LA
286
.G75 1968

POSITION PAPERS

$\diamond \diamond \diamond$

THE PROJECT OFFICE IN IOWA

THIS BOOK IS THE PROPERTY
OF
DEPARTMENT OF PUBLIC INSTRUCTION

DES MOINES, IOWA

The Great Plains School District Organization Project
Ralph D. Purdy, Director
411 South 13th Street
Lincoln, Nebraska

POS I TION PAPERS

Prepared for

The Project Office in Iowa

```
Financed by funds provided under the Elementary and Secondary Education Act of 1965
Public Law 89-10, Title V, Sec. 505
```

August, 1968

The Great Plains School District Organization Project
Ralph D. Purdy, Director
411 South 13th Street
Lincoln, Nebraska
68508

1. The Classroom Teacher's Concept of an Optimum Education Situation David A. Grosland
Chairman, Great Plains Project Committee, Iowa Association of Classroom Teachers, Des Moines, Iowa
2. Selected Comparisons of Teacher and Curriculum Characteristics Related to Educational Innovation For the Great Plains
E. James Maxey and Donald R. Thomas

Lowa Educational Information Center, University of Iowa Iowa City, Iowa
3. School Food Service and School District Organization

Vern Carpenter
School Lunch Consultant-Auditor, Department of Public Instruction Des Moines, Iowa
4. Iowa School District Organization

Ellis G. Hanson
Iowa Director, Great Plains School District Organization Project

Published Under Separate Cover:
5. People, Places, Perspectives: The Great Plains States

E11is G. Hanson
Project Director for Iowa, State Department of Education Des Moines, Iowa

THE CLASSROOM TEACHER'S CONCEPT
OF
AN OPTIMUM EDUCATION SITUATION
-
by

David A. Grosland

Chairman
Great Plains Project Comnittee
Iowa Association of Classroom Teachers
A department of Iowa State Education Association
4025 Tonawanda Drive
Des Moines, Iowa
50312

March 8, 1968

The Great Plains School District Organization Project
Iowa, Missouri, Nebraska, South Dakota
Ralph D. Purdy, Project Director
411 South 13th Street
Lincoln, Nebraska
68508

Acknowledgement

I wish to express my appreciation for the enormous amount of time and talent donated by the IACT Great Plains Project Committee, the time and talent given by the group of classroom teachers who served as a sounding board and review committee for this position paper, and the suggestions of many individual teachers who informed me about the needs of their special areas. Without the services of each group, this paper would have been impossible. I would also like to thank Dr. E11is Hanson, Iowa co-ordinator of the Great Plains School Organization Project, for his valuable guidance in the paper's creation.

IACT Great Plains Project Committee

Gene DeBoef	High School Chemistry	Indianola
Gerald E. Dunn	Junior High Science	Ames
David A. Grosland	High School English	Des Moines
Mrs. Shirley Rasmussen	Elementary Science/Math	Spencer
Dan W. Roberts	High School Industrial Arts	Centerville
ex-officio:		
ISEA-IACT Consultant - Don Briggs		
IACT President - Dick Vander Woude		

IACT Reaction Committee

Anne Anderson
Donna Coffman
Mike Fleming
Ruth L. Foster
Frances Henley
Frances Morgensen
Dwayne Olson

Elementary, First Grade
Junior High History
High School History
Elementary, Fourth Grade Guidance
Personalized Reading
High School History

Des Moines
Chariton
Des Moines
Des Moines
Indianola
Royal
Ankeny
Administration 31
Area 31
Board 31
Administrator 31
Consultant (research) 32
Community complex 32
Administrator 33
Advisor 33
Department chairman 33
Physical environment 33
Media center 34
Services 35
Personne1 35
Physical environment 37
Materials 37
Equipment 38
Innovation 39
IV. CONCLUSION 41
APPENDIX A 45
SUMMARY 46

CHAPTER I

INTRODUCTION

Recently, I asked my senior class in English literature why poetry was important.
"It isn't," a willowy brunctte answered from the back of the room.
"Why not?" I asked as soon as the ripple of giggles had quieted.
"Because we learn all about it in school," was the simple reply.
This incident reflects the most serious problem facing public education today -- the problem of relevancy. Gone is the day when astudent in our classes reacted blindly when we teachers assigned a passage, or a formula, or a project. Today, the student demands to know why and how education relates to him as an individual and as a member of society. And the key to our educational system's worth is more and more the amount of relevancy it can demonstrate to the students. We need to show that it is not the unimportant but the vital that is presented in school.
1.

Statement of the problem. The purpose of this paper is to present the Iowa Association of Classroom Teachers' viewpoint regarding the educational situation that best allows the student to be

Definition of terms. We believe that the following definition of terms might help to clarify portions of the paper so that long explanations will not be necessary at the point where they are used.

Bi-area curriculum. This refers to two possible courses of study (selections of courses). One, the academic, usually leads to a college program. The other, the vocational, usually leads to a craft, trade, or vocation, or to a (post-high school) trade or business school. A student in one area should concentrate on courses within that area, but not be entirely limited to that area.

Elementary level. The elementary level is the grades from kindergarten through six.

Foundation core (courses). Foundation courses are basic courses, some of which are needed by almost everyone, regardless of interest or vocational plans.

Principles; basic, internal. Basic principles are those ideas, concepts, and procedures that should be learned because they are so elementary that almost everything.else stems from them, or from variations of them. For example, in arithmatic a basic principle might be the concept that'numbers react and can be dealt with in an orderly, logical manner; or that when 'two numbers (or things) are added together, the whole is equal to the parts.' A general principle might be that when two different things are brought together, the clash results in a compromise: (This' is derived from Hegel's 'thesis-antithesis--synthesis' theory.) As can be imagined, general principles exist for life in general, and specific principles exist for specific areas and/ or
a 'compromise' of the two to result. He gets green. Whether he knew what would happen or even planned it would depend on his previous experience, but again an internal principle has been applied successfully to an external situation.

Structural organization. (See Appendix A.) This is the pattern of administration, services and attendance centers designed to provide effective operation of the education situation.

Community attendance complex. This is the functional part of the total structural organization consisting of a high school (of approximately 1,000 students, 50 teaching faculty, and appropriate administrators (principals, advisors, counselors, and department chairmen), and its feeder schools -- those attendance centers that contribute their graduates to the high school student body. The feeder school will probably consist of two or three junior high schools and four to nine elementary schools. The entire community complex will probably have a student population of about 3,000.)

Area unit. This is a geographically and economically functional unit comprised of five or more local units in order to provide all educational services efficiently to the students within its geographic and economic area. The 'central' or 'area' administrative : functions will be provided at this level.

State unit. This is a state-wide unit supporting and coordinating the area and the local units with such services that they themselves cannot efficiently perform.

Teaching faculty. This is the body of certified, qualified teachers actively teaching fulltime in the classroom,

Even within the concept of educational needs, we are 1 imited by time and space to such an extent that we can only scratch the surface in this paper. We strongly urge interested parties to investigate these areas much more deeply. Perhaps this could be done by special committees of experts. If so, we again caution that the true educational experts are actively practicing classroom teachers, and that they need release time and opportunity to fully investigate even their own speciality.
for teachers and students.
To solve these problems, the entire educational system, as a whole, should be concerned with the teaching of certain fundamental, internal principles and with the application of these principles to specific, external situations. The aims of education are the same for all levels. Education levels vary only in the stage of development that our student has reached. We must, of course, realize that our students stage of development in learning and applying these principles is determined by a complex set of influences. Among these influences are mental age, chronological age, physical co-ordination, emotional development, home environment, social environment, and educational situation, both past and present. After about five years of informal development, the child has his first formal experiences with primary basic skills -- the learning of the most basic principles and their application to the most basic of external situations -- at the elementary level ($\mathrm{K}-6$).

Elementary. The child beginning the educational experience is, by nature, a curious individual and an avid learner. He has a natural talent for association and comparison. We must be very careful to encourage him to explore, compare, and learn. To do this, we must provide him with experiences that foster a sense of satisfaction and achievement -- a feeling that education is worthwhile. (Of course he won't think of it in just those terms.) Since each child is an individual and since he is at an unique stage of development, we must

As stated earlier, people must be able to think if they are to be meaningful members of society. If this is so, one of the most important things for us to do on the elementary level -- or on any other level -is to help our students learn to think. Furthermore, we want this thought process to be rational, logical, and analytical, but allow for intellectual intuitiveness as well. We then need to establish classroom procedures and course content that encourage and extend learning. We can best encourage and extend learning by presenting situations through inductive procedures that prompt discovery; for discovery produces most of an individual's potential creative thought. We can develop insights and understandings through the conceptual framework of this approach. And these insights and understandings allow us to present many things previously thought too difficult for elementary students. The fact that very young children can learn relatively difficult aspects of science, mathematics, and other subjects in this way should show us why we must use the discovery approach as one of our various procedures.

We should not consider this approach as a panacea for elementary education, however. Our decisions must be made as to content and course procedure only after we carefully consider the individual's ability to understand and the relative importance of the ways in which he learns most effectively.

Elementary education must be based on a close correlation between broad areas of content and our student's general knowledge. Because
apply these principles, both old and new, to more and more complex, external situations. It becomes increasingly important, as we proceed to higher and higher levels, that we show more and more relevance -i.e. application of this education to the life experience. For as the individual becomes more competent or at least thinks that he is he tends to lose his interest in learning for learning's sake. He becomes concerned with the life soon to confront him in his society and demands to know how his education will apply. This we must show him if we are to continue to be effective!

Junior high school. There are other factors to be considered besides this demand for relevancy; for example, we must consider the nature of the junior high student. He is a restless animal. His physical growth demands that he move his muscles often for these growing . limbs need testing and training. Because of this, he likes to work with his hands as much as with his brain. But his attention span is quite short. He knows few bounds as far as social graces are concerned and likes to test the patience of all adults, even though deep down he means to please and wants his just rewards. He thrives on variety and detests repetition. He is easily motivated but also is easily bored. He is highly impressionable. And because of his characteristics, his needs demand techniques that are not like the ones we might use in either lower levels or higher ones. Regardless of these common qualities, however, we can not lose sight of the fact that each junior high student still has great individual differences.
apply the methods and principles of science to the problems of their environment.

The junior high social studies program should prepare our students for effective American citizenship and for understanding the organization and institutions of society and man's behavior in it. We should create a workshop within the social studies classroom, where our students may study social, economic, and political questions in perspective of history, both past and future. Our course offerings should stress the study of a few major problems rather than all problems; they should aid the student in understanding interrelationships among social, economic, and political problems and issues; and they should develop a wholesome allegiance to the ideals of American democracy through inductive procedures.

The junior high school mathematics program should develop an understanding of and facility for computation, ability in the use of problem-solving method, and some understanding of the basic nature and structure of mathematics as it relates to our modern and everchanging world. In order to provide for the future educational, vocational, and cultural needs of our students, we need to offer such courses as modern mathematics, general mathematics, commercial mathematics, voca\therefore tional mathematics, algebra, and geometry.

The industrial arts and homemaking arts programs at the junior high school level should be offered to both boys and girls. The industrial arts program should be composed of exploratory courses
outside world may be a college or an occupation, and while he is fascinated by it, he is also a little afraid of it. He is extremely concerned with peer attitudes, and yet he is definitely an individual. He has pretty well mastered the basic skills. So now he must be convinced of education's value -- i.e. relevancy - for at the moment he's not too sure that it is really all that it claims to be. He wonders if education has anything else of a practical nature to offer. And these are the individuals we must work with on the secondary level. We must influence their attitudes, which produce drop-outs, by presenting a meaningful curriculum and educational environment.

Like the elementary environment, the secondary situation must accomodate individual differences of interest and aptitude. Secondary curriculum demands even more flexibility than the elementary curriculum for we assume that the basic skills and communications areas have been mastered. We must now offer content that applies directly to each individual's frame of reference. If we are to do this, it is evident that we must offer a large number of courses in order to cover the various areas that students are likely to be interested in, many of which may be nine week courses instead of the traditional eighteen or thirty-six week offerings. Realizing that students at this senior high level may be interested in and planning for either an academic or a vocational follow-up to their senior high education, we must offer a bi-area curriculum -- one that is slanted in both directions. We can thus allow a student to follow his individual interests and abilities
tastes, and aptitudes. In English, he might choose one or several of these: advanced writing, of expository -- including journalism -or creative nature, advanced literature, of American, English, or genres -- such as poetry, short stories, or novels --, research techniques, drama and stage production. And in foreign langenages, he could learn not only the language, including writing skills and speaking skills, but also the cultural background of the native country -- such as Germany, France, or Russia.

In mathematics, he might pursue advanced algebra and calculus. And in science he could select from the areas of advanced chemistry, biochemistry, physiology, geology, astronomy, and physics.

In the social sciences, he might investigate political science, European culture and governments, Asian culture and governments, sociology, anthropology, psychology, philosophy and economics -both theoretical and applied.

On the other hand, our student may choose to follow the vocational line of study. As in the academic Ine of study, he should start with the fundamental core courses, adding other subjects from those that might help him in his interest areas or future vocation. In English, he might select a course in business English; and in mathematics, a course in business mathematics or computer programming; and in science, a course in photography.

If he plans to start working in an office, 角e might investigate business education. Here he could specialize itm a clerical area, taking a selection of typing, bookkeeping, filing, and card-punch.
course content and sequence involving his, interests and abilities, he often begins to see that education can be relevant and practical. Hopefully with this insight, his attitude changes. The change in attitude allows him to make more progress in preparation for life. Therefore, he is more likely to succeed -- as an individual and as a member of society.

Teachers. The most important of all these seven areas is the teachers. We teachers must, of course, be well-trained. Our knowledge of subject matter must be excellent and we must be trained in the raft of teaching. And we must have frequent in-service sessions to help to keep the fine edge on current knowledge and techniques. But to really be proficient, we need practical as well as theoretical experience. We do not get enough practical experience through present "student-teaching" programs. Perhaps an answer to this deficiency is an internship of at least one year at partial salary, as a part of an extended college experience. Young teachers would perform this internship under the guidance of a "master teacher," an experienced teacher of proved outstanding ability -- both ability to teach and ability to guide and counsel.

We also need teachers of diverse backgrounds, with many sets of experiences allowing a pupil-teacher and a teacher-pupil "sympatico." Regardless of how unusual a student's frame of reference, he should be able to find a teacher who could relate to him, and he to the teacher. Teachers with diverse backgrounds, both as staff and as an individual, give more relevancy to a student. These teachers are not likely to stay in their ivory towers but themselves are relevant -- i.e.involved with the world. A teacher can only teach well what he is himself enthused about; if he is involved with and enthused about the world he can teach about it. This also means that a teacher should (be allowed to) specialize in his particular field of interest and ability
special situations. Special classes for exceptional children should be limited to fifteen students. Kindergarten and first grade classes should be limited to twenty; other classes in elementary and secondary schools should be limited to twenty-five. Furthermore, we urge that total enrollment for a teacher in a departmentalized secondary situation be limited to one hundred. Particulars of class size and number should be determined within the local structural unit and depend on the needs of that student body, but we stress that class size does have an important impact on teaching effectiveness. Small class size allows us to have individual contact with each student in meaningful quantity. A great quantity of individual contact becomes especially important and effective in classes such as special education and composition, since these require a uniquely personal touch.

Educational Services. We also need ample educational services in order to give quality, individualistic instruction. And the service in closest contact with the average student is guidance. The guidance counselor must, first of all, be an excellent classroom teacher with enough classroom experience to have proven himself. If he can counsel in the same building that he taught in, he will have the immediate advantage of having already established rapport and of having already - become familiar with the background of the school and the student body. He also should have excellent training in counseling. This training should have been theoretical -- in the areas of psychology of learning and of the learner; and it should have been practical -- in the area of applied social work. Social work would allow him to understand why
to allow him to perform his specialty efficiently. These facilities should include private, comfortable counseling rooms, quiet, comfortable testing centers, varied, proven means of evaluation, and a load compatable with the amount of his clerical assistance and the inclusiveness of his duties. For example, if a normal counselor-student ratio is $1 / 300$, lack of cíerical assistance should lower the rattio -- perhaps to $1 / 250$ or to $1 / 200$. If he must test as well as interpret test results, the ratio should be further lowered, so that the counselor's load is in proportion with his functional duties at all times.

Physiological and health services are also necessary within the framework of the education situation. We silhould provide the services of a nurse in every large attendance center and of, at least, a nurse's aide in every center. In addition to this, a doctor should be available in case of emergency -- probable serving a community complex. (a complex is roughly defined as a high school of approximately 1,000 students, 50 teaching faculty, with its corresponding junior highs and elementary schools.)

This staff's functions would probably involve the preliminary 'diagnoses' of illnesses, the possible 'treatment' of minor ailments, the execution of 'minor medicals' -- such as scalp, height, weight, and dental examination, and the keeping of records. In addition to these relatively routine services, the staff would aid in the selection of health, physiological, psychological, and physical education curriculum. They would also deliver lectures for general health information assemblies and conduct discussions with health, physical education.
a unique approach; and we need to provide staff and facilities that are adequate and flexible enough to take care of even the most unlikely possibilities. The program for the handicapped would probably be a function of the area structural unit.

An area of local center services, composed of a large number of staff, is that of auxiliary personnel. These persons would perform a variety of services freeing teachers for increased preparation and increased teaching time. The auxiliary staff member's training would be compatable to his function. One large and presently existing subdivision of auxiliary staff is that of clerical aides, with general business training of a non-professional nature. Their function is to keep attendance, keep records, and file miscellaneous materials. Generally, they are only used in the main office and sometimes in the media center; but they should also be available in the counseling offices, to assist counselors, and in subject department wings, to assist teachers.

A second division of the auxiliary staff is secretarial. Although this staff segment's training is, and should be, more specialized than the clerical division's training, it also is non-professional. The functions of the personnel in this division are in the nature of letter : transcribing, letter writing, and appointment making. Usually this staff segment works only in the main office and occassionally in the media center; but secretarial staff should also work for counselors -with such duties as reference typing and letter writing .-. and for
however, this would be done under the teacher's supervision and according to his direction. Always, the actual evaluation would have to be done by the teacher, but the paraprofessional could assume many of the routine, objective procedures and thus allow the teacher to concentrate on the creative, subjective process of instruction.

Administration. Another major area we see affecting instruction is that of administration. We see two general catagories of administrative function. One is concerned with general policy and efficiency, including financing; this administration should exist on an area unit level, and the other is concerned more directly with individualized and co-ordinated instruction; this administration should exist partially on the community complex level and partially within the local attendance center itself. While the school board and superintendent are certainly concerned with individualized and co-ordinated instruction, we feel that their most direct and immediate concerns are in connection with matters of general policy and efficiency. We believe that the area school board, especially, needs to give increasing weight to the empirical judgement (particularly when statistically supported) of experts -- i.e. teachers, consultants, and administrators -- in matters of the educational situation -- i.e. such things as curriculum, -texts, and environment. We believe that the area administrator increasingly is and should be a third party member of board-teacher relationships -- serving as an expert in the implementation and implication of proposals. He can and should be assisted by a (committee
insure individualized and co-ordinated instruction. We believe that the community complex and/or local attendance cemter administrator should be a public relations representative from the school as well as a co-ordinator of program, department heads, and activities. The boys' and girls' advisors function as disciplinarians as well as coordinators of program in conjunction with the principal and counselors. They should also work with the counselors and teachers in evaluation of individuals for program selection and for otlier aspects of school 1ife.

We believe, also, that there should be teachers designated as department chairmen of subject areas, who might be considered as quasi-administrators. We feel that these department chairmen should be master teachers, selected and proven on a basis of performance. These chairmen would be responsible for non-evaluative supervision of and guidance of the teachers and auxiliary personnel within their departments. They would also work with chairmer (of other departments), counselors, and administrators in co-ordination and design of curriculum and procedures. They should be assigned to teach a minimum number of classes to allow time for their research and guidance responsibilities.

Physical Environment. Another important factor in the education situation is the physical environment. In general, the attendance center should be arranged with the media center (to be discussed later) centrally located. We believe that there should be physical subject areas as well as curricular subject areas -- i.e. subject wings; (or, in elementary, lower and upper level). We believe, further, that each
as an area in itself; the media center. Perhaps the media center motto should be: What was best yesterday is only second rate today. (But we don't feel that this motto.could be limited to the media center; it applies to all of education.)

The services of our media center should always be directed toward the total objectives of the total educational program. We feel that its primary concern should be to provide service to the students and faculty. Since we believe that education and educators must be reievant, the media center also must strive for relevant and progressive development. Therefore, media center personnel must be allowed to research continually in order to provide better service and materials in the areas of reference, reader guidance, reading guidance, media guidance, media selection, in-service education, material and equipment training (for both students and faculty), and consultant service. And flexibility must be maintained to allow proper guidance for the individual. Because of these necessities, purchasing should be of a nature that provides for continual purchasing of materials and equipment as needed rather than of the present nature that allows only yearly or twice-yearly ordering, which delays shipments from manufacturers for many months because of seasonal loads.

We must also recognize that personnel for such a media center will be an important factor. We will need specialists in all phases of media use, service, development, production; and processing. We can allow more efficient operation of the specialist by providing
is meant to function: as a meaningful and relevant part of the school program. Of course, it also needs the student who is to partake of its offerings, for without the inquiring student and his ever-growing demands for relevancy and immediacy, the media center would soon grow stale and uninviting.

The physical quarters of the local attendance center's media center should be large and expansive enough for both present and future needs, and relevant to the type of curriculum the school intends to provide -- i.e. the type of services the media center must provide. We should design the quarters to provide general reading areas and independent study facilities -- such as study carrels, typing facilities, and audio-visual quarters -- for use of audio-visuals by students and faculty. We also should provide rooms for group study, of various sizes and situated off of the media center but easily accessible to it for convenient access of needed materials. In addition, we need to provide facilities for the development of media, dark rooms, planning rooms, viewing rooms, material storagerooms, equipment repair rooms, TV and radio rooms, and a data processing area, if data processing of tests, profiles, etc. is to be centered in the media center, as it might well be.

If we are to have an efficient media center, we must naturally provide materials (i.e. media) and equipment for using these materials. We should supply books, pamphlets, documents, periodicals, newspapers, and other types of printed media. We need microfilms, micro cards, micro
jector stands, and display facilities.
We felt it necessary to be more specific in relation to the needs of media centers because the concept of a media center is probably the newest concept discussed. It is also one of the most rapidly expanding areas in education today, along with curriculum and procedure. Since the media center is the best source of current and vital materials, we must have operative centers on all levels of the educational structure. There are obviously some functions, equipment, and media that would be impractical and inefficient on a local attendance center level that would be very practical and efficient on a community complex level. At the same time there are many services that would be impractical and inefficient on a community complex level that would be most practical and efficient on an area unit.level. The particulars of a media operation, then, must depend upon the needs of the structural unit containing the media center, but it is essential that we supply the media operation that fully meets the needs of its unit. The effective functioning of the media center and the six other areas discussed is essential to high quality, individualized, and relevant education situations throughout each student's $\mathrm{K}-12$ experience.

We strongly recommend that the entire educational environment be involved in constant experimentation. If we want to successfully relate to a changing society, we must constantly be testing new tools and techniques for doing so effectively. Some recent discoveries,

CHAPTER IV

CONCLUSION

In conclusion, we must recognize that education's primary need is relevancy. This is true because education's primary goal is to prepare each student for the society in which he must function and this society is in a constant state of flux. Therefore, we must teach the student to be as flexible as possible, so that he can not only adapt with society, but can, in fact, direct its change for the better. To do this, education must be relevant to the student and to his society.

If we are to prepare out student for a flexible existence, we must begin early, teaching him in a way that leads him to discover basic, internal principles that he can adapt to fit any given, external situation. And we must convince him to apply these principles to whatever external situations confront him. We must, furthermore, show him how to relate, compare, and associate these external situations, proceeding from the known to the unknown, so that the new and different does not frustrate him. Instead, we must have lead him to realize that, although some situations seem strange to him, his core of principles will allow him to solve any situation if he applies them wisely and competently.
research and consultation on a state-wide basis. Again, the structural level of involvement should be determined by function.

In short, we feel, that there should be a state-wide assessment of structural organization within education. This, we feel, will probably result in a structural readjustment that delegates responsibility and co-ordination of the education situation to levels appropriate for fulfilling the needs of all of Iowa's youth.

APPENDIX A

The purpose of this position paper, commissioned by the Great Plains School District Organization Project, is to describe the Iowa classroom teacher's concept of the optimum education situation and to suggest means of attaining it. In writing the paper, I have relied largely upon the empirical judgement of the IACT Great Plains Committee and an additional group of classroom teachers who were kind enough to contribute their time, knowledge, and judgement.

Education's main purpose, we feel, is to prepare youth for the society in which it will live. We feel, further, that the fundamental necessity for a successful life in a changing society is the ability to be flexible. And we feel that this ability comes as a part of the ability to think -- i.e. to compare, relate, and associate confronting situations in a rational, logical, and analytical manner. We believe that there are a limited number of fundamentals, in general and in each subject area, and that the learning of and applying of these fundamentals is the basis of the thought process.

We recognize that interest plays an important part in the effectiveness of the educative process. Therefore, if we teachers are to be fully effective in developing each individual's talents, we must demonstrate that education is relevant -- i.e. immediate, vital, and practical. When the student sees the relevancy of an area, he will usually become interested in it and he will become more efficient in what we are helping him to learn. But we must at all times be careful to relate what we are teaching to each individual's interests, experiences, and abilities so that he will remain aware of education's relevance to him.

How, then, can we demonstrate individual relevance? The answer lies in seven major areas of the education situation: administration, classes, curriculum, media, physical environment, services, and
\therefore teachers. But we must also remember that these seven areas are all dependent upon the structural organization of the school system; some are dependent upon community complex structure, some on area structure, some on state structure, and several on a combination of two or more structures.
on a state-wide basis. Again, the structural level of involvement should be determined by function.

In short, we feel that there should be a state-wide assessment of structural organization within education. This, we feel, will probably result in a structural readjustment that delegates responsibility and co-ordination of the education situation to levels appropriate for fulfilling the needs of all of Iowa's youth.

by

Dr. E. James Maxey
and

Donald R. Thomas

Iowa Educational Information Center
University of Iowa
Iowa City, Iowa

June 12, 1968

The Great Plains School District Organization Project Iowa, Missouri, Nebraska, South Dakota Ralph D. Purdy, Project Director 411 South 13th Street

Lincoln, Nebraska 68508

The impact of scientific, technological, social, and economic change on the American way of life necessitate a re-examination of the educational system. These changes modify established needs and create new needs to be met by the public school system. Instructional programs and supporting services must be developed to meet these needs.

The primary purposes of school district organization are to make possible: (1) the desired quality or excellence of the programs and services; (2) the efficiency of the organization for providing the programs and services; and (3) the economy of operation, or the maximum returns received for the tax dollar invested in education.

The program offering and the personnel responsible for directing the instructional program are vital parts of the educational effort in all school districts. The quality of the programs and of the personnel has a direct relationship to the achievement of educational purposes. Dr. Thomas and Dr. Maxey, Iowa State University, were invited to investigate the relationship between program offerings and staff personnel and the size of school districts in Iowa. They were fortunate in having available computerized data upon which to secure information for this report. This paper is their report to the Project Staff and to interested representatives of the Great Plains States.

The value of this paper rests upon its utilization by those with advisory and/or decision making responsibilities about the educational structure in each state. It represents a beginning point for further study and evaluation, and for establishing criteria upon which guidelines can be developed for effective and constructive school district organization.

Respectfully submitted,
Ralph D. Purdy, Director Great Plains School District Organization Project

June 12, 1968

Abstract

This report is presented in three sections: (1) Teacher Characteristics in Iowa, (2) Secondary Curriculum Distribution in Iowas and (3) Educational Innovations in Secondary Curriculum for the North Central Association Schools of the Great Plains. The data are presented by pupil-emrollment categories and cost-per-pupil categories. The tables will enable administrators in the Great Plains states to compare teacher, curriculum, and innovative characteristics of their schools with other schools of similar size.

The Iowa data in Section I suggest that the best qualified staff are found in school districts with total enrollments of 1,500 and above. Schools in this range have more experienced teachers, better qualified teachers, fewer teacher course preparations, and more specialized personnel.

In Section II the data indicate that as district enrollment increases, the number of course offerings available in such areas as foreign language, business, technical and vocational education also increases. On the other hand, the number of course offerings in homemaking decreases as district enrollment increases.

Section III presents the curriculum, organizational, and technical innovations being used or tried in the North Central-accredited schools. In all four states, at every school enrollment level, it appears that PSSC Physics and Chemistry Study Group Chemistry are the most popular curriculum innovations. At the National level the same courses are also the most popular. The most popular technical innovation in the four states seems to be the use of language laboratories. In some states data processing is the second most popular innovation while in one state television is widely used. Apart from student exchange programs, organizational innovations are being used sparing1y.

INTRODUCTION

In order to effectively evaluate the need for change in the organizational patterns of school districts in the Great Plains, it is important to have available as much data as possible. These data will provide school administrators with the necessary tools to approach the problems of organizational and institutional change in secondary education.

Because of this need, Dr. Ralph Purdy and Dr. Ellis Hanson of the Great Plains Project asked the Iowa Educational Information Center (IEIC) to prepare a selected summary of data on teachers and curriculums in Iowa. These data could then be used on a comparison basis by administrators in other states, giving schools in the Great Plains at least some idea of how they compare with schools of the same size in Iowa. One might ask, why should Iowa be chosen as the normative group? The answer is simply that Iowa, at the present time, is the only state that has information of the type contained in this report that is available on a statewide level.

The Iowa Educational Information Center collects pupil, staff, curriculum, financial and physical plant information on nearly all public secondary schools in Iowa as part of the CardPac System of Educational Accounting. Schools which fail to appear on the IEIC files are those which simply do not cooperate in the

In addition Table 2 indicates that teachers in small schools will tend to have three or more course preparations much more frequently than teachers in larger school districts. As districts become large, there is more opportunity to take advantage of specific subject-area preparation of teachers. In larger schools, teachers tend to have fewer preparations and hence will have more time to prepare thoroughly. It is interesting to note, however, that although the number of areas of preparation declines as enrollment increases, the number of subject preparations is about the same at the upper three levels. This might suggest that in order to reduce the number of teacher preparations, the secondary school should be located in a district with at least 1,500 total pupil enrollment.

Table 3 shows that schools with larger enrollments tend to attract teachers with better preparation insofar as number of semester hours of course work is concerned. Table 7 confirms this conclusion in that the larger the school district, the greater the chance of having staff with advanced degrees. An inspection of Table 6 suggests that these same people tend to possess more teaching experience as well.

Tables 4 and 5 were prepared to see if the number of major areas of study in college tends to differ for teachers in different enrollment categories. An inspection of the tables indicates that approximately the same number of major areas of study are characteristic of all teachers at both the undergraduate and graduate level.

Tables 8-10 display salary ranges for administrative, teaching, and other professional personnel by enrollment categories. Again, a large difference between salaries for the largest three enrollment levels and the other four levels is apparent.

Classes will tend to be larger in large school districts, as shown in Table 11. This means that teachers in larger schools will tend to have class enrollments of 20-30 whereas teachers in small schools will have a cláss enrollment of from 10-15.

The preceding discussion should have suggested to the reader that better quality faculty are found in larger schools. What other staff advantages are available in larger schools? Table 12 suggests that a specialist in Special Education apparently cannot justifiably be hired except in a larger school system, i.e., one of at least 1,000 students. An inspection of Table 13 suggests that apart from guidance counselors, other professional non-teaching personnel such as junior high school librarians tend to be found in larger school systems. This can only mean that more effective reading programs and hence better learning opportunities are available for children in larger school systems.

Tables 14-29 show the typical number of course preparations within subject areas by enrollment levels. With the exception of driver's training, agriculture, and vocational education, the trend seems to be that the number of course preparations within a subject area for a teacher is less for districts with an enrollment size of 1,500 and above than for smaller districts. This conclusion agrees with earlier statements made regarding teacher load in this section. The. . courses actually used within subject areas for Tables $14-29$ are specified in Section II of this report.

TABLE 2

Frequency Distribution of Teachers by Number of Specific Course Preparation Within District Enrollment Categories

	$\begin{aligned} & 0^{-} \\ & 499 \\ & \hline \end{aligned}$	$\begin{aligned} & 500^{-} \\ & 749 \\ & \hline \end{aligned}$	$\begin{aligned} & 750^{-} \\ & 999 \\ & \hline \end{aligned}$	$\begin{aligned} & 1000^{-} \\ & 1499 \\ & \hline \end{aligned}$	$\begin{aligned} & 1500- \\ & 1999 \end{aligned}$	$\begin{aligned} & 2000 \\ & 2999 \end{aligned}$	3000 \& Above
10	1						1
¢ 9							
O18	3	1					
- 7	12	8	2	2			1
06	67	37	17	11	4	7	8
H゙5	163	132	52	36	13	15	23
() 4	265	318	203	135	48	81	100
\% 3	214	444	326	28	202	173	348
\bigcirc	144	318	339	401	376	393	723
Z. 1	113	198	198	291	406	409	744
N-Count	982	1456	1137	1165	1049	1078	1948
Mean	3.50	3.01	2.68	2.37	1.95	2.00	1.96
Standard							
Deviation	1.49	1.30	1.18	1.10	. 96	1.03	. 99

TABLE 3
Total Semester Hours Earned for Teachers by District Enrollment Category

	0^{-}	500^{-}	750^{-}	1000^{-}	1500^{-}	2000^{-}	$3000 \&$
	499	749	999	1499	1999	2999	Above
Range	$33-289$	$30-268$	$40-283$	$41-276$	$43-296$	$33-290$	$3-297$
Mean	150.12	150.06	152.23	151.80	157.44	157.45	163.90
N-Count Standard Deviation 1605	2303	1666	1847	1766	1907	5247	

TABLE 7

Highest Degree Held for Elementary and Secondary Teachers by District Enrollment Category

	$\begin{aligned} & 0- \\ & 499 \end{aligned}$		$\begin{aligned} & 500^{-} \\ & 749 \end{aligned}$		$\begin{aligned} & 750- \\ & 999 \end{aligned}$		$\begin{aligned} & 1000- \\ & 1499 \end{aligned}$		$\begin{aligned} & 1500- \\ & 1999 \end{aligned}$		$\begin{aligned} & 2000 \\ & 2999 \end{aligned}$		$\begin{aligned} & 3000 \\ & \text { A bove } \end{aligned}$	
	N *	PC N	N	PC		PC								
None	33	2	51	2	36	2	35		26		21		60	1
Bachelors	1287	59	1830	58	1287	59	1418	55	1187	50	1328	53	3119	45
Masters	286	13	423	13	350	16	386	15	547	23	563	22	2052	30
Specialists	13	15		0	I5	1	13	1	4		8		24	0
Doctors	0	0	2	0	4	0	2	0	8	0	1	0	46	1
Other	554	25	854	27	502	23	704	28	610		608	24	1600	23
Totals	2173		3165		2194		2558		2382		2529		6901	

*Percents are recorded to the nearest whole percent.
TABLE 8
Administrator* Salaries by District Enrollment Category

	$0-$	$500-$	$750-$	$1000-$	$1500-$	$2000-$	$3000 \&$
	499	749	999	1499.	1999	2999	Above
Range	$5470-$	$3600-$	$5300-$	$5150-$	$3600-$	$3000-$	$3610-$
	13000	15000	15500	15500	21500	16650	23000
Mean	9153.4	9506.9	9896.4	10390.1	10847.5	10940.4	10939.2
N-Count	193	248	164	151	107	127	282
Std. Dev.	1504.2	1895.4	1809.5	2004.5	2862.6	2557.0	2919.2
*Administrator is defined as either Superintendent or Principal.							

TABLE 9
Salaries - Other than Administrators or Teachers by Enrollment Categories

	0^{-}	500^{-}	750^{-}	1000^{-}	1500^{-}	2000^{-}	$3000 \&$
	499	749	999	1499	1999	2999^{\prime}	Above
Range	3200^{-}	4200^{-}	3850^{-}	2850^{-}	$3743-$	3924^{-}	$2875-$
	8825	10450	10380	11200	16140	12700	17150
Mean	6452.64	6548.80	6895.16	6914.75	8030.23	7642.11	8717.70
N-Count	92	159	124	146	179	218	707
Standard Deviation	1038.42	1040.78	1178.06	1323.90	1969.45	1499.41	2185.99

-9-
TABLE 13
Frequency Distribution of Professional Personnel by District Enrollment Categories

	$\begin{array}{r} 0- \\ 499 \\ \hline \end{array}$	$\begin{aligned} & 500- \\ & 749 \end{aligned}$	$\begin{aligned} & 750- \\ & 999 \end{aligned}$	$\begin{aligned} & 1000- \\ & 1499 \end{aligned}$	$\begin{aligned} & 1500- \\ & 1999 \end{aligned}$	$\begin{aligned} & 2000- \\ & 2999 \\ & \hline \end{aligned}$	 Above
Elem. Supervisors	27	59	62	75	67	77	288
Jr. High Supervisors	1	19	21	34	38	43	116
Sr. High Supervisors	60	91	54	69	66	76	231
Jr. -Sr. High Supervisors	54	57	27	13	0	8	0
Elem. Guidance Personnel	0	1	0	1	2		
Jr. High Guidance Personnel	0	0	0	0	17	24	115
Sr. High Guidance Personnel	12	28	37	40	55	45	134
Jr. -Sr. High Guidance Personnel	14	16	13	6	,		0
Elem. Librarians	0	0	5	5	13	5	15
Jr. High Librarians	0	1	0	7	8	18	51
Sr. High Librarians	12	32	26	36	29	30	48
Jr. -Sr. High Librarians	10	15	8	6	0	2	0
Specialized Personnel	51	72	56	74	65	72	330
School Superintendents	109	115	74	57	29	42	35
Number of Secondary School Buildings in Category	120	142	99	97	53	65	113

TABLE 17
Number of Different Teacher Preparations in Mathematics by District Enrollment Category*

	$0-$ $500-$ $750-$ $1000-$ $1500-$ $2000-$ 499 749 999 1499 1999	2999	Above				
Range	$1-6$	$1-6$	$1-6$	$1-6$	$1-4$	$1-5$	$1-5$
Mean	2.98	2.64	2.43	2.18	1.83	1.75	1.77
N-Count	166	229	4	191	156	179	357
Standard							
Deviation	1.53	1.40	1.15	1.11	.79	.83	.81

*Mathematics courses have CardPac ID numbers 4130-4940.
TABLE 18
Number of Different Teacher Preparations in Health by District Enrollment Category*

		$0-$	$500-$	$750-$	$1000-$	$1500-$	$2000-$
	499	749	999	1499	1999	2999	Above
Range	$1-1$	$1-2$	$1-1$	$1-1$	$1-1$	$1-1$	$1-3$
Mean	1.00	1.13	1.00	1.00	1.00	1.00	1.14
N-Count	4	8	4	8	6	5	14
Standard							
Deviation	.00	.32	.00	.00	.00	.00	.52

*Health Courses have CardPac ID numbers 5130-5140.
TABLE 19
Number of Different Teacher Preparations
in Physical Education by District Enrollment Category*

	$0-$	$500-$	$750-$	$1000-$	$1500-$	$2000-$	$3000 \&$
	499	749	999	1499	1999	2999	Above
Range	$1-6$	$1-6$	$1-4$	$1-6$	$1-6$	$1-3$	$1-4$
Mean	1.88	1.85	1.48	1.52	1.31	1.33	1.56
N-Count	91	117	93	86	65	60	68
Standard							
Deviation	.92	1.03	.68	.98	.78	.55	.88

*Physical Education Courses have CardPac ID numbers 5230-5940.

TABLE 23

Number of Different Teacher Preparations in Agriculture by District Enrollment Category*

	0^{-}	500^{-}	$750-$	$1000-$	1500^{-}	$2000-$	$3000 \&$
	499	749	999	1499	1999	2999	Above
Range	$1-5$	$1-5$	$1-4$	$1-4$	$2-6$	$1-4$	$1-3$
Mean	2.69	3.04	2.90	3.08	3.07	2.56	2.00
N-Count	26	47	42	38	15	18	6
Standard							
Deviation	1.07	1.06	.99	.87	1.18	.82	.57

*Agriculture courses have CardPac ID numbers 8130-8157.
TABLE 24
Number of Different Teacher Preparations in Homemaking by District Enrollment Category*

	$0-$	500^{-}	$750-$	$1000-$	1500^{-}	$2000-$	$3000 \&$
	499	749	999	1499	1999	2999	Above
Range	$1-6$	$1-6$	$1-5$	$1-4$	$1-4$	$1-4$	$1-4$
Mean	2.73	3.00	2.47	2.36	2.12	2.00	1.85
N-Count	95	116	87	72	50	55	103
Standard							
Deviation	1.10	1.27	1.18	.95	.82	.83	.78
*Homemaking courses have CardPac ID numbers $8230-8263$.							

TABLE 25
Number of Different Teacher Preparations in Industrial Education by District Enrollment Category*

	$0-$	500^{-}	750^{-}	1000^{-}	1500^{-}	2000^{-}	$3000 \&$
	499	749	999	1499	1999	2999	Above
Range	$1-5$	$1-6$	$1-6$	$1-5$	$1-4$	$1-6$	$1-6$
Mean	2.37	2.54	2.45	2.29	2.07	2.12	1.68
N-Count	46	65	49	51	57	59	157
Standard							
Deviation	1.24	1.41	1.41	1.17	.98	1.17	.87

*Industrial Education courses have CardPac ID numbers 8301-8397.

TABLE 29

Number of Different Teacher Preparations in Distributive Education by District Enrollment Category*

	$0-$	500^{-}	$750-$	$1000-$	$1500-$	$2000-$ 109 109	$3000 \&$ Above
	499	759	999	1499	1999	2999	
Range	0	0	0	$2-2$	0	$1-1$	$1-2$
Mean	.00	.00	.00	2.00	.00	1.00	1.40
N-Count	0	0	0	1	0	4	5
Standard							
Deviation	.00	.00	.00	.00	.00	.00	.49

*Distributive Education Courses have CardPac ID numbers 8750-8761.

SECTION II
SECONDARY CURRICULUM DISTRIBUTION IN IOWA

- The Iowa Educational Information Center collects curriculum information from 700 secondary school buildings, including junior high systems, as part of the CardPac System of Educational accounting. This system was introduced by the Iowa Educational Information Center on behalf of the State Department of Public Instruction and may be briefly described as an automated system of collecting and processing data for the practical use of the schools and the State Department of Public Instruction.

In Appendix A, a record of the CardPac course identification numbers is given. In describing the comparisons of Tables $30-45$, courses are combined within subject areas to give 17 broad subject areas. A description of which courses were combined and how the subject area is named in the tables follows:

Subject Area	Table Description	CardPac ID Course Numbers
Communications	Comm.	
Fine Arts	Arts	$1030-1940$
Foreign Language	Lang.	$2130-2247$
Mathematics	Math	$3130-3980$
Health	H1th.	$4130-4980$
Physical Education	PE	$5130-5140$
Science	Sci.	$5230-5940$
Social Studies	Soc.	$6140-6980$

Courses in distributive education and special education are not found at the small-district enrollment levels.

These tables enable administrators in Iowa to compare their school with all schools in the state that fall into the same enrollment category. Comparisons can also be made with schools in different categories. In some cases, while checking these tables, one will see a greater mean number of courses offered than for a school of the next higher enrollment category.

Example: High schools contained in the category "below 499" district enro11ment have a mean for mathematics course offerings of 6.27. If a school building administrator would like to check to see how his school ranks with the mean of other schools in mathematics, the administrator can compare his school with the following table:

$500-749$	6.50
$750-999$	6.17
$1000-1499$	6.03
$1500-1999$	5.71
$2000-2999$	5.73
$3000-$ above	6.62

The school buildings in "below 499" enrollment category have a higher mean than four other averages of school buildings in higher enrollment categories. By analyzing the comparison of mathematics offerings by district size, one would think that schools showing a mean of 6.27 offer a greater number of courses in mathematics. Some reasons for these differences might be: (1) in large schools the subject areas in mathematics have been combined into a more modern unified mathematics curriculum; (2) the course offerings may not be structured as algebra, geometry, trigonometry, etc. Rather, the courses might be struc-- tured as mathematics 9, mathematics 10, etc. Of course, other possibilities exist: These are given as illustrations.

At the local level, school personnel could find their high school mean for mathematics and compare it with the overall mean of 6.27 and use a simple chart like this to show their school mean in relation to all the other school means in t he State of Iowa. Administrators could also compute the mean of all the enrollment categories in each subject area and come up with a statewide mean in mathematics.

Example: The statewide mean for mathematics is 6.6. For all schools which have a mean of 6.6 a conclusion can be made that their school meets the average of the state in any school size in mathematics offerings.

This is an example of how administrators and other local school personnel can extract statistics from masses of raw data to compare their school or district with others on a statewide basis.

It is important to note that in the category "Health" very few schools, small or large, offer more than two offerings. This means that very few schools regardless of size offer many courses titled "Health." In checking "Physical Education" every enrollment category shows a larger mean. Perhaps the discrepancy is due to Health being taught as a part or section of Physical Education and not as a separate offering.

TABLE 31
Total Junior High School Curriculum Offerings by Size of District

No. of Offerings by Bldg.	Total District Enrollment						
	Below	$500-$	$750-$	1000-	$1500 \text { - }$	$2000-$	3000-
	499	749	999	1499	1999	2999	Above
181-200							
161-180					-		
141-160							
121-140							
101-120							
81-100							
61-80						5	32
41-60	1	4	3	9	9	18	38
21-40		20	25	29	15	9	5
1-20	1		1	1			
Total	2	24	29	39	24	32	. 75
Mean	31.5	34.0	30.2	$35.7{ }^{\circ}$	38.0	48.7	56.8
Std. Dev.	20.5	9.1	6.8	8.6	11. 2	11.8	10.3

```
            -21-
            TABLE }3
Junior High Curriculum Offerings by Subject Area
for Districts with Total Enrollment Below }49
```

No. of
Offer. Com. Arts Lang. Math Hlth. PE Sci. Soc. Agr. Home Indus. Bus. Voc. Tech. Mrkt. Spec. Driv.

```
1 7
16
15
1 4
1 3
12
11.
1 0
9
8
7
6 1
lllll
Tot. }\begin{array}{llllllll}{2}&{2}&{1}&{2}&{1}&{2}&{2}
Mn. 3.5 3.0 1.0 3.5
SD 2.3 1.2
```

$-23-$
TABLE 35

Junior High Curriculum Offerings by Subject Area for Districts with Total Enrollment 500-749

No. of
Offer. Com. Arts. Lang. Math Hlth. PE Sci. Soc. Agr. Home Indus. Bus. Voc. Tech. Mrkt. Spec. Driv.

17															
16															
15															
14															
13															
12															
11															
10	1														
9	1														
8		1													
7	1	1				1									
6	6	4				2		1							
5	6	3				2		1							
4	4	7		5		6		8							
3		2		4		2	8	3			4	1	1		
2	5	4	2	15		10	16	11			9	5	3		
1		2	7		1				1	6	7	14	9	3	
Tot.	24	24	9	24	3	23	24	24	1	6	20	20	13	3	1
Mn.	4.9	4.1	1.2	2.6	1.7	3.4	2.3	3.1	1.0	1.0	1.9	1.4	1. 4	1.0	1.0
SD	2.1	1.9	0.6	0.8	0.8	1.6	0.5	1. 2			0.8	0.6	0.8		

-25-
TABLE 37
Junior High Curriculum Offerings by Subject Area for Districts with Total Enrollment 750-999

No. of
Offer. Com. Arts. Lang. Math Hlth. PE Sci. Soc. Agr. Home Indus. Bus. Voc. Tech. Mrkt. Spec. Driv.

Junior High Curriculum Offerings by Subject Area for Districts with Total Enrollment 1000-1499

No. of
Offer. Com. Arts. Lang. Math Hlth. PE Sci. Soc. Agr. Home Indus. Bus. Voc. Tech. Mrkt. Spec. Driv.

17															
16															
15															
14															
13															
12															
11.															
10															
9	1														
8	2														
7	4	1				2									
6	11	3		1		8	1								
5	4	6		2		3						1			
4	10	12		14		19	5	4							
3	4	8	4	4		2	10	12			4	2			
2	2	7	4	17	4	4	21	21			16	15	4	1	
1.	1.	1	12	1	3		2	2	2	11	11	11	15	7	
Tot.	39	38	20	39	7	38	39	39	2	11	31	29	19	8	1
Mn.	5.0	3.7	1.6	3.1	1.6	4.4	2.6	2.5	1.0	1.0	1.8	1.8	1. 2	1.1	1.0
SD)	1.8	1.4	0.8	1. 2	0.6	1.3	1.0	0.8			0.7	0.9	0.5	0.4	

No. of
Offer. Com. Arts. Lang. Math Hlth. PE Sci. Soc. Agr. Home. Indus. Bus. Voc. Tech. Mrkt. Spec. Driv.

$$
\begin{gathered}
-31- \\
\text { TABLE } 43
\end{gathered}
$$

Junior High Curriculum Offerings by Subject Area

 for Districts with Total Enrollment 2000-2999No. of
Offer. Com. Arts. Lang. Math Hlth. PE Sci. Soc. Agr. Home. Indus. Bus. Voc. Tech. Mrkt. Spec. Driv.

17															
16															
15															
14.															
13															
12															
11															
10															
9	3	1													
8	3	1	1	2											
7	2	3		1		1									
6	10	5		3		9									
5	- 8	9		3		7									
4	5	9	2	11		9	. 6	4							
3	1	3	2	4		1	15	16			7	6		1	
2		1	11	8		3	11	12			12	13	3	1	
1			6		2	2			7	16	8	10	6	10	2
Tot.	32	32	22	32	2	32	32	32	7	16	27	29	9	12	2
Mn .	5.9	5.0	2. 3	4.0	1.0	4.5	2. 8	2.8	1.0 .	1.0	2.0	1.9	1.3	1.3	1.0
SD	1.6	1.5	1.6	1.7		1.6	0.8	0.7			0.8	0.8	0.5	0.7 .	

Junior High Curriculum Offerings by Subject Area for Districts with Total Enrollment 3000 and Above

No. of
Offer. Com. Arts. Lang.Math Hlth. PE Sci. Soc. Agr. Home Indus. Bus. Voc. Tech. Mrkt. Spec. Driv.

```
1 7
1.6
1 . 5
1 . 4
1 . 3
I2
II
10:
7
5
rrrrrrrrr
```



```
Mn. 5.6 5.8 3.5 3.5 4.5 1.4 5.0.0 3.2 3.1 
Mn. 5.6 5.8 3.5 3.5 4.5 1.4 5.0.0 3.2 3.1 
```

Tables 46-49 display innovation information for the accredited Iowa schools. It appears from Table 46 that PSSC Physics and Chemistry Study Group Chemistry are by far the most popular recently developed curricular programs that are being used. The most popular per-pupil cost category for finding curriculum innovations in Iowa is $\$ 500-\$ 649$.

Language Laboratories tend to be the most popular technological innovation in Iowa. The other technical innovations are not really used in any largescale way. This conclusion follows from the data in Table 47. The second most popular innovation is data processing equipment. Schools are beginning to use computerized grade reporting, attendance reporting, scheduling and business accounting. The most popular per-pupil cost range for technical innovation is $\$ 500-\$ 649$.

Table 48 indicates that accredited high schools using the "modern" curriculum innovations have an enrollment greater than 200. However, the number of high schools in Iowa with a population exceeding 1,500 is only about 20. Apparently, mathematics and physical science innovations are not nearly as popular as the physics and chemistry innovations. By comparing both Tables 46 and 48 it seems safe to conclude that the larger systems are not using the "modern" curriculum materials any more than the middle-sized systems. Apparently middle-sized systems are also typical with respect to per-pupil cost as we11. In other words, more money spent per pupil does not necessarily mean more innovative change in the curriculum.

A reading of Table 49 suggests that although language labs and data processing are the most popular innovations, high schools tend to have an enrollment of about 500 before data processing equipment is found. Also data processing equipment seems to be used more in high schools in the enrollment range of $500-1500$ than in the larger high schools. However, many large high schools may have a centralized data processing center at the board of education office. In addition Iowa has several area community colleges that provide processing services for the high schools. This may help account for the small number of large schools with their own equipment.

On the other hand, language laboratories tend to be proportionately more popular in smaller high schools than larger high schools. Schools with a moderate cost per pupil tend to have language laboratories more frequently than schools with hịgh or low cost per pupil.

Tables 50-53 display, respectively, the same data for the accredited secondary schools in Missouri. It is interesting to note that the same pattern that characterizes Iowa schools characterizes Missouri. However, in Iowa there are no accredited schools over 2,500 in size whereas in Missouri there are a few. Of course St. Louis and Kansas City have much larger schools than any city in Iowa. Even with this population difference, however, Iowa seems to have more data processing schools than Missouri. It appears from comparing Tables 47 and 51 that the per-pupil cost for innovative schools in Missouri tends to be lower than in Iowa. A greater proportion of the technical innovations in Missouri have a per-pupil cost of $\$ 350-\$ 499$ whereas in Iowa a smaller proportion of the technical innovations are found in this cost range.

The summaries for the accredited school sample from Nebraska are listed in Tables 54-57. A1though there appears to be a proportionately greater incidence of "modern" math in the schools, PSSC Physics and Chemistry Study Group Chemistry are again the more popular "modern". subjects in the curriculum. Language laboratories are the most popular technical innovation but unlike Missouri or Iowa,

The innovation tables at the end of this section (Tables 70-116) display further comparison information for the interested reader. The tables display the twenty-seven innovations by school size, per-pupil cost and district location.

SUMMARY

This section describes the technical, curricular, and organizational innovations being used in North Central accredited schools by state. It appears that the larger the school, the greater the chance for technological innovation. On the other hand, curricular innovations seem popular at all levels of enrollment. The most popular curriculum innovations are in physics and chemistry. The "modern" math and social studies programs apparently have not had as great an impact upon education as many educators might have anticipated. Language laboratories are popular in all states. Schools must make good use of this type of equipment for listening and recitation.

Schools in the Great Plains do not seem to be making much use of full-time organizational innovations. Most organizational innovations apart from the Student Exchange program have been adopted sparingly. Schools apparently are slow to adopt such changes as flexible scheduling and team teaching. Of course these changes are closely related to the adoption of data processing methods in the school. Perhaps in the near.future more schools will join with local banks or industry to share computer time.

As more schools adopt data processing methods, undoubtedly the popularity of scheduling, team teaching, cultural enrichment, and special study hall arrangements will become more popular. These organizational changes are simply difficult to plan without machine availability.

TABLE 47
Number of Technological Innovations Reported in Iowa
Accredited Public Secondary Schools by Pupil Expenditure
Total T. V. Prog. Teach. Lang. Data Tel.

Schools	Instr.	Instr.	Mach.	Lab	Proc.	Amp.	Gaming	Total			
N PC	N	PC	N								

Under \$350	4	125						3	75	1	25	1	25	1	25	6 1
\$350-499	37			1	3			22	59	3	8	2	5	2	5	30
		2	5	8	22	5	14	4	11	2	5	3	8	4	11	28
\$500-649	54					2	4	36	67	6	11			1	2	45
		1	2	12	22	6	11	4	7.	5	9	2	4	2	4	32
Over \$650	27	2	7					15	56	9	33	1.	4	1	4	28
		2	7	7	26	6	22	4	15	7	26			2	7	28
Totals$\begin{aligned} & \text { Full Use } \\ & \text { Lim. Use }\end{aligned}$																
		2	2	2	2	3	2	85	70	20	16	4	3	5	4	121
		5	4	37	30		16	14	11	15	12	6	5	9	7	105

-43-
TABLE 51
Number of Technological Innovations Reported in Missouri
Accredited Public Secondary Schools by Pupil Expenditure

	Total Schools	T. V。 Instr.	Prog. Instr.	Teach. Mach.	Lang. Lab	$\begin{aligned} & \text { Data } \\ & \text { Proc. } \end{aligned}$	Tel. Amp.	Gaming	Total
Under \$350	3	N PC	N PC	N PC	$\begin{array}{cc} \hline \mathrm{N} & \mathrm{PC} \\ 3 & 100 \end{array}$	N PC	$\begin{aligned} & \mathrm{N} P \mathrm{C} \\ & 133 \end{aligned}$	N PC	$\begin{aligned} & 3 \\ & 1 \end{aligned}$
\$350-499	52	$\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}$	$\begin{array}{rr}3 & 6 \\ 1631\end{array}$	$\begin{array}{rr}2 & 4 \\ 11 & 21\end{array}$	3465 917	$\begin{array}{ll}4 & 8 \\ 3 & 6\end{array}$	$\begin{array}{ll} 2 & 4 \\ 3 & 6 \end{array}$	$\begin{array}{rr} 5 & 10 \\ 4 & 8 \end{array}$	$\begin{aligned} & 51 \\ & 47 \end{aligned}$
\$500-649	36	$\begin{array}{ll} 7 & 19 \\ 4 & 11 \end{array}$	$\begin{array}{rr} 3 & 8 \\ 6 & 17 \end{array}$	$\begin{array}{ll} 1 & 3 \\ 3 & 8 \end{array}$	$\begin{array}{r} 27 \quad 75 \\ 3 \quad 8 \end{array}$	$\begin{array}{ll} 9 & 25 \\ 6 & 17 \end{array}$		$\begin{array}{ll} 1 & 3 \\ 2 & 6 \end{array}$	$\begin{aligned} & 48 \\ & 24 \end{aligned}$
Over \$650	14	$\begin{array}{rr} 1 & 7 \\ 2 & 14 \end{array}$	536		$\begin{array}{r} 1071 \\ 1 \end{array}$	$\begin{array}{ll} 4 & 29 \\ 4 & 29 \end{array}$		214	$\begin{aligned} & 15 \\ & 14 \end{aligned}$
Totals	105								
Full Use		99	66	33	8177	1918	22	66	. 126
Lim. Use		99	2726	1514	1413	1413	4.4	88	91

-45-
TABLE 53
Number of Technological Innovations Reported in Missouri Accredited Public Secondary Schools by Pupil Enrollment

Total T. V. Prog. Teach. Lang. Data Tel

| Schools | Instr. | Instr. | Mach. | Lab | Proc. | Amp. | Gaming | Total |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

-47-
TABLE 55
Number of Technological Innovations Reported in Nebraska
Accredited Public Secondary Schools by Per Pupil Expenditure
Total T.V. Prog. Teach. Lang. Data Tel.
Schools Instr. Instr. Mach. Lab Proc. Amp. Gaming Total

TABLE 59
Number of Technological Innovations Reported in South Dakota Accredited Public Secondary Schools by Pupil Expenditure

Total T. V. Progr. Teach. Lang. Data Tel. Schools Instr. Instr. Mach. Lab Proc. Amp. Gaming Total

Number of Technological Innovations Reported in South Dakota Accredited Public Secondary Schools by Pupil Enrollment									
	Total Schools	T. V. Instr.	Prog. Instr.	Teach. Mach.	Lang. Lab	Data Proc.	Tel. Amp.	Gaming	Total
		N PC							
Less than 200		214	429	$\begin{array}{rrr}1 & 7 \\ 2 & 14\end{array}$	429			1. 7	$\begin{array}{r} 2 \\ 12 \end{array}$
200-499	34	2. 6	4112 515	618	$\begin{array}{ll}7 & 21 \\ 6 & 18\end{array}$	26	1.3	2 2	$\begin{aligned} & 15 \\ & 22 \end{aligned}$
500-1499	11	19	218 545	19	$\begin{array}{ll}3 & 27 \\ 3 & 27\end{array}$	$\begin{array}{ll}3 & 27 \\ 3 & 27\end{array}$			$\begin{array}{r} 9 \\ 12 \end{array}$
1500-2499									$\begin{aligned} & 0 \\ & 0 \end{aligned}$
Over 2500	2	150			2100	2100	150	150	$\begin{aligned} & 4 \\ & 3 \end{aligned}$
Totals	60								
Full Use		47	610	1.2	1220	35	12	35	30
Lim. Use		23	1423	915	1322	712	12	35	49

TABLE 63

Number of Organizational Innovations Reported in Iowa Accredited Public Secondary Schools by Pupil Enrollment

	Less Than 200	$\begin{aligned} & 200- \\ & 499 \end{aligned}$	$\begin{aligned} & 500- \\ & 1499 \end{aligned}$	$\begin{aligned} & 1500- \\ & 2499 \end{aligned}$	$\begin{aligned} & \text { Over } \\ & 2500 \end{aligned}$
No. of Schools	6	66	34	15	
Flexible Scheduling		$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\frac{1}{1}$		
Team Teaching	1	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} 4 \\ 11 \end{array}$	$\begin{aligned} & 7 \\ & 4 \end{aligned}$	
College Credit Courses		$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	
Non-graded School			$\begin{aligned} & 2 \\ & 1 \end{aligned}$	1	
Teacher Aides	1	$\begin{array}{r} 7 \\ 11 \end{array}$	$\begin{array}{r} 4 \\ 10 \end{array}$	$\begin{aligned} & 9 \\ & 1 \end{aligned}$	
Honor Study Halls	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 3 \\ & 8 \end{aligned}$	$\begin{aligned} & 4 \\ & 6 \end{aligned}$	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	
Work-Study Program	1	$\begin{aligned} & 17 \\ & 11 \end{aligned}$	$\begin{array}{r} 16 \\ 8 \end{array}$	$\begin{array}{r} 13 \\ 1 \end{array}$	
School-within-a-School					
Cultural Enrichment		$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & 3 \\ & 6 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	
Student Exchange	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{array}{r} 15 \\ 7 \end{array}$	$\begin{array}{r} 27 \\ 1 \end{array}$	$\begin{array}{r} 11 \\ 4 \end{array}$	
Optional Class Attendance				1	
Extended School Year		$\begin{aligned} & 1 \\ & 1 \end{aligned}$			
Totals Full Time Limited Time	$\begin{aligned} & 2 \\ & 6 \end{aligned}$	$\begin{aligned} & 52 \\ & 50 \end{aligned}$	$\begin{aligned} & 67 \\ & 48 \end{aligned}$	$\begin{aligned} & 45 \\ & 22 \end{aligned}$	

TABLE 65
Number of Organizational Innovations Reported in Missouri Accredited Public. Secondary Schools by Pupil Enrollment

	Less Than 200	$\begin{aligned} & 200- \\ & 499 \\ & \hline \end{aligned}$	$\begin{aligned} & 500- \\ & 1499 \end{aligned}$	$\begin{aligned} & 1500- \\ & 2499 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Over } \\ & 2500 \end{aligned}$
No. of Schools	3	24	40	22	5
Flexible Scheduling				1	
			2		1
Team Teaching			4	8	2
			14	16	2
College Credit Courses		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 6 \\ & 3 \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	2
Non-graded School					
			2	2	1
Teacher Aides	1	5	5	4	1
		5	10		1
Honor Study Halls		2		1	1
		2	5	4.	1
Work-Study Program		6	26	23	5
		8	8	5	1
School-within-a-School					
				1	1.
Cultural Enrichment		2	4	1	1
		4	3	8	1
Student Exchange		3	11	17	3
			6	2	1
Optional Class Attendance					1
			1		1
Extended School Year			4	1	1.
		1			
Totals Full Time	1	19	60	61	17
Limited Time		21.	54	44	11

TABLE 67
Number of Organizational Innovations Reported in Nebraska Accredited Public Secondary Schools by Pupil Enrollment

	Less Than 200	$\begin{aligned} & 200- \\ & 499 \end{aligned}$	$\begin{aligned} & 500- \\ & 1499 \end{aligned}$	$\begin{aligned} & 1500- \\ & 2499 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Over } \\ & 2500 \end{aligned}$
No. of Schools	20	54	18	12	1
Flexible Scheduling		1			
	2	1		1	
Team Teaching	1		2	1	
	4	11	10	2	1
College Credit Courses	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	4	2 3	3	
Non-graded School					
	1	1			
Teacher Aides	2	3		3	
	2	9	5		
Honor Study Halls	1	2	4		
	1	11	6	2	
Work-Study Program	2	12	5	6	1
	6	21.	6		
School-within-a-School					
Cultural Enrichment		3	1	1	
	6	11		1	
Student Exchange		14	9	5	
	2	4	2		
Optional Class Attendance		1		2	
Extended School Year		3	1.		
	3	2	1		
Totals Full Time	7	38	24	21.	1
Limited Time	29	76	33	6	1.

TABLE 69
Number of Organizational Innovations Reported in South Dakota Accredited Public. Secondary Schools by Pupil Enrollment

	Less Than 200	$\begin{aligned} & 200- \\ & 499 \\ & \hline \end{aligned}$	$\begin{aligned} & 500- \\ & 1499 \end{aligned}$	$\begin{aligned} & 1500- \\ & 2499 \end{aligned}$	$\begin{aligned} & \text { Over } \\ & 2500 \end{aligned}$
No. of Schools	14	34	11.		1
Flexible Scheduling					
		2	1		1
Team Teaching			1		1
		6	2		
College Credit Courses		1			
		2	2		
Non-graded School		1			
		1			
Feacher Aides	1.	2			
	3	9	1		
Honor Stucly Halls					
	1	5	2		1
Work-Study Program		2	2		1
		5	2		
School-within-a-School					
Cultural Enrichment			1		
		5	2		1
Student Exchange		6	5		1
	3	2			
Optional Class Attendance					
	1	1			
Extended School Year					
		3			1
Totals Full Time	1	12	9		3
Limited Time	8	41	12		4

TABLE 71

Comparison of Inmovations in Public Accredited Secondary Schools in Rural Areas with Under 200 Pupils with $\$ 350-499$

Pupil Expenditure for 1966-67 School Year

State	Iowa		Nebraska	Missouri	S. Dakota		
No. of Schools				2			5
	Full	Lim.	Full	Lim.	Full Lim.	Full	Lim.
Innovation	Use						

PSSC Physics
Chem. Study
CBA Chem.
SMSG Math
UICSM Math
ECSP Phys Sci. 1
SSSP Phys. Sci.
Humanities
T. V. Instr.

Program. Instr. 1
Teach. Mach. 2 . 1
Lang. Lab
1.

Data Proc.
Telephone Amp.
Gaming
Flex. Sched.
Team Teach.
College Crs.
Non-graded
Teach. Aides
1

Hon. St. Hall
Work-Study
1
1.

Sch. -in-Sch.
Cult. Enrich.
Stu. Exchange
1

Opt. Attend.1

Ext. Sch. Yr.

Totals	2	7	1	6
Mean	\therefore	1.0	3.5	.2
1.2				

TABLE 73
Comparison of Innovations in Public Accredited Secondary Schools in Rural Areas with 500-1499 Pupils with \$350-499 Pupil Expenditure for 1966-67 School Year

| State | Iowa | Nebraska | Missouri | S. Dakota | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| No. of Schools | | 2 | | | | | 1 |
| | Full | Lim. | Full Lim. | Full | Lim. | Full | Lim. |
| Innovation | Use Use | Use Use | Use | Use | Use | Use | |

PSSC Physics
1
Chem. Study
CBA Chem.
SMSG Math 1
UICSM Math
ECSP Phys. Sci. 1
SSSP Phys. Sci.
Humanities
T. V. Instr.

Program. Instr.
2
Teach. Mach.
Lang. Lab 2
Data Proc.
$\begin{array}{lll}\text { Telephone Amp. } & 1 & 1 \\ \text { Gaming } & 1 & \end{array}$
Flex. Sched. 1
Team Teach. 1
College Crs. 1
Non-graded
Teach. Aides 1. 1
Hon. St. Hall
Work-Study 1
Sch. -in-Sch.
Cult. Enrich. 1
Stu. Exchange 1
Opt. Attend.
Ext. Sch. Yr.
Totals
$9 \quad 10$
Mean
$4.5 \quad 5.0$
2.0

Comparison of Innovations in Public Accredited Secondary Schools in Rural Areas with 200-499 Pupils with \$500-649

Pupil Expenditure for 1966-67 School Year

TABLE 77

Comparison of Innovations in Public Accredited Secondary Schools in Rural Area with Under 200 Pupils with Over $\$ 650$

Pupil Expenditure for 1966-67 School Year

State	Iowa	Nebraska	Missouri	S. Dakota			
No. of Schools		1		3			
	Full	Lim.	Full	Lim.	Full	Lim.	Full
Innovation	Use	Use.	Use	Use	Use	Use	Use

PSSC Physics
Chem. Study
CBA Chem.
SMSG Math
UICSM Math
ECSP Phys. Sci.
SSSP Phys. Sci.
Humanities
T. V. Instr. 2

Program. Instr. 1
Teach. Mach. 1
Lang. Lab 1
Data Proc.
Telephone Amp.
Gaming
Flex. Sched.
1
Team Teach.
College Crs.
Non-graded
Teach. Aides
Hon. St. Hall
Work-Study 1
Sch. -in-Sch.
Cult. Enirich.
1
Stu. Exchange
Opt. Attend.
Ext. Sch. Yr.1

Totals 18
Mean
. $3 \quad 2.7$

TABLE 79
Comparison of Innovations in Public Accredited Secondary Schools
in Rural Areas with 500-1499 Pupils with Over $\$ 650$
Pupil Expenditure for 1966-67 School Year

State	Iowa	Nebraska	Missouri		S. Dakota			
No. of Schools		1						
	Full	Lim.	Full Lim.	Full Lim.	Full Lim.			
Innovation	Use							

PSSC Physics
Chem. Study
CBA Chem.
SMSG Math 1
UICSM Math
ECSP Phys. Sci.
SSSP Phys. Sci.
Humanities
T. V. Instr.

Program. Instr.
Teach. Mach.
Lang. Lab
Data Proc.
1
Telephone Amp.
Gaming
Flex. Sched,
Team Teach
College Crs.
Noin-graded
Teach. Aides
Hon. St. Hall
Work-Study
Sch. -in-Sch.
Cult. Enrich 1
Stu. Exchange 1
Opt. Attend.
Ext. Sch. Yr.
Totals 23
Mean $\quad 2.0 \quad 3.0$

TABLE 81

Comparison of Imnovations in Public Accredited Secondary Schools in Towns of 5, 000 or Under with Under 200 Pupils with $\$ 350-499$

Pupil Expenditure for 1966-67 School Year

State	Iowa		Nebraska		Missouri		S. Dakota	
No. of Schools		1		2		1		5
Innovation	Full Use	Lim. Use.	Full Use	Lim. Use	Full Use	$\begin{aligned} & \text { Lim. } \\ & \text { Use } \end{aligned}$	$\begin{aligned} & \text { Full } \\ & \text { Use } \end{aligned}$	$\begin{aligned} & \text { Lim. } \\ & \text { Use } \end{aligned}$
PSSC Physics	1	2		1			1	
Chem. Study						1	1	
CBA Chem.				1				1
SMSG Math								
UICSM Math								
ECSP Phys. Sci.								
SSSP Phys. Sci.								
Humanities				1				
T. V. Instr.				1				1
Program. Instr.				1				1
Teach. Mach.				,				1
Lang. Lab			1	1		1		3
Data Proc.		1						
Telephone Amp.								
Gaming				1				
Flex. Sched.				1				
Team Teach.			1					
College Crs.				1				
Non-graded				1				
- Teach. Aides							1	
Hon. St, Hall								
Work-Study				1				
Sch. -in-Sch.								
Cult. Enrich.				1				
Stu. Exchange								1
Opt. Attend.								
Ext. Sch. Yr.								
Totals	1	3	2	14		2	3	8
- Mean	1.0	3.0	1.0	7.0		2.0	. 6	1.6

TABLE 83

Comparison of Innovations in Public Accredited Secondary Schools in Towns of 5,000 or Under with 500-1499 Pupils with $\$ 350-499$ Pupil Expenditure for 1966-67 School Year

$\frac{\text { State }}{\text { No. of Schools }}$	Iowa		Nebraska		Missouri		S. Dakota	
		1		1		4		1
Innovation	Full Use	Lim. Use						
PSSC Physics Chem. Study								
CBA Chem.								
SMSG Math								
UICSM Math								
ECSP Phys. Sci.								
SSSP Phys. Sci.								
Humanities								
Television								
Program. Instr. 1								
Teach. Mach. 1								
Lang. Lab 2								
Data Proc.								
Telephone Amp. . 1								
Gaming ... 1.								
Flex. Sched.								
Team Teach. 1								
College Crs.								
Non-graded								
- Teach. Aides		1				2		
Hon. St. Hall								
Work-Study					2	1		
Sch. -in-Sch.								
Cult. Enrich.								
Stu. Exchange 1								
Opt. Attend.								
Ext. Sch. Yr.								
Totals		3	1		11	6		
Mean		3.0	1.0		2.8	1. 5		

TABLE 85

Comparison of Innovations in Public Accredited Secondary Schools in Towns of 5,000 or Under with 200-499 Pupils with \$500-649 Pupil Expenditure for 1966-67 School Year

State	Iowa		Nebraska		Missouri		S. Dakota	
No. of Schools	15		19		4		3	
Innovation	Full Use	Lim. Use	Full Use	Lim. Use	Full Use	Lim. Use	Full Use	Lim. Use
PSSC Physics	3	3	5	2	1		1	
Chem. Study	1	1	3	2	1		1	
CBA Chem	1		1	2				1
SMSG Math	2		1	4				
UICSM Math				2				
ECSP Phys. Sci.		1						
SSSP Phys. Sci.								
Humanities								
T. V. Instr.		1	4	1	1			
Program. Instr.		4		4	1	1.		
Teach. Mach.	1	1		3	1	1.		
Lang. Lab	8	2	6	2	1	1	1	
Data Proc.	2	2						
Telephone Amp.		1						
Gaming		1	1					
Flex. Sched.		1.		1				
Team Teach.				3				
College Crs.	1						1	
Non-graded								
Teach. Aides	1	2		2	1	2		1
Hon. St. Hall		3	2	6	1			
Work-Study	3	2	5	6	1	2		
Sch. -in-Sch.								
Cult. Enrich.	1		1	5	1	1		
Stu. Exchange	2	3	4	2				
Opt. Attend.								
Ext. Sch. Yr.	1		1	1		1		
Totals	27	28	34	48	10	9	4	2
Mean	1. 8	1.9	1. 8	2. 5	2.5	2.3	1.3	. 7

TABL:E 87
Comparison of Innovations in Public Accredited Secondary Schools in Towns of 5,000 or Under with Under 200 Pupils
with Over $\$ 650$ Pupil Expenditure for 1966-67 School Year

State	Iowa	Nebraska	Missouri	S. Dakota
No. of Schools	1	5		

PSSC Physics
Chem. Study
CBA Chem.
SMSG Math
UICSM Math
ECSP Phys. Sci.
SSSP Phys. Sci.
Humanities
T.V.Instr. 1

Program. Instr. $\quad 1$
Teach. Mach.
Lang. Lab 1
1
Data Proc.
Telephone Amp.
Gaming
Flex. Sched.
Team Teach.
1 2
College Crs.
Non-graded
Teach. Aides
Hon. St. Hall 1
Work-Study
2
Sch. -in-Sch.
Cult. Enrich.
Stu. Exchange 2
Opt. Attend.
Ext. Sch. Yr.

Totals	1	2	2	9
Mean	1.0	2.0	.4	1.8

TABLE 89

Comparison of Innovations in Public Accredited Secondary Schools in Cities of 5, 000-399, 999 with 500-1499 Pupils with Under $\$ 350$ Pupil Expenditure for 1966-67 School Year

State	Iowa		Nebraska		Missouri		S. Dakota	
No. of Schools		2			1			
	Full	Lim.	Full Lim.	Full	Lim.	Full	Lim.	
Innovation	Use							

PSSC Physics
Chem. Study
CBA Chem.
SMSG Math
UICSM Math
ECSP Phys. Sci.
SSSP Phys. Sci.
Humanities
T. V. Instr.

Program Instr.
Teach. Mach.
Lang. Lab 1
Data Proc. 1
Telephone Amp. 1
Gaming 1
Flex. Sched.
Team Teach. 1
College Crs.
Non-graded
Teach. Aides
Hon. St. Hall
Work-Study 1 1
Sch. -in-Sch.
Cult. Enrich.
Stu. Exchange 2
Opt. Attend.
Ext. Scḥ. Yr.

Totals	9	2
Mean	4.5	2.0

TABLE 91
Comparison of Innovations in Public Accredited Secondary Schools in Cities of 5000-399,999 with 200-499 Pupils with $\$ 350-499$ Pupil Expenditure for 1966-67 School Year

State	Iowa		Nebraska		Missouri		S. Dakota	
No. of Schools		1		4		2		1
Innovation	Full Use	Lim. Use	Full Use	Lim. Use	Full Use	Lim. Use	Full Use	Lim. Use
PSSC Physics				1	1			1
Chem. Study		1			1			
CBA Chem.				1				
SMSG Math				2				
UICSM Math								
ECSP Phys. Sci.								
SSSP Phys. Sci.								.
Humanities								
T. V. Instr.			1	1				
Program. Instr.				1		1		
Teach. Mach.								
Lang. Lab	1		1	1	1	1		
Data Proc.								
Telephone Amp.						1		
Gaming				2				
Flex. Sched.								
Team Teach.				1				
College Crs.				1				
Non-graded								
Teacher Aides				1.	1			
Hon. St. Hall				1		1		1
Work-Study		1	1	2		1		1
Sch. -in-Sch.								
Cult. Enrich.		1						1
Stu, Exchange	1		2		1			
Opt. Attend.								
Ext. Sch: Yr.								
Totals	2	3	5	15	5	5		4
Mean	2.0	3.0	1.3	3.8	2.5	2.5		4.0

TABLE 93

Comparison of Imnovations in Public Accredited Secondary Schools in Cities of 5, 000-399, 999 with 1500-2499 Pupils and $\$ 350-499$ Pupil Expenditure for 1966-67 School Year

State	Iowa		Nebra	aska	Miss	Ouri	S.Dakota
No. of Schools		5		1		2	
Innovation	Full Use	Lim. Use	Full Use	Lim. Use	Full Use	Lim. Use	Full Lim. Use Use
PSSC Physics	1	3			-		
Chem. Study	3						
CBA Chem.		1			1		
SMSG Math	2	2					
UICSM Math							
ECSP Phys. Sci.							
SSSP Phys. Sci.							
Humanities	1	1					
T. Vo. Instr.				1			
Program. Instr.		2		1		1	
Teach. Mach.		1					
Lang. Lab	4		1		2		
Data Proc.	1	1		1			
Telephone Amp.		1		1			
Gaming		1			2		
Flex. Sched.							
Team Teach.	2	2					
College Crs.		1					
Non-graded							
Teach. Aides	3				1		
Hon. St. Hall		2				1	
Work-Study	4		1		1		
Sch. -in-Sch.							
Cult. Enrich.	1	1		1			
Stu. Exchange	4	1			1		
Opt. Attend.		1				-	
Ext. Sch. Yr.							
Totals	26	21	2	5	8	2	
Mean	5.2	4.2	2.0	5.0	4.0	1.0	。

TABLE 95
Comparison of Innovations in Public Accredited Secondary Schools in Cities of 5, 000-399, 999 with 200-499 Pupils with $\$ 500-649$ Pupil Expenditure for 1966-67 School Year

State	Iowa		Nebra	aska	Missouri	S. Da	kota
No. of Schools		9		3			2
	Full Use	Lim. Use	Full Use	Lim. Use	Full Lim. Use Use	Full Use	Lim. Use
Innovation	Use	Use	Use	Use	Use Use	Use	Use
PSSC Physics	2			1			1
Chem. Study		3		2			
CBA Chem.	1						
SMSG Math		1	1				
UICSM Math							
ECSP Phys. Sci.		1					
SSSP Phys. Sci.							
Humanities							
T. V. Instr.			1	1			
Program. Instr.		2		1			1
Teach. Mach.		1		1			
Lang. Lab	7	.	3			2	
Data Proc.	1	1		1			1
Telephone Amp.							
Gaming							
Flex. Sched.	1						
Team Teach.		1		1			1
College Crs.							1
Non-graded						1	
Teach. Aides	1	1		1			
Hon. St. Hall	1	1					1
Work-Study	5			1		1	
Sch. -in-Sch.							
Cult. Enrich.		1		1			
Stu. Exchange	5		3		,		
Opt. Attend							1
Ext. Sch, Yr.	*		2				
Totals	24	13	10	11		4	7
Mean	2.7	1. 4	3.3	3.7		2.0	3.5

TABLE 97
Comparison of Innovations in Public Accredited Secondary Schools in Cities of 5, 000-399, 999 with 1500-2499 Pupils with $\$ 500-649$

Pupil Expenditure for 1966-67 School Year

State	Iowa		Nebraska		Missouri		S. Dakota
No. of Schools		4		3		4	
Innovation	Full Use	$\begin{aligned} & \text { Lim. } \\ & \text { Use } \end{aligned}$	Full Use	Lim. Use	Full Use	Lim. Use	Full Lim Use Use
PSSC Physics			3			1.	
Chem. Study	3		1		2		
CBA Chem.				1		1	
SMSG Math						1.	
UICSM Math							
ECSP Phys. Sci.							
SSSP Phys. Sci.							
Humanities	1		2		3		
T. V. Instr.			2	I			
Program. Instr.				1		1	
Teach. Mach.			1				
Lang. Lab	4		3		3		
Data Proc.		1	2		2	1	
Telephone Amp.							
Gaming			1				
Flex. Sched.				1			
Team Teach.			1		1	2	
College Crs.		1	2			2	
Non-graded							
Teach. Aides		1	2				
Hon. St. Hall		1		1			
Work-Study	4		3		2	2	
Sch. -in-Sch.							
Cult. Enrich.	1		1			2	
Stu. Exchange	2	2	3		2		
Opt. Attend.			2				
Ext. Sch. Yr.							
Totals	17	6	29	5	1.5	14	
Mean	4.3	1. 5	9.7	1.7	3.6	3.5	

TABLE 99
Comparison of Innovations in Public Accredited Secondary Schools in Cities of 5, 000-399, 999 with 200-499 Pupils with Over $\$ 650$ Pupil Expenditure for 1966-67 School Year

State	Iowa	Nebraska	Missouri	S. Dakota			
No. of Schools		2					
	Full	Lim.	Full	Lim.	Full	Lim.	Full
Innovation	Use						

TABLE 101
Comparison of Innovations in Public Accredited Secondary Schools in Cities of 5, 000-399, 999 with 1500-2499 Pupils with Over $\$ 650$ Pupil Expenditure for 1966-67 School Year

State	Iow		Nebraska	Missouri	S. Dakota
No. of Schools		6			
Innovation	Full Use	Lim. Use	Full Lim. Use Use	Full Lim. Use Use	Full Lim. Use Use
PSSC Physics	3	2			
Chem. Study	3	2			
CBA Chem.		1			
SMSG Math		2			
UICSM Math					
ECSP Phys. Sci.		1			
SSSP Phys. Sci.					
Humanities		1			
T. V. Instr.	2	2			
Program. Instr.		1			
Teach. Mach.		2			
Lang. Lab	5				
Data Proc.	4	2			
Telephone Amp.					
Gaming	1				
Flex. Sched.					
Team Teach.	4	2			
College Crs.	2	2			
Non-graded					
Teach. Aides	5				
Hon. St. Hall					
Work-Study					
Sch. -in-Sch.					
Cult. Enrich		2			
Stu. Exchange	4	1			
Opt. Attend.					
Ext. Sch. Yr.					
Totals	33	23			
Mean	5.5	3.8			

TABLE 103
Comparison of Innovations In Public Accredited Secondary Schools In Cities of 400, 000 + With $1500-2499$ Pupils With $\$ 500-649$

Pupil Expenditure for 1966-67 School Year

State	Iowa	Nebraska	Missouri	S. I	Dakota
No. of School Full Lim.		5			
		Full Lim.	Full Lim.	Fu	Lim.
Innovation	Use Use	Use Use	Use Use	Use	Use
PSSC Physics2					
CBA Chemistry					
SMSG Math 3					
UICSM Math					
ECSP Phys. Sci.					
SSSP Phys. Sci.					
Humanities					
T.V. Instr.			21		
Program. Instr. . 1					
Teach. Mach.					
Lang. Lab . 5					
Data Proc.			31.		
Telephone Amp.					
Gaming					
Flex. Sched.					
Team. Teach.			22		
College Crs.			11		
Non-graded					
Teach. Aides					
Hon. St. Hall					
Work-Study			21		
Sch. -in-Sch.					
Cult. Enrich.			1		
Stu. Exchange			4		
Opt. Atten.					
Ext. Sch. Yr.					
Total			29.9		
Mean			5.81 .8		

TABLE 105

Comparison of Innovations In Public Accredited Secóndary Schools In Cities of 400, $000+$ With 1500-2499 Pupils With Over $\$ 650$ Pupil Expenditure for 1966-67 School Year

State	Iowa	Nebraska	Misis	ouri	S. D	kota
No. of School			6			
Innovation	Full Lim. Use Use	Full Lim. Use Use	Full Use	Lim. Use	Full Use	Lim. Use
PSSC. Physics			1	3		
Chem. Study				1		
CBA Chemistry				1		
SMSG Math						
UICSM Math						
ECSP Phys. Sci.			1			
SSSP Phys. Sci.						
Humanities				1		
T. V. Instr.				1		
Program. Instr.				1		
Teach. Mach.						
Lang. Lab			5			
Data Proc.			2	3		
Telephone Amp.						
Gaming						
Flex. Sched.						
Team. Teach.						
College Crs.				5		
Non-graded			1	1		
Teach. Aides						
Hon. St. Hall						
Work-Study			6			
Sch. - in- Sch.						
Cult. Enrich.				1		
Stu. Exchange				1		
Opt. Atten.						
Ext. Sch. Yr.						
Totals			16	19		
Mean			2.7	3.2		

TABLE 107

Comparison of Innovations in Public Accredited Secondary Schools
In Suburban Areas With 200-499 Pupils With \$350-499 Pupil Expenditure for 1966-67 School Year

State	Iowa		Nebraska	Missouri	S. Dakota		
No. of School	1				1		
	Full Lim.	Full Lim.	Full Lim.	Full Lim.			
Innovation	Use Use	Use Use	Use Use	Use Use			

PSSC Physics
Chem. Study
CBA Chemistry
SMSG Math 1
UICSM Math
ECSP Phys. Sci.
1

SSSP Phys. Sci.
Humanities
T. V. Instr.

Program.Instr. 1
Teach. Mach.
Lang.Lab 1
Data Proc.
Telephone Amp.
Gaming
1
Flex. Sched.
Team Teach.
College Crs.
Non-graded
Teach. Aides 1
Hon. St. Hall
Work-Study 1 1
Sch. -in-Sch.
Cult. Enrich.
Stu. Exchange
Opt. Atten.
Ext.Sch.Yr.

Totals	3	1	8
Mean	3	1	8

TABLE 109
Comparison of Innovations In Public Accredited Secondary Schools In Suburban Areas With 1500-2499 Pupils With $\$ 350-499$ Pupil

Expenditure for 1966-67 School Year

TABLE 111

Comparison of Innovations In Public Accredited Secondary Schools
In Suburban Areas With 200-499 Pupils With $\$ 500-649$ Pupil
Expenditure for 1966-67 School Year

| State | Iowa | Nebraska | Missouri | S. Dakota | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| No. of School | 1. | | | | |
| | Full Lim. Full Lim. | Full Lim. | Full Lim. | | |
| Innovation | Use Use | Use Use | Use Use | Use Use | |

PSSC Physics
Chem. Study
CBA Chemistry
SMSG Math
UICSM Math
ECSP Phys. Sci.
SSSP Phys. Sci.
Humanities
T. V. Instr.

Program.Instr.
Teach. Mach.
Lang. Lab 1
Data Proc.
Telephone Amp. Gaming
Flex. Sched.
Team Teach.
College Crs.
Non-graded
Teach. Aides
Hon. St.Hall 1
Work-Study
Sch. -in-Sch.
Cult. Enrich.
Stu. Exchange
Opt. Atten.
Ext. Sch. Yr.
Totals 2
Mean
2

TABLE 113
Comparison of Innovations In Public Accredited Secondary Schools In Suburban Areas With 1500-2499 Pupils With \$500-649

Pupil Expenditure for 1966-67 School Year

State	Iowa	Nebraska	Miss	ouri	S. Dakota
No. of School		7			
Innovation	Full Lim. Use Use	Full Lim. Use Use	Full Use	Lim. Use	Full Lim.
PSSC Physics			4	1	
Chem. Study			3		
CBA Chemistry					
SMSG Math			1		
UICSM Math					
ECSP Phys. Sci.					
SSSP Phys. Sci.					
Humanities			1	1	
T. V. Instr.			1		
Program.Instr.				1	
Teach. Mach.					
Lang. Lab			7		
Data Proc.			2	1	
Telephone Amp.					
Gaming		.		1	
Flex. Sched.			1		
Team Teach.			3	2	
College Crs.			2	2	
Non-graded				1	
Teach. Aides			1		
Hon. St. Hall			1	2	
Work-Study			6	1	
Sch.-in-Sch.					
Cult. Enrich.				2	
Stu. Exchange			5		
Opt. Atten.					
Ext. Sch.Yr.					
Totals			38	15	
Mean			5.4	2.1	

TABLE 115
Comparison of Innovations in Public Accredited Secondary Schools In Suburban Areas With 200-499 Pupils With Over $\$ 650$ Pupil

Expenditure for 1966-67 School Year

| State | Iowa | Nebraska | Missouri | S. Dakota | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| No. of School | | | | 2 | | |
| | Full Lim. | Full Lim. | Full Lim. | Full Lim. | | |
| Innovation | Use Use | Use Use | Use Use Use Use | Use Use | | |

PSSC Physics
Chem. Study
CBA Chemistry
SMSG Math
UICSM Math
ECSP Phys. Sci.
SSSP Phys. Sci.
Humanities
11
T. V. Instr.

Program. Instr
1
Teach. Mach.
Lang. Lab
Data Proc.
Telephone Amp.
Gaming
Flex. Sched.
Team Teach.
College Crs.
Non-graded
Teach. Aides
Hon. St. Hall
Work-Study
Sch.-in-Sch.
Cult. Enricin.
Stu. Exchange
Opt. Atten.
Ext. Sch. Yr.

Totals	3	3
Mean	1.5	1.5

SCHOOL FOOD SERVICE AND
\title{ SCHOOL DISTRICT ORGANIZATION }
by
\section*{Vern Carpenter}
\title{ School Lunch Consultant-Auditor Department of Public Instruction Des Moines, Iowa 50309 }
Reviewed by
E. E. Cowan, Chief School Lunch Section Department of Public Instruction Des Moines, Iowa 50309

March 11, 1968

```
The Great Plains School District Organization Project
    Iowa, Missouri, Nebraska, South Dakota
            4 1 1 \text { South 13th Street}
                Lincoln, Nebraska
                    6 8 5 0 8
```

TABLE OF CONTENTS
Foreword 1
Problem 2
Needy Boys and Girls 4
How Needy Children Live. 4
Federal Government Legislation 7
Food Is Basic 7
Special-Assistance Food Programs 8
Free and Reduced-Price Lunches 10
Breakfast Programs 11
Equality 13
Tender Loving Care 13
Nutrition 13
Government-Donated Commodities 14
Suggested Organization 15
Recommendations 15
Summary 16

Hungry children at school should receive increased attention from educators. Much has been written about the fact that a hungry child cannot do his best in school. One assistant superintendent in a large city in Iowa said, "There is nothing to be gained from having a hungry child sit down at an expensive teaching machine because he will not learn. He is hungry."

The primary purposes of school district organization are to make possible: (1) the desired quality or excellence of the programs and services; (2) the efficiency of the organization for providing the programs and services; and (3) the economy of operation, or the returns received for the tax dollar invested in education. ${ }^{1}$

In Iowa, we consider school district reorganization to have been successful. Improvements in education have been made, and further improvements will be made. Leadership is needed. Food service programs should be expanded to all schools. The word "expansion" is not identical in meaning with the word "leadership"; hopefully, the two will be synergistic, i. e., their cooperative efforts will result in more benefits than will their individual contributions.

The value of this paper in future years, if any, would result in direct benefits to our nation's school boys and girls, both needy and non-needy. Shouldn't we feed the hungry child before we try to educate him?

Respectfully submitted,
Vern Carpenter
School Lunch Consultant-Auditor
Department of Public Instruction State of Iowa
March 11, 1968
${ }^{1}$ This paragraph was written by Ralph D. Purdy, Director, Great Plains School District Organization Project, Lincoln, Nebraska.

POSITION PAPER

SCHOOL FOOD SERVICES--A Pupil-Oriented Service.
(School Lunch Program, School Breakfast Program, midmorning and midafternoon snacks.)

PROBLEM

In Iowa's public schools, as is true in most states, so far as the school lunch program is concerned, the HAVES have it and the HAVE-NOTS have not it.

In Iowa an estimated 95,460 pupils attend public schools that have no food service. This is about 15 percent of the total enrollment of 638,000 . Most of these schools are located in Iowa's largest cities. Probably 99% are elementary pupils.

Within some of the areas where these schools are located, one would fine large numbers of families receiving public assistance and large concentrations of economically needy pupils. Many of these are Title I, ESE Act target schools, and a number of them have or have had Head Start Programs. Unfortunately, many of these are needy schools that have no food service program--some do not even have a milk program. This is the problem.

This pattern is similar throughout our nation. Nationwide, it is estimated that 9.5 million children attend 39,000 public and private schools that have no lunch program and that from $1,000,000$ to $2,000,000$ needy children attend these schools.

We believe that a school food service program is an integral part of the educational program and that every child, rich and poor alike, should have the opportunity to eat lunch at school.

A magazine article ${ }^{1}$ dated June 10,1966 , shows that in one of Iowa's
I Sales Management, The Magazine of Marketing, "Survey of Buying Power," Volume 96, No. 12, June 10, 1966, 304 North Crystal Street, East Stroudsburg, Pennsylvania 18301.

Head Start Programs have been one of the best convincers for needed school lunch or breakfast programs, especially when they have been operated during summer months in school buildings that had no food service during the regular school year. There is something about watching a hungry child eat that is far more convincing than a thousand assurances from others.

NEEDY BOYS AND GIRLS

Recent findings of a committee of businessmen called together by New York Governor Nelson A. Rockefeller to study problems of public welfare indicated that about 8,000,000 Americans are on public assistance. Of that number $2,000,000$ are 65 and over--few of them are capable of full-time work. About 500,000 are permanently and totally disabled. About 3,500,000 are needy children, and another $1,000,000$ are adults caring for these needy children. As reported in the Saturday Review ${ }^{1}$, "These facts pointed to an obvious conclusion: Only a small minority of welfare recipients are in a position to work their way off relief rolls."

This committee also found that the number of needy children continues to increase despite the Pill, and that the increase is primarily in urban areas.

HOW NEEDY CHILDREN LIVE

Often a needy mother and her children crowd into one frame house with other similar families. The rent is high. A fairly recent study by the County Welfare Office in Cedar Rapids, Iowa, of 500 welfare recipients, revealed that, although a family of four was allowed $\$ 38.40$ per month for house rent, they paid an average of $\$ 68.39$. The difference of $\$ 29.99$ came from their total grant--no doubt sometimes from their food budget. Iowa no longer computes separate budget items, all grants are 1 ump sum for all needs.

1 Saturday Review, December 9, 1967, Saturday Review, Inc., 380 Madison Ave., New York, N. Y., page 20.

This writer asked the building principal of a needy school what his enrollment was, within a few pupils. Half apologetically he replied, "I have no idea. This morning we lost two or three families. One family of eight. We have them coming and going almost every day, you know." After hesitating a few moments, he added, "But many of them will be back in a month or two after their rent runs out."

This principal should not be misjudged because of his statement. He has the welfare of his pupils at heart and is very sincere in his work. His statement is based on years of experience working in needy schools.

Live for Today. Needy children live for today's benefits, for benefits they can see immediately available. Their past experiences have taught them to do so.

Children within one family bank together to fight all others. They have learned to protect each other.

Some children develop a frustrated feeling during kindergarten and are lost in our school system for the remainder of their school years. This is a sad commentary because education is their best hope for breaking the chain of circumstances that engulfs them.

One city superintendent asks, "Where have we failed in education? We have families in our city who have been on relief for three generations and are still on relief, yet they attended our public schools."

A child's personality changes when he is hungry. It also changes when he is cold.

SPECIAL ASSISTANCE FOOD PROGRAMS

Several building principals in needy schools without food service would like to have a lunch program or a breakfast program or a milk program, whichever they can get, but either their local administrative or school board will not approve. These principals are eager to start food programs, and are of the opinion that they will not experience any difficulty in securing the cooperation of their teachers, because the need is evident.

One daily typical occurence in needy schools is for a number of pupils to come to the principal's or to the nurse's office complaining of being sick at their stomach or of having headaches. Principals report that most of these children are hungry.

Occasionally, in some of these schools, teachers will buy a hungry pupil some food at noon.

Principals of these schools have experienced noon-hour difficulties for a long time. In their words, "the pupil goes home at noon and finds no one at home so he forages for himself, finds very little to eat, then goes downtown into business places, pool halls, gets in trouble, and my phone starts ringing. If I could only have a lunch program, have a closed noon hour and reschedule our classes, then I would have the children here during the noon hour so I could supervise them. It would be far less work for me and of much greater benefit to our students. We would have fewer downtown thefts, fewer problems."

In one Iowa school district, efforts were made for several years to establish a lunch program to no avail. The incident that finally convinced local school officials to change their minds was this: During the noon hour,
can be adjusted to fit needs. We learn what the circumstances are and they design the program to fit the circumstances.

Still, many city school districts have not expanded their lunch program. Those districts in Iowa that are expanding are doing so largely by transporting food from existing kitchens rather than waiting until funds are available to build new kitchens. Some people think that transporting food is less than ideal; nevertheless, this practice is widespread, has been in use for many years, is successful, and gets the job done. As a result, many hungry children eat.

One large city in another state reports that during riots transporting food was less advantageous than having individual kitchens in each school.

FREE AND REDUCED-PRICE LUNCHES

School officials experience difficulties in authorizing free lunches or lunches at reduced prices. Admittedly, this is difficult to administer. Why should the burden of deciding which children are economically needy and entitled to free or reduced-price lunches fall upon school officials?

In needy schools there appear to be coorelations between the price charged for lunches, the number who eat, and the number who eat free. If the price is higher, fewer eat, more ask for free lunches, and more free lunches are served. If the price is substantially lower, more eat, fewer ask for free lunches, and fewer free lunches are served. So far, this has been our experience with both special assistance lunch and breakfast programs.

In special assistance programs, some parents refuse free lunches for their children; some apparently feel that they can dig up the money if the price is low enough. Some will not ask for free lunches while others seem not the least bit hesitant to do so. Apparently, other parents aren't interested whether their child is fed or not.

Another child shoveled snow and earned 50 cents which he promptly gave to his teacher to pay for his breakfasts "so his old man wouldn't steal it and buy beex." And so on.

Cooks enjoy preparing breakfasts in needy schools because these children eat well and complain little ajout any food served them. Consider this breakfast for example: orange juice, milk, dry cereal, cheese squares, and a souffle cup full of raisins. Some children consumed two containers of orange juice, two half-pints of milk, two boxes of cereal, three squares of cheese, and two servings of raisins. After they had eaten this, a few went through the line for a second serving. For some of these children this breakfast would be about all of the food they would get during the day to eat.

One teacher volunteered information about one of her elementary pupils (a gir1) who had been doing poorly in school and who had been referred to the school psychologist for possible transfer to a special education class. This girl had less-than-ideal home conditions. She had lived first with one relative, then another. After eating breakfast for three weeks, she made a marked improvement, she was brighter, more alert, she studied better, and had a different outlook on life.

An AFDC mother took her daughter to a doctor because the child was sickly and pale and hadn't been feeling well. After examining the child, the doctor explained that there was only one thing wrong with the child--the child wasn't getting enough to eat. The doctor then asked the mother if she was having her child eat breakfast at school to which the mother replied that she was not. The mother now brings money to school to pay for her child's breakfasts (for one month) the day after she receives her AFDC check, otherwise "it would get spent".

This is why the National School Lunch Program and the School Breakfast Program is each based on a sound nutritional pattern. After 20 years in exis:tence, the Type A pattern for school lunches has had only one significant change. This recent change was to put more emphasis on iron content in lunches.

We, in food service, have not reached the optimum in food appeal to children. We may never. The price we can set for breakfasts and lunches affects participation which affects income--the price must be kept as low as possible. Yet a low price limits the type and amount of food that can be purchased and served. We CAN NOT serve steaks for 30 cents. But we CAN and DO serve wholesome, nutritionally well-balanced lunches for 30 cents.

GOVERNMENT-DONATED COMMODITIES

Government-donated commodities benefit lunch and breakfast programs, but in the most bounteous year provide only about 20 percent of food used.

At present, the federal government purchases food and distributes it to each state. State agencies distribute it to participating public, private, and parochial schools based on average daily student participation in the lunch program.

An alternative frequently voiced is that the government should not do the purchasing but instead should apportion the money to state agencies and let them apportion it to school districts. Districts would use these funds to purchase food. Some people contend that they could do a better job of buying than the government does. Others think not.

Another argument is that one of the original purposes of the commodity program was to use farm surpluses, but that these surpluses have dwindled. Another contention is that as our population increases our food surpluses will decrease.

In any case, government-donated commodities are essential to school food

```
* That training and educational requirements be established for food ser-
    vice workers.
* That each state legislature appropriate funds:
```

1. for kitchens, lunchrooms, and storerooms, or for equipment to transport food in.
2. at the rate of at least $\$ 2,000,000$ a year (in Iowa) until every school had a food service program. In Iowa this would take an estimated six to eight years.
3. that would be reimbursed to school districts through state department of education school lunch sections.

The political party that would adopt this program as part of their platform would win many votes because the public believes in school feeding. When you watch a hungry child eat you realize that you have attained your goal, and that public money has been well spent.

SUMMARY

* The number of needy children increases each year.
* Reliable surveys show that many children eat either an inadequate breakfast or no breakfast. This includes rich and poor alike.
* We know that for many children the lunch they eat at school is their best balanced meal of the day.
* For some of these children the lunch they eat at school is their only meal of the day.
* We believe that for some children the breakfast they eat at school is their'best and only meal of the day.
* We know that many needy schools in our nation's cities are without food service.

```
        EORA SGROOL DTSERTCT ORCANHZATOOQ
            A POBTSTON PARTQ
            pacperea by
                El$土)G. Hancon
                Tume Dimector
    Gceat Ramins Orgemizacion Stucy
State Depoztwent of Public Tnammetion
            Dee Rotnes, Toma
```

 Soz
 Drojeet Stafy
 Great plains Orgnization Study

JaIy 22,1966

Since the begimntng of the century Towans have engaged in diocussions and spamodic actions in the zeongmization of geiool diecucte. Vanjone terms have been applied to these actions. Anong chen are "comsotiaction", "merger", "weorgmiantion", and "union". The row Supremo Cout has zuled ther these cembs all traply the some concept. i

The early concept was the devolopment of a centwat echoos for the newly arganised area. Though nor thoroughly maderacood and acomtod yet Goday, the multiple utcondenco centor coneape hos toveloped as distrito reorganizacion has acceleraced and oncompased larger geographic areas.

The basic objectivos of dratrice reorganizacion romaned consincont thruughout the indual dovelommara period. The eariy erowed gocks of 2 reorgenizacion were:
3. equaitey of odmational opportunity.
2. eguiteble diocthbucion of cux lood.
3. efsiciont ochool discricts.

The Itrse recoedea instance of objectives or goniz being apellod out
Legierabsuly was with the legislantve anoctments of 1953.3
"te is hereby doclance to be the poltey of tho State to monsage... the seongmization of achook riakniots tuto such thites as are neceseary, economiten and efricient... sed Wheh will insure oguel opportmoney Gou all chalden of the acace."

 35SA-914AT, Toma Scace Deparment of Public Tasmmetion, Des Woines. 7.0w3, 㰪ch, 1955.

3
Gode of Iowa, Ghaptes 275, Gection, Code 1950.

Devaremental goals in the anea of district orgentaction have been stoted in varied Somm the the publicetions and repores os the depertmome.

A 1955 publication stated the majon objectivos oe goels as. 4

1. Fo Surnich the bost poseible educetione? prognan foz all the chizdxen of the area.
2. To do so st the least posstble cost.
3. To provide Sor a fain dishabution of these wosts emong all groups of poople.
Another Geportmented publtenthon of 3958 zeponted them as: 5
4. Equat and adoquabe etueational oppoztantoies Eon ajl entidecm. Fech child ds entikled co:
A. A high school caucation.
B. Deld-tretned sonchers.
G. A modern, wel2-egutgpad school.
D. Good ebucationsl egutpment.
E. Oppowtunt tias to dopelop indtwiduel agedurdes and abilities.
P. Leamn by ustng the bastc sktils.
G. Take port in reczentional and cut tumal actuities.
H. Have access to bcsic healtis semvices.

士. ratmsporedacion, tif too Zat co walk.
3. Good tratning in edtizenship.
K. Good morat crviwomeent in bchoot.
I. Access to selnoot Jumeh peogran.
M. Ghance to erploze bome vocetion.
2. Good Schools Eoz al1:
A. Lavgo enotgh so:
(1) Brovide one teacher per grade in elamentery school.

[^0](2) zaploy a minmu oz 10 teachers tu high schoot with Sull-Etme tacchors in each of tho foliowing Sicius:
Whglish Bome Reonomice (Voeotione1)
Mathersetios Twode ef Industerses Physicel Sclence
Socknt Sericnce
(wocntronat)
Muste and prie AOEs Rhysical Txucactom S Healch
B. Adeguatezy stefecd,
G. Arequately ogutoped.
D. Rasy to zeach.
3. Adequate hmon and Fizamotal zesomaces.

goals. Whough tha goats of ceonomy and esfictoncy stit2 spocar the polkey ctatements of the State Boand of zublic Znatuceton, the reemt gmphasts has been on the develomment of numhty educettoz fon ail studento of the state thaough paoguen resuaremonts.
Th a policy scotomont of Novembos, 2963, the Stete somo of Pubtic
 renuizonenes. raoy ere:
I. Wlementery prognem Empertences:

1. Tanguege ATes
2. Social. Stutaea
3. Wetheratica
4. Scteace
5. Jaateh and Phyateat Educetrion
6. Nuadic, Are , and Gectes
7. Bafecy, Uuro Drovencion, and Fitest Atd

[^1]32. Junfor High Schoot Puognan mocrienecs (3, 8, 9):
z. Tanguage Arts 9 somestors
2. Scicnes 6 Scmesters
3. Soeial Stadtos 6 Somezters
\Leftrightarrow Sachemetiee 6 Scaestess
5. Faysical Wounction mod Mestath 6 Semoserars
6. Taxubtrâd Ayte 3 Semestots
7. Womemakitag 3 Sonescezs
8. Montc ? Screscemb
9. Ant 2 Sonescers

E. Rughtsh Yeana
2. Sustness Eiveation, inciudars
6ygumatitsmb Fames
3. Wathematzes yeases

chentistay yents
5. Societ Shoukes Ene3natrg Amentomhaobory: hrowiocm govaromesto sneetther: Anevicur problran or cooncmiosand sociolog. -- .. .-- \& yeams
6. Dhyckeot Bemeneron yeor:
7. Womenoktog yours
8, Endobtwin3 Axte Feand
9. Oue Notama Ronedgr Raboumbe yeaze
玉. W. Waic 2 7eces
21. . Ane year
12. Agrtonktumon Rewedtion 3 ar \& yoata
Disturbustwe कtucettonscmathtas oftconog

i. Spertal Wewention Sonvices:
a. Poucto?ogieal convices.
b. Spectat clescos.
\& Titherant teveluers
d. Gonbutianton semviecs
2. Gusciance sentiecs
3. IABEasy

5. Schook Nootha
Warky in the concung (2929-2930) thete wes a prolthoration af ores

by the Genaraz deucrozy 2 a 2943.

Foble 3 indicates the geneza? pottern in the rednction of schook dietwets anning the paet son years.

Gable I

Numbar of Behoot Dishtice ta Toma

	Hoz 11. S. Bracs,	73. S. D28*s.	Potal
2955-56	3,334	808	4,742
1956-57	2,903	788	3,691
3957-50	2,578	725	3,323
1058-59	2,085	694	2,779
1060-61	2,023	562	13,575
2961-62	381	510	3,393
1962-63	762	469	3,232
1063-84	702	463	2. 3.164
1964.-65	639	459	1.063
2965-66	598	4.58	3,056
1966-67 (2mectod)	4.7	455	502

It can zeadkly be scen that the major thpetrs cook plane betmean 1955
 Wean 1060-1905 the redreckon has bean slon but constatent.

 as f0210:0:

High Schoo3 Diocrices 555
Non-ming School Dustracts $4 ?$
TORAS 502

The 47 nonwhigh school dustricts ane ath th the procoss of raorgematag

 thacnteqs matntaining high schools:

2031 ar
2051.32 27.7

1952-53 29.6
$1953-5432 .7$
$1954 . .55$. 36.5
1955.56 4 5.9
3956.57 88.9

1957-53. 55.3
1958-59 64.8
3559.50 73.0

1960-61 82.9
1961.62 85.8

3962-63 ; 87.4

1968.65 38.7

 tokithag apmavoes hagh woboots.
 Fith the districts:

> Fable TK

Types of organtantion th mactaces manketneng Tome-Hoar hagh Sohools in 2965-1366

 area of disurtctz:

Toble XV

Yeax	Whatest	Wedtan	Sotest
1054.055	145.0	20.0	. 3
1055-36	155.4	22.6	. 3
2956-57	186.9	26.5	. 3
1957-58	237.5	31.0	. 4
1958.59	402.5	37.6	. 4
1959-60	402.5	58.2	. 4
2960-61.	512.0	74.0	6
1051-62	522.0	82.0	1.5
2962-63	520.0	93.4	1.4
1953-6\%	520.0	97.0	2.9
1964-63	520.0	300.0	2.3
yoase eaclier.			
zora 48 crow	ect 100 a exicd.	2as 208	c-Rota

Rave besic bypeg of bchool ongantunctons axe kogalized in Towe today.

 ststutson petmittod the subutwiston of townchip Distusiceo treo subdiscmiets, wheh ocanmed in mose tabanoes. Tater Ecgiotatson then pembtted the remgtng of mbatstatcte theo total

 of achook orgenization paratiteot the eloction of a Roend of Dtreotons
 muet one-rocn schoole in Tome. (Ta 2929 theate reve 9,302 such diatuices in opameinon.)
 Whanc atacricte mere Eomed in ctithe, tomme, or vizuges on oves

 the mejowthy of 耳otern the the condraous temateory.

 diotutcts.
4. Concoltbeced schoot diccrente: (275, Gote os 20me, 2943).

 wore countica. The puzpere of sach orgentrothons wes for the

 Ah dietrices ereatod os mberged unter provietona os 275.27, Coxe of Towe, 7950 hsve bem emmantuy ochoot dietricts. Theen ase dit chataiots esecten aftem Nay 2 . 3957 . Whoy anc unden the gurtowtethon os the county bystom ta which the greacest munce of electozs zogitat

 GHEs clebotstencton.

State Dopargnent Rhilosophy:

The only legal minimum otandard to be met in fommatang a diotrict in Town coday is the requizement that at lease 300 pupis, kindotgatem chaough hwelth grede, must have been enrolled a public cohools the the proped area the praceding year.

The depertmental philosophy has veried considerably from this 300 puptl miniman. From the tme of tus inception (1/1/56) wital 3963, the State Boand of public Instmection had advocated districes with a minimen of 500-600 stadents. More recent philosophy wetheced th State Board of Pablic Tnstruction policy statements and speeches delivered by shate Superintendone Raui Johnaton indicane the desime for districto with a 7 minimun of 100 studence per high school grade. Sransheted inco soczh encolmento, this mugeses schools with minam emoltwents of apeoximately 1500 stutatis, Thotgh chese are recoumendations, the legel minhman stiln remains 300 studenes.

Or the three mort comonly considored approwhes to reorgensation (1. legialative mandate, 2. Lonal initiative, and 3. incearive ado) Iow has conststenty supported the concept of diontriet organazetoan as a matere of local inteletive. Only one instance co the contraxy could be
 to the Fomation of consolidated school discricts stated a "...policy of the state to ancomrage reorgenizstion by granting state ate to it is Fincereating to note that gubseguat logishacuas have novez folloned through gith bufficiont appopzatsons to have this concopt produco a discerneble inpact.

7 Op. cit. pp. 5.
8 275.1, Code of Iowa, 1948.

Whe moot effective means yet employed for encouraging seortanzution in Toma has been the establishment of monam standado. The flot Comedal Asembly (1965) hegtslatad rather comprehenatve carcicular requaromots for a11 schools of the state and atrected the Boata Suparintendent of Rubje
 stanuards for haplewenting the custheutar wequitenencs. 9

A greater degree of mintaney appesse to be developung in the exemsthve and legislative beanehes of Tova govermont to crodee more pesitave
 A number of factox: wre responsibie Eoz chin changing concegt:

1. Domographe changes the the atnte papulathon neflect stondity
 uxban popukations.
2. The basic labon foce of the atcte is rapidy shatemg from
 fnduactal work Gorea.
3. The national concem Eox mone gually conestoractons hes

4. Incueasing costr, refloced for the most part in treseoning Local property tases, have croated demants for greacor ecomony constionatione.
5. A majo ohange te tuking ploce wegaming the degroe to when
 218 of locai dioctic: genoral funde mese derived from beace sources. This perceatage incrensed to approximetely 13.5% in the 1965-66 school yean. The preacne mintura goat ion 40% state support.
6. Legishactve reapporcioment hos hod a protomd afect in the basie compoaition of the state legtalahro. The majority has shithed from Eaxem representation to urben repgeuentation.

In summaty great progreas han been made in Tow durtug the pabt ten
 chis has been sccapished, great inequelithes continue to be perpetused.

Whe major problam fresing the shate din chis ares tolay axe:
 school organgations. Thas Ghould relate to zoest districe, interededate mit, and area school. (voostionez-echmical and
 owempactonal serweture for the stete.
2. Developmont of means co promote sectve anvolvement of pro-
 of criteria.
3. Greation of adegume diourices withia the Eramevoric of entabliohod catitecia.
4. The develoment of Logiolation co taphencat craation of adeguate districes.
5. The crencton of seace Depammant orgmination and mocedures to provite ertantye gutdance and follormp serviaes in remy created disuricts.

[^0]: 4 Hhom to Cot Becter Towe Sohools", by J. G. Wught, zepant Erem editconsel page of the Doe Hotnos Sunday Rogister on june 26, 2935.

 5 :Youm Sehoot Distaict: Stute Departwent of Ruthe Inctruetion, Des Moines 5.0月a, 1.958.

[^1]: 6 Policy Scabarat, Rucure Goals for Poblio Schoole in Tone, November 16. 1963.

