

FOREWORD

This publication is the result of research conducted cooperatively by members of the Potassium Subcommittee of the North Central Mineral Deficiencies Committee (NC-16) and by members of NC-16 and others in the 12 North Central states, Alaska, the United States Department of Agriculture and Ontario, Canada. The objectives and general procedures of the study were suggested by Dr. C. A. Black. As the initial phase of the study, uniform field experiments were conducted at 89 locations in Alaska, Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Nebraska and Ontario, Canada during 1955 and 1956. In these field experiments, potassium fertilizer was topdressed on established stands of alfalfa 1 year after seeding. Alfalfa was selected as the test crop in these initial field experiments since it is grown in all parts of the region and since much potassium fertilizer is used for alfalfa and other leguminous crops. Supplementary greenhouse studies using soil samples from the field experimental sites were conducted by the United States Department of Agriculture and Purdue University. Supplementary laboratory studies using soil and plant samples from the field experiments were conducted at Iowa State University. The effect of freezing on the exchangeable potassium in some soil samples was studied at the University of Wisconsin.

During 1957 and 1958, uniform field experiments were also conducted with corn. The results of the greenhouse studies and of the field studies with corn will be reported in other bulletins.

CONTENTS

Introduction	
Experimental methods	
Experimental results and discussion	
Exchangeable K in soils	
Yield and K content of alfalfa	
Relation between field and greenhouse results	
Relation between field and laboratory results	
Summary and conclusions	
Literature cited	
Appendix	

North Central Regional Potassium Studies

I. Field Studies With Alfalfa

BY J. J. HANWAY, S. A. BARBER, R. H. BRAY, A. C. CALDWELL, L. E. ENGELBERT, R. L. FOX, M. FRIED, D. HOVLAND, J. W. KETCHESON, W. M. LAUGHLIN, K. LAWTON, R. C. LIPPS, R. A. OLSON, J. T. PESEK, K. PRETTY, F. W. SMITH AND E. M. STICKNEY¹

Potassium $(K)^2$ availability varies widely in soils of the North Central Region of the United States and the adjoining areas of Canada. Soils in the western part of the region generally contain adequate amounts of plant-available K, but in other parts of the region, soils vary from those with abundant supplies of available K to those that are very deficient. Present techniques for predicting crop requirements for K fertilizer on different soils based on the determination of all or a portion of the exchangeable K in the plow layer are often inadequate, even when applied within restricted soil areas. In view of the wide range of K availability in different soils of the region, more effective methods of assessing the K status of the soils must be developed if efficient use of K fertilizers is to be accomplished. Therefore, the major objective of this study was to investigate the relationship between crop yield response from K fertilizer or uptake of soil K by plants in the field and different laboratory indexes of "plant-available K.'

Because of the general relationships that have been found between exchangeable K in the soil and the crop yield response obtained from added K, most soil testing laboratories base K fertilizer recommendations upon the exchangeable K content of soil samples from the plow layer. Exchangeable K is usually extracted from air-dried soil samples with solutions of sodium or ammonium salts or dilute acids. Different studies on soils of the North Central Region have shown that the amount of exchangeable K extracted from soil samples often is increased by drying the sample prior to extraction (1, 7, 9, 10, 17, 18, 20, 21, 22). This, however, does not occur in all soils. In some soils there is no appreciable effect of drying on the exchangeable K, and in a few soils the exchangeable K content is decreased by drying. Drying generally decreases exchangeable K when the initial level of exchangeable and soluble K in the soil is high, and it increases exchangeable K when these forms of K are relatively low (18, 21). When drying results in an increase in exchangeable K, it also results in increased availability of the soil K to plants (1, 17, 22). These studies indicate that

plant availability of K in soils in the field could be predicted more accurately from the exchangeable K content of undried soil samples than from air-dried samples (17), but no correlations with crop response in the field have been obtained to substantiate this.

It is generally assumed that alfalfa plants obtain appreciable amounts of K from the subsurface horizons on the soil. Lawton et al. (16) showed that absorption of fertilizer phosphorus by alfalfa was highest when fertilizer was placed at the surface or 3-inch depth, intermediate at the 6-inch depth and lowest at the 12inch or lower depths. Results of a greenhouse experiment by Lawton and Tesar (15) indicate that, although alfalfa absorbed the greatest amount of K from the 0-8 inch depth, appreciable amounts were absorbed from the 8-16 inch depth. Few studies have been made, however, to determine whether including the amount of exchangeable K in the subsoil with that in the surface soil would improve the correlations obtained between exchangeable K in the soil and crop response to added fertilizer K. Black (4) has proposed a method for evaluating the contribution of nutrients from different depths in the soil by means of multiple regression. Some investigators (12, 19, 26) have shown that the relation between exchangeable K in the soil and the percent K in leaves from apple and orange orchards could be improved by including the exchangeable K from subsoil horizons. In these studies, however, the amount of exchangeable K was determined from air-dried soil samples. Results of Hanway and Scott (9) indicate that the increase in exchangeable K from drying is usually much greater in subsoil samples than in samples from surface soils.

The K content of alfalfa harvested in the bloom stage may vary from less than 0.5 to more than 3.0 percent on a dry-weight basis (3). Several investigators have shown a definite relationship to exist between the exchangeable K content of the soil and/or the amount of K applied as fertilizer and the percent K in the alfalfa plants (2, 3, 6, 8, 11, 13, 14, 23, 24, 25, 27). Generally in these studies, when the percent K in the plants was below a certain critical percentage, increases in percent K in the plants were associated with increases in yield. The critical percentage of K in alfalfa plants above which little or no increase in yield will be obtained from additional K is usually considered to be within the range of 1.25 to 2.0 percent (2, 3, 8, 13).

¹ The manuscript was prepared by the first author. The other authors contributed by conducting the field or laboratory experiments or by assisting in planning and conducting the study and reviewing the manuscript. More complete information concerning the NC-16 committee and others associated with this study is given in the listing of the committee on page 188.

² The symbol K will be used for potassium throughout this bulletin.

Jackson *et al.* designated 1.25 as the lower limit of the optimum range for good survival and high yields. Stivers and Ohlrogge (25) state that the percentage of K in alfalfa necessary for its survival is 0.9 to 1.1. These and other results indicate that the K content of alfalfa plants provides a good estimate of the K status of the plants and that differences in K contents of alfalfa plants would reflect differences in the availability of soil K to the plants.

EXPERIMENTAL METHODS

FIELD

During 1955 and 1956, 89 field experiments with alfalfa were conducted in seven of the North Central states, Alaska and Ontario, Canada, (see table A-1 in the appendix). At each field site, a uniform amount of superphosphate to supply at least 120 pounds of P_2O_5 per acre was broadcast over the entire experimental area. Differential treatments consisted of topdressed (broadcast) applications of potassium chloride at rates of 0, 20, 40, 60, 80, 120, 240 and 360 pounds of K₂O per acre in 1955; the same rates up to 80 and, in some experiments, up to 120 pounds of K₂O per acre were used in 1956. In most experiments the plots were 9 x 15 feet in size and were arranged in a randomized block design with six replications. Most experiments were conducted on pure stands of alfalfa seeded the previous year, but in a few cases clover (and/or grass) was grown with the alfalfa. In these cases the yield and composition of each component are shown separately in table A-2 in the appendix. Dry matter yields were determined from the green weight of hay cut from a swath 3 x 12 feet, or a similar area harvested in quadrants, and the percent dry matter in the hay which was determined by drying at 65°C. Plant samples for chemical analyses were collected at each cutting by taking at least 50 standing alfalfa shoots at random from the sides of the swath cut for yield determinations. These plant samples were dried and ground, and a composite sample for each K treatment (composited according to the yield of each plot) was sent to Iowa State University for K analyses.

Prior to the application of fertilizer, soil samples were obtained from each site for laboratory and greenhouse studies. A bulk sample consisting of a composite of 20 subsamples from the 0-6 inch layer of soil from the experimental area was obtained from each field experiment. In 1956, bulk samples from the 18-24 inch layer, taken from a pit dug adjacent to the experimental plots, were also collected from some of the sites. The 1955 bulk samples were air dried and sent to the Plant Industry Station, Beltsville, Maryland, for a greenhouse experiment. The 1956 bulk samples were kept field moist and sent to Purdue University for a greenhouse experiment. The results of these greenhouse experiments will be published in another bulletin. To obtain smaller soil samples for laboratory analyses, each location was sampled to a depth of 36 inches by 6-inch increments. Separate samples, consisting of at least 10 cores each, were obtained from the 0-6 inch layer of each replicate in each experiment. The subsurface samples consisted of composites of two replicates in 1955 and three replicates in 1956 with at least two cores per replicate. These samples were kept field moist and sent to Iowa State University for laboratory analyses.

LABORATORY

K was extracted from the plant samples by shaking 0.50 gram of oven-dry plant material in 100 ml. of 0.1575 N acetic acid for 30 minutes and filtering through a dry filter paper.

The field-moist soil samples were screened through a $\frac{1}{4}$ -inch screen and thoroughly mixed. A small portion of each sample was air dried for 2 weeks in a controlled temperature-humidity room at 5°C. and approximately 40 percent relative humidity. This resulted in less drying than would occur at room temperature or a lower relative humidity. Percent moisture in the field-moist and air-dried samples was determined by oven drying weighed samples at 110°C. for 24 hours. Exchangeable K was extracted from weighed samples of approximately 10 grams of the field-moist, air-dried and oven-dried soil samples by shaking for 30 minutes in 15 ml. of Neutral 1N NH₄0Ac, filtering and leaching with an additional 60 ml. of 1N NH₄0Ac. The extracts were then made up to 100 ml. in volumetric flasks.

K in the plant and soil extracts was determined on a Perkin-Elmer model 52A flame photometer using lithium as an internal standard. K contents of the plant material and the soils are expressed on an oven-dry basis.

A portion of each soil sample was air-dried for at least 2 weeks at room temperature and tested in the Iowa State University Soil Testing Laboratory by the standard procedures used in that laboratory. A glass electrode using a 1:2 soil:water ratio was used to determine pH. K was extracted by shaking two grams of soil (measured volumetrically) in 10 ml. of Neutral 1N NH₄OAc for 5 minutes and filtering. K in the extract was determined using a flame photometer. Phosphorus was extracted by shaking $1\frac{1}{2}$ grams of soil (measured volumetrically) in 10 ml. of Bray's No. 1 phosphorus extractant (0.025 N HCl and 0.03 N NH₄F) for 5 minutes and filtering. Phosphorus in the extract was determined colorimetrically using ammonium molybdate and stannous chloride to develop the color.

Portions of selected soil samples were sent to the University of Wisconsin where exchangeable K was determined after the field-moist samples had been kept frozen at -4° C. for 7 months. K was extracted with Neutral 1N NH₄0Ac. The soil to solution ratio used was 1 to 10. K in the extract was determined on a Beckman model Du flame photometer.

CORRELATION STUDIES

For studies of correlations between field, greenhouse and laboratory results, different indexes of the availability of K to plants were used. These indexes included: (1) percent K in plants from plots that received no K fertilizer application, (2) pounds of K taken up by plants from plots that received no K fertilizer application and (3) E_k values calculated as shown in fig. 6. Percent recovery of applied K was calculated from the slope of the regression equation relating pounds of K taken up by the plants to pounds of K_2O applied to the soil over the range of K fertilizer applications where the relationship was linear. Exchangeable K was used as the laboratory estimate of K availability in soils.

EXPERIMENTAL RESULTS AND DISCUSSION

EXCHANGEABLE K IN SOILS

Exchangeable K in field-moist, air-dried and ovendried soil samples and other soil test results for the soils used in this study are reported in table A-1 of the appendix. The exchangeable K in field-moist and ovendried samples from the 0-6 and 30-36 inch depth and the changes in exchangeable K resulting from drying are summarized in table 1. The relationship between the field-moist and oven-dried values is shown in fig. 1 for all of these samples with the exception of three samples that had exchangeable K contents greater than 1,000 pp2m. The profile distribution of exchangeable K in field-moist, air-dry and oven-dry samples for some typical soils is shown in fig. 2.

Exchangeable K under field-moist conditions was almost always higher in the surface soil samples than in samples from the corresponding subsoil horizons. The field-moist subsoil samples from most soil profiles were low in exchangeable K. Only 18 profiles contained more than 100 pp2m of exchangeable K in the 30-36 inch layer, and only one of these contained more than 222 pp2m. All of these ^{*}18 soils were from the western part of the North Central Region (Kansas, Nebraska and Minnesota) or from Ontario. Even in these states, 29 soil profiles contained less than 100 pp2m of exchangeable K in the 30-36 inch layer, and some subsoils from Minnesota and Ontario contained less than 30 pp2m of exchangeable K. The exchangeable K in field-moist samples from the 30-36 inch layer of 40 profiles from Indiana, Michigan, Illinois and Iowa ranged from 22 to 80 pp2m and averaged 44 pp2m.

The effect of oven drying on the exchangeable K content of soil samples varied with depth as shown by the relationships in fig. 1. When all samples represented in fig. 1 were considered, there was a much higher degree of correlation between the exchangeable K contents of field-moist and oven-dried samples for the 0-6 inch depth ($\mathbf{r} = 0.96$) than for the 30-36 inch depth ($\mathbf{r} = 0.57$). This higher degree of correlation, however, is partially due to the greater range of values for the 0-6 inch samples. When only the 0-6 inch samples with exchangeable K contents between 100 and 250 pp2m

TABLE 1. EXCHANGEABLE K IN FIELD-MOIST AND OVEN-DRIED SAMPLES FROM THE 0-6 AND 30-36 INCH SOIL LAYERS AT THE DIFFERENT FIELD EXPERIMENTAL SITES AND THE CHANGES IN EXCHANGEABLE K AFTER OVEN DRYING EXPRESSED AS PP2M.

7. 11 111				0-6 i	nch l	aver 3	0-36 i	nch 1	aver					0-6 in	nch l	ayer	30-36	inch l	ayer
Expt.		Year	Soil type ^a	Field	Oven dried	Change after drying	Field	dried	after drying	Expt.		Year	Soil type ^a	Field	Oven dried	Change after drying	Field moist	Oven dried Change	after drying
Alaska	1	1956	Knik sil	165	129	-36	34	65	31	"	5	"" ""	Parsons sil	106	142	36	133	292	159
Illinois	1 2	1956	Oconee sil Ebbert sil	151 92	216 132	65 40	80 53	372 316	292 263	,, ,, ,,	7 8 9	" "	Woodson sil Cherokee sil Parsons sil	129 134 151 111	200 210 192 149	76 41 38	136 128 62	419 502 345 183	236 366 217 121
Indiana ,,, ,, ,, ,, ,, ,,	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ $	1955 ,, ,, ,, ,, ,, ,, ,, ,,	Brookston sil Miami sil Reesville sil Brookston sil Brookston sil Brookston sil	150 90 84 158 123 131 117 91	205 99 115 237 119 151 106 91	$55 \\ 9 \\ 31 \\ 79 \\ -4 \\ 20 \\ -11 \\ 0$	65 53 39 73 46 65 26 42	336 181 274 465 139 251 140 183	271 128 235 392 93 186 114	" Michigan "' "' "'	10 1 2 1 2 3 4	" 1955 1956 "	Bates vfsl Fox sl Hillsdale sl Bellefontaine sl Fox sl Conover 1 Miami 1	172 232 199 151 180 80 209	191 173 138 120 166 86 174	$ \begin{array}{r} 19 \\ -59 \\ -61 \\ -31 \\ -14 \\ 6 \\ -35 \\ \end{array} $	130 61 69 28 38 64	313 140 158 54 160 110	183 79 89 26 122 46
33 33 33 33 33 33 33 33	8 1 2 3 4 5 6 7 8	1956 ,,, ,, ,, ,, ,, ,, ,,	Crosby fsl Brookston sil Coloma Ifs Brookston sil Tracy Ifs Brookston sicl Tracy Ifs	95 103 111 131 76 90 111 104	82 104 98 123 76 86 114 95	$-13 \\ -13 \\ -13 \\ -8 \\ 0 \\ -4 \\ 3 \\ -9$	67 33 36 39 37 35 22 38	103 191 88 39 142 70 37 70 60	$ \begin{array}{r} 124 \\ 55 \\ 3 \\ 103 \\ 33 \\ 2 \\ 48 \\ 22 \\ \end{array} $	" Minnesota "" "" ""	5 1 2 3 4 5 6	" 1955 " "	Bellefontaine sl Nicollet cl Clarion cl Fayette sil Aastad sil Menahga sl Rothsay scl	65 217 507 162 1010 166 529	60 250 543 197 1061 154 647	-5 33 36 35 51 -12 118	30 68 60 65 99 119 62	42 367 259 380 351 97 331	8 299 199 315 252 -22 269
Iowa,, ,, ,, ,, ,, ,, ,, ,,	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \end{array} $	1955 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Clinton sil Clarion sil Clarion sil Tama sil Fayette sil Carrington 1 Carrington 1	239 122 143 138 440 219 140 145 139 164	264 232 212 208 526 319 180 162 153 171	$25 \\ 110 \\ 69 \\ 70 \\ 86 \\ 100 \\ 40 \\ 17 \\ 14 \\ 7$	67 47 33 27 46 57 44 57 27 30	572 514 181 196 452 485 431 438 209 236	$505 \\ 467 \\ 148 \\ 169 \\ 406 \\ 428 \\ 387 \\ 381 \\ 182 \\ 206$	33 33 33 33 33 33 33 33 33 33 33	7891234567	,, ,, 1956 ,, ,, ,, ,, ,, ,, ,, ,,	Beltrami vfsl Fargo sic Bearden sicl Floyd cl Hubbard Is Hayden fsl Milaca fsl Crown fsl	123 592 480 107 72 87 121 68 90 98	116 910 755 177 79 79 118 57 95 101	-7 318 275 70 7 -8 -3 -11 5 3	$51\\141\\144\\31\\30\\41\\52\\31\\34\\26$	$246 \\ 566 \\ 461 \\ 201 \\ 64 \\ 88 \\ 286 \\ 53 \\ 58 \\ 24$	$ \begin{array}{r} 195 \\ 425 \\ 317 \\ 170 \\ 34 \\ 45 \\ 234 \\ 22 \\ 24 \\ -2 \\ \end{array} $
>> >> >> >> >> >> >> >> >> >> >> >> >>	$10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16$	1956 ,,, ,, ,, ,,	Fayette sil Fayette sil Carrington 1 Floyd 1	101 159 128 124 121 121 210	$ \begin{array}{r} 171 \\ 205 \\ 161 \\ 162 \\ 143 \\ 193 \\ 245 \\ \end{array} $	46 33 38 22 72 35	44 40 28 28 30 38	329 324 196 152 204 274	285 284 168 124 174 236	Nebraska		19 <u>5</u> 5 19 <u>5</u> 6	Thurman ls Hall sil Moody vfsl Thurman ls	247 1488 254 340	258 1525 282 341	$ \begin{array}{c} 11 \\ 37 \\ 28 \\ 1 \end{array} $	89 1358 59 68	134 1462 218 110	45 104 159 42
Kansas "' "' "' "' "' "' "'	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 1 \\ 2 \\ 3 \\ 4 \end{array} $	1955 ,, ,, ,, ,, 1956 ,, ,, ,,	Cherokee sil Bates vfsl Parsons sil Bates vfsl woodson sil Hobbs-like sil Geary sicl Geary sicl Sarpy fsl Cherokee sil	102 65 145 254 262 565 675 522 567 531 	$\begin{array}{c} 137\\ 100\\ 264\\ 296\\ 368\\ 645\\ 800\\ 612\\ 639\\ 574\\ 110\\ \end{array}$	35 35 119 42 106 80 125 90 72 43 28	66 47 84 112 86 219 131 222 121 149 103	277 230 357 340 460 478 461 548 476 288 252	211 183 273 228 374 259 330 326 355 139 148	Ontario ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 2 3 4 1 2 3 4 5 6	1955 ,,, 1956 ,,, ,, ,, ,, ,,	Guelph 1 Burford 1 Haldimand c Fox sl Guelph 1 Fox sl Dumfries 1 Perth cl Huron cl Haldimand cl	82 142 418 66 94 52 163 117 202 285	93 128 287 70 108 64 145 175 248 331	$ \begin{array}{c} 11\\ -14\\ -131\\ 4\\ 12\\ -18\\ 58\\ 46\\ 46\\ \hline \\ 46\\ \hline \\ \hline \\ and und und und und und und und und und u$	47 93 133 26 75 14 21 89 86 138	$62 \\ 141 \\ 261 \\ 42 \\ 96 \\ 22 \\ 35 \\ 175 \\ 179 \\ 262 \\$	$15 \\ 48 \\ 128 \\ 16 \\ 21 \\ 8 \\ 14 \\ 86 \\ 93 \\ 124$

in the field-moist condition were considered, the correlation between field-moist and oven-dried values was not so high (r = 0.61).

As shown in fig. 2, the profile distribution of exchangeable K in most soils was markedly modified by drying the soil samples prior to extraction of the exchangeable K. Table 1 shows that exchangeable K

Fig. 1. The relation between exchangeable K contents of field-moist and oven-dried soil samples from the 0-6 and 30-36 inch soil layers.

Fig. 2. Profile distribution of exchangeable K in typical soils of the North Central Region as determined on field-moist and dried soil samples.

was increased by oven drying by more than 20 pp2m in almost all subsoil samples and in over half of the surface soil samples. The increases from drying were usually much greater in subsoil samples than in surface soil samples, although in several surface soil samples the increase from oven drying was greater than 100 pp2m. In some subsoil samples there was a tenfold increase in exchangeable K. Thus, fig. 2A shows the most common profile distribution of exchangeable K as influenced by moisture content of the samples tested. In more than one-third of the surface soils, drying resulted in little or no change (20 pp2m or less) in exchangeable K. Data from this type of soil are illustrated in fig. 2B. In six of the surface soils, a decrease of greater than 20 pp2m in exchangeable K resulted from drying, and this brought about a profile distribution in most of these soils similar to that shown in fig. 2C. Figure 2D shows the profile distribution commonly found in sandy soils. At all depths in most sandy soils there was only a small increase in exchangeable K resulting from drying, but all determinations for exchangeable K were very low.

For samples in which changes in exchangeable K occurred upon drying, the amount of exchangeable K extracted depended upon the degree of drying. The air-dried values were intermediate between the fieldmoist and oven-dried values. Air drying at the constant temperature and humidity used in this study resulted in less moisture loss and less change in the exchangeable K than did drying at room temperature in the soil testing laboratory. In most laboratories, exchangeable K is usually determined on air-dried soil samples. The data reported here indicated that the changes observed in exchangeable K resulting from air drying will be less than those indicated for oven drying. The changes from air drying were often appreciable, however, and the values observed will vary with the degree of drying achieved.

Some less common profile distributions of exchangeable K are shown in fig. 3. Figure 3A represents a sandy soil with a relatively high exchangeable K content. In this soil the exchangeable K at all depths in the profile was decreased by drying. In the Bates very fine sandy loam, fig. 3B, exchangeable K in moist samples increased with depth to the 12-18 inch layer and then decreased with depth below this layer. Drying produced an increase in exchangeable K at all depths except in the 12-18 inch layer. Exchangeable K in the moist soil was the highest in this layer, and drying resulted in a decrease in exchangeable K. A similar phenomenon was observed in the Knik silt loam soil from Alaska and to a lesser extent in a few other soils.

In most soil profiles the exchangeable K content in field-moist soil samples decreased with depth in the profile or decreased to a minimum value and then remained relatively constant below that depth. In a few soils, however, as illustrated in figs. 3C and 3D, the exchangeable K in undried samples decreased with depth to a minimum value and then increased with increasing depth. A few soils, other than those for which the data are illustrated here, showed these variations to lesser degrees.

The change in exchangeable K that resulted from drying 0-6 inch samples varied in different parts of the

Fig. 3. Unusual profile distribution of exchangeable K observed in some soils of the North Central Region as determined on field-moist and dried soil samples.

region. In surface soils from Illinois, Iowa, Kansas and Nebraska there were no decreases, and most soils showed significant increases in exchangeable K because of drying; whereas, in surface soils from Michigan, drying resulted in essentially no change or in significant decreases in exchangeable K. Only 3 of the 16 surface soils from Indiana showed significant increases in exchangeable K from drying, and there was essentially no change in the other 13 soils. Exchangeable K in the one surface soil from Alaska decreased on drying. Changes produced by drying the surface soils from Minnesota varied from essentially no change to large increases, and changes in surface soils from Ontario varied from a large decrease in one soil to significant increases in others. In general, surface soils from the eastern part of the region showed less change in exchangeable K resulting from drying than did soils from the western part of the region, except that sandy soils, irrespective of location, showed little change from drying.

Freezing appears to have a dessication effect on exchangeable K, resulting in increases or decreases in exchangeable K the same as air drying or oven drying. Data from a few samples are shown in table 2. The changes in exchangeable K produced by freezing were relatively small and comparable to those produced by air drying at low temperature in the constant temperature-humidity room, but were much smaller than those produced by oven drying the soil samples.

As has been shown by other workers (18, 21), drying may result in either increases, no change or decreases in exchangeable K in soil samples depending upon the level of exchangeable K in the soil sample. This is shown in table 3 by the exchangeable K content of moist and oven-dried samples from a Minnesota soil where the exchangeable K in the soil varied extremely in different replicates of the field experiment. Samples from replicates low in exchangeable K showed an in-

TABLE 2. THE EFFECT OF FREEZING ON EXCHANGEABLE K IN CERTAIN SOILS AS COMPARED WITH THE EFFECT OF AIR DRYING AND OVEN DRYING. $^{\rm a}$

Sam	Sample		Exchangeable K (pp2m)							
Experimental dep site (inc	depth (inches)		Moist	Frozen	Air dried	Oven dried				
Iowa 7	-24	1 & 2	40	80	98	421				
Minnesota 1	-24	3 & 6	53	100	88	340				
Indiana 1	-24	3 & 4	61	113	156	447				
Indiana 1 0-	6	4	106	135	120	205				
Iowa 2 0-	6	2	132	159	158	281				
Ontario 3	24	1 & 2	145	263	206	348				
Minnesota 1 0-	6	6	220	185	218	214				
Ontario 3 0-	6	1	398	382	384	172				

^a Samples from 1955 field experiments.

TABLE 3. THE EFFECT OF DRYING ON EXCHANGEABLE K IN SOIL SAMPLES FROM THE 0-6 INCH LAYER OF DIFFERENT REPLICATES OF THE MINNESOTA NO. 2 (1955) FIELD EXPERI-MENT ON A CLARION CLAY LOAM.

Field	Exchangeable K (pp2m)									
replicate sampled	Field moist	Oven dried	Change after drying							
3		254	+ 110							
2		303	+ 82							
1		324	+ 48							
4		494	+ 125							
6		649	- 13							
5	1.370	1,235	-135							

crease from drying, whereas those from replicates with high exchangeable K showed a decrease from drying.

YIELD AND K CONTENT OF ALFALFA

The dry-matter yields and the percent K in the plants for all field experiments are reported in table A-2 of the appendix and are partially summarized in table 4.

The yields of hay for the first and second cuttings from the unfertilized plots of the different experiments are compared in fig. 4. The correlation between the yields of the two cuttings was very low ($r = 0.48^{**}$) but still highly significant. In general, the second-cutting yields were lower than those of the first cutting, but in some experiments drouth seriously limited first-cutting yields, and later rains resulted in yields of the second cutting that exceeded those of the first. Yields of first cutting averaged 3,200 pounds per acre and ranged from 280 to 5,880 pounds per acre in the different experiments.

Even though there was a poor relation between yields of the two cuttings of alfalfa, the percentage of K in the unfertilized plants from the two cuttings was highly correlated, as shown in fig. 5. Where more than two cuttings were made, this same relationship held for all cuttings. It appears that different environmental conditions at different times in the growing season markedly influenced yields but, at most sites, did not result in appreciable changes in the K concentration in the unfertilized plants. This indicates that the percent K in alfalfa plants of any cutting could be used as an index of K availability to the plants.

Figure 5 also indicates the generally high level of K availability in the sites selected for these experiments. The K content of the alfalfa plants from the first cutting at different sites ranged from 0.64 to 4.50 percent and averaged 2.0 percent. The percent K in the plants

TABLE 4. SUMMARY OF RESULTS FROM FIELD EXPERIMENTS WITH ALFALFA.

					1.20	S	First cutti	ng	2. G. M. H. H.	- Second
					Ch	eck plots	Re	sponse to K fertili	zer	cutting
Expt. No.		Year	Soil type	Exch. K ^a	% K	Yield (lb/A)	increase lb/A ^b	in % K ^c	of added K ^c	of added K ^c
Alaska	1 ^{d2}	1956	Knik sil	165	1.30	2,280		0.25	0	
Illinois	2	"	Ebbert sil	92	1.77	2,860		0.42**	12** 17*	10
Indiana	1	1955	Brookston sil	150	1.79	3,230		0.72*	41*	16
,,	23	33	Miami sil Reesville sil	90 84	$1.78 \\ 1.44$	2,770		1.05**	43** 36*	31
,,	4	,,	Brookston sil	158	1.99	4,090		0.52	24	23*
,,	5	"	Miami 1 Brookston sil	123	1.82 1.70	3,650 4 100	260	0.62*	36*	12 25*
,;	7	,,,	Brookston sil	117	1.59	4,990	460	0.66*	53*	15
,,	8d2	1956	Miami 1 Crosby fel	91 95	1.63 1.60	4,370		0.48	16	20
,,	2	1550	Brookston sil	103	1.62	3,860		0.57	22	
33	3	33 22	Coloma lfs Brookston sil	111	1.98	3,860	••••••	0.40	21	
,,	5	,, .	Tracy lfs	76	1.95	3,820		0.49	45*	
,, ,,	6	,, ,,	Tracy lfs Brookstop siel	90	1.86	3,030		0.84**	29* 25*	
,,	8	"	Tracy lfs	104	1.74	3,250		0.84*	31**	
Iowa	1	1955	Clinton sil	239	2.75	5,240		0.38**	31*	17
,, ,,	2	,,	Clinton sil	122	2.07	4,170		0.62*	46*	6
•,	4	"	Clarion sil	138	1.66	4,550	680	0.12	45*	1
,, ,,	5d1	>>	Tama sil	440	2.68	3,420		0.00	17**	12
,,	7	"	Fayette sil	140	1.79	5,430 4.030	460	0.45*	43*	19*
• • •	8	>> >>	Fayette sil	145	2.05	3,900	540	0.45*	36*	16
,,	10	22	Carrington sl	164	2.07	3,310 4,170	420 450	0.84**	48* 60*	8 5
»» »	11	1956	Fayette sil	159	1.72	2,690	430	0.45*	29*	
,,	12	,,	Carrington 1	128	1.68	3,340		0.78*	30** 29**	
,, ,,	14	>> >>	Carrington 1	121	1.48	3,780		0.65*	31	
V	10	1055	Clyde 1 Charalas sil	109	1.01	4,280		0.42*	24	11
Kansas	$\frac{1}{2}$	1955	Bates vfsl	65	1.80	2,440 2,500		0.51* 0.81**	19 24**	23
"	3	22	Parsons sil	145	1.87	2,460		0.21	12	
,,	5d2	,,	Woodson sil	$234 \\ 262$	2.13	3,920		0.34 0.01	19	0
"	6d1	"	Hobbs-like sil	565	2.48	810		0.08	ĩ	7
,,	1d1	1956	Geary sicl Hobbs-like sil	675 522	2.34 2.57	1,280		-0.14 -0.22	0	03
**	2d1	"	Geary sicl	567	3.48	3,840		-0.12	, Ŭ	0
,,	3d1 4d3	>>	Sarpy isl Cherokee sil	531 82	4.50	1,240		-0.26	17*	07
"	543	>>	Parsons sil	106	2.32	1,260		-0.06	ĩ	2
,,	5d3 7d5	>>	Woodson sil	129	2.94	1 620		0.14	0	14**
"	843	"	Cherokee sil	151	2.34	740		0.10	5	
,,	10d3	"	Parsons sil Bates yfsl	111 172	$\frac{1.62}{2.20}$	580 280		-0.06 0.17	1	
Michigan	145	1955	Fox sl	232	1.93	2.160	760	0.32	40*	
,,	2	,,	Hillsdale sl	199	2.14	2,680		0.28*	26*	
,,	2	1955	Fox sl	151 180	2.03	4,340	980 560	0.34	48 67**	
**	3	,,	Conover 1	80	1.47	4,240		0.10	17	
33	4 5	,,	Bellefontaine sl	209	2.13	5,100 3,220	710 510	0.83*	59**	· · · · · · · · · · · · · · · · · · ·
Minnesota	. 1	1955	Nicollet cl	217	1.54	5,020		0.41	12*	8
,,	2d1 2d2	,,	Clarion cl	507	1.76	4.620		0.00	24	8
,,	4d1	"	Aastad sil	1,010	2.76	3,280		0.02	14	7
»» »	5 6d1	»» »	Menahga sl	166	2.81	4,420	560	0.13	0.17*	15
"	8d1	,,	Fargo sc	529	3.46	2,480	500	-0.00	7	15
"	9d1 1d2	1056	Bearden sicl	480	3.34	3,240		0.01	2	2
••	2	1930	Hubbard ls	107 72	0.78	3,760 1,460		0.32	23 17**	20** 18*
,, ,,	3	**	Lino lfs	87	0.96	4,360		0.59**	35*	
"	5	"	Milaca fsl	121 68	1.32	4,160 2,840		0.52 0.82**	30 29*	6 28**
Nebraska	1d2	1955	Thurman ls	247	3.55	4,230		-0.58	0	5
23	2d1 1d2	1056	Hall sil Moody of a	1,488	3.52	4,240		0.10	2	4
"	2d2	1950	Thurman ls	234 340	2.67 3.60	4,890		0.00	14	17
Ontario	1	1955	Guelph 1	82	0.73	3,840		0.61**	39*	3*
33	2 3d1	,, ,,	Burford 1 Haldimond	142	1.22	3,860		0.60**	29*	8
,,	4	"	Fox sl	410 66	0.89	2,370		0.32*	14	0
>>	1 2	1956	Guelph 1	94	1.77	3,830	510*	0.92	65**	25**
,,	3	"	Dumfries 1	163	1.05	3,350	510*	1.29**	52*	20**
»» »	4 5d2	,, ,,	Perth cl	117	1.65	1,820		1.04**	31**	12
"	6d4	"	Haldimand cl	285	1.99	2,670		0.22**	13	11**

^a In field-moist 0-6 inch soil samples; pp2m. ^b Significant yield increases from 80 pounds K₂0/A. ^c Based on linear regression between pounds K₂0 applied per acre (up to 80 pounds/acre), and percent K in plants or pounds K/A in plants. Increase in percent K is the increase per 100 pounds K₂0 applied per acre. ^d Experiments not included in correlation studies because: ^{d1}—Exchangeable K was greater than 400 pp2m. ^{d2}—Alfalfa yields were variable between replicates. ^{d3}—Alfalfa yields were very low (usually because of drouth). ^{d4}—Exchangeable K was variable between replicates. ^{d5}—The data were incomplete because of incomplete sampling. * Significant at 5-percent level.

from the first cutting was less than 1.4 in only 11 of 88 field experiments harvested.

Considering the generally high K content of the plants from the check plots, one would not expect many large yield increases to have resulted from applications of potassium fertilizer. In only 15 of the experiments were there significant yield increases (table 4). The significant first-cutting yield increases from 80 pounds K_20 per acre in these 15 experiments ranged from 260 to 980 pounds of hay per acre and averaged 560 pounds per acre. The percent K in the alfalfa plants from these same experiments ranged from 1.05 to 2.26 and averaged 1.81. In this study there was no relationship between percent K in the plants and the increases in yield obtained. In fact, in only 1 of the 11 experiments where the plants contained less than 1.4 percent K was there a significant yield increase resulting from the application of K fertilizer.

The lack of response to potassium fertilizer application was probably due in part to a bias in selecting experimental sites. Selecting only sites with good stands of alfalfa the year after seeding caused many potassiumdeficient sites to be rejected because they had poor alfalfa stands.

Even though applications of K fertilizer did not result in many significant yield increases, in most of the experiments appreciable amounts of the applied K were taken up by the plants. The percent K in the plants and the recovery of added K by the plants were linearly related to the amount of K applied up to application rates of 80 pounds of K20 per acre at most locations. A lower percentage recovery at higher rates of application usually resulted in deviations from linearity for rates above 80 pounds of K₂0 per acre. Because of this, the estimates reported in table 4 of the increase in percent K in the plants resulting from applications of K fertilizer and the estimates of the percent of fertilizer K recovered in the plants were based only on K_20 applications up to the 80-pound-per-acre rate. These estimates were calculated from the slopes of the linear regressions for the relationships between: (1) the percent K in the plants and the pounds of K₂0 applied per acre and (2) pounds of K per acre taken up by the plants and pounds of K_20 applied per acre. The relationship between pounds of K in the alfalfa and pounds of K₂0 applied for a typical experiment is illustrated in fig. 6. In this example, percent recovery equals $0.22 \times 1.2 \times 100 = 26$.

An application of 100 pounds of K₂0 per acre increased the percent K in the alfalfa of the first cutting by as much as 1.29. The average increase was 0.42. Percent recovery of applied K in the first cutting varied from 0 to 67 percent in different experiments and averaged 27 percent. Percent recovery was inversely related to the percent K in the plants from unfertilized plots ($r = -0.32^{**}$) and directly related to dry matter yields of the unfertilized plots $(r = 0.40^{**})$. These two variables account for only a small part of the variability in the percent recovery, however, indicating that other individual, unidentified factors might explain more of the observed variations. Undoubtedly, moisture conditions, and possibly reactions between the fertilizer and the soil, were important. Recovery of added K by the plants in the second cutting was generally

Fig. 6. Relation between the amount of K fertilizer applied per acre and the pounds of K per acre in the alfalfa plants from a typical field experiment. (The three points at the right were not included in the regression.)

much lower than that for the first cutting. In the 54 experiments for which recovery was calculated for both cuttings, the total recovery in the two cuttings ranged from 0 to 90 percent and averaged 33 percent of that applied.

Although alfalfa requires large amounts of K for near maximum yields, it does not compete effectively with other plants such as grasses and weeds for K under conditions where K availability is low (3, 5, 11). Therefore, under K-deficient conditions, grasses and other plants growing with the alfalfa usually have a higher K content than do the alfalfa plants. In nine of these regional experiments there were mixed stands of alfalfa with grass and/or clover. In these experiments, K in the grass or clover averaged 0.4 percent higher than that in the alfalfa.

RELATION BETWEEN FIELD AND GREENHOUSE RESULTS

The use of pot tests in the greenhouse has often been advocated as a better method of measuring nutrient availability in soils than a chemical extraction of the soil, because in pot tests growing plants are used to evaluate nutrient availability to plants. Since soil samples from most of the field experiments conducted in this study were used in greenhouse experiments, it is possible to compare the results obtained in the greenhouse with those obtained in the field. The results of the greenhouse experiment will be published in another bulletin, but comparisons between the field and greenhouse results are presented here.

The soil samples from the 1955 experiments were air dried before potting for the greenhouse experiment, but the samples from the 1956 experiments were kept undried. There were not sufficient yield increases from K applications in the experiments of either year to permit a comparison of yield responses in the field and the greenhouse. Therefore, comparisons were made between: (1) the percent K in the alfalfa in the field and the millet in the greenhouse, (2) the amount of K removed by the plants from the untreated soil in the field and the greenhouse and (3) the recovery of

Fig. 7. Relation between percent K in alfalfa (first cutting) from field experiments and percent K in millet plants grown on surface soil samples in the greenhouse. (Soil samples for the greenhouse experiments were air dried in 1955 but were not dried in 1956. Circled values are from field ex-periments that were not included in later correlation studies with soil analyses.)

added K by the plants in the field and the greenhouse.

The relation between the percent K of the firstcutting alfalfa plants in the field and the millet in the greenhouse is illustrated in fig. 7. It can be seen that there is a general relationship between the K contents of plants in the field and the greenhouse. The correlation coefficients (r = 0.70** in 1955; r = 0.63** in 1956) are significant at the 1-percent level. The percent K in the greenhouse millet, however, does not permit a very accurate estimate of the percent K in the field alfalfa.

The amounts of K taken up by the plants from the soil without added fertilizer K in the field and in the greenhouse were related (r = 0.42* in 1955, and r =0.35* in 1956). These values, however, were not as highly correlated as were those for percent K in the plants.

The correlation between percent recovery of applied K by the plants in the field and the greenhouse was significant at the 1-percent level in 1955 $(r = 0.55^{**})$, but was not significant in 1956 (r = 0.13).

Part of the difference between field and greenhouse results is undoubtedly due to plant uptake of K from the subsoil in the field; however, differences in other factors such as moisture, temperature, aeration, and intensity of K removal are probably of equal and perhaps even greater importance. The difference in the plants grown (alfalfa and millet) might also be expected to cause differences between the field and greenhouse results. These various factors appear to have less influence on the percent K in the plants than on the dry-matter yield.

RELATION BETWEEN FIELD AND LABORATORY RESULTS

Correlation studies between field and laboratory results were restricted to the results from 51 of the 89 field experiments. No alfalfa was harvested from four of the experiments. Other experiments were not included where: (1) the exchangeable K in the soil exceeded 400 pp2m, (2) the alfalfa yields were variable between replicates resulting in little or no relationship between K treatments and yield or K uptake by the plants, (3) alfalfa yields were very low (usually because of drouth), (4) exchangeable K was extremely variable between replicates and (5) incomplete sampling resulted in incomplete data for exchangeable K of the soil or the K content of the plants.

Three indexes of K availability to the alfalfa plants in these experiments were used. These included: (1) the concentration of K in the plants of the first cutting from check plots (percent K), (2) the amount of \overline{K} taken up from the soil by the plants of the first cutting (pounds K/A) and (3) the availability of soil K in relation to that of applied fertilizer K (E_k values calculated as shown in fig. 6). These three indexes of K availability to plants were related as shown in table 5. The degree of correlation between percent K and pounds K/A was higher than that between either of these two variables and the E_k values. This would be expected, since percent K was one of the two factors used to calculate pounds K/A.

The relationship between the indexes of K availability to alfalfa plants and the exchangeable K in fieldmoist 0-6 inch soil samples is shown in figs. 8, 9 and 10. All the values included in the correlation studies are

TABLE 5. CORRELATIONS BETWEEN PAIRS OF THE THREE INDEXES OF K AVAILABILITY TO ALFALFA PLANTS USED IN CORRELATION STUDIES.

Estimates	of	K	availability ^a	Correlation	coefficient	(r)
%K and I	bs.	K/	Α		0.83**	Z.
Lbs. K/A	an	d E	2k		0.58**	

 $^{\circ}\% K =$ percent K in first cutting of alfalfa. Lbs. $K_{I,A} =$ pounds of K per acre removed in the first cutting of Lbs. K/A = pounds of K per acre alfalfa. E_k = extrapolated K value (see fig. 6). ** Significant at the 1-percent level.

shown in these figures. Also shown are values that fall within the range of the figures but that were not included in the correlation studies for reasons listed previously. Three soils had exchangeable K contents greater than 600, and the E_k values exceeded 1,000 for 18 soils.

It is apparent in fig. 9 that pounds K/A taken up by the plants was low in many of the experiments not included in the correlation studies. These low values reflect the low yields obtained in these experiments, in most cases because of drouth. This also resulted in low uptake of added fertilizer K in these experiments and, thus, high E_k values which could not be shown in fig. 10.

One would expect the relationship between ex-

changeable K in the soil and the percent K in the plants or the pounds K/A taken up by the plants to be curvilinear. As indicated in figs. 8 and 9, however, within the range of values used in the correlation studies the relationship is very nearly linear, so all regression analyses were calculated on a linear basis.

The coefficients of determination $(r^2 \text{ or } R^2)$ for the simple and multiple linear regressions relating the indexes of K availability to plants and exchangeable K in the soil for various depths and moisture conditions are reported in table 6. These data show that the percent of variability in the indexes of K availability to plants explained by the exchangeable K content of the soil was greatest for the field-moist soil samples or for samples air dried at constant temperature. This air dry-

Fig. 10. Relation between E_k values calculated from K uptake by alfalfa in field experiments and exchangeable K in field-moist soil samples from the 0-6 points and exchangeable K in field-moist soil samples from the 0-6 inch layer. (Only solid points were included in the correlation studies.)

ing at 5°C. generally resulted in only small changes in exchangeable K from that observed in field-moist samples. As the degree of drying increased, the r² and R² values decreased. The coefficients of determination were consistently lowest for oven-dried samples. This agrees with the results obtained in greenhouse studies where exchangeable K in field-moist soil samples gave the best prediction of K availability to plants.

The r² values generally decreased with increasing depth in the soil. The r^2 values for 6-12 inch soil samples that were field moist or air dried at 5°C. were just as high as those for the 0-6 inch samples for percent K, however, and much higher for the Ek values. The

TABLE 6. COEFFICIENTS OF DETERMINATION FOR REGRES-SIONS RELATING INDEXES OF K AVAILABILITY TO PLANTS AND THE EXCHANGEABLE K IN SOIL SAMPLES FROM DIF-FERENT LAYERS AND DETERMINED AT DIFFERENT MOISTURE CONTENTS.

Index of	к	Coefficient of determination $(r^2 \text{ or } \mathbb{R}^2)$ for regression with exchangeable K determined on soil samples that were:								
availabilit to plants	y Soil layer included ^a	Field moist (c	Air dried const. temp.)	Air dried (soil test)	Oven dried					
%K	$\begin{array}{c} X_{1} \\ X_{2} \\ X_{3} \\ X_{1}, X_{2} \\ X_{1}, X_{2}, X_{3} \\ Y \\ $	0.35^{**} 0.36^{**} 0.19^{**} 0.46^{**} 0.46^{**}	0.37** 0.38** 0.27**	0.30** 0.18** 0.12*	0.20** 0.11* 0.10*					
Lbs. K/A	$X_1, X_2, X_3, X_4, X_5, X_6$ X_1 X_2 X_3 X_1, X_2 X_1, X_2 X_1, X_2 X_1, X_2 X_1, X_2 X_1, X_2 X_1, X_2, X_3 X_1, X_2, X_3	0.47** 0.35** 0.23** 0.04 0.38** 0.49**	0.30** 0.31** 0.21** 0.10*	0.23** 0.07 0.04	0.24** 0.14*** 0.06 0.05					
Eĸ	$X_1, X_2, X_3, X_4, X_5, X_6$ X_1 X_2 X_3 X_1, X_2 X_1, X_2 X_1, X_2, X_3 $X_1, X_2, X_3, X_4, X_5, X_6$	0.50** 0.26** 0.62** 0.30** 0.63** 0.71** 0.72**	0.44** 0.23** 0.32** 0.17** 0.45**	0.30** 0.29** 0.12* 0.10* 	0.20 0.20** 0.06 0.05 					

 ^a X₁, X₂, X₃, X₄, X₅ and X₅ represent exchangeable K (pp2m) samples from the 0-6, 6-12, 12-18, 18-24, 24-30 and 30-36 inch respectively.
 ^{*} Significant at the 5-percent level.
 ** Significant at the 1-percent level. in soil inch layers,

coefficients of determination for the 12-18 inch layer of soil were in all cases much lower than for the 6-12 inch laver. Exchangeable K in layers below 18 inches was highly correlated with that in the 12-18 inch layer, and the coefficients of determination for these deeper layers were similar to those for the 12-18 inch sample. The coefficients obtained for all oven-dried subsoil samples were very low.

The inclusion in a multiple regression of exchangeable K values for all the layers sampled (0-6 inches to 30-36 inches) improved the correlations between exchangeable K in the soil and the indexes of K availability to plants over that obtained for samples from any one depth alone. Nevertheless, there was much less improvement for the dried soil samples than for the field-moist samples. In fact, very little improvement resulted from inclusion of exchangeable K for oven-dried soil samples from all soil layers over that obtained from the 0-6 inch layer alone. This effect could be expected since exchangeable K in field-moist samples appears to provide the better estimate of K availability to plants, and drying resulted in very large increases in exchangeable K in many of the subsoil samples.

Since the exchangeable K values for field-moist soil samples were most highly correlated with the estimates of K availability to plants, only field-moist exchangeable K values were used in a more detailed study of the K contributions of different soil depths to the plants. The regression equations for these relationships are shown in table 7. The figures directly below the regression coefficients are the standard errors associated with the respective coefficients. These standard errors provide an approximate method of assessing the significance of the regression coefficients. As a rough rule, a regression coefficient is significant at the 5-percent level if it exceeds twice its standard error.

Where the regression equations include all six soil layers, none of the regression coefficients for depths be-

TABLE 7. REGRESSION EQUATIONS AND COEFFICIENTS OF DETERMINATION FOR SOME RELATIONSHIPS BETWEEN EXCHANGE-ABLE K IN FIELD-MOIST SOILS AND DIFFERENT INDEXES OF K AVAILABILITY TO ALFALFA PLANTS IN THE FIELD.

Regression equation ^a	Coefficient of determination $(r^2 \text{ or } \mathbb{R}^2)$
%K = 0.97 + 0.0058X ₁	0.35**
%K = 0.85 + 0.0037X ₁ + 0.0053X ₂	0.46**
$\% K = 0.85 + 0.0034 X_1 + 0.0078 X_2 - 0.0026 X_3 - 0.0026 X_3 - 0.0017 + 0.0017 + 0.0046 + 0.0042$	0.46**
$ \% K = 0.83 + 0.0037 X_1 + 0.0077 X_2 - 0.0012 X_3 - 0.0026 X_4 + 0.0081 X_5 - 0.0074 X_6 \\ \pm 0.0018 \pm 0.0046 \pm 0.0065 \pm 0.0067 \pm 0.0138 \pm 0.0123 $	0.47*
Lbs. K/A = $20 + 0.33X_1$	0.35**
Lbs. K/A = $17 + 0.26X_1 + 0.18X_2$	0.38**
Lbs. K/A = $19 + 0.20X_1 + 0.71X_2 - 0.56X_3$	0.49**
Lbs. K/A = $16 + 0.22X_1 + 0.68X_2 - 0.61X_3 - 0.05X_4 + 0.39X_5 - 0.24X_6 - 0.24X_6 + 0.11 \pm 0.27 \pm 0.37 \pm 0.39 \pm 0.79 \pm 0.71$	0.50**
$E_k = 22 + \frac{1.90X_1}{+ 0.46}$	0.26**
$\mathbf{E}_{\mathbf{k}} = -65 + \frac{1}{0.62} + \frac{1}{0.62} + \frac{1}{0.87} + \frac{1}{0.87$	0.63**
$\mathbf{E}_{\mathbf{k}} = -51 + 0.047\mathbf{X}_{1} + 6.87\mathbf{X}_{2} - 3.25\mathbf{X}_{3} - 3.25\mathbf{X}_{3} - 9.00000000000000000000000000000000000$	0.71**
$ \mathbf{E}_{\mathbf{k}} = -48 \underbrace{-0.058 X_1 + 6.88 X_2 - 3.64 X_3 + 0.65 X_4 - 2.66 X_5 + 2.72 X_6}_{\pm \ 0.70 \ \pm \ 1.76 \ \pm \ 2.46 \ \pm \ 2.56 \ \pm \ 5.27 \ \pm \ 4.68 } $	0.72**

^a X₁, X₂, X₃, X₄, X₅ and X₅ represent exchangeable K (pp2m) in soil samples from the 0-6, 6-12, 12-18, 18-24, 24-30 and 30-36 inch soil layers, respectively. Significant at the 5-percent level. Significant at the 1-percent level.

low 18 inches in any of the three equations approach significance at the 5-percent level.

Eliminating the lower three layers so the regression equations include only the top three soil layers reduces the coefficient of determination in each case by only 0.01 from that obtained by using all six depths. Where only the top three soil depths are used, the regression coefficients for the 12-18 inch layer are significant at the 5-percent level in the equations for pounds K/A and E_k , but not in the equation for percent K. It may be noted that the regression coefficient for the 12-18 inch layer is negative in all the equations. This does not appear to be realistic, and the reason for it is not obvious. The fact that exchangeable K values in the 6-12 and the 12-18 inch layers were highly correlated (r =0.88**) is probably involved. As would be expected from the significance of the regression coefficients, eliminating the 12-18 inch layer from the regression equations, leaving only the 0-6 and 6-12 inch layers, reduced the coefficients of determination for pounds K/A and E_k but not for percent K.

The regression equations for predicting percent K indicate that exchangeable K in both the 0-6 and 6-12 inch layers is important. The equation for pounds K/Aindicates that exchangeable K in the 0-6 and 12-18 inch layers is of greatest importance. For predicting E_k values the exchangeable K in the 6-12 inch soil layer is of most importance, and that in the 12-18 inch layer is also significant, but the regression coefficient for the 0-6 inch layer is significant only where it is used alone.

From this it may be concluded that each 6-inch layer of soil to a depth of 18 inches made a significant contribution to the alfalfa plants and that knowledge of the exchangeable K in the soil to this depth can be used to improve the estimation of K availability to alfalfa plants growing in the field. It should not be concluded, however, that alfalfa plants do not obtain significant amounts of K from below the 18-inch depth in the soil. Exchangeable K contents of field-moist soil samples from below the 18-inch depth showed relatively small differences with depth and were highly correlated with exchangeable K in the 12-18 inch layer. Therefore, inclusion of the exchangeable K values for these depths would not improve the correlations obtained. Nonetheless, plants probably did obtain K from these depths.

In practice, the marked improvement in precision of estimation derived from the inclusion of measurements of exchangeable K on field-moist samples below the surface 6 inches might be obtained either directly or indirectly-directly by actually making the measurements or indirectly by estimation from the exchangeable K in the surface layer. Unpublished data of the Department of Agronomy, Iowa State University, indicate that the level of exchangeable K in the individual lower soil layers is reasonably constant within soil types. Once these levels are established for the different soil types, most of the improvement in precision attainable by measuring exchangeable K in the lower layers of soil can be attained without making actual measurements on any except the surface layer where exchangeable K will vary within soil types because of management and fertilization practices.

Including soil pH or the change in exchangeable K that occurred on oven drying the soil samples in the multiple regression equations, did not significantly increase the coefficients of determination.

SUMMARY AND CONCLUSIONS

During 1955 and 1956, 89 field experiments in which K fertilizer was applied at different rates for alfalfa were conducted in seven North Central states, Alaska and Ontario, Canada. The yield and K content of the alfalfa were determined. Soil samples from each field experiment were used in supplementary greenhouse and laboratory studies.

Regardless of the plant method used for estimating K availability or the depth of soil sampled, the index of plant availability of K was more highly correlated with K extracted from field-moist soil samples than from samples that were air dried at room temperature or oven dried.

Drying different surface soil samples resulted in increases, no change or decreases in exchangeable K. Fewer soils from the eastern part of the region showed large increases in exchangeable K as a result of drying. Changes in exchangeable K in surface soil samples because of drying seldom exceeded 100 pp2m, but in some soils this meant that the amount of K extracted was nearly doubled by drying.

Drying of subsoil samples resulted in increased exchangeable K in almost all samples, except some from sandy soils, and with some the increase from drying was almost tenfold. Therefore, it is imperative that analyses for exchangeable K in subsoils be made on undried samples.

Exchangeable K in field-moist subsoil samples was almost always considerably lower than in corresponding surface soil samples.

Knowledge of exchangeable K in the 6-12 and possibly the 12-18 inch layers in addition to that in the 0-6 inch layer can be used to improve the estimation of K availability to alfalfa plants growing in the field.

Percentages of K in the alfalfa from different cuttings were highly correlated, even though dry matter yields of the different cuttings were not.

Significant yield increases of alfalfa from K fertilization were obtained in only 15 of the 89 experiments, and the increases of the first cutting in these 15 experiments averaged only $\frac{1}{4}$ ton of hay per acre with no increases greater than $\frac{1}{2}$ ton per acre.

The correlations between percent K, amount of K in the plants and percent recovery of added K in field alfalfa and greenhouse millet were not high, indicating that environmental conditions in the field have a marked effect on K uptake by plants in the field.

LITERATURE CITED

- 1. Attoe, O. J. Potassium fixation and release in soils occurring under moist and drying conditions. Soil Sci. Soc. Amer. Proc. (1946) 11:145-149. 1947.
- Barber, S. A. The prediction of alfalfa yields in southern Indiana from soil and plant analysis. Proc. Ind. Acad. Sci. 61:167-170. 1952.
- 3. Bear, F. E. and A. Wallace. Alfalfa, its mineral requirements and chemical composition. N. J. Agr. Exp. Sta. Bul. 748. 1950.
- Black, C. A. Evaluation of nutrient availability in soils, and prediction of yield response to fertilization. Iowa State Jour. Sci. 30:1-11. 1955.
- 5. Blazer, R. E. and N. C. Brady. Nutrient competition in plant associations. Agron. Jour. 42:128-135. 1950.
- 6. Bray, R. H. Soil-plant relations: I. The quantitative relation of exchangeable potassium to crop yields and to crop response to potash additions. Soil Sci. 58:305-324. 1944.
- Bray, R. H. and E. E. DeTurk. The release of potassium from non-replaceable forms in Illinois soils. Soil Sci. Soc. Amer. Proc. (1938) 3:101-106. 1939.
- Chandler, R. F., Jr., M. Peech and R. Bradfield. A study of techniques for predicting the potassium and boron requirements of alfalfa. I. The influence of muriate of potash and borax on yield, deficiency symptoms and potassium content of plant and soil. Soil Sci. Soc. Amer. Proc. (1945) 10:141-146. 1946.
- Hanway, J. J. and A. D. Scott. Soil potassium-moisture relations: II. Profile distribution of exchangeable K in Iowa soils as influenced by drying and rewetting. Soil Sci. Soc. Amer. Proc. 21:501-504. 1957.

- Hanway, J. J. and A. D. Scott. Soil potassium-moisture relations: III. Determining the increase in exchangeable soil potassium on drying soils. Soil Sci. Soc. Amer. Proc. 23:22-24. 1959.
- Hanway, J. J., G. Stanford and H. R. Meldrum. Effectiveness and recovery of phosphorus and potassium fertilizers topdressed on meadows. Soil Sci. Soc. Amer. Proc. 17:378-382. 1953.
- Harding, R. B. Exchangeable cations in soils of California orange orchards in relation to yield and size of fruit and leaf composition. Soil Sci. 77:119-127. 1954.
- Jackson, M. L., C. E. Evans, O. J. Attoe, J. L. Huber and J. C. Kandy. Soil fertility level in relation to mineral and botanical composition of forage. Soil Sci. Soc. Amer. Proc. 12:282-288. 1948.
- Jaworski, C. A. and S. A. Barber. Soil properties in relation to potassium uptake by alfalfa. Soil Sci. 87:37-41. 1959.
- 15. Lawton, K. and M. B. Tesar. Yield, potassium content and root distribution of alfalfa and bromegrass grown under three levels of applied potash in the greenhouse. Agron. Jour. 50:148-151. 1958.
- Lawton, K., M. B. Tesar and B. Kawin. Effect of rate and placement of superphosphate on the yield and phosphorus absorption of legume hay. Soil Sci. Soc. Amer. Proc. 18:428-432. 1954.
- Luebs, R. E., G. Stanford and A. D. Scott. Relation of available potassium to soil moisture. Soil Sci. Soc. Amer. Proc. 20:45-50. 1956.
- 18. Matthews, B. C. and C. G. Sherrell. Effect of drying on exchangeable potassium of Ontario soils and the relation of exchangeable potassium to crop yield. Can. Jour. Soil Sci. 40:35-41. 1960.

- Pratt, P. F., W. W. Jones and F. T. Bingham. Magnesium and potassium content of orange leaves in relation to exchangeable magnesium and potassium in soil at various depths. Proc. Amer. Soc. Hort. Sci. 70:245-251. 1957.
- Rouse, R. D. and B. R. Bertramson. Potassium availability in several Indiana soils: Its nature and methods of evaluation. Soil Sci. Soc. Amer. Proc. 14:113-123. 1950.
- Scott, A. D., J. J. Hanway and E. M. Stickney. Soil potassium-moisture relations: I. Potassium release observed on drying Iowa soils with added salts or HCl. Soil Sci. Soc. Amer. Proc. 21:498-501. 1957.
- 22. Scott, T. W. and F. W. Smith. Effect of drying upon availability of potassium in Parsons silt loam surface soil and subsoil. Agron. Jour. 49:377-381. 1957.

- Seay, W. A., O. J. Attoe and E. Truog. Correlation of the potassium content of alfalfa with that available in soils. Soil Sci. Soc. Amer. Proc. 14:245-249. 1950.
- Snider, H. J. Chemical composition of hay and forage crops as affected by various soil treatments. Ill. Agr. Exp. Sta. Bul. 518. 1946.
- 25. Stivers, R. K. and A. J. Ohlrogge. Influence of phosphorus and potassium fertilization of two soil types on alfalfa yield, stand and content of these elements. Agron. Jour. 44:618-621. 1952.
- Titus, S. J. and D. Boynton. The relationships between soil analysis and leaf analysis in 80 New York McIntosh apple orchards. Proc. Amer. Soc. Hort. Sci. 61:6-26. 1953.
- Winters, E. Crop response to potassium fertilization. Soil Sci. Soc. Amer. Proc. 10:162-167. 1946.

APPENDIX

TABLE A-1. CHARACTERISTICS OF THE SOILS ON WHICH FIELD EXPERIMENTS WERE CONDUCTED.

								L	aborator	y analysis			
					Sample	Field n	noist	Air dr	ieda	Air ^b dried	Oven dried	Soil	testb
State	Year	Expt.	County	Soil type	depth (in.)	Exch. K pp2m	H ₂ O %	Exch. K pp2m	H_2O	Exch. K pp2m	Exch. K pp2m	pH	P pp2m
Alaska	1956	1	Third Judicial District	Knik sil	$\begin{array}{c} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36 \end{array}$	165 132 122 222* 32 34	$21 \\ 20 \\ 17 \\ 14 \\ 2 \\ 2$	$177 \\ 114 \\ 95 \\ 220* \\ 50 \\ 66$	4 5 5 4 2 2	84 74 60 94 32 38	$129 \\ 127 \\ 94 \\ 136* \\ 52 \\ 65$	$\begin{array}{c} 6.1 \\ 6.0 \\ 6.0 \\ 6.0 \\ 6.6 \\ 6.6 \\ 6.6 \end{array}$	$ \begin{array}{r} 14 \\ 10 \\ 6 \\ 6 \\ 6 \\ 8 \\ 8 \end{array} $
Illinois	1956	1	Montgomery	Oconee sil	$\begin{array}{c} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36 \end{array}$	151* 110 73 77 78 80	20 20 20 20 19 17	186^{*} 152 146 163 164 170	5 5 7 9 8 8	183* 177 230 329 326 310	$216* \\ 191 \\ 246 \\ 318 \\ 360 \\ 372$	$5.4 \\ 5.4 \\ 5.4 \\ 5.4 \\ 5.4 \\ 5.4 \\ 5.6 \\ 5.6 \\$	5 2 1 1 1 1
Illinois	1956	2	Macoupin	Ebbert sil	$\begin{array}{c} 0- \ 6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	92 68 66 79 68 53	21 19 16 19 18 17	$ \begin{array}{r} 104 \\ 101 \\ 128 \\ 150 \\ 142 \\ 116 \end{array} $	4 3 5 7 7 7	$151 \\ 179 \\ 285 \\ 302 \\ 255 \\ 215$	$ 132 \\ 189 \\ 311 \\ 389 \\ 370 \\ 316 $	$ \begin{array}{r} 6.4 \\ 6.1 \\ 6.2 \\ 6.3 \\ 6.5 \\ 6.7 \\ \end{array} $	7 3 1 1 1 1 1
Indiana	1955	1	Montgomery	Brookston sil	$\begin{array}{c} 0- \ 6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36 \end{array}$	$ \begin{array}{r} 150 \\ 66 \\ 62 \\ 60 \\ 62 \\ 65 \end{array} $	24 24 20 18 15 14	$160 \\ 137 \\ 145 \\ 152 \\ 146 \\ 133$	6 6 8 7 6	$ \begin{array}{r} 136 \\ 185 \\ 208 \\ 218 \\ 197 \\ 184 \end{array} $	$205 \\ 310 \\ 403 \\ 432 \\ 393 \\ 336$	$6.4 \\ 6.7 \\ 6.4 \\ 6.6 \\ 6.7 \\ 7.0$	$10 \\ 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ <$
Indiana	1955	2	Montgomery	Miami sil (gritty)	$\begin{array}{c} 0- \ 6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	$90 \\ 64 \\ 59 \\ 60 \\ 65 \\ 53$	22 19 18 18 15 13	$\begin{array}{c} 76\\ 83\\ 92\\ 123\\ 129\\ 99\end{array}$	3 4 6 8 6 5	79 99 124 186 187 140	99 101 196 274 287 181	$ \begin{array}{r} 6.8 \\ 6.7 \\ 6.5 \\ 6.3 \\ 7.1 \\ 7.5 \end{array} $	
Indiana	1955	3	Montgomery	Reesville sil	$\begin{array}{c} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36 \end{array}$	84 62 63 49 42 39	19 20 19 17 19 18	$72 \\ 125 \\ 142 \\ 123 \\ 106 \\ 104$	4 8 7 6 5	$91 \\ 189 \\ 216 \\ 165 \\ 125 \\ 121$	$115 \\ 314 \\ 415 \\ 347 \\ 297 \\ 274$	$ \begin{array}{r} 6.3 \\ 6.6 \\ 7.1 \\ 7.7 \\ 8.0 \end{array} $	3 < 1 < 1 < 1 < 1 < 1 < 1 < 1
Indiana	1955	4	Montgomery	Brookston sil	0- 6 6-12 12-18 18-24 24-30 30-36	158 104 85 79 78 73	24 26 17 15 15 14	$167 \\ 157 \\ 162 \\ 151 \\ 149 \\ 152$	6 9 7 7 7 7 7	168 189 228 217 229 231	$237 \\ 334 \\ 438 \\ 446 \\ 429 \\ 465$	$ \begin{array}{r} 6.2 \\ 6.5 \\ 6.8 \\ 7.3 \\ 7.6 \\ $	$10 \\ 7 \\ 4 \\ 1 \\ < 1 \\ < 1$
Indiana	1955	5	Cass	Miami 1	$\begin{array}{c} 0- \ 6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	$ \begin{array}{r} 123 \\ 55 \\ 48 \\ 46 \\ 46 \\ 46$	12 12 12 13 11 11	123 72 84 89 89 70	2 4 4 3 4 4	$129 \\ 102 \\ 135 \\ 144 \\ 145 \\ 99$	$119 \\ 104 \\ 172 \\ 192 \\ 195 \\ 139$	$\begin{array}{c} 6.4 \\ 6.9 \\ 6.6 \\ 6.8 \\ 7.4 \\ 8.1 \end{array}$	3 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 <
Indiana		6	Cass	Brookston sil	$\begin{array}{c} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	$131 \\ 69 \\ 63 \\ 62 \\ 64 \\ 65$	28 20 14 12 12 13	157 95 101 121 118* 111*	7 7 6 6 5	144 130 149 181 157* 151*	151 211 292 328 254* 251*	6.6 6.7 7.1 7.5 7.7 7.7	9 3 1 < 1 < 1 < 1

						Laboratory analyses							
State	Year	Expt.	County	Soil type	Sample depth (in.)	Field n Exch. K pp2m	noist H2O %	Air drie Exch. K pp2m	eda H ₂ O %	Air ^b dried Exch. K pp2m	Oven dried Exch. K pp2m	Soi	l test ^b P pp2m
Indiana	1955	7	Cass	Brookston sil	0- 6 6-12 12-18 18-24 24-30 30-36	$ \begin{array}{r} 117 \\ 39 \\ 32 \\ 30 \\ 23 \\ 26 \end{array} $	18 15 12 12 12 12 12 14	122 60 86 89 73 74	5 2 2 2 2 4 2	$106 \\ 56 \\ 94 \\ 118 \\ 84 \\ 78$	$106 \\ 95 \\ 169 \\ 185 \\ 142 \\ 140$	$6.5 \\ 6.6 \\ 7.0 \\ 7.1 \\ 7.7 \\ 7.9$	92 < 11 < 1 < 1
Indiana	1955	8	Cass	Miami l	$\begin{array}{c} 0- \ 6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	91 47 43 43 39 42	15 13 12 13 13 13 12	$104 \\ 62 \\ 89 \\ 113 \\ 106 \\ 100$	2 2 3 4 3	$100 \\ 62 \\ 119 \\ 132 \\ 117 \\ 129$	91 81 175 223 202 183	$ \begin{array}{r} 6.8 \\ 7.1 \\ 6.7 \\ 6.8 \\ 6.9 \\ 7.1 \end{array} $	91 < 1 < 1 < 1 < 1 < 1 < 1
Indiana	1956	1	Fulton	Crosby fsl	0- 6 6-12 12-18 18-24 24-30 30-36	95 61 46 47 72* 67	$10 \\ 9 \\ 8 \\ 10 \\ 13 \\ 15$	$103 \\ 61 \\ 54* \\ 73* \\ 119 \\ 116$	4 3 3 5 4 3	91 59 66* 75* 139 124	$82 \\ 63 \\ 63^* \\ 90^* \\ 195 \\ 191$	$\begin{array}{c} 6.5 \\ 6.1 \\ 5.8 \\ 5.6 \\ 5.9 \\ 6.6 \end{array}$	$13 \\ 11 \\ 7 \\ 1 \\ < 1 \\ < 1$
Indiana	1956	2	Fulton	Brookston sil	0- 6 6-12 12-18 18-24 24-30 30-36	$103 \\ 52 \\ 23 \\ 28 \\ 24 \\ 33$	$22 \\ 20 \\ 14 \\ 13 \\ 10 \\ 10 \\ 10$	$104 \\ 67 \\ 45 \\ 69 \\ 51 \\ 60$	3 3 3 2 2 2	86 58 59 98 58 73	$104 \\ 70 \\ 64 \\ 105 \\ 81 \\ 88$	$6.0 \\ 5.8 \\ 6.0 \\ 5.9 \\ 6.8 \\ 7.4$	$30 \\ 14 \\ 5 \\ 4 \\ 1 \\ 2$
Indiana	1956	3	Fulton	Coloma lfs	$\begin{array}{r} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	$ 111 \\ 78 \\ 53 \\ 44 \\ 40 \\ 36 $	5 6 6 5 5	116 71 59 52 38 40	2 2 1 2 2 2 2 2 2 2	114 61 55 46 41 47	98 59 47 39 33 39	$6.5 \\ 6.4 \\ 6.2 \\ 6.1 \\ 6.0 \\ 6.1$	$28 \\ 21 \\ 14 \\ 6 \\ 3 \\ 1$
Indiana	1956	4	Fulton	Brookston sil	$\begin{array}{c} 0- \ 6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36 \end{array}$	$ 131 \\ 91 \\ 38 \\ 38 \\ 43 \\ 39 $	14 12 9 15 15 14	$ \begin{array}{r} 135 \\ 96 \\ 39 \\ 96 \\ 98 \\ 94 \\ 94 \end{array} $	2 2 2 4 3 4	$125 \\ 75 \\ 41 \\ 86 \\ 109 \\ 103$	$123 \\78 \\52 \\129 \\151 \\142$	7.0 6.6 6.8 6.7 7.2 7.4	$13 \\ 4 \\ 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1$
Indiana	1956	5	St. Joseph	Tracy lfs	$\begin{array}{c} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36 \end{array}$	76 83 57 41 45 37	9 9 10 9 8 5	87 85 70 69 67 47	3 3 7 4 5 3	87 83 84 93 100 77	76 82 77 85 98 70	$6.6 \\ 6.2 \\ 5.9 \\ 6.4 \\ 6.8 \\ 6.7$	22 23 27 17 14 13
Indiana	1956	6	St. Joseph	Tracy lfs	$\begin{array}{c} 0- \ 6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	$90 \\ 78 \\ 60 \\ 41 \\ 35 \\ 35 \\ 35$	6 7 7 6 5 4	$105 \\ 73 \\ 56 \\ 39 \\ 34 \\ 35$	3 2 2 3 2 2 3 2 2	$112 \\ 84 \\ 55 \\ 49 \\ 40 \\ 45$	86 60 45 41 36 37	$6.6 \\ 6.3 \\ 6.3 \\ 6.0 \\ 6.1 \\ 6.1$	37 27 18 14 11 8
Indiana	1956	7	St. Joseph	Brookston sicl	0- 6 6-12 12-18 18-24 24-30 30-36	$111 \\ 76 \\ 36 \\ 26 \\ 29 \\ 22$	33 32 24 20 11 12	$ \begin{array}{r} 115 \\ 89 \\ 71 \\ 65 \\ 61 \\ 44 \end{array} $	3 5 4 3 2 3	96 87 93 112 107 69	$114 \\ 90 \\ 90 \\ 114 \\ 94 \\ 70$	$6.8 \\ 6.8 \\ 7.0 \\ 7.6 \\ 7.8 \\ 8.0$	32 24 10 3 2 2
Indiana	1956	8	St. Joseph	Tracy lfs	0- 6 6-12 12-18 18-24 24-30 30-36	$104 \\ 56 \\ 50 \\ 32 \\ 39 \\ 38$	10 9 9 8 7 6	104 55 54 51 56 45	5 4 2 3 2 2	$125 \\ 68 \\ 79 \\ 80 \\ 83 \\ 65$	95 57 61 62 71 60	$5.8 \\ 6.0 \\ 5.7 \\ 5.8 \\ 5.9 \\ 6.1$	20 19 20 15 15 13
Iowa	1955	1	Washington	Clinton sil	0- 6 6-12 12-18 18-24 24-30 30-36	$239 \\ 115 \\ 70 \\ 68 \\ 64 \\ 67$	25 13 15 18 20 20	268 135 141 163 176 179	2 4 3 6 5 6	223 180 261 364 375 372	$264 \\ 259 \\ 416 \\ 536 \\ 584 \\ 572$	$7.0 \\ 6.5 \\ 6.1 \\ 5.6 \\ 5.4 \\ 5.3$	10 14 21 27 29 35
Iowa	1955	2	Washington	Clinton sil	$\begin{array}{r} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	$ \begin{array}{r} 122 \\ 60 \\ 51 \\ 48 \\ 42 \\ 47 \end{array} $	23 18 20 21 23 24	153 144 150 155 151 146	3 6 8 7 6	170 292 361 378 362 352	$232 \\ 448 \\ 489 \\ 551 \\ 530 \\ 514$	7.5 6.3 5.7 5.5 5.5 5.5	3 1 6 15 28 34
Iowa		3	Story	Clarion sil	0- 6 6-12 12-18 18-24 24-30 30-36	$143 \\ 97 \\ 61 \\ 33 \\ 30 \\ 33$	$ \begin{array}{r} 16 \\ 10 \\ 10 \\ 9 \\ 9 \\ 9 \\ 10 \\ $	$156 \\ 100 \\ 74 \\ 62 \\ 60 \\ 61$	3 2 3 2 2 3	$163 \\ 170 \\ 153 \\ 145 \\ 132 \\ 104$	212 199 205 209 190 181	7.3 7.1 7.3 7.9 7.9 8.0	32 21 < 1 < 1 < 1 < 1
Iowa	1955	4	Story	Clarion sil	0-6 6-12 12-18 18-24 24-30 20, 36	$138 \\ 72 \\ 52 \\ 38 \\ 31 \\ 27$	18 15 14 13 12 12 12 12	$152 \\ 113 \\ 96 \\ 90 \\ 78 \\ 67$	1 6 7 4 3	$154 \\ 166 \\ 166 \\ 168 \\ 151 \\ 129$	208 213 216 244 234 196	$6.9 \\ 6.4 \\ 6.3 \\ 7.1 \\ 7.6 \\ 8.0$	3 < 1 < 1 < 1 < 1

TABLE A-1 (continued)

TABLE A-1 (continued)

						1. <u>1</u> . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		I	aborator	ry analysis			
State	Year	Expt.	County	Soil type	Sample depth	Field n Exch K	noist H2O	Air di Exch K	ried ^a H ₂ O	Air ^b dried Exch. K	Oven dried Exch K	Soi	l test ^b
Iowa	1955	5	Marshall	Tama sil	(in.) 0- 6 6-12 12-18 18-24 24	440 104 63 55	26 22 20 20	438 159 133 130	* % 3 6 7 7		526 462 459 466	pH 6.7 6.3 6.1 6.1	pp2m 8 3 6 12
Iowa		6	Marshall	Tama sil	24-30 30-36 0- 6 6-12 12-18 18-24 24-30	$47 \\ 46 \\ 219 \\ 103 \\ 84 \\ 61 \\ 52 \\ 52 \\ 103 $	21 22 27 21 21 22 22 22 22	120 129 252 155 151 141 132	6 5 7 7 6	295 313 251 262 281 292 295	467 452 319 362 398 474 501	$\begin{array}{c} 6.2 \\ 6.3 \\ 7.3 \\ 6.0 \\ 6.0 \\ 6.2 \\ 6.3 \end{array}$	13 14 5 2 1 3 4
Iowa		7	Dubuque	Fayette sil	$\begin{array}{c} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36 \end{array}$	57 140 46 46 48 43 44 44 4	22 22 23 23 23 23 23 23	$130 \\ 147 \\ 119 \\ 114 \\ 106 \\ 112 \\ 109 \\ 109 \\ 130 \\ 100 $	6 3 5 6 6 6 6	278 135 237 266 272 277 285	$ \begin{array}{r} 485 \\ 180 \\ 368 \\ 412 \\ 425 \\ 406 \\ 431 \\ \end{array} $	6.7 7.4 6.2 5.8 5.7 5.9 5.7	$ \begin{array}{r} 3 \\ 4 \\ 10 \\ 19 \\ 26 \\ 30 \\ 30 \\ 30 \end{array} $
Iowa		8	Jackson	Fayette sil	0- 6 6-12 12-18 18-24 24-30 30-36	$145 \\ 60 \\ 55 \\ 55 \\ 51 \\ 57$	26 18 18 19 20 22	$147 \\ 83 \\ 96 \\ 109 \\ 114 \\ 119$	3 4 5 6 6	158 157 221 251 269 265	$162 \\ 224 \\ 360 \\ 416 \\ 440 \\ 438$	7.4 6.2 5.4 5.3 5.2 5.3	$7\\6\\10\\16\\23\\31$
Iowa	1955	9	Delaware	Carrington 1	0- 6 6-12 12-18 18-24 24-30 30-36	139 48 45 32 32 27	32 27 24 20 19 19	138 77 80 85 89 92	5 6 5 4 5	$149 \\ 120 \\ 152 \\ 163 \\ 162 \\ 167$	$153 \\ 160 \\ 199 \\ 217 \\ 241 \\ 209$	$6.9 \\ 5.6 \\ 5.5 \\ 5.8 \\ 6.1 \\ 6.2$	$2 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1$
Iowa	1955	10	Delaware	Carrington sl	0- 6 6-12 12-18 18-24 24-30 30-36	164 66 58 37 30 30	18 16 16 14 14 14	$170 \\ 118 \\ 116 \\ 112 \\ 136 \\ 138$	4 4 4 4 4 4	$150 \\ 98 \\ 110 \\ 119 \\ 128 \\ 154$	$171 \\ 107 \\ 116 \\ 147 \\ 203 \\ 236$	7.0 5.7 5.4 5.4 5.3 5.4 5.3	$\begin{array}{c} 4\\2\\<1\\<1\\<1\\<1\end{array}$
Iowa	1956	11	Jackson	Fayette sil	0- 6 6-12 12-18 18-24 24-30 30-36	$159 \\ 80 \\ 60 \\ 48 \\ 45 \\ 44$	21 23 23 22 23 20	184 138 126 128 133 134	4 5 5 5 6 6	211 208 240 278 290 320	205 184 244 310 256 329	$5.9 \\ 5.6 \\ 5.2 \\ 5.2 \\ 5.1 \\ 5.2 \\ 5.2 \\ 5.1 \\ 5.2 $	5 5 1 4 4 12
Iowa	1956	12	Jackson	Fayette sil (eroded)	0- 6 6-12 12-18 18-24 24-30 30-36	$ \begin{array}{r} 128 \\ 60 \\ 43 \\ 46 \\ 42 \\ 40 \\ 40 \end{array} $	16 19 21 20 18 18	145 108 126 128 130 128	4 5 6 5 6	175 228 270 306 302 284	$161 \\ 214 \\ 278 \\ 303 \\ 317 \\ 324$	$ \begin{array}{r} 6.2 \\ 5.9 \\ 5.6 \\ 5.6 \\ 5.6 \\ 5.6 \\ 5.6 \\ 5.6 \\ \end{array} $	6 3 5 6 22 23
Iowa	1956	13	Delaware	⁻ Carrington 1	$\begin{array}{c} 0- \ 6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	$124 \\ 64 \\ 47 \\ 30 \\ 28 \\ 28 \\ 28$	$ \begin{array}{r} 16 \\ 20 \\ 19 \\ 16 \\ 11 \\ 9 \end{array} $	135 93 80 79 78 72	3 5 4 5 4 3	$164 \\ 146 \\ 158 \\ 176 \\ 158 \\ 164$	162 124 130 174 197 196	$5.8 \\ 5.7 \\ 5.7 \\ 5.8 \\ 6.1 \\ 6.2$	7 2 2 1 1 1
Iowa	1956	14	Delaware	Carrington 1	$\begin{array}{c} 0- \ 6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	121 69 46 28 37 28	14 17 17 14 11 13	126 91 79 68 70 73	3 4 3 3 3	$154 \\ 142 \\ 138 \\ 144 \\ 158 \\ 162$	143 124 110 145 157 152	$6.2 \\ 5.9 \\ 5.9 \\ 5.8 \\ 5.8 \\ 6.0$	6 4 2 1 2 2
Iowa	1956	15	Bremer	Floyd sil	$\begin{array}{c} 0- \ 6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	$121 \\ 72 \\ 54 \\ 38 \\ 30 \\ 30 \\ 30$	$ \begin{array}{r} 43 \\ 23 \\ 19 \\ 14 \\ 10 \\ 11 \end{array} $	$161 \\ 130 \\ 125 \\ 110 \\ 82 \\ 80$	8 10 7 4 3 5	$ \begin{array}{r} 161 \\ 212 \\ 204 \\ 192 \\ 138 \\ 132 \end{array} $	$193 \\ 290 \\ 326 \\ 316 \\ 228 \\ 204$	$ \begin{array}{r} 6.2 \\ 6.7 \\ 6.9 \\ 7.2 \\ 7.6 \\ 7.7 \\ 7.7 \end{array} $	52 11 < 1 < 1
Iowa	1956	16	Bremer	Clyde sil	$\begin{array}{c} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36 \end{array}$	$210 \\ 88 \\ 62 \\ 54 \\ 37 \\ 38$	27 22 21 19 17 11	$234 \\ 121 \\ 120 \\ 124 \\ 112 \\ 86$	5 8 9 7 4	$203 \\ 150 \\ 156 \\ 198 \\ 182 \\ 166$	$245 \\ 171 \\ 199 \\ 288 \\ 316 \\ 274$	$\begin{array}{c} 6.3 \\ 6.0 \\ 6.2 \\ 6.5 \\ 6.9 \\ 7.4 \end{array}$	6 3 2 1 1 1
Kansa	s1955	1	Cherokee	Cherokee sil	$\begin{array}{r} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	$102 \\ 94 \\ 122 \\ 112 \\ 75 \\ 66$	$14 \\ 19 \\ 25 \\ 18 \\ 16 \\ 16 \\ 16$	$122 \\ 74 \\ 110 \\ 154 \\ 150 \\ 142$	4 6 9 10 9 8	$104 \\ 108 \\ 128 \\ 232 \\ 224 \\ 216$	137 94 242 328 321 277	$\begin{array}{c} 6.6 \\ 5.6 \\ 5.2 \\ 4.9 \\ 4.8 \\ 4.8 \end{array}$	52 < 1 < 1 < 1 < 1 < 1
Kansa	s1955	2	Cherokee	Bates vfsl	$\begin{array}{r} 0- \ 6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$		$15 \\ 14 \\ 16 \\ 16 \\ 16 \\ 16 \\ 15$	$ \begin{array}{r} 86 \\ 63 \\ 66 \\ 80 \\ 89 \\ 105 \end{array} $	4 1 4 4 5 6	76 46 80 118 136 180	$100 \\ 88 \\ 100 \\ 150 \\ 191 \\ 230$	7.0 5.7 5.3 5.6 5.8 6.0	10 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1

	1.1.1.1.1.1	2.55			12.28	S	y analysis						
State	Year	Expt.	County	Soil type	Sample depth (in.)	Field n Exch. K pp2m	noist H2O %	Air dri Exch. K pp2m	$rac{\mathrm{ed}^{\mathrm{a}}}{\mathrm{H}_{2}\mathrm{O}}$	Air ^b dried Exch. K pp2m	Oven dried Exch. K pp2m	Soi	l test ^b P pp2m
Kansas	1955	3	Labette	Parsons sil	$\begin{array}{r} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	$145 \\ 176 \\ 178 \\ 187 \\ 100 \\ 84$	12 18 20 18 17 17	185 178 186 181 194 193	5 8 10 9 10 10	188 280 394 284 246 252	$264 \\ 382 \\ 454 \\ 431 \\ 405 \\ 357$	5.6 5.8 6.2 6.3 6.4 6.6	$20 \\ 2 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ <$
Kansas	1955	4	Neosho	Bates vfsl	$\begin{array}{r} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	$254 \\ 312 \\ 544 \\ 466 \\ 247 \\ 112$	$21 \\ 22 \\ 23 \\ 26 \\ 25 \\ 19$	$292 \\ 344 \\ 540 \\ 492 \\ 294 \\ 194$	$ \begin{array}{c} 6 \\ 5 \\ 10 \\ 10 \\ 11 \\ 3 \end{array} $	$256 \\ 296 \\ > 400 \\ 384 \\ 260 \\ 220$	$296 \\ 357 \\ 494 \\ 511 \\ 404 \\ 340$	$5.6 \\ 5.8 \\ 6.0 \\ 6.2 \\ 6.4 \\ 6.6$	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1
Kansas	1955	5	Franklin	Woodson sil	$\begin{array}{c} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	$262 \\ 88 \\ 110 \\ 106 \\ 99 \\ 86$	20 21 20 15 12 13	292 166 206 201 188 180	6 9 9 8 7 6	$248 \\ 220 \\ 356 \\ 312 \\ 336 \\ 300$	368 350 507 520 488 460	$6.6 \\ 6.2 \\ 6.4 \\ 6.6 \\ 7.1 \\ 7.2$	
Kansas	1955	6	Riley	Hobbs-like sil (alluvial)	$\begin{array}{r} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	565347222194214219	11 15 14 17 15 10	589 398 292 295 301 294	4 5 9 9 5	>400 364 292 308 320 328	645 487 406 432 447 478	5.2 5.4 5.7 5.8 6.0	24 11 7 6 6 7
Kansas	1955	7	Riley	Geary sicl	$\begin{array}{r} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	$675 \\ 340 \\ 150 \\ 125 \\ 138 \\ 131$	11 14 12 12 11 11	681 381 232 214 216 211	7 7 7 6 6	>400 >400 308 300 300 288	800 606 486 471 475 461	$6.0 \\ 6.2 \\ 6.7 \\ 6.6 \\ 6.8 \\ 7.0$	22 8 1 2 1 2
Kansas	1956	1	Riley	Hobbs-like sil (alluvial)	$\begin{array}{r} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	522 262 224 218 228 222	23 23 24 25 20 16	$615 \\ 328 \\ 318 \\ 348 \\ 355 \\ 367$	4 5 6 4 5	>400 >380 320 364 >392 >400	612 386 392 483 465 548	$5.3 \\ 5.8 \\ 5.8 \\ 5.8 \\ 5.8 \\ 5.8 \\ 5.9 \\ 5.9 \\$	23 7 6 6 6 6 6 6
Kansas	1956	2	Riley	Geary sicl	$\begin{array}{r} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	$567 \\ 288 \\ 169 \\ 142 \\ 122 \\ 121$	21 22 23 22 22 22 21	602 318 236 222 208 199	7 5 5 6 5 5	$>400 \\>400 \\354 \\342 \\322 \\329$	$\begin{array}{c} 639 \\ 534 \\ 456 \\ 446 \\ 460 \\ 476 \end{array}$	5.8 5.7 6.4 6.9 6.8 7.0	25 10 4 2 3 2
Kansas	1956	3	Riley	Sarpy fsl	$\begin{array}{r} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	$531 \\ 365 \\ 227 \\ 151 \\ 127 \\ 149$	18 17 17 21 12 13	$602 \\ 463 \\ 293 \\ 204 \\ 162 \\ 186$	4 3 5 5 1 1	>400 >362 294 238 194 230	574 479 378 302 244 288	7.8 7.4 7.3 7.7 8.0 8.1	23 15 6 5 4 2
Kansas	1956	4	Cherokee	Cherokee sil	$\begin{array}{c} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36 \end{array}$		18 18 26 24 19 18	$90 \\ 84 \\ 118 \\ 154 \\ 195 \\ 142$	3 5 10 9 9 7	$123 \\ 120 \\ 154 \\ 214 \\ 245 \\ 214$	$110 \\ 117 \\ 216 \\ 292 \\ 314 \\ 252$	$5.7 \\ 5.6 \\ 5.3 \\ 5.0 $	$< 1 \\ 1 \\ 1 \\ < 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $
Kansas	1956	5	Neosho	Parsons sil	$\begin{array}{c} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36 \end{array}$	$106 \\ 65 \\ 90 \\ 109 \\ 136 \\ 133$	21 23 22 20 23 21	110 102 144 177 206 192	3 5 6 8 7	$151 \\ 154 \\ 170 \\ 234 \\ 254 \\ 260$	$142 \\ 150 \\ 198 \\ 272 \\ 311 \\ 292$	$6.6 \\ 5.7 \\ 6.4 \\ 7.2 \\ 7.8 \\ 8.1$	2 1 1 1 1 1 1
Kansas	1956	6	Labette	Parsons sil	$\begin{array}{r} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	$ 129 \\ 83 \\ 109 \\ 116 \\ 134 \\ 181 $	$20 \\ 20 \\ 23 \\ 20 \\ 19 \\ 16$	140 121 142 168 194 232	4 5 7 8 8 8	142 170 178 228 270 286	200 219 277 323 373 419	7.0 5.5 5.6 5.7 6.4 7.0	8 1 1 1 1 1 1 1
Kansas	1956	7	Franklin	Woodson sil	$\begin{array}{r} 0- \ 6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	$134\\88\\116\\138\\132\\136$	18 20 20 21 19 17	155 144 168 202 206 188	4 7 8 9 8 8	148 221 278 322 388 334	$210 \\ 279 \\ 410 \\ 480 \\ 486 \\ 502$	$6.8 \\ 6.2 \\ 6.4 \\ 6.6 \\ 6.8 \\ 7.1$	5 2 2 2 2 2 2 2 2 2
Kansas	1956	8	Cherokee	Cherokee sil	$\begin{array}{r} 0- \ 6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	$ 151 \\ 68 \\ 82 \\ 111 \\ 105 \\ 128 $	20 22 23 27 25 24	178 140 175 195 200 228	$3 \\ 5 \\ 3 \\ 9 \\ 10 \\ 12$	160 170 180 228 298 298	192 224 215 290 344 345	$6.6 \\ 5.6 \\ 5.4 \\ 5.8 \\ 5.8 \\ 5.8 \\ 6.5$	3 1 2 2 1 1
Kansas	1956	9	Neosho	Parsons sil	0-6 6-12 12-18 18-24 24-30 30-36	111 69 66 74 71 62	17 19 21 19 18 17	109 86 104 120 116 96	3 4 6 7 6	$128 \\ 132 \\ 168 \\ 190 \\ 196 \\ 170$	149 134 180 200 208 183	$6.5 \\ 5.4 \\ 5.4 \\ 5.7 \\ 6.0 \\ 6.6 \\ 6.6 \\ 6.6 \\ 6.6 \\ 100 $	3 2 2 1 1

TABLE A-1 (continued)

			See Par			1		La	aborator	y analysis		1.1.1.	
State	Year	Expt.	County	Soil type	Sample depth (in.)	Field n Exch. K pp2m	noist H2O %	Air dri Exch. Ko pp2m	eda H ₂ O %	Air ^b dried Exch. K pp2m	Oven dried Exch. K pp2m	Soi pH	l test ^b P pp2m
Kansas .	1956	10	Neosho	Bates vfsl	$\begin{array}{c} 0- \ 6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	172 112 128 127 146 130	21 18 25 26 24 23	181 130 146 188 204 186	4 6 10 10 9	198 158 170 218 230 210	191 165 198 294 334 313	$5.9 \\ 5.5 \\ 6.2 \\ 6.5 \\ 7.1 \\ 7.6$	< 1 1 1 1 1 1 < 1
Michigan	1955	1	Kalamazoo	Fox sl	0-6	232	11	216	1	214	173	7.5	42
Michigan	1955	2	Ingham	Hillsdale sl	$\begin{array}{r} 0- \ 6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36 \end{array}$	$ \begin{array}{r} 199 \\ 67 \\ 68 \\ 59 \\ 60 \\ 61 \end{array} $	18 14 15 14 15 13	193 92 91 78 89 80	2 3 4 4 4 3	166 97 110 127 121 111	138 111 148 163 159 140	7.2 7.3 6.9 7.0 7.8 7.9	5 <1 <1 <1 <1 <1 <1
4ichigan	1956	1	Rose Lake Wildlife Expt. Station	Bellefontaine sl	$\begin{array}{r} 0- \ 6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	$ \begin{array}{r} 151 \\ 70 \\ 52 \\ 60 \\ 65 \\ 69 \\ \end{array} $	$15 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 11 \\ 11 \\ $	$167 \\ 71 \\ 75 \\ 100 \\ 108 \\ $	523533	$132 \\ 66 \\ 97 \\ 146 \\ 166 \\ 151$	$120 \\ 61 \\ 95 \\ 159 \\ 154 \\ 158$	$5.9 \\ 6.0 \\ 5.6 \\ 5.2 \\ 5.1 \\ 5.1 \\ 5.1$	$10 \\ 4 \\ 10 \\ 9 \\ 10 \\ 10 \\ 10$
4ichigan	1956	2	Kalamazoo	Fox sl	$\begin{array}{r} 0- \ 6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	180 80 72 48 35 28	$ \begin{array}{r} 13 \\ 12 \\ 10 \\ 7 \\ 8 \\ 4 \end{array} $	$168 \\ 104 \\ 98 \\ 68 \\ 57 \\ 52$	3 3 3 3 5 1	$169 \\ 140 \\ 150 \\ 118 \\ 82 \\ 62$	$166 \\ 138 \\ 142 \\ 108 \\ 62 \\ 54$	$ \begin{array}{r} 6.2 \\ 6.0 \\ 5.4 \\ 5.5 \\ 5.5 \\ 5.6 \\ \end{array} $	13 16 14 13 9 7
vlichigan	1956	3	Ingham	Conover 1	$\begin{array}{r} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36 \end{array}$	80 56 54 44 42 38	15 15 15 15 14 12	81 62 102 102 80 62	3 3 2 3 3 3 3 3	$\begin{array}{c} 68\\ 61\\ 138\\ 146\\ 126\\ 89\end{array}$	86 150 188 161 132 130	6.6 7.0 7.1 7.8 8.1 8.2	32 <1 <<1 <<1 <<1 <<1
Michigan	1956	4	Clinton	Miami l	$\begin{array}{r} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36 \end{array}$	$209 \\ 100 \\ 67 \\ 67 \\ 59 \\ 64$	$17 \\ 11 \\ 12 \\ 13 \\ 12 \\ 11$	$204 \\ 105 \\ 86 \\ 96 \\ 86 \\ 84$	4 2 2 2 3 2 3	$161 \\ 89 \\ 104 \\ 124 \\ 101 \\ 98$	174 104 132 116 116 110	5.8 6.2 6.7 7.4 7.9 8.0	2^{2}_{2} < 1 < 1 < 1 1
Michigan	1956	5	Jackson	Bellefontaine sl	$\begin{array}{r} 0- \ 6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	65 52 32 26 30 30	6 7 6 7 7 5	$69 \\ 46 \\ 42 \\ 40 \\ 31 \\ 34$	32222 2223	67 39 35 32 38 43	60 39 31 36 40 42	$ \begin{array}{r} 6.9 \\ 7.0 \\ 6.9 \\ 6.8 \\ 6.6 \\ 6.6 \\ 6.6 \\ \end{array} $	6 10 7 5 5 4
Minnesota	a1955	1	Steele	Nicollet cl	$\begin{array}{r} 0- \ 6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	$217 \\ 117 \\ 60 \\ 56 \\ 61 \\ 68$	25 22 21 20 20 20	191 115 71 85 93 104	5 5 5 6 6 7	197 145 161 210 234 223	250 156 228 320 344 367	7.4 7.0 6.6 6.3 7.1 7.8	$21 \\ 10 \\ 11 \\ 5 \\ 3 \\ 4$
Minnesota	a1955	2	Jackson	Clarion cl (variable sand subsoil)	0- 6 9 6-12 12-18 18-24 24-30 30-36	507* 212* 119* 77 69 60	20 22 19 16 17 18	514* 308* 195* 119 117 100	5 6 4 4 4	$>400* \\>284* \\270* \\214 \\188 \\165$	543* 352* 317* 307 302 259	$6.5 \\ 6.9 \\ 6.6 \\ 7.3 \\ 7.9 \\ 8.1$	5 < 1 < 1 < 1 < 1 < 1
Minnesota	a1955	3	Fillmore	Fayette sil	$\begin{array}{r} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	$162 \\ 76 \\ 62 \\ 57 \\ 53 \\ 65$	$24 \\ 21 \\ 19 \\ 18 \\ 20 \\ 20 \\ 20$	$177 \\ 114 \\ 124 \\ 129 \\ 133 \\ 137$	4 5 6 6 5 5	179 176 200 228 230 222	197 194 299 328 346 380	$6.9 \\ 6.5 \\ 6.1 \\ 5.9 \\ 5.8 \\ 5.9 $	7 9 13 21 24 25
Minnesota	a1955	4	Stevens	Aastad sil (variable sub- soil)	$\begin{array}{c} 0- \ 6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	1,010* 673* 346* 139* 98 99	$29 \\ 25 \\ 20 \\ 16 \\ 16 \\ 16 \\ 16$	$1,058* \\ 687* \\ 366* \\ 194 \\ 157 \\ 163$	$ \begin{array}{c} 10 \\ 6 \\ 5 \\ 6 \\ 6 \\ 6 \end{array} $	$> 400* \\> 400* \\> 307* \\236 \\197 \\197$	1,061* 752* 562* 425* 368 351	7.7 7.8 8.0 8.2 8.1 8.1	
Minnesota	a1955	5	Crow Wing	Menahga sil	$\begin{array}{r} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	166 197 180 151 128 119	6 6 7 6 7	165 193 166 141 119 107	2 1 1 1 2	200 199 174 143 128 107	154 169 128 116 102 97	$6.5 \\ 7.2 \\ 6.7 \\ 6.8 \\ 6.7 \\ 6.8 $	51 43 36 28 21 19
Minnesota	a1955	6	Ottertail	Rothsay sicl	$\begin{array}{c} 0- \ 6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36 \end{array}$	$529 \\ 235 \\ 100 \\ 75 \\ 55 \\ 62$	29 27 21 19 20 18	551 292 170 140 109 118	11 7 6 5 5 4	> 400 294 256 197 183 182	647 500 471 429 336 331	7.4 7.8 8.1 8.4 8.4 8.5	52 <1 <<1 <<1 <<1
Minnesota	a1955	7	Hubbard	Beltrami vísl	0-6 6-12 12-18 18-24 24-30	$123 \\ 63 \\ 36 \\ 37 \\ 37 \\ 37 \\ 37 \\ 37 \\ 3$	17 15 11 11 13	$127 \\ 59 \\ 52 \\ 69 \\ 68$	2 4 3 3 3	$96 \\ 65 \\ 90 \\ 128 \\ 117$	$116 \\ 68 \\ 181 \\ 270 \\ 211$	6.3 6.4 6.3 6.8 7.9	14 14 8 5 2

TABLE A-1 (continued)

			Sec. and					L	aborator	ry analysis			
State	Year	Expt.	County	Soil type	Sample depth (in.)	Field n Exch. K pp2m	noist H2O %	Air dri Exch. K pp2m	eda H2O %	Air ^b dried Exch. K pp2m	Oven dried Exch. K pp2m	Soi	l test ^b P pp2m
Minnesota	1955	8	Polk No. 1	Fargo sic	$\begin{array}{c} 0- \ 6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	592 298 177 167 134 141	34 27 21 20 20 19	615 382 282 287 274 269	11 10 7 10 8 8 8	> 400 389 394 394 397 392	910632614582574566	8.0 8.2 8.5 8.6 8.7 8.6	99 4 < 1 < 1 < 1 < 1 < 1
Minnesota	1955	9	Polk No. 2	Bearden sicl	$\begin{array}{r} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36 \end{array}$	$480 \\199 \\116 \\104 \\127 \\144$	29 22 20 18 18 18 19	$492 \\ 260 \\ 184 \\ 172 \\ 194 \\ 211$	$ \begin{array}{c} 10 \\ 8 \\ 8 \\ 10 \\ 9 \end{array} $	$> 400 \\ 357 \\ 290 \\ 281 \\ 295 \\ 332$	755 474 375 373 411 461	8.1 8.4 8.5 8.5 8.5 8.5	$18 \\ 2 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1$
Minnesota	1956	1	Mower	Floyd cl	$\begin{array}{c} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	$107 \\ 48 \\ 41 \\ 40 \\ 34 \\ 31$	$21 \\ 23 \\ 19 \\ 16 \\ 17 \\ 8$	$ \begin{array}{r} 123 \\ 93 \\ 92 \\ 81 \\ 67 \\ 64 \end{array} $		$ 177 \\ 160 \\ 206 \\ 208 \\ 152 \\ 124 $	177 158 218 237 204 201	7.0 6.3 5.9 6.0 6.4 6.7	10 2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 2 1
Minnesota	1956	2	Washington	Hubbard ls	$\begin{array}{c} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	72 35 32 30 32 30	5 7 6 4 4 4	$67 \\ 49 \\ 37 \\ 34 \\ 34 \\ 32$	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \end{array} $	88 68 74 74 74 74 82	79 58 56 52 55 64	5.5 5.9 6.0 6.0 6.1 6.2	11 52 22 22 22
Minnesota	1956	3	Anoka	Lino lfs	$\begin{array}{r} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36 \end{array}$		7 9 9 10 13 13		$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 3 \\ 2 \end{array} $	87 52 46 50 70 86	79 55 42 52 74 88	$6.6 \\ 6.2 \\ 6.4 \\ 6.3 \\ 6.2 \\ 5.8$	24 16 13 10 5
Minnesota	1956	4	Pine (1)	- Hayden fsl	$\begin{array}{c} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36 \end{array}$	$ \begin{array}{r} 121 \\ 64 \\ 41 \\ 45 \\ 58 \\ 52 \\ \end{array} $	$16 \\ 15 \\ 16 \\ 17 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16$	$115 \\ 68 \\ 88 \\ 116 \\ 110 \\ 109$	2 2 4 6 7 5	$100 \\ 108 \\ 272 \\ 336 \\ 328 \\ 308$	118 113 270 292 332 286	$6.7 \\ 6.1 \\ 5.6 \\ 5.3 \\ 5.2 \\ 5.4$	
Minnesota	1956	5	Benton	Milaca fsl	$\begin{array}{c} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36 \end{array}$	68 32 29 24 29 31	$15 \\ 12 \\ 9 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $		$ \begin{array}{c} 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \end{array} $	77 48 54 68 76 72	$57 \\ 40 \\ 43 \\ 46 \\ 56 \\ 53$	$ \begin{array}{r} 6.4 \\ 6.2 \\ 6.3 \\ 6.1 \\ 6.2 \\ 6.2 \\ 6.2 \\ 6.2 \\ \end{array} $	
Minnesota	1956	6	Pine (2)	Milaca fsl	$\begin{array}{c} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36 \end{array}$	90 32 28 44 37 34	$21 \\ 13 \\ 11 \\ 11 \\ 10 \\ 10$	$92 \\ 40 \\ 34 \\ 42 \\ 34 \\ 38$	2 2 2 1 2 2 1 2 2	97 44 42 48 58 74	$95 \\ 36 \\ 34 \\ 40 \\ 41 \\ 58$	$6.2 \\ 5.7 \\ 5.9 \\ 6.3 \\ 6.4 \\ 6.8$	
Minnesota	1956	7	Pine (3)	Crown fsl	$\begin{array}{r} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	$98 \\ 66 \\ 30 \\ 24 \\ 26 \\ 26 \\ 26$	24 18 17 19 17 11	$102 \\ 66 \\ 33 \\ 26 \\ 30 \\ 28$	32 32 33 42	$82 \\ 66 \\ 44 \\ 28 \\ 64 \\ 52$	101 58 29 28 28 28 24	5.7 5.4 5.2 5.3 5.3 5.3 5.4	45 36 26 26 42 32
Nebraska	1955	1	Merrick	Thurman ls	$\begin{array}{c} 0- \ 6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	$247 \\ 156 \\ 87 \\ 72 \\ 71 \\ 89$	6 7 7 7 7 9	$215 \\ 134 \\ 98 \\ 80 \\ 112 \\ 134$	1 1 1 1 1 1	$324 \\ 204 \\ 145 \\ 122 \\ 120 \\ 126$	$258 \\ 161 \\ 131 \\ 99 \\ 112 \\ 134$	7.6 6.0 6.2 6.6 7.2 6.8	
Nebraska	1955	2	Dawson	Hall sil	$\begin{array}{c} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	$1,488 \\ 992 \\ 725 \\ 712 \\ 1,020 \\ 1,358$	5 5 5 5 5 5 5 5 5 5 5 5 5	$1,416 \\990 \\702 \\719 \\1,010 \\1,374$	5 5 5 5 5 5 5 5 5 5	> 400 > 400 > 400 > 400 > 400 > 400 > 400	$1,525 \\ 1,050 \\ 865 \\ 908 \\ 1,140 \\ 1,462$	$ \begin{array}{r} 6.8 \\ 6.7 \\ 6.8 \\ 7.2 \\ 8.0 \\ 8.3 \\ \end{array} $	31 11 12 10 11
Nebraska	1956	1	Cedar	Moody vfsl	$\begin{array}{r} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	$254 \\ 164 \\ 69 \\ 64 \\ 72 \\ 59$	5656 564 44	$266 \\ 168 \\ 94 \\ 96 \\ 92 \\ 84$	4 2 2 3 3 2	$300 \\ 218 \\ 196 \\ 190 \\ 184 \\ 160$	282 214 225 220 250 218	$6.7 \\ 7.2 \\ 7.4 \\ 7.3 \\ 8.1 \\ 8.3$	1
Nebraska	1956	2	Stanton	Thurman ls	$\begin{array}{c} 0- \ 6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	$340 \\ 143 \\ 145 \\ 109 \\ 77 \\ 68$	2 3 3 4 3 2	$328 \\ 140 \\ 156 \\ 120 \\ 89 \\ 74$	1 1 1 1 1	$377 \\ 210 \\ 196 \\ 168 \\ 148 \\ 124$	341 172 170 156 142 110	7.5 7.4 7.0 7.0 6.9 7.0	2
Ontario .		K-1	Wellington	Guelph 1	$\begin{array}{c} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36 \end{array}$	82 67 56 48 47 47	4 4 5 4 3 2	78 59 55 54 47 43	3 3 3 3 2 2	90 73 70 61 59 67	93 83 81 68 57 62	7.6 7.7 7.8 8.0 8.1 8.1	VVVV

TABLE A-1 (continued)

								I	aborator	y analyses			
				Soil type	Sample	Field n	noist	Air d	rieda	Air ^b dried	Oven dried	Soil testb	
State	Year	Expt.	County		depth (in.)	Exch. K pp2m	H ₂ O %	Exch. K pp2m	• H ₂ O %	Exch. K pp2m	Exch. K pp2m	pH	P pp2m
Ontario	1955	К-2	Brant	Burford 1	$\begin{array}{r} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36 \end{array}$	$142 \\ 77 \\ 83 \\ 99 \\ 102 \\ 93$	4 5 6 5 5 4	142 75 82 89 98 85	2 3 3 4 4 3	$130 \\ 79 \\ 96 \\ 95 \\ 112 \\ 109$	$128 \\ 113 \\ 127 \\ 124 \\ 131 \\ 141$	7.2 7.3 7.4 7.5 7.8 7.9	9 88 87 4 14
Ontario	1955	K-3	Lincoln	Haldimand c	$\begin{array}{c} 0- \ 6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36 \end{array}$	418 172 148 160 146 133	8 19 21 21 17 17	$\begin{array}{r} 440\\ 233\\ 214\\ 214\\ 169\\ 160 \end{array}$	5 6 8 7 5 6	326 244 238 243 189 193	287 346 371 337 274 261	$6.2 \\ 6.3 \\ 6.8 \\ 7.6 \\ 8.1 \\ 8.2$	< 1 < 1 < 1 < 1 < 1 < 1
Ontario	1955	K-4	Waterloo	Fox sl	$\begin{array}{c} 0- \ 6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36 \end{array}$	66 40 41 37 31 26	3 2 3 3 2 2	61 34 38 34 31 38	2 2 2 3 2 2 2 2 2 2	70 45 48 46 42 36	70 47 49 59 47 42	7.2 7.6 7.8 8.0 8.1 8.2	7 4 2 2 2 2 1
Ontario	1956	K-1	Wellington	Guelph 1	$\begin{array}{c} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36 \end{array}$	94 72 62 102 82 75	11 8 7 4 5 4	$112 \\ 81 \\ 74 \\ 100 \\ 72 \\ 72 \\ 72$	2 3 3 3 2	$93 \\ 78 \\ 84 \\ 116 \\ 96 \\ 92$	$108 \\ 89 \\ 95 \\ 117 \\ 108 \\ 96$	7.4 7.5 7.8 7.8 7.9 8.1	4 2 1 < 1 < 1 < 1 < 1
Ontario	1956	K-2	Waterloo	Fox sl	$\begin{array}{c} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36 \end{array}$	52 24 26 22 18 14	$4 \\ 2 \\ 1 \\ 1 \\ < 1 \\ < 1$	$ \begin{array}{r} 64 \\ 32 \\ 28 \\ 26 \\ 20 \\ 15 \end{array} $	32 1 1 < 1	62 46 44 38 31 22	$ \begin{array}{r} 64 \\ 38 \\ 38 \\ 36 \\ 26 \\ 22 \end{array} $	7.3 7.8 7.9 8.1 8.2 8.4	4 2 1 1 1 2 1 1 2 1 2 1
Ontario	1956	K-3	Waterloo	Dumfries 1	$\begin{array}{c} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36 \end{array}$	$163 \\ 66 \\ 58 \\ 34 \\ 29 \\ 21$	7 15 12 6 6 5	$169 \\ 99* \\ 94* \\ 36 \\ 32 \\ 24$	4 7 6 2 3 4	$125 \\ 138* \\ 124* \\ 50 \\ 38 \\ 30$	$145 \\ 128* \\ 118* \\ 48 \\ 46 \\ 35$	$6.9 \\ 7.7 \\ 7.8 \\ 8.0 \\ 8.1 \\ 8.0$	30 4 22 2 1 < 1
Ontario	1956	K-4	Waterloo	Perth cl	$\begin{array}{c} 0- \ 6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36 \end{array}$	$117 \\ 96 \\ 108 \\ 84 \\ 86 \\ 89$	$ \begin{array}{c} 11 \\ 11 \\ 10 \\ 9 \\ 8 \\ 8 \end{array} $	144 124 144 120 120 120	3 5 3 3 3	122 132 168 138 128 122	175 192 235 196 188 175	7.2 7.6 8.2 8.3 8.4 8.4	22 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ontario	1956	K-5	Waterloo	Huron cl	$\begin{array}{c} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36 \end{array}$	$202 \\ 131 \\ 82 \\ 84 \\ 84 \\ 86$	$9 - 10 \\ 10 \\ 9 \\ 9 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	$212 \\ 156 \\ 111 \\ 110 \\ 111 \\ 111 \\ 111$	5 4 3 2 2 2 2	177 170 124 118 128 130	248 251 185 182 188 179	7.5 8.0 8.4 8.4 8.4 8.4 8.4	< 11 < 11 < 11 < 11 1
Ontario	1956	K-6	Lincoln	Haldimand cl	$\begin{array}{c} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36 \end{array}$	285* 239 184 125 128 138	23 18 16 16 15 15	325* 286 226 199 168 178	7 8 10 6 3 6	227 210 214 187 175 184	$331 \\ 323 \\ 351 \\ 262 \\ 256 \\ 262$	$6.8 \\ 7.2 \\ 8.0 \\ 8.2 \\ 8.2 \\ 8.3 \\ 8.3$	31 21 < 1 < 1 < 1

TABLE A-1 (continued)

^a Air dried for 2 weeks at 5°C. and 40 percent relative humidity prior to analysis.
 ^b Air dried for 2 weeks at room temperature. Analysis in Iowa State University Soil Testing Laboratory.
 * Results extremely variable between replicates.

San Lee II							Р	ounds K20 a	applied per	acre		
State	Year	Expt.	Cutting	Determination	0	20	40	6 0	80	120	240	360
Alaska		1	1	Yield % K	$2,280 \\ 1.30$	$3,400 \\ 1.21$	$2,560 \\ 1.24$	$2,160 \\ 1.39$	$2,300 \\ 1.46$	$^{2,200}_{1.32}$		
m		1	1	Yield % K	$2,860 \\ 1.77$	$2,930 \\ 1.78$	$2,780 \\ 2.01$	2,880 1.95	$2,790 \\ 2.10$	2,810 2.22		
			2	Yield % K Yield	$1,000 \\ 1.83 \\ 1.090$	$1,040 \\ 1.59 \\ 1.130$	$920 \\ 1.59 \\ 1.010$	$940 \\ 1.53 \\ 1.010$	$950 \\ 1.66 \\ 1.050$	$990 \\ 1.66 \\ 920$		
ш	1956	9	1	% K Vield	1.95 2.590	1.81 2.820	2.34 2.810	2.25 2.940	2.43 2.760	2.43 2.840		
		-	2	% K Yield	1.78 1,510 1.54	1.78 1,460 1.59	1.93 1,270 1.65	1.95 1,620 1.71	2.04 1,590	2.01 1,580		
			3	Yield % K	$1.54 \\ 1,630 \\ 1.59$	1,610 1,59	1.63 1,280 1.68	$1.610 \\ 1.69$	1,600 1.71	1,650 1,72	······	······
Ind		1	1	Yield % K	$3,230 \\ 1.79$	$3,160 \\ 1.88$	3,380 2.25	$3,330 \\ 2.23$	$3,650 \\ 2.34$	$3,280 \\ 2.73$	$3,440 \\ 2.56$	$3,560 \\ 2.89$
			2	Yield % K	$2,060 \\ 2.00$	$2,120 \\ 2.05$	$2,360 \\ 2.23$	$2,350 \\ 2.27$	$2,260 \\ 2.19$	$2,490 \\ 2.85$	$2,460 \\ 2.97$	$2,550 \\ 3.04$
Ind		2	1	Yield % K Yield	2,770 1.78 2.780	$2,760 \\ 1.93 \\ 2.710$	2,570 2.29 2.760	$2,850 \\ 2.38 \\ 2.920$	$2,970 \\ 2.60 \\ 2.960$	$3,030 \\ 2.66 \\ 3.050$	$2,900 \\ 2.87 \\ 2.910$	2,770 3.06 2.910
	1055	2	1	% K	2.00	2.13	2.02	2.53	2.51	2.54	2.90	3.04
Ind		5	2	% K Yield	1.44 3,250 1.00	1.64 2,950	1.92 3,010	1.69 3,120 1.00	2.11 3,210 1.07	2.68 3,130	2.36 3,210	2.69 3,320
			3	% K Yield % K	1,690 0.97	2,140 1.11	1,980 1.21	2,220 1.28	2,120 1.33	2.13 2,210 1.53	2,280 1.66	2,249 2,240 1.87
Ind		4	1	Yield % K	$4,090 \\ 1.99$	$4,150 \\ 2.26$	$3,980 \\ 2.36$	$4,060 \\ 2.53$	$4,030 \\ 2.38$	$^{4,120}_{2.69}$	$4,000 \\ 2.82$	$3,790 \\ 3.00$
			2	Yield % K Yield	$3,000 \\ 1.25 \\ 2,520$	$3,100 \\ 1.35 \\ 2,360$	$3,090 \\ 1.41 \\ 2,420$	$3,320 \\ 1.62 \\ 2,520$	$3,180 \\ 1.61 \\ 2,420$	$3,350 \\ 1.77 \\ 2,400$	$3,290 \\ 1.98 \\ 2,450$	$3,300 \\ 2.34 \\ 2,700$
Ind	1955	5	1	% K Vield	1.43 3.650	1.47 3.760	1.61 4.000	1.70 4.170	1.73 3.720	1.70 3.900	1.85 4.130	2.30 3.750
Ind		5	2	% K Yield	1.82 2,180 1.58	1.89 2,600 1.86	2.19 2,400 1.87	2.07 2,320 1.84	2.35 2,420 1.92	2.69 2,420 2.04	2.76 2,700 2.26	2.93 2,250 2.52
			3	Yield % K	$1,050 \\ 1.50$	$1,290 \\ 1.62$	1,170 1.61	$1,210 \\ 1.57$	$1,220 \\ 1.70$	$1,350 \\ 1.76$	$1,390 \\ 1.93$	1,210 1.97
Ind		6	1	Yield % K	4,100 1.70	4,180 1.64	4,490 1.93	4,480 2.32	4,360 2.28	4,810 2.40	4,620	4,940 2.79
			2	Yield % K Yield	3,390 1.57 1,800	1.65 1,720	1.78 2,060	1.84 1,980	1.92 1,890	2.16 2,230	2.30 1,880	3,590 2.54 1,840
Ind	1955	7	1	% K Yield	1.49 4,990	1.58 5,450	1.47 5,040	1.58 5,500	1.67 5,450	1.79 5,490	1.94 5,720	2.08 5,910
Ind			2	% K Yield % K	$1.59 \\ 3,290 \\ 1.38$	$1.98 \\ 3,630 \\ 1.16$	$2.04 \\ 3,320 \\ 1.32$	$2.14 \\ 3,790 \\ 1.44$	$2.17 \\ 3,400 \\ 1.57$	$2.37 \\ 3,670 \\ 1.70$	$2.63 \\ 3,610 \\ 1.84$	$2.74 \\ 3,880 \\ 2.04$
Ind		8	1	Yield	4,370	4,500	4,170	4,060	3,930 2.14	3,790 2,44	3,920 2,55	3,890 2,75
			2	Yield % K	$3,400 \\ 1.43$	$3,590 \\ 1.63$	$3,580 \\ 1.72$	$3,270 \\ 1.80$	$3,680 \\ 1.81$	$3,250 \\ 2.00$	$3,490 \\ 2.21$	$3,560 \\ 2.30$
Ind		1	1	Yield % K	$4,260 \\ 1.60$	$4,140 \\ 1.65$	$4,290 \\ 1.72$	$4,350 \\ 1.97$	$\substack{4,470\\2.01}$	4,490 2.32		
Ind		2	1	Yield % K	$3,860 \\ 1.62$	$\substack{3,680\\1.63}$	$3,840 \\ 1.65$	3,820 1.75	$\substack{3,750\\2.07}$	$3,920 \\ 2.37$		
Ind		3	1	Yield % K	$3,860 \\ 1.98$	$3,900 \\ 1.83$	$3,850 \\ 2.11$	$4,100 \\ 2.13$	$3,990 \\ 2.14$	$4,100 \\ 2.61$		
Ind		4	1	Yield % K	$4,730 \\ 2.38$	$4,770 \\ 2.16$	4,770 2.26	4,870 2.44	$4,730 \\ 2.73$	$4,770 \\ 2.67$		
Ind		5	1	Yield % K	3,820 1.95	$3,640 \\ 1.95$	4,090 2.25	$4,040 \\ 2.35$	$3,990 \\ 2.52$	4,050 2,79		
Ind		6	1	Yield	3,030	3,010	3,150	3,300	2,950	3,170		
Ind		7	1	% K Yield	3,540	3,470	3,090	3,280	3,230	2,890		
Ind	1956	8	1	% K Yield	1.90 3,250	1.92 3,080	2.47 3,020	2.23 3,460	2.64 3,250	2.76 3,320		
T	1055			% K Vield	1.74	1.92 5.140	2.25	5 570	2.40 5.250	2.25 5.030	5 350	
10wa		1	2	% K Yield	2.75 2,490	2.85 2.240	2.92	2.94 2,590	3.08 2,630	3.14 2,440	3.10 2,530	3.37
Iowa		2	1	% K Yield	2.60 4,170	2.66 4,540	2.80 4,430	2.84 4,330	4,710	4,220	2.87 4,170	3.03 4,310
			2	% K Yield % K	$2.07 \\ 3,640 \\ 1.67$	$2.27 \\ 3,980 \\ 1.71$	$2.53 \\ 3,790 \\ 1.66$	$2.50 \\ 3,420 \\ 1.80$	$2.58 \\ 3,800 \\ 1.82$	$2.69 \\ 3,920 \\ 2.00$	$3.15 \\ 3,820 \\ 2.36$	$3.35 \\ 4,300 \\ 2.41$

TABLE A-2. YIELD IN POUNDS OF DRY MATTER PER ACRE AND PERCENT POTASSIUM OF ALFALFA AS INFLUENCED BY APPLI-CATIONS OF POTASSIUM FERTILIZER.

TABLE A-2 (continued)

				1. 1. N. S.		States St.	Pour	nds K ₂ 0 app	plied per a	cre .	10 × 0.00	
State	Year	Expt.	Cutting	Determination	0	20	40	60	80	120	240	360
Iowa		3	1 2	Yield % K Yield % K	$3,700 \\ 1.80 \\ 2,150 \\ 1.57$	$3,260 \\ 1.77 \\ 1,780 \\ 1.53$	$3,460 \\ 1.82 \\ 1,820 \\ 1.69$	3,610 1.91 1,750 1.73	3,440 1.85 1,770 1.71	3,780 2.11 2,000 1.96	$3,530 \\ 2.09 \\ 1,800 \\ 2.06$	3,530 2.28 2,020 2.28 2.28
Iowa	1955	4	1 2	Yield % K Yield % K	$4,550 \\ 1.66 \\ 2,010 \\ 1.64$	$5,080 \\ 1.78 \\ 1,910 \\ 1.66$	5,200 1.75 1,840 1.76	5,410 1.94 1,880 1.80	5,230 2.02 1,880 1.74	5,180 2.08 2,010 1.95	5,480 2.23 2,080 2.14	5,290 2.32 2,120 2.31
Iowa	1955	5	1 2	Yield % K Yield % K	3,420 2.68 2,810 2.32	$3,480 \\ 2.74 \\ 3,010 \\ 2.44$	$3,620 \\ 2.67 \\ 2,900 \\ 2.46$	$3,670 \\ 2.69 \\ 3,100 \\ 2.39$	$3,860 \\ 2.70 \\ 2,930 \\ 2.59$	3,940 2.82 2,900 2.42	3,820 2.87 3,160 2.63	$3,680 \\ 2.90 \\ 3,100 \\ 2.68$
Iowa		6	1 2	Yield % K Yield % K	$3,450 \\ 1.68 \\ 3,110 \\ 1.93$	$3,580 \\ 1.96 \\ 3,360 \\ 1.93$	$3,580 \\ 2.02 \\ 3,320 \\ 1.96$	$3,570 \\ 2.04 \\ 3,330 \\ 2.07$	$3,530 \\ 2.09 \\ 3,460 \\ 2.14$	$3,670 \\ 2.05 \\ 3,220 \\ 2.12$	$3,560 \\ 2.34 \\ 3,420 \\ 2.41$	$3,700 \\ 2.38 \\ 3,510 \\ 2.36$
Iowa		7	1 2	Yield % K Yield % K	$4,030 \\ 1.79 \\ 3,070 \\ 1.71$	$4,130 \\ 1.88 \\ 3,130 \\ 1.81$	$4,060 \\ 1.91 \\ 3,100 \\ 1.94$	4,420 2.22 3,150 1.99	$4,490 \\ 2.18 \\ 3,090 \\ 1.88$	$\begin{array}{r} 4,380 \\ 2.29 \\ 3,150 \\ 2.00 \end{array}$	$4,330 \\ 2.76 \\ 3,390 \\ 1.90$	$4,440 \\ 2.80 \\ 3,340 \\ 1.95$
Iowa		8	1 2	Yield % K Yield % K	3,900 2.05 2,200 2.05	$4,080 \\ 2.32 \\ 2,430 \\ 2.24$	$4,100 \\ 2.28 \\ 2,610 \\ 2.20$	$4,040 \\ 2.40 \\ 2,530 \\ 2.16$	4,440 2.46 2,660 2.21	$\begin{array}{r} 4,380 \\ 2.76 \\ 2,710 \\ 2.70 \end{array}$	$4,560 \\ 3.02 \\ 2,720 \\ 2.70$	$4,310 \\ 3.07 \\ 2,670 \\ 3.13$
Iowa		9	1 2	Yield % K Yield % K	$3,510 \\ 1.70 \\ 1,940 \\ 1.28$	$3,860 \\ 1.93 \\ 2,170 \\ 1.18$	$3,670 \\ 2.00 \\ 1,970 \\ 1.19$	3,920 2.33 2,200 1.21	3,930 2.34 2,280 1.36	4,250 2.81 2,430 1.50	$4,500 \\ 3.61 \\ 2,770 \\ 2.15$	$4,280 \\ 3.84 \\ 2,810 \\ 2.28$
Iowa	1955	10	1 2	Yield % K Yield % K	4,170 2.07 2,540 1.77	$4,190 \\ 2.17 \\ 2,600 \\ 1.65$	4,330 2.56 2,590 1.71	4,390 2.43 2,590 1.69	4,620 2.77 2,800 1.74	4,620 2.97 2,750 2.03	4,490 3.59 2,880 2.58	5,010 3.58 2,930 2,60
Iowa		11	1	Yield % K	$2,690 \\ 1.72$	$2,760 \\ 1.84$	$3,140 \\ 2.03$	$3,120 \\ 2.06$	$3,120 \\ 2.06$	$3,170 \\ 2.22$	······	
Iowa		12	1	Yield % K	$3,340 \\ 1.68$	$^{3,420}_{1.82}$	3,510 1.78	$3,320 \\ 2.11$	$3,340 \\ 2.32$	$3,500 \\ 2.47$		
Iowa		13	1	Yield % K	$3,450 \\ 1.68$	$3,520 \\ 1.74$	$3,350 \\ 1.98$	$\substack{3,530\\2.01}$	$3,640 \\ 2.07$	3,970 2.21		
Iowa		14	1	Yield % K	$\substack{3,780\\1.48}$	$3,850 \\ 1.66$	3,810 1.83	$3,220 \\ 2.00$	4,170 1.96	$3,240 \\ 2,26$		<u></u>
Iowa		16	1	Yield % K	4,280 1.81	$^{4,260}_{1.89}$	$4,150 \\ 1.88$	$4,040 \\ 1.96$	4,480 2.20	4,600 2.34		
Kan.	1955	1	1 2	Yield % K Yield % K	2,440 1.80 1,880 1.30	$2,050 \\ 1.80 \\ 1,840 \\ 1.34$	2,280 2.03 1,780 1.55	2,240 2.16 1,950 1.49	2,520 2.13 1,980 1.57	2,090 2.15 1,890 1.66	$2,300 \\ 2.42 \\ 1,960 \\ 1.90$	2,280 2.56 1,930 2.15
Kan.	1955	2	1 2	Yield % K Yield % K	2,500 1.14 3,120 1.17	$2,300 \\ 1.27 \\ 2,810 \\ 1.13$	$2,300 \\ 1.50 \\ 3,210 \\ 1.40$	2,320 1.55 3,490 1.57	2,440 1.81 2,910 1.53	$2,390 \\ 2.04 \\ 2,960 \\ 2.00$	2,310 2.30 3,700 2.52	2,580 2.60 3,480 2.78
Kan.		3	1	Yield % K	$2,460 \\ 1.87$	$2,750 \\ 2.04$	2,850 1.94	$2,930 \\ 1.92$	$2,630 \\ 2.14$	3,050 2.18	$3,040 \\ 2.21$	$2,780 \\ 2.41$
Kan.	1955	4	1 2 3	Yield % K Yield % K Yield % K	$1,750 \\ 2.13 \\ 1,910 \\ 2.77 \\ 1,650 \\ 2.13$	$1,970 \\ 1.98 \\ 1,800 \\ 3.15 \\ 1,710 \\ 2.51$	$1,790 \\ 2.96 \\ 1,930 \\ 2.92 \\ 1,650 \\ 2.78$	2,000 2.67 1,890 3.07 1,600 2.67	$\begin{array}{c} 1,970\\ 2.32\\ 1,860\\ 2.72\\ 1,570\\ 2.23\end{array}$	$\begin{array}{c} 1,770\\ 2.55\\ 1,830\\ 3.03\\ 1,610\\ 2.51\end{array}$	2,030 2.65 1,940 3.44 1,410 3.05	$1,830 \\ 2.67 \\ 1,920 \\ 3.35 \\ 1,580 \\ 2.63$
Kan.	1955	5	1 2 3	Yield % K Yield % K Yield % K	3,920 1.84 2,880 2.60 980 1.94	$\begin{array}{r} 4,260 \\ 2.00 \\ 3,090 \\ 2.59 \\ 990 \\ 2.00 \end{array}$	$\begin{array}{r} 4,100\\ 1.92\\ 2,860\\ 2.59\\ 970\\ 2.00\end{array}$	3,890 1.94 3,120 2.69 1,130 1.99	3,590 1.88 2,790 2.66 840 1.98	3,740 2.10 2,910 2.76 760 2.05	3,640 2.30 2,880 2.96 960 2.07	3,710 2.21 2,770 2.94 1,090 2.12
Kan.		6	1 2	Yield % K Yield % K	$810 \\ 2.48 \\ 1,100 \\ 2.38$	$940 \\ 2.44 \\ 1,310 \\ 2.35$	880 2.43 1,360 2.37	$\begin{array}{r} 870 \\ 2.61 \\ 1.420 \\ 2.37 \end{array}$	$\begin{array}{r} 860 \\ 2.47 \\ 1,210 \\ 2.44 \end{array}$	$720 \\ 2.46 \\ 1,100 \\ 2.37$	840 2.45 1,070 2.27	840 2.55 1,290 2.37
Kan.	1955	7	1 2	Yield % K Yield % K	$1,280 \\ 2.34 \\ 1,380 \\ 2.23$	1,240 2.31 1,510 2.16	1,700 2.34 1,060 2.27	1,480 2,29 990 2.21	1,060 2.21 1,290 2.23	$1,160 \\ 2.28 \\ 1,420 \\ 2.21$	1,270 2.14 1,290 2.10	$1,180 \\ 2.35 \\ 1,380 \\ 2.27$
Kan.	1956	1	1 2 3	Yield % K Yield % K Yield % K	$\begin{array}{r} 800\\ 3.57\\ 2,080\\ 3.00\\ 1,640\\ 3.26\end{array}$	$\begin{array}{r} 680\\ 3.51\\ 2,420\\ 2.88\\ 1,620\\ 3.24\end{array}$	$\begin{array}{r} 480\\ 3.42\\ 1,900\\ 2.85\\ 1,440\\ 3.36\end{array}$	$540 \\ 3.42 \\ 2,320 \\ 2.82 \\ 1,920 \\ 3.36$	$\begin{array}{r} 620\\ 3.39\\ 2,340\\ 2.85\\ 1,900\\ 3.30\end{array}$			

TABLE A-2 (continued)

1.1		1 a. C	1. S. B. S.				Pou	nds K ₂ 0 ap	plied per a	cre		
State	Year	Expt.	Cutting	Determination	0	20	40	60	80	120	240	360
Kan		2	1 2 3 4	Yield % K Yield % K Yield % K % K	3,840 3.48 1,960 3.96 2,140 3.94 1,000 3.18	$\begin{array}{r} 4,200\\ 3,72\\ 2,400\\ 4.05\\ 2,440\\ 4.12\\ 1,080\\ 3.69\end{array}$	3,000 3.52 2,200 4.11 2,420 3.96 1,100 3.48	$\begin{array}{c} 4,120\\ 3.66\\ 2,200\\ 3.78\\ 2,300\\ 3.96\\ 1,100\\ 3.48 \end{array}$	3,600 3.39 2,000 3.78 2,320 4.02 1,080 3.45			
Kan.		3	1 2 3 4 5	Yield % K Yield % K Yield % K Yield % K	$\begin{array}{c} 1,240\\ 4.50\\ 3,260\\ 5.11\\ 2,000\\ 4.71\\ 1,700\\ 4.95\\ 2,200\\ 4.44\end{array}$	$\begin{array}{c} 1,240\\ 4.41\\ 3,900\\ 5.04\\ 2,200\\ 4.86\\ 2,000\\ 5.04\\ 2,200\\ 4.44\end{array}$	$\begin{array}{c} 1,280\\ 4.39\\ 3,600\\ 5.22\\ 2,600\\ 4.83\\ 2,200\\ 5.16\\ 2,200\\ 4.35\end{array}$	$1,380\\4.56\\3,560\\5.01\\2,600\\4.83\\2,000\\4.86\\2,400\\4.38$	$\begin{array}{c} 1,400\\ 4.68\\ 3,880\\ 5.16\\ 2,600\\ 4.80\\ 2,200\\ 5.04\\ 2,400\\ 4.44\end{array}$			
Kan.		4	1 2	Yield % K Yield % K	$\begin{array}{r} 600 \\ 2.94 \\ 1,140 \\ 2.55 \end{array}$	$\begin{array}{r} 680 \\ 2.92 \\ 1,260 \\ 2.58 \end{array}$	$\begin{array}{r} 680 \\ 2.74 \\ 1,160 \\ 2.67 \end{array}$	$\begin{array}{r} 620 \\ 2.88 \\ 1,020 \\ 2.50 \end{array}$	$720 \\ 2.93 \\ 1,020 \\ 2.64$		······	
Kan.		5	1 2	Yield % K Yield % K	$1,260 \\ 2.32 \\ 360 \\ 2.04$	$1,380 \\ 2.37 \\ 420 \\ 1.98$	$1,340 \\ 2.34 \\ 460 \\ 2.04$	$1,240 \\ 2.34 \\ 420 \\ 2.04$	1,400 2.28 380 2.01	 	 	
Kan.		6	1	Yield % K	820 2.94	700 3.03	760 3.03	740 2.90	700 3.15			
Kan.		7	1 2 3	Yield Yield % K Yield % K	$1,620 \\ 1,380 \\ 2.55 \\ 1,520 \\ 2.70$	$1,720 \\ 1,480 \\ 2.42 \\ 1,400 \\ 2.73$	$1,820 \\ 1,520 \\ 2.55 \\ 1,500 \\ 2.58$	$1,700 \\ 1,480 \\ 2.70 \\ 1,420 \\ 2.67$	$1,760 \\ 1,720 \\ 2.61 \\ 1,660 \\ 2.55$			
Kan.		8	1	Yield % K	740 2.34	$760 \\ 2.28$	$\begin{array}{r} 760 \\ 2.43 \end{array}$	$\begin{array}{c} 860 \\ 2.24 \end{array}$	$\begin{array}{r} 820 \\ 2.46 \end{array}$			
Kan.		9	1	Yield % K	$580 \\ 1.62$	660 1.56	680 1.62	$540 \\ 1.56$	700 1.56			
Kan.		10	1	Yield % K	$\overset{280}{2.20}$	$\substack{340\\2.28}$	$\begin{array}{c} 320\\ 2.34\end{array}$	$300 \\ 2.34$	$\begin{array}{c} 320\\ 2.34\end{array}$			
Mich.		1	1	Yield % K (alfalfa) (red clov	2,160) 1.93 (rer) 2.01	2,240 2.20 2.22	$2,980 \\ 2.20 \\ 2.17$	2,790 2.22 2.36	2,920 2.24 2.44	2,810 2.46 2.60	3,270 2.60 2.72	$3,310 \\ 2.54 \\ 2.96$
Mich.		2	1	Yield % K	$2,680 \\ 2.14$	2,810 2.22	$2,810 \\ 2.33$	$3,090 \\ 2.35$	$\substack{3,120\\2.36}$	$\substack{3,160\\2.46}$	$3,290 \\ 2.66$	$\substack{\textbf{3,120}\\2.90}$
Mich.		1	1	Yield % K (alfalfa) (brome Yield	$ \begin{array}{c} 4,340 \\ 2.03 \\ 2.16 \\ 3.310 \end{array} $	5,010 2.28 2.13 3.480	5,020 2.03 2.13 3,470	5,050 2.35 2.18 3,620	5,320 2.34 2.21 3.920	5,480 2.55 2.59 3.990	 	······
Mich.		2	1 2	Yield % K Yield	3,780 1.87 800	4,040 2.24 800	3,900 2.48 960	3,820 2.72 950	4,340 2.80 1,080	4,400 2.71 1,290	······	······
Mich.		3	1 2	Yield % K (alfalfa) (brome Yield	$ \begin{array}{c} 4,240 \\ 1.47 \\ 2) & 2.13 \\ 1,540 \end{array} $	4,320 1.26 2.13 1,720	4,560 1.36 1.77 2,110	4,780 1.45 3.17 2,110	4,580 1.48 2.07 2,100	4,950 1.58 3.17 2,590	······	
Mich.		4	1 2	Yield % K Yield	$5,100 \\ 2.13 \\ 2,850$	$5,640 \\ 1.98 \\ 3,200$	$5,160 \\ 3.22 \\ 3,100$	5,420 3.39 3,150	$6,340 \\ 3.30 \\ 3,380$	$5,810 \\ 3.49 \\ 3,450$	 	······
Mich.		5	1 2	Yield % K Yield	$3,220 \\ 1.60 \\ 1,650$	$3,360 \\ 2.01 \\ 1,700$	$3,750 \\ 1.98 \\ 1,880$	$3,700 \\ 2.21 \\ 1,860$	$3,730 \\ 2.33 \\ 2,050$	$3,700 \\ 2.50 \\ 2,340$		
Minn.	1955	1	1 2	Yield % K Yield % K	5,020 1.54 3,240 1.70	5,080 1.54 3,040 1.88	5,280 1.47 3,220 1.94	4,580 1.76 2,780 1.96	4,680 1.84 3,080 2.06	5,220 2.27 2.920 2.18	5,380 2.64 2,980 2.69	5,000 2.76 2,980 2.84
Minn.		2	1 2	Yield % K Yield % K	4,620 1.76 1,660 2.16	$4,780 \\ 2.10 \\ 1,680 \\ 2.38$	4,840 1.64 1,820 2.01	5,880 2.11 2,000 2.27	5,060 1.76 1,840 2.20	5,600 2.30 1,560 2.22	$5,160 \\ 1.62 \\ 1,560 \\ 1.98$	4,820 1.67 1,700 2.16
Minn.	1955	3	1	Yield % K (alfalfa) (grass, et	5,880) 1.76 tc.) 2.46	$4,760 \\ 1.88 \\ 2.48$	$4,760 \\ 1.98 \\ 2.97$	5,240 2.10 2.78	$5,140 \\ 2.20 \\ 3.12$	$6,240 \\ 2.59 \\ 3.25$	5,480 2.62 3.22	5,000 2.81 3.28
Minn.		4	1 2	Yield % K Yield % K	3,280 2.76 2,700 3.14	3,240 2.69 2.640 3.25	3,720 2,86 2,640 3,26	3,600 2.82 2.680 3.34	3,460 2.72 2,680 3.31	$3,500 \\ 2.76 \\ 2,540 \\ 3.22$	$3,300 \\ 2.78 \\ 2,600 \\ 3.18$	3,200 2.72 2,580 3.18
Minn.		5	1 2	Yield % K Yield	4,420 2.81 3,580	$4,620 \\ 2.78 \\ 3,720$	4,780 2.76 3,800	$4,740 \\ 2.84 \\ 3,920$	$4,620 \\ 2.91 \\ 3,640$	$4,780 \\ 2.84 \\ 3,840$	$4,480 \\ 2.97 \\ 3,640$	$4,660 \\ 2.91 \\ 3,660$

		2012					Pou	nds K_{20} ap	plied per a	cre		
State	Year	Expt.	Cutting	Determination	0	20	40	60	80	120	240	360
Minn.		6	1 2	Yield % K Yield % K	4,440 2.26 3,160 3.08	4,500 2.28 3,360 2.94	4,940 2.20 3,640 2.94	4,660 2.33 3,520 3.11	5,000 2.24 3,480 3.00	5,300 2.33 3,360 3.46	5,020 1.61 3,240 3.34	4,860 1.85 3,460 3.31
Minn.		8	1 2	Yield % K Yield % K	2,480 3.46 2,680 2.97	$2,500 \\ 3.49 \\ 2,760 \\ 3.37$	2,520 3.52 2,720 3.36	2,440 3.46 2,500 3.22	2,720 3.46 2,580 3.18	2,400 3.64 2,800 3.22	2,740 3.62 2,520 3.18	2,760 3.84 2,600 3.38
Minn.	1955	9	1 2	Yield % K Yield % K	$3,240 \\ 3.34 \\ 3,160 \\ 3.46$	$3,560 \\ 3.52 \\ 3,200 \\ 3.34$	$3,180 \\ 3.34 \\ 3,060 \\ 3.31$	$3,420 \\ 3.37 \\ 3,180 \\ 3.40$	$3,360 \\ 3.43 \\ 3,280 \\ 3.34$	3,420 3,52 3,440 3,58	$3,540 \\ 3.70 \\ 3,180 \\ 3.40$	3,460 3.61 3,520 3.58
Minn.	1956	1	1 2	Yield % K Yield % K	$3,760 \\ 0.78 \\ 1,500 \\ 1.32$	$4,260 \\ 0.93 \\ 1,740 \\ 1.36$	$4,200 \\ 0.93 \\ 1,960 \\ 1.39$	$4,340 \\ 1.15 \\ 1,900 \\ 1.62$	$4,300 \\ 0.99 \\ 2,040 \\ 1.63$		 	
Minn.	1956	2	1 2	Yield % K Yield % K	$1,460 \\ 0.93 \\ 1,700 \\ 2.01$	$1,460 \\ 1.09 \\ 1,740 \\ 1.78$	$1,560 \\ 1.27 \\ 1,760 \\ 2.31$	$1,600 \\ 1.32 \\ 1,800 \\ 2.16$	$1,640 \\ 1.53 \\ 1,900 \\ 2.38$		······	······
Minn.	1956	3	1 2	Yield % K Yield % K	$4,360 \\ 0.96 \\ 1,700 \\ 2.32$	$4,640 \\ 1.14 \\ 1,860 \\ 2.10$	$4,060 \\ 1.15 \\ 1,740 \\ 1.93$	$4,660 \\ 1.36 \\ 1,900 \\ 2.32$	4,560 1.44 1,760	······	 	
Minn.	1956	4	1 2	Yield % K Yield % K	$4,160 \\ 1.32 \\ 3,000 \\ 1.32$	$4,060 \\ 1.32 \\ 3,000 \\ 1.74$	4,400 1.68 2,900 1.54	$4,340 \\ 1.57 \\ 3,100 \\ 1.59$	$4,240 \\ 1.72 \\ 3,140 \\ 1.48$	······	 	
Minn.		5	1 2	Yield % K Yield % K	$2,840 \\ 0.64 \\ 2,640 \\ 0.90$	$2,700 \\ 0.60 \\ 2,740 \\ 1.08$	$2,900 \\ 0.93 \\ 2,760 \\ 1.21$	$2,960 \\ 1.12 \\ 2,860 \\ 1.35$	$2,860 \\ 1.20 \\ 2,740 \\ 1.57$	······	······	
Nebr.	1955	1	1 2 3	Yield % K Yield % K Yield % K	4,230 3.55 1,530 2.80 1,680 2.81	5,080 3.28 1,650 2.88 1,520 2.76	4,020 2.97 1,470 2.88 1,800 2.81	$4,390 \\ 3.00 \\ 1,790 \\ 2.90 \\ 1,550 \\ 2.78$	4,180 3.11 1,470 3.04 1,610 2.69	3,920 2.97 1,540 2.91 1,360 2.78	4,420 3.00 1,580 2.92 1,950 2.94	$\begin{array}{r} 4,250 \\ 3.00 \\ 1,570 \\ 2.84 \\ 1,700 \\ 2.90 \end{array}$
Nebr.	1955	2	1 2 3	Yield % K Yield % K Yield Yield	$\begin{array}{c} 4,240\\ 3.52\\ 3,390\\ 3.60\\ 4,180\\ 4,66\end{array}$	$\begin{array}{c} 4,250\\ 3.52\\ 3,290\\ 3.72\\ 4,120\\ 4,0\end{array}$	$\begin{array}{r} 4,280\\ 3.58\\ 3,180\\ 3.84\\ 4,240\\ 4,260\end{array}$	$\begin{array}{c} 4,220\\ 3.61\\ 3,230\\ 3.76\\ 4,170\\ 69\end{array}$	$\begin{array}{c} 4,180\\ 3.58\\ 3,410\\ 3.70\\ 4.050\\ 9.00\end{array}$	$\begin{array}{c} 4,210\\ 3.55\\ 3,330\\ 3.72\\ 4,220\\ 4.4\end{array}$	$\begin{array}{c} 4,260\\ 3.52\\ 3,440\\ 3.78\\ 4,110\\ 60\end{array}$	4,290 2.97 3,560 3.92 4,280
Nebr.	1956	1	1 2 3	Yield % K Yield % K Yield	1,850 2.67 2,220 3.93 1,840	1,720 2.72 2,100 3.81 1,840	1,860 2.72 2,380 3.84 1,950	1,600 2.66 2,100 4.05 1,590	1,740 2.76 2,230 3.27 1,980			
Nebr.		2	1 2	% K Yield % K Yield % K	$\begin{array}{c} \\ 4,890 \\ 3.60 \\ 4,340 \\ 3.15 \end{array}$	3.30 5,250 3.78 4,710 3.21	3.36 5,100 3.78 4,710 3.30	3.48 4,980 3.91 4,640 3.30	3.48 5,050 3.75 4,470 3.36	 		
Ont		K-1	1 2	Yield (alfalfa) (red clover) % K (alfalfa) (red clover) Yield % K	2,090 1,750 0.73 1.40 350 0.62	1,860 1,700 0.78 1.40 370 0.65	2,090 1,670 0.92 1.74 330 0.72	2,210 1,770 1.06 1.74 360 0.81	2,690 1,750 1.20 1.80 360 0.96	2,350 1,860 1.50 1.80 290 1.03	2,390 1,760 2.05 1.85 340 1.27	2,160 1,990 2.43 2.06 320 1.33
Ont		K-2	1 2	Yield (alfalfa) (red clover) % K (alfalfa) (red clover) Yield % K	2,870 990 1.22 1.50 1,210 1,44	2,530 1,160 1.38 1.73 1,310 1.45	2,520 1,400 1.48 1.84 1,140 1.52	2,900 800 1.59 1.90 1,230 1.73	2,800 1,140 1.72 1.98 1,280 1.70	2,450 1,130 2.08 2.10 1,120 1,82	2,640 940 2.44 2.69 1,250 2.32	2,360 1,430 2.75 2.86 1,260 2.34
Ont		K-3	1 2	Yield (alfalfa) (red clover) % K (alfalfa) (red clover) Yield	$ \begin{array}{r} 460 \\ 1,910 \\ 2.56 \\ 2.54 \\ 1,940 \\ 01 \end{array} $	$ \begin{array}{r} 320\\ 1,690\\ 2.50\\ 2.72\\ 1,820\\ 0.00 \end{array} $	560 1,790 2.33 2.59 2,070	$ \begin{array}{r} 440 \\ 1,770 \\ 2.56 \\ 2.69 \\ 1,750 \\ 1.750 \\ \end{array} $	580 1,650 2.59 2.65 1,870	770 1,600 2.72 2.84 2,180	$730 \\ 1,780 \\ 2.91 \\ 2.97 \\ 2,100 \\ 40$	770 1,320 2.46 2.91 2,050
Ont		K-4	1 2	% K Yield (alfalfa) (red clover) % K (alfalfa) (red clover) Yield	$\begin{array}{c} 2.81 \\ 1,030 \\ 1,400 \\ 0.89 \\ 1.08 \\ 330 \\ 0.51 \end{array}$	2.98 980 1,380 0.94 1.15 280	1,060 1,430 1.10 1.35 300	5.13 1,170 1,330 1.05 1.34 290	5.18 1,060 1,500 1.16 1.43 290	$\begin{array}{c} 2.98 \\ 1,110 \\ 1,590 \\ 1.28 \\ 1.54 \\ 270 \\ 0.02 \end{array}$	3.40 1,210 1,590 1.79 2.00 330	3.34 1,330 1,380 2.20 2.24 340
Ont		K-1	1 2	% K Yield (alfalfa) (clover, etc) % K (alfalfa) (clover, etc) Yield (alfalfa) (timothy, etc % K (alfalfa) (timothy, etc	0.74 2,330 1,500 1.77 2.46 1,380) 1,050 1.36 c) 2.07	$\begin{array}{c} 0.73 \\ 1,980 \\ 1.880 \\ 1.95 \\ 2.73 \\ 1,260 \\ 1,180 \\ 1.38 \\ 2.25 \end{array}$	$\begin{array}{c} 0.81\\ 2,400\\ 1,610\\ 2.25\\ 2.68\\ 1,520\\ 1.120\\ 1.45\\ 2.35\end{array}$	$\begin{array}{c} 0.80\\ 2,450\\ 1,550\\ 1.74\\ 3.97\\ 1,340\\ 1,320\\ 1.67\\ 2.34\end{array}$	$\begin{array}{c} 0.87\\ 2,510\\ 1,650\\ 2.79\\ 3.30\\ 1,450\\ 1,130\\ 1.78\\ 2.75\end{array}$	$\begin{array}{c} 0.92 \\ 2,440 \\ 1,700 \\ 3.00 \\ 3.24 \\ 1,520 \\ 1,170 \\ 2.25 \\ 2.94 \end{array}$	1.04 	1.38

TABLE A-2 (continued)

TABLE A-2 (continued)

				Pounds K20 applied per acre								
State Year	Expt.	Cutting	Determination	0	20	40	60	80	120	240	360	
Ont	К-2	1	Yield % K	$1,650 \\ 1.05$	$1,920 \\ 1.59$	2,120 1.51	1,930 1.74	$2,160 \\ 2.01$	$2,070 \\ 2.46$			
		2	Yield % K	$1,190 \\ 1.12$	$1,460 \\ 1.17$	$1,660 \\ 1.30$	$1,760 \\ 1.31$	$1,800 \\ 1.48$	$1,930 \\ 1.24$			
Ont1956	К-3	1	Yield % K	$3,350 \\ 1.95$	$3,260 \\ 2.31$	$3,450 \\ 2,46$	$3,320 \\ 2,91$	3,320 2.94	$3,280 \\ 3,00$			
		2	Yield % K	$2,360 \\ 1.62$	$2,330 \\ 1.76$	$2,500 \\ 1.90$	2,550 1.38	2,460 1.52	$2,570 \\ 1.49$			
Ont1956	K-4	1 2	Yield % K Yield	1,820 1.65 1,480 1.44	2,060 1.77 1,510 1.50	2,030 1.98 1,580	2,030 2.22 1,370	2,110 2.46 1,640	1,850 2.55 1,640			
Ont	K-5	1	% K Yield % K	2,670 1.87	3,070 1.98	3,300 2.00	3,000 2.05	2,850 2,14	3,480 2,36			
		2	Yield % K	$1,130 \\ 1.74$	$1,100 \\ 1.72$	$1,130 \\ 1.80$	1,220 1.84	$1,160 \\ 1.92$	$1,200 \\ 2.09$			
Ont	K-6	1	Yield % K	$2,440 \\ 1.99$	$2,360 \\ 2.07$	$2,380 \\ 2.11$	2,310 2.14	2,640 2,18	$2,500 \\ 2.42$			
		2	Yield % K	$2,170 \\ 1.67$	$2,310 \\ 1.65$	2,290 1.70	$2,250 \\ 1.86$	$2,390 \\ 1.78$	$2,360 \\ 1.95$		••••••	

MAP: Dots indicate locations of field experiments.

NC-16 Technical Committee-Mineral Deficiencies in Soils, Including Minor Elements, Their Influence on Crops and the Efficient Use of Various Fertilizers.

W. M. Laughlin-Alaska

R. H. Bray,* L. T. Kurtz-Illinois

S. A. Barber-Indiana

C. A. Black,* J. T. Pesek—Iowa F. W. Smith—Kansas

K. Lawton-Michigan

A. C. Caldwell-Minnesota

E. R. Graham—Missouri R. A. Olson—Nebraska

E. B. Norum,* R. A. Young-North Dakota

H. J. Mederski-Ohio

P. L. Carson,* L. O. Fine-South Dakota

L. E. Engelbert,* J. Murdock—Wisconsin J. W. Ketcheson—Ontario, Canada

M. Fried-ARS, USDA

G. M. Browning (Iowa) - Administrative Advisor *Indicates a former member of the committee.

Potassium Subcommittee of NC-16

J. J. Hanway, chairman-Iowa

S. A. Barber-Indiana

M. Fried-ARS, USDA

(G. Stanford, R. H. Bray and P. F. Pratt also served on this subcommittee when the work was initiated.)