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Physical and Mathematical Theories of Tile and Ditch Drainage and 

Their Usefulness in Design 1 

BY J AN VAN CHILFGAARDE, DoN KIRKHAM AND R . K . FREVERT2 

I. INTRODUCTION 

A number of theories for tile and ditch drainage have 
been proposed in recent years which, if valid, would 
enable the rational design of many drainage systems. 
Nevertheless, most drainage systems are still designed 
by rule of thumb based largely upon the observations 
of technicians with experience in certain restricted areas. 

To develop a theoretically sound and practically valu
able method of designing subsurface drainage systems, 
the various approaches which have been made should 
be critically evaluated and compared, mutually, as well 
as with fie ld data. However, no such analysis has been 
found in the literature. 

The object of this publication is to provide this type 
of appraisal. The assumptions underlying a number of 
methods of analysis will be crutinized in detail, and 
various applications of the e methods to field results 
will be tested. It i hoped that this evaluation of the 
status quo will be useful in determining to what extent 
present theories lend themselves to field applications 
and what phases of drainage design need further study. 

In general, this discussion will be restricted to prob
lems of saturated flow, while recognizing that flow in 
the unsaturated zone above the water table often may 
be important. Little progress has been made in formulat
ing quantitative theories regard ing flow in the unsatu
rated zone. 

This bu lletin also is limited to a discussion of the 
control of the water tab le. The question of what mois
ture conditions are req uired in the soil to produce the 
best crops is left untouched. 

Finally, it should be pointed out that the inclusion 
of the work of any one author does not in itself imply 
agreement with his conclusions. In fact, several pro
posed analyses are discussed in detail to point out that 
they, or such similar type of analysis, cannot be ex
pected to yield reliable results. 

II . REVIEW OF LITERATURE 

It is convenient to separate drainage flow problems, 
both theoretical and experimental, into two classes: 
steady state problems and nonsteady state problems. 

lProjccts 1003 and 998, Iowa Agricullu ra1 Experiment Station . 
'North Carnlina State College, R aleigh , N . C., formerly Departmen t of 

Agricultural Engineering, Iowa State College; Department of Agro nomy 
(Soi ls), Io,,a State College; and ass istant director, Iowa Agricultu ral Ex
periment Station, Iowa State Coll ege, respectively. 

A steady state condition exists when a system- its flow 
rates and boundaries-does not change with time, i. e., 
when the system is in dynamic equilibrium. Otherwise, 
a nonsteady state condition exists. 

THEORETICAL I NVESTIGATIONS 

STEADY STATE PROBLEMS 

One of the earliest teady state solutions is based on 
the assumption of parallel flow. This assumption, ori
ginated by D upuit, leads to an equation of an ellipse 
for the shape of the water table above parallel drains. 
Gustafsson ( 23 ) and Zunker ( 61 ) have credited this 
so lution to Colding; Rothe ( 49 ) developed it inde
pendently, as did Kozeny (42 ), Hooghoudt (26 ), and 
Aronovici and Donnan ( 1) . 

The assumption of radial flow towards drains was 
used by Hooghouclt (27), Kirkham (32, 33, 34, 35, 36, 
38 ) and Gustafsson (23 ), all three of whom applied 
the method of image to find solu tions to a number of 
specific problems. Kirkham and Gustafsson restricted 
their exact solutions to problems where the soil 
was saturated to the urface ; H ooghoudt applied 
the method to find an approximate solution for a curved 
water table over tile drains in a soil homogeneous to 
infinite depth. Another method was used by Kirkham 
(37) when he found the poten tial and stream func
tions for ditch drainage over an impervious substratum 
by considering the problem as a limiting case of flow 
into an auger hole of infinite radius surrounded by an 
impermeable concentric barrier located a finite distance 
away from the hole. 

Gardner, Israelsen and McLa ughlin (20 ), and later 
Farr and Gardner ( 14), combined the parallel flow 
hypothesis and the radial flow assumptions to approxi
mate the rate of flow from an artesian vein into tile 
drains. H ooghouclt (27 ) u eel a imilar technique fo r 
flow into drains overlying an impermeable layer. 

An exact solution for the shape of the water tabl e 
above tile drains in a semi-infinite, homogeneous soil 
wa obtained by Van Deemter (52, 53 ) with the hoclo
graph method. Engeluncl ( 13a) solved essentially the 
same problem as Van Deemter by this method, arriving 
at a solution in a slightly different form. V eclernikov 
(56 ) seems to have been the fir. t to apply this approach 
to tile drainage, although H amel ( 24 ) used it earlier 
for seepage under a clam. Gustaffson (23 ) found a 
special case of the more general Van Deemter solution, 



and also Davidson and Rosenhead ( 10) solved a tile 
drainage problem with it. 

Finally, the relaxation method has been applied to 
tile and ditch drainage. Here, Lu thin and Gaskell ( 43 ) 
dealt with soil saturated to the surface; Van Deemter 
( 52, 53 ) , with cases involving a curved water table. 

NONSTEADY STATE PROBLEMS 

The parallel flow assumption, leading to the so-called 
heat flow equation, was first used by Forchheimer ( 16) 
in connection with nonsteacly groundwater flow. Recent
ly, Ferris ( 15 ) applied the method to a ditch drainage 
problem and Glover, as reported by Dumm ( 12 ) , to 
tile drains overlying an impermeable layer. Kemper (30 ) 
modified Glover's solution by introducing a correction 
factor obtained by comparing the equations with the 
results of electric analogue studies and by restricting its 
u e to open ditch drains. Kano (29 ) extended the use 
of the ellipse equation, as derived by Kozeny, to non
steady state conditions. Visser ( 5 7) , using a different 
technique, also modified the ellipse equation to apply 
to changing water tables. 

Spottle ( 51 ), in an elaborate treatise on drainage 
problems, and Walker (59 ) modified the assumption of 
radial flow to find approximate solutions for the position 
of a falling water table. 

Kirkham and Gaskell ( 40 ) treated the falling water 
table as a series of successive steady states and used 
the relaxation method to find specific sol utions to four 
problems. Except for this last method, which in theory 
could be refined to any desired degree of accuracy, no 
exact solutions pertaining to the nonsteady state have 
been found in th e literature. 

EXPERIMENTAL INVESTIGATIONS 

Three types of experiments have been conducted: 
field experiments, electric analogue studies and model 
studies. 

As earl y as 1903, Spottle (51, p. 106) determined the 
heigh t of the water table in land with tiles spaced from 
60 to 30 feet, using recording equipment at the wells 
midway between drains. These data were used as a 
quali tative check on Spottle's theoretical considerations. 
Schlick (50 ) investigated water table behavior over 
many tile systems in Iowa for an 8-year period, record
ing also rainfall, tile discharges and soil textures. He 
concluded that 100-foot spacing and 4-foot depth was 
adequate for most Iowa soils . Weir (60 ) observed wa
ter table heights on bottomlands in California. H e found 
that the water table between drains was essentially flat, 
in contradiction to the el liptic shape anticipated. Ferris 
( 15 ) made some observations on a Michigan soil to 
test his theoretical findings. Similarly, Walker (59 ) test
ed his theory in Virginia. 

More recently, the Iowa (28 ) and Minnesota ( 44 ) 
agricultural experiment stations have installed experi 
ments to investigate the effect of spacing between drains 
on water table behavior. These are treated in more de
tail in Section IV, as arc the data of Kirkham and De 
Zeeuw (39 ) obtained from a spacing experiment in 
the Netherlands. Van Schilfgaarde, Frevert and Kirk
ham ( 55 ) reported the installation of a field laboratory 
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near the Missouri River in Iowa for a similar purpose. 
A sand tank model, used by Gross ( 21 ), led to the 

development of a hyperbolic equation for the water 
table. H ooghoudt ( 26 ) used a sand tank to determine 
the hydraulic conductivity of the sand from the ellipse 
equat~on. Kirkham (3 1) used sands of different coarse
ness to check the work of Gardner et al. (14, 20). The 
effect of a hardpan was investigated by means of a 
model by Kirkham (35 ) and the case of artesian pres
sure by H arding and Vlood ( 25 ) . Gustafsson ( 23 ) ex
perimented with varying discharges from adjacent 
drain , and Donnan ( 11 ) made a te t of the ellipse 
equation; both used sand tanks. Gunther (22 ) made a 
model by means of a viscous liquid flowing between 
parallel plates to study the flow to a drain in an im
permeable layer. Besides Donnan, also Gustafsson, Gun
ther and Kirkham ( 33 ) compared results of model 
studies with analytical derivations. 

Childs was the first to study the flow toward drains 
by means of an electric analogue. H e used a solid-con
ductor, two-dimensional analogue to study steady state 
( 4, 5, 6, 7) as well as nonsteady state problems ( 8, 9) . 
A liquid conductor was used by Dutz ( 13 ) when he 
adapted a three-dimensional analogue, developed by 
Frevert ( 18, 19 ), to study the problem of flow into the 
joints between tiles. Kemper (30 ) used a liquid-con
ductor, two-dimensional apparatus to check the re ults 
of his analytical work. 

Several of the papers of the above literature review 
are critically evaluated in the next section. 

III. EVALUATION OF SOME EXISTING 

SOLUTIONS TO DRAINAGE PROBLEMS 

THE DuPUIT-FORCHHEIMER THEORY 

THE ASSUMPTIONS 

The Dupuit-Forchheimer theory of gravity-flow sys
tems is based on assumptions which, if carried through 
consistently, lead to an absurdity. If the limitations of 
its underlying assumptions are thoroughly understood, 
the theory, in some cases, can lead to simpler, valuable 
solu tions than would be obtained by a rigorous analysis 
based solely on Darcy's law and the Laplace equation. 
The theory is in widespread use. 

The two basic assumptions, apparently due to Du
puit [see Muskat (45, p . 359 ) ], are: (a ) all stream
lines in a system of gravity flow towards a shallow sink 
are horizontal ; and (b) the velocity along these stream
lines is proportional to the slope of the free-water sur
face, but independent of the depth. 

Let us consider (fig. 1) a saturated soil column above 
a n impervious layer of base D,. x D,. y and height h(x,y ) 
in dynamic equ ilibrium, and designate by Vx and V y 

the velocity components in the X and Y directions. 
The condition of continuity may be written, if the liquid 
is assumed to be incompressible, as 

0. [ 1] 



z 

X 

IMPERMEABLE LAYER 

/ 
/ 

)-

X 

Fjg, 1. Groundwaler flo w system in dynamic equilibrium. Th e shaded section at ]eft is shown at right in th ree dimensions. 

Dividing by 6.x6.y, and going to the limit when 6,x 
and 6 y b.oth approach zero, this relation reduces to 

o o 
-(hvx) + --(hvy) = 0. 

ox oy 
[2 ] 

The second Dupuit assumption implies, if K repre
sents the hydraulic conductivity,3 that 

oh 
V =- K---· 

X OX ' 

oh 
vy= - K-- . 

oy 
[3] 

Combining eqs. [2 ] and [3], there resu lts 

o2h2 o2h 2 
- -+ --= 0. [4] 

ox2 oy~ 

This equation, due to Forchheimer (16, p. 83 ), is iden
tical in form to the Laplace equation in two dimensions, 
so that the same m ethods of solution can be applied to 
both. 

Strictly speaking, the Dupuit assumptions imply that 
there be no flow . For, by definition of potential cf:, in 
terms of vector velocity ~ (i.e.,~ = -v cf:, ) , 

o<J:, o<J:, o<J:, 
-- == - Vx, 

ox 
-- ==-vy, 

oy 
-- == - V z; 
oz 

differentiation of these relations shows that 

oz OX 

OVy 

oz 
OVz 

oy 

However, since the velocity 1s assumed to be indepen
dent of depth, 

OVx _ OVy _ 
---- 0 
Oz Oz 

3A distinction is made between permeabi lity, a property of the soi l with 
the dimensions L2 (as sq. cm. ), des ignated as k, and hydraulic conductivity, 
defined as the propo,tionaJjty consta nt K in Darcfs law v == Ki and 
havi ng the dimensions of a rate , LT- 1 {as feet/ day ) . The two are rela ted 
by the equation K == kpg/ µ , where p, g and µ represent the fluid density, 
the gravitational consta nt and the fluid viscosi ty, respectively. 

so that OVz/ox = 0 and OVz/oy = 0 and, accordingly, 
the velocity in the vertical direction must be constant 
in every horizontal plane in the flow system. Since, how
ever, V z will have the constant value zero at those points 
where the flow is horizontal ( such as, for radial flow, 
along the vertical inflow surface of a well), v z will be 
zero everywhere. Thus the slope of the free surface must 
be zero everywhere, and further, according to Dupuit's 
second assumption, all velocities must be zero. Hence, 
a rigid analysis based on the Dupuit assumptions leads 
to the absurdity that there can be no flow at all if grav
ity is the only acting driving force. 

Muskat (45, p. 317 ) has shown that, notwithstanding 
the above serious limitations of the Dupuit-Forchheimer 
theory, remarkably accurate results are obtained when 
it is used to determine the flux towards a well or through 
a dam but that the error may be large, in comparison 
with results obtained by more exact theoretical solutions, 
when the Dupuit-Forchheimer theory is used to deter
mine the shape of the free surface and the velocity dis
tribution. Muskat has rejected the theory entirely and 
credited the success of the flux determination to "fortu
itous coincidence" rather than to reasonable approxima
tions. The present writers do not agree entirely with Mus
kat. It seems to them that, when the flow is essentially 
horizontal, the loss of head in the vertical direction in a 
stream tube will be negligible compared with the loss in 
the horizontal direction in many cases, especially those 
cases where there is little convergence or divergence in 
the streamlines. 

The Dupuit-Forchheimer theory has also been applied 
to nonsteacly state problems. L etting f be the porosity, 
the equation of continuity for the latter case is derived 
by replacing the righthand side of eq. [ 1] by - foh/ot, 
with the result 

o oh o oh oh 
K [-(h- ) +-(h- )] = £-. [5] 

ox ox oy oy ot 

If, now, h is replaced by cl + z where d represents the 
constant depth of the impervious layer below a reference 
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plane, and if d > > lzl so that z may be neglected in 
comparison to d, this expression can be simplified to 

o2z o2z f oz 
-+-=- [6] ox2 oy2 Kd ot 

Equation [6] is often referred to as the heat flow equa
tion since it is identical in form to the differential equa
tion that applies to heat flow problems. 

Equation [ 6] is, of course, no better than eq. [ 4] since 
it is based on the same a sumptiJOns. However, both 
equations can be expected to yield reasonably accurate 
results if they are applied to probl ems where the region 
of flow is of large horizontal extent relative to its depth. 
In such cases, the streamlines through a la rge part of 
the region will be approximately horizontal. 

TI-IE ELLIPSE E QUATION FOR TI-IE STEADY 

STATE WATER TABLE 

Derivation of ellipse equation. As has been cited in 
the R eview of Literature, a number of investigators have 
derived the ellipse equation. Hooghoudt's reasoning 
(26 ) will be followed here. 

Figure 2 represents a homogeneous oil underlain by 
an impermeable layer and drained by parallel, vertical
ly walled, open ditches . As urning that a time-constant 
rate of rainfall is removed equally well at all distances 
from the drains, the rate qx, at which water crosses a 
vertical plane at any value of x, can be expressed in 
terms of Q i, half the total discharge of each drain per 
unit length, and S, the spacing between drains, as4 

From the Dupuit assumptions, it follows that 

qx = -yvx = yK dy/ dx . 

[7] 

[8] 

Equating the two expre sions for qx and separating the 
variables, one obtains the differential equation 

ydy= (2Qi/SK ) (S/ 2 -x) dx. [9] 

Integrating this from x = 0 and y = h 0 to x x and 

4Aronovici and Donnan ( 1, p. 100) arrived at this same equation witl1-
out explicity stating that a time~ and space-constant rate of downward 
seepage to the water table 1nust be assumed . Such constancy would be 
present in their problem; the seepage would be excess irrigation water 
dripping down to the water table ra ther than rain water seeping through 
the soil as assumed by H ooghoudt. 

LEVEL l 

I 
I 

y Hol 
I 

y = y, where h 0 represents the height of the water sur
face in the drain above the impermeable layer, there 
resu lts 

y2 - h 2
, = (2 Q 1/ SK ) (Sx - x 2

) . [10] 

This is the equation of an ellipse. Substitution of the 
values x = S/ 2 and y = H0 , the midpoint values be
tween drains, yields 

[11] 

In this form, the equation may be used to determine 
S if the other quantities a re known, or, simila rly, K or 
Q i . 

Aj;plicability of ellipse equation . If the theory is re
stricted to ditches which are shallow compared to their 
spacing and which penetrate to an impermeable layer, 
the assumption of horiw ntal flow and the resulting el
lipse equation appear to be reasonably correct. The 
fact that the flow midway between the drains is vertical 
is offset by the fact that the flow through the greater 
part of the flow region is approximately horizontal. 

There is still a difficulty which has not been consid
ered. There remains the implicit assumption that the 
water table would reach the ditch at the height of the 
ditch water level ; thus, the existence of a urface of 
seepage has been ignored. Muskat ( 45, p . 289 ) has 
shown that a surface of seepage must exist, as other
wise an infinite velocity would occur at the point where 
the water surface in the ditch touche the ditch wall. 
Nevertheless, with essentia lly flat water tables, surfaces 
of seepage will be small. One is a lso reminded h ere that 
capillary flow, which is probably more important than 
a surface of seepage in problems under discussion here, 
has been neglected. 

Considering Muskat's findings concerning the inac
curacies in the shape of the free urface as predicted 
by the Dupuit-Forchh eimer theory for seepage in dams 
and also the equations as developed by V an Deemter5 

for the shape of the water table over tile lines, there 
is ample evidence that eq. [ 10] may be a poor approxi
mation for the free surface in an actual case of drain
age by ditches. Equation [ 11], however, which is for 
the flow and which involves H0 and h 0 but no t y, has 
been tested by means of various and tank experiments 
(26, pp. 476-488; 11 ) and in the field (1 ) and has been 

5Van D cemter's work is discussed in Section III. 

WATER 

Fig. 2. Geometry and symbols used in derivation of ellipse equation . 
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found to agree quite accurately with the experimenta l 
da ta. The experiments just cited are concerned with 
flow into tile drains rather than into open ditches for 
which eq. [ 11 ] was derived . The consequences of this 
sub titution of tile for ditches will be discussed presently. 

The ellipse equation has also been applied to cond i
tiions which differ in varying degrees from the case for 
which it was derived. One of these i the case where 
ditches do not penetrate to the underlying impermeable 
layer. H ere, the ass umption of horizontal flow fails to 
take into accoun t the fact that the flow lines must con
verge to reach the drain and that some must fo llow a 
longer path than a horizonta l one. Hooghoudt (26, p. 
495 ) has presented a refinement which allows for this 
longer path. H e reasons as follows: If the bottom width 
of equally spaced ditches is 26 and the distance from 
each ditch bottom to the impervious stratum is L, the 
average streamline below each ditch will be longer than 
the half pacing by about (L + b) / 2, and the propor
tion of streamlines below the ditch can be approximated 
by L / h0 • Substitution of the average length of stream
line, 

S/ 2 + L (L + b )/ 2h 0 , 

for S/ 2 in eq. [ 1 l ] gives 

S .= 2K (H20 - h20) / Q1 - L (L + 6)/ho 

for the corrected spacing. 

Another case to which the ellipse equa tion has been 
applied involves tile drains. Substitution of til e drains 
for open ditches requires the neglect again of the effect 
of convergence of flow toward the drains. Since often, 
at least for a time, the backfill over drains retains a 
higher conductivity than the und isturbed soil, the error 
introduced by the use of tile drains is not much greater 
than that caused by app lying the theory to ditches which 
do not reach the impermeable layer. Thus, if the prob
lem is restricted to conditions with a horizontal tight 
layer near the bottom of the tile, the height of the 
water table midway between drains should be determin
able fairly closely by the last equation. 

Some investigators, however, have not paid any at
tention to the rela tive position of such a tight layer. 
Aronovici a nd Donnan ( 1), for example, did not discus 
its implications. l~othe ( 49 ) applied the ellipse analysis 
to a homogeneous soil of infinite depth by assuming 
that a ll fl ow takes place above the plane through the 
drain axes . This is incorrect, as is seen by inspection of 
Gustafsson's fig. 15 ( 23, p. 45 ) . This figure shows that, 
when the water tab le is everywhere at the soil surface, 
nearly half the flow towards parallel drains passes be
low the p lane through the drain axes. For the elliptically 
shaped water table considered by Rothe, this portion 
would be even greater. 

If the impermeable layer, for either tile or ditch 
drains, is at a considerable depth below the drain , 
then the effect of convergence of flow can no longer 
be ignored. Hooghoudt substituted a radial flow method 
for this case, combining radial and horizontal flow for 
intermediate conditions. The radial method and com
bination method will be treated on pages 678-681. 

Th e ellipse equation with flow in th e capillary fringe. 
Both Hooghoudt and Donnan found that, to make the 

data from sand tank experiments agree with eq. [ 11 ], 
they had to acid the height of the capill ary fringe to the 
values found for H 0 and h0 . This procedure can be 
justified if it may be assumed tha t the upper bounda ry 
of the capillary fringe is well defin ed and that no flow 
takes place above this boundary. 

The capillary fringe, as defined here, is a satura ted 
region of less than atmospheric pressure. Its presence 
does not a lter the total hydra ulic head to be dissipated. 
However, the region of flow becomes larger by a con
stant amount equa l to the height, w, of the capillary 
fringe. Therefore, eq. [7] still holds, but eq. [8] must 
be changed to read 

q, = (y + w ) Kdy/ dx. 

Then, instead of eq. [9], the differential equa tion be
comes 

(y + w) dy = (2Q1/ SK ) ( / 2 - x ) dx . 

Integrating from x = 0 to x = / 2 and from y = h 0 to 
y = H 0 , one obtains, after some manipulation, 

Q,S/ 2K =(H o + w) 2
- (h0 + w) 2

. 

H ence, addition of w to the values of H 0 and h 0 in eq. 
[ 11 ] does account for the capilla ry fringe. 

THE ELLIPSE E Q UATION AND THE C HANGING WATER 

TABLE 

Visser ( 5 7) has attempted to extend the application 
of the ellipse equatiion to problems involving water tab le 
fluctuations caused over tile drains by storms of short 
duration and of higher intensity than a normally pre
vailing average (constant ) rate of rainfall. The essence 
of this ana lysis is as follows. 

D esignating by n the rate of groundwa ter seepage 
into a unit length of til e or ditch per unit a rea of soil 
urface between tiles or ditches (so that Q 1 = nS/ 2, and 

n thus has the dimensions L T ·1
) , one can write eq . [ 11 ] 

as 
n = 4K (H 2

0 - h 2
0 )/ S2

• 

Combining 4K/ S2 into a factor D , and designating the 
head difference H 0 - h 0 as m, this equation takes the 
form 

[ 12 ] 

where the subscript e has been added to emphasize an 
equilibrium condition: thus, n 0 is the constant discharge 
rate and m e the corresponding head difference. 

Now, it is ass umed that during a very short interval 
during a period of otherwise constant normal rainfall 
rate, an amount of rain N inches, say, falls in excess of 
the amount which fa ll s at th e normal constant rate for 
the short in terval. Further, it is assumed as a result of 
the excess rain N, that the water table, everywhere, rises 
above the equilibrium position by a height T = N / f 
( f being the porosity of the soil ) , except that right over 
the tile the height of the water table remains h 0 • Then 
the peak discharge, nv, can be expressed as 

np = D [ (me+ T ) 2 + 2h0 (me + T ) ] . [ 13] 

Eliminating me from eqs. [ 12] and [ 13], it is found that 

n" = ne + DT[T + 2 (h 2
0 + ne/D )½J. [14] 
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The maximum (extra ) height T to which the water 
table will rise on the average of once a year ( or with 
any other desired frequency) can now be determined 
with the aid of weather records. Given the maximum 
N to be expected for a cho en storm duration, with a 
frequency of once per year, the corresponding rise of 
the water table for this storm will be simply T = N/ f. 
This value of T , when substituted in eq . [14] along 
with the supposed ly known values of n. , h 0 and D , yields 
nil the peak discharge of drain per unit area of soil 
surface. 

The above analysis enables one to design a dra inage 
system not onl y on the basis of optimum average water 
table h eight, but a lso so that a given height (H 0 + T 
above the impermeable layer ) is not exceeded more 
often than specified. For areas where a gentle rain of 
long duration, with occasionally more intense showers, 
is a frequent occurrence, this approach to drainage de
sign appears valuable. Visser was primarily interested 
in the condition found in the Netherl ands, and his 
method, in application there, seems reasonable insofar 
as the assumptions underlying the eq uation and hence 
the equation itself are correct. Also in irrigated areas 
in arid regions, the m ethod possibly could be applied 
profitably. In regions such as Iowa, the m ethod does 
not appear feasible, as the rainfall pattern is too uneven. 
The m ethod might, however, be extended to rainy pe
riods with varying in tensity by considering these as a 
series of consecutive periods with constant intensity and 
by superposing the effect of each of these periods. Even 
then, there remains the problem of determining an equi
librium position as a starting point. 

Besides the assumptions underlying the ellipse equa
tion, Visser also assumed that the r ise of the water table 
would not vary with the distance from the drains- with 
the exception of those points immediately over the 
drains. This is in contradiction to the second Dupuit as
sumption ( that the velocity is proportional to the slope 
of the wa ter tab le) and as such invalidates the deriva
tion of the equa tion. If the important factor in the Vis
ser deriva tion is the increased head differential ( from 
Ho - he to H0 + T - h 0 ), then the equation may be a 
good approximation. The authors know of no experi
mental verification of the equation. 

/)Jj ¾Q 
;;>,> GROUND SURFACE ::J :»» 

THE HEAT FLOW EQUATIO 

The h eat flow equation, eq. [ 6], used by various in
vestigators to solve problems concerning a falling water 
table, will be disaussed here in connection with the work 
of F erris ( 15 ) and of Glover as reported by Dumm 
(12 ) . 

Glover's equations. Glover, who was primarily inter
ested in the dra inage of irrigated land, has proposed a 
formula for the spacing required of tile dra ins to main
tain the water table below a specified level. The major 
shortcoming of this formula is that it does not take 
into account the restricting effect of convergence of 
flow near the drains, even though, as will appear, 
Glover tacitly assumes that the drain tile is of zero 
radius. 

Since, in essence, on ly the theoretical results of Glov
er's work have been reported ( 12 ) , the derivations wi ll 
be given here. We are indebted to Glover for supplying 
some of the missing steps. 

Considering a system of equally spaced tile lines in 
a homogeneous oil overlying an impermeable bound
ary (fig. 3 ), the equa tion of continuity based on the 
Dupuit assumptions may be written (compare eq. [6] ) 
as 

oy _ KD o2y 
-------

ot f ox2 
[ 15] 

where x and y are the rectangu lar coordinates defined 
in fig. 3, t designates the variable time, K and f have 
the same m eaning as before and D represents an average 
thickness o f the aquifer. With the distance between the 
til e axes and the impermeable layer equal to cl and with 
the initial height of the water table above the drains 
equal to y0 , the clistanc D as defined by Glover is 

D = cl + Yo/2. 

To treat Das a constant as is done in eq. [ 15], y0 must 
be small compared to cl. 

A solution of eq. [ 15] depend on the initial and 
boundary conditions, which, as used by Glover, are (fig. 
3 ) : y = Yo fort = 0 and for O<x<S (an initially flat 
wa ter table ), and y = 0 for t >, 0 and for x = 0 and 
x = S ( the water table immediately over the drain tiles 
a lways remains at drain tile level ) . otice that these 

H 1-
;'"t::INITIAL WAT~»>«<«< 

lY. 2wATER TABLE 

_ALTI~ _! _ -=--~~-
S / 2 

d 

»»» ,, q ,, »»>> <<« J,m ,c,c 
Fig. 3. Geometry and symbols used in derivation of Glover's equations. 
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conditions do not account for the boundaries around 
the tile, nor does eq. [ 15], unless the tile is taken to be 
of zero radius. 

The solution of eq. [ 15 ], subject to the above condi
tions, can be found by conventional methods in terms 
of a sine series [ see, for example, ( 4 7,p. 262 ) ] . Consid
ering the point midway between drains and neglecting 
all terms but the first, this series, when evaluated for 
the value Ysr2 of y at x = S/ 2, reduce to6 

Ys/2 = (4yo/rr) exp (- KD1r2t/ fS 2
) . [ 16 ] 

The rea on for retaining only the first term of the se
ries is that, after a reasonable length of time has elapsed, 
the error introduced by using only the first term be
comes sma ll . In fact, when KDt = 0.025 S'f the error 
is on the order of 4 percent, which, in view of the ap
proximate nature of the continuity equation, i of no 
concern . 

If eq. [ 16] is solved for S, the spacing equation is 

[ 17 ] 

To determine the amount of error introduced by as
suming D to be constant when d is not large compared 
to y0 , Glover also developed an equation for the case 
where cl = 0. The appropriate continuity equa tion, 
again based on the Dupuit assumptions, is 

a oy oy 
-(K y-)= f-, 
ax ox ot 

[ 18] 

which is equiva lent to eq. [ 5] for one-dimensional flow. 
This time Glover, without specifying an initial con

dition for y except at x = S/ 2, assumed 

y = Yo at x = S/ 2 fort = 0, 

y = 0 at x = 0 a nd x = S for t >, 0 . 

[ 19a] 

[ 196 ) 

With these assumptions, the solution of eq. [ 18 ] gives 
a bowed water tab le a t t = 0 rather than the fl a t water 
table incorporated in the solution of eq. [ 15] . 

By means of the transformation 

U = y/yo, a = x / S,(3 = K yot/ fS2, 

the continuity equation, eq. [18], may be written as 

a au au 
-(U-)=- . 
oa oa 0(3 

Assuming a solution of the form U = V (/3 ) W (a ), one 
obtains by substitution 

(W' )2/ W + W" = V'/ V 2
, [20] 

where the primes indicate differentation with respect to 
the appropriate independent variable. 

The left hand member of eq. [20], since this m ember 
is not a function of (3, can be held constant when (3 in 
the r ight hand member varies; also, the right hand mem
ber of eq. [20], since this m ember is not a function of 
a, can be h eld constant when a varies. Therefore, the 
two sides must be equal to the same constant, say, - k. 

Writing, then, 
V'/ V 2 =- k 

and integrating, the solution for Vis 

GThe notation A exp B represents AeB where e is the base of natural 
logari thms. 

v-1 = kKyot/ fS 2 + C1, 

where c1 is a constan t of integration. 
The equation in W is 

(W' )'2 + WW" = - kW , 

which may be written as 

d dW 
-(W-) =- kW. 
da da 

[21 ] 

Dividing by W and replacing W 2 / 2 by y, one obtains 

d2y 
+ (2y)-½-- = - k . 

da2 

. . dy dp d 2y 
Defmmg p by p = -- , so that p -- = -.- , the 

da dy da-

above equation simplifies to 

p dp = + k (2y)½ dy, 

which can be integrated to 

p2 = C2 + 25/2 k y3 12;3 . 

Since p dy/ da, one finds the differential equation 

dy ----------- = da , 
+ (c2 + 25 f2ky3 12/ 3)½ 

which, in term of v\T, becomes 

WdW 
------= da . 
( c2- 2k W3 / 3) ½ 

[22] 

This rela tionship is equivalent to the one found by 
Glover ( 12, eq . [8]) except that the values of the con
stants c2 and kin eq. [22] and c1 in eq. [21) are given 
there without deriva tion. The values of these constants 
will now be derived. 

To satisfy eq. [19a), one must have U = V (0 ) W 
( 1/ 2) = 1, which may be accomplished by the arbitrary 
selection of W (l / 2) = 1, V (0) = 1. It then follows 
immediately from eq. [2 1] tha t c1 = 1. Furthermore, 
the slope of the wa ter tabl e at x = S/ 2 must be zero at 
a ll times; that is, 

dU/ da = (S/y0 )dy/ dx = 0 at a = ½. 
This relationship must also hold for t = 0, where 
U (a,0 ) = V (0 )W (a ) = W (a ), so that then dW/ da 

dU/ da = 0 at a = 1/ 2. R ewriting eq. [22] as 
w 

f 
0 

WdW 
------- = a(2k/ 3) ½ 

(3cz/2k - W 3
) ½ 

[23] 

and differentiating each side with respect to a, there 
results, for the midpoint where a = 1/ 2 (47, p . 247, eq. 

[7])' 
w 

f 
0 

+ 

[d: (c/:W')½] 

[(c/-: 3 )½ 

dWj 
da j 

dW 
a = 1/ 2 

(2k/ 3) ½/2 , 
a = 1/ 2 



where c/ = 3cs/2k. Carrying out the different iation in 
the first term, it is found that the integrand contains the 
factor dW / da and thus vanishes at a = 1/ 2, which i 
a l o true for the second term just as it stands. Thus, 
the denominators must also vanish for k in the righ t 
hand side to be different from zero. H ence, (c3

3 
- W3

) 

= O; that is, c3- W = 0 or c3 = W ( l / 2) = 1, from 
which it follows that 3c2 = 2k. Finally, eq. [ 23] may 
be evaluated for a = 1/ 2. For then the upper limit of 
the integral become unity, a nd , by the substitution /J- = 
W3, one obtains for the left hand side of eq. [ 23] 

I I /J,2 /3 -1 ( l -0)½-l d0 = ½ B (1/3,½) ' 

0 

where B is the beta function. I t may be evaluated, by 
uti lizing gamma funct ions, as 

1 2 1 
- B(-,-) 
3 3 2 

2 1 
r (3 ) r (2) 

= 0.862 .. . 
7 

3 r (-6 ) 

Considering the approximate nature of th e assumptions 
underlying the derivation, Glover took the number 0. 862 
... to be equal to ( 1 / 2) (3) i / 2

• T he latter value, when 
substitu tee! in the left hand side of eq. [ 23] ( with a = 
1/ 2 in the right hand side) , resu lts in k = 9/ 2 and, 
since 3c" = 2k, one ha c, = 3. 

The eq uat ion for the height of the water tab le at the 

(/) 
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0.60 

020 
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midpoint, where W = W ( l / 2) = 1, may now be found 
from eq. [21] . O ne finds, since now V = U = Ys/2/Yo, 
the resul t 

Solving for S, the spacing is 

which is G lover's res ult. 

Comparing eqs. [ 17] and [ 24] , Dumm repor ted that 
the difference in spacings calcula ted from these, for 
equa l values of the parameters ( cl being zero for both 
cases ), was always less than 10 percent. F rom this he 
concluded that the use of eq. [ 17 ] was justified, inde
penden tly of the rela tive depth to the impermeable layer. 
This concl usion presen tly will be shown to be erroneous. 

The major difficulty with Glover's analysis is tha t it 
is based on the assumption of horizontal flow. Aside 
from the general objections to this assumption, which 
were discussed earlier, there is the problem that eq . [ 17 ] 
was originally developed for til e drains with the restric
tion tha t d be large compa red to y0 • H ooghoudt has 
shown (see p . 680 ), however, that the effect of 
convergence of fl ow toward til e drains becomes marked 
at relatively Low values of d/ S. Inspection of his table 
5 (27, pp. 656-694) shows that this effect must be taken 
in to account when cl / S reaches a value around 0.05 or 
0.10, depending on the permeability and other factors. 
H ence the assumption of horizontal flow ca nnot be ex
pected to yield reliable results unless cl << S. But with 
d <<S, the continuity equation (eq . [1 5]) still requires 
that d > > y0, a condition which normally wi ll not be met 
simultaneously with the condition cl << S in the fi eld . 
T herefore, eq . [ 17] should not be expected to a pply to 
field condi tions. H owever, to offset this observation 

5 6 7 8 9 10 

Fig. 4. Change in ra tio of spacjngs as calculated from first and seco nd of Glover's equations for different depths of water table. 
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there is Durum's claim that eqs. [ 17 ] and [ 24] are 
in agreement to within 10 percent for practical condi
tions. But our find ings are not in agreement with this 
claim as the following calculation shows. 

L et S1 be the spacing given by eq. [ 17 ] and S2 that 
given by eq. [ 24]. Then, solving eqs. [ 17] and [ 24] for 
tK/ f, eliminating tK/ f and solving for Sz/S1, one ob
tains eq. [25] if it is assumed that y0 = 1 + Ys/ 2 and 
D = Yo/ 2. 

Sz!S1 = (9Ys12/1r2) ln [ (4 +4ys; 2) / 1rys;2 ]½. [25 ] 

In other words, eq. [25] represents the relative magni
tude of S2 compared to S1 for a drop in the water table 
of 1 foot when the drains are placed on an impermeable 
layer. A p lot of this equation (fig. 4 ) shows that the 
ratio Sz/S1 varies from zero to infinity, with a percentage 
difference on the order of 20 to 70 percent- not 10 p er
cent- for those conditions of greatest practical impor
tance. 

In view of the above considerations, eq. [ 17] cannot 
be justified when d is large, because of the convergence 
effect, or when d is small, because then the heat flow 
equation, eq. [ 15 ], does not hold. 

Some further comments are in order regarding Glov
er's first and second solutions, eqs. [ 17] and [ 24]. The 
flat water table, assumed as the initia l condition applica
ble to eq. [15] , is unrealistic. Unless the dra ins were 
plugged during irrigation, such a condition seldom 
would develop. This assumption was used only to evalu
a te the constants in the sine series. These may be evalu
ated as well, however, ( see eq . [ 19a]) if the initial con
dition is restricted to a consideration of the height of the 
water table over and midway between drains, leaving 
the initial water table shape unspecified. If the equa
tion is applied to land initially flooded to the surface, 
the flat wa ter table assumption cou ld be used. 

T he assumption that no water stands over the drains 
at any time is not quite correct either, unless a highly 
permeable backfill is assumed. Then a surface of seep
age would have to be taken into account. 

A comparison ( fig. 5 ) of eqs. [ 17 ] and [ 24] can be 
made with some of the solutions worked out by Kirkham 
and Gaskell ( 40 ) . Considering open ditches 5 feet deep 
which penetrate to an impermeable layer, the values of 
tK/ f have been calcu lated from eq. [ 17 ] as well as from 
eq. [ 24] for a water table drop of 1 foot and spacings 
varying from zero to 80 feet, and the results have been 
plotted together with the curve determined by K irkham 
and Gaskell for the same conditions. The first Glover 
equation gives higher values of tK_/f, and the second 
lower values than found by Kirkham and Gaskell. 

The comparison in fig. 5 tends to put the Glover 
equations in favorable light in that open ditch condi
tiions have been substituted for tile drainage condi
tions, for which Glover's formu las were developed. Thus, 
the convergence effect neglected by Glover has largely 
been eliminated . Since this convergence would cause 
more resistance to flow in the tile case than in the ditch 
case, the drop of the water table over ti le drains would 
be slower and the time factor larger; that is, the m iddle 
curve in fig. 5 would be higher. H ence, the first Glover 
equation, eq. [ 17 ] , would be expected to yield better 
results for tile drains located on an impervious layer than 
is indicated in fig. 5 for open ditches, if the Kirkham 
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Fig. 5. Comparison of Glover's equations with the results of th e re laxation 
solu tion of K irkham and Gaskell. 

and Gaskell solutions are assumed to be correct . On the 
other hand, the error in eq. [ 24] ( the second Glover 
equa tiion ) would become greater than is indicated in 
fig. 5. 

Especiall y as long as no better analytical solu tion is 
available, it appears from a ll the above that Glover's 
equation may be used advantageously to approxima te 
the actual problem. Caution must be used, however, not 
to rely upon the results too heavily. 7 One should note, 
however, that it is eq. [ 24] and not eq. [ 17 ] which was 
developed for the case cl = 0 here under consideration. 

Ferris' analysis. Another solution based on the h eat 
flow equation was pre ented by Ferris ( 15) . H e con
sidered a homogeneous, isotropic aquifer of infinite areal 
extent, of constant thickness b, bounded above a nd be
low by impermeable strata and with a ditch drain of 
infinitesimal width penetrating to or below the lower 
aquiclude. H e assumed the Dupuit assumptions to be 
valid. H e also assumed the drainable pore space f and 
the coefficien t of transmissibility, which he took equal 
to the product Kb, to be constants. 

Aside from the weakness of the Dupuit assumptions 
and the fact that the ooefficient of transmissibility ( see 
fig. 6 ) is K (b - y) and hence not constant, a point to 
be discussed later, Ferris equated one of the variables, 

7Si nce the completion o f this study, K emper (30) has developed 3 n 
empirical con-cction factor for the C lover equallons based on elec tri c 
analogue studies. According to Kemper, this correctio n has resul ted in 
better agre ement between fi eld data and theo1-y. 

IMPERMEABLE STRATUM 

Fig. 6 . Geometry an d symbols used in discussion of Ferris's equatio n. 
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V, to a constant first and then considered it as a vari
able, thus invalidating his fina l result. 

Although Ferris' analysis i fau lty, h e is to be credited 
with an ingenious effort to find a solution to a compli
cated problem. The slips which invalidated his final re
sult are of such a nature that they can be easily over
looked. In fact, it is the subtlety of argument required 
to show the invalidity of his solution which justifies the 
inclusion of its discussion in this bulletin. 

With coordina tes as shown m fig. 6, Ferris gave the 
continuity equation as 

f ay 
ox2 Kb at 

H e applied the initia l condition y = 0 for a ll x and the 
boundary condition y = 0 at x = oo for any t. These 
resu lted in a solut~on of the fo rm 

y = ct-½ exp (-fx2/4Kbt ) . [26] 

To evaluate c, he reasoned that the total volume of 
water yielded by the aquifer m ust equal the quan
tity V to be removed by the drain ; that is, in terms of an 
equation, 

co 
V / 2 = ) fydx. 

0 

[27] 

Substituting eq. [ 26 ] in to this express ion and integrat
ing, holding t constant, yields 

c = V / 2 (1rfKb )½, 

showing that V is independent of t ( and of x ) and, 
hence, a constant. Thus, Ferris wrote 

y = [V/2 (1r£Kbt )½] exp (-fx2/4Kbt). [28] 

Assuming a constant discharge rate Q = V / t, F erris 
reasoned that eq. [ 28 ] should also apply for an infini
tesimal d rop 6 y corresponding to a discharge Q 6 t. 
T h is enabled Ferris to write eq. [28] as 

y = [Q/ 2 (1rfKb )½] ) ~ t-½ [exp (-x2f/4Kbt) ]dt. 

Using the substitution 

u = x(f/ 4Kbt )½, [29] 

th is equation can be partially integrated by parts to 

y = (Qx/ 2Kb ) [1r-½u-' exp (-u 2
) - 1 

+ 21r-½ ) ~ exp (-u 2
) . du ] . 

Designating the quantity in brackets by the "drain func
tion u," D (u ), this eq uation may be written 

y = (Qx/ 2Kb )D (u ). [30] 

Since D (u ) can be plotted against u with the help 
of tables of the normal distribu tion, eqs. [ 29 ] and [30] 
give a relationship between the variables of the problem. 

For a known Q , b and x, if y has been m easured for 
several values of t, these equations permit the determin
a tion of the constants f and Kb, according to F erris. 

Even if the Dupuit assumptions are accepted as cor
rect, the above analysis is fa ll acious. To evaluate c in 
eq. [26], Ferris integrated eq. [27] at constant t, thus 
finding c and V independent of t. However, physically 
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V cannot be independent of t, because the volume of 
water to be removed by the ditch will depend on the 
time t that the ditch has a lready been removing water. 

If one assumes • that a quasi-steady state has been 
reached so that the water table drawdown y will be 
given by eq. [26] with c the constant given below eq. 
[27] and hence V a constant, then the analysi still will 
be in error. I t will be in error because it will then be in
correct to take Q = V / t = a constant ( as was clone 
below eq. [28], for now Q could only be a constant 
if V varied directly as t. Thus c below eq. [27] would 
have to be directly proportiona l to t rather than being 
constant, and eq. [ 26] accordingly would not be a solu
tion of the equation of continuity. This can be verified 
by differentiating [26] with c being replaced by At, 
where A is a constant. That Q is not nearly constant 
wa shown by Ferris when he reported that, in compar
ing fi eld data with the equations, a period of 2 hours 
elapsed before the flux "approached the constancy as
sumed for the derivation of the drain function" ( 15, 
p. 289 ) . 

Furthermore, eqs. [29] and [30] give two relation
ships between three unknown - that is, between u, Kb 
and £- which would a llow an infinite number of solu
tions. I t appears that Ferris used the additional relation
ship that y as a funct ion of x 2 / t be identical in form to 
D (u ) a a function of u 2

• This, however, is not neces
sarily true. 

Finally, there remains the question of constancy of 
the p roduct Kb. An assumption to that effect is ju tified 
only if the total depth of the aquifer is large compared 
to the amount of drawclown as was supposed below eq. 
[ 5] in deriving the heat flow equation. Ferris' problem, 
however, is theoretically restricted to ditches penetrating 
to the underlying aq uiclude. When he applied his anal
ysis to a field ditch of shallow depth in a 50-foot-deep 
aquifer, he warned that " ... the greatest departure of 
the field conditions from the initial assumptions is the 
limited penetration of the drain into the aquifer" ( 15, 
p. 289 ). I t was this condition that caused the rate of 
change of Q to become so sma ll that he called it con
stant-even though his example showed a drop from 22 
to 12 gal. / min. in about 18 hours. 

THE ASS UMPTION OF RADIAL FLOW 

ince a tile line can be thought of as a horizontal well, 
there is an analogy between the radial flow into a well 
and the flow into a tile drain. This analogy has led to 
some solutions of drainage flow problems which a re poor 
approximations, some solutions which are good approxi
mations and some which are exact. Examples of each 
of these types will be discussed. 

THE A ' ALYSES OF SP0TTLE AND WALKER 

As early as 1911, Spi.ittle (51, p. 104) proposed an 
equation for the shape of the water table over drains 
based on the following reasoning. A tile line placed in 
a homogeneous soil initially with a flat water table at 
a depth cl above the center of the tile (fig. 7) will cause 
a particle of water at A to drop with a constant velocity 
v; it will arrive at A' after a length of time t. The dis
tance traveled will equal 
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Fig. 7. Symbols used in discuss ion of SpOttle's analysis. 

AA' = vt . 

A particle initially at B will move towards the drain 
along a rad ius from B towards the drain, but with a 
velocity equal to v sin a where a is the angle the path 
of flow makes with the horizontal. The drop in water 
table in time t wou ld be vt sin2a, so that the height of 
the water tab le above the drain at time t could be ex
pressed as 

y = d - vt sin2a, 

or, writing sir1 a in terms of x and y, i.e., sm a = 
y/(x2 + y2 )½, one has 

v1 tcos 

le tJ 

--r 
X 

2tY2 b. 

s 

x2 (d - y) = y2 (y - cl + vt ) , 
wh ich is Spottle's result. 

The first objection that must be raised is, of course, 
that the veLocity is "not constant a long the path from 
water surface to drain. On the contrary, it will increase 
rapidly when the drain is approached. The assumption 
that the streamlines will be radial a lso must be rej ected, 
for the medium is not of infinite extent. 

Walker ( 59 ) recently proposed a method of analysis 
similar to that of Spottle. H e considered parallel drains 
( fig. 8a ), either open ditch or tile, in an isotropic soil, 
a distance S apart. The analysis was not restricted to 
homogeneous media but a lso was applied to stratified 
soil with each layer homogeneous and isotropic within 
itself. In the case of stratified soil, it was assumed that 
the hydraulic conductivity of the tightest layer would 
govern the flow. It was also assumed that the paths of 
fLow would be along radii originating from the drains . 

The most important objection to Walker's analysis 
is his assumption that the velocity, everywhere in the 
soil, equals the hydrau lic conductivity. This implies a 
unit hydraulic gradient everywhere. Actually th is cond i
tion can occur only if the draining water is fa ll ing verti
call y under the action of gravity alone, as for ponded 
water of essentially zero thickness, draining vertically 
into a horizontal bed of gravel kept at a tmospheric pres
sure. ( In this example, ponded water is specified; other
wise capillarity would resu lt in a hydraulic gradien t of 
less than unity. A zero thickness of the ponded water 
is further specified ; otherwise, the hydraulic gradient 
would be greater than unity. ) 

As illustrated in fig. 8a, the velocity of the water mov
ing from an arbitrary point (x1, Y1 ) on the water table 

y 
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Fig. 8. Illustration of W alker's deriva tion. (a) Genera l symbols. (b) D etail of Walker's assumptio ns. (c) Corrected detail. 
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towards drain 1 in \11hlker's analysis was taken a ap
proximately constant over a short period such as 1 day, 
and the velocity was taken a directed towards drain 1. 
Thus, the distance traveled by a particle of water origin
a lly at (x1,Y1 ) after a time t would be the product of 
the velocity v1 and the time t. If 0 1 is the angle between 
the vertical and the assumed line of flow, the water 
table recession 6 y1 clue to flow towards drain 1 in time 
t would equal v1t cos 0 1. Likewise, the recession due to 
flow towards drain 2 would be written 

6 y2 = V2t COS 82, 

and the total water table recession 

!::,. y = 6 y1 + !::,. y~ = V1t COS 81 + V2t COS 0 2 . (31] 

Figure 86 show the vectorial treatment as presented by 
Walker. 

Next Walker expressed the velocities in terms of the 
lowest hydraulic conductivity, K, of the hydrau lic con
ductivities Ka, K b, K c, ... of the various layers through 
which the water must pas , and the aeration porosity, 
f, of the layer in which the phreatic surface occurs. His 
expression- in which he tacitly assumes that the hy
draulic gradient is unity- wa 

V1 = v, = K / f . 

Substitution of this expression in eq. (31] yields 

6 y = (Kt/ f ) (cos 0 1 + cos 0 2) . (32] 

If the point midway between the drains is considered, 
81 = 02 = 8 and eq. (32] reduce to 

6 y = (2Kt/ f) cos 8. (33] 

Suppose that the optimum rate of drawdown for crop 
growth were known and substituted into eq. [ 33] for 
6 y / t, then the angle 8 would be known and the re
quired spacing cou ld be calculated from Walker's spac
ing equation, 

S = 2 y tan 8. (34] 

where y is the average height of the water table above 
the drains at the midpoint during the time period t 
considered. 

As pointed out in connection with Spi:ittle's problem, 
the streamlines for the problem under consideration can
not be radial. Even if this approximation were accepted, 
however, a number of objections to ,valker's analy is 
remain. First of all, fig. 86 indicates that the distance 
traveled from point (x1,y1 ) to point (x2,y2 ) in time t 
is made up of the sum of the two vector distances v1t 
and v2 t cos 8 rather than the distance made up of the 
resultant of v1t and v2t. Furthermore, not the distance 
traveled toward each drain, but the potential differences 
or velocity components caused by each drain shou ld be 
considered as add itive vectors. 

R easoning correctly from the assumption of radial 
flow, one might consider a potential cJ>1 clue to drain 1 
and a <I>2 clue to 2, with corresponding velocity com
ponents v1 and v2. The resulting velocity vector vR ( see 
fig. Sc ), multiplied by a time factor t, would properly 
represent the distance traveled; the corresponding water 
table recession would be 
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6 y = VRt COS 8R , 

or, in component notation, 

!::,. ~ = V,t COS 01 + V2t COS 0 2, [34a ] 

which is the same as eq. [31]; and the result thus far is 
the same as Walker's. 

Using Darcy's law, the velocities may be expressed as 

V1 = -(K / f ) o<I>,!os , V z = -( K/ f ) ocJ>dos, 

where s is the direction of flow. Considering the point 
midway between drains and assuming<each drain to be at 
the same potential, eq. [ 34a] can be rewritten as 

6 y = - 2 (K / f ) t cos 8 o<I>/os, 

since then 0 1 = 0 2 = 0 and ocJ> ifos = o<I> ifos = ocJ>/os. 

The last expression for 6.y differs from Walker's (see 
eq. [33 ]) by the factor -ocJ> /os. The discrepancy is 
clue to Walker 's assumption that 

V 1 = v2 = K / f 

which implie a unit hydraulic gradient. Since no simple 
expression for the hydraulic gradient at the water table 
midway between drains can be given, one can do no 
more than replace eq. [ 33] with the inequality 

6.y < (2Kt/ f ) cos 8. 

This expression is of no use in design because the in
equality is too wide. 

Finally, there remains Walker's statement that the 
permeability of the tighte t layer governs the rate of 
drainage. Except in the extreme and practically useless 
case where there is a layer of zero permeability above 
the tile, this would not be the case. Kirkham, for ex
ample, (38, fig. 11 ) has shown that the flow depends 
not only on the permeabi lity of a layer but also on its 
thickness. For 6-inch tile drains placed 4 feet deep and 
100 feet apart in stratified soil with the upper layer 100 
times as permeable as the lower, h e found that the dis
charge is 1.6 times as large when the upper layer is 3 
feet deep as when it i 1 foot deep. This figure of 1.6 
applies to the flooded condition only. 

Whereas it has been shown that Walker's derivation 
is far from an exact solution, it is possible that the ef
fects of some of the assumptions and approximations 
tend to cancel each other. This might explain the rela
tively good agreement he found between fi eld data and 
analysis. The value of K used by Walker, for exam ple, 
were determined by the core sample method and thu 
may tend to be considerably lower than the actual hy
draulic conductivity of undisturbed soil in situ . This 
would at least partly offset the error introduced by as
suming a unit hydraulic gradient. 

HOOGHO UDT'S RADIAL FLOW SOLUTIONS 

To supplement the ellipse equation, Hooghoudt pro
posed the use of a radial flow pattern for soils homo
geneous to great depths and the use of a combination 
of the radial and horizontal flow assumptions for inter
mediate cases (27 ) . 

For a vertical well in a homogeneous medium, the 
equipotentials have the form of concentric circles. If cJ> 
designates the potential, then the hydraulic gradient at 
any point along a radius r toward the well is clcJ>/ dr. 



Thus, the flow q per unit of arc length of such a n equi
potential circle and per un it length of well is, by Da rcy's 
law, 

q = - K d <I>/ dr , 

and the total flow per unit length of well ( taken posi
tive when fl owing towards the well ) is 

which yields, after integra tion, 

as a general expression for the poten tia l, a constant of 
integration having been omitted. 

If, con idering fl ow in a plane, two radii ema nating 
from the wel l center and separated by an angle ,r were 
made impervio us, then the flow through both halves 
of the circu lar region wo uld be unchanged and hence 
would be equal. If the flow region on one side of the 
two radii (which form a straight line) were removed, 
the total flow into the well would be just ha lf of the 
original flow and the potential di stribution would be 
given by 

[35 ] 

If a til e drain were installed with its upper ha lf in an 
impermeable layer and with its lower half in a soil of 
consta nt permeabili ty and infinite depth, the potential 
distribution due to artesian pressure generated at great 
dep th would be described by eq . [35 ] . For two such tile 
lines installed pa rall el to each other, the potentia l at a 
point could be expressed as 

<I>= (Q / ,rK ) (ln r1 + In r2) 

where r1 a nd r2 are the distances of th is point from the 
two drains. Q designates here, as a ll through this dis
cussion, the flux per unit length of drain. For an in
finite number of equall y spaced drains, eq. [ 35 ] would 
take the form 

<.I? = (Q / rrK ) ~ In t'n. 
11 = / 

If the a rtesian pressure is not too great, th e shape of 
the water tabl e, when the upper impermeable m edium 
is replaced by homogeneous soil , will approach a plane 
through the drain axes. The foregoing analysis then still 
would apply, even though only approximately. If one 
point, designated as A, is taken on a drain circumference 
and another, B, midway between adjacent drains and 
on the plane through their axes, then the approximate 
potentia l difference between B and A may be written as 

l'-, <I> = <I>B - il>A = (Q / ,rK) (~ In rBn - ~ In rAn) , 
n n 

n = 0, 1, - 1, 2, - 2, ... [36] 

H ere rAn represents the distance from the cen ter of the 
nth drain to point A and rBn the distance to point B. 
Except for the term r,,0 , wh ere O refers to the drain on 
which point A is located, the dra ins may be considered 
as line sinks with negligible radius. Carrying out the 
indicated summing in eq. [ 36 ], one finds, upon cl ef in-

mg S as the drain spacing, r0 as the drain radius and 
A by 

A = (2. 30/ ,r) (-0.197 + log10 S/ 2ra), 

the resul t 
L <I> = (Q/ K )A. [36a] 

T ables of A for values of r0 from 0.03 to 0.45 meters 
are avail able (27, p . 652- where Pis ii>, sl is Q , 1 is Sand 
s is rainfall rate ) . 

Whereas eq. [36 ] has been derived here for the case 
of a rtesian pressure, Hooghoud t has shown- a very 
surprising result- that it a lso applies to the case of 
steady ra infall. If a series of M point sources are ima
gined on the plane through th e drain axes between each 
two d rains, spaced so that the distance between adja
cen t sources is S/ M, and if each of these sources has a 
strength Q/ M, then the potential difference equation 
must be written as 

L <I> = (Q / ,rK ) (L In rBn - L In rAn) 
n n 

M 

+ L (Q / M ,rK ) (L ln rAmn - ~ ln rB mn ) [37] 
m= l n n 

The distance rAmn represents the distance from point 
A to the mth source to the right of the nth drain. 

The second term may be written as a series of 2M 
sums which cancel in pairs8, leaving as final result again 
eq. [36] . If M approaches infinity, th e effect of the 
sources is equivalent to that of a uniform rate of rain
fa ll. Thus Hooghoudt has shown that, if the drop in 
potentia l from the water table to the plane through the 
dra in axes can be neglected, the potential difference 6 <I> 
in the case of constant ra infall on a homogeneous soil 
is given by eq. [ 36] . When the rainfall ra te is small 
compa red to K , so that the rise of the water table mid
way between til es is small compa red to the spacing, the 
percentage of head dissipated above the plane through 
the drains is small. In such a case one would expect the 
equation to give a good approx imation for th e true 
physical condition. 

The a bove ana ly is is restricted to a soil homogeneous 
to infinite depth. If an impermeable layer occurs at a 
relatively great finite depth cl below the drain axes, the 
analysis can be modified by considering a series of image 
drains at a distance d below the impermeable layer 
(fig. 9 ) . The po tentia l difference between A and B as 
given by eq. [36] must then be corrected for the effects 
of the image drains 0', 1', -1 ' , 2' , -2' , .. . , resulting in 

L <I> = (Q /rrK ) (L In fBn - L In rAn 
n n 

+ L In rB n, - ~ In rAn,) . [38] 
11 n 

Since here the fi rst two sums are the same as those 
in eq. [36], one may, upon writing the second two sums 
as an infinite product, etc. , obtain the result, equival ent 
to Hooghoud t's eq. [67] (27, p . 574), 

6Thc proof o f this statement is given in Append ix A. 
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Fig. 9. Hooghoudt's arrangement of images for tile drains above an impermeab le layer with exam ples of notation . 

,0, <[, = 2.30 (Q / ,rK ) {- 0.197 + log10 S/ 2r0 

1 
+- 2: 

2 nd 

[ (2n - 1) 2S2/ 4 + 4d2]' 
log10 -------------- } . 

(n 2S2 + 4d2)[ (n- 1)2 S2 + 4d2
] 

[38a] 

Both eqs. [36] and [38] (and hence [36a] and 
[ 38a] ) are only approximate in that they are based 
on the assumption of a flat water table. Aside from the 
additional head loss that occurs, eq. [35] implies that 
the flux across each equipotential is the same. How
ever, with the curved water table ( wh ich is not an 
equipotential ) this is not the case: T he flux through 
the equipotentials farther from the drains is less than 
that through those nearer the drains. In the case of a 
considerable difference m in height of the water table 
between points over the drains and midway between 
them ( the distance m is not related to the subscript m 
in eq. [37] ), Hooghoudt (27, p. 562 ) has suggested that 
eqs. [37] and [38] may be improved by adding the term 
Qm/ KS to the right sides of the equations. This term 
may be derived by assuming strictly vertical flow 
through the region above the drain axes. If the height 
of the water table above the drains at the midpoint is 
m1 and at the drains m 2, then the flow Q / S per unit 
area, which moves downward from the wa ter table to 
the level of the drains may be expressed for the mid
point between drains as 

Q / S = K 6 <Di/m1 

and for a point over the drains as 

Q / S = K L:i <Dd mz. 

The head difference due to flow in the region above a 
plane through the drains is ( assuming strictly vertical 
flow in this region above the drains) oonsequently 

6 <D1 - 6 <D2 = Qm/ KS . 

Moreover, eq. [38] must be restricted to cases where 
d is equal to or greater than about S/ 4 [ compare 
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( 45, p. 526)] . When the impermeable layer approache 
the drain, the assumption of radial flow gives a poor 
app roximation. For those cases where the impermeable 
layer is very near the drain, the assumption of horizontal 
flow may be used (see eq. [ 11 ]) . In intermediate cases, 
the two types of flow can be combined by assuming 
that ( fig. 10) the flow in the region x < x1 is radial 
and in the region x > x 1 horizontal in nature. The 
plane x = x1 must be chosen so that the potential dif
ference between poin ts a and b of fig. 10, as calculated 
from eq. [38], is a minimum. That wi ll cause the (ver
tical ) p lane x = x1 to be nearly an equipotential plane, 
as it shou ld be for the horizontal flow analysis to apply. 
H ooghoudt (27, p. 576) has shown that this requires 
that x1 = 0. 707 d. 

The potential difference 6 <P between A and B in 
fig. 10 can be obtained by app lying eq. [38] to the dif
ference Li <Di' from A to b, and eq. [9] to the difference 
Li<D/ from b to B. There results (27, pp. 576-578, es
pecially eq. [ 78 ]) 

,0, <P = Li <Di' + 6 <P2' ' 

where (27, eq. [69 ]) 

[39] 

2.3OQ ~ O.7O7d (nS ) 
2
-d

2
/ 2 

~og10 + f log10 
" K _ r o ,1=1 ( nS ) 2 

1 CD (n +O.7O7d ) 2 +4d 2 

+ -- 2 log,o 
2 n = O (nS ) 2 +4d2 

1 
+ 2 

(nS- 0. 7O7d ) 2 + 4d2 l 
log10 

2 Jl =] (nS ) 2 +4d2 
_ 

[40] 

and (27, eq. [77]) 

6 <D' 2 = (Q/ K) (S - l.414d ) 2/ 8dS. [41] 

Defining the right hand sides of eqs. [ 40] and [ 41 ], 
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Fig. 10. Combination of radial and horizonta l fl ow. 

except for the coefficient Q / K , as B and C, respectively, 
eq. [39) becomes 

L:, <I> = (Q / K ) (B + C ) . [ 41a) 

Tables of B, C and of B + C for a drai n radius r0 of 
0.03 meters are available (27, pp. 653-655 ) . 

In addition to tables for B, C and B + C, H oog
houclt has prepared an extensive table of values of de, 
where cl. refers to the thickness of an "equivalent lay
er." I t is defined as a permeable layer overlying a ficti
tious imperm eable layer of such thickness that, if the 
spacing is computed from eq. [ 11 ] with ho replaced by 
d 0 , the sam e answer will be obtained as when the ap
propriate formula, whether eq. [ 11 ], [ 36a], [ 38a] 
or [ 4 l a ], is applied. 9 The tables for cl. may a lso be 
used as an a id in computing the hydraulic conductivity 
K. 

Use of this table of values of de introduces an error 
of less than 10 percent in spacing calculations and of 
less than 20 percent in hydraulic conductivity cal
cula tion , according to Hooghoudt, except in some ex
treme cases that are unlikely to occur in practice. 

H ooghoudt's analysis of the dra inage problem con
stituted one of the first comprehensive treatments of the 
subject to be found in the literature. Although none of 
his solutions is exact, his approximations a re clever, and 
most of them cannot be criticized fairly. Comparison 
with V a n D eemter's exact solu tion for a homogeneous 
soil shows that H ooghoudt's equations for that case re
sult in very nearly the same answers. The assumption of 
horizontal flow has a lready been discussed in detail. 
H ooghoud t restricted its use, however, to those cases 
where the assumption is most reasonable. Since the 
heigh t of the water table a t the midpoint between drain 
is considered rather than the shape of the water table, 
good results can be expected . His results apply only 
insofar as steady state rainfall or its equivalent m ay be 
assumed. 

E XACT SOLUTIONS WITH TH E METHOD OF IMAGES 

The single series of image drains used by Hooghoudt 
in deriving eq. [38 ) was insufficient to m ake the solu
tion exact. The exact flow pattern for an actua ll y fla t 
water table over an imperm eable layer could have been 
obtained by an infinite number of reflections so that 
image drains, for fig. 10 (but not shown there), would 

9The use of this table is iilustrated in Appendix B. Visser (57 ) has 
p1·esentcd a nomo~raµhic solution to replace the table , based on a series 
of relaxation so lu tions. 

be placed a long the p lanes y = 2nd, n = + 1, 2, 3, 
.. . . Considering the neglect of the effect of the curv
ature of the water table, the accuracy obtained by the 
single row of images certainly was sufficient. It is this 
added approximatiott, however, which causes the failure 
of H ooghoudt's m ethod wh en the drain oomes near the 
impermeable layer. 

Avoiding the uncertainties of the curved water table, 
Kirkham and Gustafsson, as noted in the R eview of 
Literature, solved a number of specific problems in
volving land flooded to the surface with the m ethod of 
images. The potentia l in their problems, as in H oog
houclt's, can be found by adding the potentials of each 
of the real and image drains, using the basic expression 

<I> = (Q / 21rK ) In r. [42) 

Kirkham found in each case the potential difference 
between an arbitrary point and a point on the drain 
circumference. H e worked with the complex potential 
n = i[> + i ~ with the oorresponding basic equation, 
in terms of the complex variable z = x + iy, 

[43) 

That eq. [ 42 ) is the real part of this las t expression can 
be shown by writing z as rei6 and separating the real and 
imaginary parts : 

D <I> + i~ = (Q / 21rK ) In rei6 

(Q / 2r.K ) (In r + ie ) . 

Gustafsson a lso used complex potentials and fou nd 
genera l solutions for several problems, but he started 
with the potentia l distribution for a line source and 
sink as m ay be found elsewhere (e.g., 47, p. 406 ) . Using 
this expression as a basis, he developed the required 
rela tionships by summation procedures simila r to Kirk
ham's. 

Wh ereas Kirkham's solutions a re given in relatively 
simple form, Gustafsson's a re expressed in terms of el
liptic functions, which restricts their practical value. 

THE Hoooo RAP H ANALYS IS 

In the following discussion, the potential <I>, defined 
as 

<I> = p/ pg + y' [44] 

where p designates the pressu re of the fluid, p its density 
and y the height above an arbitrary reference level, will 
be replaced by 

<f, = K<I>. [44a) 

Thus, physically, <I> is the height, referred to the level 
y = 0, to which water would tand in a piezometer, the 
lower end of which is at the point (x, y) in the flow 
m edium. Furthermore, the discussion will be restricted 
to steady state flow in a two-dimensional region desig
nated as the z-plane where z = x + iy, y being vertic
ally upward and x horizontally to the right. It is as
sumed that the reader has a knowledge of functions of 
a complex variable and, in particular, of the so-called 
analytic funct ions. 

Taking the fluid to be incompressible, the oontinuity 
equation may be written 

ovJax + OVy/ oy = 0 
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where Vx and Vy are the velocity components m the 
x- and y-directions. Then, since by Da rcy's law 

Vx = - Ocp/ox, Vy = - Ocp j oy, 
one must have 

[45] 

Defining a stream funct ion, of;, as the conjugate of cp 
by the Cauchy-Riemann relations 

0¢/ox = o,f;/oy, ocp/oy = - o,f;/ox , 
it is apparent that of; also will satisfy Laplace's eq uation 
and that the complex function w defined by 

w = <p + if 

is analytic. This funct ion w will be designated as the 
complex potentia l. 

It can easily be shown that the fami ly of curves 

ef, = constant 

forms the orthogonal trajectories of the fami ly of curves 

of; = constant . 

The first of these will be designated as equipotentia ls, 
the second as stream I ines. 

THE THEORY 

The solution of steady state poten tial flow problems 
is accomplished by finding a solution of differential 
equations which satisfies certain boundary conditions. 
From the theory of analytic funct ions, it is known tha t 
any one set of boundary conditions will yield a unique 
solu tion. 

The differential equations that must be solved a re 

'v 2¢ = 0 and V 2 ,f1 = 0 . 

The boundary conditions vary with the problem, bu t, in 
general, four types may be considered : 

(a ) Along a st reamline and th erefore also a long an 
impermeable boundary, 

of; = constant and oef,/on = 0 , [46 ] 

where n is the direction perpendicu lar to that of the 
stream line. 

(b ) Along an equipotential, such as the wetted peri
meter of a ditch, 

ef, = Kh and of / on = 0 , 

where h represents the height of the water above the 
reference plane in a piezometer terminating at the point 
in qu estion and where n is now the direction orthogonal 
to that of the equipotentia l. 

( c ) Along a surface of seepage, such as along that 
portion of a ditch wall between the water level in the 
ditch and the water table, one has p = 0 and, conse
quentl y, by eqs. [44] and [44a], 

¢=Ky. [47] 

Notice that, in view of eq. [45 ] , th e vertical component 
of the veLocity of seepage along a vertica l surface of 
seepage is - K. 

(cl ) A lon er the water ta ble, defined as the locus of 
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points within the saturated region at a tmospheric pres
sure, one a lso has 

ef, = K y. 

But here, unlike the situation for eq. [ 4 7], 

[48 ] 

ocp 
does 

oy 
not equal K because p of eq. [ 44 ] does not stay con
stant as y varies at constant x. Aside from th e condition 
expressed by eq . [ 48], there is, at the water tab le, one 
of two conditions imposed on the stream function. If 
there is no infiltration to the water tab le, the condition 
lS 

V' = constant ; 

that is, the wa ter table is a streamline. If water is added 
or removed along the water ta ble at a constant ra te N 
( cubic inches per square inch per hour, say ) , the condi
tion is 

of; = Nx + constant. [49 ] 

In eq . [ 49 ] the water table is not now a streamline but 
a surface along which streamlines begin or terminate. 

The problem now may be restated as follows: The 
complex potentia l w must be found as a function of z. If 
that has been accomplished, the equipotentials and 
streamlines in the z-plane a re known . Pu t differently: 
If a conformal transformation or a series of such trans
format~ons can be found that will change the original 
fl ow region, with arbitrarily shaped boundaries, into 
a simple region for which the flow pattern is known or 
can be determined, the problem is, in principle, so lved. 

It has been found convenient not to deal directly 
with the flow region in the z-plane but to consider the 
corresponding region in a so-call ed w-plane, where w 
is th e complex velocity. It may be defined, a nalogously 
to the definition of the velocity components, by the re
la tion hip 

w = u + iv = - dw/ dz. [50] 
Now 

dw/ dz = (clcp + id ,f1 )/ (clx + idy) 

(ocp/ox) dx + (ocp/oy) cly + i [ (o,f;/ox) dx + (o ,f1/ oy) cly] 

dx + idy 
so that, using the Cauchy-Riemann relations, one obtains 

dw/ cl z = [ (oef,/ ox ) (dx + idy) -

i (ocp/oy) (clx + idy) ] / (dx + idy) 

That is, cancelling out the terms clx + idy and usmg 
eq . [45], one has 

dw/ dz = - Vx + ivy ; 

whence, comparing with eq. [50 ] 

U = + Vx, V = - Vy . [5 1] 

The use of the w-plane has given rise to th e name 
"hodograph" analysis. A hoclograph is the plot of the 
veloc ities at each point of a flow system on axes which 
represent two mutua ll y perpendicular velocity compon
nts. \t\lhereas genera ll y the positive axes are taken as vx 



and vy, it will be more convenient here to consider the 
hoclograph as a plot of u versus v. Thus, the w-plane 
is the hoclograph plane. 

If w can be expressed as a function of w, then by eq. 
[50] z is known as a function of o), o r conversely, w as 
a function of z. Thus, the problem wou ld be so lved. 

The boundary conditions to be imposed on w can be 
derived from those set up for z. Considering the same 
four types of boundaries, one finds th e following rela
tionships: 

(a ) Alo ng a streamline, if s is the direction of flow 
and a the angle between stream line and x-ax is, 

and 
v, = -- o<f, /ox = - (o</>fos) cos a 

Vy= - O<pjoy = - (o cp / os) sin a 

which may be written, using eq. [5 1], 

v/ u = - tan a. [5 2] 

(b) Along an eq uipotential, there results in similar 
manner, with a now the angle between the equipoten
tia l and the x-axis, 

v/ u = co t a. 

( c ) Along a surface of seepage, by differentiation of 
eq. [47], a now being the angle between the surface of 
seepage and th e x-axis, 

(ocp/ox) ( clx/ cls) + (ocp/oy) ( cly / ds) = K ( dy / els) 
or 

- u cos a + v sin a = K sin a. 

( d ) Along the water table one obtains similarly from 
eq. [ 48], a now being the angle between the water table 
a t the point in question and the x-axis, 

- u cos a + v sin a = K sin a ; 

and from eq . [49 ], th e Cauchy-R eimann relat ions and 
eq. [51 ] 

- v cos a - u sin a = N cos a . 

R ewriting these last two equations, respectively, as 

(K - v) sin a = - u cos a 
and 

(N + v ) cos a = - u sin a , 

a may be elimina ted. There results 

[53] 

[54] 

- ta n a = u/ (K - v) = ( + v) / u , [55] 

which may be written as 

u 2 + [v - (K - N )/ 2] 2 = (K + N )2/4. [56 ] 

The above equations show that, if the bounding 
streamlines, equipotentials and surfaces of seepage are 
straight lines (a = constant ) , then the corresponding 
velocity plots (of u versus v ) a lso wi ll be straight lines. 
Th e shape of the water tab le is unknown in the z-plane, 
but in the w-plane it is, by eq. [56 ], a circular segment 
with its center at [O, (K - N ) / 2 ] and having radius 
(K + N ) / 2. Thus the boundaries are known in the 
hoclograph plane. 

The foregoing discussio n, in a somewhat different 
form, may be found in a number of publications. Pub
lications of Hamel (24 ) , Muskat (45 ) , Breitenocl er (3), 

Gustafsson (23, pp. 101-11 3 ) and Van D eemter (52, 
53 ) may be mentioned. 

THE AN t\!LYSI S OF VAN DEEMTER 

Whereas Gustafsson gave the first complete solution 
of a tile drainage problem by means of the hoclograph 
method, his problem is a spec ia l case of a more general 
one solved by Engeluncl ( 13a ) a nd of an even more 
general problem solved by Van Deemter (52 ) . Only 
Va n Deemter's work wi ll be discussed here. His treat
ment of til e drainage problems will be analyzed in de
tail , and those steps not adequately explained in his pub
lications will be fill ed in. I t a lso will be shown that Va n 
Deemter's solution does not a lways lend itself to direc t 
app licatio n to field cases. T his limitation results from 
the implicit demand of hi solution that there be a rela
tion between the drain size and the pressure in the 
drains. Only for the case where the drains run full and 
th e water table just reaches th e drain top wi ll it be 
possible to present a direct procedure for solving the 
problem completely. Even so, Va n Deemter's solution 
is of great value and represents the nearest solution yet 
given analyticall y to th e actu a l field problem. 

Stat em ent of the pro blem. Van Deemter cons idered 
a homogeneous, isotropic, semi-infinite soil drained by 
parallel, equall y spaced til e Jines. H e restricted the prob
lem to steady sta te conditions by assuming a steady rate 
of rainfall (Dutch "neerslag") or evaporation, N, and 
a steady rate of deep seepage or artesian flow, L. With 
the origin of coordinates a, the center of a drain and 
the positive y-direction upwards, positive values of L 
and N would designate a rtesian pressure and evapora
tion, whereas negative values would indicate deep seep
age and ra infall. If the difference L- N is positive, the 
drains will remove wa ter. If it is negative, infiltration 
from th e til e line into the soil , that is, subsurface irri
gation, will result. 

Only the concli tion K + N > 0 will be considered ; 
tha t is, in the case of rainfall, th e magnitude of the rain
fall rate must be less than K. The concl iti,on K + N 
< 0 is not amenable to olution as it implies a steadily 
rising water ta ble, wh ich thus is not an equilibrium con
dition , as required here. 

The drains wil l be consid ered initially as line sinks or, 
in two dimensions, as points. Fi rst, those cases where 
L - N > 0 will be considered. For definiteness, it will 
be assumed that L > 0 and N < 0. With reference to 
fig. 11 , a nd remembering eqs. [46 ], [48] and [49 ], 
the boundary cond itions may be sta ted as 

(a ) Along PQ: If = 0 , 

(b ) Along QR: </> = Ky ' 

,f; = Nx , [57] 

(c) Along RS : ,f; = Na , 

(cl ) Along SP: ,f; =(N - L )a, 

where cond ition (c ) a lso a pplies a long TP. 

As a check on the bounda ry conditions, the following 
is observed: Through the region PQR T will flow N / 
(N - L ) of the tota l flow, through PTS, - L/( N - L ) 
of the tota l. Thus, using obvious subscript notation , 

(if;H~ - ,f;rq ) / (,f;s r - 'fRs) = N/ (-L ) , 
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Fig. I l. Drainage problem as posed by Van D eenHer. 

which is a relation in keeping with conditions (a ) , (c) 
and ( d ) . 

The boundary conditions at y = - oo and at the point 
P have not yet been specified. Since the velocity -o<f,/oy 
must equal L at y = - oo, <f, approaches the boundary 
value - Ly at great depths. That is 

cp = - Ly, y = - oo . 

At P the velocity will be infinite, and hence cp =- oo at P. 

D evelopment of the hodograph. To develop the w
plane, that is, the hodograph (fig. 12 ) , one must consid
er the velocity distribution along the boundaries. Along 
the streamlines, eq. [ 52] gives 

v/ u = - tan a. 

Since PQ, RS and SP are all parallel to the y-axis, u 
must be zero; hence the points P, Q , R, T and S must 
a ll lie on the v-axis of thew-plane. At T , which is a stag
nation point, the velocity must be zero; along TS and 
SP one has V y > 0 and along PQ and RT, V y < 0. 
Hence, in view of eq. [ 51 ] , S and P must fall on the 
negative v-axis, and Q and P on the positive v-axi . 
Since the velocity at P is infinite, thi is no contradic
tion. As has been mentioned, Vy = L at S, or v = - L. 
At Q and R, a = 0, so that there, from eqs. [ 53] and 
[ 54], 

U 0= 0, V = - N; 

this is in agreement with physical conditions. Along the 
water table, the velocity components must satisfy eq . 
[ 56]. Thus, the curve segment QR must lie a long the 
circle with center at w = i (K - N ) / 2 and radius (K + 
N ) / 2. From eq. [ 55] it is seen that the angle a at an 
arbitrary point A along QR in the z-plane corresponds 
to the angle between the line from w = iK to A and 
the vertical in the w-plane. Thus, the point of inflection 
Q', where a = e, will be the point farthest from Q and 
R a long the circle Q , Q', Q". The negative sign in eq. 
[ 55] indicates that the circular arc must be in the region 
u < 0. 
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otice in figs. 11 and 12 that if one proceed along 
the path PSSTRQ'QP in the z-plane and along the 
path PSTRQ'QQ"P in the hodograph plane, the region 
to the left in the z-plane corresponds to the region to the 
left in the hodograph plane. A similar tatement holds 
for subsequent transformations. The point Q" which lies 
between P and Q in fig. 11 has the special significance 
that there the seepage velocity has the magnitude of the 
hydrau lic conductivity. Above Q" the velocity i less, 
below greater. 

W-PLANE 
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I 
\ 
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\ 

Q' 
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=i(p+q) 
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K+N 
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-i N = iq 

T 0 u 
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p 
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Fig. 12. H odograph corresponding to £low region of fig. 11. 



D evelopm ent of o, = w(w ) . Along the bounda ry 
of the hodograph, the stream function f must satisfy 
the conditions listed under eqs. [ 5 7]. Along QR, this 
condition is given in term of x rather than in terms 
of u and v. To alleviate this difficul ty, a new function 
n is introduced, defin ed as 

n = "' - iNz = cp + N y + i(f - Nx ) . [58 ] 

This function has the boundary condition, obtained from 
eqs. [ 5 7] : 

(a ) Along PQ: n = cp + y , 

(b ) Along QR: U = (K + N ) y , 

(c ) Along RS : o = cp + Ny , 

(cl ) Along SP : o = cp + Ny+ i(N- L ) a . 

The flow region in the U-plane (fig. 13) can be plot
ted from the above relations. Since it is only along SP 
that U has an imaginary part, the points P, Q , R and S 
will fall along the horizontal axis. These points will now 
be located more precisely. R eferring to fig. 11 , y equals 
b a t Q and c at R. H ence, in fig. 13 at Q , from eq. 
[ 5 7b ] and eq. [ 58 ], UQ = (K + ) b ; and similarly a t 
R , UR = (K + ) c. At S, as has been seen below eqs. 
[57], cp =-Ly. H ence from condition (c) , Us = ( 
L ) y; or since at S, y = - oo and N - L < 0, there re
sults at S: Us = oo. If condition (cl ) i used it is a l o 
clear tha t Os = oo + i ( - L ) a . AtP, y = 0 a nd cp = 
- oo. Therefore Op = - oo or Up = - oo + i (N - L ) a . 

The problem, in view of eqs. [58] and [50] , has now 
been reduced, within an integration, to that of trans
forming the strip PSSRQOP of the U-plane to the flow 
region of the w-plane. This may be done by transform
ing this strip to the upper ha lf of an 17-plane (fig. 14 ) , 
transforming the flow region of the w-plane, by means 
of an intermedia te t -plane (fig. 15) , to the upper ha lf 
of a o--plane (fig. 16) and ma tching the o-- and 17-planes. 

Considering first the strip on the U-plane and recall
ing tha t the transformation w = exp z ( w here i not 
to be confused with w of fig. 12 ) maps the strip O <; 
y < ,. onto the upper half of a w-plane [see (41, p. 
85 ) or (47, p. 388 ) ] , it appears tha t the transforma tion 
desired, since L - N > 0, is 

11 = exp [ - ,.U/ (L - N ) a] . [59 ] 

From fig. 13, Op = - oo , - oo + i (N - L ) a; and Us = 
+ oo , oo + i (N - L ) a . H ence T/ r = ± oo , and T/s = 0. 
Defining y as 

y = ( K + N ) / ( L - N ) > 0 , [ 60] 

it also is readily seen that 1/ H = exp (--,.cy / a ) and T/ Q = 
exp (-rrby / a ) . 

Next is the mapping of the w-plane onto the o--plane 
by means of the intermediate t -plane. Let 

t = o + i€ = (K + N )/(- + iw ) . [61 ] 

For implicity, let (K + N ) = p and N 
p and q both positive. Then 

t = p/( q + iw). 

-q, with 

Separa ting the real and imaginary parts, one find s 

S =-p (v - q ) / [u2 + (v - q ) 2
] , [ 62a] 

€ = - pu/ [ u2 + (v - q ) 2] , [62b ] 

with the inverse rela tionships 

u = - p€/ (s 2 + €2)' 

V = q - p o/ (o2 + €2). 

[63a ] 

[63b ] 

The line u = 0 .,in the w-plane corresponds to the 
S-axis in the t -plane, because from eq . [62] 

t = - p/( v -- q ) [64] 
when u = 0. 

The circle of eq. [ 56], that is, the circle 

u2 + (v - q - p/ 2) 2 = p2/ 4 

in the w-plane is mapped onto the t -plane as the line 
o = - 1, as may be seen by substituting the values of u 
and v given by eqs. [63a] and [_63b] into the equation 
of the circle. 

The points wR and wQ lie on the v-axis with v = q. 
H ence, from eq. [ 64], t R = w and tQ = - oo , where 
both points are on the o-axis, and the signs ha ve been 
obtained by considering the direction of approach of 
v to q . These points a lso lie on the circle in the w-plane, 
or the line S = - 1 in the t -plane. H ence, from eq. 
[63b ], with v = q and o = - 1, 

q - q = - p (-1 ) / ( € 2 + 1 ) ' 
so that 

and the points tR and tQ a re a lso a t € = oo and o = 
- 1. Furthermore, since from fi g. 12 WT = 0, it follows, 
with the use of eq. [64 ], that t T = p/ q . Similarly, Wp = 
+ oo and tP 0-= 0. At S, Ws = - iL which, again using 
eq. [ 64], corresponds to 

ts = - p / (- L - q ) = (K + N )/ (L - N ) = y. 

Inspection of fig. 12 shows that 

wQ, = -(p/ 2) sin 20 - i (p/ 2) cos 20 + i (p/ 2 + q ) . 

Substitution of the u-part and v-part of WQ, in to eq. 
[ 62a] and then into eq. [ 62b] r esults in 

tQ, = - 1 + i cot 0 . 

Similarly, substitution of WQ ,, = i (p + q ) results in 
tQ .. = - 1. 

The configuration in the t -plane is a rectilinear 
polygon, o that a chwa rz-Christoffel transforma tion 
may be used to map it onto the upper half of the 
o--plane. Such transforma tions are of the form ( 4 7, p. 
398 ) 

where A is a complex constant, the a' are the exterior 
angles of the polygon and o-1 , o-2, . • • , o-n are the fixed 
points on the real o--axis corresponding to the vertices 
of the polygon. Three of these points o- 1, 0-2, • • . , o-n 
may be chosen a rbit rarily (2, p . 74 ) as long as their 
order of magnitude is the same a the order in which 
the corresponding vertices occu r when the sides of the 
polygon are traced. It is convenien t here to choose o-R = 
± oo, o-Q, = - 1 and o-Q = 0. Since the polygon has only 
three sides, a ll of the o- i values may be assigned inde
pendently. 

To visualize the transformation in fi g. 15, consider 
the vertical line QQ' or RQ' as split clown th e middle 
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from QR to Q'. I n the transformation to the CT-plane 
the point Q' may be thought of as being pushed up 
while Q and R spread, respectively, to the left a nd 
right un til QQ'R is a horizontal line. This horizontal 
line then may be considered as translated and rotated 
counterclockwise until the two points Q in fig. 15 merge 
into the single point Q in fig. 16, the points Q ' and R 
falling simultaneously into the positions Q' and R 
shown at the left hand portion of the real axis in the 
CT-plane. 

To obtain the exte rior angles, the above depiction 
need not be considered . The angles a re obta ined (see 
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insert of fig. 15 ) by traversing the boundaries counter
clockwise. The angle turned through at R is a 1 = 
3r./ 2 ; at Q', a 2 = - r.; at Q, a 3 = 3r./ 2. 

After substituting the angles and the corresponding 
CTR, CTQ, and CTQ into the differentia l equation, the choice 
of CT R = + oo a llows the cancellation of the corres
ponding factor (here having an exponent -3/ 2) from 
the differential equa tion ( 17, p. 542), o tha t there re
sults 

Integrating this equation, one obtains 



~ = A (2CT½- 2CT·½) + B = 2A ( CT - 1)/CT½ + B , [65] 

B being a constant of integration. 
In eq . [ 65 ], A and B a re considered as complex. 

However, their imaginary parts are zero as wi ll be 
shown : By the choice of the constants CTQ and CTR, the real 
axis of the ~-plane has been mapped onto the positive 
real axis of the CT-plane. Thus, for CT = 1, ~ must be 
real and, by eq. [ 65 ], ~ must equal B. H ence, B must 
be real. Also, since ( CT - 1) / CT½ is real for CT real and pos
itive, and since ~ and B are a lso real when CT is posit ive, 
A must be a real constant. 

To evaluate A and B substitute CTQ, = - 1 and ~Q, 
- ] + i cot 0 into eq. [65 ] to find 

- 1 + i cot 0 = 2A (-2/ i) + B = B + 4Ai. 

H ence B = - 1 and A = (1/ 4 ) cot 0 , and eq. [65] 
becomes 

~ = (CT - 1) (cot0) / 2CT½- 1. [66 ] 

Since ~Q" = - 1, one obtains from eq. [ 66 ] CTQ,, = 1. 

Let CTp = A2, CTs = µ,2 and CTT = v2
; then it follows 

further from eq. [ 66 ] that 

tan 0 = (,\" - 1) / 2A, [67] 

( 1 + y ) tan 0 = (µ, 2- 1)/2µ, , [68] 

(-K / N ) tan 0 = (v2- l )/2v. [69 ] 

Since y > 0 and (-K / N ) > 1 + y, as is seen with 
the aid of fig. 15, one has, from eqs. [67] , [68 ] and 
[69], the result A2 < µ, 2 < v". One has further because 

CTQ,, = 1, the relation 1 < ,\2 < µ, 2 < v2 (as is shown 
in fig. 16 ); also 1< A <µ,< v. Equations [67], [68 ] 
and [69] may be considered definitions of A, µ, a nd v, 
with 0, however, still unknown. In view of eq. [ 60 ], 
one observes that eq . [68 ] is the same as 

L + K 
--tan 0 = (µ, 2 - 1) / 2µ, . [68a ] 
L - N 

There remains the matching of the upper halves of 
the YJ- and the CT-planes. This must be done with a 
broken linear (bilinear ) transformation. The general 
form of this transformation (2, p. 175; 17, p. 512 ; 
20a, p. 84 ) may be given as 

YJ = (a1CT + a2 )/ (CT + as) , 
where a1, a2 and as arc generally complex constants. 
This transformation causes a shift of the CT-origin to 
- as, reflexion about a line through the new origin with 
amplitude 1_/2 a rg (a2 - a1as) and inversion about this 
origin with the inversion constan t (a 2 - a1a 3 ). The re
sult is the CT-p lane mapped on to the YJ -plane, bu t with 
the Y) -origin shifted to a1. 

In the present problem, there are four points which 
could be matched, namely P, S, R and Q. Three of 
these may be matched at will. Choosing to match P, S 
and R , the transformation takes the form 

YJ = [ (CT - µ, 2 )/( CT - ,\2
)] exp (-r.cy/ a ) . [70 ] 

This corresponds to a choice of 

a1 = exp (-rrcy / a) , 

a2 = -µ,2 exp (-rrcy/ a ), 
aa=-,\2. 

Subtracting exp (-r.cy/ a ) from each side of eq . [70 ] 
and simplifying the expression, there results 

YJ - exp (-r.cy / a ) = - [ (µ, 2- A2
) / ( CT- ,\ 2 ) ] exp (-r.cy / a ) . 

In this form it is apparent tha t the above choice of the 
constants may be interpreted as a shift of the Y)-origin 
of exp (-r.cy/ a ), a ~hift of the CT-origin of ,\2 and inver
sion of the distances from the new origins [ CT = A 2 

CTp and 17 = exp (-r.cy/ a ) = YJR ] by the relation 

(PCT ) (RYJ ) = - (µ, 2- A2) exp (-r.cy/ a), 

where (PCT ) and (RYJ ) denote the magnitudes of the 
distances P to CT and R to YJ. The negative sign in this 
last expression causes the upper half of the YJ-plane to 
be mapped o nto the upper half of the CT-plane. 

Substituting CTQ = 0 and Y/Q = exp (-r.by/ a ) into 
eq . [ 70] yields the additiona l rela tionship 

exp[r. (c - b )y/ 2a ] = p/ ,\. [71] 

For later use the constant f3 is introduced by the re
lation 

1 + /3 = µ/ ,\. 
H ence, 

exp [ r. ( c - b )y / 2a] = 1 + /3 . 

[71a] 

[716] 

Since µ, 2 > A2, and since also µ, > ,\ (because in eqs. 
[67] and [68J, 0 > 0 by fig. 11 and y > 0 by eq. 
[ 60]) , one has /3 > 0, and incidentally c > b, as was 
to be expected . 

In summary, a functional relationship has been de
veloped between w and w by having followed two paths 
which schematically may be depicted as 

w --➔ a --➔ YJ 

t i 
w --➔ ~ --➔ CT . 

Since w = dw/ dz, the differential equation for w as a 
function of z is now known. The in tegration of this 
eq uation is a ll that remains. 

Int egration of w = w(z ) . Integration of the differ
ential equation will be simpler if the parameter t is 
introduced, where t is defined by 

[72] 

This relationship maps the upper half of the CT-plane 
onto the first quadrant of the t-plane (47, p. 399 ) . It 
yields (fig. 17 ) : tR = ( oo, i oo ); tQ, = i/ A; tQ = O; 

R 

t - PLANE 

o' 

Q R 
Fig. 17. Plot of hodograph in the t-plan c. 
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tQ,, = 1/ A; l r = 1; ts = µ / A; tT= v/A. It is interesting 
to note that the phreatic surface is mapped onto the 
imagina ry t-axis and the rest of the boundary of the 
original flow region onto the real t-axi . 

I t follows fromeqs. [59 ] and [70] that 

D= yc( L - N ) - [a( L - N ) / 1r] In [ (<1 - µ2)/( <1 - ,\ 2) ], 

which, with eqs. l 60 _1 and [ 72], may be written as 

n = (K + N )c-[a(L - N )/ 1r] 

[ 73] 

Differentia ting, 

dn / dt =- 2a (L - N ) (µ 2/ ,\2- 1) 

t/ [1r( t2 -µ2 / A2) (t2- l )]. [ 74 ] 

T o express n in terms of z, a result ob tained from 
eqs. [50 ] and [58] is used : 

dn = dw- iNdz = - (w + iN ) dz. 

From eq. [61] it is seen that 

- (w + i ) = i (K + N )/ ~ 
so that 

dn = [ i (K + )/ ~] dz . 

Using eqs. [66 ] and [ 72 J, this relationship may be 
changed into 

i (K + N )dz = { [ ( t2,\2- 1)/ 2tA ] cot 0- l }dn , 

which, by substitution into eq. l 74 ] , gives the differen
tia l equation for z( t ) as 

i (K + N ) dz = 

a (L - N ) (µ 2/ A2- l )( A2t2- l ) cot e 
1rA(t2 - µ2 / A2) (t2 - 1) cit - dn . [75] 

Breakino· up the coefficien t of ci t into pa rtial fractions 
and integrating, one finds 

a (L - )co t e 11
2/ ,\2 

i (K + N )z=------ ) [A2 ( 
2

r 
9 

., 

1rA t -µ-/ A-

1 
--) 

t2-1 

l· 1 
-(-----)]dt - J do 

t2-µ2 / ,\2 t2- 1 

a (L - N ) cot O µ2- 1 t- µ / A ,\2- 1 
=------ (- ln ----

1r,\ 2µ/ A t +µ / A 2 

t - 1 
ln--) - !.1 + C, 

t + 1 

where C is a constant of integra tion . If 0 is elimina ted 
by means of eq. [68a ] for the first of the terms with
in pa ren theses and by m eans of eq. [67] for the second, 
and if eq. [ 73 ] is used to elimina te n, there results 

a t - 1 
i (K + N)z =- (K + N )c + :=- (L - N ) ( In--

" t + 1 
t2-µ2 / A2 a t +µ / A 

+ In---)+ - (K + L ) ln--- + C . 
t2 - l 1r t-µ/ ,\ 

[76] 
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To evalute C, one substitutes ta = oo and ZR = a + ic 
into the above rela tionship, which then yields C = 
ia( K + ). 

If both sides o.t. eq. [76 ], after using C, are d ivided 
by (K + N ) and multiplied by -i, there results, after 
rearrangem ent and with use of eq. [71a] and eq. [60 ], 

z = a + ic + ~ [ 2 ln ( t + 1 ) - In ( t + 1 + /3) 
"Y 

ia l 
- In ( t - 1 - f3 ) ] + - ( 1 + - ) [In ( t - 1 - /3 ) 

7T y 

- In ( t + 1 + f3)] . 

implification yield 

z = a+ ic + i ~ 
1T 

t - 1 - /3 2 t + l 
(In --- + - ln ---) . 

t + l +/3 Y t + l +/3 
[77 ] 

From eq. [58 ], w = n + iNz. H ence w (t ) is found 
by substituting n (t ) of eq. [73] and z( t ) of eq . [77] 
in to eq. [58] . The resul t i , after use of eq. [71 ] and 
eq. [60 ], 

. a (L I __ t-_1_ + N In _t _+_l_+_/3_ "' = K c + 1Na + - n 
1r t- 1- /3 t- 1 

K - N t + 1 
+ -- In---). 

Y t + l + /3 
[78] 

Thus z a nd w are both given a function of t, so 
that a relationship between w = </> + iif, and z = 
x + iy has been established. Equations [77 ] and [78] 
constitute an incomplete solution of the problem since 
the quantity f3 has not yet been specified. Before peci
fying /3 , the equations for the water table and in par
ticula r for the heights b and c will be obtained. 

Equations for th e water table. ince the imaginary 
axis of the t-p lane represen ts the water table, th e equa
tion of the water table may be obtained from eq . [ 77 ] 
by introducing a real q uantity and equating t to is, 
where the quantity is represent the values of t along 
the axis of imagina ries. One fi nds: 

a is - 1 -/3 2 i + l 
z = a+ ic + i "'ir (ln ---+ - In---). [79] 

is+ l + /3 Y is+ l + /3 

To simplify eq. [ 79] one ha 

is - 1 - f3 
ln - ---= In (- ] ) 

is+ 1 +,B 

l - is/ ( l + /3 ) 
ln-----, 

l + is/ ( l +/3) 

or, using the relation ln (- 1) = In exp 1r i = 1r i and 
fo rmula 645 of Peirce (46), 

is - 1 - /3 
ln---- = 1ri + (2/ i ) tan-'s/ (1 + /3 ) . 

is+ l + ,B 

Also, since for any (real ) A and B 
In (A + iB) = (½) ln (A2 + B2) + i tan-' B/ A , 

one obtains 
is + 1 1 1 + s2 

In ----= - In----
is + 1 + /3 2 ( 1+ ,B ) 2+s2 

+ i [ tan-'s- tan-1s/( l + /3 )]. 



Substitution into eq. [ 79] gives, after som e simplifica
tion, 

2a 1 -1-y s 1 
z = - (--- tan-1 

---- - - tan-'s) 
7r y 1+,B y 

Separating the real and imaginary parts, the two para
metric equations for the coordinates of the water table 
result: (0 ,(s,( oo ) 

x 2 l +y s 1 - = -- (--- tan-1 --- - - tan-'s) 
a r. y l + ,B y 

[80 ] 

y C 1 S2 -1- 1 - - - + - In ------
a a tty s2+ ( 1 + ,8 )2 . 

T hese equations still involve the unknown height of 
the water tab le c midway between drains. An equation 
for c may be obtained by substituting th e corresponding 
values zp = 0 and tp = 1 into eq. [77 ] : 

. . a - ,B 2 2 
0 = a+ 1c + 1- (ln -- + - In--) 

" 2 + ,B y 2 + ,B 

. ia ia ,B 2ia 2 
= a+ 1c + - In (- 1) + - In - -+ -- In -- . 

r. r. 2 + ,B yr. 2 + ,B 
T hat 1s, 

TrC 2 -1- ,8 2 2 -1- ,8 
-- = In-- + -- In-- . [81 ] 

a ,B y 2 

One can now obtain 1rb/ a by use of eq. [81 ] in eq. [71], 
with the result 

r.b 2 + ,B 2 2 + ,B 
-= ln-- + - ln-- . [82 ] 

a ,B y 2 + 2,B 

Th e quantity ,B. It is recalled (see eq. [7 1a] and be
low eq. [7 lb ] ) that 1 + ,B = JJ,/ A, with ,B > 0 and 
/J- > A > 1. Also, eqs. [ 67] and [ 68 ] require, for finite 
tan 8 , that 

(1 -1- y ) (A2 - l )/A = (JJ,2 - 1)/fJ-. 

If one defines k for the moment by JJ,/ A = k ( l + y ) , 
where it is remembered that by eq. [60] y > 0, then 
one obtains 

and here, since /J- > A > 1, it fo llows ( for finite tan 
8 ) that k < 1, and therefore, since ( 1 + ,B ) = k ( l + 
y) , that ,B < y. When tan 8 = oo, ,B = y, as will be 
shown presently. V\lhen tan 8 = 0, b = c a nd hence 
( eq. [ 71 b] ) ,B = 0; but this last case is ruled out, since 
it has been agreed to take /J, > A. Therefore, one has 
this importan t result for ,B : 

Equations [8 1] and [82 ] show, for a given value of 
y, that b and c both increase as ,B decreases ; eq. [7 1b] 
shows that simul taneously there occurs a decrease in the 
difference ( c -- b ) f.ir a fixed a and y. 

It may be seen, by so lving eqs. [67 ], [68 ] and [7 1a ] 
for tan 2 8 in terms of ,B and y, that 

4[ ( 1+ ,B ) ( l + y)-( 1+ ,8)2][ ( 1+ ,B ) ( l -l- y )-1] 

that i , if one put for brevity X = 1 + ,B and A = 
1 + y, one has 

2 
X - 1 X + 1 X 2 

- 1 
4 tan 8 = ----------

X A - X AX- 1 

H ere each of the three quotients increa e steadily 
with X ( without inflexion points) in the permissible 
range 1 < X ,( A. Therefore ta n 8 increases steadily 
with ,B as ,B ranges from 0 to y ; that is, 8 is a single
valued function of ,B. 

In the last result a specia l case is important. When 
X = A, that is, when ,B = y, one ha 0 = " / 2 ; this 
occurs when the surface of the water table above P in 
fig. 11 enters parallel to PQ a t the height b above P. 
This heigh t b may be obtained by putting ,B = y in 
eq. [82 ]; it is the lowest h eight the water tabl e can 
have for a fixed y and spacing 2a. 

The equation for tan2 8 also shows that small values 
of ,B correspond to small values of 8, that is, by physical 
reasoning, to mall values of ( c - b), as is further clear 
from fig. 11 and eq. [ 71b ]. 

To relate z and w in eqs. [77] and [78 ], an inde
pendent relation for ,B still is n eeded. This relation may 
be obtained by recognizing that in ac tua lity a drain 
will not be a line sink but a surface of finite cross
sectional area. This surface thus will constitute an ad
ditional boundary to the potential problem and, by a 
theorem of potentia l theory, it accordingly will be re
quired that, for a ll points on this surface, either (a ) the 
potential, (b ) the normal derivative of the poten tial or 
( c) a combination of these two be known . Boundary 
conditions of this type already have been taken into 
account for the other boundaries of the flow system . 
Condition (a ) seems easiest and most natural to use. 
Therefore, one of the equipotentials about P w ill be 
taken as having a known value ¢ 0 • Accordingly, the 
constant ,B m ust be chosen so as to make ¢ = ¢ 0 for 
some specified value of z on the equipoten tial ¢ 0 • 

Let the position of the equipotential in question be 
specified by having it pass through the point (x, y) = 
(0, -r0 ) ; that is, it must pass through the point z0 = 
- ir0 . If r 0 is small it is clear tha t the equipotential will 
be of nearly circular cross-section so that a drain of 
radius r 0 could be iden tifi ed with such an equipoten tial. 
If, however, r0 is large, the equipotential will not be of 
circular cross- ection but will have the form of a horse
shoe, and the upper ends of the horseshoe will touch 
points on the phreatic surface where, by defini tion, the 
gauge pressure is zero and where, accordingly, the po
tential ¢ 0 equal ( ee eq. [44 ]) K yo, y0 being the height 
of the water table at th e points in question above the 
plane y = 0. 

Corresponding to z0, there is a point t0 = 1 + 8. 
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Since this point Jies on the lin e PS, one sees that t0 < 
t8, and thus that o < (3. The relationship between r0 

and o may be found from eqs. [77] and [8 1] in the 
form 

f3 2 + y 2 + /3 +o 
,,r0/ a = In --- + --- In ----

(3 - o y 2 + /3 

2 
- - In ( 1 + o / 2) . [83] 

y 

The potential <po is the rea l part of eq . [78] evaluated 
a t to: 

<po= Kc + (a / ,, ) {Lln [o / (/3 - o) ] 

+ N ln [( 2 + /3 + o)/o] 

+ [ (K - N )/y ] ln [(2 + o)/( 2 + /3 + o) ]}. [84] 

The corresponding value 'fo of the stream function, 
obtained simultaneously and only men tioned incidenta l
ly, is 

'fo = a (N - L ). 

If the pressure in the drain at y = - r0 is denoted by 
Po and the corresponding piezometric height ( referred 
to the level y = - r0 ) is h0 , then from eq. [ 44], 

<po = K (po/ pg -- ro) = K (ho - ro) 

where h0 - r0 is the hydra ulic head now referred to the 
level y = 0. Define H o by 

Then, 
[85 ] 

and H 0 is the hydraulic head ( referred to the level y = 
0 ) a t y = - r 0 and at a ll other points on the equipoten
tia l surface passing through y = - ro. 

One now has eqs. [81 ], [83], [84] and [85] to 
solve for the four unknowns <po, (3, o and c, it being as
sumed that values of y, H o, r0 and a are given. Notice 
that physically H o must a lways be less than b. 

L et us return to eqs. [ 81] and [ 82]. If one equates 
f3 to its highest value y in these equations, the lo west 
possib le values of b and c are obtained. The equa tions 
become 

1rC 111 ;n/ a = ln [( 2 + y) /y] + (2/y) 

1 n [ ( 2 + y) / 2], y / /3 = 1 [ 86 l 
and 

1rb 0 ,; 11 / a = ln [ (2 + y)/y] + (2/y) 

ln [(2+y)/ (2 + 2y ) ],y/ /3 = 1 . [87] 

A plot of these equations is shown as curve 1, y/ /3 = 1, 
in fig. 18. Figure 18 also shows plots of eqs. [ 81 ] and 
[82 ] for y/ /3 = 2, 10 and 50, a ll taken from Va n 
Deemter (52, p. 19 ) . One sees for y//3 = 1 and for 
y / f3 = 2 that the curves for c/ a nearly coincide. In 
fact, if y / /3 < 2 the difference between c and c111 ; n is 
less than 10 percent. The ratio b/ b111 ; 11 , however, is 
on the order of 4 when y/ /3 = 2. Now in practice, 
b is generally small compared to c and often nea r zero. 
Thus fairly large values of (3 , and hence fairly small 
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Fig. 18. E ffect of change in -y/ {J on c a nd b for a range of -y. Traced 
from Yan D e,' mle1· (52, p. 19 ) . 

va lues of y / /3 as, say, y / f3 = 2 or less, wou ld be ex
pected ; and accordingly one may conclude from fi g. 18, 
as did Van Deemter, that the right hand sides of eqs. 
[86] and [87] a re useful a nd simple approximations 
for ,,c/ a and ,,b/ a. 

However, eqs. [8 1] and [82] (and the discussion 
below them ) are only strictly true if the drains in ques
tion are of the non-circular shape of a certain equipo
tential surface 'Porn passing through a certain point 
z = - ir0111 • An infinite number of pairs of (rom, <pom) 
may be obtained . For practical reasons, only those pairs 
of ( </) 0111 , r0 111 ) should be chosen for which <pom > O; 
otherwise suction, which seldom exists in practice, 
would h ave to opera te inside the drain. For a specified 
pair of values of /3 and </) 0 111 , there will be only one 
value of r0111 ; a lso, for a specified pair of values of /3 and 
r0 111 , there will be only one value of </) 0 111 • 

A more deta iled examina tion, for the importa nt spe
cial case L = 0, of the rela tionships governing the in
fluence of f3 on the flow h as brought out some interest
ing fac ts a bout the V an Deemter solution. In practice, 
as has been mentioned, a non-zero drain radius must 
be taken into account. To treat the drain surface as 
an equipotential, one of two conditions must hold. 
Either the dra in must run a t least full , to avoid a sur
face of seepage to which the theory does not apply, or 
the water table mu t intersect the drain, with the water 
in the dra in standing to the height a t which the water 
table intersects it. Thus, since in either case the equipo
tentia l 'Po must pass through points higher than y = 0, 
one must have, ruling out the artificial case of drains 
opera ting under suction, H 0 > 0. If b > > r0 , the equipo
tential <po will very nearly pass through both y = - r0 

and y = + r 0, and then the drain will run just full for 



H 0 = r 0, approximately. If b ,( r0 , the equipoten tial 
</>o will intersect th e water table and the curve <J> 0 would 
become a "ditch" drain of the horseshoe shape previo us
ly mentioned. If b is not much greater than r0, then the 
equipotential <f,0 may pass through the y-axis a t a level 
lower than y = b, or it may intersec t the water ta ble. 

R educing eqs. [81 ], [84 ] and [85] to one by elimi
nating <p0 and c, and se tting L = 0, there results, with 
the a id of eq. [60], 

_ . _ 2 +{3 2 2 +{3 
1rH 0 / a - ;r (h0 - r 0 )/ a -- In --- + - ln ---

/3 y 2 

_ __ 1 _ In _2_+_ /3_ T_' _ll + _ 2_+_y_ In _ 2_+_ 1l _ 

l +y /l y( l +y) 2 + ,B +o 

100 

10 

1.0 

0 . 1 
0 .001 

13=- 250 

y= 299 

0 .01 

a 

2 71 ,..0 
a 

7r r0 / a 

which, together with cg . [ 83], fixes ,B and /l for a 
given set of values of H 0, r0 , a and y ( = - K / N - 1> 0 ). 
Calcula tions from these formu las bring out tha t H o, ho 
and r0 a ll increase -.,ith increasing ll for constant ,B and 
y [and hence for constant (c - b )/a]. Figure 19 is an 
example of the type of rela tionships obtained . The 
curves for r0 and h0 intersect at a rela tively low value 
of o and meet again asvmptotically when o approaches 
,B. From such curves, the va lues for r. ro/ a can be ob
tained for which r0 = h0 ( or H 0 = 0) and for which 
2r0 = h0 ( or H 0 = r0 ) . These arc plotted against the 
corresponding values of f3 in fig . 20. Curves I and II 
of this fi gure represent the condition r0 = h 0 and 
curves III, IV, V and VI refer to the case 2r0 = h0 • 

Also shown in fig. 20 are curves VII and VIII which 
represent the case, similarly obtained, where r 0 + b 

71 ho 
a 

0 .1 

and 1Th 0 / a 
1.0 10 

Fig. 19. Effect of changi ng O 011 ro and ho when L = 0, tha t is when 'Y = (K/--N) - 1. 

691 



- - Yo= ho 
-- ?./-o = ho 
- ; - lo+ b = ho 

01 

0 .001 

~ == 2 99 

10 100 iooo 

Fig, 20. R elatio nshi p between Ba nd tile "radius" for various pressure conditions in the drain. 
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= h 0 ( or where H0 = b ) . T he physical significance 
of these curves will now be investigated . 

Curve I , for which the values on the axis of abcissas 
are /3 = y, shows that, for h 0 = r0, the Van D eemter so
lution for the lowest water table will require a lower r0 

for a higher y. Thus, since y = - K / N - 1, a decrease 
in rate of rainfall will increase y and hence decrease, 
as one would expect, the "drain ize" required to make 
the drain flow under the condition h0 = r0 - tha t is, 
under zero gauge pressure at the level y = 0. M ean
while, in acco rdance with eq. [ 71 b ], one sees that 
( c - b ) / a varies as 

( c - b) / a = ( 2 / ;r) ( 1 /y ) ln ( 1 + y) , 

or tha t ( c - b ) decreases a y increases. 

Curves I , II, III and IV a ll correspond to cases 
where the equipotential c/>o crosses the positive y-axis 
(ax is of ordinates ) at a va lu e less than b. Thus they 
represent conditions where the water table passes above 
the equipotential drain circumference. 

Considering curves II a nd IV, one sees, for a fixed 
permeability and a given rate of ra infall ( i.e., y = 
constant ), that a decrea e in f3 is associated wi th a 
decrease in r0 if r0 / h 0 remains constant. One also sees, 
by p assing horizontally to the left from a point on 
curve II to a point on the corresponding curve IV, tha t 
for a fixed y and r0 the drain pressure h0 and the 
hydrauli c head H 0 increase as f3 decreases. Both of 
these obse rva tions a re in accord with the ear lier con
clusion that dec reasing f3 involves ra ising the water 
ta ble and decreasing the difference c - b. For, th e de
crease in ro for decreasing /3 with constant r0 / h0 re
fl ects the fac t that a smaller dra in size will offer more 
res istance to fl ow, just as the increase in drain pressure 
resulting when f3 is dec reased a t constant y and r 0 im
plies a smaller total head difference causing flow. 

From an applied point of view, curves I and II a re 
of little value. They represent a condition where the 
pressure in the drain (h0 = r0 ) is insufficient to pre
vent a surface of seepage. Curves III and IV, on the 
other ha nd , represent the condition where r0 is con
siderab ly less than b and where, consequently, it is 
rea onable to assume tha t the equipotential cp 0 crosses 
the y-axis at both y = - r0 and y = + r 0 . Since for 
curves III and IV h0 = 2r0 or H 0 = r0 , they very 
nearl y represent the condition where a circula r drain 
of dia meter 2r0 runs just full and where the water 
tab le crosses the y-axis at a height such that b > > r0 • 

Inspection of fi g. 20 shows that Van Deemter' s so
lution requires that the dra ins must run under back 
pressure (i.e., more than fu ll ) if the drain radius i 
greater tha n indicated by curve III a nd if the drain 
circumference passes below the point y = b. Taking 
as an example the value N = - 1.20 inches/ day, L = 0, 
K = 10 feet/ day and a = 50 feet, then y = 99 and 
curve III yields r.r0 / a = 0.00365. T hus a dra in larger 
than (2 x 50 x 12 x 0.00365) / ;r = 1.39 inches in di
ame ter m ust run under pressure to cause a water table 
a given by eqs. [86] and [87]. Simila rly, a 10-inch 
diameter drain a t 100-foot spacing ( ;rr 0 / a = 0.0262 ) 
wi ll require y = 14 = ( 120/ - N ) + 1 (that is, - N 
= 9.2 inches of rain per day ) if the drain is not to 
run under pressure and till have water standing above 

it. In other word , since drainage installations are not 
designed for 9.2 inches of r ain per day but ordinarily 
for ½ inch per day or less, V an Deemter' equa tions 
show that full-ruf1I!ing subsurface drains with water 
over the drains are most unlikely to occur under prac
tical conditions. 

Curves V and VI, just as III and IV, represent the 
case where H 0 = r0 • They correspond, however, to an 
equipotential c/>o which intersects the water table. No 
special significance can be a ttached to this condition; 
it simply represents the case where the water table 
intersects the drain circumference at a height above 
the origin equal to the maximum depth r 0 of the curve 
cp = cp 0 below the origin and where the water level in 
the drain stands to the level at which the water table 
intersects the drain circumference. For example, when 
y = 299 and f3 = 250, curve VI yields ;rr 0 / a = 0.00940. 
Thus, for a = 50 feet, the height a t which the water 
table intersects the drain circumference and the h eigh t 
above the origin to which the water tands in the d rain 
in this case both are y = 0.150 feet, as is the depth 
r0 of the dra in below the origin. 

The case where the equipotential cp 0 just touche the 
water table for any given /3 and y is characterized by 
the relationship h 0 = r0 + b or it equivalent H o = b. 
Curves VII and VIII represent this condition. It is 
significant in that it represents the second possible d ra in 
size for which a given water table position, as fixed 
by f3 and y, can be obtained with the drain running 
just fu ll. The first poss ible solution to this condition 
was given by curves III and IV, and these resulted in 
unrealisti cally small dra in sizes or high rainfall ra tes. 
In the case of curves VII and VIII, one cannot assume 
the drain diameter to equa l 2r0 as was done for curves 
III and IV. However, one may assume the drain 
di a meter to be b + r0 • Figure 21 show a plot of 
(b + r 0 ) / a versus f3 for f3 = y and for some arbitrarily 
elected values of y . Taking the same example as be

fore, na mely /3 = y = 99 (- N = 1.20 inches/ day, 
L = 0 and K = 10 feet/ day) and a = 50 fee t, one ob
ta ins from fig. 21 (b + r0 )/ a = 0.00344 or b + r0 = 
0.172 feet = 2.06 inches. Thus an onl y slightly larger 
d ra in diameter is found from curve VII than was 
found from curve III, both of which are restricted to 
the extreme condition f3 = y. Since it was previou ly 
fo und tha t r0 decreases a /3 decreases at constant y for 
curve IV, it was then concluded that curves III and 
IV did not present a reali tic solution to the problem. 
Inspection of curves VIII shows tha t here r0 increase 
as /3 decreases at constant y, so that now a realistic 
solution can be found . For example, if one takes 6-inch 
diameter drains a t 100-foot sp acing, one ha (b + r 0 ) / a 
= 0.5/ 50 = 0.01 and, from fig. 21 for y = 99, one 
find s f3 = 58. 

The curves of fi g. 21 then can be used to determine 
the proper value of (3 , given the values of y, of a and 
of the drain diameter ( = b + r 0 ) . This value of (3, 
when used to calculate the sh ape of the water ta ble 
from eqs. [80] and [81] or the shape of the equipoten
tials and streamlines from eqs. [ 77] and [ 78 ], will 
result in the proper solution for the condition where 
the drain runs just full and where the water table just 
touches the top of the drain. 

In conclusion, it is again emphasized that, according 
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Fig. 21. Relationshi p between A and ti le diameter for a fu ll-flow ing drain 
in contact with the ,,·atcr table. 

to Van Deemter's theory, one would seldom expect to 
find the water table in the field standing a t any dis
tance a bove the drains . This is in accordance with field 
experience. The case where the water ta ble just con· 
tacts a full-running drain is a limi ting case which could 
occur in practice, a lthough the "horseshoe" shape of 
drain is more likely to occur. Since no rela tionship be
tween drain pressure and d rain size can be given which 
applies generally to drains running only partl y full , no 
generalized solution has been offered to cover such 
cases. 

Equivalence of Childs' analogue and Van D eemter's 
hodograph so lution. The similarity between Childs' 
analogue studies ( 4 ) and the foregoing analytic solu
tion suggests tha t results from the two methods should 
agree and that the conclusions drawn from the Van 
Deemter solution should carry over to Childs' results. 
The assumptions underlying both analyses are identical 
except tha t Childs used a finite size drain with circum
ference a t zero potentia l, compared to Van Deemter's 
point drain with cf, = - oo. Childs' solution was re
stricted, however, to cases where water stands above 
the dra im. H ence one would expect tha t his results 
are limited in practical application. 

Using the values for permeability obtained from rain
fall and electric analogue currents reported by Childs 
for his figs. 3, 4 and 5 ( 4, p . 326 ) to determine y, then 
scaling the values of b/ a from the figures and finall y 
calcula ting f3 from eq. [ 82 ], one can find from eq. [ 81 ] 
the values of c/ a in the last column of table 1. Com 
parison of the seventh column with the last one shows 
good agreement between the two solutions.10 

10In tabl e 1 certain of th e valu es do not agree wi th those quoted from 
Ch ilds by Van Decmtcr. Th e latter's colum n labeled 'Y probably rcprc-
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Another check can be made by determining /3 from 
the values of y and r 0 given by Childs, using eqs. [8 1], 
[ 83 ], [ 84] and [ 85] . For Childs' fig. 3, this check also 
yields fair agreel]lent as shown in table 2. 

The small discrepancy between the two methods can 
be a tt r ibuted to the difficulty of ascertaining the proper 
value of r 0 in the analogue; also the equipotentia l cj, 0 = 
ru in the hodograph case is not circular as in the ana
logue. 

In view of the findings from the hodograph a nalys is 
showing that water seldom stands above tile drains, it 
is of interest to investigate the practicality of Childs' 
results. If - N = 0.5 inches/ day, the corresponding 
value of K for his fig. 3 would be ( see table 1) 
(0.4057 ) (0.5/ 0.1 ) / 12 = 0.169 feet/ day and, similarly, 
for his figs. 4 and 5, K = 0.173 and 0.210 feet/ day, 
respectively. These K - valucs are far lower than one 
would expect to find for soils which could be economi
cally tile drained, at least in the U nited Sta tes. The 
Clarion and Webster soils of Iowa, for example, gen
erally have a hydraulic conductivity of 10 to 20 fee t/ 
day (54, p. 161 ); a lso, K emper (30, p . 61 ) reported 
values from about 5 to 20 feet/ day for the Bladen soil 
in eastern North Carolina. The work of R eeve and 
Kirkham ( 48 ) indicates that soils of K < 1 foot/ day 
are not likely to be economically tiled . It is possible, 
however, tha t the elec tri c analogue results realistically 
portray the conditions found in certa in heavy clay soil s 
which a re mole drained . 

ApjJlicability of the so lu tion for drainage jJroblems. 
The derivation of the solution presented was originally 
restricted to the cases where K + N> 0, L - N > 0, 
L ): 0 and N < 0. Besides L ): 0 and N < 0, there are 
two other possibilities. One could have rainfall and deep 
seepage, or evaporation and upward seepage. The three 
cases may be summa ri zed as follows: 
Case I: N < 0 < L, rainfall and upward seep age; 
Case II: N < L < 0, rainfall and deep seepage; 
Case III: L > N > 0, evaporation and upward seep
age. 

FOOTNOTE 10 (cont'd ) 
sc nts K/-N. T he discrepan cies in /J and c/a have not bee n explained. 
Th e values of - N in table 1 are, quo ting Childs, " not quite constant" but 
arc in proportion 1. 67: 1. 73: 1. 66, the value - N = 0. 100 cm./ hr. having 
been chose n arbitrari ly. 11ultiply Ch ilds' permeabiliti es, namely 1. 15 x 
10· 7 , 1.18 x J0- 7 a nd 1.43 x 10· 7 by 980 x 3,600 to obta in the values 
of K in table I. 

TABLE I. COMPARISON OF CHILDS ' RESULTS WITH EQS. [8 1] 
AND [82] ASSUMING EQUIVALENCE OF b. 

K - N 'Y = Fi-om eqs. [8 1] Childs' cm . cm. K + N 
Childs' values fi g. l"o per per a nd [82] 

no. a hr. h r. - N b/ a c/ a /3 c/ a 

3 0.0052 0.4057 0. 1000 3.057 0.42 0.50 0.61 0.5 18 

4 0.022 0.4163 0.1036 3.018 0.25 0.38 1.1 7 0.414 

5 0.04 1 0.5045 0.0994 4.075 0. 10 0.29 2.80 0.308 

TABLE 2. COMPARISON OF CHILDS' R ESULTS WITH EQS. (8 1] 
AND (82] ASSUMING EQUIVALENCE OF r 0 • 

Source ro / a b/ a c/ a /3 8 

Childs 0.0052 3.057 0.42 0.50 

Van D-ecmtcr 0.0052 3.057 0.365 0.480 0.745 0.0101 



In all three cases the drains must remove wa ter, since 
by hypothesis, in each case, L - > 0. In each case, 
however, the solutions as originally derived remain 
valid. The rela tive magnitude of L and N affects the 
position of the point T (fig. 11 ), as will be discussed 
analytically in the next section . For Case I , point T 
will lie on the line RS ; for cases II and III it will lie 
on the line PQ. For Case II, it must be between P and 
S; for Case III, between P and Q . Thus, for cases II 
and III, figs . 11 , 12, 15, 16 and 17 no longer apply, 
insofar as they show the position of point T. 

Finall y, it was implicity assumed that there was only 
one point of inflection on the water ta ble. That there 
can be only one point of inflection may be proved by 
assuming in itially that there is more than one. Then 
the hodograph would , along its circular bounda ry, re
ver e direc tion once for each point of inflection. Since 
the hodograph is traced once for one traverse around 
the flow region in the z-p lane, there must be a one to 
one correspondence between the points of the flow re
gion in the z-plane and the points inside the hodograph 
in the w-p lane. Since the boundaries form part of the 
conforma l r egions, this one to one correspondence con
tradict the "backtracking" of the hodograph. H ence, 
only one point of inflection can occur. 

. Th e location of the point T. The point T ( fig. 11 ) 
1s the stagnation point where the upward and down
ward streamlines midway between drains meet. The 
position of the point T may be obtained from eq. [ 77 ] 
by the substitution t = tT = v/ >... 
Thus 

. ia V / ,\ - 1 - /3 
zT = a+ 1c + - (ln - - ----

7r v/ >.. + 1+[3 
2 v/ ,\ + 1 

+ - In----- ). 
y v/ >.. + 1+[3 

[88 ] 

If /3 is known, then v and ,\ ( and /J, and tan e) may 
be calc_ulated from eqs. [67 ], [68 ], [69 ] and [71a ] . 
Accordmgly, zT would be ,known from eq. [ 88 ] . The 
three cases of the previous ection must be recognized. 
In all three, the re ults are simplified when f3 = y. 

In Case I, where N < 0 < L, eqs. [67 ] and [69 ] 
may be solved for v and ,\ to yield 

,\ = tan e + (tan20 + 1)½ 

v = (K /- ) tan e + [ (K /-N )2 ta n20 + 1]½, 

where positive signs have been chosen for the square 
roots, since in Case I ( see fig. 17 ) v > ,\ > 0, and 
- K / N > O. Thus 

_ v _ (K /-N ) + [ (K / - N ) 2 + cot20] ½ 
tT - - -- ---------'----'-----'----- ----'=--

1\ 1 + (co t2e + 1)½ 

If further f3 = y , then O = 7r/ 2 and 

tT = K / - N . 

With the a id of fig. 17 and eq. [71a], one has v/ >.. >µ, / ,\ 
= 1 + /3 = 1 + y so that tT = K / - = v/ >.. > 1 + y. 
If now the ordinate a t T is designated by h, one has ZT 
= a + ih, and eq. [88] yields 

(K / - N ) + 1+ y 
7r (Cmin- h )/ a = ln --------

(K / - N ) - (1 + y ) 

2 (K / - N ) + 1 + y + - ln ------ ---
y (K / - I) + 1 

[89 ] 

Equa tion [89 ] i~ important in the problem of sali
nification, especially in the Ietherlands where fa rm 
lands lie below sea level and salt water can seep up
ward into soils. The equa tion is of more general interest 
in that calcula tions with it show ( 52, p . 22 ) negligible 
influence of upwa rd seepage on the height Cmi n when 
- h > a. If one assumes that a horizontal impermeab le 
layer halfway between P and T in fig. 11 has the sa me 
effect on the height Cm; 11 as does the actual curved 
streamline (surface ) PTS, then these calculations show 
that, wh enever an impermeab le layer is more than one
fourth the drain spacing below drain center, sensibly the 
same value of Cm; 11/ a is obtained. 

In Case II, tT = K / - N a befor and, by hypothesis 
one has, as in all drainage cases, K + N > O and there
fore 1 < K / - N. H ence, using eq. [60 ] one finds 1 < 
K / - N < 1 + y. Thus, since here T lies between P and 
S and remembering tha t In (-1) = 7ri, one finds for 
Case II 

1 + y - K / N 2 1 + y- K / N 
7r(C111 ; 11- h )/a = In ------ + - ln -----

1 + y+ K / N y 1- K / N 

The equa tion is of interest since in most drainage sys
tem there is deep downward seepage which never 
reaches the drains. 

In Case III, one has - K / N < 0, and it ha been seen 
that T lie. between P and Q . H ence ( see fig. 17 ) 
O<v< l. If f3 = y, then e = 7r/ 2 and Q , Q' and Q" 
coincides in the w-plane (fig 11 ) and al o in the t
plane (fig. 17) . Thus, ,\ = oo and v / ,\ = 0, so that 
with zT = ih a in Case II, one obtains from eq. [88 ] 

7r (Cmin - h )/ a = (2/y) In (1 + y ) . 

Now from eqs. [ 86 ] and [ 87 ] ( for which f3 = y ) one 
obtains by sub traction 

7r (Cmin - bmin) / a = (2/y) In ( 1 + y) . 

Therefore, it is concluded for Case III, where there is 
evapora tion a t the surface but the upward seepage 
ra te L is greater than this evapora tion rate, tha t 

h = bmin . 

S ub-irrigation J1roblems. When L - N < 0 the drains 
will not act a sinks but as source . Accordingly, the 
case applies to sub-irriga tion. This problem is of limited 
prac tica l importance but wi ll be mentioned neverthe
less. It can be shown by the foregoing procedures that 
the ame differential equation will be obtained when 
L - I < O as when L - T> O. H ence eqs. [80 ], [81 ] 
and [ 82 ] also apply to the sub-irrigation problem. The 
only difference is tha t now y< O and /3 >0. Therefore, 
the approximate solu tion for bmin and Cm in is no longer 
valid. 

IV. COMPARISO OF THEORY WITH FIELD 
DATA 

STEADY S TATE DATA 

Because of the uneven di tribution of prec ipitation, a 
condition approaching equilibrium in rainfall- eepage 
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conditions is seldom, if ever, encountered in the Mid
west. Elsewhere, however, the rainfall pattern during 
the win ter season often can be approxima ted by a con
stant low rate maintained over a relatively long period. 
Consequently, Kirkham and D e Zeeuw (39 ) succeeded 
in obtaining data from a drainage experiment in the 
Netherlands which lend themselves to steady sta te in
terpreta tion. 

Their data consist of water table heights, tile and 
ditch discharge, rainfall and soil permeability, and were 
obtained for installations of tile drains and open ditches 
at 4 spacings- 8, 10, 12 and 16 meters-over a 3-week 
period in 1950. Each of the spacings was replicated 
three times in each of two plots for both types of drains. 
The data of Kirkham and D e Zeeuw now will be com
pared with the Dupuit-Forchheimer theory as given in 
the ellipse equation of Aronovici and Donnan, with the 
theory of Hooghoudt a nd finally with the theory of 
Van Decmtcr. 

THE E LLIPSE EQU ATION OF ARONOVICI AND DONNAN 

As pointed out before, eq. [ 11 ] also was developed 
by Aronovici a nd Donnan. They wrote it in the form 

S = 4K (b2 - a 2 )/ Q , [90 ] 

where b and a correspond to H 0 and h 0 in cq . [ 11 ] ex
cep t that the impermeable layer, from the upper level 
of which b and a are measured, i not necessari ly at 
the same depth as the bottom of the drain. Also, Q is 
the discharge per uni t length of drain per unit time, 
from both sides of the drain, rather than from one side 
as Qi in eq. [ 11 ] . 

Certain assumptions must be made before eq. [90] 
can be tes ted against the field data. In view of the 
permeability data reported (39, fig . 5) and the geo
logical description of the area, it appears sound to as
sume an impermeable layer 180 cm. below the surface. 
This is the upper boundary of a reportedly slowly per
meable peat layer with K = 5 mm./ day. Above that 
layer, the permeability measurements varied greatly, 
but an average of 75< K < 100 mm. / day probably is a 
reasonable estimate. The tile depth was reported as 
97 + 5 cm.; the value of 97 cm. will be used h ere. The 
value of a for use in eq. [ 90] for tile drains is thus 
1.800 - 0.970 = 0.830 meters. 

Using the average water table height for the period 
Nov. 27 to Dec. 9, 1950, inclusive (39, fig. 6 ), with 
the corresponding average rainfall N = - 2.82 mm. / day 
( evapo-transpiration was negligible), one obtains the 
comparisons listed in table 3. Also included in this table 
arc comparisons with the data for open ditches 50 cm. 
deep, for which the value for a is 1.800 - 0.500 = 1.300 
meters. In the calculations, the value K = 75 mm. / day 
was u sed, and Q was determined as the product of the 
actual spacing and the rainfall ra te. A sample calcula
tion with eq. [90] for tile at 8-meter spacing is S 
4 x 0.075 ( l.196 2 - 0.8302 ) / 0.0226 = 9.85 meters, as 
recorded in table 3. 

The discrepancy between the calculated and actual 
spacings, especia lly in the case of the open ditche , 
points out the danger of using the ellipse equation for 
design purposes. Probably more important than the 
above observation is the fact tha t for the tile drains the 
calculated spacings vary more slowly than the actual 
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TABLE 3. COMPARISON OF ACTUAL SPACINGS OF TILES AND 
DITCHES WITH SPACI NGS COMPUTED FROM THE ELLIPSE 

EQUATION (EQ. (90]); FIRST FOUR COLUMNS 
ARE FROM OBSERVED VALUES (39 ) . 

Q* 
Actual ( me tcr3 

spaci ng per day 
S per m eter 

(meters) of tile ) 

8 0.0226 

10 0.0282 

12 0.0338 

16 0.045 1 

·>Q = 0.00282 s. 

Water table ht . 
b above imper

meable layer 
( metcrs ) t 

Tile Open 
drains ditches 

l.1 96 1.401 

1.327 1.450 

1.428 1.538 

1.645 1.723 

Spacing St 
(meters) cal
culated from 

cq. [90] 
Tile Open 

dra ins di tches 

9.85 3.64 

11.40 4.38 

11.96 5.98 

13.42 8.44 

Percent devi
ations from 

actual spacings 
Ti le Open 

dra in s ditches 

+ 23 - 54 

+ 14 - 56 

- 0 - 50 

- 16 --47 

t i. BOO less I0- 3 x numbers recorded in fig. 6 of ref. (39 ); a = 0.83 meters 
for tile , a = 1.30 meters for ditches. 

+With K = 75 mm. / day. 

spacings. This trend will be discussed in more detail 
later on. 

A second test can be made of the ellipse equation. 
Discharge measurements ( 39, table 2 ) and correspond
ing water table heights [not tabulated in (39 ) but in
corporated in the text ] were recorded a t three times 
on Dec. 13 and 14. Using these discharge fig ures, the 
spacings again can be calcula ted with eq. [90]. The 
results of the calcul a tions are given in table 4. 

That greater tile spacings were calculated by the 
second tes t than by the first can partly be explained 
on the basis of non-equilibrium conditions for the sec
ond test . M easurements showed that the water table 
rose Dec. 13 between 11 a. m. and 5 p. m., but dropped 
considerably between 5 p . m. Dec. 13 and 3 p . m. Dec. 
14. Such a dropping water table would resu lt in the 
prediction of la rger spacings by the ellipse equa tion 
than would have been predicted on the basis of the 
equilibrium conditions of table 3, since a greater rain
fa ll and therefore a greater discharge than reported in 
table 4 wo'.1ld be required to maintain a steady water 
table. Agam, however, the calcula ted spacings vary 
less than the actual, as evidenced by the last column 
of the table. 

HooGHOUDT' s ANALYSIS 

Similarly to the calcula tions leading to table 3, the 
tabl_es prepared by Hooghoudt (27 ) can be checked 
agam st the average conditions ob erved between Nov. 
27 and Dec. 9. This requires, in addition to the data 
used previously, the radius of the tile. Since the tile 
used had an inside diameter of 5 cm. and outside di
ameter of 7 cm. , it was assumed for the present purpose 
that r 0 = 3 cm. 

T he calculations yield the comparison presented in 

TABLE 4. COMPARISON OF ELLIPSE EQUATION WITH FIELD 
MEASUREMENTS (39 ) OF TILE DISCHARGE AND 

WATER TABLE HEIGHT. 

Actual Spacing in m calculated for :* Average 
spacing Dec. 13 Dec. 14 Dec. 14 calculated Difference 
(meters ) 5 p.m. 3 p.m. 5 p.m. spacing, m (percent ) 

8 10.90 10.83 11.96 11.23 + 40.3 

10 13.60 12.85 13.23 13.23 + 32.3 

12 15.90 14.50 14.38 14.93 + 24.4 

16 14.90 22.28 22.20 19.79 + 23.7 

·>With K = 75 mm. / day. 



table 5. Whereas these da ta are insufficient in cope 
to warrant any far-reaching conclusions, they do how 
better agreement between theory and field results than 
was found in the case of the ellipse equation. Consider
ing Hooghoudt' s assertion tha t the tables yield a solu
tion of his equations with an accuracy of + 10 percent, 
essential agreement may be claimed in this case. Also, 
it was assumed that K = 75 mm./ day, but the data 
would warrant a selection of K = 100 mm./ day as 
well. Of particular importance is the nearly constant 
percentage of difference between actual and calcula ted 
spacings . The value of r 0 also probably could have been 
taken larger than 3 cm. as the tile were covered with 
a matty highly permeable p eat. But changing r0 doesn't 
change Q very much . H ooghoudt's results a re for half
filled tile. 

The available evidence corroborates H ooghoudt' s 
statement that his tables a re sufficien tly accura te for 
design work where steady state conditions can be as
sumed. 

Compa rison of the calculations based on the ellipse 
equation with those based on H ooghoudt's tables sug
ges ts tha t the neglec t of convergence is the most serious 
shortcoming of the ellipse equation because the large 
decrease in percentage difference with increasing spac
ing observed in table 3 ( 23 to - 16 percent ) and 4 ( 40 
to 24 percent ) was not eviden t in table 5 (-12 to - 17 
percent ). H ooghoudt' s tables combine radial fl ow near 
the dra ins with horizontal flow in the section midway 
between drains, but otherwise both ana lyses are es
sentially identical. 

VAN DEEMTER'S SOLUTION 

Strictly speaking, a comparison of the field da ta of 
Kirkham and De Zeeuw with V an Deemter's solution 
is not possible, because V a n Deemter 's solution applies 
only to an infinitely deep homogeneous soil. Neverthe
less, a comparison will be made, and the effec t of the 
less permeable peat layer, noted by Kirkham and De 
Zeeuw, will be investigated afterwards. 

It will be assumed for the present that the hydraulic 
conductivity was uniformly 100 m m.jday and the rain
fall 2.82 mm./ day. Kirkham and De Zeeuw have shown 
that there was some upward seepage but that it was 
less than 2 mm./ day. Assuming then that L = 2, 1 and 
0 mm./ day, three values for y are found : y = 20.2, 
25.4 and 34.5. 

It also is necessary to choose a reasonable value for 
(3. It has been shown before that a large (3 corresponds 
to low pressures in the drain, and that varying (3 over 

TABLE 5. TILE SPACINGS CALCULATED FROM HOOG H OUDT'S 
TABLES (27 ) FOR FIELD DATA (39) AVERAGED 

OVER 13 DAYS. * 

Actual 
spaci ng , m 

8 

lO 

12 

16 

*Nov. 27- Dec. 9, 1950. 
tFor K = 75 mm./day. 

Calculatedt 
spacing, m 

7.0 

9.0 

10.4 

13. 2 

Difference, 
perce nt 

-12.5 

-10.0 

-13.3 

-17.5 

the range y/ 2 <, (3 <,y h as little effect on the solution if 
b is small. Inspection of the da ta shows tha t b = 0 or 
nearly so. A check of the tile capacity with M anning's 
formula showed thaot the tile would run a t only about 
one-third capacity if it had a 0.05-percent slope. Al
though the exact slope was not given, the data lead one 
to believe that the actual slope was around 0.2 percent. 
Thus it seems safe to sta te tha t the tile drains never ran 
full. One may conclude tha t the assumption (3 = y is 
probably very nearly correct. 

Using eqs. [80] and [81 ], a nd remembering that any 
arbitrary value of s, O<s< oo, represents a point on 
the water table, the water table was plotted for the 
three values of y corresponding to the three rates of 
upward seepage listed above. Curves 1, 2 and 3 of fig . 
22 depict the resulting curves. As was to be expected, 
decreasing L, tha t is, increasing y, resulted in a lower 
water ta ble. Since the right hand sides of eqs. [ 80 ] do 
not involve the spacing, the hapes of the curves in fig. 
22 are not affec ted by the spacing. It is known that 
0 < L < 2 mm./ day, so that curves 1 and 3 represent the 
upper and lower boundaries between which the water 
ta ble must lie if the assumed value K = 100 mm ./ day 
is correct. C urve 1 may also be interpre ted as the case 
where K = 80, L = 1 and N = - 2.82. H ence, curves 1 
and 2 may be considered the limits between which the 
wate r table must fall for 80 <, K <, 100 and L = 1. 

Superimposed on the three curves just discussed arc 
curves 4 and 5 showing the actual water table observed 
for the 8- and 16-meter spacings, respectively. To avoid 
confusion, only the center points ( which coincide) a re 
shown for the 10- and 12-meter spacings. In agreement 
with the sta tements of the previous p aragraph, the 
values for y/ a at the midpoint all fall within the range 
0.090 <y/ a< 0.106. However, con trary to expecta tions, 
the curves for the different sp acings do not coincide. 
One possible explanation is based on the lack of homo
geneity of the experimental field ; there was a tight pea t 
layer at 180 cm. depth below the soil surface (86 cm. 
below the drain centers ) and sand beneath the peat. 

If the position of the point T is calculated from eq. 
[89], using y = 25.4, L = 1 and K = 100, it is found 
tha t h/ a = - 0.533 7. It has been pointed out tha t the 
effect of the limiting streamline PT may be taken 
equivalent to tha t of a horizontal impermeable layer 
midway between P and T . H ence, an impermeable 
layer a distance h / 2 or more below the x-axis will h ave 
a negligible effect on the flow pattern above this layer. 
In the present case, h/ 2a = - 0.2669 and the depth, 
- h/ 2, corresponding to a spacing of 8 meters is 1.07 m. ; 
for 2a = 16 m. , there corresponds - h / 2 = 2.14 m . 
T hese fi gures show tha t the less permeable peat layer 
at y = - 0.86 meters does not greatly affect the accu
racy of the V an Deemter analysis for the 8-meter spac
ing but does have a pronounced effect on the 16-meter 
spacing. Curves 4 and 5, therefore, should not be ex
pected to coincide. 

Furthermore, curves 4 and 5 are distinctly flat ter 
than curves 1, 2 and 3. A possible explanation for this 
difference in shape lies in the choice of (3 as (3 = y. 
The use of a smaller value for (3 would r esult in a fl at
ter water table and as such might give better agreem ent 

between theory and observation. 
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Fig . 22. Comparison of Van D eemtcr's equations with actual water table shape observed by Kirk hanl and D e Zeeuw. 

N oNSTEADY STATE DATA ( THE FALLING \ ,VATER TABLE ) 

Contrary to the steady state case, a variety of ob
serva tions have been reported concerning the non teady 
sta tes of falling water tables. The present discussion 
will be res tri cted to (a) certain data of Kirkham and 
De Zceuw mentioned earlier, (b ) a series of observa
tions made by M anson ( 44 ) on the Gibbs farm near 
LeSueur, Minneso ta and ( c) some data collected by 
the Iowa Agricultural Experiment Station (28 ) . The 
equations of Walker and Glover now will be compared 
with these data. 

WALKER'S EQUATION 

The analysis of Walker yielded eq. [ 34] for the de
termina tion of the proper spacing. To check this equa
tion against the field da ta of Kirkham and De Zeeuw, 
one may consider their observations of Dec. 2-4 and 
Dec. 7-9. For other periods, frequent showers make 
their da ta unsuitable. One h as, then, K = 100 mm./ 
clay, f = 0.025 and depth to the center of the 
ti le dra ins, 94 cm. One also h as, from their data, for 
times t1 and t2, the heights Yi and Y2 above the drain 
centers of the water table midway between drains. 
Therefore, one has, for use in eqs. [ 33] and [ 34], 
the quantitie t2 - t1 = t, y, - Y2 = 6. y and (y1 + y2) / 2 
= y, so that 8 and S can be calculated. The va lues of 
S thus obtained are given in table 6 and a re fo r the 
times 9 : 00 and 12: 00 of D ec. 2 and 4 and 17 : 00 and 
1 0: 00 of D ec. 7 and 9 and for the corresponding y
val ues shown in fig. 3 of Kirkham and De Zeeuw (39 ) . 
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The values in the second and third columns of table 6 
are to be compared with those in the first column. The 
calculated values are 3 to 30 times as large as the actual 
values. I t ha been shown previously that Walker's 
theory would lead to la rger values than one wou ld 
observe. 

Since there is uncertainty as to the values of K and f 
given by Kirkham and De Zeeuw, K and f should be 
eliminated from tests of Walker's equation. This elimi
nation can be accomplished by observing that eqs. [33] 
and [ 34] yield 

S = (4K / f ) ( tysin 8 /6. y) 

so tha t, if S,o represents the calculated spacing cor
responding to the actual spacing 10 meters and Sx the 
calcula ted spacing corresponding to another spacing 
x (= 8, 12, 16 meters), one h a 

TABLE 6. COMPARISON OF WALKER'S (59) EQUATION WITH 
DATA OF KIRKHAM AND DE ZEEUW (39) 

FOR TILE DRAINS. 

Actual 
spacing , Spacing in meters calculated for: * 
meters D ec. 2-4 D ec. 7-9 Dec. 2-4 Dec. 7-9 

8 41.6 29 .8 0.935 0.986 

JO 44.5 30.2 J.000 1.000 

12 48 .2 30.6 1.083 1.012 

16 465.0 54.8 10.45 1.818 

*For K 100 mm./ day, [ = 0.025, depth of drain cen ters 94 cm. 
tSx/ S 10 == ra tio calculated spacing corresponding to actual spaci ng x to 

calculated spacing coresponding to actual spacing of 10 m ., values to be 
com pared with 8/ 10, l0/ 10, 12/10 and 16/ 10. 



Sx ( t y sin e / 6 y) x 

S,o ( t y sin e / 6 y ho 

in wh ich K and f do not appear. In table 6 the fourth 
and fifth columns give values of Sx/S10. They depart 
widely from the correct val ues 0.8, 1.0, 1.2 and 1.6. 
The closes t agreement occurs for Dec. 7-9 for the 16-
meter spacing, 1.818 as compared with 1.6. The worst 
agreement occurs for Dec. 2-4, a t the same 16-meter 
spacing, where the Walker procedure gives 10.45 in
stead of 1.6. Again it is clear that the Walker theory, 
unless modified, is incorrect. 

A similar comparison can be made u ing the Gibbs 
farm data ( table 7) of Manson. Before making the 
comparison, however, some remarks are in order. The 
tile spacing experiment on the Gibbs farm consis ted of 
seven rep licates a t 25-foot spacing, eight a t 50 fee t, four 
a t 100 feet and one a t 300 feet. The soil was described 
as Webster silty clay loam, but no further information 
concerning the physical character istics of the soil or the 
cropping practices is known. All tile lines were p laced 
at a nomina l depth of 4 fee t. The spacings were grouped 
from narrow to wide across the field without ran
domiza tion. The p resence of a deeper main near the 
fir,t two tile lines 25 feet apa rt affected the rate of 
drawdown in tha t a rea, a nd the 3OO-foot wide plot wa 
drained on one side by a shallow open ditch rather than 
a tile drain . These factors no doubt affect the results, 
but it is believed that by excepting the unreplicated 
wides t spacing and by elimina ting some of the da ta 
for the 25-foot spac ing a sound comparison can be 
made. Drawdown curves a re ava ilable for the water 
table following three rains in 1946. The average height 
of the water table a bove the til e drain bottoms ( using 
the average eleva tion of adjacent dra ins) midway be
tween draim a t a series of days a fter each of these rains 
was determined from these records. These da ta are 
presented in table 7. 

Because the hydraulic conductivity a nd the porosity 
are not known for table 7, the spacing cannot be cal-

TABLE 7. AVERAGE HEIGHT IN FEET OF WATER TABLE ABOVE 
TILE BOTTOMS MIDWAY BETWEEN DRAINS ON GIBBS 

FARM FOLLOWING THREE RAINS I 1946.* 

Spacing , fee t 

Date 25 50 100 300 

June 24 ( 1. 5 inches of precipitatio n) 
25 0.64 0.93 2.54 3.64 
26 0.29 0.44 1.47 3.36 
27 0.24 0.20 0.90 3.00 
28 0. 10 0. 11 0.68 2.54 
29 0.08 0.07 0.56 2.50 

Jul y 28 (3 .3 inches of precipi tation) 
29 0.70 1.55 3.08 3. 72 
30 0.68 0.89 2. 18 3.55 
31 0.58 0.67 1.42 3.25 

Aug. I 0.49 0.63 1.25 2.73 
2 0.40 0.58 1.08 2.44 
3 0.40 0.52 0.90 2.44 
4 0.37 0.49 0.8 1 2.33 
5 0.33 0.46 0.72 2.08 
6 0.28 0.43 0.72 1.93 

Sept. 8 (4.2 inches of precipitat ion ) 
9 1.30 1.54 3.24 3.52 

lO 0.80 1.08 2.1 8 3.28 
II 0.27 0.38 1.18 3.04 
12 0. 15 0.18 0.79 2.76 
13 0.34 1.84 

* From M anso n (44 ). 

TABLE 8. COMPARISON OF WALKER'S EQUATION WITH DATA 
FROM GIBBS FARM (44). 

Actual June 25-27 July 29-30 July 29-Aug. 2 Sept. 9-11 
spacing, /S/ K fS/ K 

It. days Sx/ S100 days 
IS/ K 

S,/ S,oo days Sx/ S,oo 
fS / K 
days x/ S,oo 

25 4.00 0.57 78.00 7.53 13.9 0.94 4. 16 0.55 

50 4.00 0.57 5.57 0.54 12.6 0.89 4.89 0.64 

100 7.08 1.00 l0.35 1.00 14.2 1.00 7.61 1.00 

300 19.80 2.80 78 .60 7.60 35.4 2.49 49.48 6.50 

cul a ted explicity. The product £S/ K, however, is tabu
la ted in table 8, together with the values Sx/ S100- These 
ra tios of S,/ S1 00, which theoretically should be (reading 
downwa rd in the table) 0.25, 0.50, 1.00 and 3.00, show 
that the actual and calculated spacings are ordered 
similarly, but li ttle more can be said about them. If it 
is assumed that the hydraulic conductivity of the W ebs
ter silty clay loam was about 10 ft. / day and its drain
able porosity about 5 percent, the values of fS / K would 
yield spacings varying from 800 to 10,000 feet, com
pared to the actual range from 25 to 300. So again it 
is found that W alker' s equation results in spacings that 
are far too wide and tha t the relative effec t of spacings 
cannot be predicted from it with any certainty. 

The same type of analysis has been applied to the 
data from the spacing experiments in Iowa ( table 9, 
10, 11 and 12 ). The results, summarized in table 13, 
arc very similar to those of ta bles 7 and 8. It is interest
ing to note, a lthough probably not significant, tha t the 
calculated ra tios S, / S100 in one case, the M cCormick 
farm, a re nearly identical to the ra tios of the actual 
spacings. The several tes ts of cq. [ 34] have been made 
because origina l, but limited, tests with the equation 
a reported by Walker indicated it agreement with 
fi e ld practice and hence its validity. 

TABLE 9. WATER TABLE DRAWDOW DATA FROM SPACING 

Spacing, 
feet 

50 

75 

100 

125 

150 

200 

EX PERIMENT ON R. K . GOODWI N FARM, 
CHICKASAW COUNTY,IOWA. * 

Deplh wa ler labl e bclO\V surface, feet 

5/ 3/ 53 5/4/ 53 5/ 5/ 53 

2.32 2.37 2.64 

1.73 1.89 2.02 

1.46 1.58 1.76 

0.92 1.22 1.51 

0.40 0.63 1.08 

0. 19 0.45 0.81 

5/ 6/ 53 

3.05 

2. 14 

1.88 

1.67 

1.1 9 

0.94 

*Canington sill loam; approxi mate K =: 9 ft. / day; nominal depth of Li le, 
4 feet. 

TABLE IO. WATER T ABLE DRAWDOWN DATA FROM SPACI NG 
EXPERIMENT ON RAYMOND KNEER FARM, 

J EFFERSON COUNTY, IOWA .* 

Spacing, 
D epth water table below surface , feet 

f ect 6/ 8/ 53 6/ 9/ 53 6/ 10/ 53 6/ 11 / 53 6/ 12/ 53 

33 1.29 1.37 1.50 1.57 1.66 

50 0.88 1.01 1.1 9 1.28 1. 39 

66 0.85 0.93 1.05 1.1 3 1. 21 

*Haig soil type; K unknown ; nominal depth of Lile, 3 feet. 
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TABLE 11. WAT ER TABLE DRAWDOWN DATA FROM SPACING 
EXP ERIM ENT ON HOWARD COUNTY EXPERIMENTAL 

FARM, HOWARD COUNTY, IOWA.* 

D cp lh wa ter table be low surface, feet 
Spacingi 

5/ 6/ 53 feel 5/ 4/ 53 5/ 5/ 53 5/ 7/ 53 5/ 8/ 53 5/ 9/ 53 

50 2.29 2.36 2.44 2.54 2.65 2.74 

100 0.76 1.08 1.39 1.57 1.74 1.87 

*Plastic t ill phase o[ Carring ton-Clyde com plex ; approximate K =:- 10 
ft ./clay; nominal depth of tile , 4 fee t. 

TA BL E 12. WATER TABL E DRA WDOWN DATA FROM SPACI NG 
EXPERIMENT O N WM. McCORMICK FARM, 

WEBSTE R COUNTY, IOWA.* 

Spaci ng , 
D epth water table be low surface, feet 

feet 5/ 1/ 5'! 5/ 2/ 53 5/ 3/ 53 5/ 4/ 53 5/ 5/ 53 5/ 6/ 53 
17:00 13 :30 8 :00 7: 15 7: 15 7: 15 

50 1.32 1.83 2. 15 2.37 2.59 2.77 
75 0.75 1.1 2 1. 34 1.57 1.82 1.98 

100 0.66 0.94 1.14 1.33 1.46 1.68 

* \Vebstcr silty clay loam ; app1·oximate K 
tile , 4 feet. 

20 ft ./day; nomin a l dep th of 

TABLE 13. COMPARISO N OF WALK ER 'S EQ ATION WITH DATA FROM IOWA PACING EX PERiiVIENTS. 

Goodwin far m Howard Co . fa rm 

Actual 
May 3-6 M ay 4-9 

Spac ing , Actual fS / K Sx/ S100 fS/ K S,/ S,oo 
ft . Sx / S10u days days 

33 

50 0.50 16.7 0.288 52.6 1.228 

66 

75 0.75 51.7 0.89 1 

100 1.00 58.0 1.000 42.9 1.000 

125 1. 25 48.9 0.843 

150 1.50 44.2 0.76 1 

200 2.00 50.2 0.865 

GLOVER'S . S OLU TION 

The spacing equa tion proposed by Glover also can 
be compared with fi eld da ta. One comparison can be 
made by applying eq. [ 17 ] to the data of Kirkham and 
De Zeeuw. Considering the height of the wa ter table 
a t 16: 00 on Dec. 7 as the initial oondition, the spac
ing necessary to lower the water tab le to the posi
tion recorded for 8: 00, D ec. 8, can be calculated. 
U sing again K = 100 mm. / day, f = 2.5 percent and 
D = 86 + y0/ 2 cm. ( drain axes a t 94 cm. below the 
surface and impermeable layer a t 180 cm. depth ), such 
calcula tions yield the comparjson shown in tab1e 14. 

H ere, the calculated spacings are all too small a nd, 
a in the case of the ellipse equation, the theory results 
in a slower ra te of change in spacing tha n was ob
served in the fi eld. Since Glover's equation is based 
on the same assumptions as the ellipse equa tion, it is 
probable that here also the slow increase of spacing 
observabl e in the second and fourth colwnns of tabl e 14 
is caused by Glover's omission of the convergence effect 
in his analysis. 

As noted previously, there is some doubt about the 
proper value of K , but the value K = 100 mm./ day is 
on the high side. Decreasing it would simply decrease 

TABLE 14. COMPARISON OF GLOVER 'S (12) EQU ATION WITH 
DATA OF KIRKHAM AND DE ZEEUW (39) FOR WATER TABLE 

HEIGHTS AT 16:00 DEC. 7 AND 8:00 DEC. 8. 

Actual Calculated 
spacing , spaci ng ,* Percent 
m eters meters differe nce Sx / S10 

8 6.26 - 21.8 0.97 

10 6.44 - 35.6 1.00 

12 6.78 - 43.5 1.05 

16 9.48 -40.7 1.47 

*Based on K = JOO mm ./day, f = 0.025. 
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M cCorm ick far m 
May 3-6 

fS/ K Sx/ S,oo 
days 

23 .4 0.469 

37.4 0. 750 

49.8 1.000 

Actual 
Sx / Soo 

0.66 

1.00 

1.33 

Kneer farm 
Ju ne 8-12 

fS/ K Sx/ S,o 
days 

57.3 

52.2 

78.6 

1.098 

1.000 

1.507 

the calculated spacings and increase the percentages of 
difference in table 14. It could be a rgued further that 
the value of D should be decreased because of the 
existence of a rtesian pressure in the Kirkham-De Zeeuw 
case (which is not accounted for in the Glover theory ) 
:-but decreasing D wou1d result in still narrower sp ac
ings. 

Apa rt from the uncertainties already mentioned, 
another objection could be raised against the treatment 
leading to table 14. The initial condition used applied 
only to the centerpoint of a curved wa ter table, where
as the initial condition leading to eq. [ 17 ] was given as 
a flat wa ter table over the whole range 0 < x < S (fig. 
3) . However, exactly the same solution will be found 
by Glover's procedure if the initial condition is given 
as y = y0 at x = S/ 2 when t = 0. Moreover, Dumm 
himself, in reporting Glover' s work, proposed the use 
of the equa tion in this manner (12, p . 730). 

Despite the foregoing remarks, it is of interes t to 
compare the Glover equation with the da ta of Kirkham 
and De Zeeuw without introducing the initial condition 
as described above. One proceeds as follows: Writing 
Glover' equation in the form of eq. [ 16], the pacing 
can be considered as fixed ; the initial height of the 
water ta ble can be taken to be a t the surface; and the 
height reported for 16 : 00, Dec. 7 can be taken 
as an intermedia te position a t time ti. Then the pre
dicted position of the water table a t time t1 + 16 hours 
can be determined from eq. [ 16 ]. This calcula tion was 
carried out, and the results are tabulated in table 15. 

Somewha t better agreement between theory and 
fi eld da ta is obtained by this method of approach than 
was found by the previous method. Thi may be at 
least partly because of the more realistic assumption 
concerning an initial condition. The percentage columns 
of tables 14 and 15 cannot be compared directly be
cause in table 14 , pacings are in question whereas in 



TABLE 15. DROP I N WATER TABLE BETWEEN 16:00, DEC. 7 AND 
8:00, DEC 8 OBSERVED BY KIRKHAM AND DE Z EEUW 

(39 ) COMPARED WITH CORRESPONDING DROP 
CALCULATED FROM GLOVER' S 

(12) EQUATION. 

Spacing J \•Vater table drop, cm. Difference , 
meters Actual Calculated* percent 

8 J 7.5 19.2 + 9.7 1 

10 25.0 27.3 + 9.20 

12 29.3 15.8 -46. 1 

16 11.8 9.6 - 18.7 

*Based on K = JOO mrn. / day, f = 0.025. 

table 15 it is di stances of fa ll of water tables. The 
logarithmic form of eq. [ 17 ] would cause a great dif
ference in wa ter table drop compared to the difference 
in spacing. H ence, one cannot account for the decrease 
in percentage of difference in the two methods on the 
ba is of this rela tionship. Much of the difference is 
caused by the choice of D. For table 14, it was as
sumed tha t D = 86 + y0/ 2, with Yo the height of the 
water table a t 16:00, Dec. 7. For table 15, y0 was 
taken as 94, the height of the surface above the dra in 
axes. Whereas thi s choice of D is in accordance with 
the procedure outlined by Dumm, it is highly unrealistic 
since, in effect, it assumes that flow wi ll take place 
above the water table. Decreas ing D would make the 
percent differences found in the second analysis of the 
same order as those of the first method . 

When one a ttempt to compare Glover' s equa tion 
,-vith the field observations made on the Gibbs farm, 
one encounters the difficulty that the depth to an im
permeable layer is infinite. Considering the decreasing 
effect of the impermeable layer with increasing depth, 
the spacings have been calculated corresponding to the 
rates of drop encountered in the fi eld for several arbi
trari ly chosen different values of d, namely, 4, 8 and 
12 feet. The resulting calcula ted spacings, made with 

TABLE 16. COMPARISON OF GLOVER'S (12) EQUATION WITH 
DATA (44 ) COLLECTED ON THE GIBBS FARM FOR SEVERAL 

ASSUMED DEPTHS d TO AN IMPERMEABLE LAYER . 

Spacing, It. , calcu lated* fo r fi eld data of : 

Actual June 25-27 July 29-Aug. 2 Sept. 9-12 
spacing , depth d (ft.) depth d (ft. ) depth d (ft . ) 

feet 4 8 12 4 8 12 4 8 12 

25 118 159 199 207 286 348 107 146 177 

50 99 137 167 175 237 287 109 148 178 

100 127 169 202 184 241 286 142 186 221 

300 230 298 354 264 342 406 266 347 411 

*Assuming K = 10 feet/ day, f = 0.05 . 

TABLE 17. Sx / S100 RATIOS FOR SPACI NGS PER GLOVER APPLIED 
TO G IBBS DAT A. RATIOS ARE COMPUTED FROM 

DATA IN TABLE 16. 

Sx/ S100 ratios corresponding to fi eld data o f: 

Ac tual Jun e 25-27 July 29-Aug. 2 Sept. 9-12 
spacing , depth d (f t. ) depth d (ft. ) depth d (ft. ) 

feet 4 8 12 4 8 12 4 8 12 

25 0.93 0.94 0.99 1.1 3 1.19 1. 22 0.76 0.79 0.80 

50 0.78 0.8 1 0.83 0.95 0.99 1.00 0.77 0.80 0.8 1 

100 1.00 l. 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

300 1.81 l.76 l.75 1.43 1.42 1.42 1.88 1.87 2.00 

K ta ken as 10 ft. per day and f = 5 percent, give an 
indication ( tables 16 a nd 17 ) of the agreement of the 
theory with field observations and a lso show the ef
fect of the impermeflble layer on the theoretical re ults. 

Inspec tion of the first of these tables show tha t the 
calcu lated spacings are considerably higher than 
the actual, but this could be due to an improper 
choice of K and f. The actual rat io K / f could 
have varied by a factor 2 from the valu e of 200 
used. The spacings, which in the Glover theory va ry 
as the square root of this ratio, thus may be said to be 
of the right order of magnitude, a lthough somewha t 
high. Changing the depth to the assumed impermeable 
!aye~ cha nged the magnitude of the calcula ted spacings 
considerably. In fact, in view of the findings of H oog
houdt a nd V an Dcernter that the effect of an imperme
able layer is important if it is located a t less than one
fourth the sp acing below the drain axes, it is likely 
that even a t 12 feet an impermeable layer has an ef
fect that cannot be neglected. If tha t is the case, the 
spacings are definitely too wide, even if a factor of 1.4 
is a llowed in recognition of the unknown values of K 
a nd f. 

As brought out by the S, / S100 ratios of table 17, 
the calculated pacings also vary far less than the 
corresponding ones in the field case. For example, 
in the second column of the table the values 0.93, 0. 78, 
1.00 and 1.81 are found instead of 0.25, 0.50, 1.00 a nd 
3.00. The choice of the depth of the impermeable layer 
has little effect on these ratios. 

This oompari. on with field data bears out the ea rlier 
conclusion that the neglect of the effect of convergence 
of flow toward the drains in Glover's analysis causes 
spacings calcula ted by his theory to be generally too 
wide and resu lts in an insufficient response to water 
table drawdown rate. 

DISCUSSION OF COMPARISON S OF T H EO RY WITH FIELD 

DATA 

In interpreting da ta by methods such as those u sed 
in the foregoing discussion, one must keep in mind that 
th e theory on ly takes into account the movement of 
water due to g ravitational forces through those regions 
tha t a rc completely water sa tura ted and above a t
mospheri c pressure. In practice, however, there will be 
some f_low_ thro ugh the capilla ry fringe, and the evapo
transpira t10n processes also will cause water removal. 
Either or both of these proce ses could be of consider
able magnitude. 

For the experiment of Kirkham and De Zeeuw, 
seeded to clover, it was reported that evapo-transpira
tion losses were negligib ly sma ll. In the other cases, no 
information is available beyond the fac t that the various 
fi elds were pla nted to different crop . The area on the 
Goodwin farm was in meadow during 1953, the field 
on the Howard County farm in corn, tha t on the Mc
Cormick farm in oats a nd that on the Kneer farm in 
corn. The 1946 crop on the Gibbs experiment was not 
reported. Considering the limited knowledge concern
ing evapo-transpira tion rates, no efforts were made to 
take them into account. Simil arl y, lack of data con
cerning the height of the capilla ry fringe made it im
possible to apply a correction for its effec t. 

Had corrections been made for these effects, then 
the calcul a ted . pacings would h ave been grea ter than 
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those ba ed solely on gravitational flow below the water 
table. 

Furthermore, there i the possibility of error due to 
poor response of the ob. ervation wells, used in obtain
ing the experimental da ta, to changes in the water 
table. There is a lso the inevitable heterogeneity of the 
soi l, here assumed to be homogeneous. Nevertheless, 
the la rge number of observations that were averaged 
to give the da ta used for the analys is and the con
sistency of these averaged results are a convincing in
dication tha t these types of error need not be of undue 
concern. 

Notwithstanding the li mita tions tha t must be put on 
the validity of the comparisons, several conclusions can 
be drawn : When only the relationship of the height of 
the wa ter table midway between dra ins and the spac
ing is con idered, the analyses based on the Dupuit
Forchheimer assumptions, such as Donnan's elli pse 
equation a nd Glover's equation for the changing water 
table, have two serious shortcomings. First, they gener
a lly res ulted in greater pacings than required in the 
range of practical sign ificance. Secondl y, they showed 
a smaller effect of wa ter table behavior on spacing than 
was found in the field . Both devia tions can be explained 
by the fact tha t these analyses fail to take into account 
the effect of the convergence of flow into the drain . 

For the steady sta te problem ( continual steady rain
fall discha rged continually and steadily by the drains ) 
the semi-empirical combination of radial fl ow and 
horizontal fl ow as proposed by H ooghoudt seemed to 
represent the actual condition fairl y well. In view of 
the uncerta inties involved in determining the so il 

characteristics, there i lit tle need for a better approxi
mation. V an Deemter's ana lysi gave results very much 
like those of Hooghoud t. 

In the case of a falling water table, no better solu
tion has as yet been proposed [except for the numerica l 
solution of Kirkh am and Gaskell ( 40) which by uf
fici en t work can be carried to any degree of exact
ness ] than tha t offered by Glover. This sta tement is 
not an acceptance of Glover's equation, but r a ther 
recognition tha t no adequa te solu tion is available a t 
present. The objections rai ed to Walker' s analysis on 
theoretical grounds were ubstantiated by comparison 
with fi eld data.. In a ll cases studied, representing a. 
wide range of soil condition a nd climates, the spacings 
calcul a ted by W alker's equa tion were so much greater 
than the actual spac ings th a t one must conclude that 
the eq ua tion cannot be used even as a rough approxi
mation. The inconsistency in the ratios Sx/ S1oo and 
Sx/ S1 0, when compared to the actual cases, a lso makes 
it doubtful whether the equa tion is valuable for a study 
of the relative effects of differen t pacing . 

As to the agreement between Van Deemter's equa
tions for the shape of the water table and field observa
tion , it may be said that the theory re ulted in higher 
water tables near the drains than were actually ob
served . This is in accordance with the theoretical ob
servation ma.de in an earlier ection that lowering (3 at 
constant y wi ll cause a fl a ttening of the water table. 
The comparison of fi g. 22 was based on the assumption 
(3 = y. Somewhat better agreement would be expected 
if a lower value of (3 had been used . Only by tria l could 
the proper value of (3 be a certained . 

V. SUMMARY AND CONCLUSIONS 

Various approaches to a rational theory of the drain
age problem have been analyzed . In parti cular, the as
sumptions of horizontal and radial fl ow, as they apply 
to the theoretica l trea tment of the problem of seepage 
fl ow to drain tubes and ditches for d rainage of non
ponded water, have been evaluated. Solutions based on 
these assumptions have been analyzed and compared 
both among themselves and with fi eld data. Special a t
tention has been given to the solutions of H ooghoudt, 
V an Deemter, Glover a nd \,Va.Iker. 

It has been shown that a judicious combination of 
the hori zontal and radial flow assumptions can lead to 
a. valuable and reliab le approximation of the actual 
steady state problem, tha t is, the problem of the steady 
removal of steady rain ( or its equivalent ) by drains. 
For routine applications, it was found that the ellipse 
equation of H ooghoudt, in which he introduces an 
"equiva lent depth" for those cases where an imperme
ab le layer is not present near th e bottom of the drains, 
offers one of the most satisfactory existing ways to 
solve field problems of design for the steady sta te. This 
method r equires the availabi lity of H ooghoudt' s tables 
of "equivalent depths" ( Appendix B ), but enables ra
tional de ign with a minimum of calcula tions. The use 
of the ellipse equation by itself (that is, without H oog
houdt' s tables of equivalent depths to the impermeable 
layer ) tends to overdes ign or underdesign, depending 
on whether the fl ow region is t a.ken as the region above 
the dra in axes or the region above the impermeable 
layer. Th is i true because of the omission of a part of 
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the fl ow region in the first case and the neglec t of 
convergence of fl ow toward the dra ins in the second . 

A nomographic solution published by Visser and 
based on a series of relaxation solu tions is even more 
convenient than Hooghouclt's. 

In the more prevalent nonsteady state problem of a 
fa lling water tab le (rainfall having ceased ), it wa, 
found that either the use of the horizontal fl ow as
sumption, as proposed by G lover and by Ferris, or the 
application of radia l flow approxim ations, as used by 
Walker, leads to serious inconsistencies both theore tical
ly and with respect to field data. Wherea neither the 
approach of F erris nor W alker could be advoca ted, 
Glover's solutions did appear to have limited value for 
design purposes. I t is shown that care m ust be used in 
applying his equa tions to cases where the impermeable 
layer is either absent or at relatively great depth. 

The a nalysis of steady state drainage problems by 
the hodograph method was investigated, and Van 
Deemter' s hodograph solu tion was verified. It was 
shown, using this solu tion, tha t the water table in the 
fi eld seldom, if ever, will stand above the tile drains 
but that genera lly the water table will inter ect the tile 
drains. For the water table to stand over the drains, the 
rela tive values of dra in size, hyd raulic conductivity and 
rainfall r a te must be so as to make the ca e of limited 
practical use. A procedure was presented by which the 
shape and position of the water table can be determined 
for a given drain size running just full if the water 



table just touches the top of the drain. The possibility 
was suggested of extending the applicability of the V an 
Deemter solution to ditch drainage. Childs' electric 
analogue studies, based on the same assumptions as 
Van Deemter' s work and restricted to cases where the 
wa ter table stands above the drains, were found to be 
limited in usefulness, as predicted from the theory. 

The field data used for testing the above theories 
were gathered at different times and locations by dif
ferent investigators. The tes ts with the field data sub
stantiated the theoretical findings tha t solutions based 
on the assumption of horizontal flow alone would yield 
resu lts devia ting from observed field measurements by 
an amount a ttributable to the omi sion of the effect of 

convergence of flow toward the drains. The rate of 
change of the spacings calculated on the horizontal flow 
theory was less than tha t of the actual spacings. When 
convergence was ta~en into account by a combination 
of the assumptions of radial flow and horizontal flow, 
the rates of change of the spacings in the field a nd 
those determined theoretically were nearly equal. 

The equations of Van Deemter deviated from the 
field observations because of fai lure to correctly ac
count for the effect of dra in size and pressure and for 
the effec t of an impermeable layer. Walker's radial flow 
equation for the falling water table resulted in spacings 
far greater than found in the field . This again was in 
accordance with the theoretical discussion. 

APPENDIX A 

PROOF OF EQUIVALENCE OF EQS . [36] AND [37] 

It must be shown that 
M 
~ (Q/ M1rK ) (~ In rAmn - ~ ln rBmn ) = 0 [9 1] 
m n n 

n = 0, 1, - 1, 2, -2, ... 

m = 1, 2, 3 ... ,M, (M = even ) 

In fig. 23, M is taken a 10. Any other even number 
could have been used a well. 

Similarly, the second sum on n can be written 

:$~ In rBmn = In II II rBmn 
mn m n 

S S 3S 3S 5S 5S = In ( - . - . - . - . - . - ... ) 
2M 2M 2M 2M 2M 2M 

= 2 ln II 
(2q - 1) S 

q=l 2M Considering the first sum on n, 

~~ In rAmn = ln II II rAmn 
run Dl n 

Substituting these two identities into eq. [91], there 
results 

= In ( ~ . ~ _ 3S 3S _ 5S . 5S _ . _ ) 
2M 2M 2M 2M 2M 2M 

:$ ~ (In rArnn - In rBmn) = 2 In II 
(2p - l )S 

2M m n p=l 

(2p - 1) S 
00 

= 2 ln II 

- 2 ln II 
(2q - l )S 
-----= O. 

q=l 2M 
p=l 2M H ence, eq. [91] has been proved to be correct. 
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APPENDIX B 

ILL USTRATION OF UsE OF Hooc H OU DT's T AB LES F OR C OMP UTATIO N OF DRAI N S P ACI NG 

GENERAL PROCEDU RE 

Designa ting the height of the water table above the 
drain axes midway between drains as m, and immedi
ately over the drains as m 0, eq. [ 11 ] may be rewritten 
with the substitutions H 0 = d + m and h 0 = d + mo 
as [compare (27, p. 593 ) where Q = sl; s is the rain
fall rate and l the spacing] 

S = (8Kd/ Q ) (m - mO ) + (4K / Q ) (m 2 - m2
O). 

In the case of open ditches, d represents the h eight of 
the water level in the ditch above the impermeable 
layer, making m0 = 0. In the case of tile drainage, it 
generally is safe to assume m 0 = 0 as well. Where the 
horizontal flow assumption fails, d may be replaced by 
de, the depth to an "equivalent impermeable layer. " 
Thus, in all cases, the appropria te equa tion may be 
written as 

S = 8Kdem/ Q + 4Km2/ Q. [92 ) 

Hooghoudt' s table 5 (27, pp. 656-694 ) lists values of 
d0 for given S, d and r O, where rO represents the drain 
radius or equivalent ditch dimension. In Hooghoudt' s 
notation, S is replaced by l, d by H and de by cl. 

Given the values of r 0, K , d, Q and m, one assumes 
the proper spacing S, determines with the aid of r 0, d 
and the assumed S the corresponding de and calculates 
the resulting S from eq . [ 92 ] . If the assumed and cal
cula ted S-values do not agree, another trial is made. 

EXAM P LES 

( 1) Given a semi-infinite, homogeneous soil with 
K = 0.24 m./ cl ay; r0 = 4 cm.; desired depth of drains 
80 cm.; precipita tion to be removed, - N = 5 mm. / day; 
minimum permissible distance of water table below 
surface 50 cm. Determine the proper spacing. 

Assuming, in Hooghoudt's notation, l = 10 m ., then 
his ta ble 5.2 gives, with H = oo and r 0 = 0.04, the 
equivalent depth cl = 0.90 m. Q = lN = 0.05 m. 3/ clay 
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per meter of drain . Thus 

l = (8 ) (0. 24 ) (0.90 ) (0.80 - 0.50)/( 0.05 ) 

+ (4 ) (0.24 ) (0.09 )/( 0.05) 

= 10. 37 + 1.73 = 12.10 m. =I= 10 m. 

For a second trial, assume l = 11.5 m . Then Q 
0.0575 m3 ./ day/ m. and d = 1.00 m. Thus 

l = 8 (0.24 ) (1.00) (0. 30)/( 0.05 75) 

+ 4 (0.24) (0.09 )/( 0.0575 ) 

= 10.00 + 1.50 = 11.50 m . 

Since assumed and calcula ted spacings are identical, 
the proper spacing here is 11.50 meters. 

(2 ) Given a homogeneous soil with an impermeable 
layer 2 m. below the surface; K = 3.0 m ./ day; rainfall 
5 mm./ day ; desired drain depth 1.00 m .; minimum al
lowable distance of water table below surface 50 cm. ; 
r 0 = 10 cm. Determine the proper spacing. 

Assume l = 40 m. From table 5.8, with H = 2.0 -
1.0 = 1.0 m., d = 0.96 m . Also, Q = 40 x 0.005 

0.20 m .3/ day/ m. H ence 

l = (8 ) (3 ) (0.96 ) (0.50 )/ (0.20 ) 

+ (4) (3) (0.25) /( 0.20 ) 

= 57.6 + 15.0 = 72.6 m. =I= 40 m. 

Next try l = 50 m. with corresponding cl 
and Q = 0.25 m. 3/ day/ m. Then 

l = (8 ) (3) (0.96 ) (0.50)/( 0.25) 

+ (4) (3 ) (0.25 )/( 0.25 ) 

= 46.0 + 12.0 = 58.0 m. =I= 50 m. 

0.96 m. 

Finally, try l = 54 m. with Q = 27 and cl = 0.96. Then 

l = 42 .7 + 11.1 = 53.8m. 

This is near enough to the assumed 54 m . Thus, the 
spacing required is about 54 meters. 
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