RA
428.3
.U55
R47
no.78-53
1978

A REPORT FROM

The State Hygienic Laboratory

MEDICAL LABORATORIES BUILDING

THE UNIVERSITY OF IOWA IOWA CITY, IOWA 52242

WINTER WATER QUALITY SURVEY OF THE EAST FORK WAPSIPINICON RIVER

#78 - 53

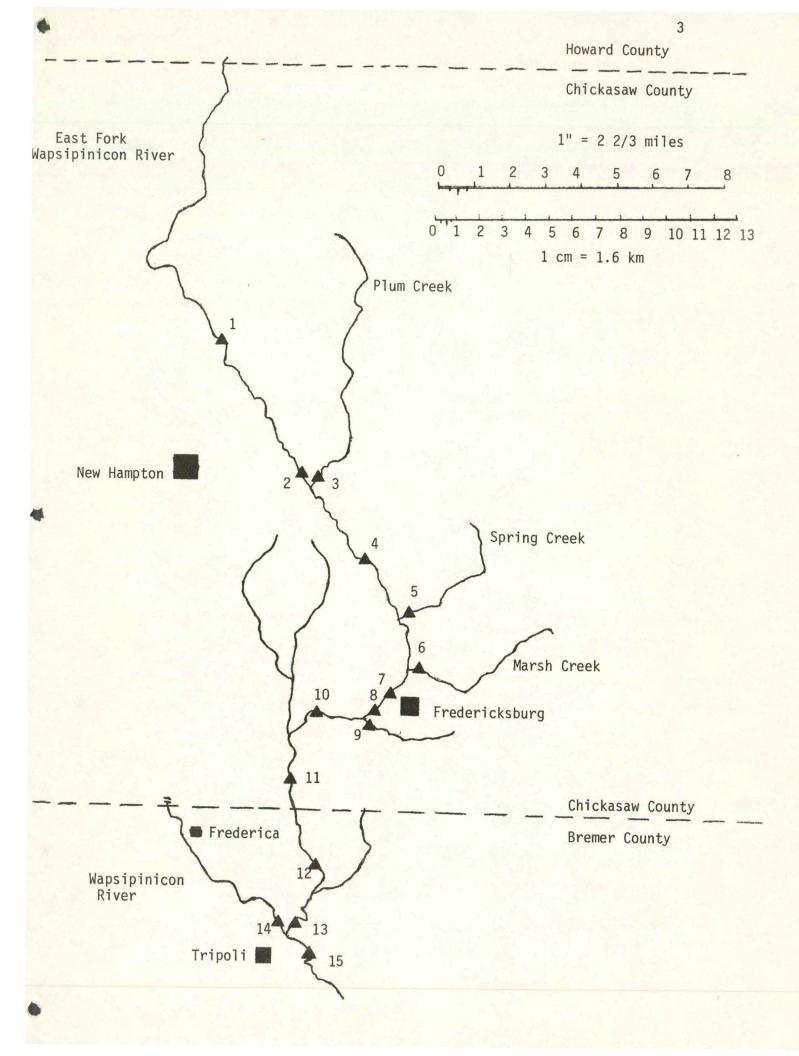
Prepared for the Iowa Department of Environmental Quality by the University of Iowa, State Hygienic Laboratory

The publication of this report was financially aided through a contract between the Iowa Department of Environmental Quality and University of Iowa, State Hygienic Laboratory utilizing funds made available to the Iowa Department of Environmental Quality by the United States Environmental Protection Agency.

> STATE LIBRARY OF IOWA Historical Building DES MOINES, IOWA 50010

ABSTRACT

Water quality of the East Fork Wapsipinicon River was surveyed during winter ice cover conditions. Purpose of the study was to assess the impact of point source waste discharges on water quality. Results of the survey indicate above average water quality on the upper reach (headwaters to Fredericksburg). The point source waste discharges from the Fredericksburg municipal wastewater treatment plant and Meinerz Creamery caused a decline in water quality downstream from Fredericksburg. Dissolved oxygen levels were reduced and the Iowa dissolved oxygen standard may have been violated on the lower reach (Fredericksburg to Tripoli). Compared to previous reports, water quality of the lower reach has not improved.


INTRODUCTION

The East Fork Wapsipinicon River originates in north central Iowa (Howard County) and flows southerly through Chickasaw County joining the Wapsipinicon River in Bremer County. Drainage area for the East Fork Wapsipinicon is relatively small (148 square miles) and consists mostly of agricultural land.

Previous water quality reports (State Health Department 1962 and State Hygienic Laboratory Report #78-2) conducted on the East Fork Wapsipinicon River have indicated poor water quality below Fredericksburg. The primary purpose of this survey was to assess the impact of the Fredericksburg municipal wastewater treatment plant discharge and the Meinerz Creamery discharge on the East Fork Wapsipinicon River.

The East Fork Wapsipinicon River is designated as a class "B" warm water stream from its mouth to above New Hampton in Chickasaw County with the appropriate stream standards applying to that reach.

Water samples were collected on February 7, 1978, preserved and sent to the State Hygienic Laboratory-Des Moines Branch for analysis. Field conditions during the sampling were harsh, air temperature ranged from -15° to -10° C with heavy snow and ice cover. Figure 1 is a map of the sampling area with sampling stations indicated. A complete list of the sampling station locations may be found in Table 1.

TABLE 1

East Wapsipinicon River Basin Sampling Locations 7 February 1978

STATION

LOCATION

1	East Wapsipinicon River	Chickasaw Co. Rd. B-33, T96N, R13W, Section 23
2	East Wapsipinicon River	Chickasaw Co. Hwy 24, T95N, R12W, Section 9
3	Plum Creek	Chickasaw Co. Rd., T95N, R12W, Section 10
4	East Wapsipinicon River	Chickasaw Co. Rd. B-54, T95N, R12W, Section 25/36
5	Spring Creek	Chickasaw Co. Rd. V-48, T94N, R11W, Section 6
6	Marsh Creek	Within town, behind Farmer's Coop Creamery, 600' upstream from railroad bridge
7	East Wapsipinicon River	Chickasaw Co. Hwy 18, T94N, R12W, Section 12/13
	Chickasaw County	Fredericksburg Sewage Treatment Plant, Final effluent
8	East Wapsipinicon River	T94N, R12W, Section 14, 50' upstream from Meinerz effluent confluence
	Chickasaw County	Meinerz Creamery, Final effluent
9	Chickasaw County	Meinerz Creamery, T94N, R12W, Section 14, approximately 30' from confluence with East Wapsipinicon River
10	East Wapsipinicon River	Chickasaw Co. Rd., T94N, R12W, Section 16/21
11	East Wapsipinicon River	Chickasaw Co. Rd., T94N, R12W, Section 34
12	East Wapsipinicon River	Bremer Co. Rd. C-18, T93N, R12W, Section 11/14
13	East Wapsipinicon River	Bremer Co. Hwy 93, T93N, R12W, Section 23/26
14	Wapsipinicon River	Bremer Co. Hwy 93 T93N, R12W, Section 27
15	Wapsipinicon River	Bremer Co. Rd. C-33, T92N, R11W, Section 18/19

Stream flow measurements were made at stations 7 and 15 on the East Fork Wapsipinicon River and are listed below:

	Feb. 7, 1978	7 day Q2	Drainage Area
East Fork Wapsipinicon near Fredericksburg	13 cfs	3.6 cfs	83.5 sq. mi.
East Fork Wapsipinicon near Tripoli	23 cfs	7.4 cfs	148 sq. mi.

Stream discharge during the survey was three to four times greater than the calculated 7 day 2 year low flow.

RESULTS AND DISCUSSION

Selected chemical and bacteriolocial data for the East Fork Wapsipinicon river have been tabulated and will be found in Table 2. For discussion purposes the East Fork Wapsipinicon may be divided into two segments, the reach above Fredericksburg and the reach in and below Fredericksburg. Sampling stations 1 through 7, located upstream from Fredericksburg, had above average water quality for winter conditions. The organic nitrogen and ammonia nitrogen values were low as was the total organic carbon and total phosphate. Dissolved oxygen values were adequate, approaching the 90% saturation level. Fecal coliform levels were in expected ranges for winter ice cover conditions.

Between stations 7 and 8, the Fredericksburg wastewater treatment plant discharges to the river. Indicator parameters of organic wastes (ammonia nitrogen, organic nitrogen, phosphate and chloride) increased slightly at station 8 in response to the municipal waste discharge from Fredericksburg. Located between stations 8 and 10 was a small stream that transports the waste discharge from Meinerz Creamery. Station 9, located on the small stream just before it joined with the East Fork Wapsipinicon, exhibited very poor water quality as indicated by elevated levels of organic nitrogen and ammonia nitrogen, total organic carbon, total

TABLE 2

Selected Chemical and Bacteriological Data from the East Wapsipinicon River

February 7, 1978

Station	Nitr Organic	ogen Ammonia	Dissolved Oxygen	Total Organic Carbon	Total Phosphate	Chloride	Fecal Coliforms (organisms/100 ml)
1	0.01	0.20	11.8	8.8	0.08	13	40
2	0.02	0.17	11.6	7.9	0.09	14	20
3 Plum Creek	0.14	0.12	12.8	6.3	0.09	14	10
4	0.02	0.20	11.5	7.6	0.08	14	80
5 Spring Creek	0.03	0.12	13.1	7.2	0.11	14	10
6 Marsh Creek	0.14	0.25	12.7	9.8	0.14	22	890
7	0.05	0.21	11.3	8.3	0.10	16	140
Fredericksburg WWTP	13	10	3.2	88.0	14	50	880,000
8	0.58	0.55	9.9	9.8	0.61	18	1,300
Meinerz Creamery	17	10	0.0	146.1	31	1100	1,900
9	13	7.5	5.1	112.0	25	870	380
10	0.55	0.91	6.0	14.6	1.3	52	5,100
11	0.93	0.87	4.2	9.6	1.0	46	1,900
12	0.43	0.71	4.1	9.1	0.80	44	340
13	0.38	0.68	4.0	10.5	0.75	44	210
14	0.11	0.80	6.5	5.2	0.26	19	20
15	0.50	0.75	6.4	10.6	0.29	28	40

phosphate and chloride. The impact of this tributary stream on the river can be measured by comparing chemical values from station 8 to station 10. Increases in all organic waste indicator parameters except organic nitrogen and a significant decline in dissolved oxygen occurred at station 10, compared to station 8. The remaining stations on the East Fork Wapsipinicon River (11-13) demonstrated a gradual decline in the organic waste parameters indicating a corresponding gradual return to baseline water quality. The dissolved oxygen values at stations 11, 12 and 13 were low (4.2, 4.1, 4.0 mg/l respectively) and were probably in violation of the Iowa Water Quality Standard for dissolved oxygen. The low dissolved oxygen values at stations 11, 12 and 13 are a result of the high oxygen demanding wastes being discharged by Fredericksburg and Meinerz Creamery, depleting the stream dissolved oxygen.

Fredricksburg is in Step I of the construction grants program and is completing their inflow and infiltration report. Meinerz Creamery, according to the IDEQ staff is under executive order to meet their effluent limitations. Effluent sampling is being conducted by both IDEQ and EPA.

Water samples for trace metals analysis were collected at stations 1, 10 and 13. The only reportable trace metal was a copper value of 0.06 mg/l at station 13, which was in violation of the Iowa Standard of 0.02 mg/l. The elevated copper value cannot be attributed to any point source at this time and may be a background level for that area.

Stream samples were collected at station 7 and 15 for analysis of ortho-nitroaniline (ONA), an organic compound that has been found in sections of the Cedar River. Results of the analysis show no detectable ONA (less than 10 parts per trillion) in either of the samples.

SUMMARY AND CONCLUSIONS

Results of a winter stream quality survey of the East Fork Wapsipinicon River indicate above average water quality upstream from Fredericksburg, Iowa. The point source waste discharges from the Fredricksburg municipal wastewater treatment plant and Meinerz Creamery had a significant impact on stream water quality.Violation of the Iowa water quality standard for dissolved oxygen may have occurred at three sampling stations downstream from Fredericksburg. Compared to previous reports, water quality downstream from Fredericksburg has not improved and may be classified as below average.

a Kenned Jack O. Kennedy

Limnologist

WATER QUALITY REPORT

STATE HYGIENIC LABORATORY, Des Moines Branch The University of Iowa E 7th & Court Bm 405 Des Moines Iowa 50309

WATER GOALIN		E 7th & Court, Rm 405, Des Moines, Iowa 50309		
Town Source	E. Wapsipinicon River	New Hampton E. Wapsipinicon River	New Hampton Plum Creek	
Specific Location	Chickasaw Co.Rd. B-33 T96N, R13W, Sec. 23	Chickasaw Co. Hwy 24, T95N, R12W, Sec. 9	Chickasaw Co. Rd., T95N, R12W, Sec. 10	
Date Collected Date Received	7 February 1978 8 February 1978	7 February 1978 8 February 1978	7 February 1978 8 February 1978	
Lab Number	3753	3754	3755	
Collection Time	0950	FIELD DATA	1040	
Temperature Dissolved Oxygen	Air-15.0°C, Water 0°C	Air-11 ⁰ C, Water 0 ⁰ C	Air-11 ⁰ C, Water 0 ⁰ C	
Fecal Coliform/100 ml	40 BAC	CTERIOLOGICAL EXAMINATION	1 10	
		L ANALYSIS (as mg/l unless design	and a second	
Conductance (micromhos) MBAS (as LAS)	410	380	430	
pH (units)	7.6	7.45	7.7	
Alkalinity: P	none 129	none 117	none 145	
NITROGEN: Organic N	0.01	0.02	0.14	
Ammonia N Nitrite N	0.20	0.17	0.12	
Nitrate N	3.6	3.7	5.3	
Nitrate as NO ₃	252	050	0.00	
RESIDUE: Total	253	250	266	
Fixed Volatile	214	205	218	
Filtrable Residue T	253	243	265	
F	214 39	203	218 47	
Nonfiltrable Residue T	0	7	1	
F V	0	2	Ö	
Settleable Matter (ml/l)	0	5		
PHOSPHATE: Filtrable P	0.04	0.03	0.03	
Total P	0.08	0.09	0.09	
Dissolved Oxygen	11.8	11.6	12.8	
BOD	2	2	2	
COD	6	7	5	
Grease or Oil		A Maria and Andrews		
Turbidity (JTU) Total Hardness (as CaCO ₃) Calcium (Ca ⁺⁺)	1.7	4.5	2.1	
Magnesium (Mg ++)				
Chloride (CI) Sulfate (SO ₄ ⁻)	13	14	14	
tal Organic Carbon	8.8	7.9	6.3	
		Sec. 1		
REMARKS:	100% ice cover	100% ice cover	100% ice cover	
COLLECTOR	Kennedy/Meierhoff/Pri	JJ WJ Hau	sler, Jr., PhD	
REPORT TO	Limnology Division	STATE LIBRARY OF IDWACT Historical Building		
	Des Moines La I	DES MOINES, IOWA 50319	MAR 1 5 1978	

•		STATE HYGIENIC LA	10 BORATORY, Des Moines Branch	
WATER QUALIT	TY REPORT	The University of Iowa E 7th & Court, Rm 405, Des Moines, Iowa 50309		
Town Source Specific Location	E. Wapsipinicon River Chickasaw Co.Rd. B-54, T95N,R12W, Sec. 25/36	Fredericksburg Spring Creek	Fredericksburg Marsh Creek Within town, behind Farmer's Co-op Creamery, 600'up- stream from railroad bridge	
Date Collected Date Received Lab Number	7 February 1978 8 February 1978 3756	7 February 1978 8 February 1978 3757	7 February 1978 8 February 1978 3758	
Collection Time pH	1110	FIELD DATA	1150	
Temperature Dissolved Oxygen	Air-10 [°] C, Water 0 [°] C	Air-10 [°] C, Water 0 [°] C	Air-10 ⁰ C, Water 0 ⁰ C	
Fecal Coliform/100 ml	BA0	CTERIOLOGICAL EXAMINATION	1 890	
Conductance (micromhos) MBAS (as LAS)		L ANALYSIS (as mg/l unless design 460		
pH (units) Alkalinity: P	7.5 none 128	7.8 none 142	7.7 none 147	
NITROGEN: Organic N Ammonia N Nitrite N	0.02 0.20	0.03 0.12	0.14 0.25	
Nitrate N Nitrate as NO ₃	4.9	7.2	7.0	
RESIDUE: Total Fixed Volatile	252 204	280 221	323 264	
Filtrable Residue T F	48 251 204	<u>59</u> 275 221	59 322 264	
Nonfiltrable Residue T F V	47 1 0	54 5 0 5	58 1 0	
Settleable Matter (ml/l) PHOSPHATE: Filtrable P	0.02	0.04	0.06	
Total P Dissolved Oxygen	0.02	0.11 13.1	0.14	
BOD COD	6	2	2	
Grease or Oil <u>Turbidity (JTU)</u> Total Hardness (as CaCO ₃) Calcium (Ca ⁺⁺)	2.9	3.8	2.5	
Magnesium (Mg ⁺⁺) Chloride (Cl ⁻)	14	14	22	
Sulfate (SO ₄ ⁻) al Organic Carbon	7.6	7.2	9.8	
REMARKS:	100% ice cover	100% ice cover	Open water	
COLLECTOR REPORT TO	Kennedy/Meierhoff/Pri Limnology Division	11 WJ Hau Directo	sler, Jr., PhD or	
•	SHL		MARCE 5 1978	

Dac Mainas Ta

WATER QUALITY REPORT

STATE HYGIENIC LABORATORY, Des Moines Branch The University of Iowa

11

own purce predic LocationFredericksburg E. Wapstpinicon River (Trickasaw Co. Hwy 18, T94N, R12W, Sec. 12/13Fredericksburg STP Final effluentFredericksburg STP T94N, R12W, Sec. 14, 50 upstream from Meinerz effluent confluence ate Collected 3 February 1978 8 February 1978 9 3760Fredericksburg Stebruary 1978 8 February 1978 8 February 1978 8 February 1978 8 February 1978 8 February 1978 9 3761Fredericksburg 1200 1430ollection Time H emperature issolved Oxygen1240 Air-10°C, Water 0°C1430 862,0001430oductance (micromhos) BAS (as LAS) H (units)7.4 17.5 1317.5 3647.35 133 138oductance (micromhos) BAS (as LAS) H (units)7.4 17.5 1317.5 3647.35 133 10.55Nitrate N Nitrate N Nitrate N Nitrate N Nitrate N Nonfiltrable Residue T F 0261 263 276758 276 273 <br< th=""><th>WATER QUALIT</th><th>TY REPORT</th><th colspan="3">The University of Iowa E 7th & Court, Rm 405, Des Moines, Iowa 50309</th></br<>	WATER QUALIT	TY REPORT	The University of Iowa E 7th & Court, Rm 405, Des Moines, Iowa 50309		
nate Collected 7 February 1978 8 February 1978 7 February 1978 7 February 1978 8 February 1978 7 February 1978 8 February 1978 8 February 1978 7 February 1978 8 February 1978 8 February 1978 7 February 1978 8 February 1978 7 February 1978 8 7 6 6	own ource Specific Location	E. Wapsipinicon River Chickasaw Co. Hwy 18,	Fredericksburg Fredericksburg STP Final effluent	Fredericksburg E. Wapsipinicon River T94N,R12W, Sec. 14, 50 upstream from Meinerz	
Generature issolved Oxygen 1240 FIELD DATA 1430 H Air-10°C, Water 0°C Air-11°C, Water 7°C Water 0°C $air-10°C$, Water 0°C Air-11°C, Water 7°C Water 0°C $air-10°C$, Water 0°C Air-11°C, Water 7°C Water 0°C $air-10°C$, Water 7°C $air-10°C$, Water 7°C 1.300 $air-10°C$, Water 7°C $air-10°C$, Water 7°C 1.300 $air-10°C$, Water 7°C $air-10°C$, Water 7°C 1.300 $air-10°C$, Water 7°C $air-10°C$, Water 7°C 1.300 $air-10°C$, Water 7°C $air-10°C$, Water 7°C 1.300 $air-10°C$, Water 7°C $air-10°C$, Water 7°C 1.300 $air-10°C$, Water 7.5 7.35 7.35 $air-10°C$, $air 7.5 7.35 7.35 air-10°C 7.4 7.5 7.35 air 1.33 0.58 0.55 air-10°C 0.05 133 0.58 air 1.33 600 229 229 V 213 600 229 V $	Date Collected Date Received ab Number	8 February 1978	8 February 1978	7 February 1978 8 February 1978	
emperature issolved Oxygen Air-10°C, Water 0°C Air-11°C, Water 7°C Water 0°C ead Coliform/100 ml 140 880,000 1,300 onductance (micromhos) 420 960 450 IBAS (as LAS) 7.4 7.5 7.35 Ikalinity: P none none none T 131 364 138 ITROGEN: Organic N 0.055 13 0.58 Ammonia N 0.21 10 0.55 Nitrate N 5.4 <0.1	Collection Time		FIELD DATA		
BACTERIOLOGICAL EXAMINATION ecal Coliform/100 ml 140 R30,000 1,300 CHEMICAL ANALYSIS (as mg/l unless designated otherwise) onductance (micromhos) 420 960 450 CHEMICAL ANALYSIS (as mg/l unless designated otherwise) onductance (micromhos) 420 960 450 IMAGE ANALYSIS (as mg/l unless designated otherwise) Onductance (micromhos) BAS (as LAS) 7.4 7.5 7.35 IRROEN: Organic N 0.055 13 0.58 Ammonia N 0.21 10 0.555 Nitrate N 5.4 <0.1 5.1 Nitrate as NO3	emperature	Air-10 ⁰ C, Water 0 ⁰ C	Air-11 ⁰ C, Water 7 ⁰ C	Water O ^O C	
onductance (micromhos) 420 960 450 IBAS (as LAS) 7.4 7.5 7.35 It(units) 7.4 7.5 7.35 It(units) 7.4 7.5 7.35 It(units) 0.05 13 0.58 Ammonia N 0.21 10 0.55 Nitrite N 0.21 10 0.55 Nitrate as NO _a	ecal Coliform/100 ml	140	880,000	and the second se	
Ikalinity: P none non none none	Conductance (micromhos) MBAS (as LAS)				
HTROGEN: Organic N Ammonia N Nitrite N Nitrite N 0.05 13 0.58 Ammonia N Nitrite N 0.21 10 0.55 Nitrate N 5.4 $\langle 0.1 \rangle$ 5.1 Nitrate NO3	H (units) Alkalinity: P T	none	none	none	
Nitrate as NO3 261 758 276 EESIDUE: Total 261 758 276 Fixed 213 600 229 Volatile 48 158 47 Filtrable Residue T 260 694 273 F 213 600 229 V 47 94 44 Nonfiltrable Residue T 1 64 3 F 0 0 0 0 V 1 64 3 0 V 1 64 3 0 0 V 1 64 3 0 0 0 V 1 64 3 0<		0.05	13	0.58	
Fixed 213 600 229 Volatile 48 158 47 Filtrable Residue T 260 694 273 F 213 600 229 V 47 94 44 Nonfiltrable Residue T 1 64 3 F 0 0 0 0 V 1 64 3 0 V 1 64 3 0 0 V 1 64 3 0 0 0 V 1 64 3 0 <td></td> <td>5.4</td> <td><0.1</td> <td>5.1</td>		5.4	<0.1	5.1	
Filtrable Residue T 260 694 273 F 213 600 229 V 47 94 44 Nonfiltrable Residue T 1 64 3 F 0 0 0 0 V 1 64 3 F 0 0 0 0 V 1 64 3 ettleable Matter (ml/l) 0.01 12 0.49 HOSPHATE: Filtrable P 0.01 14 0.61 Dissolved Oxygen 11.3 3.2 9.9 60D 2 100 5 COD 10 250 8 Op 10 250 8 OD 2 100 5 OD 10 250 8 Outbility (JTU) 3.0 29 3.3 Agenesium (Ga ⁺⁺) 16 50 18 Magnesium (Mg ⁺⁺) 16 50 18		213	600	229	
Nonfiltrable Residue T 1 64 3 F 0 0 0 0 V 1 64 3 ettleable Matter (ml/l) HOSPHATE: Filtrable P 0.01 12 0.49 Total P 0.10 14 0.61 Dissolved Oxygen 11.3 3.2 9.9 BOD 2 100 5 COD 10 250 8 Code Grease or Oil 3.0 29 3.3 Otal Hardness (as CaCO ₃) 3.0 29 3.3 Cola (Ca ⁺⁺) 16 50 18 Gulfate (SO ₄ ⁻) 16 50 18	F	260 213	694 600	229	
ettleable Matter (ml/l) 0.01 12 0.49 HOSPHATE: Filtrable P 0.10 14 0.61 Dissolved Oxygen 11.3 3.2 9.9 BOD 2 100 5 COD 10 250 8 COD 10 250 8 Code 10 29 3.3 Code 3.0 29 3.3 Code 16 50 18	F	1 0	64 0	3 0	
Total P 0.10 14 0.61 Dissolved Oxygen 11.3 3.2 9.9 BOD 2 100 5 COD 10 250 8 CoD 10 250 8 CoD 10 29 3.3 Cotal Hardness (as CaCO ₃) 3.0 29 3.3 Cotal Hardness (as CaCO ₃) 16 50 18	Settleable Matter (ml/l)	0.01			
BOD 2 100 5 COD 10 250 8 Concernment 3.0 29 3.3 Cotal Hardness (as CaCO ₃) 3.0 29 3.3 Cotal Hardness (as CaCO ₃) 16 50 18 Chloride (Cl) 16 50 18	Total P	0.10	14		
Grease or Oil Curbidity (JTU) 3.0 29 3.3 Cotal Hardness (as CaCO3) Calcium (Ca ⁺⁺) Magnesium (Mg ⁺⁺) 16 50 18 Chloride (Cl) 16 50 18	BOD			5	
Curbidity (JTU) 3.0 29 3.3 Cotal Hardness (as CaCO3) Calcium (Ca ⁺⁺) Magnesium (Mg ⁺⁺) 16 50 18 Chloride (Cl7) 16 50 18	COD	10	250	8	
Chloride (Cl) 16 50 18 Sulfate (SO_4^-)	Furbidity (JTU) Fotal Hardness (as CaCO ₃) Calcium (Ca ⁺⁺)	3.0	29	3.3	
	Chloride (CI ⁻)	16	50	18	
		8.3	88.0	9.8	

COLLECTOR REPORT TO Kennedy/Meierhoff/Prill Limnology Division SHL Des Moines, Ia.

WJ Hausler, Jr., PhD Director

MAR 1 5 1971

WATER QUALIT	TY REPORT	The University of Iowa E 7th & Court, Rm 405, Des Moines, Iowa 50309		
Town Source Specific Location	Fredericksburg Meinerz Creamery Final effluent	Fredericksburg Meinerz Creamery T94N,R12W, Sec. 14, about 30' from con- fluence w/E. Wapsipinic	Fredericksburg E. Wapsipinicon River Chickasaw Co.Rd., T94N R12W, Sec. 16/21	
Date Collected Date Received Lab Number	7 February 1978 8 February 1978 3762	7 February 1978 8 February 1978 3763	7 February 1978 8 February 1978 3764	
Collection Time pH Temperature	1:15 Air-11 ⁰ C, Water O ⁰ C	FIELD DATA 1445 Air-11 ⁰ C, Water 0 ⁰ C	1530 Air-11 ⁰ C, Water O ⁰ C	
Dissolved Oxygen	BA	CTERIOLOGICAL EXAMINATION		
Fecal Coliform/100 ml	1,900	380	5,100	
Conductance (micromhos) MBAS (as LAS)		AL ANALYSIS (as mg/l unless design 3800	nated otherwise) 590	
pH (units) Alkalinity: P T	7.6 none 668	7.5 none 535	7.4 none 155	
NITROGEN: Organic N Ammonia N Nitrite N	17 10	13 7.5	0.55 0.91	
Nitrate N Nitrate as NO ₃	0.1	0.5	4.7	
RESIDUE: Total Fixed Volatile	2870 2620 250	2220 2000 220	292 225 67	
Filtrable Residue T F V	2820 2620	2200 2000	290 225	
Nonfiltrable Residue T F	200 48 0	200 24 0	65 2 0	
V Settleable Matter (ml/l)	48	24	2	
PHOSPHATE: Filtrable P Total P		20 25	1.1	
Dissolved Oxygen BOD	0.0 130	5.1 80	6.0 6	
COD	448	36	24	
Grease or Oil <u>Turbidity (JTU)</u> Total Hardness (as CaCO ₃) Calcium (Ca ⁺⁺) <u>Magnesium (Mg⁺⁺)</u>	35	24	4.2	
Chloride (Cl ⁻) Sulfate (SO ₄)	1100	870	52	
	146.1	112.0	14.6	

REMARKS:

100% ice cover

100% ice cover

12

STATE HYGIENIC LABORATORY, Des Moines Branch

COLLECTOR REPORT TO Kennedy/Meierhoff/Prill Limnology Division SHL Des Moines, Ia.

WJ Hausler, Jr., PhD Director

WATER QUALITY REPORT

13 STATE HYGIENIC LABORATORY, Des Moines Branch The University of Iowa

		E 7th & Court, Rm 405, Des Moines, Iowa 50309		
Town Source Specific Location	Fredericksburg E. Wapsipinicon River Chickasaw Co.Rd., T94N,R12W, Sec. 16/21	East Wapsipinicon River Chickasaw Co.Rd., T94N,R12W, Sec. 34		
Date Collected Date Received Lab Number	7 February 1978 8 February 1978 3765	7 February 1978 8 February 1978 3766	7 February 1978 8 February 1978 3767	
Collection Time pH	1530	FIELD DATA	1630	
Temperature Dissolved Oxygen	Air-11 ⁰ C, Water 0 ⁰ C	Air-11 ⁰ C, Water 0 ⁰ C	Air-12 ⁰ C, Water 0 ⁰ C	
Fecal Coliform/100 ml	4,200 BAC	CTERIOLOGICAL EXAMINATION	340	
Conductance (micromhos) MBAS (as LAS)	CHEMICA 560	L ANALYSIS (as mg/l unless design 570	540	
pH (units)	7.3	7.25	7.3	
Alkalinity: P	none	none	none 147	
T NUTBOCEN: Organia N	155 0.78	150	0.43	
NITROGEN: Organic N Ammonia N Nitrite N	0.90	0.87	0.71	
Nitrate N	4.7	4.3	4.1	
Nitrate as NO ₃ RESIDUE: Total	242	222	227	
Fixed Volatile	343 292 51	332 287 45	327 278 49	
Filtrable Residue T F V	342 292	332 287	323 277	
Nonfiltrable Residue T F	50	45	46	
r V	0	0	3	
Settleable Matter (ml/l)				
PHOSPHATE: Filtrable P Total P	1.1	0.83	0.70	
Dissolved Oxygen BOD	6.1 6	4.2	4.1	
COD	18	18	16	
Grease or Oil Turbidity (JTU)	4.1	3,5	4.2	
Total Hardness (as CaCO ₃) Calcium (Ca ⁺⁺) Magnesium (Mg ⁺⁺)		5.5		
Chloride (CI ⁻)	51	46	44	
Sulfate (SO ₄ ⁻) tal Organic Carbon	13.3	9.6	9.1	
REMARKS:	100% ice cover		100% ice cover	

COLLECTOR REPORT TO

Kennedy/Meierhoff/Prill Limnology Division SHL Des Moines La WJ Hausler, Jr., PhD Director

MAR 1 5 1978

STATE HYGIENIC LABORATORY, Des Moines Branch The University of Iowa

		E 7th & Court, Rm 405, Des Moines, Iowa 50309		
Town				
Source	E. Wapsipinicon River	Wapsipinicon River	Wapsipinicon River	
Specific Location	Bremer Co. Hwy 93,	Bremer Co. Hwy 93,	BremerCo. Rd. C-33, T92N,	
Specific Location	T93N, R12W, Sec. 23/26		R11W, Sec. 18/19	
Data Callestad	7 February 1978	7 February 1978	7 February 1978	
Date Collected	8 February 1978	8 February 1978	8 February 1978	
Date Received	3768	3769	3770	
Lab Number	3708	FIELD DATA	5776	
Collection Time	1700	1730	1745	
pH		0	0 0	
Temperature	Air-12°C, Water 0°C	Air-12 [°] C, Water 0 [°] C	Air-13 ⁰ C, Water 0 ⁰ C	
Dissolved Oxygen				
		TERIOLOGICAL EXAMINATION		
Fecal Coliform/100 ml	210	20	40	
States and the second second		L ANALYSIS (as mg/l unless design		
Conductance (micromhos)	550	450	480	
MBAS (as LAS)				
pH (units)	7.2	7.3	7.3	
Alkalinity: P	none	none	none	
Т	146	162	155	
NITROGEN: Organic N	0.38	0.11	0.50	
Ammonia N	0.68	0.80	0.75	
Nitrite N	0.00			
Nitrate N	2.2	2.5	2.9	
Nitrate as NO ₃				
RESIDUE: Total	328	268	279	
Fixed	284	224	237	
Volatile	44	44	42	
Filtrable Residue T	327	268	279	
F	284	224	237	
v	43	44	42	
Nonfiltrable Residue T		0	0	
F	0	0	0	
v	1	0	0	
Settleable Matter (ml/l)	1	· · · · · · · · · · · · · · · · · · ·		
PHOSPHATE: Filtrable P	0.64	0.08	0.12	
Total P	0.75	0.26	0.29	
Dissolved Oxygen	4.0	6.5	6.4	
BOD	3	2	2	
000	5			
COD	13	13	12	
Grease or Oil				
Turbidity (JTU)	4.4	4.7	6.7	
Total Hardness (as CaCO ₃)			and they want to be a set of the	
Calcium (Ca ⁺⁺)				
Magnesium (Mg ++)		and the second second second	Read and the second second second	
Chloride (CI)	44	19	28	
Sulfate (SO ₄ ⁻)	and the second second second			
otal Organic Carbon	10.5	5.2	10.6	
			and the second sec	
the second se				
REMARKS:	100% ice cover	100% ice cover	100% ice cover	
COLLECTOR	Kennedy/Meierhoff/Pri]] WJ Haus	sler, Jr., PhD	
			sler, Jr., PhD	
COLLECTOR	Kennedy/Meierhoff/Pri]] WJ Haus	sler, Jr., PhD	

	ALITY REPORT ETALS	The University of Iowa 515:281-5371	AATORY, Des Moines Branch
Town Source Specific Location	E. Wapsipinicon River Chickasaw Co. Rd. B33 T96N, R13W, Sec. 23	Fredericksburg E. Wapsipinicon River Chickasaw Co. Rd. T94N, R12W, Sec. 16/21	East Wapsipinicon River Bremer Co. Hwy 93, T93N, R12W, Sec. 23/26
Date Collected Date Received Lab Number	7 February 1978 8 February 1978 3753	7 February 1978 8 February 1978 3764	7 February 1978 8 February 1978 3768
	METALS ANALYSIS (as mg/	/I unless designated otherwise)	
Arsenic	<0.01	<0.01	<0.01
Barium	<0.1	<0.1	<0.1
Cadmium	<0.01	<0.01	<0.01
Chromium, Total	<0.01	<0.01	<0.01
Chromium, Hexavalent			and surface of the second
Copper	<0.01	<0.01	0.06
Lead	<0.01	<0.01	<0.01
Mercury	<0.001	<0.001	<0.001
Nickel	<0.1	<0.1	<0.1
Selenium	<0.01	<0.01	<0.01
Silver	<0.01	<0.01	<0.01
Zinc	<0.01	<0.01	0.01
	Contraction Contraction	Wedges Charles in	

REMARKS:

COLLECTOR REPORT TO Kennedy/Meierhoff/Prill Limnology Division SHL Des Moines, Ia.

Date Reported

MAR 1 5 1978

W.J. Hausler Jr., Ph.D. Director

STATE HYGIENIC LABORATORY, Des Moines Branch