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AXTALLY SYMMETRIC WAVE PROPAGATION OF A

FINITE SOLID CYLINDER

by

C. T. Sun and K. C. Valanis

Introduction. Based on the general theory developed by K. C.

(1

Valanis , the solution of wave propagation in a viscoelastic material

can be reduced by the superposition principle to the solution of a
static problem, plus an eigenvalue problem and an integrodifferential
equation of the Volterra type involving time only. The static
problem of a finite hollow cylinder under axially symmetric loading
has been solved by C. T. Sun and K. C. Valanis(z). The purpose of
this report is to develop the solution of the eigenvalue problem of
a finite solid cylinder. From the general theory then the complete
solution of wave propagation in a finite viscoelastic cyiinder will
be followed immediately.

Analysis. Take the cylindrical coordinate system as shown in
Fig. 1. It is required to find the radial displacement u(r , z, t)
and the axial displacementw (r, z, t) which in the interior of
the cylinder 0 < r < a, -h <z < h satisfy the Lamé differential

equation

1-2v or 2 droz o
oz ot
(1)
21-v) de _ 13 [, 2u _ 2w| _p 2%
1-2v 3z r or dz or v at2

and which on the surface of the cylinder satisfy the homogeneous

boundary conditions



Free —

Z Free

Figure 1

T (a’ z’ t)

- 0, T. (r, +h, t) =0

rz

(2)

o,(r, th, t) =0, o.(a, 2z, t) =0

Here v is Poisson's ratio, u is the shearing modulus, p is the density

of the material and e is the dilatation i.e.

_Qu _u oW
e = Y - r + 3% (3)

The initial conditions are

u(r, z, 0) =0

w(r, z, 0) =0 (4)
Q:M: =

= 3t 0 at t 0

The stress tensor components can be expressed in terms of u and w by

the following relations:
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and fn(t)satisfies the Volterra integral equation
t
2 .
fn(t) - K, ‘}~ Fn(t-T)fn(T)dT = cos k.t (11)
o
where
t
Fo(t) = ‘[‘ cos k,(t-T)g(m)dT (12)
o

g(t) = H(t) - G(t) where G(t) is the relaxation function in shear of
the viscoelastic material.

In view of eqs. (6) and (9)

u(r,z,t) =:E: u, (r,z) f,(t)
B (13)

w(r,z,t) =Z wy (r,z) £, (t)

n

To solve eq. (10), we let

Py = —AnJo(anr) cos P,z
(14)
Yo = ~BoJ1 (o) 8in Y,=
where Ap and B are constants
2
. 2 kn - B 2
n o 2 n
Y (15)
k
21 3ains I 2
“n 2 Yn



From eqs. (6), (9) and (13), we have

e

Jl(a'nr)(Anan cos an + B,Y, €OS Ynz)
(16)

(1 . ) .
LA Jo(ahr)(Aan sin an B o sin ynz)

where Jo(anr) and Jj(o,r) are the Bessel functions of the first kind.

Further letting

$m = ~Cnlo (Ppr) cos qpz
(17)
Yo = -DpJ1 (8 pr) sin qpz
where Cm and Dm are constants
2
2 _ _k_m_ g 2
Pm 2 A
€1
9 (18)
5 Z _ EE_ _ 2
m 2 Iy
Co

Then, again in view of eqs. (6), (9) and (13), we have a second solu-

tion as follows:

2
u(m) cos qz [E]umJl(Pmr) + qumJl(smr)]
(19)

2 :
w(m) sin qz [CmquO(pmr) - Dmsto(smr)]

k

Noting that u(g)(r)fn(t) = EnJl(-E-E r)fn(t), w = 0 are also solutions
1

of eq. (1), the complete solutions of u(r,z,t) and w(r,z,t) are then

expressed in a series form as:

o]

utr,z,0) =2 wPr©) +2_ v @ +> o« Peo
i w1 =1

n=

OO0

w(r,z,t) =:E:: w(%)fn(t) +-:E:; w(é)fm(t) (20)
=

n=1



(2)

Since it is assumed that the problem is symmetric with respect

to plane z = 0 it follows that u is an even function of z and w is
an odd function of z as shown in eqs. (16) and (19).
With the help of eqs. (5) and (20) the first two boundary condi-
tions (2) lead to the following equations
[EZQanAn sin Bnh + (ozn2 - Ynz)Bn sin Yné] Jl(ahr) +
o=

r~

2 .
-qumemJl(pmr) + (sm2 - )DmJl(smrg] sin th =0 (21)

m=1 «

(—

: 2 2 ,
E -20,B A, sin Bz + (o," - Y, )B, sin Yn%]Jl(aha) +

n=1 L

= I 2 2 , B
2 -2q.p.C Iy (ppa) + (s,° - q, )P Jy(sa)| sinqyz =0 (22)
m=1 L _

The above two equations will be satisfied if the following relations

are satisfied for all m and n:

sin qzh = 0 (23)
. 2 2 . _

-20,B, sin Byh A + (o - Y, ) sin y,h By =0 (24)
Jl(aha) =0 (25)
2 2 =
-2q p J1(P@)Cy + (s,” - 9 I (s@)D, = 0 (26)

From eqs. (23) and (25), we must have
qph = om ' (27)
opa = pg (28)

where up is the nth root of eq. (25). The expressions of q, and o,



therefore, are determined by the following relations

(29)

o
=
|

*l= 718

(30)

From eqs. (24) and (26) we can express B, in terms of A, and D, in

terms of Cm as follows:

By = Tnfn (1)
Dp = enln
where
ZQHBH sin Bnh
T]n - 2 2 :
(" - vq ) sin yyh i
&
29, P J1 (Ppa) -
g =
2 2
T(sp” - qp ) I (5ga)

With the help of eqs. (5), (20), (31) and (32) the last two boundary

conditions (2) lead to the following two equations:

:z:: [%} - v)an + vanf} cos Bph = (1 - 2V)opYaTly cos ynﬁ]

n=1

AT, () +Zl [&1 - Vg2 + vpmz} 3, (o) - (1 - 2v)
m=

\ k;  k;
q.s ¢ J (Smr)] 1™ e + \)i By T0 0 = £) 3.0 (33)

mmm o . je
| j=1 1 1

Z [%1 - \))ozn2 + \)an} cos Bz + (L - 2V)a,Y,M, cos ynz]

n=1



Jo(apa)A, +Zl [&1 - v)pm2J0 (ppa) + \)qszo(pma) =

m=

J,(p_a) J]_(S a)
(1 - 2v)p, —l—am—-}-i- (1 - 2v) {lmsto(Sma) - qdp ____am }

© k, k.
eé] Cp €OS qpz +-2:; Ej El - V) Ei JO(Ei a) - (1 - 2v)
J=

k.
J (=1 a)

it c1 2
— =0 (34)

In order to equate the Fourier coefficients of the functions of eqs.

(33) and (34) and thereby to determine the unknown constants A, C_,

Ej and the eigenvalues k, it is necessary to expand J, (ppr), Jo(smr),

J (Ei r) in the terms of J (¥ r) and cos B _z, cos Y z in terms of
o'cy o' n n n

cos qmz. We have

== %
Jo(Pyr) =Zl J&: iwido €aT)
n:

2 e
Jo(smr) = JO ano(a r) (35)
n=
Ei
Jo(Cl r) = E Jo JnJo(cv r)
cos Bz = Féi) + E ( )cos qpZ
m=1
(36)
2
cos Y,z = ( ) + E F( ) Ccos qpZ
where
W w68
o,mn 2 2

aJo(cyna)(pm - O )



. ! Zsmjl(sma)
,mn 2 2
9 al, (¢ua) (s, - o, )
k k
m m
Sedede 2 <y Jl(EI al
0, mn - i 2
m 2
aJo(ana)( 2 - O/n )
.
(1) sin Bnh
F = —_—
on Bnh
(38)
(2) sin ynh
F IR emm—
on Ynh
s : _ -
g sin (qm + Bn)h L sin (q_ - B )h
ma oy - A ki E’n 9y - Bn -
— . " _ j
F(z) 1 sin (qm + yn)h s sin (qm Y, )h
s 5 L k Yn G = Yn -

Now substituting the series (37) and (38) into eqs. (35), (36) and
this, in turn, into eqs. (33) and (34) and equating the Fourier

coefficients, we have three equations:

[{El - V)an + van%} cos Boh - (1, - 2V)}a, v, T}, cos nné] An

2p_J, (p._a)

-1 2 2 P P

+ S -1 [{(1- V)qp +me} = 2 2.
m=1

aJo(ana)(pm - o )

ZSmJl(sma) o k.,

m 2 2 ] Cm = Zl
adofana) (s, - o) j=1 "1

(1 - 2v)qmsme

o
2 & Jl(cl a)
E. =0 (39)
2 ]
d .2
aJo(ana)( 5 Qh )
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sin B_h
% [{1 - \))Q/n2 + anz} _B[;—E— + (1 - 2\))oznT]n sin ynh]

k

kb onk I G @
Jo(apa)A, + [(1 - V) C—n- Jo(-c—n a) - (1 - 2v) _l_a_l____]
1 1

sin(q_ + B.)h
1 [Ql - V’O’nz’”an}{ L
n=1 qm n

sin(q_ - B_)h sin(q_ + y.)h
Lt }+<1'2V>%Yn”n{ i o

qm - Bn qm * Yn

sin - b
(q“‘ Y“) J (v a)A + | {1 - v)p 25 (p_a) +
qm - Yn 0 '™ n n m O 'm

J, (p_a)
vqszo(pma) - (1 - Zv)pm —1-—a-m—}+ (1 - 2v)e,

q J.(s_a)
{q“‘s‘“%(sma) R }] Cp = 0 1)

(40) and (41) we can express E, and Cp in terms of Aj

respectively as:

where

A

n

Ey = MAphp (42)
C, = - % -C—-—Q————— (43)
m
9 2) sin Bnh
- ke - .
[:((l \))Q/n } \)Bn T + (1 2\))(1/HT]rl sin Ynh:] Jo(ana)
kn
k& iig - &

h [-(1 - v) C_]i JO(-(—:—K{- a) + (1 - 2v) s (44)
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J,(py2)
2 1
O = %1 - WPy Jo (Pya) + Vag Jofp_a) - (1 = 2V)py ——5— }

q Jl(s a)
+ (1 - 2v)em Gmsm.]o(sma) . - - (45)

a

sin (q_ + B,;)h
Toi ™ [{1 - 2\))(1/12 + \)Biz} { qm_r:_l Bi — 4
sin (q, - B;)h : sin (q, + y;)h
G = Pt + (1 - 2v)o5 v T an * Vi

sin (qm - yi)h
+ I }] Jo (a/ia) (46)

Now, substituting eqs. (42), (43), (44), (45) and (46) into eq. (39)

we obtain an infinite system of infinite algebraic equations for the

unknown constants A, as follows:

where

1 § § m-1 HmnTmi “
6atn - T . (-1 Q A; + ; Lyjay = 0
m=1 i=1 m i=

(n=1,2,3...) 7

O = %l - \))Bn2 + \)oznz cos Bph = (1 - 2V)onYaTlnh cos yph

2p_J. (p_a) (48)
H = {(1 - \;)qm2 + \)pmz}‘ 0 Sk = - (1-2v)

aJ, (o,a) (pm2 o G

QSmJl(sma)
qs € 49)
mmmJ (afa)(s~2 Y 02)
lg n m n
k1 k1
\)k. 2 C_l J]. (C_l a)
, FRLL BV A (50)
ni Cl K 2 i

i 2
aJO (ana) (——2- o, )
“1



12

Since eqs. (47) are homogeneous equations for A, in order to have
non-trivial solutions for A,, we must equate the determinent of the
coefficients of Ap of eq. (47) to be zero. This leads to the fol-

lowing characteristic equation

Gni =0 (51)
where
1 SD m-1 HmnTmi

Gni = en - F - (-1) —a—rn— + Lni (1=n)

(52)
1 @ 1 H T .,
= . 1 _1\m- mn mi :
Gni v é;l (-1) —_6;_— + Lni (i#n)

Evaluation of the eigenvalues. To evaluate the eigenvalues kj

from the expansion of the determinent (51), we observe, from eq. (52),
that Gni is not only a function of kp, but also a function of the
other eigenvalues ki (i = 1, 2 ... n-1) as well. Thus the eigen-
values themselves appear as parameters in the characteristic equation.
In other words, we have n unknowns in one equation. This difficulty,
however, can be overcome by the follo&ing consideration.

Let us denote the expansion of eq. (51) by
F(x, k1, kg, ... k) =0 (53)

where x stands for the random root. Since ki, ko, ... k, are eigenvalues,
they must also satisfy eq. (53). Thus, if we put k; for a particular

i (i=1, 2, ... n) equal to x in eq. (53), we obtain simultaneous n

algebraic equations as follows
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B oy St B i dowis T =0 (54)

Equations (54) can be solved simultaneously for n unknowns ki, ko,
In view of the expressions of \,, Qu> Tpi> 6n> Hpn» and L,; from egs.
(44), (45), (46). (48), (49) and (SO)lin which the eigenvalues kn
involve in the arguments of the trigonometrical functions as well as
in the Bessel functions, it is impossible to solve the simultaneous
eqs. (54) analytically. However, we can solve it by some numerical
means such as iteration procedure or trial and error method. The
numerical evaluation of the eigenvalues will be published in a separate
report.

The solution of the eigenvalue problem has been completed. All

the boundary conditions are satisfied and therefore

un(r,z) u(i)(r,z) + u(g)(r,z) + u(g)(r,z)

(55)

(r,z) +w " (r,2)

(e = w® @
represents the solution of the eigenvalue problem. The constants B,
Ch> Dp and E, are expressed uniquely in terms of Ap from eqs. (31),
(42) and (43). The constants A will be determined from the initial
conditions. The constants q, and ¢, are given in eqs. (29) and (30),
Bns Yn» Ppn and s, are expressed in terms of op, qpn and the eigenvalues
ky from egs. (15) and (18). The eigenvalues k, will be evaluated

from the characteristic eq. (51).

Note that from eq. (51) there are infinite set of roots k, for
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each n. Consequently, for each o, and q, there is a denumerably

infinite set of eigenvalues k Snm> Pnm and Ypm- It is more

nm> Pnm>

meaningful, therefore, to express the eigenfunctions u and w in the

form
1 2 3
u(,2) =D Ay +ul + ol
n,m (56)
1 2
w(r,z) =:E:: Anm(wém) + wﬁm))
n,m
where
(1) = +B
tidiagle 38 4 J1(opr) (o cos Bppz o Toin 08 Yome)
(2) =C [ +D
Upm (r,2) nm €08 dpZ LPpmI1(Ppm?) nmdnJ1 (Spmt) ]
k
(3) g = nm
i (r) = EnmJl(gz— r) (57)
(1) = ((1 ¢ _ = "
wnm (£,2) = J, (% 1) (B sin Bppz - Bppop sin yppz)
(2) T . =
woo ' (r,z) = C o sin q 2z [q,J6 Ppp) - DPpmSnmdo (Spmf)]  (58)
where
= Bnm - Cnm
Bnm - A Cnm - A
nm nm
(59)
_ D Enm
_ nm = o
Pnm Com Enm Anm

The ratio in (59) are given in eqs. (31), (42), and (43) respectively.

Solution of Wave Propagation Problem. Now we are in a position

to complete the solution of wave propagation in a viscoelastic finite
solid cylinder. For the sake of simplicity of notation we denote

U and W as the static solution. and w,, as the eigenfunctions

Unm
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and u and w as the complete solution. Based on the general theory

we have
u(r,z,t) = U(r,z) - ZAnm(u(l) +uf® + a3y £_()

W(r,2) -ZAnm &+ wl) g

where f£ (t) satisfies the integral eq. (11). The constant Anm
nm

(60)

w(r,z,t)

can be determined from the initial conditions (4). In view of the

orthogonality of the eigenfunctions u oo and v we have

f Ej( I I O I (1) r(;)ﬂ av

v

A = (61)
= [h(ui) D O W w‘("%'))z] T
v

The integration of (61) is over the entire volume of the cylinder.

The complete solution for stress components can be readily ob-
tained along similar lines from the superposition of the static solution
and the eigen-value solution. The detailed expression is omitted since
it is too lengthy.

Finally, it is interesting to observe that the same problem can
also be solved from the following consideration. First we assume that
both ends (z = +h) of the cylinder are lubricated. The boundary
conditions are then, T., =w =0 at z = +h and 7., = 0 at r = a.

The conditions of o, at r = a will be satisfied later. Next we con-
sider that the curved surface (r-= a) is lubricated. 1In this case
the boundary conditions are T., =u =0 at r = a and T, = 0 at z = +h.

The condition g, at z = t+h will be evaluated later. Evidently the

solution of the original problem will be obtained by the superposition
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of the solutions for the two cases. In order to satisfy the boundary
conditions 0 =0 at r = a and 0 = 0 at z = +h we must equate the
summation of Ur at r = a and Gz at z = +h of the two cases to be zero
respectively. This will yield exactly the same characteristic equation
as (51) for the determination of the eigenvalues kn' This approach,

however, will provide the physical clarity of the original problem.
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