

PREFACE

The following executive summary is presented to comply with the stipulations in Phases I, II, III, IV of the BLACK HAWK LAKE/HALLETT PITS FEASIBLITY STUDY which was prepared by the consultant, Hoskins -Western-Sonderegger, Inc. of Lincoln, Nebraska for the Iowa Conservation Commission.

The conclusion of this study is the specific project recommendation of the Iowa Conservation Commission. The consultant assists the Commission in selecting the most desirable option under Phase V of the study. Further project findings, as directed by the Commission, appear as separate documents.

TABLE OF CONTENTS

		Page
Ι.	DEFINING PUBLIC ACCESS	1
	Route of Connection Assumptions	2
	Public Recreation Additions	- 2 -
	Private Development Opportunities	- 7
	Operations and Maintenance Considerations	10
II.	HYDROLOGIC ASSESSMENT	11
	Aquifer Connection	11
	Aquifer Characteristics	11
	Black Hawk Lake Water Budget	15
	General Implications of Connecting Black Hawk Lake to the Hallett Pits	17
III.	LAND SURVEYING	19
IV.	DEFINING ALTERNATIVES	22
	Benefit/Cost Assumptions	22
	Benefits	30
	Benefit/Cost Ratio	31
	Cash Flow Analysis	33
	Environmental Analysis Project Purposes Project Description Environmental Description Environmental Impact Mitigating Measures	35 35 35 37 44 54

I

LIST OF FIGURES

		Page
I - A	Alternative Route Connections	3
I - B	Recreational Planning Region V	6
I - C	West Hallett Pits Area Development Concept Scheme	8
II - A	Boring Location Map	12
II - B	Groundwater Lake Level Comparison 1970 - 1976	13
II - C	Terraces	•14
II - D	Water Budget	15
III - A	Survey Results	21
IV - A	Areas of Impact	24
IV - B	Land Rights	25
IV - C	Typical Cross-section Template	29
IV - D	Land Forms	38
IV - E	Disturbed Areas	40
IV - F	Park Management Plan	47
IV - G	Channel Construction, Lake Dredging, and Shoreline Protection	50

LIST OF TABLES

				Page
I	-	1	Annual Recreation Visit Summary	9
II	-	1	Black Hawk Lake Weir Annual Discharge Summary	17
III	-	1	Coordinate Adjustment Notes	- 20
IV	-	1	Comparison of Project Costs	- 28
I۷	-	2	Benefit/Cost Comparison	32
IV	-	3	a-d Cash Flow Analysis Alternative "A", "B", "C", and "D"	3,4
IV	-	4	Intercompatibility of Multipurpose Water-Related Uses	45
I۷	7	5	Absolute Impact Comparisons	53

LIST OF APPENDICES

- A. Boring Logs, Black Hawk Lake, Iowa (18 sites) Sieve Analysis and Sample Composite List "Report on Gravel Investigation Along West Side of Sections 4 and 9, T.86N, R.36W., Sac County, Iowa" by Fred Dorheim
- B. Gage Height, Black Hawk Lake, Lake View, Iowa
- C. Pump Test Summary
- D. Basin Water Budget
- E. Pumping Impact
- F. Radius of Influence as a Function of Pump Discharge and Precipitation Recharge
- G. Lake Discharge Summaries
- H. Water Quality Summary

I. DEFINING PUBLIC ACCESS

The definition of public access precedes the discussion of Hydrologic Feasibility. The two items are very closely related, and both are centered around the physical ability to make the connection between the natural lake and the gravel pits.

Assuming the connection of the West (privately owned) Hallett Pits to Black Hawk Lake can be made, the purposes of the study are to:

- 1) Define possible routes of connection.
- Determine additional public recreation benefits resulting from the project.
- Consider possible private development opportunities that would arise from the project.
- Discuss probable operation and maintenance factors.

The study will not attempt to:

- 1) Evaluate the rehabilitation or improvement of Black Hawk Lake.
- Consider raising the level on Black Hawk Lake (by adjusting the weir).
- 3) Solve any water level problems on Black Hawk Lake relating to variable precipitation.
- 4) Solve disputes over water well development in the area.

The study is conducted to objectively develop information on project feasibility for the Iowa Conservation Commission and to coordinate both public and private interests during the study phases of the project.

Basically, the study considers connecting the privately owned West Hallett Pits with Black Hawk Lake by means of a navigation canal. Large sections of the canal would have to be excavated in order to provide the connection, since the present inlet channel is too shallow and other routes have few existing water bodies within their boundaries. Residential and recreational development around the West Hallett Pit would be an acknowledged end result of the connection project.

Route of Connection Assumptions

The connection corridor would logically follow the hydrologic connection through the ancient alluvial terraces to:

- 1) Keep most of the activity on state owned lands.
- Take advantage of the excavated gravel pits already in existence.
- Recover sand and gravel material within the corridor where possible.
- Take advantage of the shortest distance between the larger water bodies.

Four possible routes have been studied at the request of the Iowa Conservation Commission. Route A generally parallels the Chicago -Northwestern Railroad, Route "B" follows a previously excavated canal through the central swampy areas, Route "C" follows the present inlet channel, and Route "D" passes through the Arrowhead Lakes (see Figure I-A). Each route is evaluated on the extent and magnitude of local impact, cost, the potential for possible cost recovery through the availability of commercial gravel deposits, and estimated future operations and maintenance costs. This information is found in Part IV of the report.

Public Recreation Additions

A few preconditions have to be described before a discussion of public benefits attributable to the connection can begin. First,

the assumption is made that all residential development would occur around the privately-owned West Hallett Pits. Three areas of recreational deficiencies were noted in the preliminary 1978 Iowa State Comprehensive Outdoor Recreation Plan (SCORP) for Recreational Planning Region V. (See Figure 1-B) They were camping, environmental swimming, and pleasure boating. According to the Iowa Conservation Commission, their analysis of the immediate Black Hawk Lake Area discloses that the present camping facilities are not over crowded and are not projected to be overcrowded in the near future. The same is true for swimming facilities. If these types of facilities . were to be built in the Hallett Pits Complex, their benefits would not be directly attributable to the lake-pits connection project. They could be built whether the connection was made or not. Any swimming or camping facilities justification would not result directly from the channel connection, but through the normal Black Hawk Lake Area master planning process. Because of the hydrologic connection of groundwater and surface water, no recreational facilities development should occur until waste water collection and treatment are provided.

Some recreation use is made of the Pits as they now exist. The connection would provide better access to the Pits, but would not increase the fisheries potential in the area. In fact, under normal conditions, Black Hawk Lake would be able to produce on the magnitude of three times as much fish poundage per acre of water as the Pits. Thus, public fishing benefits would be roughly one-third as much in

the Pits complex on an area basis.

For planning purposes, the East Hallett Pits Complex (state-owned) would not be developed as a recreation facility because of the potential conflict with wildlife habitat and present management practices. The approximate twelve acre tract adjacent to the county road in the northeast corner of the West Hallett Pits would be suitable for camping and swimming facilities at some future date when such facilities are justified.

The total water surface area in the East Hallett Pits Complex is 33 acres. Using SCORP design criteria, which converts water area to monetary benefits, and fisheries productivity information supplied by the local Iowa Conservation Commission biologist, a maximum of 1100 annual fishing visitations could result if proper access is afforded.* Present counts indicate about 300 annual visitations are already experienced. Thus, the project would net a maximum increase of 800 annual fishing visitations due to better access to the area.

Alternative Routes "A" and "D" would involve only 23 surface water acres of the East Hallett Pits Complex; thus, a total of 800 recreation days of fishing would result from the project.* After subtracting the existing 300 days, the net result would be 500 recreation days.

Pleasure boating is not considered for benefit calculation on the East Hallett Pit Complex due to the small size of the lake requirement to maintain a 300-foot restricted zone adjacent to the shore for boat fishing only. However, the increased surface area of the connection channel would result in approximately 300 additional boating recreation

^{*}Based on a peak daily design of 2.0 water acres/Fishing party X 2.5 people/ Party X 1.5 daily turnover rate X 25 peak days per season ÷ .45 (ratio of peak days to total days) ÷ 3 (comparable fishing potential factor)

Figure I-B RECREATION PLANNING REGION ▼

days annually.**

Present annual Black Hawk Lake recreation attendance figures reflect a direct relationship between the lake level and recreational visitations. Comparing the 1960 through 1973 annual attendance figures with the lake levels in Figure IIB this relationship is evident.

During the 1960 to 1973 attendance period, 3,933,700 visitations were recorded. Annual attendance ranged from 132,719 in 1961 to 372,480 in 1968 with an average annual figure of 281,000. Thus, the additional estimated project visitations resulting from project activities would be approximately 2.7 percent of the annual average lake visits.

**Based on a peak daily design of 8.5 water acres/Boating party X 2.5 people/ Party X 1.5 daily turnover rate X 25 peak days per season ÷ .45 (ratio of peak days to total days)

Private Development Opportunities

By constructing the approximate 2.3 mile connection between Black Hawk Lake (through Provost Slough) to the West Hallett Pits, approximately 220 acres of surface water will be opened up for public access. The connection to the natural lake will further enhance the lands surrounding the West Hallett Pit for residential development (second home, lake front development somewhat similar to the present Black Hawk Lake area).

By connecting the privately owned West Hallett Pits to Black Hawk Lake, the water and lands under the water of the pits shall be in State ownership. Some degree of shoreline control would also be extended to the State (Iowa Conservation Commission).

Figure I-C illustrates a general design concept for private development. The contour of the lake is reflective of future operational needs of the quarrying operation, aesthetic considerations, and optimal use of shoreland and the water surface. In order to <u>optimally</u> develop the lake itself as a residential/recreational entity, the railroad would have to be abandoned and the tracts and roadbed removed. Otherwise, the effective usable area of the lake and the resultant benefits would be reduced. This is a consideration for the private developer.

The most pressing concerns associated with any development around the lake are the sources of domestic water and waste disposal. The location of any water wells should consider the cummulative impacts upon the local groundwater regime and surface water levels in the area.

Due to the high permeability of the underlying sands and gravels and the close proximity of the rural water district wells to the development

area, private septic tank systems would undoubtedly be unacceptable from a public health and environmental viewpoint. The nearest public disposal system is south of Wall Lake, 8000 feet to the west of the Hallett property.

Using the 300-foot shore buffer zone, 112 water acres would be allocated for potential no-wake boating benefit calculations, and 106 acres would be used for fishing benefit calculations. About 11,700 feet of shoreline also will be opened up for private fishing benefits. The West Pit is not large enough to effectively allow water skiing and large engined power boating. At least ten acres should be used for public access to the lake. Using the design criteria shown previously, the connection would support nearly 6,400 annual recreation visits in the form of pleasure boating and fishing to this area.

The projected annual recreation visitations resulting from all phases of the project are shown on the Table I-1.

Table I-1 ANNUAL RECREATION VISITATION SUMMARY								
Recreation Alternatives "A" & "D" Alternatives "9" & "								
Fishing (East Hallett)	500 *	800 *						
Boating (East Hallett)	300 **	300 **						
Subtotal - East Hallett	300	1100						
Fishing (West Hallett)	3700 *	3700 *						
Boating (West Hallett)	2700 **	2700 **						
Subtotal - West Hallett	6400	6400						
Total Directly Attributabl to Project	e 7200	7500						

*Based on a peak daily design of 2.0 water acres/fishing party X 2.5 people/party X 1.5 daily turnover rate X 25 peak days per season + .45 (ratio of peak days to total days) + 3 (comparable fishing potential factor)

**Based on a peak daily design of 8.5 water acres/boating party X 2.5 people/party X 1.5 daily turnover rate X 25 peak days per season ÷ .45 (ratio of peak days to total days)

Operations and Maintenance Considerations

Provost Slough which generally serves as a sediment catchment basin for Black Hawk Lake must also be dredged periodically with costs estimated to range from \$6,000 to \$14,500 annually depending on which route was chosen. (From a sliding scale based on \$1.25 per cubic yard removed with a 400,000 cubic yard minimum and \$0.05 additional for every 10,000 cubic yards under 400,000).

Some bank scour and sluffing can be expected along the boat canals, even with "no-wake" speed limitations. The use of bank vegetation, special bank grading techniques, and brush mats can minimize these problems. Average annual costs are estimated to range from \$100 to \$200 for streambank operations and maintenance.

Public operations and maintenance costs are estimated to be from \$3,600 to \$3,700 annually for the West Hallett public access and water bodies in both the East and West Hallett Complexes. These figures are based upon the additional annual recreation visitations generated by the project.

Fisheries management at Black Hawk Lake is attempting to control winter fish kill by aeration techniques. Fish stocking is programmed for the fall 1979. To do this, the present surviving species, mainly small rough fish, must be eliminated by chemical poisoning. If West Hallett Pits were connected to Black Hawk Lake prior to the fish kill program being completed, the cost of this program would be increased substantially.

II. Hydrologic Assessment

Aquifer Connection

Borings made by Hoskins-Western-Sonderegger, Inc. confirm the topographic expression of an old fluvial channel filled with glacial outwash (See Appendix A). Boring locations are shown in Figure II-A. The outwash contains channel gravels, sands, silts and clay lenses. Abundant sand and gravel channels provide an aquifer connecting the major water bodies in this area, including Black Hawk Lake and Hallett Pits. This is confirmed by identical recordings from a USGS observation well (in the aquifer) and observed surface levels in Black Hawk Lake, measured during the same period (Figure II-B and Appendix B). Personal communication with local residents confirms the similarity of Hallett Pits to the Lake and general marsh levels. The discharge potential established in the West Central Iowa Rural Water Association pump test further supports a continuous hydrologic connection. During 24 hours, no major barrier was confronted and a good transmissivity value was obtained which suggests a laterally extensive aquifer of good hydraulic conductivity (pump test results are tabulated in Appendix C).

Aquifer Characteristics

Throughout the connection corridor the depth of the sands and gravels tends to increase from east to west, as does the percentage distribution of gravel (material retained on the No. 4 sieve). The overburden (depth of silts and clays) generally decreases east to west. Figure II-C plots the older/higher terraces found along the west side of the corridor.

Under these terraces are found the better gravel deposits with greater thicknesses.

The sand and gravel depths vary greatly, pinching out to only a few feet in depth between borings 5a, R-1 to R-6 and 11 (Figure II-A). The marshes in the central portion of the corridor are probably all that is left of the ancient river channel; overburden there will range up to ten feet in depth.

Water test well logs and HWS, Inc. borings show a similarity in the sand and gravel material throughout the corridor between Black Hawk Lake and Hallett Pits. Total transmissivity (the amount of water able to pass through a material) of all underlying material is calculated to be 66,570 gallons per day (gpd) in the Rural Water District water well pump test. Assuming the average depth of the aquifer is fifty feet, the permeability of the aquifer would be 1,300 gpd per square foot.

Black Hawk Lake Water Budget (Figure II-D)

WATER BUDGET in millions of gallons per year

Black Hawk Lake receives water from surface runoff (RO) from the drainage basin at a rate of 388 million gallons per year (MG/yr.), precipitation directly on the Lake at a rate of 727 MG/yr., and by groundwater discharge at an estimated rate of 427 MG/yr. Water leaves the lake area by evapotranspiration at a rate of 1,020 MG/yr., city and local well discharge estimated at 296 MG/yr., and discharge over the weir at a rate of 226 MG/yr. (See Appendix D.)

Appendix D outlines a general basin water budget. Most of the basin's water infiltrates into the aquifer supplying the gravel pits and Black Hawk Lake. The average difference between the West Hallett Pits and Black Hawk Lake levels is 2.3 feet. Heavy withdrawals in one would soon be noticed in all the other water bodies. Likewise, changes in rainfall will affect the water table and, therefore, all lake levels. During dry years there will be drops in both Hallett Pits and Black Hawk Lake levels.

Appendix E outlines the effect on the groundwater of a continuously pumping well. This is a model of the Rural Water District well pumping at 358 gpm. The water table drawdown or radius of influence extends to a distance that can be replenished by precipitation recharge, in this case, 3,000 to 4,000 feet, varying with the annual precipitation (Appendix F.).

Increases in well discharge in any part of the aquifer will affect the lake level. However, only large discharges need cause concern, in the order of 500 to 1,000 million gallons per year. The Rural Water District wells together are allowed to pump a maximum of 188 million gallons annually.

BLACK HAWK LAKE WE	IR ANNUAL DISCHARGE SUMMARY
Year	Discharge
1970 - 71	107 MG
1971 - 72	176 MG
1972 - 73	458 MG
1973 - 74	333 MG
1974 - 75	54 MG
Total	1,128 MG

TABLE II - 1

General Implications of Connecting Black Hawk Lake to the Hallett Pits -

A canal connecting Hallett Pits and Black Hawk Lake would produce a single large lake. Initially, a two foot difference in elevation due to relative position in the drainage basin would produce a flow raising Black Hawk Lake about 0.1 ft. Water levels in the pits will drop a proportional amount. Subsequently, the level would reach a steady state fluctuating in response to the climate much as it does now. This would amount to a flow on the order of 0.2 cubic feet per second flow through the connection with a 2.3 foot elevation difference.

Pump discharge from the Rural Water District wells would amount to halving the difference in water elevations between the pits and the Lake. Thus, the 0.1 foot rise in Black Hawk Lake level would be even less by considering this aspect.

It must be emphasized that the connection will not cause a significant loss of groundwater. Presently a large portion of Black Hawk Lake's water budget is made up of groundwater. During wet years, some groundwater discharge will flow over the weir. However, during dry years the water will be retained in the Lake.

Based on the subsurface data, the following assumptions can be made:

 Groundwater levels will not be significantly affected by physically connecting the West Hallett Pits to Black Hawk Lake.

- 2. Maximum permitted water withdrawal from wells in the immediate vicinity of the Hallett Pits and the State-owned marsh could lower the pit water levels (local groundwater elevations) as much as 0.7 feet (assuming no recharge from surface runoff). This will have the effect of lowering the hydrologic gradient between the two bodies of water, but should not materially affect the physical feasibility of the project.
- The connection will have a very minimal effect on the Black .
 Hawk Lake levels.
- 4. The concept of connecting the West Hallett Pits with Black Hawk Lake is feasible from a hydrologic standpoint under currently permitted maximum water well production rates.

III. LAND SURVEYING

Originally provisions for aerial photogrammetry were a part of the Black Hawk/Hallett Pits Feasibility Study. However, climatic conditions during the late fall of 1978 made it impossible to take aerial photographs suitable for topographic mapping.

The project need was subsequently amended to delete the aerial photography and included additional land surveying and test hole drilling. This information proved invaluable to the complete hydrologic and economic feasibility analysis. The additional test hole logs (R-1 through R-6) summaries are found in Appendix B and displayed by Figure II - A.

Additional land surveying determined all test hole and water elevations, which was essential for the hydrologic and environmental analysis. Water elevations taken at numerous sites are displayed in Figure III - A. The surveyed cross-sections also noted in Figure III - A document the extent of quarry operations in the corridor and were useful in the formation of the economic conclusions. Table III - 1 shows the coordinate adjustment notes.

From the surveyor's notes, a 2.3 foot water level variation was evident from Black Hawk Lake to the West Hallett Pit Complex.

TABLE III-1 COORDINATE ADJUSTMENT NOTES

0	Line	Angle	Bearing	District	+ - N/S	+ - E/W
E RR/Road	AB	R 84 ⁰ 34'30"	N 84 ⁰ 34'30" E	504 '	+ 47.65	+ 501.74
8b	вс	R 93 ⁰ 51'30"	N 1 ⁰ 34'00" W	456'	+455.83	- 12.47
8a	СО	R103 ⁰ 43'30"	N 77 ⁰ 50'30" W	164'	+ 34.54	- 160.32
8c	DE	L104 ⁰ 57'30"	N 2 ⁰ 48'00" W	256'	+255.69	- 12.51
8	EF	R184 ⁰ 34'00"	N 1 ⁰ 46'00" E	221'	+220.89	+ 6.81
R-4	FG	R 79 ⁰ 25'00"	S 81 ⁰ 11'00" W	194'	- 29.74	- 191.71
R-5	GH	L171 ⁰ 02'30"	N 89 ⁰ 51'30" W	113'	+ .28	- 113.00
E RR	HA	R 90 ⁰ 00'00"	S 0 ⁰ 8'30" W	983 '	-983.00	- 2.43
				2891	+1014.88	+ 508.55
					-1012.74	- 492.44
				1908	+ 2.14	+ 16.11

I

F

I

				Adjusted Coordinates			
	Corr N/S	ection E/W	+ - N/S	+ - E/W	North	East	
AB	57	-4.90	+ 47.08	+496.84	A1,000.00	1,000.00	C RR/Road
BC	51	-4.43	+455.32	- 16.90	B _{1,047.1}	1,496.8	8b
CD	18	-1.59	+ 34.36	-161.91	C _{1,502.4}	1,479.9	8a
DE	29	-2.49	+255.40	- 15.00	D _{1,536.8}	1,318.0	- 8c -
EF	25	-2.15	+220.64	+ 4.66	E1,792.2	1,303.0	8
FG	22	-1.89	- 29.96	-193.60	F2,012.8	1,307.7	- R-4
GH -	13	-1.09	+ .15	-114.09	G _{1,982.8}	1,114.1	R-5
НА	.00	.00	-983.00	00	H _{1,983.0}	1,000.0	Ç RR
	-2.15	-16.11	+1012.95	+501.50	A1,000.0	1,000.0	
		- 2.43	-1012.96	-501.50			
		18.54	+ .01	+ .00			

IV. DEFINE ALTERNATIVES

The basic "lay of the land" suggests four possible alternative routes of connection between Black Hawk Lake and the West Hallett Pit Area. (See Figure I-A). These are more specifically defined as follows:

Route A An 11,920-foot channel generally paralleling the present Chicago-Northwestern Railroad tracks.

Route B A 12,600-foot channel overlapping a narrow canal looping through the Central marshes.

Route C A 12,300-foot channel overlapping the present Inlet Channel. Route D A connection through Arrowhead Lakes.

These four alternatives will provide a wide variety in regard to both the quality and quantity of impact. Subsurface conditions vary both longitudinally and laterally within the connection corridor.

Benefit/Cost Assumptions.

The following benefit/cost analysis and cash flow stream are tools to compare the relative merits of various alternatives or projects, but should not be taken as an absolute judgment of project merit. Any recreational development, channel construction, lake sediment dredging, operation, maintenance, and repair, and shoreline protection costs reflect the most current cost estimates. Both public and private cost estimate sources were used to derive the channel construction and dredging figures.

Bridge and land. Basically, three 40-foot long, two-laned bridges

would be required, each with a minimum, six-foot clearance under the bridge.

Sac County is presently programming the resurfacing of the east-west county road crossing the Inlet. The in-place bridge would possibly need to be upgraded. Work is programmed for the next two to three years. If the Lake-Pit connection is to be made, this should be coordinated with other associated public works project to save on total public expenditures.

Whether the county road over the Inlet Channel is to be built to the navigation standards or not would depend on which alternative route is chosen. If either alternatives "A" or "D" are selected, then a new bridge would be required within ninety feet of the present railroad grade. This will not affect the present grade since the water level is at least seven feet below the present ground level.

Depending on which alternative route is selected, anywhere from 4.1 to 210 acres of private land will be acquired. Alternative routes "B" and "C" need greater amounts of land because a substantial portion of the Inlet Channel and Provost Slough is privately owned. Care was taken not to create inaccessible remainders and to leave a "buffer" strip between the recreational/wildlife land and the adjacent, intensive row crop agricultural uses. Figure IV - A identifies each new bridge location and additional land requirements. Figure IV-B identifies the properties affected.

A portion of the 4.1-acre tract which would be needed for either alternative routes "A" or "D" could be used as a spoil pile. However, the project cost estimates include trucking the dredge material from the site to assure that environmental damages would be minimal. The 4.1 acre

site had been quarried in the past. If trucking the spoil material from the site is not needed, the balance of the dredge spoils could be dumped in the pits directly across the road to the West, or used to recontour specific shorelines to provide safer recreational surroundings. Costs of rebuilding the Chicago - Northwestern Railroad tracks to accommodate the channel would be at least \$600,000 if the railroad tracks were to be kept operational.

<u>Recreation</u>. Since the Conservation Commission indicates that no additional camping or other facilities are needed at this time, only boat ramps and docks are included. Access roads to the recommended access sites presently exist off the north-south black-top county road. Installation of 2 ramps, dock facilities and parking is estimated to cost nearly \$17,000.

<u>Construction</u>. Lake dredging cost estimates assumed a 100-foot wide channel with a 60-foot wide base, eight-foot deep and with 2.5:1.0 sideslopes below water. Figure IV-C illustrates typical cross-section template for the channel through dry land. Both alternatives "A" and "D" assumed an average eight-foot depth to water table and no substantial dredging through the gravel pits each encountered. Alternative "B" assumed a 2-foot depth overland with most of its construction being lake dredging. Generally it follows route "C".

Dredging costs are based on a sliding scale with a minimum operational cost of \$1.25 per cubic yard, assuming a minimum of 400,000 cubic yards. The basic unit cost would increase by \$0.05 for every 10,000 cubic yards under 400,000 yards. The total unit prices reflect mobilization costs, a contigency factor, surveying, engineering, actual operations and transportation of the spoils material. Some savings can be encountered if

draglining or other earth-moving equipment are used. Thus, costs varied from \$3.24 per cubic yard in "A" to \$4.04 per cubic yard in alternative "D". Table IV-1 summarizes the volume of material for each alternative and the best 1979 cost estimate for all phases of the project.

All excavated channels will have tapered banks at the shoreline with vegetation and willow-reed mat to minimize bank erosion and sluffing. The vegetation can break wave action and help stabilize the channel bank. Costs were estimated at \$5.25 a lineal foot (\$2.62 per bank). Shore protection and bank revegetation would generally adhere to the typical cross section in Figure IV-C.

Operation, maintenance and replacement average annual costs were based on 0.43 per cent of the shoreline protection costs plus \$0.50 per recreation day (see Table IV-1). Average annual dredging (channel) maintenance costs were based on ten inch accumulation of silt over eighteen years in the Provost Slough-Inlet Channel Area documented in the 1974 dredging study prepared for the Iowa Conservation Commission. Dredging maintenance costs range from \$4.40 to \$4.61 per cubic yard. Because little or no overland runoff would enter alternative routes "A", "B", and "D", the only maintenance would involve dredging the Provost Slough Area.

T	A	В	L	E	IV	-	L

COMPARISON OF PROJECT COSTS

Route <u>Alternative</u>	Road & Bridge # \$	Private Land <u>Acquisition</u> <u>Acres</u> \$	Recreational Development \$	Total <u>Construction</u> <u>Cubic Yards</u> \$	Shoreline Protection \$	Total Cost \$	Operations, Maintenance & Replacement Average Annual Cost
A	$\frac{3}{186,000}$	$\frac{4.1}{1,200}$	17,000	<u>234,000</u> 758,200	42,500	1,004,900	9,800
В	3 197,000	$\frac{50.0}{15,000}$	17,000	$\frac{200,400}{693,400}$	48,800	971,200	12,300
С	$\frac{3}{197,000}$	$\frac{210.0}{63,000}$	17,000	<u>163,300</u> 609,100.	51,500	937,600	18,400
D	$\frac{3}{186,000}$	$\frac{4.1}{1,200}$	17,000	<u>124,900</u> 504,600	26,200	1,335,000	9,700

*Spread over 50 years at a 6 5/8% interest rate
This is the interest rate most commonly used in
federal water resource project cost calculations.
**Includes \$600,000 for railroad construction

NO SCALE

CHANNEL TEMPLATE (Typical)

Benefits

All tangible benefits derived from this project are expressed as public recreational benefits and commercially recoverable material from the dredging operation. All figures are presented as dollars of average benefit.

<u>Private</u>. By constructing the approximate 2.3 miles connection between Blackhawk Lake through Provost Slough to the West Hallett Pits, approximately 220 acres of surface water will be opened up for public access. The connection to the natural lake could further enhance the lands surrounding the West Hallett Pit for residential development (second home, lake front development somewhat similar tothe present Black Hawk Lake Area.)

By connecting the privately-owned West Hallett Pits to Black Hawk Lake, the water and lands under the water of the pits shall transfer to state (Conservation Commission) ownership. Some degree of shoreline control would also be extended to the Iowa Conservation Commission. Monetary benefits resulting from public access to previously privatelyowned water areas are accounted for in the public benefit section.

<u>Public Recreation</u>. Using a range of \$2.25 to \$3.15 which are rates commonly used in federal water resource projects benefits estimations per annual recreation day, the following monetary benefits are derived. The main East Hallett Pit would produce 800 recreation days, yielding from \$1,800 to \$2,500 of average annual benefits. This would apply to Route Alternatives "A" and "D". If the entire East Hallett Pit complex were

considered for benefits, as it would be with routes "B" and "C", 1100 recreation days would result in a \$2500 - \$3500 range of annual benefits.

The 6,400 additional annual recreation visitations resulting from the connection between Black Hawk Lake and the private-owned West Hallett Pits would result in a range of \$14,400 to \$20,200 in annual public benefits. By adding the estimated benefits for all of the Hallett Pit area, the resulting annual benefits range from \$16,200 to \$22,700 for Alternatives "A" and "D" and from \$16,900 to \$23,700 for Alternatives "B" and "C". The high range of benefits is used for benefit cost calculations later in this report.

<u>Recoverable Benefits</u>. Test hole boring log analyses indicate that some commercially recoverable gravels are present at the depths to which the channels would be excavated. It must be pointed out though that most of the original deposit has been previously excavated along Routes "A" and "D", and the thickness of the material and its per cent distribution are insignificant in Alternatives "B" and "C". Essentially, the extent of commercially recoverable gravels is not a significant factor in the determination of route selection and project feasibility. Total gravel tonnage is estimated to be 27,000 tons for route alternative A. At a minimum of \$0,10 per ton royalty to the State of Iowa, the public benefit would be \$2700.

Benefit/Cost Ratio

As Table IV-2 demonstrates, project costs for the most part outweigh benefits for all alternates. Net cost figures were derived by subtracting recoverable costs from the gross project costs. Average annual costs were derived by factoring the net project costs by the
TABLE IV-2

Route Alternative	Gross Project Costs	Recoverable Costs	Net Costs	Average Annual Costs*	Average/Annual OM/R	Total Annual Cost	Average Annual Benefit (Max)	Benefit/Cost Ratio
А	1,004,900	2,700	1,002,200	69,200	9,800	79,000	20,200	0.26/1.00
В	971,200	0	971,200	67,100	12,200	79,400	23,700	0.30/1.00
С	937,600	0	937,600	64,700	18,400	83,100	23,700	0.29/1.00
D	1,335,000	0	1,335,000	92,200	9,700	101,900	20,200	0.20/1.00

BENEFIT/COST COMPARISON

32

*Spread over 50 years at 6 5/8% interest This is the interest rate most commonly used in Federal Water Resources Project Cost Calculations amortization rate for a 6 5/8 per cent interest rate. This means that an average of \$69,200 for route "A", for example, must be invested annually to pay off the principle and interest on the loan to obtain the funds for the project. The payments would be spread over a 50-year period. To this figure, average annual operation, maintenance, and replacement costs were added to obtain the total annual costs. Maximum expected average annual benefits were then divided by total annual costs to derive the benefit/cost ratio.

Cash Flow Analysis

The following Tables (IV-3a-d) project a cash flow for each alternative. over the 50-year life of the project. The timing and magnitude of both costs and benefits are detailed. The annual rate of return on investment which is provided was derived through a computer program that took into account the cash flow Tables (see Tables IV-3a, - 3b, -3c, -3d.). The program assumed the investment would be spread over fifty years. Because the incremental benefits (cash flow) were negative, the rate of return on investment is also negative.

TABLE IV - 3a Cash Flow Analysis

Alte	ernative "A"	Proje	ect Costs		Total Value	Incremental	
Year	Feasibility Stùdy	Capital Items inc Eng. 0.M.& R.		Gross Costs	of Project (Gross Benefits)	Benefit (Cash Flow)	
0	\$31,000			\$31,000		-\$31,000	
1		\$699,000		\$699,000		-\$699,000	
2	Salar and the	286,200	\$200	286,400	\$20,200	-\$256,400	
3	Sach	\$17,000	\$200	\$17,200	\$20,200	+ \$3,000	
4 500			\$460,600	\$ 460,600	\$949,400	+\$488,800	
Total	\$31,000	\$1,002,200	\$461,000	\$1,494,200	\$989,800	-\$504,400	
	No. of the second second	2		Average annua	I rate of return on i	nvestment =-2.	

TARIE	TV	- 35	Cash	FLOW	Ana	veie
INDLE	T A	- 30	Lasii	FIUW	And	14212

Alte	ernative "B"	Projec	t Costs		Total Value	Incremental
Year	Feasibility Study	Capital Items incl. Eng.	0.M.& R.	Gross Costs	of Project (Gross Benefits)	Benefit (Cash Flow)
0	\$31,000			\$31,000	1	-\$31,000
1	A. Carlo	.\$699,000		\$699,000		-\$699,000
2		: 255,200	\$200	\$255,400	\$ 23,700	-\$231,700
3	2	\$17,000	\$200	\$17,200	\$ 23,700	+\$6,500
4 50			\$578,100	\$578,100	\$1,113,900	+\$535,800
Total	\$31,000	\$971,200	\$578,500	\$1,580,700	\$1,161,300	\$419,400
				Average annua	I rate of return on i	nvestment =-1.9

TABLE IV - 3c Cash Flow Analysis

Alte	ernative "C"	Proje	ct Costs		Total Value	Incremental
Year	Feasibility Study	Capital Item incl. Eng.	0.M.& R.	Gross Costs	of Project (Gross Benefits)	Benefit (Cash Flow)
0	\$31,000			\$31,000		-\$31,000
1		\$699,000		\$699,000		-\$699,000
2		\$221,600	\$200	\$221,300	\$23,700	-\$197,900
3		\$17,000	\$200	\$17,200	\$23,700	+ \$6,500
4 to			\$864,800	\$864,300	\$1,113,900	÷\$249,100
Total	\$31,000	\$937,600	\$865,200	51,333,800	\$1,151,300	-\$672,500
				Average annua	1 mate of meture on it	waatmant - 2 00

TABLE	IV	-	3d	Cash	FLOW	Analysis	
				000011	1 1 4 14	ALL	

Alte	ernative "D"	Proje	ct Costs		Total Value	Incremental	
Year	Feasibility Capital Study incl. Eng		Capital Items incl. Eng. 0.M.&R.		of Project (Gross Benefits)	Benefit (Cash Flow)	
0	\$31,000			\$31,000		-\$31,000	
1		\$699,000		\$699,000		-\$699,000	
2	(1	\$582,500	\$100	\$582,600	\$20,200	-\$562,400	
3	1.00	\$17,000	\$100	\$17,100	\$20,200	+\$ 3,100	
4 to			\$455,900	\$455,900	\$949,400	+\$705,000	
Total	\$31,000	\$1,298,500	\$456,100	51,785,600	\$989,800	-\$795,800	
				Average annua	1 rate of return on i	nvestment = 3.0	
		1	1	34			

.

Environmental Analysis

Although the benefit/cost analysis does provide a method of evaluating the relative merits of a project on its direct monetary assets and liabilities, it does not assess the more indirect implications of the project, nor can it assess the more intangible environmental or social impacts. Thus, the following environmental assessment will consider the apparent indirect and intangible aspects of the project.

Project Purposes. As was stated in Section I, "Defining Public Access", the basic purposes of the study were to:

- 1) Define possible routes of connection.
- Determine additional public recreation benefits resulting from the project.
- Consider possible private development opportunities that would arise from the project.
- 4) Discuss probable operation and maintenance factors.

Further refining of the purposes were to state what the study would not accomplish, the study will not attempt to:

- 1) Evaluate the rehabilitation or improvement of Black Hawk Lake.
- Consider raising the level on Black Hawk Lake (by adjusting the weir).
- 3) Solve any water level problems on Black Hawk Lake relating to variable precipitation.
- 4) Solve disputes over water well development in the area.

<u>Project Description</u>. The channel would begin in the southwestern arm of Black Hawk Lake in the southwest quarter of the southeast quarter of Section 33, Wall Lake Township (T87, R36) and would proceed in a southernly direction through the east half of Section 4, Viola Township (T86, R36) to the large gravel pit in the northwest quarter of Section 9, Viola Township (T86, R36), then crossing the county road in a southwesternly direction to the large gravel pits in the southeast quarter of Section 8, Viola Township (T86, R36).

Directly affected by the project would be 226 acres of state-owned land managed for wildlife habitat. (179 acres of land and 47 acres of wetlands), 160 acres of private land in the Provost Slough Area, 504 acres of private lands in the Finders Pits Area, and 4.1 acres of private land northwest of the wildlife headquarters. The project would connect nearly 400 acres of private land west of the county road to the 975 acre Black Hawk Lake.

Four possible routes were studied. (See Figure I-A). "A" will generally parallel the Chicago-Northwestern Railroad, Route "B" will follow a previously excavated canal through the central swampy areas, Route "C" will follow the present inlet channel, and Route "D" will pass through the Arrowhead Lakes.

Each route would be a navigational canal through both open marsh and old, quarried areas. Through the marshy slough and inlet areas, a 100-foot swath would be cleared and dredged. Widths over dryland would depend upon the depth to the groundwater table. For most portions of alternatives "A" and "D", an eight foot depth was assumed to be a typical depth. Lateral construction disruption would be held to a very minimum by every means possible. Route "B" would have a 76 foot maximum corridor over dryland. About four feet on each bank would be devoted to

vegetative shoreline protection, and the 20 foot plus side slope would be revegetated.

Nearly twelve acres on the east side of the West Hallett Pits complex adjacent to the county road, could be developed with camping, swimming, and fishing access facilities at some future date.

The private, residential development across the county road around the present quarry pit could begin independently of this project. If the connection is made, all water area and the lands underlying would transfer to state ownership, along with some shoreline control. Public access would also have to be provided from the county road. This would amount to about ten acres.

Environmental Description. After analyzing various sources of qualitative data, (soil surveys¹, resistivity data², boring logs³, field investigation and interviews³, and air photographs⁴) several natural phenomena become more apparent.

1) The "Wall" which formed Black Hawk Lake is an older Tazewell -Aged glacial till sitting on the west side of Lake View (See Figure V-D) and Arrowhead Lake. An ancient watershed which drained the entire Black Hawk Lake area flowed in a southwesterly direction through the Hallett Pits area into the modern day boyer river system. The last glacier left morraine deposits that probably constricted this ancient

1 USDA, SCS Soil Survey for Sac County, Iowa, 1974.

^{2.} Iowa Geologic Survey Analysis, by Fred Dorheim dated July 1, 1977.

³ Hoskins-Western-Sonderegger, Inc. staff, October & December 1978. 4 ASCS Air Photographs flown in 1968.

valley, and outwash sands and gravels spewing from it clogged the drainage and diminished its watershed so much that surface water could no longer flow freely through the old valley. Water backed up into the upper reaches of this glacially-modified watershed. Thus, Black Hawk Lake and the Hallett corridor were formed. (See Figure 1)

2) The present Hallett corridor is generally about 2300 feet wide. It is bisected longitudinally by both a paved Sac County Road (M-54) and the branch line of the Chicago-Northwestern Railroad. These two transporation rights-of-way further constrict the corridor to 1500 feet east to west.

3) The overburden thickness (depth to sand and gravel) thins to the west and groundwater depths increase as the ground elevation rises. The better gravel deposits are situated west of the trail paralleling the railroad tracts and underlay the higher terrace. However, most of these deposits have been removed.

4) Nearly all of the corridor has been quarried for sand and gravel or dredged (see Figure IV-E) or the surface drastically altered in some way the western shoreline of provost slough is a prime example. Only a low narrow corridor through the center has not been significantly changed according to the soil survey.

5) A significant wetland habitat continuum exists connecting Provost Slough with the large marsh to the south. This open water/marsh corridor is about 500 feet wide until it reaches the Provost Slough shallows or the marsh. However, not all of it is on public ground. Parts of it have been dredged and have silted in nearly two feet (1916

depths were four feet and present depths average two feet).

Access to the east side of the corridor is severely limited;
 while the western side accords easy access.

7) Because groundwater is low in the organic nutrients needed to sustain fish and other aquatic populations, and productive littoral zones are very limited, the gravel pits in the area are not highly productive. Even though groundwater flows contribute a great deal to the volume of Black Hawk Lake water, the natural lake's productivity is higher because it receives substantial nutrient loads from overland runoff (the gravel pits receive very little, if any) and the natural lake is over 10,000 years older.

This is not to say that large fish are not commonly caught in both East and West Hallett Pits. But productivity as expressed in pounds of harvestable fish per acre is lower in the pits according to local fisheries biologists.

Black Hawk Lake has another problem which historically has adversely affected sportfishing species' populations -- winter kill. The lake is very shallow, generally not more than six (6) feet in depth. Winter ice and snow cover result in low oxygen level. The oxygen demand in the lake bottom sediments and septic leachate (most of the lakeside cottages have only recently been serviced with sanitary sewers) deplete the oxygen supply below the ice to the point that only low oxygen tolerant species such as carp, buffalo fish, and bullheads survive.

Water samples and their locations are found in the Appendix.

8) The West Hallett water level, depending on what period of the local water cycle is being described, is 2.3 feet above the Black Hawk Lake level. When the Rural Water District Wells are placed in operation, the difference in elevation would be nearly 0.7 feet less with maximum pump discharge. The connection itself would lower the hydrologic head another 0.4 feet.

9) According to the "Five-year Development and Operation Plan" for the Lake View Game area (Hallett Corridor) there are fifty-eight (58) acres of woodland habitat. This represents about one-third of the land area in the state owned portion of the Hallett Corridor. The wooded area is generally west of the trail. Tree species are mainly cottonwood and silver maple with some box-elder, green ash, sycamore and walnut. These species are representative of Mesic Bottomland Plant Associations of the Midwest. They have established themselves on the spoil piles and disturbed areas after quarrying had stopped between thirty and forth years ago.

The understory is not thick and is typical of a late seral stage of mesic bottom land habitat. Brushy growth on the edges and less densely grown woodlands consist of sumac, dogwood species, raspberry, and mulberries.

The cottonwood and silver maple were the pioneer species in this area. They are very prolific and are able to withstand the hostile environment found on the spoil piles and disturbed areas, they were able to establish conditions conducive for other species. As this habitat evolves, cottonwood and silver maples will become less important and oak, maple, ash, and walnut will become more prominent.

Although the habitat is not pristine by any means with the previous dredging and quarrying operations, it does support a wildlife population, and receives considerable public users by hunters and non-consumptive users. As evidenced by the numbers of birdwatchers and hunters a substantial population does exist.

If animal tracks and droppings and hunter activity is a general indication of habitat productivity, then the area west of the central trail through the connection corridor (the spoils and remains of the high terrace - see Figure II-C) is not a highly productive area. Few winter signs were evident, where as to the east in the marsh and bottomlands abundant animal activity was noted. Muskrat lodges, pheasants, small rodents' and other fur bearers' tracks were evident everywhere.

10) After viewing both a 1916 field survey with general Black Hawk Lake bottom depths, and very recent lake bottom contours, very little real difference can be noted in the central and eastern bay areas. The real changes are noted in the northwestern bay where dredging and filling have altered the natural contours. In Provost Slough and the Inlet Channel, up to two feet of siltation was noted.

Thus, siltation does not seem to be a major problem in the lake proper, but only in the Inlet which acts as a large silt trap for the lake. Here the flow gradient flattens out, the channel cross-section widens considerably, and vegetation also serves to slow down flows.

This is not to say that sediments do not reach the lake; they do. However, any connection which would utilize the Inlet would be subject to high sediment rates and would increase sedimentation to the lake if proper considerations were not taken.

Environmental Impact. Depending on route selection any where from 210 acres to 4.1 acres of private land would be acquired to complete the connection. Alternatives "A" and "D" would need the 4.1-acre Leitz property east of and adjacent to the railroad right-of-way and north of and adjacent to the east-west county road. About 1.4 acres would be needed for the channel and sideslope, the remaining 2.7 acres for a spoils pile. Presently the land is occupied with a deteriorating maintenance shed and scattered rubbish. Route "B" would need nearly 90 additional acres, 40 of which are open water and marsh in upper Provost Slough and the balance is the Finder's Pits and Quinn and Company property, nearly all of which is under water or easily flooded and generally always wet. "Alternate "C" would require 210 acres of land (the 50 acres in the Finders - Quinn area and 160 acres along the Inlet through Provost Slough). Acquisition costs would vary accordingly from \$63,000 in alternative "C" to \$1200 for both "A" and "D"* In all cases the land is non-productive in an agricultural sense, being marshy or under water. Underlying gravel deposits have long since been tapped or are commercially sub-marginal.

*Included in these costs are abstracting and surveying fees.

Several dry pits of about 13 acres total in area along the east line of the southeast quarter Section 5 Viola Township (T87, R36) could be used as spoils dumps. These sites would have to be purchased in fee or easements acquired.

Alternative "D" would have to pass under the Chicago-Northwestern tracks twice. This would add considerable cost to this alternative if the railroad right-of-way was not abandoned. Maximum development would provide from between 7200 and 7500 annual recreation visits. Average annual monetary benefits would range from \$16,200 to \$23,700 depending on which alternative is selected. Costs involved in developing the proposed recreational area are estimated to be nearly \$17,000. These costs would provide mainly boating access and parking at two sites. Access roads are already present on both sides of the north/south county road. Developments for boating and fishing activity in the East Hallett Pit complex

could conflict with wildlife due to the general points described in Table

TABLE IV-4

IV-4.

INTERCOMPATIBILITY OF MULTIPURPOSE WATER RELATED USES

PRIMARY USE(S)

	RECREATIONAL USES	WILDLIFE
Sediment Control	Ponds for recreational use will precipitate sediment if on-channel, but this may re- duce recreational value. In- stall small pond upstream to precipitate larger sediment and reduce drawdown.	On-channel wildlife pond will precipitate sediment, which will tend to smother bottom vegetation.
Recreational Uses		Recreational uses and wildlife are compatible if wildlife are species which tolerate distur- bance. This may impose minimum size restrictions for shy species or may make quiet areas necessary.
Wildlife	Recreational ponds may have some value for tolerant wildlife species if wildlife density is kept fairly low. Wa- ter's edge treatment might present conflicts.	
Lange and the second se	45	

By making the hydrologic connection between Black Hawk Lake and the West Hallett Pits will raise Black Hawk nearly 0.1 feet and lower the whole Hallett Pit area water level nearly 0.4 feet. An outside influence in this matter is the Rural Water District water well activity south of the pits. Once fully operational at their maximum legal pumping rate they could lower the pit water levels another 0.7 feet. Thus, the ultimate difference between water levels in the two water bodies will be halved from 2.3 feet to 1.1 feet. Water tables remote from the pit area will be affected according to the scheme detailed in Appendix E. During wet years the water levels in the marsh could be lowered as much as 0.7 foot due to well activity (infiltration from the feeder stream is not taken into account). Influence on the marsh water levels due to the connection would be insignificant. All alternatives would have the same impact magnitude.

The open marsh and wetlands of Provost Slough and along the Inlet corridor, as previously stated, are relatively highly productive. The area of channel dredging disruption is directly proportional to habitat distruction. A relative ranking of habitat impact (lowest to highest) would be "D", (2.9 acres), "A" (5.5 acres), "B" (13.9 acres), and "C" (20.1 acres). (See Figure IV - F and Table IV - 5). Alternatives "A" and "D" would pass through four to six small, abandoned gravel pits. These areas are comparatively low in fertility and diversity and therefore do not represent a high quality habitat. Furthermore, these small pits cannot support fish populations due to their susceptibility to winter kill. Alternative "B" would follow an old, shallow canal which would not sustain fish populations due to its shallowness. Thus, no permanent habitat impacts

should occur in these three instances. (A,B, and D)

All of alternative "C"'s impacts are to wetland (marsh) habitat, although to connect the various lakes some excavation (7.5 acres) is necessary. Alternative "B" would affect over 8.2 acres of dryland habitat along its 6400 foot length of land dredging. Most of this is in grass and forbes vegetation with scattered cottonwood and box-elder along the channel banks.

Alternative "A" would eliminate 14.0 acres (6100 lineal feet) of bottomland habitat. The southern 2.5 acres would not remove any overstory since it would follow an existent sixty-foot channel. A few small trees and understory would be removed and the root systems of the overhead cottonwood would be damaged. The middle 7.0 acres (3000 feet north of the county road and directly adjacent to the railroad right-of-way) consist of thickets of willow and elm sapplings, generally not more than twenty feet tall or six inches in diameter. Interspaced within this portion of the route are some wildlife (sorghum) plantings. The understory is mainly grass and forbes. The better woody habitat is found in the northern 4.5 acres (2000 feet) which will interconnect the small gravel pits. Some trees could be saved by constricting and/or altering the channel centerline.

The northern 3.0 acres (1300 feet) of alternative "D" would encounter the same situation as was found along the northern 4.5 acres of alternative "A". The southern 5.3 acres are the same for both "A" and "D". The bulk of route "D" would pass through Arrowhead Lakes, an isolated gravel pit which lies between the railroad tracts and the county road.

The connection corridor is in essense the Lake View Game Area -Hallett Pits complex managed by the Black Hawk Wildlife Unit. It is comprised of 226 acres of scattered woods, interspered with small, abandoned gravel pits, grassey areas and marsh. The 88 acres of land south of the east-west gravel road (The Hallett Pits Complex) formerly a part of the privately-owned Hallett operation, is open to public. hunting. The headquarters of the Black Hawk Wildlife Unit and technician residence are located here. The 27 acre area north of the centerline of Section 4, Viola Township, and all land west of the central trail, including most of Arrowhead Lake, is managed as a wildlife refuge; no hunting is permitted. (See Figure IV-G)

The lands which would be acquired are non-productive land, mostly abandoned gravel pits, with little underlying gravel resources, or are seasonally wet to permanently marshy. Land use could best be described as open space.

Alternative "A" would remove 4.5 acres (one-sixth) of the wildlife refuge land. It would also displace 9.5 acres of hunting habitat (4.7 percent of the area). The hunting and wildlife resource would be diminished in direct proportion to the displacement.

The 8.4 acre displacement involved with alternative "B"represents 4.1 per cent of the game area. If the additional private lands were included the total disruption would be 17.9 acres or 6.2 per cent of the total area.

Since the bulk of the dredging for alternative "C" would be outside the state-owned game area, its impact to the game area must be considered with the additional land needed. Thus, its 20.1 acre dredge equals 4.9

per cent of the game area habitat resource.

Alternative "D" would require 10.8 acres (40%) of the wildlife refuge and 9.2 acres (4.6%) in the hunting area.

None of the alternatives should change the basic land management of any of the state-owned land. Some attention would have to be focused on erosion control maintenance and avoidance of recreational/wildlife interfacing impacts if more boating and fishing activities are to occur. The present fisheries management programming would be hard pressed by this project. In the near future the local fisheries biologist plans to renovate the surviving, unwanted species in Black Hawk Lake Finders Pits, the East Hallett Complex, and Provost Slough so that sport fish can be re-established. If the connection were made to the West Pits, an increase in the costs of this project would be at least 23 per cent.

No increase in fishing opportunities or resources is projected because of the connection project. Fish should not migrate from a relatively rich environment (Black Hawk Lake, Provost Slough) to the infertile surroundings of the former gravel pits. Although the channel should be deep enough to support a fish population, it too will not be as fertile as Black Hawk Lake.

With a "No-wake" boat speed policy to be in affect, (to minimize shore erosion and maximize user safety) a boat ride along the entire channel would take around twenty minutes.* Speed regulations in the channel would have to be enforced. Trash clean up efforts would have to be increased.

The project would have little effect on the two major local concerns; water well use to the south and the lack of quality pleasure boat and

*2.5 mile length ÷ 7.5 miles = 0.33 hours (20 minutes) hr fishing opportunities in Black Hawk Lake. The connection would possibly drop the water elevations in the pits as much as 0.4 feet. The influence from the water well activity on the pits is greater, on the order of 0.7 foot decline.

Black Hawk Lake is a naturally shallow, glacially-induced phenomena. Due to its relationship with the surrounding watershed, it will always act as a sediment trap. In fact the area through which the connection would be made acts as the main recepticle for sediment moving toward the lake. About 2.0 inches are deposited annually in the existing Channel and Slough. Historical records indicate that little additional sediments have entered the lake proper for the last sixty years. The project will not change this relationship unless the Inlet alternates "C" or "B" are selected; under these alternatives, sediments would more easily enter the lake itself.

Lake levels are partially regulated by a weir at the east end outlet. The connection would raise the lake level about 0.1 feet which is insignificant as far as pleasure boating or land management problems are concerned. By actually creating 23 per cent more lake area, water levels fluctuating would tend to stabilize somewhat, but would still be closely tied to precipitation variations. Because the West Pits area is not large enough to support quality water skiing use, the future residents around the lake would take their boats to Black Hawk Lake (via the connection) to ski. Thus, the connection will not materially affect the present water quality and recreational opportunity difficulties the lake is now experiencing.

Except during and immediately following construction, air and water quality would not be significantly impacted.

The immediate corridor connection area is not known to have any

historical or archaeological significance.

Table IV - 5 shows the absolute magnitude of impact for each alternative.

	Comparative		Bridge R	equirements	Land Rights	
Alternate Route	Length (Feet)	#	Cost Est.	Compatibility with Present System	Acquisition (Acres)	Railroad Involvement
A	11,920	3	\$136,000	Must Build Two New Bridges & Elevate One	4.1	None
3	12,500	3	\$197,000	Must Build One New Bridge & Elevate Two	210	None
с	12,300	3	\$197,000	Must Build One New Bridge & Elevate Two	90	None
a	12,700	3	\$186,000	Must Build Two New Bridges & Elevate	4.1	Twice

ABSOLUTE IMPACT COMPARISONS

	Recreation								
Alternate Route	Land Area Required	Development Cost	Annual Recreation Visitations Provided	Average Annual Recreational Benefits					
A	2.0	\$17,000	7,200	520,200					
в	2.0	\$17,000	7,500	\$23,700					
C	2.0	. \$17,000	7,500	\$23,700					
D	2.0	\$17,000	7,200	\$20,200					

	Construction							
Al ternate Poute	Total Dredging Volume (cu. yds.)	Total Cost (S)	Shoreline Length (Feet)	Protection S	Recreation, S	Maintenance & Rei Channel Drecge S	Shoreline S	Total S
A	234,000	83,500	8,100	42,500	3,600	5,000	200	\$ 9,800
в	200,400	30,400	9,200	48,300	3,700	3,400	200	\$1,2,300
c	157,100	34,500	8,500	51,500	3,700	14,500	200	518,400
D	124,900	83,300	5,000	25,200	3,600	6,000	100	• 9,700

*Average Annual Estimate

Alternate	Adverse Impacts									
	Raise Black Hawk Lake	Lower Local Pit Levels	Marsh Habitat Disruction	Dry Land Disruption	Equivalent Quality Woody Habitat	Wildlife Refuge Acquisition and Percentage	Total Habitat Removed Land			
Routa	(Feet)	Feet	(Acras)	(Acres)	(Acres)	(Acres, 5)	and Percentage			
A	0.1	0.4	5.5	14.0	3.9	4.5 (17)	9.5 (4.7)			
3	0.1	0.4	13.9	8.2	2.5	0 (0)	17.9 (6.2)			
C	0.1	0.4	20.1	2.5	0.3	0 (0)	20.1 (4.9)			
D	0.1	0.4	2.9	3.3	2.1	10.8 (40)	9.2 (4.6)			

Mitigating Measures

Specific mitigating measures are difficult to identify during the planning process but several steps have already been evaluated and general design concepts have been devised. The pre-construction measures are:

 Evaluating several channel cross-section configurations for their impacts and feasibility.

2) Arriving on a channel design concept which should have enough depth (eight feet) to support a fish population year-around and would minimize lateral habitat disruption.

3) Devising a shoreline protection program which would minimize wave action erosion, which would also minimize the recreational/wildlife interface impact and serve as a compatible backdrop to the rest of its surroundings.

In general, several construction practices should be followed which would attempt to minimize impacts:

 Bridge design would be coordinated with Sac County construction schedules and design.

2) Precise centerline alignment and channel width would attempt to preserve as many mature trees and woody habitat as possible.

3) The flagging of the maximum lateral extent of the channel, so that the edges could be shaped with an earth scraper to the desired slope, would minimize construction impacts outside the right-of-way.

4) Natural indigenous plant materials would be used to re-landscape the sideslope. Top soil would be stockpiled to help in re-establishing natural cover.

	WEST	ERN	LABORATORIES			PROJECT	
825 "J" S	Ma	terial	s Engineers Lincoln, N	lebraska	Black	Hawk Lake, I	owa
	10.3	BOR	ING LOG			Contraction of	
Boring Met	hod: 6-	in. conti	inuous flight auger	Standard	Penetration	Test	Boring No. 1
ndisturbed	Soil Sar	npier: 3	-in. o.d. thin-walled tube	140-16. Hammer 30-1n.	Fall 2-in.o.d. Spl	lit-barrel Sampler	Sheet 1 of 1
w=Moisture	Conten	t, % D=	Dry Density, pcf	Penetration Resi	stance: N=Blo	ows per foot ,	Date: 10/25/7
Elevation	Depth	Group	Description of	Materials	Sample Blows	Rem	arks
	0 -	CH	Silty clay; bla plasticity; med	ck; wet; high lium stiff.	-	10:45	
	CL Sandy Clay; 30 to 35% fi sand; dark grayish brown wet; medium plasticity;		to 35% fine rish brown; very sticity; soft.		Water 1 25 hrs. Water 1	evel @ 2.0' AD evel @ 2.5' IA	
	3	SM	Silty Sand; 25 fine to coarse el; saturated; ity; loose.	to 35% fines; with some grav- slight plastic-		Filled	and Capped
	5	SM	Silty Sand; 15 coarse sand; sa	to 25% fine to turated; loose.		Simila	r to
		7				Compos	ite B-10
	1						
					-		
					-		
	46						
-		GP	Gravel; coarse saturated.	with cobbles;			
	l						
	50						

1

825 ["] J" S	WESTE Mate	RN A	LABORATORIES s Engineers Lincoln, Nebras	k a	PROJECT Black Hawk Lake, Iowa				
		BORI	NG LOG						
Boring Met	hod: 6-in	. conti	nuous flight auger	Standard	Penetration	Test	Boring No. 2a		
Indisturbed	Soil Samp	ler: 3-	in. o.d. thin-walled tube 140-16	Hammer 30-in.F	fall 2-in.o.d. Split	-barrel Sampler	Sheet 1 of 1		
w = Moisture	Content,	% 0=	Dry Density, pcf Pen	etration Resis	stancs: N=Blow	s per foot .	Data: 10/25/78		
Elevation -	Depth S	ymbol	Description of Mater	ials	Sample Blows	Rem	arks		
	, internet		Fill off of railroad	d slope.		Water le	evel @ 2.0' IAI		
	2	GP - GW	Gravel; fine to coa some sand and cobbl urated; medium dens	rse with es; sat- e.					
	mhunhun				-				
	In Suntrulumburg				-	Compos: 2' to	ite B-2a 46'		
	hulululul								
	46	CL	Sandy Clay; 25 to 3 sand with some grav bles; dark olive gr with gray; saturate stiff; medium plast	50% fine yel and cob- ray mottled ed; very ticity.		Same a B-5a	s B-7 and		

I

	WES	TERN	LABORATORIES				PROJECT	a na ann an taraich ann an taraich
825 "J" S	M (Street	aterial	s Engineers Lincoln, N	ebraska		Black H	lawk Lake, Io	wa
		BOR	ING LOG			1000	Syladay	
Boring Met	thod: 6	-in. cont	inuous flight auger	Stan	dard Pe	n e tra tion	Test	Boring No. 2
Undisturbed	Soil So	mpler: 3	-in. o.d. thin-walled tube	140-1b. Hammer	30-in. Fall	2-in.o.d. Spi	it-barrel Sampler	Sheet 1 of 1
w = Moisture	Conte	nt, % 0:	Dry Density, pcf	Penetration	Resista	nce: N≈Blo	ws per foot .	Date: 10/25/78
Elevation	Depth	Group Symbol	Description of	Materials	Sa	No. Blows	Rem	arks
	0 -	CL- CH	Silty Clay; bla wet; medium to	ck; moist t high plasti	o city;			
	1 -	CL- CH	Sandy Clay; 20- dark brown; wet	25% fine sa ; medium to ium.	nd; high			
	2 -	CL- CH	Same but brown.				Water lev Water lev hrs. AD	el @ 3.0' IAD el @ 3.0' 3.0
	4 -	SM (SC)	Silty (or Claye fines; medium s gravel; saturat	y) Sand; 30 and to medi ed; slight	-40% .um plas-		Filled an	d capped
	-		ticity; loose w gravel.	ith some co	arse	-		
							Composi	te B-2
	-		with an clay sea	occasional m		-	4'to	37.5'
	1					-		
	37.5	CL	Sandy Clay; 25	to 30% sand	1	-		
	-	,	gray (blue); sa	turated; st	iff.	-		
	40 -	SM	Silty Sand as 4	-37.5' above				
	41.5	CL	<u>Sandy Clay</u> as a 37.5-40'	bove.	and the	-		
	45					-		

825 "J" S	WES7 Ma	TERN Iterial	S Engineers	ebraska	В	1ack	Hawł	PROJECT Lake, Iowa	
		BOR	ING LOG						
Boring Met	hod: 6-	-in. cont	inuous flight auger	Stan	dard P	Penet	rati	on Test	Boring No. 3
Undisturbed	Soil Sa	mpler: 3	-in. o.d. thin-walled tube	140-lb. Hammer	30-in. Fo	all 2-	in. o.d. S	plit-barrel Sampler	Sheet 1 of 1
w = Moisture	Conten	nt, % D:	Dry Density, pcf	Penetratio	n Resis	tance	: N=B	lows per foot	Date: 10-25-78
Elevation	Depth	Group Symbol	Description of	Materials	1.3	Sample No.	Blows	Rem	arks
		СН	Silty clay; bla high plasticity	ck; very we ; medium.	et;				
	1 -	CL- CH	Sandy clay; 15 saturated; dark	to 20% fine brown; mea	e sand; lium to	hig	h p1.	asticity; soft	
	2 -	CL	Silty clay; 10 pale brown; sat (to high); soft	t <mark>o</mark> 15% fine urated; med	e sand; lium			Water Leve After Dril Water Leve Filled and	l @ 2' 3 hrs. ling l @ 2.5' IAD Capped
	4 -	CL	Sandy clay; 30 pale gray; satu	to 40% fine rated; low	e sand; to med	lium	plas	ticity; soft t	o medium.
	5-	CL	Same as 2 to 4 brown.	above but					*.* . ·
	7 -	SM- SC	Silty (or claye 40 to 50% fines	y) sand-gra ; fine sand	avel; i to				
	-	SM- SC	Same but 35 to	ry loose. 40% fines.	light				
	-								
	-						-		
	12 -	SM	Silty sand-grav medium sand to saturated; loos	el; 15% fi medium gra e.	nes; vel;				
							-		
						-	-	Simil: Compo	ar to osite B-2
							F		
	17 -	CL	Sandy clay; 25% occasional grav medium plastici stiff; (Blue C	fine sand el; satura ty; medium lay)	with ted;				
	25						F		

Í

Î

T

	WEST	ERN	LABORATORIES			10.1.1.	PROJECT	
825 "J" S	Ma	teria	ls Engineers Lincoln, M	lebraska	1	Black Hawk	Lake, Iowa	
		BOR	RING LOG				Service State	W. Area Control
oring Met	hod: 6-	in. cont	inuous flight auger	Stan	dard	Penetration	Test	Boring No. 4
listurbed S	Soil Sa	mpier: 3	5-in. o.d. thin-walled tube	140-lb. Hammer	30-in. F	all 2-in.o.d. Spl	it-barrei Sampier	Sheet 1 of 1
= Moisture	Conten	t, % D	= Dry Density, pcf	Penetratio	n Resis	itance: N=Blo	ws per foot	Date: 10-24-
levation	Depth	Group Symbol	Description of	Materials		Sample Blows	Rem	arks
		CL	Silty clay; ver wet; medium pla stiff.	y dark gray sticity; me	/; edium	_		
	1.5	CL	Silty clay; dar 10% fine sand; plasticity; med	k gray brow wet; medium ium stiff.	vn; n	-	Water level Water level Filled and	.@ 3' 10/25/7 @ 3.5' IAD Capped
	4	SM	Silty sand; 50% to coarse with	fines; mec gravel; sat	lium urated	; loose.		
		SM	Same but 15 to	20% fines.				
	8.5	CL	Sandy clay; 15 sand with some cobbles; gray (rated; medium p stiff.	to 20% fine gravel and blue); satu lasticity;	1-	-		
	13	CL	Same as above bi	ut very sti	ff	-		
			anu 25 to 30% S	anu.		-		
	hh					-		
	20							

825 "J" S	WESTE Mat	RN erial	LABORATORIES s Engineers Lincoln, Nobrask	a	Black	Hawk	PROJECT Lake, Iowa	
Boring Met	hod: 6-in	n. cont	inuous flight auger	Standard	Penet	ratio	n Tast	Boring No. 5
Indisturbed	Soil Same	oler: 3	-in. o.d. thin-walled tuber 40-ib. i	ammer 30-in.	Fall 2-	in. o.d. So	lit-barrel Sampler	Sheet 1 of 1
w = Moisture	Content,	% 0:	Dry Density, pcf Pene	tration Resi	stance	: N= BI	ows per foot	Date: 10-24-78
Elevation	Depth	Group	Description of Materi	als	Sample	Blows	Rem	árks
		CL	Fill: Silty clay; ro cover.	ad				
		СН	Silty clay; black; hi ity; saturated; soft.	gh plastic				
	3 1 1 1 1 1 1	СН	<u>Silty clay;</u> light gra rated; high plasticit	y; satu- y; stiff.		-	Water Level Filled and G	@ 4' 10/25/78 Sapped
	5 1 11111	СН	Silty clay; dark gray brown; gray; saturate plasticity; stiff.	brown; d; high		-		· · ·
	8	CL- CH	Sandy clay; 20 to 25% saturated; gray (blue to high plasticity; s	<pre>sand;); medium tiff.</pre>				
		SM	Silty sand; (maybe cl gray; 40 to 50% fines rated; loose. Fine t with some gravel.	ayey sand) ; satu- co coarse		-		
		SM	Silty sand; 25 to 30% fine to coarse; satur very loose.	fines; ated;		-	Composite B 10' to 19'	-10
;	11 Mili	1				-		
	19 -	CL	Sandy clay; 20 to 25% sand; gray (blue); sa	fine turated; m	nedium	-		
	21.5	CL	Sandy clay: 25 to 309	fine sand		-		
	luuluu		with some coarse sand saturated; medium to	l; gray (bl stiff.	ue);			
	25							

Ī

601-0

825 "J" S	WES7 Ma	terial BOR	LABORATORIES s Engineers Lincoln, N	ebraska	Blac	PROJECT k Hawk Lake, Ic	owa
Boring Met	hod: 6-	in. conti	inuous flight auger	Standard	Penetrat	ion Test	Boring No. 5a
Undisturbed	Soil Sa	mpler: 3	-in. o.d. thin-walled tube	40-16. Hammer 30-in. F	all 2-in.o.d.	Split-barrel Sampler	Sheet 1 of 2
w = Moisture	Conten	t, % D=	Dry Density, pcf	Penetration Resis	stance: N=	Blows per foot	Date: 10/25/7
Elevation	Depth	Group	Description of	Materials	Sample Blow	Rem	drks
-	0	CL	<u>Silty Clay;</u> wit moist; very dar medium to stiff	h some gravel; k grayish brown;			
	3	GP- SP	Sand-Gravel; so sand to medium to wet; medium	me fines; fine gravel; moist dense.			
1	12	GP-	Sand-Gravel: me	dium sand to	-		
	15	SP	coarse gravel; medium dense.	saturated;	-	IAD	ovel @ 12.5'
					-	Composi	te B-2 <mark>a</mark>
					-	12' to	22'
1					-		
	-				_		
	22	CL	Sandy Clay; 25 sand with some saturated; medi stiff.	to 30% fine gravel; gray; um plasticity;			
	. 25						

825 "J* S	WES7 Ma	TERN .	LABORATORIES s Engineers Lincoln, N	ebraska	PROJECT Black Hawk Lake, Iowa					
		BOR	ING LOG							
soring Me	nod b.	-in. conti	nuous flight duger	Stan		an erration i	est	Boring No. 5a		
ndisturbed	5011 50	mpier: 5	-in. o.a. Thin-walled tube	Pagatratio	SU-In. Fai	1 2-in.o.d. Spiit-bi	arrei Sampier	Sneet 2 of 2		
Elevation	Depth	Group	ory bensity, per	Feneridito	I KESISI	amplela.	par root .	10/23/78		
	25 -	Symbol	Description of	Materials		No. Blows	Rem	arks		
			Same as above.							
	26 -	SP- SM	Sand-Silty Sand fines; fine to some fine to me	l; 10 to 15 coarse wit dium grave	% h 1;					
			saturated; loos	se.			Simila	ir to		
							Compos	site B-10		
	29 -	-				-				
		CL	Same as 22-26'							
	30 -	SP- SM	Same as 26-29' some cobbles	out also wi	th .					
						-				
	-					-				
	-					-				
		-				-				
	-					-				
	-				5.3					
	41 -	CL	Sandy Clay; 25 some gravel an	% fine sand d cobbles;	dark					
	-		gray and yello saturated; med	wish brown lium plastic	; city;					
	-		very stiff.			-				
	45	1		Car included in		and the second				

I

	WEST	ERN	LABORATORIES				PROJECT	
825 "J" S	Ma	teria	Is Engineers Lincoln, N	ebraska	Bla	ack Hawk	Lake, Iowa	
		BOR	RING LOG	Part of				
Boring Met	hod: 6-	in. cont	inuous flight auger	Stan	dard Pe	netratio	n Test	Boring No. 6
Indisturbed	Soil Sar	npier: 3	5-in.o.d. thin-walled tube	140-lb. Hammer	30-in. Fall	2-in. o.d. Sp	olit-barrel Sampler	Sheet 1 of 1
w = Moisture	Conten	1, % D	= Dry Density, pcf	Penetratio	n Resista	nce: N=BI	ows per foot	Date: 10-25-7
Elevation	Depth	Group Symbol	Description of	Materials	Sa	No. Blows	Rem	arks
	1 5	CL	<u>Silty clay</u> ; blac plasticity; medi	k; wet; me um stiff.	dium	-		
	1.5	CL	Sandy clay; 25% some gravel; dar wet; medium plas	fine sand k brown; v ticity; me	with ery dium sti			
	4	CL	Sandy clay; 40% saturated; brown	sand; grav low plast	el; icity; s	oft.	Water Level Water Level	@ 3.5' IAD @ 3.75' 4
-		SM	saturated; very ity; very loose.	slight pla	s; brown stic-	1; 	Capped	ted and
		CL	Sandy clay; 25% occasional grave rated; medium st	fine sand l; gray; s iff.	with atu-	-		
						-		
	11.5	SM	<u>Silty sand</u> ; 20 t fine to medium w sand and medium occasional cobbl	o 35% fines ith some co gravel with es; satura	s; parse h ted;	-	Similar To Composite B-	-10
			loose.			-		
	lind.		-					
- 7	Juli							
	.11							
	50							

	WEST	ERN terial	LABORATORIES s Engineers		PROJECT Black Hawk Lake, Iowa				
825 "J" S	itre et	808	Lincoln, Ne	braska					
Boring Met	hod: 6-1	DUR	invous flight auger	Standard	Penetrati	ion Test	Paring No. 7		
Indisturbed	Sail Sam		is ad this walled tubal		Fall Diand	Collin hannal. Camples	String No.		
w=Moisture	Content	% 0	Dry Dessity ocf	Papatration Real	Full 2-11.0.4.	Blows per feet	Dette: 10-24-78		
Elevation	Death	Group	bry benshy, per		Samelal-				
-	0	Symbol	Description of M	dark anavish	No. Blows	Rem	arks		
		CT	brown; moist; medium stiff. (To	dark grayish dium plasticity opsoil)	;				
	3	CL- CH	Sandy clay; wet; wet; medium to h: stiff, brown.	20% fine sand; igh plasticity;					
	4.5	SM	Silty sand; moist fines; brown; mea loose.	t; 35 to 40% dium dense to					
	8	GP- GW	Sand-gravel; med: coarse gravel; sa loose to medium of	ium sand to aturated; dense.		Water Level Water Level Filled and (@ 8' IAD @ 8' 10/25/78 Capped		
					-				
	- I I I I I								
	30				-				
1. ale		CL	Sandy clay; 20 to with some gravel; dium plasticity:	30% fine sand ; saturated; me very stiff to					
			hard; dark olive with dark gray (I dish brown.	gray mottled plue) and red-	-				
	35				-				

Materials Engineers 225 3'Street Lineals, Nepress BORING LOG Baring Matsad 6-in continueus (High Yanger Destributes 6 (High Yanger Street 10 - 1 - 1 - Voisure Content, % D-Dry Destify, pet Pestfolio Result (Street Pestfolio 7 - 1 - 1 - 1 - Voisure Content, % D-Dry Destify, pet Pestfolio Result (Street Pestfolio 7 - 1 - 1 - 1 - Voisure Content, % D-Dry Destify, pet Pestfolio Result (Street Pestfolio 7 - 1 - 1 - 1 - 1 - Voisure Content, % D-Dry Destify, pet Pestfolio Result (Street Pestfolio 7 - 1 - 1 - 1 - 1 - Voisure Content, % D-Dry Destify, pet Pestfolio Result (Street Pestfolio 7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		WEST	ERN	LABORATORIES	and the second second			PROJECT	
Set '' Street BORING LOG Boring Wethod 6-16 continues fillph f user Street of the set of the street of th	1.5	Ma	teria	s Engineers		Black	Hawk	Lake, Iowa	
BORING LOG Baring Mathod: 5-In continuous flight auger Standard Penetration Test: Baring No. 8 Undistured Soil Sempler: Jain.ad IND-welled table 100-10. Heamer 30-in.Fail Zinad. Split-barrel Samaer Standard Penetration Resistance AreBioe ser (soil Dott) erMolinure Content, % D-Dry Density, per Penetration Resistance AreBioe ser (soil Dott) Despl Symbol Description of Materials Symbol Despl Symbol Description of Materials CL Sandy clay; black; wet; medium plasticity; medium stiff. (Topsoil) CL Sandy clay; dark gray mottled Water Level # 4' IAD Water Level # 4', 5' 10/25/; Filled and Capped Sandy clay; dark gray brown; 25 CL Sandy clay; solf fine sand; saturated; medium. 8.55 CL Sandy clay; solf fine sand; saturated; medium. 8.55 CL Sandy clay; 20 to 50% fine Sand with some gravel and cobles; saturated; medium 10 SM Silty sand; 30 to 40% fines; The to coarse; saturated; low plasticity; soft. 10 SM Silty sand; 30 to 40% fine Sand with some gravel and cobles; saturated; medium asturated; medium Sand with some gravel and cobles; saturated; medium Sand with some gravel and Sand with some gravel and San	825 "J" S	treet		Lincoln, M	lebraska				
Boring Wethod 5-in continues flight equal Boring Wethod 5-in continues flight equar Subdisturbed Soil Sompler 3-m ad thin-weiled tabe 40-th Hummer 30-in Fail 2-in-ad Spin-test Sampler Sheet 1 of 1 **Molture Contain, 3 0 CL Silty clay; black; wet; medium 0 CL Silty clay; black; wet; medium 10 CL Silty clay; black; wet; medium 10 CL Silty clay; black; wet; medium 10 CL Silty clay; dark gray mottled with reddish brown; 20 to 25% fine sand with some coarse grav- el; wet; medium plasticity; 5 CL to 300 fine sand; very wet; me- 10 clay; Solt fine sand to coarse gravel; saturated; low plasticity; soft. 10 SM Silty saturate; saturated; very loose. 10 clay in gravel and cobles; saturated; medium 10 sM Silty saturated; medium 10 sand with some gravel and cobles; saturated; medium 10 sand with some gravel and cobles; saturated; medium 10 saturated; medium. 10 solt sitt; sift; dark gray 10 structury; soft fine 10 sind saturated; medium 10 solt sitt; sift; dark gray 10 solt sitt; sift; dark gray 10 solt sitt; sift; dark gray 10 solt sittif; sift; dark gray 10 solt sittif; dar			BOR						
Undisturbed Soll Sempler: 3-m.ad thin-welled tube 140-b, Hemmer 30-in Fail 2-Load Spit-barret Semet 1 of 1 **Mainture Content, % D=Dry Density, pet Penetration Resistance: N=Blows per fact 2 date 10-24-7 Elevation Depin Symbol Description of Materials Semetaling Research 2 CL Silty clay; black; wet; medium plasticity; medium stiff. (Topsoil) CL Sandy clay; dark gray mottled with reddish brown; 20 to 25% fine sand with some coarse grav- el; wet; medium plasticity; stiff. CL Sold Fine sand; very wet; me- dium plasticity; stiff. Same but 30 to 40% fine sand; saturated; medium. 10 SM Silty sand; 30 to 40% fines; fine to coarse; saturated; low plasticity; soft. 10 SM Silty sand; 30 to 40% fines; fine to coarse; saturated; wery lose. CL Sandy clay; 20 to 30% fine sand with some gravel and cobles; saturated; medium 10 SM Silty sand; 30 to 40% fines; fine to coarse; saturated; wery lose. Composite B-10 10' to 18'	Boring Met	hod: 6-	in. cont	invous flight quaer	Standard	Penet	ratio	on Test	Baring No. o
<pre>**Moliture Content, % 0-Dry Density, pet Penetrolion Resistance: Nellows per feet Date: 10-24-7. Elevation 0 CL Sandy clay; black; wet; medium 13 CL Sandy clay; dark gray mottled 4 CL Silty clay; dark gray mottled 4 CL Sandy clay; dark gray brown; 25 CL Cl viffe sand with some coarse grav el; wet; medium plasticity; stiff. Same but 30 to 40% fine sand; 8.5 CL Sandy clay; 50% fine sand to coarse gravel; saturated; low plasticity; soft. 10 Composite 3-10 10 CL Sandy clay; 20 to 30% fine 18 CL Sandy clay; 20 to 30% fine 10 Composite 3-10 10'to 18' Composite 3-10 Com</pre>	Undisturbed	Soil Sa	moler: 3	-in od thin-walled tube	140-16 Hammer 30-1	n Fail 2-i	n od S	olit-barrel Sampler	Sheet 1 of 1
Elevation Deering of Materials Sample New York of Materials Sample Store Remarks 3 model Symbol 2 Silty clay; black; wet; medium plasticity; medium stiff. (Topsoil) 3 CL Sandy clay; dark gray mottled with reddish brown; 20 to 25% fine sand with some coarse grav- el; wet; medium plasticity; 5 CL Sandy clay; dark gray brown; 25 CL Sandy clay; solf fine sand; 8.5 CL Sandy clay; Solf fine sand to coarse grave; saturated; low plasticity; soft. 10 SM Silty sand; 30 to 40% fines; fine to coarse; saturated; low plasticity; soft. 10 SM Silty sand; 30 to 40% fines; fine to coarse; saturated; low plasticity; soft. 10 SM Silty sand; 30 to 40% fines; fine to coarse; saturated; low plasticity; soft. 10 SM Silty sand; 30 to 40% fines; fine to coarse; saturated; low plasticity; soft. 10 SM Silty sand; 30 to 40% fines; fine to coarse; saturated; low plasticity; soft. 10 SM Silty sand; saturated; low plasticity; soft. 10 SM Silty sand; 30 to 40% fines; fine to coarse; saturated; low plasticity; soft. 10 Jo 18'	waMaisture	Conten	* % 0	Dry Density ocf	Penetration Res	istance.	N=B	laws per foot	Date: 10-24-78
Symbol Description of Materials Two marks 0 CL Silty clay; black; wet; medium plasticity; medium stiff. (Topsoll) Water Level # 4' IAD Water Level # 4.5' 10/25/7 3 CL Sandy clay; dark gray mottled with reddish brown; 20 to 25% fine sand with some coarse grav eli wet; medium plasticity; 5 Water Level # 4.5' 10/25/7 5 CL Sandy clay; dark gray brown; 25 CL Sandy clay; stiff. 6.5 CL Sandy clay; 50% fine sand; saturated; medium. 8.5 CL Sandy clay; 50% fine sand to coarse grave; saturated; low plasticity; soft. 10 SM Silty sand; 50 to 40% fines; fine to coarse; saturated; low plasticity; soft. 10 SM Silty sand; 50 to 40% fines; fine to coarse; saturated; low plasticity; soft. 10 SM Silty sand; 50 to 30% fine sand with some gravel and cobles; saturated; medium plasticity; stiff; dark gray	Flevation	Denth	Group			Sample			
<pre>3 CL Sandy clay; orack; wet; meatum (Topsoil) 3 CL Sandy clay; dark gray mottled with reddish brown; 20 to 25% fine sand with some coarse grav- el; wet; medium plasticity; 5 CL Sandy clay; dark gray brown; 25 CL to 30% fine sand; very wet; me- dium plasticity; stiff. Same but 30 to 40% fine sand; saturated; medium. 8.5 CL Sandy clay; 50% fine sand to coarse gravel; saturated; low plasticity; soft. 10 SM Silty sand; 30 to 40% fines; fine to coarse; saturated; very loose. Composite B-10 l0' to 18'</pre>	-	0 -	Symbol	Description of	Materials	No.	Blows	Rem	i drks
<pre>(Topsoil) (</pre>				plasticity; med	ium stiff.				
3 CL Sandy clay; dark gray mottled with reddish brown; 20 to 25% fine sand; with some coarse gravel; stiff. 5 CL Sandy clay; dark gray brown; 25 to 30% fine sand; very wet; me-dium plasticity; stiff. 65 CL Sandy clay; dark gray brown; 25 to 30% fine sand; very wet; me-dium plasticity; stiff. 85 CL Sandy clay; 50% fine sand; to coarse gravel; saturated; low plasticity; soft. 10 SM Silty sand; 30 to 40% fines; fine to coarse; saturated; low plasticity; soft. 10 SM Silty sand; 30 to 40% fines; fine to coarse; saturated; low plasticity; soft. 10 SM Silty sand; 30 to 40% fines; fine to coarse; saturated; low plasticity; soft. 10 SM Silty sand; 30 to 40% fines; fine to coarse; saturated; low plasticity; soft. 118 CL Sandy clay; 20 to 30% fine sand with some gravel and cobles; saturated; medium cobles; saturated; m		-		(Topsoil)			-		•
3 CL Sandy clay; dark gray mottled with reddish brown; 20 to 25% fine sand with some coarse grav- el; wet; medium plasticity; stiff. 6.5 CL Sandy clay; dark gray brown; 25 to 30% fine sand; very wet; me- dium plasticity; stiff. Same but 30 to 40% fine sand; saturated; medium. 8.5 CL Sandy clay; 50% fine sand to coarse gravel; saturated; low plasticity; soft. 10 SM Silty sand; 30 to 40% fines; fine to coarse; saturated; very loose. Composite 8-10 10' to 18' Cu Sandy clay; 20 to 30% fine sand with some gravel and cobbles; saturated; medium plasticity; stiff, dark gray									
3 CL Sandy clay; dark gray mottled with reddish brown; 20 to 25% fine sand with some coarse gravel; wet; medium plasticity; stiff. 5 CL Sandy clay; dark gray brown; 25 to 30% fine sand; wet; medium. 6.5 CL Sandy clay; dark gray brown; 25 to 30% fine sand; saturated; medium. 8.5 CL Sandy clay; soft fine sand; saturated; low plasticity; soft. 10 SM Silty sand; 30 to 40% fines; fine to coarse; saturated; low plasticity; soft. 10 SM Silty sand; 30 to 40% fines; fine to coarse; saturated; low plasticity; soft. 10 SM Silty sand; 30 to 40% fines; fine to coarse; saturated; low plasticity; soft. 10 SM Silty sand; 30 to 40% fines; fine to coarse; saturated; very loose. Composite B-10 10' to 18' 18 CL Sandy clay; 20 to 30% fine sand to cobles; saturated; medium plasticity; stiff.		-							
CL Sandy clay; dark gray mottled with reddish brown; 20 to 25% fine sand with some coarse grav- el; wet; medium plasticity; 5 CL sandy clay; dark gray brown; 25 CL to 30% fine sand; very wet; me- dium plasticity; stiff. Same but 30 to 40% fine sand; saturated; medium. 8.5 CL Sandy clay; 50% fine sand to coarse gravel; saturated; low plasticity; soft. 10 SM Silty sand; 30 to 40% fines; fine to coarse; saturated; very loose. Composite B-10 10' to 18' CL Sandy clay; 20 to 30% fine sand with some gravel and cobbles; saturated; medium plasticity; stiff, dark gray		3 -	1						
<pre>Water Level % 4' IAD Fine sand with some coarse grav- el; wet; medium plasticity; stiff. CL 6.5 CL 5 CL 6.5 CL 6.5 CL CL CL CL CL CL CL CL CL CL</pre>			CL	Sandy clay; dar	k gray mottled				
<pre>Sandy clay; 20 to 30% fine sandy clay; 20 to 30% fine saturated; medium plasticity; stiff. Same but 30 to 40% fine sand; saturated; medium plasticity; soft. CL Sandy clay; 50% fine sand to coarse gravel; saturated; low plasticity; soft. SM Silty sand; 30 to 40% fines; fine to coarse; saturated; very loose. Composite B-10 10' to 18' Composite B-10' to 18' Co</pre>		-		fine sand with	some coarse gra	v	-	Water Level	@ 4' IAD
5 CL Sandy clay; dark gray brown; 25 CL Sandy clay; dark gray brown; 25 CL Sandy clay; sol% fine sand; 8.5 CL Sandy clay; 50% fine sand to coarse gravel; saturated; low plasticity; soft. 10 SM Silty sand; 30 to 40% fines; fine to coarse; saturated; very loose. Composite B-10 10' to 18' CL Sandy clay; 20 to 30% fine sand with some gravel and cobbles; saturated; medium plasticity; stiff; dark gray		-		el; wet; medium	plasticity;			Water Level	@ 4.5' 10/25/7
6.5 CL Sandy clay; dark gray brown; 25 CL to 30% fine sand; very wet; me- dium plasticity; stiff. Same but 30 to 40% fine sand; saturated; medium. 8.5 CL Sandy clay; 50% fine sand to coarse gravel; saturated; low plasticity; soft. 10 SM Silty sand; 30 to 40% fines; fine to coarse; saturated; very loose. Composite B-10 10' to 18' C Sandy clay; 20 to 30% fine sand with some gravel and cobles; saturated; medium plasticity; stiff; dark gray		5 -	CL	stiff.				Filled and	Capped
6.5 CL Sandy clay; dark gray brown; 25 to 30% fine sand; very wet; me- dium plasticity; stiff. Same but 30 to 40% fine sand; saturated; medium. 8.5 CL Sandy clay; 50% fine sand to coarse gravel; saturated; low plasticity; soft. 10 SM Silty sand; 30 to 40% fines; fine to coarse; saturated; very loose. Composite B-10 10' to 18' CL Sandy clay; 20 to 30% fine sand with some gravel and cobles; saturated; medium plasticity; stiff, dark gray	Prissin!			\backslash					
CL Sandy clay; 20 to 30% fine CL Sandy clay; 20 to 30% fine CC Sandy clay; 20 to 30% fine		6.5-	1	Sandy clay; dar	k gray brown; 2	5			
18 CL Samdy clay; 50% fine sand to coarse gravel; saturated; low plasticity; soft. 10 SM Silty sand; 30 to 40% fines; fine to coarse; saturated; very loose. 10 SM Silty sand; 30 to 40% fines; fine to coarse; saturated; very loose. 10 CL Sandy clay; 20 to 30% fine sand to cobles; saturated; very loose. 10 CL Sandy clay; 20 to 30% fine sand to cobles; saturated; very loose. 10 SM Silty sand; 30 to 40% fine sand; saturated; very loose. 10 Composite B-10 10' to 18' 110 Sandy clay; 20 to 30% fine sand to cobles; saturated; very loose. Composite B-10 10 Image: saturated; redum Image: saturated; redum 110 Sandwith some gravel and cobles; saturated; medium Image: saturated; medium 110 Sandwith some gravel and cobles; saturated; medium Image: saturated; medium		-	CL	to 30% fine san	d; very wet; me		_		
8.5 CL Sandy clay; 50% fine sand to coarse gravel; saturated; low plasticity; soft. 10 SM Silty sand; 30 to 40% fines; fine to coarse; saturated; very loose. 6 Composite B-10 lo'to 18' 18 CL Sandy clay; 20 to 30% fine sand to cobles; saturated; medium plasticity; stiff; dark gray			1	Same but 30 to	40% fine sand;		-12-		
8.5 CL Sandy clay; 50% fine sand to coarse gravel; saturated; low plasticity; soft. 10 SM Silty sand; 30 to 40% fines; fine to coarse; saturated; very loose. Composite B-10 10' to 18' CL Sandy clay; 20 to 30% fine sand with some gravel and cobbles; saturated; medium plasticity; stiff; dark gray	S. S. S. S.	-	1	saturated; medi	um.		-		
10 SM Silty sand; 30 to 40% fines; fine to coarse; saturated; very loose. 18 CL Sandy clay; 20 to 30% fine sand with some gravel and cobles; saturated; medium plasticity; stiff; dark gray		8.5	CL	Sandy clay: 50%	fine sand to	-			
10 SM Silty sand; 30 to 40% fines; fine to coarse; saturated; very loose. 18 Composite B-10 10' to 18' 18 CL Sandy clay; 20 to 30% fine sand with some gravel and cobbles; saturated; medium plasticity; stiff; dark gray		-		coarse gravel;	saturated; low	1.70	-		
18 SM Silty sand; 30 to 40% fines; fine to coarse; saturated; very loose. 18 CL Sandy clay; 20 to 30% fine sand with some gravel and cobbles; saturated; medium plasticity; stiff; dark gray		10		plasticity; sof	t.		-		
18 CL Sandy clay; 20 to 30% fine 18 CL Sandy clay; 20 to 30% fine sand with some gravel and cobbles; saturated; medium plasticity; stiff; dark gray			SM	Silty sand; 30	to 40% fines;				
18 CL Sandy clay; 20 to 30% fine sand with some gravel and cobbles; saturated; medium plasticity; stiff; dark gray		-		very loose.	Saturated,		-		
18 CL Sandy clay; 20 to 30% fine sand with some gravel and cobbles; saturated; medium plasticity; stiff; dark gray						1240		Composite B	-10
18 CL Sandy clay; 20 to 30% fine sand with some gravel and cobbles; saturated; medium plasticity; stiff; dark gray		-					-	10'to 18	·
18 CL Sandy clay; 20 to 30% fine sand with some gravel and cobbles; saturated; medium plasticity; stiff; dark gray		-	1						
18 CL Sandy clay; 20 to 30% fine sand with some gravel and cobbles; saturated; medium plasticity; stiff; dark gray		-							
18 CL Sandy clay; 20 to 30% fine sand with some gravel and cobbles; saturated; medium plasticity; stiff; dark gray		-							
18 CL Sandy clay; 20 to 30% fine sand with some gravel and cobbles; saturated; medium plasticity; stiff; dark gray		-				1 30.			
18 CL Sandy clay; 20 to 30% fine sand with some gravel and cobbles; saturated; medium plasticity; stiff; dark gray		_					_		
18 CL Sandy clay; 20 to 30% fine sand with some gravel and cobbles; saturated; medium plasticity; stiff; dark gray									
18 CL Sandy clay; 20 to 30% fine sand with some gravel and cobbles; saturated; medium plasticity; stiff; dark gray	BUS OF	-					-		
18 CL Sandy clay; 20 to 30% fine sand with some gravel and cobbles; saturated; medium plasticity; stiff; dark gray	-	10.0							
18 CL Sandy clay; 20 to 30% fine sand with some gravel and cobbles; saturated; medium plasticity; stiff; dark gray	02121								
CL Sandy clay; 20 to 30% fine sand with some gravel and cobbles; saturated; medium plasticity; stiff; dark gray		18 _				_	_		
cobbles; saturated; medium plasticity; stiff; dark gray			CL	Sandy clay; 20	to 30% fine				
plasticity; stiff; dark gray		-		cobbles; satura	ted; medium		-		
		25		plasticity; sti	ff; dark gray				

	WEST	FRM	I ABORATORIES			C. S. S. S.	PROJECT	
	WEST.		LABORATORIES		Blac	k Hawk	Lake Towa	
825 "J" S	treat	rerial	S Engineers Lincoln, N	ebraska	Drac	I TILL WIL	Surrey Tond	A CONTRACT OF
		24.0	211100111, 1					
-		BOR	ING LOG					
Boring Met	hod: 6-	in. cont	inuous flight auger	Standar	d Pan	etratio	n Test	Boring No. 8a
Undisturbed	Soil Sam	pier: 3	-in. o.d. thin-walled tube	40-16. Hammer 30-	in. Fall	2-in.o.d. S	piit-barrei Sampler	Sheet 1 of 2
w=Moisture	Content	, % D	Dry Density, pcf	Penetration Re	sistan	ce: N=BI	ows per foot	Date: 10-24-7
Elevation	Depth	Group Symbol	Description of	Materials	Sam	pie Blows	Rem	arks
	2 2.5	CL CH CH CL CL	Silty clay; blac plasticity; medi (Topsoil) Silty clay; ligh medium plastici Silty clay; 10% high plasticity; Sandy clay; 30% brown; saturated plasticity; soft Gravely clay; 30 gravel with some ed; low to mediu soft.	<pre>k; wet; mediu um stiff. t brown; wet; ty; medium st fine sand; we brown; stiff fine sand; ; low to medi ; to 40% fine sand; satura m plasticity;</pre>	m iff. t; um		Water Level Water Level Filled and C	@ 4.5' IAD @ 5' 10/25/78 Capped
	8.5	GM- GP GP	Sand-Gravel; 10% sand to medium g ed; loose. <u>Gravel</u> ; coarse; loose.	s fines; mediu ravel; satura saturated;	m t -	-		
	14	GP- GW	<u>Gravel;</u> fine to some coarse sand loose to medium	coarse with ; saturated; dense.			Composite B- 14 to 25	.11

E

825 "J" S	Materia treet	LABORAIORIES Is Engineers Lincoln, M	lebraska	Black Hawk La	ake, Iowa ·			
Boring Mat	bod: 6-in con	tiqueus flight quart	Standar	d Penetration	Test	Baring No.	-	
Indisturbed Soil Sampler: 3-in od thin-walled tube			14 O-lh Hammer 30-in Fall 2-in od Solit-barrel Sampler			Sheet 2 of 7		
w = Moisture	Content, % D	= Dry Density, pcf	Penetration R	esistance: N=Blow	s per foot	Date: 10.	-24 -	
Elevation	Depth Group	Description of	Materials	SampleBlowe	Rem	ark s	-	
	20 Symbol 20 Symbol 20 SP- GP 25.5 CL 25.5 SP CL	<u>Sand-Gravel</u> ; as with a lot of m <u>Sandy clay</u> ; 25% some gravel and rated; medium stiff; gray (<u>S-G as above</u> Sandy clay; as stiff.	Materials above but edium sand. fine sand wit cobbles; satu plasticity; blue). above but very	h	Rem	arks		
	WEST	ERN	LABORATORIES			a second s	PROJECT	
--------------	----------	-----------------	---	--	-------------------------------	---	--	------------------------------------
	Ma	terial	s Engineers		B	lack Hawk	Lake. Iowa	
825 "J" S	treet	rerrar	Lincoln, N	ebraska				
		BOR	ING LOG					
Boring Met	hod: 6-	in. cont	inuous flight auger	Stan	dard F	Penetration	n Test	Boring No. 9
Undisturbed	Soil Sam	npler: 3	-in. o.d. thin-walled tube	140-lb. Hammer	30-in. F	all 2-in.o.d. Spl	it-barrel Sampler	Sheet 1 of 2
w = Moisture	Content	, % D:	Dry Density, pcf	Penetratio	n Resis	tance: N=Blo	ows per foot	Date: 10-24-7
Elevation	Depth	Group Symbol	Description of	Materials		Sample Blows	Rem	arks
	2	CL	Sandy clay; very brown; wet; medi medium to stiff.	dark gray um plastic (Topsoil	ity;)	-		
	4 5	СН	Sandy clay; 10 t medium sand; bro plasticity; stif	to 15% fine own; wet; h Ef.	e to ligh	-		
	6	CL	Sandy clay; 30 t gravel; moist; 1 loose; brown.	to 40% sand low plastic	l and ity;			
	7	CP- GW	medium sand to o with some cobble Gravel; medium s gravel with some rated; loose.	coarse grav es; wet; lo sand to coa e cobbles; seams	vel pose. arse satu-	-	Cave-in at Cave-in at Filled and (7.5' on 10/25/ 8' IAD Capped
						-		
						1		
	20					-		

825 "J" S	WEST Mo	TERN Iteria BOF	LABORATORIES Is Engineers Lincoln, M	Nebraska	Bla	ack Hawk	PROJECT Lake, Iowa	
Boring Met	hod: 6	-in. cont	inuous flight auger	Stan	dard Pe	n e tra tio	n Test	Boring No. Q
ndisturbed	Soii Sa	mpler: 3	3-in. o.d. thin-walled tube	140-lb. Hammer	30-in. Fall	2-in. o.d. Sp	lit-barrel Sampler	Sheet 2 of 2
= Moisture	Conten	nt, % D	= Dry Density, pcf	Penetratio	n Resista	nce: N=BI	ows per foot	Date: 10-24-
Elevation	Depth	Group	Description of	Materials	Sa	mole Blows	Rem	arks
	20 -	GP GW	Same			-	Composito P	
1	R						7'to 30	
	30 -	SP- SW	Sand; fine to co ed; loose to me	oarse; satu dium dense.	rat-	_		· · · ·
	22						Composite B 30'to 43'	-9
	40					-		
	43	SP- SM	Sand - Silty sau 15% fines; satu dense.	<u>nd</u> ; fine; 1 rated; medi	0 to um	-		
	46.5	SM	Silty sand; 25% saturated; medi	fines; fin um dense.	e;	-		
	48	SP	Sand; fine to co ed; medium dense	oarse; satu e.	rat-	-		

825 "J* S	WESTERN Material	LABORATORIES s Engineers Lincoln, N	abraska	Black	Hawk	PROJECT Lake, Iowa	
	BOR	ING LOG					
Soring Men	nod 6-in cont	inuous fiight auger	Standard	Pener	ratio	n lest	Boring No. 10
w = Maisture	Content % Di	-in. o.d. finin-waited fuber	Penetration Resi	stance	N= 81	ows per foot	Date: 10-24-78
Elevation	Depth Group	Description of	Materials	Sample	Blows	Bam	arks
	0 Symbol	Fill: Silty cl gray brown with wet; medium pla Road Fill Silty clay; bla saturated; medi soft to medium	ay; very dark some gravel; sticity; stiff. ck; very wet to um plasticity; stiff.	No.		Water Level Water Level Filled	@ 3.5 IAD @ 4.5 10/25/78 and Capped
	10 CL 11.5 SM 12 SM 12 SC- CL 13.5 SM 20 CL 22 CL	Same but with 1 <u>Silty sand; 25%</u> ed; gray; mediu <u>Sandy clay - Cl</u> <u>50% fines; satu</u> gray; low plast <u>Silty sand; 30%</u> coarse with som saturated; loos <u>Sandy clay; 25</u> with some grave rocks; saturate ticity; stiff.	5% fine sand. fines; saturation and ense to loose ayey sand; 45 to rated; dark cicity; loose. fines; fine to be fine gravel; se. to 30% fine sand el and lime ed; medium plas- (Glacial Till)			Composite B 13.5' to 2	-10

825 "J" S	WEST Mo	TERN ateria	LABORATORIES Is Engineers Lincoln, No	sbraska	Black Ha	PROJECT awk Lake, Iowa	•
		BOF	RING LOG				
Boring Met	thod: 6	-in. cont	tinuous flight auger	Standar	d Penetra	tion Test	Boring No. 11
Undisturbed	Soil Sa	mpier: 3	3-in. o.d. thin-walled tube I	40-16. Hammer 30-	in. Fall 2-in.o	.d. Split-barrel Sampler	Sheet 1 of 2
w = Moisture	Conter	nt, % D	= Dry Density, pcf	Penetration Re	sistance: M	N=Blows per foot	Date: 10-24-78
Elevation	Depth	Group	Description of	Materials	Sample Bio	ows Rem	arks
	8	SM & CL	Fill: Sandy Cla Sand; 50% sand at moist; low plast to medium dense.	<u>y</u> and <u>Silty</u> nd gravel; icity; loose			
	10	CL	Fill: Sandy Clay dark gray mottled brown; wet; mediu stiff. Sandy clay; black plasticity; mediu	y; 30% sand; i with reddish im plasticity; x; wet; medium im stiff.			
	-	CL	Sandy clay; 30% s el; brown; wet; m ity; medium stiff	sand and grav- medium plastic f to stiff.	-		
	14 5	CL	Same as above but	t very wet.			
	16.5	SM GP- GW	Silty sand; 30% f coarse with fine el; very wet; med loose. Sand-gravel; coar dium gravel; satu	Fines; fine to to medium gra lium dense to rse sand to me urated; medium	ν- -	Water Level immediately ling Cave-in at capped and a 10-25-78	at 15.5 ft. after dril- 16 ft. filled
	20		dense to 100se.				

	WESTERN	LABORATORIES	Sealer States		PROJECT	
825 "J" S	Materia treet	Is Engineers Lincoin, N	ebraska	Black Hav	vk Lake, Iowa	
	BOR	RING LOG				
Boring Met	thod: 6-in. cont	inuous flight auger	Standard	Penetratio	on Test	Boring No. 12
ndisturbed	Soil Sampler: 3	5-in. o.d. thin-walled tube	140-16. Hammer 30-in.	Fall 2-in. o.d. S	plit-barrel Sampler	Sheet 1 of 1
w = Moisture	Content, % D	= Dry Density, pcf	Penetration Resi	stance: N=8	lows per foot	Date: 10-24-
Elevation	Depth Group Symbol	Description of	Materials	Sample Blows	Rem	arks
	0 CL 1 CH 2 CH 3 CL 4 CL 7 CL 8 CL 10 10 10 10 10 10 10 10 10 10	Silty clay; 10% wet; medium pla um plasticity; Silty clay; som el; very dark g very wet; high to medium. Silty clay; som el; gray; satur ticity: soft t Sandy clay; 30% gravel and 2" 1 urated; medium soft; gray and Clayey sand; 30 color as above; lime rocks; sat plasticity; 10 Sandy clay; 20% el; dark gray m dish brown; sat plasticity; so Silty clay; 10 and sand; gray; dium to high pl Sandy clay; 30% fine gravel; da gray); saturate ticity; medium (Glacial)	& gravel; black; asticity; medi- stiff. me sand and grav grayish brown; plasticity; sof me sand and grav sated; high plas comedium stiff. as and with some ime rocks; sat- plasticity; . reddish yellow % fines; same with gravel an gurated; low pose. asand and grav- nottled with red turated; medium oft. to 15% gravel saturated; me- asticity; soft. sand with some ry gray (blue d; medium plas- stiff.		<u>Water level</u> Water level	<u>@ 2:25' IAD</u> <u>@ 1.1 10/25/</u> 7
				-		
1	IIII					

1

	WESTER Mater	N LABO	RATORIES gineers		DI		PROJECT	*	
825 "J" S	treet		Lincoln, N	ebraska	ы	аск на	wk Lake, Iowa		
Our days Mark	B	ORINGL	.0 G		1			1	
coring men	nod. 8-11. c	ontinuous	light dugsr	5100		enerra	ion rest	Boring	10. K-1
Undisturbed	Soll Sample	r: 3-in. o.d. fh	in-walled tube	140-10. Hammer	30-in. Fai	1 2-10.0.0	. Split-barrel Sample	risheet	1 of 2
w = Moisture	Content, %	D= DFy De	nsiry, pcf	Penetratio	n Resist	ance: N	Blows per foot	Date:	12-3-70
- 1229.3	0.0 Syn	ibol C	escription of	Materials	5	No. Blow	Ra	narks	
		L Sand brow wet; medi (ove	y silt; da n; 15% fin medium to um stiff. orburden)	rk brown t e sand; mo low plast	o ist to icity;		App. 400' so trail; 100' tracks. Water at 6.0 ing.	oùth of east of)' after	5a on € of drill-
	7.0 G	W <u>Grav</u> 1"; to 4	rel; poorly some fines	graded; s; missing	ome + 3/8				
	9.0 - S	P <u>Silt</u> M many	y sand; 15 7 - 4 fines	to 20% si	lt;				
	12.0 - C	L <u>Silt</u> oliv rate stif	<u>y clay;</u> 20 re gray; sc ed; medium ff.	% fine san me brown; plasticity	d; satu- ;				
	15.5 C	L Sand C occa medi loos	l <u>y clay;</u> 25 isional + 3 ium plastic se.	% + fines; 5/8; satura ity fines;	ted; soft;				
	20.0					F			

-

	WEST	ERN	LABORATORIES		PR	OJECT		
25 "J" S	Ma	terial	s Engineers Lincoln, N	ebraska	Black Hawk Lake	e, Iowa		
		BOR	ING LOG					
ing Mat	hod: 6-	in. conti	nuous flight auger	Standa	rd Penetration Te	e s t	Boring No. R	-1
sturbed	Soil San	npler: 3-	-in. o.d. thin-walled tube I	40-lb. Hammer 3	D-in. Fall 2-in. o.d. Split-ba	rrei Sampler	Sheet 2 of	f 2
1 oi stur e	Content	1, % D=	Dry Density, pcf	Penetration F	Resistance: N=Blows	per foot	Date: 12-	5-1
vation	Depth	Group Symbol	Description of	Materials	Sample Blows	Rem	arks	
07.3	20.0-	SC	Same as above.	Read and the second second				-
	Ξ	CL						
	N.SE							
					-			
	=	1						
		1			-		+1 *	
	-							
	-							
	25.0 =							
		GM	Silty sand grav	el; 15% silt				
	Ξ	SM	nothing $+ 3/4'';$	mealum dens	e			
	1	-						
	3							
	-							
		100						
		1						
	40.0-							
	E	GW	Gravel; poorly	graded; lot	+			
200	-	Gr	5/6, 15% + 5/4.					
	-		Dense					
	-	1						
	E							
	-						· ·	
	-							
	-							
	E							
1	=							
	-							
	F							
1	-							
2	-							
	-							

1

	WESTERN	LABORATORIES				PROJECT	162.8
825 "J" S	Material treet	s Engineers Lincoln, N	lebraska		Black Ha	wk Lake, Iowa	
	BOR	ING LOG					
Boring Mat	hod: 6-in.cont	inuous flight auger	Stan	dard P	enetratio	n Tast	Boring No. R-2
Undisturbed	Soil Sampler: 3	-in. o.d. thin-walled tube	140-lb.Hammer	30-in. Fa	111 2-in. o.d. Sy	olit-barrel Sampler	Sheet 1 of 2
w=Moisture	Content, % D:	Dry Density, pcf	Penetratio	n Resist	tance: N=BI	ows per foot	Dote: 12-5-78
Elevation	Depth Group Symbol	Description of	Materials	S	Sample Blows	Rem	ärks
Elevation 122 8.1	5.0 SP 10.0 CL 12.0 SP 15.0 CL	<u>Sandy silt; ve</u> brown; 15% fin wet; low plast stiff. <u>Sand; some gra</u> <u>Silty clay; 15</u> sand; olive gr medium plastic <u>Silty sand; 15</u> - 4 fines.	Meteriels rry dark bro te sand; mo icity; med vel. vel. to 20% fil ay; satura city; stiff 5% silt; ma to 20% fil ray to blui	ne ted; ny	Sample Blows	Water at 7.0 ing.	arks
	17.0SC	gray; saturate plasticity; st <u>Sandy clay;</u> 25 Similar to R-1	eu; mealum tiff. 5% + fines. 1 at 15+.		-		
	20.0				-		

R

-

I

I

825 "J" s	WESTER Mater	N LABORATORIES ials Engineers Lincoln,	Nebraska	Blac	PROJECT k Hawk Lake, Iow	a
	B	ORING LOG	And the		and a descriptional	
oring Met	thod: 6-in. c	ontinuous flight auger	Standa	rd Penetra	ition Test	Boring No. R-2
disturbed	Soil Sampler	: 3-in. o.d. thin-walled tube	140-16. Hammer 30	-in. Fall 2-in. c	.d. Split-barrel Sampler	Sheet 2 of 2
Moisture	Content, %	D=Dry Density, pcf	Penetration R	esistance:	N=Blows per foot	Date: 12-5-7
evation	Depth Grou	bol Description of	Materials	Sample BI	ows Rem	arks
208.1	20.0	Same as above.				
	E				a standard and	
	II.					
						11.11.11.11
	-			-		
	H			-		
	E o ac					
	25. GN	1 Silty sand gra	vel; 15% silt	;	•	• •
	E SM	l occasional + :	3/4"; medium			
	E	dense.		I F		
	=					
	F					
	E	See R-1 at sam	ne depth.			
	F					
	1			-		
	E					
	-				•	
	F					
	1 -					
	I					
	F					
	-					
	E					
Sec.	Ξ					
	E					
	-					
	E				S Contraction	
	-			-	Charles Streets Co	
-	=					
	1			F		
	E					
	-					
	T					
	E				12 ALSO 12 7	
	40.0 =				Broke Hydraul	lic Hose

825 "J" S	WESTERN . Material	s Engineers	lebraska	Blac	k Haw	PROJECT k Lake, Iowa	
	BOR	ING LOG					
Boring Met	thod: 6-in. conti	inuous flight auger	Standar	d Pene	tratio	on Test	Boring No. R-3
Indisturbed	Soil Sampler: 3	-in. o.d. thin-walled tube	140-1b. Hammer 30	-in. Fall 2	-in. o.d. S	plit-barrel Sampler	Sheet 1 of 2
w = Moisture	e Content, % D=	Dry Density, pcf	Penetration R	esistan c	e: N=8	lows per foot	Date: 12-6-78
Elevation	Depth Group	Description of	Materials	Sampi	Biows	Rem	arks
-1233.2	0.0 Symbol CL ML 5.5 GM	<u>Silty clay; ve</u> wet; medium to medium stiff. <u>Silty sand; so</u> <u>Silty gravel;</u> 15 to 20%; sil	some fine san	No. ; ty;		Water at 8.0 ing.	'after drill-
	14.0 SM GM 16.0 CL	Silty sand with Sandy clay; of rated; medium 15 to 20% sand	th some gravel live gray; sat plasticity; l; stiff.	u-			

	WEST	ERN	ABORATORIES		PRO	DJECT
825 "J" s	Mat	terial	s Engineers Lincoln, N	ebraska	Black Hawk Lal	ke, Iowa
		BOR	NG LOG			
oring Me	thod: 6-i	n. conti	nuous flight auger	Standa	rd Penetration Te	st Boring No. R-
disturbed	Soil Sam	pler: 3-	in. o.d. thin-walled tube	140-16. Hammer 30	D-in. Fall 2-in. o.d. Split-bar	rel Sampler Sheet 2 of
= Moisture	Content	, % D=	Dry Density, pcf	Penetration R	esistance: N=Blows p	er foot Date: 12-6-7
evation	Depth	Group	Description of	Materials	Sample Blows	Remarks
213.2	20.0		Same as above.			
	21.0					
		SM	Silty sand and fines: 10% + 4	gravel; 20%		
	-	30	111105, 10% + 4		-	
	=					
	E					
	E					
	E					
	=					
	-				-	
	Ξ					
	-					
	40.0	GW	Gravel	100 100 100		
	=					
	=					
	-					
	-	100				
	E					
	-	-				
	1	-				
	E				-	
	H					
	-					
	H	5				
	-					
-	E					
	E					
	E					
	=					
	=				-	
	E					

1

825 "J" s	WESTERN Material	LABORATORIES s Engineers Lincoln, Nebro	aska	Black Ha	PROJECT wk Lake, Iow	a
Boring Ma	thod: 6-in. conti	nyous flight auger	Standard	Penetration	Tast	Baring No. P. 1
Undisturbed	Sail Sampler: 3	in od thin-walled tuber 40-	Ib. Hammer 30-in. F	all 2-in.o.d. Sol	it-barrel Sampler	Sheet 1 of 1
w = Moisture	Content, % D=	Dry Density, pcf Pi	enetration Resis	tance: N=Blo	ws per foot	Date: 12-6-78
Elevation	Depth Group	Description of Mat	erials	Sample Blows	Rem	arks
-1229.2	0.0 <u>Symbol</u> CL 1.0 SM	Sandy silt; brown brown; saturated; fine sand; low pl dium stiff.	to yellowish 15 to 20%	No. Blows	Cave-in at 7 drilling.	.0' after
	11.0 CL	Sandy clay; blue some olive gray; medium plasticity to 20% sand. Silty sand; 20 to nothing over + 4.	gray with saturated; ; stiff; 10 25% silt;			

-

ľ

R

	WES7	ERN	LABORATORIES			PROJECT	
825 "J" S	Ma treet	terial	s Engineers Lincoln, M	lebraska	Black	Hawk Lake, Iow	a
New York		BOR	ING LOG			1990 B 1996 P 19	
oring Met	hod: 6-	in. conti	inuous flight auger	Standard	l Penetrati	on Test	Boring No. R-6
disturbed S	Soii Sar	mpler: 3	-in. o.d. thin-walled tube	140-lb. Hammer 30-i	n. Fall 2-in. o.d.	Split-barret Sampler	Sheet 1 of 1
Moisture	Conten	t, % D=	Dry Density, pcf	Penetration Re	sistance: N=8	Blows per foot	Date: 12-6-78
evation	Depth	Group Symbol	Description of	Materials	Sample Blows	Rem	arks
231.4		CL	Fill; silty cl brown to brown plasticity; st	ay; very dark ; wet; medium iff.	-		
					-		
		SM	Silty sand; 20	% silt.	-		
					-	No Water	12
		GM	Silty gravel; fine sand: 20%	20% silt; some			
	1						
					-		
	12.0	CL	Sandy clay; ve	ry dark gray	-		
			with blue and very medium pl stiff.	olive; wet; asticity; very	F		
					-		
	15.0						
-							
	I						
	-						

825 "J" S	WESTERN Materia	LABORATORIES Ils Engineers Lincoln, N RING LOG	lebraska	PROJECT Black Hawk Lake, Iowa				
Boring Me	thod: 6-in. con	tinuous flight auger	Stand	ard Penetrati	on Test	Boring No. R-5		
Undisturbed	Soil Sampler:	3-in. o.d. thin-walled tube	140-ib. Hammer	30-in. Fall 2-in. o.d. 5	Split-barrel Sampler	Sheet 1 of 2		
w = Moisture	Content, % C)= Dry Density, pcf	Penetration	Resistance: N=B	lows per foot	Date: 12-6-78		
Elevation	Depth Group	Description of	Materials	Sample Blows	Rem	airks		
- 1229.1	- CL	<u>Silty clay;</u> ve wet; medium pl dium stiff.	ery dark brow asticity; me	vn; e-				
	2.5 SM GM	Sand; silty gr	avel.		Water at 7.5 ing.	' after drill-		
	7.0 JM 8.0 CL	Silty sand. Sandy clay; br ish brown; wet medium plastic (Glacial)	rown to yell to very we tity; stiff.	ow- t;				
	CL	<u>Sandy clay;</u> bl some olive; 15	ue gray wit % fine sand					

-

I

Report on Gravel Investigation Along West Side of Sections 4 and 9, T.86N., R.36 W. Sac County.

The interpretations in this report are based on earth-resistivity data obtained on April 14th, 1977. Fred H. Dorheim, Iowa Geological Survey, made the survey and the interpretations. He was assisted by personnel from the Iowa State Conservation Commission.

On the attached aerial photo the numbers circled in red show the location of the E-R stations.

ta. No.	Ove	erburden	Sand or gravel	
1		0-15'	15-35'	
2		0- 5	20-40' Dirt	Ioveravol
3		0-10'	10-35'	y graver
4		0-4'	4-50'	
5		0- 5'	5-35'	
5A		0-10'	10-40'	
6		0-10'	10-32'	
			32-50' Dirt	y gravel
7	1. A. 1. A. 1.	0-10'	10-32'	
8		Sandy clay to 50. f	t.	State - State
9		0- 5'	5-30'	
10		0- 5'	5-11'	
11		0- 2'	2-20'	
12		0-13'	13-30' Dirt	y sand
			clay	from 18
			to 2	20'
13		0-5'	5-30'	
14		0-10'	10-40'	
15		0-10' Peat and load	m 10-30'	
			30-35' Clay	
	Sector States		35-50' Sand	and gravel
16 Ran this o	n Dike	0-13' Dike.	13-42' Sand	and gravel

Stations 2-7 inclusive average 8 feet of overburden and 27 feet of gravel. This works out to be about 13000 yds³ of overburden and 43,560 yds³ of sand and gravel per acre. This is a ratio of sand and gravel to overburden of about 3 to 1.

Station 8 does not look good.

Stations 9-15 inclusive average 7 feet of overburden and 20 feet of sand and gravel. This works out to be about 11000 yds³ of overburden and 32,000 yds³ of gravel per acre. The ratio of sand and gravel to overburden is about 3 to 1.

I talked with Mr. James Myers at DOT about quality of the material in the area. During the period 1971-1976 their tests on material from Halle H's pit (the nearest pit) show that the material was accepted for asphaltic concrete. The gradation showed 25 to 30% plus 4 (gravel) and 70-75% sand.

Fred H. Dorheim Chief Geologist, IGS

SAMPLE LIST

Sample Number	Where Sampled	
Composite B-2	B-2 4' - 37.5'	
Composite B-2A	B-2a 2' - 46' B-5a 12' - 22'	· ·
Composite B-9	B-9 30' - 43'	
Composite B-10	B-10 3.5' - 22' B-8 10' - 18' B-5 10' - 19'	
Composite B-11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

DES MOINES RIVER BASIN

05482315 BLACKHAWK LAKE AT LAKE VIEW. IOWA

LOCATION.--Lat 42°18'15", long 95°02'30", in NW1/4 SE1/4 sec.33, T.87 N., R.35 W., Sac County, on south shore across from swimming beach at Lake View and 2 mi (3.2 km) upstream from lake outlet.

DRAINAGE AREA. -- 23.3 m1* (50.3 km*).

PERIOB OF RECORD. -- April 1970 to September 1975 (discontinued).

GAGE.--Vater-stage recorder. Datum of gage is 1.218.50 ft (371.40 m) above mean sea level and 2.00-ft (0.51 m) below crest of spillway of dam at outlet. Prior to June 25. 1970, nonrecording gage at lake outlet.

EXTREMES.--Current year: Maximum gage height, 2.57 ft (0.814 m) Apr. 27; minimum, 1.30 ft (0.396 m) Sept. 30. Period of record: Maximum gage height, 3.45 ft (1.052 m) Feb. 20, 1971; minimum, 0.59 ft (0.180 m) Oct. 27, 1971.

REMARKS.--Lake is formed by concrete dam with ungated overflow spillway at elevation 1.220.50 ft (372.008 m) above mean sea level. Lake is used for conservation and recreation. Area of lake is approximately 357 acres (390 hm²).

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.69	1.51	1.57	1.59	1.75	1.80	2.45	2.55	2.21	2.27	1.76	1.58
2	1.59	1.50	1.57	1.51	1.75	1.80	2.45	2.53	2.25	2.25	1.77	1.58
3	1.69	1.59	1.57	1.53	1.75	1.80	2.43	2.51	2.25	2.23	1.75	1.55
4	1.68	1.59	1.56	1.63	1.78	1.79	2.44	2.49	2.25	2.22	1.74	1.56
5	1.65	1.59	1.56	1.63	1.30	1.80	2.43	2.46	2.22	2.20	1.72	. 1.59
6	1.54	1.58	1.56	1.53	1.80	1.81	2.44	2.48	2.20	2.18	1.70	1.59
7	1.65	1.58	1.56	1.63	1.79	1.84	2.44	2.47	2.20	2.15	1.68	1.56
8	1.54	1.59	1.55	1.64	1.80	1.34	2.46	2.47	2.21	2.14	1.63	1.55
9	1.64	1.50	1.55	1.64	1.80	1.84	2.48	2.45	2.24	2.12	1.62	1.55
10	1.54	1.50	1.55	1.57	1.50	1.85	2.49	2.44	2.23	2.10	1.63	1.53
11	1.54	1.58	1.55 -	1.75	1.80	1.85	2.48	2.45	2.29	2.07	1.55	1.55
12	1.63	1.57	1.55	1.74	1.80	1.85	2.47	2.45	2.30	2.05	1.58	1.54
13	1.64	1.58	1.54	1.73	1.80	1.86	2.45	2.44	2.30	2.03	1.55	1.54
14	1.60	1.58	1.55	1 73	1.79	1.87	2.45	2.39	2.31	2.02	1.65	1,53
15	1.51	1.50	1.59	1.74	1.79	1.85	2.44	2.37	2.30	2.01	1.53	1.52
16	1.60	1.50	1.59	1.75	1.79	1.85	2.45	2.38	2.32	1.99	1.52	1.51
17	1.60	1.50	1.58	1.75	1.80	1.86	2.42	2.34	2.30	1.96	1.50	1.52
19	1 50	1 60	1 58	1 74	1 81	1 87	2.41	2.32	2.35	1.92	1.60	1.48
10	1 59	1 58	1 50	1 75	1 21	1 88	2.39	2.32	2.40	1.92	1.50	1.43
20	1 50	1 57	1.50	1 71	1 01	1 97	2 28	2 31	2.39	1 91	1 59	1.42
20	1.35	1.3/	1.30	1.14	1.01	1.33	2.50					
21	1.59	1.50	1.59	1.75	1.31	2.12	2.42	2.28	2.39	1.89	1.57	1.43
22	1.55	1.59	1.50	1.75	1.31	2.29	2.42	2.29	2.39	1.89	1.37	1.43
23	1.55	1.56	1.59	1.75	1.81	2.39	2.44	2.27	2.37	1.89	1.52	1.42
24	1.55	1.55	1.59	1.75	1.91	2.46	2.45	2.24	2.38	1.37	1.54	1.41
25	1.54	1.57	1.59	1.75	1.30	2.45	2.45	2.23	2.38	1.86	1.49	1.40
25	1.53	1.57	1.59	1.75	1.50	2.45	2.49	2.24	2.37	1.85	1.48	1.39
27	1.54	1.54	1.60	1.75	1.80	2.50	2.49	2.22	2.35	1.33	1.54	1.39
28	1.55	1.55	1.60	1.75	1.80	2.51	2.50	2.28	2.34	1.83	1.57	1.39
29	1 56	1 55	1 59	1.75		2.50	2.50	2.29	2.32	1.79	1.60	1.38
20	1 57	1 57	1 53	1 75		2 19	2 58	2.28	2.30	1.79	1.60	1.35
31	1.60		1.59	1.75		2.48		2.27		1.75	1.50	
MEAN	1.61	1.58	1.57	1.71	1.80	2.05	2.45	2.37	2.31	2.00	1.52	1.49
MAY	1 60	1 61	1 50	1 75	1 81	2 51	2.60	2.55	2.40	2.27	1.77	1.59
MIN	1.53	1.54	1.54	1.59	1.75	1.79	2.38	2.22	2.20	1.75	1.48	1.35
VTR VR	1975 H	EAN 1.88	MAX 2.50	MIN 1	.35							

GAGE HEIGHT, IN FEET, WATER YEAR OCTOBER 1974 TO SEPTEMBER 1975

DES MOINES RIVER BASIN

05482315 BLACKHAWK LAKE AT LAKE VIEW, IOWA

LOCATION.--Lat 42°18'15", long 95°02'30", in NW1/4 SE1/4 sec.33, 7.37 N., R.36 W., Sac County, on south shore across from swimming beach at Lake Yiew and 2 miles upstream from lake outlet. OBAIMAGE AREA.--23.3 sq mi. 7MIOD OF RECORD.--April 1970 to current year. GAGE.--Water-stage recorder. Datum of gage is 1,218.50 ft above mean sea level and 2.00 ft below crest of spillway of dam at outlet. Prior to June 25, 1970, nonrecording gage at lake outlet.

and istanti the resil which is an opinose this in ochicher 141	GAGE	HEIGHT,	IN FEET,	RATER	YEAR	OCTOBER	1972	TO	SEPTEMBER 1973	1.11
--	------	---------	----------	-------	------	---------	------	----	----------------	------

VAV	OCT	NOV	080	JAN	FEB	MAR	APR		NUL	JUL	AUG	SEP
1	2.51	2.86	2.71	2.78	2.75	3.03	2.75	2.77	2.81	2.05	2.50	2.10
5	2.50	2.93	2.71	2.79	2,73	3,30	2.75	2.85	2.80	2.81	2.53.	2.14
3	2.49	2.97	2.69	2.82	2.70	3.30	2.76	2.90	2.77	3.02	2.50	-2.12
4	2.48	3.00	2.68	2.80	2.00	3.35	2.73	2.92	2.78	3.08	2.49	2 10
5	2.48	3.04	2.07	2,76	2,58	3,30	2.70	2,90	2.78	3.07	2.47.	2.07
-6	2.46	3.03	2.67	2.73	2.68	3.26	2.69	2.89	2.75	3.00	2.42	2.06
7	2.44	3,03	2.66	2.69	2.68	3.24	2.65	2.90	2.72	2.92	2.41	2.05
8	2.43	3.00	2.65	+ 2.47	2.50	3.20	2.65	2.98	2.57	2.85	2.39	2.06
9	2.44	3.09	2.64	2.05	2.65	3.17	2.62	3.01	2.65	2.81	2.37	2.07
10	2.44	3,12	2.03	2.03	2.64	3.15	2,62	2.99	2.00	2.75	2.35	2.07
11	2.41	3,15	2.62	2.62	2,63	3.24	2.01	2.94	2.56	2.70	2.34	2.07
12	2.40	3.10	2.04	2.60	2.62	3.28	2.63	2.88	2.57	2.64	2.32	2.07
13	2.39	3.17	2.54	2.58	2.63	3.27	2.68	2.85	2.59	2.00	2.32	2 07
14	2.38	3.19	2.02	2.57	2.64	3.34	2.70	2.41	2.60	2.55	2.31	2 05
15	2.38	3.10	2.01	2.57	2.63	3.30	2.73	2.78	2,63	2.52	2.30	2.07
10	2.35	3.00	2.00	2,58	2,50	3.24	2.84	2.72	2.50	2.49	2.30	2.11
17	2.35	2.93	2.59	2.70	2.59	3.17	2.89	2.71	2.57	2.47	2.31	2.12
18	2.34	2.39	2.58	2,95	2.58	3.13	2.88	2.67	2.62	2.43	2.29	2.13
19	2.33	2.85	2.57	3.00	2.57	3.07	2.90	2.66	2.71	2.43	2.27	2.12
20	2.37	2.82	2.57	2.97	2.57	3.01	2.84	2,65	2.76	2.45	2.25	. 2.12
21	2.40	2.79	2.50	2.96	2.50	2.96	2.76	2.63	2.76	2.49	2.25	2.12
22	2.45	2.77	2.50	2.95	2.50	2.93	2.70	2.00	2.74	2.50	2.23	2.11
23	2.58	2.75	2.55	2.90	2.57	2.90	2.09	2.58	2.70	2.51	2.20	2.12
24	2.66	2.75	2.55	2.87	2.58	2.94	2.68	2.53	2.70	2.55	2.25	2.14
25	2.70	2.71	2.54	2.83	2.65	2.98	2.78	2,51	2.64	2.56	2.25	2.10
26	2.73	2.71	2.53	2.81	2.74	2.96	2.82	2.58	2.63	2.54	2.23	2.67
27	2.73	2.70	2.52	2.80	2.78	2.93	2.81	2.68	2.57	2.52	2.21	3.06
28	2.74	2.71	2.50	2.79	2.80	2.87	2.81	2.77	2.55	2.50	2.21	1.21
29	2.75	2.72	2.55	2.77		2.83	2.78	2.43	2.52	2 56	2 19	3 25
30	2.17	2.72	2.68	2.75		2.80	2 77	2 44	2 51	2	2 18	7 37
31	2.81		2.75	2.73		2.78		2.82		2,59	2.18	
MEAN	2,51	2,92	2.01	2.76	2.65	3.11	2.74	2.75	2.66	2.65	2.12	2 26
XAX	2.81	3.19	2.76	3.00	2.80	3.34	2.90	3.01	2.41	5.08	2.54	3 25
MIN	2.33	2.70	2.50	2.57	2.50	2.78	2 . 11	2 51	2 51	2 41	2 14	3.05
1000						/ 0		e	6,31	e	C+10	2.03

NTR YR 1973 MEAN 2.67 MAX 3.36 MIN 2.05

GAGE HEIGHT. IN FEET. WATER YEAR OCTOBER 1973 TO SEPTEMBER 1974

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	NUL	JUL	AUG	SEP
1	3.16	2.58	2.67	2.48	2.48	2.60	2.36	2.62	2 90	2 27		1
2	3.11	2.55	2.65	2.47	2.49	2.60	2 40	2 18	2.50	2.31		1.98
3	3.05	2.55	2.63	2.46	2 48	2 45	2 4 2	2.30	2.00	2.35		1.98
4	2.99	2.55	2.60	2 45	2 4 9	3 67	2.46	2.35	2.82	2.35		1.98
5	2 94	2 53	2.00	2.43	2.00	2.01	2.40	2.35	2.76	2.35		1.97
	2.74	2.33	2.00	2.44	2.40	2.00	2.51	2.33	2.74	2.35		1.97
6	2.90	2.54	2.60	2.45	2.46	2.67	2.53	2.33	2.70	2.34		1.94
7	2.89	2.52	2.59	2.45	2.45	2.65	2.53	2.35	2.69	2.12		1.00
8	2.36	2.50	2.58	2.44	2.44	2.65	2.52	2.15	2.70	2.30	2 00	1.74
9	2.85	2.50	2.57	2.44	2.44	2.65	2.52	2.36	2.69	2 37	2.00	1.94
10	2.87	2.49	2.55	2.43	2.43	2.65	2.54	2.40	2.63	2.30	2.02	1.93
11	3 03	3 / 9	2.51	1								1.073
12	3.03	2.40	2.54	2.43	2.42	2.66	2.55	2.44	2.60	2.30	2.01	1.91
12	3.10	2.44	2.54	2.43	2.43	2.65	2.54	2.44	2.59	2.30	2.00	1.93
13	3.20	2.47	2.54	2.42	2.44	2.65	2.52	2.56	2.57	2.25	2.01	1.93
14	3.18	2.51	2.54	2.42	2.46	2.64	2.53	2.54	2.55	2.25	2.03	1.91
15	3.13	2.54	2.53	2.41	2.48	2.58	2.55	2.56	2.50		2.03	1.91
16	3.08	2.55	2.53	2.40	2 48	2 55	7 64	2 67				
17	3.02	2.55	2.52	2 41	2.40	2.33	2.00	2.51	2.41		2.05	1.91
18	2.97	2.52	2 51	2.41	2.50	2.55	2.55	2.60	2.45		2.07	1.38
19	2 22	2.54	2.51	2.41	2.35	2.52	2.55	2.95	2.45		2.10	1.88
20	2.70	2.34	2.50	2.42	2.50	2.50	2.56	3.16	2.44		2.11	1.87
20	2.90	2.04	2.49	2.42	5.65	2.50	2.57	3.27	2.44		2.10	1.86
21	2.86	2.70	2.48	2.44	2.62	2.48	2.49	3.25	2.42		2 00	1
22	2.82	2.75	2.48	2.45	2.64	2.46	2 46	3 22	2 50		2.07	1.83
23	2.80	2.77	2.47	2.45	2.62	2 47	2 45	3.15	2.50		2.08	1.83
24	2.75	2.77	2.50	2.45	2.60	2 45	2 46	3.15	2.51		2.07	1.83
25	2.70	2.77	2.54	2.45	2 50	2.43	20	3.07	2.50		2.01	1.79
		100		2.45	6.37	2.000	2.44	3.05	2.50		2.05	1.78
26	2.68	2.76	2.54	2.45	2.58	2.43	2.45	3.05	2.49		2.04	1.77
27	2.65	2.73	2.54	2.45	2.57	2.43	2.45	3.02	2.46		2.05	1.76
28	2.62	2.71	2.53	2.45	2.60	2.42	2.45	2.96	2.45		2.04	1 70
29	2.61	2.70	2.52	2.45		2.40	2.43	3.04	2.42		2 03	1.74
30	2.60	2.68	2.51	2.45		2.40	2.41	3.00	2 10		2 01	
31	2.58		2.49	2.46		2.42		2.94			1.99	- 1./0
HEAN	2.90	2.60	2 54	3.64	2.51		1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		1		-	
MAY	2 20	2.00	2.54	C. 44	2.51	2.55	2.49	2.72	2.57			1.88
	3.20	c.//	6.01	2.48	2.64	2.68	2.57	3.27	2.90			1.98
-14	2.58	2.41	2.47	2.40	2.42	2.40	2.36	2.33	2.39			1.70

DES MOINES RIVER BASIN

05482315 BLACKHAWK LAKE AT LAKE VIEW, IOWA

LOCATION.--Lat 42°18'15", long 95°02'30", in NW1/4 SE1/4 sec.33, T.87 N., R.36 W., Sac County, on south shore across from swimming beach at Lake View and 2 miles upstream from lake outlet. DRAINAGE AREA.--23.3 sq mi. PERIOD OF RECORD.--April 1970 to current year. GAGE.--Water-stage recorder. Datum of gage is 1,213.50 ft above mean sea level and 2.00 ft below crest of spillway of dam at outlet. Prior to June 25, 1970, nonrecording gage at lake outlet.

GAGE HEIGHT, IN FEET, WATER YEAR OCTOBER 1970 TO SEPTEMBER 1971

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	aug.	SEP
1	1.63	1.79	2.01	2.04	2.06	2.86	2.76	2.25	2.23	1.97	1.55	. 1.12
2	1.59	1.80	2.02	2.03	2.06	2.81	2.72	2.24	2.23	1.95	1.54	1.10
3	1.58	1.83	1.960	2.08	2.05	2.76	2.71	2.25	2.23	1.94	1.53	1.09
4	1.58	1.91	2.01	2.11	2.07	2 72	2 69	2 22	2 27	1 93	1 57	1 09
-	1 50	1 92	1 09	2 10	2 00	2 60	2.00	2 76	2 22	1.75	1.40	1.00
,	1.30	1.02	1.90	2.10	2.09	2.00	6.03	c.20	6.63	1.93	1.44	1.00
6	1.58	1.80	2.00	2.09	2.08	2.66	2.63	2.25	2.25	1.93	1.48	. 1.02
7	1.60	1.82	2.00	2.09	2.08	2.64	2.61	2.24	2.29	1.94	1.47	1.05
8	1.70	1.84	2.00	2.10	2.08	2.65	2.58	2.23	2.30	1.93	1.45	.99
9	1.79	1.87	2.00	2.09	2.08	2.60	2.55	2.23	2.31	1.93	1.44.	.97
10	1.84	1.88	2.03	2.09	2.07	2.59	2.55	2.24	2.31	1.95	1.42	.95
11	1.84	1.88	2.06	2.08	2.07	2.60	2.49	2.23	2.29	1.96	1.40	. 94
12	1.84	1.89	2.06	2.08	2.07	2.75	2.47	2.21	2.23	1.95	1.38	.92
13	1.84	1.89	2.06	2.08	2.08	3.01	2.43	2.19	2.27	1.92	1.37	.91
14	1 97	1	2 06	2 08	2 08	3 16	2 42	2 18	2 25	1 91	1 36	87
15	1.83	1.88	2.06	2.08	2.08	3.15	2.43	2.17	2.25	1.88	1.35	.85
	1.05		2.00	2.00		5115						
16	1.83	1.88	2.07	2.08	2.08	3.07	2.38	2.16	2.24	1.86	1.33	.83
17	1.81	1.88	2.07	80.5	2.08	3.00	2.40	2.15	2.23	1.85	1.32	.82
18	1.81	1.89	2.07	2.08	2.25	2.97	2.40	2.19	2.20	1.82	1.29	.81
19	1.82	1.96	2.07	2.08	3.10	2.97	2.38	2.24	2.19	1.78	1.30	.81
20	1.82	1.96	2.07	2.08	3.44	2.92	2.38	2.27	2.15	1.77	1.30	.80
21	1.82	1 99	2 16	2 08	3 37	2.99	2 41	2.29	2.14	1.74	1.28	.78
22	1.02	1.00	2.00	2.00	2 32	2 94	2 24	2 31	2 12	1 73	1 25	70
22	1.02	1.90	2.00	2.01	3.33	2.00	2.30	2.31	2.16	1.72	1.23	. / .
23	1.82	1.97	2.00	2.01	3.23	2.84	2.33	2.29	2.10	1.12	1.24	.01
24	1.82	1.97	2.05	2.01	3.13	2.81	2.33	2.23	2.08	1.09	1.23	.52
25	1.83	1.96	2.05	2.07	3.06	2.79	2.32	2.24	2.05	1.57	1.21	.85
26	1.82	1.96	2.05	2.07	3.00	2.77	2.32	2.24	2.04	1.64	1.19	.86
27	1.82	1.96	2.04	2.07	2.96	2.76	2.30	2.23	2.00	1.63	1.17	.86
28	1.81	1.98	2.04	2.07	2.91	2.79	2.26	2.23	1.96	1.62	1.16	.84
29	1.81	1.99	2.04	2.07		2.82	2.28	2.22	1.95	1.61	1.14	.87
30	1.80	2.00	2.04	2.07		2.83	2.26	2.23	1.98	1.58	1.13	.88
31	1.80		2.04	2.07	*****	2.82		2.24		1.57	1.12	
		G	AGE HEIGH	, IN FEE	T, WATER	YEAR OCTOR	BER 1971 1	TO SEPTEME	SER 1972			
GAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	NUL	JUL	AUG	SEP
1	.85	1.15	1.16	1.24	1.24	1.36	2.18	2.50	2.48	2.75	2.74	2.31
2	. 34	1.14	1.16	1.24	1.25	1.48	2.20	2.52	2.46	2.75	2.76	2.31
1	. 30	1.12	1.16	1.23	1.25	1.59	2.17	2.57	2.47	2.73	2.74	2.30
,	.80	1.14	1.16	1.23	1.25	1.63	2.19	2.59	2.47	2.69	2.71	2.29
5	.75	1.10	1.17	1.23	1.25	1.64	2.20	2.61	2.49	2.67	2.68	2.28
,												
6	.75	1.05	1.17	1.23	1.25	1.66	2.20	2.66	2.51	2.66	2.66	2.29

	.75	1.05	1.17	1.23	1.25	1.66	2.20	2.66	2.51	2.66	2.66	2.25
7	.75	1.10	1.17	1.23	1.25	1.78	2.21	2.69	2.58	2.65	2.65	2.27
	.70	1.10	1.18	1.23	1.26	1.87	2.20	2.71	2.68	2.64	2.51	2.26
3	.70	1.09	1.19	1.23	1.27	1.92	2.18	2.71	2.72	2.63	2.59	2.25
4	.70	1.08	1.19	1.23	1.30	1.96	2.18	2.71	2.73	2.60	2.58	2.32
10												
11	.68	1.08	1.19	1.22	1.30	1.98	2.19	2.71	2.68	2.59	2.55	. 2.54
12	. 58	1.08	1.19	1.22	1.30	2.01	2.18	2.70	2.66	2.59	2.54	2:67
11	. 66	1.12	-1.18	1.21	1.30	2.04	2.16	2.71	2.73	2.58	2.52	2.74
14	.65	1.05	1.18	1.21	1.30	2.06	2.17	2.69	2.80	2.56	2.50	2.78
15	. 65	1.09	1.19	1.21	1.30	2.07	2.17	2.68	2.82	2.55	2.48	2.73
			1 10	1 20	1 10	1 00			2 62	1 6 1	2 15	
16	.01	1.09	1.19	1.20	1.35	2.09	2.17	2.00	2.02	2.33	2.43	2.11
17	.67	1.14	1.23	1.20	1.31	2.11	2.18	2.04	2.30	2.90	2.42	2.15
18	.73	1.12	1.20	1.20	1.30	2.12	2.10	2.51	2.91	3.31	2.40	2.14
19	.69	1.12	1.20	1.20	1.30	2.13	2.17	2.59	2.94	3.41	2.38	2.74
20	.70	1.10	1.20	1.20	1.30	2.13	2.19	2.56	2.89	3.39	2.36	2.71
21	.72	1.12	1.20	1.20	1.29	2.13	2.22	2.54	2.85	3.27	2.34	2.67
22 .	.71	1.14	1.20	1.19	1.29	2.15	2.22	2.52	2.80	3.12	2.30	2.64
22	.71	1.13	1.19	1.22	1.29	2.17	2.19	2.54	2.76	3.00	2.29	2.62
24	.72	1.13	1.19	1.23	1.29	2.17	2.21	2.54	2.72	2.98	2.28	2.59
25	.72	1.13	1.19	1.23	1.31	2.17	2.22	2.52	2.69	2.92	2.32	2.59
	71	1.13	1.19	1.23	1 11	2 20	2 22	7 51	2 67	2 20	2 22	2 62
20		1 14	1.18	1.24	1.31	2 20	2 25	2 53	2 47	7 97	2 . 3 3	2 5 2
21		1 16	1 18	1 24	1 21	2 20	2 36	2 54	2 75	2 79	2 33	2.50
28		1 16	1 19	1.24	1 31	2.20	2.30	2.54	2.13	2.73	2.32	2.50
29		1.14	1 27	1 24	1. 31	2.10	2.41	2.022	2.10	2.13	2.37	2034
30	1.07	1.10	1.24	1 24		2.20	2041	2.51	2.10	2.04	2.32	2.52
31	1.12		1.24	1.24		2.18		2.49		6.07	2.32	
AFAN	.75	1.12	1.19	1.22	1.29	1.99	2.21	2.60	2.71	2.81	2.48	2.53
TAX	1.12	1.16	1.24	1.24	1.31	2.20	2.47	2.71	2.94	3.41	2.76	2.78
PIN	. 65	1.05	1.16	1.19	1.24	1.36	2.16	2.49	2.40	2.53	2.29	2.26

TR YR 1972 MEAN 1.91 MAX 3.41 MIN .65

APPENDIX D

BASIN WATER BUDGET

		Inflow	Outflow
(B.A.)	Basin 23.3 Mi. ² = 6.50×10^8 ft. ²	Gallons/year	Gallons/year
(L.A.)	Black Hawk Lake 957 acres = 0.417×10^8 ft. ²		
(D.A.)	Drainage Area BA-LA = 6.08×10^8 ft. ²		
(Ppt.)	Annual Precipitation = 28"/year or 2.33 feet/year		
	Volume of Precipitation over Basin=(Ppt.) x (BA) x 7.48 gallons per cubic foot = (g/ft. ³)*	+1.13×10 ¹⁰	
(R.)	Recharge=0.25 ft./yr.		
	0.25 ft./yr. x (B.A.) x $(7.48g/ft.^3)^*$	• 0.12x10 ¹⁰	
(ET)	Evapotranspiration = 2.0 ft/yr.		
	2.0 ft./yr. x (B.A.) x $(7.48g/ft.^3)$		-9.72 × 10 ⁹
(RU)	Runoff=(Volppt) - (R) - (ET) = RU		-0.39 × 10 ⁹
(QL)	Basin Surface Discharge at Lake Weir		-0.23 x 10 ⁹
(C.W.)	City Wells 350 gpm x 1440 Min/day x 365 days		-0.18 × 10
(Sub.)	Leakage of Groundwater out of Basin approximately 1,400 gal/day	1.25x10 ¹⁰	1.13 × 10 ¹⁰
Unknown local	2300 gal/min. perhaps domestic and livestock use.	Difference = 12 per year	x 10 ⁸ gallons
*A cons	tant equating gallons of water to cubic		

feet of water

APPENDIX D (Cont'd.)

BLACK HAWK WATER BUDGET

1

	Inflow Gallons/year	Gallons/year
Runoff	3.88×10 ⁸	
Precipitation directly on Lake 2.33 ft. x L.A. x 7.48 gal/ft.	7.27×10 ⁸	
Groundwater Infiltration (150' x 6') x 1300 feet/day x 365 days	4.27×10 ⁸	
Lake Evapotranspiration = 3.28 ft/yr. x (L.A.) x 7.48g/ft. ³		1.02 × 10 ⁹
Lake Discharge		2.26×10^8
	1.54×10 ⁹	1.25×10^9 $10^8 \text{ Gallons/year}$
	2.50 × 1	

Difference which is equivalent to 563 gallons per minute. Possible sources of this difference could be groundwater seepage or municipal and private well discharge

APPENDIX C PUMP TESTS SUMMARY

Drawdown (Radius of Influence)

West Central Iowa Rural Water Association

Q Max.: 188,000,000 gallons per year

Max. Rate: 6,000 gpm

(Two Wells) one used, the other in backup Q = 358 gpm

Single Well Radius of Influence

 $s = \frac{114.6}{T}$ Wu (drawdown in feet at any point in discharging well vicinity)

Q = 358 gpm (pumping rate)

T = 66,600 gpd/ft. (coefficient of aquifer transmissibility)

S = .25 (a dimensionless coefficient of storage)

r = distance in feet from center of pumped well to point where drawdown is measured

t = Time since pumping began in days

$$u = \frac{1.87 r^2 S}{Tt}$$
 Wu = .sT
114.6

(Values of u) Radius

	Days	100 Ft.	225 Ft.	3225	5000	
	10 100 365 1000	7×10 ⁻³ 7×10-4 1.9×10-4 7×10 ⁻⁵	3.5×10 ⁻² 3.5×10 ⁻³ 9.7×10 ⁻⁴ 3.5×10 ⁻⁴	7.3 0.73 0.20 7.3×10	17.5 1.75 2 4.8×10 1.7×10	111
Values of	Wu)					
	10 100 365 1000	4.3916 6.6879 7.9915 8.9899	2.8099 5.0813 6.3620 7.3807	.00008239 .3532 1.22227 2.1118	.07465 .5848 1.35278	

RADIUS OF INFILIENCE AS A FUNCTION OF PUMP DISCHARGE AND PRECIPITATION RECHARGE

Appendix F

PUMPING IMPACT

12.2

(Land	(After 365 D Side)	ays) (Pit	(Pit Side)			
Radius (r)	Drawdown(s)	<u>(r)</u>	<u>(s)</u>			
100 ft. 225 ft. 3,225 5,000 6,000 7,000	4.9' 3.9' 0.7' 0.4' 0.2' 0.15'	225' 3,225' 5,000' 6,000'	0.7' 0.7' 0.4' 0.2'			

14 12 10

an haddar

WESTERN LABORATORIES

Inalytical Services P. O. BOX 80358 LINCOLN. NEBRASKA 68501

						Date:	Februa	ary 20,	1979
For: Blackh Job #7	nawk La 8/3025-	ke -2						:	
							Pag	e 1	•
Date Receiv Date Tested Sample of: Laboratory I Field Identi	ed: l: Identific fication	1/79 1/79 Water cation N No.	0.						
	Tota Dissol Soli	lved ds	Total Alkalin: <u>as CaC</u>	ity O3	Tota Hardne <u>as Ca(</u>	al ess CO ₃	Total Iron <u>as F</u> e	e_	• •
Sample B Sample C Sample E Sample G Sample H Sample J Sample K Sample L Sample N	395 315 620 290 230 295 650 760 380	mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	205 136 370 160 182 204 387 362 227	mg/l mg/l mg/l mg/l mg/l mg/l mg/l	305 242 492 221 211 263 492 563 273	mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	$ \begin{array}{r} 0.2\\ 1.7\\ 0.5\\ 0.8\\ 0.4\\ 0.6\\ 7.2\\ 7.2\\ 0.3 \end{array} $	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	
		and the second se				0.000			

By bay C. Brandt

WESTERN LABORATORIES

Inalytical Services P. O. BOX 80358 LINCOLN. NEBRASKA 68501

Date: February 20, 1979

For: Blackhawk Lake Job #78/3025-2

Page 2

Date Received: 1/79 Date Tested: 1/79 Sample of: Water Laboratory Identification No. Field Identification No.

		Total Manganese		Nitrate Nitrogen		
		as Mn		as N	-	
Sample	В	0.04	_mg/l	<0.10	_mg/1	
Sample	C	0.20	_mg/1	0.30	_mg/l	
Sample	E	0.29	_mg/1	3.24	_mg/1	
Sample	G	0.05	_mg/1	< 0.10	_mg/1	
Sample	H	0.10	_mg/l	< 0.10	_mg/l	
Sample	J	0.76	_mg/l	< 0.10	_mg/l	
Sample	K	3.08	_mg/l	2.10	_mg/l	
Sample	L	2.43	_mg/l	0.76	_mg/l	
Sample	N	0.05	_mg/l	0.24	_mg/1	

By bary C. Brandt

