S 61						1		
.R47						12		
No.503	ORTH	CENTR	AL		k			
1962	SION	AL PUB	LICATI	ON	. [
	NO. 135				A A A A A			NO
		3	1.)/	5	6	A.	8	9
2	2 He 4	Li 7	12 Be 9	B 11	C·12	N 14	0 16	F 19
	4 Ne 20	Na 23	Mg 24	AI 27	Si 28	23 V 51	24 C= 52	25
4 -	5 A 40	29	Ca 40 30	31	32	33	34	35 D- 90
	6 36	37 DL 05	38	39	40	41 Nb 02	42 Mo 06	43 To
5 —	7	47 Ag 108	48 Cd 112	491	50 Sn 119	51 Sb 122	52 Te 128	53 I 127
	8 54 Xe 131	55 Cs 133	56 Ba 137	57 La 58-71 Rare-earth Metals	72 Hf 179	73 Ta 181	74 W 184	75 Re 186
6	9	79 Au 197	80 Hg 201	91 Tl 204	82 Pb 207	83 Bi 209	84 Po 210	85 At
7	10 86 Rn 222	87 Fr	88 Ra 226	89 Ac 227	90 Th 232	91 Pa 231	92 U 238 †	

NORTH CENTRAL REGIONAL POTASSIUM STUDIES

III. Field Studies With Corn

		_		
19-4	{	K		
	\neg	$\langle \rangle$	行入	
	-+	3	PT	Ş
		-1		
		1		

Agricultural Experiment Stations of

Alaska	Minnesota
Illinois	Nebraska
Indiana	North Dakota
lowa	Ohio
Kansas	South Dakota
Michigan	Wisconsin

United States Department of Agriculture cooperating

AGRICULTURAL AND HOME ECONOMICS EXPERIMENT STATION IOWA STATE UNIVERSITY of Science and Technology, AMES, IOWA

RESEARCH BULLETIN 503

26 Fe 55.8

44 Ru 102

76 Os 190

APRIL 1962

IOWA STATE TRAVELING LIBRARY DES MOINES, IOWA This publication reports the results of research conducted cooperatively by members of the Potassium Subcommittee of the North Central Mineral Deficiencies Committee (NC-16) and by members of the NC-16 Committee and others in the 12 North Central states, Alaska and the United States Department of Agriculture. Uniform field experiments were conducted at 51 locations with corn in Illinois, Indiana, Iowa, Kansas, Michigan and Minnesota during 1957 and 1958. In these experiments potassium fertilizer was broadcast on the experimental plots and plowed under or disked in. Supplementary greenhouse studies using soil samples from the 1957 field experiments were conducted at Purdue University under the direction of Dr. S. A. Barber. Supplementary laboratory analyses using soil and plant samples from the field experiments were made at Iowa State University under the direction of Dr. J. J. Hanway.

The results of previous field experiments with alfalfa and of the supplementary greenhouse experiments have been reported in two other regional research bulletins (2, 9).

CONTENTS

Introduction		40
Experimental methods		40
Experimental results		40
Exchangeable K in soils		40
K content and yield of corn		41
Relation between percent K in corn grain yield of corn plants	leaves at silking time and K content and	41
Relation between exchangeable soil	l K and K content and grain yield of corn plants	4
Comparison of field and greenhouse	e results	42
Summary and conclusions		42
Literature cited		42
Appendix		45

North Central Regional Potassium Studies III. Field Studies With Corn

By J. J. Hanway, S. A. Barber, R. H. Bray, A. C. Caldwell, M. Fried, L. T. Kurtz, K. Lawton, J. T. Pesek, K. Pretty, M. Reed and F. W. Smith¹

Corn is sensitive to a deficiency of potassium (K),² and yields of corn on K-deficient soils often are increased by K fertilizer applications. K deficiencies in corn have been observed or yield increases have been obtained from K fertilizer applications on many soils in the North Central Region of the United States. However, many other soils in the region have high levels of available K, and applications of K fertilizers on these soils have not increased corn yields. Therefore, it is important to have effective methods of estimating plant availability of K in different soils and to develop methods of predicting the yield response which can be expected from applications of K fertilizer for corn grown on different soils.

The increases in yields of corn and other crops obtained from applications of K fertilizer have been shown in some studies to be inversely related to the level of exchangeable K in air-dry samples of the surface soil (5, 7). Therefore, this determination is commonly used in soil testing laboratories to estimate K availability. Other studies, however, have shown that the amount of exchangeable K in some soils is markedly changed by drying the soil (1, 2, 9, 17, 18). In some of these studies, the level of exchangeable K in undried soil samples provided a better estimate of K availability to plants than did the exchangeable K in dry soil samples (2, 9, 17). Matthews and Sherrell (18), on the other hand, studied the relation between exchangeable K in the soil and the yield of potatoes grown on sandy soils in Ontario, Canada and found a higher correlation with exchangeable K values for oven-dry soils than for undried soils.

Predicting the yield increase to be expected from K fertilizer applications is complicated by many factors that influence crop response to K fertilizer applications (15). Plants obtain K from subsurface layers in the soil; thus it may be important to consider the exchangeable K in these layers, in addition to that in the surface layer (9, 16, 21). Poor aeration restricts the ability of plant roots to absorb K from the soil (8, 14); thus poor aeration resulting from excess moisture, tillage methods, etc. may cause K deficiencies in plants even though the level of exchangeable K might otherwise be adequate (3, 15, 19). K uptake by plants is also restricted under conditions where soil moisture is limited (26, 27), where soil temperatures are low (11) and where there are high concentrations of other ions, especially calcium, magnesium or ammonium, in the soil solution (20). K in soil organic matter or organic soils has been found to be more readily available than K adsorbed on soil clays (13). Differences in plant population and in genetic characteristics of different hybrids would also be expected to result in differences in K uptake and yield responses obtained from K fertilizer applications. Thus, many factors may have to be considered in predicting the response to be expected from K fertilizer applications for corn on different soils.

Corn plants begin to absorb soil K early in the seedling stage (6) and take up K very rapidly during the vegetative growth period (22), but little or no K appears to be taken up during the grain formation period late in the season (22). K deficiency in corn appears first as decreased growth of the seedlings and young plants followed by a characteristic "firing," on the edges and tips of the lower leaves. In severe cases all leaves may show the "firing," and entire leaves on the lower part of the plant may die (12).

The K status of corn plants at most stages of growth is reflected in the K content of the different plant parts. Since all, or nearly all, of the K in corn plants is water soluble, it is not necessary to consider different forms of K in the plant in interpreting the results of plant analyses, but the plant part and the stage of development must be considered. Tyner (25) analvzed the sixth leaf from the base of the plant, sampled during the period of full silk, and suggested 1.30 percent K on an air-dry basis as being the critical level above which little or no increase in yield would be obtained from additional K applications. In his experiments he found an average increase in yield of 2.05 bushels per acre for each change of 0.1 percent K in the leaf.

The purpose of this study was to obtain information concerning: (a) the effect of K fertilizer applications on the yield and K content of corn plants under different soil and environmental conditions found in the North Central Region, (b) the amount of exchangeable K in field-moist and dried soil samples from different soil profiles, (c) relationships between exchangeable K in the soils and the K content and yield of corn as influenced by applications of K ferti-

¹ The manuscript was prepared by the first author. The other authors contributed by conducting the field and laboratory experiments or by assisting in planning and conducting the study and reviewing the man-uscript. More complete information concerning the NC-16 Committee and others associated with this study is given on the back page of this bulleting. bulletin. ² The symbol K will be used for potassium throughout this bulletin.

lizers and (d) the effect of other factors such as plant population, soil texture, etc. on these relationships.

EXPERIMENTAL METHODS

Field

Uniform field experiments with corn were established at 51 locations in Illinois, Indiana, Iowa, Kansas, Michigan and Minnesota during 1957 and 1958. Two experiments were discarded — one in Iowa because of an extremely variable stand and one in Michigan because of a severe zinc deficiency. Records and plant samples from the seven experiments in Kansas in 1957 were lost in a fire, and grain was not harvested from one experiment in Kansas in 1958. Therefore, corn-yield data were obtained from only 41 of the 51 experiments.

Detailed characteristics and information concerning the experiments are given in tables A-1, A-2 and A-3 of the appendix. As shown in table A-2, most experiments were conducted on sites that had been in a legume or legume-grass meadow the previous year. In a few cases, however, the previous crop was small grain, corn, soybeans or sorghum. Most experimental areas received a uniform application of N and P fertilizers either broadcast or split between a broadcast application and an application with a planter attachment. Differential plot treatments consisted of broadcast (and in most cases plowed under) applications of KCl at rates of 0, 25, 50, 75, 100 and 125 pounds of K per acre.³ The experimental design used at most sites was a Latin square. Each plot was usually 4 to 6 rows wide and 30 to 50 feet long. Except in special cases, efforts were made to obtain uniform stands of 16,000 plants per acre of hybrids adapted to the location.

Before the application of any fertilizer, soil samples for laboratory analyses and greenhouse studies were collected from each experimental site. Each site was sampled to a depth of 36 inches by 6-inch increments to obtain samples for laboratory analyses. Separate samples, consisting of at least 10 cores each, were obtained from the 0-6 inch layer of each replicate. The subsurface samples were a composite of three replicates with at least two cores per replicate. These smaller samples were kept field moist and sent to Iowa State University for laboratory analyses. In 1957, bulk samples of approximately 300 pounds consisting of at least 20 subsamples from the experimental area were collected from the 0-6 inch laver of soil. At some sites a similar amount of soil from the 18-24 inch laver was obtained from a pit dug adjacent to the experimental area. These bulk samples were kept field moist and sent to Purdue University for a greenhouse study.

Plant samples were collected from all sites when the plants were in the silking stage. Whole-plant samples, usually consisting of eight plants per plot, were obtained by cutting the plants off just above the soil. At the same time, leaf samples, consisting of 20 leaves taken from opposite and just below the major earshoot of normal plants, were collected. At some of the sites whole-plant samples were also collected in a similar manner at an earlier date (2 to 4 weeks prior to silking) and at a later date (2 weeks or more after silking). All plant samples were dried at 65°C., weighed and ground, and representative subsamples were sent to Iowa State University for chemical analyses.

Grain yields were estimated by harvesting the ears from a representative area of each plot (usually about 1/200 of an acre). The yield of grain at 15.5 percent moisture and, for most experiments, the moisture content at harvest and the shelling percentage were determined.

Laboratory

K was extracted from the plant samples by shaking 0.50 gram of the oven-dry plant material in 100 ml. of 0.1575 N acetic acid for 30 minutes and filtering through a dry filter paper.

The field-moist soil samples were screened through a 1/4-inch screen and thoroughly mixed. Percent moisture in the samples was determined by weighing subsamples before and after oven drying at 100°C. for 24 hours. Exchangeable K was extracted from weighed samples (of approximately 10 grams) of the field-moist and oven-dry soil samples by shaking the soil sample for 30 minutes in 15 ml. of neutral 1N NH₄OAc, filtering, and leaching with an additional 60 ml. of 1 N NH₄OAc. The extracts were then made up to 100 ml. in volumetric flasks.

K in the plant and soil extracts was determined using a Perkin-Elmer model 52A flame photometer with lithium as an internal standard. K contents of the plant material and soils are expressed on an ovendry basis.

A portion of each soil sample was air dried for at least 2 weeks at room temperature and analyzed in the Iowa State University Soil Testing Laboratory by the procedures used in that laboratory. The pH was determined with a glass electrode using a 1:2 soil:water ratio. K was extracted by shaking approximately 2 grams of soil (measured volumetrically) in 10 ml. of neutral 1N NH₄OAc for 5 minutes and filtering. K in the extract was determined using a flame photometer. P was extracted by shaking approximately $1\frac{1}{2}$ grams of soil (measured volumetrically) in 10 ml. of Bray's No. 1 P extractant (0.025 N HCl and 0.03 N NH₄F) for 5 minutes and filtering. P in the extract was determined colorimetrically using ammonium molybdate and stannous chloride to develop the color.

Correlation Studies

Data from 31 of the field experiments were analyzed by multiple regression procedures. As stated previously, corn-yield data were not obtained from 10 of the 51 field experiments. Data from another 10 experiments were not used in the multiple regression analyses because of incomplete data, severe drouth, extremely variable stands or very high K contents in the soils and plants. These 10 experiments were: Illinois 397; Iowa 23; Kansas 5, 6 and 7 in 1958; Michigan 1, 2 and 3 in 1957; and Minnesota 2 in 1957 and 1958. The treatment means for the different levels of applied K in the

 $^{^{\}rm 8}$ These rates correspond to 0, 30, 60, 90, 120 and 150 pounds of K2O per acre, respectively,

Table I. Variables included in the multiple regression analyses and the symbols used to denote the individual variables.

Variable	Symbol
Exchangeable K in the 0-6 inch layer of soil (pp2m)	Ksı
Exchangeable K in the 6-12 inch layer of soil (pp2m).	K S2
Exchangeable K in the 12-18 inch layer of soil (pp2m)	K S2
Exchangeable K in the 18-24 inch layer of soil (pp2m)	Ksa
Exchangeable K in the 24-30 inch layer of soil (pp2m)	Ker
Exchangeable K in the 30-36 inch layer of soil (pp2m)	Kse
Exchangeable K in the 12-36 inch layer of soil (pp2m)	K Sa.e
Fertilizer K applied (pounds of K per acre)	K E
Plant population (thousands of plants per acre)	S
Soil texture ^a	Т
Leaf dry weight (grams per 20 leaves)	Ĭ.
Percent K in leaves at silking time (no K applied)	CK %K
Percent K in leaves at silking time	Of K
Increase in percent K in leaves resulting from K applicatio	$\wedge c/K$
Pounds of K par same in some plants at silking time	IIS
Viald of some gracia (bushels new some)	KP
There of corn grain (bushels per acre)	I
(hereing in yield of grain resulting from K fertilizer	A 17
(busnels per acre)	∆ ¥

^a The following code was used for soil textures: sand=1, loamy sand=2, sandy loam=3, loam=4, silt loam=5 and silty clay loam=6.

31 experiments provided 184 observations for each of the dependent variables used in the multiple regression analyses.

The variables included in the multiple regression analyses and the symbols used to denote these variables in the following discussion are shown in table 1.

EXPERIMENTAL RESULTS

Exchangeable K in Soils

The percent moisture in the field-moist soil samples, level of exchangeable K in field-moist and oven-dry soil samples and the Soil Testing Laboratory results for the air-dry soils are reported in table A-4 of the appendix. The exchangeable K levels in the field-moist and oven-dry samples from the 0-6 inch and 30-36 inch soil layers and the changes in exchangeable K that occurred on drying these samples are summarized in table 2.

In mineral soils, the level of exchangeable K under field-moist conditions was almost always higher in surface-soil samples than in subsoil samples from the same location. Exchangeable K in the subsoils was consistently low. Only in seven soils from Kansas did the exchangeable K in field-moist 30-36 inch samples exceed 100 pp2m.

The change in exchangeable K that resulted from drying 0-6 inch soil samples varied in different parts of the region much the same as was found in a previous study (9). The exchangeable K in some of the surface-soil samples from Iowa and Kansas increased very much upon drying. A few soils from these states, however, showed little change, and two Kansas soils with high levels of exchangeable K showed small decreases upon drying. Drying surface soils from Michigan resulted in either no change or appreciable decreases in exchangeable K. Drying caused relatively little change in exchangeable K in surface soil samples from Indiana or the Cisne soils of Illinois. Changes from drying in surface samples from Minnesota ranged from small decreases in two sandy soils to appreciable increases in some silt loam soils.

Exchangeable K increased on drying in all samples from the 30-36 inch layer. In the sandy soils the increases were small, but in other soils the increases were as much as tenfold.

Table 2. Exchangeable K in field-moist and oven-dry soil samples from the 0-6 and the 30-36 inch layers at the different experimental field sites and the change in exchangeable K because of oven drying.

			-	Exc	hangeabl	le K (pp2m)				
				0-6 in	ch	3	30-26	inch		
Experime	ent Year	Soil type ^a	Field moist	Oven dried	Change after drying	Field moist	Over dried	Change a after drying		
Ill. 1 Ill. 397	1957 1958	Cisne sil Cisne sil	73 64	96 86	23 22	50 51	204 168	154 117		
Ind. 1 Ind. 2 Ind. 3 Ind. 4 Ind. 5 Ind. 6 Ind. 7 Ind. 8	1957 1957 1957 1957 1958 1958 1958 1958	Fincastle sil . Fincastle sil . Elston 1 Fincastle sil Crosby fsl Miami 1 Sidell sil		$134 \\ 125 \\ 150 \\ 156 \\ 151 \\ 110 \\ 87 \\ 213$	$ \begin{array}{r} 8 \\ 21 \\ 20 \\ 44 \\ 30 \\ -18 \\ -16 \\ 43 \\ \end{array} $	80 42 84 58 52 29 52 66	254 292 122 284 225 31 138 254	174 250 38 226 173 2 86 188		
Iowa 17 Iowa 18 Iowa 19 Iowa 20 Iowa 21 Iowa 22 Iowa 23 Iowa 24 Iowa 25 Iowa 26 Iowa 27 Iowa 28 Iowa 29	1957 1957 1957 1957 1957 1957 1958 1958 1958 1958 1958 1958 1958	Floyd sil Carrington sil Fayette sil Clyde sil Carrington sil Weller sil Carrington sil Fayette sil Fayette sil Clyde sil Webster sicl Primghar sil	151 146 160 102 138 78 78 78 79 153 244 79 158 112 348	$185 \\ 166 \\ 232 \\ 279 \\ 139 \\ 170 \\ 112 \\ 178 \\ 269 \\ 163 \\ 171 \\ 359 \\ 456 \\$	34 20 72 179 37 32 34 25 25 84 13 247 108	20 31 48 28 35 44 70 33 39 54 35 ^b 37 74	203 255 322 218 156 304 364 172 359 360 219 298 478	183 224 274 190 121 260 294 139 320 306 b 184 261 404		
Kan. 1 Kan. 3 Kan. 4 Kan. 5 Kan. 6 Kan. 7 Kan. 8 Kan. 1 Kan. 2 Kan. 4 Kan. 4 Kan. 5 Kan. 6 Kan. 7	1957 1957 1957 1957 1957 1957 1957 1958 1958 1958 1958 1958 1958 1958	Bates sil Summit sil Summit sil Laurel fsl Wabash sil Cherokee sil Boone 1 Parsons sil Cherokee sil Geary sil ?	$\begin{array}{r} 91\\ 262\\ 935\\ 427\\ 455\\ 559\\ 149\\ 232\\ 150\\ 173\\ 136\\ 602\\ 605\\ 232 \end{array}$	$\begin{array}{c} 100\\ 334\\ 910\\ 484\\ 474\\ 795\\ 211\\ 344\\ 243\\ 243\\ 190\\ 650\\ 565\\ 363\\ \end{array}$	$\begin{array}{r} 9\\72\\-25\\57\\19\\236\\62\\112\\93\\70\\54\\48\\-40\\131\end{array}$	$\begin{array}{c} 32\\ 126\\ 144\\ 104\\ 314\\ 112\\ 86\\ 90\\ 67\\ 60\\ 81\\ 194\\ 220\\ 100\\ \end{array}$	$\begin{array}{c} 158\\ 558\\ 568\\ 318\\ 374\\ 332\\ 316\\ 492\\ 330\\ 275\\ 410\\ 553\\ 284\\ 372 \end{array}$	$\begin{array}{c} 126\\ 432\\ 424\\ 214\\ 60\\ 220\\ 230\\ 402\\ 265\\ 329\\ 359\\ 64\\ 272\\ \end{array}$		
Mich. 1 Mich. 2 Mich. 3 Mich. 4 Mich. 1 Mich. 2 Mich. 3 Mich. 4	1957 1957 1957 1957 1958 1958 1958 1958	Fox 1 Oshtema s Metea sl Houghton mucl Fox sl Kalamazoo sl . Conover 1 Parkhill 1	450 94 164 k 574 86 86 80 97	304 - 78 112 554 89 222 84 74	-146 -16 -52 -20 3 -62 4 -23	$94 \\ 11 \\ 68 \\ 204^{\circ} \\ 32 \\ 48 \\ 36 \\ 30$	139 129 2320 78 71 77 61	45 1 61 28 46 23 41 31		
Minn. 1 Minn. 2 Minn. 3 Minn. 4 Minn. 1 Minn. 2 Avera	1957 1957 1957 1957 1958 1958	Hubbard Is Zimmerman fs Skyberg sil Skyberg sil Floyd sil Organic	146 111 85 133 119 192 210	$ 132 \\ 100 \\ 140 \\ 178 \\ 199 \\ 202 \\ 246 $	-14 -11 55 45 80 10 36	44 40 57 32 26 140 73	72 46 190 206 177 170 249	28 6 133 174 151 30 176		

* c=clay; si=silt; s=sand; l=loam; fs=fine sand. The textural classifications shown are those designated by the persons who conducted the field experiments and are probably not always consistent or accurate. b 18-24 inch. c 12-18 inch.

The relationship between exchangeable K in the field-moist and the oven-dry 0-6 inch and the 30-36 inch samples for different states and different textural classes is shown in fig. 1. There was an increase in exchangeable K from drying in the silty clay loam and in all silt loams except in one 0-6 inch sample from Kansas that was very high in exchangeable K. However, exchangeable K decreased or changed very little with drying in all but one of the 0-6 inch samples of the loams, sandy loams, loamy sands and sands. The exception was a Boone loam from Kansas. Exchangeable K in the 30-36 inch samples from the silty clay loam and the silt loams increased markedly because of drying. Increases from drying also occurred, but to a lesser degree, in all the samples from the 30-36 inch depth in the loams and sands-except in one Kansas loam where the increase was large. Exchangeable K in the two organic soils from

Fig. 1. Relation between exchangeable K in field-moist and oven-dry soil samples from the 0-6 inch and the 30-36 inch depths as influenced by soil texture. (The diagonal line indicates where the field-moist and oven-dry values are equal. Textural designations refer to the textures of the 0-6 inch samples.)

Figs. 2A through 2H. Profile distribution of exchangeable K in eight different soils from the North Central Region as determined on fieldmoist and oven-dry samples.

Michigan and Minnesota was not influenced appreciably by drying. These relationships indicate that the texture and the level of exchangeable K in the soil, rather than geographic location, are the primary factors influencing the change in exchangeable K that is observed on drying. The type of clay present may be an important consideration, but this study does not provide information concerning the kinds of clay minerals present in the soils.⁴

The profile distribution of exchangeable K in fieldmoist soils and the effect of drying on the profile distribution of exchangeable K found in soils in this study were similar to previous findings (9, 10). Some of the different types of profile distributions of exchangeable K are illustrated in figs. 2A through 2H.

The effect of oven drying on the level of exchangeable K varied with depth in the profile. Drying usually increased exchangeable K throughout the profile, but the increases were generally much greater in the subsoil than in the surface soil. Figures 2A and 2B illustrate this for two silt loam soils and show how the magnitude of the change resulting from drying varies in different soils. Drying often decreased exchangeable K in the surface soil but increased it in the subsoil, as shown for the Fox loam in fig. 2C. In a few soils, however, the increase from drying was similar in the surface and subsoil layers, as shown for the Webster soil in fig. 2D. In sandy soils, as shown in figs. 2E and 2F, drying usually had little effect on exchangeable K-often decreasing it slightly in the surface soil and increasing it slightly in the subsoil.

The profile distribution of exchangeable K in two organic soils is shown in figs. 2G and 2H. Exchangeable K, expressed on an oven-dry weight basis, was very high in the surface layers of the Houghton muck but decreased markedly in the subsoil. Exchangeable K in the organic soil from Minnesota showed a decrease followed by an increase with depth. Drying had no appreciable effect on the exchangeable K extracted from these organic soils.

K Content and Yield of Corn

The dry weight and K content of the corn leaves and plants and corn grain yield data for the different field experiments are reported in tables A-5 and A-6 of the appendix.

DRY MATTER ACCUMULATION AND K CONTENT OF CORN PLANTS DURING THE SEASON

Whole-plant samples were collected from 42 of the field experiments at silking time. Additional whole-plant samples were collected from 20 of the field experiments at varying periods of time before and/or after silking. These additional samples provide information concerning dry matter accumulation, K uptake by the corn plants and the K content of the corn plants during the growing season. The data from these 20 experiments are summarized in table 3.

Since each of the 20 experiments was sampled at silking time, the values at silking time provided a stand-

ard of reference for comparing the results of the other samplings. Figure 3 summarizes the dry weights and K contents of the plants from the early and late samplings in relation to the values obtained at silking. In this figure, determinations made on samples collected at the time of silking were assigned a relative value of 100, and time of sampling was represented as days before and after silking. Since the period from silking to maturity appears to be relatively constant (24), days after silking should be a reasonably accurate estimate of the stage of development at the time of sampling after silking. The length of time from emergence to silking is much more variable (23), so the use of days before silking is a less desirable estimate of the stage of development.⁵ However, days from silking was used for the period prior to silking as a matter of convenience and consistency in presenting the data.

Within each experiment, the relative dry weights of the plants, percent K in the plants and the pounds of K per acre in the plants at the samplings before or after silking in relation to the values at silking time were similar for all levels of K fertilizer application. Therefore, an average value for all treatments in each experiment was used in fig. 3.

As all values are in relation to those at silking, the regressions for dry weight, percent K in the plants prior to silking and pounds of K in the plants prior to silking were forced through the value of 100 at silking by using

 5 The dates of planting in these experiments varied from May 9 to June 15, and the dates of silking varied from July 22 to Sept. 6. The length of time from planting to silking varied from 59 to 108 days in the different experiments.

Fig. 3. Dry weights of corn plants, pounds of K per acre in the plants and percent K in the plants at various times before and after silking relative to the values at silking time.

⁴ Mineralogical studies using soil samples from the 1957 field experiments are being conducted at the University of Wisconsin.

		· · · · · · · · ·	Dry we	eight (lb./A)	Per	cent K	Pounds K/A in the plants			
Experi	iment Year	Date sampled	No K applied	Increase from added K ^a	No K applied	Increase from added K ^b	No K applied	Increase from added K ^b	Extrapolated K value ^c	
III.	11957	7/29 8/16 ^e	$1,040 \\ 3,125$		$1.63 \\ 0.71$	1.18** 0.47*	17 22	11* 38**	158 55	
III.	3971958	7/15 8/8e	949 4,461	168 586	1.74 0.87	0.67** 0.53**	17 39	164 124		
Iowa	171957	7/10 7/22e 9/5	2,067 3,853 10,710	256 - 130 - 100	2.01 1.82 0.79	0.45* 0.41* 0.29*	42 70 85	14* 13* 32**	329 540 257	
Iowa	181957	7/10 7/22e 9/5	$1,863 \\ 4,286 \\ 8,537$	-136 1 810	2.73 1.70 0.94	0.57** 0.33** 0.11**	51 73 80	8 17** 12	624 436 698	
Iowa	191957	7/17 8/1° 9/4	1,032 5,877 11,323	35 0 924	2.97 1.76 0.93	0.39** 0.21* 0.10*	31 104 105	6** 16 16*	562 599 616	
Iowa	201957	7/15 7/31e 9/5	833 3,910 8,103	130 383 900	2.44 1.32 0.75	0.58* 0.33* 0.19**	20 52 61	9** 17* 20**	225 329 303	
Iowa	21 ^f 1957	7/16 7/24 ^e 8/27	1,183 3,926 6,827	400 517 	2.46 1.48 0.78	0.87** 0.71** 0.36**	29 58 53	18** 37** 22**	159 169 230	
Iowa	221957	7/20 8/1 ^e 8/27	1,434 4,532 10,568	45 459 441	1.79 1.41 0.68	0.42^{**} 0.19^{*} 0.04	26 64 72	$3 \\ 15^{*} \\ 10$	952 1,169 774	
Iowa	231958	7/10 7/23e 8/7	2,209 4,720 6,648	964** 744 1,825	$1.18 \\ 1.01 \\ 0.92$	0.87** 0.90** 0.45**	26 48 61	36** 56** 49**	82 80 138	
Iowa	251958	7/15 8/12e 8/25	439 4,116 5,671	$\frac{-6}{-4}$ 234	$5.11 \\ 2.17 \\ 1.65$	$0.16 \\ 0.41** \\ 0.35**$	22 89 94	2 16* 24**	1,393 572 393	
Iowa	261958	7/15 8/12e 8/26	926 4,459 6,480	268 1,360* 241	2.08 1.20 1.00	1.43** 0.70** 0.55**	19 53 65	22** 52** 39**	85 107 166	
Iowa	271958	7/16 8/13° 8/26	606 4,896 6,239	88 233 690	$3.51 \\ 1.41 \\ 1.27$	1.16* 0.72** 0.43*	21 69 79	12* 43** 39*	168 159 193	
Iowa	281958	7/21 8/1° 8/14	2,673 5,565 8,967	555 433 866	$2.10 \\ 1.78 \\ 1.06$	0.81** 0.54** 0.30**	56 99 95	32* 40** 34*	188 244 257	
Mich.	1	7/23 8/8° 10/8	2,953 6,247 19,240	-298 95 2,580	$4.76 \\ 3.32 \\ 1.31$	$0.34 \\ 0.03 \\ 0.09$	141 207 252	-2 -22 41*	586	
Mich.	21957	7/23 8/7e 10/8	2,935 4,428 11,000	$371 \\ 304 \\ -1,400$	$3.24 \\ 2.06 \\ 1.41$	$0.33 \\ 0.66* \\ -0.04$	95 91 155	24 36* 	395 264	
Mich.	3g1957	7/26 8/15° 10/11	2,546 6,833 8,880	-398 -211 -360	$3.55 \\ 1.86 \\ 0.84$	0.88** 0.24* 0.10	90 127 75	4 11 9	2,503 1,058 903	
Mich.	31958	8/1 8/29e	1,774 6,700		$1.74 \\ 0.89$	0.89** 0.30**	31 60	19* 21**	186 286	
Mich.	41958	7/31 8/22e	$3,060 \\ 5,220$	300 840*	$\begin{array}{c} 1.86\\ 1.10 \end{array}$	0.52** 0.37**	57 57	23** 16**	235 374	
Minn.	31957	8/3e 10/13	$3,659 \\ 12,600$	382* 400	$1.46 \\ 0.55$	1.10** 0.24*	53 69	47** 33**	118 194	
Minn.	41957	9/6 ^e 10/12	6,997 9,600	822 170	0.69 0.53	0.35** 0.24**	48 51	30** 25**	169 202	

Table 3. Effect of K fertilizer applications on the dry weight and K content of corn plants at different times during the growing season in the different field experiments.

a Difference in dry weight of plants from plots with 125 lbs. K per acre and plots with no K applied.
b Increase per 100 pounds of applied K per acre (based on regression equation of the form y=a+bKF where KF equals lbs. of K applied per acre).
c Negative value of K applied obtained by extrapolating regression equation to the point where pounds of K in the plants equals zero.
d Increase from 100 pounds of applied K per acre.
e Date of silking.
f Severe drouth damage after silking.
Significant at the 1-percent level.
* Significant at the 5-percent level.

deviations from that value and uncorrected sums of squares and crossproducts in calculating the regressions. The pounds of K in the plants had apparently reached a maximum by the time the first samples were collected after silking. Therefore, the data for the pounds of K in the plants after silking were represented by a horizontal line through the mean of the observations. The regression for percent K after silking was calculated to pass through the mean of the observations.

The rate of dry matter accumulation appeared to be essentially linear for the period represented in fig. 3. K uptake, however, followed a much different pattern. Prior to silking the value for pounds of K in the plants relative to that at silking was higher than the relative dry weights of the plants. At silking, the plants had accumulated 90 percent of the total K taken up during the season. By 10-15 days after silking, K uptake by the plants was complete, and the amount of K in the plants remained constant after that time.

Data from two experiments not illustrated in fig. 3 showed an appreciable loss of K from the plants after silking. A severe drouth at the site of Iowa 21 and water damage on Michigan 3 in 1957 apparently resulted in loss of K from the plants after silking, as shown in table 3.

The relative percent K in the plants decreased rapidly until a short time after silking and then decreased slowly until the end of the season. The actual percent K in the plants varied from a maximum of greater than 5 percent in some plants sampled about

Table 4.	Effect of K fertilizer	applications	on dry	weight	and K	content	of c	orn	plants .	and o	f corn	leaves	at silking	time	in the	different
	field experiments.															

	1.20			Le	avesa			V	Whole pla	nts		
			Dry W	eight (g.)	%	K	Dry Wei	ght (lbs./A)		% К ^І	ounds of K p in plants	er acre
Exper	i- Year	Date sampled	No K	Increase ^b from added K	No K applied	Increase from added K ^c	No K applied	Increase from added K ^b	No K applied	Increase from added K ^c	No K Increa applied add	ase from ed K ^e
III. III. 3	1	8/16 8/8	99	15**	0.88 1.50	0.81** 0.63**	$3,125 \\ 4,461$	1,829**d 586	0.71 0.87	0.47* 0.53*	* 22 39	38** 31**
Ind. Ind. Ind. Ind. Ind. Ind. Ind. Ind.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$8/8 \\ 8/9 \\ 8/9 \\ 8/4 \\ 8/11 \\ 8/8 \\ 8/12 \\ 8/11$	56 51 55 57 77 82 84 99	-2 -1 -3 -3 -2 0 2	0.79 1.04 1.61 1.76 1.77 2.10 1.70 2.18	0.63^{**} 0.50^{**} 0.27^{**} 0.28^{**} 0.49^{**} 0.58^{**} 0.80^{**} 0.30^{*}	$\begin{array}{c} 4,155\\ 3,924\\ 4,976\\ 4,901\\ 6,015\\ 5,253\\ 5,458\\ 6,079\end{array}$	$\begin{array}{r}247\\ 83\\430\\ 223\\ 316\\521\\ 953*\\342\end{array}$	$\begin{array}{c} 0.64 \\ 0.85 \\ 1.10 \\ 1.42 \\ 0.90 \\ 1.38 \\ 1.04 \\ 1.74 \end{array}$	0.47* 0.35* 0.38* 0.48* 0.33* 0.58* 0.57* 0.54*	* 27 * 33 * 55 * 70 * 54 * 72 * 57 * 106	19* 16* 17** 27** 24** 25** 51* 30*
Iowa Iowa Iowa Iowa Iowa Iowa Iowa Iowa	17	7/22 7/22 8/1 7/31 8/1 7/23 8/12 8/12 8/12 8/13 8/1 8/5	$90 \\ 85 \\ 86 \\ 92 \\ 89 \\ 93 \\ 109 \\ 96 \\ 89 \\ 103 \\ 119 \\ 114$	-1 -1 -1 -1 -6 0 -7 -2 -6	$\begin{array}{c} 1.40 \\ 1.62 \\ 1.69 \\ 1.10 \\ 1.41 \\ 1.16 \\ 1.23 \\ 2.30 \\ 1.38 \\ 1.49 \\ 1.70 \\ 2.11 \end{array}$	0.39^{**} 0.20^{**} 0.54^{**} 0.69^{**} 0.32^{**} 0.69^{**} 0.31^{**} 0.65^{**} 0.64^{**} 0.39^{**} 0.19^{*}	3,853 4,286 5,877 3,910 3,926 4,532 4,720 4,116 4,459 4,459 4,896 5,565 5,465	$\begin{array}{c} -130 \\ 1 \\ 0 \\ 383 \\ 517 \\ 459 \\ 744 \\ -4 \\ 1,360^{*} \\ 233 \\ 433 \\ -99 \end{array}$	$\begin{array}{c} 1.82\\ 1.70\\ 1.76\\ 1.32\\ 1.48\\ 1.41\\ 1.01\\ 2.17\\ 1.20\\ 1.41\\ 1.78\\ 1.90\end{array}$	$\begin{array}{c} 0.41 \\ 0.33 \\ 0.21 \\ 0.33 \\ 0.71 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.70 \\ 0.72 \\ 0.72 \\ 0.54 \\ 0.29 \\ \end{array}$	70 * 73 104 52 * 58 64 * 48 * 89 * 53 * 69 * 99 * 104	13^{*} 17^{*} 16 17^{*} 37^{**} 15^{*} 56^{**} 16^{*} 52^{**} 43^{**} 40^{**} 12
Kan. Kan. Kan. Kan. Kan. Kan. Kan.	$\begin{array}{cccccccc} 1 & & 1958 \\ 2 & & 1958 \\ 3 & & 1958 \\ 4 & & 1958 \\ 5 & & 1958 \\ 5 & & 1958 \\ 6 & & 1958 \\ 7 & & & 1958 \end{array}$	7/28 7/28 7/24 7/23 7/23 8/4	$ \begin{array}{r} 135 \\ 101 \\ 115 \\ 126 \\ 112 \\ 109 \end{array} $		$\begin{array}{c} 2.52 \\ 2.26 \\ 1.93 \\ 1.79 \\ 2.58 \\ 3.02 \\ 3.05 \end{array}$	$\begin{array}{c} 0.22*\\ 0.33*\\ 0.21**\\ 0.29**\\0.08\\0.02\\ 0.04 \end{array}$	2,571 6,218 6,969 6,135 7,181 5,083	$\begin{array}{r} 1,0\overline{81} \\ -801 \\ 407 \\ -223 \\ -1,737 \\ -35 \end{array}$	$2.06 \\ 2.23 \\ 1.52 \\ 1.22 \\ 2.34 \\ 2.97 \\ 2.80$	$\begin{array}{c} 0.23\\ 0.17*\\ 0.19*\\ 0.40*\\ 0.07\\ -0.02\\ 0.17* \end{array}$	* 57 95 85 144 213 142	$ \begin{array}{r} 18 \\ 5 \\ 38^{**} \\ -2 \\ -32 \\ 10 \\ \end{array} $
Mich. Mich. Mich. Mich. Mich. Mich. Mich.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8/8 8/7 8/15 8/12 8/15 8/29 8/22	$130 \\ 117 \\ 108 \\ 111 \\ 81 \\ 92 \\ 79$	-7 -2 0 -4 -5 3	3.14 2.68 2.80 1.36 2.96 0.96 1.75	0.21^{*} 0.55^{**} 0.32^{**} 0.39^{**} 0.10^{**} 0.69^{**} 0.37^{**}	6,247 4,428 6,833 6,040 6,980 6,700 5,220	$95 \\ 304 \\ -211 \\ 880 \\ 300 \\ -20 \\ 840*$	$3.32 \\ 2.06 \\ 1.86 \\ 1.06 \\ 2.00 \\ 0.89 \\ 1.10$	$\begin{array}{c} 0.03 \\ 0.66* \\ 0.24* \\ 0.15* \\ 0.14 \\ 0.30* \\ 0.37* \end{array}$		$\begin{array}{c}22 \\ 36^{*} \\ 11 \\ 18^{**} \\ 16^{*} \\ 21^{**} \\ 16^{**} \end{array}$
Minn. Minn. Minn. Minn. Minn. Minn.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8/12 8/14 8/3 9/6 8/18 8/22	73 47 97 78 73 88	3 1 3 0 19** 4	$2.24 \\ 1.41 \\ 1.00 \\ 0.89 \\ 0.60 \\ 0.63$	$\begin{array}{c} 0.28^{**} \\ 0.38^{**} \\ 0.64^{**} \\ 0.58^{**} \\ 0.66^{**} \\ 1.25^{**} \end{array}$	3,848 3,659 6,997 3,300 3,600	17 382* 822 3,300** 800	$1.98 \\ 1.06 \\ 1.46 \\ 0.69 \\ 0.71 \\ 0.76$	$\begin{array}{c} 0.36 \\ 0.21 \\ 1.10 \\ 0.35 \\ 0.58 \\ 0.98 \\ \end{array}$	* 76 * 53 * 48 * 23 * 27	12* 47** 30** 52** 46**
Average			92	1	1.73	0.42	5,049	314	1.52	0.41	78	23

a Leaves from opposite and just below the major ear of 20 plants.
b Difference in dry weight from plots with 125 pounds of K per acre and and plots with no K.
c Increase from 100 pounds of K per acre calculated from a regression of the form: y=a+bKF where KF equals the pounds of applied K per acre.
** Significant at the 1-percent level.

a month before silking to a low of 0.53 percent in some plants at maturity. Data in table 3 indicate that in most experiments the increase in percent K in the plants resulting from applications of K fertilizer decreased as the season progressed.

The increase in pounds of K per acre in the plants from K fertilizer applications was generally much higher at silking time than at the early sampling, but there was no consistent relationship between the increase at silking time and that at the later sampling. Neither did the extrapolated K values reported in table 3 show any consistent change with time of sampling in the different experiments.

PLANT WEIGHT AND K CONTENT AT SILKING TIME

The dry weights and K contents of the leaves and plants from the 42 field experiments sampled at silking time are summarized in table 4.

There were large differences among different experiments in the dry weights of the corn plants and of the leaves at silking time. The dry weight of plants varied from 2,571 to 7,181 pounds per acre and averaged 5,049

pounds. The dry weight of 20 leaves varied from 47 to 135 grams and averaged 92 grams. Part of the difference in dry weights of the plants at silking time may be due to some inconsistency in sampling at the same stage of plant development in all experiments, but it is believed that most experiments were sampled very close to the desired stage of development. The variability between replicates of individual experiments was often very large, indicating that eight plants per plot is probably not an adequate sample for the estimation of dry weights of the plants. This variability within individual experiments is reflected in the increases in dry weights of the plants from K fertilizer applications reported in table 4 where some relatively large increases or decreases are not statistically significant. There was much less variability within individual experiments in the dry weights of 20 leaves than was observed in the dry weights of eight plants.

The application of K fertilizer increased the dry weight of the plants significantly in only six experiments and the dry weights of the leaves significantly in only two experiments. Increases in the yield of grain from applications of K fertilizer were large in the two experiments where the dry weights of the leaves were increased.

The K content of corn leaves at silking time from plots that had received no K fertilizer varied from 0.60 to 3.14 percent in different experiments and averaged 1.73 percent. Increases in the percent K in the leaves resulting from K fertilizer applications were highly significant in all experiments, except where the percent K in leaves from plots that received no K fertilizer was high. The largest increase in percent K in the leaves from K fertilization occured on a K-deficient, organic soil in Minnesota where an increase of 1.25 percent K per 100 pounds of K applied was observed. The average increase in percent K resulting from K fertilizer applications was 0.42 percent per 100 pounds of K applied.

The K contents of the whole plants at silking time varied from 0.64 to 3.32 percent in the different experiments and averaged 1.52 percent. Applications of K fertilizer increased the percent K in the plants in all except five of the field experiments. In these five experiments, the percent K in the plants from plots that received no K fertilizer was high (2.00 percent or higher). The maximum increase in percent K in the plants resulting from applied K was 1.10 percent per 100 pounds of applied K per acre. The average increase in percent K in the plants was 0.41 per 100 pounds of applied K per acre.

Although, in general, the percent K in the leaves was closely related to that in the whole plant, in some individual experiments the percent K in the leaves was much higher and in other experiments it was much lower than that in the whole plants. This may have been due in part to errors in time of sampling since the percent K in the whole plant would be expected to decrease much faster with time than would that in the leaves. Varietal differences and other factors may also result in different distributions of K within the plants.

At silking time the total amount of K in the aboveground portion of the plants from plots that received no K fertilizer varied from 22 to 213 pounds per acre and averaged 78 pounds per acre. Applications of K fertilizer significantly increased the amount of K taken up by the corn plants in most of the experiments, except where the K contents of the plants from the unfertilized plots were high. The statistical significance of these increases in pounds of K in the plants was generally lower than was found for percent K because of the variability within individual experiments in the dry weights of the plants.

Since the increases in pounds of K per acre in the plants from K fertilizer applications is expressed as pounds of K per 100 pounds of K applied, it can be considered as the percent recovery of applied K in the above-ground parts of the plants at silking time. There was a maximum recovery in the above-ground plant parts of 56 percent of the applied K in one experiment and an average of 23 percent for all experiments.

GRAIN YIELD

The plant populations, yield of grain, moisture content of the grain and the shelling percentage for the different experiments are summarized in table 5. Plant

Table 5. Effect of K applications on the yield of grain, percent moisture in the grain and shelling percentage in the different field experiments.

	Average N	Grain (bu./	A.)	% H ₂ O	in grain	Shell	ing pct.
Expt. Year	of plants per acre (thous- ands)	Check yield	Increase ^a from added K	No K ferti- lizer	Increase from added K ^b	No K ferti- lizer	Increase from added K ^b
Ill. 11957 Ill. 397°1958	9.5 11.6	57 75	38** 9	17	- <u>-</u> ī	82 79	$\frac{1}{2}$
Ind. 11957 Ind. 21957 Ind. 31957 Ind. 41957 Ind. 51958 Ind. 61958 Ind. 71958	$10.2 \\ 11.3 \\ 8.6 \\ 11.9 \\ 15.0 \\ 14.8 \\ 15.2 $	63 74 91 113 99 90 95	9 1 6 1 15**	31 38 26 36 35 22 30	-1 -3 3 0 1 0 0	84 86 85 85 86 84 83	1 0 1 2 1 1 1
Ind. 81958 Iowa 171957 Iowa 181957 Iowa 191957 Iowa 20 1957	14.8 14.0 13.9 14.2	127 97 90 111 59	8 8 1 5* 16*	30 49 52 58 36	0 0 3 3 2	83 84 84 85 81	3 1* 0 0 3**
Iowa 21°1957 Iowa 21°1957 Iowa 221957 Iowa 231958 Iowa 251958	14.2 11.6 13.6 12.4	33 90 100 75	10" 3 15* 26** 1	31 52 29 43		84 83 84 81 85	2* 0 2 -1
Iowa 201958 Iowa 271958 Iowa 281958 Iowa 291958	13.0 13.4 14.7 12.8	76 94 82		35 41 37 21	-3 -2 1	78 80	1 3 0
Kan. 21958 Kan. 31958 Kan. 41958 Kan. 5 ^c 1958 Kan. 6 ^c 1958 Kan. 7 ^c 1958	5.9 14.7 15.4 11.1 17.7 16.7	46 98 108 87 103 80		22 7 9 22 7 12		86 87 85 86 82	-1 -1 -1 -1 -1 0
Mich. 1°1957 Mich. 2°1957 Mich. 3°1957 Mich. 11958 Mich. 21958 Mich. 31958 Mich. 41958	$13.2 \\ 9.8 \\ 14.2 \\ 10.6 \\ 13.8 \\ 13.5 \\ 14.9$	73 33 64 52 87 68 76	-3 -4 8 -1 11** -3	32 36 37 47 39 31 37	$ \begin{array}{c} 1 \\ -1 \\ -2 \\ -1 \\ -2 \\ -2 \\ -1 \\ -2 \\ -1 \\ \end{array} $	80 75 80 80 84 82 82 82	-4 0 1 0 -2
Minn. 11957 Minn. 2 ^c 1957 Minn. 31957 Minn. 41957 Minn. 11958 Minn. 2 ^c 1958	$15.2 \\ 16.0 \\ 16.2 \\ 16.0 \\ 16.0 \\ 16.1 \\ 18.5 \\ 19.5 \\ $	99 62 93 72 49 39	$ \begin{array}{r}1\\-8\\26^{**}\\14^{*}\\52^{**}\\14^{*}\\14^{*}\end{array} $	20 23 38 51 50 60	$ \begin{array}{c} 0 \\ -3 \\ -3 \\ -17** \\ -2 \\ 0.5 \end{array} $	80 84 78 82 85 66	2*** 2* 3* 0 -2 4

^a Increase in yield from 125 pounds of K per acre based on a regression equation fitted to treatment means of the form: $y=a+b_1K_F+b_2K_F^2$ where $K_F=pounds$ of K applied per acre. b Difference between means for 125 pounds of added K per acre and no K. ^c Data from these experiments were not used in later multiple regression

** Significant at the 1-percent level.

populations varied from 5,900 to 17,700 plants per acre and averaged 13,500 plants. Thus, poor stands were the cause of low yields and possibly limited the yield response obtained from K fertilizer applications in some experiments.

Grain yields of the plots that received no K fertilizer varied from 33 to 127 bushels per acre and averaged 79.4 bushels per acre for all experiments. Grain yields were increased significantly by K fertilizer applications in 11 of the 41 field experiments that were harvested.

The percent moisture in the grain at harvest was significantly influenced by K fertilization in only one experiment-Minnesota 1-1958. In that experiment a fertilizer application of 125 pounds of K per acre resulted in a moisture content of 33 percent as compared with 50 percent in the grain from untreated plots. The largest increase in grain yield from K fertilization, 52 bushels per acre, also occured in this experiment.

Application of K fertilizer had little effect on the shelling percentage of the corn. Increases in the shelling percentage because of K fertilization were statistically significant in six experiments, but they were small (3) percent or less) and were not associated with increases in yield.

Relation Between Percent K in Corn Leaves at Silking Time and K Content and Grain Yield of Corn Plants

The multiple regression equations and the coefficients of determination for these relationships are reported in table A-7 of the appendix. These were calculated using data from 31 field experiments.

UPTAKE OF APPLIED K BY THE CORN PLANTS

The increase in percent K in the leaves resulting from K applications (calculated as described in table 4) was inversely related to the percent K in the leaves from plots that received no K fertilizer. This relationship is shown in fig. 4. Part of the variability in the relationship illustrated in fig. 4 appeared to be related to soil texture. The increase in percent K in the leaves from K fertilization observed in six of the field experiments was much greater than that observed in the majority of the experiments. These six experiments were on loams or sands and on an organic soil. However, the increase in percent K on nine of the loams and sands appeared to follow the same relationship as that observed for finer textured silt loams and the silty clay loam. It appears that the applied fertilizer was more available in the organic soil and some of the sandy soils than it was in the finer textured soils.

The effect of different rates of application of K fertilizer on the percent K in corn leaves at silking time in relation to the percent K in leaves from plots

Fig. 5. The effect of applied fertilizer K on the percent K in corn leaves at silking time in relation to the percent K in leaves from plots that received no K fertilizer.

Fig. 4. Relation between the increase in percent K in corn leaves at silking time from K fertilizer applications of 100 pounds of K per acre and the percent K in leaves from plots that received no K fertilizer.

Fig. 6. The uptake of applied fertilizer K by corn plants at silking time in relation to the percent K in the corn leaves from plots without K fertilizer (S=13.3; L=93.1).

that received no K fertilizer is shown in fig. 5. Data from the organic soil from Minnesota and three of the loams and sands from Michigan, where larger than normal increases in percent K were observed, were not included in this portion of the study.

Within each experiment the increase in percent K in the corn leaves resulting from K fertilizer applications was essentially linear over the range of K applications used in this study. However, the data of fig. 5 suggest that the relationship would be curvilinear over a greater range of K applications.

The pounds of K per acre in the corn plants at silking time in relation to the percent K in the corn leaves at silking time and the amount of fertilizer K applied is shown in fig. 6. Including data for plant population (S) and leaf weight (L) significantly improved the degree of correlation for this relationship. The average value for these variables for all experiments was used in preparing fig. 6.

The relationship between pounds of K in the corn plants and pounds of K applied was very nearly linear over the range of K applications used in each field experiment, as was true for the relationship with percent K in the corn leaves. Futhermore, the increase in the pounds of K in the plants resulting from K fertilizer applications was inversely related to the percent K in the leaves from unfertilized plots, as was true for the increase in percent K in the leaves from applied K.

YIELD INCREASES FROM K FERTILIZER APPLICATIONS

The simple relationship between percent K in the corn leaves at silking and the increase in yield of grain obtained from an application of 125 pounds of K per acre is shown in fig. 7. This figure includes the data from all 41 field experiments from which yield data were obtained — even though drouth, excess moisture, variable stands, etc. were known to limit the yields and yield responses observed in several of the experiments. As was shown in table 5, all except one of the yield increases that were greater than 10 bushels per acre were statistically significant, and only one of those less than 10 bushels per acre was statistically significant.

Statistically significant yield increases were obtained only where the percent K in leaves from unfertilized plots was 1.7 or less. The regression equation indicates that no increase in yield would be expected when the K content of the leaves is slightly above 2.0 percent.

Since yield increases of less than 10 bushels per acre were generally not statistically significant, it is not possible with these data to establish a critical percent K in the corn leaves (above which no yield increase would be expected) with a high degree of precision. However, in all but two experiments where the percent K in the leaves was less than 1.3 there was a significant increase in yield. This indicates that the percent K in the leaves does provide a good estimate of the K status of the plants and the probable response that can be expected from applications of K fertilizer.

The relation between the K content of corn leaves at silking time from plots that received no K fertilizer and the yield increases obtained from different rates of application of K fertilizer is shown in fig. 8. Including the plant population and leaf weight as variables in the regression equation significantly increased the degree of correlation.

Fig. 7. Relation between percent K in corn leaves at silking time from plots that received no K fertilizer and the increase in yield of grain resulting from a fertilizer application of 125 pounds of K per acre.

Fig. 8. Predicted yield increases of corn grain from K fertilizer applications in relation to the percent K in corn leaves at silking time from plots that received no K fertilizer (S=13.3; L=93.1).

Table 6. Multiple regression equations relating the K contents of the corn leaves and plants at silking time and the grain yields obtained to the percent K in the corn leaves from plots without K fertilizer, the amount of K fertilizer applied and other variables based on data from 31 field experiments.

Equation		a	Ck%K	(Ck%K) ²	$\mathbf{K}_{\mathbf{F}}$	${ m K}{ m F}^2$	$K_{\rm F}({\rm Ck}\%{\rm K})$	∆%K	(Ck%K) (∆%K)	S	L	SL	K_FS	R ²
						%K in cor	n leaves at sil	king time	(%K)					
1 2	·····	$\substack{0.19\\0.01}$	$^{+0.85**}_{+1.00**}$		$^{+0.0063**}_{+0.0100**}$	-0.000016^{**} -0.000015^{*}	0.0024**	ъ.		+0.004	-0.00			0.92**
				Increas	se in %K in	corn leaves at	silking time	from K fe	ertilizer ap	oplications	(△%K)			
1a 2a		$0.19 \\ -0.04$	-0.15^{**} +0.07	0.02	$^{+0.0063**}_{+0.0100**}$	0.000016* 0.000015*				+0.004	0.00			0.66** 0.70**
					Poun	ds of K per ad	ere in corn pla	ants at sil	king time	$(\mathbf{K}_{\mathrm{p}})$				
1b 2b		$\begin{array}{c} 78.6\\ 89.2 \end{array}$	$\substack{+3.8\\+10.5}$	$^{+10.8**}_{+10.6**}$	+0.13	0.0003	-0.09*	+71**	• —18 [†]		-0.76^{**} -1.11^{**}	$^{+0.08**}_{+0.11**}$	+0.02*	0.75** 0.75**
						Yield of co	rn grain, busł	els per ac	cre (Y)					
1c 2c		83.7 58.7	$^{+58**}_{+78**}$	-13^{**} 19^{**}	+0.17	0.0007	0.095*	+53**	* —31**	-4.1^{*} -3.3^{\dagger}	-0.97^{**} -0.93^{**}	$^{+0.08**}_{+0.07**}$	+0.01	0.45^{**} 0.46^{**}
					Increase in	n yield of corn	grain from H	K fertilizer	r applicati	ons $(\triangle \mathbf{Y})$				
1d 2d		-5.0 -4.6	24** 18**	$^{+6**}_{+4**}$	+0.25**	0.0008**	0.10**	+40**	* —16**	$^{+1.5^{\dagger}}_{+1.1^{\ddagger}}$	$^{+0.29**}_{+0.21*}$	$\stackrel{0.017*}{0.009}$	+0.0063‡	0.61^{**} 0.64^{**}

** Significant at the 1-percent level. * Significant at the 5-percent level. † Significant at the 10-percent level. ‡ Significant at the 20-percent level.

EFFECTS OF DIFFERENT VARIABLES ON THE K CON-TENT OF THE PLANTS AND THE GRAIN YIELDS.

The multiple regression equations and the coefficients of determination (R^2) for relationships between the percent K in the corn leaves at silking time, the K contents of the plants, and the grain yields are reported in table A-7 of the appendix and are partially summarized in table 6.

There was little difference in the R² values obtained whether a variable for the amount of K applied (K_F) was included or a variable for the increase in percent K in the corn leaves resulting from K fertilizer applications $(\Delta\% K)$ was included. $\Delta\% K$ was highly correlated with K_F , as is indicated in fig. 5.

Including variables for plant population (S) or leaf weight (L) did not increase the R² value for % K or $\Delta\% K$, but the coefficients for these variables were significant in the relationships with the pounds of K per acre in the corn plants at silking time (K_p) , the yield of corn grain (Y), and the increase in yield of corn grain resulting from K fertilizer applications (ΔY) . Thus, it appears that the number of plants per acre and the size of the plants, as indicated by leaf weights, had little effect on the concentration of K in the plants but did influence the total amount of K taken up per acre by the plants and the final yield of grain per acre.

Relation Between Exchangeable Soil K and the K Content and Grain Yield of Corn Plants

K CONTENT OF CORN PLANTS

The relation between exchangeable K in field-moist soil samples from the 0-6 inch depth and the percent K in corn leaves at silking time is shown in fig. 9. The data for the organic soil from Minnesota is shown in the following figures, but was not used in calculating the regression equations. As would be expected, the

percent K in the corn leaves from the organic soil is low in relation to the amount of exchangeable K when exchangeable K is expressed on a dry-weight basis as was done here. The weight per unit volume is very much less for organic than for mineral soils. The data from a Kansas soil (No. 7-1958) is also shown in the figures by the symbol "?" but is not included in the regressions. This was an unusual soil with a silt loam to silty clay loam texture in the surface 18 inches underlain with sandy material. The exchangeable K in the 6-12 inch layer of this Kansas soil was much higher than in the 0-6 inch layer.

The percent K in the corn leaves is highly correlated with the exchangeable K content of the field-moist, 0-6 inch soil samples. However, the relationship between the K in the leaves and in the soil is very different for the fine-textured soils than for the coarse-textured soils. The percent K in the corn leaves at any given level of exchangeable K in the soils is much higher on the loams and sands than on the silt loams and the silty clay loam. It appears obvious that a given level of exchangeable K generally indicates a higher level of K availability in the coarse-textured soils. It would have been desirable to have grouped the soils according to percent clay rather than this crude textural classification that was used, but data from mechanical analyses of the soils were not available.

The relation between exchangeable K in field-moist, 0-6 inch soil samples and the pounds of K per acre in the corn plants at silking time is shown in fig. 10. Since the amount of K per acre in the corn plants was shown to be related to the number of plants per acre, the values used in fig. 10 were adjusted to a mean plant population of 13,300 plants per acre according to the regression equation: adjusted $K_p = K_p - 4.55$ (S-13.3). As was indicated by the data in fig. 3, the amount of K in the plants at silking time generally represented about 90 percent of the total K taken up by the plants during the season.

The amount of K in the corn plants was highly

Fig. 9. Relation between exchangeable K in field-moist soil samples from the 0-6 inch depth and percent K in corn leaves at silking time from plots that received no K fertilizer.

Fig. 10. Relation between exchangeable K in field-moist soil samples from the 0-6 inch depth and the pounds of K per acre in the above-ground parts of corn plants at silking time from plots that received no K fertilizer.

418

Ö

Fig. 11. Relation between exchangable K in field-moist soil samples from the 0-6 inch depth and the increase in percent K in corn leaves at silking time resulting from a fertilizer application of 100 pounds of K per acre.

correlated with the exchangeable K in the surface soil for both textural groups of soils. At any given level of exchangeable K in the soil, there was more K in the corn plants from the coarser textured loams and sands than from the finer textured silt loams and the silty clay loam.

INCREASE IN K CONTENT OF CORN PLANTS FROM K FERTILIZER APPLICATIONS

The increase in percent K in the corn leaves at silking time resulting from K fertilizer applications (calculated as described in table 4) was inversely related to the level of exchangeable K in field-moist, 0-6 inch soil samples as shown in fig. 11. At low levels of exchangeable soil K, K fertilizer applications increased the percent K in corn leaves appreciably, but at high levels of exchangeable K in the soil there was no increase in percent K in the leaves as a result of K fertilizer applications. There was no significant difference in the relationship between the two textural groups of soils. It should be remembered, however, that the leaves from the unfertilized plots on the coarser textured soils were higher in percent K (see fig. 9) and the increase in percent K from K fertilizer applications is inversely related to the percent K in the leaves from plots without K fertilizer (see fig. 4). Therefore, this similarity observed in fig. 11 does not necessarily indicate a similar availability of added K in the two groups of soils.

The predicted percentages of K in corn leaves at silking time as influenced by the exchangeable K level of the soil and the amount of K fertilizer applied are shown in fig. 12. This relationship is based on data from

Fig. 12. Predicted effect of K fertilizer applications on the percent K in corn leaves at silking time as influenced by the level of exchangeable K in the field-moist 0-6 inch layer of soil (T=5).

31 field experiments. The predicted increase in percent K is large at low levels of exchangable K, but becomes very small as the exchangeable K in the surface soil approaches 300 pp2m. Including a variable for soil texture in the regression equation significantly increased the degree of correlation. The relationship shown in

fig. 12 was calculated using the coded value of 5 for a silt loam texture. Higher percentages of K in the leaves would be predicted for coarser textured soils.

The increase in pounds of K per acre in the corn plants resulting from K fertilization (calculated as described in table 4) was also inversely related to the level of exchangeable K in the field-moist soil. This is shown in fig. 13. Over most of the range of the observations there was no marked difference in the two textural groups of soils, although uptake of fertilizer K tended to be lower on the coarse-textured soils. Two of the sandy soils with high levels of exchangeable K showed negative increases in pounds of K in the plants following the application of K fertilizer, but these were not statistically significant and are probably due to experimental error. The regressions indicate that there would be no increase in the amount of K taken up by the corn plants from K fertilizer applications where exchangeable K in the soil exceeds 300 to 400 pp2m, but at low levels of exchangeable K as much as half of the applied K may be taken up by the corn plants.

The predicted pounds of K per acre found in corn plants at silking time as influenced by the amount of K fertilizer applied and the level of exchangeable K in the surface soil are shown in fig. 14. The uptake of fertilizer K increased linearly with the amount of K fertilizer applied over the range of applications used in this study, but much more was taken up at low levels of exchangeable soil K than at high levels. Including data for soil texture and plant population in the multiple regression equation significantly increased the degree of correlation. The relationship shown in fig. 14 was calculated for a silt loam texture (T=5) and for the average stand (S) of 13,300 plants per acre.

GRAIN YIELD INCREASES FROM K FERTILIZER APPLICATIONS

The relation between the level of exchangeable K in field-moist, 0-6 inch soil samples and the increases in grain yield obtained from K fertilizer applications is shown in fig. 15. The degree of correlation between exchangeable K in the soil and the yield increases was low for both textural groups of soils. This resulted from the failure to obtain significant yield increases in many experiments where the exchangeable K in the soil was low. There were no significant yield increases where exchangeable K exceeded 160 pp2m except on the organic soil from Minnesota which had 192 pp2m of exchangeable K. No significant yield increases occurred on sands. Significant yield increases of 11 and 15 bushels per acre were obtained on two loam soils with exchangeable K contents of 80 and 103 pp2m, respectively. The large increases in yield of greater than 20 bushels per acre occurred on silt loam soils with exchangeable K contents ranging from 73 to 119 pp2m.

Since, as was shown earlier, the added fertilizer K was taken up by the corn plants to increase the percent K in the plants grown on all of these low K soils, the lack of response must be explained in other ways than the failure of the plants to take up the fertilizer K. Poor stands and drouth limited the yields and yield increases in some of the experiments. In other experiments it appears that the plants from sites with low levels of

Fig. 13. Relation between exchangeable K in field-moist soil samples from the 0-6 inch depth and the increase in pounds of K per acre in the above-ground parts of the corn plants at silking time resulting from K fertilizer applications of 100 pounds of K per acre.

Fig. 14. Predicted pounds of K per acre in corn plants at silking time as influenced by the amount of K fertilizer applied and the level of exchangeable K in the field-moist 0-6 inch layer of soil (T=5; S=13.3).

exchangeable K contained adequate amounts of K. This was especially true for sandy soils under favorable moisture conditions.

The predicted yield increases to be expected from K fertilizer applications at different levels of exchange-

Fig. 15. Relation between exchangeable K in field-moist soil samples from the 0-6 inch depth and the increase in grain yield obtained from a fertilizer application supplying 125 pounds of K per acre.

Fig. 16. Predicted increases in yield of corn grain from different rates of application of K fertilizer as influenced by the level of exchangeable K in the field-moist 0-6 inch layer of soil (S=13.3; T=5).

able soil K in the 0-6 inch layer of field-moist soil are shown in fig. 16. The relationship illustrated was calculated for a plant population of 13,300 and a soil of silt loam texture. This relationship is very similar to that obtained by Dumenil, et al. (7) with data from 144 field experiments in Iowa.

EFFECT OF SUBSOIL K AND OTHER VARIABLES ON THE RELATIONSHIPS.

Multiple regression equations and the coefficients of determination for the relationships between exchangeable K in the field-moist soil and the K contents and grain yields of the corn plants are reported in tables A-8 and A-9 of the appendix and are partially summarized in table 7. These were calculated using data from 31 field experiments.

The regression coefficients for exchangeable K in the field-moist 0-6 inch layer of soil (K_{S1}) were significant in all the equations for % K, K_P and Y, and the curvilinear component (K_{s1}^2) was significant in these relationships except for the relation with K_P . For the relationships concerning changes resulting from K fertilizer applications, Δ %K and Δ Y, the values for $K^2{}_{\rm S1}$ were consistently significant but those for K_{s_1} were not. The regression coefficients for exchangeable K in the 6-12 inch layer of soil (K_{s_2}) were significant in many of the equations and were significant in all of the equations for $\Delta\%$ K and Δ Y in which only changes from applied K fertilizer were being considered. However, deleting this variable from the equations generally resulted in little reduction in the R² value. The coefficients for exchangeable K in layers of soil below 12 inches varied considerably in their significance. Deleting these variables generally resulted in relatively small decreases in the R^2 values, except in the relationships with yield (Y) where the coefficients for K_{s_5} and K_{s_6} were highly significant and deletion of these variables reduced the R² value appreciably.

The linear component for the amount of K fertilizer applied (K_F) was highly significant in all equations, except for that with the yield of grain (Y). The curvilinear component (K_F^2) was significant in equations for $\Delta\%$ K and Δ Y where only changes resulting from applied K fertilizer were being considered. The interaction between K fertilizer applied and exchangeable K in the 0-6 inch layer of soil $(K_{s1}K_F)$ was significant in all equations, except those for the relationship with yield of grain (Y).

The coefficients for soil texture (T) and/or the interaction between texture and exchangeable K in the 0-6 inch layer ($K_{s1}T$) were significant for all the relationships, except those concerned with the increase in percent K in the leaves from K fertilizer applications ($\Delta\%$ K). The coefficients for plant population (S) were highly significant in the equations for pounds of K in the corn plants (K_p) and yield of grain (Y) but not for the other relationships. Deleting the variables for soil texture reduced the R² value for %K, and deleting the variables for soil texture and plant population reduced the R² values for K_p and Y appreciably, but deleting these variables had little effect on the R² values of $\Delta\%$ K and Δ Y where only increases from K fertilizer applications were being considered.

In general, it appears that the exchangeable K in the field-moist, 0-6 inch layer of soil (K_{s1}) and the amount of K fertilizer applied (K_F) were important variables to be considered in all of the relationships with the K contents of the corn plants and the yields of corn grain. The relationships with these variables were curvilinear, and the interactions between these variables were significant. The amount of exchangeable K in the layers of soil below 6 inches appeared to have some value in improving the correlations in most of the relationships.

A given level of exchangeable K in the field-moist

421

Equa-	_								Partial regi	ression coef	ficients (bi)							
tion No.	a	${f K_{S1}}{{ m x10^3}}$	$\substack{K_{\rm S1}^2\\ x10^6}$	$rac{K_{S2}}{x10^3}$	$\substack{K_{S1}K_{S2}\\x10^5}$	$\substack{\mathbf{K}_{\mathbf{S3}}\\\mathbf{x10^{3}}}$	${f K_{S4}}{{ m x10^3}}$	$rac{K_{S5}}{x10^3}$	${f K_{86} \atop x10^3}$	K _{S3-6} x10 ³	K _{S1} K _{S3-6} x10 ⁵	K _{S2} K _{S3-6} x10 ⁵	${f K_F}{{ m x10^3}}$	${{ m K}_{{ m F}}}^2_{{ m x}10^6}$	$\frac{K_{\rm S1}K_{\rm F}}{{\rm x10^5}}$	${f T}{{f x}10^2}$	${\rm K_{S1}T\atop x10^4}$	${\mathop{\rm S}_{{ m x10^3}}}$	\mathbb{R}^2
					1			%K in	corn leaves a	at silking ti	ne (%K)								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$).47).52).52).28 [.11).69).38	+20** +20** +15** +21** +13** +15** +15** +11**	22** 22** 81** 13* 17** 13* 13*	$+2.6^{\ddagger}$ +2.7^{\ddagger} 8.9 +0.5 4.6^{*} 	+21**	6.1* 6.4* 6.0* 	15*** 15*** 	+25** +25** 	4.4 4.7 	+37** +5.5*	<u>1.2</u>	42 	$+9.3^{**}$ +9.4^{**} +9.0^{**} +9.3^{**} +9.1^{**} +9.2^{**} +9.2^{**}		$\begin{array}{c} -2.2* \\ -2.2* \\ -2.0* \\ -2.1* \\ -2.0* \\ -2.1* \\ -2.1^{*} \\ -2.1^{\dagger} \end{array}$	$\begin{array}{c}12^{\ddagger} \\11 \\27^{\ast\ast} \\ +6 \\21^{\ast\ast} \\6 \\6 \end{array}$	$\begin{array}{c} -12^{\dagger} \\ -13^{\ast} \\ +3^{\dagger} \\ -21^{\ast\ast} \\ +1 \\ -11 \end{array}$	+6.6	0.69^{**} 0.69^{**} 0.62^{**} 0.59^{**} 0.58^{**} 0.42^{**}
						In	crease in 9	%K in cor	n leaves from	n K fertiliz	er applicati	ions ($\triangle\%$ K	()						
1a (2a (3a (4a ($0.26 \\ 0.13 \\ 0.26 \\ 0.28$	-2.5^{\dagger} -1.1^{\dagger} -1.6^{*} -3.4^{**}	$^{+6.2**}_{+15.3**}_{+7.0**}_{+8.3**}$	-2.7** -10.1** -2.8**	+1.2	+0.4	—1.7 	+4.7*	2.5‡ 	$+\frac{8.3^{*}}{+0.4}$	—11.6** 	+10.8**	$+9.1^{**}$ +9.1^{**} +9.1^{**} +9.1^{**}		-2.0** -2.0** -2.0** -2.0**	—1.5 	+2.2	+2.4	0.78** 0.79** 0.77** 0.73**
Pounds per acre of K in corn plants at silking time (K_p)																			
1b6 2b6 3b	54.8 31.2 92.5 39.4 26.7	+798** +768** +876** +853** +295**	7,118** 308‡ 143 	-941 * +1 -97	+1,906***	$+\frac{206}{101}$ +101	561*	+587†		+2,383**	+114		$^{+423**}_{+422**}_{+423**}_{+395**}_{+228**}$	-271 -233 -250 	-96^{*} -99^{\dagger} -98^{\dagger} -99^{\dagger} -115^{\dagger}	$\begin{array}{r}419^{*} \\ +961^{\dagger} \\ +1,571^{**} \\ +1,640^{**} \end{array}$	$^{+166*}_{824*}$ $^{-1,162**}_{-1,265**}$	+3,044** +3,676** +3,382** +3,350**	0.66^{**} 0.61^{**} 0.59^{**} 0.59^{**} 0.44^{**}
								Yield of	corn grain,	bushels per	acre (Y)								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	74.4 54.1 14.8 25.1 29.9 57.6	$+620^{**}$ $+399^{*}$ $+292^{**}$ $+355^{*}$ $+410^{**}$ $+311^{**}$	-803^{**} $-2,441^{**}$ -613^{**} -524^{*} -571^{*} -715^{**}	$^{+97}_{$	+697**	—36 —88 	279* 		+1,316**	+1,809** +583**	*	<u>1,204</u> *	$^{+199*}_{+192^{\dagger}}_{+20^{\dagger}}_{+211}_{+212^{\dagger}}_{+264^{\dagger}}$	$\begin{array}{r}590 \\626 \\612 \\645 \\647 \\787 \end{array}$	-48^{\dagger} -42 -42 -50 -50 -66	+1,021** +474** +672** +960* +1,038**	$\begin{array}{c}561^{*} \\68 \\142^{*} \\380^{\dagger} \\361^{\ddagger} \end{array}$	+4,789** +4,393** +4,640** +3,601** +3,545**	0.62^{**} 0.48^{**} 0.45^{**} 0.36^{**} 0.35^{**} 0.08^{*}
						I	ncrease in	yield of c	orn grain fro	om K fertili	zer applica	tions ($\triangle Y$)						
1d	-10.4 4.4 -8.2 -4.5 -12.1 -3.4 12.3	$\begin{array}{r} -44 \\ +139^{\dagger} \\ -68 \\ -53 \\ +20 \\ -117^{\dagger} \\ -137^{**} \end{array}$	$\begin{array}{r} + 314^{**} \\ -1,067^{*} \\ + 264^{*} \\ + 234^{*} \\ + 279^{*} \\ + 326^{**} \\ + 307^{**} \end{array}$	-234^{**} -608^{**} -207^{**} -150^{**} -136^{**} 	+345***	+98‡ +143** 	+153*	60 	63 	+276 +60	— <u>160</u>	52	+249** +257** +249** +251** +254** +249** +253**	797* 800* 793* 792* 796* 792* 803*	$\begin{array}{c}58* \\62** \\58** \\59** \\60** \\58* \\59* \end{array}$	$+465^{*}$ +257** +343 [†] +241** +519** +279 [‡]	$69 + 50^{\ddagger} + 6 + 14 - 178^{\ddagger} - 61$	+186 53 +248 +240 +85 +279	0.42** 0.42** 0.41** 0.38** 0.38** 0.32** 0.29**

Table 7. Multiple regression equations relating the K contents and the grain yield of corn to exchangeable K in field-moist soils, the amount of K fertilizer applied and other variables based on data from 31 field experiments.^a

^a The equations have the general form: $\hat{\mathbf{Y}} = \mathbf{a} + \Sigma \mathbf{b}_i \mathbf{X}_i$. ^{**} Significant at the 1-percent level. ^{*} Significant at the 5-percent level. [†] Significant at the 10-percent level. [‡] Significant at the 20-percent level.

soil indicated a higher availability of K to plants in coarse-textured soils than in finer textured soils.

Plant population was an important variable to be considered in predicting total grain yields or pounds of K per acre in the corn plants but was not significant in predictions of percent K in the plants or the increase in grain yield because of K fertilizer applications.

EFFECT OF DETERMINING EXCHANGEABLE K ON MOIST VS. DRIED SOIL SAMPLES

The coefficients of determination (R²) for different multiple regression equations relating K contents and yields of the corn plants to exchangeable K determined on field-moist, air-dry and oven-dry soil samples are reported in table 8. The multiple regression equations obtained using exchangeable K values for air-dry and oven-dry soil samples are reported in table A-10 of the appendix. The degree of correlation is consistently as high or higher for the field-moist values as for the airdry or oven-dry values. The fact that the degree of correlation for the field-moist values is considerably higher in several cases indicates that exchangeable K determined on field-moist soil samples provides a better estimate of K uptake by corn plants in the field than does the exchangeable K determined on dry soil samples. This is in agreement with the results of previous studies (2, 9).

Table 8. Effect of drying soil samples prior to determination of exchangeable K on the degree of correlation between exchangeable K in the soil and the yield, K content and responses of corn to K fertilizer applications.

			\mathbb{R}^2	
		Field moist	Air dry ^a	Oven dry
	%K in corn leaves (%K)			
${f K_{S1}, K_{S1}^2, K_{S2}, K_{S3}, K_{S4}, F} \ K_{S1}, K_{S1}^2$	$K_{S5}, K_{S6}, K_F, K_F^2, K_{S1}K_F, T, K_{S1T}K_F, K_F^2, K_{S1}K_F, T, K_{S1T}$	0.69^{**} 0.56^{**}	0.51** 0.42**	0.56** 0.45**
	Increase in %K (\triangle %K)			
$\substack{K_{\rm S1},K_{\rm S1}^2,K_{\rm S2},K_{\rm S3},K_{\rm S4},H\\K_{\rm S1},K_{\rm S1}^2}$	$K_{S5}, K_{S6}, K_F, K_F^2, K_{S1}K_F$	0.78** 0.73**	0.75** 0.73**	0.69** 0.65**
	Pounds of K/acre (Kp)			
${f K_{S1}, K_{S1}^2, K_{S2}, K_{S3}, K_{S4}, H_{K_{S1}, K_{S1}^2}}$	$K_{S5}, K_{S6}, K_F, K_{F^2}, K_{S1}K_F, T, K_{S1T}, K_F, K_F^2, K_{S1}K_F, T, K_{S1T}, K_{S1}K_F, K_{S1}K_F$	S 0.61** S 0.59**	0.60** 0.50**	0.60** 0.51**
	Yield of grain (Y)			
${f K_{S1}, K_{S1^2}, K_{S2}, K_{S3}, K_{S4}, I} \atop {K_{S1}, K_{S1^2}}$	$K_{S5}, K_{S6}, K_F, K_{F^2}, K_{S1}K_F, T, K_{S1T}, K_F, K_F, K_F^2, K_{S1}K_F, T, K_{S1T}, K_{S1T}, K_{S1}K_F, K_{S1}$	S 0.62** S 0.35**	0.53** 0.34**	0.43** 0.34**
	Yield increase $(\triangle Y)$			
${f K_{S1}, K_{S1}^2, K_{S2}, K_{S3}, K_{S4}, H_{S1} \\ K_{S1}, K_{S1}^2}$	$K_{S5}, K_{S6}, K_F, K_{F^2}, K_{S1}K_F, T, K_{S1T}, K_F, K_F, K_F^2, K_{S1}K_F, T, K_{S1T}, K_{S1T}, K_{S1}K_F, K_{S1}$	S 0.42** S 0.32**	0.39** 0.24**	0.27** 0.20**

^a Air dried for at least 2 weeks before exchangeable K was determined in Soil Testing Laboratory. ^{**} Significant at the 1-percent level.

The relationship between the exchangeable K content of oven-dry soil samples from the 0-6 inch layer and the percent K in the corn leaves at silking time is shown in fig. 17. This can be compared with the relationship illustrated in fig. 9 for exchangeable K determined on field-moist soil samples. In the relationship for the dry soils, as with the moist soils, there was a definite difference between the coarse and fine-textured soils. For both textural groups of soils the correlation coefficients are lower for the oven-dry samples than for the field-moist samples. As was shown in fig. 1,

Fig. 17. Relation between exchangeable K in oven-dry soil samples from the 0-6 inch depth and percent K in corn leaves at silking time from plots that received no K fertilizer.

exchangeable K in most of the loams and sands decreased on drying, whereas exchangeable K in the silt loams and the silty clay loam generally increased on drying. Therefore, drying increased the differences attributable to soil texture in the relationship between leaf and soil K.

Comparison of Field and Greenhouse Results

Soil samples from the 1957 field experiments were used in a greenhouse study for which the results were reported previously (2). In the greenhouse study exchangeable K in field-moist soil samples was very highly correlated with the K content of millet plants grown on the soil samples. In this regard the greenhouse and field results were similar. Recovery of added K, as measured by the difference in K content of plants from pots that received K fertilizer and those that received no K fertilizer, however, was much higher in the greenhouse than in the field.

SUMMARY AND CONCLUSIONS

Uniform field experiments in which K fertilizers were applied at different rates (0, 25, 50, 75, 100 and 125 pounds of K per acre) for corn were established at 51 locations in six North Central states during 1957 and 1958. Laboratory analyses were made on soil samples from each field experimental site. Data concerning grain yields and K contents of the corn plants were obtained from 41 of the field experiments.

Exchangeable K in field-moist soil samples from the 0-6 inch layer of soil varied from 64 to 935 pp2m and averaged 210 pp2m.

At the time of silking, the corn plants contained 90 percent of the total K taken up during the season, and K uptake appeared to be complete by 10 to 15 days after silking.

The amount of K in plants at silking time from plots that received no K fertilizer varied from 22 to 213 pounds per acre and averaged 78 pounds. The average increase in K content of the plants resulting from K fertilizer application was equal to 23 percent of the amount applied.

Grain yields from plots that received no K fertilizer varied from 33 to 127 bushels per acre and averaged 79 bushels. Grain yields were significantly increased in 11 experiments by application of K fertilizer. Applications of K fertilizer had little or no effect on the shelling percentages. The applications decreased moisture percentages in the grain at harvest in only one experiment, where a large increase in the grain yield also resulted.

The K content of the corn plants was highly correlated with the exchangeable K content of the soil. However, at a given level of exchangeable K in the soil, plants grown on coarse-textured loams and sands contained more K than plants grown on finer textured silt loam soils.

Uptake of fertilizer K was inversely related to the level of exchangeable K in the soil and to the percent K in corn leaves from plots that received no fertilizer K. Increases in yield of corn grain obtained from K fertilizer applications were more highly correlated with the percent K in corn leaves at silking time than with exchangeable K contents of the soils.

The number of corn plants per acre did not appear to influence the percent K in the plants but did influence total K uptake per acre and yield of grain.

Exchangeable K determined on field-moist samples provided a better estimate of the amount of K in corn plants and increases in grain yields caused by K fertilizer applications than did exchangeable K determined on air-dry or oven-dry soil samples.

Including data for the exchangeable K contents of subsoil layers in multiple regression equations relating K contents of the corn plants and yield of corn grain to exchangeable K contents of the soils generally improved the degree of correlation.

- 1. Attoe, O. J. Potassium fixation and release in soils occurring under moist and drying conditions. Soil Sci. Soc. Amer. Proc. 11:145-149. 1947.
- Barber, S. A. *et al.* North central regional potassium studies: II. Greenhouse experiments with millet. Purdue Univ. Agr. Exp. Sta. Res. Bul. 717. (North Central Regional Publ. No. 123) 1961.
- Bower, C. A., G. M. Browning and R. A. Norton. Comparative effects of plowing and other methods of seedbed preparation on nutrient element deficiencies in corn. Soil Sci. Soc. Amer. Proc. 9:141-146. 1945.
- 4. Bower, C. A. and W. H. Pierre. Potassium response of various crops on a high-lime soil in relation to their contents of potassium, calcium, magnesium and sodium. Jour. Amer. Soc. Agron. 36:608-614. 1944.
- 5. Bray, R. H. Soil-plant relations. 1. The quantitative relation of exchangeable potassium to crop yields and crop response to potash additions. Soil Sci. 58: 305-324. 1944.
- Davidson, J. Removal of plant food in thinning corn. Jour. Amer. Soc. Agron. 18:962-967. 1926.
- Dumenil, L., J. Hanway, H. R. Meldrum and J. T. Pesek. Your corn may need potassium. Iowa Farm Sci. 13:235-236. May 1959.
- Hammond, L. C., W. H. Allaway and W. E. Loomis. Effects of oxygen and carbon dioxide levels upon the absorption of potassium by plants. Plant Physiol. 30:155-161. 1955.
- 9. Hanway, J. J. *et al.* North central regional potassium studies: I. Field studies with alfalfa. (North Central Regional Publication No. 124.) Iowa Agr. and Home Econ. Exp. Sta. Res. Bul. 494. 1961.
- Hanway, J. J., and A. D. Scott. Soil potassiummoisture relations: II. Profile distribution of exchangeable K in Iowa soils as influenced by drying and rewetting. Soil Sci. Soc. Amer. Proc. 21:501-504. 1957.
- 11. Hoagland, D. R. and T. C. Broyer. General nature of the process of salt accumulation by roots with description of experimental methods. Plant Physiol. 11:471-507. 1936.
- 12. Hoffer, G. N., and B. A. Krantz. Deficiency symptoms of corn and small grain. In "Hunger Signs in Crops." pp 59-105. American Society of Agronomy and National Fertilizer Association, Washington, D. C.

- Jones, U. S. Availability of humate potassium. Soil Sci. Soc. Amer. Proc. 12:373-378. 1947.
- Lawton, K. Influence of soil aeration on the growth and accumulation of nutrients by corn plants. Soil Sci. Soc. Amer. Proc. 10:263-268. 1946.
- Lawton, K., and R. L. Cook. Potassium in plant nutrition. In A. G. Norman, ed. Advances in Agronomy. 6:253-298. 1954. Academic Press Inc., New York.
- Lawton, K., and M. B. Tesar. Yield, potassium content and root distribution of alfalfa and bromegrass grown under three levels of applied potash in the greenhouse. Agron. Jour. 50:148-151. 1958.
- Luebs, R. E., G. Stanford and A. D. Scott. Relation of available potassium to soil moisture. Soil Sci. Soc. Amer. Proc. 20:45-50. 1956.
- Matthews, B. C., and C. G. Sherrell. Effect of drying on exchangeable potassium of Ontario soils and the relation of exchangeable potassium to crop yield. Can. Jour. Soil Sci. 40:35-41. 1960.
- Page, J. B., C. J. Willard and G. W. McGuen. Progress report on tillage methods in preparing land for corn. Soil Sci. Soc. Amer. Proc. 11:77-80. 1946.
- Pierre, W. H., and C. A. Bower. Potassium absorption by plants as affected by cationic relationships. Soil Sci. 55:23-36. 1943.
- Pratt, P. F., W. W. Jones and F. T. Bingham. Magnesium and potassium content of orange leaves in relation to exchangeable magnesium and potassium in soil at various depths. Amer. Soc. Hort. Sci. 70:245-251. 1957.
- Sayre, J. D. Mineral accumulation in corn. Plant Physiol. 23:267-281. 1948.
- Shaw, R. H., and H. C. S. Thom. On the phenology of field corn, the vegetative period. Agron. Jour. 43:9-15. 1951.
- Shaw, R. H., and H. C. S. Thom. On the phenology of field corn, silking to maturity. Agron. Jour. 43: 541-546. 1951.
- Tyner, E. H. The relation of corn yields to leaf nitrogen, phosphorus, and potassium content. Soil Sci. Soc. Amer. Proc. 11:317-327. 1947.
- 26. Van der Paauw, F. Relation between the potash requirements of crops and meteorological conditions. Plant and Soil. 9:254. 1958.
- Wadleigh, C. H., and L. A. Richards. Soil moisture and the mineral nutrition of plants. In E. Truog, ed. "Mineral Nutrition of Plants." pp. 411-450. The University of Wisconsin Press, Madison, Wisconsin.

											6				
	Experiment	Year	Soil type	Location (county)	%Slope	Internal drainage	Kemarks conditions, etc.)	Experiment		Year	Soil type	Location (county)	$\phi_o^{\prime o}_{ m Slope}$	Internal drainage	Kemarks conditions, etc.)
III.	1	1957	Cisne sil	Jasper	0-1	poor	wet early season,	Kan.	1	1957	Bates sil	Cherokee	_	_	-
Ill.	397	1958	Cisne sil	Richland $\frac{1}{2}$	-11/2	poor	very wet season	Kan. Kan	545	1957 1957 1957	Labette sil	Johnson Johnson	_	Ξ	-
Ind. Ind.	$\frac{1}{2}$	$1957 \\ 1957$	Fincastle sil Fincastle sil	Tippecanoe Clinton	$1-2 \\ 1-2$	slow slow	many missing plots very wet at plant-	Kan. Kan.	678	1957 1957 1957	Laurel fsl Wabash sil	Riley Riley Charachea	=	_	Ξ
Ind.	3	1957	Elston 1	Tippecanoe	0-5	porous	poor stand, severe wind lodging in	Kan. Kan.	1 2 2	1958 1958 1958	Summit sil Boone 1	Leavenwor	th —	=	Ξ
Ind. Ind.	4 5	1957 1958	Fincastle sil Fincastle sil	Tippecanoe Parke	1-2 0-2	slow fair	d o u b l e normal rainfall, N defi-	Kan. Kan. Kan. Kan.	54567	1958 1958 1958 1958	Cherokee sil Geary sil Sarpy sil	Cherokee Riley Riley Lefferson			Ē
Ind.	6	1958	Crosby fsl	Cass	1-3	good	d o u b l e normal rainfall, N defi-	Mich.	1	1957	Fox 1	Kalamazo	o 5	good	wet early season
Ind.	7	1958	Miami 1	Fulton	0-2	good	d o u b l e normal rainfall, N defi- cient	Mich.	2	1957	Oshtema s	Kalamazoo	o 5	exces-	growth wet early season
Ind.	8	1958	Sidell sil	Tippecanoe	2-4	good	d o u b l e normal rainfall, N defi- cient	Mich.	3	1957	Metea sl	Ingham	flat	mod. good	tasseling wet early season uneven stand and
Iowa	17	1957	Floyd sil	Fayette	-	-	dry in early Aug-	Mich.	4	1957	Houghton	Clinton		-	discarded because
Iowa	18	1957	Carrington sil	Fayette	-		dry in early Aug-	Mich	1	1050	Ean al	Valamaaa			ficiency
Iowa	19	1957	Fayette sil	Allamakee	-	-	very good condi- tions	Mich.	1	1930	FOX SI	Kalamazo	slight	good	season; harvestec early to permit en-
Iowa Iowa	20 21	1957 1957	Clyde sil Carrington sil	Bremer Bremer	_	_	severe drouth in August K deficiency symp	Mich.	2	1958	Kalamazoo sl	Kalamazoo	o none	mod.	silage dry, cool early season; frost before fully moture
Iowa Iowa	22 23	1957 1957	Fayette sil Weller sil	Dubuque Lee	3	=	toms early large "starter" re- sponse, very good	Mich.	3	1958	Conover 1	Ingham	very slight	good	dry, cool early season; quackgrass s p r a y retarded early growth; frost
Iowa	24	1957	Carrington sil	Fayette	-	—	discarded because	Mich.	4	1958	Parkhill 1	Sanilac	none	tiled	dry, cool early
Iowa	25	1957	Fayette sil	Allamakee	2		low moisture all								when frosted.
Iowa	. 26	1957	Fayette sil	Allamakee			low moisture all summer; nonuni-	Minn.	1	1957	Hubbard ls	Anoka	0-2	very rapid	-
							form stand and growth	Minn.	2	1957	Zimmerman	is Sherburne	2-3	very rapid	-
Iowa	27	1957	Clyde sil	Fayette	<1	_	dry at planting, variable stand, late	Minn. Minn. Minn	3 4 1	1957 1957 1958	Skyberg sil Skyberg sil Floyd sil	Dodge Mower Dodge	2-3 2-3	poor poor tiled	
Iowa	. 28	1957	Webster sil	Story	_	-	wet June, good season	Minn.	2	1958	Organic	Wright	0-1	tiled	cool June & July immature at har-
lowa	29	1957	Primghar sil	O Brien	2	good									vest

Table	A-1.	General characteristics	of the sites	on which regional
		field experiments with	corn were	conducted.

				Basic fertil	izer trea	tment	(lbs. /A.)	ofa K sr	Plan	ting	
Experime	ent	Year	Previous crop	Broa	dcast	Pla attac	anter chment	thod lying rtilize	4		Hybrid
				N	P_20_5	Ν	$P_{2}O_{5}$	Me app fe	Date	$Method^b$	
III.	1	1957		280	200			D.I.	6/11	3/40"	
111.	397	1958	Small grain	100	110			Band	5/29		Pioneer 339
Ind.	1	1957	Soybeans	210	135			P.U.	6/3	******	Ind. 813
Ind.	2	1957	Clover-timothy	150	135			$\mathbf{D}.\mathbf{I}.$	6/3		Ind. 813
Ind.	3	1957	Corn	150	135			P.U.	5/30		Ind. 813
Ind.	4	1957	Wheat	150	135		••••	P.U.	6/5		Ind. 813
Ind.	5	1938	Clover (hog pasture)	100	135			P.U.	5/15		
Ind.	07	1938	Alfalfa	100	135	16	72	P.U.	5/23	1/8-9"	
Ind.	0	1938	Dairy pasture	100	135	16	72	P.U.	5/23	1/6"	
Ind.	17	1950	Alf-lf Leller	100	133	10	22	P.U.	5/19	2/12.1"	D: 010
Iowa	10	1057	Alfalfa, Ladino	80	120	12	48	P.U.	5/24	4/40"	Pioneer 349
Towa	10	1957	Alfalfa broma	80	120	12	48	P.U.	5/24	3/10/	Pioneer 349
Lowa	20	1957	Alfalfa	80	120	12	40	P U	5/23	4/40/	Finher 549
Iowa	20	1957	Alfalfa	80	120	12	40	P U	5/9	4/40"	Funks G-33A
Iowa	22	1957	Alfalfa	80	120	12	40	P U	5/94	9/14 5/	Pioneer 3/1
Iowa	23	1958	Hay	80	120	12	30	P II	5/12	2/14.5	E 1. C 75A
Lowa	24	1958	IIay	80	120	8	32	PI	5/12	2/14.5	Funks G /JA
Iowa	25	1958	Pasture	80	120	8	32	P II	5/19	6/40/	D:
Lowa	26	1958	Alfalfa	80	120	8	32	PIL	5/13	6/40"	Pioneer 3/1 Dianaan 254
Iowa	27	1958	Pasture	80	120	8	32	PU	5/19	6/40"	Pioneer 334
Iowa	28	1958	Alfalfa	80	120	8	32	PU	5/20	0/10	rioneer 545
Iowa	29	1958	Sovheans	48	60	0	54	PU	4/26	******	Pionaan 354
Kan	1	1957	ooybeuns	10	00			1.0.	1/ 20		1 10ffeet 554
Kan.	3	1957				1					***********
Kan	4	1957									
Kan.	5	1957									
Kan.	6	1957									
Kan.	7	1957									
Kan.	8	1957									
Kan.	1	1958	Corn	80	120				5/14		
Kan.	2	1958	Sm. grain, Lespedeza	80	120				5/14		
Kan.	3	1958	Corn	80	120				4/28		
Kan.	4	1958	Corn	80	120				4/29		
Kan.	5	1958	Wheat	80	120				5/8		
Kan.	6	1958	Alfalfa	80	120				5/26		
Kan.	7	1958	Sorghum	80	120				6/2		
Mich.	1	1957	Pasture ^c	80	120			P.U.	5/9		Mich. 480
Mich.	2	1957	Pasture	80	120			P.U.	5/12		Mich. 480
Mich.	3	1957	Red clover (pasture)	08	120			D.I.	5/27		Mich. 480
Mich.	4	1957									
Mich.	1	1958	Alfalfa	66	120	16	22	$\mathbf{P}.\mathbf{U}.$	5/10		Mich. 350
Mich.	2	1958	Silage corn	66	120	16	22	$\mathbf{P}.\mathbf{U}.$	5/16		Mich. 350
Mich.	3	1958	Alfalfa	66	125	16	22	P.U.	5/13		Mich. 350
Mich.	4	1958	Fallow	66	125	16	22	P.U.	5/16	0.000	Mich. 350
Minn.	1	1957	Alfalfa	80	120	16	20	BR.	5/30	2/20"	Pioneer 379A
Minn.	2	1957	Alfalfa-brome	80	120	16	20	P.U.	5/23	2/20"	Haapaln 300B
Minn.	3	1957	Altalta	80	120	16	20	BR.	5/11	2/20	Pioneer 349
Minn.	4	1957	Altalta	80	120	16	20	P.U.	6/15	2/20"	Minhybrid 409
Minn.	1	1958	Alfalfa	80	120	16	20	BR.	5/17	2/20	Northrup-King KB4
Minn.	2	1938	Corn	80	120	16	20	RR.	5/19	1/10"	Pioneer 390

Table A-2. Previous crop, fertilizer and planting information for regional field experiments with corn.

^a P.U. = plowed under: D.I. = Disked in; BR = Broadcast.
 ^b Kernels dropped per hill/spacing of hills in row in inches. In some experiments the plants were then thinned to a uniform stand.
 ^c 275 lbs. K₂O/A applied over previous 4 years.

Table A-3. Monthly precipitation at the experimental sites of some of the 1958 regional field experiments with corn.

			2	Inches	of pre	ecipita	tion				
Experi	ment	Jan.	Feb.	March	April	May	June	July	Aug.	Sept.	Oct.
Ind.	5					3.2	6.1	7.7	4.5		
Ind.	6		******			1.5	10.4	5.0	3.9		
Ind.	7		******			1.0	14.8	5.2	3.4		
Ind.	8					1.0	8.9	9.6	5.2	2.4	
Iowa	23					5.0	4.5	9.5	3.0	2.8	1.8
Iowa	25					1.5	2.3	2.2	2.9	2.9	0.1
Kan.	1	2.2	1.0	3.6	2.9	2.2	6.6	10.6	2.4	4.1	2.4
Kan.	2	2.2	1.0	3.6	2.9	2.2	6.6	10.6	2.4	4.1	2.4
Kan.	3	0.8	0.8	4.9	3.4	5.2	5.1	9.7	1.0	2.2	0.1
Kan.	4	0.9	1.0	5.0	3.3	5.1	3.9	13.0	1.0	5.9	0.1
Kan.	5	1.3	1.4	2.2	1.1	2.2	7.6	12.4	3.9	7.6	2.4
Kan.	6				1.1	2.3	4.9	13.4	4.4	7.1	1.5
Kan.	7	1.3	1.2	3.0	2.4	2.6	6.6	9.2	2.8	4.2	2.3
Mich.	1					1.4	6.3	3.3	4.3	2.4	1.8
Mich.	2					1.4	6.3	3.3	4.3	2.4	1.8
Mich.	3					0.4	3.3	4.3	3.2	2.3	
Mich.	4					0.7	1.4	3.0	3.7	2.4	
Minn.	1						5.6	3.1	1.2	1.5	1.3
Minn.	2						3.0	2.1	6.4	2.6	

_						Lat	oratory	analy	vses			
					F	ield oist	Oven- dry	Sc (a	oil te air-dr	sts y)		
Exper	iment	Year	Soil type	Sample depth (inches)	% H ₂ O	Exch. K pp2m	Exch. K pp2m	$_{\rm pp2m}^{\rm K}$	Hd	P pp2m	Experi	ment
111.	1	1957	Cisne sil	$\begin{array}{c} 0-6 \\ 6-12 \\ 12-18 \\ 18-24 \\ 24-30 \\ 30-36 \end{array}$	7 8 8 14 20 14	73 28 14 18 42 50	96 70 58 124 228 204	77 65 69 145 229 231	5.4 4.6 4.7 5.0 5.2 5.2	$14 \\ 3 \\ <1 \\ <1 \\ <1 \\ <1$	Iowa	20
III.	397	1958	Cisne sil	$\begin{array}{c} 0-6 \\ 6-12 \\ 12-18 \\ 18-24 \\ 24-30 \\ 30-36 \end{array}$	12 15 13 14 15 18	$ \begin{array}{r} 64 \\ 44 \\ 38 \\ 42 \\ 46 \\ 51 \end{array} $	86 71 66 82 134 168	54 51 48 78 127 153	5.8 4.8 5.0 5.3 5.2	6 2 2 1 1 1	Iowa	21
Ind.	1	1957	Fincastle sil	$\begin{array}{r} 0-6 \\ 6-12 \\ 12-18 \\ 18-24 \\ 24-30 \\ 30-36 \end{array}$	$20 \\ 14 \\ 15 \\ 15 \\ 16 \\ 14$	126 96 88 90 78 80	134 139 228 270 304 254	99 108 159 191 198 171	5.4 5.2 5.0 4.9 5.0 5.2	7 4 2 1 1 1	Iowa	22
Ind.	2	1957	Fincastle sil	$\begin{array}{c} 0-6 \\ 6-12 \\ 12-18 \\ 18-24 \\ 24-30 \\ 30-36 \end{array}$	$17 \\ 20 \\ 19 \\ 14 \\ 13 \\ 17$	$104 \\ 90 \\ 57 \\ 56 \\ 46 \\ 42$	125 178 208ª 356 280 292	100 147 217ª 217 205 197	5.5 5.7 5.7 6.2 6.7 7.0	25^{a} 21 <1 <1 1	Iowa	23
Ind.	3	1957	Elston 1	$\begin{array}{r} 0-6 \\ 6-12 \\ 12-18 \\ 18-24 \\ 24-30 \\ 30-36 \end{array}$	$ \begin{array}{r} 13 \\ 11 \\ 11 \\ 10 \\ 9 \\ 14 \end{array} $	130 92 78 72 66 84	150 136 138 139 129 122	136 135 126 132 118 112	$6.4 \\ 5.9 \\ 5.7 \\ 5.6 \\ 5.6 \\ 5.6 \\ 5.6 \\ $	4 4 4 4 4 6	Iowa	24
Ind.	4	1957	Fincastle sil	$\begin{array}{r} 0-6 \\ 6-12 \\ 12-18 \\ 18-24 \\ 24-30 \\ 30-36 \end{array}$	$17 \\ 17 \\ 17 \\ 16 \\ 13 \\ 16$	112ª 86 64 65 58 58ª	156 ^a 196 236 313 336 284 ^a	116ª 103 139 193 173 212ª	6.7ª 6.8 6.4 6.3ª 6.4ª 6.8	4 1 1 1 1	Iowa	25
Ind.	5	1958	Fincastle sil	0-6 6-12 12-18 18-24 24-30 30-36	23 17 23 23 23 19	121^{b} 79 66 53 48 52	152 ^b 166 288 296 248 225	66^{b} 97 137 115 71 63	$6.8 \\ 6.4 \\ 6.0 \\ 6.6 \\ 7.2 \\ 7.8$	$3 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1$	Iowa	26
Ind.	6	1958	Crosby fsl	0-6 6-12 12-18 18-24 24-30 30-36	9 9 8 8 8 6	128 39 36 28 28 29	$110 \\ 41 \\ 38 \\ 32 \\ 31 \\ 31$	$110 \\ 32 \\ 20 \\ 20 \\ 28 \\ 26$	$6.2 \\ 5.8 \\ 5.7 \\ 5.6 \\ 5.6 \\ 5.6 \\ 5.6 $	40ª 39 18 8 7 4	Iowa	27
Ind.	7	1958	Miami 1	$\begin{array}{c} 0-6 \\ 6-12 \\ 12-18 \\ 18-24 \\ 24-30 \\ 30-36 \end{array}$	$ \begin{array}{r} 14 \\ 11 \\ 10 \\ 13 \\ 16 \\ 13 \end{array} $	$103 \\ 47 \\ 40 \\ 38 \\ 56 \\ 52$	87 50 54 86 148 138	70 38 36 52 87 75	6.7 5.8 5.5 5.4 5.3 6.4ª	$ \begin{array}{c} 13 \\ 11 \\ 9 \\ 8 \\ 4 \\ 6 \end{array} $	Iowa	28
Ind.	8	1958	Sidell sil	$\begin{array}{r} 0-6 \\ 6-12 \\ 12-18 \\ 18-24 \\ 24-30 \\ 30-36 \end{array}$	28 30 30 29 26 25	$ \begin{array}{r} 170 \\ 88 \\ 71 \\ 68 \\ 66 \\ 66 \\ 66 \end{array} $	213 178 264 300 285 254	128 108 153 173 168 110	$5.0 \\ 5.0 \\ 5.0 \\ 5.1 \\ 5.6 \\ 7.3$	2 < 1 < 1 < 1 < 1 < 1 < 1 < 1	Iowa	29
Iowa	17	1957	Floyd sil	$\begin{array}{r} 0-6 \\ 6-12 \\ 12-18 \\ 18-24 \\ 24-30 \\ 30-36 \end{array}$	$30 \\ 26 \\ 23 \\ 15 \\ 11 \\ 10$	151ª 73 54 30 20 20	185 169 222 220 208 208 203	133ª 85 94 50 52 45	$6.8 \\ 6.6 \\ 7.0 \\ 7.2 \\ 7.6 \\ 8.0$	$^{4}_{<1}^{3}_{<1}_{<1}^{<1}_{<1}$	Kan.	1
Iowa	18	1957	Carrington sil	0-6 6-12 12-18 18-24 24-30 30-36	24 25 25 20 15 12	$146 \\ 90 \\ 56 \\ 36 \\ 32 \\ 31$	166 132 142 202 257 255	$138 \\ 100 \\ 96 \\ 171 \\ 160 \\ 90$	5.6 5.5 5.4 5.2 5.6 6.0	22221 < 1 < 1	Kan.	3
Iowa	19	1957	Fayette sil	$\begin{array}{c} 0-6 \\ 6-12 \\ 12-18 \\ 18-24 \\ 24-30 \\ 30-36 \end{array}$	25 25 24 22 20 18	160 96 84 58 48 48	232 198 214 267 302 322	170 123 164 199 229 257	6.7 5.9 5.4 5.4 5.4 5.4 5.4	6 4 2 3 8 10	Kan.	4

Table A-4.	Chemical c	haracterist	ics of	the	soils	on	which	north
	central regi ducted.	onal field	experi	ments	; with	corr	were	con-

					-	Lal	poratory	analy	/ses	
			•		Fi	ield oist	Oven- dry	Sc (a	oil te ir-dr	sts y)
Expe	riment	Year	Soil type	Sample depth (inches)	$_{ m H_2O}^{\gamma_0}$	Exch. K pp2m	Exch. K pp2m	${ m K}$ pp2m	Hq	P pp2m
Iowa	20	1957	Clyde sil	$\begin{array}{r} 0-6 \\ 6-12 \\ 12-18 \\ 18-24 \\ 24-30 \\ 30-36 \end{array}$	29 30 24 17 12 8	$100 \\ 78 \\ 74 \\ 40 \\ 32 \\ 28$	279 308 340 346 295 218	161 182 206 181 159 108	7.1 6.9 7.2 7.4 7.5 7.5	$\overset{4}{\underset{\substack{2\\ <1\\ <1\\ <1}}{}}$
Iowa	21	1957	Carrington sil	$\begin{array}{r} 0-6 \\ 6-12 \\ 12-18 \\ 18-24 \\ 24-30 \\ 30-36 \end{array}$	14 17 15 12 8 7	$102 \\ 68 \\ 57 \\ 42 \\ 38 \\ 35$	$ \begin{array}{r} 139 \\ 132 \\ 144 \\ 154 \\ 152 \\ 156 \\ \end{array} $	$106 \\ 98 \\ 120 \\ 126 \\ 112 \\ 106$	$ \begin{array}{r} 6.9 \\ 6.0 \\ 5.8 \\ 5.8 \\ 6.2 \\ 6.7 \\ \end{array} $	4 3 2 1 1 1
Iowa	22	1957	Fayette sil	$\begin{array}{c} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	22 22 27 22 20 17	138 68 50 44 37 44	170 168 232 278 284 304	115 93 170 208 199 225	7.5 6.9 5.5 5.2 5.2 5.2 5.4	3 3 2 4 6 10
Iowa	23	1958	Weller sil	$\begin{array}{c} 0-6 \\ 6-12 \\ 12-18 \\ 18-24 \\ 24-30 \\ 30-36 \end{array}$	25 22 21 25 27 23	78 38 42 57 56 70	$112 \\ 114 \\ 208 \\ 376 \\ 380 \\ 364$	55 84 178 273 274 259	6.0ª 5.0 5.0 5.0 5.1 5.2	$\begin{array}{c} 1 \\ <1 \\ 1 \\ 6 \\ 10 \\ 18 \end{array}$
Iowa	24	1958	Carrington sil	$\begin{array}{r} 0-6 \\ 6-12 \\ 12-18 \\ 18-24 \\ 24-30 \\ 30-36 \end{array}$	$ \begin{array}{r} 18 \\ 21 \\ 20 \\ 17 \\ 14 \\ 9 \end{array} $	153ª 75 50 38 30 33	178 120 126 146 174 172	127 82 89 110 130 141	$6.3 \\ 5.4 \\ 5.2 \\ 5.2 \\ 5.2 \\ 5.2 \\ 5.4$	$\begin{array}{c} 6 \\ 1 \\ < 1 \\ < 1 \\ < 1 \end{array}$
Iowa	25	1958	Fayette sil	$\begin{array}{r} 0-6 \\ 6-12 \\ 12-18 \\ 18-24 \\ 24-30 \\ 30-36 \end{array}$	30 27 25 24 23 23	244ª 98 70 46 42 39	269ª 194 232 331 366 359	141 111 125 173 192 192	$6.3 \\ 5.7 \\ 5.4 \\ 5.2 $	5 4 2 5 16 24
Iowa	26	1958	Fayette sil	$\begin{array}{r} 0-6 \\ 6-12 \\ 12-18 \\ 18-24 \\ 24-30 \\ 30-36 \end{array}$	23 21 24 22 22 22 23	79 44 46 43 50 54	163 260 348 372 366 360	74 158 202 222 197 181	$6.3 \\ 5.6 \\ 5.2 \\ 5.2 \\ 5.4 \\ 5.4 $	3 8 14 23 30 29
Iowa	27	1958	Clyde sil	$\begin{array}{c} 0-6 \\ 6-12 \\ 12-18 \\ 18-24 \\ 24-30 \\ 30-36 \end{array}$	$ \begin{array}{r} 34 \\ 28 \\ 18 \\ 16 \\ \\$	158ª 76 51 35 	171ª 154 196 219 	$ \begin{array}{r} 107 \\ 93 \\ 65 \\ 69 \\ 54 \\ 52 \end{array} $	$ \begin{array}{r} 6.2 \\ 6.1 \\ 6.3 \\ 6.4 \\ 6.5 \\ 6.6 \\ \end{array} $	522 <1 <1 <1
Iowa	28	1958	Webster sicl	0-6 6-12 12-18 18-24 24-30 30-36	25 22 19 21 16 18	112 64 51 47 47 37	359 348 350 345 312 298	149 123 115 104 105 89	7.8 8.0 8.0 8.0 8.0 8.0 8.0	1 < 1 < 1 < 1 < 1 < 1 < 1
Iowa	29	1958	Primghar sil	$\begin{array}{r} 0-6 \\ 6-12 \\ 12-18 \\ 18-24 \\ 24-30 \\ 30-36 \end{array}$	29 32 29 26 25 26	$348 \\ 167 \\ 108 \\ 92 \\ 84 \\ 74$	456 399 424 446 469 478	276ª 221 221 214 176 176	$5.6 \\ 5.8 \\ 5.9 \\ 6.1 \\ 6.3 \\ 6.8$	4 1 1 1 1 1
Kan.	1	1957	Bates sil	$\begin{array}{r} 0-6 \\ 6-12 \\ 12-18 \\ 18-24 \\ 24-30 \\ 30-36 \end{array}$	19 19 22 19 14 15	91 41 51 54 32 32	$100 \\ 123 \\ 247 \\ 210 \\ 164 \\ 158$	89 110 184 194 121 105	$ \begin{array}{r} 6.9 \\ 5.6 \\ 6.0 \\ 6.3 \\ 6.6 \\ 6.6 \\ 6.6 \\ \end{array} $	$2^{1}_{<1}_{<1}_{<1}_{<1}$
Kan.	3	1957	Summit sil	$\begin{array}{c} 0-6 \\ 6-12 \\ 12-18 \\ 18-24 \\ 24-30 \\ 30-36 \end{array}$	$16 \\ 19 \\ 20 \\ 22 \\ 20 \\ 16$	$262 \\ 84 \\ 90 \\ 112 \\ 112 \\ 126 \\$	$334 \\ 264 \\ 392 \\ 606 \\ 624 \\ 558 $	$255 \\ 188 \\ 301 \\ 381 \\ < 400 \\ < 400$	$6.0 \\ 5.4 \\ 5.4 \\ 5.8 \\ 6.6 \\ 7.2$	84221 1
Kan.	4	1957	Labette sil	$\begin{array}{c} 0-6 \\ 6-12 \\ 12-18 \\ 18-24 \\ 24-30 \\ 30-36 \end{array}$	16 21 22 22 22 22 22	935 205 156 171 165 144	910 332 418 ^a 448 ^a 557 ^a 568 ^a	<400 247 263ª 330ª 370 378	6.3ª 5.7 5.6 5.6 5.6 5.8	16 2 1 1 2 8

Table A-4 (continued)

_

						Lab	oratory	analy	ses	
					Fi	ield oist	Oven- dry	Sc (a	oil te ir-dr	sts v)
Experim	ent	Year	Soil type	Sample depth (inches)	$_{\rm H_2O}^{\%}$	Exch. K pp2m	Exch. K pp2m	K pp2m	Hq	P pp2m
Kan.	5	1957	Summit sil	0-6 6-12 12-18 18-24 24-30 30-36	$17 \\ 21 \\ 19 \\ 20 \\ 16 \\ 13$	427 86 218 134 112 104	484 274 313 323 347 318	<400 239 258 277 260 259	$6.5 \\ 5.7 \\ 5.9 \\ 5.8 \\ 5.8 \\ 6.2$	$2 < 1 \\ 1 \\ < 1 \\ < 1 \\ < 1 \end{cases}$
Kan,	6	1957	Laurel fsl	0-6 6-12 12-18 18-24 24-30 30-36	$2 \\ 3 \\ 4 \\ 12 \\ 9 \\ 6$	455 ^a 344 384 ^a 394 ^a 350 ^a 314 ^a	474 ^a 373 415 ^a 476 ^a 445 ^a 374 ^a	<400 338 350a 318a 306a 296a	7.8 7.4 7.5 7.5 7.6 7.6	$ \begin{array}{c} 13 \\ 11 \\ 10 \\ 2 \\ 3 \\ 3 \end{array} $
Kan.	7	1957	Wabash sil	$\begin{array}{r} 0-6 \\ 6-12 \\ 12-18 \\ 18-24 \\ 24-30 \\ 30-36 \end{array}$	24 27 26 24 21 16	559a 420a 207a 184 145 112	795 ^a 654 ^a 558 ^a 528 432 332	>400 >400 365 372 257 212^{a}	6.2^{a} 6.6^{a} 8.2 5.6 6.6^{a} 7.4^{a}	$ \begin{array}{c} 12 \\ 10 \\ 2 \\ 8 \\ 3 \\ 2 \end{array} $
Kan.	8	1957	Cherokee sil	$\begin{array}{r} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36\end{array}$	15 27 28 23 20 19	149 87 100 86 88 88	211 391ª 432ª 422ª 377ª 316ª	165 333ª 378 372 329 252	$6.9 \\ 5.2 \\ 5.0 \\ 5.0 \\ 4.8 \\ 4.7$	$9 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1$
Kan.	1	1958	Summit sil	0-6 6-12 12-18 18-24 24-30 30-36	25 24 25 27 25 24	232 104 99 102 94. 90	344 366 575 616 563 492	174 216 281 280 235 253	$6.7 \\ 5.6 \\ 5.6 \\ 5.9 \\ 6.2 \\ 6.3$	$92 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <$
Kan.	2	1958	Boone 1	0-6 6-12 12-18 18-24 24-30 30-36	23 18 24 21 19 23	150° 68 76 78 80 67	243° 298 385 342 335 330	158° 135 138 128 105 107	$5.7 \\ 6.0 \\ 6.5 \\ 6.8 \\ 7.2 \\ 7.4$	${ < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < 1 < < 1 < > > > >$
Kan.	3	1958	Parsons sil	$\begin{array}{r} 0-6 \\ 6-12 \\ 12-18 \\ 18-24 \\ 24-30 \\ 30-36 \end{array}$	20 23 24 23 19 18	$173 \\ 141 \\ 66 \\ 84 \\ 64 \\ 60$	243 299 367 345 326 275	137 161 179 149 129 127	$5.8 \\ 5.4 \\ 5.8 \\ 6.4 \\ 6.6 \\ 6.7$	$^{4}_{<1}_{<1}_{<1}_{<1}_{<1}$
Kan.	4	1958	Cherokee sil	$\begin{array}{c} 0-6 \\ 6-12 \\ 12-18 \\ 18-24 \\ 24-30 \\ 30-36 \end{array}$	16 16 21 23 20 19	136 82 70 73 78 81	190 186 290 412 418 410	$122 \\ 115 \\ 176 \\ 226 \\ 184 \\ 176$	$5.9 \\ 5.4 \\ 5.0 \\ 4.9 \\ 4.9 \\ 4.6$	3 < 1 < 1 < 1 < 1 < 1 < 1 < 1
Kan.	5	1958	Geary sil	0-66-1212-1818-2424-3030-36	17 23 25 23 23 22	602 202 173 166 190 194	650 390 383 426 492 553	>400 215 217 250 272 317	$5.3 \\ 5.6 \\ 5.5 \\ 5.8 \\ 5.9 \\ 6.1$	15 3 2 2 2 2 2
Kan.	6	1958	Sarpy sl	$\begin{array}{c} 0-6 \\ 6-12 \\ 12-18 \\ 18-24 \\ 24-30 \\ 30-36 \end{array}$	$ \begin{array}{r} 17 \\ 15 \\ 12 \\ 9 \\ 7 \\ 9 \\ 9 \end{array} $	605 266 198 180 173 220	565 372 308 252 240 284	>400 195 167 150 158 177	7.9 7.6 8.1 8.4 8.4	$31 \\ 7 \\ 2 \\ 2 \\ 1 \\ < 1$
Kan.	7	1958	?	0-6 6-12 12-18 18-24 24-30 30-36	16 19 21 18 16 17	$232 \\ 397 \\ 134 \\ 110 \\ 99 \\ 100$	363 412 392 350 338 372	197 230 212 179 165 179	$\begin{array}{c} 6.2 \\ 6.1 \\ 6.1 \\ 6.0 \\ 6.0 \\ 6.4 \end{array}$	$74 \\ 1 \\ <1 \\ <1$
Mich.	1	1957	Fox 1	0-6 6-12 12-18 18-24 24-30 30-36	$12 \\ 10 \\ 8 \\ 10 \\ 7 \\ 5$	450ª 152 135 137 113 94	304^{a} 166 166 184 166 139	340ª 176 182 172 164 140	6.5 ^a 6.1 5.1 4.9 5.0 5.2	27 23 20 22 25 26
Mich.	2	1957	Oshtema s	0-6 6-12 12-18 18-24 24-30 30-36	$2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	94ª 33 24 13 13 11	78ª 30 25 17 16 12	107ª 48 38 20 20 18	$7.1 \\ 6.9 \\ 6.9 \\ 6.6 \\ 6.8 \\ 6.8 \\ 6.8 \\$	23 30 18 19 13 18

						Lat	ooratory	analy	/ses	
					Fi	ield oist	Oven- dry	Sc (a	oil te	sts y)
Experin	nent	Year	soil type	Sample depth (inches)	% M₂O	Exch. K pp2m	Exch. K pp2m	${ m K}{ m pp2m}$	Hq	P pp2m
Mich.	3	1957	Metea sl	$\begin{array}{r} 0-6 \\ 6-12 \\ 12-18 \\ 18-24 \\ 24-30 \\ 30-36 \end{array}$	$16 \\ 13 \\ 11 \\ 11 \\ 12 \\ 13$	$164 \\ 95 \\ 61 \\ 44 \\ 60 \\ 68$	$112 \\78 \\70 \\66 \\93 \\129$	$129 \\ 66 \\ 50 \\ 40 \\ 48 \\ 58$	6.1ª 5.3 5.4 5.5 5.4 5.7	$16 \\ 12 \\ 10 \\ 7 \\ 4 \\ 3$
Mich.	4	1957	Houghton muck	0-6 6-12 12-18 18-24 24-30 30-36	94 152 134 	574 645 204 	554 584 232 	249 278 142 	7.0 6.8 6.7	$^{10}_{5}_{<1}$
Mich.	1	1958	Fox sl	$\begin{array}{c} 0-6 \\ 6-12 \\ 12-18 \\ 18-24 \\ 24-30 \\ 30-36 \end{array}$	9 9 8 7 6	86 44 56 48 28 32	89 66 54 105 86 78	81 49 89 81 72 60	5.4 6.0ª 5.5ª 5.8ª 5.8ª 5.5ª	$34 \\ 28 \\ 12 \\ 11 \\ 8 \\ 6$
Mich.	2	1958	Kalamazoo sl	$\begin{array}{r} 0-6 \\ 6-12 \\ 12-18 \\ 18-24 \\ 24-30 \\ 30-36 \end{array}$	12 18 22 14 14 11	284^{d} 160 154 85 68 48	222^{d} 221 254 134 106 71	211^{d} 150 198 107 96 69	$6.2 \\ 5.9 \\ 5.1 \\ 5.2 \\ 5.5 \\ 5.6$	$36 \\ 19 \\ 15 \\ 15 \\ 10 \\ 8$
Mich.	3	1958	Conover 1	$\begin{array}{c} 0-6 \\ 6-12 \\ 12-18 \\ 18-24 \\ 24-30 \\ 30-36 \end{array}$	$12 \\ 13 \\ 12 \\ 12 \\ 12 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	80 41 46 35 39 36	84 94 192 119 94 77	56 45 70 53 48 39	$6.6 \\ 6.8 \\ 7.3 \\ 8.0 \\ 8.2 \\ 8.3$	$^{4}_{<1}_{<1}_{<1}_{<1}$
Mich.	4	1958	Parkhill 1	0-6 6-12 12-18 18-24 24-30 30-36	$23 \\ 23 \\ 19 \\ 19 \\ 19 \\ 20$	97 46 27 28 27 30	74 66 57 67 66 61	39 36 36 34 25 26	$ \begin{array}{r} 6.1 \\ 6.6 \\ 6.8 \\ 7.0 \\ 7.2 \\ 7.7 \\ 7$	531 < 1 < 1 < 1 < 1
Minn.	1	1957	Hubbard ls	$\begin{array}{r} 0-6 \\ 6-12 \\ 12-18 \\ 18-24 \\ 24-30 \\ 30-36 \end{array}$	7 6 6 6 6 6	$146 \\ 60 \\ 58 \\ 54 \\ 45 \\ 44$	132 74 72 67 57 72	$177 \\ 78 \\ 74 \\ 66 \\ 64 \\ 64$	6.4ª 6.3 5.6 5.7 5.8 5.8	$ \begin{array}{r} 16 \\ 10 \\ 5 \\ 8 \\ 8 \\ 6 \end{array} $
Minn.	2	1957	Zimmerman fs	$ \begin{array}{r} 0-6\\ 6-12\\ 12-18\\ 18-24\\ 24-30\\ 30-36 \end{array} $	7 6 5 5 5 5 5	$111 \\ 50 \\ 50 \\ 47 \\ 40 \\ 40 \\ 40$	$100 \\ 58 \\ 54 \\ 52 \\ 43 \\ 46$	$109 \\ 50 \\ 46 \\ 50 \\ 39 \\ 39 \\ 39$	$5.6 \\ 6.2 \\ 5.6 \\ 5.6 \\ 5.8 \\ 5.8 \\ 5.8 $	$17 \\ 16 \\ 12 \\ 10 \\ 9 \\ 8$
Minn.	3	1957	Skyberg sil	0-6 6-12 12-18 18-24 24-30 30-36	$13 \\ 14 \\ 12 \\ 10 \\ 9 \\ 7$	85 47 40 42 51 57	$140 \\ 160 \\ 246 \\ 246 \\ 208 \\ 190$	91 100 200 214 180 157	$7.0 \\ 6.2 \\ 5.2 \\ 5.0 \\ 5.3 \\ 5.4$	422444
Minn.	4	1957	Skyberg sil	$\begin{array}{c} 0-6 \\ 6-12 \\ 12-18 \\ 18-24 \\ 24-30 \\ 30-36 \end{array}$	19 20 18 17 12 10	$133 \\ 54 \\ 52 \\ 50 \\ 36 \\ 32$	178 160 218 270 ^a 268 ^a 206 ^a	127 150 191 263ª 235ª 215ª	$\begin{array}{c} 6.6 \\ 5.6 \\ 5.5 \\ 5.5 \\ 5.8 \\ 5.8 \end{array}$	8 2 2 2 4 4
Minn.	1	1958	Floyd sil	0-6 6-12 12-18 18-24 24-30 30-36	31 27 27 24 20 14	$119 \\ 45 \\ 52 \\ 36 \\ 34 \\ 26$	199 204 244 244 246 177	99 130 127 121 148 74	$\begin{array}{c} 6.8 \\ 5.8 \\ 5.7 \\ 5.8 \\ 6.0 \\ 6.0 \end{array}$	7 3 3 3 4 2
Minn.	2	1958	Organic	0-6 6-12 12-18 18-24 24-30 30-36	$161 \\ 170 \\ 267 \\ 223 \\ 196 \\ 176$	$192 \\ 168 \\ 94 \\ 111 \\ 134 \\ 140$	$202 \\ 152 \\ 92 \\ 122 \\ 156 \\ 170$	33 30 18 29 45 52	$ \begin{array}{r} 6.8 \\ 6.2 \\ 6.2 \\ 6.0 \\ $	$10 \\ 7 \\ 4 \\ 3 \\ 2 \\ 1$

^a Variable between replicates.
^b Omit replicate No. 6.
^c Omit replicate No. 4.
^d Omit replicate No. 1.

				No. of	- F 1		C	Plant s	samples		T .			Frain	
Experi	nent	Year	Lbs. of K/A ^a	plants per acre (thousands)	Early s Whole Dry wt (lb	e plants . % K s/A)	Whole Dry wt. (lbs/	pling at plants % K (A)	Leav Dry wt. (gn	res ^b % K	Late samp Whole pla Dry wt. (lbs/A)	nts % K	Yield bu./A.	% H2O	Shelling
III.	1	1957	$ \begin{array}{c} 0 \\ 25 \\ 50 \\ 100 \\ 200 \\ \end{array} $	9.3 8.8 8.8 10.3 10.3	July 2 1,040 1,168 1,138 1,020 1 288	29 1.63 1.87 2.07 2.81 3.88	3,125 3,277 4,601 4,954 4,321	0.71 0.90 0.87 1.21 1.79	Aug. 16 99 107 116 114 112	0.88 1.08 1.30 1.69 2.18	Nov. 2,647 c 2,818 3,042 3,809 4,215	6 0.48 0.59 0.62 0.70 1 10	57 63 74 95 91	Nov. 6	82 82 83 84 83
III.	397	1958	$ \begin{array}{c} 0 \\ 25 \\ 50 \\ 75 \\ 100 \\ 125 \end{array} $	11.3 11.0 12.2 11.6 11.5 12 1	July 949 878 1,174 1,214 1,097 1,117	15 1.74 1.85 2.10 2.20 2.43 2.55	4,461 4,223 5,026 5,222 4,671 5,047	0.87 0.99 1.10 1.34 1.38 1.52	Aug. 8	$ \begin{array}{r} 1.50 \\ 1.63 \\ 1.98 \\ 2.14 \\ 2.20 \\ 2.23 \\ \end{array} $	$\frac{\text{Oct.}}{2,567^{4}}$ 2,358 2,639 2,517 2,505 2,921	24 0.60 0.72 0.75 0.84 1.06 1.12	75 71 82 79 83 83	Oct. 31 17 18 18 19 17 18	79 79 80 81 81 81
Ind.	1	1957	0 25 50 75 100 125	$10.1 \\ 9.1 \\ 11.2 \\ 11.0 \\ 10.5 \\ 9.6$.,		4,155 3,693 4,727 4,493 4,322 3,908	0.64 0.64 0.88 0.98 1.08 1.18	Aug. 8 56 56 56 56 56 53 53 54	0.79 0.83 1.26 1.41 1.42 1.51	-,		$ \begin{bmatrix} 1 \\ 63 \\ 72 \\ 74 \\ 67 \\ 67 \\ $	Nov. 12 31 30	84
Ind.	2	1957	0 25 50 75 100 125 F test	10.9 11.9 11.6 10.4 12.5 10.7			3,924 4,404 4,693 4,020 4,930 4,007	0.85 1.00 1.01 1.19 1.24 1.28	Aug. 9 51 52 50 52 45 50 	1.04 1.15 1.31 1.50 1.60 1.60			74 72 77 79 74 75 N.S.	Oct. 10 38 35 	86 86
Ind.	3	1957	0 25 50 75 100 125 F test	8.8 8.2 8.4 8.5 8.7 8.7 8.7 N.S.			4,976 4,554 4,653 4,714 5,026 4,546	A 1.10 1.32 1.39 1.49 1.53 1.62	ug. 9 55 57 58 56 56 56 57 	1.61 1.69 1.83 1.88 1.97 1.90			91 94 95 93 96 92 N.S.	Oct. 3 26 29 	85 86
Ind.	4	1957	0 25 50 75 100 125 F test	11.6 11.4 11.6 13.3 11.9 11.5 N.S.			4,901 5,148 5,081 5,175 5,237 5,124	A 1.42 1.51 1.58 1.77 1.85 2.02	ug. 4 57 57 54 56 56 56 54 	$ \begin{array}{r} 1.76 \\ 1.85 \\ 1.99 \\ 1.98 \\ 2.04 \\ 2.13 \\ \dots \end{array} $			113 113 115 120 118 116	Oct. 21 36 36 	85
Ind.	5	1958	0 25 50 75 100 125 F test	14.6 15.0 15.0 15.1 15.6 15.0 N.S.			6,015 5,948 6,544 6,120 6,482 6,331 N.S.	Au 0.90 0.99 1.13 1.09 1.22 1.34	ng. 11 77 80 77 81 75 78 N.S.	1.77 1.86 2.02 2.20 2.29 2.34			99 99 94 99 104 99 N.S.	Oct. 6 35 36 	86
Ind.	6	1958	0 25 50 75 100 125 F test	14.7 14.7 15.2 14.7 14.8 14.6 N.S.			5,253 5,120 5,200 5,323 5,047 4,732 N.S.	A 1.38 1.55 1.59 1.86 1.93 2.11	ug. 8 82 84 84 81 84 80 N.S.	2.10 2.44 2.54 2.70 2.81 2.86			90 91 92 84 93 91 N.S.	Oct. 28	84 85
Ind.	7	1958	0 25 50 75 100 125 F test	15.4 14.6 15.0 15.0 15.5 15.5 N.S.			5,458 5,828 6,463 6,459 7,409 6,411 *	A 1.04 1.34 1.40 1.51 1.84 1.72	ug. 12 84 87 85 83 87 84 N.S.	1.70 2.19 2.28 2.49 2.71 2.74			$95 \\ 104 \\ 107 \\ 107 \\ 112 \\ 110 \\ *$	Oct. 30 30 30 	83 84
Ind.	8	1958	0 25 50 75 100 125 F test	14.3 14.7 14.4 15.2 15.3 15.0 N.S.			6,079 5,320 5,463 5,506 5,760 5,737 N.S.	A 1.74 1.70 1.94 2.10 2.22 2.34	ug. 11 99 98 95 98 99 101 N.S.	2.18 2.07 2.28 2.33 2.42 2.50			127 128 128 133 139 132 N.S.	Oct. 22 30 31 29 32 30 N.S.	83 84 84 85 86 86 N.S.

Table A-5. Yield and composition of corn plants from the north central regional field experiments.

430

Table A-5 (continued)

			No. of	-	2	Plant samples				Grain	
Experin	nent	Year	plants Lbs. of per K/A ^a acre (thousands	Early sampling Whole plants Dry wt. % K (lbs/A)	Sam Whole Dry wt. (lbs/	pling at silking ti plants Lea % K Dry wt. (A) (g:	me ves ^b % [€] K m)	Late sampling Whole plants Dry wt. % K (lbs/A)	Yield bu./A.	% H2O	Dencent
Iowa	17	1957		July 10		July 22		Sept. 5		Nov. 9	
				2,067 2.01 2,257 2.38 2,257 2.26 2,250 2.37 2,337 2.58 2,323 2.65 N.S	3,853 3,727 3,847 3,697 3,740 3,723 N.S.	1.82 90 2.17 90 2.00 90 2.16 88 2.38 92 2.37 89 N.S.	$\begin{array}{c} 1.40 \\ 1.49 \\ 1.61 \\ 1.68 \\ 1.83 \\ 1.86 \end{array}$	10,710 0.79 11,010 0.85 11,447 0.83 11,663 0.89 11,557 0.97 10,610 1.22 N.S.	97 102 106 108 103 107 N.S.	49 47 45 47 50 49 N.S.	84 83 84 83 84 83 84 83 84 83 84 84 84 84 84 84 84 84 84 84 84 84 84
Iowa	18	1957	0 141	July 10	4 996	July 22	1.69	Sept. 5	00	Nov. 9	0
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,660 2,79 2,020 3.04 1,850 3.16 1,739 3.30 1,727 3.39 N.S	4,280 4,290 4,087 4,263 4,523 4,523 4,287 N.S.	1.70 83 1.86 87 1.88 86 2.00 84 2.04 87 2.14 84 N.S.	1.62 1.68 1.74 1.77 1.78 1.90	8,357 0.94 9,350 1.01 9,340 0.98 9,100 0.99 8,683 1.09 9,347 1.08 N.S	88 89 89 88 91 N.S.	55 51 54 54 55 N.S. N	888888 88888 88888
Iowa	19	1957		July 17		Aug. 1		Sept. 4	-	Oct. 12	
				1,032 2.97 1,015 3.18 1,043 3.22 1,052 3.23 1,060 3.41 1,067 3.52 N.S	5,877 5,783 5,387 6,067 6,267 5,877 N.S.	1.76 86 1.69 88 1.80 88 1.81 88 1.96 89 N.S.	1.69 1.75 1.80 1.89 1.96 2.00	11,323 0.93 12,410 0.80 12,070 0.92 12,213 0.94 12,180 1.02 12,247 0.96 N.S.	111 113 114 118 116 116 N.S.	58 60 59 60 63 61 N.S. N	85 84 85 85 85 .S.
Iowa	20	1957	0 14.1 25 13.9 50 13.5 75 14.4 100 14.4 125 14.3 F test*	$\begin{array}{c c} July 15\\\hline 833 & 2.44\\ 903 & 2.19\\ 917 & 2.64\\ 1,027 & 2.74\\ 1,027 & 2.84\\ 963 & 3.04\\ \hline \end{array}$	3,910 4,167 4,050 4,383 4,107 4,293	July 31 1.32 92 1.50 94 1.56 92 1.75 97 1.75 97 1.71 96	$ \begin{array}{r} 1.10 \\ 1.26 \\ 1.49 \\ 1.54 \\ 1.66 \\ 1.79 \\ \dots \end{array} $	$\begin{array}{c c} Sept. 5\\\hline 8,103 & 0.75\\ 9,247 & 0.73\\ 8,590 & 0.76\\ 8,763 & 0.86\\ 8,890 & 0.91\\ 9,003 & 0.96\\ \hline \end{array}$	59 72 72 74 74 74 77 **	Nov. 11 36 37 38 40 39 38 N.S.	81 84 84 84 84 84 84
Iowa	21	1957		July 16		July 24		Aug. 27		Oct. 13	
				$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3,926 4,190 4,133 4,270 4,280 4,443	1.48 89 1.74 93 1.97 89 2.23 93 2.23 89 2.38 90	$ 1.41 \\ 1.67 \\ 1.81 \\ 2.03 \\ 2.12 \\ 2.31 \\ \dots $	$\begin{array}{ccccc} 6,827 & 0.78 \\ 6,655 & 0.80 \\ 6,500 & 0.94 \\ 6,543 & 1.04 \\ 6,727 & 1.12 \\ 6,437 & 1.19 \end{array}$	33 35 32 33 34 36 N.S.	31 29 34 33 33 31 N.S.	84 86 83 85 88 86 *
Iowa	22	1957	0 11 9	July 20	1.500	Aug. 1		Aug. 27		Oct. 13	
				1,434 1.79 1,550 2.23 1,679 2.18 1,579 2.26 1,402 2.50 1,389 2.34 N.S	4,532 5,181 4,984 4,878 5,469 4,991 N.S.	1.41 93 1.48 91 1.63 94 1.54 92 1.59 92 1.70 92 N.S.	$ \begin{array}{r} 1.16 \\ 1.33 \\ 1.44 \\ 1.44 \\ 1.56 \\ 1.58 \\ \end{array} $	10,568 0.68 11,219 0.69 11,405 0.75 11,960 0.76 12,528 0.73 11,009 0.73 N.S.	90 103 113 108 108 107 **	52 57 60 59 59 58 N.S. N.	83 84 85 82 83 83 83 .S.
Iowa	23	1958		July 10		July 23		Aug. 7		Oct. 9	
				$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4,720 5,300 4,880 5,358 5,721 5,464	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 1.23 \\ 1.54 \\ 1.64 \\ 1.83 \\ 1.92 \\ 2.18 \\ \dots \\ \dots \\ \dots \\ \ \dots \\ \ \dots \\ \ \ \ \ \ \\ \ \ \ $	$\begin{array}{cccc} 6,648 & 0.92 \\ 8,371 & 1.03 \\ 8,289 & 1.17 \\ 7,836 & 1.26 \\ 8,758 & 1.35 \\ 8,473 & 1.50 \end{array}$	100 113 119 123 128 126 **	29 31 30 31 30 30 N.S. N.	84 85 85 85 85 85 85 85 85
Iowa	25	1958		July 15	-	Aug. 12		Aug. 25		Oct. 14	
				439 5.11 449 4.68 394 4.82 476 4.82 462 5.11 433 5.14 N.S.	4,116 4,386 4,096 4,578 4,079 4,112 N.S.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.30 2.46 2.56 2.65 2.63 2.72	5,671 1.65 5,908 1.68 5,949 1.83 6,248 1.96 6,023 2.00 5,905 2.05 N.S.	75 72 75 75 75 N.S.	43 45 44 42 42 42 N.S. N.	81 80 78 80 80 .S.
Iowa	26	1958	0 11 0	July 15	4 450	Aug. 12	1 20	Aug. 26	77	Oct. 14	05
			0 11.9 25 13.1 50 12.4 75 13.1 100 13.7 125 13.2 F test N.S.	920 2.08 1,100 2.60 1,041 2.62 1,030 3.03 1,324 3.38 1,194 4.03 N.S.	4,439 5,337 5,914 5,255 6,035 5,819 *	1.20 89 1.25 95 1.49 86 1.70 89 1.88 92 2.00 89 N.S.	1.38 1.74 1.86 2.01 2.17 2.23	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90 82 85 88 86 N.S.	33 31 32 29 33 N.S. N.	85 85 84 84 84 84 .S.
Iowa	27	1958	0 10.0	July 16	4.000	Aug. 13		Aug. 26		Oct. 15	-
			0 12.8 25 13.1 50 13.5 75 14.2 100 13.8 125 13.2 F test N.S.	b0b 3.51 612 3.38 718 3.90 756 4.75 770 4.26 694 4.85 N.S.	4,896 4,581 5,019 5,333 5,214 5,129 N.S.	1.41 103 1.53 104 1.90 104 1.99 108 2.27 103 2.21 110 N.S.	$ \begin{array}{r} 1.49 \\ 1.63 \\ 1.92 \\ 2.08 \\ 2.25 \\ 2.20 \\ \dots \end{array} $	6,239 1.27 6,150 1.11 6,880 1.45 7,672 1.56 6,892 1.72 6,929 1.63 N.S	76 79 90 88 86 87 **	41 40 38 38 39 38 N.S. N.	78 80 78 79 79 .S.

Table A-5 (continued)

				No. of	- P 1		0	Plant s	amples		T		C	Grain	
Experim	nent	Year	Lbs. of K/A ^a	plants per acre (thousands	Whol Dry w) (ll	e plants t. % K os/A)	Whole Dry wt. (lbs/	pling at plants % K A)	Dry wt.	ne esb % K n)	University of the second secon	ing ints % K	Yield bu./A.	% H2O	Shelling
Iowa	28	1958			July	21		A	ug. 1		Aug.	14		Sept. 30	
			0 25 50 75 100 125 F test	14.2 13.9 15.1 14.9 14.4 15.9 N.S.	2,673 2,870 3,233 3,099 2,902 3,228 N.S.	2.10 2.41 2.78 2.56 2.94 3.25	5,565 5,284 5,414 5,292 5,749 5,998 N.S.	$1.78 \\ 2.00 \\ 2.29 \\ 2.17 \\ 2.31 \\ 2.56 $	119 117 116 116 116 116 117 N.S.	1.70 1.80 2.02 2.07 2.14 2.17	8,967 9,192 8,930 8,628 9,261 9,833 N.S.	$1.06 \\ 1.03 \\ 1.17 \\ 1.24 \\ 1.25 \\ 1.44$	94 94 103 100 98 109 *	37 38 38 38 39 39 39 N.S.	80 82 83 83 83 83 N.S.
Iowa	29	1958						A	ug. 5				۶ <u>ال</u>	Oct. 9	
			0 25 50 75 100 125	$12.8 \\ $			5,465 5,252 4,520 4,907 4,783 5,366	$ \begin{array}{r} 1.90 \\ 1.97 \\ 2.16 \\ 2.20 \\ 2.18 \\ 2.28 \\ \end{array} $	$114 \\ 114 \\ 114 \\ 118 \\ 119 \\ 120$	$2.11 \\ 2.21 \\ 2.24 \\ 2.31 \\ 2.38 \\ 2.32$			82 87 83 83 81 80	21 21 21 21 22 22	
Kan.	1	1958	0				Territoria de la compañía de la comp	Ju	ly 28	0.50					
			$ \begin{array}{r} 0 \\ 25 \\ 50 \\ 75 \\ 100 \\ 125 \\ \end{array} $					2.06 2.36 2.40 2.29 2.38 2.48		2.52 2.62 2.79 2.70 2.85 2.79		Not h	arvested		
Kan.	2	1958						Ju	uly 28					Oct. 2	
			0 25 50 75 100 125 F test	5.2 6.1 5.9 6.1 6.2 7.0			2,571 3,185 2,909 2,929 2,915 3,652	2.23 2.34 2.30 2.34 2.40 2.48	135 131 138 137 138 140	2.26 2.58 2.44 2.62 2.69 2.74			46 50 52 55 50 57 N.S.	22 24 22 23 24	84 84 85 85 84 84
Kan.	3	1958						Ju	ily 24					Oct. 30	
			0 25 50 75 100 125 F test	$ \begin{array}{c} 14.8 \\ 14.8 \\ 14.6 \\ 14.8 \\ 14.7 \\ 14.4 \\ \end{array} $			6,218 5,333 5,850 5,880 5,625 5,417	$ 1.52 \\ 1.71 \\ 1.68 \\ 1.76 \\ 1.71 \\ 1.84 $	$ \begin{array}{r} 101 \\ 101 \\ 103 \\ 106 \\ 101 \\ 98 \\ $	1.93 2.01 2.03 2.16 2.12 2.20			98 97 102 100 106 101 N.S.	7 8 8 8 8 8 8	86 85 85 85 85 85
Kan.	4	1958					-	Ju	uly 24				-	Oct. 30	,
			0 25 50 75 100 125 F test	$15.2 \\ 15.1 \\ 15.2 \\ 15.3 \\ 16.1 \\ 15.3 \\ \dots$			6,969 6,469 7,849 6,679 7,983 7,376	$1.22 \\ 1.26 \\ 1.20 \\ 1.62 \\ 1.56 \\ 1.65 \\ \dots$	115 115 113 114 105 116	1.79 1.94 1.96 2.06 2.12 2.17			108 106 110 109 112 108 N.S.	9 9 9 9 9 9	87 86 87 86 85 85
Kan,	5	1958						Ju	ıly 23					Oct. 8	
			0 25 50 75 100 125 F test	10.9 11.8 10.6 11.4 11.2 10.9			6,135 6,028 5,880 6,108 5,690 5,812	2.34 2.38 2.26 2.50 2.40 2.41	126 130 126 128 127 129	2.58 2.50 2.52 2.46 2.56 2.41			87 91 90 94 82 88 N.S.	22 21 20 20 22 21	85 85 84 85 85 85 84
Kan.	6	1958	0	10.0			7 101	Ju	uly 23	2.00			102	Oct. 9	06
			0 25 50 75 100 125 F test	18.0 18.1 17.6 18.1 17.4 17.0			6,944 6,623 6,743 6,767 5,444	2.97 2.88 2.96 3.05 2.97 2.85	112 110 118 117 111 113	3.02 3.00 3.01 3.01 2.94 3.02			103 99 101 95 102 99 N.S.	8 8 8 8 8	85 85 85 85 85 85
Kan.	7	1958						A	ug. 4					Oct. 20)
			0 25 50 75 100 125 F test	$ \begin{array}{c} 16.4 \\ 16.7 \\ 16.4 \\ 17.6 \\ 16.4 \\ 16.8 \\ \end{array} $			5,083 5,266 4,707 5,516 5,164 5,048	2.80 2.90 2.86 2.96 2.92 3.07	109 103 102 108 106 100	3.05 3.00 3.17 3.04 3.10 3.08			80 90 84 93 83 90 **	12 11 12 12 12 12	82 82 82 82 82 82 82
Mich.	1	1957			July	23		А	ug. 8		Oct.	8		Oct. 8	
			0 25 50 75 100 125 F test	13.2 13.3 13.0 13.3 12.7 13.5 N.S.	2,953 2,832 3,069 2,953 2,695 2,655 N.S.	$\begin{array}{r} 4.76 \\ 4.63 \\ 4.76 \\ 5.11 \\ 4.83 \\ 5.17 \end{array}$	6,247 6,305 6,666 6,788 5,741 6,342 N.S.	3.32 3.49 3.33 3.21 3.46 3.41	130 126 127 125 126 123 N.S.	3.14 3.29 3.40 3.34 3.39 3.47	19,240 18,100 20,560 18,700 19,060 21,820 N.S.	$1.31 \\ 1.35 \\ 1.25 \\ 1.40 \\ 1.39 \\ 1.42 $	73 60 74 67 77 66 N.S.	32 35 38 34 36 33 N.S.	80 76 80 79 81 76 N.S

Table A-5 (continued)

			No. of	Early someling	Pla	nt samples	Law annulian	(Grain
Experime	ent	Year	plants Lbs. of per K/A ^a acre (thousands	Whole plants Dry wt. % K (lbs/A)	Whole plant Dry wt. % (lbs/A)	K Dry wt. %	K Dry wt. % K (lbs/A)	Yield bu./A.	% H ₂ O Shelling
Mich.	2	1957		July 23		Aug. 7	Oct. 8		Oct. 9
			$\begin{array}{cccc} 0 & 9.8 \\ 25 & 9.7 \\ 50 & 10.0 \\ 75 & 10.2 \\ 100 & 9.9 \\ 125 & 9.4 \\ \mathbf{F} \ \text{test} \mathbf{N.S.} \end{array}$	2,935 3.24 2,933 3.46 3,275 3.41 3,080 3.65 3,531 3.79 3,306 3.57 N.S	4,428 2 4,364 2 4,505 2 4,391 2 4,536 2 4,732 2 N.S.	06 117 2 23 111 2 78 111 2 83 111 3 83 114 3 85 115 3 N.S.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33 31 28 36 30 28 **	36 75 37 74 37 74 35 77 33 76 35 75 N.S. N.S.
Mich.	3	1957		July 26		Aug. 15	Oct. 11		Oct. 11
		•		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6,833 1 6,274 1 6,447 1 6,589 1. 5,940 2 6,622 2. N.S.	86 108 108 .87 107 109 .98 110 109 .102 109 101 .110 .110 .110 .111 .110 .110 .111 .110 .110 .111 .110 .110 .111 .110 .110 .111 .110 .110 .111 .110 .110 .111 .110 .110 .111 .110 .110 .111 .110 .110 .111 .110 .110 .111 .110 .110 .111 .110 .110 .111 .110 .110 .111 .110 .110 .111 .110 .110 .111 .110 .110 .111 .110 .110 .111 .110 .110 .111 .110 .110	.80 8,880 0.84 2.95 9,300 0.92 0.05 8,820 0.99 1.3 8,800 1.00 1.8 8,800 1.08 .20 9,240 0.92 N.S.	64 80 72 64 62 78 N.S.	37 80 32 80 34 79 35 79 37 76 35 80 N.S. N.S.
Mich.	1	1958	0 9.6		6,040 1	Aug. 12 .06 111 1	.36	52	Sept. 17 47 80
			$\begin{array}{ccccc} 25 & 10.7 \\ 50 & 10.7 \\ 75 & 10.7 \\ 100 & 10.4 \\ 125 & 11.5 \\ F & test N.S. \end{array}$		6,340 1. 6,840 1. 6,740 1. 6,860 1. 6,920 1. N.S.	16 107 1 08 110 1 19 113 1 19 105 1 29 111 1 N.S. .	.64 .64 .67 .76 .97	66 58 66 59 62 N.S.	47 82 46 82 46 81 48 81 46 81 N.S. N.S.
Mich.	2	1958	0 14.2		6.980 2	Aug. 15	02	97	Oct. 8
			$\begin{array}{c} 0 & 14.2 \\ 25 & 13.2 \\ 50 & 14.4 \\ 75 & 13.5 \\ 100 & 13.4 \\ 125 & 13.9 \\ F & \text{test} N.S. \end{array}$		6,960 2. 6,760 2. 7,500 2. 7,100 2. 7,280 2. N.S.	12 74 22 21 74 22 18 75 33 26 77 33 17 77 33 N.S	.92 .94 .00 .02	82 86 84 80 88 N.S.	37 83 39 83 37 83 37 83 38 83 37 84 N.S. N.S.
Mich.	3	1958	0 13.1	Aug. 1	6.700 0.	Aug. 29 89 92 0	.96	68	Oct. 30 31 82
			25 13.4 50 13.3 75 14.2 100 13.4 125 13.4 F test **	1,996 1.91 2,076 2.36 2,296 2.60 2,054 2.66 1,844 2.80 **	6,820 0. 7,380 1. 7,520 1. 7,160 1. 6,680 1. N.S	91 94 1 03 88 1 10 87 1 14 88 1 26 87 1 N.S.	.12 .38 .51 .66 .81	74 83 85 82 79 **	30 82 29 83 31 83 30 83 29 82 N.S. N.S.
Mich.	4	1958	0 14.6	July 31	5 220 1	Aug. 22	75	76	Oct. 22
			25 14.7 50 14.9 75 15.0 100 15.1 125 15.1 F test N.S.	2,960 1.89 2,960 2.27 3,120 2.34 3,060 2.32 3,360 2.49 N.S	5,740 1. 5,600 1. 5,140 1. 5,660 1. 6,060 1. *	10 73 1 15 78 1 17 96 1 32 80 2 35 88 2 28 82 2 N.S.	.93 .92 .00 .19 .23	73 70 75 74 72 N.S.	39 82 39 82 39 82 38 82 37 80 36 80 N.S. N.S.
Minn.	1	1957	0 16		3 949 1	Aug. 12	24	00	Nov. 5
			25 15 50 15 75 15 100 15 125 15 F test N.S.		3,010 1. 4,071 2. 3,832 2. 3,911 2. 3,865 2. N.S.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29 42 40 .58 .56	100 101 94 96 102 *	20 80 20 80 20 80 20 80 20 80 20 82 N.S. **
Minn.	2	1957				Aug. 14	-		Nov. 2
					1. 1. 1. 1. 1. 1.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.41 .63 .56 .78 .84 .91	62 64 55 59 63 51 *	23 84 23 84 25 85 23 85 24 85 23 86 N.S. *
Minn.	3	1957				Aug. 3	Oct. 13		Oct. 13
					$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00 12,600 0.53 .16 13,000 0.53 .42 13,000 0.61 .44 13,000 0.61 .58 13,000 0.71 .86 13,000 0.86 N.S.	$93 \\ 104 \\ 111 \\ 112 \\ 117 \\ 120 \\ **$	38 78 36 79 36 80 36 81 35 81 N.S. *
Minn.	4	1957	0 10		6.007	Sept. 6	Oct. 12		Oct. 12
					b,997 0. 7,912 0. 7,520 0. 7,853 1. 7,537 1. 7,819 1. N.S.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72 78 83 80 85 86 N.S.	51 82 49 82 49 82 50 81 49 82 49 82 48 82 N.S. N.S.

IOWA STATE TRAVELING LIBRARY DES MOINES, IOWA 433

Table A-5 (continued)

						No. of				Plant s	amples			(Grain	
Experim	ient	1	Year		Lbs. o K/A ^a	f per acre (thousands)	Early Whol Dry w (1	sampling le plants t. % K bs/A)	Sam Whole p Dry wt. (lbs/	pling at plants % K A)	silking tin Lear Dry wt. (gr	me ves ^b % K n)	Late sampling Whole plants Dry wt. % K (lbs/A)	Yield bu./A.	% H2O	Shelling
Minn.	1		1958							Au	ıg. 18			100	Oct. 2	25
				H	0 25 50 75 100 125 test	16 16 16 16 16 16			3,300 5,100 5,900 5,700 5,900 6,600 **	$\begin{array}{c} 0.71 \\ 0.74 \\ 1.00 \\ 0.94 \\ 1.12 \\ 1.50 \end{array}$	73 83 84 88 91 92 **	0.60 0.76 0.90 0.98 1.35 1.39		49 72 77 90 96 101 **	50 40 38 36 34 33 **	85 82 80 83 83 83 83 N.S.
Minn.	2		1958							Au	ng. 22		2	- 11	Oct. 1	4
				F	0 25 50 75 100 125 test	15.0 15.9 16.5 16.5 16.3 16.4 N.S.			3,600 4,300 4,200 4,200 4,100 4,100 4,400 N.S.	$\begin{array}{c} 0.76 \\ 1.25 \\ 1.42 \\ 1.72 \\ 1.82 \\ 2.08 \end{array}$	88 88 87 84 87 84 N.S.	$\begin{array}{c} 0.63 \\ 1.10 \\ 1.43 \\ 1.66 \\ 1.98 \\ 2.24 \end{array}$		39 56 57 57 57 54 *	60 55 56 56 57 58 N.S.	66 71 71 73 70 N.S.

N.S. * **

Not significant at the 5-percent level. Significant at the 5-percent level. Significant at the 1-percent level. 0, 25, 50, 75, 100 and 125 pounds of K per acre correspond to 0, 30, 60, 90, 120 and 150 pounds of K₂O per acre. Leaves from opposite and just below the major ear of 20 normal plants. Stover only. Yield corrected for stand by covariance. a b c d

			ling	ts ii.it		Pou taken	nds of up by	K/ac corn	re plants		Expanin	ant	Vear	pling	ent in its		Po taken	unds o up by	of K/a / corn	cre plants	
Experin	nent	Year	amp dat	erce [20		Pound	s K a	pplied/	acre	105	Experim	lent	Tear	amp	Perce H2O plan		Poune 25	ds K	applied	l/acre	125
III.	1	1957	7/29 8/16	<u>ад –</u> 	17 22	23 22 30	24 40		29 60		Iowa	27	1958	7/16 8/13 8/26	85 87 85	21 69 79	21 70 68	28 95 100	36 106 120	33 118 119	34 113 113
III.	397	1958	7/15 8/8		17 39	16 42	25 55	27 70	27 64	28 77	Iowa	28	1958	7/21 8/1 8/14	89 87 83	56 99 95	69 106 95	90 124 104	79 115 107	85 133 116	105 154 142
Ind. Ind.	$\frac{1}{2}$	1957 1957 1957	8/8 8/9 8/9		27 33 55	24 44 60	42 47 65	44 48 70	47 61 77	46 51 74	Iowa	29	1958	8/5		104	103	98	108	104	122
Ind. Ind. Ind. Ind. Ind. Ind.	5 4 5 6 7 8	1957 1957 1958 1958 1958 1958	8/3 8/4 8/7 8/8 8/12 8/11		53 70 54 72 57 106	78 59 79 78 90	80 74 83 90 106	92 67 99 98 116	97 79 99 136 128	104 85 100 110 134	Kan. Kan. Kan. Kan. Kan. Kan.	2 3 4 5 6 7	1958 1958 1958 1958 1958 1958 1958	7/28 7/24 7/24 7/23 7/23 8/4	80 80 81 79 85 85	57 95 85 144 213 142	75 91 82 143 200 153	$67 \\ 98 \\ 94 \\ 133 \\ 196 \\ 135$	69 103 108 153 206 163	70 96 125 137 201 151	91 100 122 140 155 155
Iowa	17	1957	7/10 7/22 9/5	89 87 73	42 70 85	54 81 94	51 77 95	$53\\80\\104$	$\begin{array}{c} 60\\ 89\\ 112\end{array}$	62 88 129	Mich.	1	1957	7/23 8/8 10/8	86 77 75	$ \begin{array}{r} 141 \\ 207 \\ 252 \end{array} $	131 220 244	146 222 257	151 218 262	130 199 265	137 182 310
Iowa	18	1957	7/10 7/22 9/5	88 84 75	51 73 80	46 78 94	61 77 92	59 85 90	57 92 95	59 92 101	Mich.	2	1957	7/23 8/7 10/8	81 75 59	95 91 155	101 97 156	112 125 144	112 124 140	134 128 123	$ \begin{array}{r} 118 \\ 135 \\ 129 \end{array} $
Iowa	19	1957	7/17 8/1 9/4	90 84 72	$31 \\ 104 \\ 105$	32 98 99	34 97 111	$35 \\ 110 \\ 115$	$36 \\ 123 \\ 124$	38 115 118	Mich.	3	1957	7/26 8/15 10/11	86 76 46	90 127 75	89 117 86	115 128 87	$115 \\ 126 \\ 88$	90 126 95	96 142 85
Iowa	20	1957	7/15 7/31	89 86	20 52	$\begin{array}{c} 20 \\ 62 \end{array}$	24 63	28 77	29 72	29 73	Mich.	1	1958	8/12	76	64	74	74	80	82	89
			9/5	73	61	68	65	75	81	86	Mich.	2	1958	8/15	78	140	147	149	164	160	158
Iowa	21	1957	7/16 7/24 8/27	88 83 65	29 58 53	34 73 53	40 81 61	44 95 68	43 95 75	55 106 77	Mich.	3	1958	8/1 8/29	90 79	$\begin{array}{c} 31 \\ 60 \end{array}$	38 62	49 76	60 83	55 82	52 84
Iowa	22	1957	7/20	90	26	35	37	36	35	32	Mich.	4	1958	7/31 8/22	84 81	57 57	56 66	67 66	73 68	71 76	87 78
			8/1 8/27	86 73	64 72	77	81 86	75 91	87 91	85 80	Minn.	1	1957	8/12	84	76	83	90	84	93	93
Iowa	23	1958	7/10	88	26	41	51	57	62	75	Minn.	2	1957	8/14							
			7/23 8/7	85 83	48 61	59 86	67 97	91 99	$\frac{104}{118}$	$115 \\ 127$	Minn.	3	1957	8/3 10/13	88 45	$\begin{array}{c} 53 \\ 69 \end{array}$	62 69	92 79	91 80	98 92	$\begin{array}{c} 114\\112 \end{array}$
Iowa	25	1958	7/15 8/12 8/25	89 85 83	22 89 94	21 96 99	$19 \\ 102 \\ 109$	$23 \\ 115 \\ 122$	$24 \\ 104 \\ 121$	$22 \\ 110 \\ 121$	Minn.	4	1957	9/6 10/12	82 66	48 51	65 58	60 57	80 68	76 80	90 79
Iowa	26	1958	7/15	90	19	29	27	31	45	48	Minn.	1	1958	8/18	83	23	38	59	54	66	99
			8/12 8/26	84 81	53 65	67 74	88 83	89 90	$113 \\ 106$	$\frac{116}{112}$	Minn.	2	1958	8/22	86	27	54	60	72	75	91

Table A-6. Pounds per acre of K in corn plants at different times in the growing season as influenced by K fertilizer applications.

Equi	a-						Partial	regression	n coefficients	(bi)					
tion No.		а	CK%K	CK%K ²	${f K_F}{{f x}10^3}$	$rac{K_{F}^{2}}{x10^{6}}$	KF(CK%K x10 ³	^{K)} ∆ %K	$(CK\%K) \\ (\triangle \%K)$	$s x 10^3$	 L x10² 	${{ m SL}\over{ m x10^2}}$	${f K_FS} {x10^2}$	СК Ү	\mathbb{R}^2
					%K in co	orn leave	s at silking	time (%K	.)						
1.		0.19	+0.85		+6.3	16				+4.5	-0.01				0.92**
2 .		0.01	+1.00		+10.0	-15	-2.4			1.7	0.05				0.93**
3.		-0.04	$+1.07 \\ 0.10$	$-0.022 \\ 0.029$	+10.0 1.1	-15 7	-2.4 0.5								0.93**
					Increase	in %K	in corn leav	ves from 1	K fertilizer a	pplications	(△%K)				
1a .		0.19	+0.15		+6.3	-16_{7}				+4.5	-0.01				0.66**
2a .		-0.04	+0.07	-0.022	+10.0	-15	-2.4			1.7	0.00				0.70**
3a .		0.01	-0.00 0.03	0.025	+10.0 1.1	-15 7	-2.4 0.5								0.70**
					Pounds o	f K per	acre in con	n plants	at silking tin	ne (Kp)					
1b .		78.6	+3.8	+10.8	+128 172	-311	93 45			-5,808	-76.2	+8.2	+2.3		0.75**
2b .		89.2	+10.5 13.0	+10.6 3.5	1/2	001	10	$^{+71}_{14}$	-18 9	-7,624 1,806	-11.1 2.1	+11.0 2.0	1.0		0.75**
					Yield of	corn gra	in, bushels	per acre (Y)						
1c		83.7	+58	-13	+168 181		95 48			-4,103 1 942	97 21	+7.5	+1.0		0.45**
2c .		58.7	+78	-19	101	000		+53 14	-31	-3,271 1.862		+7.1			0.46**
3c .		27.1	+8.2 3.5	1				$+17 \\ 15$	$-\frac{10}{10}$	+3,901 526	$-3.2 \\ 5.5$	1.0			0.27**
					Increase	in yield	of corn gra	in from H	K fertilizer aj	pplications	$(\triangle \mathbf{Y})$				
1d		-5.0	-24	+6	+247	-773	-104			+1,533	+29	-1.7	+0.6		0.61**
2d		-4.6		$+\frac{1}{4}$	75	205	20	$+40_{6}$		+1,089	+21	-0.9	0.4		0.64**
3d		-4.5	-2.5 1.3	1				+47 6	$-2\frac{2}{4}$	$+\frac{162}{219}$	+8720	0.7		-0.4 2.9	0.61**

Table A-7. Multiple regression equations relating the K content and the yield of corn to the percent K in the corn leaves at silking time, the amount of K fertilizer applied, and other variables based on data from 31 field experiments."

^a The equations have the general form. $\hat{\mathbf{Y}} = \mathbf{a} + \Sigma \mathbf{b}_{i\mathbf{X}i}$. The standard error associated with each partial regression coefficient is shown below the partial regression coefficient. ** Significant at the 1-percent level.

4
36
0,

Equa-											Partial r	egression co	pefficients	(bi)						
tion No.	а	K _{S1} x10 ³	${{ m K}_{{ m S1}^2}\over { m x10^6}}$	${f K_{S2} \over x10^3}$	$rac{K_{S1}K_{S2}}{x10^5}$	$rac{K_{S3}}{x10^3}$	${{ m K}_{{ m S4}}\over { m x10^3}}$	$rac{K_{S5}}{x10^3}$	$rac{\mathbf{K}_{\mathbf{S6}}}{\mathbf{x}10^3}$	K _{S3-6} x10 ³	Ks1Ks3-6 x10 ⁵	KS2KS3- x10 ⁵	6 K _F x10 ³	K _F ² x10 ⁶	K _{S1} K _F x10 ⁵	$\mathbf{x}_{10^2}^{\mathbf{T}}$	$rac{K_{S1}T}{x10^4}$	S x10 ³	CK Y x10 ²	
-							%K in	corn leav	es at sill	king time	(%K)									
1	0.47	+19.9	-22.02	+2.6		-6.1	-14.8	+25.2	-4.4				+9.3	-14.6	-2.2 0.9	-12.2 9.0	-11.8	+6.6		0.69**
2	0.52	+20.3	-21.9	+2.7		-6.4	-14.8	+25.2	-4.7				+9.4	-14.9	-2.2	-11.1	-12.5	10.1		0.69**
3	0.52	+15.1	-80.6	-8.9	+20.7	2.0	1.4	5.0	5.7	+37.1	-1.2	-42.3	+9.0	-15.4	-2.0	-26.7	+3.2			0.62**
4	0.28	+21.4		+0.5	5.4	-6.0				10.4	7.0	11.4	$+\frac{5.3}{2.5}$	-15.1	-2.1	+5.7	-20.6			0.59**
5	0.49	+18.0	-13.5	-2.7		2.5							+9.2	-15.2 16.2	-2.1	-1.2	-13.3			0.57**
6	1.11	+13.2	-17.3	-4.6						+5.5			+9.1	-15.3	-2.0	-21.0	+0.7			0.58**
7	0.69	+15.4	-12.6	1.8						2.4			+9.2	-15.2	-2.1	-5.8	-11.1			0.56**
8	0.38	+10.8	-13.4										+9.2	-15.2	-2.1	0.1	5.1			0.42**
9	0.41	+10.8	-13.4										+7.3	10.0	-2.1					0.42**
		2.3	5.6				Increase	in %K	in corr	leaves	from K	fertilizer a	pplications	(∧%K)	1.1					
1a	0.26	-2.5	+6.2	-2.7		+0.4	-1.7	+4.7	-2.5				+9.1	-15.2	-2.0	-1.5	+2.2	+2.4		0.78**
2a	0.24	-1.4 -1.5	$^{1.9}_{+6.3}$	-2.3		-0.5	-1.5	+4.6	-2.4				$+9.1^{0.9}$	-15.2	-2.0	3.7	2.5	4.3		0.78**
3a	0.13	$^{0.8}_{+1.1}$	$^{1.8}_{+15.3}$	-10.1	+1.2	0.8	1.6	1.9	1.5	+8.3	-11.6	+10.8	$+9.1^{0.9}$	-15.3	-2.0					0.79**
4a	0.28	-1.2 -1.7	$+7.2^{6.3}$	-2.5	1.9	-0.2				3.6	2.7	3.9	$+9.1^{0.9}$	-15.3	-2.0					0.77**
5a	0.26	-0.8 -1.6	$^{1.8}_{+7.0}$	-2.8		0.7				+0.4			+9.1	-15.3	$-2.0^{0.4}$					0.77**
ба	0.27	-0.8 -1.7	$^{1.8}_{+7.2}$	-2.6						0.8			+9.1	-15.3	-2.0					0.77**
7a	0.28	-0.8 -3.4	$^{1.8}_{+8.3}$	0.5									$+9.1^{0.9}$	-15.3	-2.0					0.73**
		0.8	1.9				Pounds	of K per	acre in	corn pl	ants at si	lking time	(Kp)	6.3	0.4					
1b	-64.8	+798	7,118	941	+1,906			•		+2,383	+114	-3,224	+423	-271	96	-419	+166	+3,044		0.66**
2b	-81.2	$^{179}_{+768}$	997 	364 + 1	28	+206		+587	-23	517	379	57	+422	-233	-48 -99	+961	84 	588 + 3,676		0.61**
3b	-39.8	$^{202}_{+424}$	-267 -287	-114 -121		+101	251	299	224	+358			+407	-227		-1,094	354 	+4,160	•	0.56**
4b	-92.5	$^{126}_{+876}$	-143	101 97		128				136			+423	-250	-98	+1,571	88 1,162	+3,382		0.59**
5b	-92.3	$\substack{188\\+891}$	258 	101									+425	-249	-99	+1,618	-1,251	599 + 3,335		0.59**
бЬ	-89.4	$^{152}_{+853}$	256										$+\frac{131}{395}$	842	$-\frac{52}{-99}$	+1,640	-1,265	569 + 3,350		0.59**
7b	26.7	$^{125}_{+295}$											+428		-115 52	416	264	565		0.44**
		45					Yield of	corn gra	in, bush	els per a	cre (Y)		90		60					
1c	-74.4	+620		+97		-36	-279	-735	+1,316				+199			+1,021	561	+4,789		0.62**
2c	-64.1	$^{140}_{+399}$	-2,441		+697	11	174	207	155	+1,809		-1,204	+192	577 —626	36 	368 + 474	246 68	427 + 4,393		0.48**
3c	-44.8	$^{157}_{+292}$	871 613	318 	245		1			452 583	331	499	+105 + 190	674 612	42 	+672	73 	514 + 4,640		0.45**
4c	-25.1	+355	$-216 \\ -524$	$+152^{79}$						106			+211	688 645	$-42 \\ -50$	158 + 960		+3,601		0.36**
5c	-22.9	+301	$-226 \\ -534$	+108		113							+208	741 644	46 	+846	282 	526 + 3,700		0.36**
бс -	-29.9	150 + 410	226 	69									$^{115}_{+212}$	740 	$-46 \\ -50$	390 + 1.038	242 	509 + 3.545		0.35**
7c	57.6	$+311 \\ +10$	226 										$^{115}_{+264}_{136}$	743 	$ 46 \\ -66 \\ 54 $	372	236	502		0.08*

Table A-8. Multiple regression equations relating the K content and the grain yield of corn to exchangeable K in the field-moist soil, the amount of K fertilizer applied, and other variables, based on data from 31 field experiments."

Table A-8 (continued)

Equa-											Partial reg	ression coef	ficients (bi)						
tion No.	a	Ks1 x10 ³	K _{S1²} x10 ⁶	$rac{{f K}_{{f S}2}}{{f x}10^3}$	$rac{K_{S1}K_{S2}}{x10^5}$	K _{S3} x10 ³	K ₈₄ x10 ³	K.85 x10 ³	K _{S6} x10 ³	K _{S3-6} x10 ³	Ks1Ks3-6 x10 ⁵	K _{S2} K _{S3-6} x10 ⁵	KF x10 ³	$\frac{\mathrm{K_{F}}^2}{\mathrm{x}10^6}$	K _{S1} K _F x10 ⁵	${f T} {f x} 10^2$	K _{S1} T x10 ⁴	S x10 ³	CK Y x10 ²	
							Increase	in yield	of corn	grain f	rom K fer	tilizer appl	ications (<u>∆Y)</u>						
1d	-23.2	+88	+92	-168		+72	+67	-195	+211				+239	-756	56	+575	-167	+1,101	-20	0.48**
2d	-10.4	-44	+314	-234		+98	+153	-60	-63				+249	-797	-58	+465	-69	+186	4	0.42**
3d	-4.4	+139	-1,067		+345	65	106	126	95	+276			+257		-62^{22}	+225 $+257$	+50	-53		0.42**
4d	-8.2	68	$+264^{453}$	-165 -207	127	+143				235	172	259	+249	350 		+343	$+6^{38}$	+248		0.41**
5d	-4.5	78 —53	+234	-150^{42}		53				+60			+251	352 792	$-22 \\ -59$	198 + 241	134 + 14	+249 + 240		0.38**
6d	-12.1	$+20^{51}$	$^{113}_{+279}$	-136						56			+254	359 	$-\frac{22}{-60}$	+519		260 + 85		0.38**
7d	-3.4	-117	$^{109}_{+326}$	33									56 + 249	358 	$-\frac{22}{58}$	$^{188}_{+279}$	-61	$^{246}_{+279}$		0.32**
8d	12.3	-137 48	$^{+113}_{+307}_{114}$										$+253 \\ 59 \\ 59 \\ 59 \\ 59 \\ 59 \\ 59 \\ 59 \\ $	$ \begin{array}{r} 373 \\ 803 \\ 380 \end{array} $	$-\frac{23}{59}$	187	119	252		0.29**

The equations have the general form: $\hat{\mathbf{Y}} = \mathbf{a} + \Sigma b_i \mathbf{X}_i$. The standard error associated with each partial regression coefficient is shown below the partial regression coefficient. Significant at the 1-percent level. Significant at the 5-percent level.

Table A-9. Multiple regression equations relating the K content and grain yield of corn to the exchangeable K in field moist soils, amount of K fertilizer applied, and other variables. Based on data from 31 field experiments.^a

Foua-							Partia	al regressi	on coeff	icients (b	i)					
tion No.	а	${}^{\rm K_{S1}\frac{1}{2}}_{\rm x10^2}$	K S1 x103	${{{{\rm K}_{{ m S2}}}}\atop{{ m x10^3}}}$	K ₈₃ x10 ³	K ₈₄ x10 ³	K _{S5} x10 ³	K ₈₆ x10 ³	$rac{K_{ m F}^{1\!\!\!/_2}}{{ m x}10^2}$	К _F x10 ³	$\frac{K_{S1}{}^{1\!\!\!/_2}K_F{}^{1\!\!\!/_2}}{x10^2}$	$\mathbf{x}_{10^2}^{\mathbf{T}}$	$\frac{K_{S1}\frac{1}{2}T}{x10^{2}}$	S x10 ³	CK Y x10 ²	R ²
						% K	in corn le	eaves at s	ilking ti	me (%K)						
1	2.40	$+55.4 \\ 10.4$	$-9.0 \\ 3.2$	$^{+2.4}_{2.0}$	-5.7 2.6	-15.3 4.3	+25.4 5.1	-4.6 3.8	$+9.8 \\ 3.7$	$^{+2.8}_{1.8}$	$-0.68 \\ 0.27$	$^{+9.0}_{18.3}$	$-3.2 \\ 1.5$	$^{+4.9}_{10.6}$		0.68**
					Pour	nds of K	per acre	in corn pl	lants at	silking tim	ne (K _p)					
1a	-167	$^{+1,641}_{611}$	57 190	$^{+4}_{114}$	$+\frac{257}{151}$	$-610 \\ 253$	$+628 \\ 301$	<u>48</u> 225	$+387 \\ 215$	$+240\\103$	$-32 \\ 16$	$^{+1,905}_{1,107}$	$-179 \\ 90$	+3,679 <u>622</u>		0.60**
						Yield	of corn g	grain, bus	hels per	acre (Y)						
1b	-204	$^{+2,411}_{416}$	-577 129	$+\frac{88}{78}$	-19 103		-704 205	$^{+1,311}_{158}$	$^{+287}_{146}$	24 70	$-16 \\ 11$	$^{+2,056}_{729}$	-156 61	$^{+4,700}_{4,239}$		0.63**
				I	ncrease	in yield o	f corn gr	ain from	K fertili	zer applica	ations $(\triangle \mathbf{Y})$					
1c	-41	$+197 \\ 269$	$+58 \\ 83$	164 47	$+75 \\ 60$	$^{+60}_{102}$	-192 122	$^{+213}_{106}$	$+332 \\ 85$	25 41	<u>19</u> 6	$+822 \\ 428$	-41 36	+1,117 313	20 4	0.49**

^a The equations have the general form: $\hat{\mathbf{Y}} = \mathbf{a} + \Sigma \mathbf{b}_i \mathbf{X}_i$. A square root transformation of some of the data was used in these equations. The standard error associated with each partial regression coefficient is shown below the partial regression coefficients. ** Significant at the 1-percent level.

Table A-10.	Multiple	regression	equations	relati	ng the	K conter	nt an	d the	yield of	corn to	the	exch	angeal	ble	K in	air-dry and	oven-
	dry soil	samples, th	ne amount	of K	fertilizer	applied	and	other	variable	s. Based	on	data	from	31	field	experiments	s. ^a

Ea	112-						Part	ial regres	sion coeff	icients (b	Di)			1. C	11.4	a year
tio	n Dryness of soil sample	a	K ₈₁ x10 ³	K ₈₁ ² x10 ⁶	K _{S2} x10 ³	K _{S3} x10 ³	K 84 x10 ³	K _{S5} x10 ³	K ₈₆ x10 ³	K _F x10 ³	$\frac{\mathrm{K_{F}}^{2}}{\mathrm{x10^{6}}}$	K ₈₁ K _F x10 ⁵	T x10 ²	$\substack{\mathrm{K}_{\mathrm{S1}}\mathrm{T}\\\mathrm{x}10^4}$	S x10 ³	\mathbb{R}^2
				%	K in corn	leaves a	t silking t	ime (%K)		1	1.1				
1	Air-dry 1.	.92	+4.7	+0.6	-2.8	+0.1	+1.5	-6.1	+2.8	+9.5	-15.3	-2.7	-14.1	+5.3		0.51**
2	Air-dry 2.	.09	+2.8	+5.7	1.0	1.0	1.8	1.7	1.2	+9.6	-15.1	-2.7	-23.1	+2.8		0.42**
3	Oven-dry 2.	.79	+4.3	-9.2	-3.1	+3.4	-3.8	-1.9	+5.3	+8.4	-15.3	-1.4 -1.1	-50.7	+8.3		0.56**
4	Oven-dry 2.	.66	$^{2.9}_{+3.1}_{-2.3}$	$-3.0 \\ -5.7 \\ 3.2$	1.4	1.1	1.2	1.5	1.1	$+\frac{2.5}{2.8}$	-16.6 15.4 18.3	-1.1 0.8	-42.4 9.5	$+{5.8\atop 5.3}{5.3}$		0.45**
				Inc	crease in	K in cor	n leaves i	from K f	ertilizer a	pplication	ns (∆%I	<u><)</u>				
1a	Air-dry 0.	.10	-2.2	+5.5	+1.4	-0.8	-0.9	+1.3	-0.1	+9.5		-2.6				0.75**
2a	Air-dry 0.	.11	-1.5	+4.4	0.0	0.0	0.0	0.0	0.1	+9.4	-15.4	-2.6				0.73**
3a	Oven-dry 0.	.18	-2.7	$+\frac{1.5}{1.6}$	-0.0	+0.3	-0.3	+1.7	-1.2	+8.3	-15.4	-1.1				0.69**
4a	Oven-dry 0.	.16	-1.5 0.6	+2.9 1.1	0.0	0.4	0.5	0.0	0.5	$+8.2 \\ 1.1$	-15.5 7.1	-1.1 0.3				0.65**
				Po	unds per	acre of	K in corr	n plants :	at silking	time (K	(Р)					
1b	Air-dry 1	9.8	+405	-378	-429	+322	-148	-140	+100	+436	-253		+141	+450	+3,531	0.60**
2b	Air-dry 10	0.7	+285	-57	89	/0	87	04	01	+435	-230	-126	-304	+137	+3,903	0.49**
3b	Oven-dry 19	9.7	+245	-570	6_	+115	-212	-174	+322	+343	-223		-1,414	+353	+4,392	0.60**
4b	Oven-dry 49	9.4	$^{148}_{+145}$ 118	$-153 \\ -446 \\ 162$	77	55	61	78	61	$+352 \\ 140$	$-272 \\ -272 \\ 919$	$-38 \\ -35 \\ 41$	-1,712 488	+519 273	$+3,291 \\ -637$	0.51**
				Yie	ld of con	n grain,	bushels p	oer acre	(\mathbf{Y})							
1c	Air-dry22	2.2	+425	596	-331	+101	+80	-157	+139	+199	632	-49	+839	-162	+3,903	0.53**
2c	Air-dry11	1.9	+284	-575	00	50	00	04	47	+200	-643	-49	+727	-173	+3,697	0.34**
3c	Oven-dry 14	4.2	+116	-395		+45	-32	-111	+180	+163	-633	-13	-58	+193	+4,040	0.43**
4c	Oven-dry 20	0.6	+996	-284 132	64	46	51	65	51	$+169 \\ 115$	-651 750	-14 -14 -34	$+171 \\ 398$	$+\frac{249}{232}$	$+3,545 \\ -520$	0.34**
				Inc	rease in	yield of	corn grain	n from K	fertilizer	applicat	tions (\triangle	Y)				
1d	Air-dry7.	.6	-45	+93	+27	+38	-142	+214	69	+244	-793	61	+60	-36	+192	0.39**
2d	Air-dry10	0.3	+49 + 49	-27	39	32	31	50	20	+238			+198		$+\frac{270}{208}$	0.24**
3d	Oven-dry9.	.6	-58	+69	+19	$+2_{05}$	26	+120	98	+193		-13	+254	-12	+218	0.27**
4d	Oven-dry24	4.9	$+42 \\ 52$	+47 72	30	25	28	30	29	$+190 \\ 62$		-12 18	+548 215	-165 120	$+313 \\ +381 \\ 281$	0.20**

^a The equations have the general form; $\hat{\mathbf{Y}} = \mathbf{a} + \Sigma \mathbf{b}_1 \mathbf{X}_1$, The standard error associated with each partial regression coefficient is shown below the partial regression coefficient. ** Significant at the 1-percent level,

NC-16 Technical Committee — Mineral Deficiencies in Soils, Including Minor Elements, Their Influence on Crops, and the Efficient Use of Various Fertilizers

W. M. Laughlin	Alaska
R. H. Bray,* L. T. Kurtz	Illinois
S. A. Barber	Indiana
C. A. Black,* J. T. Pesek	Iowa
F. W. Smith	
J. F. Davis, K. Lawton*	Michigan
A. C. Caldwell	Minnesota
G. H. Wagner, E. R. Graham*	Missouri
R. A. Olson	
E. B. Norum,* R. A. Young	North Dakota
H. J. Mederski	Ohio
F. E. Shubeck, P. L. Carson,* L. O. Fine*	South Dakota
L. E. Engelbert,* J. Murdock	Wisconsin
J. W. Ketcheson	Ontario, Canada
R. G. Menzel, M. Fried	ARS, USDA
G. M. Browning (Iowa)	Administrative Advisor
* Indicates a former member of the committee.	

Potassium Subcommittee of NC-16

J. J. Hanway, chairman	Iowa
S. A. Barber	Indiana
M. Fried	S, USDA
G. Stanford, R. H. Bray and P. F. Pratt also served on this subcommi	ttee when
the work was initiated	