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DISCONTINUITIES IN A RELATIVISTIC GAS 

by 

G. A. Nariboli 

1. Introduction: The study of Singular Surfaces in General 

Relativity has received much attention recently(l,z, 3 , 4 ). In any 

field theory wave propagation is an important phenomenon. Let us 

make precise the meaning of the term 'wave', which we employ here­

with. We assume that there exists a surface (~), called as the 

singular surface, across which some at least of the field variables 

or their derivatives are discontinuous; we further take that the 

wave-front (~) is not stationary, but that it propagates. The strength 

of the discontinuity, defined in a suitable way, varies as the surface 

moves. A feature of a nonlinear field theory is that such a dis­

continuity may grow indefinitely. 

Such a study in General Relativity is complicated by two facts: 

one has to distinguish between intrinsic discontinuities, which cannot 

be transformed away; the other point, related to the above one, is 

the question of admissible and non-admissible coordinates. Here the 

basic metric, which gives the gravitational potentials, may itself 

suffer a discontinuity. Study of t~es e points can be found in the 

literature quoted and elsewhere too. 

In order to bring out the main idea of the paper, we limit our­

selves to Special Relativity. The basic aim of this paper ls to present 
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the Ray Theory. This result is important in the integration of the 

equ a tion which governs the growth of the discontinuity. For the non­

re lativistic case(S), we have s hown the power of this theory in the 

st udy of the grow.th equation. Non-linearity( 6), non-homogeneity(7) 

and anisotropy(S) can all be discussed in a straight-forward manner. 

Th e purpose of the present discussion is to generalise these results 

to relativis tic phenomena and illustrate their applicability by means 

of a s imple model. So we limit our model to Special Relativity. When 

the necessary continuity requirements on the gravitational potentials 

are satisfied, the results are valid for General Relativity also (with 

the n eces sary modifications, when the model adopted for the material­

energy tensor changes). 

2. Basic Equations: We study here the perfect relativistic 

gas on the assumption of isentropic changes. Then the vanishing of the 

divergence of this tensor provides all the equations of our study. 

We adopt the simplest of the models for this tensor<4 _, 9), which goes 

over to the known model for the non-relativistic gas, in absence of 

gravity. 

We adopt the metric of special relativity, which gives the separa-

tion as 

ds 2 (A,B = 0,1,2,3) (2.1) 

with non-zero components of (hAB) given by 

hoo 
2 

C ' h11 = h22 = h33 = -1, 

hoo 1 h11 h22 1,33 -1 2 ' 
. ( 2 . 1, a) 

C 
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Here x0 = t, is the time, (xi) (i,j = 1,2,3) are the spatial co­

ordinates and (c) is the velocity of light in vacuo. Capital Latin 

indices run over (0,1,2,3); small case Latin letters run over (1,2,3) 

as indices. The latter denote Cartesian tensors and as such, there is 

no difference between superfixes and suffixes; still we retain them 

as such, since we identify them with former ones. The capital Latin 

indices are tensor indices that · have to be distinguished as covariant 

and contravariant. However, since (hAB) are constants, covariant dif­

ferentiation is identical with partial differentiation. With require­

ments on their continuity satisfied, the final results remain valid, 

even when they are functions of (xA). 

We describe (~), the singular surface by means of the para-

metric form 

X = X (uQ')' (a,S = 0,1,2), (2.2) 

with separation on it given as 

dcr 2 = a duaduS a(3 , (2.3) 

where 

AB A oxA 
aaS = hABxaxS X = --, Q' Q' 

au 
( 2. 3, a) 

We note that the Greek indices are strict tensor indices. We 

further note a few geometric results(4). 

A 
xa, S 

20 

A A _ SA 
basN, N ,a- bQ' X s, (2.4) 

aSb r.. 
a O't,.J 

A 
= N A , 
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The first of the above give the formulea of Gauss; the second set 

give s those of Weingarten(lO); the last one is an additional result; 

not given in ( 4 ), which we find useful(ll). We note that the sign 

convention is so, chosen that an expanding spherical wave-front will 

have positive value of _(O). Also it is necessary to remember the 

space we are discussing is flat. This is necessary for (2.4). These 

will be used only in the study of the growth equation, where necessary 

modifications are needed, when the gravitational effects are considered. 

In the above formulea, (NA) is t h e unit space-like normal to (E). 

So if 

0 (2.5) 

is the equation for~, then we set 

(2.6) 

We then have 

A 
x clA 0 NAN , A -1. (2.7) 

Let (G) be the velocity with which E(t), considered as a moving 

surface in the (xi) space, moves normal to itself. Let (ni) be the 

unit normal to it in (xi) space. Then we have<4 ) 

~ (6G 
2 

C 

6n.), N 
1 A 

T~ese hold, of course, for the metric used. 

G2 
= 1 - (2.8) 

Let (WA) be t he unit time-like vector of velocity. Then for the 

metric adopted, we have, with (ui) as t he veloci ty in (xi) space, 



0 (::t. 
C 

i 
~) w = 

' A C 
(ye' 

2 2 . U 1 
1 - 2 , u = uiu . 

C 
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yui w¾ = 1, -), A 
C 

We take the material-energy tensor as<4 ) 

1 
TAB= p WAWB - 2 phAB' 

C 

with p = p(p), a
2 = t. 

-2 y 

(2.9) 

(2.10) 

Here (p) is the material density and (p) is the pressure, assumed 

to be a function of density only. Different models( 9 ) for the material 

energy tensor are obtained by different interpretations of (p). 

We finally note the jump conditions, that if (Z) is any field 

variable and, with square brackets denoting jumps, 

[Z] = 0, [Z,A]NA -\, [Z'AB]NANB = A 

then we have 

[Z,A] = \NA, [Z,AB] = \NANB + aaS\,a(NAxA,S + 

aS 
NBxA,S) - \b xA,cf'A,P· 

Here we have used the notation 

B 
xA = hABx 

'Q' Q' 

(2. 11) 

( 2. 12) 

(2.12) 

3. Velocity of Propagation and Ray Theory: Equating the divergence 

of the material energy tensor (2.10) to zero, we get 

B 
p,BWAW 

B B 
+ pWA BW + pWAW 'B 

' 

2 
a 

2 p ,A 
C 

0 (3 .1) 

We also differentiate the condition which states that (WA) is a 
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unit vector. This gives 

A W WA B = 0. 
' 

(3.1,a) 

Let the discontinuities in density and velocity be denoted by 

The junction conditions (2.11) lead to 

2 
ABN C(LWA 

a 
0, 2 NA) + pL AA+ pWA B 

C 

WA A 
A 0, 

We note that (p), (WA), when they appear after taking jumps, 

denote values ahead of the front. 

(3.2) 

(3 .3) 

(3.3,a) 

Multiply (3.3) by (NA) and (WA), sum over the repeated index and 

use (3.3,a), to obtain 

2 
2 

B 
C (L + a 2) + 2pL A NB 0, (3.4,a) 

C 

2 
CL ( 1 - a 2) + p A BNB 0. (3.4,b) 

C 

Eliminating (p AANA) between these, we get, for CF 0, 

2 2 
12 + ~ 2L 2 (1 a 2)' 2 (3.5) 

C C 

12 L2 2/ 2 a C 
=- = 

1 + 12 i, 2 1 - (a2/c2) 
(3. 5, a) 

Using t he value of ( ABNB) from (3.4,b) (or (3.4,a)) in (3.3), we 

rewrit e it a s 
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2 
a 
2 ' (LWA - NA)+ pLAA = 0. 
C 

(3. 6) 

This shows that (AA) is parallel to the vector (MA) defined by 

i,MA = NA - LWA, MA0 = -1, MANA= -i,, MAwA 

We can then set the discontinuities as 

AA = MA'±'' C 
2 

p (1 + 2L ) '±', 
Li, 

o. 

where'±' may be called the strength of the discontinuity. 

(3. 7) 

(3.8) 

In non-relativistic gaseous medium, if the wavefront is moving 

into a medium at rest, we know that the discontinuity vector for 

velocity is parallel to the normal. This is no more so here. 

In relativity, the velocity of propagation (v), or the frequency 

(n = c/v), is defined by( 12) 

2 L2 V -=-
2 2 . 

C i, 
(3.9) 

Here we ob tain by the use of (3.5,a) 

-:!.=.!:= (a/c) 
C i, J1 - (a/c)

2 (3. 10) 

Using the limit that (c) is much larger than all the velocities, 

we obtain the limit as 

G - un = a, un uini. (3. 11) 

Noting that, for the metric of special relativity, 

L = ~ (G - u ) , 
• C n (3. 12) 

we can see t hat the result coincides with that obtained by Thomas<4 ). 
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T f 1 h h (12) . (3 9) o ormu ate t e ray t eory , we rewrite . as 

(3. 13) 

where (n = c/v) is given from the medium equation (3.10). 

The equation (3.13) is a first order non-linear partial dif­

ferential equation for the wave-front (f). Its solution is equivalent 

to solving the following system of ordinary differential equations, 

given by 

A dp 
dx _ oH A 
aw - 2ipA , aw (3. 14) 

Here (XA) and (pA) t b d d . d d t . bl are o e regar e as 1n epen en var1a es. 

The medium is said to be dispersive if the frequency (n) depends on 

(L). In our discussion, (n) clearly does not depend on (L). The 

variable (w) that occurs in (3.14) may be taken as any curve parameter . 

The first system of (3.14) defines c rves, known as rays and the 

second describes the variation of the gradient-vector (pA) along the 

rays. We normalise to unity the ray vector, by changing the curve 

parameter as pidw = Lds. The system (3.14) can then be written as 

A 
V 

dxA 1 A A 
- I! (LN + W ), <ls x, 

dN r 
dsA =] tl + 2L

2
)((log a),A + NB(log a),BNA) 

- (Ncw"'A + NANBNcwc,B~ 

(3.15,a) 

(3.15,b) 

We note that (VA) is a time-like vector; it is called the Ray­

velocity. The parameter (s), now denotes the arc-length along t he 

curve. Again the rays are no more parallel to the normal trajector ie s, 
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even when the medium ahead is at rest. This brings out the basic role 

played by the rays in the study of wave-propagation. Further the 

rays have no normal component; the ray velocity has only the tangential 

component. The variation of any quantity (F) along the rays, is 

given by 

dF 
ds V~,A 

Q' 1 Q' 
V F, a = 1 W F, a· (3 .16) 

These results are valid under wider conditions than those of special 

relativity. With relevant modifications, their extension to the study 

of gravitational waves is obvious. To come to the particular study 

we are making, we take the state ahead as a constant state. Then we 

obtain 

dNA 

<ls 0. 

Thus the normal vector is unchanged in direction as we move 

(3 .17) 

along the rays. Since it is a unit vector, it remains a constant 

vector as one proceeds along the rays. 

Let (6S) be the 3-volume of the normal cross-section of a tube, 

ds an element of separation along world lines forming the tube- and 

(VA) a unit vector tangent to these world lines. Then using the theorem 

of divergence, one can prove(lJ) 

d(l~ E) A 
V 'A· (3.18) 

where (E) is the ratio of (6S) to its initial value. 

This result helps us to express a number of terms, linear in t he 

strength of the discontinuity, as a ray-derivative. But for a constant 
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state ahead, a related result suffices; it is(ll) 

2n A 
N 'A 

i 
6n 'i = 2.0.6. 

0 
(3.19) 

Here (Jl) is the mean curvature of the wavefront, when it is re­
o 

garded as a two-dimensional surface moving in the (xi) space. This 

result is physically obvious; the multiplier (6) accounts for the 

Lorentz-contraction. 

We close this section after a final remark. From (3.5), we see 

that for propagation, the following inequality must hold 

(3.20) 

The numerical factor (2) changes with the form of the material-

energy tensor considered. 

4. Growth of the Wave: We now proceed to study the variation 

of the strength (f) of the discontinuity, as the wave-front moves. 

In the present section, we limit ourselves to the case when the state 

ahead is constant. Let the discontinuities in the second derivatives 

of density and velocity be denoted by 

((4.1) 

We differentiate (3.1) and (3 . 1,a) with respect to (xc), multiply 

by (NC) and take the jumps. We obtain three types of terms: the first 

type consists of the barred quantities only; the second group, denoted 

by (-PA), consists of terms where the jumps are differentiated; the 

last set, denoted by (QA), is made up of products of jumps and is 

quadratic in jumps. Wit '. 1out going into details, we obtain 
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C(LWA 
2 

a - -B 2 NA)+ pLAA + pWAA NB= QA - PA (4.2,a) 
C 

~AWA = '¥2. (4.2,b) 

Note the comparison with (3.3); this comparison is quite general (S) . 

We multiply (4.2,a) by (NA) and (WA) and use (4.2,b), as needed; we get 

with 

2 
a -B __ A 2 

CL(l - 2 ) + PA NB= (QA - PA)w-- - pL'f 
C 

2 
2 a -B A 

C(L + z) + 2pLA NB= (QA - PA)N. 
C 

Eliminating (~BNB) between these, we obtain 

2 2 - 2 a 2 a f 2 2~ Q - P + 2pL 'f = C £ c 2 - L (1 - c 2) 

Q = QANA - 2LQAWA, p = PANA 2LPAWA 

(4 . 3 , a) 

(4.3,b) 

(4.4) 

In view of the value of (L), the multiplier of (C) vanishes. Thus 

the growth equation is 

Q - P + 2pL2'¥2 = 0. (4.5) 

Evaluating the expressions, for a constant state ahead, we obtain 

d'f + n.e 'f _ 'f 2 rl + Paa' (1 + 2L 
2

) 
3

) = O. 
ds £ l: (cL) 2 i (4. 6) 

This can be converted into one with respect to ordinary time by 

noting that 

dt = VOds = 4 ds. (4. 7) 
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Comparing the discontinuity in the density for the nonrelativistic 

case, we also need set 

'¥ - - !i 
C 

(4 .8) 

Then this reduces to 

(4. 9) 

Discussion of the integration is now straight-forward, if we 

use the known results and the relation (3.19). Since, such discussions 

are found enough in the literature, we omit the details. 

5. Conclusion: Well-known results of the Ray-theory are given 

in an organized form; it is hoped that these provide a powerful tool 

in t he study of waves in general relativity. The technique is illus­

trated by means of wave-propagation in a relativistic gas) with flat 

space and constant state ahead. 
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