Staff Paper 187
A REVIEN OF RESEARCH:
ELONOMIES OF SIZE AND IMPACTS OF
DECLINING ENROLLMENT ON SCHOOL COSTS *
Dr. Mark A. Edelman and James J. Knudsen
Economies Department **
Iow State University

June 1988

DISCUSSION QUTLINE:

A. Differences in Size Ecanamies / Deciining Enrollment Studies.
B. Declining Enrallment Findings:
-Consequencess depend upon distribution of deciine.
-Total Expenditures per pupil rise.
-Costs per pupil rise mort in short run, less in long run.
Per pupil instruction, plant operation, maintenance and administration cost catmories all rise.

- Younger, less experienced staff adjust out.

Average salaries rise as experienced staff retained.
-Instructional costs adjusts more than administration costs.
C. Eeonomies of Size Findings:
-33 out of 34 studies find economies of size.
Most found U-shaped economies of size.
-Size monomies are relatad to sparsity.
-size economies vary for lementary and high schools.

- Iowa course offerings, pupil/taacher ratios vary by size.
- Mor vocational/elective subjecti added with size.
-1000-2499 pupils ar cheapest group in Iowa.
ppojected pupil deciines affect large and small schools.

A REVIEW OF RESEARCH: ECONOMIES OF SIZE AND IMPACTS OF DECLINING ENROLLMENT ON SCHOOL COSTS

Over the last decade, lower birth rates and population migration have caused decifining school mrollments, not only in Iowa, but in many part⿳ of the country. For this reason, many state and local leaders, school officials and students of school finance have studied these trends. Such studies have focused on effects of declining mroliment on school management and expenditures and economies of size in school organization. Studies of each type are reviewed in turn.

At first glance it may semm that deciining enrollment studies and economies of size studies deal with the same thing. Both typex look at the effect of differing numbers of studente on the cost of education. However, the methodology and interpretation of the resulte are not the same.

The decilining enrollment studies generally use time series data. This means that these studies use observations on the same set of schools or distriets for a number of sucemssive years. These studies then piek up the effecte of decline in enrollment over time and to some extent the effects of changes in policies and economic conditions.

On the other hand, the economies of size studies generally useㅜㄹ erosm-sectional data. This means that the studies use data for a single time period and compares the data for many schools or school districts. These schools or districts are subject to the same state aid formula, the same set of state and federal programs, and the same general economic conditions. Some of these studiex attempt to make adjustments for level of service,
program differences, prict of inputs. student performance and education demand attributes and sociomeconomic factors in an
 sttributable to sizi of distriet or school.

EFFECTS UF DECLINING ENROLLMENT

Total expenditures per pupil for education have unambiguously increased during the last 15 yeers, pegardless of Whether the schools had increasing or decreasing enrollments. These cost increases are associated with the pising price of inputs for education (tescher pay, transportation costs. energy cロsts, ete.) and an increasing mumber of constraints imposed on school districte by the state and fiederal government (minimum course offerings, minimum tencher pay, provision of sperial programis. The. The delining enrollment studies attempt to adjust for the cise cost ehanges and sort out the "pure" pfficts attributable to declining anrollment. In additiong other decilning enrollment studies focus on the mori specific effects of decilning enrollment on specific budget categories, course offorings, special programs and services provided, hiring and siary practices, and pupil/teacher patias.

A comprefienive caliection of studies on the effects of encollment deciine wae dited for the National Institute of Education in 1978 (Abramowitz and Rosenfeld). While the age of thí effort penders the quantitative parts of the study obsoleteg the qualitative statements are still quita relevant today.

On: study in this collection (Wilken and Callahan), demonstrates that the distribution of the enraliment deciine can
alter the consequenceis to be expected. In particular, if the enrollment deciine is concentrated in particular schools or in particular grades it will be relatively aasy for the school district to adjust. On the other hand, if the decline is spread out acress grades and across all attendance centers in the district, it may be relatively harder for the district to adjust.

Another study in this collection (Odden and Vincent), found that the education costs per pupil rose when enrollments decilined. This study was Eonductmd in four states: Michigan, Missouri, South Dakotag, and Washington. This study also found that the fiscal strain is especially acute in the short-run and the authors cited threp reasons for thiss
i) Permonnel contracts ari signed before the actual student count for the coming year is known. This leads to a lag of at laant one year in gtaff reductions.
ii) Seniority provisions generally laad to the layoff of the least experienced and least costly teachers.
iif) Until the deciine is severe mough to close schools the districts can't get out from under the fixed expendituras on building maintenance and operations.

These results have stood the test of time for most of the more pecent and similar studies have verified these results or have built on them (Anderson and Mark; Hentschke and Yagielski). A study of Indiana schools in the late-1970s (Debertin) eategorized districts by magnitude of enroliment deciine and found similar resultg. In this study, as the magnitude of enrollment deciine increased, total per pupil expenditures increased and each of several per pupil expenditure categories increased (instruction, plant operation, and maintenance).
and average salary levels increased when enrollment decifined. While some staff reductions wer made in response to deciining onroliment, the. staff reductions wier not proportional to the onrollment declines. Average salarise rosie because the staff who wer let ge, tended to be younger teachars with lese training, experience, and lower salariex.

In a more recent study (Caving Murnan and Brown), differences between the short run and long run effects ware analyzad. This 1985 Michigan study found that a 20 pereant decifne in enrollment over two years would result in a 19 percent increase in per pupil expenditures in the short run and a 10 pereent increase in the long run. The raason that the long run increase in expenditur is smaller than the short run increase is du to the ability of the school districts to adjust to the decline more fully over a longer period of time.

It is important to note that declining enrollment leads to higher expenditures per pupil in long run, even with the added ability of a school district to make adjustmente. This study also found that small school districts weri less able to adjust to mrollment decilines. Small schools have lese internal programming and staffing flexibility compared to others.

Gavin, Murnane and Brown also discuss the effect of enrollment decline on professional staff levels. They found that pupil/taacher staffing levels fell abruptly in the first year of an pupil deciine. This is du to little or no immediate adjustment in staff to the enrollment decline. In the long run, a mixad pattern of adjustment in the staff levels occurs.

It is interesting to note the differmnces in long run
adjustment by staff type. This study found that a 20 pereent decrease in onrolimant led to only a 4 parcent decline in pupil/teacher ratio in the long run. This implies that the size of the teaching staff was reduced by 16 percent. On the other hand, the reductions in administrative staff were much smaller. This result has been supported by other researchers.

Anderson and Mark (1985) observed similar trends in personnel in their study of Missouri school systams. This paper offered some of the more common reasons eited in the literature for these tronde. Thi reason pupil/teacher patios have fallon over the long run is dus, in part, to the increased provision of sperializad servicas loy school districts. The disproportionate increase in administrative staff per pupil is attributed, in part, to the incraasing complexity of running a school system, mandatory information gathering and reporting requirements by higher levels of government. Because of this, enrollment decilines do not result in any less paperwork and consequently no fewer administrators, unlent sharing or consolidation occurs.

One last area of focus in some enrollment decline studies has been the provision of various services by school distriets. On 1995 study (Hartman and Rivenburg) for school districts in Oregon found that in the area of instructional services, "special" services wert the first to go when enrollment declined. This result was countar to expectations in light of the alleged increases in special servic: requirments by state and federal governments. However, the study did not examine the differential impacts on various types of special services (discretionary versus mandated), thus perthaps further analysis is warranted.

In the area of support servicis, this study found no change in the distribution of expenditures between the various types. And finally, in the ares of administrative services, the study found thet the budget. resourees of school business managers tend to deciine relative to the budget resourems of superintendents and school principals, as enpoliments deciined.

SCHOOL EEONOMIES OF SIZE STUDIES
An extensive review of the size economies studies for schools was published in 1981 (Fox). This raviaw provided a summary of the theory and methods used in these studies, plus a comprehensive sumary of the reaultw. All but one of the 34 studian reviawed concluded that meonomies of size existed within the relevant range of enrollment levels.

In addition, most studies found that "per pupil school costs appear to be characterized by a Unshaped average cost eurve." This means, for a given level of educational quality, size Economies exist for a rang of enrollment. However, if enroliment exceeds a cartain level, then average costs begin to rise for the larger schools.

This does not imply that all studies are in agreement. There is much debete as to the degree that economies exist. The differmens arise due to differences in size and type of schools and cost measures used. The studies that find lower thresholds for aconomies generally have been in states where geographic sparsity dominates the observations. They generally find minimum school costs at school sizes of 700 pupils or less. Studies in states wher urban schools dominate the observations find larger threshold levels of 2,000 or more.

A 1986 study (Riew) estimatell size economies separately for secondary and mlementary schools in Maryland. This study found that size mconomien existed for both secondary and elementary schools but that the extent of the economies differed between them. In particular, he found that the economies were for the most part used up at enrollment levels of 500 for elementary schools and at enrollment levels of 900 for secondary schools. He also found that the greatest cost savings from size economiss oceurred in the 600-800 pupil lavel for secondary schools and in the 200-300 pupil level for elementary schools.

These ranges are similar to Iowa State University Extension school sharing materials used in school district restructuring discussions (Appendix A). These materials illustrate the pelationship of sizeconomien to the organizational options of high schools, elementary mehools, and the desired educational opportunity for the ehildren.

The materials also illustrate the relationships between school district size and high school subject matter offerings. Low districta with 300 total pupila tend to have 100 pupils in grades 9 through 12 and offer approximately 40 high school course unity. Thowe districts with 600 total pupils, have 200 pupils in grades 9 through 12 and offor 50 high school course units. Those districts with 900 total pupils have 300 in grades 9 through 12 and offor 60 high school course uniti.

In addition, these materials include the results of an analysis which shows that the differences in course units by school size are not uniformly distributæd between academic subjects (english, math and science) and vocational electives
(business, industrial arts, home economics, agrieulture, music, art, and foreign languagex.) In comparing distriets with 50 and 60 course unite to districts with 10 fewer course units, the districte with larger offeringe tend to have two additional unite of acadmaic subjects and eight more vocational electives. This implies that as school size grows, students who are likely to enter the job market immediately after high school would benefit most from expansion in the high school course offerings.

Raw aggregate data from another Iowa study in 1986 (Edelman and Otto) and from the Iow Department of Public Instruction were analyzed for a rough estimate of size economies. This analysis showed a U-shaped curve in terme of economies of size (Table 1). This study shows that school districts with 1,000 to 2,499 have the lowest $1984-85$ expenditures per pupil in lowa.

Iowa distriets with less than 250 pupils, account for 11.9 pereant of the distriets, 2.1 peremnt of the students and spent 3576 per pupil more than the distriets with 1,000 to 2,499 pupils. On the other hand, districts with more than 7,500 pupils account for 1.8 percent of the districts, 25.3 percent of the pupils and spent 168 more per pupil than the least cost group.

This study also provides an understanding of sehool finance indicators by valuation groups (Table e),per pupil expenditure groups (Table 3), and projected enrollment groups (Table 4.) Ther are apparmet size relationships acrose por pupil valuation groups and expenditur groups.

However, there are few relationships acrass projectad enrollment groups. The projected enrollmant pesults are interesting in that both large and small school districte seem to

Table 1. Iowa School District Indicatori by Enroliment Group, $1984-85$.

Enrollment Group	$\%$ of Dists.	$\%$ of Pupil:	\% Enr Chg 1990-91	Exp. Per Pupi 1	Val Par Pupil	Course Units	$\begin{gathered} \text { P/T } \\ \text { Ratio } \end{gathered}$
< 250	11.9	2.1	-8.6	3439	274049	39.6	10.4
250-399	19.6	5.6	-5.1	3061	220252	43.5	13.2
400-599	22.2	9.8	-5.8	2930	179450	48.1	14.4
600-999	22.6	15.0	-3.5	2903	161228	52.6	15.5
1000-2499	16.4	22.6	-4.9	2863	139512	63.6	$16.7=$
2500-7499	5.5	19.6	-6.9	2893	115853	89.1	18.8
7500 up	1.8	25.3	-2.7	3031	109982	150.1	19.4

* Includes transportation costs, therefor not a "true economies of size" analysis for operations inmide the school buildings.

Souree: Compiled from Iowa Department of Public Instruction data as reported by Edelman and Otto in Iowa Iax Facti for Financing State and Local Government. CES Pm 1281. Iowe State University, Nov 1986.

Table 2. Iowa School District Indicators by Valuation Group, 1984-85.

Val Per Pupil *	\% of Dists.	$\%$ of Pupil:	Average Enroll.	\% Enr Chg 1990-91	Exp Per Pupil **	Cours Units	$\begin{gathered} \text { P/T } \\ \text { Ratio } \end{gathered}$
<100000	7.3	15.6	2336	-5.6	2843	70.6	17.1
$\begin{aligned} & 100000- \\ & 199999 \end{aligned}$	60.9	73.1	1326	-4.3	2907	56.3	15.4
200000 299999	23.1	9.2	437	-5.8	3100	46.2	13.3
$\begin{aligned} & 300000- \\ & 399999 \end{aligned}$	6.4	1.6	280	-6.4	3412	41.9	11.1
$\begin{aligned} & 400000 \\ & 499999 \end{aligned}$	1.8	. 4	253	-11.6	3818	45.5	10.2
500000 up	. 5	. 1	183	-9.0	4038	38.0	8.9

* No adjustiments are mad for state revenues used for property tax eredits and rollbacks.
* Includes transportation costr, therefore not a "true economies of size" analysis of operations inside the school buildings.

Soures: Compiled from Iowa Department of Public Instruction data as rmported by Edelman and Otto in Iowa Tax Facts for Financing State and Local Government. CES Pm 1281, Iowa State Univarsity, Noy 1986.

Table 3. Iowa School District Indicators by Expenditure Group, 1984m-89.

Expend./ Pupil	\% of Dists.	\% of Pupils	Average Enroll.	\% Enr Chg 1990-91	Val Per Pupil	Course Unita	P/T Ratio
< 2500	. 5	. 4	889	9.4	161147	60.3	17.0
2500-2999	57.4	62.9	1210	-4.4	154031	55.4	15.5
3000-3499	35.5	35.4	1101	-4.9	202153	53.4	14.0
3500-3999	5.5	1.1	228	-11.2	340311	40.9	9.9
4000 ${ }^{\text {c }}$ up	1.1	. 2	182	-33.2	368185	42.5	10.6

* Includes tranmportation costs, therefore not a "tru economies of sizen analysis of operations inwide the school buildings.

Source: Compiled from Iowa Dmpartment of Public Instruction data as reported by Edelman and Otto in Iowa Tax Facte for Financing State and Loenl Government. CES Pm 12B1, Iow State University, Nov 1986.

Table 4. Iow School District Indicators by Projectad Enrollment Group, 1984-85 to 1990-91.

Praj Enfoll Group	\% of	\% of Pupil:	Average Enroll.	Exp Per Pupil	Val per Pupil 1	Course Unit	$\begin{gathered} \text { P/T } \\ \text { Ratio } \end{gathered}$
$>10 \%$ decr.	28.4	21.5	837	3093	198201	50.5	13.7
S-10\% dect.	23.1	26.0	1241	3032	186907	54.0	14.6
0-5\% dect.	24.5	30.3	1366	2924	168456	57.8	15.5
0-5\% incr.	12.8	8.2	704	2937	179580	52.0	14.9
S-10\% iner.	6.4	11.1	2023	2939	173100	59.2	15.5
> 10\% iner.	4.8	2.3	523	2955	187783	49.3	14.4

* Note that 24 percent of the small districts have projected enrollment increases and so do 24 parement of the large districts. On the other hand, 35 percent of the small districts have projected enrollmant decilines greater than negative 10 percint, while only 24 percint of the large districts have enrollment declines of that pereentage magnitude. In terme of absolute numbers, however, the large districts are projected to loose more pupils.
* Includes transportation costs, therefor not a "true conomies of size" analysis of operations inside the school buildings.

Souree: Compiled from Iowa Department of Public Instruction data as reported by Edelman and Otto in Iowa Tax Eacts for Financing State and Local Government. CES Pm 12B1, Iowa State University, Nov 1986.
be somewhat uniformly distributed acrose the groups. This means that it is not only the small districts that are impacted by declining. enrollments, nor is it only the large districts that are experiencing enrollmont increases. About the same percentage of large and small districts are faced with severely deciining enrollmant projections. In addition, about the same percentage of large and mall districts are facad with increasing projected enrollmants for the 1990-91 school year.

A qualification of thesernalts are in order because the Low school distriets groups with higher per pupil costs may not be totally du to differmene in officienciax. No adjustmants wert made for differmence in input pricms, diversity of courses offered or transportation expenditures, etc. Theraform, the higher cost per pupil may be attributed to a combination of three factors: inefficimncies of large or mmall size, differences in local market costs of educational inputs, differmnces in pupil sparsity and geographical size, and differmencos in dexirad levels of program offerings, taacher training, and taacher experiance.

It's elear from the numerouls studies that have been done that size eonomies do exist in the provision of primary and secondary education. However, the particular quantitative results should be viewed with caution. Since every state has its own eharacteristics (population, population density, existing structures, etc.) the mpirical results of one state may not apply to another.

One additional note of caution is in order. While size economies are likely to exist, the benefits of achieving them may or may not be greater than the transition coste of consolidation
in all cases. In some districts, the meonomies of size in school operations may be more than offet by increases in trinsportation costis, severance costs, and new facility costas. CONCLUSIONS AND IMPLICATIONS

This review of rewerch has prewented abief overview of the Iiteratur concerning the effict of enroliment decione on costis of education and the existence of size economies in education. The multitud of studien reviewed generally indicate that monomies of size do exist and decining enroliment doen increase the per pupil caste of education and does alter the managmment practices of schools. However there is wide disagreem as to where the minimum threstold is far eize economiey depending upon th sparsity of the districtis anelyzed.

It is important to note that while a literature peview can provide valuable insighty inte the general impaeti of anrollment decilnes, such studies cannot be substitutad for careful up=tom date local peservin. Specific matimate of the impacts are only found by local research because states differ greatly in theip characteristies and policies and mumberi for one state are not that useful in other states.

Finally, there is no general agreement on a standard definition of a univerisally acempted measure of quality of
 diverisity of programe depth of specialization, staffing ratios by school size and other attributep by magnitude of decisining enrollment. However, statistical significance does not necessierily mean political significance Thereforey political value judgment must be made as to whether size economies and
effect of deciining enroliment: are important enough for incorporating adjustments into state school aid distributions.

And, if so, should the goal of such adjustments in the aid formule favor adjustment incentives to achieve aconomies of size or favor preservation of the status quo in light of deciining envollment? Significant trademoffe between these two strategies appear to exist.

SELECTED REFERENCES

Abramowitz, Susan and Stuart Rosenfold, ade. Declining Enrollment: The Challenge of the Coming Decade. Wastingtons U.S. Dept. of Health, Education, and Welfare, National Institute of Education, 1978.

Anderson, Barpy D. and Jonathan H. Mark. "Declining Enrollments, Revenumi, and Personnel Allocation by School Districts." Journal of Education Finance 10(1985):297-307.

Brodinsky, Ben. Declining Enrollment-Closing Schools: Problems and Solutionse Arlingtonr: American Association of School Administrators, 1981.

Cavin, Edward S., Righard J. Murnana and Randall S. Brown. "School District Responses to Enrallment Changes: The Direction of Change Mattors!" Journal of Education Finance. 10(1985):426-440.

Chisholm, Clarmence. "School Closingis: A Bibliography." Public Administration Serifes Bibliography. P-1333, Nov. 1983.

Cohn, Elchanan. "Economies of Scale in Iowa High School Operations." Journal of Human Resources. $3(1968): 42$ 2-434.

Colman, Peter and Linda LaRocque. "Economies of Scale Revisited: School District Operating Costs in British Columbia, 197282." Journal of Education Finance. 10(1984):22-35.

Debertin, David L. "Impact of Decreases in School Enrollments on Educational Costwon ch V, Indiana School Finance Study. Department of Public Instruction, Indianapolis, Indiana. Mar 1978.

Deciining Enrollments. Declining Resources: A Sogcial Interest Resoure Guide. compiled by Sara Lake. Phoenix: Oryx Press, 1981.

Edelman, Mark A. and Daniel M. Otto. Iowa Tax Eacts For Einancing State and Local Government. Cooperative Extansion Service, Iow State University. 1986.
Fever Pupilse Surplus Soact. Now York: Educational Facilities Laboratorief.

Fox, William F. "Reviewing Ecenomieg of Size in Educatione" Journal of Education Finance. 6(1981):273-296.

Goettel, Robert J. and Robert E. Firestine. "Declining Enrollmenty and Stete Aid: Another Equity and Efficiency Problem." Journal of Education Finance. 1(1975):205-215.

Hartman, William T. and Jon W. Rivenburg. "Budget Allocation Patterns: School Distriet Choiess for Available Resourees." Journal of Edueation Einance. 11 (1985):219-235.

Hentschke, Guilbert and John Yagielski. "School District Fiscal Strain: Implieations for State and Federal Financial Assistance." Journil of Education Finance. 8(1982):52-72.

Holland, David W. and John L. Baritelle. "School Consolidation in Sparsely Populated Rural Armas: A Separable Programming Approach." American Journsl of Agrieultural Eeonomies. 57(1975):567-575.

Konny, Lawrence W. "Economies of Scale in Schooling." Eeonomies of Education Reviewe $2(1982): 1-24$.

Keough, William F. Declining Enrollments: A New Dilemna For Educators. Bloomington, Indiana: Phi Delta Kappa Educational Foundation, 1978.

Leppert, Jack and Dorothy Routh. "An Analysis of State School Finance Systmms as Relatad to Decilining Enrollments." in Abramowitz and Rosenfeld, Decinining Enrollments: The Challenge of the Coming Desades 1978.

Odden, Allan and Phillip E. Vincent. "The Fiscal Impacts of Deciining Enrollments: A Study of Deciining Enrollments in Four States-Michigan, Missouri, South Daketa and Wasthington." in Abramowitz and Rosenfield, Deciining Enrollments: The Challenge of the Coming Decade, 1978.

Riaw, John. "Scale Economies, Capacity Utilization, and School Costs: A Comparative Analysis of Secondary and Elementary Schools." Journal of Education Finance. $11(1986): 433-446$.

Riew, John. "Enrollment Decline and School Reorganization=a A Cost Efficiency Analysis." Economics of Education Review. 1(1981):53-73.

Sengupta, Jati K. and Raymond E. Sfeir. "Production Frontime Estimates of Scale in Public Schools in California." Eepnomics of Education Review. 5(1986):297-307.
Wales, Termen J. "The effect of School and District gize onEducation Costs in British Columbia." InternationalEepnomic Review. 14(1973):710-720.
Ward, James Gordon. "Reductions in Foree and School Business Administration." Journal of Education Finance. $10(1984): 17$ 194.
Webb, L. Dean. "Fiscal Implications of School District Reorganization." Journi of Efucation Finanes. 4(1979):342357.
Wilken, William H. and John J. Callahan. "Declining Enrollment: The Cloud and Its Silver Lining." in Abramowitz and Rosenfeld, Decilining Enroliments: The Challenge of the Coming Dereade, 1978.

APPENDIX A: Discussion Outlines School District Sharing

Prepared by Dr. Mark A. Edelman for meetings of 10 school districtz at Sheffield, Iowe, May 13, 1987 and Burt, Iowa, March 10. 1988.

SITUATIONz Prompted by a densire to maintain and improve the quality of education in the aree and to capitalize on community trends and opportunities, a group of concarned citizens began to discuse the implications of the various ways for their schools to come together in some form of atrategic alliance. The nature of the undertaking, ite importance, and the need for objectivity led this group to request that the Extension Service sponsor an educational meting to provide an opportunity to learn more about the eurrant situation and the options available.

Specifically, we were asked to do four things as outside resoure persons who have no direct vested interest in the outcome of the issues

1. Describe the nature and scope of your policy problem.
2. Outline the alternative solutions.
3. Discuss the probable consequencer.
4. Leave the decision-making up to those in the audience.

THE PROBLEM: HOW SHOULD THE SCHOOLS BE ORGANIZED TO PROVIDE THE KIND OF EDUCATIONAL OPPORTUNITY DESIRED FOR YOUR CHILDREN?

QUESTION A: WHAT KIND OF EDUCATIONAL QPPORTUNITY DO YOU WANT FOR YOUR HIEH SCHOOL KIDS?

```
OPTIONE: 1. Narrow Choice in Courses?
                        40 cours% unit% (t or - 5)
    E. Moderate Choic: in Coursos?
        50 caurse unitw (+ or - 5)
    3. Wide Chaice in Couryes?
        60 course units (-5 or plus more)
```

 QUESTION B: HOW LARGE OF A HIGH SCHOOL PUPIL POOL DOES IT TAKE
 FOR OPERATING EFFICIENCY UNDER EACH EDUCATIONAL OPPORTUNITY?

OPTIONS: 1. Narrow Choice only requires $80-120$ pupils.
2. Moderate Choice requires 150 - 250 pupils.
3. Wide Chaice require 300 pupils or mori.

QUESTION C. WHAT KIND OF EDUCATIONAL OPPORTUNITY DQ YOU WANT FDR YOUR ELEMENTARY SCHOOL CHILDREN?
options: 1. On teacher for all subjecti and all aight grades?
2. One teachor for aach grade, with the possibility for multi-grade specialization only?
3. Two teachers for aach grade, with some teachers specializing in part of the subjects.

QUESTION D. HOW LAREE OF AN ELEMENTARY PUPIL PODL DOES IT TAKE FOR OPERATING EFFICIENCY UNDER EACH EDUCATIONAL OPPORTUNITY?

OPTIONS: 1. A oneroom Echool requires 25 to 30 kid .
2. One teacher for mach grade rmuires 200 to 340 kid .
3. Two teachers for mach grade pequires 400 to 480.

QUESTION E. ARE YOU WILLING TO HAVE YOUR HIGH SCHOOL KIDS TRAVEL FURTHER THAN YOUR ELEMENTARY SCHOOL CHILDREN?

For a given gmographic area, there are normally half as many kids of high school age as there are lementary school age. So, for those who want on teacher in mach elmmentary grade and moderate to wide subject choice in high school, the geographic area covered by the high school would need to be two to three times as large as the elementary school. In other words, if there are 900 pupils or more in the district, you can have two to three -lementary schools for every high school and still be efficient.

QUESTION F. WHAT ARE THE SCHOOL QRGANIZATION GPTIUNS?
QPTIONE? 1. Each district keeps an independent high sehool and may or may not consolidate administrative costs.
E. Two high schools join together and one stays independent or goes with an outside high school.
3. Three high schools join together.

QUESTION G. WHAT ARE THE PROBABLE CONSEQUENCES OF EACH OPTION?
OPTIUNS: 1. Independent high schools each with about 100 pupils (about 300 total per district) would likely continu to provide narrow choici in courses.
2. Two high schools joining together would ereate a pool of 200 pupils (about 600 total per area $K-12$) and would likely provide moderate subject enoie.
3. Thre high schools joining together would ereate a pool of 300 pupils (900 in total area $K-12$) and would ilkely provide wid choief in courses.

- There are financial incentives built into the state school aid formula for sharing and schocl rinatructuring.
- There may be som potential long-term savings from improving meonomies of scale in the schools. However, the savings may not be immediately realized due to restructuring costs, changes in program structure and ehanges in personnel costs.
- In the short run, it maybe mori difficult to get agrement among thrme or more separate ontities compared to two. In the long run, given the gmographical situation the odds for continued economic and educational stability of your rural coelition of schools is diminished if two join the partnership.

QUESTIUN H. WHAT ARE THE PRINCIPLES IN SHAPING A PARTNERSHIP?

* Create an opportunity for improved quality of service, cost savings and/ar operating efficiency.
* Establish a healthy financial foundation for the future.
* Ensur that each participant is better off in the partnership than outside of it.
* Ensur fair treatment of all participantz going in.
* Provide an equitable sharing of future contral and benefits.
* Allow flexibility and room for innovation.

Curriculum	Four-Year High School Size			
Courses	100 Pupils $\quad 200$ Pupils $\quad 300$ Pupils			

HOME ECONDMICS:
Gen Home Ec x
Gen Home Ec x
Family Rel x
Clothing/Textiles . x
Foods/Nutrition
AGRICULTURE:
Agriculture I x
Agriculture II x
Animal Sci
x
Plant Sci
\times
Fin Bus Mgt
x
Ag Mectanics

HEALTH OCCUPATIONS:

FINE ARTS:

Art 1 x
Art II x
Vocal Music x
Band x

Crafts
Drawing/Painting
FOREIGN LANGLAGE:
Spanish I x
Spanish II *
Spanish III/IV
\times
Franch I/II
\times
x

PHYSICAL EDUCATION:
Phys Ed x
TOTAL COURSES: --- 40 --

SOURCE: Edelman, Mark A. "Discussion Outline: School District Sharing." Approximations are based on analysis of data from the Iowa Department of Education, 1987.

APPENDIX B: BRIEF SUMMARIES OF THE RESULTS OF SELECTED STUDIES

1. Debertin, David L. "Impact of Decreases in School Enrollments on Educational Costs."

Debertin studied enrollment decline in Indiana between the school years 1972-'73 and 1976-'77. His study was done with district level data on total expenditures and various expenditure categories. He found:

- Total per pupil expenditure, instructional expenditure per pupil, per pupil expenditures on plant operation and maintenance were all inversely related to ehange in enrollment level.
- Pupil/teacher ratio was directly related to change in enrollment level.
- Assessed valuation per pupil mas inversely related to ehange in enrollment level.

2. Cavin, Edward S., Richard J. Murnane and Randall S. Brown. "School District Responses to Enrollment Changes: The Direction of Change Matters!"

Cavin, Murnane and Brown looked at school district data for Michigan for all years between 1971 to 1981.

- They found that enrollment change was inversely related to per pupil expenditure
-The effects on expenditures are more acute in the short run.
-They also found that per pupil staffing levels changed in the same manner as expenditures per pupil; they increased significantly in the first year or two and never fully retrenched to pre-decline levels in the long run.
- In addition, they found that the effects of enrollment decline was especially acute in small districts since it is relatively harder for them to adjust.

3. Odden, Allan and Phillip Vincent. "The Fiscal Impacts of Declining Enrollments in Four States-Michigan, Missouri, South Dakota and Washington."

Odden and Vincent used district level data to analyze the effects of declining enrollment in the above mentioned states.

They found:
-Declining enrollments are distributed unevenly across districts within a state.
-Declining enrollments have affected the smallest and largest districts the most severely.
-Declining enrollment districts, in general, have above average property wealth per pupil and receive above average state aid per pupil. There are wide variations in the weal th and tax rates of districts with declining enrollment.
-Deciining enrollment school districts have higher than average per pupil total, instructional, operation and maintenance of plant, and fixed expenditures. They also have lower pupil/teacher ratios.
4. Wilken, William H.and John J. Callahan. "Declining Enrollment: The Cloud and Its Silver Lining."

Wilken and Callahan present some results they calculated for Iowa in the early 1970's. They found:
-Declining enrollment hit the smallest and largest districts the most.
-Declining enrollment is worse in the northwestern part of the state.
-School districts with the highest decline are generally the ones with the highest expenditures per pupil.
-Districts with declining enrollments can finance increased expenditures easier than other districts.
5. Fox, William F. "Reviewing Economies of Size in Education."

Fox does an extensive review of the literature concerning economies of size in education before 1981. He provides a detailed discussion of the theoretical and empirical techniques used in economies of size studies. In addition, he reports the general results from a number of studies. The previous studies have found:
-Studies that looked at size economies for schools generally found that size economies existed. They usually find u-shaped average cost curves with minimums of 100 to 1800 pupils.
-Studies that looked district level data found minimum average costs occurring at levels of 100 to 50000 pupils. These studies were heavily dependent on the nature of the school districts. Lower thresholds were associated with the more sparsity presences in the districts analyzed.
-Generally, when larger than district level aggregations of data were used little if any size economies existed.
6. Riaw, John. "Scale Economies, Capacity Utilization and School Costs: A Comparative Analysis of Secondary and Elementary Schools."

The purpose of Riew's study is to illustrate the differences in size economies between elementary and secondary schools. He fits u-shaped cost curves to data from Maryland schools from 1978- ${ }^{\circ} 79$. He finds:

- The number of pupils associated with the minimum average cost is different for elementary and secondary schools. In particular, the minimum oceurs at over 1000 students for secondary schools and at over 700 for elementary schools.

31723021064506

