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Solving Tile Drainage Problems
by Using Model Data:

by Ben L. Grover? and Don Kirkham?

Our purpose in this bulletin is to report, to analyze,
and to use in problem solving, extensive model data
of tile drainage of land.

The data were obtained with a glassbead-glycerol
model (Grover et al, 1960; Grover and Kirkham,
1961) and include: (a) values of depths and of cor-
responding times of fall of the surface of saturation
to these depths at various distances from the drain
tubes and (b) values of the drain tube discharge
rates. The zero reference time for the fall of the sur-
face of saturation and also for the discharge rate is
the instant at which the surface of saturation passes
through the simulated soil surface from a ponded con-
dition.

Models were made of 109 different combinations of
drain depth, drain spacing and soil stratification. For
each of these 109 model conditions, the surfaces of
saturation were photographed at about eight different
depths through the transparent front face of the

model. Photographs were read under a magnifying -

glass to obtain distances and times of fall. Times were
obtained from a clock that was started at the zero
reference time and photographed with the water
tables.

A glycerol-water solution is used in the model to
provide the fluid or “water” to obey Darcy’s law which
is applicable to ground water seeping to drain tubes
in the field (Luthin, 1957). The glycerol, because of
its viscosity, slows the fluid movement which would
be too rapid to obey Darcy’s law in the model if water
alone were used. Glass beads are used instead of soil
to provide a porous medium of small capillary rise,
and 16-mesh-per-inch wovenwire drain tubes are used
instead of clay tile drain tubes. The bottom of the
model simulates an impermeable subsoil layer, called
a barrier.

The model data are reported in the “Results™ sec-
tion. Formulas are derived and detailed examples for
using the model data for solving field drainage prob-
lems are presented in the “Discussion” section.

1Projects 998 and 1003, Iowa Agricultural and Home Economics Ex-
periment Station.

2Formerly research associate, Department of Agrqnomy and Depart-
ment of Agricultural Engineering, Towa State University. Present address:
University of California Citrus Experiment Station, Riverside, Calif.
“Professor of soils and physics, Iowa State University.

GEOMETRIES OF DRAINAGE CONDITIONS

Part A of fig. 1 represents a typical water table
geometry as it might be in the field and gives symbols
2r, x,y, z, Z, a/2, d, h and h-d, needed (in part) to
describe the geometry. Part B of fig. 1 illustrates a
front elevation of the model and gives model dimen-
sions. In fig. 1, drain “tiles” are designated by small
circles; these “tiles” can be opened or closed by stop-
cocks to give four spacings and two distances of the
tile centers to the barrier. The scale of the model
ordinarily is: 1 cm. in the model equals 1 ft. in the
field. But other scales are useful, and just as valid, as
long as relative dimensions in the field correspond to
those in the model.

Symbols not indicated in Part A of fig. 1 are:

L, length of drain tubes (“tiles”);
K, hydraulic conductivity of the porous med-
ium
K1, Ks, hydraulic conductivities, respectively, of an
upper stratum and of a lower stratum of a
two-layered porous medium, when one is
used;
f, drainable porosity (drainable fraction) of
the upper layer [the drainable porosity of

A
¢ SURFACE OF SOIL y ZL

WATER TABLE z *d
M/‘T\O{'\

o o 2r X o)
T“ h T
Lo & h-d
2 ¥ 3 |
@’”’ 77 IMPERMEABLE LAYER ~ i
A 200 ¢
1 22cm ¥ H 5
T R—s0em PO
12 cm 05 cm TILES
of o o oiJo 0
[////////////////Q/////// VIO IIIIIE.
B "-GLASSBEAD CONTAINER
FIG. 1. Schematic diagrams of drainage conditions: (A) field

geometry, (B) model geometry (not to scale).
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the lower layer doesn’t enter into calcula-
tions]; and

t, time for the water table to fall the distance
Z (and z) of fig. 1. (Some other symbols will
be defined when introduced. )

Three sizes of glass beads, %2, 2 and 5 mm., were
used as porous media for the model. Beads of 2 mm.
diameter were used for homogeneous, nonstratified
soil; and the pair sizes, 2 mm. and % mm., and 2 mm.
and 5 mm., were used for stratified soil. Only soils of
one or two layers were considered, not counting an
impermeable soil layer represented by the imperme-
able tank bottom of the model. Since temperature was
carefully controlled (to less than 1°C) and since the
glycerol density also was controlled, K; and K, were
constant. The values were:

K=K;=1.23 cm./min. (when 2 mm. beads, only,
were in the model )

K:/K2=20 (when % mm. beads were in the sub-
layer and 2 mm. beads, in the sur-
face layer)

K;/K2=0.4 (when 5 mm. beads were in the sub-
layer and 2 mm. beads, in the sur-
face layer)

The drainable porosity f of the surface layer of porous
medium was always 0.4 cm.? of air space per cm.? of
bulk medium. Therefore, we have, for the model,
f=04cm.?/cm.?
The drainable porosities of the sublayers were not ob-
served. The sublayer porosities are not needed because
the water table fall was observed (and analyzed)
only when it existed in the surface layer of beads.
The width of the porous medium was the same as
the length of the drain tubes,

L=19cm.

Drain Tubes

The drain tubes need particular comment. The
radius r of the drains of the model was always

r = 0.25 cm.

The drains flowed full, with negligible loss of head
over their length compared with the loss of head in
the beads, and the drains outletted into a trough con-
taining glycerol-water solution standing at the level
of the drain axes. With the drains outletting at the
level of their axes, one would expect air to back up into
the drains and cause a surface of seepage (difficult
to deal with in models) to develop at the upper part
of the drain tube-bead interface. Air did not back up,
however, and surfaces of seepage, therefore, did not
develop because (a) at the higher discharge rates, the
drains ran full in all events and (b) at the lower dis-
charge rates, a capillary fringe effect (discussed in the
next section) prevented air backflow. The outflow
reference level for the hydraulic head was taken at the
level of the axes of the drain tubes.
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The radius, r = 0.25 cm., in the model corresponds
to a single field condition of 6-inch diameter drain
tubes, when the model scale is 1 e¢cm. of model to 1
foot in the field. Ifs in the model, we had used drain
tubes half or twice as large, then, the rates of fall of
the water table would not have differed more than
about 18.3 percent from those reported here.* Thus,
our model results should apply (without making a
drain size correction) with an accuracy of about 20
percent to field drain tubes of 3 to 12 inch diameter

when the model scale is 1 cm. of model to 1 ft. in the
field.

If field drains run partially full, as they ordinarily
do, the water tables will be lower in the field than is
indicated by the model results. Therefore, applica-
tion of the model results to field drainage design ordi-
narily will be on the “safe” side. That is, the field
water table, after drain tile installation should not be
as high as the design height. The model drain tubes
were formed of wire screen to correspond to a field
condition of drain tile being surrounded by highly
permeable material, such as coarse gravel or large
stable soil aggregates. If, in the field, gravel or coarse
soil aggregates do not surround the tile, the water
tables in the field will be higher than those indicated
by the model data (see Kirkham, 1950; or Luthin,
1957, pp. 302-303).

Drainage Cases

Table 1 provides an index and gives further details
of the drainage cases studied. The first column in the
table gives the source figures of photographs as num-
bered in Grover (1959). These photographs are the
raw data. The second column gives general geometry
designations, A, B, . . ., for reference. The symbols d,
a, v, h and r are as in fig. 1. In table 1, distances from
the drain axes to the barrier, or to the interface of
different layers of beads, are given as 12, 6, 3, 0.5 and
0.25 cm. The values 12, 6 and 3 c¢m., although so found
in the model, are not so recorded in Grover. By error,
Grover gives 11, 5.5 and 2.75 cm. (No computations
were made in the work cited with these incorrectly
recorded values.) In table 1, the words “isotropic sys-
tem” in the subheadings may imply that “anisotropic
systems” are included in the study when they are not.
For application of the data to anisotropic conditions,
see Maasland (1957) and references cited there.

Capillary Fringe

The glass beads and glycerol in the model were used
to minimize the height of a capillary fringe. By capil-
lary fringe, we mean the fluid-saturated medium above
the “water table” (that is, glycerol-water table). The
upper surface of the capillary fringe is called the sur-
face of saturation.

4The influence of drain size on water table fall will be brought out in

the “Discussion” section, Problem 6; the value of 18.3 percent will be
found as 1 minus 0.817 of eq. 80.



Table 1. Index of drainage cases photographed; compare fig. 1.

(‘rov&r Drain
depth d Drain spacing a
\'o a Case (cm.) (em.) (em.) (em.) (cm.)
HOMOGENEOUS ISOTROPIC SYSTEM, K = CONST.
(a) Barrier at y = — (h-d) = 12 cm. below drain centers
24 A 2 50 100 2 400
A 4 50 100 200 400
A 6 50 100 200 400
. A 8 50 100 200 400
— 2r = 0.5 cm. below drain centers
B 2 50 100 i
B 4 50 100 200 400
B 6 50 100 200 400
B 8 50 100 200 400

TWO-LAYER ISOTROPIC SYSTEM, Ki/K: = 0.4
(UPPER LAYER ONLY 4/10 AS CONDUCTIVE AS THE LOWER)
BARRIER AT y = —(h—d) = 12 cm. BELOW DRAIN CENTERS

1
(a) Interface of soil layers at y = — ;(h-d) = 6 cm. below drain centers
82 icasiemesas E 2 50 100 200 400
33 E 4 50 100 200 400
84 ... e E 6 50 100 200 400
Hepe s Bohe ot g E 8 1 50 100 200 400
(b) Interface of soil layers at y =— —(h-d) = 3 cm. below drain centers

4
BT oty e F 2 50 100 200 400
B e o it S F 4 50 100 200 400
127 /SR SN F 6 50 100 200 400
39 8 50 100 200 400
(c) Inte rface of soil layers at y = -r = 0.25 cm. below drain centers
40 .. SN ¢ 2 200 400
41 G 4 50 100 200 400
AR L e s wmonen G 6 50 100 200 400
43 G 8 50 100 200 400

TWO-LAYER ISOTROPIC SYSTEM, Ki/K==20
(UPPER LAYER 20 TIMES MORE CONDUCTIVE THAN THE

LOWER )
BARRIER AT y = —(h-d) =12 em. BELOW DRAIN CENTERS

(a) Interface of soil layers at y = — E(h-d) = 6 cm. below drain centers
2 Rl W C 2 50 100 200 400
L RS C 4 50 100 200 400
AG . oo oo b g s C 6 50 100 200 400
£ I C 8 1 50 100 200 400
(b) Interface of soil layers at y = — —(h-d) = 3 cm. below drain centers
4

QRO 4w i st w5 D 2 50

B8 oo sanatt g D 4 50 100 200 400

7. L TRy D 6 50 100 200 400
DO} ne mibeaddy P B D 8 50 100 200 400

SYSTEM WITH DRAINS AT GREAT (19 cm.) DEPTH
BARRIER AT y = -2r = 0.50 cm. .BELOW DRAIN CENTERS

)JHomogeneous system, K = Const.
H

(a

51 . 5 9 100 200

(b) Two-layer system with Ki/Kz2=0.4, "and with the interface at
y = 11 em. above the drain centers, that is, 8 cm. below the soil surface.
51 1 19 200

4 Numbers under “Grover fig. No.” are numbers of source photographs in
Grover (1959).

Although fairly large beads (2 mm. diameter) were
used to minimize the height of the capillary fringe,
the beads were silicone treated as a further preventa-
tive of capillary rise. Nevertheless, a pseudo capillary
fringe could not be avoided. Experiments ( Crover and
Kirkham, 1961) showed that a suction head of 0.75
cm. of glycerol was required to pull the glycerol
through the beads. (But the glycerol will not rise 0.75
cm. in the beads by capillarity—hence the term, “pseu-
do.”) That is, with the drain tubes outletting, as they
did, at the level of their centers, the surface of the
glycerol in the beads would never get lower than
0.75 cm. above the drain tube centers. This 0.75 cm.
level could correspond to a capillary fringe height of
about 0.75 ft. in the field, when 1 c¢m. in the model is
1 ft. in the field. The height, 0.75 ft., is realistic, at
least for “structureless” (slightly aggregated) field
soil—because, by the well-known capillary rise form-

ula, the diameter of a glass tube in which water will
rise to a height of 0.75 ft. is 2[ (2x73) /(0.75x30x980) ]
=132 microns, the value 132 microns (0.132 mm.) be-
ing about the same size as cavities in fine sand. In

aggregated field soils where the aggregates are larger
than for fine sand, the capillary fringe height will be
smaller than 0.75 ft.

The symbol ¢ is used to represent capillary fringe
height. This height is the same as the cm. of capillary
suction at the surface of saturation. Thus, for the
model, we have

When the height of a capillary fringe in the field does
not correspond to the fixed capillary fringe height of
the model, a correction must be made. This correction
is described in a later section.”

RESULTS

The sets of photographs of the (modeled) water
tables, as they vary with time, are the raw data for the
results; fig. 2 is a sample set. Other photographs are
not reproduced here because (aside from the space
requirement) the screening necessary to make a half-
tone engraving for printed reproduction confounds
images of screen mesh points with images of beads so
that one could not locate the correct depth of the
surface of saturation. In fig. 2 there are four photo-
graphs, and each photograph contains eight strips
called subphotographs (cut and remounted from orig-
inal photographs) of the different depths of water
tables. In each of the subphotographs of fig. 2, a grid
may be seen superposed on the front of the model.
The grid mesh is 2 cm. vertical by 5 em. horizontal.
The depth of fall of the water table at various dis-
tances from the drain tubes was determined with the
aid of this grid. For these determinations, larger photo-
graphs than those shown in fig. 2 were used. They
were such- that 200 cm. of the actual model distance
was 8.9 cm. distance on the photograph. On such
photographs the depths of fall could be and were
read, with the aid of a magnifying glass, to within
about 1 mm. of actual distance of glycerol fall.

Depth to Surface of Saturation
Versus Time Relations

Because it was not practical to reproduce the (109 x
8=872) photographs and since, in any event, numer-
ical values are needed-mnot just photographs—we (two
readers working independently) have read from the
photographs, like those of fig. 2, numerical values of
z, the depth of fluid fall, for the various times t. An
example of such readings is presented as table 2.
Notice in this table that the values of z of the two
readers do not agree to within 1 mm. This is because

3See Problems 4 and 6.
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TWO LAYER
SYSTEM

SURFACE LAYER PERMEABILITY
LESS THAN SUBLAYER

TILE DEPTH (d)=6 TILE SPACING (a)= 50
TOP OF SUBSURFACE LAYER AT Y = —|/4 (h~d)

TWO LAYER
SYSTEM

SURFACE LAYER PERMEABILITY
LESS THAN SUBLAYER

TILE DEPTH (d)= & TILE SPACING (@)=200
TOP OF SUBSURFACE LAYER AT Y = —I/4 (h~d)

FIG. 2.

TWO LAYER
SYSTEM

SURFACE LAYER PERMEABILITY
LESS THAN SUBLAYER

TILE DEPTH (d)- & TILE SPACING (@)= 100
TOP OF SUBSURFACE LAYER AT Y = —1/4 (h-d)

TWO LAYER
SYSTEM

SURFACE LAYER PERMEABILITY
LESS THAN SUBLAYER

TILE DEPTH (d)=6 TILE SPACING (a)=400
TOP OF SUBSURFACE LAYER AT Y = —(/4 (h~d)

Sets of falling water tables for the four spacings of drain tubes of Case F (d = 6 ¢m.) of table 1. Note that the clock runs

counterclockwise. The long vertical striations are due to joining plates on the model front.

different drain tubes were used by each reader for the
reference position of x (fig. 1). Use of different drain
tubes as reference positions for measuring x prevents
bias in the (averaged) results.

Table A-1, of Appendix A, with 109 subtables
designated by the numbers 24a, 24b, 24c, 24d, 25a,
etc., gives the values of depth of fall z as a function of

26

x and t, as obtained from average values, such as those
shown in table 2 for the 109¢ conditions of table 1.
The values of x are: x=0, x=0.1a, x=0.2a and x=
0.5a. The letters a, b, ¢ and d, attached to the num-
bers 24, 25, 26, etc., in the subtable headings, refer,
respectively, to the spacings 50, 100, 200 and 400 cm.

6Case A, 16; case B, 14; C, 16; D, 12; E, 16; F, 16; G, 16; H, 2;
and 1, 1--total 109.



Table 2. Sample table of values of z for x/a = 0.1 and 0.9;
for Case A of table 1 when d = 2 cm. and a = 50 cm. Theo-
retically, because of symmetry, the values of z for x/a =0.1
and x/a = 0.9 should be the same. For meaning of x, a, d
and z, see fig. 1.

First Reader
Horiz. dist. from drain
Lapsed x/a=0.1 x/a=0.9

Second Reader
Horiz. dist.® from drain
x/a=0.1 x/a=0.9 Aver-

Clock

reading time (x=5cm.) (x=45cm.) (x=5cm.) (x=45cm.) age
(min.) (cm.) (cm.) (cm.) (em.) (cm.)

60 wn O 0 0 0 0 0
58 2 0.3 0.5 0.4 0.4 0.4
56 4 0.6 0.5 0.6 1.0 0.7
54 6 0.9 07 0.7 0.9 0.8
50 10 0.9 0.7 1.0 1.} 0.9
48 12 0.9 0.8 1.0 1.0 0.9
46 wuhag785s 14 0.9 0.8 0.9 1.0 0.9
4 ... 16 0.9 0.85 1.0 1.1 1.0
42 ... .18 0.9 0.95 o o | i 1.0
# A different drain tube was used as reference (for x=0) by the

second reader (see text).

in table 1. Thus, subtable 24a is for 50 cm. spacing.
In table A-1, subtable 24a, the numbers, 0.4, 0.7, 0.8,
etc., in the third column (for x=0.1a) are the same
numbers, 0, 0.4, 0.7, 0.8, etc., occurring in the right
hand column of table 2. The zero value of z at t=0 is
to be understood in subtable 24a and in all the other
subtables in table A-1.
ool

Observe two other points about table A-1. When
x=0.5a, we have, in accordance with fig. 1, the rela-
tion z=Z, Z being the maximum water table height;
so table A-1 includes values of Z versus t as well as
of z versus t.

Time for the Surface of Saturation
to Fall Unit Depth

Figure 3 is a chart of values of Z (z at x=0.5a)
versus t prepared, respectively, from the first and last
columns of data of each of subtables 30a, 30b, 30c and
30d of table A-1 of Appendix A. The figure is for case
B, d=6 cm. of table 1, and is presented to show some
typical results as well as to show how one may, from
such curves as are shown, obtain the values of the
time for the mid-drain surface of saturation to fall a
unit depth, Z=1 cm., (or to fall other depths) from
the just-ponded or just-unponded condition. The times
for Z=1 cm. for fig. 3 are seen to be: 7.8, 31.5, 108
and 454 min., respectively. These four times and other
times for Z=1 cm. are given in Appendix B, table B-1,

BRI e i

DEPTH 6 CM.
RADIUS 0.25 CM.

BARRIER
0.25 CM. BELOW

DRAIN BOTTOM ¢

/

3.0

25

20

DRAIN
SPACINGS (CM)

o 50 o 200
2 100 e 400

i

A

3l. 5
MIN

(o]e)

pe
“%54

MIN.—

I08
MIN.

S 15
N
O — — — XK
9 78
05 — MIN
(¢) /
00 —— |-?/7-|-|—|-ﬂ—01/
I 2 3 57 10 20

ings of Case B

T TTT]

500 1000

Illl I |

50 100

T (MIN)

Semilogarithmic curves of distance Z of water table fall midway between drains versus time t, for the four drain spac-
(d = 6 cm.) of table 1. The intersections of the horizontal dashed line with the curves yield values of t for a

unit fall, Z = 1 cm., of the surface of saturation midway between drains.
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columns 8, 9, 10 and 11. Table B-1 also includes the
times for Z=0.5 ( columns 4, 5, 6, 7), 1.5 (columns 12,
13, 14, 15), and 2 cm. ( columns 16, 17, 18, 19), which
were obtained in the same way as were the times for
Z=1 cm.

In table B-1, the time values for Z—=1 cm.. corres-
ponding ordinarily to the field value Z=1 ft., are of
particular interest because (compare Luthin, 1957, p.
387) drainage systems are generally considered satis-
factory if the water table falls 1 ft. below the soil
surface in a reasonable time (24 to 48 hours). But we
emphasize that the times for the field cases corres-
ponding to table B-1 cannot be read from table B-1
directly. We shall see in later sections how to calculate
the field times from the model data. In table B-1 the
numbers are not accurate to more than 2 or 3 signifi-
cant figures.

Since the values of the times for Z=1 cm. in table
B-1 are of particular interest, we have prepared graphs
(fig. 4) of the drain spacing, a, versus the expression
(tK/fZ)* for Z=1 cm. The expression (tK/fZ)% is
used for several reasons. It is dimensionless; in it, t/Z
is an average reciprocal velocity of fall; the exponent
% is used since Kirkham and Gaskell (1951) found
theoretically, at least in a certain range of values, that
a was proportional to t* for Z—constant. The expres-
sion (tK/fZ)" is easy to obtain for the abscissas of
fig. 4 for which Z=1 c¢m. Since we have K=1.23 cm./

min., f=0.4 and Z=1 cm., we obtain the expression
by multiplying the time periods in table B-1 by 1.23/
0.4=3.075 and taking the square root of the product.
The significance of the grouped symbols tK/fZ will
be brought out further in the “Discussion” (see espe-
cially eq. 35).

Fig. 4 is for Z=1 cm. Curves like fig. 4 for Z=0.5,
1.5 and 2 cm. are given for comparison with fig. 4 in
Appendix C, figs. C-1, C-2 and C-3. When fig. 4 and
fig. C-1 (drawn to the same scale) were superposed,
the curves for Z=0.5 cm. and Z=1 cm. would super-
pose very nearly, which was also true in some cases
for Z=1 and Z=1.5, but not for Z=1 and Z=2 cm.
The reason for the superposition, when it occurred,
was that Z varied directly with t, making Z/t constant.
This direct variation of Z with t usually occurred only
when the values of Z and of Z/(d-Z) were both simul-
taneously small. Values of t for the “water table” to
fall from the depth Z=0.5 to depth Z=1.0 cm. may
be obtained by subtracting the time for Z—0.5 cm.
from the time for Z=1 cm.; similarly for other depths,
as for Z=0.5 cm. to Z=1.5 cm. One sees in the curves
for Z=0.5 cm. in fig. C-1 that the influence of the 0.75
cm. “capillary” fringe is more marked for the curves
for d=2 cm. than for the curves for d=4, 6 and 8 cm.
The more marked effect of “capillarity” is seen espe-
cially at the large values of t where the curves for d=
2 ¢m. are abnormally steep compared with the steep-

BN jomminsimes 4. . T $=A o + A DO +A @
A 27/ /e /es B ﬂc/ a7ae/ fis D 50/ fagfas
300 98/ A o . 8/6 | 8/6/4
a
200 7= B o A E e s 2
h-d= (2 // h-d=0.5 /// h-d= 12 /// h-d=12
100 K=CONST. | +A7m K=CONST. |- 5 y=-6 L A y=—3
A/D// N K/Kp=20 | 1/ K,/Ky=20
| | | | | | | | 1 |
0 30 0 |0 20 30 0 10 20 30 0 10 20 30
400 F A0 O G +A /O H 7
8/ [6la /2 8 ‘}/ 2 19
7l
300 3 36 — 42 /4| 40 — /
a 39/ 37 s/ /
Z=1 . Z=I B / Z=l i <z>/ Z=
200 h-d=12 / h-d=I2 h-d=I2 h-d= 0.5
//2 — //// you=3 // y=-0.25 / K=CONST.
45 & K/K,=0.4 |- & K/K=0.4 |-48 & K/K,=0.4 O
- y /32 v W i 1/ ol /
] O Fay]
| | | | | | | | | | | |
0 10 20 30 0 |10 20 30 (¢} 10 20 30 0 10 20 30
TK/fZ
FIC. 4. Plots of model drain distance a versus (tK/fZ)% for Z = 1 c¢m., for cases A, B, H of table 1. The numbers 8, 6,

4 and 2 are depths to tiles in cm. The underlined numbers are those of table 1. column 1. The dimensions of a, Z, h—d and y

are em.; K = Ky = 1.23 cm./min.;
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f = 0.4; fringe height = 0.75 cm.;

t, in min.; tK/fZ is dimensionless.



ness of the curves for d=4, 6 and 8 cm. See especially
cases A, F and G of fig. C-1.

In fig. 4, the curves do not, theoretically, go through
the origin (where a=0, t=0) even though they seem
to in some cases. To prove that the curves do not go
through the origin, consider the following reasoning
and calculations, where we shall take a general value
of Z rather than restricting ourselves to Z=1 cm. as
in fig. 4. We first observe that the situation, a = 0,
that is, zero drain spacing, corresponds physically
to an infinite plane sink under the soil at the tile
depth. Therefore, with the tiles outletting at at-
mospheric pressure into this infinite plane sink, we
see that the Darcy velocity v, of v=Ki, will, because
the hydraulic gradient i is now unity, just be K, the
hydraulic conductivity. The velocity of water table
fall will be K/f, and the time for the water table to
fall the Z cm. will be t=Z7/(K/f). But we want tK/f{Z.
Therefore, we multiply both sides of the last equation
by K/fZ and find, after simplification, the result, tK/
fZ—=1. Therefore, we have the interesting result:

(tK/fZ)* =1, when a=0;
which is the same as

(tK/fZ)%=1, when a/d=0, for all values of Z. (1)

In words, the intercept on the (tK/fZ)* axis of all the
curves of fig. 4 should theoretically be 1—if capillary
effects are negligible. When they are not negligible
the values of (tK/fZ)* will be greater than 1 (Swart-
zendruber and Kirkham, 1956).

Approximate Equations for Water Table Depths

To see if data such as those in fig. 4 could be further
compressed, logarithmic plots were made of a/d
versus tK/fZ, one of which (fig. 5) is shown for Case
B (d=2 cm. excluded) of fig. 4.

The data points in fig. 5 do not fall on a single
curve but on three separate curves, one curve for
each value of d. Theoretically, the data points cannot
be expected to fall on a single curve, because as a/d
varies, the depth below the tiles of the barrier, h—d,
remains constant, as is seen in fig. 1, rather than vary-
ing proportionately with a and d. Thus, the “popula-
tion” of the drain cases, statistically speaking, is not
homogeneous. Nevertheless, for a given value of tK/
fZ in fig. 5, a/d does not change much from curve to
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FIG. 5. Logarithmic plots of a/d versus tK/fZ for three drain depths, d = 4, 6 and 8 em., Z = 1 ecm. and h — d = 0.5 cm.

(Case B of table 1).
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curve. So the middle curve may be taken as an ap-
proximation for each of the relations for Case B. The
equation of this middle curve is

a/d=161 (tK/fZ)o-517, 2)
which is the same as
logyo (tK/fZ)= — 0.400--1.933 log;, a/d. (3)

Equations like eq. 3 have been prepared, using
logarithmic regression, for all seven cases, A, B, C,
.. ., of table 1. These equations are presented as eqs.
4-10. In them, eq. 5 corresponds to, but is not the

same as, eq. 3. When eqgs. 3 and 5 are each solved for
a/d, in the range of interest, they each yield approxi-
mately the same result. The equations do not give
identical results bécause eq. 5 is based on three times
more data than is eq. 3.
The equations for cases A, B, . . ., G, are (for Z=1
cm.) as follows:
A: log:(tK/fZ
B: log; (tK/fZ
C: logo(tK/fZ
DZ ]Oglo(tK/fZ

—0.555-+1.986 logio(a/d)
—0.547+1.696 logo(a/d)
—0.563+1.759 logia(a/d)
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FIG. 6. Q/KLd versus (tK/a)% for cases A and C of table 1; Q is the drain discharge rate in cm.3/min.; the other symbols

are as before.
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E: logio(tK/fZ)= —0.787+1361 logie(a/d) (8)
G: logyo(tK/fZ)= —0.996+1.376 logie(a/d) (10)

The correlation coefficients r, for the logarithmic
regression equations, eqs. 4-10, have been computed.
The value of r in each case was 0.99 except for case
G, where r was 0.97. But these high correlation co-
efficients do not mean theoretically, as we saw in fig.
5, that there is just one curve for all of the individual

depths, and an r value of 0.99 does not mean a 99-
percent accurate result.

Drain Discharge Rate Versus Time Relations

Let Q be the discharge rate (cm.?/min.) of one of
the drain tubes, and let t, as before, be the lapsed
time after opening the drain tubes, at the instant the
ponded fluid disappears, for one of the geometries.
Then the results for the discharge ratec are as in figs.
6 and 7. Here, instead of plotting Q versus t, we have
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Same as fig. 6 except for cases B, D and H of table 1. Discharge data were not taken for cases E, F and G of table 1.
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plotted Q/KLd versus (tK/a)*. The exponent % tends
to make the data linear. A better independent variable
would be (tK/af)*. The values of Q were obtained
during the experiments by collecting the discharge
Aq of the drains at small time intervals At and by
calculating the ratio, Aq/At (=Q). The experi-
mental points are not shown on figs. 6 and 7. There
were, in all cases, at least 10 points per curve ap-
proximately equally distributed over the curves. The
curves were made by connecting successive points
with straight lines. A duplicate run (not shown here)
was made for Case D, a=—100 em., d=8 cm. The
duplicate curves agreed to within less than 0.05 unit
in Q/KLd except in the part of the curve where (tK/
a)* was less than 0.2. In this part of the curve, the
discrepancy in duplicate-run values was less than 0.10
unit.

DISCUSSION

In this discussion, we shall derive fundamental
equations connecting model and field results and shall
use these relations to solve, as examples, some field
problems. Also, we shall compare briefly some of our
model data with data of other workers. We assume
that we may deal with the pseudo capillary fringe in
the model as if it were a true capillary fringe. We
therefore drop the term “pseudo.” Ligon et al. (1962)
have made a study of the glycerol fringe in glass
beads.

Equations Connecting Model and
Field Drawdown Data

In fig. 8, consider one of the model geometries, and
its associated streamline pattern, at the instant the
surface of saturation has fallen midway between drain
tubes from its just-unponded condition to a depth Z.
In the streamline pattern, fix attention on the stream-
line ABCD, midway between a pair of drains, and
on an adjacent streamline EFG. Now imagine, at the
instant the surface of saturation has reached Z, that
we have placed infinitesimally thin, fictitious sheets
of rigid, impervious material perpendicular to the
plane of the paper and coincident with the two
streamlines ABCD and EFG. Imagine also that we
have placed other such sheets coincident with all
other streamlines, such as NH and MI starting at
about depth z. Imagine further, that all these sheets
are constrained to remain fixed while the water table
falls midway between drain tubes from Z to a slight-
ly greater depth, Z++AZ, during a time AT. Here
AZ is small but arbitrary, and we use T for time in-
stead of t because we wish to reserve t for times re-
ferred to an initial, just-ponded condition rather than
to an initial time when the water table is at a sub-
surface position JMNEAP shown in the figure.

Now let Aq be the volume of water that discharges,
between the stream surfaces ABCD and EFG, into the
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FIG. 8. Streamlines ABCD and EFG for an instantaneous
position of the water table.

drain tube, for the full length of the tube L (not per
unit length) and during AT. Next, remember that,
in the model, the hydraulic head level where the drain
tube discharges is a distance d below the surface of
the beads so that the head difference existing across
AD of ABCD and across EG of EFG will, for AT,
be, on the average and taking the capillary fringe
height (pull) ¢ into account, [(d — Z — ¢) — AZ/2].
Hence obtain, by inspection, the relation,

Agq_ ; .

KT—K[(d——Z—c)—AZ/Z]C.
Here ¢, the capillary fringe height, is just equal to
the centimeters of glycerol-water suction existing at
the surface of saturation; G is a geometrical constant;
and the product KG may be called, analogous with
electrical nomenclature, the hydraulic conductance of
the medium ABCDEFG. That is, we have

KG=hydraulic conductance.

(11)

(12)

In egs. 11 and 12 remember, for the corresponding
electricity flow problem, that Aq//AT would corres-
pond to I, the electric current, that [(d—Z—c)—
AZ/2] would correspond to the average voltage diff-
erence across the medium and that KG would corres-
pond to 1/R where R is the electrical resistance. The
writing down of eq. 11 “by inspection” implies that, as
for electric current flow, a linear flow law (here
Darcy’s law) governs the soil water flow.

Now, in fig. 8, abbreviate the distance AE by

AE=w
and see, then, that we may express /\q by
Aq:fL\V AZ

where f is the drainable porosity.

Now return to eq. 11 and take AZ small enough to

be negligible compared with d—Z—c. Then solve for
Aq to find

(13)

Aq=K(d—Z—c¢)G AT. (14)



Next, equate the right sides of eqs. 13 and 14 and
find, when the time is /AT, the result

fLw AZ=K(d—Z—c)G AT, (15)

which is true for any Z, if AZ and AT, but not
NZ/ AT, approach zero.

To emphasize that eq. 15 has been derived to apply
to the model, place a subscript m on each symbol to
obtain from eq. 15 the expression,

memeAZm: Km ( dm_Zm'—Cm ) GmATm- ( 16)

For a field situation, not one necessarily geometri-
cally similar to the model situation, instead of eq. 16,
we could have found the expression

ffoWf ﬁ\Zf:Kf(df— Zf-—Cf)GfATf. ( 17)

We have been discussing conditions about the flow
region between streamlines ABCD and EFG of fig. 8.
If we had singled out the streamlines NH and MI in
fig. 8 rather than ABCD and EFG, we should have
obtained equations exactly like the last two, except
that z,, and z; would appear instead of Z,, and Z;. Now

consider again the flow region between the stream-
lines ABCD and EFG.

In eqgs. 16 and 17, no special relation between pairs
of quantities as d,, and d; needs to exist. But suppose
that the shape of the field geometry, for which we
have written down eq. 17, now is similar to the shape
of the model geometry so that each dimension in the
field is n times that of the model (that is, the scale
factor is n); and suppose further that the capillary
suction distances ¢; and c,, are related by the same
similarity factor. (When ¢; and c¢,, are not so related,
one can make a correction, as is done later in Problem
4, provided that the surface of saturation is near the
just-unponded condition.) Then, by definition of
“similarity,” we may write an expression which de-
fines n and includes z; and z, and other quantities.
The expression is

Cr or; L; Wi ag ds

Cim 25y Lix Wi am d,
hf hf = df Z¢ Zf

— _ — = — = n,

hm_ hm—dm - A Zm

where n is a constant.

Relation Connecting G; and G,

We have yet to find a relation connecting G; and Gy,
of eqs. 16 and 17. To find it, first imagine, referring
to fig. 8 (which we are taking to pertain to the model),
that the space between the streamlines ABCD and
EFG, in addition to having the many stream surfaces,
also has a large number of equipotential surfaces with
these sets of surfaces dividing the space into volume
elements. Next, let a typical volume element have (a)
a length AS in the direction of the fluid flow, (b) a

breadth Ab and (c¢) a length perpendicular to the
plane of the paper L. Now imagine that each dimen-
sion of the mode.l, as a,, and d,,, and each flow region
length of the model, as d,, — Z, and d,, — z,, is
magnified by the factor n of egs. 18 to bring the model
up to field size. Then, the volume element which had
a base area L. Ab and a length AS will now have a
base area n’LL /Ab and a length n AS. Remember that
G is a geometrical constant and that the values of Gy,
and Gy, therefore, will not depend on hydraulic con-
ductivities. Therefore, we take, for the moment, Ki=
K=K which could be accomplished physically by
using glycerol and (the same size of) glass beads in
both the original model and in the magnified model.
Therefore, the hydraulic conductance of the original
volume element will be, by our definition, eq. 12, and
by Darcy’s law, KL. Ab//AS. And the hydraulic con-
ductance of the magnified element will be Kn®*L. Ab/
(n AS); the ratio of the latter conductance to the
former will be simply n. But since this factor n will
also apply to every volume element constituting the
space between the streamlines ABCD and EFG, we
see that the whole space between ABCD and EFG
will have its conductance increased by a factor n.
That is, we find

KG _
KGI]I ~ :
or,
. g =h (19)
which is the needed relation connecting G; and G,, —
like the relations in eq. 18.

Condition Imposed on the AZ's

We next impose a condition which relates AZ; and
AZy,. We can do this because up to now, although
we have imposed the conditions given by eqgs. 18 (and
the condition that the AZ’s be small), we still have
kept, if tacitly, AZ,, and AZ; arbitrary. The condition
imposed is that we must choose AZ; and AZ, such
that the relation,

AV S

AZIH - n’
is satisfied. Eq. 20 does not imply that AT; will be
equal to nAT,. But we can quickly obtain a needed
relation connecting AT; and AT,,. We find from eqs.
18, 19 and 20 the values: c;—=nc,,, Li=nL,,, wi=nw,.,
ANZi=n ANZ,, Gi=nG,,. These are put into eq. 17 to
find

ffanIlVan AZm:Kfn< dm'“‘ Zlu_cm )nGm ATI’;

which, when divided by eq. 16 and solved for AT,
yields

(20)

ff Km
ATf = n— ——- ATm;
fm Kf

which is the needed relation.

(21)



Eq. 21 may be abbreviated to

ATf:A ATI’H) (22)
where A is given by
A=n({f;/fy) (Kn/Ks). (23)

The constant A in eq. 23 is a geometrical-physical
constant, through the factors f, n, K, and K; (K, and
K; are now not equal, as in the paragraph below eqs.
18). The constant A does not depend on the time be-
cause the porosities and conductivities have been
taken to be constants with respect to both space and
time.

Completion of Drawdown Derivations

With egs. 21, 22 and 23, we can continue our deriva-
tion which must relate total times of fall, not just in-
cremental times, to the total distances of fall in model
and field. First, we notice that eq. 21 is valid for any
pair of water table situations that are similar for model
and field. In particular, eq. 21 is valid if the water
table initially is an infinitesimal distance below the
soil surface when the term ¢; and the term c¢,, involved
in the derivation enter. In this event, the increment
AZ¢ of eq. 20 will refer to a small drop in the water
table starting from the just-unponded condition (mid-
way between drains); we cesignate this first incre-
ment by the notation AZg. Corresponding to this
AZs, we will have from eq. 22

Atﬂ:A Atml; (24)

where T and t now both have the same significance.

Next let us compute the time increment At for a
second increment of time. Imagine, at the instant the
water has fallen the distance AZg, that the fictitious
impermeable sheets coincident with ABCD and EFG
are instantaneously removed so that the pressures in
the flow mediums, model and field, will adjust them-
selves essentially instantaneously, see Muskat (1946),
to a new steady-state condition that has a correspond-
ing new set of streamlines. Now, instantancously in-
sert the sheets again along the new set of streamlines
and then let the water table fall a distance AZ;o.
Corresponding to AZg, we will have a time Aty
given by

Atf._:A Atm'_‘a (25>

where A, as is seen in eq. 23, remains the same con-
stant as in eq. 24. Repeat the procedures of eqgs. 24
and 25 for a number of increments AZ, NZg, . . .
AZsr, where AZg, is the last increment, to find

Atf]:A A\tml
AtH:A Atm::
Bt e e (26)
Atfl,:A Atmln
Now add all the At; and AZ; to find, respectively,
Atfl"'I'Atf‘_"!'“ & B —I"Atfr‘:tf. (27)

&Zﬂ—i—AZfrF & & +Azf1,:Zf, (28)

where, in eq. 27, t; is the total time lapsed in the field
case for the water table to fall the distance Z¢ of eq.
28.

Now put egs. 26 in eq. 27 to find

A[At11AJ+Atlnil_|‘ D) ";‘Atml.]:tf (29>
But, if t,, is defined as the time for the surface of

saturation in the model to fall from the just-unponded
condition to the position Z; of eq. 28, we have

Atml—i"Atmz“" PR _}‘Atml,:tm; (3())
and eqgs. 29 and 30 yield
At,=t;. (31)
From eqgs. 23 and 31 we now find
t—f::n(ff/fm) (Km/Kf>tm- (32>
But, by expression 18, we have
N=2s/ Zs: (33)
Therefore, from eqs. 32 and 33 we find, finally,
Zf ff Km
tf:h———tma (34>
Zm fm Kf

which is a final important result connecting model
time t,, and field time t;.

Three comments about eq. 34 are pertinent. First,
rearranging eq. 34 we can write
thf thm
= (subject to egs. 18), (35)
ffo fmZm

which is dimensionless on each side and has on each
side the same value for field and model. The equa-
tion shows why a number of results may profitably be
expressed, as they have been, in terms of the expres-
sion tK/fZ, or as a function of it.

Second, in eqs. 34 and 35, it is basic to remember
that Z,, and Z; must be connected by the relations of
egs. 18. Third, if, in eqs. 24 through 35, we had
started measuring times from the instant the surface
of saturation was at any position JMNEAP in fig. 8
and had added up increments AZ referred to this
same position JMNEAP, we would have found, in-
stead of eq. 35, the result

Tfo Tme
= (subject to eqs. 18), (36)
f:fZ,f fmZ’m

where the primes on the Z’s are to indicate that we
now have distances that are referred to the mid-water-
table height at T=0 (not t=0). Eq. 36 would be true
for any shape of the surface of saturation at time T—
0 — even shapes including mounds. Mounds might be
due to ponded depressions in the soil surface through
which water would seep after the soil surface was,
in general, free of ponded water. Eq. 36 is valid only
if egs. 18 are valid.




Equations Connecting Model and
Field Discharge Data

Eq. 35 connects distances Z,,, Z; and times t,, and t;
of the fall of the surface of saturation for model and
field. We can get a similar relation connecting dis-
charge by proceeding somewhat as in the last section.

In fig. 8, imagine two streamlines such as NH and
MI starting at the surface of saturation [MNEAP, re-
spectively at x = x; and at x = x; + Ax;. Take the
average depth of the starting points M and N of the
two streamlines to be z;. Assume that these two
streamlines and other features about fig. 8 apply to a
model situation. Imagine, as we did for the stream-
lines ABCD and EFG, that fictitious impervious sheets
are coincident with the presently singled out stream-
lines; and let the volume of water per unit time pass-
ing between them be AQ; Then, as for eq. 11, we
may write (since we now assume, as we did before,
that the tube is emptying a distance d below the soil
surface) the expression,

AQi = K(d — z — ¢)G.. (37)

The total discharge per unit time is obtained by
summing over the index i, in eq. 37, to cover all pairs
of streamlines. Let there be j — 1 streamlines between
x = 0 and x = a, the 0-th line being at x = 0 and the
j-th at x = a; then, the total volume per unit time dis-
charging into half a drain tube at x = 0 and into half
a drain tube at x = a‘is (withi =0, 1, 2, ..., j),

J J
QZEAQi:2K<(l—Zi—('i)Gi, (38)
i=1 f==1
where the subscript i on ¢ may be dropped, if ¢, as
assumed here, is constant. To emphasize that expres-
sion 38 applies to the model, write it in the form,

] )
Qm — 2 AQim — S Km<dm — Zim — Cim)Gilw (39)
f=1 =4 |
For a field situation, the last expression would become
j j
Qr =3 AQif == Kf(df = Zfg = Cif)Gir- (40)
f=I =1

Now we suppose that the dimensions and capillary
fringe heights of the model and field are similar so
that, from eqs. 18 and 19, we have
d; Cit Zit Gi
—— I e——E = —— = 1 (41)
dm Cim Zin Gim
Next, using values of egs. 41 in the last member of
eqs. 40 we find
J
Qr = = K¢(ndy — nziy — nci)nGy,.  (42)
fe=1,
In eq. 42, since n and K; are constants, we can write

J
Qf — I<fn2 2 (dm — Zim —
i—1

Cim)Ginn- <43>

Divide eq. 43 by the first and last members of eqs. 39,
remembering in egs. 39 that K,, is a constant. Find,
after simpliﬁcatiqn, the basic result,

Q: K

s e B, (44)

Qu) Km
where n is given by any and all expressions of eqgs. 18.

Notice two points about eq. 44: (1) The drainable
porosities of field and model, whatever they may be,
do not mathematically enter, explicitly, in eq. 44 (but
do enter physically and implicitly through the expres-
sion, ¢; = ncy, and through the values K¢ and K,,).
(2) Equation 44 says, when applied to two field situa-
tions (we could use subscripts f; and f, to denote
them instead of f and m as in eq. 44), that the dis-
charge rates in similar drainage systems—i.e., systems
which satisfy eqs. 18—vary as the square of the ratio
of corresponding dimensions.
Only a few more equations are necessary to com-

plete the derivations.

In eq. 44 we find it convenient to take, from egs. 18,
Lfdf

nf = ;

Lllldlll

so that eq. 44 becomes

Qr K: L

Ql“ K"l Lllld]\l'
Rearranging we find

Qf Qm

Kfodf KmLmdm
an expression in which the left-hand side and right-
hand side are dimensionless.

The left-hand side of eq. 44 applies to a certain
model time and, the right-hand side, to a certain field
time. These times may be related because, if t,, is the
known model time pertinent to the rate Q,,, then the
corresponding field time t; is given by eq. 32 in which
n is given by one of egs. 18. For example, if we take
n = ag/a,, we see from eq. 32 that t;, at the instant
of validity of the left-hand side of eq. 45, is

(subject to eqgs. 18), (45)

ar ff Km
ty = — — — tm, (46)
Ay fm Kf
an expression which involves both the model and field
porosities.
Eq. 46 may be written
tht‘ thm
- = . (47)
a~ff1' amfm

each side of which is dimensionless. Eqs. 45 and 47
indicate that, in presenting model data, one may prof-
itably plot Q,,/K,Lydw versus t,K,./anfy, or functions
of these quantities. Actually, because we did not know
eq. 47 when the model data were collected, we plotted
(figs. 6 and 7) the expression Q/KLd versus (tK/a)*.
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The latter factor should have had an f in the denomi-
nator.

It is common in model work to derive equations by
using “dimensional analysis.” We did not use dimen-
sional analysis in the conventional sense (see Ligon,
1961) to derive our key eqs. 35, 36 and 45. In essence,
we developed our key equations from “the equation
of continuity” (see eq. 13) and Darcy’s law (see eq.
14, and text following eqgs. 18).

Our results are for a sharp surface of saturation and
for a constant drainable porosity. In the field, the sur-
face of saturation is not sharp, and some conductivity
occurs above it. This conductivity is known to be small
(Swartzendruber and Kirkham, 1956). For considera-
tion of the variability in the drainable porosity, see
Taylor (1960). For measuring K; for eqs. 35, 36 and
45, see Kirkham (1946, 1955).

Solving Field Problems by Using Model Data
Time of drawdown problems

PROBLEM 1. Suppose we wish to know the time
it will take for the water table midway between each
pair of a series of equally spaced drains to drop 1 ft.
from the just unponded condition when the drains are
100 ft. apart, 4 ft. deep, have diameter 0.5 ft., there is
a barrier 12 ft. below the drain tube centers and when
the soil properties are: capillary fringe height, 0.75 ft.
(capillary fringe height is analytically also a geometri-
cal property); drainable porosity, 5.4 percent; and hy-
draulic conductivity, 0.81 ft. per day.

Solution. Given data are: Z; = 1 ft., a; = 100 ft.,
df =4 ft., 2rf =05 ft., hf o=t df = 12 ft. (SO hf = 16
ft.), ¢ = 0.75 ft., f; = 0.054 and K; = 0.81 ft./day
(Ke/f; = 15). We want t;.

To solve, we first see that Z;, a;, etc., and the other
geometrical quantities obviously have been chosen to
correspond to Case A of fig. 4, provided the scale is
1 ft. in the field for 1 cm. in the model. So we take
this scale. In particular we note that the capillary
tringe height ¢; = 0.75 ft. has been chosen to corre-
spond to the 0.75 cm. model value. The problem does
not involve the length of the field drains; one must
assume that the field drains are long compared with
their spacing, the situation for which the model was
designed.

So we use Case A of fig. 4, and, to deal with its “x
axis,” we have from our field data and eq. 35 the ex-
pression,

tf( 0.81 ft/day) thm
= (48)

(0.054) (1 ft.) £ulin
To get the right-hand side of eq. 48, draw a horizontal
line through the “y axis” point, a = 100 c¢m. on fig. 4,
Case A, and, where this line intersects the curve d =
4 cm., read off on the “x axis,” the value

( thm//fmZm ) =70, ( 49 )
36

From eqs. 48 and 49, now find

t:(0.81 ft./day)
ket S (R (50)
(0.054) (1 ft.)

which, when solved for t;, yields
t; = 3.27 days. (Answer Problem 1) (51)

PROBLEM 2. The given data are as in Problem 1
except that we take K¢ as 8.1 ft./day rather than 0.81
ft./day. We want t;.

Solution. Since the geometry is that of Problem 1,
we use the right-hand side of eq. 50, modifying only
the left-hand side to find, in keeping with eq. 35, the
result,

t:(8.1 ft./day)
=707 (52)

(0.054) (1 ft.)

which, when solved for t, yields
tr = 0.327 day. (Answer Problem 2)

PROBLEM 3. The given data are as in Problem 1
except that f; = 0.027. We want t;.

Solution. Since the geometry is as in Problem 1,
we use the right-hand side of eq. 50, modifying only
the left-hand side to find, in keeping with eq. 35, the
result,

t:(0.81 ft./day)
2= TP

(0.027)(1 ft.)

which, when solved for t;, yields (half the value of
eq. 51)
tr = 1.63 days. (Answer Problem 3)

PROBLEM 4. The given data are as in Problem 1,
except that ¢; = 0.375 ft. rather than 0.75 ft. We want
ts.

Solution. Our model was not designed to give dif-
ferent capillary fringe heights. Therefore, we cannot
give an exact model solution. Two approximate solu-
tions are possible. The first is to say that, with the
lessened capillary pull across the top of the flow me-
dium, the time for the fall of the 1 ft. will be less
than, but approximately equal to, the 3.27 days of
Problem 1. The second approximate solution, but a
more accurate one, is obtained as follows: First return
to eqs. 11 and 13 to find from them

fLw, AZ=K(d — Z — ¢ — AZ/2)G, AT, (53)
where the subscript a has been added to w and to G
to show that average values of w and G are required
for exactness of eqs. 11 and 13 if finite space and time
intervals AZ and At, as here, are used. Notice that
the “AZ/2” takes care of the average value of Z in
eq. 53.

Next apply eq. 53 to the just-unponded condition of
Problem 1 to find (changing only T to t in eq. 53)
the result,

flwa AZ =K(d —Z — ¢ — AZ/2)G, At. (54)



Next apply eq. 54 to the data of Problem 1 to find

(0.054)Lw, (1 ft.) =
(0.81 ft./day) (4 ft. — 1 ft. — 0.75 ft. —
1ft./2)G, At. (55)
Next apply eq. 54 to the data of Problem 4, to find
(0.054)Lw,’ (1 ft.) =
(0.81 ft./day) (4 ft. — 1 ft. — 0.375 ft. —
1£t./2)G) A, (56)

where the primes show that w,’, G," and /At’ are not,
as is evident physically, the same as w,, G, and A\t of
eq. 55.

Next notice, by physical consideration of flownet
changes which occur in the interval At of eq. 55,
as compared with the corresponding changes that oc-
cur for the interval At of eq. 56, that w, and G, will
be approximately equal to w,” and G/, respectively,
if the first parenthetical expression to the left of G,
in eq. 55 is approximately equal to the corresponding
parenthetical expression in eq. 56. Now, since these
parenthetical expressions are approximately equal, di-
vide eq. 55 by eq. 56, taking G, = G,” and w, = w,’.
Then find, after simplification and solving for At’, the
result,

(4ft. — 1ft. — 0.75 ft. — 1ft./2)

AN —
(4ft — 1%t — O8T5f — 1 f:/2)

That is, find
AV = [(1.75 ft.) /(2.125 ft.) ] At = 0.823 At. (58)
But the At of egs. 58 is just equal to t; = 3.27 days
of Problem 1 (eq. 51); and the At" of eq. 57 is just
equal to t; of our present Problem 4. So find, finally,
from eqs. 57 and the noted values

tr = 0.823 X 3.27 days — 2.69 days.
(Answer Problem 4)

At; (57)

Comment 1: Comparing the answer of Problem 1
with the answer of Problem 4, we see that the change
in the capillary fringe height from 0.75 ft. (9 in.) to
0.375 ft. (4.5 in.) caused the time needed for the sur-
face of saturation to fall 1 ft. to change from 3.27 days
to 2.69 days.

Comment 2: We have given considerable detail in
solving Problem 4 since the problem shows that capil-
lary fringe effects on drawdown times (a) may be im-
portant and (b) may need to be taken into account for
a variety of fringe heights, even though our model
data are based on a single capillary fringe height, 0.75
cm.

Comment on problems 1-4: If, in problems 1-4, we
had d; = 5 ft. instead of 4 ft., we should then have
worked from an interpolated line, d = 5 ¢m., on fig. 4,
Case A, instead of from the line d = 4 c¢m. For other
depths, the procedure would be similar.

PROBLEM 5. Suppose all field data are as for
Problem 1 except that the barrier is 0.50 ft. below the

center of the drain tube; i.e., hy — d; = 0.5 ft. What
is t; then?

Solution. We proceed as for Problem 1 except that
we use Case B of fig. 4. From it we find (for a = 100
cm. and d = 4 c¢m.) the value,

(twKm/fmZm ) % = 13,
so that eq. 48 becomes

t:(0.81 ft./day)

(0.054) (1 ft.)
from which we find
tr = (169/15) days — 11.27 days. (59)
(Answer Problem 5)

= 13%,

Comment: The result of eq. 59 shows, when com-
pared with that of eq. 51, that “raising” the barrier
from 12 ft. below the drain centers to 0.5 ft. below
their centers increases the drawdown time for the 1 ft.
from 3.27 days to 11.27 days.

PROBLEM 6. Suppose the field data are as in
Problem 1 except that we have hy — d; = 6 ft. (and
except, since di = 4 ft., we have h; = 10 ft.). What
will t; then be?

Solution. We do not have model data for h,, — d,
= 6 cm., when we take, as we have taken so far, 1 cm.
of model to correspond to 1 ft. in the field. But 1 cm.
of model does not have to be 1 ft. in the field. We can
use instead (see eqs. 18) the relations

hy — d 6 ft. 1 ft.
= = . (60)

2 cm.

hy, — dn 12 em.
Then, the geometrical field values, namely, Z; = 1 ft.,
de =— 100 ft., df — 4 ft, 2rf = 05 ft, hf — df — 6 ft
(with deduced value h; = 10 ft.) and ¢; = 0.75 ft.,
needed on the model would be:
Zw = 2 cm., a, = 200 em., d,, = 8 cm,, }
(61)

e = Lems, hg — de = 12 em;,
h, = 20 em., ¢, = 0.375 cm.

The closest model case we have, corresponding to
eqs. 61, is that of part A of fig. C-3 (when d = 8 cm.,
and a = 200 cm.) for which we have

Zy = 2 cm., a,, = 200 cm., d,, = 8 em,,
2r, = 0.5 ecm., hy, — d;, = 12 cm,, (62)
hy = 20 em., ¢, = 0.75 em.

So, keeping in mind the discrepancies in 2r,, and c,,
in eqgs. 61 and 62, let us use fig. C-3, part A, and its
associated conditions, eqs. 62; and then see if the re-
sult we obtain can be modified to fit eqs. 61.

Drawing a horizontal line through the “y axis” of
fig. C-3, part A, at a = 200 c¢m. and reading, on the
“x axis,” the value corresponding to the intersection
of the horizontal line with the curve d = 8 cm., we
obtain

{ 6K/ Tl ) 2 = 8.5; (63)
that is, we have

thm/fanm — 7225’
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or, using subscripts 2 to denote conditions of eqs. 62,
we have
th‘_)/f2Z;_n = 72.25, (21’2 =05 cm., (64)
ce = 0.75 cm.).

Now we ask: How can eq. 64 be modified for the
conditions of egs. 61?

To get the answer, we call upon a result of Kirkham
(1949, p. 376, eq. 16) which shows that the rate of
intake Q" of water per unit area into the soil, at any
distance x from the drain and so at x = a/2 as for our
present case, in a just-ponded condition, is directly to
proportional to a quantity Q (not the Q of our eq. 38).
This Q is the outflow rate per unit length of drain
tube, and is given by Kirkham (1949, p. 374, eq. 11) as

Q=27K(t4+d—r)/D, (65)

in which (with m = 1,2....,0 ) D is defined by
tan[7(2d — r)/4h]

D = 1n
tan (7r/4h)
mma T
0 cosh -+ cos —
2h 2h
+ = 1n
mma T
m=1 cosh — €O0S —
2h 2h
mma m(2d — 1)
cosh — — cos ———
2h 2h
; (66)
mma m(2d — r)
cosh — - cos
2h 2h

In eqgs. 65 and 66, we remark that Kirkham’s nota-
tion is the same as ours except that he uses t for thick-
ness of ponded surface water, whereas we use t for
time; he also uses Q for discharge volume per unit
time per unit length of drain tube, whereas we use
Q/L. Kirkham’s t must, for our case, be replaced by
—c, since we are concerned with water that has just
become unponded. Also, Kirkham’s r in the expression
for head difference, “t - d — r,” must be replaced by
zero, since Kirkham’s drains discharged at the level
y = r, and ours discharge at y = 0.

So eq. 65 in our notation should read (Q now being
as in eq. 38, etc.)

Q/L = 27K(d — ¢)/D. (67)

where
D = right-hand side of eq. 66. (68)

In eq. 67 notice that 27K/D is the hydraulic con-
ductance of the flow medium and that d—c is the
driving head.

For eq. 67 to apply, we have seen that there could
exist no ponded surface fluid, so that Q/L now be-
comes proportional to the amount of fluid passing unit

area per unit time through the soil, as the surface of
saturation falls. But this amount of fluid, for small Z
and t is equal to (Z/t)f. So, in view of our statement
preceding eq. 65 we can say, for geometries as in-
dicated by fig. 8 (but with Z much smaller than in fig.
8) that (Z/t)f is, if L is constant, given by

(Z/t)f = B 27K(d — ¢)/D,

where B is a constant of proportionality. Or, we can
say, for two models, 1 and 2, in which L is equal and
7 is small, that we have

t: Ky /f:Z4 Di(ds — ¢2)
= ’ (69)

t:Ko/fsZo  Da(di — 1)

Now, consistent with our use of subscripts in eq. 64,
we may write

subscripts 1 apply to egs. 61 (70)

subscripts 2 apply to eqgs. 62 (71)
From statements 70 and 71 and eqs. 64 and 69, we
now have

tKi/BZ:  Di(8 — 0.75)
- , (72)

72.95 D»(8 — 0.375)

in which D; and D, need to be determined.
For D, we find, in view of eq. 66 and statement 70

tan[7 (16 — 0.5)/80]

D1:1n

—+ sums, (73)
tan(7 0.5/80)

where the “sums” involve a; = 200 cm., and are here
negligible.

So performing the operations in eq. 73 and ignoring
the sums we find

D, — 3.56. (74)

Likewise, we find from eq. 66 and statement 71
tan[7 (16 — 0.25)/80]
Dy = In =428 (75)
tan(7 0.25/80)

Putting the right-hand side of eqgs. 74 and 75 in eq.
72 we find

t, Ky 3.56 7.25
—_— = 7225 — —— =
VA 4.28 7.625

(72.25) (0.832) (0.951) = 57.1  (76)

which is the sought-for result for the conditions of
eq. 61. Eq. 76 shows, in keeping with our physical in-
tuition, that: (a) for the larger drain tube, the draw-
down time is reduced (here by the factor, 3.56/4.28
= 0.832, see eq. 74 and 75); and (b) for the smaller
capillary pull, the drawdown time is also reduced
(here by the factor, 7.25/7.625 == 0.951, see eq. 72).
Our result (b), that the smaller the capillary fringe
the faster is the drawdown, has been observed in an
electric analogue model by Childs (1947).



The value of t,K;/f;Z; given by eq. 76, is not as
accurate a value as we can obtain because our correc-
tion factors 3.56/4.28 and 7.25/7.625 in eq. 76 were
based on the conditions for Z = 0 (just unponded
fluid); whereas our time t; of eq. 76 depends on the
continuously changing conditions of the flow medium
as it changes from the condition when Z = 0 to the
condition when Z = 2 c¢m. To get better correction
factors, we refer to table A-1, subtable 27¢, which ap-
plies to fig. C-3. In subtable 27c, in the fifth and
second columns and for t — 58 min., we see that the
surface of saturation falls from Z = 0 to Z = 2.3 cm.

— say 2 cm. — midway between drains; while over
the drain (x = 0), we see that the surface of satura-
tion drops from z = 0 to z = 6.1 cm. — say 6.0 cm.

Thus, this subtable shows that a space and time aver-
age value of d (for the equivalent rectangular flow
medium of Kirkham) to use in our correction factors
D; and D, in the right-hand side of eq. 72 should be
equal to [8 4 (6 + 2)/2]/2 = 6 cm. rather than the
8 cm. we used.
So the right-hand side of eq. 73 would be replaced
by (neglecting the sums)
tan (12 — 0.5) /80
In =321
tan 7 0.5/80
and the “In” expression in eq. 75 would be replaced

by

(77)

tan 7 (12 — 0.25) /80
In = 3.93,
tan 7 0.25/80
It would seem now offhand that the ratio (ds — c.)
/(dqy — ¢1) for our improved correction factor, right-
hand side of eq. 69, should be (6 — 0.75)/(6 — 0.375).
But this is not true because (ds — c¢»)/(dy — ¢)
should apply to the central flow line of our interest,
ABCD of fig. 8—not to an average (with space and
time) flow line starting somewhere between A and ]
of fig. 8. So we consider the average head across the
flow line ABCD which, for our case of 2 cm. fall, is
(8 4 6)/2 = 7 cm.,, if we ignore capillary pull for
the moment. Taking the capillary pull into account,
our head correction ratio becomes
(7 — 0.75) /(7 — 0.375) = 6.25/6.675;, (79)
and instead of eq. 76 we now have, using, in eq. 72,
the right-hand sides of eqgs. 77, 78 and 79, the result
K, 3.21 6.25
—_— =722 — —— =
VA 3.93 6.675

(78)

(72.25) (0.817) (0.937) = 55.3. (80)

We may now quickly obtain the answer to Problem

6. Since eq. 80 applies to a model with the conditions

of eq. 61, we may write, in keeping with our notation

in problems 1-5, the equations.

thm thr

—— =553 = )

fmZm fI‘Zf

(81)

where the right-hand side applies to the field condi-
tions given above eqs. 61 and where K; and f; are as
given in Problem 1. So we have
t:(0.81 ft./day)
_ — 553.
(0.054) (1 ft.)
That is, we have t; = (55.3) (0.15), or

t; = 8.30 days. (Answer Problem 6) (82)

Barrier effect problem (Problem 7)

PROBLEM 7. Noting that the answers t;, to prob-
lems 1, 5 and 6 are all for Z; = 1 ft., a; = 100 ft., d; =
4 ft., 2r; = 0.5 ft., ¢; = 0.75 ft., f; = 0.054, and K; =
0.81 ft./day, but for h; — d; are, respectively, 12 ft.,
0.5 ft. and 6.0 ft., determine the “barrier effect,” that
is, obtain a plot of t; versus h; — d;.

Solution. We first prepare the following schedule:

Prob. No. Eq. No. h;—d; te
D mpbinosms 59 0.5 ft. 11.27 days
6 ... 82 6.0 ft. 8.30 days
B oo e 51 12.0 ft. 3.27 days

and then make the curve of fig. 9 which is the Answer,
Problem 7.

(ft)

(hf —dg)

Time t; in the field for the water table to fall 1 ft.
from the just-ponded condition for various depths (hr —d¢) of
the barrier layer below the tile centers when ar—= 100 ft.,
de = 4 ft., 2r = 0.5 ft., fr =0.054 and K:=0.81 ft./day.
il“heorectically, te should become constant as h: — d: becomes
arge.

FIG. 9.

Drain tube discharge problem (Problem 8)

PROBLEM 8. Suppose we wish to know the cubic
ft. per sec. of water discharging from each drain tube
of Problem 1 per 100 ft. of drain tube length at the
instant when Z; is 1 ft. Our problem thus is: Find Qs
when Z; = 1 ft. and L; = 100 ft.

Solution. We observe that fig. 6, Case A, a = 100
cm., applies; and that, to obtain values for its “x axis,”
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we should use eq. 47. Therefore, we put our data from
Problem 1 into eq. 47 to find

(3.27 days) (0.81 ft./day) tKm
= 0490 =
(100 ft.) (0.054)

which gives, since for our model we have f,, = 0.4,
the result,

tmKn/am = (04) (0490) = 0.1960,

amfm

or
(thm,/am ) Y = 0443

We now spot this “x axis” value 0.443 on fig. 6, Case
A, for the spacing a = 100 cm., and read off for d =
dw = 4 cm., the “y axis” value

Q/KLd = Q,/K,,L,yd = 0.38.
Next, looking at eqs. 45 and 83, we write down
Q:/K.L.d; = 0.38,
which yields, with our given field data,

Q: = (0.38)(0.81 ft./day) (100 ft.)(4 ft.)
= 123 ft.3/day. (Answer Problem 8.)

This is a small rate, but it is the value of Q as found
a fairly long time, 3.27 days, after surface water dis-
appeared, and it is a value for the low conductivity
K; = 0.81 ft./day. The largest value of Q would be
for t = 0; but we cannot extrapolate this largest value
from figs. 6 and 7. The maximum value of Q can be
obtained by using the ponded water drainage formulas
given in Kirkham’s article in Luthin (1957).

(83)

Problem Solution by an Alternate Method

The problem examples have all been for Case A or B
of table 1. Principles, however, have been brought out
for solving field problems for the other cases. We con-
clude our problem examples by solving Problem 1 by
an alternate method using eq. 4.

First put the data of Problem 1 in eq. 4 to find

logo (tK/fZ) = — 0.487 + 1.606 logs,(100/4);
which yields

(tK/fZ)% = 7.52. (84)

Now replace 7.0 in eqs. 49 and 50 by the 7.52 of eq.
84 to find upon solving the resulting eq. 50 for the
time, now denoted by t; rather than t;, the result

ty = 3.77 days.

Here ty is larger than t; = 3.27 days of eq. 51, be-
cause in eq. 4 all the model values for a/d for Case A,
table 1, were combined into a single equation. The
latter value, 3.77 days, is more straightforward to cal-
culate but is not as accurate as the former value, 3.27
days, because the 3.77 value resulted from combining
data not accurately belonging to the same statistical
population, seen before eq. 2.
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Test of Model Data With Glover’s Theory;
Other Theories and Data

To keep this report within bounds, we test our data
against only one theory, namely, Glover’s “first equa-
tion,” as reported by van Schilfgaarde, et al. (1956,
esp. eq. 17). The Glover equation for the drain spacing
ais

k(h —d 4 05d)t 7%
T ! (85)
f In(4/7)d/(d — Z)
which may be written in the form,
a = At':, (86)

where A is the coeflicient of t* in the right-hand side
of eq. 85. The test consists of comparing slopes A of
experimentally obtained graphs (fig. 10), values, 40,
32 and 26, with the corresponding slopes, 36.2, 32.8
and 28.4 (fig. 10, the inset table), computed from eq.
85. The agreement is considered good in view of
Glover’s limitations which are: Equation 85 should
have h — d = d << a (we have, for fig. 10, h — d
= 12 cm. and a = 50 to 400 cm.) and should have
d << h — d (we have for fig. 10,d = 4, 6 and 8 cm.
and have always h — d = 12 cm.); and should have
no capillary fringe (we have 0.75 cm. fringe) and,
finally, should have the time period t sufficiently large
that the second and subsequent terms can be dropped
from an infinite series which occurs in the derivation
of eq. 86 (the times we used made the second term of
the series about 12 percent of the first). Notice that
eq. 86 is not of the form a/d = At*, a form which
would be correct only if the coefficient of logio(a/d)
in eq. 4 were 1/0.500 = 2.000, instead of 1.606, as
there. But eq. 5, Case B (but not the other cases)
gives the form a/d = At%, very nearly, since the co-
efficient 1.986 in eq. 5 is very nearly 2.000.

The verification of eq. 86 indicates that (under the
conditions of fig. 10) drain spacing increases as the
square root of time. Thus, if a crop, such as potatoes
(see Luthin 1957, p. 540), needs 1 ft. of drawdown in
36 hrs., and alfalfa needs 1 ft. of drawdown in 72 hrs.,
then the drain spacing for the alfalfa could be (72/
36)% — 1.41 times as great (not twice as great) as
that for potatoes. Little is known, however, about
drawdown times needed by different crops.

Equation 86 may be called a “drawdown law.” The
law appears to apply well to most of the cases of fig.
4 and of figs. C-1, C-2 and C-3. But the fact that a
square root of time law appears valid for most of the
cases does not mean that the coefficient A of eq. 86 can
be computed from eq. 85 in all cases.

The “drawdown law” may be interpreted a different
way. Sometimes a field may be tiled at large spacing,
with the thought that if drainage is not adequate, tiles
may be placed midway beween the original ones. The
law indicates that such halving of the spacing would
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FIG. 10. Comparison of experimental slopes of curves of model data with slopes computed by Glover’s theory (see van

Schilfgaarde et al., 1956). The data points are for the three tile depths, d = 4, 6 and 8 cm., of case A of table B-1 where Z =
1 ¢m. The depth of the tile barrier below the tile centers is 12 cm.

cut the time period for a certain drawdown to one-
fourth the time for this same drawdown under the
conditions of the original tiling.

Some other theories and other data, which in future
work may be compared and analyzed with those of
this report, may be mentioned as follows: Childs
(1947); Kirkham and Gaskell (1951); Wesseling
(1956); Visser (see Luthin, 1957, pp. 96-98); Isher-
wood (1959); Breitenoder and Zanker (1960) [who
used a “Hele-Shaw model,” one in which a viscous
fluid flows, under gravity, between plane sheets a
small distance apart—a description of a recently made
Hele-Shaw model is given by van Wijk (1960)]: Brut-

saert, Taylor and Luthin (1961); Brooks (1961); and
Visser (1962). One finds that the data in these refer-
ences are generally for narrower spacings of drains
than we used and, thus, are not usually applicable in
practice, except where close spacings (less than 50 ft.
—our data go to 400 ft.) drains are used. The most
extensive data cited are those of Breitenoder and
Zanker (1960) who consider drain spacings up to 15
meters. The data in the cited literature are mainly for
the water table height midway between drains and
seldom cover conditions over the whole water table
arch (as does our table A-1); layered soils are not
considered.

SUMMARY

Over 800 “water tables,” in a glassbead-glycerol
model, have been photographed. Data from them
have been tabulated and, in part, graphed to show
how water tables fall with time for a large number
(109) of different geometries in simulated tile-drained
soil. The “soil” is either homogeneous or stratified. The
tabulated basic data are depths to water table versus
time for positions (a) midway between pairs of drain
tile, (b) above the tiles and (c¢) at two intermediate
points, so that the whole water table arch is defined.
The tile spacings are 50, 100, 200 and 400 c¢m.; depths
below the tile axes to an impermeable barrier are 12
cm. and 0.5 em. One em. of model may be convenient-
ly taken as 1 foot in the field, but other scales are

shown to be suitable. For about half of the 109 geo-
metries, tile discharge rates were measured as they
varied with time of water table fall; these discharge
rates are presented graphically. The water table and
discharge data are for spacings up to 400 ft.; previous
model data usually have been for spacings less than
50 ft.

Convenient, dimensionless equations are derived
which relate the model data to field conditions. Eight
examples of field problems are worked out in numer-
ical detail by use of the derived equations. The
tables, graphs and derived equations aid in under-
standing and in solving practical drainage problems;
furthermore the tables and graphs furnish a source of
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experimental data for checking theories of falling
water tables yet to be discovered. One “defect” which
could not be avoided in the data is the approximately
0.75 cm. high “capillary” fringe (apparently resulting
more from viscosity than capillarity) of the model.
This 0.75 cm. fringe corresponds to about 0.75 ft. of

capillary fringe in the field for one modeling scale
noted, and about 0.375 ft. for another. Corrections for
other capillary fringe heights may be made. The exist-
ence of a capillary fringe increases drawdown time.
A square-root-of-time “drawdown law” is indicated by
the data for many tile drainage situations.
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APPENDIX A

Value of z (cm.) versus x (cf. part A of fig. 1) for x = 0, 0.1a, 0.2a and 5a, for the various clock times t (min.) of

the photographed falling surfaces of saturation for the conditions listed in table 1.
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Table A-1. Continued.
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APPENDIX B

Table B-1. Time in minutes for the surface of saturation to fall a distance Z (see fig. 1) when Z = 0.5, 1.0, 1.5 and 2.0 cm., for various depths d and spacings a and geometry
as otherwise described in table 1.

De‘{:th Z=0.5 cm. Z=1.0 cm. Z=1.5 cm. Z=2.0 cm.

fig. Case Spacing a (cm.) Spacing a (cm.) Spacing a (cm.) Spacing a (cm.)

No.* (em.) 0 100 200 400 50 100 200 400 50 100 200 400 50 100 200 400
Minutes Minutes Minutes Minutes

/- T A 2 13.0 28.9 60.0 i S _— ;

25 o LA 4 3.2 12.7 30.8 120.0 5.4 19.5 52.0 250.0 8.0 28.7 81.8 420.0 15.0 45.0 133.0 632.0

26 s il 6 1.8 6.1 25.9 107.0 3.0 9.3 36.0 167.0 4.8 13.3 48.9 232.0 X 18.0 65.0 300.0

27 w il 8 A ] 18.5 64.0 2.2 28.2 97.0 3.3 10.2 39.0 130.0 4.5 13.8 50.2 177.0

DB " Bl e B b b g B 2 30.0 ] - £ 52 »

29 ..B 4 7.8 29.0 70.0 350.0 15.4 56.0 170.0 770.0 26.6 93.0 i s Sl dogs ons :

30 B 6 4.3 15.8 54.3 290.0 7.8 31.5 108.0 454.0 11.8 54.0 187.0 - 16.2 -~ bg s ;

31 P B 8 3.0 10.0 42.1 190.0 5.4 75.0 350.0 7.8 27.4 106.0 498.0 10.3 35.0 128.0 620.0

32 . E 2 8.6 22.5 48.8 16.0 7 ..

88 . s E 4 3.4 10.0 19.0 58.7 5.0 14.0 30.0 82.0 7.0 17.8 42.6 11.7 30.0 72.0

34 ..E 6 1.8 3.4 10.4 43.0 3.2 6.5 17.6 58.0 4.6 10.0 26.0 6.2 14.0 36.0

35 ..E 8 1.3 3.6 10.9 28.5 2.0 6.0 15.6 42.0 3.0 8.2 20.8 57.9 4.4 10.5 26. 78.0

B0] il ahen s B AR S0 F 2 9.8 25.0 28.6 50.0 . i 43.0 99.0 . 43.0 b il ¢

B aert o 05 B 5 S VG F 4 2.7 6.8 20.5 40.3 4.4 10.9 30.0 58.0 6.5 16.5 43.0 77.3 11.0 .0 63.0 122.0

38 . F 6 2.0 3.8 10.8 26.3 3.2 6.8 16.8 42.0 4.8 10.6 24.2 60.2 6.8 15.1 35.2 81.0

39 . F 8 1.0 3.6 7.8 18.7 1.8 5.6 12.5 30.5 2.7 7.8 177 3 3.8 .0 23.9 59.5

40 .G 2 5.0 10.0 21.8 41.9 13.5 22.0 — i .. e - 23 .

41 . .G 4 o 4 4.5 10.8 41.7 2.7 7.4 16.0 ag 4.3 10.1 22.0 | 7.2 371 e

42 .G 6 1.0 2.5 8.4 33.5 1.8 4.2 13.0 50.0 2.8 6.6 18.3 65.4 4.2 9.7 24.5 78.3

43 . e 8 1.0 2.0 51 25.9 15 4.0 8.9 39.5 2.4 54 13.8 49.0 2.9 6.8 19.4 58.0

.7, ST I - ol 2 ) 79.0 X e - ..

45 o) 4 4.0 9.2 43.1 129.0 7.3 80.0 250.0 12.1 130.0 o 18.5 194.0

46 I 6 6 2.3 10.1 26.2 117.0 3.4 14.7 45.0 171.0 5.0 8 br g 61. 226.0 7.8 24.0 77.0 256,0
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B s e i 5 — — - =2 s i "
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49 D 6 2.4 9.9 35.7 130.0 4.2 154 59.0 195.0 6.2 19.3 83.0 . 9.0 24.5 103.0
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BL sl 5 htnd v m H 19 2.8 14.5 4.7 20.0 o - 6.3 25.0 Lo SiE 79 30.0

B 2 o w05 ey 2 4 B 1 19 % . 2.0 . 3.4 5.2 7.4

2 The heading “fig. No.” refers to the source photograph number in the Ph.D. thesis of Grover (1959).
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FIG. C-1. Same as fig. 4 except Z = 0.5 cm.
400 + A—0 ia
A D /
d /
300 4/ - 8 9/
27 7/ e /a5 50/ /49
a / /
200} & L fAD
Z=15 Z=15 Z=15
// h-d =12 h-d=12 /// h-d=12
100} Ao K= CONST. y=-6 - A, y=-3
L kskp=20 | &7 = K,/K,= 20
| | n | | | | 1 | | | I
0] 10 20 30 0 10 20 30 0 |0 20 30 0] 10 20 30
 tK/fZ
400 + +A O A
E 8//6/4 F sk fa G ¢/ H
6
300 jHfee . 38 - e a
q 35/ /33 39/[ [a7 a3/fjal /51
200 L o,2=15 L ag Z=15 | o zZ=15 b - Z=15
/// h-d =12 /// h-d =12 /// h-d =12 19 h-d=05
y=-6 y=-3 y=-025 K=CONST.
100 _,ﬁm %o K//Ky= 0.4 /’,59 K\/Kp=0.4 _}? K\/Kz=0.4 ©
A 07 Al 4]
| | ( | [ | | | I | S
0 |10 20 30 0 10 20 30 0 10 20 30 (0] IO 20 30
~TK/EZ
FIG. C-2. Same as fig. 4 except Z = 1.5 cm.
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FIG. C-3. Same as fig. 4 except Z = 2.0 cm.
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