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SOME ASPECTS OF WAVE-PROPAGATION 

by 

G. A. Nariboli 

1. Introduction: 

An important feature of the field theory is the finiteness of the 

velocity with which a disturbance is propagated _through a medium. Con

tinuum mechanics is a field theory, or a phenomenological theory. Any 

mathematical model, constructed to describe a continuum is, in general ·, 

non-linear, non-homogeneous and anisotropic. A perturbation about a 

given state gives a linear theory; absence of preferred directions and 

independence of position makes the model isotropic and homogeneous. 

The term "wave" encompasses a large class of phenomena; it may be 

ass.ociated with dispersion and dissipation. This study is based on the 

theory of singular surfaces. It is postulated that there exist dis

continuities in certain quantities across such surfaces that move. For 

a linear and homogeneous problem, transform technique provides a wealth 

of information. When anisotropy is present, inversions become compli

cated, though some information can still be extracted. For th~ non

homogeneous and nonlinear problems, such techniques do not work. The 

theory presented here does not provide the solution throughout the field; 

it is restricted to the singular surface. A full field pic~ure can only 

be obtained by piecing together smooth solutions with such d'. isconttnuous 

ones. However, one can discuss the most general non-linear; nonhomogeneous, 

and anisotropic problem. 

The choice of the subject-matter is, of course, governed by the 
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author's current interests. References are not intended to be ex-

haustive; only the immediately relevant ones are noted. Further references 

can be obtained from those listed. Also the quoted reference is not 

necessarily the original source. 

Professor B. R. Seth, a pioneer in the field of non-linear mechanics, 

has been an inspiration to a number of us. So we believe such a study 

will be highly appropriate in a volume dedicated to him. 

2. Waves, Compatibility Conditions, and Rays. 

2.1 Waves: Any mathematical model of a continuum is given by a 

system of partial differential equations. (They may be integro-differential 

equations; the general ideas presented here will be useful then too.) In 

continuum mechanics, the laws governing the conservation of mass, 

momentum, and energy form a common starting point. Each medium is then 

characterized by its constitutive laws. Conservation laws must together 

lead to a determinate system for the field variables entering therein. 

Partial differential equations describe the variation of the field 

variables in space and time. Consider a moving surface ~(t) traversing 

the medium and further note that (some at least of) the field variables 

or their derivatives are discontinuous across this surface. The surface 

is called the singular surface or a wave-front. It is only such a wave 

that is being studied here. We designate such singular surface as 

"strong" or "shocks" when its speed of propagation is not determined 

from the given system itself; an additional hypothesis is needed to 

obtain it. When the speed of propagation is determined in terms of the 

field-variables ahead of the front, by the system itself, then we call 

it a "weak" one. However, the existence of such a discontinuity is an 
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assumption common to both types. A fully dissipative system is excluded 

from our consideration. At least some of the characteristics of the 

partial differential equation must be real. Our aim is to obtain the 

normal speed of propagation of such a wave-front and to study the 

variation of the strength of the wave (defined in terms of the existing 

discontinuities) as the wave-front moves. 

2.2 Compatibility Conditions: Thomas(l) recently was the first 

to give a systematic derivation of these relations. (See Truesdell( 2) 

for a historical development.) 

Assume that the discontinuities across a wave-front of a field 

variable and its normal derivatives are known. The geometric conditions 

then express the discontinuities in the various spatial derivatives in 

terms of these, their tangential derivatives and the geometry of the 

surface. The kinematical ones, involving spatial and time derivatives, 

also are given in terms of these, the normal speed of propagation and 

in terms of a type of convected derivative of these. 

To be specific, we introduce a fixed orthogonal Cartesian system 

of coordinates (x.). Let the surfa~e ~(t) be described by a Gaussian 
i 

a 
system (u , a= 1, 2), which are, in general, curvil~near. We represent 

I:(t) as 

Q' 
x. = x. (u , t) . 

i i 
(2.2-1) 

We use the Cartesian tensor ndt a t ion for the spatial ~ystem (x.); 
. i 

Latin indices (i , j, k ---) range ~ver (1, 2 , 3); they denote tensors; 

a comma preceding a Latin index denotes a par t i al differentiation. 

Greek indices (a, ~' ... ) , ranging over (1, 2), denote surface tensors. 
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They are to be distinguished as covariant and contravariant; a comma 

preceding a Greek index thus denotes a co-variant derivative. Covariant 

derivatives of scalars, of course, reduce to partial derivatives. Note 

that spatial te~sors are scalars with respect to the surface system. 

Let (n.) be the unit normal to ~(t), pointing into a region which 
1 

we call the 'front' and which we denote as region (1). The other side 

of ~(t), called the 'rear', is denoted as region (2). Let (G) be the 

speed of propagation of ~(t) in the direction of (n.). Let (g O = x. x. 0 ) 
1 Q'~ 1,0' 1,~ 

and (baS) be the first and second fundamental forms of ~(t); 0 = (b: /2) 

and b = <let (b S) are then the mean and Gaussian curvatures. The 
Q' 

formulas of Weingarten and of Mainardi-Codazzi are 

n. 1,a 
= -b s X 

a i,S ' 

b = b 
aS,r ar,13 

(2.2-2) 

(2.2-3) 

We also introduce a convected time derivative in the direction of 

the normal as (6P/6t), where (P) is any field variable defined on ~(t). 

This delta time derivative describes the rate of variation of (P) as 

observed by one who rides the wave-front and moves with it in the 

direction of the normal (n.). Note the other formula derived by Thomas(l) 
1 

giving this derivative of (n.) as 
1 

on. 
1 

5t = 
as 

-g G ~x· Q ,u: 1 ,.., 
(2.2-4) 

The discontinuity in a field variable (P) is denoted by a square 

bracket as 

(2.2-5) 

Thus the discontinuities in the various order normal derivatives 
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are denoted as 

[ p] = A , [ p . ] n . = B , [ P . .J n . n . = C , [ P . . k] 
,1. 1. ,l.J 1. J ,l.J 

n.n.nk = D . 
1. J 

The compatibility conditions can now be stated as 

al3 
[ p . ] = Bn. + g A X. S , 

'i. i. ,a i. , 

(2.2-6) 

(2.2-7,a) 

[ al3 al3 
P .. ] = Cn. n . + g B ( n . x. Q + n. x. Q) - Bb x. x, . R , 

,1.J l.J ,a Ji,..., 1.J,f-1 i.,a J,..., 

if A= 0 , (2.2-7,b) 

aS 
[P .. k] = Dn.n.nk + g C (n.n.xk O + n.nkx. 0 ,1.J i J ,a i J ,f-1 J l.,f-1 

aS + nkn.x. 0 ) - Cb (n.x. xk Q + n.xk x. Q 1. J,f-1 i. J,O' ,..., J ,a i.,f-1 

+ nkx. x. 0 ) , if A =B = 0 , (2.2-7, c) i. ,a J , ..., 

- = -GB + - (2 2-8 a) [oPJ 5A 
ot ct ' · ' 

2 
o P I oB aS . ~-~- = (-GC + ~)n. - g (GB) x. Q , 1.f A = 0 , (2.2-8,b) uX.ut ut 1. ,a l.,f-1 1. 

[
o

2
P] 2 OG oG . ot 2 = G C - 2G 6t - B 6t, 1.f A= 0 , (2.2-8,c) 

[ 
o

3
P ] = G2(Dn. + gaSC x. ) _ ZG o(Cni) 

~ ~ 2 1. 4a 1.,S ct uX.uX 1. 

if A = B = 0 ,,, (2.2-8,d) 

t 3 J 0 p . 
oxiox/)t = ~ aS 

-G Dn.n. + g C (n.x. Q + n.x. R) i. J ,a i. J,f-1 Ji.,..., 

0'!3 X Q"\ 
- Cb Xi 'Q' j , ~ J 6 (Cninj) 

+ 6t ' 

if A=B =O. (2.2-8,e) 



6 

Relations are noted only as they are used in the present work. More 

general ones can be written along the same lines. Relation (2.2-7,a) 

is the resolution into componen~ of the vector in directions normal 

and tangential. , The basic assumption made here is that of Hadamard's 

Lennna, stated as: the tangential derivative of the discontinuity in a 

quantity ts equal to the jump in .the tangential derivatives of the 

quantity. Tae other basic result (2.2-8,a), follows from the definition 

of the delta-time derivative. (See also (2.3-2) below.) The remaining 

ones follow from a repeated application of these on the assumption 

that the order of differentiation is irrelevant. 

These relations, applied to the partial differential equations 

describing a continuum, lead first to the equation that determines the 

normal speed of propagation (G) and then to the one that governs the 

growth of discontinuity. 

2.3 Ray-Theory: The ideas presented here originate in the Theory 

of Optics. The theory, as applied to partial differential equations, 

is elaborated in Courant and Hilberts' book( 3). We set them forth now 

as needed for our purpose and in the language we are using~ 

Let A(x. ,t) and B(x. + 6x. ,t + 6t) be two consecutive points, each 
1. 1. 1. 

lying£!! the successive positions of the wave-front ~(t) at times (t) 

and (t + 6t);let (V.) be the velocity of the wave-front in the direction 
1. 

of (6x.), so that 6x. = V.6t. If 6P = P(B) - P(A), we can write the 
1. 1. 1. 

convected derivative of (P) with respect to (V.) as 
1. 

1 . 6P 
im -

M 
oP 
::st + p . V. 
u '1. 1. 

(2.3-1) 

Vector (V.) is later identified as the Ray-velocity (explained subse-
1. 
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quently, see (2.3-11) below) and the above convected derivative, denoted 

as (dP/dt), is called the ray-derivative. It is the derivative fol

lowing the wave-front with velocity (V.) in the direction given by (V.) 
i i 

and it describes the time-rate of variation of (P) as apparent to an 

observer moving with the wavefront in the ray-direction with the ray

velocity. 

In particular, if we move with the wave-front along a normal trajector y , 

we can set V. = Gn.; then the time-derivative, now called the convected 
i i 

normal derivative, is denoted by (oP/Ot). We thus have 

oP _ 
6t - oP + p .Gni 

ot ,i 
(2 .3-2) 

From their definitions, we can relate the two convected derivatives 

as 

where 

dP _ 6 P + (V . - G n . ) P ; · 
dt - ot i i , .... 

Consider now the resolution into components of (V.) as 
. i 

V. 
i 

V 
n 

Ci = (V )n. + V x. 
n i i ,a 

=V.n.,V =V.x. ,V 
J J a i i,a 

Ci Qi, 
= g vs 

(2.3-3) 

(2.3-4,a) 

(2.3-4,b) 

We note that the suf f i x (n) bS not a t e nsor index; it is reserved 

throughout to denote the normal c9mponent. Since clearly ·we have 

V = G n ' 
(2.3-5) 

we can re-write (2.3-3) as 
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(2-.3-6) 

This relation plays a vital role in enabling us to integrate the 

equation of growth of a discontinuLty. Compatibility conditions lead 

to a growth equation, which involves the normal convected derivative. 

This differential equation is a part{al differential equation. The 

above relation reduces it to an ordinary one, as proved by Courant and 

Hilbert (3). 

We now recapitulate a few ideas from the ray-theory. Let the wave

front be represented as 

f(x. ,t) = 0 • 
1. 

Since it remains a wave-front at all times, its delta time 

derivative must vanish. So we can get 

of 
~t + f .Gn. = 0 . 
CJ ,1. 1. 

(2.3-7) 

(2.3-8) 

If (of/ot) f 0, which is true for a propagating wave-front, we can 

solve (2.3-7) for (t) and rewrit e it as 

f ii W(x.) - t = 0 • 
' 1. 

(2.3-9) 

The condition (2.3-8) now reads as 

Gp - 1 = 0 , (2.3-10) 

where 

pl.. = f . = w . 
,1. ,1. 
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The normal speed of propagation (G) is, in general, a function of 

(x.) and (n.) (and hence of p.). So (2.3-10) is a first order partial 
1 1 1 

differential equation for the wave-front. Its solution is obtained by 

solving the system of ordinary differential equations, given by 

or 

dxi 
V. = dt 

1 

oGp 
= opi 

oG 
= Gn . + ( o . . - n . n . ) ~. , 

1 1] 1 J unJ 

dp. 
1 

ui = cft 

-~ - ox. ' 

dni 
w. = dt 

1 

1 

= (ninj 
oG c .. ) ~ . 

1] uXJ 

(2.3-11) 

(2.3-12) 

(2.3-12,a) 

In the above system, (x.) and (n.) are to be regarded as independent 
1 1 

variables. 

If (x. ,p.) are the solutions of this system, the trajectories 
1 1 

described by (x.) are called rays. The variable (t) in the above system 
1 

may be any parameter along the curve; we fix it as time. Then the 

equations (2.3-11) define the ray-velocity vector (V.). The system 
1 

(2.3-12,a) describes the time-rate df variation of the normal vector 

(ni) ~~move along the rays. 

The crucial point is that one can proceed a long way in obtaining 

the integral of the differential equation governing the growth of the 
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discontinuity, without actually solving this system of, in general highly 

non-linear, first order ordinary differential systems. The time-rates 

of variations of various geometric quantities needed in the work, are 

noted below. 

First, consider the case when (G} is independent of both (n.} and 
1. 

(x.); we call the propagation here both isotropic and homogeneous. The 
1. 

rays here coincide with the normal trajectories; also the time-rate of 

variation of (n.) vanishes as we move along the normal trajectories. 
1. 

Thus the normal vector is unchanged in direction. The successive posi-

tions of L(t) form a system of parallel surfaces. It is now straight

forward to obtain all the geometric properties of ~(t). We need, in 

particular, the mean curvature. This is given by 

O(t) 
0 

0 
- b n 

0 

2 , n = Gt, 
1 - 20 n + b n 

0 0 

with the suffix zero denoting the initial value. 

(2.3-13) 

Next we consider homogeneous but anisotropic propagation. The 

normal velocity (G) now depends only on (n.). Since (G) is independent 
1. 

of (x.) again, the normal is unchanged in direction, but now this holds 
1. 

only as~ move along the rays. This follows from (2.3-12,a), which 

reduces to 

dn. 
1. 

dt = 0 • (2.3-14) 

The rays are distinct from the normal trajectories. The ray

velocity (V.) now has a tangential component, given by 
1. 

V 
Q' 

(2.3-15) 



We always have, by definition, 

ox. 
_1. = ct Gn. 

1. 
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(2.3-16) 

Note that this delta-time-derivative is a normal derivative; so 

tangential differentiation, derivative with respect to (ua), commutes 

with it (but not with the ray-derivative). On this assumption, we can 

obtain, starting from (2.3-16), the delta-time-derivatives of (gaS) 

and (ba~). Using (2.3-6), we can then calculate the ray-derivatives of 

these. After some lengthy but straight-forward calculations, based on 

these and (2.2-3), we can prove(4) 

where 

d (log b) = 
dt 

Gb a 
a 

b = det (b S) = 
a 

a 
V a 

' 

lb Sl = Gaussian curvature. a 

(2.3-17) 

Finally, consider the case of non-homogeneous and anisotropic 

propagation. The normal speed (G) now depends on both (x.) and (n.). 
1. 1. 

We can obtain a few useful formulas again. A trivially obvious result · 

is 

dP = 
dt 

p .v. 
' 1. 1. 

if (P) is independent of time. 

(2.3-18) 

Consider an element of area (6.a . ) of the wave-front. ILet it be 
1 

formed by two line-elements (dx.) and (6x.), issuing from (t.). Then 
1. 1. 1. 

we have 
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n.6a = 6a 
1. i 

= e . . kdx .txk , 
1.J J 

(2.3-19) 

which is equivalent to 

have 

or 

where 

Let (V.) be the velocity with which the element moves. We first 
1. 

d 
dt (dx.) = V . . dx. 

1. 1.,J J 

From (2.3-19) and (2.3-20), we get 

d 
d t ( 6a . ) = V . . d a . - V . . d a . 

1. J,J 1. J,1. J 

d 
dt (log 6a) = V .. - V .. n.n. 

J,J J,1.1.J 

From (2.3-12) and (2.3-10), we can get 

From 

d log G d log p = -dt dt 

oG 
== n. ox. 

. 
1. 

1. 

these it follows that 

d 
dt (log EG) = V . . 

J 'J 

E 
6a 
6a 

0 

(2.3-20) 

(2.3-21) 

(2. 3-21,a) 

(2.3-22) 

(2.3-23) 

(2.3 - 23,a) 
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with suffix zero alwa~ denoting the initial value. 

The above result is also obtained by the use of Gauss's theorem 

on divergence, as applied to a tubular region, bounded laterally by the 

rays and with faces as successive positions of(~) at times (t) and 

(t + ~t)(S). We have noted the alternative derivation to bring out the 

intermediary results. 

We conclude this section with a relation which establishes the 

connection between the different cases. Let (~w) be the spherical 

image of (~a). The spherical image of a surface is a unit sphere 

centered at origin and spanned by the unit normal vector to the surface. 

Referring to principal directions of the wave front, it is now 

easy to establish 

~w = b ~ a • (2.3-24) 

3. Wave Pro~ation and the Growth of the Discontinuities. 

3.1. Isotropic, homogeneous propagation: This is the simplest of 

the cases. The velocity of propagation (G) is an absolute constant. 

Again, the first application of these ideas is due to Thomas( 6 , 7). We 

illustrate the basic ideas with reference to isentropic motion of a 

gas. Let the wave-front move into a medium at rest and in a constant 

state. The result generalizes to three dimensions, the well-known 

result based on the .theory of simµle waves for one dimension, the 

development of a shock. Let the density (p) and the velocity (v.) be 
i 

continuous -while their derivatives have discontinuities given by 

[p . ]ni 
,i 

= C, [ V. .J nJ. = i,J S . ' [ v . . k] n . nk 
i i ,J J 

= ~. 
i 

(3.1-1) 
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From the equations of motion and of continuity and from those 

obtained by differentiating these, we obtain 

with 

Gs = P S o n 
2 2 · 

p ds. = a Cn. , (G o .. 
0 1 0 1 1] 

2 
a n.n.)S. = 0, (3.1-2,a,b,c) 

0 1 J J 

2 - 2 · 6C O'S 
a n.n.)s. = a

0 
n

1
.(~t + 2cs +pg s. x. Q) 

.o 1 J J v n o J ,O:' J ,..., 
2 2 6~- 2 O'S co ao 2 

+ G(p
0 

i:.t
1 

+ a g C x. Q + --- C n.) 
v O ,O' 1 ,..., p O 1 

(3.1-3) 

~ = a2 
dp 

~ 
' 2 

dp 

2 2 
C a 

=--
p 

Two basic points are to be noted. First, the relations (3.1-2) 

give all the discontinuities in terms of any one; second, the coefficients 

of (S.) in (3.1-2,c) are the same as those -of (s.) in (3.1-3). Their 
1 -- 1 

structure reveals · that, on multiplying by (n.), the left members of 
1 

(3.1-3) vanish; this gives us the growth equation. The integration of 

this is now straight-forward. A detailed discussion of such an integra

tion in the case of linear isotropic elasticity can be found in Thomas(]). 

One can clearly see the development of caustics in the linear case and 

that of caustics and shocks in the non-linear problem. 

If the wave-front is moving into a hypo-elastic medium(S), un

stressed and at rest . one gets two shear modes, completely analogous 

to those in linear elasticity, and one dilatational mode which can grow 

indefinitely. In gas-dynamics the growth to infinity of the strength 

of such a wave, is interpreted as the initiation of a shock. In solid 

mechanics, an _analogous interpretation of the indefinite growth is as 

the initiation of fracture. 
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In non-linear, isotropic elasticity(9), we take the constitutive 

law as 

t. . = ao. ; + be . . + ce . kek. 
1.:J 1.:J 1.:J 1.: J 

(3~1-4) 

with 

2e .. = u .. + u .. 
l.:J 1.:,J Jl.: 

u u .. 
k,i k,J 

(3.1-4,a) 

Here (tij) and (e .. ) are the stress and strain tensors; the relation 
1.:J 

(3.1-4,a) defines the strain-tensor in terms of the displacement vector 

(u.). 
1.: 

The quantities (a) , (b) , (c) are, of course, arbitrary functions 

of the invariants (I) (II) and (III) of the strain-tensor (e .. ) . We 
. 1.:J 

obtain three modes of propagation: two shear modes that do not grow and 

one dilatational one that can grow. Such a separation holds only for 

> 
an initially unstrained medium; the condition for growth is (k < o) for 

0 

compressive and rarefraction waves, with (k) given by 
0 

where 

k - 3 
0 - 2 -

a 11 + 21\ + 2y
0 

2(0'1 + 130) 

2 oa o a ob 
Q'l = ol ) 0 , Q'll = -2 ) 0 , 13 1 = ol ) 0 

oI 

S = b) . 
0 0 

y = c) 
0 0 ' 

For a hyper-elastic material, with strain-energy given :._as 

U = ½ ( A + 2µ.) I 
2 

- 2µ. II -f· .tr 3 + m I II + n II I , 

this critical parameter (k
0 

reduces to 

(3.1-5) 

(3.1-5,a) 

(3.1-6) 
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0 

= 2 
2 A + 2µ. • 

16 

(3.1-7) 

It is important to note that, if the wave front is moving into an 

unstrained medium (unstressed and at rest_ in hypo-elasticity), higher 

orde~ terms in polynomial expansion of the strain-energy do not contrib~te 

anything more to (k
0
). Bland(lO) discu_sses the problem of one dimensional 

wave from the thermodynamical and mechanical view-points to obtain an 

identical condition for growth. It is of interest to note that our 

result includes· his result. 

In the study of ionisation fronts, thermal and electrical diffusivities 

play a more important role. The study of an inviscid but heat conducting 

. h f. . 1 . 1 d · · 1 · · 1 (ll, lZ) gas wit inite e ectrica con uctivity revea s interesting resu ts . 

A weak discontinuity does exist, and it does grow indefinitely, but 

there is an exponential damping factor. A ,blast-wave of the gas

dynamical type exists, but vorticity and current depend on the electrical 

conductivity and the magnetic field. 

A number . of other interesting applications to water-waves and M.H.D. 

. (13) are studied by Kaul . 

1.2. Anisotropic Homogeneous Wave-Propagation: This field has 

attracted much attention recently. Bazer(l4 ) exploited a number of 

ideas from the theory of optics. Lighthill(lS) studied the linear, 

homogeneous problem and drew . interesting conclusions. Since it has 

. . (16 17 18 19) found many applications ' ' ' we restate a few features of 

Lighthill's work. This enables us to compare our results. 

Consider a general wave-equation of the form 

F(o 2r 
0 

(3.2-1) 
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where (F) is a polynomial in its arguments and o = (o/ot), 0. = ( o / ox.). 
0 1. 1. 

Assuming time dependent source term of the type exp(iwt) on the right 

hand member of (3 .2-1), the solution (u) can be represented in the- form 

of a Fourier Integral as 

JN(a,w) iaxd 
u rv D(a,w) e a' 

where 

_ 2 r 2 n· 
D = F ( ( -w ) , ( -Q' • ) 1.) and ax 

1. 
O'.X. 

1. 1. 

_(3.2-2) 

The major difficulty is in evaluating the integrals. For the two 

dimensional M.H.D. problem, Weitzner(
2
0) obtains an explicit answer in 

terms of the roots of a quartic; but these are, by no means, easy to 

write down. Lighthill evaluates these by use of the method of steepest 

descent. More discussion is given by Ludwig(
2
l) and Duff(

22
). The 

crux of the result is that the asymptotic variation of (u) with respect 

to the distance from the source, is governed by the singularities of the 

surface D = 0 in the a space; this is also called as the reciprocal 

wavespeed locus. 

This work prompted us to study the problem by the use of the theory 

of singular surfaces. A transform technique is applicable only to a 

system of linear partial differential equations with constant coefficients. 

The present method imposes no such restrictions. The differential 

! 

equation governing the growth of the discontinuity along the normal 

trajectories involves tangential derivatives and hence is a partial 

differential equation<
23

). So integration becomes possible only when 

assumptions are made to reduce it to an ordinary one, but then the 
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problem reduces to that of isotropic propagation. However, as noted in 

Courant and Hilbert, it can be reduced to an ordinary one, if transformed 

to one that describes the variation of the strength along the rays. 

To bring out how the exploitation of these ideas enables us to 

integrate the growth equation for the full non-linear problem, we 

illustrate by the use of a linear problem of anisotropic elasticity<24). 

If (Cijkl) i.s the tensor of elastic moduli and (Si) the discontinuity 

in the second normal derivative of the displacement vector, we obtain 

first 

2 = p GS. 
0 i 

(3.2-3) 

where 

Assuming for conyenience (though not necessary) that the material 

is hyperelastic, we can take that (aik) as synnnetric. Then (3.2-3) 

states that (Si) is an eigenvector of (aik) with eigen-value (p
0

G
2
). 

Thus the three eigen-values give the speeds of propagation, and using 

these we obtain the corresponding eigen-vectors. If (ii) is an eigen

vector, we can set S. = l.l, where (l) denotes the strength of the 
i i 

discontinuity. We designate an eigen-value together with its eigen-

vector, as a mode of propagation. In the case of isotropy, they reduce 

to one dilatational and two shear waves. For the general anisotropic 

case, no such physical interpretation of the modes seems to be possible. 

Each mode is accompanied both by dilatation and rotation. When there 

is transverse isotropy, we obtain one purely rotational mode, the other 
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two are again mixed. It is of interest to investigate, if any - interpreta

tion of these modes is possible in some physical terms, other than those 

of vorticity and divergence. 

The equation governing the growth of the discontinuity looks as 

(p G
2

6 
0 ij aij) I j 

os. 
1. Q' 

= A ~t + B S. + CS. 
u 1. ,a 1. 

(3.2-4) 

where (~.) is the discontinuity in one higher-order normal derivative 
1. 

of the displacement vector. 

A comparative study of (3.2-3) and (3.2-4) reveals a feature connnon 

to all the problems. The coefficients of(~.) in (3.2-4) are the same 
1. 

as those of (S.) in (3.2-3). So multiplying (3.2-4) by the eigen-vector 
1. 

(l.) and sunnning over the repeated index, the left-hand side of (3.2-4) 
1. 

vanishes. This gives us the .equation governing the growth of ('¥) along 

the normal trajectories. It can now be proved that this reduces to an 

ordinary differential equation for ('¥) along the rays. Varley( 2
S) 

proves this for a more general case, but in the final discussion, as

sumptions are made to throw off all anisotropy. The quantities that 

appear in the final growth equation along the rays depend on (n.) and 
1. 

other constants. But, by (2.3-12,a), this is also constant as we move 

along the rays. So a complete integration is possible, leading to 

'¥2b-l = constant. (3.2-5) 

To relate our work to that of Liglhthill's, we have to eva_luate the 

Gaussian curvature (b). This appears to be lengthy for the general 

case. For the axially synnnetric case, we obtain it in the form 
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(3.2-6) 

The reciprocal wave-speed locus is now given by (2.3-10) in the 

-1 
p-space asp = G(n.) = G(p./p). The curvatures of this locus turn 

1 1 

out to be exactly proportional to (k1), (k
2

) in (3.2-6). So a complete 

correspondence is established between the results here and those of 

Lighthill. 

Lighthill's result for the dispersive~ (when (F) in (3.2-1) 

is a non-homogeneous polynomial) is not obtained by us. 

As we stressed, our result can be extended to the non-linear problem 

too . . In fact for the M.H.D. problem( 26), the growth equation appears 

as 

2 d't' 
"¥ dt 

.!. db + D'¥ = 0 
b dt . (3.2-7) 

If we linearise before taking jumps, we obtain the same equation 

with D = 0. In the non-linear problem it is not possible to discuss 

the asumptotic nature. The solution breaks down after a finite time, 

predicting the initiation of a shock. The strength of the wave is 

explicitly given by 

$ ft {b -~ = .!. D r;:b dt 
I '¥ 2 tyD • 

0 
0 

(3.2-7) 

The integral is again easy to evaluate in the case of M.H.D., 

since there is axial symmetry. 

Applications to non-linear Magneto-elasticity< 27 ) and to initially 

stressed Hypo-elastic medium(ZS) are made on analogous lines. In the 

latter case the tensor (a .. ) of (3.2-3) is not symmetric, in general; 
1. J 
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the eigenvalues and hence the speeds of propagation are not now neces-

sarily real. However when they are real, (S.) is parallel to the 
1 

right-eigen-vector of (a .. ). We have to multiply (3.2-4) now by the 
1] 

left-eigen-vector to obtain the growth equation. Remaining analysis 

is similar though more lengthy. 

Other interesting applications to water-waves in the presence of 

magnetic field are also made(Z 9). 

3.3. Non-homogeneous, Anisotropic Wave Propagation: If the wave-

front is moving into a medium which is in a state of arbitrary steady 

motion, assumed to be known, then the normal speed of propagation (G) 

will depend on (n.) and the field-variables ahead. By assumption, the 
1 

latter are known functions of (x.). Thus (G) depends on (x.) and (n.). 
1 1 1 

This is the most general case of the three and includes the earlier 

ones as particular ones. But the result we are able to obtain now is 

not as explicit as in the earlier cases. We note the two applications 

we have made. 

Consider a singular surface moving into a gaseous medium which is 

in a state of arbitrary steady motion( 30). To postpone the study of 

possible interactions, we take this flow ahead as smooth. We ·then obtain 

S. = n.'i' , G =a+ u.n. 
1 1 J J 

, V . = u . + an . , 
1 1 1 

(3.3-1,a) 

c'i' a 2 
6t + A 'i' ,a + B 'i' + C'i' = O • (3.3-1,b) 

Here (Aa), (B) and (C) are f6nctions of (n.) and of field variables, 
1 

density (p), velocity (u.), ahead. This is again reduced to an ordinary 
1 

differential equation along the rays as 
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(3.3-2) 

After some calculations, we have been able to express (B) as a 

ray derivative of a certain quantity. The result of integration then 

comes as 

1 1 =r c
2 + 2 dt 'YD - VD 2D ' 

0 0 
0 

(3.3-3) 

where 

4 1 2 ~ 
2 2 2 

D (EG ) 7z C a ~) = a = dp)o = a p dp2 o 
( 3. 3-3 ,a) 

The motion, of course, is assumed to be isentropic. A complete 

integration can be achieved only if the integrand in (3.3-3) is expressed 

as a ray-derivative of some quantity. We have not yet been able to do 

it. Some simplification results if we assume the adiabatic equation of 

2 state; (c) reduces to (y-1), where (y) is the ratio of specific heats. 

For spherical and cylindrical symmetrie s, it is possible to obtain more 

concrete results, even in the pre s ence of gravitation. The study of the 

blast wave is also similar. These problems are of known importance in 

astrophysics. It is, however, worth noting that we have obtained a 

complete solution for the linearised non-homogeneous problem. 

Another problem, we have currently studied, is of the rotating 

incompressible fluid in the prese nce of a magne tic field. The linearised 

problem reveals a number of modes( 3l). Taylor first noted the curious 

result that rotation gives an incompressible fluid the property of trans

mitting waves. The application of the present method yields only~ 

mode - that of Alfven mode. Assuming the medium ahead to be in an 
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arbitrar~ steady motion, we obtain 

d'i'. 
1. 

-d - + e .. kO. 'i'k = 0 ' t 1.J J 
(3.3-4) 

where l. =GS., S. = [v .. Jn. and (0.) is the angular velocity vector. 
1. 1. . 1. 1.,J J . 1. 

In absence of rotation, the discontinuity remains constant as we 

move along the rays. The rotation only sustains it; it does not imbue 

it with the property of growth or decay. We obtain two integrals 

'¥.'¥. = constant, 0.'¥. 
1. 1. 1. 1. 

constant . (3.3-5) 

The latter is true for constant (0.). The first expresses the 
1. 

boundedness of the discontinuity; the second states the constancy of 

the angle between the discontinuity vector and the angular velocity 

vector. Assuming further, without loss of generality, that (0.) = 
1. 

(0, o, o), we get 

f
1 

= '¥
01

, 1
2 

= f
03 

sin Ot + '¥
02 

cos Ot, '¥
3 

= '¥
03 

cos Ot 

- '¥ 
02 

sin Ot . (3.3-6) 

This brings out the oscillatory nature of the discontinuity. 

4. Conclusions. 

We have presented a fairly complete view on how the theory of 

singular surfaces can provide th~ ~ethod of studying the growth of the 

discontinuities in a totally hyperbolic system. The method has the 

generality of studying partial differential equations, which have non

constant coefficients and which are non-linear. However the .method has 

one severe limitation: our attention is limited to the wave front. 
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Taking this as a starting point, we believe that it is possible to con

tinue the solution at least in some finite neighborhood of the surface. 

It is possible to join distinct smooth solutions with these. Further we 

have not entere9 into the problem of interactions. These are all 

fruitful fields of study. 

Another limitation is worth noting·. We have not been ab le to 

study dispersive phenomena. Recent papers by Whitham( 33 , 34 ) provide a 

field study. Just as we restricted the meaning of the term "wave", we 

have to restrict attention only to a class of dispersive phenomena. This 

subject is under study. 

The ideas can be extended to general relativity, too. A number of 

papers by Thomas< 35 , 36) provide i nterest openings. It is possible to 

study the variation of strength along rays. This can expand on the 

t ypes of initial media considered by Thomas. 

We close this d iscussion after noting one feature common to all the 

results we have obtained. A weak discontinuity, governed by a non-linear 

system, is assumed to grow into a . strong one. This provides an answer 

for the inevitable appearance of shocks in a non-l i near system, as arising 

from the weak ones. But throughout, we have seen that , it is only the 

dilatational ones that grow; the transverse ones do not. But strong 

transverse discontinuities are known to exist viz. Alfven Shocks. It 

does not seem possible to explain their existence as an initial value 

problem of the growth o f a weak one. Similarly one fails to obtain a 

strong contact discontinuity f rom a weak one. The latter arise only as 

a result of interaction of strong ones. It is only in hypo-elasticity 

that a possible growth of transverse wave is predicted, depending on 
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the initial state. 

I again thank the organizers of this function for giving me an 

opportunity to pay my tributes to Professor B. R. Seth. 
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