

The Economics of Soil and Water Conservation Practices in Iowa: Model and Data Documentation

the center for agricultural and rural development iowa state university ames, iowa 50011

610

THE ECONOMICS OF SOIL AND WATER CONSERVATION PRACTICES IN IOWA: MODEL AND DATA DOCUMENTATION

by

C. Arden Pope III Shashanka Bhide and

100

Earl O. Heady

CARD Report 108, SWCP Series I

The Center for Agricultural and Rural Development Iowa State University Ames, Iowa 50011

August 1982

The preparation of this document has been financially aided by the Department of Soil Conservation through a grant to the Iowa Department of Environmental Quality from the United States Environmental Protection Agency. Other persons who helped in the preparation of this document are Darold Akridge, Timm Banks, Aasha Kapur, David Krog, and LeAnn McGranahan.

PREFACE

Because of the magnitude of the soil erosion problem and because of the important role that economic factors play in the adoption of conservation practices, an extensive research effort to examine the economics of soil and water conservation practices in Iowa has been conducted. It was conducted by the Center for Agricultural and Rural Development (CARD) in the Iowa Agricultural and Home Economics Experiment Station in cooperation with the Iowa Department of Soil Conservation and the Cooperative Extension Service in order to provide guidance in planning and implementing cost-effective control for Iowa's soil erosion and nonpoint water pollution problems. Because of the scope of this effort, various related studies have been completed and various related reports have been written. These are being published as series of five CARD Reports. These reports are listed as follows:

- I. The Economics of Soil and Water Conservation Practices in Iowa: Model and Data Documentation (Pope, Bhide and Heady, 1982).
- II. The Economics of Soil and Water Conservation Practices In Iowa: Results and Discussion (Pope, Bhide and Heady, 1982).
- III. A Dynamic Analysis of Economics of Soil Conservation: An Application of Optimal Control Theory (Bhide, Pope and Heady, 1982).

- IV. Effects of Tenure Arrangements, Capital Constraints, and Farm Size on the Economics of Soil and Water Conservation Practices in Iowa (Banks, Bhide, Pope and Heady, 1982).
- V. Effects of Livestock Enterprises on the Economics of Soil and Water Conservation Practices in Iowa (Krog, Bhide, Pope and Heady, 1982).

The first report of this series describes and documents the basic methodology, data and assumptions used in these related studies. Methodology, data, and assumptions specific to an individual study are given in the corresponding report.

TABLE OF CONTENTS

	Page
LIST OF TABLES	iii
LIST OF FIGURES	v
CHAPTER I. INTRODUCTION	1
Objectives	2
Steps for Reaching the Objectives	3
CHAPTER II. DEFINITION OF REPRESENTATIVE FARMS	7
General Location Selection	7
Farm Description	9
CHAPTER III. IDENTIFICATION OF CONSERVATION PRACTICES	21
Defining the Crop Rotations	21

122

13.992

Defining the Tillage Systems	25
Defining the Supporting Practices	25
Defining the Management Systems	31
CHAPTER IV. CONSTRUCTING THE LINEAR PROGRAMMING MODELS	32
Mathematical Representation of the Models	32
Explanation of the Equations of the Models	38
Simplex Tableau of the Models	39
Framework of Data Assimilation and Model Construction	39

	Page
CHAPTER V. DATA COLLECTION	43
Soil Loss Data	43
Cost Data for Cropping Activities	47
Yield and Fertilizer Data	62
Yield adjustments for supporting practices and crop rotations	65
Yield adjustment for tillage systems	65
Yield adjustments for soil erosion	68
Nitrogen	70
Phosphorus	73
Potassium	73

ii

TITCES	,,,
Livestock Sector	74
Fieldwork Hours Available	81
CHAPTER VI. SUMMARY	83

72

84

Drio

REFERENCES

LIST OF TABLES

		Page
Table 1	Farm 1	12
Table 2	Farm 2	12
Table 3	Farm 3	13
Table 4	Farm 4	13
Table 5	Farm 5	14
	Farm 6	14
Table 6		15
Table 7	Farm 7	
Table 8	Farm 8	15
Table 9	Farm 9	16
Table 10	Farm 10	16
Table 11	Farm 11	17
Table 12	Farm 12	17
Table 13	Farm 13	18
Table 14	Farm 14	18
Table 15	Farm 15	19
Table 16	Farm 16	19
Table 17	Farm 17	20
Table 18	Farm 18	20
Table 19	Recommended Terminology	22

-

100

		Page
Table 2	0 Description of tillage systems for corn (or silage) following corn (or silage)	26
Table 2	1 Description of tillage systems for corn (or silage) following beans	27
Table 2	2 Description of tillage systems for corn (or silage) following meadow	28
Table 2	3 Description of tillage systems for beans following corn	29
Table 2	4 Description of tillage systems for meadow following meadow or oats	30
Table 2	5 Description of tillage systems for oats following corn (or silage)	30
Table 2	6 Soil loss data	44
Table 2	7 Crop management factors	48
Table 2	8 Power requirement	53
Table 2	9 Seed rates	55
Table 3	0 Per acre terracing costs	56

Table 31 Pasture types and fertilizer rates for the different

Table 51	farms	61
Table 32	Estimated 1985 and 2020 crop yields for selected soils in Iowa	66
Table 33	Nitrogen factors	72
Table 34	Prices (In 1980 dollars)	75
Table 35	Total daylight hours suitable for fieldwork	82

LIST OF FIGURES

		rage
Figure 1	General farm locations	8
Figure 2	LP simplex tableau	40
Figure 3	Date assimilation	42
Figure 4	Yield adjustments for topsoil depth	71

5 3 9

v

high land prices, high interest rates, growing expenses, etc., many farmers believe that they must concentrate on short-rum profits and cash flows or be forced out of farming. Because soil and water conservation often requires long-term investments such as terraces and conservation tillage equipment and because many of the benefits of soil and water conservation practices may not be realized for many years, there are few obvious incentives for farmers to aggressively seek and use conservation practices. Finally, economic circumstances of individual farmers, such as tenure, total capital and equity, can alter the use of conservation practices.

Objectives

Some soil erosion from water movement is inevitable. However, when the level of erosion exceeds the rate at which new soil can be created, soil erosion becomes a threat to long-term productivity. On most soils in Iowa, a tolerance level of about four or five tons of annual soil

2

loss per acre is regarded as acceptable because at this level the soil can replace itself through natural processes. However, in Iowa average annual soil loss from cropland is estimated as being at least twice what is acceptable (U.S. Department of Agriculture, 1981a). In some parts of the state it is even much higher. As a result of this erosion and the high levels of sediment that concurrently enter streams, rivers, lakes, and reservoirs, water quality is greatly reduced. 3

Therefore, the following questions are raised: What practices are available to help control this erosion? Which practices are more effective and more efficient across differing soil characteristics and farming situations? What policies can be implemented to promote the use of these practices? How would a farmer's profits be affected if soil erosion is held to acceptable levels? This study attempts to address these and other similar questions.

In general, the objective of this study is to evaluate soil and water conservation practices in Iowa under various economic environments and across various farm situations with differing soil resources and economic characteristics. The objective of this particular report is to explain the general methodology and to document the data collection and model building activities of the study.

Steps for Reaching the Objectives

The six following steps are needed to achieve the objectives of the study:

 Define representative farms in terms of soil resources such that the farms and soil situations will represent typical and extreme conditions with respect to soils and erosion in Iowa and will range over enough conditions so that the major problems in attaining reduced soil loss and application of soil and water conservation practices can be studied.
 Choose the relevant soil and water conservation practices

that will be evaluated by first choosing and defining the

crop rotations, the tillage systems, and the supporting practices that should be considered, and then determine which combinations of them are practical and/or probable in Iowa.

3. Develop the framework for a linear programming (LP) model for each farm in terms of the activities, constraints, and objective function that will be needed.

4. Gather the data needed to estimate yields, costs, prices, constraints, etc. This includes collecting all data needed to estimate the coefficients and other values needed in the models for all of the farms.

5. Utilize the models under different scenarios and use the results to help evaluate the various soil and water conservation practices across the different farms and different scenarios.

6. Conduct various special studies that further modify,

4

expand, and/or use the models and data to look at specific problems in more depth.

It is noted that any model building of this sort is subject to many chances of misspecification of both the physical and economic relationships. This can occur because some of the data used in building the models may be inaccurate or because the basic underlying assumptions and framework of the models are not totally correct. These problems occur to some degree in all model building attempts. In order to successfully study the economics of soil and water conservation practices in Iowa, information dealing with livestock feeding, integrated pest management, soil fertility, soil distribution, soil topograpgy, soil erodibility, rural sociology, farm engineering and other related subjects is needed. It would be difficult to incorporate all the relevant information from all of these areas in order to study conservation practices without developing some sort of models. Such attempts can quickly become disjointed and cumbersome. The mathematical models developed in this study attempt to incorporate the best data possible from all fields of agriculture, in a format that can be easily used.

An advisory committee of experts has been organized to help provide accurate and relevant data, and to help develop the basic underlying assumptions and framework of the models. These experts also provide help in evaluating the results of these models. The members of this

5

Min Amemiya, Agronomy, Iowa State University (ISU) Mark Berkland, Soil Conservation Service Robert Dahlgren, Animal Ecology, ISU Jerry DeWitt, Integrated Pest Management, ISU Richard Fawcett, Weed Science, ISU Tom Fenton, Agronomy, ISU Clay Herman, Information Service, ISU Bob Jolly, Economics, ISU Stewart Melvin, Ag. Engineering, ISU Bruce Menzel, Animal Ecology, ISU Gerald Miller, Agronomy, ISU Peter Nowak, Sociology, ISU Paul Rosenberry, Ag Economics, USDA Gene Rouse, Animal Science, ISU

Help and advice was also sought from many other experts who are not on this advisory committee. For example, much help was received from Dan Lindquist and Bill Nicholas, Iowa Department of Soil Conservation (IDSC); Ubbo Agena, Iowa Department of Environmental Quality; and Vivan Jennings, Iowa State University Cooperative Extension Service.

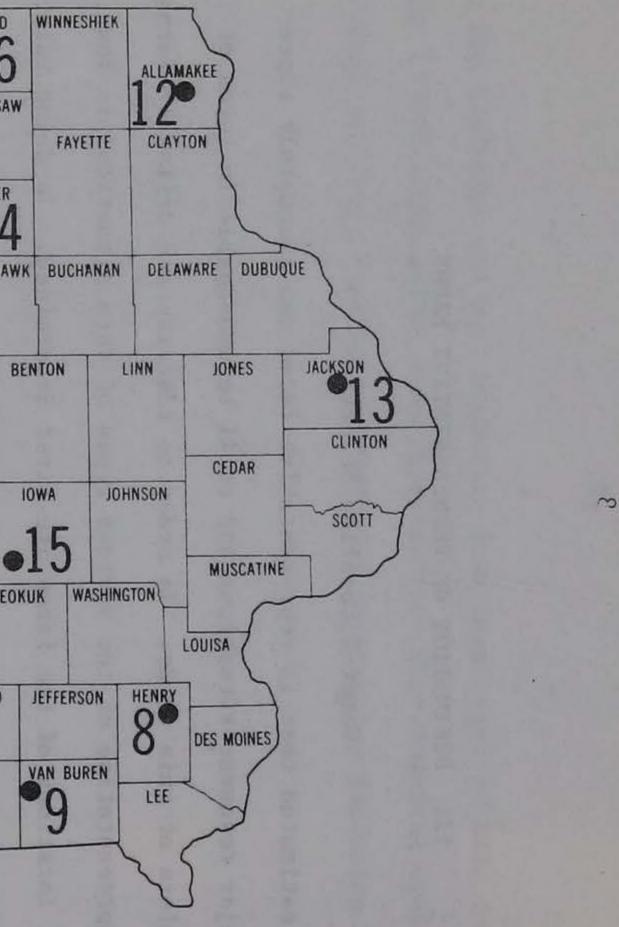
6

NAME AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS ADDRE

II. DEFINITION OF REPRESENTATIVE FARMS

7

General Location Selection


It is estimated that 18 representative farms can adequately represent the major resource situations and still be manageable in terms of the constraints of this study. In order to identify and define 18 farms that are representative of the various types of farm situations in Iowa, the general locations of the farms are first determined. In doing this, the following criteria are used: 1) the full range of erosiveness should be represented, 2) the principal soil association areas should be included, and 3) the six major land resource areas in Iowa should be well represented.

The selection of these 18 general farm locations is a subjective process that is not easily documented. However by using a map showing the principal soil association areas of Iowa (Oschwald, et al., 1964), a

map showing soil association areas of Iowa (Iowa Agriculture and Home Economics Experiment Station, 1978), a map that shows the erosiveness of different areas of Iowa on a scale from one to ten (Iowa Department of Environmental Quality, 1979), and a map that outlines the land resource area of Iowa (Iowa Agriculture and Home Economics Experiment Station, 1978), general locations that meet the above criteria are selected. These locations were subsequently adjusted slightly after consultation with Tom Fenton (Agronomist, Iowa State University, Ames, Iowa), Min Amemiya, and Gerald Miller (extension agronomists, Iowa State University,

5	LYON	OSCEOLA	DICKINSON	EMMET	KOSSUTH	WINNEBAGO	WORTH	MITCHELL	HOWARD
5	SIOUX	O'BRIEN	CLAY	PALO ALTO	1	HANCOCK	CERRO GORDO	FLOYD	CHICKASAW
f-	PLYMOUTH	CHEROKEE	BUENA VISTA	POCAHONTAS	HUMBOLDT	WRIGHT	FRANKLIN	BUTLER	BREMER
5	WOODBURY	1DA 18	SAC	CALHOUN	WEBSTER	HAMILTON	HARDIN	GRUNDY	BLACK HAW
NUMBER OF STREET	HARR		ELBY AUDU			3•		SHALL	TAMA B
	5	POTTAWATTAN		s adai	The second	ON WARR	EN MARIO	L /] DN MAHA	SKA KEOI
	{	MILLS	MONTGOMERY	ADAMS	UNION 1		LUCAS	MONROE	WAPELLO
	<	FREMONT	PAGE	TAYLOR	RINGGOLD	DECATUR	WAYNE	APPANOOSE	DAVIS

Figure 1. General farm locations

Ames, Iowa). The selected general locations of the 18 representative farms are shown in Figure 1.

Farm Description

Actual farms are not used in this study for various reasons. It is difficult if even possible to find an actual farm that can be viewed as typical or representative of a given area and level of erosiveness. For example, in order to even try and find a representative farm, one must first synthesize one by using soil surveys, farm surveys, farm budgets, etc., to determine how a representative farm should be constructed. Also, because no actual farm includes all the rotations, tillage systems, supporting practices, livestock enterprises, etc., that are included in this study, an actual farm can provide only a small amount of the data needed to build the LP models. Even the data that an actual farm can provide often can be acquired from more reliable sources.

Therefore, representative farms are constructed for use in this study.

The size of the 18 representative farms are determined for each farm based on information in "Number and Size of Farms in Iowa" (Iowa Crops and Livestock Reporting Service, 1979) and in "1978 Farm Business Summary" (Edwards and Stoneberg, 1978a, 1978b, 1978c, 1978d, 1978e, 1978f, 1978g, and 1978h). The farm sizes are chosen to reflect the average size of commercial farms in the area. Gross farm size equals the total size of the farm. Net farm size equals gross farm size minus 30 acres of land assumed to be used for the homestead, roads, drainage ways, etc. The soils in each farm are delineated by soil mapping units (SMUs). These units describe the soil type, the slope class, and the erosion phase (see Oschwald, et al., 1964, p. 10-15). For example, one soil mapping unit may be Clarion loam, 2-5 percent slope with only slight erosion (greater than 7 inches of A horizon with no mixing of surface soil and subsoils in the plow layer). The soil type legend for Clarion loam, is 138 (Highland, et al., 1973), the slope class is B, and the erosion phase is 1. Therefore, the code used in this study for this soil is 138B1.

A land capability class and subclass (see Oschwald, et al., 1964, p. 16) is assigned to each SMU. These are obtained from County Soil Survey reports (Andrews, 1977; Andrews and Dederiksen, 1981; Buckner, 1967; Buckner and Highland, 1974; Dankert, Hanson, and Reckner, 1981; Dietz, and Hidlebaugh, 1962; Highland and Dederiksen, 1967; Kovar, Dederiksen, and Fisher, 1973; Lockridge, 1977; Nestrud and Worster,

10

1979; Scholtes, Swenson, Mogen, and Kittleson, 1958; and Sherwood, 1980).

Upon consultation with Thomas Fenton (agronomist, Iowa State University, Ames, Iowa) and Paul Rosenberry (agricultural economist, Economics, Statistics, and Cooperatives Service, USDA, Ames, Iowa) and based on information obtained form the National Inventory of Soil and Water Conservation Needs (Conservation Needs Inventory Committee, 1979), the Iowa Soil Association Map (Iowa Agricultural and Home Economics Experiment Station, 1978), and from the County Soil Survey reports (the same reports referenced above), the 18 farms are tentatively defined in terms of soil composition. These farms are defined such that a reasonable combination of SMUs, representative of the area, is included. Each farm is assigned an erosiveness class based on the erosiveness of the general area in which it is found. In conjunction with this research effort, and in an attempt to get farmer and other input into this study, trips were taken by the research team to the different general farm locations in Iowa and visits were made with farmers, area extension personnel, and local Soil Conservation Service personnel. Information obtained from these trips is used to either adjust or confirm the size and soil delineation of each farm.

The final farm descriptions utilized in this study are summarized in Table 1-18.

11

Table 1. Farm 1

Principal Soil Association: Clarion-Nicollet-Webster, Location: South Central Kossuth, Land Resource Area: 103, River Basin: Des Moines River, Erosiveness Class: #1, Gross farm size: 380 acres, Net farm size: 350 acres.

Soil Type Name	Soil Type Legend	Slope Class	Erosion Phase	Capability Class	% Net Farm Acres	Acres of SMU
Webster sicl	107	A	1	IIw-1	60	210
Nicollet 1	55	Α	1	I-1	33	116
Clarion 1	138	В	1	IIe-1	7	24

Table 2. Farm 2

Principal Soil Association: Luton-Onawa-Salix, Location: Northwest Monona, Land Resource Area: 107, River Basin: Western Iowa, Erosiveness Class: #1, Gross farm size: 550 acres, Net farm size: 520 acres.

Soil Type Name	Soil Type Legend	Slope Class	Erosion Phase	Capability Class	Farm Acres	of SMU
Luton sic	66	A	1	IIIw	66	343
Salix sicl	36	А	1	I-1	27	140
Blencoe sic	44	А	1	II-W	7	37
		A A	1 1		2	27 7

Table 3. Farm 3

Principal Soil Association: Clarion-Nicollet-Webster, Location: East Central Boone, Land Resource Area: 103, River Basin: Des Moines River, Erosiveness Class: #2, Gross farm size: 350, Net farm size: 320.

Soil Type Name	Soil Type Legend	Slope Class	Erosion Phase	Capability Class	% Net Farm Acres	Acres of SMU
Webster sicl	107	A	1	IIw-1	45	144
Nicollet 1	55	A	1	I-1	25	80
Clarion 1	138	В	1	IIe-1	23	74
Clarion 1	138	С	2	IIIe-1	7	22

TYPE - ----

Principal Soil Association: Kenyon-Floyd-Clyde, Location: Central Bremer, Land Resource Area: 104, River Basin: Northeast Iowa, Erosiveness Class: #2, Gross farm size: 380 acres, Net farm size: 350 acres.

Soil Type Name	Soil Type Legend	Slope Class	Erosion Phase	Capability Class	% Net Farm Acres	Acres of SMU
Kenyon 1	83	В	1	IIIe-1	28	98
Readlyn 1	399	Α	1	I-2	26	90
Floyd 1	198	В	1	IIw-1	23	81
Clyde cl	84	А	1	IIw-1	23	81

Table 5. Farm 5

Principal Soil Association: Galva-Primghar-Sac, Location: Northwest O'Brien, Land Resource Area: 107, River Basin: Western Iowa, Erosiveness Class: #3, Gross farm size: 360 acres, Net farm size: 330 acres.

Soil Type Name	Soil Type Legend	Slope Class	Erosion Phase	Capability Class	% Net Farm Acres	Acres of SMU
Galva sicl	310	В	1	I-2	27	86
Galva sicl	310	С	1	IIe-2	15	48
Sac sicl	77	В	1	IIe-1	34	109
Primghar sicl	91	А	1	I-1	24	77

Table 6. Farm 6

Principal Soil Association: Cresco-Lourdes-Clyde, Location: Central Howard, Land Resource Area: 104, River Basin: Northeastern, Erosiveness Class: #3, Gross farm size: 200 acres, Net farm size: 180 acres.

Soil Type Legend	Slope Class	Erosion Phase	Capability Class	% Net Farm Acres	Acres of SMU
783	В	1	IIe-2	25	45
84	A	1	IIw-1	50	90
784	В	1	IIw-3	25	45
	Legend 783 84	Legend Class 783 B 84 A	Legend Class Phase 783 B 1 84 A 1	Legend Class Phase Class 783 B 1 IIe-2 84 A 1 IIw-1	Soil Type LegendSlope ClassErosion PhaseCapability ClassFarm Acres783B1IIe-22584A1IIw-150

Table 7. Farm 7

Principal Soil Association: Dinsdale-Tama, Location: Central Grundy, Land Resource Area: 108, River Basin: Iowa-Cedar River, Erosiveness Class: #4, Gross farm size: 350 acres, Net farm size: 320.

Soil Type Name	Soil Type Legend	Slope Class	Erosion Phase	Capability Class	% Net Farm Acres	Acres of SMU
Tama sicl	120	В	1	IIe-l	50	160
Tama sicl	120	С	2	IIIe-l	25	80
Dinsdale sicl	377	В	1	IIe-l	25	80

5

Table 8. Farm 8

Principal Soil Association: Otley-Mahaska-Taintor, Location: Northeast Henry, Land Resource Area: 108, River Basin: Skunk River, Erosiveness Class: #5, Gross farm size: 340 acres, Net farm size: 310 acres.

Soil Type Name	Soil Type Legend	Slope Class	Erosion Phase	Capability Class	% Net Farm Acres	Acres of SMU
Mahaska sicl	280	В	1	I-1	45	140
Clinton sicl	80	С	2	IIIe	15	47
Taintor sicl	279	А	1	IIw-2	15	47
Otley sicl	281	С	1	IIIe-1	24	76

Table 9. Farm 9

Principal Soil Association: Lindley-Keswick-Weller, Location: Northwest VanBuren, Land Resource Area: 109, River Basin: Des Moines River, Erosiveness Class: #6, Gross farm size: 390 acres, Net farm size: 360 acres.

Soil Type Name	Soil Type Legend	Slope Class	Erosion Phase	Capability Class	% Net Farm Acres	Acres of SMU
Lindley 1	65	Е	2	VIe	40	144
Pershing sil	131	В	1	IIe	30	108
Weller sil	132	С	2	IIIe	30	108

A MEET IS WIDOT.

Principal Soil Association: Shelby-Sharpsburg-Macksburg, Location: East Central Adair, Land Resource Area: 108, River Basin: Southern Iowa, Erosiveness Class: #7, Gross farm size: 380 acres, Net farm size: 350 acres.

Soil Type Name	Soil Type Legend	Slope Class	Erosion Phase	Capability Class	% Net Farm Acres	Acres of SMU
Sharpsburg sicl	370	В	1	IIe	16	56
Sharpsburg sicl	370	С	2	IIIe	24	84
Shelby-Adair cpx	93	D	2	IVe	46	161
Colo-Ely cpx	11	В	1	IIw	14	49

Table 11. Farm 11

Principal Soil Association: Adair-Grundy-Haig, Location: Central Clarke, Land Resource Area: 109, River Basin: Des Moines River, Erosiveness Class: #7, Gross farm size: 480 acres, Net farm size: 450 acres.

Soil Type Name	Soil Type Legend	Slope Class	Erosion Phase	Capability Class	% Net Farm Acres	Acres of SMU
Shelby-Adair cpx	93	D	2	IVe	55	248
Haig sil	362	А	1	IIw	25	112
Grundy sil	364	С	2	IIIe	20	90

Table 12. Farm 12

Principal Soil Association: Fayette-Dubuque-Stonyland, Location: Central Allamakee, Land Resource Area: 105, River Basin: Northeast Iowa, Erosiveness Class: #8, Gross farm size: 430 acres, Net farm size: 400 acres.

Soil Type Name	Soil Type Legend	Slope Class	Erosion Phase	Capability Class	% Net Farm Acres	Acres of SMU
Fayette sil	163	С	1	IIIe-1	10	40
Fayette sil	163	D	2	IIIe-3	25	100
Fayette sil	163	Е	2	IVe-1	7	28
Steep Rock	478	G	1	VIIs-1	28	112
Downs sil	162	С	1	IIIe-1	30	120

Table 13. Farm 13

Principal Soil Association: Fayette, Location: North Central Jackson, Land Resource Area: 105, River Basin: Northeast Iowa, Erosiveness Class: #8, Gross farm size: 240 acres, Net farm size: 210 acres.

Soil Type Name	Soil Type Legend	Slope Class	Erosion Phase	Capability Class	% Net Farm Acres	Acres of SMU
Fayette sil	163	С	2	IIIe-1	28	59
Fayette sil	163	D	2	IIIe-3	32	67
Fayette sil	163	Е	2	IVe-1	25	52
Steep Rock	478	G	1	VIIs-1	8	17
Downs sil	162	С	1	IIIe-l	7	15

Principal Soil Association: Adair-Seymour-Edina, Location: Southwest Appanoose, Land Resource Area: 109, River Basin: Southern Iowa, Erosiveness Class: #8, Gross farm size: 330 acres, Net farm size: 300 acres.

Soil Type Name	Soil Type Legend	Slope Class	Erosion Phase	Capability Class	% Net Farm Acres	Acres of SMU
Shelby-Adair cpx	93	D	2	IVe-5	20	60
Shelby loam	24	Е	2	IVe-1	25	75
Adair clay 1	192	С	2	IVe-2	25	75
Seymour sil	312	В	1	IIIe-3	30	90

Table 15. Farm 15

Principal Soil Association: Clinton-Keswick-Lindley, Location: Southwest Iowa, Land Resource Area: 108, River Basin: Iowa-Cedar River, Erosiveness Class: #9. Gross farm size: 420 acres, Net farm size: 390 acres.

Soil Type Name	Soil Type Legend	Slope Class	Erosion Phase	Capability Class	% Net Farm Acres	Acres of SMU
Otley sicl	281	С	2	IIIe-1	48	187
Ladoga sil	76	С	2	IIIe-1	14	55
Ladoga sil	76	D	2	IIIe-3	14	55
Mahaska sicl	280	В	1	I-1	24	93

Table 16. Farm 16

Principal Soil Association: Marshall, Location: Eastern Pottawattamie, Land Resource Area: 107, River Basin: Southern Iowa, Erosiveness Class: #9, Gross farm size: 350 acres, Net farm size: 320 acres.

Soil Type Name	Soil Type Legend	Slope Class	Erosion Phase	Capability Class	% Net Farm Acres	Acres of SMU
Marshall sicl	9	В	1	IIe-1	19	61
Marshall sicl	9	С	2	IIIe-1	19	61
Marshall sicl	9	D	2	IIIe-2	37	118
Colo-Ely cpx	11	В	1	IIw	18	58
Shelby 1	24	D	2	IIIe	7	22

Tab	le	17		Farm	17
and the second			1		

Principa	al Soil Association:	Tama-Muscatine,
Location	n: Northeast Jasper,	Land Resource Area: 108,
		rosiveness Class: #10,
Gross fa	arm size: 370 acres,	Net farm size: 340 acres.

Soil Type Name	Soil Type Legend	Slope Class	Erosion Phase	Capability Class	% Net Farm Acres	Acres of SMU
Tama sicl	120	С	2	IIIe-1	60	204
Downs sil	162	D	2	IIIe-3	20	68
Muscatine sicl	119	А	1	I-1	10	34
Shelby 1	24	Е	2	IVe-1	10	34

20

Principal Soil Association: Monona-Ida-Hamburg, Location: Southwestern Ida, Land Resource Area: 107, River Basin: Western Iowa, Erosiveness Class: #10, Gross farm size: 340 acres, Net farm size: 310 acres.

Soil Type Name	Soil Type Legend	Slope Class	Erosion Phase	Capability Class	% Net Farm Acres	Acres of SMU
Ida sil	1	D	3	IIIe	15	47
Ida sil	ĩ	Ē	3	IVe	30	93
Monona sil	10	C	2	IIe	18	56
Monona sil	10	D	2	IIIe	17	52
Napier sil	12	С	1	IIIe	20	62

III. IDENTIFICATION OF CONSERVATION PRACTICES

To identify which soil and water conservation practices should be included in this study, it is necessary to define exactly what practices are available and classify them so they can fit into a linear programming framework and can be evaluated in terms of their effects on soil erosion and farm profits. Soil and water conservation practices are divided into three categories: 1) less intensive crop rotations, 2) conservation tillage systems, and 3) supporting practices. For the purposes of this study the terms and definitions given in Table 19 are used.

Defining the Crop Rotations

Considering the large number of crops that grow well in Iowa, there are almost countless possible crop rotations in the state. The following seven criteria are used to limit the number of rotations included in the models of this study:

1. The only crops that should be included in the rotations are corn grain, corn silage, soybeans, oats, meadow, and pasture. This is because these crops make up approximately 99 percent of the total crop acres harvested in Iowa (corn grain about 48 percent, corn silage about 2.5 percent, soybeans about 30 percent, oats about 4 percent, and meadow about 15 percent, see Iowa Crop and Livestock Reporting Service, 1981). Crops such as sorghum, rye, popcorn,

Table 19. Recommended Terminology

- Field operations: Operations such as shredding stalks, applying fertilizers or pesticides, moldboard plowing, disking, chisel plowing, planting, etc., that are performed on the field in order to till, plant, cultivate, or harvest crops.
- <u>Tillage systems</u>: Combinations of field operations, distinguished by different levels, types, or degrees of tillage and remaining crop residue. Five different tillage systems might be conventional, chisel plow, spring disk, till-plant, and slot-plant.
- <u>Supporting practices</u>: Practices that help reduce soil erosion and water pollution that can be used in combination with the tillage systems, such as contour planting, strip cropping, and terracing.
- <u>Crop rotations</u>: Different sequences of crops over one or more years such as continuous corn, corn-soybeans, corn-oatsmeadow, etc.

Soil and water conservation practices: Sometimes called "Best management practices" are practices of tilling, cultivating, or harvesting crops that help reduce soil erosion and water pollution. These include conservation tillage systems, supporting practices, less intensive crop rotations, and/or combinations of each.

Management systems: Combinations of different tillage systems, supporting practices and crop rotations that can be used on a given field. potatoes, and others can be and are grown on a small scale in Iowa, and could be brought into great production as more emphasis is placed on soil and water conservation. However, there is no real evidence that this is happening or will happen to any significant degree. Even on farms in Iowa where there is, and has been much emphasis on soil and water conservation, there has been no clear trend or evidence to show that crops other than corn, soybeans, oats, meadow, and pasture will be grown to any greater extent than they are currently. Furthermore, yield data and other needed data on other crops are often sketchy at best.

 No continuous soybeans should be used because of disease and weed control problems.

3. No rotations with soybeans after meadow should be used

23

because corn will normally follow to utilize the nitrogen

carried over from the meadow.

4. No continuous oat rotations should be used because they are rarely, if ever, economically optimal in Iowa given prevailing relative prices. Oats are used in a meadow rotation and interseeded with a legume hay.

5. All major crops in Iowa should be well represented.

6. The full range of row cropping intensities or erosivenessfor all practical combinations should be well represented.7. More widely used rotations should be considered more

strongly than less used rotations.

Based on these criteria and upon personal consultation with Min Amemiya and Garren Benson (Extension Agronomists, Iowa State University, Ames, Iowa), 15 crop rotations are chosen to be included in this study. These rotations are identified as follows:

1.	C	9.	CB
2.	CCCOM	10.	ССВ
3.	CCOMM	11.	SB
4.	COMMM	12.	SSB
5.	S	13.	CBCOMM
6.	SSSOM	14.	SBSOM
7.	SSOMM	15.	Р
	sector and the sector of the s		

8. SOMMM

24

where:

- C = corn grain;
- S = corn silage;
- B = soybeans;
- 0 = oats;
- M = meadow (leguminous hay);
- P = permanent pasture.

Defining the Tillage Systems

As with the crop rotations, there is a very large number of tillage systems that can be used by farmers. Therefore, the following criteria are used to limit the number of tillage systems included in this study:

1. The full range of tillage systems in terms of erosive-

ness should be represented.

- 2. Only systems that have been or are currently being used or experimented with to the extent that reasonably accurate data can be obtained should be used.
- 3. The chosen systems should be distinctly different from each other and not redundant in terms of their contribution to the study.

Based on these criteria, and upon consultation with John Laflen, Thomas Colvin, Donald Erback, and Stewart Melvin (agricultural engineers, Iowa State University, Ames, Iowa), five tillage systems are chosen

and defined. The five tillage systems chosen are called conventional, fall chisel, spring disk, till-plant, and slot-plant. These systems are defined in terms of their field operations in Tables 20-25.

Defining the Supporting Practices

There are many different supporting practices that could be included in this study. For example, contouring, strip cropping, terracing, grassed waterways, sediment control basins, field border planting, etc. are soil and water management practices that could be used as supporting practices. Only contouring, strip cropping, and terracing are

roadcast granular P & K hred stalks (Fall) isk stalks (Fall) oldboard plow (Fall) hisel plow (Fall) hydrous Ammonia and/or spread manure isk-harrow (Spring) teld cultivator (Spring)	x x ^a x x x ¹ x		x x ^{c,2}	Х "с,2	Χ
isk stalks (Fall) oldboard plow (Fall) nisel plow (Fall) hydrous Ammonia and/or spread manure isk-harrow (Spring) teld cultivator (Spring)	x x ¹	X x ^{c,1}	x ^{c,2}	vc,2	2.2
oldboard plow (Fall) nisel plow (Fall) hydrous Ammonia and/or spread manure isk-harrow (Spring) ield cultivator (Spring)	x x ¹	x ^{c,1}	x ^{c,2}	vc,2	2.2
hisel plow (Fall) hydrous Ammonia and/or spread manure isk-harrow (Spring) ield cultivator (Spring)	x ¹	x ^{c,1}	x ^{c,2}	"c,2	c 2
hhydrous Ammonia and/or spread manure isk-harrow (Spring) ield cultivator (Spring)		x ^{c,1}	x ^{c,2}	"c,2	c 2
spread manure ^D isk-harrow (Spring) ield cultivator (Spring)			x ^{c,2}	"c,2	c 2
ield cultivator (Spring)	Х			Λ	x ^{c,2}
		Х			
foot dick (Spring)	Х				
fset disk (Spring)			х		
ant, double disk openers	Х				
ant, slot planter/coulters		Х	х		Х
ant, till-planter				X	
eemergence herbicide ^d	Х	Х	X	X	Х
orn borer/rootworm insecticid	le ^f X	X	x	X	Х
veep cultivation	2X				
lling cultivation		2X	2X	2X	X
rvest ^e	X	Х	х	Х	X

Table 20. Description of tillage systems for corn (or silage) following corn (or silage)

Table 21. Des	scription of	tillage	systems	for	corn	(or	silage)	following	beans
---------------	--------------	---------	---------	-----	------	-----	---------	-----------	-------

Field operation Co	nventional	Chise1	Disk	Till-Plant	Slot-Plant
	2			CELERY ALL	T. K. Swennikaster
Broadcast granular P & K	X	х	Х	х	Х
Chisel plow (Fall)	Х	x			
Anhydrous Ammonia and/or spread manure	x ¹	x ^{b,1}	x ^{b,2}	2 _x b,2	x ²
Disk-harrow (Spring)	X				
Field cultivator	х	x			a warmen with ?
Offset disk (Spring)			x		
Plant, double disk openers	X	х			le suis
Plant, slot planter w/coulter	rs		х		Х
Plant, till-plant				Х	
Preemergence herbicide ^C	x	x	х	x	x

Sweep cultivation	2X				
Rolling cultivation		2X	2X	2X	1.5X
Harvest	X	Х	Х	Х	х

^aThe Anhydrous Ammonia is applied in the fall, the manure in the spring. ^bMust have rolling coulters on applicator.

^CDepends on herbicide program.

¹Fall.

 2 Spring.

the second s					
Field operation Co	nventional	Chise1	Disk	Till-Plant	Slot-Plant
Broadcast N P & K (Fall)	х	x	x	x	X
Chisel		X			
Disk			х		
Moldboard plow (Fall)	X				
Offset disk (Spring)	X		2X		
Disk harrow (Spring)	X	2X			
Plant double disk openers	X	Х	Х		
Plant, slot planter/w/coulte	er			X	X
Preemergence herbicide	X	Х	x	X	X
Post emergence herbicide				х	X
Sweep cultivation	2X				
Rolling cultivation		2X	2X	2X	

Table 22. Description of tillage systems for corn (or silage) following meadow

77				100
Ha	2037	0	0	-
Da	F V	-	-	1000
a sea	F 8.	~	U	-

												-	Constant of the

Table 23.	Description	of	tillage	systems	for	beans	following	corn
-----------	-------------	----	---------	---------	-----	-------	-----------	------

Field operation (Conventional	Chisel	Disk	Till-Plant	Slot-Plant
Shred stalks (Fall)		xa			
Disk stalks (Fall)	xa				
Moldboard plow (Fall)	х				
Chisel plow (Fall)		х			
Disk-harrow (Spring)	X	Х			
Field cultivator (Spring)	X				
Offset disk (Spring)			х		
Plant, double disk openers	Х				
Plant, slot planter/w/coult	ers	х	х		Х
Plant, till-planter				Х	
Preemergence herbicide ^b	X	Х	х	Х	X

Sweep cultivation	2X				
Rolling cultivation		2X	2X	2X	1.5X
Harvest	X	X	Х	Х	Х

^aNot done following silage.

^bDepends on herbicide program.

Field operation	Conventional	Chisel	Disk	Till-Plant	Slot-Plant
Broadcast P & K ^a	X	X	X	X	X
Harvest:					
Swath	3Х	3X	3X	3X	3X
Bale	3Х	3X	3X	3X	3Х
Haul	3Х	3X	3X	3X	3X

Table 24. Description of tillage systems for meadow following meadow or oats

^aBroadcast P & K on 3rd year meadow only.

Table 25. Description of tillage systems for oats following corn (or silage)

Field operation	Conventional	Chisel	Disk	Till-Plant	Slot-Plant
Disk-harrow (Spring)	2X	2X	2x ^a	2X	2X
Drill seed and broadcast alfalfa	X	х	х	X	X
Harvest	X	Х	x	Х	х

^aOffset disk in spring comes before disk-harrow.

actually modeled as separate supporting practices in this study because these are the three major practices that directly affect soil erosion as measured by the universal soil loss equation.

Although grassed waterways are not modeled as a separate supporting practice, in developing the model it is assumed grassed waterways are used when needed. For example, the costs of terracing also include the cost of the grassed waterways needed for those terraces. Therefore, grassed waterways are included in the study but only where they are needed in conjunction with another supporting practice.

Defining the Management Systems

The management systems included in the study are all the combinations of crop rotations, tillage systems, and supporting practices previously identified and defined with the following exceptions. Strip cropping is used for only the following rotations: CCOMM, COMMM, SSOMM, and SOMMM. Only the conventional tillage system is used on pasture and pasture cannot be strip cropped or contoured. The till-plant and slot-plant systems are done on the contour on soil mapping units with slope classes C or steeper. Also, the till-plant tillage system is not used on rotations COMMM or SOMMM.

IV. CONSTRUCTING THE LINEAR PROGRAMMING MODELS

A linear programming (LP) model was built for each of the 18 representative farms. A discussion of the theoretical basis for linear programming and its applications to agricultural and economic problems can be complex and lengthy and is, therefore, left to several qualified texts (Agrawal and Heady, 1972; Beneke and Winterboer, 1973, and Pfaffenberger and Walker, 1976). Succinctly, a linear programming model maximizes (or minimizes) a linear objective function subject to a simultaneous system of linear constraints.

Mathematical Representation of the Models

A general mathematical representation of the models used in this study is presented as follows:

Maximize:
$$Z = \sum_{i} Q_{i}^{c} P_{i}^{c} + \sum_{j} Q_{j}^{L} P_{j}^{L} - \sum_{k \mid m \mid n} \sum_{k \mid m \mid n} C_{k \mid m \mid n}^{c} - \sum_{p \mid p \mid n} \sum_{q \mid q \mid q} C_{q}^{F}$$
$$- \sum_{k \mid q \mid q} C_{p}^{H} - \sum_{k \mid q \mid q} C_{k \mid q}^{L} - \sum_{k \mid q \mid q} C_{k \mid q}^{K} - \sum_{q \mid q \mid q} C_{q}^{K} - \sum_{q \mid q \mid q} C_{q}^{K}$$
$$- \sum_{k \mid q \mid q} C_{q}^{H} - \sum_{k \mid q \mid q} C_{k \mid q}^{L} - \sum_{k \mid q \mid q} C_{k \mid q}^{K} - \sum_{q \mid q \mid q} C_{q}^{K} - \sum_{q \mid q \mid q} C_{q}^{K}$$

32

rrsswwuuu v

subject to:

$$\sum_{\substack{k \in \mathbb{Z} \\ k \neq m}} \sum_{\substack{k \in \mathbb{Z} \\ k \neq m}} \sum_{m$$

$$\sum_{k \leq m} \sum_{k \leq m} \sum_{p \geq k} \sum_{p \geq m} \sum_{p \geq m} \sum_{p \geq m} \sum_{s \geq m} \sum_{s$$

$$\sum \sum \sum \sum X_{klmn}^{C} HR_{klmnr} - H_{r} \leq 0 \qquad (4.4)$$

$$\sum \sum \sum \sum X_{klmn}^{C} X_{klmn}^{C} ER_{klmnt}^{C} + \sum X_{p}^{L} ER_{p}^{L} - E_{w} \leq 0 \qquad (4.5)$$

$$\sum \sum \sum X_{kl4n}^{C} TC_{n} - T \leq 0 \qquad (4.6)$$

$$\sum \sum \sum \sum X_{kl4n}^{C} X_{kl4n}^{C} TC_{n} - T \leq 0 \qquad (4.6)$$

$$\sum \sum \sum \sum X_{klmn}^{C} KR_{klmnu}^{C} + \sum X_{p}^{L} KR_{p}^{L} + \sum F KR_{q}^{F} + \sum F KR_{ru}^{H}$$

$$+ \sum S KR_{su}^{L} + \sum W KR_{wu}^{E} + \sum T KR_{n}^{T} + \sum V KR_{vu}^{A} - K_{u} \leq 0 \qquad (4.7)$$

$$\sum \sum \sum \sum X_{klmn}^{C} SLA_{klmn} - S = 0 \qquad (4.8)$$

$$\sum \sum \sum X_{klmn}^{C} SLA_{klmn} \leq SLA_{n} \qquad (4.9)$$

$$\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} X_{k14n}^{c} TC_{n} - T \leq 0$$
(4.6)

33

 $\begin{array}{ccccc} \Sigma & \Sigma & \Sigma & \Sigma & X_{klmn}^c & DR_{klmn} \\ k & 1 & m & n \end{array}$ \leq DRA (4.10)

 $\sum_{k=1}^{\Sigma}\sum_{m=n}^{\Sigma}\sum_{k=1}^{n} FR_{k=1}^{m} - \sum_{p=1}^{\Sigma}FO_{pq} - F_{q} \leq 0$ (4.11)

$$Q_{i}^{c} + \sum_{p} \sum_{p} \sum_{i} QR_{pi}^{c} - \sum_{k} \sum_{i} \sum_{m} \sum_{klmn} QO_{klmni}^{c} \leq 0 \qquad (4.12)$$

$$Q_{j}^{L} - \sum_{p} \sum_{p} \sum_{p} QO_{pj}^{L} \leq 0 \qquad (4.13)$$

where:

k 1 m

- 1,...I for the crop products sold, i =
- 1,...J for the livestock products sold, j =

 $k = 1, \dots 15$ for the crop rotations,

1 = 1,... 5 for the tillage systems,

m = 1, ... 4 for the supporting practices,

 $n = 1, \dots N$ for the SMUs,

p = 1,... P for the livestock activities,

q = 1,... 3 for the fertilizers (N, P, and K),

r = 1, 2 for herbicides and insecticides,

s = 1, 2, 3 for spring, fall, and other time periods,

w = 1, 2, 3 for the sources of energy (diesel, LP gas, and electricity),

u = 1, 2, 3 for short-, medium-, and long-term capital costs,

v = 1, 2 for feeder livestock bought (feeder pigs, or feeder calves).

and where:

Qi the number of units of crop i sold, =

P^c_i the price of one unit of crop i, =

Q the number of units of livestock output j sold,

P. the price of one unit of livestock output j,

 X_{klmn}^{c} = the number of acres of rotation k with tillage system 1 and

supporting practice m on SMU n,

- = the cost per acre of rotation k with tillage system 1 and C^Cklmn supporting practice m on SMU n (excluding fertilizer, herbicide, fuel, insecticide, hired labor, energy, capital, erosion tax, and terracing costs),
- x^L the number of units of livestock activity p,
 - the cost per unit of livestock activity p (excluding hired

labor, energy, capital and feeder livestock costs),

the number of pounds of fertilizer q purchased, Fq C the cost per pound of fertilizer q, = the number of units of herbicide or insecticide r, Hr -C^H the cost per unit of herbicide or insecticide r, = the number of hours of hired labor required in time period s, L the cost per hour of hired labor in time period s, CL = = E the number of units of energy source w, C^E the cost per unit of energy source w, the number of dollars of capital of term u required, K = C^k the cost of one dollar of capital of term u, the number of tons of soil loss, S = CS = the tax on one ton of soil loss (for use only when conservation taxes on soil loss are emposed),

- T = the total terracing costs in dollars,
- C^{T} = the fraction of total terracing costs paid by the farmer
 - (i.e. the amount not subsidized or paid for by the government),
- V = the number of units of feeder livestock v,
- C_v^v = the cost of buying one unit of feeder livestock v,
- AA = the total acres of SMU n available,
- LR^c = the total hours of labor required in time period s to raise
 - one acre of crop rotation k, using tillage system 1, and

supporting practice m, on SMU n,

LR^L = The hours of labor required in time period s to perform one unit of livestock activity p,

- total hours of non-hired labor available in time period s, LA = HR klmnr total units herbicide or insecticide r required to raise one acre of crop rotation k, using tillage system 1 and supporting practice m, on SMU n,
- ER^Cklmnt the total units of energy source t required to raise one acre of crop rotation k, using tillage system 1 and supporting practice m, on SMU n,
 - ER = The total units of energy source w required to perform one unit of livestock activity p,
 - the total costs of terracing one acre of SMU n, TC =
- KR^cklmnu the amount of capital of term u needed to raise one acre of crop rotation k with tillage system 1, supporting practice m, on SMU n,
 - KRL The amount of capital of term u needed to perform one unit of livestock activity p,

- - KR_{qu}^{F} = the amount of capital of term u needed to purchase one pound of fertilizer q,
 - KR^{H}_{TH} = the amount of capital of term u needed to purchase one unit of herbicide or insecticide r,
 - KR^Lsu the amount of capital of term u needed to buy one hour of = labor in time period s,
 - KRE the amount of capital of term u needed to buy one unit of =

energy source W,

the amount of capital of term u required to put terracing on KR = one acre of SMU n,

- KR^A_{vu} = the amount of capital of term u needed to buy one unit of feeder livestock v,
- SLA_{klmn} = the amount of annual soil loss per acre under rotation k, using tillage system 1 and supporting practice m, on SMU n, SLA_n = the amount of soil loss that is acceptable on SMU n,
- DR_{klmn} = 1 when annual soil loss per acre under crop rotation k, using tillage system 1 and supporting practice m, on SMU n is greater

than T-values,

= 0 otherwise,

- DRA = 0 when annual per acre soil loss is constrained to t-values, = ∞ otherwise,
- FR_{klmnq} = the amount of fertilizer q needed per acre of crop rotation k, using tillage system 1 and supporting practice m, on SMU n,
 - FO = the amount of fertilizer q furnished by one unit of livestock

- activity p,
- QR^c_{pi} = the amount of crop product i used per one unit of livestock activity p,
- Q0^cklmni

QO^L

= the amount of crop product i produced per acre of crop

rotation k, using tillage system 1 and supporting practice m,

on SMU n, and

= the amount of livestock product j produced per unit of livestock activity p. Explanation of the Equations of the Models Equation (4.1) is the objective function used in this study. The objective of the models is to maximize the net returns to land, management, family labor, and permanent livestock facilities. With the exception of conservation taxes on soil loss, these are before-tax returns.

Therefore, equation (4.1) is maximized subject to the system of constraints represented by equations (4.2 - 4.13). Equation (4.2)states that the total acres of a given SMU used cannot exceed the acres owned. Equation (4.3) states that the total labor required for raising both crops and livestock cannot exceed the total amount of family labor plus the labor hired during the cropping seasons. Equations (4.4)states that the amount of herbicides and insecticides required cannot exceed the amount purchased. Equation (4.5) constrains the amount of energy used from different sources to be less than or equal to the amount

38

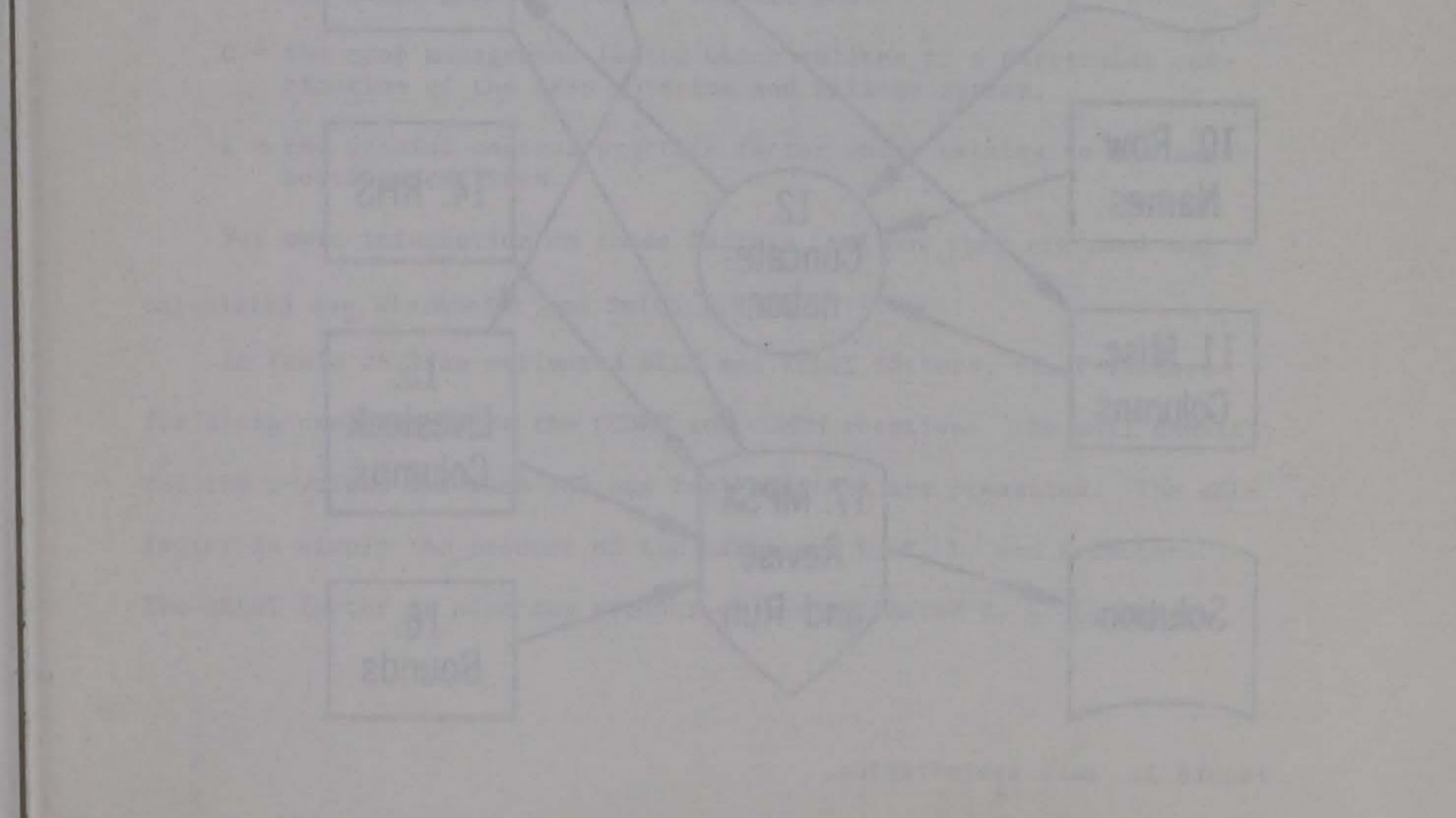
purchased. Equation (4.6) constrains the total terracing costs to equal the total actual costs of terracing.

Equation (4.7) states that the total requirements of short-, medium-, and long-term capital cannot exceed the amount borrowed. Equation (4.8) constrains the sum of the soil loss from each SMU to equal the total soil loss for the whole farm. Equation (4.9) states that the level of soil loss on a given SMU cannot exceed a certain specified level.

In equation (4.10), when the dummy variable, DRA, is set to zero, soil loss for any given activity is constrained to be less than or equal to T-values. Equation (4.11) constrains the total amount of fertilizers required to be equal to or less than the amount furnished by the livestock sector plus the amount purchased. Equation (4.12) constrains the amount of each crop product sold to be less than or equal to the amount raised minus the amount used in livestock production. Equation (4.13) constrains the amount of each livestock product sold to be less than or equal to the amount produced.

Simplex Tableau of the Models

An alternative method of representing the basic model used for each of the farms is the simplex tableau as illustrated in Figure 2. In Figure 2 the rows represent the objective function (Z) and the constraints of the model. The columns represent the activities of the model. Note that only a small number of the cropping and livestock activities are actually represented in the tableau.


Framework of Data Assimilation and Model Construction

The IBM MPSX linear programming package is used to solve the models. (For an explanation of this package and how to use it see Libbin, Moorhead, and Martin, 1973; and Benecke and Winterboer, 1973). In order to get the data gathered and in a format that can be used by the MPSX package to solve the LP models, several steps are taken: 1) four data files, the soil loss data file, the cost data file, the yields and fertilizer data file, and the prices data file are constructed; 2) information from these files are utilized to compile

	Γ	T	Cro						tock ties										M	1sce	llar	necu	is Bi	лу,	Sell	., 9u	bsid	ize,	and	Sci	ما ۱	68 A	cti	viti	25				-			-				_
Rows	Row Type	KHS	XDRUJA2			Investore 1		7 XD0754AT1	••	Livestock P	Buy Spring Lalor	Buy Fall Labor	Buy Other Labor	Buy Herbicide	Buy Insecticitie	Buy Diesel	Buy LP Cas			Brv Sr. Canital			Buy Lt. Capital	Soil Loss Total	Soil Loss Still	Soil Loss SMI2		Soll Loss SNUS	Buy Nitrogen	thuy Phosphoraus	Ruy Potash	Buy Feeder Calves	Buy Feeder Pips	Buy Straw	Sell Corn Grain	Sell Soybeans	Sell vats	Sell Straw	Sell Alfalfa	Sell Pasture	Sell Feeder Plgs		Sell Pinished logs	Sell Feeder Calves	Out	
Z S1111 S1112	N L L	A	c -0 1	1	c -	c -	с -	¢	-c	4	÷	-¢	-c	-1	-1	-0	-0	-0	: -5	5 -∢		c ·	-c	-T	-T	-т	-T	-T	-¢	~	÷	÷	-¢	-¢	P	Р	P	P	P	P	P	P	P	P	P	P
SMU5 Spring Labor Fall Labor Other Labor Herbicides Insecticides Diesel LP Gas Electricity Terracing St. Capital Mt. Capital Lt. Capital Lt. Capital T-Value Dummy Total Soil Loss SMU2 Soil Loss	LLLEELLLLLL	A H H H O O O O O O O O O O O O O O O O	hhssggksss .	h h S S B B K S S S	10 10 10	L				hhh ggk sss	-1 S	- 1 \$	-1 \$	-1 \$	-1 \$	-1 S	-1 \$	\$	L	1		-1	-1	4	-1	7	-1		s	s	s	s	\$	\$												
MU5 Soil Loss Nitrogen Phosphorous Potash Feeder Calves Feeder pigs Corn Grain Soybeans Oats Straw Alfalfa Pasture Cull Sows Finished Hogs Cull Cows Finished Steers	EELLLLLLLLLLLLL	0 P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	P P	PFF	1 I I I I I I I I I I I I I I I I I I I		PPPoor UUUPPP	PPPcck LLLPPP	PPPuus uuuppp	PPPour unuppp																		T	-1	7	7	-1	-1	T	1	1	1	1	1	1	1	1	. 1	1		1 1

Figure 2. LP simplex tableau.

a larger data file called a MID (Matrix Input Data) set; 3) the data in the MID set is used to generate crop columns; 4) the crop columns are concatenated with the row names and other miscellaneous columns needed; 5) these columns and row names, along with the right hand sides (or constraints), livestock columns, and activity bounds are entered into an MPSX program; and 6) the models are utilized (see Figure 3).

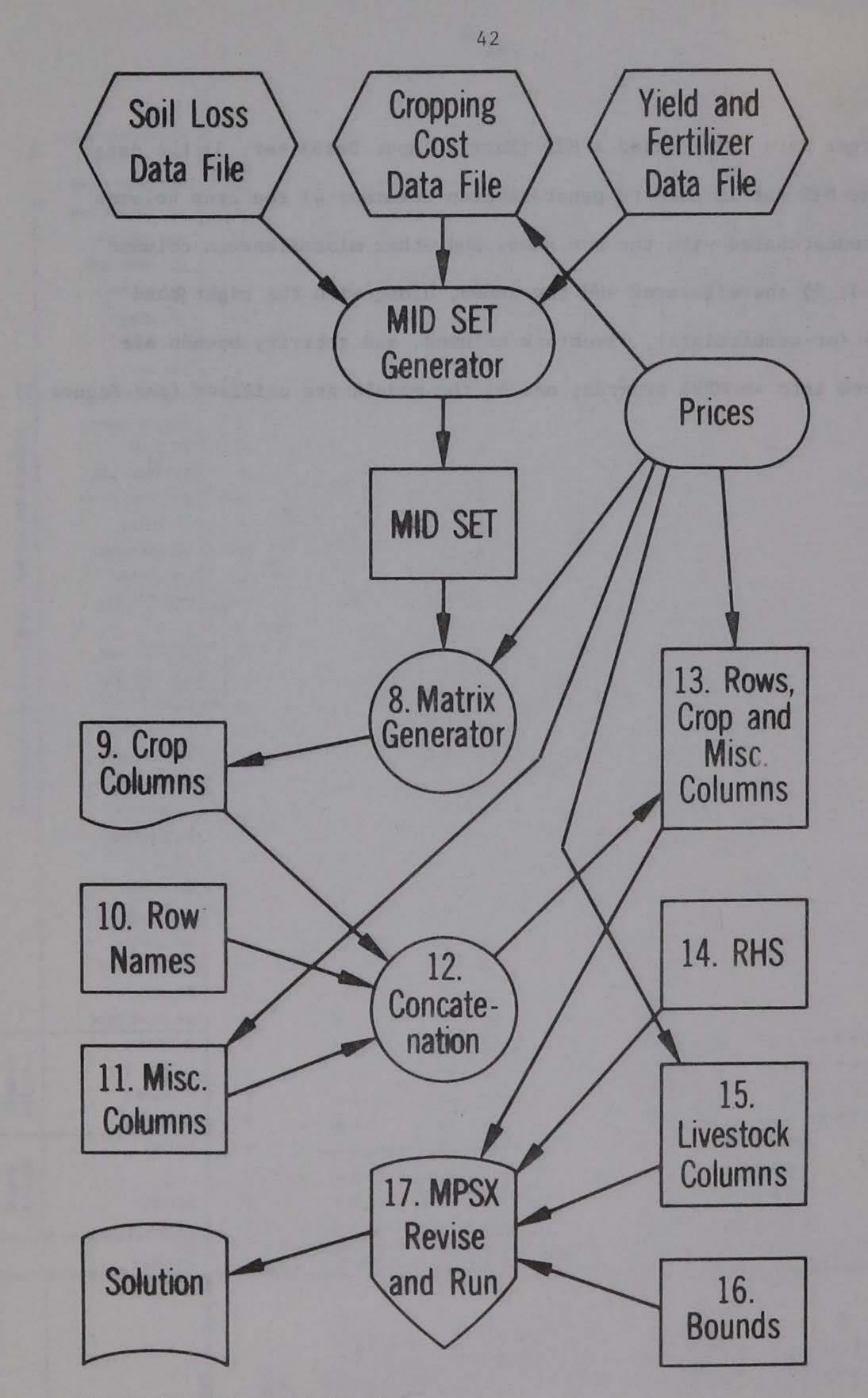


Figure 3. Data assimilation.

V. DATA COLLECTION

Soil Loss Data

Soil loss on a given SMU under a given management system is approximated by using the Universal Soil Loss Equation (USLE). The equation is formulated as follows:

 $A = R \cdot K \cdot L \cdot S \cdot C \cdot P$

where:

- A = the computed soil loss (or soil movement) in tons per acre,
- R = the rainfall and runoff factor for the area where the soil is located,
- K = the soil erodibility factor for the particular soil type,
- L = the slope length factor for the SMU,
- S = the slope gradient factor for the SMU,

43

- C = the crop management factor which relates to a particular combination of the crop rotation and tillage system,
- P = the erosion control practice factor which relates to the supporting practices.

For more information on these factors and how they are used and calculated see Wischmeier and Smith (1978).

In Table 26, the estimated RKLS and RKLST factors, the P factors for strip cropping under the CCOMM and COMMM rotations, the soil density, and the t-values for each SMU and for each farm are presented. The RKLS factor is simply the product of the estimated R, K, L, and S factors. The RKLST factor is also the product of the estimated R, K, L, and S

Farm No.	Farm Soil No.	SMU Code	RKLS ^a Factor	RKLST ^a Factor	P-factor ^b for Contour	P-factor ^b Strip-Crop CCOMM
	1	107A1	0	0	.65	
01	2	55A1	0	0	.65	
	3	138B1	14.37	14.37	.54	.3
	1	66A1	0	0	.65	
02	2	36A1	0	0	.65	
	3	44A1	0	0	.65	
	1	107A1	0	0	.65	
03	2	55A1	0	0	.65	
	3	138B1	14.37	14.37	.54	.3
	4	138C2	48.13	40.90	.56	.3
	1	83B1	20.42	15.93	1.00	.3
04	2	399A1	0	0	.65	
	3	198B1	18.34	13.82	1.00	.3
	4	84A1	0	0	.65	
	1	310B1	21.72	16.95	1.00	.3
05	2	310C2	79.55	45.35	1.00	.3
	3	77B1	21.42	16.72	1.00	.3
	4	91A1	0	0	.65	
	1	783B1	18.85	15.31	1.00	.3
06	2	84A1	0	0	.65	
	3	7S4B1	22.25	17.36	1.00	.3
	1	120B1	24.35	19.00	1.00	.3
07	2	120C2	92.03	52.47	1.00	.3
	3	377B1	23.75	18.53	1.00	.3

Table 26. Soil loss data

P-factor ^b Strip-Crop COMMM	Tons Per ^a Acre Inch	T-Values ^a
	159	4
	159	4
.2	159	4
	151	4
	151	4
	151	4
	159	4
	159	4
.2	159	4
.2	161	4
.2	161	4 .
	161	4
.2	159	4
	159	4
.2	147	.5
.2 .2	147	5
.2	147	4
	147	5
. 2	163	3
	159	4
.2	161	3
.2	143	5
.2	145	5
.2	145	4
and she have been been as a second		

Table 26. (cont.).

Farm No.	Farm Soil No.	SMU Code	RKLS ^a Factor	RKLST ^a Factor	P-factor ^b for Contour	P-factor ^b Strip-Crop CCOMM	P-factor ^b Strip-Crop COMMM	Tons Per ^a Acre Inch	T-Values ^a
	1	280B1	19.59	16.67	.54	.3	.2	149	4
08	2	80C2	88.26	60.68	1.00	.3	.2	152	4
	3	279A1	0	0	.65			149	4
	4	281C1	77.09	53.00	1.00	.3	. 2	149	4
	1	65E2	329.81	172.95	1.00			168	3
9	2	131B1	23.42	23.22	.54	.3	.2	149	3
	3	132C2	104.17	73.66	1.00	.3	. 2	154	3
	1	370B1	19.34	18.58	.54	.3	.2	149	4
0	2	370C2	74.84	51.46	1.00	.3	.2	151	4
	3	93D2	154.10	84.40	1.00	.4	.3	151	4
	4	11B1	20.59	16.07	1.00	.3	. 2	147	4
	1	93D2	154.10	84.40	1.00	.4	.3	168	4
1	2	362A1	0	0	.65			153	4
	3	364C2	87.17	61.64	1.00	.3	.2	153	4
	1	163C1	89.81	59.12	1.00	.3	.2	143	4
2	2	163D2	185.84	108.81	1.00	.4	.3	147	4
	3	163E2	319.33	193.37	1.00			147	4
	4	478G1	278.33	145.96	1.00			147	4
	5	162C1	89.69	51.13	1.00	.3	. 2	143	4
	1	163C2	89.81	59.12	1.00	.3	.2	147	
3	2	163D2	185.84	108.81	1.00	.4	.3	147	4
	3	163E2	319.33	193.37	1.00			147	4
	4	478G1	278.33	145.96	1.00			147	4
	5	162C1	89.69	51.13	1.00	.3	.2	145	4

9.1

Farm No.	Farm Soil No.	SMU Code	RKLS ^a Factor	RKLST ^a Factor	P-factor ^b for Contour	P-factor ^b Strip-Crop CCOMM	P-factor ^b Strip-Crop COMMM	Tons Per ^a Acre Inch	T-Values ^a
	1	93D2	154.10	84.40	1.00	.4	.3	168	4
14	1 2	24E2	269.29	141.22	1.00			168	4
14	3	192C2	90.18	54.96	1.00	.3	.2	168	3
	4	312B1	22.71	23.79	.54	.3	.2	147	3
	1	281C2	76.58	52.65	1.00	.3	.2	151	4
15	2	76C2	75.74	52.08	1.00	.3	.2	152	4
13	3	76D2	150.38	95.11	1.00	.4	.3	152	4
	4	280B1	19.59	16.67	.54	.3	.2	149	4
	1	9B1	19.71	17.71	.54	.3	.2	147	5
16	2	9C2	74.62	49.12	1.00	.3	.2	147	5
10	3	9D2	148.55	90.27	1.00	.4	.3	147	5
	4	11B1	20.59	16.07	1.00	.3	.2	147	4
	5	24D2	149.99	82.15	1.00	.4	.3	168	4
	1	120C2	92.03	52.47	1.00	.3	.2	145	5
17	2	162D2	160.72	94.11	1.00	.4	.3	145	.4
	3	119A1	0	0	.65			143	5
	4	24E2	269.29	141.22	1.00			168	4
	1	1D3	177.56	117.29	1.00	.4	.3	142	5
18	2	1E3	362.69	203.33	1.00			142	5
	3	10C2	75.70	47.87	1.00	.3	.2	142	5
	4	10D2	152.31	89.19	1.00	.4	.3	142	5
	5	12C1	84.80	48.34	1.00	.3	.2	142	5

Table 26. (cont.).

^aSOURCE: Paul Rosenberry, Russell Knutson, and Lacy Harmon, 1980b.

^bSOURCE: W. H. Wishmeier, and D. D. Smith, 1978, and personal communication with Min Amemiya (Extension Agronomist, Iowa State University, Ames, Iowa).

factors where the L factor is adjusted to reflect the shorter slope lengths due to terraces. The T-values are defined as tolerance values or levels of soil loss, or the maximum soil loss that can be tolerated without reducing the productivity of the soil (Bender, 1962).

The crop management factors (C factor in the USLE) for the different combinations of tillage systems and crop rotations are presented in Table 27.

Cost Data for Cropping Activities

In collecting the cost data for the cropping activities, the general aim is to find costs that reflect average crop production cost situations across all cropping activities and that are consistent with other sectors of the models. These costs reflect 1980 price levels. The specific objectives of this effort are:

1) to develop per acre requirements of seed, labor, fuel,

lubrication, herbicides and insecticides of different crops used in the model (corn grain, corn silage, soybeans, oats, meadow and pasture) for the 5 different tillage systems; 2) to develop per acre cost of machinery use (ownership cost: depreciation, interest charges, taxes, insurance and housing; and repair costs) for all crops and tillage systems; 3) to adjust the above coefficients (under (1) and (2)) for different farms which are being modeled; 4) to adjust the above coefficients (under (1) and (2)) for supporting practices and obtain the cost of installing and maintaining terraces;

	Tillage systems			
Crop rota	tions	Conventional	Fall chisel	Spring disk
1.	C	. 39	.29	.23
2.	CCCOM	.19	.16	.13
3.	CCOMM	.11	.10	.09
4.	COMMM	.05	.03	.03
5.	S	.48	.47	.46
6.	SSSOM	.27	.26	.25
7.	SSOMM	.17	.16	.15
8.	SOMMM	.08	.07	.06
9.	СВ	.51	.42	.35
10.	ССВ	.47	.37	.30
11.	SB	.56	.53	.51
12.	SSB	.53	.51	.49
13.	CBCOMM	.20	.16	.14
14.	SBSOMM	.25	.22	.20
15.	P	.02		

Table 27. Crop management factors

SOURCE: Soil Conservation Service, U.S Department of Agriculture, 1980, and personal communication with Min Amemiya (extension agronomist, Iowa State University, Ames, Iowa) and Mark Berkland (Soil Conservation Service, Des Moines, Iowa).

Till-plant	Slot-plant
.13	.03
.07	.03
.05	.03
	.017
.44	.40
.23	.21
.14	.13
	.04
.30	.09
.23	.08
.40	.32
.42	.37
.09	.05
.17	.14

5) to adjust the above coefficients (under (1) and (2)) for different yield levels; and

6) to combine all of the above information to obtain coefficients for various cropping activities for the study.

The steps followed in fulfilling these objectives are outlined in more detail below:

I. Development of labor, fuel, herbicides, insecticides and seed requirements and machinery costs for crops under each of the 5 tillage systems:

A. A list of various field operations for corn (or silage), corn

(or silage), corn (or silage) after beans, corn (or silage) after meadow, beans after corn, oats after corn (or silage), and meadow after meadow (or oats) and pasture are developed for the five tillage systems. These lists of field operations are provided in Tables 20-25.

B. A list of machinery and equipment required to carry out the field

operations listed in Tables 20 through 25 is developed. In addition to the field operations listed in Tables 20-25, an additional operation for silage, blowing silage into an upright silo, is considered in preparing the machinery list. The machinery or equipment needed is listed later in Table 34.
C. Labor, fuel and machinery cost data for different field operations with specified machinery are obtained. By defining field operations

by time-period, labor requirement is obtained for 3 time-periods: fall, spring and other. These data are obtained from the following sources: <u>Machine time</u> for a given field operation is obtained from Knott and Benson (1973) and William Edwards (extension economist, Iowa State University, Ames, Iowa). Labor time is assumed to be 100 percent of the machine time (Fulton, 1976; and Ayres and Boehlje, 1979).

<u>Fuel requirements</u> are obtained from data provided by William Edwards (extension economist, Iowa State University, Ames, Iowa). These data compare well with other estimates as well (see Ayres, 1976). Gasoline requirements for running a pickup truck are converted into diesel equivalents. Fuel required for drying corn (in terms of LP gas) is obtained from Ozkan (1980). <u>Depreciation, interest, taxes, insurance, and housing and repair</u> <u>costs</u> are obtained on a per hour basis from William Edwards (extension economist, Iowa State University, Ames, Iowa). By using the machine time required per acre, these costs are converted to a

per acre basis.

Lubrication costs are assumed to be 15 percent of the fuel cost for all machinery (Kletke, 1979).

Corn drying is assumed to have a non-fuel cost of \$0.11 per bushel (Edwards, 1981).

- D. Seed requirements are obtained from Benson (1977), Knott and Benson (1973), Shroyer (1978), and Edwards and Thompson (1981). It is assumed that seed rates do not differ across tillage systems.
- E. The herbicide program is specified based on recommendations from Dick Fawcett (extension weed scientist, Iowa State University, Ames, Iowa):

<u>Corn (or silage)</u> for conventional chisel, disk, and till plant systems, pre-emergence aplication of Lasso (2-1/2 qts/ac) and Bladex (2 qts/ac); for the slot-plant system, pre-emergence application of Lasso (2-1/2 qts/ac), Bladex (2 qtz/ac) and paraquat (1/2 qt/ac). <u>Soybeans</u> for conventional tillage, chisel, disk and till plant systems, pre-emergence application of Lasso (2-1/2 qts/ac) and Sencor (3/4 pt/ac); for the slot-plant system, pre-emergence application of Lasso (2-1/2 qts/ac).

F. The insecticide program is specified based on the recommendations of Jerry Dewitt (extension entomologist, Iowa State University, Ames, Iowa). On continuous corn (or silage) and corn (or silage) after meadow the application of 1 lb/ac. (active ingredients) of Counter at planting (banded or in furrow) is assumed. The applica-

tion of insecticide is also assumed to increase planting time by five percent (Ayres and Williams, 1976). On other crop rotations, no insecticide program is specified.

- II. Adjustment of coefficients for different farms which are being modeled:
 - A. <u>Fuel</u>. More power is required for operating tillage and planting implements on heavier soils than on lighter soils (Frisby and Summers, 1978, and Harmon, Knutson and Rosenberry, 1980). While power and time requirements may also vary for different slopes of land, it is assumed that the differences due to slope changes are negligible.

Table 28. (continued)

Soil			with Nicollet am Al = 1.0
Shelby-Adair D2	C Clarke	1.4	1.08
Haig sil Al		1.2	0.92
Grundy sic1 C2		1.2	0.92
Gayette sil Cl	C Alamakee	1.2	0.92
Fayette sil D2		1.3	1.0
Fayette sil E2		1.3	1.0
Steep Rock G2		1.2	0.92
Downs sil Cl		1.2	0.92
Fayette sil C2	NC Jackson	1.3	1.0
Fayette sil D2		1.3	1.0
Fayette sil E2		1.3	1.0
Steep Rock Gl		1.2	0.92
Downs sil Cl		1.2	0.92
Cluther Alader D2	Crr Appapaga	1.4	1.08
Shelby-Adair D2	Sw Appanoose	1.4	1.08
Shelby loam E2		1.4	1.15
Adair C2			0.85
Seymour sil Bl		1.1	0.05
Otley Cl C2	SW Iowa	1.3	1.0
Ladoga sil C2	DW TOWA	1.4	1.08
Ladoga sil D2	and the said and the second	1.4	1.08
Mahaska sicl Bl		1.3	1.0
nanaska sici bi		of 7 percentation failing that	
Marshall sic Bl	E. Pottawattamie	1.2	0.92
Marshall sic C2		1.3	1.0
Marshall sic D2		1.3	1.0
Colo-Ely Bl		1.2	0.92
Shelby loam D2		1.4	1.08
Tama sic 1 C2	NE Jasper	1.3	1.0
Downs sil D2		1.3	1.0
Muscatine sicl Al		1.2	0.92
Shelby loam E2		1.4	1.08
Tdo cil D2	SW Ida	1.1	0.85
Ida sil D3	ow Ida	1.1	0.85
Ida sil E3		1.15	0.89
Monona sil C2		1.15	0.89
Monona sil D2		1.10	0.85
Napier sil Cl		1.10	

Table 29. Seed rates

Crop	,	Farm #	Rate/Acre			
1.	Corn and Silage ^a	1, 3	24,706 kernels			
		2,9,10,11,14, 16 and 18	23,529 kernels			
		5	21,176 kernels			
		4,6,7,8,12, 13,15 and 17	25,882 kernels			
2.	Beans ^b	All farms	1 bu			
3.	Oats ^C	All farms	3 bu			
4.	Alfalfa ^b	All farms	4 1bs			
	Bromegrass ^b	All farms	5 1bs			
	Pasture (Bromegrass) ^b	All farms	10 1bs			

^aBenson, 1977.

^bEdwards and Thompson, 1981.

^CKnott and Benson, 1973.

Farm No.	SMU Code	Installation ^a Cost	Annualized ^b Installation Cost	Annual ^C Maintenance Cost	Terrace ^d Type
	107A1				
1	55A1				
	138B1	350	38.86	1.46	GBS
	66A1				
2	36A1				
	44A1				
	107A1				
2	55A1				
3	138B1	500	55.51	2.08	TOT
	138C2	800	88.81	3.33	TOT
	83B1	100	11.01	0.42	NB
4	399A1				
4	198B1	100	11.01	0.42	NB
	84A1			896.00	
					The state of the
	310B1	75	8.33	0.31	BB
5	310C2	100	11.10	0.42	BB
	77B1	75	8.33	0.31	BB
	91A1				

Table 30. Per acre terracing costs

	783B1	100	11.10	0.42	NB
6	84A1 784B1	100	11.10	0.42	NB
	120B1	300	33.30	1.25	GBS
7	120C2	500	55.51	2.08	GBS
	377B1	300	33.30	1.25	GBS
	280B1	200	22.20	0.83	GBS
8	80C2	400	44.41	1.67	GBS
0	279A1				
	281C1	400	44.41	1.67	GBS
	65E2				
9	131B1	300	33.30	1.25	GBS
	132C2	500	55.51	2.08	GBS

Table 30. (continued)

Farm No.	SMU Code	Installation ^a Cost	Annualized ^b Installation Cost	Annual ^C Maintenance Cost	Terrace ^d Type	
	370B1	400	44.41	1.67	GBS	
10	370C2	500	55.51	2.08	GBS	
	93D2	600	66.61	2.50	GBS	
	11B1	400	44.41	1.67	GBS	
	93D2	900	99.12	3.75	GBS	
11	362A1					
	364C2	700	77.71	2.91	GBS	
	163C1	400	44.41	1.67	GBS	
	163D2	550	61.06	2.29	GBS	
12	163E2	600	66.61	2.50	GBS	
	478G1					
	162C1	400	44.41	1.67	GBS	
	163C2	400	44.41	1.67	GBS	
	163DC	450	49.96	1.87	GBS	
13	163E2	550	61.06	2.29	GBS	
	478G1					
	162C1	400	44.41	1.67	GBS	
	93D2	700	77.71	2.91	GBS	
14	24E2					
74	192C2	500	55.51	2.08	GBS	
	312B1	300	33.30	1.25	GBS	
	281C2	450	49.96	1.87	GBS	
15	76C2	450	49.96	1.87	GBS	
13	76D2	650	72.16	2.71	GBS	
	280B1	350	38.86	1.46	GBS	
	9B1	250	27.75	1.04	GBS	
	9C2	275	30.53	1.15	GBS	
16	9D2	275	30.53	1.15	GBS	
	11B1	250	27.75	1.04	GBS	
	24D2	275	30.53	1.15	GBS	

Farm No.	AMU Code	Installation ^a Cost	Annualized ^b Installation Cost	Annual ^C Maintenance Cost	Terrace ^d Type
	120C2	700	77.71	2.91	GBS
17	162D2	800	88.81	3.33	GBS
11	119A1				
	24E2	900	99.91	3.75	GBS
	1D3	700	77.71	2.91	GBS
	1E3	900	99.91	3.75	GBS
18	10C2	650	72.16	2.71	GBS
	10D2	700	77.71	2.91	GBS
	12C1	650	72.16	2.71	GBS

Table 30. (continued)

^aObtained by personal communication with William J. Brune, State Conservationist, Des Moines, Iowa.

^bAnnualized installation costs are calculated using the following formula:

$$R = \frac{A}{\frac{1-(1+i)^{-T}}{i}}$$

where R = the annual installation cost (\$/Ac/Yr);

- A = the total installation cost (\$/Ac);
- i = the interest rate (assumed to be 11%);
- T = the amortization period (assumed to be 45 years).

^CRosenberry, Knutson, and Harmon, 1980a. They estimate annual maintenance costs to be approximately 3.75 percent annualized installment costs.

^dGBS = Grassed Backslope Terraces TOT = Tile Outlet Terraces NB = Narrow Base (Grassed) Terraces BB = Broad Base Terraces grain or other crops, and (ii) fuel and non-fuel cost of drying corn. The procedure used to adjust hauling cost is as follows:

If we let labor requirements for hauling corn at 120 bu per acre yield be (x) hours, then for a yield level (y) higher than 120 bu per acre the labor requirement for hauling is, $x + (\frac{x}{120})$ (Y-120). Drying costs are calculated on a per bushel basis so a given increase in bushels of corn per acre simply means a corresponding increase in drying costs.

V. Developing Coefficients for cropping activities:

All the coefficients described previously are obtained for each crop individually. The cropping activities specified in the model are rotations combined with different tillage systems, and suggesting practices and defined on different soil phases. The information obtained so far is used to develop coefficients for cropping activities. For

example, in order to obtain the fall labor required per acre for the COMMM crop rotation, using conventional tillage, with no supporting practice = [fall labor for corn after meadow + fall labor for oats after corn + (fall labor for meadow after meadow) x 3] \div 5.

VI. Pasture costs:

The production costs for pasture are developed upon consultation with Gerald Miller, Richard Fawcett, and Stewart Melvin (extension agronomist, weed scientist, and agricultural engineer respectively, Iowa State University, Ames, Iowa). Based on the Land Resource Area in which for pasture. Various coefficients (such as labor, machinery costs, and fuel) described with respect to other crops were also obtained for pasture in a similar manner.

Yield and Fertilizer Data

Corn, soybean, oat, and meadow yields on each soil mapping unit are obtained from "Productivity Levels of Some Iowa Soils" (Fenton, Duncan, Shrader, and Dumenil, 1971) and "Soil Survey Interpretations" (Iowa Soil Survey Staff, 1971). Upon the recommendation of Tom Fenton (extension agronomist, Iowa State University, Ames, Iowa) soybean yields are assumed to be 36 percent of corn yields. Also, upon the recommendation of Tom Fenton, all yields are adjusted upward by 14 percent to reflect 1980 yields. Corn silage yields are calculated in tons per acre by using different factors of corn grain yields. These factors are given in Table 1 of "Crops for Silage" (Schaller, 1972).

In order to project 1985 and 2020 yields, time series data from

1950 to 1980 are collected and the following model is estimated using three state least squares regression (Pope, 1981): N = 30.6366 - 0.0601*(PR) - 2.9247*(Z1) + 0.4419*(Z2)(4.300)(1.783)(2.539) (1.374)+ $3.3473*(Z3) - 0.6692*(DPRESP) - 0.1342*(DPRESP)^2$ (2.545)(2.451)(8.270) $\hat{C} = 46,3318 + 11.5886*(1nT) + 0.006973*(NT)$ (6.456)(12.235)(6.072)+ 1.1081*(DPRESP) - 0.1711*(DPRESP)² + 1.2683*(DJUNET) (3.154)(3.834)(4.395)+ 4.3992*DJULYR) - 0.5765*(DJULYR)² (1.616)(5.948)

$$\hat{S} = 0.1352*(\hat{C}) + 0.6609*(1n\hat{C}) - 0.1844*(T) (9.540) (3.338) (5.042) + 0.7572*(1nT) (2.625)
$$\hat{B} = 21.9871 + 0.546*(T) + 0.1958*(DPRESP) (35.005) (16.434) (2.808) - 0.0588*(DPRESP)2 + 0.5001*(DJUNET) + 1.2581*(DJULYR) (4.883) (4.628) (5.762) + 0.2888*(DJULYT) + 0.6044*(DAUGR) + 0.2126*(DAUGT) (2.454) (4.009) (1.771)
$$\hat{0} = 30.8683 + 1.0995*(T) - 0.0621*(DPRESP)2 (22.032) (15.809) (2.663) + 0.6838*(DJULYR) + 0.3057*(DJULYR)2 (1.730) (3.952)
$$\hat{M} = 2.1215 + 0.05752*(T) + 0.01698*(DPRESP) (31.075) (16.383) (2.779) - 0.004609*(DPRESP)2 + 0.09529*(DJULYR) (3.873) (4.605) - 0.03146*(DJULYR)2 + 0.06619*(DAUGR) (3.661) (4.625)$$$$$$$$

Where:

```
\hat{N} = estimated nitrogen used per corn acre in Iowa;

\hat{C} = average Iowa corn grain yields in bushels per acre;

\hat{S} = average Iowa corn silage yields in tons per acre;

\hat{B} = average Iowa soybean yields in bushels per acre;

\hat{O} = average Iowa oat yields in bushels per acre;

\hat{M} = average Iowa alfalfa hay yields in tons per acre;

\hat{T} = time, where: 1951 = 1, 1952 = 2, 1953 = 3,..., 1980 = 30;

\hat{Z}_1 = T when T \leq 18, and Z_1 = 18 when T > 18;
```

 $Z_2 = T^2$ when $T \le 18$, and $Z_2 = 324$ when T > 18; $Z_3 = 0$ when $T \le 18$, and $Z_3 = T - 18$ when T > 18; PR = the price ratio of the price of nitrogen over the price of corn; DPRESP = departure from normal Sept.-June total precipitation (note: normal refers to the average between 1950 and 1980); DJUNET = departure from normal June temperature; DJULYR = departure from normal July rainfall; DJULYT = departure from normal July temperature; DAUGR = departure from normal August rainfall; DAUGT = departure from normal August temperature; and the absolute t-values are reported in parentheses below the estimated

regression coefficients.

The variables T, Z1, Z2, Z3, PR, DPRESP, DJUNET, DJULYR, DJULYT, DAUGR, and DAUGT are treated as exogenous to the system. The weighted R^2 value for the system is .9902, and the weighted MSE for the system is 1.877. The model is tested for autocorrelation and there is no evi-

dence of autocorrelation at the 10 percent level of probability.

Using the above model, it is projected that by 1985 the percentage increase in expected average yields in Iowa over 1980 yields will be 9.02 percent, 4.47 percent, 6.88 percent, 8.61 percent, and 7.14 percent for corn, silage, soybeans, oats, and meadow, respectively. Using the above model, it is projected that by the year 2020 the percentage increase in expected average yields in Iowa will be 95.15 percent, 56.53 percent, 55.10 percent, 68.87 percent, and 57.17 percent, for corn, silage, soybeans, oats, and meadow, respectively over 1980 yields. In making these

projections, it must be assumed that the relative price of nitrogen and corn will remain the same, and technological progress will continue as it has done over the past three decades.

Yields for 1985, therefore, are obtained by adjusting the 1980 yields by the projected percentage increase in expected average yields in Iowa (Table 32). This is also done for 2020 yields.

Yield adjustments for supporting practices and crop rotations

It is assumed that yields are not significantly affected by the supporting practices. It is also assumed that yields are the same across crop rotations with one exception. Using information from "Crop Rotations Effect on Yields and Response to Nitrogen" (Voss and Shrader, 1979) and upon personal communication with Regis Voss (extension agronomist, Iowa State University, Ames, Iowa) corn yields during the first year following meadow or soybeans are adjusted upward by 7 percent.

Yield adjustment for tillage systems

Data on many experiments looking at yield differences between tillage systems have been collected from different soils from Iowa, Indiana, Illinois, Minnesota, Nebraska, Ohio, and Missouri. Trips have been taken to tillage shows and conferences. Visits have been made with local and area extension, and soil conservation personnel, and with farmers throughout the state of Iowa who have been using and studying various tillage systems. In short, much effort has been made in order to determine the differences in yields between the tillage systems. It

				1985 Crop Yields							2020 Crop Yields (unadjusted for erosion)					
Farm No.	Farm Soil No.	SMU No.	Corn (bu./A)	Silage (tons/A)	Soybeans	Oats (bu./A)	Meadow (tons/A)	Pasture (AUM)	Corn (bu./A)	Silage (tons/A)	Soybeans (bu./A)	Oats (bu./A)	Meadow (tons/A)	Pasture (AUM)		
				10.2	48	102	5.4	7.6	244	27.2	70	159	7.9	9.4		
	1	107A1	136	18.2		110	6.1	8.6	263	29.4	74	171	9.0	10.7		
01	2	55A1	147	19.6	51		5.7	7.9	244	27.2	70	159	8.3	9.8		
	3	138B1	136	18.2	48	102	5.1		- del							
			0.7	11 0	20	56	3.0	4.5	144	17.8	42	88	4.4	5.5		
	1	66A1	81	11.9	29		5.2	7.3	254	28.3	73	154	7.7	9.1		
02	2	36A1	142	18.9	50	99		6.2	212	24.1	60	128	6.4	7.7		
	3	44A1	119	16.1	42	83	4.4	0.2	212							
					10	06	5 /	7.6	244	27.2	70	149	7.9	9.4		
	1	107A1	136	18.2	48	96	5.4		263	29.4	74	160	9.0	10.7		
03	2	55A1	147	19.6	51	103	6.1	8.6	244	27.2	70	149	8.3	9.8		
	3	138B1	136	18.2	48	96	5.7	7.9		25.2	65	137	7.7	9.1		
	4	138C2	126	16.8	45	88	5.2	7.3	226	23.2	60	13.				
						0.0	E 0	7.9	252	38.0	71	152	8.5	9.8		
	1	83B1	141	18.7	49	98	5.8		256	28.4	73	155	8.6	10.3		
~	2	399A1	143	19.0	50	100	5.9	8.3	236	26.3	67	144	7.5	9.6		
04	3	198B1	132	17.6	46	92	5.1	7.8		25.2	65	137	7.2	8.5		
	4	84A1	126	16.8	45	88	4.9	6.8	226	23.2	05	137				
						100		6.2	211	23.8	60	155	6.4	7.7		
	1	310B1	118	15.9	42	100	4.4	6.2		22.2	56	142	6.0	7.1		
0.5	2	310C2	108	14.8	38	91	4.1	5.7	193		56	145	6.0	7.2		
05	3	77B1	110	14.8	38	93	4.1	5.8	197	22.2	65	167	7.9	8.4		
	4	91A1	128	17.0	45	108	4.7	6.7	228	25.5	05	107	1.5			
								1.2	105	22.4	56	118	6.6	7.8		
	1	783B1	109	14.9	38	76	4.5	6.3	195		65	137	7.2	8.5		
06	2	84 A1	126	16.8	45	88	4.9	6.8	226	25.2		110	5.8	7.3		
	3	784B1	101	13.9	35	71	4.0	5.9	181	20.8	51	110	5.0	1 2000		
			-	Same an	2	100		0.0	277	30.8	79	167	9.4	11.1		
	1	120B1	155	20.6	55	108	6.4	8.9			72	157	8.8	10.4		
07	2	120C2	145	19.3	50	101	6.0	8.4	260	29.0	76	160	9.0	10.7		
	3	377B1	148	19.7	52	103	6.1	8.6	265	29.6	70	100				

Table 32. Estimated 1985 and 2020 crop yields.for selected soils in Iowa

		1985 Crop Yields							2020 Crop Yields						
Farm No.	Farm Soil No.	SMU No.	Corn (bu./A)	Silage (tons/A)	Soybeans (bu./A)	Oats (bu./A)	Meadow (tons/A)	Pasture (AUM)	Corn (bu./A)	Silage (tons/A)	Soybeans (bu./A)	Oats (bu./A)	Meadow (tons/A)	Pasture (AUM)	
		20021	1/0	10.7	52	81	6.1	8.6	265	29.6	76	127	9.0	10.7	
	1	280B1	148	19.7		67	5.0	7.2	221	24.6	64	105	7.4	9.0	
08	2	80C2	123	16.4	44		6.0	8.1	260	29.0	73	123	8.8	10.0	
00	3	279A1	145	19.3	50	79			258	28.3	73	122	8.5	10.3	
	4	281C1	142	18.9	50	78	5.8	8.3	230	20.5	13				
	7	6502	0	0.0	0	0	2.5	2.6	0	0.0	0	0	3.6	3.2	
~ ~	1	65E2		16.9	44	68	5.1	7.2	224	25.4	64	106	7.5	9.0	
09	2	131B1	125		37	58	4.4	5.7	189	21.8	54	90	6.4	7.1	
	3	132C2	106	14.5	57	50	4.4	5.7	207		273 M.A.				
		27001	1/1	18.7	49	71	5.8	8.1	252	28.0	71	110	8.5	10.0	
	1	370B1	141		45	75	5.4	7.6	234	26.1	67	101	7.9	9.4	
10	2	370C2	131	17.4		43	3.5	5.2	154	19.1	43	68	5.2	6.4	
	3	93D2	86	12.7	30		4.9	7.0	222	24.7	64	96	7.2	8.7	
	4	1181	124	16.5	44	62	4.5	7.0	222						
	1	0202	86	12.7	30	47	3.5	5.2	154	19.1	43	73	5.2	6.4	
	1	93D2		17.4	46	72	5.1	7.2	234	26.1	67	111	7.5	9.0	
11	2	362A1	131		43	66	5.0	6.0	217	24.3	62	103	7.4	7.5	
	3	364 C2	121	16.2	43	00	5.0	0.0							
	1	163C1	134	17.9	47	93	5.6	7.8	240	26.8	68	145	8.2	9.6	
	2	163D2	119	16.3	42	83	4.9	6.8	213	24.4	60	128	7.2	8.5	
12	2	163E2	100	13.8	35	70	4.2	5.8	180	20.7	51	108	6.1	7.2	
12	1	478B1	0	0.0	0	0	0.0	2.4	0	0.0	0	0	0.0	3.0	
	4 5	162 C1	142	18.9	50	99	5.9	8.5	254	28.3	73	154	8.6	10.5	
	2	10201	142	10.7	50										
	1	163C2	131	17.4	46	91	5.4	7.8	234	26.1	67	142	7.9	9.6	
	2	163D2	119	16.3	42	83	4.9	6.8	212	24.4	60	128	7.2	8.5	
13	3	163E2	100	13.8	35	70	4.2	5.8	180	20.7	51	.08	6.1	7.2	
15	4	478G1	0	0.0	0	0	0.0	2.4	0	0.0	0	0	0.0	3.0	
	5	16201	142	18.9	50	99	5.9	8.5	254	28.3	73	154	8.6	10.5	

. 1

Table 32. (cont.)

				1985 Crop Yields							2020 Crop Yields					
Farm No.	Farm Soil No.	SMU No.	Corn (bu./A)	Silage (tons/A)	Soybeans (bu./A)	Oats (bu./A)	Meadow (tons/A)	Pasture (AUM)	Corn (bu./A)	Silage (tons/A)	Soybeans (bu./A)	Oats (bu./A)	Meadow (tons/A)	Pasture (AUM)		
	1	93D2	86	12.7	30	47	3.5	5.2	154	19.1	43	73	5.2	6.4		
	2	24E2	82	12.1	29	45	3.4	4.7	146	18.2	42	69	5.0	5.8		
14	3	19202	81	11.9	29	45	3.3	4.7	144	17.8	42	69	4.9	5.8		
	4	312B1	109	14.9	38	60	4.8	6.3	195	22.4	56	93	7.1	7.8		
		JILDI	107	14.7	30									10.0		
	1	281C2	138	18.5	49	97	5.7	8.1	248	27.7	71	150	8.3	10.0		
	2	76C2	131	17.4	47	91	5.4	7.6	234	36.1	67	142	7.9	9.4		
15	3	76D2	119	16.3	42	83	4.9	6.8	213	24.4	60	128	7.2	8.5		
	4	280B1	148	19.7	52	103	6.1	8.6	265	29.6	76	160	9.0	10.7		
		LOODI	2.10	->												
	1	9B1	133	17.8	47	66	4.9	7.8	238	26.6	68	103	7.2	9.6		
	2	902	123	16.4	43	62	4.6	7.2	221	24.6	64	96	6.8	9.0		
16	3	9D2	112	15.1	39	56	4.2	6.5	201	227	57	88	6.1	8.1		
10	4	11B1	124	16.8	44	62	4.6	7.0	222	25.2	64	96	6.8	8.7		
	5	24D2	100	14.8	35	50	3.7	5.8	180	22.2	51	78	5.5	7.2		
	1	120C2	145	19.3	50	101	6.0	8.4	260	29.0	73	157	8.8	10.4		
	2	162D2	126	16.8	45	88	5.2	7.3	226	25.2	65	137	7.7	9.1		
17	3	119A1	164	21.7	58	114	6.7	9.4	293	32.6	84	177	9.9	11.7		
	4	24E2	82	12.1	28	58	3.4	4.7	146	18.2	42	90	5.0	5.8		
	1	1D3	85	12.5	30	60	3.2	4.5	152	18.8	43	93	4.7	5.5		
	2	1E3	68	10.6	24	47	2.6	3.6	121	15.8	34	73	3.8	4.5		
18	3	10C2	112	15.1	40	78	4.2	6.5	201	22.7	57	122	6.1	8.1		
10	4	10D2	94	13.2	33	65	3.5	5.5	168	19.7	48	101	5.2	6.8		
	5	1201	124	16.5	44	87	4.6	7.2	222	24.7	64	135	6.8	9.0		

Table 32. (Cont.)

is not clear that there are any differences in yields. It is clear, however, that there is no consistent evidence that, given proper management, the different tillage systems have significantly different yields. It is therefore, assumed that there is no significant difference in yields between the tillage systems. Yields can be adjusted under different assumptions to see how different assumptions about the yield differences between tillage systems affect the solution of the models and how sensitive the models are to these assumptions.

Yield adjustments for soil erosion

No adjustments for soil erosion are made on 1985 yields. However, 2020 yields are adjusted by an erosion adjustment factor. This factor is calculated by first calculating the number of inches of topsoil lost for each cropping activity as follows:

ITS = 35(A)/TPI

69

Where:

ITS = inches of A horizon lost;

A = soil movement as estimated by the Universal Soil Loss Equation; and TPI = tons per acre inch of top soil.

Then for each crop and each soil type, yields are obtained for erosion phases 0, 1, 2, and 3 (Fenton, et al., 1971; and Iowa Soil Survey staff, 1971).

By assuming that total inches of topsoil in 1985 for a given erosion phase is equal to the average of the upper and lower limits of that erosion phase, the percentage reduction in yields because of soil loss can be extrapolated. For example, see Figure 4. It is assumed that in 1985 a given management system is being used on Weller silt loam Cl, and that the same system is used until 2020 resulting in 5 1/2 inches of lost topsoil. In 1985, the inches of A horizon is 9 1/2 inches and the yield is 103. Because of soil erosion the thickness of the A horizon in 2020 is only 4 inches. By using linear interpolation the yield at 4 inches of A horizon would be 94. The ratio of these two yields, 94/103 = .913, results in an adjustment factor that is used to adjust the corn yield for this management system in 2020. This same method is used to adjust 2020 yields for each crop on each management system on each soil mapping unit.

Nitrogen

Based on information from several sources (Voss and Shrader, 1979; and Voss, 1972) and upon consultation with Regis Voss (extension agronomist, Iowa State University, Ames, Iowa) factors relating nitrogen requirements

with corn yields and crop rotations are estimated. These factors are presented in Table 33.

These factors are multiplied by their respective corn yield for each soil mapping unit in order to arrive at nitrogen requirements for each year of corn in every rotation. These application rates are then adjusted upward by 10 percent for soils that are classified as naturally poorly drained. Corn silage is assumed to require the same level of nitrogen application as corn grain.

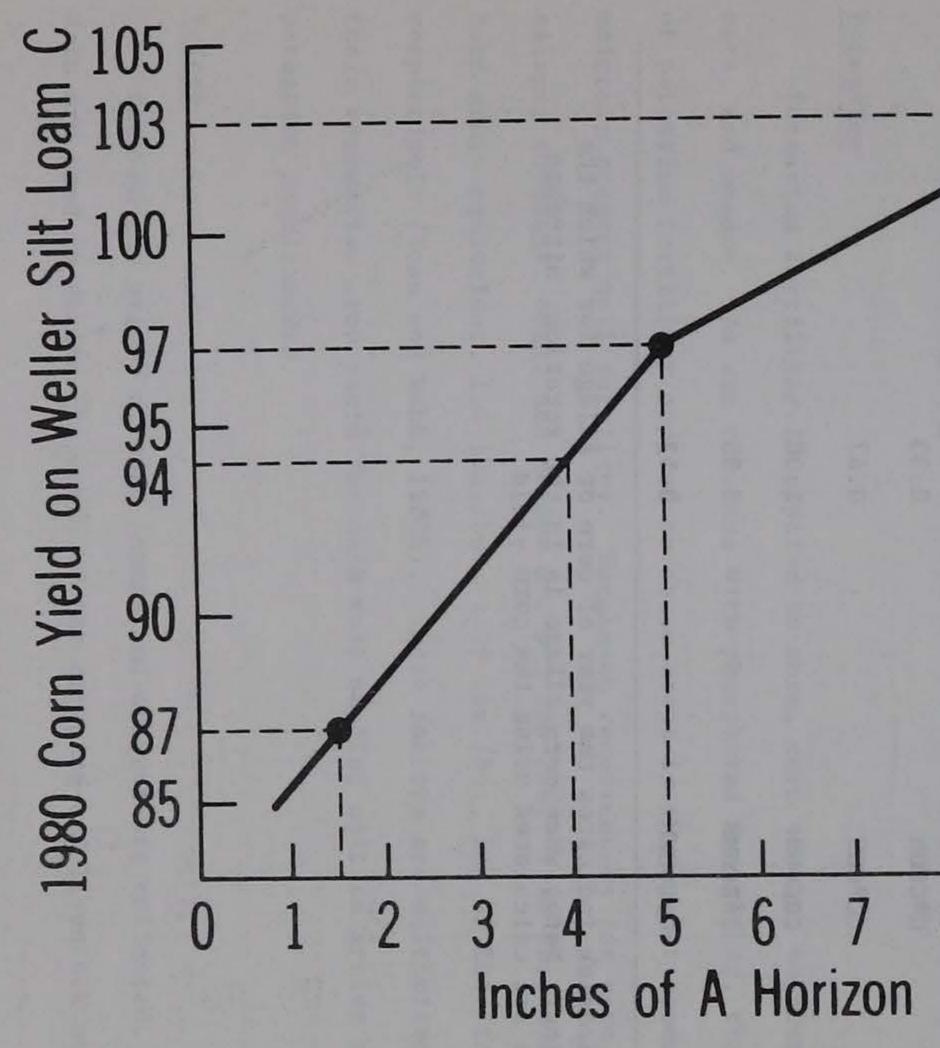


Figure 4. Yield adjustments for topsoil depth.

8 9 10 11 12 13 14

71

Table 33. Nitrogen factors

Rotation	Nitrogen Factor
 C*	1.33
C*B	1.00
C*CB	1.00
CC*B	1.33
C*OMMM	0.13
C*COMM	0.13
CC*OMM	0.67
C*CCOM	0.33
CC*COM	0.67
CCC*OM	1.00
C*BCOMM	0.33
CBC*OMM	0.53

*The asterisk indicates the year of corn or silage for which the factor applies. Note, when corn silage is in the rotation, nitrogen requirements are calculated using the corn yield.

Phosphorus

Phosphorus fertilizer is applied to corn, corn silage, soybeans, oats, and meadow. The rates of phosphorus ferences applied to these crops are assumed to be the amount needed to maintain present soil fertility. The phosphorus requirements for corn, corn silage, soybeans, oats, and meadow are .375 lbs./bu., .55 lbs./bu. of corn grain equivalent, .80 lbs./bu., .40 lbs./bu., and 14 lbs./ton, respectively (Voss and Webb, 1980a). These factors are multiplied by their respective crop yield for each soil mapping unit to arrive at phosphorus requirements.

Potassium

Potassium fertilizer is applied to corn, corn silage, soybeans, oats, and meadow. As was the case with phosphorus fertilizer, the rates of potassium fertilizer applied to these crops is the amount needed to maintain present soil fertility. Potassium requirements for corn, corn silage, soybeans, oats, and meadow are .25 lbs./bu., 1.25 lbs./bu. of corn grain equivalent, 1.4 lbs./bu., 1.15 lbs./bu., and 45 lbs./ton, respectively (Voss and Webb, 1980b). These factors are multiplied by their respective crop yield for each soil mapping unit to arrive at potassium requirements.

Prices

Data on the prices of both inputs and outputs are collected. These data are used to derive the costs of the cropping and livestock activities and are used directly in the objective function of the models for the prices paid for inputs and the prices received for outputs. The prices in this study are gathered to represent the general price level of 1980. The prices are presented in Table 34.

Livestock Sector

The livestock sector consists of two major sub-sectors: (1) hog production, and (2) beef cattle production. Input and output prices required for the livestock sector are reported in Table 34 with the exception of the prices of additional machinery and equipment needed for livestock. These prices are obtained from the Firm Enterprise Data System (FEDS) budgets (Economic Research Service, 1980b).

<u>Hog Sub-Sector</u>. The FEDs budgets are relied upon heavily in the development of the hog production subsector. First, eleven activities, consisting of farrowing and farrow to finish operations under several different confinement systems, are generated from the FEDS budgets as

74

follows:

- The machinery and equipment initial list prices and purchase costs are adjusted to reflect 1980 prices.
- Necessary changes are made on FEDs budget prices to make them correspond to prices reported in Table 34.
- 3. Pasture acres are converted to animal unit months.
- 4. Labor requirements are adjusted based on information
 - in the Midwest Farm Planning Manual (James, 1979).
- 5. Fertilizer credits are calculated based on information

from the Livestock Waste Facilities Handbook (Midwest

Table	34.	Prices	(In	1980	dollars))
			and the second se		the second se	

Item	Unit	Dollars/ Unit
Fertilizer and Lime		
Nitrogen (Anhydrous Ammonia-NH3: 82%N)	1b.	0.14
$P_2 0_5$ (Super phosphate: 45% $P_2 0_5$)	1b.	0.27
K ₂ 0 (Muriate of Potash: 60% K ₂ 0)	1b.	0.12
Limestone (spread on field)	ton	9.53
Seed		
Corn (80,000 kernels/bag)	bag	60.00
Soybeans	bu.	14.00
Oats	bu.	5.00
Alfalfa	1b.	2.00
Brome grass	1b•	0.90
Energy		
Gasoline (bulk delivery)	gal.	1.29
LP Gas	gal.	0.686
Diesel	gal.	1.13
Electricity	kwh.	0.056
Herbicide and Pesticide		
Alachlor (Lasso 4E)	qt.	4.30
Cyanzine (Bladex 4L)	qt.	3.86
Parquat (Paraquat)	qt.	11.00
2, 4-D (2, 4-D Amine)	qt.	3.50
Metribuzin (Sencor 50W)	1b.	10.24
(Furadan 10G)	1b.	0.86
(Counter 15G)	1b .	1.17

Table 34. (Cont.)

Item	<u>Unit</u>	Dollars/ Unit
Machinery (Used in Cropping Sector)		
Tractor	85 hp.	23,400
Tractor	125 hp.	31,700
Combine	110-125 hp.	45,500
Corn head	6 row	11,660
Grain head (for soybeans)	15 ft.	5,220
Windrower	15 ft.	3,620
Forage harvester	2-30 in.	7,900
Baler	Large round	7,620
Moldboard plow	4-16 in.	3,060
Chisel plow	11.3 ft.	2,520
Offset disk	11.5 ft.	6,660
Tandem disk	17 ft.	6,480
Stalk chopper (flail chopper)	10 ft.	3,600
Field cultivator	18 ft.	3,510
Sweep cultivator	6 row	2,340
Rolling cultivator	6 row	2,715
No-till cultivator	6 row	5,275
Planter, double-disk opener	6-30 in.	7,700
Planter, till	6-30 in.	8,550
Planter, slot	6-30 in.	10,530
Seed drill (grain drill)	13 ft.	3,600
Rake	7 ft.	1,530
Sprayer	20 ft. T-mount	1,080
NH ₃ applicator	15 ft. (7 knife)	2,250
Bulk fertilizer applicator	12 ft.	2,160
Wagons (2)	300 bu.	2,880
Pick-up	1/2 ton	7,200
Broadcast seeder	20 ft.	290
Silage blower		2,255

Table 34. (Cont.)

Item	Unit	Dollars/ Unit
Feed Supplement		
36-40% protein	cwt	14.05
Soybean oil meal	tn.	50.00
Miscellaneous Livestock Inputs		
Grinding and Mixing, Farrow to Feeder	litter	10.86
Grinding and Mixing, Feeder to Finish	head	4.46
Grinding and Mixing, Farrow to Finish	litter	32.14
Vet and Medical, Farrow to Feeder	head	2.50
Vet and Medical, Feeder to Finish	head	1.50
Vet and Medical, Farrow to Finish	head	3.87
Vet and Medical, Feeder Calf	cwt	7.00
Vet and Medical, Beef Cow and Calf	head (yearlings)	7.00

Crops

Corn ^a	bu.	2.56
Soybeans ^a	bu.	7.30
Oats ^a	bu.	1.56
Straw	ton	50.00
Alfalfa ^a	ton	57.73
Pasture	AUM	8.00
Livestock ^a		
Cull Cows	cwt.	39.60
Finished Steer and Heifers	cwt.	58.66
Calves	cwt.	62.82
Cull Sows	cwt.	42.78
Finished Hogs	cwt.	50.51

Tabl	0	34.	(Cont)
lab	Le	34.	(Cont	• /

SOURCES:	U.S. Department of Agriculture, Agricultural Prices (1980- 1981, various issues).
	U.S. Department of Agriculture, Annual Price Summary, (1970-1980, various issues).
	Iowa Crop and Livestock Reporting Service, Iowa Agricultural Statistics (1980).
	Iowa Crop and Livestock Reporting Service, Iowa Agricultural Statistics (1981).
	Economic Research Service, Firm Enterprise System, 1979 Crop Budgets (1980a).
	Economic Research Service, Firm Enterprise System, 1979 Livestock Budgets (1980b).
	Cooperative Extension Service, Iowa Crop and Livestock Reporting Service, and U.S. Department of Agriculture. Prices of Iowa Farm Products 1930–1980 (1981).
	Edwards and Thompson (1981).
	Seim, Charlson, and Edwards (1981).

Personal communications with Emmet Stevermer, extension animal scientist, Iowa State University, Ames, Iowa; Gene Rouse, extension animal scientist, Iowa State University, Ames, Iowa; and William Edwards, extension economist, Iowa State University, Ames, Iowa.

^aThe prices of corn grain, soybeans, oats, and alfalfa are adjusted from actual 1980 prices to reflect historic (1976-1980) relationships between the different crops. The following formula is used to obtain the adjusted prices shown in the table:

$$AP_{j} = \left\{ \frac{\sum_{i=1976}^{1980} (CP_{i}/CMP_{ij})}{5} \right\} \left(CMP_{j1980} \right)$$

where: CP = price of corn in year i, CMP = price of commodity j in year i, Table 34. (Cont.)

 AP_i = adjusted price of commodity j for 1980.

Livestock prices are similarly adjusted to reflect price relationship over the time period 1971-1980 with steers as the base commodity.

Personal communications with Emmet Stevenmer and Gene Rouse (extension animal scientists, Iowa State University, Ames, Iowa) and William Edwards (extension economist, Iowa State University, Ames, Iowa).

Plan Service, 1975) and on information obtained upon personal communication with Stewart Melvin (extension agricultural engineer, Iowa State University, Ames, Iowa).

The appropriate FEDs budget is run for each activity. 6.

This provides an income and expense statement for each activity. Based on this information, it is determined that the most profitable of the eleven hog-producing activities is the farrow-finish partial confinement activity. This is the only hog-producing activity that was ultimately included in the livestock sector of the models.

Beef cattle sub-sector. The beef cattle production subsector consists of eight activities. Four of these activities are feeding steer calves under four different feed rations of corn grain, corn silage, alfalfa hay, and soybean oil meal. The other four of these activities are raising beef calves in a cow-calf operation using four different rations of corn grain, corn silage, alfalfa hay, soybean oil meal,

and pasture. These rations are specified and balanced to meet the nutritional needs of the cattle fed, based on information obtained in the Midwest Farm Planning Manual (James, 1979) and upon consultation with Gene Rouse (extension animal scientist, Iowa State University, Ames, Iowa). It is assumed that the steers in the feeding steer calves activities are purchased at 450 pounds, and are fed to 1050 pounds. In the cow-calf

operations, heifer calves not held back for replacement are sold at

425 pounds, and steer calves are sold at 450 pounds.

As with the hog production subsector, the FEDs budgets are utilized to help generate the necessary data. Because the FEDs budgets provided for only two basic rations, these budgets are manipulated by adjusting feed requirement and corresponding machinery and equipment costs and energy requirements. Also, as with the hog production subsector appropriate adjustments in prices, labor requirements, and fertilizer credits are made, and the appropriate FEDs budget is utilized for each activity to generate necessary data requirements.

Fieldwork Hours Available

One of the resource constraints facing farmers is labor hours. This constraint is dependent on the number of on-farm laborers, the number of hours in a day suitable for fieldwork, the number of days in the year suitable for fieldwork, and the availability of hired labor.

Because the busiest time of the year is generally in the spring and the fall, three cropping seasons are specified: spring, fall,

and other. The spring season is defined as the period from March 29 to June 6. The fall season is defined as the period from September 6 to October 31. The "other" season includes all of the rest of the year. Based on sunrise and sunset tables (Engel and Takle, 1975) the total daylight hours for the spring, fall and other seasons are estimated as 981, 653, and 2,834 respectively. Based on these data and data from Williams and Edwards (1978), the total number of daylight hours suitable for fieldwork is estimated and presented in Table 35.

	Daylight Hours Suitable for Fieldwork		
Farms	Spring	Fall	Other
5	461.66	408.61	1236.21
1	425.52	404.83	1192.90
4,6,12	449.69	428.06	1166.77
2,18	482.48	419.16	1181.95
3,7,17	444.16	409.25	1173.42
13,15	413.32	413.71	1130.34
10,16	424.77	380.97	1112.83
11,14	375.11	348.34	1084.38
8,9	334.50	360.99	1035.45

Table 35. Total daylight hours suitable for fieldwork

VI. SUMMARY

Linear Programming models that maximize before-tax net returns to land, labor, and management have been built for 18 representative farms on all major land resource areas throughout Iowa. The representative farms are defined in terms of soil resources such that the farms and soil situations represent typical and extreme conditions with respect to soils and erosion problems in Iowa, and such that they range over enough conditions so that major problems in attaining reduced soil erosion and application of soil conservation practices can be studied.

The LP models incorporate five tillage systems, three supporting practices and 15 crop rotations on three to five soil mapping units. The five tillage systems included are the conventional fall moldboard plow, spring-disk, chisel-plow, till-plant, and slot-plant systems. The supporting practices included are contouring, strip cropping, and terracing.

The crop rotations include combinations of corn grain, corn silage, soybeans, oats, alfalfa, and pasture.

In order to build the LP Models much data was needed. Input and output prices, input requirements, yields, labor and land constraints, and other data needed to estimate the coefficients required to build the LP models was collected.

In summary soil erosion is a serious problem in Iowa. An extensive research effort to examine the economics of soil and water conservation practices in Iowa has been conducted. This report describes and documents some of the basic methodology, models, and data used in this research effort. Studies that utilize these models and data are reported in further reports.

REFERENCES

Alt, K. F. and E. O. Heady.

Economics and the environment: impacts of erosion restraints 1977 on crop production in the Iowa River Basin. CARD Report 75. Center for Agricultural and Rural Development and U.S. Department of Agriculture, Economic Research Service, Ames, Iowa.

Agrawal, R. C. and E. O. Heady.

Operations research methods for agricultural decisions. 1972 Iowa State University Press, Ames, Iowa.

Andrews, W. F.

Soil survey of Grundy County, Iowa. U.S. Department of 1977 Agriculture, Soil Conservation Service, Iowa Agriculture and Home Economic Experiment Station, Cooperative Extension Service, Iowa State University, and Department of Soil Conservation, State of Iowa, Ames, Iowa.

Andrews, W. F. and R. O. Dideriksen.

Soil survey of Boone County, Iowa. U.S. Department of 1981 Agriculture, Soil Conservation Service, Iowa Agriculture and Home Economic Experiment Station, Cooperative Extension Service, Iowa State University, and Department of Soil Conservation, State of Iowa, Ames, Iowa.

Ayres, G. E.

Fuel required for field operations. Bulletin PM-709. 1976 Cooperative Extension Service, Iowa State University, Ames, Iowa.

Ayres, G. E. and M. Boehlje.

Estimating farm machinery costs. Bulletin PM-710. 1979 Cooperative Extension Service, Iowa State University, Ames, Iowa.

Ayres, G. E. and D. L. Williams.

Estimating field capacity of farm machines. Bulletin 1979 PM-696. Cooperative Extension Service, Iowa State University, Ames, Iowa.

Beneke, R. R. and R. D. Winterboer. Linear programming applications to agriculture. Iowa 1973 State University Press, Ames, Iowa.

Benson, G. O. Bulletin AG-88. Cooperative Corn plant populations. 1977 Extension Service, Iowa State University, Ames, Iowa.

Buckner, R. L.

1967 Soil survey of Bremer County, Iowa. U.S. Department of Agriculture, Soil Conservation Service and Iowa Agriculture and Home Economic Experiment Station, Washington, D.C.

Buckner, R. L. and J. D. Highland.

1974 Soil survey of Howard County, Iowa. U.S. Department of Agriculture, Soil Conservation Service, Iowa Agriculture and Home Economic Experiment Station, Cooperative Extension Service, Iowa State University, and Department of Soil Conservation, State of Iowa, Ames, Iowa.

College of Agriculture, Iowa State University.

1978 A technical assessment of nonpoint pollution in Iowa (work element 503). Assembled by L. Harmon and E. R. Duncan. College of Agriculture, Iowa State University, Ames, Iowa.

Conservation Needs Inventory Committee.

1971 National inventory of soil and water conservation needs 1967. Statistical Bulletin 461. U.S. Department of Agriculture.

Cooperative Extension Service, Iowa Crop and Livestock Reporting Service, and U.S. Department of Agriculture.

1981 Prices of Iowa farm products 1930-1980. Cooperative

Extension Service, Iowa State University, Ames, Iowa.

Dankert, W. N., L. T. Hanson and R. L. Reckner.

1981 Soil survey of O'Brien County, Iowa. U. S. Department of Agriculture, Soil Conservation Service, Iowa Agriculture and Home Economic Experiment Station, Cooperative Extension Service, Iowa State University, and Department of Soil Conservation, State of Iowa, Ames, Iowa.

Dietz, W. P. and A. R. Hidlebaugh.

1962 Soil Survey of Van Buren County, Iowa. U.S. Department of Agriculture, Soil Conservation Service and Iowa Agricultural Experiment Station, Washington, D.C.

Economic Research Service.

1980a Enterprise data system, 1979 Crop Budgets. U.S. Department of Agriculture, Oklahoma State University, Stillwater, Oklahoma.

Economic Research Service.

1980b Enterprise data system, 1979 Livestock Budgets, U.S. Department of Agriculture, Oklahoma State University, Stillwater, Oklahoma.

Edwards, W.

1981 1981 Iowa farm custom rate survey. Bulletin FM-1698. Cooperative Extension Service, Iowa State University, Ames, Iowa.

Edwards, W. and E. G. Stoneberg.

1978a 1978 farm business summary for northwest Iowa. Bulletin FM-1767. Cooperative Extension Service, Iowa State University and U.S. Department of Agriculture, Ames, Iowa.

Edwards, W. and E. G. Stoneberg.

1978b. 1978 farm business summary for southwest Iowa. Bulletin FM-1768. Cooperative Extension Service, Iowa State University and U.S. Department of Agriculture, Ames, Iowa.

Edwards, W. and E. G. Stoneberg. 1978c 1978 farm business summary for central Iowa. Bulletin FM-1769. Cooperative Extension Service, Iowa State University and U.S. Department of Agriculture, Ames, Iowa.

Edwards, W. and E. G. Stoneberg. 1978d 1978 farm business summary for north central Iowa. Bulletin FM-1770. Cooperative Extension Service, Iowa State University and U. S. Department of Agriculture, Ames, Iowa.

Edwards, W. and E. G. Stoneberg. 1978e 1978 farm business summary for northeast Iowa. Bulletin FM-1771. Cooperative Extension Service, Iowa State University and U.S. Department of Agriculture, Ames, Iowa.

Edwards, W. and E. G. Stoneberg.

1978f 1978 farm business summary for east central Iowa. Bulletin FM-1772. Cooperative Extension Service, Iowa State University and U.S. Department of Agriculture, Ames, Iowa.

Edwards, W. and E. G. Stoneberg. 1978 1978 farm business summary for southeast Iowa. Bulletin FM-1773. Cooperative Extension Service, Iowa State University and U.S. Department of Agriculture, Ames, Iowa.

- Edwards, W. and E. G. Stoneberg. 1978h 1978 farm business summary for south central Iowa. Bulletin FM-1774. Cooperative Extension Service, Iowa State University and U.S. Department of Agriculture, Ames, Iowa.
- Edwards, W. and H. Thompson. 1981 Estimated costs of crop production in Iowa-1981. Bulletin FM-1712. Cooperative Extension Service, Iowa State University, Ames, Iowa.

Engel, T. M. and E. S. Takle. 1975 "Computation of solar altitude and azimuth." Iowa State Journal of Research, 49, No. 4, Pt. 1 (May, 1975), 377-381.

Environmental Research Laboratory and U.S. Environmental Protection Agency.

1979 Effectiveness of soil and water conservation practices for pollution control. Edited by D. A. Haith and R. C. Loehr. Environmental Research Laboratory and U.S. Environmental Protection Agency, Athens, Georgia.

Fawcett, R. S., J. E. Nelson and R. L. Becker. 1981 Weed Control Guide for 1981. Bulletin PM-601. Cooperative Extension Service, Iowa State University, Ames, Iowa.

Fenton, T. E., E. R. Duncan, W. D. Shrader, and L. C. Dumenil. 1971 Productivity levels of some Iowa soils. Special Report 66.

- 1971 Productivity levels of some lowa solls. Special Report 66. Agriculture and Home Economics Experiment Station and Cooperative Extension Service, Iowa State University, Ames, Iowa.
- Frisby, J. C. and J. D. Summers. 1978 Energy-related data for selected implements on Missouri soils. Journal Series Number 8198. Missouri Agricultural Experiment Station, Columbia, Missouri.
- Frohberg, K. K. and E. R. Swanson. 1979 A method for determining the optimum rate of soil erosion. Department of Agricultural Economics Agricultural Experiment Station, University of Illinois, Urbana-Champaign, Illinois.

Fulton, C. V.

1976 Economics of size of machinery in central Iowa. Ph.D. dissertation. Iowa State University, Ames, Iowa.

- Gogerty, J. K., W. R. Fehr, J. B. Bahrenfus, W. F. Cady, and B. K. Voss. 1980 10wa soybean yield test report. Bulletin AG18-10. Agriculture and Home Economics Experiment Station and Cooperative Extension Service, Iowa State University, Iowa Crop Improvement Association, and Iowa Soybean Promotion Board, Ames, Iowa.
- Harmon, L. I., R. L. Knutson, and P. E. Rosenberry.
- 1980 Soil depletion study-reference report: Southern Iowa Rivers Basin. U. S. Department of Agriculture Soil Conservation Service and Economics, Statistics, and Cooperative Service.
- Highland, J. D. and R. I. Dideriksen.
 - 1967 Soil survey of Iowa County, Iowa. U. S. Department of Agriculture and Iowa Agricultural Experiment Station, Washington, D. C.

Highland, J. D., C. S. Fisher, J. R. Worster, L. D. Lockridge, T. E. Fenton, F. F. Riecken, and L. I. Harmon.

1973 Soil survey legend Iowa. Soil Conservation Service, Department of Agronomy, and Iowa Agriculture Experiment Station, Iowa State University, Ames, Iowa.

Iowa Agriculture and Home Economic Experiment Station.

1978 Iowa soil association map. Iowa Agriculture and Home Economic Experiment Station, U.S. Department of Agriculture Soil Conservation Service, Cooperative Extension Service,

Iowa State University, and Department of Soil Conservation, State of Iowa.

Iowa Crop and Livestock Reporting Service, Iowa Department of Agriculture, U.S. Department of Agriculture.

1979 Number and size of farms in Iowa. Iowa Crop and Livestock Reporting Service, Iowa Department of Agriculture, U.S. Department of Agriculture. Des Moines, Iowa.

Iowa Crop and Livestock Reporting Service.

1980 Iowa agricultural statistics 1980. Iowa Crop and Livestock Reporting Service, U.S. Department of Agriculture and Economics, Statistics, and Cooperatives Service, Des Moines, Iowa.

Iowa Crop and Livestock Reporting Service.

1981 Iowa agricultural statistics 1981. Iowa Crop and Livestock Reporting Service, Iowa Department of Agriculture, U.S. Department of Agriculture, Economics and Statistics Service, Des Moines, Iowa. 89

Iowa Department of Environmental Quality.

1979 Iowa statewide water quality management plan. Iowa Department of Environmental Quality and Iowa Department of Soil Conservation.

Iowa Department of Soil Conservation and Conservancy District Task Force.

1972 A guide for formulation of soil loss limit regulations by soil conservation districts. Iowa Department of Soil Conservation and Conservancy District Task Force.

Iowa Soil Survey Staff.

1971 Soil survey interpretations (Iowa-Conservation-9). U.S. Department of Agriculture, Soil Conservation Service and Department of Agronomy, Iowa State University, Ames, Iowa.

James, S. C., Editor. 1979 Midwest farm planning manual. Iowa State University Press, Ames, Iowa.

Kletke, D. D.

1979 Operation of the enterprise budget generator. Research Report P-790. Agricultural Experiment Station, Oklahoma State University, Stillwater, Oklahoma.

Knott, O. A. and G. O. Benson.

1973 Porfitable oat production. Bulletin PM-297 (Rev.).

Cooperative Extension Service, Iowa State University, Ames, Iowa.

Kovar, J. A., R. I. Dideriksen, and C. S. Fisher.

1973 Soil survey of Crawford County, Iowa. U.S. Department of Agriculture, Soil Conservation Service and Iowa Agriculture and Home Economic Experiment Station, Washington, D.C.

Libbin, J. D., C. A. Moorhead, N. R. Martin, Jr.

1973 A User's Guide to the IBM MPSX Linear Programming Package, Part I-Small Models. AE 4316. Department of Agricultural Economics, University of Illinois, Urbana-Champaign, Illinois.

Lockridge, L. D.

1977 Soil survey of Appanoose County Iowa. U.S. Department of Agriculture, Soil Conservation Service, Iowa Agriculture and Home Economic Experiment Station, Cooperative Extension Service, Iowa State University, and Department of Soil Conservation, State of Iowa, Ames, Iowa. Midwest Plan Service.

1975 Livestock waste facilities handbook. MWPS-18. Midwest Plan Service. Iowa State University, Ames, Iowa.

Nestrud, L. M. and J. R. Worster.

1979 Soil survey of Jasper County, Iowa. U.S. Department of Agriculture, Soil Conservation Service, Iowa Agriculture and Home Economic Experiment Station, Cooperative Extension Service, Iowa State University, and Department of Soil Conservation, State of Iowa, Ames, Iowa.

Oschwald, W. R., F. F. Riecken, R. I. Dideriksen, W. H. Scholtes, and F. W. Schaller.

- 1964 Principal soils of Iowa. Special Report 42. Cooperative Extension Service, Iowa State University, Ames, Iowa.
- Owen, P. A., J. Crawford, P. McNamee, and F. L. Offensend. 1979 A conservation planning and evaluation methodology. SRI Project 7971. SRI International, Menlo Park, California.

Ozkan, E.

1980 Estimating farm fuel requirements for crop production and livestock operations. Bulletin PM-587. Cooperative Extension Service, Iowa State University, Ames, Iowa.

Pfaffenberger, R. C. and D. A. Walker.

1976 Mathmatical programming for economics and business. Iowa State University Press, Ames, Iowa.

Pope III, C. A.

1981 The dynamics of crop yields in the U.S. Corn Belt as affected by weather and technological progress. Unpublished Ph.D. dissertation. Iowa State University, Ames, Iowa.

Rosenberry, P. E., R. L. Knutson, and L. I. Harmon. 1980a Predicting the effects of soil depletion from erosion. Journal of Soil and Water Conservation. Vol. 35, No. 3 (May-June 1980).

Rosenberry, P. E., R. L. Knutson, and L. L. Harmon. 1980b 1972-77 current normal data sets. Unpublished data sets. Economic Research Service, Soil Conservation Service, and U.S. Department of Agriculture, Ames, Iowa.

- Ruhe, R. V., R. B. Daniels, and J. G. Cady. 1967 Landscape evolution and soil formation in southwestern Iowa. Technical Bulletin 1349. Soil Conservation Service, Iowa Agriculture and Home Economics Experiment Station, and Iowa Geological Survey, Ames, Iowa.
- Saygideger, O., G. F. Vocke, and E. O. Heady. 1977 A multigoal linear programming analysis of trade-offs between production efficiency and soil loss control in U.S. Agriculture. CARD Report 76. Center for Agriculture and Rural Development, Ames, Iowa.

Schaller, F.

- 1972 Guide for year-round forage supply. Bulletin AG-81. Cooperative Extension Service, Iowa State University, Ames, Iowa.
- Schaller, F. W., R. D. Voss, and J. R. George. 1979 Fertilizing pasture. Bulletin PM-869. Cooperative Extension Service, Iowa State University, Ames, Iowa.
- Scholtes, W. H., G. A. Swenson, C. A. Mogen, and K. K. Kittleson. 1958 Soil survey of Allamakee County, Iowa. U.S. Department of Agriculture, Soil Conservation Service and Iowa Agricultural Experiment Station, Washington, D. C.

Seim, A., A. Charlson, and W. Edwards.

1981 Estimated costs of crop production for the southern portion of the Ottumwa area - 1981. Extension Service, Iowa State University, Ames, Iowa.

Sherwood, M. A.

1980

Soil survey of Adair County, Iowa. U.S. Department of Agriculture, Soil Conservation Service, Iowa Agriculture and Home Economic Experiment Station, Cooperative Extension Service, Iowa State University, and Department of Soil Conservation, State of Iowa, Ames, Iowa.

Shroyer, J. P.

1978 Profitable soybean production. Bulletin PM-441. Cooperative Extension Service, Iowa State University, Ames, Iowa.

Soil Conservation Service, Department of Agronomy, and Iowa Agriculture Experiment Station.

1973 Soil survey legend Iowa. Assembled by J. D. Highland, C. S. Fisher, J. R. Worster, L. D. Lockridge, T. E. Fenton, F. F. Riecken, and L. I. Harmon. Soil Conservation Service, Department of Agronomy, and Iowa Agriculture Experiment Station, Ames, Iowa.

- Soil Conservation Service, U. S. Department of Agriculture. 1979 Abundance or scarcity a matter of inches. Soil Conservation
 - Service, U. S. Department of Agriculture, Des Moines, Iowa.
- Soil Conservation Service, U. S. Department of Agriculture. 1980a America's soil and water: condition and trends. Soil Conservation Service, U. S. Department of Agriculture.
- Soil Conservation Service, U. S. Department of Agriculture. 1980b Field office technical guide. Soil Conservation Service, U.S. Department of Agriculture, Lincoln, Nebraska.

Stockdale, H. J. and D. Foster. 1980 Summary of insecticide uses in Iowa for 1981 corn production. Bulletin IC-404. Cooperative Extension Service, Iowa State University and U.S. Department of Agriculture, Ames, Iowa.

- U.S. Department of Agriculture. 1970-1980 Various issues. Annual price summary. U. S. Government Printing Office, Washington, D. C.
- U. S. Department of Agriculture. 1980-1981 Various issues. Agricultural prices. U.S. Government Printing Office, Washington, D. C.
- U. S. Department of Agriculture. 1981a 1980 appraisal part 1-soil, water, and related resources in the United States: status, condition, and trends.

U. S. Department of Agriculture, Washington, D. C.

U. S. Department of Agriculture.

1981b 1980 appraisal part II-soil, water, and related resources in the United States: analysis of resource trends. U. S. Department of Agriculture, Washington, D. C.

- U. S. Department of Agriculture.
 - 1981c 1981 program report and environmental impact statementrevised draft. U. S. Department of Agriculture, Washington, D. C.

Vishnuprasad, S. N., E. O. Heady, and K. J. Nicol.

1975 Implications of application of soil conservancy and environmental regulations in Iowa within a national framework. CARD Report 57. Center for Agricultural and Rural Development, Ames, Iowa.

Voss, R. D.

1972 General guide for fertilizer recommendations in Iowa. Bulletin AG-65 Revised. Agriculture and Home Economics Experiment Station and Cooperative Extension Service, Iowa State University, Ames, Iowa.

Voss, R. D., J. T. Pesek, and J. R. Webb. 1975 Economics of nitrogen fertilizer for corn. Bulletin PM-651. Cooperative Extension Service, Iowa State University, Ames, Iowa.

Voss, R. D. and W. D. Shrader.

1979 Crop rotations effect on yields and response to nitrogen. Bulletin PM-905. Agriculture and Home Economics Experiment Station and Cooperative Extension Service, Iowa State University, Ames, Iowa.

Voss, R. D. and J. R. Webb.

1980a Fertilizer phosphorus - use it efficently. Bulletin PM-606. Cooperative Extension Service, Iowa State University, Ames, Iowa.

Voss, R. D., and J. R. Webb.

1980b Fertilizer potassium - use it efficiently. Bulletin PM-975. Cooperative Extension Service, Iowa State University, Ames, Iowa.

Walker, D.

1977

An economic analysis of alternative environmental and resource policies for controlling soil loss and sedimentation from agriculture. Ph.D. dissertation. Iowa State University, Ames, Iowa.

Williams, D. L. and W. Edwards.

1978 Fieldwork days in Iowa: Estimated number suitable. Bulletin PM-695. Cooperative Extension Service, Iowa State University, Ames, Iowa.

Wischmeier, W. H., and D. D. Smith. 1978 Predicting rainfall erosion losses - a guide to conservation planning. Agriculture Handbood 537. Science and Education Administration U. S. Department of Agriculture and Purdue Agricultural Experiment Station, WAshington, D. C.

Ziegler, K. E., and A. R. Campbell.

1980 The 1980 Iowa corn yield test report. Bulletin PM-660-3-80. Cooperative Extension Service, Agriculture and Home Economics Experiment Station, Iowa State University. Iowa Crop Improvement Association, and the U.S. Department of Agriculture, Ames, Iowa. ADDITIONAL COPIES of this publication can be obtained by writing the Center for Agricultural and Rural Development, 578 Heady Hall, Iowa State University, Ames, IA 50011. Price is \$4 each.

ALL PROGRAMS and publications of the Center for Agricultural and Rural Development are available to all persons regardless of race, color, national origin, religion, or sex.

