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Abstract 

A self-stabilizing system is a network of machines, which starts from 
an arbitrary initial state and always converges to a legitimate configura­
tion in a finite number of steps. Dijkstra, in his 1974 CACM paper, first 
demonstrated the feasibility of designing self-stabilizing systems. This re­
port analyzes two of his three protocols, and evolves a methodology for 
designing non-trivial self-stabilizing systems. To demonstrate the feasibil­
ity of this methodology, Dijkstra's solutions have been extended to graph 
topologies. Finally, the importance of self-stabilizing systems have been 
highlighted with possible potential applications in different areas. 
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Understanding Self-Stabilization in Distributed Systems 

1 

Sukumar Ghosh 

Abstract 

Dijkstra [7] [10] introduced the problem of self stabilization in distributed systems 
as an interesting exercise for achieving global convergence through local actions. In [7], 
he suggested three solutions to a specific version of the self-stabilization problem, one 
of which was proved in [8]. Ever since this paper was written, the understanding as well 
as the design of self-stabilizing systems remained a challenging exercise. This paper 
analyzes the self-stabilization mechanism, and discusses how such algorithms can be 
synthesized. In addition to the synthesis of Dijkstra's algorithms, this paper considers 
generalizations of these algorithms on graph topologies of distributed system, and 
highlights self-stabilization as a new paradigm for designing distributed algorithms. 

Categories and Subject Descriptors: C.2.4 [Computer-Communication Network]: 
Distributed Systems - distributed applications; D.4.1 [Operating Systems]: Process 
Management - synchronization. 

General Terms: Theory, Algorithms. 

Additional Keywords and Phrases: Self-stabilization, distributed algorithm, syn­
thesis. 

Introduction 

A distributed system traditionally consists of a set of loosely connected processes 

which do not share a global memory. Depending on the connectivity of such a 

system, each component process gets a partial view of the global state. Due to the 

finite propagation delay of the signals, the notion of a global state is not simple, 

and its computation is a nontrivial task, which has been demonstrated in [5]. 

Notwithstanding these difficulties, there is a great demand for the design of dis­

tributed algorithms. Each such algorithm essentially transforms an initial global 

state to a final global state in a finite number of steps, without taking into consid­

eration the actual amount of time required by a process to complete an action or 

by a signal to reach its destination. The actions mentioned herein are all local ac­

tions, yet a correct formulation of an algorithm must always ensure that the global 
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state eventually converges to a specific goal. This amply highlights the importance 

of studying suitable methodologies for achieving global convergence through local 

actions. 

In [7], Dijkstra described an interesting exercise for achieving global convergence 

through local actions. His system consisted of n processes (0, 1, .. . , n-1) connected 

in the form of a ring (Fig. 1). Each process is a finite state machine which can read 

(i) its own state, (ii) the state of its left neighbor, and (iii) the state of its right 

neighbor. Depending on some predicate(s) defined over these states, a process can 

update its own state. A process enjoys a privilege when such a predicate is true, and 

a privileged process may update its own state, which is called a move. Furthermore, 

when more than one process enjoys privileges, the choice of the process which is 

entitled to make a move is determined arbitrarily by a central demon. 

Based on some predefined postcondition, the set of possible global states of 

such a system can be divided into two classes: legitimate and illegitimate. Dijkstra 

defined the following global criteria for the legitimate states: 

LSl: In each legitimate state, one or more privileges must be present. 

LS2: In each legitimate state, each possible move would again bring the system in 

a legitimate state. Thus during an infinite run, the system must eventually 

cycle through a finite number of legitimate states. 

LS3: Each privilege must be present in at least one legitimate state. 

LS4: For any pair of legitimate states, there must exist a sequence of moves trans­

ferring the system from the one to the other. 

A system was called self-stabilizing, if and only if regardless of the initial state, 

and regardless of the privilege selected each time for the next move, at least one 

privilege would always be present, and the system is guaranteed to find itself in a 

legitimate state after a finite number of moves. 

In all his solutions, Dijkstra considered a specific version of LSl to characterize 

a legitimate state - he considered a legitimate state to be one in which exactly one 

machine enjoys a privilege. 

In [7], Dijkstra presented without proof three different solutions to the self­

stabilization problem: 
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0 1 2 3 4 n-2 

Figure 1: A ring-structured distributed system. 

(a) Solution with k-state machines (k ~ n); 

(b) Solution with 3-state machines; 

( c) Solution with 4-state machines. 

n-1 

In [7], Dijkstra presented a proof of his second solution. Another proof for this 

solution was furnished by Kessels [11]. Kruijer [12] extended Dijkstra's solution 

to the tree topology. In a modified framework, Brown et.al. [2] suggested three 

solutions for a self-stabilizing token system. In all these approaches, it was found 

that self-stabilizing systems could not be designed, if all the component processes 

were identical. As an interesting exception, recently Burns [4] showed that it is 

possible to have a symmetric solution to the self stabilization problem when n is 

prime. 

Dijkstra's proof [8] provides useful insight to the mechanism of self-stabilization. 

However, with the exception of [4] none of these papers suggests any methodology for 

designing a self-stabilization algorithm. This paper is an attempt towards evolving 

such a methodology. The paper is organized as follows: section 2 deals with the 

basic concepts of privileges and moves, section 3 analyzes the unidirectional protocol 

for self-stabilization, section 4 discusses the bidirectional protocol for cyclic graph 

topologies, and section 5 deals with extensions of this protocol to acyclic topologies. 

Finally, section 6 contains some concluding remarks and discusses the importance 

of studying self-stabilization. The reader is expected to be familiar with Dijkstra's 

original work reported in [7]. 

2 Basic Concepts 

2.1 Notations 

3 



In a distributed system structured in the form of a ring, we number the processes 

as (0, 1, 2, ... , n - I) from left to right. Each process is a k-state machine whose 

states are nuni:bered as (0, 1, 2, ... , k-1). To make the system nontrivial, we assume 

that n > 2. The state of a process i would be designated by the symbol s[i]. 

In a self-stabilizing system, the lifecycle of a process is as follows: 

repeat 

if privilege[!] then move[l] fi; 

if privilege[2] then move[2] fi; 

if privilege[m] then move[m] fi; 

forever. 

For a process i, a privilege is a boolean function of (s[i - 1]), s[i], s[i + 1]). Note 

that each - and + operation is a mod n operation, however, for the simplicity of 

writing, this detail would be omitted from the remaining part of this paper. A move 

by process i simply modifies the value of s[i]. 

2.2 Privileges and Moves 

To keep our discussions simple, we start with a simple version of a privilege, where 

it is a boolean function p of (s[i - 1],s[i]) only. We represent the privilege for a 

process i by the symbol p[i]. Note that for Dijkstra's self-stabilizing systems, exactly 

one machine can have a privilege in the legitimate state. However, in an arbitrary 

initial state, an arbitrary number of machines may enjoy privileges. Therefore, when 

p[i] is true, the corresponding move by process i must try to change p[i] to false. 

Obviously there would be a danger of deadlock when no machine enjoys privilege 

in the initial state, or the only privilege existing in the system is also killed by such 

a move. However, this would be taken up later. Examples of privileges and moves 

for a process i are: 

(a) if s[i-1] = s[i] + 1 mod k then s[i] := s[i-1] fi; 

(b) if s[i-1] = s[i] then s [i] := s[i-1] + 1 mod k fi; 

As a general tool, a move by process i may negate p[i] in a finite number of 

steps. An example is 
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if s[i-1] # s[i] then s[i] := s[i] + 1 mod k fl; 

Here, depending on the relative values of s[i - 1] and s[i], several consecutive 

moves may be needed by process i to kill the privilege. However, there is no apparent 

reason for adopting such a phased appro.ach for killing a privilege. 

These observations lead to the following axiom: 

Axiom 1.1: Each privilege for a process i must be negated in a finite number of 

moves by that process. 

Although so far we argued in favor of killing the privileges, it is necessary to 

sustain the last privilege, otherwise the system would be deadlocked. It is therefore 

necessary to design the privileges and the moves in such a way that at least one 

privilege always exists in every possible global state of the system. With symmet­

ric machines, when (k, n) are relatively prime, this can be safeguarded using the 

following privilege and move: 

if s[i] # s[i-1] + 1 mod k then s[i] := s[i-1] + 1 mod k; 

However, if one allows at least one machine to be an exception, then the presence 

of at least one privilege can be ensured by designing a suitable privilege for the 

exceptional machine. This leads to the following invariant for the global state: 

Axiom 1.2: p[O] V p[l] V p[2] ... V p[n-1] = true. 

Having ensured that at least one process would have a privilege, it is necessary 

to examine the effects of killing a privilege. 

We use the following notation to represent the effect of a move by a process: 

precondition -+ postcondition 

In order to satisfy LS2, when a privilege of a process i is killed by a move, a new 

privilege must be generated for the process ( i + 1). As long as axiom 1.2 is satisfied, 

there is no special concern about it, and this should be an obvious outcome. Note 

that we are now dealing with legitimate states. So, when process i has a privilege, 

obviously process (i + 1) would not have any privilege. At this point, we are not 

at all concerned about what would happen if both the processes i and ( i + 1) have 

privileges. This would be studied later. However, our observations about legitimate 

states lead to the following axiom: 

5 



c£ -+ -+ ~ ·0 ·0· ·0 ·0 {~ 
0 1 2 3 4 5 6 

Figure 2: An example of a system which may not stabilize. Each machine has three 
states (0,1,2). Each-+ indicates a privilege. IT the moves are made sequentially by 
the processes 1,3,2,4,3,5,4,6,5,0, ... then the privileges never collide. 

Axiom 1.3: p[i] /\ -, p[i+l] -+ -, p[i] /\ p[i+l]. 

2.3 Global Convergence 

Axiom 1.1 is not enough to achieve global convergence. Since axiom 1.3 requires 

that each privilege propagates to the right neighbor, a malicious demon may choose 

the processes in such a way that multiple privileges continue to exist in the ring 

forever. Figure 2 illustrates such a situation, where the only privileges and moves 

for the different machines are 

if s[i] -:f s[i-1] + 1 mod 3 then s[i] := s[i-1] + 1 mod 3 

Global convergence thus calls for some extra effort by which the number of 

privileges are bound to decrease until this number comes down to 1. Apparently, 

there may be different ways to ensure this. 

2.3.1 Collision of privileges 

We represent a privilege by a (-+) marked on the node having the privilege (Fig. 

2). When two privileges collide (which means that two adjacent processes i and 

( i + 1) have privileges) a move by process i would definitely reduce the number of 

privileges by at least 1. However, since the privileges propagate at unpredictable 

speeds, the collision of two nonadjacent privileges may not be inevitable during 

an infinite run, as has been illustrated in Figure 2. Therefore, without further 

refinements, collision of privileges is not an acceptable methodology for global con­

vergence. 
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2.3.2 Absorption of privileges 

If one of the machines is considered to be an exceptional machine, then it might be 

possible to design the privilege for this exceptional machine in such .a way that the 

exceptional machine absorbs some of the privileges without generating new ones. 

2.3.3 Neutralization of privileges 

So far, we considered only one type of privilege for a process i. This privilege 

was defined as a boolean function of s[i] and s[i - I]. A system which achieves 

self-stabilization using only this type of privilege is said to follow a unidirectional 

protocol. It is equally possible to consider another type of privilege which would be 

defined as a boolean function of s[i] and s[i + 1]. The latter type of privilege would 

be represented by drawing a ( -) on the node having that privilege. It is easy to 

visualize that all the arguments presented in the earlier sections are equally valid 

with the latter type of privilege also, with the sole exception that this privilege would 

propagate in the opposite direction. It is trivial to show that every unidirectional 

protocol defined with(---+) can also be defined in terms of(-). However, there are 

interesting possibilities of achieving global converegence when both these types of 

privileges are considered together. Such a protocol would be called a bidirectional 

protocol. The strength of the bidirectional protocol lies in the fact that it is easier 

to kill a privilege by arranging a collision with a privilege of the opposite type, since 

the two types of privileges propagate in opposite directions along the ring. 

7 



3 A Unidirectional Protocol 

3.1 Dijkstra's First Algorithm 

As discussed earlier, in this model, we define the privilege of a machine i in terms 

of its own state s[i] and the state s[i - 1] of its left neighbor only. We begin with a 

description of Dijkstra's first algorithm discussed in [7] [10]. This algorithm assumes 

that node 0 is an exceptional node1
, whose privileges and moves are different from 

the remaining n - 1 nodes in the systems. Also note that this algorithm works only 

when k ~ n. 

For the sake of adopting a uniform notation in describing self-stabilization algo­

rithms, we henceforth use the symbol s .sel f to designate the own state of a process. 

The states of the predecessor and successor nodes would be represented by the 

symbols s.pre and s.succ respectively. 

Algorithm 1.1: Di,ikstra 's first algorithm. 

{For every machine 1. .n-1} 

ifs.self# s.pre then s.self := s.pre fl; 

{For the exceptional machine 0} 

if s.self = s.pre then s.self := s.self + 1 mod k fl; 

Theorem 1.1: Algorithm 1.1 guarantees self-stabilization when k ~ n. 

Proof: The privileges in this algorithm satisfy axiom 1.2, so there is no risk of 

deadlock. 

Without any loss of generality, we can assume that the state of machine 0 is 

initially 0. We can also assume that machine 0 enjoys a privilege, so that s[n-1] = 0. 

When k ~ n, there may be at most n - 1 machines having distinct states from 

the set {0 .. k - 1}. This also implies that even if we want to assign distinct values 

of initial states to the machines 1..(n - 1), at least one element of the set {0 .. k-1} 

1 The need for an exceptional node has been emphasized in [1][10]. 
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must be left out2
• Note that with such an assignment of initial states, all the n 

machines have privileges. 

We define the cycle of a machine as the state sequence 0, 1, 2, ... k - 1, 0. Every 

move by machine 0 creates a privilege for machine 1 in case it does not have one. 

Also, if machine i makes x moves, then it is implied that machine i - 1 also must 

have made at least x moves. Therefore, if machine 0 completes a cycle by making 

k moves, then machine n - 1 must have made at least k moves. 

Can machine 0 complete a cycle if machine ( n - 1) makes exactly k moves ? 

Clearly, this is possible if the system is in the legitimate state. However, this is 

impossible if the system is in an illegitimate state. 

To show this impossibility, note that machine (n - 1) also needs to complete a 

cycle in the first k moves. However, with k 2:: n, since at least one element of {0 .. 

k-1} is always missing in the array of states of the machines 1..n-1, there must be 

at least one machine i (1 ~ i ~ n - 1) for which s.self =/= s.pre ors.pre+ 1. Since 

with every move s.self is changed to s.pre, machine i cannot complete a cycle in 

the first k moves. Accordingly, no machine in i + 1 • • • n - 1 can complete a cycle 

ink moves. 

Therefore, machine n - 1 has to make more thank moves in order to enable 

machine 0 to complete one cycle. These k moves by machine 0 can trigger at most 

k subsequent moves for machine n - 1. Since the total number of privileges finite, 

the number of privileges would steadily drop down until it reaches one. It is trivial 

to show that if the system has exactly one privilege, then that privilege is sustained 

for ever. Thus the system is eventually stabilized. 

□ 

Note that when k < n the assertion "machine (n - 1) must move more thank 

times in order that machine 0 can make k moves" is no longer valid. An example 

of a system with (k = 2 and n = 4) which may not stabilize is shown in Figure 3. 

If the machines fire in the sequence 0, 3, 2, 1, 0, 3, 2, 1 then the system goes back to 

the initial state without ever entering a legitimate state. 

2 When k different eggs are to be put in less than k baskets, at least one egg must be left out. 
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cfs 
0 1 2 3 

Figure 3: A distributed system which may not self-stabilize. 

3.2 Performance Issues 

The proof of theorem 1.1 shows that for every k move by machine O, machine n - 1 

must have moved at least k + 1 times. Thus every k moves by machine O must 

reduce the number of privileges by at least one. Since in the worst case, initially all 

n machines can have privileges, to reduce the number of privileges to one, one would 

need at most k(n - 1) moves by machine 0. With n machines, the total number 

of moves made by all the machines in the system would be O(kn2 ). For a better 

analysis, see Chang [6]. Tchunte [13] presents another algorithm which converges 

twice as fast as Dijkstra's algorithm. 

In [7] [10], it has been mentioned that the above algorithm achieves self-stabilization 

when k 2'.: n. Note that as discussed in [7], the strict lower bound for k becomes 

(n - 1) instead of n when the central demon is replaced by a distributed demon. 

This is because, with distributed demons, the individual machines can simaltane­

ously read the states of the neighbors, and make simultaneous moves. 

3.3 Self-stabilization on a graph 

Regarding the generalization of the unidirectional protocol for application to arbi­

trary graph topologies, Dijkstra [7] refers to a private communication from Scholten. 

To rediscover such an algorithm, we consider the different cycles which form the 

graph. To prevent the different privileges in a cycle from chasing each other, we 

consider an exceptional machine in each cycle of the graph. Our first attempt is to 

use an algorithm in the same style as Dijkstra's first algorithm. To illustrate our 

approach, we consider an example graph shown in Figure 4. There are two directed 

cycles in this graph, and since machine O belongs to both these cycles, it would be 
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3 4 

5 6 

Figure 4: A graph on which self-stabilization needs to be achieved. 

treated as an exceptional machine. The algorithm is as follows: 

Algorithm 1.2: First Attempt for self stabilization on a graph. 

{For the exceptional machine O} 

ifs.self= s.pre then s.self := s.self + 1 fi; 

{For all other machines} 

for each node E pre {predecessor nodes} 

if s.self ¥= s.pre then s.self := s.pre fi; 

The correctness of the above algorithm depends on the definition of the legit­

imate state. If the global condition corresponding to the legitimate state requires 

that the number of privileges in each cycle of the graph is exactly one, then the 

above algorithm is correct as long as k 2: n. If however, it is desired that in the 

legitimate state, exactly one privilege must be present in the entire graph, then 

algorithm 1.2 is not applicable. 
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To see why this algorithm is not applicable, consider the states of the different 

machines as shown in Figure 5. Here, only one machine 0 has a privilege. As 

machines 0, 1 and 2 move successively, the state of machine 2 changes from 0 to 1. 

At this point, machines 3 and 5 both have privileges, and the system is no more in 

the legitimate state. Thus even if we start with a legitimate state, it is impossible 

to keep the system in a legitimate state. 8 

As a remedy to this problem, let us associate a variable turn with the state of 

the node 2, which is the only node whose outdegree is greater than one. For any 

node with outdegree d (d > 1), the possible values of turn would range from 0 .. d-1. 

In this particular case d = 2, so a boolean variable will suffice. When turn.pre = 

0 I\ s.self-=/= s.pre, it is the turn of machine 3 to make a move, and when turn.pre= 

1 /\ s.self -=/= s.pre, it is the turn of machine 5 to make a move. Furthermore, 

to give equal opportunity to the nodes 3 and 5, turn must be incremented (mod 
d) between successive moves. Therefore, in the example graph, when machine 2 

makes a move, it should also execute turn := ,turn. With these modification, the 

algorithm looks as follows: 

Algorithm 1.3: Second Attempt for self stabilization on a graph. 

{State of node 2 is (s, turn), where turn E (0,1). 

k indicates the number of possible values of s and k ~ n.} 

{For the exceptional machine 0} 

ifs.self= s.pre then s.self := s.self + 1 fi; 

{For machine 2 with outdegree greater than 1} 

if s.self-=/= s.pre then s.self = s.pre; turn.self := -, turn.self fl; 

{For machine 3 which is a successor of machine 2} 

if s.self-=/= s.pre I\ turn.pre = 0 then s.self = s.pre fi; 

{For machine 5 which is the other successor of machine 2} 

if s.self -=I= s.pre I\ turn.pre = 1 then s.self = s.pre fl; 

{For all other nodes} 

3 Kruijer [ 12] however uses a modified definition of the legitimate state. 
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5 6 

Figure 5: Illustration of an incorrect unidirectional algorithm. each machine has 
three states 0,1,2 and the system is in a legitimate state. But after machines 0, 1, 2 
move, both 3 and 5 can have privileges. 

for each predecessor node pre 

if s.self i=- s.pre then s.self := s.pre fl; 

Theorem 1.2: Algorithm 1.9 guarantees self-stabilization for the graph in Figure 

4. 

Proof: The arguments in the proof would be similar to the arguments used in 

proving theorem 1. Note that with the privileges of algorithm 1.3, deadlock is 

impossible. 

Assume that initially more than one machine have privileges. Since k ~ n, in 

order that the exceptional node O make k consecutive moves, the node 9 must move 

more thank times. However, k moves by node O can lead to at most k moves by 

node 9. Thus the number of privileges would steadily decrease. 

Once in the legitimate state, the one privilege remains the only one in the entire 

graph. Thus the system is eventually self-stabilized. 

Furthermore, in an infinite sequence of moves, node 2 is able to move infinitely 
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often. Since each move negates the value of turn, nodes 3 and 5 would also be able 

to move infinitely often. Thus, starvation is prevented. 

□ 

4 Bidirectional Protocols 

It was shown in the last section that it is possible to achieve self-stabilization with 

unidirectional protocols, although the condition k 2:: n may be a severe constraint 

when the number of processes increases. This restriction can be overcome with 

bidirectional protocols. In this section, we develop a set of axioms based on a 

system of tokens to synthesize a self-stabilizing system. These axioms reflect one 

of the possible strategies only, and do not rule out the feasibility of alternative 

strategies. 

In the bidirectional case, two different types of privileges of a machine can be 

defined separately in terms of ( s [ i], s [ i - 1]) and "( s [ i], s [ i + 1]). From now onwards, 

we would represent the privileges p(s[i],s[i -1]) and p(s[i],s[i + 1]) for a process i 
by pL[i] and pR[i] respectively. 

In designing bidirectional protocols, we first adapt axiom 1.3 to the bidirectional 

case. This leads to the following axiom: 

Axiom 4.1: 

(a) pL[i] /\ -,pR[i] I\ -,pL[i + 1] -► -,pL[i] /\ pL[i + 1]. 

(b) pR[i] I\ -,pL[i] /\ -,pR[i - 1] -► -,pR[i] /\ pR[i - 1] 

Axiom 4.1 implies that the privilege pL can only propagate towards the right 

neighbor, whereas the privilege pR can only propagate towards the left neighbor. 

To ensure that in any state at least one machine has a privilege, we rewrite 

axiom 1.2 with bidirectional privileges. 

Axiom 4.2: In any state, there must be at least one machine i such that pL[i] or 

pR[i] is true. 

Our next axiom is a a vital one, and is related to the cancellation of privileges 

when a machine i for which both pL[i] and pR[i] are true makes a move. 
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Axiom 4.3: pL[i] A pR[i] -+ ,pL[i] A ,pR[i]. 

At this point, it is not possible to fully justify this axiom, except for an early 

disclosure of the fact that it is through this kind of cancellation mechanism outlined 

in section 2.3 that the number of privileges in the system would be reduced until 

this number drops down to one. However, this may not be the only conceivable 

strategy for systematically reducing the number of privileges - there may be other 

possible strategies. 

As another important step towards implementing global convergence, the fol­

lowing condition must hold while defining pL and pR: 

Axiom 4.4: Vi E 1..n pL[i] I\ pR[i - 1] = false 

To see why this is important, assume that pL[i] = true and pR[i - 1] = true. 

Depending on the mood of the central demon, either i or (i - 1) may be chosen 

to make a move (Figure 6). If i makes a move, pL[i + 1] is true, which may imply 

pR[i] is true. Thus i can again be selected for making the next move, which makes 

pR[i - 1] true. This may again imply that pL[i] is true, and we come back to the 

starting point ! With more than one machine enjoying privileges, such a biased 

action by the central demon cannot be ruled out, which would lead to a locally 

confined oscillations of the privileges without making any real progress towards 

global convergence. 

4.1 Choosing Privileges and Moves 

Following axioms 4.1,4.3 and 4.4, there can be many possible choices of privileges 

and moves - this is really a coding problem. Axiom 4.4 indicates that for every 

state s[i] of a machine i, there should be a state s[i -1] for its neighboring machine 

( i - 1), corresponding to each of the following three conditions: 

(a) pL[i] A ,pR[i - 1] 

(b) ,pL[i] A pR[i - 1] 

(c) ,pL[i] A ,pR[i - 1] 

The possible states of the pair ( s [ i], s [ i - 1]) and the corresponding state tran­

sitions are shown in Figure 7. As examples of choosing privileges and moves, we 

consider the following two cases: 
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6 ~ - {) ·O ·O ·O 
i -1 i i+l 

6 ~ - {) ·O ·O ·O 

6 
Figure 6: An example of a confined oscillation discussed in the proof of Axiom 4.4 

pL[i] /\ -,pR[i - 1] -,p£[i] /\ pR[i - 1] 

Figure 7: The possible states of (s[i], s[i - 1]) and the state transitions. 
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Example: 3-state machine 

For a three state machine, the states can be represented by the integers (0,1,2), 

and the privileges and the moves can be coded as follows: 

pL[i] :: s[i-1] = s[i] + 1 mod 3 
move corresponding to pL[i] :: s[i] := s[i-1] 
pR[i] :: s[i+l] = s[i] + 1 mod 3 
move corresponding to pR[i] :: s[i] := s[i+l] 

Note that in the above example, the choice of the privileges and the moves satisfies 

axioms 4.1, 4.3 and 4.4. 

4.2 Reflector and Generator Nodes 

Having selected the privileges and the moves, it is now necessary to concentrate 

on the overall mechanism of self-stabilization. When the system starts from an 

arbitrary initial state, pL and pR may be true for any number of machines. The 

possible cases are as follows: 

(a) More than one machine have privileges; 

(b) Only one machine has a privilege. 

Let us consider case (b) first. As long as axiom 4.2 is satisfied, the condition 

"no machine has a privilege" is impossible. In general, this requires the use of at 

least one exceptional machine, as pointed out in [1] [10]. Also, it is ensured that 

the number of privileges never increases,so the system is stabilized. Case (b) is 

therefore a trivial one. 

Since case (b) is a trivial one, we start with case (a). For algorithmic convergence 

to a legitimate state, we treat the machine O to be an exceptional machine, and call 

it a reflector node. A reflector node has only one privilege pR, and the corresponding 

move follows axiom 4.5 below: 

Axiom 4.5: For the reflector node 0, pR[O] I\ ,pL[l] -+ ,pR[O] /\ pL[l]. 

To see why this is necessary, consider Figure 8. Every pR propagates to the left, 

changes it to a pL at the reflector node, and starts moving towards the right. This 
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Figure 8: The role of the reflector node in reducing the number of privileges. 

makes the collision with a pR in another machine (if there exists one) inevitable. 

Axiom 4.3 indicates that this leads to the elimination of two privileges. 

It appears that with an arbitrary number of pL's and pR's in initial state, 

convergence to the legitimate state can be achieved if machine (n - 1) is also made 

to behave like a reflector node. However, this may not be the case if the number of 

privileges in the initial state is even (including zero) 4 

Machine ( n - 1) therefore would require special attention, and it will be called 

a generator node. To understand the behavior of the generator node, it is necessary 

to explain the pseudo-deadlock condition. 

Consider the situation when in the initial state none of the machines O •• n - 2 

has a privilege, and recall how axiom 4.2 safeguards this situation. The condition 

"no other machine has a privilege" should be considered as a privilege for machine 

( n - 1), which would detect this condition and make a move to generate a privilege 

4 Note that although we have pointed out the need for axiom 4.2, we have not done anything to 
enforce it so far. 
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for its neighboring machine (n - 2). 

How can the generator node detect that there is no privilege for any other 

machine 0 .. ( n - 2) in the system ? Apparently, it is not detectable without the help 

of a central demon. But, depending on how the condition (-ipL[i] /\ -ipR[i - 1]) has 

been encoded for a machine i and its left neighbor ( i - 1), it is possible for machine 

n - 1 to guess this possibility by examining the states of the machines O and ( n - 2). 

For example, if the condition (-ipL[i] /\ -ipR[i - 1]) for machine i corresponds to 

(s[i] = s[i - 1]), then a possible indication for the condition "no other machine 

has a privilege" might be (s[O] = s[n - 2] /\ -ipR[n - 2]). Note that, this does not 

uniquely correspond to the condition "no other machine has a privilege", since this 

condition may also be satisfied if a number of machines has privileges. We would 

refer to this condition as a pseudo-deadlock condition, since it is the best guess for a 

possible deadlock in the system considering locally available parameters. We would 

treat the pseudo-deadlock condition as a privilege for machine ( n - 1), and permit 

it to make a move so that pR[n - 2] becomes true after such a move. This would 

also satisfy axiom 4.2. We would shortly find in theorems 4.1 - 4.3 that this indeed 

leads to self-stabilization. This leads to axiom 4.6: 

Axiom 4.6: If the generator node ( n -1) detects a pseudo-deadlock condition, then 

it must make a move to generate a privilege pR for machine {n - 2). 

4.3 The Algorithm 

Based on the axioms discussed so far, it is now possible to write a generic version 

of the self-stabilization algorithm. 

Algorithm 4.1: A generic self stabilization algorithm. 

{For a machine i E (1.. n-2)} 

pL[i] --t -ipL[i]; 

pR[i] --t -ipR[i]; 

{For the reflector node O} 

pR[O] --t pL[l]; 

{For the generator node n -1} 
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pseudodeadlock-+ pR[n - 2]; 

To prove the correctness of the generic algorithm, it is first necessary to establish 

the following three lemmas: 

Lemma 4.1: If only one machine has a privilege (pL or pR), then the system is 

stabilized. 

Proof: A move by a privileged machine can lead to exactly one privilege by a 

neighboring machine. Therefore, once there is a single privilege in the whole system, 

in all future moments, exactly one machine would have a privilege. So the system 

is stabilized. 

D 

Lemma 4.2: Between two consecutive moves by the generator node, the reflector 

node must move at least once. 

Proof: The generator node makes a move when it detects a pseudodeadlock condi­

tion. Let s0 , sn_ 2 and sn-l be the states of the nodes 0, n- 2 and n-1 respectively 

when such a condition is detected. Accordingly, node n - 1 makes a move which 

changes sn-l to s~_ 1 , and the pseudodeadlock condition becomes false. This creates 

a privilege for machine n - 2, which makes a move and changes its state to s~_ 2 and 

the pseudodeadlock condition still remains false. To reassert the pseudodeadlock 

condition, machine 0 now must change its state, which requires at least one move. 

D 

Lemma 4.3: Between two consecutive moves by the reflector node, the generator 

node can move at most once. 

Proof: Suppose that after the first move by the reflector node 0, the pseudodeadlock 

condition is satisfied, and the generator node makes a move. According to lemma 

4.2, before the generator node makes another move, the reflector node must move 

at least once. This shows that between two consecutive moves by the reflector node, 

the generator node can move at most once. 
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□ 

Theorem 4.1: Algorithm ,1.1 guarantees self-stabilization when in the initial state, 

the only type of privileges present in the system is pL. 

Proof: Assume that initially there are x pL's (---+) in the system. x = 1 is the 

trivial case, so let us consider the case where x > 1. 

Each pL (---+) eventually propagates to the right. Every time node ( n - 2) makes 

a move, the number of pL's decreases by 1. As x gradually decreases, the generator 

node can make at most one move, since the detection of the pseudodeadlock condi­

tion depends on the state of node O which does not change. The only move by the 

generator node generates a pR (f-) for the node (n - 2), which would neutralize a 

pL propagating from the left (axiom 4.3), and reduce by 1. Otherwise, everytime 

node n - 2 moves, x reduces by 1. This would continue until there remains only 

one pL in the system. 

□ 

Theorem 4.2: Algorithm ,1.1 guarantees self-stabilization when in the initial state, 

the only type of privileges present in the system is pR. 

Proof: Assume that initially there are y pR's ( f-) in the system. y - 1 is the 

trivial case, so let us consider the case where y > 1. 

Each pR ( f-) eventually propagates to the left. Every time node O makes a move, 

a pR[O] is converted to a pL[l]. This must neutralize another pR ( f-) propagating 

from right to left (axiom 4.3). Thus, before node O makes a second move, the 

number of pR's (f-) would be (y - 2). However, in the mean time, the generator 

node (n - 1) can potentially make one move (lemma 4.3). Taking into account the 

generated pR, the number of pR's becomes (y-1). Thus, the number of privileges 

decreases until it reaches one, and the system is stabilized. 

□ 
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Theorem 4.3: Algorithm ,4.1 guarantees self-stabilization when the system starts 

from an arbitrary initial state. 

Proof: Three different cases would be considered: 

(a) In the initial state, no machine in O .. n - 2 has a privilege. 

(b) In the initial state, exactly one machine has a privilege. 

(c) In the initial state, there are x (x > 0) machines having pL's and y 

(y > 0) machines having pR's. 

In case (a), a pseudo-deadlock condition is detected by the generator node, 

which immediately makes a move so that pR[n-2] holds. According to the rules of 

propagation of the privileges, this is the only privilege which remains in the system, 

so self-stabilization is achieved. 

Case (b) is a trivial case, since the system starts from a legitimate state. Lemma 

4.1 shows that in this case, the system always remains in the legitimate state. 

In case ( c), assume that node O has just made a move, which asserted the 

pseudodeadlock condition for the generator node n - 1. When node n - 1 makes a 

move after sensing the pseudo-deadlock condition, the number of pR's increases to 

y + 1, since a new pR has been created for the node n - 2. At the same time, the 

pseudodeadlock condition has been invalidated. Before the generator node makes 

a second move by sensing a second pseudodeadlock condition, the following events 

must happen in an arbitrary order (Figure 9): 

• node (n - 2) must make a move. Unless pL[n - 2] is true, this would keep the 

number of pL's and pR's unchanged to (x, y + 1). 

• node O must make a move (lemma 4.2). The earlier move created a pL for 

node 1. Before node O makes this move, the previous pL must have been 

neutralized by a pR (axiom 4.3) propagating from the right (unless that is 

the only privilege remaining in the system), leading to the elimination of two 

privileges (a pL and a pR), and leaving at most (x-1) pL' sandy pR' s . Thus 

after node O makes a move, the number of pL's and pR's in the system must 

be at most (x,y -1). 
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node O makes a move 

x,y 
pseudodeadlock for node n-1 

node n - 1 makes a move 

x,y+ 1 

node n - 2 makes a move(*) 

x,y+ 1 

node O is ready to make a move(*) 

x-1,y 

node O makes a move(*) 

x,y-1 pseudodeadlock for node n-1 

node n - 1 makes another move 

Figure 9: The stabilization mechanism discussed in the proof of theorem 4.3. The 
events marked with (*) may take place in an arbitrary order. 
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This shows that the number of pR's is bound to decrease continuously during 

an infinite run. If the system is left with only pL's, then theorem 4.1 shows that 

the system is eventually stabilized. 

□ 

4.4 Derivation of Dijkstra's 3-state algorithm 

If every machine has only three states (0,1,2), then Dijkstra's 3-state algorithm [6] 

can be derived using the following substitution ( all the + operations in s[] + 1 and 

s[] + 2 are mod 3 operations): 

pL[i] :: s[i-1] = s[i] + 1 

Move corresponding to pL[i] :: s[i] := s[i] + 1 

pR[i] :: s[i+l] = s[i] + 1 

Move corresponding to pR[i] :: s[i] := s[i] + 1 

Move for the reflector node O :: s [ i] := s [ i] + 2 

pseudodeadlock condition:: s[0] = s[n-2] /\ s[n-1] =J. s[n-2] + 1 

Move corresponding to pseudodeadlock :: s[n-1] := s[n-2] + 1 

4.5 Performance Issues 

The convergence rate of algorithm 4.1 can be derived from Figure 9. Between two 

consecutive firings of the reflector node 0, the number of privileges must decrease 

by at least one. If there are x pL's and y pR's in the system, then it would take 

at most y steps by machine 0 for all the pR's to disappear. Theorem 4.1 indicates 

that for all (but one) of the x privileges to disappear, one might need at most x/2 

moves by machine 0. Thus the maximum number of moves by machine O could 

be (x/2 + y). Since the maximum value of x or y could be (n -1), the maximum 

number of steps required for self-stabilization could be (n-1). With n machines in 

the system, the total number of steps required for self-stabilization would be O(n2 ). 

What is the minimum number of states that a machine should have for which 

the self-stabilization algorithm can be applied ? To answer this question, let us take 

a look at Figure 7. In order that axioms 4.1, 4.3, and 4.4 be satisfied, it is clear that 

for every state of a machine i, its neighboring machine should have the following 

three states: 
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(a) pL[i] /\ ,pR[i - 1] 

(b) ,pL[i] /\ pR[i - 1] 

(c) ,pL[i] /\ ,pR[i - 1] 

This points to the fact that we need at least 3-state machines. Can we somehow 

satisfy the axioms with 2-state machines ? To explore this possibility, we try to 

define pL and pR for a machine i in terms of all the three states ( s [ i-1], s [ i], s [ i + 1]). 

There can be at most four choices for the privileges (including both pL and pR), 

which are as follows: 

(i) s[i] = s[i-1] /\ s[i] = s[i+l] 

(ii) s[i] = s[i-1] /\ s[i] =fi s[i+l] 

(iii) s[i] =fi s[i-1] /\ s[i] = s[i+l] 

(iv) s[i] =fi s[i-1] /\ s[i] =fi s[i+l] 

Assume that (iii) corresponds to the condition pL[i]. Then, it is impossible to 

find another condition for pR[i] from the above list, since every choice of pR[i] would 

violate either axiom 4.1 or axiom 4.4. 

This leads to the theorem: 

Theorem 4.4: The minimum number of states that a machine should have in a 

self-stabilizing system of ring topology is three. 

4.6 Self-stabilization on a graph 

In the next step, we extend Dijkstra's 3-state algorithm to arbitrary graphs of cyclic 

topology. For the purpose of illustration, we use the same graph as shown in Figure 

4. 

Our first approach is to define exceptional machines on every cycle of the graph. 

For the example graph of Figure 4, this can be achieved if node O is considered as 

the reflector node, and node 9 is treated as the generator node. 

Secondly, we introduce the concept of coloring the nodes and coloring the privi­

leges. Since there are two distinct cycles (0,1,2,3,4,7,8,9,0) and (0,1,2,5,6,7,8,9,0) in 

the graph, we consider only two colors (red, blue), and define the state of each ma­

chine as (red, blue), where red E {O, 1, 2} and blue E {O, 1, 2}. The machines 3 and 
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4 are always red (blue = 0), and the machines 5 and 6 are always blue (red = 0), 

so that these are essentially 3-state machines, whereas all others ( excepting the 

generator node) are 9-state machines. 

When a machine i computes a privilege by examining its own substate red.self 

and the substate red.pre of its left neighbor, it computes a colored version of pL 

(pL.red). Depending on the value of this privilege, the machine i then decides 

whether it would update red.self. In a similar manner, it computes pL.blue, pR.red, 

and pR.blue. The updation of the two substates red.self and blue.self are mutually 

noninterfering, so that in case both pL.red and pL.blue are true, the corresponding 

updations could be taken up in any order. 

Since the machines 3 and 4 are always red, they check for pL.red and pR.red 

only. Similarly, since the machines 5 and 6 are always blue, they check for pL.blue 

and pR.blue only. 

Assuming all the colored privileges to satisfy the axioms 4.1, 4.3 and 4.4, one 

can easily visualize the state transitions in terms of the red privileges propagating 

up and down the path (0,1,2,3 ,4,7,8,9) and the blue privileges propagating up and 

down the path (0,1,2,5,6,7,8,9). The role of the reflector node would remain the 

same for each colored privilege. However, in order that only one privilege finally 

remains in the system, the role of the generator node needs to be modified. We 

suggest that only when the generator node 9 detects a pseudodeadlock for both the 

colors, it makes a move to generate a privilege for machine 8, and does it for the two 

colors alternately. This requires that the state of the generator node be defined as 

(r, b, turn), where turn E {O, 1} . The generator machine would thus have 18 states . 

Algorithm 4.2. Algorithm for self stabilization on a graph. 

{The state s[i] of machine i is (r, b), where r,b E (0,1,2); 

For the machines 3 and 4, bis always O; 

For the machines 5 and 6, r is always O} 

{Those machines which have b = 0 examine only the r-part of 

the states of the neighbors. Similarly, those machines which 

have r = 0 examine only the b-part of the states of the neighbors} 

{For every machine 1..8} 
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for every x E ( r, b) and for every pre and succ 

if x.self = x.pre - 1 mod 3 then x.self := x.pre fl; 

if x.self = x.succ - 1 mod 3 then x.self := x.succ fl; 

{For the reflector node O} 

for every x E ( r, b) and for every succ 

if x.self = x.succ - 1 mod 3 then x.self := x.succ + 1 mod 3 fl; 

{For the generator node 9} 

if \/x E (r,b) x.pre = x.succ I\ x.self =f. x.pre + 1 mod 3 then 

if turn = 0 then b.self := b.pre + 1 mod 3; turn := 1 fl; 

if turn = 1 then r.self := r.pre + 1 mod 3; turn := 0 fl; 

fr , 

Theorem 4.5: Algorithm ,1.2 guarantees self-stabilization for the graph in Figure 

,I. 

Proof: The proof is an extension of the proof of theorem 4.3, and can be constructed 

from an observation of the following sequence of events: 

• Between two consecutive moves made by the generator machine 9 returning a 

red privilege, at least two blue privileges ( a - and a ---+) must disappear. Thus 

during a continuous run, for every single red privilege generated by machine 

9, the number of blue privileges must decrease by at least 2. 

• Between two consecutive moves made by the generator machine returning a 

blue privilege, at least two red privileges (a - and a---+) must disappear. Thus 

during a continuous run, for every single blue privilege generated by machine 

9, the number of red privileges must decrease by at least 2. 

• During an infinite run, the generator node must fire infinitely often for both 

the red and the blue privileges. Since the rate of extinction of the privileges 

exceeds their rate of generation, the number of privileges steadily comes down. 

• When the number of privileges come down to 1, it remains as the only privi­

lege in the system. A red privilege propagates upto the generator node, and 
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comes back as a blue privilege. Similarly, a blue privilege propagates upto the 

generator node, and comes back as a red privilege. 

Thus, the system is stabilized in a finite number of steps. 

□ 

This outlines our philosophy for achieving self-stabilization on a graph. The 

salient features are as follows: 

• Find a spanning tree of the graph, and designate the root as the generator 

node. 

• Find the minimum set of nodes whose removal converts the given graph into 

a directed acyclic graph, and designate these nodes as the reflector nodes. 

• Find all the distinct paths from the generator node to the reflector node(s), 

and number these from O •. k - 1. For each node, define the state as an array 

of colors, where each color E {0,1,2}, and the dimension of the array would 

range over the serial numbers of the paths passing through it. 

• Adapt algorithm 4.2 to implement self-stabilization. 

4. 7 Replacing the Central Demon 

The performance of all the algorithms discussed so far depends on the presence of 

a central demon, which is rather awkward to implement. It would be much nicer 

if these algorithms also work with distributed demons. In [tJ] Dijkstra shows why 

his first algorithm ( unidirectional protocol) works with distributed demons also. 

This section examines whether his solution with 3-state machines (as well as our 

generic version of the self-stabilization algorithm shown in Algorithm 4.1) works 

with distributed demons. Burns [3] already showed that this is feasible. 

Every action taken by a machine has two parts: (read, move). With a central 

demon, the atomicity of such an action is automatically preserved, but with dis­

tributed demons, it is difficult to ensure since each decision is taken locally by the 

machines. This makes the problem of global convergence more complex. 
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To study the possibility of global convergence with distributed demons, note 

that two operations by non-neighboring machines do not have any interference at 

all. For two neighboring machines i and (i + 1) axiom 4.4 holds - so if pR[i] is true, 

then pL[ i + 1] must be false If this were not so, it could be possible that machines i 

and (i + 1) read each other's state, and then make moves so that pR[i] and pL[i + 1] 

still remain true - thus leading to a confined oscillation of the privileges in the ring. 

With distributed demons, due to the arbitrary interleaving of the operations 

read and move, it is however possible to find a chain of machines i .. i + k, all of 

whom find that pR (or pL) exists, make moves, and still find that pR (or pL) is 

true ! Can the algorithm guarantee global convergence in presence of distributed 

demons? 

To guarantee global convergence, it is sufficient to show that even in such adverse 

conditions, the number of privileges eventually decreases. The clue lies with the 

exceptional nodes O and (n - 1) which have been termed as the reflector and the 

generator nodes. Note that the reflector node O does not have any pL, all that it can 

have is a pR. Similarly, a generator node have only one privilege p (corresponding 

to the pseudodeadlock condition). 

Now, consider a chain of machines i .. i + k for all of which pR is true, i + k 

being the highest numbered node for which it holds. If (i + k) < (n - 2), then 

since pR[i + k] /\ pL[i + k + 1] is false, (and pR[i + k + 1] is also false since i + k 

is the highest numbered node in the chain for which pR is true), there must be a 

process (i + k + 1) which would have no privilege at all. Therefore, if all of them 

first discover that pR is true and then make moves, the value of pR[i + k] would 

definitely become false after the move. Even when (i + k) = (n - 2), the same 

argument remains valid if pL(i + k + 1] is replaced by p[n - 1]. Thus in the worst 

case, at least one process will definitely change its pR to false. 

Similarly, consider a chain of machines i .. i - k for all of which pL is true, i - k 

being the lowest numbered node for which it holds. If (i - k) 2 1, then since 

pL[i - k] /\ pR[i - k - 1] is false, (and pL[i - k - 1] is also false since i - k is the 

lowest numbered node in the chain for which pL is true), there must be a process 

( i - k -1) which would have no privilege at all. Therefore, if all of them first discover 

that pL is true and then make moves, the value of pL[i-k] would definitely become 

false after the move. Thus in the worst case, at least one process will definitely 

change its pL to false after the moves. 
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With these observations, it is however necessary to modify axiom 4.3 as follows: 

Axiom 4. 7: pL[i] /\ pR[i] --+ -.pL[j] I\ -.pR[k] (j :'.S i, k ~ i). 

However, the fact remains that when two privileges collide at a machine i and 

that machine makes a move, two privileges (a pL and a pR) disappear somewhere 

in the system. Since this was the foundation of the proof of algorithm 4.1 (theorems 

4.1, 4.2 and 4.3), the algorithm is valid with distributed demons also. This leads us 

to the following theorem: 

Theorem 4.6: Algorithm 4.1 guarantees self-stabilization with distributed demons. 

5 Conclusion 

5.1 General Remarks 

This paper illustrates our partial understanding of Dijkstra's work [7] on self­

stabilizing systems. Much of the contents were influenced by Dijkstra's proof of 

the 3-state systems which appeared in [8]. The purpose of this research was to 

evolve a method for synthesizing nontrivial self-stabilizing systems. It is shown how 

the study of self-stabilization could be abstracted to the study of a token system 

based on a set of axioms, and the coding problem could be separated from the con­

veregence analysis. This abstraction was found useful in writing self-stabilization 

algorithms on graph topologies. 

5.2 Relaxation Algorithms 

What is the importance of studying self-stabilization ? Once we are convinced 

that self-stabilization algorithms work with distributed demons, we have a pow­

erful concurrent programming tool for achieving global convergence through local 

actions. Depending on how the legitimate state or the stable behavior of the system 

is defined, it should be possible to modify Dijkstra's algorithms to design new dis­

tributed algorithms for specific applications, where the programmer need no more 

be concerned about global states, but only need to concentrate on local actions. 

To illustrate this viewpoint, it is necessary to consider a computation as a jour­

ney (in the state space) from some initial state to a final state satisfying a definite 
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postcondition. A privilege is a local measure of the distance of the current state from 

the final state. In an arbitrary initial state, an arbitrary number of machines may 

enjoy privileges, but in the final state, no machine should have a privilege. A self­

stabilization algorithm should be able to ensure that when each machine computes 

its privilege locally and makes appropriate moves to kill that privilege, it is possible 

to kill all the privileges in the system in a finite number of moves and the final state 

is reached. Such algorithms are known as relaxation algorithms, which have been 

studied elsewhere in different contexts. The present work may find use in proving 

the converegence properies of relaxation algorithms in a concurrent programming 

environment. An interesting study about a cyclic relaxation problem appears in [8]. 

Such computations are attractive, since these are highly nondeterministic, yet the 

programmer need not worry about timing constraints or explicit synchronization 

aspects to guarantee global converegence. 

5.3 Analogy of Feedback Control 

It is often said that self-stabilizing systems have important implications in the design 

of fault-tolerant systems. Such systems can automatically recover from transient 

failures. Furthermore, these systems can stabilize from arbitrary initial states, so 

if a faulty processor is repaired, no extra effort is required to integrate it in the 

system. While this is certainly true, is appears more appropriate to consider a self­

stabilization algorithm as a manifestation of the theory of feedback control systems 

in distributed algorithm design. In a typical feedback control system, we have a set 

of inputs { Xi, x 2 , .•• Xn} and a set of outputs {yi, y 2 , ••• , Ym}, and in a stable state, 

a predefined condition amongst the different input and the output variables must 

be true. The inputs could come from the sensors, whereas the outputs could be 

changed by the actuators. It is typical of real time systems that the inputs change 

due to unforeseen variations in environmental conditions or system parameters, 

and the system has to stabilize itself as a reaction to this change by adjusting 

the outputs so that predefined criteria of stability is always satisfied. Dijkstra's 

algorithms propose the legitimate state to be one in which exactly one machine has 

a privilege. Consequently, if the system is in a legitimate state, and some of the 

machines suddenly change their states, then momentarily multiple privileges are 

created, but the system reacts to this change in such a way that in a finite number 

of steps, all but one privilege is killed and the system again returns to a legitimate 
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state. These algorithms thus also provide a basis for the design of real time digital 

control systems in a distributed environment. 

5.4 Other issues 

Self-stabilizing systems are thus of fundamental importance in the design of dis­

tributed algorithms. However, in the present form, these appear to be too pure to 

be of direct use in practical applications. One notable achievement is to establish 

the feasibility of replacing the centralized demon by a distributed demon which has 

already been demonstrated here as well as in [4]. The other major task would be the 

detection of stability. If the detection of stability is done a particular machine i in 

the system, then we can imagine that it would have a local variable stable[i] which 

would be set to true whenever the sustem reaches a stable state. However, since 

each machine is allowed to start from an arbitrary initial state, then for machine i 

stable[i] may initially be true even though the system is not in a legitimate state ! 

This illustrates that for practical applications, a modified set of assumptions may 

be necessary. 
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