s's'.o 48 .. .. .. . .. . .. . .. D 4 3 .6 29 .0 270.0 44 .0 130.0 . 

49 .. D 6 2.4 9.9 35 .7 130 .0 4.2 15.4 59.0 195.0 6 .2 19.3 83.0 9 .0 24.5 103 .0 
50 .. D 8 1.2 8.0 25.1 115 .0 2.7 11.7 37.0 160.0 4 .2 15.3 51.0 197.0 5.7 19.l 

51 .. H 19 2.8 14.5 4.7 20.0 6 .3 25.0 7.9 30.0 

51 .. I 19 2.0 3.4 5 .2 7.4 
• The heading "fig. No ." refers to the source photograph number in the Ph.D . thes is of Grover (1959 ). 
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FIG. C-1. Same as fi g. 4 except Z = 0.5 cm. 
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FIG. C-2. Same as fig. 4 except Z = 1.5 cm. 
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FIG. C-3. Same as fig. 4 except Z = 2.0 cm. 
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