# FISH POPULATIONS OF IOWA RIVERS AND STREAMS

QL 628

.I5 P37

1990

**Technical Bulletin No. 3** 



# FISH POPULATIONS OF IOWA RIVERS AND STREAMS

**Technical Bulletin No. 3** 





Iowa Department of Natural Resources Larry J. Wilson, Director May 1990



### ABSTRACT

Fish populations at 69 locations on streams throughout Iowa were sampled with rotenone. The objective of this study was to determine species composition, fish densities, standing stocks, and trophic structure. The study also determined the influence of habitat on fish communities and provided direction to future management. Streams were segregated by geologic region, size of drainage area and habitat quality. Habitats were classified as poor, fair and good. Streams in the Iowan Surface region produced highest species diversity with 9 families and 59 species. Total standing stocks ranged from 10.9 lbs/ac in a channelized reach of the Chariton River (Southern Iowa Drift Plain) to almost 2,300 lbs/ac in the East Fork Des Moines River (Des Moines Lobe). Analysis of variance comparisons of the means showed habitat quality was the main factor for significant differences (P<0.01) between total standing stocks of fish. Further comparisons indicated there was no difference in total standing stocks of fish within and between landforms. Altered streams had significantly lower standing stocks of fish (P<0.05) than unaltered sites. Channel catfish was the most widely distributed and abundant sport fish. Headwater streams were important to sport fish, while habitat quality and diversity was the most important factor to fish abundance and biotic diversity.

# Fish Populations of Iowa Rivers and Streams

by Vaughn L. Paragamian

Technical Bulletin No. 3 Fish and Wildlife Division Iowa Department of Natural Resources Wallace State Office Bldg. Des Moines, Iowa 50319-0034 May 1990

# CONTENTS

## page

6

| INTRODUCTION                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STUDY AREAS.8Paleozoic Plateau.8Iowan Surface.8Des Moines Lobe.8Northwest Iowa Plains.8Southern Iowa Drift Plain.8                                                                                                                                                   |
| METHODS9Sampling Sites9Sampling Methods10Measurement of Environmental Parameters11Data Analysis11                                                                                                                                                                    |
| <b>RESULTS</b> 11Fish, Fauna and Landforms11Fish Populations and Standing Stocks11Paleozoic Plateau11Iowan Surface12Des Moines Lobe12Northwest Iowa Plains12Southern Iowa Drift Plain13Habitat Quality and Landform13Quantitative Data Analysis14Trophic Structure14 |
| DISCUSSION                                                                                                                                                                                                                                                           |
| MANAGEMENT CONSIDERATIONS                                                                                                                                                                                                                                            |
| ACKNOWLEDGEMENTS                                                                                                                                                                                                                                                     |

# LIST OF FIGURES

 Figure 1. Location of stream and river fish populations sampled with rotenone, 1983 through 1985, and location of the 5 geologic regions in Iowa
 9

 Figure 2. Mean trophic structure of fish (lb/ac) in Iowa rivers and streams
 14

.

page

page

page

# LIST OF TABLES

# LIST OF APPENDIX TABLES

| Appendix A. Fish sample sites listed by landform, drainage basin, and description, 1983-1985. Drainage basins are Northeast (NE), Iowa-Cedar (IC), Des Moines (DM), Western (W), Skunk (SK), and Southern (S) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Appendix B. Species composition of fish sampled from Iowa streams traversing five geologic landforms                                                                                                          |
| Appendix C. Numerical density and standing stock of four species<br>and six families of fish found in two streams in the Paleozoic<br>Plateau landform                                                        |
| Appendix D. Numerical density and standing stock of seven species<br>and eight families of fish found in five streams <75 sq. mi. of<br>drainage in the Iowan Surface landform                                |
| Appendix E. Numerical density and standing stock of six species<br>and seven families of fish found in six streams 75-599 sq. mi. of<br>drainage in the Iowan Surface landform                                |
| <b>Appendix F.</b> Numerical density and standing stock of six species and five families of fish found in three streams $\geq$ 600 sq. mi. of drainage in the Iowan Surface landform                          |
| Apendix G. Numerical density and standing stock of seven species and nine families of fish found in fourteen streams 75-599 sq. mi. of drainage in the Des Moines Lobe landform                               |

# LIST OF APPENDIX TABLES

| <b>Appendix H.</b> Numerical density and standing stock of seven species and six families of fish found in five streams $\geq 600$ sq. mi. of drainage in the Des Moines Lobe landform                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Appendix I. Numerical density and standing stock of two speciesand nine families of fish found in four streams in the NorthwestIowa Plains landform35                                                                                                        |
| Appendix J. Numerical density and standing stock of four species and eight families of fish found in nine streams < 75 sq. mi. of drainage in the Southern Iowa Drift Plain landform                                                                         |
| <b>Appendix K.</b> Numerical density and standing stock of four species and seven families of fish found in eight streams 75-599 sq. mi. of drainage in the Southern Iowa Drift Plain landform                                                               |
| <b>Appendix L.</b> Numerical density and standing stock of four species and nine families of fish found in four streams $\geq 600$ sq. mi. of drainage in the Southern Iowa Drift Plain landform                                                             |
| <b>Appendix M.</b> Mean density (N/mi) of seven sportfish, other fish <sup>a</sup> , and total fish by land form and stream drainage area. Average values for sportfish were calculated using only those data from streams in which they were sampled        |
| <b>Appendix N.</b> Mean standing stock (lb/mi) of seven sportfish, other fish <sup>a</sup> , and total fish by landform and stream drainage area. Average values for sportfish were calculated using only those data from streams in which they were sampled |

page

. 7

# INTRODUCTION

Streams are the most fished resource in Iowa and support 30% of the annual sport fishing activity of licensed anglers or about 12 million fishing days per year (Anonymous 1986). In order to manage these fisheries effectively, a comprehensive data base is essential. Previous studies of river fish populations in Iowa provide an important source of information; however, most of the early investigations were taxonomic surveys to determine species composition and distribution (Jordan and Meek 1885, Potter 1928, Aitken 1936, Bailey 1951, Harrison and Speaker 1954, and Cleary 1956). Investigations designed to analyze fish communities and relationships of the various species in those communities began in the 1940's. Harrison (1952 and 1962) determined the relative abundance of fish species in several Iowa streams, but these and similar studies (Cleary 1957, Harrison 1962, Mayhew 1965, Schwartz 1975, Middendorf 1974, Ackerman 1974, Putnam 1974, and Paragamian 1980) were enumeration inventories by design, lacked standardization in sample design, were conducted over a span of 40 years, and lacked quantitative analyses. A need existed for comparable data which will help determine impacts of environmental changes on these resources. This study was designed to provide quantitative and comparable data on Iowa's riverine fisheries. Of major importance was the documentation of densities and standing stocks of stream fish populations, and how they are affected by habitat.

# **STUDY AREAS**

Sample sites were selected by landform (Figure 1 and Appendix A). The landforms in which fish sampling occurred were the Paleozoic Plateau, Iowan Surface, Southern Iowa Drift Plain, Des Moines Lobe, and Northwest Iowa Plains.

Streambed gradient, drainage

#### Paleozoic Plateau

This landform has been exposed to weathering and erosion longer than any other geologic region of the state. It contains deep valleys, numerous rock outcrops, artesians, and is thought by many to be untouched by the Pleistocene glaciers. Three streams were sampled in this landform (Figure 1 and Appendix A). Stream habitats within the upper reaches of the Paleozoic Plateau had high gradients and were characterized by substrates comprised of limestone bedrock, fractured cobbles, gravel and sand. Lower reaches of mainstem streams had lower gradients with silt substrates and contained debris jams. Valleys within the Paleozoic Plateau were usually forested, while the uplands and river bottoms were pastured or row-cropped.

#### Iowan Surface

The Iowan Surface is level to gently rolling and is transected by low gradient streams. The flood plains are often forested within the Iowan Surface, while the uplands are intensively row-cropped. Marshes are present in some stream valleys and the region shows evidence of glaciation; 18 sites were sampled in this landform (Figure 1 and Appendix A). Streams and rivers sampled in the Iowan Surface were characterized by silt and sand substrates, while occasional debris jams were also present. Stream substrates in the northern and eastern portion of the region also contained extensive reaches of boulder, cobble and gravel.

#### **Des Moines Lobe**

Impacts of the Pleistocene glaciers are most evident within the Des Moines Lobe. Sediments in this landform are glacial in origin and are often seen in terraces within river valleys. Soildrainageisslow in many portions of this landform. Prior (1976) described it as, "flat to slightly irregular, but bands of rough, knobby terrain appear abruptly"; 20 sites were sampled within this landform (Figure 1 and Appendix A). The Des Moines Lobe contained some of the richest soils in the world and this was nearly exclusively row-cropped. Water courses in the Des Moines Lobe were characterized by high stream gradients and substrates comprised primarily of cobble, gravel, sand, silt, and occasional outcrops of bedrock. Debris jams and windfalls were common in streams flowing through timbered terrain, but channelized reaches were less diversified.

#### Northwest Iowa Plains

This landform is barren of trees and had the lowest annual rainfall within the state (25 inches/year). The agriculturalized landscape is gently rolling and bedrock is covered by layers of glacial drift and loess soils; four streams were sampled within this region (Figure 1 and Appendix A). Streams within the Northwest Iowa Plains possess moderate gradients and were uniform in habitat. Substrates in the riffles were primarily sand and small gravel, while silt dominated the pool substrate. Intensive agriculture by row-cropping and grazing dominated the riparian zone of most streams; thus, few banks were stable.

#### Southern Iowa Drift Plain

Topography in the Southern Iowa Drift Plain consists of steeply rolling hills with level upland divides as well as level alluvial river bottoms. The uplands and bottoms are rowcropped or pastured, but the hill sides are usually forested. The only proof of glaciation is the hundreds of feet of glacial drift deposited on bedrock. The region also contains large deposits of loess soils. Twenty-four sites were sampled within the Southern Iowa Drift Plain; they were low gra-

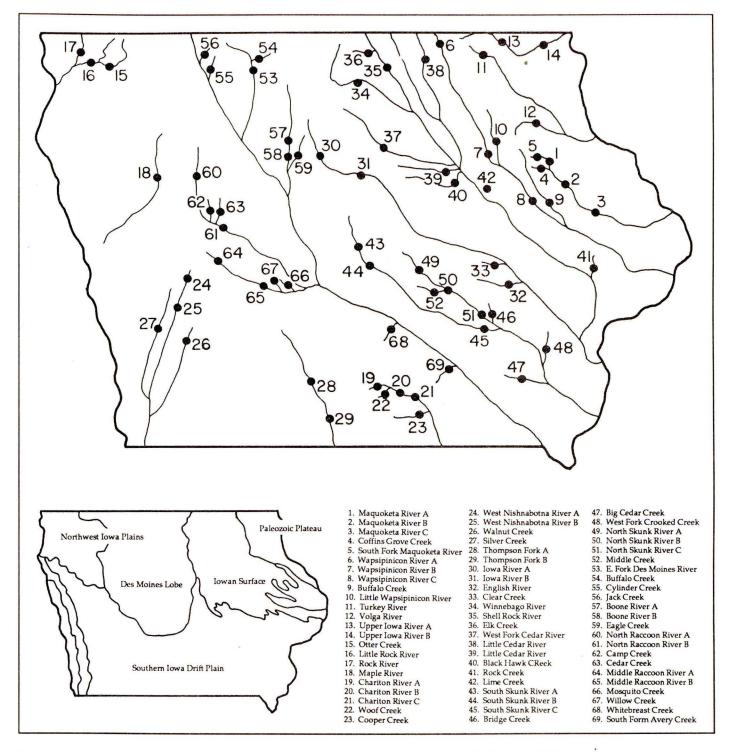



Figure 1. Location of stream and river fish populations sampled with rotenone, 1983 through 1985, and location of the 5 geologic regions in Iowa.

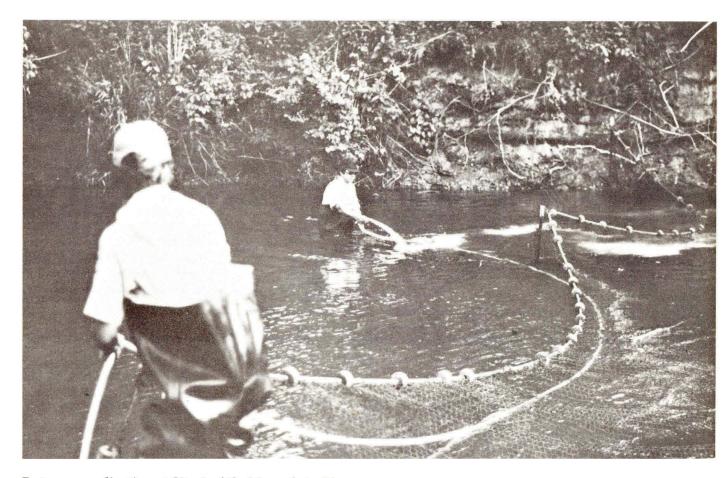
dient and characterized by poor development of the typical riffle-pool flow pattern found in other Iowa landforms (Figure 1 and Appendix A). Most of the streams sampled had steep banks; substrates comprised of silt, sand and clay; and cover comprised of debris jams and exposed tree roots. Nearly all of the major rivers and many headwater streams sampled in this geologic region were channelized. Channelized streams in this region were uniform in water depth, current velocity, and substrate.

## **METHODS**

#### Sampling Sites

Fish collection sites were located in the upper, middle, and lower portions of all major streams

and in two tributary streams. Priority was given to sites with a U.S. Geological Survey (USGS) gauging station, active Environmental Protection Division (EPD) water quality sampling site, or those recommended by Fisheries Management Biologists. Site selection was also affected by availability of access and the presence of habitat which typified the stream. Sample sites (Figure 1) were stratified by landform and were further separated by drainage area: < 75 sq mi, 75-599 sq mi and  $\geq$  600 sq mi.


#### Sampling Methods

Fish were sampled with rotenone and net gear at sites 300-650 feet in length. Sites were enclosed by block nets constructed of one-inch bar mesh web. Nets were set to span the entire width and depth of the stream and used to prevent the movement of fish in an upstream or downstream direction. Riffles were often used to delineate the upper and lower boundaries of the sampling sites. Two additional nets, constructed of 1/4-inch bar measure web and a frame 39 inches x 39 inches, were positioned immediately downstream of the lower block net to obtain a sub-sample of small fish killed in the sample area but not captured in the block net.

A boat-mounted 110V AC electrofishing unit was used to capture fish prior to the application of rotenone. All fish greater than 8 inches total length were netted, identified, enumerated, fin clipped, and released into the treatment area. In most instances, fish were captured outside the treatment area, marked, and released into the sample site. When electrofishing was not feasible, however, stressed fish located in the upper 1/4 of the reach were captured shortly after chemical application, fin clipped, and released. The ratio of marked fish to unmarked fish sampled after chemical application provided an estimate of the efficiency of the capture techniques.

Stream flow, measured with a Gurley No. 622-F flow meter was used to calculate discharge in cubic feet per second (CFS), was used to determine the rate of rotenone application needed to achieve a concentration of 5ppm for a twenty-minute Rotenone was sprayed period. immediately above the upper block net and on the substrate through a weighted and perforated hose. Rotenone was applied for approximately 25 minutes in a natural riffle located at the upper end of the site and was also applied to brush piles and backwater habitats.

Potassium permanganate  $(KMnO_4)$  was used to detoxify the rotenone and was applied at a rate of



Rotenone application at Site A of the Maquoketa River.

10ppm below the lower block net. Evenly spaced jugs of  $KMnO_4$  were suspended in the water column from the float line of the downstream block net.  $KMnO_4$  was also manually applied along the margin of the net.

Large stressed fish were collected with dip nets during the treatment process; however, the majority were carried by the currents into the lower block net. Whenever possible, sport fish were placed in a tub of untreated water for recovery and live release. Collection was limited to fish large enough to be entrapped by the block net.

Large fish were identified, enumerated, and weighed while small fish collected in the sub-sample nets were weighed and preserved in 10% formalin for identification and enumeration at a later date. The ratio of the total cross- sectional area of the lower segment of the treatment site to that portion covered by the small mesh nets was used to estimate the number and biomass of small fish. The total population and biomass for each species at each site were estimated from: 1) the actual catch of large fish, and 2) the estimate of efficiency of the sample techniques.

Trophic structure (Odum 1959), within a fish community, was determined by partitioning fish species into categories with similar food habits and summing the individual standing stocks. Trophic categories were as follows: piscivore, piscivore-insectivore, insectivore, omnivore, and herbivore as identified by Karr (unpublished Iowa species list). These data, in turn, were compiled by landform, drainage area, and channelized/unaltered stream reaches. Models of trophic structure were used to show fish biomass at each trophic level, changes in trophic structures within the stream continuum, and the differences within trophic structures of altered streams.

#### Measurement of Environmental Parameters

Drainage area, gradient, and mean discharge of each river was obtained

from the Iowa Highway Research Board Bulletin No.7, USGS Water Resources Data Book and Topographic Maps. Field grade maps were made to calculate sample area, average depth, estimate the distribution and proportion of substrates (sand, gravel, cobble, and boulder) and woody structure. The importance of each substrate type or amount of woody structure was ranked as: dominant, abundant, moderate, scarce, and absent. Instream habitat was categorized as follows: 1) poor habitat - pools absent or poorly defined, absence of cobble or boulder substrate and dominance of sand, and absence of woody structure; 2) fair habitat - pools up to two feet deep, cobble or boulder substrate moderate or scarce and moderate sand, and/or woody structure moderate or scarce; 3) good habitat - pools over two feet deep, cobble or boulder substrate dominant or abundant with moderate gravel but sand moderate or scarce, and/or woody structure abundant or moderate.

#### Data Analysis

Analysis of variance (ANOVA) of standing stocks were performed in a 2-way contrast within and between land forms. ANOVA was also performed in a one-way contrast to compare total standing stocks of stream fish and habitat type. All testing was at the 0.05 level of significance or higher. Comparisons were also made between fish communities inhabiting altered (channelized) and unaltered stream reaches.

# RESULTS

#### Fish, Fauna and Landforms

Fish communities in Iowa rivers and streams varied by landform, although most species had a broader range than just a single geologic region (Appendix B). Fish communities within the Paleozoic Plateau were a mix of coldwater and warmwater forms and were of the northern Mississippi Basin fauna. The fishes of the Iowan Surface are primarily warmwater varieties and were of the eastern and central Mississippi Basin origin. Fish communities of the Des Moines lobe were of the southern and eastern Mississippi Basin fauna and were influenced by a former connection between the Little Sioux and Des Moines Rivers. The fauna of the Northwest Iowa Plains were a mixture of Mississippi Basin and Missouri Basin species and communities exhibited a distinct decline in number of species, north to south. The fish communities of the Southern Iowa Drift Plain were nearly exclusively of Missouri Basin origin. A more detailed explanation of fish fauna distribution can be found in Menzel (1987).

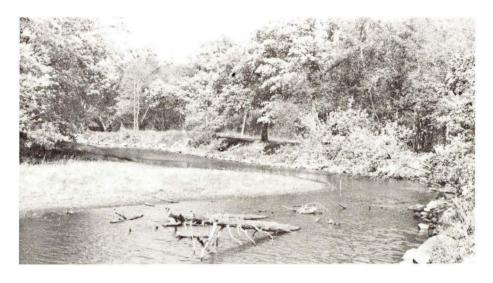
# Fish Populations and Standing Stocks

Paleozoic Plateau - Fish communities in the streams that traverse the Paleozoic Plateau were comprised of cyprinids, catostomids and darters. Smallmouth bass and rock bass were common sport fish inhabiting upper and mid reaches, while channel catfish were commonly found in the lower portions of major streams. Rainbow and brown trout were stocked in many of the headwater streams and sometimes found in the mainstem rivers.

Seven families of fish represented and 37 species were identified in the four study sites (Appendix B). The most numerous species were cyprinids (18), along with the nine species of catostomids. Other families were poorly represented.

Fish density in streams within this land form ranged from 16,255 fish/mi (823/ac) in the lower reach of the Upper Iowa River to 56,420 fish/mi (5,578/ac) in the upper site of the same river. Cyprinids were the most abundant group of species found, while catostomids were the second most numerous fish group in the Volga River and upper reach of the Upper Iowa River.

Ictalurids were second at the


lower reach of the Upper Iowa River. (See Appendix C for individual listings of fish density and biomass.)

Total fish standing stock ranged from 102 lbs/ac in the lower reach of the Upper Iowa River to 363 lbs/acin the Volga River. Catostomids dominated the biomass of fish found in the upper reaches of the Upper Iowa River and Volga River; while cyprinids, primarily common carp, dominated the standing stock of fish in the lower reaches of the Upper Iowa River. Mean standing stock of sport fish were: 20 lbs/ac carp, 5 lbs/ac channel catfish, 3 lbs/ac smallmouth bass, and 1 lb/ac for rock bass at sites from which they were sampled.

Iowan Surface - Fish communities which inhabited streams that bisect the Iowan Surface were represented by nine families and 59 species (Appendix B). Twenty- one species of Cyprinidae were identified, in addition to nine catostomids, ten percids, eight centrarchids, and seven ictalurids. Smallmouth and rock bass were the most abundant sport fishes in headwater streams, but they were replaced by channel catfish and carp within lower reaches. Northern pike were common throughout most rivers, but walleye and flathead catfish were never abundant.

Total fish densities in this landform ranged from 8,805 fish/mi (643/ ac) in the lower Maquoketa River to 62,743 fish/mi (27,510/ac) in the upper reaches of the Wapsipinicon. Cyprinids dominated the catch at most sample sites. Catostomids often ranked second in abundance. (See Appendices D, E, and F for individual listings of fish density and biomass.)

Total standing stock of fish ranged from 35 lbs/ac in the South Fork of the Maquoketa River to over 1,800 lbs/ac in the West Fork of the Cedar River. Suckers dominated the biomass of fish sampled from 13 of 18 sites. Standing stocks of sport fish averaged 297 lbs/ac for carp, 70 lbs/ac for channel catfish, 13 lbs/ac for walleye, 7 lbs/ac for northern



The Wapsipinicon River in the Iowan Surface contained high habitat diversity and a variety of fish, including sport fish.

pike, 3 lbs/ ac for rock bass, and 1 lb/ac for flathead catfish. These averages represent only those sites from which the species were sampled.

*Des Moines Lobe* - Ten families and 52 species of fish were found to inhabit streams in the Des Moines Lobe (Appendix B). Twenty-one species of cyprinids were identified, along with ten catostomids, six ictalurids, five percids, and five centrarchids. The most abundant sport fishes found in these streams were channel catfish, carp, smallmouth bass, and northern pike. Walleye and flathead catfish were uncommon.

Total fish densitites in this land form ranged from 880 fish/mi (195/ac) at Cylinder Creek (a drainage ditch) to 403,883 fish/mi (74,621/ac) at the mid- reach of the South Skunk River (a channelized reach). Cyprinids were usually the most abundant species, while catostomids usually ranked second but were occasionally surpassed by ictalurids. (See Appendices G and H for individual listings of fish density and biomass.)

Total fish standing stock in this landform ranged from 49 lbs/ac in Mosquito Creek to 2,255 lbs/ac at East Fork Des Moines River (Appendices G and H). Cyprinids dominated the biomass at 15 of 20 sample sites, while carp were most important at ten sites. Ictalurids and catostomids dominated at three sites each. Standing stock of carp averaged 286 lbs/ ac, channel catfish 75 lbs/ac, northern pike 20 lbs/ac, smallmouth bass 11 lbs/ac, walleye 7 lbs/ac, and rock bass 4 lbs/ac at sites from which they were collected.

*Northwest Iowa Plains* - Fish communities found in streams of the Northwest Iowa Plains were represented by nine families and 25 species (Appendix B). Fish communities in these streams exhibited low species diversity and consisted of only nine species of minnows, four species of catfish and four species of suckers. The only sport fish sampled were carp and channel catfish.

Numerical population density in this landform ranged from 2,751 fish/ mi (392/ac) in the Maple River to 35,078 fish/mi (4,000/ac) in the Rock River. Cyprinids were the most numerous fish at all sites, while catfish and suckers were second and third in numerical importance, respectively. (See Appendix I for individual listings of fish density and biomass.)

Total standing stock ranged from 11 lbs/ac in the Maple River to 260 lbs/ac in the Little Rock River. Suckers dominated the biomass of fish sampled at all sites. Ictalurids and cyprinids were usually second or third in importance. Channel catfish was the most important sport fish sampled at three of four sites and had an average biomass of 38 lbs/ac.

Southern Iowa Drift Plain - Nine families and 46 species of fish were identified in the Southern Iowa Drift Plain, of which seventeen were species of minnows and eight were species of catfish (Appendix B). The most important sport fish sampled were channel catfish, carp and flathead catfish.

Fish densities in unaltered stream sites of the Southern Iowa Drift Plain ranged from 2,577 fish/mi (3,680/ ac) at South Avery Creek to 40,328 fish/mi (7,135/ac) at Rock Creek. Minnows dominated the density of fishes, while catfish and suckers were usually second or third in importance. (See Appendices J, K, and L for individual listings of fish density and biomass.)

Total standing stock of fish in unaltered streams ranged from 57.5 lbs/ac in Clear Creek to 1,200 lbs/ac in the middle reaches of the Chariton River. The standing stock was dominated by carp; ictalurids and catostomids often ranked second or third in importance. Average standing stocks of sport fish in unaltered streams of this landform were: 448 lbs/ac carp, 95 lbs/ac for channel catfish, 13 lbs/ ac for flathead catfish, and 4.5 lbs/ac for walleye in streams from which they were sampled.

Fish densities in channelized streams ranged from 2,928 fish/mi (1,087/ac) in upper reaches of the Chariton River to 51,852 fish/mi (20,976/ac) in Walnut Creek. Cyprinids dominated the fish communities and centrarchids usually ranked second in numerical abundance. (See Appendices J, K, and L for individual listings of fish density and biomass.)

The total standing stock of fish ranged from 10.9 lbs/ac in the upper reach of the Chariton River to 609 lbs/ac in Walnut Creek. Cyprinids, principally carp, dominated the biomass; while ictalurids were usually the second most important group of Table 1. Sample sites categorized by landform and instream habitat quality.

|                                 | Instr                                                                                                              | eam Habitat                                                                                                                                                                       |                                                                                                                                                 |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Landform                        | Poor                                                                                                               | Fair                                                                                                                                                                              | Good                                                                                                                                            |
|                                 |                                                                                                                    |                                                                                                                                                                                   |                                                                                                                                                 |
| Paleozoic                       |                                                                                                                    | Upper Iowa River-B                                                                                                                                                                | Volga River<br>Upper Iowa River                                                                                                                 |
| Iowan Surface                   | S. Fork Maquoketa<br>Little Wapsipinicon                                                                           | Wapsipinicon-A<br>Lime Creek<br>Coffins Grove<br>Creek<br>Maquoketa River-A<br>Buffalo Creek<br>Turkey River<br>Wapsipinicon-C<br>Maquoketa River-C                               | Elk Creek<br>Maquoketa River-J<br>Wapsipinicon-B<br>Shell Rock River<br>Little Cedar River<br>Beaver Creek<br>Black Hawk Creek<br>W. Fork Cedar |
| Des Moines<br>Lobe              | Buffalo Creek<br>Willow Creek<br>Mosquito Creek<br>Jack Creek<br>Cylinder Creek                                    | Eagle Creek<br>Winnebago<br>N. Raccoon<br>River-A<br>S. Skunk River-A<br>Camp Creek<br>Cedar Creek<br>Middle Raccoon-A<br>Boone River-B<br>N. Raccoon River-B<br>S. Skunk River-B | Iowa River-A<br>Middle Raccoon-B<br>Boone River-A<br>Iowa River-B<br>E. Fork Des Moine                                                          |
| Northwest<br>Iowa Plains        | Maple River<br>Rock River                                                                                          | Little Rock River<br>Otter Creek                                                                                                                                                  |                                                                                                                                                 |
| Southern<br>Iowa Drift<br>Plain | Clear Creek<br>Silver Creek<br>Chariton River-A<br>W. Nishnabotna-A<br>Big Cedar Creek<br>W. Fork Crooked<br>Creek | Rock Creek<br>Wolf Creek<br>Cooper Creek<br>Middle Creek<br>S. Avery Creek<br>Walnut Creek                                                                                        | Chariton River-B<br>Chariton River-C<br>Thompson Fork<br>Grand River-A<br>N. Skunk River-C                                                      |
|                                 | N. Skunk River-A<br>Thompson Fork<br>Grand River-B                                                                 | Bridge Creek<br>W. Nishnabotna-B<br>N. Skunk River-B<br>White Breast Creek<br>English River<br>S. Skunk River-C                                                                   |                                                                                                                                                 |

fishes. Average standing stocks of sport fish in channelized streams of the Southern Iowa Drift Plain, at sites from which they were sampled, were; 38 lbs/ac carp, 21 lbs/ac for channel catfish, 4 lbs/ac flathead catfish, and <1 lb/ac for walleye. The means for channel catfish and carp do not include estimates of fish in Walnut Creek.

#### Habitat Quality and Landform

Habitat quality values were summarized for each sample site thus each site was placed within a habitat category (Table 1). Forty-eight percent of the sample sites were classified as fair habitat, 28% were good, while 25% were poor. Two of three sites located within the Paleozoic Plateau were classified as good habitat, while 44% of the Iowan Surface sites and 25% of those in the Des Moines Lobe were in this category. Seventeen percent of the Southern Iowa Drift Plain sites were classified as good habitat, but none of those sampled in the Northwest Iowa Plain rated as good habitat. Over 50% of the channelized sites in the Southern Iowa Drift Plain were considered in the poor habitat category, while the remainder were fair (Table 1).

#### **Quantitative Data Analysis**

ANOVA indicated the total biomasses of fish were similar between landforms (P>0.05). Total biomass of fish in most rivers in Iowa ranged from 300 to 1,000 lbs/ac; those of channelized reaches were usually much lower. The streams of the Northwest Iowa Plains provided the lowest mean total fish standing stock of 116 lbs/ac. Furthermore, analysis of variance comparisons of fish standing stocks, stratified by landform type, showed no significant differences (P>0.05) regardless of the size of drainage area. However, total standing stocks of fish in unaltered sites of the Southern Iowa Drift Plain were significanty higher than those of altered sites (P<0.05), particularly for stocks of channel and flathead catfish, carp, and bullhead (Ictalurus sp.).

Statistical differences in total fish standing stocks, regardless of landform, were found when comparisons were made between habitat categories. Three ANOVA tests were made contrasting standing stocks of good (mean = 862 lbs/ac) vs. fair (mean = 400 lbs/ac) habitat, good vs. poor (mean = 99 lbs/ac) habitat and fair vs. poor habitat. Total standing stocks of fish were significantly higher (P<0.05) in good vs. fair habitat, good vs. poor habitat, and fair vs. poor habitat.

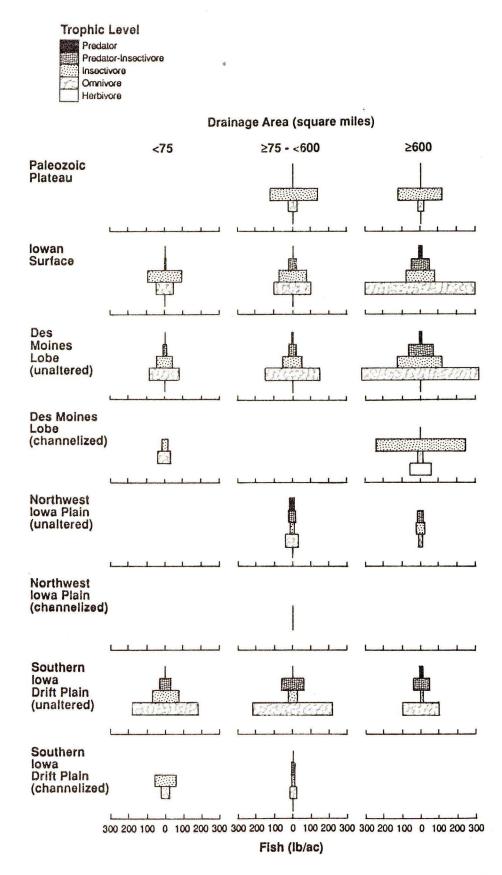
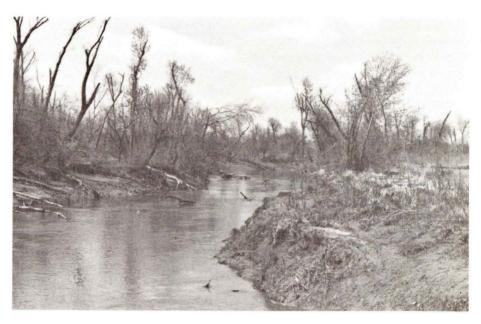



Figure 2. Mean trophic structure of fish (lb/ac) in Iowa rivers and streams.

#### **Trophic Structure**

Likemost waters in North America, the trophic structure of fish communities in Iowa streams was pyramid-shaped and was a function of habitat and food availability (Figure 2). The biomass of the fish community was usually dominated by omnivores (up to 656 lbs/ac in the Des Moines Lobe) followed by insectivores, piscivore-insectivores, and piscivores, while herbivores comprised a very minor proportion of the total (a maximum of 3.6 lbs/ac in the Paleozoic Plateau). The best examples of this distribution were found in the unaltered streams of the Iowan Surface, Des Moines Lobe, and Southern Iowa Drift Plain. However, insectivores dominated the biomass of the Paleozoic Plateau. Carpsuckers and carp were the dominant omnivores in all landforms. redhorse were important insectivores, while channel catfish was the dominant piscivore-insectivore (up to 416 lbs/ac in East Fork Des Moines River) in most streams and large catfish were the major predator. Smallmouth bass was the most important piscivore in the Paleozoic Plateau (about 3 lbs/ac) and also in the Iowan Surface (about 2 lbs/ac). Smallmouth bass and northern pike were important in the Des Moines Lobe while shortnose gar were dominant in the Northwest Iowa Plains. Flathead catfish was an additional predator in some unaltered rivers in the Southern Iowa Drift Plain. In general, piscivores were most abundant in streams with good habitat: middle reaches of the Maquoketa River; Middle Raccoon River; Iowa River and Wapsipinicon River; the lower reach of the North Skunk River; and Elk Creek. Trophic structure in the altered streams were severely truncated because they were nearly void of piscivores (less than 1 lb/ac) and piscivore-insectivores (about 9 lbs/ac) (Figure 2).


Trophic structure of most fish communities changed from head water habitats to lower reaches of main river systems (Figure 2). The most obvious increase occurred in omnivore biomass as the stream size and drainage area increased, i.e. biomass increased from 30% of the total in the headwater habitat to 68% in the lower reaches of the Iowan Surface. Predator biomass also tended to increase in lower reaches but seldom comprised more than 3% of the total, although piscivore-insectivores (primarily channel catfish) continued as an important predator component. Best examples of this observation were recorded in the Iowan Surface, Des Moines Lobe, and Southern Iowa Drift Plain. As the drainage area and turbidity of rivers increased, the biomass of insectivorous fish declined.

# DISCUSSION

Habitat was the major factor responsible for differences in total fish standing stocks in Iowa streams and rivers. ANOVA comparisons of the total standing stocks of fish within stream sets of good, fair, and poor habitat demonstrated highly significant differences (P<0.01). Streams with good habitat averaged 862 lbs/ ac of fish, fair 399 lbs/ac, and poor habitat was only 99 lbs/ac of fish. A change in habitat from one bend in a river to the next was sufficient to

make a substantial difference in total standing stocks. For example, sites A and B of the Thompson Fork of the Grand were not very distant from one another, yet site A was classified as good habitat and B was poor habitat. The difference in habitat quality made a 5-fold difference in total standing stocks of fish and a 2.5-fold difference in channel catfish biomass. Also, total standing stocks of smallmouth bass averaged 17.8 lbs/ ac within streams of good habitat; while it was 4.6 lbs/ac in streams of fair and poor habitat. These cases reveal an important need to quantify instream habitat and to determine precisely what makes them different. Only after habitat is quantified can the complete importance of this component be fully understood.

A comparison of altered and unaltered waterways clearly showed that stream channelization reduced species diversity, and that total fish biomass was significantly lower (P<0.05) in channelized waters. These differences were due to the poor habitat found within channelized streams. Channelized streams are uniform in depth, current velocity, and void of instream cover. Such habitat supported numerous small fish, but the total standing stock and



Fallen trees and root wads provide ideal habitat for channel and flathead catfish in Site C of the North Skunk River.

density of sport fish including channel and flathead catfish, bullhead, and carp was significantly lower (P<0.05).

Channelization of streams and rivers in Iowa has resulted in a dramatic loss of channel catfish. Bulkley et al. (1976) estimated the state has lost 3,000 miles of streams to channelization. Findings in this study indicated that streams in the Southern Iowa Drift Plain with <600 sq. mi. of drainage averaged 980 channel catfish/mi. and these fish averaged .25 lbs/per fish. This equates to an annual loss of nearly 3 million catfish valued at a half-million dollars (Anonymous 1982).

A substantial improvement in the fish community of a channelized stream was noted when habitat quality and diversity were improved. Channelization of Walnut and Silver Creeks, both tributaries to the Nishnabotna River, occurred at about the same time. These streams were similar in location, physical characteristics, and water quality; however, the reach sampled on Walnut Creek included remains of an abandoned bridge. The site also contained remnants of riprap, debris, and a plunge pool created by stream flow over fallen bridge material. This habitat resulted in a standing stock of fish 30 times greater than that found in Silver Creek, which lacked similar habitat. Davis (1988), in Kentucky, found improvement of habitat in several channelized streams increased fish biomass.

Woody structure was an important instream habitat factor to streams of all landforms, but was particularly important to streams of the Southern Iowa Drift Plain and was most evident in the channelized reaches. Channelized streams were normally barren of instream structure and often fell into the poor habitat category, but when trees and parts of trees had fallen or were washed into a waterway, they provided habitat diversity. Trees would provide overhead cover and scour pockets enabling some channelized streams to be considered fair habitat, e.g. West



Cylinder Creek, a ditched stream in the Des Moines Lobe, was uniform in depth, substrate, current velocity and thus provided little habitat to fish.

Nishnabotna River - B, Whitebreast, and Bridge Creeks. The former two streams averaged 44 lbs/ac of channel catfish.

Drainage ditches contained poor habitat for fish. Samples taken from Cylinder Creek and Jack Creek, drainage ditches in the Des Moines Lobe, showed these streams supported only 125 lbs/ac of fish and the streams were void of gamefish. Jack Creek contained a surprisingly large number of fish species, but this was probably due to the close proximity of the sample site to the West Fork Des Moines River. Other streams sampled in the region contained 300 or more lbs/ac of fish and smallmouth bass, rock bass, northern pike, and channel catfish were present.

The trophic structure of fish communities within waterways in Iowa demonstrated some unique differences in fish production within and between landforms. In general, as the drainage area of most streams increased, the importance of insectivores decreased and that of insectivore-piscivore and omnivores increased, while the predator biomass remained low. Each group of streams or rivers had a different potential for management. It also graphically showed the dramatic change within a fish community after a river course was physically altered.

The importance of headwater streams to sport fish populations of larger rivers is not well documented, but 86% of the smaller second and third order streams were inhabited by young-of-the-year of one or more species of sport fish important to the fisheries of larger receiving streams. These small streams appear to be important spawning and nursery sites for sport fish that may later recruit to larger streams; however, a better understanding of this relationship is needed.

Channel catfish was the most abundant and most widely distributed sport fish in streams and rivers. This species occupied a variety of habitat and was associated with all substrate types, from cobble and boulder substrate in the Wapsipinicon River to silt and sand in the Chariton and West Nishnabotna Rivers. Channel catfish also inhabited the small tributary streams like Wolf Creek, as well as the large rivers, such as East Fork Des Moines River. More specific habitat requirements were noted for other sport fish. For example, gravel and cobble substrate was associated with better populations of smallmouth and rock Northern pike were most bass. common in streams with debris jams and those that traversed through a landscape that contained flood plain

oxbows and backwater marshes.

River systems in Iowa are under continuous threat of physical alteration and point and non-point pollution. These threats often become reality and result in partial or total losses in fish life. Assessment of these losses are seldom accurate and often an after-the-fact activity of Department employees. Data from this study are compiled in Appendix M and N to present an alternative method to estimate these losses. These data are quantitatively segregated by landform because of known differences in species composition and segregated by drainage areas.

This dissertation on the river and stream fisheries in Iowa is by no means complete. Many questions need to be answered and many data gaps remain. For example, many more streams in the Northwest Iowa Plains, Paleozoic Plateau and Des Moines Lobe need to be sampled, as well as more large streams in all landforms. Of particular importance is the need of comparative studies of the impact of land use on fish populations. The importance of habitat must be quantified even further to provide direction for warmwater stream habitat improvements. Streams are all dynamic environments and are most sensitive to man's activities. These streams and rivers are overlooked and have a need for fisheries improvements and management. A comprehensive statewide management strategy will ensure improved access, refined stocking strategies, protection of stream corridors, anglereducation, and improved chemical and physical integrity of interior rivers and streams.

# MANAGEMENT CONSIDERATIONS

1. Further study is needed to provide a more precise quantification of habitat; however, work accomplished in this study provides a great deal of insight to habitat requirements of Iowa's riverine fish species. 2. Habitat should be created on an experimental basis and assessed for fisheries value. Public access to streams in some regions of Iowa is restricted primarily to channelized waters. Fishing could be enhanced at these sites by creating habitat diversity, e.g. riprap, in-stream structure, bank stabilization, and restoration of streams back to former channel configuration.

.

3. Routine sampling of stream fish populations should incorporate the use of rotenone.

4. Two appendix tables list fish population densities (Appendix M) and standing stocks (Appendix N) by landform and drainage area. These should be used to estimate fish loss due to kills. This will be an adequate substitute when on-site inspection is not practical or possible.

5. Spawning habitat of northern pike exists within flood plain marshes and backwaters areas. These habitats should be included in access acquistion and protected.

6. Instream flow needs have yet to be addressed adequately in Iowa.

7. A policy should be developed which requires channelized stream banks to be rip-rapped or mitigation that would enhance fisheries habitat.

8. There is a need to determine the importance of small headwater streams as spawning and nursery areas for larger receiving streams.

# LITERATURE CITED

- Ackerman. 1974. Turkey River investigation. Fisheries Management Completion Reports. Iowa Conservation Commission, Des Moines, Iowa, pp. 83-99.
- Aitken, W. 1936. Some common fishes. Iowa State College Extension Circular 224:1-33.
- Anonymous. 1982. Monetary values of freshwater fish and fishkill counting guidelines. American Fisheries Society Special Publication No. 13. Bethesda, Maryland.
- Anonymous. 1986. Fishing in Iowa. Iowa Conservation Commission, Des Moines, Iowa.
- Baily, R. 1951. A checklist of fishes in Iowa, with keys for identification, pp. 195-237. In Harlan and Speaker eds. Iowa Fish and Fishing. Iowa Conservation Commission, Des Moines, Iowa.
- Bulkley, R. , R. Bachmann, K. Carlander, H. Fierstine, L. King, B. Menzel, A. Witten and D. Zimmer. 1976. Warmwater stream alteration in Iowa; Extent, effects on habitat, fish, and fish food, and evaluation of stream improvement structures (Summary Report). U.S. Fish and Wildlife Service, Office of Biological Services Report FWS/OBS-76-16:39 pp.
- Cleary, R. 1956. Distribution of the Iowa fishes. In Iowa Fish and Fishing. Editors J. Harlan and E. Speaker. Iowa Conservation Commission, Des Moines, Iowa. 365 pp.
- Cleary, R. 1957. Catch composition of inland river trap net raises in northeast Iowa, 1949-56. Quarterly Biology Report. 9(3):20-22. Iowa Conservation Commission, Des Moines, Iowa.
- Davis, W. 1988. Impacts of channel modification and habitat

mitigation on the fisheries at Poor Fork Cumberland River, Caney Creek, and Right Fork Beaver Creek. Fisheries Bulletin Number 84, Kentucky Dept. of Fish and Wildlife Resources, Frankfort, Kentucky.

- Harrison, H. 1952. Fish populations of Boone County for 1946 through 1951. Quarterly Biology Report. 4(1):41-49. Iowa Conservation Commission, Des Moines, Iowa.
  - \_\_\_\_\_\_. 1962. Fall fish populations by shocking. Quarterly Biology Report. 14(4) 46-51. Iowa Conservation Commission, Des Moines, Iowa.
  - \_\_\_\_\_, and E. Speaker. 1954. Annotated list of the fishes in the streams tributary to the Missouri River in Iowa. Proceedings of Iowa Academy of Science. 63:511-523.
- Jordan, D. and S. Meek. 1885. List of fishes collected in Iowa and Missouri in August, 1884, with descriptions of three new species. Proceedings of the United States Natural History Museum.
- Karr, J. 1981. Assessment of biotic integrity using fish communities. Fisheries (Bethesda) 6(6):21-27.
- Karr, J. et al. 1986. Assessing biological integrity in running waters: a method and its rationale. Illinois Natural History Survey, Special Publication 5. 29 pp.
- Mayhew, J. K. 1965. Pre-impoundment of the Chariton River in the vicinity of Rathbun Dam and Reservoir--Part II. Quarterly Biology Report. 17(4):4-10. Iowa Conservation Commission, Des Moines, Iowa.
- Menzel, B. 1981. Iowa's waters and fishes: a century and a half of change. Proceedings Iowa Academy Science. 88(1):17-23.

- \_\_\_\_\_\_. 1987. Fish distribution. Pp. 201-213 in J. Harland and E. Speaker with J. Mayhew. Iowa Fish and Fishing. Iowa Department of Natural Resources. Des Moines, Iowa.
- Middendorf, R. 1974. Evaluation of a fishery to determine effects of the Duane Arnold Energy Center. Iowa Conservation Commission, Des Moines, Iowa, pp. 94-97.
- Odum, E. 1959. Fundamentals of ecology. W.B. Saunders Company. Philadelphia, Pennsylvania. 546 pp.
- Paragamian, V. 1980. Population dynamics of smallmouth bass in the Maquoketa River and other Iowa streams. Federal Aid Fish Restoration Completion Report Project No. F-89-R. Iowa Conservation Commission, Des Moines, Iowa.
  - \_\_\_\_\_. 1986. Diversity and standing stocks of stream fishes. Federal Aid Fish Restoration Completion Report Project No. F-99-R. Iowa Conservation Commission, Des Moines, Iowa.
- Prior, J. 1976. A regional guide to Iowa landforms. Iowa Geological Survey, Education Survey 3, Iowa City, Iowa. 72 pp.
- Potter, G. 1928. Compilation and revision of the fish records published for Iowa. Proceedings of the Iowa Academy of Science, 34:339-366.
- Putnam, T. 1974. Pre-impoundment survey of the Des Moines River--Saylorville Reservoir. Fish Management Completion Reports. Iowa Conservaton Commission, Des Moines, Iowa.
- Schwartz, J. 1975. A pre-impoundment study of Walters Creek. Fisheries Management Completion Reports. Iowa Conservation Commission, Des Moines, Iowa, pp. 138-145.

Appendix A. Fish sample sites listed by landform, drainage basin, and description, 1983-1985. Drainage basins are Northeast (NE), Iowa-Cedar (IC), Des Moines (DM), Western (W), Skunk (SK), and Southern (S).

4

| Stream                                         | Location by<br>County &<br>Sample Drainage<br>Site Basin |                                    | Location                                                         | Length<br>(Miles) Acres |                    | Date<br>Sampled                       |  |
|------------------------------------------------|----------------------------------------------------------|------------------------------------|------------------------------------------------------------------|-------------------------|--------------------|---------------------------------------|--|
| Paleozoic Plateau                              |                                                          |                                    |                                                                  |                         |                    |                                       |  |
| Volga River                                    |                                                          | Fayette                            | NE T93N-R8W-Sec 24                                               | .122                    | .81                | 28 July 83                            |  |
| Upper Iowa River                               | A<br>B                                                   | Winneshiek<br>Allamakee            | NE T100N-R10W-Sec 35<br>NE T99N-R6W-Sec                          | .087<br>.120            | .88<br>2.37        | 15 Sept 83<br>16 Sept 83              |  |
| Iowan Surface                                  |                                                          |                                    |                                                                  |                         |                    |                                       |  |
| Turkey River                                   |                                                          | Howard                             | NE T98N-R11W-Sec 2                                               | .059                    | .33                | 20 July 83                            |  |
| Maquoketa River                                | A<br>B<br>C                                              | Delaware<br>Delaware<br>Jones      | NE T90N-R6W-Sec 34<br>NE T88N-R4W-Sec 33<br>NE T88N-R2W-Sec 32   | .071<br>.092<br>.065    | .40<br>.61<br>.89  | 21 June 83<br>8 July 83<br>9 Aug 83   |  |
| Coffins Grove Creek                            |                                                          | Delaware                           | NE T89N-R6W-Sec 27                                               | .066                    | .29                | 24 June 83                            |  |
| South Fork Maquoket<br>River                   | a                                                        | Buchanan                           | NE T90N-R7W-Sec 24                                               | .062                    | .22                | 19 Aug 83                             |  |
| Wapsipinicon River                             | A<br>B<br>C                                              | Mitchell<br>Black Hawk<br>Buchanan | NE T100N-R15W-Sec 20<br>NE T90N-R11W-Sec 4<br>NE T87N-R8W-Sec 25 | .057<br>.102<br>.120    | .13<br>.84<br>1.78 | 20 July 83<br>24 July 83<br>7 Sept 83 |  |
| Buffalo Creek                                  | C                                                        | Linn                               | NE T86N-R6W-Sec 12                                               | .055                    | .34                | 11 July 83                            |  |
| Little Wapsipinicon<br>River                   |                                                          | Fayette                            | NE T91N-R10W-Sec 16                                              | . <mark>08</mark> 1     | .47                | 15 July 83                            |  |
| Shell Rock River<br>Elk Creek                  |                                                          | Cerro Gordo<br>Worth               | IC T97N-R19W-Sec 27<br>IC T99W-R21W-Sec 24                       | .060<br>.060            | .86<br>.45         | 18 July 84<br>17 July 84              |  |
| West Fork Cedar Rive<br>Little Cedar River     | er                                                       | Butler<br>Mitchell                 | IC T91N-R17W-Sec 23<br>IC T99M-R16W-Sec 36                       | .067<br>.072            | .70<br>.39         | 1 Aug 84<br>7 Aug 84                  |  |
| Beaver Creek                                   |                                                          | Black Hawk                         | IC T90N-R14W-Sec 28                                              | .078                    | .63                | 1 Aug 84                              |  |
| Black Hawk Creek<br>Lime Creek                 |                                                          | Black Hawk<br>Benton               | IC T87N-R14W-Sec 6<br>IC T86N-R10W-Sec 4                         | .064<br>.081            | .58<br>.42         | 2 Aug 84<br>10 Aug 84                 |  |
| Des Moines Lobe                                |                                                          | Denton                             | 1C 10011-11077-5004                                              | .001                    | .42                | IU AUG 04                             |  |
|                                                |                                                          |                                    |                                                                  |                         |                    |                                       |  |
| East Fork Des Moines<br>River<br>Buffalo Creek |                                                          | Kossuth<br>Kossuth                 | DM T96N-R28W-Sec 6<br>DM T97N-R28W-Sec 9                         | .029<br>.031            | .16<br>.16         | 16 July 85<br>17 July 85              |  |
| Cylinder Creek                                 |                                                          | Palo Alto                          | DM T95N-R32W-Sec 24ª                                             | .071                    | .32                | 31 May 85                             |  |

<sup>a</sup>Denotes channelized reach.

| Stream                       | Sample<br>Site | Location by<br>County &<br>Drainage<br>Basin | Location                        | Length<br>(Miles) | Acres | Date<br>Sampled |
|------------------------------|----------------|----------------------------------------------|---------------------------------|-------------------|-------|-----------------|
| Jack Creek                   |                | Palo Alto                                    | DM T97N-R33W-Sec 22ª            | .059              | .24   | 31 May 8        |
| Boone River                  | A              | Wright                                       | DM T92N-R26W-Sec 7              | .064              | .28   | 25 June 8       |
|                              | B              | Wright                                       | DM T90N-R26W-Sec 22             | .073              | .63   | 26 June 8       |
| Eagle Creek<br>North Raccoon |                | Wright                                       | DM T90N-R25W-Sec 18             | .066              | .23   | 26 June 8       |
| River                        | A              | Sac                                          | DM T89N-R36W-Sec 1              | .053              | .30   | 9 July 8        |
|                              | B              | Greene                                       | DM T84W-R32W-Sec 10             | .049              | .44   | 21 Aug 8        |
| Camp Creek                   |                | Calhoun                                      | DM T86N-R34W-Sec 5              | .040              | .15   | 10 July 85      |
| Cedar Creek                  |                | Calhoun                                      | DM T86N-R32W-Sec 23             | .054              | .20   | 10 July 85      |
| Middle Raccon                | A              | Carroll                                      | DM T82N-R33W-Sec 18             | .040              | .20   | 10 July 8       |
| Rive <b>r</b>                | B              | Guthrie                                      | DM T79N-R30W-Sec 24             | .043              | .30   | 31 July 8       |
| Mosquito Creek               |                | Dallas                                       | DM T79N-R29W-Sec 22             | .055              | .10   | 1 Aug 8         |
| Willow Creek                 |                | Guthrie                                      | DM T81N-R32W-Sec 23             | .044              | .15   | 1 Aug 8         |
| Winnebago River              |                | Worth                                        | IC T98N-R22W-Sec 34             | .056              | .50   | 8 Aug 8         |
| Iowa River                   | A              | Wright                                       | IC T92N-R24W-Sec 14             | .040              | .28   | 13 Sept 84      |
|                              | B              | Hardin                                       | IC T89N-R20W-Sec 20             | .085              | .76   | 28 Aug 84       |
| South Skunk River            | A              | Story                                        | SK T84N-R23W-Sec 7              | .064              | .46   | 6 June 8        |
|                              | B              | Story                                        | SK T82N-R23W-Sec 9ª             | .039              | .21   | 8 Aug 8         |
| Northwest Iowa Pla           | ins            |                                              |                                 |                   |       |                 |
| Otter Creek                  |                | Lyon                                         | W T98N-R44W-Sec 21              | .083              | .41   | 2 Aug 83        |
| Little Rock River            |                | Lyon                                         | W T98N-R45W-Sec 12              | .069              | .55   | 3 Aug 83        |
| Rock River                   |                | Lyon                                         | W T99N-R45W-Sec 15              | .065              | .57   | 3 Aug 83        |
| Maple River                  |                | Ida                                          | W T89N-R39W-Sec 22 <sup>a</sup> | .057              | .40   | 31 Aug 83       |
| Southern Iowa Drift          | Plain          |                                              |                                 |                   |       |                 |
| Chariton River               | A              | Lucas                                        | S T71N-R21W-Sec 5 <sup>a</sup>  | .052              | .14   | 28 June 84      |
|                              | B              | Lucas                                        | S T71N-R30W-Sec 19              | .061              | .25   | 28 June 84      |
|                              | C              | Lucas                                        | S T71N-R20W-Sec 29              | .085              | .55   | 27 June 84      |
| Wolf Creek                   |                | Lucas                                        | S T71N-R21W-Sec 30              | .081              | .09   | 26 June 8       |
| Cooper Creek                 |                | Appanoose                                    | S T69N-R17W-Sec 30              | .045              | .15   | 27 June 8       |

<sup>a</sup>Denotes channelized reach.

| Stream                       | Sample<br>Site | Location by<br>County &<br>Drainage<br>Basin | Location                        | Length<br>(Miles)               | Acres | Date<br>Sampled |
|------------------------------|----------------|----------------------------------------------|---------------------------------|---------------------------------|-------|-----------------|
| W. Fork Nishna-              |                |                                              |                                 | An Orac Life and an other south |       |                 |
| botna River                  | A              | Shelby                                       | S T79N-R38W-Sec 19 <sup>a</sup> | .066                            | .61   | 11 July 84      |
|                              | В              | Pottawattamie                                | S T78N-R39W-Sec 32 <sup>a</sup> | .062                            | .69   | 11 July 84      |
| Walnut Creek                 |                | Pottawattamie                                | S T75N-R38W-                    |                                 |       |                 |
|                              |                |                                              | Sec 15 & 16ª                    | .089                            | .22   | 5 Sept 84       |
| Silver Creek<br>Thompson     |                | Pottawattamie                                | S T75N-R41W-Sec 34 <sup>a</sup> | .051                            | .15   | 5 Sept 84       |
| Fork of                      | A              | Union                                        | S T72N-R28W-Sec 29              | .059                            | .33   | 24 July 84      |
| the Grand River              | В              | Decatur                                      | S T68N-R26W-Sec 17              | .095                            | .77   | 25 July 84      |
| Clear Creek                  |                | Johnson                                      | IC T80N-R8W-Sec 25              | .098                            | .11   | 31 Aug 84       |
| English River                |                | Washington                                   | IC T77N-R7W-Sec 17              | .071                            | .47   | 30 Aug 84       |
| South Skunk                  | С              | Keokuk                                       | SK T75N-R13W-Sec 32             | .019                            | .09   | 18 June 85      |
| Bridge Creek                 |                | Keokuk                                       | SK T75N-R11W-Sec 7              | .048                            | .10   | 18 June 85      |
| Big Cedar Creek<br>West Fork |                | Jefferson                                    | SK T71N-R9W-Sec 33              | .067                            | .30   | 17 June 85      |
| Crooked Creek                |                | Washington                                   | SK T74N-R7W-Sec 11ª             | .058                            | .19   | 22 May 85       |
| North Skunk                  |                |                                              |                                 |                                 |       |                 |
| River                        | A              | Jasper                                       | SK T80W-R17W-Sec 31ª            | .032                            | .15   | 6 Aug 85        |
|                              | В              | Mahaska                                      | SK T76W-R14W-Sec 22             | .070                            | .41   | 19 June 85      |
|                              | С              | Keokuk                                       | SK T75N-R13W-Sec 8              | .065                            | .44   | 22 May 8        |
| Middle Creek                 |                | Mahaska                                      | SK T76N-R14W-Sec 34             | .044                            | .10   | 19 June 8       |
| Whitebreast Cree             | ek             | Marion                                       | DM T75N-R20W-Sec 16             | .075                            | .42   | 15 May 8        |
| South Avery Cre              |                | Wapello                                      | DM T72N-R15W-Sec 2              | .102                            | .07   | 5 June 85       |
| Rock Creek                   |                | Cedar                                        | IC T79N-R3W-Sec 2               | .047                            | .26   | 10 Aug 84       |

<sup>a</sup>Denotes channelized reach.

Appendix B. Species composition of fish sampled from Iowa streams traversing five geologic landforms.

|                                     | LANDE                              | ORM                                 |                            |                                         |
|-------------------------------------|------------------------------------|-------------------------------------|----------------------------|-----------------------------------------|
| Paleozoic<br>Plateau                | Iowan<br>Surface                   | Des Moines<br>Lobe                  | Northwest Iowan<br>Plains  | Southern Iowa<br>Drift Plain            |
| Hiodontidae                         | Umbridae                           | Esosidae                            | Lepisosteidae              | Lepisosteidae                           |
| Mooneye<br>Gizzard Shad             | Central Mudminnow                  | Northern Pike                       | Shortnose Gar              | Shortnose Gar                           |
| Catostomidae                        | Esosidae<br>Northern Pike          | Catostomidae<br>Bigmouth Buffalo    | Hiodontidae<br>Goldeye     | Hiodontidae<br>Mooneye                  |
| River Carpsucker                    | Norment Tike                       | Smallmouth Buffalo                  | Goldeye                    | Goldeye                                 |
| Highfin Carpsucker                  | Catostomidae                       | River Carpsucker                    | Catostomidae               | Gizzard Shad                            |
| Quillback Carpsucker                | Bigmouth Buffalo                   | Highfin Carpsucker                  | Quillback Carpsucker       |                                         |
| Shorthead Redhorse                  | Highfin Carpsucker                 | Quillback Carpsucker                | Golden Redhorse            | Catostomidae                            |
| Golden Redhorse                     | Quillback Carpsucker               | Shorthead Redhorse                  | Shorthead Redhorse         | Bigmouth Buffalo                        |
| Black Redhorse                      | Shorthead Redhorse                 | Golden Redhorse                     | White Sucker               | River Carpsucker                        |
| Silver Redhorse                     | Golden Redhorse                    | Silver Redhorse                     | Cuminidae                  | Quillback Carpsucker<br>Golden Redhorse |
| Northern Hog Sucker<br>White Sucker | Black Redhorse<br>Silver Redhorse  | Northern Hog Sucker<br>White Sucker | Cyprinidae<br>Carp         | Shorthead Redhorse                      |
| White Sucker                        | Northern Hog Sucker                | Wille Sucker                        | Central Stoneroller        | White Sucker                            |
| Cyprinidae                          | White Sucker                       | Cyprinidae                          | Creek Chub                 | Third Duckor                            |
| Carp                                |                                    | Carp                                | Fathead Minnow             | Ictaluridae                             |
| Central Stoneroller                 | Cyprinidae                         | Central Stoneroller                 | Bluntnose Minnow           | Black Bullhead                          |
| Largescale Stoneroller              | Carp                               | Fathead Minnow                      | Brassy Minnow              | Yellow Bullhead                         |
| Blacknose Dace                      | Largescale Stoneroller             | Bluntnose Minnow                    | Red Shiner                 | Stonecat                                |
| Longnose Dace                       | Blacknose Dace                     | Bullhead Minnow                     | Sand Shiner                | Channel Catfish<br>Flathead Catfish     |
| Creek Chub<br>Suckermouth Minnow    | Longnose Dace<br>Creek Chub        | Suckermouth Minnow                  | <b>Bigmouth Shiner</b>     | Freckled Madtom                         |
| Bluntnose Minnow                    | Southern Redbelly Dace             | Brassy Minnow<br>Creek Chub         | Ictaluridae                | Tadpole Madtom                          |
| Brassy Minnow                       | Flathead Minnow                    | Hornyhead Chub                      | Channel Catfish            | Slender Madtom                          |
| Hornyhead Chub                      | Redfin Shiner                      | Speckled Chub                       | Black Bullhead             |                                         |
| Gravel Chub                         | Red Shiner                         | Topeka Shiner                       | Stonecat                   | Cyprinidae                              |
| Silver Chub                         | Suckermouth Minnow                 | Golden Shiner                       | Tadpole Madtom             | Carp                                    |
| Common Shiner                       | Bluntnose Minnow                   | Common Shiner                       |                            | Central Stoneroller                     |
| Spotfin Shiner                      | Brassy Minnow                      | Red Shiner                          | Sciaenidae                 | Fathead Minnow                          |
| Rosyface Shiner<br>Emerald Shiner   | Hornyhead Chub<br>Gravel Chub      | Spotfin Shiner<br>Emerald Shiner    | Freshwater Drum            | Bluntnose Minnow<br>Suckermouth Minnow  |
| Sand Shiner                         | Silver Chub                        | Sand Shiner                         | Centrarchidae              | Brassy Minnow                           |
| Bigmouth Shiner                     | Common Shiner                      | Bigmouth Shiner                     | Green Sunfish              | Creek Chub                              |
| Diginouti onnici                    | Spotfin Shiner                     | Blacknose Dace                      | Green outlinen             | Common Shiner                           |
| ctaluridae                          | Rosyface Shiner                    | Rosyface Shiner                     | Percidae                   | Red Shiner                              |
| Stonecat                            | Emerald Shiner                     | Goldfish                            | Yellow Perch               | Emerald Shiner                          |
| Channel Catfish                     | Sand Shiner                        |                                     | Blackside Darter           | Sand Shiner                             |
|                                     | Bigmouth Shiner                    | Ictaluridae                         | Johnny Darter              | Bigmouth Shiner                         |
| Centrachidae                        |                                    | Black Bullhead                      | D 11                       | Plains Minnow                           |
| Rock Bass                           | Ictaluridae                        | Yellow Bullhead                     | Percopsidae<br>Trout Perch | Western Silver Minno                    |
| Smallmouth Bass                     | Tadpole Madtom<br>Slender Madtom   | Channel Catfish<br>Flathead Catfish | Trout Perch                | Silver Chub<br>Flathead Chub            |
| Serranidae                          | Black Bullhead                     | Stonecat                            |                            | Speckled Chub                           |
| White Bass                          | Yellow Bullhead                    | Tadpole Madtom                      |                            | openica enuo                            |
|                                     | Stonecat                           | raaf oor oor allo                   |                            | Sciaenidae                              |
| Percidae                            | Channel Catfish                    | Gasterostidae                       |                            | Freshwater Drum                         |
| Slenderhead Darter                  | Flathead Catfish                   | Brook Stickleback                   |                            |                                         |
| Fantail Darter                      | -                                  |                                     |                            | Centrarchidae                           |
| Sauger                              | Gasterostidae                      | Sciaenidae                          |                            | Black Crappie                           |
|                                     | Brook Stickleback                  | Freshwater Drum                     |                            | White Crappie<br>Green Sunfish          |
|                                     | Centrarchidae                      | Cyprinodontidae                     |                            | Bluegill                                |
|                                     | Green Sunfish                      | Banded Killifish                    |                            | Orange Spotted Sunfi                    |
|                                     | Orange Spotted Sunfish             | Samoa Pantion                       |                            | Largemouth Bass                         |
|                                     | Green Sunfish X                    | Serranidae                          |                            | U                                       |
|                                     | Bluegill                           | White Bass                          |                            | Serranidae                              |
|                                     | White Crappie                      |                                     |                            | Yellow Bass                             |
|                                     | Black Crappie                      | Centrarchidae                       |                            | White Bass                              |
|                                     | Rock Bass                          | Orange Spotted Sunfish              |                            | Percidae                                |
|                                     | Smallmouth Bass<br>Largemouth Bass | Green Sunfish<br>Bluegill           |                            | Walleye                                 |
|                                     | Largemouth Dass                    | Rock Bass                           |                            | Johnny Darter                           |

|                      | LANDFO                                                                                                                                                                                                      | DRM                                                                                                                 | 4                         |                              |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------|
| Paleozoic<br>Plateau | Iowan<br>Surface                                                                                                                                                                                            | Des Moines<br>Lobe                                                                                                  | Northwest Iowan<br>Plains | Southern Iowa<br>Drift Plain |
|                      | Serranidae<br>Yellow Bass<br>Percidae<br>Walleye<br>Blackside Darter<br>Slenderhead Darter<br>Johnny Darter<br>Banded Darter<br>Rainbow Darter<br>Fantail Darter<br>Mud Darter<br>Yellow Perch<br>Log Perch | Smallmouth Bass<br>Percidae<br>Slenderhead Darter<br>Johnny Darter<br>Blackside Darter<br>Fantail Darter<br>Walleye |                           |                              |

|                    | 1      | Upper I | owa Rive | er     |     |                          | Volga  | River |       |  |
|--------------------|--------|---------|----------|--------|-----|--------------------------|--------|-------|-------|--|
|                    | Aª     | N/ac    |          | Bb     | N/a | c lb/ac                  | N/mi   |       |       |  |
| Species            |        |         |          |        |     | ana ana amin'ny sora ana |        |       |       |  |
| Carp               |        |         |          | 158    | 8   | 40.5                     |        |       |       |  |
| Channel Catfish    |        |         |          | 40     | 2   | 5.3                      |        |       |       |  |
| Smallmouth<br>Bass | 262    | 26      | 2.1      | 20     | 1   | <.1                      | 365    | 55    | 6.7   |  |
| Rock Bass          | 20     | 2       | .9       |        |     |                          | 60     | 9     | 1.5   |  |
| Family             |        |         |          |        |     |                          |        |       |       |  |
| Hiodontidae        |        |         |          | 1,481  | 75  | 9.7                      |        |       |       |  |
| Catostomidae       | 5,098  | 504     | 231.5    | 1,738  | 88  | 36.8                     | 4,488  | 676   | 327.0 |  |
| Cyprinidae         | 44,374 | 4,387   | 50.9     | 6,636  | 336 | 2.1                      | 18,112 | 2,728 | 23.9  |  |
| Ictaluridae        | 1,517  | 150     | 1.6      | 6,083  | 308 | 4.3                      | 1,979  | 298   | 4.0   |  |
| Percichthyidae     |        |         |          | 40     | 2   | 1.8                      |        |       |       |  |
| Percidae           | 5,149  | 509     | 2.7      | 59     | 3   | 1.5                      | 153    | 23    | .1    |  |
| TOTAL              | 56,420 | 5,578   | 289.7    | 16,255 | 823 | 102.1                    | 25,157 | 3,789 | 363.2 |  |

Appendix C. Numerical density and standing stock of four species and six families of fish found in two streams in the Paleozoic Plateau landform.

<sup>a</sup>River segment with drainage basin of 75-599 sq. mi. <sup>b</sup>River segment with drainage basin of 600 sq. mi. or greater.

|                  | South Fork<br>Maquoketa River |       | Wapsi | Wapsipinicon River A |        |       | Elk Creek |       |       | Lime Creek |       |       | Coffins Grove Creek |       |       |
|------------------|-------------------------------|-------|-------|----------------------|--------|-------|-----------|-------|-------|------------|-------|-------|---------------------|-------|-------|
|                  | N/mi                          | N/ac  | lb/ac | N/mi                 | N/ac   | lb/ac | N/mi      | N/ac  | lb/ac | N/mi       | N/ac  | lb/ac | N/mi                | N/ac  | lb/ac |
| Species          | -                             |       |       |                      | 3.     | 17    |           |       |       |            |       |       |                     |       |       |
| Northern Pike    |                               |       |       |                      |        |       | 226       | 36    | 17.3  | 62         | 12    | 1.6   |                     |       |       |
| Carp             |                               |       |       |                      |        |       | 1,343     | 182   | 286.7 | 26         | 5     | 1.7   |                     |       |       |
| Channel Catfish  |                               |       |       |                      |        |       | 30        | 4     | 2.5   | 627        | 121   | 43.6  |                     |       |       |
| Flathead Catfish |                               |       |       |                      |        |       |           |       |       | 10         | 2     | 1.2   |                     |       |       |
| Smallmouth Bass  |                               |       |       |                      |        |       |           |       |       | 259        | 50    | 3.6   | 123                 | 28    | 1.9   |
| Rock Bass        |                               |       |       |                      |        |       |           |       |       | 135        | 26    | 2.9   | 136                 | 31    | 6.6   |
| Walleye          |                               |       |       |                      |        |       |           |       |       | 10         | 2     | .9    |                     |       |       |
| Family           |                               |       |       |                      |        |       |           |       |       |            |       |       |                     |       |       |
| Umbridae         |                               |       |       |                      |        |       | 221       | 30    | .1    |            |       |       |                     |       |       |
| Catostomidae     | 405                           | 114   | 15.8  | 7,440                | 3,262  | 95.3  | 1,040     | 141   | 103.5 | 1,468      | 283   | 149.4 | 5,840               | 1,329 | 386.8 |
| Cyprinidae       | 12,995                        | 3,664 | 17.2  | 54,007               | 23,680 | 164.1 | 2,833     | 384   | 1.3   | 7,996      | 1,542 | 4.0   | 15,195              | 3,458 | 35.3  |
| Ictaluridae      | 209                           | 59    | 1.4   | 260                  | 114    | 11.9  | 10,441    | 1,411 | 74.9  | 778        | 150   | 13.8  | 92                  | 21    | 4.4   |
| Gasterosteidae   |                               |       |       | 194                  | 85     | .2    |           |       |       |            |       |       |                     |       |       |
| Centrarchidae    |                               |       |       | 87                   | 38     | .2    | 1,387     | 188   | 2.8   | 1,047      | 202   | 7.9   | 167                 | 38    | .6    |
| Percichthyidae   |                               |       |       |                      |        |       |           |       |       |            |       | ×     |                     |       |       |
| Percidae         | 837                           | 236   | .7    | 755                  | 331    | 1.3   | 332       | 45    | .3    | 270        | 52    | .1    | 185                 | 42    | .1    |
| Total            | 14,446                        | 4,073 | 35.1  | 62,743               | 27,510 | 273.0 | 17,893    | 2,421 | 489.4 | 12,688     | 2,447 | 230.7 | 21,738              | 4,947 | 435.7 |

.

.

Appendix D. Numerical density and standing stock of seven species and eight families of fish found in five streams <75 sq. mi. of drainage in the Iowan Surface landform.

25

|                    | A N    | laquoke | eta River | r<br>B |       |       | Wapsi<br>River | pinicon<br>B | ı           | Buffa<br>Creel             |       |       |
|--------------------|--------|---------|-----------|--------|-------|-------|----------------|--------------|-------------|----------------------------|-------|-------|
|                    | N/mi   | N/ac    | lb/ac     | N/mi   | N/ac  | lb/ac | N/mi           | N/ac         | lb/ac       | N/mi                       | N/ac  | lb/ac |
| Species            |        |         |           |        |       |       |                |              |             | and and the set of the set |       |       |
| Northern Pike      |        |         |           |        |       |       | 148            | 18           | 16.1        |                            |       |       |
| Carp               |        |         |           |        |       |       | 708            | 86           | 280.0       | 19                         | 3     | 9.9   |
| Channel Catfish    |        |         |           | 358    | 54    | 15.4  | 14,618         | 1,775        | 118.4       | 93                         | 15    | 15.2  |
| Smallmouth<br>Bass | 242    | 43      | 11.1      | 2,447  | 369   | 33.9  | 8              | - 1          | 1.8         | 544                        | 88    | 5.8   |
| Rock Bass          |        |         |           | 73     | 11    | 3.4   | 66             | 8            | 3.1         | 148                        | 24    | .3    |
| Walleye            |        |         |           |        |       |       |                |              |             |                            |       |       |
| Family             |        |         |           |        |       |       |                |              |             |                            |       |       |
| Catostomidae       | 3,808  | 676     | 165.3     | 4,151  | 626   | 221.4 | 3,838          | 466          | 291.1       | 2,566                      | 415   | 141.3 |
| Cyprinidae         | 11,031 | 1,958   | 13.3      | 14,323 | 2,160 | 21.4  | 26,435         | 3,210        | <u>10.9</u> | 16,082                     | 2,601 | 15.7  |
| Ictaluridae        | 203    | 36      | 3.5       | 1,936  | 292   | 28.2  | 2,957          | 359          | 26.5        | 816                        | 132   | 1.9   |
| Gasterostidae      |        |         |           |        |       |       |                |              |             |                            |       |       |
| Centrarchidae      | 552    | 98      | 5.4       | 119    | 18    | 1.1   | 4,875          | 592          | 8.5         | 254                        | 41    | .6    |
| Percichthyidae     |        |         |           | 33     | 5     | 3.0   |                |              |             |                            |       |       |
| Percidae           |        |         |           | 1,764  | 266   | 1.4   | 659            | 80           | .4          | 390                        | 63    | .4    |
| TOTAL              | 15,836 | 2,811   | 198.6     | 25,204 | 3,801 | 329.2 | 54,312         | 6,595        | 756.8       | 20,912                     | 3,382 | 191.1 |

Appendix E. Numerical density and standing stock of six species and seven families of fish found in six streams. >75 - <600 sq. mi. of drainage in the Iowan Surface landform.

# Appendix E. Continued

|                    | Turkey<br>River | 7     |       | Little V<br>River     | Vapsipi | inicon | Shell F<br>River | lock  |       |
|--------------------|-----------------|-------|-------|-----------------------|---------|--------|------------------|-------|-------|
|                    | N/mi            | N/ac  | lb/ac | N/mi                  | N/ac    | lb/ac  | N/mi             | N/ac  | lb/ac |
| Species            |                 |       |       |                       |         |        |                  |       |       |
| Northern Pike      |                 |       |       |                       |         |        | 141              | 10    | 9.6   |
| Carp               |                 |       |       | 34                    | 6       | 44.5   | 1,086            | 77    | 68.3  |
| Channel Catfish    | n               |       |       |                       |         |        |                  |       |       |
| Smallmouth<br>Bass | 610             | 109   | 9.6   |                       |         |        |                  |       |       |
| Rock Bass          | 168             | 30    | 7.3   |                       |         |        | 99               | 7     | 3.1   |
| Walleye            |                 |       |       |                       |         |        |                  |       |       |
| Family             |                 |       |       |                       |         |        |                  |       |       |
| Catostomidae       | 2,674           | 478   | 98.3  | 1,565                 | 273     | 36.0   | 4,286            | 304   | 120.0 |
| Cyprinidae         | 13,083          | 2,339 | 11.0  | 2 <mark>6,26</mark> 8 | 4,583   | 58.4   | 4,878            | 346   | 2.6   |
| lctaluridae        | 1,438           | 257   | 10.9  | 1,129                 | 197     | 7.5    | 27,802           | 1,972 | 118.1 |
| Gasterostidae      |                 |       |       | 132                   | 23      | .1     |                  |       |       |
| Centrarchidae      | 509             | 91    | 4.2   | 4,356                 | 760     | 7.3    | 4,949            | 351   | 10.2  |
| Percichthyidae     |                 |       |       |                       |         |        |                  |       |       |
| Percidae           | 509             | 91    | .2    | 825                   | 144     | .3     | 2,101            | 149   | .7    |
| TOTAL              | 18,991          | 3,395 | 141.5 | 34,309                | 5,986   | 154.1  | 45,342           | 3,216 | 332.6 |

|                    | Little C<br>River | Cedar |       | Beaver<br>Creek |       |       | Black I<br>Creek | Hawk  |             |
|--------------------|-------------------|-------|-------|-----------------|-------|-------|------------------|-------|-------------|
|                    | N/mi              | N/ac  | lb/ac | N/mi            | N/ac  | lb/ac | N/mi             | N/ac  | lb/ac       |
| Species            |                   |       |       |                 |       |       |                  |       |             |
| Northern Pike      |                   |       |       | 16              | 2     | 2.6   |                  |       |             |
| Carp               | 260               | 48    | 87.0  | 2,181           | 270   | 559.2 | 1,341            | 148   | 595.1       |
| Channel Catfish    | 488               | 90    | 87.3  | 3,457           | 428   | 141.1 | 1,205            | 133   | 35.5        |
| Smallmouth<br>Bass | 87                | 16    | 7.9   | 16              | 2     | 1.0   |                  |       |             |
| Rock Bass          |                   |       |       |                 |       |       |                  |       |             |
| Walleye            |                   |       |       | 16              | 2     | 1.0   |                  |       |             |
| Family             |                   |       |       |                 |       |       |                  |       |             |
| Catostomidae       | 5,861             | 1,082 | 258.6 | 695             | 86    | 75.7  | 1,504            | 166   | 94.5        |
| Cyprinidae         | 14,555            | 2,687 | 17.2  | 7,738           | 958   | 4.1   | 7,812            | 862   | <b>4</b> .8 |
| Ictaluridae        |                   |       |       | 2,245           | 278   | 16.0  | 3,435            | 379   | 14.3        |
| Gasterostidae      |                   |       |       |                 |       |       |                  |       |             |
| Centrarchidae      | 184               | 34    | 1.0   | 4,749           | 588   | 19.0  | 308              | 34    | .4          |
| Percichthyidae     |                   |       |       |                 |       |       |                  |       |             |
| Percidae           | 547               | 101   | .2    | 388             | 48    | .4    |                  |       |             |
| TOTAL              | 21,982            | 4,058 | 459.2 | 21,501          | 2,662 | 820.1 | 15,605           | 1,721 | 744.6       |

Appendix F. Numerical density and standing stock of six species and five families of fish found in three streams > 600 sq. mi. of drainage in the Iowan Surface landform.

|                 | Wapsi<br>River | pinicon<br>C |       | Maque<br>River ( |      |       | West For<br>Cedar Ri |       |         |
|-----------------|----------------|--------------|-------|------------------|------|-------|----------------------|-------|---------|
|                 | N/mi           | N/ac         | lb/ac | N/mi             | N/ac | lb/ac | N/mi                 | N/ac  | lb/ac   |
| Species         |                |              |       |                  |      |       |                      |       |         |
| Northern Pike   | 223            | 15           | 2.3   |                  |      |       | 63                   | 6     | 2.8     |
| Carp            | 1,009          | 68           | 182.9 | 55               | 4    | 13.3  | 4,597                | 440   | 1,433.7 |
| Channel Catfish | 12,623         | 851          | 55.1  | 1,410            | 103  | 47.2  | 3,291                | 315   | 212.1   |
| Smallmouth Bass | 15             | 1            | .3    | 205              | 15   | 4.6   | 31                   | 3     | .5      |
| Rock Bass       |                |              |       | 55               | 4    | .9    |                      |       |         |
| Walleye         | 104            | 7            | 12.1  | 55               | 4    | 33.3  | 94                   | 9     | 15.3    |
| Family          |                |              |       |                  |      |       |                      |       |         |
| Catostomidae    | 5,235          | 353          | 233.6 | 5,546            | 405  | 244.7 | 2,434                | 233   | 111.5   |
| Cyprinidae      | 40,065         | 2,701        | 10.2  | 1,301            | 95   | .5    | 11,148               | 1,067 | 5.0     |
| Ictaluridae     | 12,104         | 816          | 11.9  | 27               | 2    | 1.0   | 9,487                | 908   | 59.9    |
| Centrarchidae   | 2,818          | 190          | 16.7  | 151              | 11   | 1.5   | 2,361                | 226   | 5.0     |
| Percidae        | 5,563          | 375          | 2.7   |                  |      |       | 773                  | 74    | .5      |
| Total           | 79,759         | 5,377        | 527.8 | 8,805            | 643  | 347.0 | 34,279               | 3,281 | 1,846.3 |

Appendix G. Numerical density and standing stock of seven species and nine families of fish found in fourteen streams 75-599 sq. mi. of drainage in the Des Moines Lobe landform.

|                                         | Jack<br>Creekª |      |       | Cylinde<br>Creek <sup>a</sup> | er   |       | Eagle C | reek   |       | Iowa Ri      | ver A                 |               |
|-----------------------------------------|----------------|------|-------|-------------------------------|------|-------|---------|--------|-------|--------------|-----------------------|---------------|
|                                         | N/mi           | N/ac | lb/ac | N/mi                          | N/ac | lb/ac | N/mi    | N/ac   | lb/ac | N/mi         | N/ac                  | lb/ac         |
| <i>Species</i><br>Northern Pike<br>Carp | 37             | 9    | 17.2  | 95                            | 21   | 67.2  | 14      | 4      | 3.1   | 357<br>1,596 | 51<br>228             | 54.8<br>709.9 |
| Channel Catfish<br>Flathead Catfish     |                |      | 17.2  | ,,,                           | 21   | 07.2  |         |        |       | 1,070        | 220                   | 707.7         |
| Smallmouth Bass                         |                |      |       |                               |      |       | 945     | 271    | 5.4   |              |                       |               |
| Rock Bass                               |                |      |       |                               |      |       | 153     | 44     | 8.6   |              |                       |               |
| Walleye                                 |                |      |       |                               |      |       |         |        |       | 35           | 5                     | 9.2           |
| Family                                  |                |      |       |                               |      |       |         |        |       |              |                       |               |
| Catostomidae                            | 301            | 74   | 92.4  | 158                           | 35   | 21.8  | 1,889   | 542    | 80.0  | 2,429        | 347                   | 167.2         |
| Cyprinidae                              | 1,704          | 419  | 1.0   | 257                           | 57   | .3    | 110,978 | 31,831 | 197.2 | 3,241        | 463                   | 2.0           |
| Ictaluridae                             | 810            | 199  | 10.5  | 257                           | 57   | 2.2   | 760     | 218    | 8.7   | 4,515        | 645                   | 107.4         |
| Gasterosteidae                          |                | ~~~  |       |                               |      |       | 77      | 22     | <.1   |              |                       |               |
| Sciaenidae                              |                |      |       |                               |      |       |         |        |       |              |                       |               |
| Cyprinodontidae                         | 85             | 21   | .1    |                               |      |       |         |        |       |              |                       |               |
| Percichthyidae                          |                |      |       |                               |      |       |         |        |       |              |                       |               |
| Centrarchidae                           | 85             | 21   | .7    | 50                            | 11   | .1    | 77      | 22     | .3    | 8,127        | 1,161                 | 34.6          |
| Percidae                                | 106            | 26   | .3    | 63                            | 14   | <.1   | 387     | 111    | .4    | 2,317        | 331                   | 1.2           |
|                                         |                |      |       |                               |      |       |         |        |       |              | and the second second |               |
| Total                                   | 3,128          | 769  | 122.2 | 880                           | 195  | 91.6  | 115,280 | 33,065 | 303.8 | 22,617       | 3,231                 | 1,086.2       |

<sup>a</sup> A drainage ditch.

Appendix G. Continued

|                                     | Winneb | ago  | Nort  | h Raccoon |       |       |       |       | Middle R | accoon River                                                       |       |       |
|-------------------------------------|--------|------|-------|-----------|-------|-------|-------|-------|----------|--------------------------------------------------------------------|-------|-------|
|                                     | River  |      | Rive  | r A       |       | -     | 54    | A     |          |                                                                    | В     |       |
|                                     | N/mi   | N/ac | lb/ac | N/mi      | N/ac  | lb/ac | N/mi  | N/ac  | lb/ac    | N/mi                                                               | N/ac  | lb/ac |
| Species                             |        |      |       |           |       |       |       |       | //       | d ta mation was and and and an |       |       |
| Northern Pike                       | 18     | 2    | .8    |           |       |       |       |       |          |                                                                    |       |       |
| Carp                                | 563    | 63   | 109.2 | 617       | 109   | 237.8 | 1,870 | 374   | 437.5    | 2,916                                                              | 418   | 524.6 |
| Channel Catfish<br>Flathead Catfish | 45     | 5    | 6.0   | 3,917     | 692   | 229.4 | 1,345 | 269   | 150.6    | 174                                                                | 25    | 4.2   |
| Smallmouth Bass<br>Rock Bass        | 63     | 7    | 8.0   | 28        | 5     | .2    |       |       |          | 1,270                                                              | 182   | 47.4  |
| Walleye                             |        |      |       | 130       | 23    | 8.6   |       |       |          | 28                                                                 | 4     | 2.5   |
| Family                              |        |      |       |           |       |       |       |       |          |                                                                    |       |       |
| Catostomidae                        | 1,107  | 125  | 102.9 | 3,962     | 700   | 463.2 |       |       |          | 349                                                                | 50    | 62.2  |
| Cyprinidae                          | 357    | 40   | .1    | 11,660    | 2,060 | 9.3   | 4,165 | 833   | 6.8      | 18,384                                                             | 2,635 | 17.4  |
| Ictaluridae<br>Gasterosteidae       | 2,223  | 249  | 11.0  | 1,047     | 185   | 6.6   |       |       |          | 15,167                                                             | 2,174 | 37.8  |
| Sciaenidae<br>Cyprinodontidae       |        |      |       | 51        | 9     | 4.2   |       |       |          |                                                                    |       |       |
| Percichthyidae                      |        |      |       | 28        | 5     | .4    |       |       |          |                                                                    |       |       |
| Centrarchidae                       | 661    | 74   | 1.7   |           |       |       | 40    | 8     | 1.6      | 4,102                                                              | 588   | 30.0  |
| Percidae                            | 179    | 20   | .3    | 136       | 24    | .1    |       |       |          | 628                                                                | 90    | .4    |
| Total                               | 5,216  | 584  | 240.0 | 21,576    | 3,812 | 959.8 | 7,420 | 1,484 | 596.5    | 43,018                                                             | 6,166 | 726.5 |

.

31

# Appendix G. Continued

|                                     | South S<br>River A |       |       | Buffalo<br>Creek |      |       | Boone  | River A |       | Camp ( | Creek |       |
|-------------------------------------|--------------------|-------|-------|------------------|------|-------|--------|---------|-------|--------|-------|-------|
|                                     | N/mi               | N/ac  | lb/ac | N/mi             | N/ac | lb/ac | N/mi   | N/ac    | lb/ac | N/mi   | N/ac  | lb/ac |
| Species                             |                    |       |       |                  |      |       |        |         |       |        |       |       |
| Northern Pike                       |                    |       |       | 149              | 28   | 43.3  |        |         |       |        |       |       |
| Carp                                | 158                | 22    | 48.3  | 784              | 147  | 295.6 | 473    | 108     | 290.3 | 431    | 115   | 150.3 |
| Channel Catfish<br>Flathead Catfish | 14                 | 2     | .1    | 37               | 7    | 11.2  | 123    | 28      | 33.6  | 428    | 114   | 35.2  |
| Smallmouth Bass                     | 14                 | 2     | .1    |                  |      |       |        |         |       |        |       |       |
| Rock Bass                           | 14                 | 2     | .1    |                  |      |       | 74     | 17      | 1.0   |        |       |       |
| Walleye                             |                    |       |       |                  |      |       |        |         |       |        |       |       |
| Family                              |                    |       |       |                  |      |       |        |         |       |        |       |       |
| Catostomidae                        | 7,144              | 994   | 132.1 | 149              | 28   | 16.7  | 1,173  | 268     | 84.6  | 3,353  | 894   | 159.0 |
| Cyprinidae                          | 54,977             | 7,649 | 44.3  | 1,781            | 334  | .5    | 42,114 | 9,625   | 45.4  | 8,214  | 2,190 | 12.2  |
| Ictaluridae                         | 4,686              | 652   | 20.4  | 336              | 63   | 3.3   | 3,189  | 729     | 34.5  | 930    | 248   | 7.4   |
| Gasterosteidae                      |                    |       |       |                  |      |       |        |         |       |        |       |       |
| Sciaenidae                          |                    |       |       |                  |      |       |        |         |       |        |       | *     |
| Cyprinodontidae                     |                    |       |       |                  |      |       |        |         |       |        |       |       |
| Percichthyidae                      |                    |       |       |                  |      |       |        |         |       |        |       |       |
| Centrarchidae                       | 1,746              | 243   | 8.3   | 891              | 167  | 2.2   | 3,461  | 791     | 11.5  | 199    | 53    | 1.9   |
| Percidae                            | -,                 |       |       | 37               | 7    | .7    | 683    | 156     | 1.1   | 398    | 106   | .5    |
| Total                               | 68,739             | 9,564 | 253.6 | 4,164            | 781  | 373.5 | 51,290 | 11,722  | 502.0 | 13,953 | 3,720 | 366.5 |

.

32

|                  | Cedar C | reek  |       | Mosquit | o Creek |       | Willow ( | Creek |       |
|------------------|---------|-------|-------|---------|---------|-------|----------|-------|-------|
|                  | N/mi    | N/ac  | lb/ac | N/mi    | N/ac    | lb/ac | N/mi     | N/ac  | lb/ac |
| Species          |         |       |       |         |         |       |          |       |       |
| Northern Pike    |         |       |       |         |         |       |          |       |       |
| Carp             | 444     | 120   | 266.5 |         |         |       | 157      | 46    | 31.0  |
| Channel Catfish  | 563     | 152   | 49.9  |         |         |       | 1,343    | 394   | 27.9  |
| Flathead Catfish |         |       |       |         |         |       | 89       | 26    | <.1   |
| Smallmouth Bass  |         |       |       |         |         |       |          |       |       |
| Rock Bass        |         |       |       |         |         |       |          |       |       |
| Walleye          |         |       |       |         |         |       |          |       |       |
| Family           |         |       |       |         |         |       |          |       |       |
| Catostomidae     | 378     | 102   | 4.4   |         |         |       | 392      | 115   | 24.3  |
| Cyprinidae       | 14,285  | 3,857 | 22.6  | 28,298  | 15,564  | 43.0  | 4,299    | 1,261 | 3.5   |
| Ictaluridae      | 3,037   | 820   | 28.3  | 44      | 24      | .1    | 228      | 67    | 3.7   |
| Gasterosteidae   |         |       |       |         |         |       |          |       |       |
| Sciaenidae       |         |       |       |         |         |       |          |       |       |
| Cyprinodontidae  |         |       |       |         |         |       |          |       |       |
| Percichthyidae   |         |       |       |         |         |       |          |       |       |
| Centrarchidae    | 167     | 45    | 2.7   | 436     | 240     | 5.1   | 413      | 121   | 7.1   |
| Percidae         | 385     | 104   | .7    | 131     | 72      | .4    |          |       |       |
| Total            | 19,259  | 5,200 | 375.1 | 28,909  | 15,900  | 48.6  | 6,921    | 2,030 | 97.6  |

.

Appendix G. Continued

.

Appendix H. Numerical density and standing stock of seven species and six families of fish found in five streams ≥600 sq. mi. of drainage in the Des Moines Lobe landform.

|                  |         |         |         |         | Skunk  |       | East F |          |         | _      |         |       |         | Raccoon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | i.    |
|------------------|---------|---------|---------|---------|--------|-------|--------|----------|---------|--------|---------|-------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                  |         | River B |         | River   |        |       |        | loines F |         |        | River H |       | River   | and the second s |       |
|                  | N/mi    | N/ac    | lb/ac   | N/mi    | N/ac   | lb/ac | N/mi   | N/ac     | lb/ac   | N/mi   | N/ac    | lb/ac | N/mi    | N/ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lb/ac |
| Species          |         |         |         |         |        |       |        |          |         |        |         |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Northern Pike    | 143     | 16      | 10.9    |         |        |       | 55     | 10       | 11.2    | 78     | 9       | 13.1  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Carp             | 1,082   | 121     | 397.6   | 145     | 27     | 23.3  | 4,772  | 865      | 1,463.7 | 837    | 97      | 190.7 | 27      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.2   |
| Channel Catfish  | 894     | 100     | 72.2    | 27      | 5      | .3    | 2,019  | 366      | 416.2   | 414    | 48      | 29.0  | 8,243   | 918                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31.4  |
| Flathead Catfish | 250     | 28      | .1      |         |        |       |        |          |         |        |         |       | 189     | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.3   |
| Smallmouth Bass  | 125     | 14      | 17.1    |         |        |       |        |          |         | 78     | 9       | 1.5   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Rock Bass        |         |         |         |         |        |       |        |          |         | 319    | 37      | 2.2   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Walleye          |         |         |         |         |        |       |        |          |         |        |         |       | 54      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.6   |
| Family           |         |         |         |         |        |       |        |          |         |        |         |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Catostomidae     | 5,195   | 581     | 265.3   | 24,894  | 4,623  | 48.4  | 1,495  | 271      | 325.2   | 2,365  | 274     | 121.4 | 15,723  | 1,751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 422.5 |
| Ictaluridae      | 76,948  | 8,606   | 271.1   | 953     | 177    | 2.3   | 2,223  | 403      | 34.8    | 2,356  | 273     | 8.9   | 4,660   | 519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.2   |
| Centrarchidae    | 9,692   | 1,084   | 11.0    | 1,599   | 297    | 8.3   | 381    | 69       | 3.1     | 647    | 75      | 3.9   | 27      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.8   |
| Percidae         | 1,753   | 196     | 1.9     | 2,687   | 499    | 1.9   |        |          |         | 173    | 20      | .1    | 4,185   | 466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.1   |
| Cyprinidae       | 15,316  | 1,713   | 7.8     |         | 68,993 | 549.0 | 1,627  | 295      | .8      | 37,852 | 4,386   | 18.7  | 106,094 | 11,815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53.4  |
| Sciaenidae       |         |         |         |         |        |       |        |          |         |        |         |       | 260     | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.1  |
| Total            | 111,398 | 12,459  | 1,055.0 | 403,883 | 74,621 | 633.5 | 12,572 | 2,279    | 2,255.0 | 45,119 | 5,228   | 379.5 | 139,462 | 15,531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 545.6 |

-

<sup>a</sup> A channelized reach.

|                 | Little Re | ock River <sup>a</sup> |       | Maple R | iver <sup>a,c</sup> |       | Otter C | reek * |       | Rock Ri | ver <sup>b</sup> |       |
|-----------------|-----------|------------------------|-------|---------|---------------------|-------|---------|--------|-------|---------|------------------|-------|
|                 | N/mi      | N/ac                   | lb/ac | N/mi    | N/ac                | lb/ac | N/mi    | N/ac   | lb/ac | N/mi    | N/ac             | lb/ac |
| Species         |           |                        |       |         |                     |       |         |        |       |         |                  |       |
| Carp            | 144       | 18                     | 45.6  |         |                     |       |         |        |       |         |                  |       |
| Channel Catfish | 988       | 124                    | 66.7  |         |                     |       | 74      | 15     | 11.1  | 2,333   | 266              | 36.8  |
| Family          |           |                        |       |         |                     |       |         |        |       |         |                  |       |
| Lepisosteidae   | 287       | 36                     | 70.7  |         |                     |       |         |        |       |         |                  |       |
| Hiodontidae     |           |                        |       |         |                     |       | 25      | 5      | 3.9   | 79      | 9                | 7.0   |
| Catostomidae    | 1,570     | 197                    | 72.5  | 56      | 8                   | 7.2   | 978     | 198    | 33.6  | 1,017   | 116              | 45.9  |
| Cyprinidae      | 9,494     | 1,191                  | 2.9   | 2,267   | 323                 | 2.7   | 31,748  | 6,427  | 18.5  | 28,018  | 3,195            | 9.9   |
| Ictaluridae     | 191       | 24                     | .8    | 428     | 61                  | .7    | 356     | 72     | .8    | 3,061   | 349              | 11.8  |
| Sciaenidae      |           |                        |       |         |                     |       | 25      | 5      | 9.7   |         |                  |       |
| Centrarchidae   | 367       | 46                     | .5    |         |                     |       |         |        |       | 386     | 44               | 2.3   |
| Percidae        | 1,275     | 160                    | .3    |         |                     |       | 237     | 48     | .1    |         |                  |       |
| Percopsidae     |           |                        |       |         |                     |       |         |        |       | 184     | 21               | 1.0   |
| Total           | 14,316    | 1,796                  | 260.0 | 2,751   | 392                 | 10.6  | 33,443  | 6,770  | 77.7  | 35,078  | 4,000            | 114.7 |

.

Appendix I. Numerical density and standing stock of two species and nine families of fish found in four streams in the Northwest Iowa Plains landform.

<sup>a</sup> River segment with drainage basin of 75 - 599 sq. mi.
<sup>b</sup> River segment with drainage bsin of ≥ 600 sq. mi. or greater.
<sup>c</sup> A channelized reach.

|                  | Silver C | reek <sup>a</sup> |       | Clear cr | eek   | 4                                | Rock C                                     | reek  |       |
|------------------|----------|-------------------|-------|----------|-------|----------------------------------|--------------------------------------------|-------|-------|
|                  | N/mi     | N/ac              | lb/ac | N/mi     | N/ac  | lb/ac                            | N/mi                                       | N/ac  | lb/ac |
| Species          |          |                   |       |          |       | An eren Danmerskyn en perkannen. | and an |       |       |
| Carp             |          |                   |       |          |       |                                  | 627                                        | 111   | 187.0 |
| Channel Catfish  |          |                   |       |          |       |                                  | 1,814                                      | 321   | 18.3  |
| Flathead Catfish |          |                   |       |          |       |                                  |                                            |       |       |
| Walleye          |          |                   |       |          |       |                                  |                                            |       |       |
| Family           |          |                   |       |          |       |                                  |                                            |       |       |
| Hiodontidae      |          |                   |       | 1,381    | 1,230 | 43.2                             |                                            |       |       |
| Catostomidae     |          |                   |       |          |       |                                  | 774                                        | 137   | 105.8 |
| Ictaluridae      |          |                   |       | 171      | 152   |                                  | 3,923                                      | 694   | 22.0  |
| Cyprinidae       | 11,862   | 4,033             | 58.2  | 2,099    | 1,870 | 11.7                             | 32,794                                     | 5,802 | 25.5  |
| Sciaenidae       |          |                   |       |          |       |                                  |                                            |       |       |
| Centrarchidae    | 44       | 15                | .6    | 113      | 101   | 2.0                              | 74                                         | 13    | 2.3   |
| Percichthyidae   |          |                   |       | 31       | 28    | .6                               |                                            |       |       |
| Percidae         |          |                   | ***   |          |       |                                  | 322                                        | 57    | .2    |
| Total            | 11,906   | 4,048             | 58.8  | 3,795    | 3,381 | 57.5                             | 40,328                                     | 7,135 | 361.1 |

Appendix J. Numerical density and standing stock of four species and eight families of fish found in nine streams <75 sq. mi. of drainage in the Southern Iowa Drift Plain landform.

<sup>a</sup> A channelized reach.

#### Appendix J. Continued

|                  | Wolf C | reek  |       | Cooper | Creek |                                                                                                                 | Walnut | Creek <sup>a</sup> |       |
|------------------|--------|-------|-------|--------|-------|-----------------------------------------------------------------------------------------------------------------|--------|--------------------|-------|
|                  | N/mi   | N/ac  | lb/ac | N/mi   | N/ac  | lb/ac                                                                                                           | N/mi   | N/ac               | lb/ac |
| Species          |        |       |       |        |       |                                                                                                                 |        |                    |       |
| Carp             | 247    | 222   | 260.0 | 953    | 286   | 411.4                                                                                                           | 188    | 76                 | 288.0 |
| Channel Catfish  | 148    | 133   | 186.1 | 287    | 86    | 42.5                                                                                                            | 752    | 304                | 200.1 |
| Flathead Catfish |        |       |       |        |       |                                                                                                                 |        |                    |       |
| Walleye          |        |       |       |        |       |                                                                                                                 |        |                    |       |
| Family           |        |       |       |        |       |                                                                                                                 |        |                    |       |
| Hiodontidae      |        |       |       | 33     | 10    | .7                                                                                                              |        |                    |       |
| Catostomidae     | 127    | 114   | 7.6   | 1,207  | 362   | 235.5                                                                                                           |        |                    |       |
| Ictaluridae      | 3,124  | 2,812 | 188.2 | 1,767  | 530   | 84.7                                                                                                            |        |                    |       |
| Cyprinidae       | 4,434  | 3,991 | 16.5  | 110    | 33    | .2                                                                                                              | 50,912 | 20,596             | 120.9 |
| Sciaenidae       | 82     | 74    | 4.7   | 63     | 19    | 2.5                                                                                                             |        |                    |       |
| Centrarchidae    | 123    | 111   | 16.6  | 770    | 231   | 20.5                                                                                                            |        |                    |       |
| Percichthyidae   |        |       |       | 33     | 10    | .7                                                                                                              |        |                    |       |
| Percidae         |        |       |       |        |       | and the second secon |        |                    |       |
| Total            | 8,285  | 7,457 | 679.7 | 5,223  | 1,567 | 798.7                                                                                                           | 51,852 | 20,976             | 609.0 |

36 <sup>a</sup> A channelized reach.

## Appendix J. Continued

|                  | Bridge Creek <sup>a</sup> |       |       | Middle | Creek |       | South A | South Avery Creek |         |  |
|------------------|---------------------------|-------|-------|--------|-------|-------|---------|-------------------|---------|--|
|                  | N/mi                      | N/ac  | lb/ac | N/mi   | N/ac  | lb/ac | N/mi    | N/ac              | lb/ac   |  |
| Species          |                           |       |       |        |       |       |         |                   |         |  |
| Carp             | 325                       | 156   | 72.2  | 555    | 244   | 145.5 | 1,013   | 1,447             | 1,028.5 |  |
| Channel Catfish  |                           |       |       | 352    | 155   | 108.9 | 210     | 300               | 85.6    |  |
| Flathead Catfish |                           |       |       |        |       |       |         |                   |         |  |
| Walleye          |                           |       |       | 25     | 11    | 3.3   | 42      | 60                | 10.5    |  |
| Family           |                           |       |       |        |       |       |         |                   |         |  |
| Hiodontidae      |                           |       |       |        |       |       |         |                   |         |  |
| Catostomidae     | 1,421                     | 682   | 83.5  | 175    | 77    | 26.0  | 340     | 485               | 143.9   |  |
| Ictaluridae      | 115                       | 55    | 68.5  | 382    | 168   | 5.9   | 251     | 359               | 11.8    |  |
| Cyprinidae       | 12,615                    | 6,055 | 45.4  | 2,755  | 1,212 | 2.2   | 433     | 619               | 2.2     |  |
| Sciaenidae       |                           |       |       |        |       |       | 11      | 15                | 6.1     |  |
| Centrarchidae    |                           |       |       | 593    | 261   | 10.7  | 257     | 367               | 15.1    |  |
| Percichthyidae   |                           |       |       |        |       |       |         |                   |         |  |
| Percidae         |                           |       |       |        |       |       | 20      | 28                | .04     |  |
| Total            | 14,476                    | 6,948 | 269.6 | 4,837  | 2,128 | 302.4 | 2,577   | 3,680             | 1,303.7 |  |

38

Appendix K. Numerical density and standing stock of four species and seven families of fish found in eight streams 75-599 sq. mi. of drainage in the Southern Iowa Drift Plain landform.

|                  | A ª   |       |       | C      | hariton River<br>B |         |        | С     |         |
|------------------|-------|-------|-------|--------|--------------------|---------|--------|-------|---------|
|                  | N/mi  | N/ac  | lb/ac | N/mi   | N/ac               | lb/ac   | N/mi   | N/ac  | lb/ac   |
| Species          |       |       |       |        |                    |         |        |       |         |
| Carp             | 19    | 7     | 1.7   | 4,984  | 1,216              | 1,041.8 | 4,504  | 696   | 572.1   |
| Channel Catfish  | 57    | 21    | 1.1   | 652    | 159                | 45.2    | 1,877  | 290   | 304.0   |
| Flathead Catfish |       |       |       |        |                    |         |        |       |         |
| Walleye          | 38    | 14    | 1.3   |        |                    |         |        |       |         |
| Family           |       |       |       |        |                    |         |        |       |         |
| Hiodontidae      |       |       |       | 361    | 88                 | 8.3     | 1,171  | 181   | 6.0     |
| Catostomidae     | 38    | 14    | 1.4   | 86     | 21                 | 19.7    | 78     | 12    | 13.1    |
| Ictaluridae      | 75    | 28    | .4    | 3,406  | 831                | 60.6    | 3,319  | 513   | 53.0    |
| Cyprinidae       | 2,388 | 887   | 2.3   | 123    | 30                 | .3      | 84     | 13    | .1      |
| Sciaenidae       | 19    | 7     | 1.2   | 258    | 63                 | 8.4     | 1,087  | 168   | 34.4    |
| Centrarchidae    | 294   | 109   | 1.5   | 635    | 155                | 15.8    | 1,553  | 240   | 29.7    |
| Percichthyidae   |       |       |       |        |                    | ÷       |        |       |         |
| Total            | 2,928 | 1,087 | 10.9  | 10,505 | 2,563              | 1,200.1 | 13,673 | 2,113 | 1,012.4 |

.

Appendix K. Continued

|                              | West Fork<br>Crooked Creek <sup>a</sup> |       | North S<br>River A |        |       |       |       |       |       | White Breast<br>Creek ª |       |       |
|------------------------------|-----------------------------------------|-------|--------------------|--------|-------|-------|-------|-------|-------|-------------------------|-------|-------|
|                              | N/mi                                    | N/ac  | lb/ac              | N/mi   | N/ac  | lb/ac | N/mi  | N/ac  | lb/ac | N/mi                    | N/ac  | lb/ac |
| Species                      |                                         |       |                    |        |       |       |       |       |       |                         |       |       |
| Carp                         | 154                                     | 47    | 4.7                |        |       |       | 347   | 60    | 93.8  | 325                     | 58    | 82.1  |
| Channel Catfish              | 118                                     | 36    | 5.2                |        |       |       | 3,990 | 691   | 169.7 | 487                     | 87    | 4.0   |
| Flathead Catfish             |                                         |       |                    |        |       |       | 92    | 16    | 3.8   |                         |       |       |
| Walleye                      |                                         |       |                    |        |       |       | 29    | 5     | 2.2   |                         |       |       |
| <i>Family</i><br>Hiodontidae |                                         |       |                    |        |       |       |       |       |       |                         |       |       |
| Catostomidae                 |                                         |       |                    | 3,127  | 667   | 4.1   | 116   | 20    | 11.3  | 101                     | 18    | 7.5   |
| Ictaluridae                  |                                         |       |                    |        |       |       | 797   | 138   | 4.0   | 3,870                   | 691   | 27.3  |
| Cyprinidae                   | 25,408                                  | 7,756 | 31.6               | 38,911 | 8,301 | 25.5  | 3,944 | 683   | 4.0   | 2,307                   | 412   | 1.2   |
| Sciaenidae                   |                                         |       |                    |        |       |       |       |       |       | 241                     | 43    | 2.7   |
| Centrarchidae                |                                         |       |                    |        |       |       | 179   | 31    | .5    | 140                     | 25    | 1.6   |
| Percichthyidae               |                                         |       |                    |        |       |       |       |       |       | 34                      | 6     | 2.3   |
| Total                        | 25,680                                  | 7,839 | 41.5               | 42,038 | 8,968 | 29.6  | 9,494 | 1,644 | 287.1 | 7,505                   | 1,340 | 128.7 |

.

# 40 Appendix K. Continued

.

|                  |       |      | West Nishr | nabotna Rive | r              |       | Thomps | on Fork Gr | and River |          |             |       |
|------------------|-------|------|------------|--------------|----------------|-------|--------|------------|-----------|----------|-------------|-------|
|                  |       | A ª  |            |              | B <sup>a</sup> |       | -      | Α          |           | Bi       | g Cedar Cre | ek    |
|                  | N/mi  | N/ac | lb/ac      | N/mi         | N/ac           | lb/ac | N/mi   | N/ac       | lb/ac     | N/mi     | N/ac        | lb/ac |
| Species          |       |      |            |              |                |       |        |            |           |          |             |       |
| Carp             | 111   | 12   | 12.8       | 67           | 6              | 5.3   | 755    | 135        | 367.3     |          |             |       |
| Channel Catfish  | 203   | 22   | 15.0       | 1,692        | 152            | 84.0  | 9,967  | 1,782      | 109.2     | 269      | 60          | 7.3   |
| Flathead Catfish |       |      |            | 33           | 3              | 3.5   | 1,169  | 209        | 2.7       |          |             |       |
| Walleye          | 19    | 2    | .6         |              |                |       |        |            |           |          |             |       |
| Family           |       |      |            |              |                |       |        |            |           | <b>W</b> |             |       |
| Hiodontidae      | 786   | 85   | 26.7       | 946          | 85             | 1.2   | 22     | 4          | 1.7       |          |             |       |
| Catostomidae     | 176   | 19   | 19.0       | 212          | 19             | 15.9  | 1,538  | 275        | 115.8     | 175      | 39          | 11.1  |
| Ictaluridae      | 647   | 70   | 1.3        | 223          | 20             | .3    | 78     | 14         | .4        | 13       | 3           | .2    |
| Cyprinidae       | 4,298 | 465  | 6.9        | 6,143        | 552            | 7.0   | 30,262 | 5,411      | 18.1      | 13,581   | 3,033       | 12.8  |
| Sciaenidae       |       |      |            | 33           | 3              | .2    | 6      | 1          | 2.0       |          |             |       |
| Centrarchidae    | 1,312 | 142  | 2.0        | 690          | 62             | .6    | 6      | 1          | 1.3       | 188      | 42          | .3    |
| Percichthyidae   |       |      |            |              |                |       |        |            |           |          |             |       |
| Total            | 7,552 | 817  | 84.3       | 10,039       | 902            | 118.0 | 43,803 | 7,832      | 618.4     | 14,226   | 3,177       | 31.7  |

.

Thompson Fork of the Grand -- B **English River** South Skunk River -- C North Skunk River -- C N/mi N/ac lb/ac N/mi N/ac lb/ac N/mi N/mi N/ac lb/ac N/ac lb/ac Species Carp 18.5 49 167.1 801 164.9 251.1 73 9 324 169 564 83 Channel Catfish 2,367 292 45.6 4,733 715 71.5 3,297 696 98.2 2,962 436 122.0 Flathead Catfish 17 2.1 133 10.8 583 39.4 82 20.6 138 880 123 12 27 2.0 Walleye 4 Family Lepisosteidae 60 9 9.4 Hiodontidae 120.0 32 4 1.7 11,075 1,673 Catostomidae 956 118 1,430 216 161.5 136 20 18.0 44.3 Ictaluridae 1,278 187 2.9 114 14 .4 602 91 2.0 Cyprinidae 1,370 999 4,467 943 3.7 2,072 305 11,104 4.0 6,613 5.8 1.3 Sciaenidae 2.0 90 19 1.7 8 1 20 3 965 1.5 Centrarchidae 8 1 1.3 1.0 1,274 269 1.3 142 Percichthyidae 907 137 1.9 Percidae Total 551.0 309.2 8,086 1,189 419.4 14,800 1,826 119.9 26,644 4,025 10,512 2,219

.

Appendix L. Numerical density and standing stock of four species and nine families of fish found in four streams >600 sq. mi. of drainage in the Southern Iowa Drift Plain landform.

|                              | 6        |                         |                         |  |  |  |  |
|------------------------------|----------|-------------------------|-------------------------|--|--|--|--|
|                              | <75 N/mi | 75-599 N/mi             | >600 N/mi               |  |  |  |  |
| Paleozoic Plateau            |          |                         |                         |  |  |  |  |
| Northern Pike                |          |                         |                         |  |  |  |  |
| Carp                         |          |                         | 158                     |  |  |  |  |
| Channel Catfish              |          |                         | 40                      |  |  |  |  |
| Flathead Catfish             |          | 214                     | 20                      |  |  |  |  |
| Smallmouth Bass              |          | 314                     | 20                      |  |  |  |  |
| Rock Bass                    |          | 40                      |                         |  |  |  |  |
| Walleye<br>Othersª           |          | 10 125                  | 16 027                  |  |  |  |  |
| TOTAL                        |          | 40,435<br><b>40,789</b> | 16,037<br><b>16,255</b> |  |  |  |  |
| IOIAL                        |          | 40,709                  | 10,235                  |  |  |  |  |
| Iowan Surface                |          |                         |                         |  |  |  |  |
| Northern Pike                | 144      | 102                     | 143                     |  |  |  |  |
| Carp                         | 685      | 804                     | 1,887                   |  |  |  |  |
| Channel Catfish              | 329      | 3,370                   | 5,775                   |  |  |  |  |
| Flathead Catfish             | 10       |                         |                         |  |  |  |  |
| Smallmouth Bass              | 191      | 565                     | 84                      |  |  |  |  |
| Rock Bass                    | 136      | 111                     | 55                      |  |  |  |  |
| Walleye                      | 10       | 16                      | 84                      |  |  |  |  |
| Others <sup>a</sup>          | 25,296   | 24,332                  | 10,803                  |  |  |  |  |
| TOTAL                        | 26,801   | 29,300                  | 18,831                  |  |  |  |  |
| Dec Mainer Lake (Use liesed) |          |                         |                         |  |  |  |  |
| Des Moines Lobe (Unaltered)  |          | 125                     | 92                      |  |  |  |  |
| Northern Pike                |          | 135<br>910              | 1,680                   |  |  |  |  |
| Carp<br>Channel Catfish      |          | 799                     | 2,893                   |  |  |  |  |
| Flathead Catfish             |          | 89                      | 2,895                   |  |  |  |  |
| Smallmouth Bass              |          | 464                     | 102                     |  |  |  |  |
| Rock Bass                    |          | 114                     | 319                     |  |  |  |  |
| Walleye                      |          | 64                      | 54                      |  |  |  |  |
| Others <sup>a</sup>          |          | 29,769                  | 72,243                  |  |  |  |  |
| TOTAL                        |          | 32,344                  | 77,603                  |  |  |  |  |
|                              |          | 52,511                  | 11,000                  |  |  |  |  |
| Des Moines Lobe (Channelized | d)       |                         |                         |  |  |  |  |
| Northern Pike                |          |                         |                         |  |  |  |  |
| Carp                         |          | 66                      | 145                     |  |  |  |  |
| Channel Catfish              |          |                         | 27                      |  |  |  |  |
| Flathead Catfish             |          |                         |                         |  |  |  |  |
| Smallmouth Bass              |          |                         |                         |  |  |  |  |
| Rock Bass                    |          |                         |                         |  |  |  |  |
| Walleye                      |          |                         |                         |  |  |  |  |
| Others <sup>a</sup>          |          | 1,938                   | 403,711                 |  |  |  |  |
| TOTAL                        |          | 2,004                   | 403,883                 |  |  |  |  |

Appendix M. Mean density (N/mi) of fish by landform and stream drainage area. Average values for sportfish were calculated using only those data from streams in which they were sampled.

<sup>a</sup> Others includes fish species found in Appendix B.

### Appendix M. Continued.

|                              | <75 N/mi                  | 75-599 N/mi | • >600 N/mi   |  |
|------------------------------|---------------------------|-------------|---------------|--|
| Northwest Iowa Plain (Una    | ltered)                   |             |               |  |
| Northern Pike                |                           |             |               |  |
| Carp                         |                           | 144         |               |  |
| Channel Catfish              |                           | 531         | 2,333         |  |
| Flathead Catfish             |                           |             |               |  |
| Smallmouth Bass              |                           |             |               |  |
| Rock Bass                    |                           |             |               |  |
| Walleye                      |                           |             |               |  |
| Othersª                      |                           | 23,277      | 32,745        |  |
| TOTAL                        |                           | 23,952      | 35,078        |  |
|                              |                           |             |               |  |
| Northwest Iowa Plains (Cha   | annelized)                |             |               |  |
| Northern Pike                |                           |             |               |  |
| Carp                         |                           |             |               |  |
| Channel Catfish              |                           |             |               |  |
| Flathead Catfish             |                           |             |               |  |
| Smallmouth Bass              |                           |             |               |  |
| Rock Bass                    |                           |             |               |  |
| Walleye                      |                           |             |               |  |
| Others <sup>a</sup>          |                           | 2,751       |               |  |
| TOTAL                        |                           | 2,751       |               |  |
| Southern Iowa Drift Plain (  | (Inaltered)               |             |               |  |
| Northern Pike                |                           |             |               |  |
| Carp                         | 679                       | 2,648       | 441           |  |
| Channel Catfish              | 562                       | 3,351       | 3,340         |  |
| Flathead Catfish             |                           | 631         | 421           |  |
| Smallmouth Bass              |                           | 001         | 721           |  |
| Rock Bass                    |                           |             |               |  |
| Walleye                      | 34                        | 29          | 27            |  |
| Others <sup>a</sup>          | 9,795                     | 12,613      | 10,803        |  |
| FOTAL                        | 9,793<br><b>11,070</b>    |             | <b>15,032</b> |  |
| UIAL                         | 11,070                    | 19,272      | 15,032        |  |
| Southern Iowa Drift Plain (( | Channelized) <sup>b</sup> |             |               |  |
| Northern Pike                |                           |             |               |  |
| Carp                         | 257                       | 135         |               |  |
| Channel Catfish              | 752                       | 511         |               |  |
| Flathead Catfish             |                           | 33          |               |  |
| Smallmouth Bass              |                           |             |               |  |
| Rock Bass                    |                           |             |               |  |
| Valleye                      |                           | 29          |               |  |
| Othersª                      | 25,656                    | 15,403      |               |  |
| TOTAL                        | 26,665                    | 16,111      |               |  |

•

<sup>b</sup> Does not include Walnut Creek.

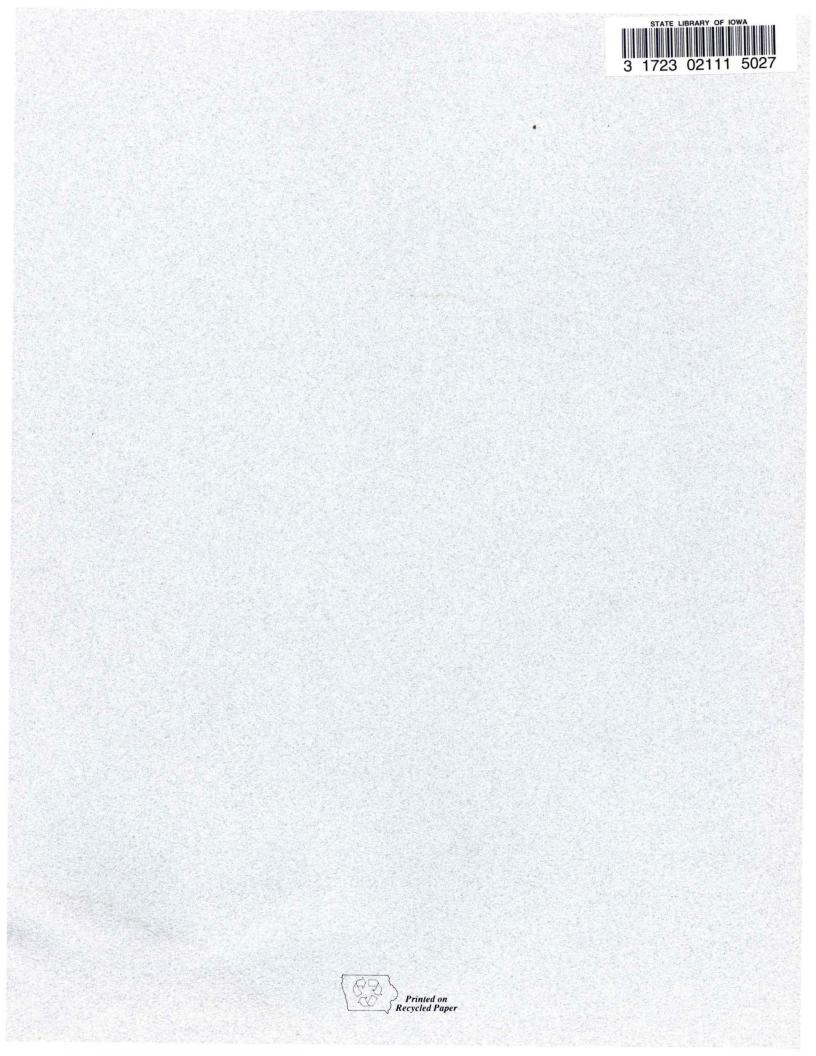
|                               |           | 6            |            |  |
|-------------------------------|-----------|--------------|------------|--|
|                               | <75 lb/mi | 75-599 lb/mi | >600 lb/mi |  |
| Paleozoic Plateau             |           |              |            |  |
| Northern Pike                 |           |              |            |  |
| Carp                          |           |              | 799.9      |  |
| Channel Catfish               |           |              | 106.0      |  |
| Flathead Catfish              |           |              | • •        |  |
| Smallmouth Bass               |           | 34.1         | 2.0        |  |
| Rock Bass                     |           | 8.7          |            |  |
| Walleye                       |           |              | 1 110 0    |  |
| Others <sup>a</sup>           |           | 2,797.5      | 1,110.0    |  |
| TOTAL                         |           | 2,840.3      | 2,017.9    |  |
| Iowan Surface                 |           |              |            |  |
| Northern Pike                 | 56.7      | 96.2         | 34.7       |  |
| Carp                          | 1,056.4   | 987.9        | 6,005.0    |  |
| Channel Catfish               | 121.3     | 557.7        | 1,430.8    |  |
| Flathead Catfish              | 6.0       |              |            |  |
| Smallmouth Bass               | 13.5      | 64.0         | 23.9       |  |
| Rock Bass                     | 22.7      | 23.9         | 12.4       |  |
| Walleye                       | 4.5       | 8.0          | 254.9      |  |
| Others <sup>a</sup>           | 676.3     | 1,404.7      | 639.0      |  |
| TOTAL                         | 1,957.4   | 3,142.4      | 8,400.7    |  |
| Des Moines Lobe (Unaltered)   |           |              |            |  |
| Northern Pike                 |           | 162.0        | 92.5       |  |
| Carp                          |           | 1,612.5      | 3,179.3    |  |
| Channel Catfish               |           | 259.4        | 1,108.7    |  |
| Flathead Catfish              |           | .3           | 15.3       |  |
| Smallmouth Bass               |           | 60.7         | 82.5       |  |
| Rock Bass                     |           | 17.9         | 19.0       |  |
| Walleye                       |           | 40.6         | 68.4       |  |
| Others <sup>a</sup>           |           | 667.1        | 3,463.9    |  |
| TOTAL                         |           | 2,820.5      | 8,029.6    |  |
| Des Moines Lobe (Channelized) |           |              |            |  |
| Northern Pike                 |           |              | ,          |  |
|                               |           | 185.7        | 125.1      |  |
| Carp<br>Channel Catfish       |           | 165.7        | 1.6        |  |
| Flathead Catfish              |           |              | 1.0        |  |
|                               |           |              |            |  |
| Smallmouth Bass               |           |              |            |  |
| Rock Bass                     |           |              |            |  |
| Walleye                       |           | 2(0 F        | 2 201 1    |  |
| Others <sup>a</sup><br>TOTAL  |           | 268.5        | 3,301.1    |  |
| IUIAL                         |           | 454.2        | 3,427.8    |  |

Appendix N. Mean standing stock (lb/mi) of fish by landform and stream drainage area. Average values for sportfish were calculated using only those data from streams in which they were sampled

<sup>a</sup> Others includes fish species found in Appendix B.

## Appendix N. Continued.

|                              | <75 lb/mi                 | 75-599 lb/mi | • >600 lb/mi |  |
|------------------------------|---------------------------|--------------|--------------|--|
| Northwest Iowa Plain (Unal   | tered)                    |              |              |  |
| Northern Pike                |                           |              |              |  |
| Carp                         |                           | 364.8        |              |  |
| Channel Catfish              |                           | 297.2        | 322.8        |  |
| Flathead Catfish             |                           |              |              |  |
| Smallmouth Bass              |                           |              |              |  |
| Rock Bass                    |                           |              |              |  |
| Walleye                      |                           |              |              |  |
| Others <sup>a</sup>          |                           | 597.4        | 683.1        |  |
| TOTAL                        |                           | 1,259.4      | 1,005.9      |  |
| Northwest Iowa Plains (Cha   | nnelized)                 |              |              |  |
| Northern Pike                |                           |              |              |  |
| Carp                         |                           |              |              |  |
| Channel Catfish              |                           |              |              |  |
| Flathead Catfish             |                           |              |              |  |
| Smallmouth Bass              |                           |              |              |  |
| Rock Bass                    |                           |              |              |  |
| Walleye                      |                           |              |              |  |
| Others <sup>a</sup>          |                           | 74.4         |              |  |
| TOTAL                        |                           | 74.4         |              |  |
| Southern Iowa Drift Plain (U | Inaltered)                |              |              |  |
| Northern Pike                | sharterea,                |              |              |  |
| Carp                         | 597.4                     | 2,607.8      | 855.8        |  |
| Channel Catfish              | 249.3                     | 714.0        | 526.7        |  |
| Flathead Catfish             | 217.0                     | 18.2         | 107.7        |  |
| Smallmouth Bass              |                           |              |              |  |
| Rock Bass                    |                           |              |              |  |
| Walleye                      | 6.6                       | 12.8         | 13.5         |  |
| Others <sup>a</sup>          | 452.7                     | 454.5        | 639.0        |  |
| TOTAL                        | 1,306.0                   | 3,807.3      | 2,142.7      |  |
| Southern Iowa Drift Plain (C | Channelized) <sup>b</sup> |              |              |  |
| Northern Pike                |                           |              |              |  |
| Carp                         | 399.0                     | 110.7        |              |  |
| Channel Catfish              | 495.0                     | 175.6        |              |  |
| Flathead Catfish             | 170.0                     | 38.5         |              |  |
| Smallmouth Bass              |                           | 0010         |              |  |
| Rock Bass                    |                           |              |              |  |
| Walleye                      |                           | 3.4          |              |  |
| Others <sup>a</sup>          | 307.8                     | 144.1        |              |  |
| TOTAL                        | <b>1,201.8</b>            | 472.3        |              |  |
|                              | 1,201.8                   | 4/2.3        |              |  |


<sup>b</sup> Does not include Walnut Creek.

#### ACKNOWLEDGEMENTS

The author would like to thank Richard Martens and the many technicians, workers, biologists, and district supervisors that helped in field collections.

Thanks to those conservation officers who were of assistance. Special thanks to Don Bonneau, Jim Mayhew, Larry Mitzner, Don Kline, Terry Jennings, and Jud Monroe who provided editorial aid. Also, thanks to Sue O'Loughlin for typing of the ms. and to those many others for their support.

This investigation was supported in part by the Federal Aid in Fish Restoration Act (PL 81-681) under Dingell-Johnson Project F-99-R, United States Fish and Wildlife Service, and the Iowa Department of Natural Resources.

