Iowa
 Transportation Profile

Acknowledgments

U.S. Department of Transportation
Norman Y. Mineta Secretary
Michael P. Jackson
Deputy Secretary

Bureau of Transportation Statistics
Rick Kowalewski
Acting Director
William J. Chang
Associate Director for Information Technology

John V. Wells
Chief Economist
Wendell Fletcher
Assistant Director for
Transportation Analysis

Project Manager
Ron Duych
Major Contributors
Martha Courtney
Derald Dudley
Torrance Gloss
Darcy Herman
Pamela LaFontaine
Matt Sheppard
Lorisa Smith
Other Contributors
Alpha Glass
Steve Lewis
Chip Moore

Data Collection and Production-Battelle
William Mallett
Mary Field
Alexa Getting
Leonard Hughes
David Kall
Melody Liu
Laurie Scovell

Bureau of Transportation Statistics

Our mission: To lead in developing transportation data and information of high quality and to advance their effective use in both public and private transportation decisionmaking.
Our vision for the future: Data and information of high quality supporting every significant transportation policy decision, thus advancing the quality of life and the economic well-being of all Americans.

To obtain this and other BTS publications:
Internet: www.bts.gov
Phone: 202/366-DATA [press 1]
Fax: 202/366-3640
Mail: Product Orders
Bureau of Transportation Statistics
U.S. Department of Transportation $4007^{\text {th }}$ Street, SW, K-15
Washington, DC 20590
Your comments for improving State Transportation Profile reports are welcome.
Contact the BTS Information Service:
E-mail: answers@bts.gov
Phone: 800/853-1351

Iowa Fast Facts 2000

Transportation System Extent

All public roads: 113,377 miles
Interstate: 782 miles
Road bridges: 24,632
Class I railroad trackage: 2,431 miles
Inland waterways: 492 miles
Public use airports: 122 (10 certificated for air carrier operations $)^{1}$

Vehicles and Conveyances

Automobiles registered: 1.8 million
Light trucks registered: 1.1 million
Heavy trucks registered: 63,000
Buses registered: 8,200
Motorcycles registered: 127,000
Numbered boats: 224,000

Geographic

Land area: 55,869 sq. miles (rank: 23)
Percent of land area owned by federal government: 0.5^{2} (rank: 48)
Persons per square mile: 52.4 (rank: 33)
Highest point: Osceola County ($1,670 \mathrm{ft}$.)
Lowest point: Mississippi River (480 ft .)
'2002
${ }^{2} 1999$
${ }^{3} 1997$
${ }^{4}$ Apportionment based on 2000 census ${ }^{5} 1990$

Political Subdivisions

Counties: 99
Municipal governments: 950^{3}
Congressional districts: 5^{4}

Demographic

Population: 2,926,324 (rank: 30)
Percent urban population: 61^{5} (rank: 36)

Socioeconomic

Gross state product: $\$ 85$ billion 2 (rank: 30)
Civilian labor force: 1.6 million 2 (rank: 30)
Median household income: $\$ 42,993$
(rank: 21)

Commuting (percent of workers)

Car, truck, or van-drove alone: 79.6
Car, truck, or van-carpooled: 10.8
Public transportation (including taxi): 0.8
Walked: 3.5
Other means: 1.0
Worked at home: 4.3
State Transportation Department
Iowa Department of Transportation
800 Lincoln Way
Ames, IA 50010
(515) 239-1101
http://www.dot.state.ia.us/

The Bureau of Transportation Statistics (BTS) presents a profile of transportation in Iowa-part of a series covering the 50 states and the District of Columbia. This collection of transportation information from BTS, other federal government agencies, and other national sources provides a picture of the state's infrastructure, freight movement and passenger travel, safety, vehicles, economy and finance, and energy and environment.

All tables do not necessarily appear in every state profile report due to geographic and other characteristics. For example, border-crossing data are given only for states bordering Canada and Mexico. Data source and accuracy profiles are provided at the end of the report.

Table of Contents

A Infrastructure
TABLES PAGE
Iowa Public Road Length, Miles by Functional System: 1995-2000. A-1
Iowa Public Road Length, Miles by Ownership: 2000 A-1
Iowa Toll Bridges, Tunnels, and Ferries: 2001 A-2
Iowa Road Condition by Functional System - Rural: 1995-2000 A-3
Iowa Road Condition by Functional System - Urban: 1995-2000 A-4
Highway Bridge Condition: 2001 A-5
Characteristics of Directly Operated Motor Bus Transit in Iowa: 2000 A-7
Characteristics of Rail Transit in Iowa: 2000 A-8
Civil and Joint-Use Airports, Heliports, STOLports, and Seaplane Bases in Iowa: 2002 A-9
Iowa Commercial Service Airport Enplanements: 2000. A-10
Freight Railroads in Iowa and the United States: 2000 A-11
Freight Railroads Operating in Iowa by Class: 2000 A-12
Inland Waterway Mileage: 2000 A-13
FIGURES
Rural Road Conditions in Iowa: 2000 A-3
Urban Road Conditions in Iowa: 2000 A-4
Highway Bridge Condition in Iowa and the United States: 1996-2001 A-6
B Safety
TABLES
Highway Traffic Fatalities and Fatality Rates: 2000 B-1
Passenger Car Occupants Killed and Restraint Use: 2000 B-2
Key Provisions of Safety Belt Use Laws: 2000 B-3
Shoulder Belt Use: 2000 B-4
Pedestrian Fatalities Involving Motor Vehicles: 2000 B-5
Motor Vehicle Fatalities Involving High Blood Alcohol Concentration: 1995 and 2000 B-6
Impaired Driving Laws: 2000 B-7
Maximum Posted Speed Limits by System: 2001 B-8
Total Rail Accidents/Incidents: 2000 B-9
Highway-Rail Grade Crossing Incidents: 2000 B-10
Highway-Rail Grade Crossings by Type: 2000 B-11
Warning Devices at Public Highway-Rail Grade Crossings: 2000. B-11
Types of People Injured in Iowa Train Accidents/Incidents: 2000 B-12
Iowa Transit Safety Data: 2000 B-13
U.S. Transit Safety Data: 2000 B-13
Recreational Boating Accidents: 2000 B-14
Alcohol Involvement in Recreational Boating Accidents: 1999 and 2000 B-15
Hazardous Materials Incidents: 2000 B-16
Iowa Hazardous Materials Incidents by Mode: 2000 B-17
Natural Gas Distribution Pipeline Incidents: 1995-2000 B-18
Natural Gas Transmission Pipeline Incidents: 1995-2000 B-18
Hazardous Liquid Pipeline Incidents: 1995-2000 B-19
FIGURES
Shoulder Belt Use: 1998-2000 B-4
Iowa Train Accidents: 1995-2000 B-9
Iowa Highway-Rail Grade Crossing Fatalities and Injuries: 1995-2000 B-10
Railroad Trespasser Deaths and Injuries in Iowa: 1995-2000 B-12
Iowa Recreational Boating Accidents: 1995-2000 B-14
Iowa Recreational Boating Accidents Involving Alcohol: 1996-2000 B-15
Iowa Hazardous Materials Incidents: 1995-2000 B-16
Iowa Hazardous Materials Incidents by Mode: 1995-2000 B-17
C Freight Transportation
TABLES
Domestic Shipments to Iowa by State: 1997 C-1
Domestic Shipments from Iowa by State: 1997 C-2
Shipments Originating in Iowa by Mode of Transportation: 1997 C-3
Domestic Shipments from Iowa by Truck: 1997 C-4
Domestic Shipments to Iowa by Truck: 1997 C-4
Truck Shipments from Iowa by Commodity: 1997 C-7
Rail Shipments Terminating in Iowa: 1999 and 2000 C-8
Rail Shipments Originating in Iowa: 1999 and 2000 C-8
Foreign and Domestic Waterborne Shipments Originating in Iowa by Destination: 2000 C-11
Foreign and Domestic Waterborne Shipments to Iowa by Origin: 2000 C-11
Foreign and Domestic Waterborne Shipments Originating in Iowa by Commodity: 2000 C-12
Domestic Waterborne Shipments Originating in Iowa by Commodity: 2000 C-12
Foreign and Domestic Waterborne Shipments to Iowa by Commodity: 2000 C-13
Domestic Waterborne Shipments to Iowa by Commodity: 2000 C-13
Scheduled and Nonscheduled Air Freight and Mail Enplaned: 2000 C-14
Surface Merchandise Trade with Canada and Mexico: 2000 C-15
FIGURES
Iowa Surface Merchandise Trade with Canada and Mexico: 1997-2000 C-15
Truck and Rail Imports from Mexico to Iowa by Weight: 1997-2000 C-16
Truck and Rail Imports from Canada to Iowa by Weight: 1997-2000 C-16
MAPS
Iowa Network Truck Flows: 1998 C-5
Iowa Total Rail Flows: 1999 C-9
D Passenger Travel
TABLES
Commuting to Work: 2000 D-1
Licensed Drivers: 2000 D-1
Urban Transit Agencies in Iowa: 2000 D-2
FIGURES
Licensed Drivers in Iowa by Age and Sex: 2000 D-1
Overseas Visitors to Iowa: 1995-2000 D-3
E Registered Vehicles and Vehicle-Miles Traveled
TABLES
Iowa and U.S. Motor-Vehicle Registrations: 2000 E-1
Iowa and U.S. Trailer and Semi-Trailer Registrations: 2000 E-1
Iowa Truck Characteristics and Use: 1997 E-2
Highway Vehicle-Miles Traveled (VMT): 2000 E-3
Highway, Demographic, and Geographic Characteristics of Urbanized Areas in Iowa: 2000 E-4
Iowa and U.S. Recreational Boat Registrations by Propulsion Type: 1999 and 2000. E-5
General Aviation and Air Taxi Aircraft and Hours Flown: 2000 E-6
Active Aviation Pilots and Flight Instructors: 2000 E-7
FIGURES
Highway Vehicle-Miles Traveled, United States and Iowa: 1995-2000 E-3
Iowa Recreational Boat Registrations: 1996-2000 E-5
F Economy and Finance
TABLES
Transportation and Warehousing Establishments and Employment in Iowa: 1999. F-1
Transportation and Warehousing Establishments and Employment in the United States: 1999 F-1
Transportation Revenues Collected by State and Local Governments in Iowa: 1995-1999 F-2
Transportation Expenditures by State and Local Government in Iowa: 1995-1999 F-2
State Motor-Fuel Tax Rates: 2000 F-3
G Energy and Environment
TABLES
Transportation Energy Consumption: 1999 G-1
Energy Consumption by End-Use Sector: 1999 G-2
Transportation Energy Consumption per Capita: 1999 G-5
Iowa and U.S. Motor-Fuel Use: 2000 G-6
Highway Noise Barriers: 1999 G-7
FIGURES
Energy Consumption by End-Use Sector: 1999 G-3
Iowa Transportation Energy Consumption: 1995-1999 G-4
H Information on Data Sources H-1
I Glossary I-1
Map: Iowa Major Transportation Facilities

A Infrastructure

Table 1-1: lowa Public Road Length, Miles by Functional System

	1995	1996	1997	1998	1999	$\mathbf{2 0 0 0}$
Total rural and urban	112,702	112,708	112,804	112,810	112,904	113,377
Rural						
\quad Interstate	103,365	103,359	103,383	103,346	103,385	103,513
Other principal arterial	634	634	635	635	635	635
Minor arterial	3,405	3,413	3,418	3,428	3,460	3,486
Major arterial	3,954	3,953	3,953	3,956	3,955	3,957
Minor collector	14,294	14,294	14,300	14,297	14,303	14,311
Local	16,263	16,263	16,259	16,261	16,256	16,262
	64,815	64,802	64,818	64,769	64,776	64,862
Urban						
Interstate	9,337	9,349	9,421	9,464	9,519	9,864
Other freeways and expressways	147	147	147	147	147	147
Other principal arterial	0	0	0	0	0	0
Minor arterial	697	707	717	717	716	717
Collector	1,356	1,356	1,358	1,364	1,364	1,378
Local	931	931	942	948	944	955

SOURCE: U.S. Department of Transportation, Federal Highway Administration, Highway Statistics, Washington, DC: annual editions, table HM-20, available at http://www.fhwa.dot.gov/ohim/hs00/hm20.htm as of Feb. 1, 2002.

Table 1-2: Iowa Public Road Length, Miles by Ownership: 2000

| | National
 Highway
 System | Other
 federal-aid
 highway | Nonfederal-
 aid highway | Total |
| :--- | ---: | ---: | :---: | ---: | ---: |
| Total | 3,162 | 22,424 | 87,791 | 113,377 |
| State highway agency | 3,140 | 6,558 | 546 | 10,244 |
| County | Z | 13,301 | 75,865 | 89,166 |
| Town, township, municipal | 22 | 2,565 | 11,274 | 13,861 |
| Other jurisdiction $^{\text {' }}$ | Z | Z | 2 | 2 |
| Federal agency 2 | Z | Z | 104 | 104 |

${ }^{1}$ Includes state park, state toll, other state agency, other local agency, and roadways not identified by ownership.
${ }^{2}$ Roadways in federal parks, forests, and reservations that are not part of the state and local highway systems.

KEY: $\mathrm{Z}=$ zero or less than 1 unit of measure.
SOURCE: U.S. Department of Transportation, Federal Highway Administration, Highway Statistics, Washington, DC: annual editions, table HM-14, available at http://www.fhwa.dot.gov/ohim/hs00/hm14.htm as of Feb. 1, 2002.

Table 1-3: lowa Toll Bridges and Ferries: 2001

Facility	Financing or operating authority	Location	Length in miles	Toll collection direction	Electronic collection system
Noninterstate					
Rock Island Centennial	IL Centennial Bridge Commission Rock Island, IL	From Davenport, IA to Rock Island, IL	0.7	Both ways	No
Fort Madison	Sante Fe Railroad Co.; Topeka, KS	From Fort Madison, IA to Niota, IL	0.6	Both ways	No
St. Francisville	Wayland Special Road District	From Vincennes, IA to St. Francisville, MO	0.3	Both ways	No
Bellevue	City of Bellevue, NE Bridge Commission	From State Route 370, IA to Bellevue, NE	0.4	Both ways	No
Decatur	Burt County, NE Bridge Commission	From Onawa, IA to Decatur, NE	1.0	Both ways	No
Plattsmouth	Plattsmouth, NE Bridge Commission	From Mills County, IA to Plattsmouth, NE	0.2	Both ways	No
Vehicular toll ferries					
Cassville Car Ferry	Cassville Village, WI	From Millville, IA to Cassville, WI	U	Both ways	No

KEY: $\mathrm{U}=$ data are unavailable.
SOURCE: U.S. Department of Transportation, Federal Highway Administration, Toll Facilities in the United States: Bridges-Roads-TunnelsFerries, Washington, DC: June 2001, available at http://www.fhwa.dot.gov/ohim/tollpage.htm as of Feb. 18, 2002.

Table 1-4: Iowa Road Condition by Functional System -- Rural (Miles)

	1995	1996	1997	1998	1999	2000
Interstate (total reported)	618	633	625	635	633	635
Very good	26	34	50	61	101	67
Good	258	238	331	323	308	281
Fair	192	234	179	203	190	164
Mediocre	139	122	65	47	33	123
Poor	3	5	0	1	1	0
Not reported	16	1	9	0	1	0
Other principal arterial (total reported)		3,147	3,248	3,279	3,298	3,272
Very good	174	226	202	322	443	369
Good	802	841	994	1,125	1,065	1,142
Fair	1,866	1,809	1,676	1,467	1,413	1,470
Mediocre	298	370	354	315	286	324
Poor	7	2	53	69	65	40
Not reported	258	165	139	131	187	142
Minor arterial (total reported)	3,601	3,727	3,713	3,569	3,571	3,584
Very good	152	406	317	554	528	817
Good	766	691	805	830	839	760
Fair	2,033	2,069	1,938	1,585	1,586	1,424
Mediocre	592	504	538	481	489	444
Poor	58	57	115	119	129	139
Not reported	353	226	241	386	384	373
Major collector (total reported)						
Very good	N	N	N	N	N	911
Good	N	N	N	N	N	84
Fair	N	N	N	N	N	227
Mediocre	N	N	N	N	N	442
Poor	N	N	N	N	N	55
Not reported	N	N	N	N	N	103

KEY: $\mathrm{N}=$ data do not exist.
NOTE: In 2000, the Federal Highway Administration began reporting road condition for rural major collectors using the International Roughness Index, if available. In prior years, data were only available using the Present Serviceability Rating.

Figure 1-1: Rural Road Conditions in lowa: 2000

NOTE FOR DATA ON THIS PAGE: Road condition is based on measured pavement roughness using the International Roughness Index (IRI). IRI is a measure of surface condition. A comprehensive measure of pavement condition would require data on other pavement distresses such as rutting, cracking, and faulting.

SOURCE FOR DATA ON THIS PAGE: U.S. Department of Transportation, Federal Highway Administration, Highway Statistics, Washington, DC: annual editions, tables HM-63 and HM-64, available at http://www.fhwa.dot.gov/ as of Feb. 1, 2002.

Table 1-5: lowa Road Condition by Functional System -- Urban (Miles)

	1995	1996	1997	1998	1999	2000
Interstate (total reported)	113	145	134	147	147	147
Very good	0	0	0	0	2	4
Good	28	32	48	50	48	44
Fair	37	39	41	32	36	36
Mediocre	56	59	27	44	40	47
Poor	12	15	18	21	21	16
Not reported	14	2	13	0	0	0
Other freeways and expressways (total reported)	0	0	0	0	0	0
Very good	0	0	0	0	0	0
Good	0	0	0	0	0	0
Fair	0	0	0	0	0	0
Mediocre	0	0	0	0	0	0
Poor	0	0	0	0	0	0
Not reported	0	0	0	0	0	0
Other principal arterial (total reported)	247	273	550	606	603	631
Very good	9	12	11	11	62	17
Good	41	53	89	117	110	134
Fair	162	171	277	308	265	290
Mediocre	35	31	102	85	82	93
Poor	0	6	71	85	84	97
Not reported	450	434	167	110	112	86
Urban minor arterial (total reported)	N	N	N	N	N	85
Very good	N	N	N	N	N	4
Good	N	N	N	N	N	19
Fair	N	N	N	N	N	39
Mediocre	N	N	N	N	N	13
Poor	N	N	N	N	N	10
Not reported	N	N	N	N	N	N
Urban collector (total reported)	N	N	N	N	N	5
Very good	N	N	N	N	N	2
Good	N	N	N	N	N	1
Fair	N	N	N	N	N	0
Mediocre	N	N	N	N	N	2
Poor	N	N	N	N	N	0
Not reported	N	N	N	N	N	N

KEY: $N=$ data do not exist.
NOTE: In 2000, the Federal Highway Administration began reporting road condition for urban minor arterials and urban collectors using the International Roughness Index, if available. In prior years, data were only available using the Present Serviceability Rating.

Figure 1-2: Urban Road Conditions in lowa: 2000

NOTE FOR DATA ON THIS PAGE: Road condition is based on measured pavement roughness using the International Roughness Index (IRI). IRI is a measure of surface condition. A comprehensive measure of pavement condition would require data on other pavement distresses such as rutting, cracking, and faulting.

SOURCE FOR DATA ON THIS PAGE: U.S. Department of Transportation, Federal Highway Administration, Highway Statistics, Washington, DC: annual editions, tables HM-63 and HM-64, available at http://www.fhwa.dot.gov/ as of Feb. 1, 2002.

Table 1-6: Highway Bridge Condition: 2001

State	All bridges (number)	Structurally deficient (number)	$\begin{aligned} & \text { Functionally } \\ & \text { obsolete } \\ & \text { (number) } \end{aligned}$	Total of both	
				(number)	(percent)
Alabama	15,641	2,677	2,245	4,922	31.5
Alaska	1,433	169	243	412	28.8
Arizona	6,918	194	541	735	10.6
Arkansas	12,434	1,479	1,996	3,475	27.9
California	23,770	2,636	4,204	6,840	28.8
Colorado	8,082	596	847	1,443	17.9
Connecticut	4,171	362	943	1,305	31.3
Delaware	829	47	82	129	15.6
District of Columbia	243	25	136	161	66.3
Florida	11,303	300	1,814	2,114	18.7
Georgia	14,394	1,578	1,924	3,502	24.3
Hawaii	1,071	193	344	537	50.1
Idaho	4,069	320	436	756	18.6
Illinois	25,529	2,725	2,099	4,824	18.9
Indiana	18,067	2,257	2,161	4,418	24.5
lowa	25,030	5,036	2,060	7,096	28.3
Kansas	25,638	3,465	2,959	6,424	25.1
Kentucky	13,442	1,189	2,864	4,053	30.2
Louisiana	13,426	2,425	2,166	4,591	34.2
Maine	2,367	354	512	866	36.6
Maryland	4,957	436	1,010	1,446	29.2
Massachusetts	4,986	696	1,792	2,488	49.9
Michigan	10,631	2,012	1,354	3,366	31.7
Minnesota	12,830	1,221	563	1,784	13.9
Mississippi	16,825	3,694	1,308	5,002	29.7
Missouri	23,604	6,083	2,747	8,830	37.4
Montana	5,009	570	560	1,130	22.6
Nebraska	15,493	2,676	1,661	4,337	28.0
Nevada	1,510	67	154	221	14.6
New Hampshire	2,354	387	415	802	34.1
New Jersey	6,366	930	1,420	2,350	36.9
New Mexico	3,790	348	355	703	18.5
New York	17,378	2,406	4,182	6,588	37.9
North Carolina	16,991	2,513	2,794	5,307	31.2
North Dakota	4,517	871	266	1,137	25.2
Ohio	27,952	3,304	3,862	7,166	25.6
Oklahoma	22,708	7,605	1,518	9,123	40.2
Oregon	7,309	362	1,291	1,653	22.6
Pennsylvania	22,092	5,418	4,022	9,440	42.7
Rhode Island	749	187	192	379	50.6
South Carolina	9,064	1,187	869	2,056	22.7
South Dakota	6,001	1,398	346	1,744	29.1
Tennessee	19,362	1,761	2,940	4,701	24.3
Texas	48,085	3,182	7,373	10,555	22.0
Utah	2,743	389	245	634	23.1
Vermont	2,714	452	503	955	35.2
Virginia	12,789	1,222	2,243	3,465	27.1
Washington	7,939	551	1,591	2,142	27.0
West Virginia	6,767	1,172	1,495	2,667	39.4
Wisconsin	13,516	1,862	795	2,657	19.7
Wyoming	3,076	389	253	642	20.9
United States	590,066	83,630	81,469	165,099	28.0

SOURCE: U.S. Department of Transportation, Federal Highway Administration, National Bridge Inventory: Deficient Bridges by State and Highway System, Washington, DC: 2001, available at http://www.fhwa.dot.gov/bridge/britab.htm as of Jan. 31, 2002.

Figure 1-3: Highway Bridge Condition

United States

SOURCE: U.S. Department of Transportation, Federal Highway Administration, National Bridge Inventory: Deficient Bridges by State and Highway System, Washington, DC: 2001, available at http://www.fhwa.dot.gov/bridge/britab.htm as of Jan. 31, 2002.

Table 1-7: Characteristics of Directly Operated Motor Bus Transit in Iowa: 2000

	Directional route-miles		
Transit agency	Exclusive right-of-way	Controlled right-of-way	Mixed right-of-way
Bettendorf Transit System	0.0	0.0	42.8
Black Hawk County Metro	0.0	94.8	
City of Dubuque	0.0	0.0	119.0
Davenport Public Transit	0.0	0.0	134.4
Des Moines Metro Transit	0.0	0.0	479.3
Five Seasons Transportation	0.0	0.0	84.0
lowa City Transit	0.0	0.0	64.5
University of lowa	0.0	0.0	28.0
Total	0.0	0.0	$1,046.8$

NOTES: Directional route-miles is the mileage in each direction over which public transportation vehicles travel while in revenue service. Directional route-miles are a measure of the facility or roadway, not the service carried on the facility such as the number of routes or vehicle-miles. Directional route-miles are computed with regard to direction of service, but without regard to the number of traffic lanes or rail tracks existing in the right-of-way. Exclusive right-of-way refers to lanes reserved at all times for transit use and other high occupancy vehicles (HOVs). Controlled right-of-way refers to lanes restricted for at least a portion of the day for use by transit vehicles and other HOVs. Mixed right-of-way refers to lanes used for general automobile traffic.
Directly operated transit is service provided by a public transit agency using its own employees to operate transit vehicles. Transit service purchased under contract by a public transit agency is not considered directly operated transit.

SOURCE: U.S. Department of Transportation, Federal Transit Administration, National Transit Database, Data Tables, available at http://www.ntdprogram.com/ as of Feb. 19, 2002.

Table 1-8: Characteristics of Rail Transit in lowa: 2000

	Directional route-miles	Miles of track	Number of crossings	Number of stations	Number of ADA accessible stations
Transit agency Fenelon Place Elevator (Dubuque)	0.1	0.1	0	2	0

KEY: ADA = Americans with Disabilities Act of 1990.
NOTE: Directional route-miles is the mileage in each direction over which public transportation vehicles travel while in revenue service. Directional route-miles are a measure of the facility or roadway, not the service carried on the facility such as the number of routes or vehicle-miles. Directional route-miles are computed with regard to direction of service, but without regard to the number of traffic lanes or rail tracks existing in the right-of-way.

SOURCE: American Public Transportation Association, Public Transportation Fact Book, 2001, Washington, DC: 2001, available at http://www.apta.com/stats/ as of June 27, 2002.

Table 1-9: Civil and Joint-Use Airports, Heliports, STOLports, and Seaplane Bases in lowa: $2002{ }^{1}$

Ownership and usage	Airports	Heliports	STOLports	Seaplane bases	Total
Publicly owned	114	22	0	0	136
Open to public	113	0	0	0	113
Closed to public	1	22	0	0	23
Privately owned	116	61	1	0	178
Open to public	9	0	0	0	9
Closed to public	107	61	1	0	169
Total	230	83	1	0	314

${ }^{1}$ Data are current as of Jan. 31, 2002.
KEY: STOLport $=$ Short take-off and landing airport.

NOTE: Publicly owned facilities are open for public use with no prior authorization or permission. Publicly owned facilities closed to the public include medical, law enforcement, and other such facilities.
SOURCE: U.S. Department of Transportation, Federal Aviation Administration, Office of Airports, Airport Safety Data Branch.

Infrastructure

Table 1-10: lowa Commercial Service Airport Enplanements: 2000 (For airports with scheduled service and 2,500 or more passengers enplaned)

	Large certificated air carriers	Commuter and small certificated air carriers	Air taxi commuter operators	Foreign air carriers	Total enplanements	
Airport	756,221	86,634	312	123	843,290	
Des Moines International Airport	467,288	26,366	141	0	493,795	
The Eastern lowa Airport	71,176	14,506	2	0	85,684	
Sioux Gateway Airport	41,445	17,068	18	0	58,531	
Dubuque Regional Airport	29,740	24,816	24	0	54,580	
Waterloo Municipal Airport	3,633	12,848	30	0	16,511	
Burlington Regional Airport	12,595	0	17	0	12,612	
Mason City Municipal Airport	11,676	40	13	0	11,729	
Fort Dodge Regional Airport	0	4,391	94	0	4,485	
Spencer Municipal Airport						

NOTE: Rank order by total enplaned passengers on air carriers of all types, including foreign air carriers.

SOURCE: U.S. Department of Transportation, Federal Aviation Administration, Office of the Associate Administrator for Airports, CY 2000 Enplanement Activity at U.S. Commercial Service Airports, available at http://www.faa.gov/arp/Planning/v3.htm as of Mar. 26, 2002.

Table 1-11: Freight Railroads in lowa and the United States: 2000

Type of railroad	Number of railroads		Miles operated ${ }^{2}$			
			United States	lowa		
	United States	lowa		Excluding trackage rights	Including trackage rights	Percent of U.S. total
Total	562	17	172,101	4,162	4,389	2.6
Class I	8	3	120,597	2,278	2,431	2.0
Regional	35	4	20,978	1,511	1,547	7.4
Local	304	7	21,512	332	363	1.7
Switching and terminal	213	3	7,425	41	48	0.6
Canadian ${ }^{1}$	2	0	1,589	0	0	0.0

${ }^{1}$ Refers to non-Class I, Canadian-owned lines.
${ }^{2}$ Miles operated is in terms of railroad so that a mile of single track is counted the same as a mile of double track. Sidings, turnouts, yard switching mileage, and mileage not operated are excluded. Miles operated under trackage rights provided by another (owning) railroad are included.

NOTES:

1. As defined by the Surface Transportation Board in 2000, a Class I Railroad is a railroad with operating revenues of at least $\$ 261.9$ million.
2. A Regional Railroad is a non-Class I, line-haul railroad operating 350 or more miles of road or with revenues of at least $\$ 40$ million or both.
3. A Local Railroad is a railroad which is neither a Class I nor a Regional Railroad, and is engaged primarily in line-haul service.
4. A Switching and Terminal Railroad is a non-Class I railroad engaged primarily in switching and/or terminal services for other railroads.

SOURCE: Association of American Railroads, Railroads and States - 2000, Washington, DC: 2002, available at http://www.aar.org/AboutTheIndustry/StateInformation.asp as of Mar. 19, 2002.

Table 1-12: Freight Railroads Operating in lowa by Class: 2000

	Miles operated in Railroad
Class I railroads	
Burlington Northern and Santa Fe Railway Co.	2,431
Norfolk Southern Corp.	708
Union Pacific Railroad Co.	44
	1,679
Regional railroads	1,547
Chicago, Central, and Pacific Railroad	558
Dakota, Minnesota, \& Eastern Railroad Corp.	25
I \& M Rail Link, LLC	619
lowa Interstate Railroad, Ltd.	345
Local railroads	363
Cedar Rapids and lowa City Railway Co.	60
Cedar River Railroad Co.	83
D \& I Railroad Co.	41
lowa Northern Railway Co.	162
lowa Traction Railroad Co.	13
Keokuk Junction Railway Co.	1
Toledo, Peoria, \& Western Railway Corp.	3
Switching and terminal railroads	
Appanoose County Community Railroad Inc.	48
Burlington Junction Railway	36
Great Western Railway of lowa	5

${ }^{1}$ Miles operated is in terms of railroad so that a mile of single track is counted the same as a mile of double track. Sidings, turnouts, yard switching mileage, and mileage not operated are excluded. Miles operated under trackage rights provided by another (owning) railroad are included.

NOTE: For definition of railroad types see previous table.
SOURCE: Association of American Railroads, Railroads and States - 2000, Washington, DC: 2002, available at http://www.aar.org/AboutThelndustry/Statelnformation.asp as of Mar. 19, 2002.

Table 1-13: Inland Waterway Mileage: 2000 (Includes 39 states and the District of Columbia)

State	Miles	State	Miles
Alabama	1,270	Mississippi	873
Alaska	5,497	Missouri	1,033
Arkansas	1,860	Nebraska	318
California	286	New Hampshire	8
Connecticut	117	New Jersey	360
Delaware	99	New York	394
District of Columbia	7	North Carolina	1,152
Florida	1,540	Ohio	444
Georgia	721	Oklahoma	150
Idaho	111	Oregon	681
Illinois	1,095	Pennsylvania	259
Indiana	353	Rhode Island	39
lowa	492	South Carolina	482
Kansas	120	South Dakota	75
Kentucky	1,591	Tennessee	946
Louisiana	2,823	Texas	834
Maine	73	Virginia	674
Maryland	532	Washington	1,057
Massachusetts	90	West Virginia	682
Minnesota	258	Wisconsin	231

NOTES: Waterway mileages were determined by including the length of channels 1) with a controlling draft of nine feet or greater, 2) with commercial cargo traffic reported for 1998 and 1999, but 3) were not offshore (i.e., channels in coastal areas included only the miles from the entrance channel inward). Channels within major bays are included (e.g., Chesapeake Bay, San Francisco Bay, Puget Sound, Long Island Sound, major sounds and straits in southeastern Alaska). Channels in the Great Lakes are not included, but waterways connecting lakes and the St. Lawrence Seaway inside the United States are included.

SOURCE: U.S. Army Corps of Engineers, Navigation Data Center, National Waterway Network, January 2002.

B Safety

Table 2-1: Highway Traffic Fatalities and Fatality Rates: 2000

State	Traffic fatalities	Licensed drivers (thousands)	Registered vehicles (thousands)	Vehicle-miles traveled (millions)	Fatality rate per		
					100,000 licensed drivers	$\begin{gathered} \hline 100,000 \\ \text { registered } \\ \text { vehicles } \\ \hline \end{gathered}$	100 million vehicle-miles traveled
Alabama	995	3,521	4,015	56,534	28.3	24.8	1.8
Alaska	103	465	611	4,613	22.2	16.9	2.2
Arizona	1,036	3,434	3,960	49,768	30.2	26.2	2.1
Arkansas	652	1,948	1,865	29,167	33.5	35.0	2.2
California	3,753	21,244	28,146	306,649	17.7	13.3	1.2
Colorado	681	3,107	3,724	41,771	21.9	18.3	1.6
Connecticut	342	2,653	2,907	30,756	12.9	11.8	1.1
Delaware	123	557	641	8,240	22.1	19.2	1.5
District of Columbia	49	348	244	3,498	14.1	20.1	1.4
Florida	2,999	12,853	12,036	152,136	23.3	24.9	2.0
Georgia	1,541	5,550	7,243	105,010	27.8	21.3	1.5
Hawaii	131	769	758	8,543	17.0	17.3	1.5
Idaho	276	884	1,220	13,534	31.2	22.6	2.0
Illinois	1,418	7,961	9,168	102,866	17.8	15.5	1.4
Indiana	875	3,976	5,689	70,862	22.0	15.4	1.2
lowa	445	1,953	3,233	29,433	22.8	13.8	1.5
Kansas	461	1,908	2,346	28,130	24.2	19.7	1.6
Kentucky	820	2,694	2,870	46,803	30.4	28.6	1.8
Lovisiana	937	2,759	3,605	40,849	34.0	26.0	2.3
Maine	169	920	1,053	14,190	18.4	16.1	1.2
Maryland	588	3,382	3,897	50,174	17.4	15.1	1.2
Massachusetts	433	4,490	5,372	52,796	9.6	8.1	0.8
Michigan	1,382	6,925	8,619	97,792	20.0	16.0	1.4
Minnesota	625	2,941	4,773	52,601	21.3	13.1	1.2
Mississippi	949	2,008	2,321	35,536	47.3	40.9	2.7
Missouri	1,157	3,856	4,641	67,083	30.0	24.9	1.7
Montana	237	679	1,053	9,882	34.9	22.5	2.4
Nebraska	276	1,195	1,640	18,081	23.1	16.8	1.5
Nevada	323	1,371	1,245	17,639	23.6	25.9	1.8
New Hampshire	126	930	1,100	12,021	13.6	11.5	1.0
New Jersey	731	5,655	6,502	67,446	12.9	11.2	1.1
New Mexico	430	1,239	1,557	22,760	34.7	27.6	1.9
New York	1,458	10,871	10,342	129,057	13.4	14.1	1.1
North Carolina	1,472	5,690	6,305	89,504	25.9	23.3	1.6
North Dakota	86	459	711	7,217	18.7	12.1	1.2
Ohio	1,351	8,206	10,722	105,898	16.5	12.6	1.3
Oklahoma	652	2,295	3,072	43,355	28.4	21.2	1.5
Oregon	451	2,495	3,091	35,010	18.1	14.6	1.3
Pennsylvania	1,520	8,229	9,476	102,337	18.5	16.0	1.5
Rhode Island	80	654	779	8,359	12.2	10.3	1.0
South Carolina	1,065	2,843	3,146	45,538	37.5	33.9	2.3
South Dakota	173	544	822	8,432	31.8	21.0	2.1
Tennessee	1,306	4,251	4,891	65,732	30.7	26.7	2.0
Texas	3,769	13,462	14,257	220,064	28.0	26.4	1.7
Utah	373	1,463	1,656	22,597	25.5	22.5	1.7
Vermont	79	506	537	6,811	15.6	14.7	1.2
Virginia	930	4,837	6,107	74,801	19.2	15.2	1.2
Washington	632	4,155	5,235	53,330	15.2	12.1	1.2
West Virginia	410	1,347	1,468	19,242	30.4	27.9	2.1
Wisconsin	799	3,770	4,545	57,266	21.2	17.6	1.4
Wyoming	152	371	605	8,090	41.0	25.1	1.9
United States	41,821	190,625	217,028	2,749,803	21.9	19.3	1.5

SOURCES: U.S. Department of Transportation, National Highway Traffic Safety Administration, Traffic Safety Facts 2000, Washington, DC: 2001, available at http://www-nrd.nhtsa.dot.gov/pdf/nrd-30/NCSA/TSFAnn/TSF2000.pdf as of Jan. 4, 2002; U.S. Department of Transportation, Federal Highway Administration, Highway Statistics 2000, Washington, DC: 2001, available at http://www.fhwa.dot.gov/ohim/ohimstat.htm as of Dec. 6, 2001.

Table 2-2: Passenger Car Occupants Killed and Restraint Use: 2000

State	Restraint used		No restraint used		Restraint use unknown		Total occupants	
	Number	Percent	Number	Percent	Number	Percent	Number	Percent
Alabama	204	38.2	308	57.7	22	4.1	534	100.0
Alaska	11	39.3	17	60.7	0	0.0	28	100.0
Arizona	131	36.0	183	50.3	50	13.7	364	100.0
Arkansas	95	32.3	160	54.4	39	13.3	294	100.0
California	917	53.5	499	29.1	298	17.4	1,714	100.0
Colorado	129	47.1	142	51.8	3	1.1	274	100.0
Connecticut	69	38.1	90	49.7	22	12.2	181	100.0
Delaware	20	29.0	47	68.1	2	2.9	69	100.0
District of Columbia	4	22.2	7	38.9	7	38.9	18	100.0
Florida	523	37.7	836	60.3	27	1.9	1,386	100.0
Georgia	337	42.9	351	44.7	98	12.5	786	100.0
Hawaii	23	37.7	29	47.5	9	14.8	61	100.0
Idaho	42	35.9	69	59.0	6	5.1	117	100.0
Illinois	234	34.3	311	45.6	137	20.1	682	100.0
Indiana	203	43.0	222	47.0	47	10.0	472	100.0
lowa	107	41.6	98	38.1	52	20.2	257	100.0
Kansas	77	33.2	127	54.7	28	12.1	232	100.0
Kentucky	156	36.3	269	62.6	5	1.2	430	100.0
Lovisiana	127	30.1	232	55.0	63	14.9	422	100.0
Maine	37	36.6	58	57.4	6	5.9	101	100.0
Maryland	167	55.3	117	38.7	18	6.0	302	100.0
Massachusetts	63	25.9	128	52.7	52	21.4	243	100.0
Michigan	364	51.3	260	36.6	86	12.1	710	100.0
Minnesota	129	37.5	174	50.6	41	11.9	344	100.0
Mississippi	144	28.3	354	69.5	11	2.2	509	100.0
Missouri	198	33.4	326	55.0	69	11.6	593	100.0
Montana	38	37.3	56	54.9	8	7.8	102	100.0
Nebraska	35	27.1	76	58.9	18	14.0	129	100.0
Nevada	52	38.2	81	59.6	3	2.2	136	100.0
New Hampshire	13	21.0	43	69.4	6	9.7	62	100.0
New Jersey	161	42.4	197	51.8	22	5.8	380	100.0
New Mexico	72	41.9	90	52.3	10	5.8	172	100.0
New York	360	50.8	290	40.9	59	8.3	709	100.0
North Carolina	369	45.0	354	43.2	97	11.8	820	100.0
North Dakota	8	19.0	33	78.6	1	2.4	42	100.0
Ohio	319	41.5	396	51.6	53	6.9	768	100.0
Oklahoma	128	40.4	187	59.0	2	0.6	317	100.0
Oregon	147	67.1	60	27.4	12	5.5	219	100.0
Pennsylvania	265	31.7	443	53.1	127	15.2	835	100.0
Rhode Island	8	18.6	33	76.7	2	4.7	43	100.0
South Carolina	158	38.3	246	59.7	8	1.9	412	100.0
South Dakota	11	15.3	58	80.6	3	4.2	72	100.0
Tennessee	207	28.6	479	66.1	39	5.4	725	100.0
Texas	914	54.7	723	43.2	35	2.1	1,672	100.0
Utah	66	39.3	97	57.7	5	3.0	168	100.0
Vermont	23	57.5	15	37.5	2	5.0	40	100.0
Virginia	199	40.4	264	53.7	29	5.9	492	100.0
Washington	153	44.5	185	53.8	6	1.7	344	100.0
West Virginia	71	31.1	151	66.2	6	2.6	228	100.0
Wisconsin	161	37.3	231	53.5	40	9.3	432	100.0
Wyoming	23	46.0	27	54.0	0	0.0	50	100.0
United States	8,472	41.3	10,229	49.9	1,791	8.7	20,492	100.0

NOTE: Fatalities in this table include passenger car occupants only. Occupants of other vehicle types - light trucks, heavy trucks, motorcycles, and buses - are excluded as are other types of highway related fatalities such as pedestrian fatalities. Hence, the fatalities represented here are lower then those in table 2-1. Percents may not add to totals due to rounding.
SOURCE: U.S. Department of Transportation, National Highway Traffic Safety Administration, Traffic Safety Facts 2000, Washington, DC: 2002, available at http://www-nrd.nhtsa.dot.gov/pdf/nrd-30/NCSA/TSFAnn /TSF2000.pdf as of Jan. 4, 2002.

Table 2-3: Key Provisions of Safety Belt Use Laws: 2000

State	Effective ${ }^{1}$	Enforcement ${ }^{2}$	Fine	Seats	Vehicles exempted ${ }^{3}$
Alabama	7/18/1992	Primary	\$25	Front	Designed for more than 10 passengers
Alaska	9/12/1990	Secondary	\$15	All	School bus
Arizona	1/1/1991	Secondary	\$10	Front	Designed for more than 10 passengers; model year before 1972
Arkansas	7/15/1991	Secondary	\$25 ${ }^{4}$	Front	School bus, church bus, public bus
California	1/1/1986	Primary	\$20 ${ }^{5}$	All	None
Colorado	7/1/1987	Secondary	\$15	Front	Passenger bus, school bus
Connecticut	1/1/1986	Primary	\$15	Front	Truck or bus over 15,000 lbs.
Delaware	1/1/1992	Secondary	\$20	Front	None
District of Columbia	12/12/1985	Primary	\$50 ${ }^{6}$	All	Seating more than 8 people
Florida	7/1/1986	Secondary	\$30	Front	School bus, public bus, truck over 5,000 lbs.
Georgia	9/1/1988	Primary	\$15	Front	Designed for more than 10 passengers, pickup
Hawaii	2/16/1985	Primary	\$45	Front	Bus or school bus over 10,000 lbs.
Idaho	7/1/1986	Secondary	\$5	Front	Over 8,000 lbs.
Illinois	7/1/1985	Secondary	\$25	Front	None
Indiana	7/1/1987	Primary	\$25	Front	Truck, tractor, RV
lowa	7/1/1986	Primary	\$10	Front	None
Kansas	7/1/1986	Secondary	\$10	Front	Designed for more than 10 people, truck over $12,000 \mathrm{lbs}$.
Kentucky	7/13/1994	Secondary	\$25	All	Designed for more than 10 people
Louisiana	7/1/1986	Primary	\$25 ${ }^{7}$	Front	Manufactured before 1/1/81
Maine	12/27/1995	Secondary	\$50	All	None
Maryland	7/1/1986	Primary	\$25	Front	Historic vehicle
Massachusetts	2/1/1994	Secondary	\$25	All	Truck over 18,000 lbs., bus, taxi
Michigan	7/1/1985	Primary	\$25	Front	Bus
Minnesota	8/1/1986	Secondary	\$25	Front	Farm pickup truck
Mississippi	3/20/1990	Secondary	\$25	Front	Farm vehicle, bus
Missouri	9/28/1985	Secondary	\$10	Front	Designed for more than 10 people, truck over $12,000 \mathrm{lbs}$.
Montana	10/1/1987	Secondary	\$20	All	None
Nebraska	1/1/1993	Secondary	\$25	Front	Manufactured before 1973
Nevada	7/1/1987	Secondary	\$25	All	Taxi, bus, school bus
New Hampshire	None	NA	NA	NA	NA
New Jersey	3/1/1985	Secondary	\$20	Front	None
New Mexico	1/1/1986	Primary	\$25	Front	Vehicle over 10,000 lbs.
New York	12/1/1984	Primary	\$50	Front	Bus, school bus, taxi
North Carolina	10/1/1985	Primary	\$25	Front	Designed for more than 10 people
North Dakota	7/14/1994	Secondary	\$20	Front	Designed for more than 10 people
Ohio	5/6/1986	Secondary	\$25	Front	None
Oklahoma	2/1/1987	Primary	$\$ 20$ $\$ 75$	Front	Farm vehicle, truck, truck tractor, RV
Oregon Pennsylvania	11/23/1987	Primary	\$75 $\$ 10$	Front	None Truck over 7,000 lbs.
Rhode Island	6/18/1991	Secondary	\$50	All	None
South Carolina	7/1/1989	Secondary	\$10	All	School bus, public bus
South Dakota	1/1/1995	Secondary	\$20	Front	Bus, school bus
Tennessee	4/21/1986	Secondary	\$50	Front	Vehicle over 8,500 lbs.
Texas	9/1/1985	Primary	\$50	Front	Designed for more than 10 people, truck over $15,000 \mathrm{lbs}$.
Utah	4/28/1986	Secondary	\$45	Front	Vehicle over 10,000 lbs., school/public bus, taxi
Vermont	1/1/1994	Secondary	\$10	All	Bus, taxi
Virginia	1/1/1988	Secondary	\$25	Front	Designed for more than 10 people, taxi
Washington	6/11/1986	Secondary	\$35	All	Designed for more than 10 people
West Virginia	9/1/1993	Secondary	\$25	Front	Designed for more than 10 people
Wisconsin	12/1/1987	Secondary	\$10	All	Taxi, farm truck
Wyoming	6/8/1989	Secondary	\$25	Front	Designed for more than 10 people, bus

${ }^{1}$ Effective date of first belt law in the state; ${ }^{2}$ Primary enforcement enables police officers to stop vehicles and write citations whenever they observe a violation of the seat belt law. Secondary enforcement allows police officers to write a citation for seat belt infractions only after stopping a vehicle for some other traffic infraction; ${ }^{3}$ Most states exempt vehicles not manufactured with seat belts; ${ }^{4}$ Plus 3 points on license; ${ }^{5}$ Fine for first offense; ${ }^{6}$ Plus 2 points on license; ${ }^{7}$ Penalty could include 30 days in jail.

KEY: NA $=$ not applicable; $\mathrm{RV}=$ recreational vehicle.
SOURCE: U.S. Department of Transportation, National Highway Traffic Safety Administration, Traffic Safety Facts 2000, Washington, DC: 2001, available at http://www-nrd.nhtsa.dot.gov/pdf/nrd-30/NCSA/TSFAnn/TSF2000.pdf as of Jan. 4, 2002.

Table 2-4: Shoulder Belt Use: 2000

State	Percent	State	Percent
Alabama	70.6	Montana	75.6
Alaska	61.0	Nebraska	70.5
Arizona	75.2	Nevada	78.5
Arkansas	52.4	New Hampshire	N
California	88.9	New Jersey	74.2
Colorado	65.1	New Mexico	86.6
Connecticut	76.3	New York	77.3
Delaware	66.1	North Carolina	80.5
District of Columbia	82.6	North Dakota	47.7
Florida	64.8	Ohio	65.3
Georgia	73.6	Oklahoma	67.5
Hawaii	80.4	Oregon	83.6
Idaho	58.6	Pennsylvania	70.7
Illinois	70.2	Rhode Island	64.4
Indiana	62.1	South Carolina	73.9
lowa	78.0	South Dakota	53.4
Kansas	61.6	Tennessee	59.0
Kentucky	60.0	Texas	76.6
Louisiana	68.2	Utah	75.7
Maine	N	Vermont	61.6
Maryland	85.0	Virginia	69.6
Massachusetts	50.0	Washington	81.6
Michigan	83.5	West Virginia	49.5
Minnesota	73.4	Wisconsin	65.4
Mississippi	50.4	Wyoming	66.8

KEY: $\mathrm{N}=$ data do not exist.

Figure 2-1: Shoulder Belt Use

SOURCE FOR DATA ON THIS PAGE: U.S. Department of Transportation, National Highway Traffic Safety Administration, 1998-2000 State Shoulder Belt Use Survey Results, Research Note, Washington, DC: May 2001, available at http://www-nrd.nhtsa.dot.gov/departments/nrd-30/ncsa/availinf.html as of Mar. 20, 2002.

Table 2-5: Pedestrian Fatalities Involving Motor Vehicles: 2000

State	Total traffic fatalities	Pedestrians killed	Pedestrian fatalities as percent of total	State population (thousands)	Pedestrian fatality rate per 100,000 population
Alabama	995	61	6.1	4,451	1.4
Alaska	103	8	7.8	653	1.2
Arizona	1,036	130	12.5	4,798	2.7
Arkansas	652	38	5.8	2,631	1.4
California	3,753	670	17.9	32,521	2.1
Colorado	681	80	11.7	4,168	1.9
Connecticut	342	49	14.3	3,284	1.5
Delaware	123	22	17.9	768	2.9
District of Columbia	49	18	36.7	523	3.4
Florida	2,999	492	16.4	15,233	3.2
Georgia	1,541	137	8.9	7,875	1.7
Hawaii	131	29	22.1	1,257	2.3
Idaho	276	6	2.2	1,347	0.4
Illinois	1,418	187	13.2	12,051	1.6
Indiana	875	51	5.8	6,045	0.8
lowa	445	25	5.6	2,900	0.9
Kansas	461	19	4.1	2,668	0.7
Kentucky	820	53	6.5	3,995	1.3
Lovisiana	937	100	10.7	4,425	2.3
Maine	169	15	8.9	1,259	1.2
Maryland	588	91	15.5	5,275	1.7
Massachusetts	433	82	18.9	6,199	1.3
Michigan	1,382	170	12.3	9,679	1.8
Minnesota	625	38	6.1	4,830	0.8
Mississippi	949	64	6.7	2,816	2.3
Missouri	1,157	88	7.6	5,540	1.6
Montana	237	11	4.6	950	1.2
Nebraska	276	20	7.2	1,705	1.2
Nevada	323	43	13.3	1,871	2.3
New Hampshire	126	7	5.6	1,224	0.6
New Jersey	731	145	19.8	8,178	1.8
New Mexico	430	47	10.9	1,860	2.5
New York	1,458	335	23.0	18,146	1.8
North Carolina	1,472	144	9.8	7,777	1.9
North Dakota	86	5	5.8	662	0.8
Ohio	1,351	96	7.1	11,319	0.8
Oklahoma	652	43	6.6	3,373	1.3
Oregon	451	50	11.1	3,397	1.5
Pennsylvania	1,520	170	11.2	12,202	1.4
Rhode Island	80	6	7.5	998	0.6
South Carolina	1,065	84	7.9	3,858	2.2
South Dakota	173	13	7.5	777	1.7
Tennessee	1,306	99	7.6	5,657	1.7
Texas	3,769	412	10.9	20,119	2.0
Utah	373	33	8.8	2,207	1.5
Vermont	79	7	8.9	617	1.1
Virginia	930	92	9.9	6,997	1.3
Washington	632	66	10.4	5,858	1.1
West Virginia	410	25	6.1	1,841	1.4
Wisconsin	799	51	6.4	5,326	1.0
Wyoming	152	12	7.9	525	2.3
United States	41,821	4,739	11.3	274,634	1.7

SOURCE: U.S. Department of Transportation, National Highway Traffic Safety Administration, National Center for Statistics and Analysis, Traffic Safety Facts 2000: Pedestrians, Washington, DC: 2001, available at http://www.nhtsa.dot.gov/people/ncsa/factshet.html as of Dec. 5, 2001.

Table 2-6: Motor Vehicle Fatalities Involving High Blood Alcohol Concentration (BAC ≥ 0.10 grams per deciliter)

State	1995			2000		
	Total fatalities	Fatalities involving high blood alcohol	Percent	Total fatalities	Fatalities involving high blood alcohol	Percent
Alabama	1,113	381	34	995	326	33
Alaska	87	37	42	103	44	43
Arizona	1,031	347	34	1,036	354	34
Arkansas	631	148	23	652	139	21
California	4,192	1,308	31	3,753	1,061	28
Colorado	645	226	35	681	198	29
Connecticut	317	130	41	342	119	35
Delaware	121	38	31	123	49	40
District of Columbia	58	25	44	49	14	29
Florida	2,805	873	31	2,999	930	31
Georgia	1,488	400	27	1,541	438	28
Hawaii	130	41	32	131	37	28
Idaho	262	69	27	276	81	29
Illinois	1,586	551	35	1,418	489	34
Indiana	960	263	27	875	214	24
lowa	527	159	30	445	100	22
Kansas	442	152	34	461	118	26
Kentucky	849	227	27	820	203	25
Louisiana	883	353	40	937	352	38
Maine	187	44	24	169	38	22
Maryland	671	176	26	588	161	27
Massachusetts	444	148	33	433	153	35
Michigan	1,530	483	32	1,382	397	29
Minnesota	597	215	36	625	207	33
Mississippi	868	306	35	949	289	30
Missouri	1,109	450	41	1,157	387	33
Montana	215	79	37	237	92	39
Nebraska	254	64	25	276	70	25
Nevada	313	127	41	323	112	35
New Hampshire	118	30	25	126	40	31
New Jersey	773	243	32	731	231	32
New Mexico	485	202	42	430	159	37
New York	1,674	405	24	1,458	293	20
North Carolina	1,448	399	28	1,472	419	28
North Dakota	74	32	44	86	36	42
Ohio	1,366	344	25	1,351	411	30
Oklahoma	669	205	31	652	169	26
Oregon	572	176	31	451	132	29
Pennsylvania	1,480	485	33	1,520	511	34
Rhode Island	69	22	32	80	31	38
South Carolina	881	229	26	1,065	329	31
South Dakota	158	63	40	173	66	38
Tennessee	1,259	420	33	1,306	399	31
Texas	3,181	1,407	44	3,769	1,450	38
Utah	326	69	21	373	68	18
Vermont	106	33	31	79	27	34
Virginia	900	272	30	930	257	28
Washington	653	248	38	632	217	34
West Virginia	376	132	35	410	149	36
Wisconsin	745	263	35	799	288	36
Wyoming	170	63	37	152	40	26
United States	41,798	13,564	32	41,821	12,892	31

SOURCE: U.S. Department of Transportation, National Highway Traffic Safety Administration, National Center for Statistics and Analysis, Traffic Safety Facts 2000: State Alcohol Estimates, Washington, DC: 2001, available at http://www.nhtsa.dot.gov/people/ncsa/factshet.html as of Dec. 5, 2001.

Table 2-7: Impaired Driving Laws: 2000

State	Administrative per se (BAC level)	Illegal per se (BAC level)	Lower BAC for youthful DWI offenders (BAC level and age)	License sanction (Mandatory minimum for a DWI conviction)		
				First offense	Second offense	Third offense
Alabama	Y-0.08	0.08	Y-0.02 (<21)	S-90 days	R-1 yr	$\mathrm{R}-3 \mathrm{yrs}$
Alaska	Y-0.10	0.10	Y-0.00 (<21)	R-30 days	R-1 yr	$\mathrm{R}-10 \mathrm{yrs}$
Arizona	Y-0.10	0.10	Y-0.00 (<21)	S-90 days	R-1 yr	R-3 yrs
Arkansas	Y-0.10	0.10	Y-0.02 (<21)	Nms	Nms	Nms
California	$\mathrm{Y}-0.08$	0.08	Y-0.01 (<21)	Nms	Nms	$\mathrm{R}-18 \mathrm{mos}$
Colorado	Y-0.10	0.10	Y-0.02 (<21)	Nms	R-1 yr	$\mathrm{R}-1 \mathrm{yr}$
Connecticut	Y-0.10	0.10	Y-0.02 (<21)	Nms	Nms	Nms
Delaware	Y-0.10	0.10	Y-0.02 (<21)	Nms	R-6 mos	R-6 mos
District of Columbia	$\mathrm{Y}-0.05$	0.08	Y-0.00 (<21)	R-6 mos	$\mathrm{R}-1 \mathrm{yr}$	R-2 yrs
Florida	$\gamma-0.08$	0.08	Y-0.02 (<21)	Nms	R-12 mos	R-24 mos
Georgia	Y-0.10	0.10	Y-0.02 (<21)	Nms	S-120 days	R-5 yrs
Hawaii	Y-0.08	0.08	Y-0.02 (<21)	S-30 days	S-1 yr	$\mathrm{R}-1 \mathrm{yr}$
Idaho	Y-0.08	0.08	Y-0.02 (<21)	S-30 days	S-1 yr	S-1 yr
Illinois	Y-0.08	0.08	Y-0.02 (<21)	Nms	Nms	Nms
Indiana	$\mathrm{Y}-0.10$	0.10	Y-0.02 (<21)	S-30 days	S-1 yr	S-1 yr
lowa	Y-0.10	0.10	$\mathrm{Y}-0.02(<21)$	R-30 days	R-1 yr	R-1 yr
Kansas	$\mathrm{Y}-0.08$	0.08	Y-0.02 (<21)	S-30 days	S-1 yr	S-1 yr
Kentucky	A	0.08	Y-0.02 (<21)	S-30 days	R-12 mos	R-24 mos
Louisiana	Y-0.10	0.10	Y-0.02 (<21)	Nms	Nms	Nms
Maine	Y-0.08	0.08	Y-0.00 (<21)	S-60 days	S-18 mos	S-4 yrs
Maryland	$Y-0.10$	0.10	Y-0.02 (<21)	Nms	Nms	Nms
Massachusetts	Y-0.08	N	Y-0.02 (<21)	S-45 days	R-6 mos	R-2 yrs
Michigan	N	0.10	Y-0.02 (<21)	Nms	R-1 yr	S-5 yrs
Minnesota	Y-0.10	0.10	Y-0.00 (<21)	R-15 days	R-90 days	R-90 days
Mississippi	Y-0.10	0.10	Y-0.02 (<21)	S-30 days	$\mathrm{S}-1 \mathrm{yr}$	S-3 yrs
Missouri	Y-0.10	0.10	Y-0.02 (<21)	S-30 days	R-2 yrs	R-3 yrs
Montana	N	0.10	Y-0.02 (<21)	Nms	$\mathrm{R}-3 \mathrm{mos}$	R-3 mos
Nebraska	Y-0.10	0.10	Y-0.02 (<21)	R-60 days	$\mathrm{R}-1 \mathrm{yr}$	R-1 yr
Nevada	Y-0.10	0.10	Y-0.02 (<21)	R-45 days	R-1 yr	R-1.5 yrs
New Hampshire	Y-0.08	0.08	Y-0.02 (<21)	R-90 days	$\mathrm{R}-3 \mathrm{yrs}$	$\mathrm{R}-3 \mathrm{yrs}$
New Jersey	N	0.10	Y-0.01 (<21)	R-6 mos	$\mathrm{R}-2 \mathrm{yrs}$	R-10 yrs
New Mexico	Y-0.08	0.08	Y-0.02 (<21)	Nms	$\mathrm{R}-30$ days	R-30 days
New York	A	0.10	Y-0.02 (<21)	Nms	R-1 yr	R-1 yr
North Carolina	$\mathrm{Y}-0.08$	0.08	Y-0.00 (<21)	Nms	R-2 yrs	R-3 yrs
North Dakota	Y-0.10	0.10	Y-0.02 (<21)	S-30 days	S-365 days	S-2 yrs
Ohio	Y-0.10	0.10	Y-0.02 (<21)	S-15 days	$\mathrm{S}-30$ days	S-180 days
Oklahoma	Y-0.10	0.10	Y-0.00 (<21)	Nms	R-1 yr	R-1 yr
Oregon	Y-0.08	0.08	Y-0.00 (<21)	Nms	S-90 days	S-1 yr
Pennsylvania	N	0.10	Y-0.02 (<21)	$\mathrm{S}-1 \mathrm{mo}$	$\mathrm{S}-12 \mathrm{mos}$	$\mathrm{S}-12 \mathrm{mos}$
Rhode Island	N	0.08	Y-0.02 (<21)	S-3 mos	S-1 yr	S-2 yrs
South Carolina	Y-0.15	0.10	Y-0.02 (<21)	Nms	S-1 yr	S-4 yrs
South Dakota	N	0.10	Y-0.02 (<21)	Nms	$\mathrm{R}-1 \mathrm{yr}$	R-1 yr
Tennessee	N	0.10	Y-0.02 (<21)	Nms	$\mathrm{R}-2 \mathrm{yrs}$	R-3 yrs
Texas	Y-0.08	0.08	Y-0.00 (<21)	Nms	Nms	Nms
Utah	Y-0.08	0.08	Y-0.00 (<21)	S-90 days	R-1 yrs	$\mathrm{R}-1 \mathrm{yrs}$
Vermont	Y-0.08	0.08	Y-0.02 (<21)	S-90 days	$\mathrm{S}-18 \mathrm{mos}$	R-2 yrs
Virginia	Y-0.08	0.08	Y-0.02 (<21)	Nms	R-1 yr	R-3 yrs
Washington	Y-0.08	0.08	Y-0.02 (<21)	S-30 days	R-1 yr	R-2 yrs
West Virginia	Y-0.10	0.10	Y-0.02 (<21)	R-30 days	$\mathrm{R}-1 \mathrm{yr}$	$\mathrm{R}-1 \mathrm{yr}$
Wisconsin	Y-0.10	0.10	Y-0.02 (<21)	Nms	R-60 days	R-90 days
Wyoming	Y-0.10	0.10	$\mathrm{Y}-0.02$ (<21)	Nms	$\mathrm{S}-1 \mathrm{yr}$	R-3 yrs

KEY: $\mathrm{BAC}=$ blood alcohol concentration; $\mathrm{DWI}=$ driving while intoxicated; $\mathrm{Y}=$ yes; $\mathrm{N}=$ no; $\mathrm{A}=$ alternative; $\mathrm{S}=$ suspension; $\mathrm{R}=$ revocation; Nms $=$ no mandatory sanction.

NOTES: An "administrative per se law" allows a state's driver licensing agency to either suspend or revoke a driver's license based on a specific alcohol (or drug) concentration or on some other criterion related to alcohol or drug use and driving. Such action is independent of any licensing action related to a DWI criminal offense. The term "illegal per se" refers to state laws that make it a criminal offense to operate a motor vehicle at or above a specified alcohol (or drug) concentration in the blood, breath, or urine. In those columns showing mandatory sanctions, "nms" does not mean that a state does not have a sanction. It only means that the state does not have a mandatory sanction for that offense or violation.

SOURCE: U.S. Department of Transportation, National Highway Traffic Safety Administration, Traffic Safety Facts 2000, Washington, DC: 2001, available at http://www-nrd.nhtsa.dot.gov/pdf/nrd-30/NCSA/TSFAnn/TSF2000.pdf as of Jan. 4, 2002.

Table 2-8: Maximum Posted Speed Limits by System: 2001 (Speed limit in miles per hour) ${ }^{1}$

State	Interstate		Other limited-access roads ${ }^{2}$	Other roads
	Rural	Urban		
Alabama	70	70	65	65
Alaska	65	55	65	55
Arizona	75	55	55	55
Arkansas	70, Trucks: 65	55	60	55
California	70, Trucks: 55	65	70	55
Colorado	75	65	65	55
Connecticut	65	55	65	55
Delaware	65	55	65	55
District of Columbia	NA	55	NA	25
Florida	70	65	70	65
Georgia	70	65	65	65
Hawaii	55	50	45	45
Idaho	75, Trucks: 65	65	65	65
Illinois	65, Trucks: 55	55	65	55
Indiana	65, Trucks: 60	55	55	55
Iowa	65	55	65	55
Kansas	70	70	70	65
Kentucky	65	55	55	55
Louisiana	70	55	70	65
Maine	65	55	55	55
Maryland	65	65	65	55
Massachusetts	65	65	65	55
Michigan	70, Trucks: 55	65	70	55
Minnesota	70	65	65	55
Mississippi	70	70	70	65
Missouri	70	60	70	65
Montana	75, Trucks: 65	65	Day: 70, Night: 65	Day: 70, Night: 65
Nebraska	75	65	65	60
Nevada	75	65	70	70
New Hampshire	65	65	55	55
New Jersey	65	55	65	55
New Mexico	75	55	65	55
New York	65	65	65	55
North Carolina	70	65	65	55
North Dakota	70	55	65	Day: 65, Night: 55
Ohio	65, Trucks: 55	65	55	55
Oklahoma	75	70	70	70
Oregon	65, Trucks: 55	55	55	55
Pennsylvania	65	55	65	55
Rhode Island	65	55	55	55
South Carolina	70	70	60	55
South Dakota	75	65	65	65
Tennessee	70	70	70	55
Texas	70	70	70	70
Utah	75	65	55	55
Vermont	65	55	50	50
Virginia	65	55	65	55
Washington	70, Trucks: 60	60	55	55
West Virginia	70	55	65	55
Wisconsin	65	65	65	55
Wyoming	75	60	65	65

${ }^{1}$ Many roads, particularly urban interstates, often have a lower posted speed limit than the maximum allowable shown in this table.
${ }^{2}$ Limited-access roads are multilaned roads with restricted access using exit and entrance ramps rather than intersections.
KEY: $\mathrm{NA}=$ not applicable.
NOTE: Interstates are divided into urban and rural sections based primarily on population size and population density.
SOURCE: Insurance Institute for Highway Safety, Highway Loss Data Institute, available at http://www.hwysafety.org/ safety_facts/state_laws/speed_limit_laws.htm as of Oct. 1, 2001.

Table 2-9: Total Rail Accidents/Incidents: 2000

State	Accidents/ Incidents	Fatalities	Injuries	State	Accidents/ Incidents	Fatalities	Injuries
Alabama	257	20	143	Montana	156	4	108
Alaska	89	2	82	Nevada	40	1	25
Arizona	222	27	147	New Hampshire	18	0	15
Arkansas	371	30	225	New Jersey	528	28	432
California	1,133	101	808	Nebraska	362	8	247
Colorado	199	10	112	New Mexico	138	4	106
Connecticut	203	6	159	New York	1,330	32	1,168
Delaware	59	2	47	North Carolina	243	24	121
District of Columbia	107	0	90	North Dakota	122	9	82
Florida	405	45	303	Ohio	575	28	339
Georgia	395	23	231	Oklahoma	231	22	124
Hawaii	0	0	0	Oregon	214	9	152
Idaho	109	11	53	Pennsylvania	752	23	583
Illinois	1,484	69	1,109	Rhode Island	21	1	19
Indiana	540	36	317	South Carolina	192	20	141
lowa	367	9	211	South Dakota	64	3	43
Kansas	337	21	226	Tennessee	296	15	163
Kentucky	272	14	170	Texas	1,260	90	777
Louisiana	465	16	310	Utah	129	5	88
Maine	79	2	58	Vermont	29	1	22
Maryland	173	9	103	Virginia	252	13	169
Massachusetts	228	17	183	Washington	317	16	230
Michigan	434	23	300	West Virginia	128	9	93
Minnesota	431	11	303	Wisconsin	390	20	258
Mississippi	250	17	120	Wyoming	156	2	107
Missouri	367	29	221	United States	16,919	937	11,643

Figure 2-2: lowa Train Accidents
(Excludes highway-grade crossing incidents and other incidents)

NOTE FOR DATA ON THIS PAGE: "Accidents/incidents" includes all events reportable to the U.S. Department of Transportation, Federal Railroad Administration under applicable regulations. These include: train accidents, reported on Form F 6180.54, comprised of collisions, derailments, and other events involving the operation of on-track equipment and causing reportable damage above an established threshold ($\$ 6,600$ in 1998); highway-rail grade crossing incidents, reported on Form F 6180.57, involving impact between railroad on-track equipment and highway users at crossings; and other incidents, reported on Form F 6180.55a, involving all other reportable incidents or exposures that cause a fatality or injury to any person, or an occupational illness to a railroad employee.

SOURCE FOR DATA ON THIS PAGE: U.S. Department of Transportation, Federal Railroad Administration, Railroad Safety Statistics Annual Report 2000, Washington, DC: 2001, table 2-11, available at http://safetydata.fra.dot.gov/officeofsafety/ as of Oct. 22, 2001.

Table 2-10: Highway-Rail Grade Crossing Incidents: 2000

State	Number of grade crossings	Incidents	Fatalities	Injuries	State	Number of grade crossings	Incidents	Fatalities	Injuries
Alabama	5,418	95	10	39	Montana	3,514	24	1	2
Alaska	336	7	0	0	Nebraska	6,575	55	7	14
Arizona	1,628	29	8	13	Nevada	571	2	0	0
Arkansas	4,655	115	27	36	New Hampshire	637	3	0	0
California	12,775	174	27	54	New Jersey	2,493	36	5	10
Colorado	3,271	36	6	8	New Mexico	1,355	17	0	11
Connecticut	624	8	2	0	New York	6,216	41	5	14
Delaware	456	10	0	7	North Carolina	7,813	113	14	25
District of Columbia	42	2	0	0	North Dakota	6,343	17	6	2
Florida	5,324	86	15	67	Ohio	9,633	148	15	38
Georgia	8,453	128	10	38	Oklahoma	5,913	89	12	47
Hawaii	8	0	0	0	Oregon	5,213	30	0	13
Idaho	2,645	33	11	1	Pennsylvania	8,946	69	8	17
Illinois	13,916	217	31	68	Rhode Island	189	0	0	0
Indiana	9,129	194	23	55	South Carolina	4,270	80	10	24
lowa	9,317	109	6	31	South Dakota	3,495	11	0	5
Kansas	10,756	67	11	18	Tennessee	5,062	90	8	26
Kentucky	5,037	69	5	20	Texas	18,289	388	52	164
Lovisiana	6,726	181	14	88	Utah	1,755	18	2	7
Maine	1,680	8	1	1	Vermont	1,192	2	0	0
Maryland	1,390	19	1	2	Virginia	4,829	54	3	21
Massachusetts	1,679	12	1	4	Washington	5,749	45	1	10
Michigan	8,028	134	13	51	West Virginia	3,632	20	1	8
Minnesota	8,219	91	6	40	Wisconsin	7,043	122	15	49
Mississippi	4,850	113	15	44	Wyoming	1,151	3	0	0
Missouri	8,001	88	17	27	United States	256,241	3,502	425	1,219

Figure 2-3: Iowa Highway-Rail Grade Crossing Fatalities and Injuries

NOTE FOR DATA ON THIS PAGE: Any impact, regardless of severity, between railroad on-track equipment and any user of a public or private crossing site must be reported to the U.S. Department of Transportation, Federal Railroad Administration on Form F 6180.57. The crossing site includes sidewalks and pathways at, or associated with, the crossing. Counts of fatalities and injuries include motor vehicle occupants, people not in vehicles or on the trains, as well as people on the train or railroad equipment.

SOURCE FOR DATA ON THIS PAGE: U.S. Department of Transportation, Federal Railroad Administration, Railroad Safety Statistics Annual Report 2000, Washington, DC: 2001, available at http://safetydata.fra.dot.gov/officeofsafety/ as of Oct. 22, 2001.

Table 2-11: Highway-Rail Grade Crossings by Type: 2000

	lowa			United States		
	Number	Percent	Number	Percent		
Total	9,317	100.0		256,241	100.0	
Public, motor vehicle	5,134	55.1		155,370	60.6	
Private, motor vehicle	4,140	44.4		98,918	38.6	
Pedestrian	43	0.5			1,953	0.8

SOURCE: U.S. Department of Transportation, Federal Railway Administration, Office of Railway Safety, Railroad Safety Statistics Annual Report 2000, Washington, DC: 2001, table 9-2, available at http://safetydata.fra.dot.gov/officeofsafety as of Nov. 21, 2001.

Table 2-12: Warning Devices at Public Highway-Rail Grade Crossings: 2000

	lowa		United States	
	Number	Percent	Number	Percent
Total	5,134	100.0	155,370	100.0
Cross bucks	2,932	57.1	71,468	46.0
Gates	672	13.1	34,296	22.1
Flashing lights	994	19.4	27,100	17.4
Stop signs	385	7.5	11,630	7.5
Unknown	81	1.6	5,253	3.4
Special warning	39	0.8	3,723	2.4
HWTS, WW, bells	30	0.6	1,417	0.9
Other	1	<0.1	483	0.3

KEY: HWTS = highway traffic signals; $\mathrm{WW}=$ wigwags.

SOURCE: U.S. Department of Transportation, Federal Railway Administration, Office of Railway Safety, Railroad Safety Statistics Annual Report 2000, Washington, DC: 2001, table 9-4, available at http://safetydata.fra.dot.gov/officeofsafety as of Nov. 21, 2001.

Table 2-13: Types of People Injured in lowa Train Accidents/Incidents: 2000 (Includes highway-rail crossing)

Type of person	Fatalities	Injuries
Worker on duty (railroad employee)	1	164
Employee not on duty	0	4
Passenger on train	0	0
Nontrespasser	6	27
Trespasser	2	10
Worker on duty (contractor)	0	0
Contractor (other)	0	2
Worker on duty (volunteer)	0	1
Volunteer (other)	0	1
Nontrespasser (off railroad property)	0	2

Figure 2-4: Railroad Trespasser Deaths and Injuries in lowa (Excludes highway-rail crossing)

NOTE FOR DATA ON THIS PAGE: As defined by the U.S. Department of Transportation, Federal Railroad Administration, a trespasser is any person on a part of railroad property used in railroad operations whose presence is prohibited, forbidden, or unlawful. Employees who are trespassing on railroad property are reported as trespassers.

SOURCE FOR DATA ON THIS PAGE: U.S. Department of Transportation, Federal Railroad Administration, Railroad Safety Statistics Annual Report 2000, Washington, DC: 2001, available at http://safetydata.fra.dot.gov/officeofsafety/ as of Oct. 22, 2001.

Table 2-14: Iowa Transit Safety Data: 2000

	Collision			Noncollision			Total property damage (\$ thousands)
	Number of incidents	Fatalities	Injuries	Number of incidents	Fatalities	Injuries	
Automated guideway	0	0	0	0	0	0	0
Cable car	0	0	0	0	0	0	0
Commuter rail	0	0	0	0	0	0	0
Demand responsive	5	0	0	3	0	2	28
Ferry boat	0	0	0	0	0	0	0
Heavy rail	0	0	0	0	0	0	0
Light rail	0	0	0	0	0	0	0
Motor bus	38	0	13	14	0	24	80
Trolley bus	0	0	0	0	0	0	0
Van pool	4	0	2	0	0	0	5

Table 2-15: U.S. Transit Safety Data: 2000

	Collision			Noncollision			Total properiy damage (\$ thousands)
	Number of incidents	Fatalities	Injuries	Number of incidents	Fatalities	Injuries	
Automated guideway	1	0	0	16	0	15	34
Cable car	10	0	15	10	0	11	10
Commuter rail	267	104	95	1,981	2	1,865	8,047
Demand responsive	3,055	6	1,603	1,510	11	1,494	6,910
Ferry boat	7	0	6	719	0	730	106
Heavy rail	389	55	316	12,388	22	10,530	5,034
Light rail	343	30	361	979	0	978	3,062
Motor bus	23,184	93	20,800	19,847	8	20,967	43,717
Trolley bus	122	0	103	257	0	265	103
Van pool	186	1	65	5	0	5	563

NOTES FOR DATA ON THIS PAGE: Collision includes at-grade crossings and suicides. Noncollision includes:

1) derailments/buses going off road; 2) personal casualties in parking facilities, inside vehicles, on right of way, boarding/alighting, and in station/bus stops; and 3) nonarson fires.

SOURCE FOR DATA ON THIS PAGE: U.S. Department of Transportation, Federal Transit Administration, 2000 National Transit Database, available at http://www.ntdprogram.com as of Dec. 5, 2001.

Table 2-16: Recreational Boating Accidents: 2000

	lowa	United States
Number of accidents		
\quad Total	67	7,740
\quad Fatal	5	616
\quad Nonfatal injury	30	3,292
\quad Property damage	32	3,832
Number of persons		
\quad Killed	5	701
Injured	34	4,355

NOTE: Guam, Puerto Rico, and the Virgin Islands are included in the U.S. total.

Figure 2-5: lowa Recreational Boating Accidents

NOTES FOR DATA ON THIS PAGE: An accident is listed under one category only, with fatal being the highest priority, followed by nonfatal injury, followed by property damage. For example, if two vessels are in an accident resulting in a fatality and a nonfatal injury, the accident is counted as a fatal accident involving two vessels.
These data do not include: 1) accidents involving only slight injury not requiring medical treatment beyond first-aid; 2) accidents involving property damage of $\$ 500$ or less; 3) accidents not caused or contributed to by a vessel, its equipment, or its appendages; and 4) accidents in which the boat was used solely as a platform for other activities, such as swimming or skin diving. Such cases are not included because the victims freely left the safety of a boat. However, the data do include accidents involving people in the water who are struck by their boat or another boat.

SOURCE FOR DATA ON THIS PAGE: U.S. Department of Transportation, U.S. Coast Guard, Boating Statistics, 2000, Washington, DC: 2001, available at http://www.uscgboating.org/Saf/pdf/Boating_Statistics_2000.pdf as of Nov. 14, 2001.

Table 2-17: Alcohol Involvement in Recreational Boating Accidents

	1999		2000	
	lowa	United States	lowa	United States
Number of accidents				
Total	13	633	11	696
Number of persons				
Killed	5	191	3	215
Injured	11	476	5	542

Figure 2-6: lowa Recreational Boating Accidents Involving Alcohol

NOTE FOR DATA ON THIS PAGE: Alcohol involvement in a boating accident includes any accident in which alcoholic beverages are consumed in the boat and the investigating official has determined that the operator was impaired or affected while operating the boat.

SOURCES FOR DATA ON THIS PAGE: U.S. Department of Transportation, U.S. Coast Guard, Boating Statistics 2000, Washington, DC: 2001; U.S. Department of Transportation, U.S. Coast Guard, Boating Statistics 1999, Washington, DC: 2000, available at http://www.uscgboating.org/Saf/pdf/Boating_Statistics_2000.pdf and http://www.uscgboating.org/Saf/pdf/Boating_Statistics_1999.pdf as of Nov. 14, 2001.

Table 2-18: Hazardous Materials Incidents: 2000 (Not including pipelines)

			Injuries			
	Incidents	Deaths	Total	Major	Minor	(\$ thousands)
lowa	118	0	0	0	0	589
United States	17,514	13	246	18	228	72,728

NOTES: U.S. total includes U.S. territories or foreign locations.
Hazardous material incident locations are often listed as the terminals or sorting centers where they are discovered. Therefore, states with this type of a facility may show a disproportionate number of incidents.
Hazardous materials transportation incidents required to be reported are defined in the Code of Federal Regulations (CFR), 49 CFR Part 171.15, 171.16 (Form F 5800.1). Hazardous materials deaths and injuries are caused by the hazardous material in commerce.

Figure 2-7: lowa Hazardous Materials Incidents (Not including pipelines)

NOTE FOR DATA ON THIS PAGE: Hazardous materials incident data are subject to revision and correction by the Office of Hazardous Materials Safety.

SOURCE FOR DATA ON THIS PAGE: U.S. Department of Transportation, Research and Special Programs Administration, Office of Hazardous Materials Safety, Hazmat Summary by State for Calendar Year 2000, and earlier years, Washington, DC: 2002, available at http://hazmat.dot.gov as of Apr. 24, 2002.

Table 2-19: Iowa Hazardous Materials Incidents by Mode: 2000 (Not including pipelines)

			Injuries			Damages Mode
	Total incidents	Deaths	Major	Minor		
(\$ thousands)						

'Includes only packaged shipments (i.e., nonbulk shipments).

Figure 2-8: lowa Hazardous Materials Incidents by Mode (Not including pipelines)

NOTE FOR DATA ON THIS PAGE: Hazardous materials incident data are subject to revision and correction by the Office of Hazardous Materials Safety.

SOURCE FOR DATA ON THIS PAGE: U.S. Department of Transportation, Research and Special Programs Administration, Office of Hazardous Materials Safety, Hazmat Summary by State for Calendar Year 2000, and earlier years, Washington, DC: 2002, available at http://hazmat.dot.gov/ as of Apr. 24, 2002.

Table 2-20: Natural Gas Distribution Pipeline Incidents

	1995	1996	1997	1998	1999	2000
lowa						0
Number of incidents	0	3	4	1	0	0
Number of fatalities	0	0	0	0	0	0
Number of injuries	0	711	200	200	0	1,000
Property damage (\$ thousands)						
United States, total	16	110	102	137	119	154
Number of incidents	47^{1}	9	17	19	22	
Number of fatalities	43	109^{1}	67	65	85	59
Number of injuries	10,951	$16,253^{1}$	12,493	19,055	25,914	23,399

${ }^{1}$ Includes 33 fatalities, 42 injuries, and $\$ 5,000,000$ property damage associated with an incident in San Juan, Puerto Rico that was attributed to natural gas at the time. The cause of the incident is currently in dispute and subject to litigation.

NOTE: Incidents are reported on Form RSPA F 7100.1.

Table 2-21: Natural Gas Transmission Pipeline Incidents

	1995	1996	1997	1998	1999	2000	
lowa						1	0
Number of incidents	1	0	0	2	1	0	
Number of fatalities	0	0	0	0	0	1	0
Number of injuries	0	0	0	0	0		
Property damage (\$ thousands)	75	0	0	110			
United States, total							
Number of incidents	24	77	73	99	54	80	
Number of fatalities	1	1	1	1	2	15	
Number of injuries	10	5	5	11	8	18	
Property damage (\$ thousands)	9,958	13,078	12,078	29,749	17,696	17,868	

NOTE: Incidents are reported on Form RSPA F 7100.2.
NOTES FOR DATA ON THIS PAGE: Incident means any of the following events:
I. An event that involves a release of gas from a pipeline or of liquefied natural gas (LNG) facility and
a) a death or personal injury necessitating in-patient hospitalization or b) estimated property damage, including cost of gas lost, of the operator or others, or both, of \$50,000 or more. II. An event that results in an emergency shutdown of an LNG facility.
III. An event that is significant, in the judgment of the operator, even though it did not meet the criteria of I or II.
Historical totals may change as the Office of Pipeline Safety receives supplemental information on incidents.

SOURCE FOR DATA ON THIS PAGE: U.S. Department of Transportation, Research and Special
Programs Administration, Office of Pipeline Safety, available at http://ops.dot.gov as of Jan. 7, 2002.

Table 2-22: Hazardous Liquid Pipeline Incidents

	1995	1996	1997	1998	1999	2000
lowa						
Number of incidents	4	3	3	2	9	2
Number of fatalities	0	0	0	0	0	0
Number of injuries	1	1	0	0	1	0
Property damage (\$ thousands)	108	73	580	1	2,340	401
United States, total	188	193	171	153	168	147
Number of incidents	3	5	0	2	4	1
Number of fatalities	11	13	5	6	20	4
Number of injuries						
Property damage (\$ thousands)	32,519	81,083	42,811	62,865	43,109	115,704

NOTES: Historical totals may change as the Office of Pipeline Safety receives supplemental information on incidents. Incidents are reported on Form RSPA F 7100.1. An accident report is required for each failure in a pipeline system in which there is a release of the hazardous liquid or carbon dioxide transported resulting in any of the following:

1. Explosion or fire not intentionally set by the operator;
2. Loss of 50 or more barrels (8 or more cubic meters) of hazardous liquid or carbon dioxide;
3. Escape to the atmosphere of more than 5 barrels (0.8 cubic meters) a day of highly volatile liquids;
4. Death of any person;
5. Bodily harm to any person resulting in: a. loss of consciousness; or b. necessity to carry the person from the scene; or c . necessity for medical treatment; or d. disability which prevents the discharge of normal duties or the pursuit of normal activities beyond the day of the accident;
6. Estimated property damage, including cost of clean-up and recovery, value of lost product, and damage to the property of the operator or others, or both, exceeding $\$ 50,000$.

SOURCE: U.S. Department of Transportation, Research and Special Programs Administration, Office of Pipeline Safety, available at http://ops.dot.gov as of Jan. 7, 2002.

C Freight Transportation

Table 3-1: Domestic Shipments to lowa by State: 1997 (Descending order by weight)

State of origin	Rank	Value (\$ millions)	Weight (thousand short tons)	State of origin	Rank	Value (\$ millions)	Weight (thousand short tons)
lowa	1	39,700	145,820	Mississippi	27	200	196
Wyoming	2	171	16,382	South Carolina	28	420	162
Minnesota	3	5,360	8,954	Oregon	29	383	160
Illinois	4	6,875	8,778	Virginia	30	503	138
Nebraska	5	4,299	4,803	Maine	31	155	119
Wisconsin	6	3,367	2,724	Idaho	32	84	103
North Carolina	7	1,187	2,451	Massachusetts	33	451	62
Indiana	8	2,436	2,333	New Mexico	33	14	62
Missouri	9	2,892	2,065	New Hampshire	34	70	47
Kansas	10	1,402	1,588	West Virginia	35	S	46
Texas	11	2,438	1,533	Arizona	36	262	45
South Dakota	12	876	1,500	Utah	37	77	29
Ohio	13	3,701	1,124	Delaware	38	21	9
Arkansas	14	610	801	Vermont	39	36	7
Michigan	15	1,622	771	Alaska	40	S	S
Colorado	16	587	725	Connecticut	40	176	S
Pennsylvania	17	1,428	541	District of Columbia	40	S	S
North Dakota	18	287	453	Florida	40	484	S
Oklahoma	19	389	379	Hawaii	40	S	S
Alabama	20	413	376	Louisiana	40	1,085	S
New York	21	960	373	Maryland	40	235	S
Kentucky	22	770	353	Montana	40	80	S
Tennessee	23	1,012	329	Nevada	40	32	S
Georgia	24	658	256	New Jersey	40	893	S
California	25	1,581	245	Rhode Island	40	15	S
Washington	26	485	238	From all states		91,335	212,460

KEY: S = data do not meet publication standards because of high sampling variability or other reasons.
NOTES: The Commodity Flow Survey covers business establishments in mining, manufacturing, wholesale trade, and selected retail industries. The survey also covers selected auxiliary establishments (e.g., warehouses) of in-scope multiunit and retail companies. The survey excludes establishments classified as farms, forestry, fisheries, governments, construction, transportation, foreign establishments, services, and most establishments in retail. Due to industry-wide reporting problems, shipments by oil and gas extraction establishments are also excluded. "From all states" total includes all domestic shipments to the destination state, including intrastate shipments.

SOURCE: U.S. Department of Transportation, Bureau of Transportation Statistics and U.S. Department of Commerce, U.S. Census Bureau, 1997 Commodity Flow Survey, Washington, DC: 1999, available at http://www.bts.gov/ntda/ cfs/cfs97od.html as of Nov. 2, 2001.

Table 3-2: Domestic Shipments from lowa by State: 1997 (Descending order by weight)

State of destination	Rank	Value (\$ millions)	Weight (thousand short tons)	State of destination	Rank	Value (\$ millions)	Weight (thousand short tons)
lowa	1	39,700	145,820	Florida	17	1,433	469
Illinois	2	10,402	15,187	North Dakota	18	847	425
Louisiana	2	1,575	7,439	Massachusetts	19	604	371
Minnesóta	3	3,985	6,614	Kentucky	20	886	363
Missouri	3	3,901	5,505	Maryland	21	1,134	361
Nebraska	4	3,401	5,074	Alabama	22	521	307
California	4	4,579	4,814	Oregon	23	543	279
Wisconsin	5	3,448	3,742	Mississippi	24	506	275
Texas	5	3,583	2,420	Utah	25	459	176
Ohio	6	3,073	1,999	Idaho	26	219	159
Michigan	6	3,206	1,800	Montana	27	397	140
South Dakota	7	1,153	1,624	South Carolina	28	326	135
Indiana	7	2,464	1,400	Connecticut	29	446	131
Pennsylvania	8	2,120	1,294	New Hampshire	30	130	93
Kansas	8	1,840	1,253	Maine	31	151	74
Georgia	9	1,848	1,134	New Mexico	32	127	18
Arkansas	9	901	1,106	Nevada	33	223	S
New York	10	1,247	981	West Virginia	34	133	S
Oklahoma	10	1,209	959	Wyoming	35	53	S
Washington	11	1,079	845	Rhode Island	36	44	S
Tennessee	11	1,365	695	Alaska	37	11	S
Colorado	12	995	693	Hawaii	38	8	S
Virginia	13	982	656	District of Columbia	39	S	S
Arizona	14	612	633	Delaware	40	S	S
North Carolina	15	1,205	517	Vermont	41	S	S
New Jersey	16	771	475	To all states		110,175	218,894

KEY: $\mathrm{S}=$ data do not meet publication standards because of high sampling variability or other reasons.
NOTES: The Commodity Flow Survey covers business establishments in mining, manufacturing, wholesale trade, and selected retail industries. The survey also covers selected auxiliary establishments (e.g., warehouses) of in-scope multiunit and retail companies. The survey excludes establishments classified as farms, forestry, fisheries, governments, construction, transportation, foreign establishments, services, and most establishments in retail. Due to industry-wide reporting problems, shipments by oil and gas extraction establishments are also excluded. "To all states" total includes all domestic shipments from the state of origin, including intrastate shipments.

SOURCE: U.S. Department of Transportation, Bureau of Transportation Statistics and U.S. Department of Commerce, U.S. Census Bureau, 1997 Commodity Flow Survey, Washington, DC: 1999, available at http://www.bts.gov/ntda/ cfs/cfs97od.html as of Nov. 2, 2001.

Table 3-3: Shipments Originating in lowa by Mode of Transportation: 1997

	Value		Short tons		Ton-miles	
	Number (\$ millions)	Percent	Number (thousands)	Percent	Number (millions)	Percent
All modes	110,175	100.0	218,894	100.0	56,847	100.0
Single modes	100,070	90.8	215,048	98.2	53,561	94.2
Truck	91,338	82.9	178,277	81.4	22,966	40.4
For-hire	53,590	48.6	65,591	30.0	15,652	27.5
Private truck	37,017	33.6	112,100	51.2	7,134	12.5
Rail	7,224	6.6	30,467	13.9	22,570	39.7
Water	975	Z	6,064	2.8	7,968	14.0
Shallow draft	975	Z	6,064	2.8	7,968	14.0
Great Lakes	Z	Z	Z	Z	Z	Z
Deep draft	Z	Z	Z	z	Z	z
Air (including truck and air)	480	Z	21	Z	21	Z
Pipeline	S	S	S	S	S	S
Multiple modes	7,321	6.6	2,052	z	S	S
Parcel, U.S. Postal Service, or courier	6,484	5.9	301	Z	177	Z
Truck and rail intermodal combination	691	0.6	700	Z	802	1.4
Truck and water	S	S	S	S	S	S
Rail and water	S	S	S	S	S	S
Other multiple modes	S	s	S	S	s	S
Other and unknown modes	2,785	2.5	1,795	z	803	1.4

KEY: $S=$ data do not meet publication standards because of high sampling variability or other reasons; $Z=$ zero or less than 1 unit of measure.

NOTE: The Commodity Flow Survey covers business establishments in mining, manufacturing, wholesale trade, and selected retail industries. The survey also covers selected auxiliary establishments (e.g., warehouses) of in-scope multiunit and retail companies. The survey excludes establishments classified as farms, forestry, fisheries, governments, construction, transportation, foreign establishments, services, and most establishments in retail. Due to industry-wide reporting problems, shipments by oil and gas extraction establishments are also excluded.

SOURCE: U.S. Department of Transportation, Bureau of Transportation Statistics and U.S. Department of Commerce, U.S. Census Bureau, 1997 Commodity Flow Survey: Washington, DC: 1999, available at http://www.bts.gov/ntda/ cfs/cfs 97 od. html as of Nov. 2, 2001.

Table 3-4: Domestic Shipments from lowa
by Truck: 1997 (Descending order by weight)

State of destination	Value $(\$$ millions)	Weight (thousand short tons)
Iowa	36,746	139,062
Illinois	8,131	7,632
Minnesota	3,482	4,970
Nebraska	2,889	4,275
Missouri	3,216	3,792
Wisconsin	2,927	3,290
South Dakota	1,013	1,361
Ohio	2,608	1,263
Michigan	2,788	1,242
Indiana	2,220	1,205
All other states	25,318	10,185
Total, all states	91,338	178,277

Table 3-5: Domestic Shipments to lowa by Truck: 1997 (Descending order by weight)

	Value (\$ millions)	Weight (thousand short tons)
State of origin	36,746	$\mathbf{1 3 9 , 0 6 2}$
lowa	5,892	7,760
Illinois	3,810	5,067
Minnesota	3,821	3,946
Nebraska	3,008	2,446
Wisconsin	1,034	2,363
North Carolina	2,045	1,824
Indiana	2,092	1,687
Missouri	668	1,288
South Dakota	1,267	1,091
Kansas	14,979	6,853
All other states	75,362	173,387
Total, all states		

SOURCE FOR DATA ON THIS PAGE: U.S. Department of Transportation, Bureau of Transportation Statistics and U.S. Department of Commerce, U.S. Census Bureau, 1997 Commodity Flow Survey, Washington, DC: 2000, data from CD-ROM, CD-EC97-CFS.

Map 3-1: Iowa Network Truck Flows: 1998

SOURCE: U.S. Department of Transportation, Federal Highway Administration, Operations Core Business Unit, Office of Freight Management and Operations

Table 3-6: Truck Shipments from lowa by Commodity: 1997 (Descending order by weight)

	Value (\$ millions)	Weight (thousand short tons)
Commodity (2-digit commodity code)	207	37,481
Gravel and crushed stone (12)	6,916	20,805
Animal feed and products of animal origin, n.e.c. (04)	1,774	18,892
Cereal and grains (02)	1,441	16,317
Nonmetallic mineral products (31)	S	14,382
Other agricultural products (03)	39	11,162
Natural sands (11)	5,309	8,638
Other prepared foodstuffs and fats and oils (07)	1,833	7,687
Gasoline and aviation turbine fuel (17)	S	4,662
Nonmetallic minerals, n.e.c. (13)	4,516	4,430
Milled grain products and preparations, and bakery products (06)	8,781	4,151
Meat, fish, seafood and their preparations (05)	755	3,284
Fertilizers (22)	3,489	2,958
Base metal in primary or semifinished forms and in finished basic shapes (32	654	2,871
Coal and petroleum products, n.e.c. (19)	580	2,528
Fuel oils (18)	9,618	1,790
Motorized and other vehicles (including parts) (36)	8,728	1,374
Machinery (34)	3,306	1,302
Plastics and rubber (24)	2,324	1,216
Articles of base metal (33)	805	1,100
Alcoholic beverages (08)	\mathbf{S}	11,247
All other commodities	91,338	178,277
Total, all commodities		

KEY: n.e.c. $=$ not elsewhere classified; $S=$ data do not meet publication standards because high sampling variability or other reasons.

NOTE: There are 41 two-digit Standard Classification of Transported Goods (SCTG) commodity codes.
SOURCE: U.S. Department of Transportation, Bureau of Transportation Statistics and U.S. Department of Commerce, U.S. Census Bureau, 1997 Commodity Flow Survey, Washington, DC: 2000, data from CDROM, CD-EC97-CFS.

Table 3-7: Rail Shipments Terminating in lowa (Short tons)

Commodity	Percent of total			
Coal	$24,445,206$	58	2000	Percent of total
Farm products	$6,398,831$	15	$5,506,663$	56
Chemicals	$3,271,176$	8	$3,431,781$	14
Food products	$2,416,828$	6	$2,292,764$	9
Nonmetallic minerals	$1,519,262$	4	$1,514,286$	4
All other commodities	$3,991,277$	9	$4,464,238$	11
lowa, total	$42,042,580$	100	$38,842,283$	100

Table 3-8: Rail Shipments Originating in lowa (Short tons)

Commodity	Percent of			
total	2000	Percent of total		
Farm products	$18,049,295$	44	$16,695,794$	42
Food products	$14,567,999$	35	$14,615,852$	37
Chemicals	$2,328,380$	6	$2,322,196$	6
Glass and stone products	$1,629,056$	4	$1,548,364$	4
Coal	$1,431,061$	3	988,048	2
All other commodities	$3,038,974$	7	$3,604,613$	9
lowa, total	$41,044,765$	100	$39,774,867$	100

NOTE FOR DATA ON THIS PAGE: Includes the five largest commodities (by tonnage terminated or originated) of the 38 two-digit Standard Transportation Commodity Code groupings plus all others for state total. Includes intrastate shipments.

SOURCES FOR DATA ON THIS PAGE: Association of American Railroads, Railroads and States-2000, Washington, DC: January 2002, available at http://www.aar.org/aboutheindustry/stateinformation.asp as of Mar. 18, 2002; and Railroads and States -1999, Washington, DC: January 2002, available at http://www.aar.org/aboutheindustry/stateinformation.asp as of Mar. 18, 2002.

Map 3-2: Iowa Total Rail Flows: 1999

SOURCE: U.S. Department of Transportation, Federal Railroad Administration, Office of Policy

Table 3-9: Foreign and Domestic Waterborne Shipments Originating in lowa by Destination: 2000

	Short tons	Percent of total
Destination	$11,219,851$	100.0
Total originating in lowa	$8,618,181$	76.8
Louisiana	683,677	6.1
lowa (intrastate)	573,267	5.1
Illinois	495,151	4.4
Wisconsin	283,259	2.5
Minnesota	260,659	2.3
Alabama	138,296	1.2
Tennessee	72,953	0.7
Missouri	42,339	0.4
Texas	18,449	0.2
Kentucky	12,604	0.1
Ohio	9,182	<0.1
Pennsylvania	5,806	<0.1
Indiana	3,019	<0.1
Arkansas	3,009	<0.1
Mississippi		

Table 3-10: Foreign and Domestic Waterborne Shipments to lowa by Origin: 2000

Origin	Short tons	Percent of total
Total shipped to lowa	$5,054,878$	100.0
Illinois	$1,660,617$	32.9
Louisiana	$1,125,577$	22.3
lowa (intrastate)	$\mathbf{6 8 3}, 677$	13.5
Kentucky	339,601	6.7
Missouri	296,354	5.9
Minnesota	233,455	4.6
West Virginia	162,572	3.2
Tennessee	156,341	3.1
Alabama	114,636	2.3
Ohio	64,384	1.3
Mississippi	63,328	1.3
Oklahoma	59,915	1.2
Pennsylvania	53,062	1.0
Texas	41,359	0.8

SOURCE FOR DATA ON THIS PAGE: U.S. Army Corps of Engineers, Waterborne Commerce Statistics Center, Origin and Destination of Waterborne Commerce of the United States, 2000, available at http://www.wrsc.usace.army.mil as of Feb. 12, 2002.

Table 3-11: Foreign and Domestic Waterborne Shipments Originating in lowa by Commodity: 2000 ${ }^{1}$

Commodity	Short tons	Percent of total
Total	$11,219,851$	100.0
\quad Food and food products	$9,102,159$	81.1
Chemical fertilizers	29,052	0.3
Unknown and not elsewhere classified products ${ }^{2}$	$2,088,640$	18.6

Table 3-12: Domestic Waterborne Shipments Originating in lowa by Commodity: 2000^{1}

Commodity	Short tons	Percent of total
Total	$11,219,851$	100.0
\quad Food and food products	$9,102,159$	81.1
Chemical fertilizers	29,052	0.3
Unknown and not elsewhere classified products ${ }^{2}$	$2,088,640$	18.6

1 "Domestic" includes intrastate shipments.
${ }^{2}$ To protect confidentiality, if three or more vessel operating companies do not carry a particular commodity from a state of origin to a state of destination, then that commodity is reclassified to "unknown and not elsewhere classified products."

SOURCE FOR DATA ON THIS PAGE: U.S. Army Corps of Engineers, Waterborne Commerce Statistics Center, State to State and Region to Region Commodity Tonnages, Public Domain database, available at http://www.wrsc.usace.army.mil/ ndc/datapdom.htm as of Oct. 30, 2001.

Table 3-13: Foreign and Domestic Waterborne Shipments to lowa by Commodity: 2000^{1}

	Short tons	Percent of total
Commodity	$5,054,878$	100.0
Total	$1,807,154$	35.8
Coal, lignite, and coal coke	818,389	16.2
Sand, gravel, shells, clay, salt, and slag	538,909	10.7
Chemical fertilizers	210,660	4.2
Petroleum products	123,155	2.4
Chemicals excluding fertilizers	69,820	1.4
Primary metal products	52,950	1.0
Non-ferrous ores and scrap	13,152	0.3
Food and food products	$1,420,689$	28.1

Table 3-14: Domestic Waterborne Shipments to lowa by Commodity: 2000^{1}

Commodity	Short tons	Percent of total
Total	$5,054,878$	100.0
\quad Coal, lignite, and coal coke	$1,807,154$	35.8
Sand, gravel, shells, clay, salt, and slag	818,389	16.2
Chemical fertilizers	538,909	10.7
Petroleum products	210,660	4.2
Chemicals excluding fertilizers	123,155	2.4
Primary metal products	69,820	1.4
Non-ferrous ores and scrap	52,950	1.0
Food and food products	13,152	0.3
Unknown and not elsewhere classified products ${ }^{2}$	$1,420,689$	28.1

1"Domestic" includes intrastate shipments.
${ }^{2}$ To protect confidentiality, if three or more vessel operating companies do not carry a particular commodity from a state of origin to a state of destination, then that commodity is reclassified to "unknown and not elsewhere classified products."

SOURCE FOR DATA ON THIS PAGE: U.S. Army Corps of Engineers, Waterborne Commerce Statistics Center, State to State and Region to Region Commodity Tonnages, Public Domain database, available at http://www.wrsc.usace.army.mil/ndc/ datapdom.htm as of Oct. 30, 2001.

Table 3-15: Scheduled and Nonscheduled Air Freight and Mail Enplaned: 2000 (Short tons)

State	Freight		Mail	
	Schaduled	Nonscheduled	Scheduled	Nonscheduled
Alabama	17,233	139,250	6,796	25
Alaska	467,057	141,482	52,354	10,232
Arizona	70,430	66,143	36,115	27,465
Arkansas	1,886	12,578	6,534	2,955
California	1,176,476	504,757	237,537	87,278
Colorado	106,816	61,503	55,370	31,711
Connecticut	14,802	54,627	10,260	1,575
Delaware	0	3,251	0	0
District of Columbia	92,526	6,208	46,511	6,615
Florida	461,831	334,177	85,818	14,182
Georgia	204,986	66,293	116,174	3,961
Hawaii	208,048	52,473	33,768	476
Idaho	11,231	5,064	3,065	1,307
Illinois	318,957	202,867	112,959	9,111
Indiana	408,262	85,326	24,814	134,145
lowa	15,346	53,766	7,429	3,984
Kansas	6,200	20,199	2,597	18
Kentucky	16,427	823,924	5,093	0
Lovisiana	29,577	21,753	11,399	1,758
Maine	8,428	11,368	185	91
Maryland	25,723	24,781	19,850	3,573
Massachusetts	114,243	422,158	31,133	9,384
Michigan	87,127	68,108	41,678	4,848
Minnesota	85,691	51,285	59,550	9,192
Mississippi	398	11,338	2,198	0
Missouri	71,317	67,157	67,876	4,120
Montana	16,261	7,917	1,987	3,341
Nebraska	12,188	26,366	10,825	6,546
Nevada	45,636	12,641	30,407	1,373
New Hampshire	17,995	30,439	740	11
New Jersey	352,556	115,712	54,837	4,550
New Mexico	12,845	29,355	9,327	3,379
New York	317,258	167,388	113,892	5,622
North Carolina	85,996	85,765	35,985	3,498
North Dakota	5,424	383	222	2,820
Ohio	283,292	292,529	48,750	6,442
Oklahoma	25,773	16,804	9,022	9
Oregon	73,035	59,101	12,655	22,729
Pennsylvania	156,043	312,359	45,377	9,035
Puerto Rico	78,117	44,530	4,319	3,312
Rhode Island	3,883	2,753	2,543	0
South Carolina	17,237	76,688	3,234	6
South Dakota	8,114	12,298	1,040	4,583
Tennessee	1,324,829	60,779	31,342	6,417
Texas	440,864	482,724	138,548	47,644
Utah	66,549	133,609	30,908	25,073
Vermont	3,257	19	122	0
Virginia	20,961	35,881	5,189	3,492
Washington	152,299	84,367	34,449	55,975
West Virginia	4,306	128	4	0
Wisconsin	30,060	19,618	11,558	1,088
Wyoming	6,786	11	5	0
United States, total	7,582,577	5,422,002	1,714,348	584,950

SOURCE: U.S. Department of Transportation, Bureau of Transportation Statistics, Airport Activity Statistics of Certificated Air Carriers: Summary Tables, Twelve Months Ending December 31, 2000, Washington, DC: 2001, available at www.bts.gov/publications/airactstats2000/ as of Oct. 29, 2001.

Table 3-16: Surface Merchandise Trade with Canada and Mexico: 2000 (Millions of current dollars)

| | Exports to | | | Imports from | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | Canada | Mexico | | Canada | Mexico |
| lowa | 1,513 | 336 | | 1,749 | 205 |
| United States, total | 154,847 | 97,159 | | 210,270 | 113,437 |

Figure 3-1: lowa Surface Merchandise Trade with Canada and Mexico (Millions of current dollars)

SOURCE FOR DATA ON THIS PAGE: U.S. Department of Transportation, Bureau of Transportation Statistics, Transborder Surface Freight Data, available at http://www.bts.gov/ntda/tbscd/reports.html as of August 2002.

Figure 3-2: Truck and Rail Imports from Mexico to lowa by Weight

Figure 3-3: Truck and Rail Imports from Canada to lowa by Weight

NOTES FOR DATA ON THIS PAGE: Data do not include transshipment activity. Transshipments are shipments that enter or exit the United States by way of a U.S. Customs port on the northern or southern border, but whose origin or destination is a country other than Canada or Mexico. All figures are based on the declared gross shipment weight and include packaging. Shipping weight for imports may be underestimated because U.S. Customs Service does not require weight to be reported at the individual commodity level for surface trade.

SOURCE FOR DATA ON THIS PAGE: U.S. Department of Transportation, Bureau of Transportation Statistics, Transborder Surface Freight Data, available at http://www.bts.gov/ntda/tbscd/reports.html as of August 2002.

D Passenger Travel

Table 4-1: Commuting to Work: 2000

Mode	lowa		United States	
	Number	Percent	Number	Percent
Total	1,424,934	100.0	127,448,586	100.0
Car, truck, or van -- drove alone	1,133,972	79.6	97,243,457	76.3
Car, truck, or van -- carpooled	154,404	10.8	14,299,090	11.2
Public transportation (including taxi)	11,333	0.8	6,592,685	5.2
Walked	49,516	3.5	3,417,546	2.7
Other means	14,673	1.0	1,820,578	1.4
Worked at home	61,036	4.3	4,075,230	3.2
Mean travel time to work (minutes)	17.6		24.3	

NOTE: Data are for workers 16 years and over.
SOURCE: U.S. Department of Commerce, U.S. Census Bureau, Census 2000 Supplementary Survey, Profile of Selected Economic Characteristics, available at http://www.census.gov/c2ss/www/ as of Oct. 16, 2001.

Table 4-2: Licensed Drivers: 2000

Licensed drivers	lowa		United States	
	Number	Percent	Number	Percent
Total	1,952,508	100.0	190,625,023	100.0
Male	961,867	49.3	95,796,069	50.3
Female	990,641	50.7	94,828,953	49.7

Figure 4-1: Licensed Drivers in lowa by Age and Sex: 2000

SOURCE FOR TABLE 4-2 and FIGURE 4-1: U.S. Department of Transportation, Federal Highway Administration, Highway Statistics 2000, Washington, DC: 2001.

Table 4-3: Urban Transit Agencies in lowa: 2000

Transit agencies	Modes provided	Urbanized area	Annual unlinked passenger trips (thousands)	Average weekday unlinked trips (thousands)	Operating funds expended (\$ millions)	Capital funds expended (\$ millions)	Vehicles available for maximum service
Des Moines Metropolitan Transit Authority	Bus, demand responsive, vanpool	Des Moines	4,733	16	10	3	194
University of lowa (CAMBUS)	Bus, demand responsive	Jowa City	3,369	13	2	<1	27
Five Seasons Transportation	Bus, demand responsive	Cedar Rapids	1,367	5	5	2	76
lowa City Transit	Bus, demand responsive	Jowa City	1,304	5	3	<1	31
Davenport Public Transit	Bus, demand responsive	Davenport-Rock IslandMoline, IA-IL	1,244	4	3	<1	27
Metropolitan Transit Authority of Black Hawk County	Bus, demand responsive	Waterloo-Cedar Falls, IA	523	2	3	<1	48
City of Dubuque (Key Line)	Bus, demand responsive	Dubuque, IA-IL.	504	2	1	<1	18
Bettendorf Transit System	Bus, demand responsive	Davenport-Rock IslandMoline, IA-IL	144	<1	<1	<1	12

[^0] http://www.ntdprogram.com/NTD/Profiles.nsf/ProfileInformation? OpenForm\&2000\&All as of Dec. 6, 2001.

Figure 4-2: Overseas Visitors to lowa ${ }^{1}$

${ }^{1}$ International travelers to the United States from Canada and Mexico are not included.
KEY: $\mathrm{U}=$ data are unavailable.

SOURCES: U.S. Department of Commerce, International Trade Administration, Office of Tourism Industries, Overseas Visitors to Select U.S. States and Territories 2000-1999 (Ranked by 2000 Market Share), Washington, DC: 2001, available at http://tinet.ita.doc.gov/ as of Oct. 19, 2001; U.S. Department of Commerce, International Trade Administration, Office of Tourism Industries, Overseas Visitors to Select U.S. States and Territories 1996-1995, Washington, DC: 2001, available at http://tinet.ita.doc.gov/ as of Nov. 13, 2001.

E Registered Vehicles and Vehicle-Miles Traveled

Table 5-1: lowa and U.S. Motor-Vehicle Registrations: 2000

	Private and commercial	Publicly owned	lowa total	United States total
Motor vehicle type	$3,184,479$	48,415	$3,232,894$	$225,821,241$
All motor vehicles	$1,742,231$	9,459	$1,751,690$	$133,621,420$
Automobiles	1,452	6,771	8,223	746,125
Buses	$1,314,375$	31,935	$1,346,310$	$87,107,628$
Trucks	$1,126,370$	U	$1,126,370$	$77,796,827$
Light trucks $_{\text {Farm trucks }}^{\text {Truck tractors }}$	24,150	U	24,150	$1,885,170$
Motorcycles	62,957	U	62,957	$1,587,611$

${ }^{1}$ Includes light trucks (pickups, vans, sport utility vehicles, and other light trucks) as well as medium and large trucks.

KEY: $\mathrm{U}=$ data are unavailable.

SOURCE: U.S. Department of Transportation, Federal Highway Administration, Highway Statistics 2000, Washington, DC: 2001, tables MV-1 and MV-9.

Table 5-2: Iowa and U.S. Trailer and Semi-Trailer Registrations: 2000^{1}

Type	lowa	United States
Total	503,383	$21,541,490$
Private and commercial	497,416	$21,283,681$
\quad Commercial trailers 2	127,764	$4,685,606$
Light farm trailers, car trailers, etc. 3	299,446	$14,113,392$
House trailers	70,206	$2,484,683$
Publicly owned	5,967	257,809
Federal government	21	4,277
State, county, municipal government	5,946	253,532

'The completeness of data on trailer registrations varies greatly among states. Data are reported to the extent available and, in some cases, are supplemented by estimates of the Federal Highway Administration.
${ }^{2}$ This row includes all commercial type vehicles and semi-trailers that are in private or for-hire use.
${ }^{3}$ Several states do not require the registration of light farm or automobile trailers.

NOTE: Mobile homes and house trailers are shown for states that require registration and are able to segregate them from other trailers. In states where this classification is not available, house trailers are included with light car trailers.

SOURCE: U.S. Department of Transportation, Federal Highway Administration, Highway Statistics 2000, Washington, DC: 2001, table MV-11.

Vehicles

Table 5-3: lowa Truck Characteristics and Use: 1997 (Percent unless otherwise specified)

Vehicular and operational characteristics	All trucks	Trucks, excluding pickups, panels, vans, sport utilities, and station wagons	Vehicular and operational characteristics	All trucks	Trucks, excluding pickups, panels, vans, sport utilities, and station wagons
Total, number (thousands)	979.3	124.3			
Major use	100.0	100.0	Year model	100.0	100.0
Agriculture	14.7	26.8	1 to 2 years old	8.8	10.6
Forestry and lumbering	0.4	0.3	3 to 4 years old	13.6	13.6
Mining and quarrying	0.1	0.7	Over 4 years old	77.6	75.9
Construction	7.3	16.5			
Manufacturing	0.9	4.0	Vehicle acquisition	100.0	100.0
Wholesale and retail trade	4.3	10.1	Purchased new	34.7	35.4
For-hire transportation	3.2	23.9	Purchased used	62.9	52.4
Utilities and service	5.4	8.0	Leased from someone or	2.4	12.2
Personal transportation	60.7	2.4	not reported		
Other and not reported	3.0	7.2			
			Truck type	100.0	100.0
Body type	100.0	100.0	Single-unit trucks	92.7	57.5
Pickup, panel, minivan, and sport utility	87.3	NA	2 axles 3 axles or more	91.1 1.6	44.7 12.8
Platform and cattlerack	3.4	26.8	Combination	7.3	42.5
Van	3.2	25.2	3 axles	0.7	1.7
Public utility	0.3	2.6	4 axles	2.1	6.6
Multistop or stepvans	0.6	4.4	5 axles or more	4.5	34.2
Dump	1.1	8.9	Trailer not specified	V	\checkmark
Tank for liquids or dry bulk	0.9	7.0			
Other or not reported	3.2	25.0	Range of operation	100.0	100.0
			Local	72.7	50.1
Vehicle size	100.0	100.0	Short-range	14.4	17.2
Light	88.6	13.3	Long-range	6.7	24.3
Medium	2.6	17.2	Off-the-road or not	6.2	8.4
Light-heavy	1.6	12.4	reported		
Heavy-heavy	7.2	57.1			
			Fuel type	100.0	100.0
Annual miles driven	100.0	100.0	Gasoline	89.8	40.9
Less than 5,000	25.5	34.2	Diesel, liquefied gas,	9.9	57.3
5,000 to 9,999	19.8	13.3	and other		
10,000 to 19,999	35.9	11.6	Not reported	0.3	1.8
20,000 to 29,999	11.3	7.3			
30,000 or more	7.5	33.6			

KEY: $\mathrm{NA}=$ not applicable; $\mathrm{V}=$ less than 0.05 percent.
SOURCE: U.S. Department of Commerce, U.S. Census Bureau, Vehicle Inventory and Use Survey, state-specific report, Washington, DC: 1999, available at http://www.census.gov/econ/www/viusmain.html as of Dec. 27, 2001.

Table 5-4: Highway Vehicle-Miles Traveled (VMT): 2000

State	Total VMT (millions)	VMT per capita	State	Total VMT (millions)	VMT per capita
Alabama	56,534	12,716	Montana	9,882	10,812
Alaska	4,613	7,501	Nebraska	18,081	10,568
Arizona	49,768	11,428	Nevada	17,639	9,504
Arkansas	29,167	11,107	New Hampshire	12,021	9,687
California	306,649	9,053	New Jersey	67,446	8,015
Colorado	41,771	9,712	New Mexico	22,760	13,580
Connecticut	30,756	9,057	New York	129,057	6,801
Delaware	8,240	10,510	North Carolina	89,504	11,120
Dist. of Columbia	3,498	6,115	North Dakota	7,217	11,241
Florida	152,136	9,609	Ohio	105,898	9,328
Georgia	105,010	12,969	Oklahoma	43,355	12,563
Hawaii	8,543	7,014	Oregon	35,010	11,175
Idaho	13,534	10,467	Pennsylvania	102,337	8,316
Illinois	102,866	8,225	Rhode Island	8,359	8,326
Indiana	70,862	12,779	South Carolina	45,538	7,971
lowa	29,433	10,059	South Dakota	8,432	11,168
Kansas	28,130	10,599	Tennessee	65,732	11,698
Kentucky	46,803	11,579	Texas	220,064	10,613
Louisiana	40,849	9,430	Utah	22,597	11,226
Maine	14,190	11,129	Vermont	6,811	11,184
Maryland	50,174	9,809	Virginia	74,801	10,564
Massachusetts	52,796	8,513	Washington	53,330	9,251
Michigan	97,792	9,839	West Virginia	19,242	10,684
Minnesota	52,601	10,693	Wisconsin	57,266	10,261
Mississippi	35,536	12,187	Wyoming	8,090	16,410
Missouri	67,083	11,990	United States	2,749,803	9,811

Figure 5-1: Highway Vehicle-Miles Traveled, United States and lowa

SOURCE FOR DATA ON THIS PAGE: U.S. Department of Transportation, Federal Highway Administration, Highway Statistics, annual editions, available at http://www.fhwa.dot.gov/ ohim/ohimstat.htm as of Dec. 6, 2001.

Table 5-5: Highway, Demographic, and Geographic Characteristics of Urbanized Areas in lowa: 2000

Federal-aid urbanized area ${ }^{1}$	Total roadway miles	Total DVMT (thousands)	Estimated population (thousands)	Net land area (square miles)	Persons per square mile	Miles of roadway per thousand persons	Total DVMT per capita	Total estimated freeway lane miles ${ }^{2}$	Average daily traffic per freeway lane mile
Des Moines	1,749	8,085	394	176	2,239	4.4	20.5	230	12,093
Cedar Rapids	893	3,013	154	135	1,141	5.8	19.6	81	9,185
Waterloo-Cedar Falls	785	2,168	112	114	982	7.0	19.4	27	5,022
Sioux City	599	1,662	104	77	1,351	5.8	16.0	57	6,139
Iowa City	284	1,199	78	32	2,438	3.6	15.4	35	9,764
Dubuque	352	1,069	64	51	1,255	5.5	16.7	U	U

'A "federal-aid urbanized area" is an area with 50,000 or more persons that, at a minimum, encompasses the land area delineated as the urbanized area by the U.S. Census Bureau. Areas are ranked by population. ${ }^{2}$ Lane miles estimated by the Federal Highway Administration (FHWA).

KEY: DVMT = daily vehicle-miles of travel; $\mathrm{U}=$ data are unavailable.

SOURCE: U.S. Department of Transportation, Federal Highway Administration, Highway Statistics, 2000, Washington, DC: 2001, available at http://www.fhwa.dot.gov/ohim/ohimstat.htm as of Dec. 6, 2001.

Table 5-6: lowa and U.S. Recreational Boat Registrations by Propulsion Type

	lowa		United States	
	1999	2000	1999	2000
Total	203,081	223,573	12,738,271	12,782,143
Powered	169,651	186,337	11,811,562	11,648,769
Nonpowered	27,232	29,908	481,191	547,271
Other	6,198	7,348	445,518	590,103

NOTE: Data are derived from reports of states and other jurisdictions with varying registration categories. "Other" includes boats not elsewhere classified by the reporting jurisdiction.

Figure 5-2: Iowa Recreational Boat Registrations

NOTES FOR DATA ON THIS PAGE: U.S. totals include Guam, Puerto Rico, the Virgin Islands, American Samoa, and the Northern Mariana Islands. lowa statistics include all watercraft except inflatables under 7 feet in length and canoes/kayaks under 13 feet in length. U.S. total does not include sailboards, which are numbered in some states.

SOURCES FOR DATA ON THIS PAGE: U.S. Department of Transportation, U.S. Coast Guard, Boating Statistics, 2000 and Boating Statistics, 1999, Washington, DC: 2001, available at http://www.uscgboating.org/Saf/pdf/Boating_Statistics_2000.pdf and 1999.pdf as of Nov. 14, 2001.

Table 5-7: General Aviation and Air Taxi Aircraft and Hours Flown: 2000 (Excludes commuter aircraft)

State	Active aircraft	Hours flown (thousands)
Alabama	3,480	462
Alaska	5,925	692
Arizona	6,062	824
Arkansas	2,660	442
California	23,454	3,183
Colorado	5,246	651
Connecticut	1,793	241
Delaware	2,068	303
District of Columbia	152	13
Florida	14,096	2,299
Georgia	4,809	702
Hawaii	435	184
Idaho	2,328	336
Illinois	7,478	998
Indiana	3,964	503
lowa	2,772	331
Kansas	3,611	494
Kentucky	2,033	244
Louisiana	3,012	677
Maine	1,086	114
Maryland	3,436	487
Massachusetts	2,717	329
Michigan	7,236	935
Minnesota	5,141	707
Mississippi	2,038	256
Missouri	3,777	545
Montana	2,374	271
Nebraska	2,013	275
Nevada	2,715	774
New Hampshire	1,485	203
New Jersey	3,791	583
New Mexico	2,990	430
New York	6,082	816
North Carolina	5,620	769
North Dakota	1,585	419
Ohio	6,486	840
Oklahoma	4,080	648
Oregon	4,687	564
Pennsylvania	5,648	724
Rhode Island	393	45
South Carolina	2,689	387
South Dakota	1,376	157
Tennessee	4,228	638
Texas	18,869	2,980
Utah	1,673	234
Vermont	600	57
Virginia	3,354	414
Washington	7,166	912
West Virginia	1,075	136
Wisconsin	4,649	590
Wyoming	778	98
United States, total	217,215	30,916

NOTE: These data are derived from a sample survey of general aviation and air taxi aircraft. The data are estimates subject to sampling as well as nonsampling error.
SOURCE: U.S. Department of Transportation, Federal Aviation Administration, General Aviation and Air Taxi Activity Survey: 2000, Washington, DC: 2002, available at http://www.api.faa.gov/GASurvey/index.htm as of July 22, 2002.

Table 5-8: Active Aviation Pilots and Flight Instructors: $2000{ }^{1}$

State	Total	Students	Airplane pilots ${ }^{2}$			Misc. ${ }^{3}$	Flight instructor ${ }^{4}$
			Private	Commercial	Airline transport		
Alabama	7,262	1,170	3,065	1,649	1,084	294	920
Alaska	8,638	833	3,686	2,130	1,906	83	1,118
Arizona	17,429	2,329	6,508	3,345	4,654	593	2,617
Arkansas	4,988	776	2,153	1,206	788	65	634
California	71,053	10,173	31,571	13,448	12,786	3,075	8,984
Colorado	17,539	2,320	6,256	3,144	5,138	681	2,549
Connecticut	6,523	944	2,714	989	1,648	228	837
Delaware	1,462	245	532	236	413	36	233
District of Columbia	476	86	191	99	69	31	45
Florida	47,191	6,672	16,324	10,059	13,267	869	6,890
Georgia	18,087	2,441	6,053	2,845	6,448	300	2,107
Hawaii	2,927	471	611	587	1,031	227	0
Idaho	4,480	581	2,148	950	711	90	535
Illinois	21,521	3,497	9,168	3,832	4,606	418	3,054
Indiana	11,715	1,874	5,728	2,091	1,867	155	1,488
lowa	6,135	912	3,372	1,130	667	54	771
Kansas	8,412	1,169	4,136	1,729	1,268	110	1,184
Kentucky	6,720	988	2,397	1,155	2,104	76	919
Lovisiana	5,894	911	2,224	1,474	1,035	250	701
Maine	3,105	444	1,494	608	522	37	384
Maryland	8,383	1,217	3,499	1,535	1,869	263	1,194
Massachusetts	9,692	1,583	4,535	1,711	1,480	383	1,242
Michigan	17,755	3,008	8,517	3,008	2,852	370	2,388
Minnesota	15,530	2,244	6,728	2,949	3,417	192	2,025
Mississippi	4,111	594	1,595	1,086	750	86	490
Missouri	11,070	1,549	5,008	2,045	2,312	156	1,548
Montana	3,613	481	1,718	878	469	67	431
Nebraska	4,141	654	2,054	884	524	25	432
Nevada	6,270	691	2,131	1,141	2,095	212	864
New Hampshire	4,242	499	1,544	676	1,417	106	613
New Jersey	11,403	1,826	4,909	1,833	2,417	418	1,517
New Mexico	4,406	787	1,788	916	772	143	549
New York	18,649	3,628	8,020	3,305	2,819	877	2,516
North Carolina	14,769	2,148	6,144	2,600	3,615	262	1,732
North Dakota	2,458	401	1,153	688	199	17	292
Ohio	19,301	3,065	8,602	3,338	3,857	439	2,839
Oklahoma	8,654	1,392	3,839	1,893	1,453	77	1,180
Oregon	9,942	1,625	4,972	1,910	1,175	260	1,123
Pennsylvania	18,022	2,683	7,604	3,075	4,124	536	2,575
Rhode Island	1,216	184	569	210	223	30	136
South Carolina	6,363	933	2,708	1,343	1,244	135	714
South Dakota	2,230	328	1,034	549	302	17	263
Tennessee	12,132	1,675	4,351	2,024	3,826	256	1,600
Texas	48,396	6,613	16,857	9,044	14,839	1,043	6,487
Utah	6,591	1,205	2,678	1,116	1,468	124	768
Vermont	1,487	220	681	261	264	61	162
Virginia	14,640	1,987	5,114	2,835	4,299	405	2,055
Washington	21,116	2,929	8,170	3,896	5,535	586	2,658
West Virginia	1,992	312	953	399	293	35	274
Wisconsin	11,275	1,768	5,682	1,884	1,830	111	1,455
Wyoming	1,812	254	901	354	273	30	195
United States, total	593,218	87,319	244,389	112,092	134,024	15,394	78,287

'An active pilot is a person who holds a pilot certificate and a valid medical certificate issued within the last 25 months.
${ }^{2}$ Includes pilots with an airplane only certificate and those with an airplane and a helicopter and/or glider certificate.
${ }^{3}$ Includes helicopter, glider, and recreational pilots. Does not include pilots holding an airplane certificate. A
recreational pilot may fly no more than one passenger in a light, single engine aircraft with no more than four seats during good weather and daylight hours and, unless authorized, no more than 50 miles from the home airport.
${ }^{4}$ Not included in total. A flight instructor must hold a flight instructor certificate in addition to a pilot certificate.
NOTE: Excludes U.S. military personnel holding civilian certificates who are stationed in a foreign country and pilots in U.S. territories.

SOURCE: U.S. Department of Transportation, Federal Aviation Administration, U.S. Civil Airmen Statistics 2000, Washington, DC: 2002, available at http://www.api.faa.gov/CivilAir/index.htm as of July 22, 2002.

əoueula pue Kuouoog ョ

Table 6-1: Transportation and Warehousing Establishments and Employment in lowa: 1999

Business type	Establishments ${ }^{7}$ (number)	Number of employees	Annual payroll (\$ thousands)
Total transportation and warehousing	3,198	39,701	1,104
Air transportation	50	1,019	27
Water transportation	6	$100-249$	D
Truck transportation	2,492	26,352	759
Transit and ground passenger transportation	120	1,874	20
Pipeline transportation	57	$250-499$	D
Scenic and sightseeing transportation	6	$20-99$	D
Support activities for transportation	233	2,160	64
Couriers and messengers	141	5,404	144
Warehousing and storage	93	2,272	58

KEY: $D=$ withheld to avoid disclosing data for individual companies.

Table 6-2: Transportation and Warehousing Establishments and Employment in the United States: 1999

Business type	Establishments ${ }^{7}$ (number)	Number of employees	Annual payroll (\$ thousands)
Total transportation and warehousing	187,339	$3,627,057$	$116,682,214$
Air transportation	5,285	582,838	$24,414,357$
Water transportation	1,950	71,844	$3,039,510$
Truck transportation	108,749	$1,384,178$	$43,626,168$
Transit and ground passenger transportation	16,254	370,022	$6,729,332$
Pipeline transportation	2,550	48,149	$3,032,689$
Scenic and sightseeing transportation	2,267	22,877	540,702
Support activities for transportation	31,392	440,175	$14,915,625$
Couriers and messengers	11,938	578,368	$16,725,960$
Warehousing and storage	6,954	128,606	$3,657,871$

${ }^{1}$ The transportation and warehousing sector (North American Industrial Classification System [NAICS] 48 and 49) includes industries providing transportation of passengers and cargo, warehousing and storage for goods, scenic and sightseeing transportation, and support activities related to modes of transportation. Establishments in these industries use transportation equipment or transportation related facilities as a productive asset. The type of equipment depends on the mode of transportation. The modes of transportation comprise air, rail, water, road, and pipeline.

SOURCE FOR DATA ON THIS PAGE: U.S. Department of Commerce, U.S. Census Bureau, 1999 County Business Patterns, Washington, DC: May 2001, available at http://www.census.gov/epcd/cbp/ map/99data/06/999.txt as of Oct. 25, 2001.

Economy and Finance

Table 6-3: Transportation Revenues Collected by State and Local Governments in lowa (\$ millions)

Mode	1995		1996		1997		1998		1999	
	State	Local								
Total (current \$)	640	60	657	66	662	69	632	74	669	71
Highway	640	29	657	29	662	29	632	30	669	28
Transit	Z	8	Z	9	Z	10	Z	10	Z	11
Air	Z	23	Z	28	Z	29	Z	34	Z	33
Water	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z
Total (chained 1996 \$)	655	62	657	66	646	67	606	71	625	67
Highway	655	30	657	29	646	29	606	29	625	26
Transit	Z	8	Z	9	Z	10	Z	10	Z	10
Air	Z	24	Z	28	Z	29	Z	32	Z	30
Water	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z

Table 6-4: Transportation Expenditures by State and Local Governments in Iowa ${ }^{1}$ (\$ millions)

Mode	1995		1996		1997		1998		1999	
	State	Local								
Total (current \$)	699	802	727	792	763	807	740	875	830	918
Highway	681	707	709	690	745	693	717	757	811	813
Transit	18	45	18	48	18	53	22	55	20	56
Air	Z	49	Z	55	Z	61	Z	62	Z	50
Water	Z	Z	Z	Z	Z	Z	Z	1	Z	Z
Total (chained 1996 \$)	715	820	727	792	744	787	709	839	776	858
Highway	696	723	709	690	726	676	688	726	757	759
Transit	19	46	18	48	18	52	21	53	18	52
Air	Z	50	Z	55	Z	60	Z	59	Z	47
Water	Z	Z	Z	Z	Z	Z	Z	1	Z	Z

${ }^{1}$ Includes federal grants.
KEY FOR DATA ON THIS PAGE: $Z=$ zero or less than 1 unit of measure.
NOTE FOR DATA ON THIS PAGE: Dollars are converted using a chain-type price index from U.S. Department of Commerce, Bureau of Economic Analysis, National Income and Product Accounts Tables, Washington, DC: 2001, table 7.1, available at http://www.bea.doc.gov/bea/dn/nipaweb/ as of Dec. 12, 2001.

SOURCE FOR DATA ON THIS PAGE: U.S. Department of Commerce, U.S. Census Bureau, State and Local Government Finance Estimates, available at ftp://ftp.census.gov/pub/outgoing/govs/as of October 2001.

Table 6-5: State Motor-Fuel Tax Rates: 2000 (Cents per gallon)

\left.| | | | Liquified | | |
| :--- | ---: | ---: | ---: | ---: | :---: |
| petroleum | | | | | |$\right]$

${ }^{1}$ Tax rates for gasoline blended with 10 percent ethanol.
NOTE: Tax rates in effect as of Jan. 1, 2000.
SOURCE: U.S. Department of Transportation, Federal Highway Administration, Highway Statistics 2000, Washington, DC: 2001, table MF-121T.

$=$
 G Energy and Environment

Table 7-1: Transportation Energy Consumption: 1999 (Trillion Btu)

State	Petroleum									Net energyElectrical system energy losses 5		Total
	Natural gas ${ }^{\prime}$	Distillate fuel (diesel)	Jet fuel	Motor gasoline ${ }^{2}$	Residual fuel	Other ${ }^{3}$	Total	Ethanol ${ }^{4}$	Electricity			
Alabama	22.9	118.4	11.1	298.0	6.5	3.7	437.8	5	0.0	460.7	0.0	460.7
Alaska	4.5	21.5	134.1	32.9	1.7	3.3	193.5	0.4	0.0	198.0	0.0	198.0
Arizona	19.0	92.0	54.6	283.9	0.0	3.1	433.5	1.3	0.0	452.5	0.0	452.5
Arkansas	9.1	84.5	25.9	172.6	0.0	5.1	288.0	0.0	0.0	297.2	0.0	297.2
California	12.9	373.3	559.5	1,749.0	175.3	23.6	2,880.6	4.9	1.8	2,895.3	3.6	2,898.9
Colorado	8.4	67.8	44.2	241.5	0.0	3.9	357.4	4.5	S	365.8	S	365.9
Connecticut	0.8	34.4	13.9	183.9	0.1	1.9	234.2	0.3	0.0	234.9	0.0	234.9
Delaware	0.1	8.6	0.6	47.7	13.2	0.5	70.6	0.0	0.0	70.6	0.0	70.6
Dist. of Columbia	0.3	3.6	0.0	20.5	0.0	0.3	24.5	0.0	0.6	25.3	1.2	26.5
Florida	7.2	210.3	164.3	897.5	57.4	8.7	1,338.1	0.1	0.2	1,345.4	0.4	1,345.8
Georgia	9.1	196.7	86.8	566.9	5.7	5.2	861.3	0.0	0.3	870.8	0.7	871.4
Hawaii	0.0	9.1	53.7	45.8	12.9	0.8	122.3	0.0	0.0	122.3	0.0	122.3
Idaho	4.7	34.0	4.9	80.8	0.0	1.2	121.0	0.0	0.0	125.7	0.0	125.7
Illinois	55.3	202.6	103.4	612.7	0.2	11.8	930.8	20.3	1.5	987.5	2.9	990.5
Indiana	14.6	186.4	63.5	373.7	1.9	5.1	630.6	9.0	0.1	645.3	0.1	645.4
lowa	7.9	74.9	5.0	185.9	0.0	3.8	269.6	6.7	S	277.5	S	277.5
Kansas	31.6	60.5	19.7	170.7	0.1	5.2	256.2	0.5	0.0	287.8	0.0	287.8
Kentucky	17.2	122.9	39.5	261.0	0.0	3.6	427.0	0.3	0.0	444.2	0.0	444.2
Louisiana	50.0	147.4	192.9	255.9	153.5	5.1	754.9	0.1	S	804.9	S	804.9
Maine	0.0	22.2	4.9	83.7	1.4	1.0	113.2	0.0	S	113.2	S	113.2
Maryland	3.4	73.3	22.3	295.0	7.4	2.2	400.3	0.2	0.5	404.1	1.0	405.1
Massachusetts	2.8	57.0	45.8	328.7	0.2	4.1	435.7	0.0	0.8	439.2	1.6	440.8
Michigan	23.3	132.7	51.7	624.5	0.3	12.2	821.4	3.4	5	844.7	S	844.8
Minnesota	22.5	93.4	71.4	306.5	S	5.8	477.1	19.5	0.0	499.6	0.0	499.6
Mississippi	66.1	81.2	54.8	196.2	6.9	3.6	342.7	0.0	0.0	408.9	0.0	408.9
Missouri	6.8	172.0	72.3	364.6	S	6.6	615.6	1.4	0.1	622.5	0.1	622.6
Montana	6.1	34.7	4.7	59.1	0.0	1.9	100.4	5	0.0	106.5	0.0	106.5
Nebraska	2.9	76.9	8.9	103.1	0.0	2.7	191.5	2.1	0.0	194.4	0.0	194.4
Nevada	0.9	36.9	47.4	111.7	0.0	0.9	196.9	2.3	0.0	197.8	0.0	197.8
New Hampshire	S	14.5	4.6	80.8	S	0.5	100.5	0.0	0.0	100.5	0.0	100.5
New Jersey	4.3	120.9	206.1	476.6	48.9	5.1	857.6	0.7	0.5	862.4	0.9	863.3
New Mexico	47.4	55.5	15.4	113.7	0.0	1.9	186.5	2.0	0.0	233.9	0.0	233.9
New York	8.6	147.5	51.7	690.6	47.1	7.3	944.2	1.2	9.1	961.9	17.7	979.6
North Carolina	10.9	132.6	38.6	502.6	1.0	5.3	680.0	3.0	0.0	690.9	0.0	690.9
North Dakota	9.9	26.0	2.3	43.0	0.0	1.2	72.5	0.4	0.0	82.4	0.0	82.4
Ohio	18.5	222.5	93.3	623.2	0.1	11.1	950.2	19.6	0.2	968.9	0.3	969.2
Oklahoma	24.5	111.7	37.3	223.3	0.0	5.7	378.0	0.0	0.0	402.5	0.0	402.5
Oregon	10.9	70.2	36.5	188.0	18.0	4.3	317.0	1.1	0.1	328.0	0.2	328.2
Pennsylvania	37.3	197.6	90.4	607.0	37.8	9.7	942.6	1.0	1.3	981.3	2.6	983.9
Rhode Island	0.3	9.3	6.0	49.8	S	0.5	65.6	0.0	0.0	65.9	0.0	65.9
South Carolina	3.7	85.8	8.7	273.0	2.8	2.3	372.7	0.0	0.0	376.4	0.0	376.4
South Dakota	6.1	21.1	4.4	51.5	0.0	1.3	78.2	1.8	0.0	84.3	0.0	84.3
Tennessee	25.9	131.7	67.0	360.3	0.0	5.1	564.2	0.0	S	590.1	S	590.1
Texas	73.0	479.2	594.8	1,252.3	131.9	17.6	2,475.8	4.8	0.1	2,548.8	0.1	2,549.0
Utah	2.8	45.1	42.2	119.2	0.0	1.7	208.2	0.9	S	211.1	S	211.1
Vermont	S	12.3	0.8	39.7	0.0	0.4	53.2	0.0	0.0	53.2	0.0	53.2
Virginia	8.3	142.3	52.8	438.1	9.2	3.9	646.5	2.8	0.3	655.1	0.6	655.7
Washington	8.2	95.9	125.6	325.2	57.4	4.6	608.9	2.5	0.1	617.1	0.1	617.3
West Virginia	31.5	46.9	1.0	100.5	0.0	1.7	150.1	S	0.0	181.6	0.0	181.6
Wisconsin	4.2	101.0	19.3	303.0	5	4.3	427.6	2.5	S	431.8	S	431.8
Wyoming	14.5	62.4	1.0	39.8	0.0	2.2	105.3	0.0	0.0	119.8	0.0	119.8
United States	761.1	5,160.9	3,461.8	15,855.4	798.9	234.8	25,511.8	121.6	17.5	26,290.3	34.3	26,324.6

${ }^{1}$ Inciudes supplemental gaseous fuels. Transportation use of natural gas is consumed in the operation of pipelines, primarily in compressors, or consumed as vehicle fuel.
${ }^{2}$ Includes ethanol blended into motor gasoline.
${ }^{3}$ "Other" is the sum of aviation gasoline, liquefied petroleum gas (LPG), and lubricants.
${ }^{4}$ Ethanol blended into motor gasoline is included in motor gasoline, but is also shown separately to display the use of renewable energy by the transportation sector. It is counted only once in the total.
${ }^{5}$ Incurred in the generation, transmission, and distribution of electricity plus plant use and unaccounted for electrical system energy losses.
$\mathbf{K E Y}: \mathrm{Btu}=\mathrm{British}$ thermal unit; $\mathrm{S}=$ less than 0.05 trillion Btu.
NOTE: Totals may not equal sum of components due to rounding.
SOURCE: U.S. Department of Energy, Energy Information Administration, State Energy Data Report 1999, Washington, DC: May 2001, table 7, available at http://www.eia.doe.gov/pub/state.data/pdf/sedr.pdf as of Feb. 21, 2002.

Table 7-2: Energy Consumption by End-Use Sector: 1999
(Trillion Btu)

State	Total energy consumed ${ }^{1}$	End-use sectors ${ }^{2}$							
		Transportation		Residential		Commercial		Industrial	
		Number	Percent	Number	Percent	Number	Percent	Number	Percent
Alabama	2,004.8	460.7	23.0	341.0	17.0	226.3	11.3	976.7	48.7
Alaska	694.7	198.0	28.5	47.7	6.9	63.1	9.1	385.9	55.5
Arizona	1,219.8	452.5	37.1	279.0	22.9	266.7	21.9	221.6	18.2
Arkansas	1,203.7	297.2	24.7	193.3	16.1	123.8	10.3	589.4	49.0
California	8,375.4	2,898.9	34.6	1,416.2	16.9	1,236.5	14.8	2,823.7	33.7
Colorado	1,155.5	365.9	31.7	261.4	22.6	255.1	22.1	273.1	23.6
Connecticut	839.3	234.9	28.0	245.2	29.2	196.8	23.4	162.4	19.3
Delaware	278.8	70.6	25.3	56.0	20.1	44.8	16.1	107.4	38.5
District of Columbia	169.8	26.5	15.6	33.5	19.7	106.2	62.5	3.7	2.2
Florida	3,852.9	1,345.8	34.9	1,017.8	26.4	809.5	21.0	679.8	17.6
Georgia	2,798.1	871.4	31.1	553.1	19.8	416.3	14.9	957.3	34.2
Hawaii	241.4	122.3	50.7	23.0	9.5	24.8	10.3	71.3	29.5
Idaho	518.3	125.7	24.3	95.9	18.5	86.9	16.8	209.8	40.5
Illinois	3,882.6	990.5	25.5	897.4	23.1	722.0	18.6	1,272.6	32.8
Indiana	2,735.8	645.4	23.6	483.6	17.7	300.7	11.0	1,306.2	47.7
lowa	1,121.7	277.5	24.7	222.5	19.8	158.5	14.1	463.3	41.3
Kansas	1,050.0	287.8	27.4	200.9	19.1	169.2	16.1	392.2	37.4
Kentucky	1,830.2	444.2	24.3	315.9	17.3	219.0	12.0	851.1	46.5
Louisiana	3,615.4	804.9	22.3	325.0	9.0	236.5	6.5	2,249.0	62.2
Maine	528.6	113.2	21.4	97.6	18.5	57.6	10.9	260.2	49.2
Maryland	1,378.2	405.1	29.4	358.6	26.0	337.1	24.5	277.4	20.1
Massachusetts	1,569.1	440.8	28.1	411.7	26.2	325.2	20.7	391.4	24.9
Michigan	3,239.6	844.8	26.1	744.3	23.0	568.1	17.5	1,082.5	33.4
Minnesota	1,675.3	499.6	29.8	340.2	20.3	217.9	13.0	617.7	36.9
Mississippi	1,208.5	408.9	33.8	202.6	16.8	145.6	12.0	451.4	37.4
Missouri	1,768.0	622.6	35.2	431.7	24.4	334.1	18.9	379.6	21.5
Montana	412.4	106.5	25.8	61.8	15.0	48.0	11.6	196.1	47.6
Nebraska	602.0	194.4	32.3	130.0	21.6	111.3	18.5	166.2	27.6
Nevada	615.3	197.8	32.1	122.4	19.9	97.1	15.8	198.0	32.2
New Hampshire	335.4	100.5	30.0	81.9	24.4	56.2	16.8	96.9	28.9
New Jersey	2,588.7	863.3	33.3	539.9	20.9	540.8	20.9	644.7	24.9
New Mexico	635.0	233.9	36.8	93.2	14.7	105.6	16.6	202.4	31.9
New York	4,283.0	979.6	22.9	1,092.3	25.5	1,216.1	28.4	994.9	23.2
North Carolina	2,446.9	690.9	28.2	562.7	23.0	439.5	18.0	753.7	30.8
North Dakota	365.7	82.4	22.5	54.2	14.8	42.6	11.6	186.4	51.0
Ohio	4,323.4	969.2	22.4	866.7	20.0	632.1	14.6	1,855.3	42.9
Oklahoma	1,377.5	402.5	29.2	259.1	18.8	197.7	14.4	518.2	37.6
Oregon	1,109.2	328.2	29.6	238.4	21.5	190.5	17.2	352.1	31.7
Pennsylvania	3,715.5	983.9	26.5	858.6	23.1	582.6	15.7	1,290.4	34.7
Rhode Island	261.1	65.9	25.2	66.0	25.3	52.2	20.0	77.0	29.5
South Carolina	1,493.0	376.4	25.2	288.1	19.3	210.3	14.1	618.2	41.4
South Dakota	239.0	84.3	35.3	53.3	22.3	39.2	16.4	62.2	26.0
Tennessee	2,070.5	590.1	28.5	441.5	21.3	328.1	15.8	710.8	34.3
Texas	11,501.0	2,549.0	22.2	1,323.3	11.5	1,147.2	10.0	6,481.5	56.4
Utah	693.9	211.1	30.4	127.5	18.4	120.2	17.3	235.1	33.9
Vermont	165.0	53.2	32.2	42.6	25.8	29.4	17.8	39.9	24.2
Virginia	2,227.3	655.7	29.4	494.4	22.2	462.8	20.8	614.4	27.6
Washington	2,240.8	617.3	27.5	435.7	19.4	332.0	14.8	855.9	38.2
West Virginia	735.4	181.6	24.7	141.9	19.3	101.0	13.7	310.8	42.3
Wisconsin	1,810.5	431.8	23.8	375.8	20.8	285.4	15.8	717.4	39.6
Wyoming	421.8	119.8	28.4	35.9	8.5	42.1	10.0	224.0	53.1
United States	95,682.4	26,324.6	27.5	18,382.3	19.2	15,058.5	15.7	35,917.1	37.5

${ }^{1}$ U.S. total energy and U.S. industrial sector include 57.7 trillion Btu of net imports of coal coke that is not allocated to the states. State and U.S. totals include 92.6 trillion Btu of net imports of electricity generated from nonrenewable energy sources.
${ }^{2}$ End-use sector data include electricity sales and associated electrical system energy losses.
KEY: $\mathrm{Btu}=\mathrm{British}$ thermal unit; Number $=$ trillion Btu .
SOURCE: U.S. Department of Energy, Energy Information Administration, State Energy Data Report 1999, Washington, DC: May 2001, available at http://www.eia.doe.gov/pub/state.data/pdf/sedr.pdf as of Feb. 21, 2002.

Figure 7-1: Energy Consumption by End-Use Sector: 1999

SOURCE: U.S. Department of Energy, Energy Information Administration, State Energy Data Report 1999, Washington, DC: May 2001, table 9, available at http://www.eia.doe.gov/pub/state.data/pdf/sedr.pdf as of Feb. 21, 2002.

Energy and Environment

Figure 7-2: Iowa Transportation Energy Consumption

KEY: Btu = British thermal unit.
SOURCE: U.S. Department of Energy, Energy Information Administration, State Energy Data Report 1999, Washington, DC: May 2001, table 45, available at
http://www.eia.doe.gov/pub/state.data/pdf/sedr.pdf as of Feb. 21, 2002.

Table 7-3: Transportation Energy Consumption per Capita: 1999

State	Population (thousands)	Petroleum		All energy sources	
		Total (trillion Btu)	Per capita ${ }^{1}$ (million Btu)	Total (trillion Btu)	Per capita ${ }^{1}$ (million Btu)
Alabama	4,370	437.8	100.2	460.7	105.4
Alaska	620	193.5	312.1	198.0	319.4
Arizona	4,778	433.5	90.7	452.5	94.7
Arkansas	2,551	288.0	112.9	297.2	116.5
California	33,145	2,880.6	86.9	2,898.9	87.5
Colorado	4,056	357.4	88.1	365.9	90.2
Connecticut	3,282	234.2	71.4	234.9	71.6
Delaware	754	70.6	93.6	70.6	93.6
District of Columbia	519	24.5	47.2	26.5	51.1
Florida	15,111	1,338.1	88.6	1,345.8	89.1
Georgia	7,788	861.3	110.6	871.4	111.9
Hawaii	1,185	122.3	103.2	122.3	103.2
Idaho	1,252	121.0	96.6	125.7	100.4
Illinois	12,128	930.8	76.7	990.5	81.7
Indiana	5,943	630.6	106.1	645.4	108.6
lowa	2,869	269.6	94.0	277.5	96.7
Kansas	2,654	256.2	96.5	287.8	108.4
Kentucky	3,961	427.0	107.8	444.2	112.1
Louisiana	4,372	754.9	172.7	804.9	184.1
Maine	1,253	113.2	90.3	113.2	90.3
Maryland	5,172	400.3	77.4	405.1	78.3
Massachusetts	6,175	435.7	70.6	440.8	71.4
Michigan	9,864	821.4	83.3	844.8	85.6
Minnesota	4,776	477.1	99.9	499.6	104.6
Mississippi	2,768	342.7	123.8	408.9	147.7
Missouri	5,468	615.6	112.6	622.6	113.9
Montana	883	100.4	113.7	106.5	120.6
Nebraska	1,666	191.5	114.9	194.4	116.7
Nevada	1,809	196.9	108.8	197.8	109.3
New Hampshire	1,201	100.5	83.7	100.5	83.7
New Jersey	8,143	857.6	105.3	863.3	106.0
New Mexico	1,740	186.5	107.2	233.9	134.4
New York	18,197	944.2	51.9	979.6	53.8
North Carolina	7,651	680.0	88.9	690.9	90.3
North Dakota	634	72.5	114.4	82.4	130.0
Ohio	11,257	950.2	84.4	969.2	86.1
Oklahoma	3,358	378.0	112.6	402.5	119.9
Oregon	3,316	317.0	95.6	328.2	99.0
Pennsylvania	11,994	942.6	78.6	983.9	82.0
Rhode Island	991	65.6	66.2	65.9	66.5
South Carolina	3,886	372.7	95.9	376.4	96.9
South Dakota	733	78.2	106.7	84.3	115.0
Tennessee	5,484	564.2	102.9	590.1	107.6
Texas	20,044	2,475.8	123.5	2,549.0	127.2
Utah	2,130	208.2	97.7	211.1	99.1
Vermont	594	53.2	89.6	53.2	89.6
Virginia	6,873	646.5	94.1	655.7	95.4
Washington	5,756	608.9	105.8	617.3	107.2
West Virginia	1,807	150.1	83.1	181.6	100.5
Wisconsin	5,250	427.6	81.4	431.8	82.2
Wyoming	480	105.3	219.4	119.8	249.6
United States	272,691	25,511.8	93.6	26,324.6	96.5

${ }^{1}$ Calculated by the Bureau of Transportation Statistics.
KEY: $\mathrm{B}+\mathrm{u}=\mathrm{British}$ thermal unit.
SOURCE: U.S. Department of Energy, Energy Information Administration, State Energy Data Report 1999, Washington, DC: May 2001, available at http://www.eia.doe.gov/pub/state.data/pdf/sedr.pdf as of Feb. 21, 2002.

Table 7-4: lowa and U.S. Motor-Fuel Use: $200{ }^{1}$ (Millions of gallons)

Vehicle ownership	Gasoline				Special fuel (mainly diesel)		Total use	
	Highway use		Nonhighway use					
	lowa	United States						
Private and commercial	1,465	126,735	67	2,876	499	33,377	2,031	162,988
Public use	29	2,149	1	96	N	N	30	2,245
Total	1,494	128,884	68	2,972	499	33,377	2,062	165,232

${ }^{1}$ Based on reports from state motor-fuel tax agencies. Gasohol is included with gasoline. Public use and nonhighway use were estimated by the Federal Highway Administration.

KEY: $\mathrm{N}=$ data do not exist.
NOTE: The term "motor fuel" applies to gasoline and all other fuels, including special fuels, coming under the purview of the state motor-fuel tax laws. "Special fuels" include diesel fuel and, to the extent they can be quantified, liquefied petroleum gases such as propane. Gasohol, a blend of gasoline and fuel alcohol, is included with gasoline.

SOURCE: U.S. Department of Transportation, Federal Highway Administration, Highway Statistics 2000 , Washington, DC: October 2001, available at http://www.fhwa.dot.gov/ohim/hs00/pdf/mf21 .pdf as of Apr. 20, 2002.

Table 7-5: Highway Noise Barriers: 1999

State	Total length (meters)	Barrier cost (\$ 1998)
Alabama	0	0
Alaska	9,338	2,742,486
Arizona	48,593	15,130,670
Arkansas	1,989	653,497
California	777,160	487,177,331
Colorado	104,377	45,351,408
Connecticut	46,049	28,335,802
Delaware	1,262	242,013
District of Columbia	0	0
Florida	70,991	62,276,735
Georgia	33,530	20,247,589
Hawaii	3,103	1,743,452
Idaho	200	583,002
Illinois	97,803	70,985,221
Indiana	18,568	20,297,106
lowa	7,857	3,215,640
Kansas	2,103	2,082,034
Kentucky	8,249	5,306,199
Louisiana	12,077	5,974,212
Maine	561	292,861
Maryland	99,587	153,227,923
Massachusetts	10,250	5,259,055
Michigan	67,071	60,139,968
Minnesota	101,811	62,694,176
Mississippi	0	0
Missouri	6,113	4,179,360
Montana	0	0
Nebraska	5,060	4,026,138
Nevada	17,847	10,855,220
New Hampshire	6,392	5,785,519
New Jersey	142,055	210,429,029
New Mexico	21,196	9,306,885
New York	110,698	116,448,616
North Carolina	45,977	24,702,615
North Dakota	0	0
Ohio	138,197	68,064,386
Oklahoma	13,186	4,229,909
Oregon	72,552	30,075,899
Pennsylvania	83,526	88,259,488
Rhode Island	0	- 0
South Carolina	2,665	1,713,629
South Dakota	0	0
Tennessee	28,846	20,574,450
Texas	55,310	39,635,228
Utah	70,260	24,841,367
Vermont	1,004	356,344
Virginia ${ }^{1}$	153,313	143,003,313
Washington	74,812	32,296,683
West Virginia	408	170,529
Wisconsin	29,730	28,768,150
Wyoming	293	100,271
United States	2,611,953	1,931,107,534

${ }^{1}$ Includes 4,061 meters of federal barriers on the Dulles Access Highway.
SOURCE: U.S. Department of Transportation, Federal Highway
Administration, Office of Planning, Environment, and Real Estate, available at http://www.fhwa.dot.gov/environment/ab_noise.htm as of Feb. 20, 2002.

H Information on Data Sources

Abstract

Airline freight and passenger data The U.S. Department of Transportation's (USDOT) Bureau of Transportation Statistics (BTS) collects and compiles data on the volume of revenue passengers, freight, and mail traffic handled and reported by the nation's large certificated air carriers. These carriers hold Certificates of Public Convenience and Necessity (CPN) issued by the USDOT authorizing the performance of air transportation. Large certificated air carriers operate aircraft with seating capacity of more than 60 seats or a maximum payload capacity of more than 18,000 pounds or conduct international operations. Data for commuters, intrastate, nonscheduled air taxi operators, and foreign flag air carriers are not included in this BTS data.

Additional information:

Contact: USDOT, Bureau of Transportation Statistics, Office of Airline Information
Print source: USDOT, Bureau of Transportation Statistics, Office of Airline Information. Airport Activity Statistics. Washington, DC: Annual issues.

Internet: http://www.bts.gov

Commodity Flow Survey

The Commodity Flow Survey (CFS) provides data on the movement of freight by type of commodity shipped and by mode of transport. In 1997, 100,000 domestic establishments were randomly selected from a universe of approximately 800,000 engaged in mining, manufacturing, wholesale, warehouses of multi-establishment companies, and some selected activities in retail and service. The survey excluded establishments classified as farms, forestry, fisheries, governments, construction, transportation, foreign establishments, services, and most
establishments in retail. For the 1997 CFS, each selected establishment reported a sample of about 25 outbound shipments for a one-week period in each of four calendar quarters in 1997. This produced a total sample of over 5 million shipments. Due to industry-wide reporting problems, shipments by oil and gas extraction establishments were excluded from data tabulations.

For each sampled 1997 CFS shipment, zip code of origin and destination, 5 -digit Standard Classification of Transported Goods (SCTG) code, weight, value, and modes of transport were provided. Information on whether the shipment was containerized, a hazardous material, or an export was also obtained. Route-distance for each mode, for each shipment, is imputed from a ModeDistance Table developed by Oak Ridge National Laboratory. Distance was used to compute ton-mileage by mode of transport. The CFS provides nationwide geographic coverage in 89 National Transportation Analysis Regions, stratified by state and, for the 1997 CFS, metropolitan area.

Additional information:

Contact: USDOT, Bureau of Transportation Statistics, Office of Statistical Programs

Print source: USDOT, Bureau of Transportation Statistics and U.S.
Department of Commerce, Bureau of the Census, [state]: 1997 Commodity Flow Survey. EC97TCF-[state], Washington, DC: 1999.

Internet: http://www.bts.gov/ntda/cfs/

Commuting data

Commuting data are derived from the Census 2000 Supplementary Survey (C2SS). The C2SS used the questionnaire and methods developed for the American Community

Data Sources

Survey to collect demographic, social, economic, and housing data from a national sample of 700,000 households. Group quarters were not included in the sample. The C2SS was conducted in 1,203 counties with monthly samples of about 58,000 housing units. Economic, demographic, and housing characteristics from the Census 2000 Supplementary Survey are reported for the United States as a whole, the 50 states, and the District of Columbia.

The Census 2000 Supplementary Survey is not directly comparable with the 1990 Census for several reasons, one being that the former did not include group quarters. This may understate some categories such as walking.

Additional information:

Contact: USDOC, U.S. Census Bureau, Demographic Surveys Division

Internet: http://www.census.gov

Gas and hazardous liquid pipeline data

U.S. fatality and injury data for natural gas pipelines and hazardous liquid pipelines are based on reports filed with the U.S. Department of Transportation, Office of Pipeline Safety (OPS) under 49 CFR 191. Accidents must be reported as soon as possible, but no later than 30 days after discovery. Undetected releases are a possible source of error; even if subsequently detected and reported, it may not be possible to accurately reconstruct the accident. Property damage figures are estimates.

Gas pipeline incidents involve: 1) releases of gas from a pipeline or liquefied natural gas (LNG) or gas from an LNG facility that results in a) death or personal injury necessitating in-patient hospitalization, or b) estimated property damage, including cost of
gas lost, of the operator or others, or both, of $\$ 50,000$ or more; 2) an event that results in an emergency shutdown of an LNG facility; or 3) an event that is significant, in the judgment of the operator, even though it did not meet the criteria of 1) or 2).

For hazardous liquids pipelines, an accident report is required for each failure in a pipeline system in which there is a release of the hazardous liquid or carbon dioxide transported resulting in any of the following: 1) explosion or fire not intentionally set by the operator; 2) loss of 50 or more barrels (8 or more cubic meters) of hazardous liquid or carbon dioxide; 3) escape to the atmosphere of more than 5 barrels (0.8 cubic meters) a day of highly volatile liquids; 4) death of any person; 5) bodily harm to any person resulting in one or more of the following: a) loss of consciousness, b) an individual being carried from the scene, c) medical treatment, or d) disability which prevents the discharge of normal duties or the pursuit of normal activities beyond the day of the accident; or 6) estimated property damage, including cost of clean-up and recovery, value of lost product, and damage to the property of the operator or others, or both, exceeding \$50,000.

Additional information:

Contact: USDOT, Research and Special Programs Administration, Office of Pipeline Safety
Internet: http://ops.dot.gov

Government transportation revenue and expenditure data

The U.S. Department of Commerce (USDOC), U.S. Census Bureau conducts an Annual Survey of Government Finances. Alternatively, every five years, in years ending in a ' 2 ' or ' 7 ', a Census of Governments,
including a finance portion, is conducted. The survey coverage includes all state and local governments in the United States. For both the Census and annual survey, the finance detail data is equivalent, encompassing the entire range of government finance activities-revenue, expenditure, debt, and assets.

The data collection for the annual survey uses two methods: mail canvas and central collection from state sources. Data for local governments includes county, municipal, township, special district, and school district data. Data for state governments are compiled from state government audits, budgets, and other financial reports into the classification categories used for reporting by the Census Bureau.

Reporting of government finances by the Census Bureau involves presentation of data in terms of uniform categories. While often similar to, or identical to, the classification used by the state or local government, there could be instances in which a significant difference exists between the name of a state or local financial item and the final category to which it is assigned by the Census Bureau.

Like financial transactions are combined. The financial categories for revenue involve grouping of items by source. Revenue items of the same kind are merged. Financial transactions for expenditures are classified both by function and by object category. Debt items are classified by term (short- and longterm), as well as by type of debt and, to a limited extent, by purpose. Assets also are put into uniform categories, grouped by type of holding, with holdings for insurance trust systems grouped separately from general government.

The share of government sector financial totals contributed by a state government or by local governments differs materially from one state to another. Users can review the Government Finance and Employment Classification Manual for additional information regarding the financial categories. The financial amounts in the tables and files are statistical in nature and do not represent accounting statements or conditions.
The local government statistics are developed from a sample survey. Therefore, the local totals, as well as state and local aggregates, are considered estimated amounts subject to sampling error. State government finance data are not subject to sampling. Consequently, state-local aggregates for individual states are more reliable (on a relative standard error basis) than the local government estimates they include.

Additional information:

Contact: USDOC, U.S. Census Bureau, Finance Branch

Print Sources: USDOC, U.S. Census Bureau, Federal Aid to States: 2000

Internet: http://www.census.gov

Hazardous materials incidents data

Incidents resulting in certain unintentional releases of hazardous materials must be reported under 49 CFR 171.16. Each carrier must submit a report to the USDOT, Research and Special Programs Administration (RSPA) within 30 days of the incident, including information on the mode of transportation involved, results of the incident, and a narrative description of the accident. These reports are generally made available on RSPA's incident database within 90 days of receipt.

Fatalities and injuries are counted only if directly caused by a hazardous material. For example, a truck operator killed by impact forces during a motor vehicle crash would not be counted as a hazardous-material fatality. RSPA contacts the submitting carrier by telephone to verify all reported fatalities.

Although RSPA acknowledges that there is some level of underreporting, it believes that the underreporting is mostly limited to small, nonserious incidents. The reporting requirements were extended to intrastate highway carriers on October 1, 1998, and the response rate from this new group is expected to increase over time. Property damage figures are estimates determined by the carrier prior to the 30-day reporting deadline, and are generally not subsequently updated. Property damage figures, therefore, may underestimate actual damages.

Additional information:

Contact: USDOT, Research and Special Programs Administration, Office of Hazardous Materials Planning and Analysis
Print source: USDOT, Research and Special
Programs Administration, Office of Hazardous Materials Safety, Hazmat
Summary by State for Calendar Year 2000.
Washington, DC: 2001
Internet: http://hazmat.dot.gov
Highway mileage, condition, and use, driver licenses, and highway vehicle registrations data
Data on roadway mileage, condition, and use are extracted from the Highway Performance Monitoring System (HPMS), which uses a stratified simple random sample of highway links (small sections of roadway) selected from state inventory files. The HPMS sample was designed as a fixed sample to minimize
data collection costs, but adjustments to maintain representativeness are carried out periodically. The HPMS also consists of universe reporting (a complete census) for the Interstate and the National Highway System, and tabular summary reporting of limited information.

Data are collected independently by the 50 states, Metropolitan Planning Organizations (MPOs), and lower jurisdictions. Many of the geometric data items rarely change, such as number of lanes; others change frequently, such as traffic. The U.S. Department of Transportation, Federal Highway Administration (FHWA) provides guidelines for data collection in the HPMS Field Manual, which the states follow to varying extents depending on matters such as staff, resources, state perspective, uses of the data, and state/MPO/local needs for the data. State Departments of Transportation (DOTs) report HPMS data annually to the FHWA.
HPMS data are subject to sampling and nonsampling error. Nonsampling error is the major concern with these data. For some of the most variable and important data items, such as traffic, guidelines for measurement and data collection have been produced. States have the option of using the guidelines or using their own procedures. Many data items are difficult and costly to collect and are reported as estimates not based on direct measurement. The data are collected and reported by many entities and individuals within the responsible organizations. Most do a reasonably good job, but staff turnover, cost, equipment issues, etc., can create difficulties.

States provide vehicle registration data to the FHWA. Vehicle registration data are shown on a calendar-year basis. Efforts are made to exclude transfers, re-registrations, and any other factors that could result in duplication
in the vehicle counts. Registration practices for commercial vehicles differ greatly among the states. Some states register a tractorsemitrailer combination as a single unit; others register the tractor and the semitrailer separately. Some states register buses with trucks or automobiles, while many states do not report house and light utility trailers separately from commercial trailers or semitrailers. Some states do not require registration of car or light utility trailers. In some instances, FHWA has supplemented the data supplied by the states with information obtained from other sources. States also provide driver licensing data to the FHWA. Although efforts are made to minimize license duplication, drivers who move from one state to another are sometimes counted in both states until the license from the previous state of residence expires. Problems with the data also arise from the fact that: 1) some individuals obtain their drivers licenses in states other than those of legal residence; 2) some individuals fraudulently obtain multiple licenses; 3) not all individuals who drive are licensed; and 4) the purging of expired licenses or licenses from deceased individuals is not performed on a continual basis.

Additional information:

Contact: USDOT, Federal Highway Administration, Office of Highway Policy Information

Print source: USDOT, Federal Highway Administration, Highway Statistics. Washington, DC: Annual issues. Internet: http://www.fhwa.dot.gov/ohim/ index.html

Highway safety data

Fatalities: Highway fatality data are extracted from the Fatality Analysis Reporting System (FARS), which is compiled by the U.S. Department of Transportation (USDOT), National Highway Traffic Safety Administration (NHTSA). Data are gathered from a census of police accident reports (PARs), state vehicle registration files, state drivers licensing files, state highway department data, vital statistics, death certificates, coroner/medical examiner reports, hospital medical reports, and emergency medical service reports. A separate form is completed for each fatal crash. Blood alcohol concentration (BAC) is estimated when not known. Statistical procedures used for unknown data in FARS can be found in the NHTSA report, A Method for Estimating Posterior BAC Distributions for Persons Involved in Fatal Traffic Accidents, DOT HS 807094 (Washington, DC: July 1986).
Data are collected from relevant state agencies and electronically submitted for inclusion in the FARs database on a continuous basis. Cross-verification of PARs with death certificates helps prevent undercounting. Moreover, when data are entered, they are checked automatically for acceptable range values and consistency, enabling quick corrections when necessary. Several programs continually monitor the data for completeness and accuracy. Periodically, sample cases are analyzed for accuracy and consistency.
FARS data do not include motor vehicle fatalities on nonpublic roads. These are thought to account for about 2 percent or fewer of the total motor vehicle fatalities per year.

Injuries and crashes: NHTSA's General Estimates System (GES) data are a nationally representative sample of police-reported crashes that contributed to an injury or fatality or resulted in property damage and involved at least one motor vehicle traveling on a trafficway. GES data collectors randomly sample PARs and forward copies to a central contractor for coding into a standard GES system format. Documents such as police diagrams or supporting text provided by the officers might be further reviewed to complete a data entry. A NHTSA study of injuries from motor vehicle crashes estimated the total count of nonfatal injuries at over 5 million compared with the GES's estimate of 3.2 million in 1998.

Additional information:

Contact: USDOT, National Highway Traffic Safety Administration, National Center for Statistics and Analysis
Print source: USDOT, National Highway Traffic Safety Administration, Traffic Safety Facts. Washington, DC: Annual issues.
Internet: http://www.nhtsa.dot.gov

International visitors data

Data on international visitors to the United States are based on international arrivals by air to the United States (excluding those from Canada and Mexico). Information is derived from the Immigration and Naturalization Service's (INS) Visitor Arrivals Program (I-94) and the U.S. Department of Commerce, Tourism Industries Office's Survey of International Air Travelers. The survey obtains data on overseas travel patterns, characteristics, and spending patterns of international travelers to and from the United States. Between 69,000 and 95,000 travelers are surveyed each year. The survey results are
weighted so they represent the international travel populations of U.S. residents and nonresidents based upon Immigration and Naturalization Service data.

Additional information:

Contact: U.S. Department of Commerce (USDOC), International Trade Administration, Tourism Industries Office Print source: USDOC, International Trade Administration, Tourism Industries Office, Overseas Visitors to Select U.S. States and Territories. Washington, DC: Annual issues; and USDOC, International Trade Administration, Tourism Industries Office, Overseas Visitors to Select U.S. Cities/Hawaiian Islands. Washington, DC: Annual issues.

Internet: http://tinet.ita.doc.gov/

Passenger border crossing data

U.S. Custom Service personnel collect passenger border-crossing entry data for all U.S. land, air, and maritime ports. These numbers reflect all entries, and it is not possible to divide these data into separate entries for same-day and overnight travel or by country of residence for the traveler. Additionally, for border-crossing figures, the total number of people is not the number of unique individuals, but rather indicates the number of border crossings. Multiple crossings by the same individual count as multiple border crossings.

Additional information:

Contact: USDOT, Bureau of Transportation Statistics, Office of Transportation Analysis
Internet: http://www.bts.gov

Railroad industry and shipments data

The Association of American Railroads (AAR) database aggregates data from several sources
concerning the freight railroad industry and movement of freight, both nationally and statewide. The state-specific data include commerce, employment, and financial contributions.

The primary source of data for Class I railroads is Schedule 700 of the R-1 Annual Report to the Surface Transportation Board (STB) by individual carriers (100 percent reporting) and the 2000 Carload Waybill Sample. The primary source of data for nonClass I railroads is AAR's Profiles of U.S. Railroads from statistics supplied annually by nearly all operating U.S. freight railroads. Some of the data are estimated based on more aggregated, national figures.

The STB defines Class I railroads as having operating revenues at or above a threshold indexed to a base of $\$ 250$ million (1991) and adjusted annually in concert with changes in the Railroad Freight Rate Index published by the Bureau of Labor Statistics.
Declassification from Class I status occurs when a railroad falls below the applicable threshold for three consecutive years. Although few in number, Class I railroads account for over 90 percent of the industry's revenue.
The AAR determines the number of nonClass I railroads through an annual survey sent to each U.S. freight railroad.
Historical reliability may vary due to changes in the railroad industry, including bankruptcies, mergers, and declassification by the STB. Small data errors may also have occurred because of independent rounding in this series by the AAR.

Additional information:

Contact: Association of American Railroads, Policy and Economics Department

Internet: http://www.aar.org

Railroad safety data

Railroads are required to file a report for each accident or incident to the Federal Railroad Administration (FRA). These include: 1) train accidents, reported on Form F 6180.54, comprised of collisions, derailments, and other events involving the operation of ontrack equipment and causing reportable damage above an established threshold ($\$ 6,600$ in 1998); 2) highway-rail grade crossing incidents, reported on Form F 6180.57, involving impact between railroad on-track equipment and highway users at crossings; and 3) other incidents, reported on Form F 6180.55a, involving all other reportable incidents or exposures that cause a fatality or injury to any person or an occupational illness to a railroad employee.
Railroads are required by FRA regulations to use the current FRA Guide for Preparing Accident/Incident Reports when preparing reports.
The Systems Support Division of FRA maintains the Railroad Accident/Incident Reporting System (RAIRS), consisting of four databases: rail equipment, injury/illness, grade-crossing accidents, and railroad summary (freight and passenger). These databases include information on all railroad accidents, grade-crossing accidents, railroad employee casualties, and any other injuries on railroad property, and provide the basis for accident analyses and assessment as well as annual reports. The databases are updated monthly from information submitted by the railroads.

Additional information:
Contact: USDOT, Federal Railroad Administration, Office of Safety

Print publication: USDOT, Federal Railroad Administration, Railroad Safety Statistics. Washington, DC: Annual issues.
Internet: http://www.fra.dot.gov

Recreational boating safety and vehicles data

The U.S. Coast Guard, of the U.S. Department of Transportation, collects data on recreational boating accidents from two sources: 1) Boating Accident Report (BAR) data forwarded to the Coast Guard by jurisdictions with an approved boat numbering and casualty reporting system, and 2) reports of Coast Guard investigations of fatal boating accidents that occurred on waters under federal jurisdiction.
Recreational Boating Accident Investigation data are used if submitted to the Coast Guard and are relied on as much as possible to provide accident statistics. In the absence of investigations, information is collected from reports filed by boat operators.
Boat operators are required to file a BAR if an accident results in 1) loss of life, 2) personal injury that requires medical treatment beyond first aid, 3) damage to the vessel and other property exceeding $\$ 500$, or 4) complete loss of the vessel.

Boat operators are required to report their accidents to authorities in the state where the accident occurred. States with approved boat numbering systems furnish the Coast Guard with BAR data. The minimum reporting requirements are set by federal regulation, but states are allowed to have stricter requirements. The Coast Guard reports recreational boating safety data in the report

Boating Statistics, which only covers accidents meeting the federal minimum reporting requirements.
The statistics in Boating Statistics cover boating accidents reported on waters of joint federal and state jurisdiction, and exclusive state jurisdiction.

The Coast Guard believes over 90 percent of fatal accidents are included in Boating Statistics. A smaller percentage of nonfatal accidents are reported because of reporting thresholds, ignorance of the law, and difficulties enforcing the law. Federal law does not require the reporting of accidents on private waters where states have no jurisdiction. Reports of accidents on such waters are included when received by the Coast Guard if they satisfy the other requirements of inclusion. Accidents excluded are those in which the boat was used as a platform for other activities (e.g., swimming), and those in which a person dies of natural causes aboard a boat. However, the data do include accidents involving people in the water who are struck by their boat or another boat.

Additional information:

Contact: USDOT, U.S. Coast Guard, Office of Boating Safety
Print source: USDOT, U.S. Coast Guard, Office of Boating Safety, Boating Statistics, Washington, DC: Annual issues.
Internet: http://www.uscgboating.org

Transborder surface freight data

The Transborder Surface Freight Dataset is extracted from the Census Foreign Trade Statistics Program and made available by the Bureau of Transportation Statistics. Import and export data are extracted from administrative records required by the

Departments of Commerce and Treasury. This dataset incorporates all shipments entering or exiting the United States by surface modes of transport (that is, other than air or maritime vessel) to and from Canada or Mexico. Prior to January 1997, this dataset also included transhipments in its detailed tables, that is, shipments entering or exiting the United States by way of U.S. Customs ports on the northern or southern borders, even when the actual origin or final destination of the goods was other than Canada or Mexico. Shipments that neither originate nor terminate in the United States (i.e., intransit shipments) are beyond the scope of this dataset because they are not considered U.S. international trade shipments.
Users should be aware that the trade data fields (such as value and commodity classification) are typically more rigorously reviewed than transportation data fields (i.e., mode of transportation and port of entry/exit). Users should also be aware that the use of foreign trade data to describe physical transportation flows might not be direct. For example, this dataset provides surface transportation information for individual Customs districts and ports on the northern and southern borders. However, because of filing procedures for trade documents, these ports may or may not reflect where goods physically crossed the border. This is because the filer of information may choose to file trade documents at one port, while shipments actually enter or exit at another port.
Import data are generally more accurate than export data. This is primarily due to the fact that Customs uses import documents for enforcement purposes, while it performs no similar function for exports.

Additional information:

Contact: USDOT, Bureau of Transportation Statistics, Office of Transportation Analysis
Internet: http://www.bts.gov

Transit operating, financial, and safety data

Transit data are from the National Transit Database (NTD) produced by the USDOT, Federal Transit Administration (FTA). Data are collected from transit agencies that receive Urbanized Area Formula Program funds. Transit operators that do not report to FTA are those that do not receive federal funding, typically private, small, and rural operators. FTA reviews and validates information submitted by individual transit agencies. Reliability may vary because some transit agencies cannot obtain accurate information or may interpret certain data definitions differently than intended.
In 2000, 592 agencies reported to the NTD. Of that total, 67 transit agencies received exemptions from detailed reporting because they operated 9 or fewer vehicles, and 7 were excluded because their data were incomplete. Thus, 518 individual reporters were included in the NTD accounting for 90 to 95 percent of transit passenger-miles.

Data are collected on a range of variables including capital and operating funding, transit service supplied and consumed, and transit safety and security. Transit operators must report fatalities, injuries, accidents, incidents, and property damage in excess of \$1,000.

Additional information:
Contact: USDOT, Federal Transit Administration
Print source: USDOT, Federal Transit Administration, Data Tables. Washington,

I Clossary

British thermal unit (Btu): The amount of energy required to raise the temperature of 1 pound of water 1 degree Fahrenheit (F) at or near 39.2 degrees F and 1 atmosphere of pressure.

Certificated airport: An airport holding an operating certificate issued by the Federal Aviation Administration in accordance with Code of Federal Regulations (CFR) Title 14, Chapter 1, Part 139 allowing it to serve scheduled or unscheduled air carrier aircraft designed for more than 30 passengers.

Commuter rail: Urban passenger train service for short-distance travel between a central city and adjacent suburb. Does not include rapid rail transit or light rail transit service.

Container: A box-like device used to store, protect, and handle a number of packages or items as a unit of transit that can be interchanged between trucks, trains, and ships without rehandling the contents.

Controlled right-of-way: Lanes restricted for at least a portion of the day for use by transit vehicles and other high occupancy vehicles (HOVs).

Demand responsive: Transit service provided without a fixed route and without a fixed schedule that operates in response to calls from passengers or their agents to the transit operator or dispatcher. Service is usually provided using cars, vans, or buses with fewer than 25 seats.

Directional route-miles: The mileage in each direction over which public transportation vehicles travel while in revenue service. Directional route-miles are a measure of the facility or roadway, not the service carried on the facility such as the
number of routes or vehicle-miles. Directional route-miles are computed with regard to direction of service, but without regard to the number of traffic lanes or rail tracks existing in the right-of-way.

Dry-bulk carrier (water): A ship with specialized holds for carrying dry cargo such as coal, grain, and iron ore in unpackaged bulk form.

Enplanements: The total number of revenue passengers boarding aircraft.

Exclusive right-of-way: Lanes reserved at all times for transit use and other high occupancy vehicles (HOVs).

Ferryboat (transit): Vessels that carry passengers and/or vehicles over a body of water. Generally steam or diesel-powered, ferryboats may also be hovercraft, hydrofoil, and other high-speed vessels. The vessel is limited in its use to the carriage of deck passengers or vehicles or both, operates on a short run on a frequent schedule between two points over the most direct water routes other than in ocean or coastwise service, and is offered as a public service of a type normally attributed to a bridge or tunnel.

Full container ship: Ships equipped with permanent container cells, with little or no space for other types of cargo.

Heavy rail: An electric railway with the capacity to transport a heavy volume of passenger traffic and characterized by exclusive rights-of-way, multi-car trains, high speed, rapid acceleration, sophisticated signaling, and high-platform loading. Also known as "subway," "elevated (railway)," or metropolitan railway (metro)."

Light rail: A streetcar-type vehicle operated on city streets, semi-exclusive
rights-of-way, or exclusive rights-of-way. Service may be provided by step-entry vehicles or by level boarding.

Major arterial highway: A major highway used primarily for through traffic.

Metric ton: 1,814 pounds (2,000 pounds multiplied by 0.907).

Minor arterial: In rural areas, roads linking cities and larger towns. In urban areas, roads distributing trips to small geographic area but not penetrating identifiable neighborhoods.

Minor collector highway: In rural areas, routes that serve intracounty rather than statewide travel. In urban areas, streets that provide direct access to neighborhoods and arterials.

Mixed right-of-way: Lanes used for general automobile traffic.

Motor bus: A rubber-tired, self-propelled, manually steered bus with fuel supply onboard the vehicle. Motor bus types include intercity, school, and transit.

Natural gas distribution pipeline:
Smaller than transmission pipelines and maintained by companies that distribute natural gas locally (intrastate). Distribution pipeline systems are analogous to networks of lesser roads and residential streets that people travel after getting off the freeway.

Natural gas transmission pipeline:
Analogous to a major freeway, it is the main interstate transportation route for moving large amounts of natural gas from the source of production to points of distribution. Transmission pipelines are designed to move large amounts of natural gas from areas where the gas is extracted
and stored to the local distribution companies that provide natural gas to homes and businesses.

Principal arterial highway: Major streets or highways, many of multilane or freeway design, serving high-volume traffic corridor movements that connect major generators of travel.

Short ton: 2,000 pounds.
Tanker: An oceangoing ship designed to haul liquid bulk cargo in world trade.

Ton-mile: The movement of one ton of cargo the distance of one statute mile.

Trackage rights: The authority of one railroad to use the tracks of another railroad for a fee.

Trolley bus: Rubber-tired, electric transit vehicle, manually steered and propelled by a motor drawing current, normally through overhead wires, from a central power source.

Unlinked passenger trips: The number of passengers who board public transportation vehicles. A passenger is counted each time he or she boards a vehicle even if on the same journey from origin to destination.

Vanpool: Public-sponsored commuter service operating under prearranged schedules for previously formed groups of riders in 8 - to 18 -seat vehicles. Drivers are also commuters who receive little or no compensation besides the free ride.

Vehicle-miles traveled (highway): Miles of travel by all types of motor vehicles as determined by the states on the basis of actual traffic counts and established estimating procedures.

Iowa: Major Transportation Facilities

[^0]: SOURCE: U.S. Department of Transportation, Federal Transit Administration, National Transit Database, available at

