Incomplete Block Designs
With Blocks of Two Plots

by J. A. Zoellner and Oscar Kempthorne

Department of Statistics

AGRICULTURAL EXPERIMENT STATION, IOWA STATE COLLEGE

RESEARCH BULLETIN 418 DECEMBER, 1954 AMES, IOWA



CONTENTS

Summary
Introduction
Review of literature
Effectiveness of the use of blocks of two plots
Literature on designs
Scope of enumeration ¥
Description of the tables
Block plan
Intrablock estimates
(Combined estimates .
Analysis of variance and estimation of the weights
A worked example

References cited .

172

173

173

173

174

175

175

176

176

180

171



AV}

SUMMARY

Various workers have shown that considerable
economies in experimentation can be achieved by the
use of identical twins, halves of leaves and halves of
plants. The basic statistical principle enabling these
economies is that of incomplete block designs. These
make possible the comparison of treatments within
pairs of identical twins, pairs of half-leaves or what-
ever grouping is used, so that experimental error
arises only because of differences between individuals
within the pairs.

Extensive use of these natural groupings is pos-
sible only when the possible incomplete block designs
have been enumerated. The purpose of this bulletin
is to present what is essentially a complete array of
incomplete block designs with blocks of two plots.

The balanced incomplete block design requires
(n-1) replications, where n is the number of treat-
ments. Any design using a lesser number of repli-
cations must necessarily be unbalanced. Designs are
presented which require (n-2), (n-3), . . ., three
replications, whenever such is possible, for any num-
ber of treatments between 6 and 12.

These designs have been extracted from a pool of
designs formed by (a) the class of partially balanced
incomplete block designs with two classes of asso-
ciates and (b) the class of circulant desiens. The de-
sign chosen to cover each situation is the design which
has the highest efficiency factor among all the designs
in the pool applicable to the given situation.

The tabulation of material necessary for the an-
alysis of the respective designs is made to facilitate
computations.

The computations are exemplified by the inclusion
of a worked example covering both the intrablock and
interblock analysis.



Incomplete Block Designs With Blocks of Two Plots'

By J. A. ZoELLNER? AND O. KEMPTHORNE?

A basic principle of statistical experimentation is
the utilization of blocks or groups of experimental
units within which the treatments are applied at
random. Treatment differences are then estimated by
comparisons within the groups and are subject to an
error variance depending on the variance of the units
within the groups. The experimenter in desiring the
ereatest possible accuracy in the estimation of treat-
ment differences attempts to secure those groups or
blocks of experimental units which possess the small-
est internal variance. Accumulated evidence in re-
cent years has indicated sharply the importance of
considering natural grouping such as litters of pigs
for this purpose.

Randomized complete block designs represent the
carliest statistically valid method of utilizing blocks
or groups of experimental units. These designs require
that the size of the block be equal to the number of
treatments being compared. As long as naturally oc-
curring groups fit the structure of these designs, i.e.,
the size of the naturally occurring group is greater
than or equal to the required block size, the problem
is solved.

However, the experimenter is frequently confronted
with naturally occurring eroups which are smaller
in size than the number of treatments under investi-
gation. While we may find natural groups in a wide
rariety of sizes, one of the most common group sizes
is two. Examples are numerous and varied. The value
of twins in psychometry has long been realized and
attention has been directed lately at their use in
biology (8). The botanist has demonstrated the use
of halves of leaves and more recently has employed
halves of plants in experimentation (3). Paired
organs such as eyes and kidneys are examples of this
large class of groups.

The purpose of this bulletin is to present to the
experimenter the best available designs for blocks of
two plots.

The statistical utilization of naturally occurring
groups started with the introduction of the balanced
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for the M. S. degree by J. A. Zoellner. The authors are indebted
to Mr. R. F. White for checking the whole of the computations.

2 General Electric Co., formerly graduate assistant, Iowa
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8 Professor of statistics, Towa State College.

incomplete block designs in which each treatment
occurs with every other treatment in a constant num-
ber of blocks and every treatment is repeated » times.
A balanced design in blocks of two plots for testing
n treatments requires n(n—1)/2 blocks, since each
treatment is to occur with every other treatment once
in a block. As n becomes large, the number of blocks
required increases rapidly so that in many cases the
experimenter may not be able to obtain the necessary
number of blocks. Nor may he desire to have as ex-
tensive replication as balanced incomplete blocks re-
quire.

When this situation arises, the only alternative left
to the experimenter, apart from disregarding the
occurrence of the groups altogether, is the use of an
unbalanced incomplete block design. The unbalance
arises from the fact that if a design in blocks of two
plots has less than n(n—1)/2 blocks some treatments
will not oceur together in a block. As a whole, the
designs are both difficult and their general analysis
is tedious. However, within this large class of un-
balanced incomplete block designs there are subclasses
which possess both ease of analysis and construction.
Two of these subeclasses were considered in the pres-
ent case. They are the class of partially balanced
incomplete block designs (2) and the class of cir-
culant desiegns (4,9).

The enumeration covers designs for 6 to 12 treat-
ments for which the number of degrees of freedom
for estimating the error is at least five.

REVIEW OF LITERATURE

EFFECTIVENESS OF THE USE OF BLOCKS OF
TWO PLOTS

Denote by ¢ the within pair variance and by
%, the between pair variance on a per-plot basis.
Then the analysis of variance in table 1 is applicable
to blocks of two plots.

TABLE 1. ANALYSIS OF VARIANCE.

E. M. S.

Due to d. £ M. S.
y ot - > 2 2
Between blocks b-1 B oy —+ 20
Within blocks b W >
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If blocks are made up at random from unrelated
units, the variance of a treatment comparison will
be proportional to

2 2
0'w+0'b

as compared to o?, with blocks of related units.
Hence the error variance of the design relative to
blocks of unrelated units is

2 2 2
i e O A
2 2
Ow Oy

which is estimated by

B+ W.
2w

The reduction in error variance does not, of course,
give the relative efficiency of the incomplete block
design, because the incomplete block design necessi-
tates confounding. The effect of confounding is to
make the relative efficiency equal to the relative
error varianee multiplied by the efficiency factor
(E. F.). In the case of designs with blocks of two
plots, the efficiency factor will be close to 0.5, so that
as a rough guide to the value of an incomplete block
design in blocks of two plots we may use the quantity
R, where

R LBk W.
T 4w

Paul (7) reporting on a taste testing experiment
using blocks of two plots gave data leading to an
R value of 1.05. Using halves of plants physically
disected, James and Baneroft (3) have presented
data yielding an estimated R of 1.58.

Stormont (8) reports data which lead to the esti-
mates of R given in table 2 for the case of mono-
zygotic twins in cattle.

As a result of these findings, heavy emphasis has
been placed in New Zealand on the utilization of
monozygotic twins. In investications concerning milk
production, for example, the information obtainable
through the use of an incomplete block design having
an E. F. of 0.5 would be roughly equivalent at least
to the information obtainable from a randomized com-
plete block design utilizing as many as 11 times as
many unrelated animals.

The effect of confounding in reducing relative effi-
clency is partly offset by the utilization or recovery
of interblock information. The interblock information
can be utilized or recovered when it is possible to

TABLE 2. ESTIMATES OF R VALUES FOR MONOZYGOTIC
TWINS IN CATTLE.

Characteristic studies R No. of animals

Mille produetion: - .o ot o o
Butterfat production
Casein production _____ 5
Butterfat percentage ____ 8
Casein percentage R b
Grazing " time . — o o o o 36.

3

3

Lioafing time ___._._
Body welght ot o s 1

=R R B BN |

crorvoren
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obtain a reliable estimate of
(o%+203),

in other words,ewhen the number of degrees of free-
dom for blocks eliminating treatments is not small,
say 15 or more.

LITERATURE ON DESIGNS

The class of partially balanced incomplete block
designs was first introduced by R. C. Bose and K. R.
Nair (1) in 1939. Later, Nair and Rao (6) and
finally Bose and Shimamoto (2) expanded the class
to its present form.

The definition of partially balanced incomplete
block designs is rather abstract from the point of
view of the experimenter. The essential feature is
that the treatments are partitioned into m eclasses,
called associate classes, with respect to each treatment.
For example, treatments 2 and 3 may be the first
associates of treatment 1, treatments 4 and 5 may be
second associates of treatment 1, and so on. The classi-
fication of treatments in this manner must satisfy
several conditions which are specified, for example,
by Bose and Shimamoto (2). In general, the number
of associate classes may be any number up to (n—1),
but enumerative work in the literature has been con-
centrated towards finding designs with two associate
classes (2).

In 1952, Kempthorne (4) introduced a class of de-
signs for use with blocks of two plots. A design in
this class is possible if the quantity (n—r-+1)/2,
which we may denote by s, is integral, where n is the
number of treatments and » is the number of times
each treatment is represented. The structure of the de-
sign is such that treatments are numbered from 1 to n
and treatment given the number j occurs with treat-
ments with numbers j-fs, j+s+1, ..., j+str—1
once in a block, where any number greater than =
is reduced to a number less than or equal to n by
subtracting an appropriate multiple of n. The char-
acteristic property these designs possess is that the
coefficient matrix of the reduced normal equations
(5) is a circulant.

A circulant is a square array or matrix of elements
of such a nature that given any row of the array, the
next row below can be obtained by shifting the given
row one space to the right and placing the last ele-
ment of the row in the first position, e.g.

at b el d
de: 05 baiee
G el e KT
| Ty N

is a circulant.

The computational methods developed with the
introduction of these designs make for ease of an-
alysis. Zoellner (9) later extended this class of de-
signs to include all designs in which the coefficient
matrix of the reduced normal equations is a circulant.

A design is said to be an element of the class of
circulant designs if it satisfies the following require-
ments :

(a) Bach treatment is repeated the same number



of times and oceurs only once in any block.
(b) The number of times treatment j occurs with
J7 is Aj;- and the matrix of A;;/’s with j=4j’,
is a circulant.
The circulant designs are a subclass of the class of
partially balanced incomplete block designs, which
is in turn a subelass of the class of all incomplete
block designs.

SCOPE OF ENUMERATION

A balanced incomplete block design for blocks of
two plots with n treatments requires n(n—1)/2
blocks and every treatment occurs once with every
other treatment. The construction and analysis of
these designs are straightforward and can be found
in standard texts (see, for example, reference 5). We
are concerned with the enumeration of the best de-
signs for the case where less than n(n—1)/2 blocks
are available.

A complete enumeration of all the partially bal-
anced incomplete block designs with two classes of
associates was carried out for the case when Aj;. takes
either the value A;=1 or the value A,=0, as well as
a complete enumeration of all the possible circulant
designs for which Aj; is zero or unity. From this
pool of designs, the design with the highest efficiency
factor was chosen and tabulated. Whenever a par-
tially balanced and a circulant design possessed the
same efficiency factor, the circulant desigen was tab-
lated.

DESCRIPTION OF THE TABLES

Every design except one, a design for 10 treatments
in three replications for which table 4a has been pre-
pared, is tabulated as a circulant design. The circu-
lant designs and their characteristics are presented
in three tables at the end of the bulletin. Table 4 indi-
cates the plan for the design, table 5 the coefficients
ci; needed to obtain the intrablock estimates of the
treatment effects and table 6 supplemental data use-
ful in obtaining the combined intrablock and inter-
block estimates of the treatment effects.

BLOCK PLAN

The pairs of treatments which make up the blocks
are specified by the fact that if treatment 1 occurs
with treatments j, k, ete. then treatment 2 occurs with
treatments j-+1, k41, ete., treatment 3 occurs with
treatments j-+2, k+2, ete. and so on. Hence it is
necessary to specify only those treatments which
occur with treatment 1, and this is done in table 4.
For example, the design for seven treatments with
four replications is specified by

oo O 25 S ST 100 ) R

so that treatment 1 oceurs with treatments 2, 3, 6 and
7. Hence we have

Treatment Occurs with treatments
1 25008 BT
2 b e e [
3 4 5 1 2
4 ’ S AR
5 i e e
6 amiles, it
i 122200 BT EG
The blocks are therefore
1 s G I N R ) o - [ R ol i CF5 o Ll 8 Lo
o 0 o 0 A R e (S e i I o I gy

INTRABLOCK ESTIMATES

Intrablock estimates of the treatment effects are
given by the n equations

for example,

:3 = €31 Q1+ Cs2 Qo1 . .A-Can @Qn,

where the c¢j; are derivable from the form of the re-
duced normal equations and,

e
G=Vi-

where Vi = sum of those plots receiving treatment f,
and T% = sum of block totals for blocks containing .
The sum of the @ is zero, so that an arbitrary con-
stant can be subtracted from every element in any
row. The equations can be written in the matrix form;

Ty [— €1 - Cig v o Cpp Q1
P Cox, oo’ v €Ba Qz
Tn J Cn1 Cno o » 5 _Ban Qn

or symbolically as
T=00.

If a design is a circulant design, the matrix €' is
also ecirculant so that it is specified completely by
its first row or column. By use of the reference num-
bers in table 4, the matrices corresponding to each
design can be found in table 5, which contains the
first row, written vertically, for each design. In cer-
tain cases, moderately simple estimating equations in
terms of associate classes could be given, but the
present form is simpler to present and use for the
designs given.

The variance associated with a treatment differ-
ence based on intrablock information is given by :

V(7;—7;) =26 (¢;;—c;j;+), for all j and j
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and the efficiency factor of these designs is

(n—1)
nr cin

COMBINED ESTIMATES

Table 6 is for use when estimates based on both
intrablock and interblock information are desired.
By use of the reference numbers, the characteristic
roots A;j(j=2, 3, ... n) of the coefficient matrix of
the reduced normal equations can be found. To ob-
tain the combined estimates, it is necessary to make
the following computations based on the estimated
weights W and W’ corresponding to intrablock and
interblock estimates respectively. The detailed pro-
cedure for the estimation of W and W’ by means of
an analysis of variance is given below. A new matrix
with elements ¢*,,, ¢*s, ete. is required; this matrix
will be called the ¢* matrix.

Compute

A= (W=W) Ny Er W, 4=2. 8. . ., W,
where the A; are the roots given in table 6. The co-
efficients of the ¢* matrix are given by

1 1 i Al 1 1
o e = e = ——
T h n(A;+A; “‘+A;)
and
3 2m
» cos(j—1)(k—1)=—
R n 3
e == y J=2438, « w2 W
N2 Ay
for example,
cos %’r cos 8% cos(n—1) 4n—7r
| e g

Actually A;=0, so A¥*,=rW’, and the true c*;;’s are
cqual to

1
nA*

1

*
cij—{—

However, since 3Q*; equals zero, the part 1/nA%,
in the true ¢*;;’s may be omitted.

As before the ¢* matrix is a circulant.

The combined estimates are

T;= kEc;‘kaz, JI= e 2 e
where
w’ =
-t (1= 7))

where Y..=total of all observations

r = number of replications

b = number of blocks.
The estimated variance of a treatment difference with
the recovery of interblock information is

V(rj—7j:) = 2(c*j;—c*j).
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ANALYSIS OF VARIANCE AND ESTIMATION OF
THE WEIGHTS

The form of the analysis of variance applicable to
the designs together with the alternative breakdown
necessary for the recovery of interblock information
is given in table 3

TABLE 3. ANALYSIS OF VARIANCE.

Due to d.f. S. Sqa. S. Sq.

Blocks ignoring Blocks eliminating

treatments b—1 B 163 treatments
Treatments elimi- Treatments ignor-
nating blocks n—1 by 4 04 ing blocks
Intrablock error b—n+41 Se Su Intrablock error
Total 2b—1 S S Total
where

B = Y {sum of squares of block totals} —correction

g o E.Afo
J

’7:]‘ = intrablock estimates of the treatment effects

7" = {sum of squares of treatment totals}/»
—correction

S = Total sum of squares—correction
Correction = [sum of all observations]?/2b
St = S§—~=B—7

B = 8—=8;—1"

* L e R T 2b—n ‘
Sk 9B — n—2 )S
b—n+1/"F

The mean variance of treatment differences as given
by the intrablock estimates is equal to

2 ﬁ—l Ci1 (172)

which is estimated by

n SE‘
g n b—n+1)'

=
The mean variance of treatment differences as given
by the combined estimates is equal to

2

*
n—1 ‘u

If these average variances differ little, say by less
than 5 percent, the experimenter need only obtain
the intrablock estimates. -

A WORKED EXAMPLE

A fictitious example will serve to illustrate the
computational procedures. The design considered is
the one for testing seven treatments in four repli-
cations which appears in the tables under reference
number 2.



The data are:

Block Treatments (X) Block totals
1 54(1) 56(2) 110
2 361 i '36(3) 7|
3 48(1) 42(6) 90
4 46(1)  H6(7) 102
5 61(2) 61(3) 122
6 52(2) 53(4) 105
7 54(2) 59(7) 113
8 45(3) 46(4) 91
9 F(3) - 2BI(H) 59

10 56(4) 53(H) 109
11 36(4) 40(6) 76
12 42(5) 43(6) 85
13 56(5) HI(T) 115
14 61(6) 54(7) 115

1,363

The following table computed :

Wy i) Qi=V,—T;/2
183(1) 378 —3.5
223(2) 450 —2.0
173(3) 343 15
191(4) 381 0.5
179(5) 368 —50
186(6) 366 3.0
298(7) 445 5.5

1,363 2,726 0.0

As a check on the computations, we should have
3V;=%3T;
3Q; =0.

The coefficient matrix (' is taken from table 5. Round-
ing to four places we have

and

e = 03956
e = —0.0220
C13 = _00440
cis = —0.1319
Q15 = _01319
¢e = —0.0440
cir = —0.0220

the matrix €' can be written out:

Cii Ciz €3 Cia Ci5 GCig Cir

€z ©C1 Ciz2 Ciz Cia Cis Cie

Ciz Ci2 Cuu Ci2 Ciz Cis Cis

Cig Ci3 Ci2 Cix Ci2 Ciz Cia

€15 Ci4 Ci3 Ci2 Ci1 Cy2 Cy3

Cie €15 Cig Ci3 Ciz Ci1 Ciz

Ciz Ce €15 Cisa ©Cizg Ciz2 Cng

Retaining the position of the various elements in

the array, we renumber the elements of the matrix
in the standard way, i.e. as follows:

€11 Ciz Ci3 Cis Cis Cig Civ

Car C22 Co3 . ¢ & Cor
C31 C32 Cgs « : s Cor
Cq1 A
Cs1

Cg1 .

C7; Cqp' Cp Cyr

so that the proper elements are chosen for the esti-
mating equations

?]':§0ij1“ ]=1, 2,...,7},.

The computed estimates in this case are:

s

7 = —1.0660
7= —0.7474
7 = —0.1208
7o = —0.0330
7 = —1.6376
7= 13738
™= 22310

where 37,=0 provides a final check on calculations.
To compute the analysis of variance we need:
Correction= (1,363)2/28 =66,348.89
Total sum of squares=68,839— correction =2,490.11
(183)2+4 ... F(228)2
4
—correction="713.36

(110)%+ ... 4+ (115)?
2
—correction=2,359.61

Treatments ignoring blocks=

Blocks ignoring treatments=

Treatments eliminating blocks = 37,0 ;=29.61
Intrablock error=2,490.11—2,359.61—29.61
=100.89
Blocks eliminating treatments=2,490.11—100.89
—713.36=1,675.86.
The analysis of variance is:

Due to d. f. S. Saq. S. Saq. Due to
Blocks ignoring Blocks eliminating
treatments 13 2,359.61 | 1,675.86 treatments
Treatments elimi- Treatments ignor-
nating blocks 6 29.61 713.36 ing blocks
Intrablock error 8 100.89 100.89 Intrablock error
Total 27 2,490.11 | 2,490.11 Total

The estimated weights are:

oo

and

17! —21 X o
W'="9(1,675.86) — (%) (100.89) = 0-0063856 -

For estimates based on both intrablock and inter-
block information we compute

A% = (W—W’)A4-r W,



where the A;’s are tabulated in table 6.
The quantities

Q; = WQ;+ WT, (Tj_' Lg—)

are also needed. We find that

A*,=0.1421257 Q% =—0.3300 c*,= 4.6297
A*,=02532720 Q%= 0.0351 c*,=—0.3412
A*,=0.1915905 Q% =—0.0295 c*,=—0.5339
A*;=0.1915905 Q% = 00127 c*,=—1.4397
A%g=0.2532720 Q%= —04650 ¥, =—1.4397
A*,=0.1421257 Q%= 0.1629 c*,,=—05339

Q*,= 0.6138 c*,=—03412

Writing out the matrix of ¢*;; in the same manner as
the matrix ¢;; we find the following estimates of treat-
ment effects.

7 = —1.1692
7 = 0.3856
75 = —0.8466
7o = —0.2868
75 = —2.1001
7s = 0.8648
.= 3.1524.

The average variance of a treatment difference
without recovery of interblock information is

s (nﬁl) o 2(100.89)8(0.3956)(%)=11_64

while with recovery of interblock information the
average variance is

2 e, (1) = 2(4.6207) (F) = 10.80.

A test of significance based on the combined esti-
mates is given by the statistie
e N )
X2 = 3r;Q%;
which is distributed as Chi-square with (n—1) de-
grees of freedom when the true weights W and W’
are known. The Chi-square criterion may be used

with estimated weights W and W’ as an approxi-
mation if the degrees of freedom for blocks is large,
say about 15. For small degrees of freedom, no exact
test is known.
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TABLE 4. DESIGNS.
Reference No.of No.of Degrees Efficiency Plan of
number treat- replica- of freedom factor the design
ments tions for error
&

i} 6 4 7 0.576 #1011

2 7 4 8 0.542 *110011

3 8 6 1% 0.560 *1110111

4 8 5 13 0.543 *#1101011

5 8 4 9 0.538 *#1010101

6 8 3 5 0.488 #1001001

T 9 6 19 0.545 *11011011

8 9 4 10 0.509 *10100101

9 10 8 31 0.549 *#111101111
10 10 # 26 0.540 *111010111
11 10 6 21 0.525 *#111000111
12 10 5 16 0.529 *#101010101
13 10 4 1L 0.500 *#100101001

See table 4a. 10 3

14 11 8 34 0.538 *1111001111
15 11 6 23 0.521 *#1101001011
16 11 4 12 0.487 #*1010000101
17 12 10 49 0.541 *11111011111
18 12 9 43 0.537 *#11101110111
19 12 8 37 0.532 *#11011011011
20 12 i 31 0.524 *#10101110101
21 12 6 25 0.524 #10101010101
22 12 5 19 0.502 *10010101001
23 12 4 13 0.479 *#01100000110
24 12 3 7 0.394 #10000100001

TABLE 4a. PLAN AND FORMULA FOR DESIGN WITH 10
TREATMENTS AND 3 REPLICATES.

Plan 15 blocks:
1, 8t 09 00 052, 562, (e 210 8w 5w 3 ife 320
4,5;46;4,8;5,10; 6, 10; 17, 8.

Formulas
Q;: as in text
X(Q;)=sum of Q;’s for treatments j* which
oceur in a block with treatment j.
Similarly for @*; and = (Q*;)
Intrablock estimates:

~ 1
7=1g[8€:+22@Q))

Zonl 60 if i and ¥ S

Vs s j and j* oceun

(ry =710 5  together in a block,
8a?

5 otherwise.

Mean variance of differences: To?/b
(‘fombined estimates:

Tj= [(BWH4W’) @*;+2(W—W’")2(Q*;)]1/A
where
A=3(W4+W)4AWL2W) —2(\_\’—W’)2

‘v(:j_;\j') =12(W-+W’) /A if j and j* occur together
in a block
=4(4Q+2W’) /A otherwise.
Mean variance of treatment difference:
(14W+10W”) /A.



TABLE 5. COEFFICIENTS FOR INTRABLOCK ESTIMATES. TABLE 6. SCHEDULE OF CHARACTERISTIC ROOTS COR-
RESPONDING TO THE REDUCED NORMAL EQUATION
e e FOR INTRABLOCK ESTIMATES, TABULATED

REFERENCE NUMBER VERTICALLY IN THE ORDER
= = AN As, A, o o o Any With, A=0
AN ALL CASES
1 2 3 4 5
0.3611111 0.3956044 0.2604167 0.3223039 0.4062500 , S
—0.0555555 —0.0219780 —0.0312500 —0.0330882 —0.0312500 REFERENCE NUMBER

—0.05555655 —0.0439560 —0.0312500 —0.0208333 —0.0937500
—0.1388889 —0.1318681 —0.0312500 —0.0919118 —0.0312500

—0.0555555 *8.62’18681 —0.0729167 —0.0306372 —0.0937500 1 2 3 4 5
—0.0555555 —0.0439560 —0.0312500 —0.0919118 —0.0312500
—0.0219780 —0.0312500 —0.0208333 —0.0937500 2.0 1:aao0sd 3.0 2.292893 2.0
—0.0312500 —0.0330882 —0.0312500 ?;3 §~};§i§g gg ggggggg =
de Lok { . i
B 3.0 2.277479 4.0 2.000000 4.0
2.0 3.123%)22 3.0 3.707107 2.0
) 1.599 4.0 3.000000 2.0
6 7 8 9 10 3.0 2.292893 2.0
0.5982143 0.2716049  0.4364364 0.2050000 0.2381818
0.0089285 —0.0246914 —0.0200200 —0.0200000 —0.0200000 s
—0.1875000 —0.0246914 —0.0920921 —0.0200000 —0.0163636 £
—0.1339286 —0.0617284 —0.0040032 —0.0200000 —0.0200000 6 7 8 9 10
0.0267857 —0.0246914 —0.1101101 —0.0200000 —0.0527272 : o
—0.1339286 —0.0246914 —0.1101101 —0.0450000 —0.0200000  1.292893 3.0 1.733956 £o) 3.190983
—0.1875000 —0.0617284 —0.0040040 —0.0200000 —0.0527272 L 3.0 2.326352 5.0 4.309017
0.0089285 —0.0246914 —0.0920921 —0.0200000 —0,0200000 2.707107 4.5 1.500000 4.0 4.309017
—0.0246914 —0.0200200 —0.0200000 —0.0163636 2.0 3.0 3.439693 5.0 3.190983
=RLERLE R L e i 11560000 50 3100983
o~ 1.292893 3.0 2.326352 4.0 4.309017
3.0 1.733956 5.0 4.309017
4.0 3.190983
11 12 13 14
0.2858150 0.3400000  0.4500000 0.2113922 —
—0.0061912 —0.0200000  0.0000000 —0.0136434
—0.0138715 —0.0600000 —0.1000000 —0.0164925 11 12 13 14
-—0.0224922  —0.0200000 —0.1000000 —0.0165326
—0.0665360 —0.0600000  0.0000000 —0.0168536 2.190983 2.5 2.000000 3.540507
—0.0676332 —0.0200000 —0.0500000 —0.0421741 4.309017 2.5 1.381966 5.341254
—0.0665360 —0.0600000  0.0000000 —0.0421741 3.309017 2.5 2.000000 3.845139
—0.0224922 —0.0200000 —0.1000000 —0.0168536 3.190983 2.5 3.618034 4.915415
—0.0138715 —0.0600000 —0.1000000 —0.0165326 4.000000 5.0 2.000000 4.357685
—0.0061912 —0.0200000 0.0000000 —0.0164925 3.190983 2.5 3.618034 4.357685
s
. i P .0 .
== 2.190983 2.5 2.000000 5.341254
3.540507
15 16 17 18
0.2908355 0.4670559  0.1694444 0.1898148
—0.0113981 0.0183487 —0.0138889 —0.0138889 15 1§ 1 i i
—0.0060668 —0.0617181 —0.0138889 —0.813§§§9 : !
—0.0511076 0.0066722 —0.0138889 —0.0138889 B rolhatios o - P
—0.0191194 —0.0884070 —0.0138889 —0.0324074 o b oy 4 8
—0.0577259 —0.1084237 —0.0138889 —0.0138889 2 960554 1796900 50 60 40
—0.0577259 —0.1084237 —0.0305556 —0.0138889 1756669 1813607 a0 i 6.0
—0.0191194 —0.0884070 —0.0138889 —0.0138889 209894 3614354 20 i i
—0.0511076 0.0066722 —0.0138889 —0.0324074 2702824 3614354 &0 b 10
—0.0060668 —0.0617181 —0.0138889 —0.0138889 4756669 1813607 50 45 4.0
—0.0113981 0.0183487 —0.0138889 —0.0138889 S Nary et i 8 :
3.260554 1.726900 6.0 4.5 6.0
—0.0138889 —0.0138889 3.381761 2.544078 5.0 6.0 4.0
2.398192 1.301061 6.0 4.5 4.0
5.0 4.5 4.0
19 20 21 22
0.2152778 0.2500000  0.2916667 0.3653382 20 91 - 93
——0.0138889 —0.0138889 —0.0138889 —0.0060386 i 4 o <
—0.0138889 —0.0416667 —0.0416667 —0.0603865 4.0 3.0 2.633957 1.5
—0.0347222 —0.0138889 —0.0138889 —0.0694444 3.0 3.0 2.0 3.5
—0.0138889 —0.0416667 —0.0416667 0.0048309 4.0 3.0 2.0 3.0
—0.0138889 —0.0138889 —0.0138889 —0.0495169 3.0 3.0 3.0 1.5
—0.0347222 0.0000000 —0.0416667 —0.0042271 4.0 3.0 3.366025 1.5
—0.0138889 —0.0138889 —0.0138889 —0.0495169 6.0 6.0 2.0 2.0
—0.0138889 —0.0416667 —0.0416667 0.0048309 1.0 3.0 3.366025 1.5
—0.0347222 —0.0138889 —0.0138889 —0.0694444 3.0 3.0 3.0 1.5
—0.0138889 —0.0416667 —0.0416667 —0.0603865 4.0 3.0 2.0 3.0
—0.0138889 —0.0138889 —0.0138889 —0.0060386 3.0 3.0 2.0 3.5
4.0 3.0 2.633957 1.5
23 24
24
0.4781746 0.7745726
—0.0734127 0.1463675 1.133975
0.0178571 —0.1613248 0.500000
0.0218254 —0.2638889 2.000000
—0.0932540 —0.1997863 1.500000
—0.0734127 —0.0074786 2.866025
—0.0773810 0.1976496 2.000000
—0.0734127 —0.0074786 2.866025
—0.0932540 —0.1997863 1.500000
0.0218254 —0.2638889 2.000000
0.0178571 —0.1613248 0.500000
—0.0734127 0.1463675 1.133975
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