IOWA STATE HIGHWAY COMMISSION

Highway Needs Studies

May 1, 1968

Since the beginning of organized road and street construction in Iowa, the question upermost in the minds of administrators, planners, legislators, and many segments of the general public has been: What is the job ahead of us and what resources do we have to accomplish these goals? Numerous studies have been conducted by individual jurisdictions and interested groups and on occasion a joint effort has been made by all jurisdictions to obtain an answer to these complex questions.

All studies in the past that dealt with this phase of planning have produced answers that were satisfactory for only one point in time but provided no means for updating the results. In October, 1957, the Iowa State Highway Commission in cooperation with the Bureau of Public Roads released the results of the "Section 2l0" Study. This study set out the dollar needs as determined at that time for all the road and street systems in the state. By 1959, the feeling prevailed that the 210 study had become outdated and did not contain the detail necessary to make an accurate determination of the proper distribution of the Iowa Road Use Tax Fund among the various jurisdictions involved. The 58th General Assembly of Iowa in House Joint Resolution 12 directed that a complete review should be made of the construction, maintenance, and administration needs on Iowa's roads and streets. This resolution created the eleven-member Iowa Highway Study Committee, and required it to make recommendations to the 59th General Assembly on matters of management, financing, safety, construction, and maintenance of Iowa's highway systems. Agreements were entered into with the Automotive Safety Foundation of Washington, D.C., to direct the necessary engineering studies required to determine highway needs, and the Public Administration Service of Chicago, Illinois, to direct the necessary fiscal studies. These studies were completed in 1960 and resulted in two reports, a needs study and financial analysis, to the Highway Study Committee.

Highway Needs Studies
Page 2

By 1966, it became apparent that the dynamic situation of change that had been experienced on Iowa's roads and streets during the preceeding six years had materially affected the 1960 analyses. The Iowa State Highway Commission upon the recommendation of the staff made the decision in early 1966 to proceed with an updating of the 1960 studies and the development of a method of maintaining an up-to-date needs and financial analysis for use in subsequent years. The feeling was, that this type of information has become so important as a management tool in this age of complex transportation problems, the expenditure of Highway Commission planning funds would be justified in establishing such a system. As a result of this decision, the Highway Commission retained Roy Jorgensen Associates, Incorporated, to perform a two part contract:

Part I - July 1966-December 1966--Update the 1960 Needs and Finance Studies to provide needs information during the interim period while a continuing needs study system was being developed.

Part II - January 1967-December 1967--Develop a system for maintaining up-to-date Needs and Finance Data

Part I of this study resulted in a report to the Iowa State Highway Commission titled "Iowa Needs and Finances, l967-1987".

In order to develop and maintain a continually up-to-date needs study for all highways, roads and streets in Iowa, the Needs Study Unit was organized in July, 1966, under the Division of Planning. Throughout the year, 1967, Roy Jorgensen Associates, Incorporated, provided guidance and assistance to the Commission staff in establishing methods and procedures and production of necessary manuals for the successful operation of the Needs Study Unit.

A staff of four professional engineer-planners and four subprofessionals has been provided to perform the necessary activities" and maintain the required records for this continuing study. The staff is headed by the Needs Study Engineer. The other three engineers are each responsible for an individual system of roads or streets: the Rural Primary System, city streets and municipal extensions of the Primary System, and county roads.

Over 112,000 miles of Iowa's roads and streets have been classified according to the function each individual facility performs. These classifications have been incorporated into the records systems maintained by the Needs Study Unit. Provision has been made for appropriate revisions to these classifications resulting from annual reviews conducted by the needs study staff.

Design guides have been developed by the needs study staff with the advice and counsel of three technical advisory committees. The committees were comprised of Commission, municipal, and county engineers. The guides are used in the determination of needs and assignment of improvements on each system of highways, roads, and streets.

Field inventories have been conducted by the needs study staff to supplement data available from existing Commission records. These inventories are performed by personnel from the Commission's district offices or temporary employees of the Needs Study Section. All inventory crews are thoroughly trained by the needs study staff to insure uniformity in reporting throughout the state.

The section-by-section appraisal of all inventoried roads and streets is accomplished by: (l) assigning numerical field rating to each section based on the present physical condition, (2) evaluating the geometric and physical characteristics through data processing methods, and (3) determining the ability of the section to carry traffic volumes at desirable operating speeds. Road and street sections that are determined to be deficient are "assigned" appropriate improvements by a computer program. Forecasts of future deficiencies on these improved sections, and on sections that are not now deficient, are made by simulating conditions on each section annually through a future 20 -year period. The traffic volume on each section is expanded year-by-year, and the condition rating is depreciated year-by-year until the computer analysis determines that the section has become inadequate.

Average construction costs applied to the identified improvements through a computer cost assignment program are based on historical construction costs experienced in Iowa. Appropriate maintenance costs are also applied annually to each section throughout the 20-year study period.

Compatible records have been established for the regular updating of needs and finances. Taking advantage of data processing methods, computer tape records have been developed for all systems of roads and streets.

These records will be continually updated by the needs study staff from data furnished by county engineers, municipal officials, and the Commission staff when changes occur on the existing systems. Data from future inventories, traffic counts, cost analyses and reclässification will also be reflected in the up-to-date records.

An important part of future studies performed by the Needs Study Section will be the financial analyses relating to needs determinations. Estimating the amount of revenues that will be available and the determination of an equitable distribution between user and non-user responsibilities will be accomplished by the needs study staff.

The information derived from these needs and finance analysis studies will be invaluable to the members of the various governmental units that deal with roads and streets. One of the more important uses for this information would be in the development of future construction programs and the establishment of project priorities. Within these study results information would be readily available to answer the many requests received annually from the Bureau of Public Roads, Iowa Legislature, American Association of State Highway Officials, and many other groups and governmental units. The resulting dollar needs determined by these processes provide management with the amount of expenditure needed during a future period of time to overcome the deficiencies in their transportation systems. The financial analysis would show the amount of this future need that could be overcome with the finances available and the amount of needs that would remain due to the lack of financial resources.

Municipal Street Needs Study Evaluation

During the past year and five months, many miles of municipal streets and their necessary structures have been inventoried for use in the determination of needs. The inventory of municipal streets began in the early part of June, 1967, and was completed prior to September 15, 1967. This was not a 100% inventory due to the great volume of miles involved, however the schedule envisions a complete inventory of all municipal streets and structures within a four or five year period. The mileage inventoried in this initial period involved approximately 4952 miles. This included a 100% inventory of the Primary Road Extensions in all size communities and a 100% inventory of other arterials in all.municipalities with 2500 population and greater. A 25% sample of arterial mileage was inventoried in communities with less than 2500 population. In addition, a 20% sample of the total local street mileage for all cities and towns was inventoried. As future inventories are completed they will include the balance of the miles not previously inventoried as well as a re-sampling of previously inventoried miles to determine depreciation factors.

The inventory record to be used for needs is being built from existing information when possible plus additional informational items collected in the field by inventory crews. This includes condition ratings in addition to geometric informational items.

The information gathered in the field is returned to the office where it is reviewed and checked for accuracy and ultimately is placed on the data tape record in the form shown on page 1 for road data and page 4 for structural data as illustrated in the accompanying appendix.

The first 38 spaces on page 1 deal with identification of any one roadway section. The items from this point on through tape position 161 show the existing geometric and condition items as well as the needs rating applied to each section of street. The spaces from this point through the balance of the tape record provide locations for recording information relating to future improvements required on any given street section. Space has been provided for the possibility of four future improvements plus maintenance and administration costs and the anticipated terminal condition of the street section at the completion of the 20 -year study period.

The first 38 spaces on page 4 provide for the identification of structures and tape positions 39 through 93 are locations for geometric, condition, and needs rating information. Tape positions 94 through the balance of the tape record provide space for the possibility of two improvements during the study period.

Municipal Street Needs Study Evaluation Page 2

Pages 2 and 3 and page 5 are illustrations of the code sheets used to update the tape records for roadway and structures, respectively. The tape record can be updated at any time construction is performed or some other significant change takes place on the roadway or structures.

To assist in the evaluation of each section of street a point rating system similar to sufficiency rating has been developed for city streets. The maximum possible points that can be assigned to any given section of street are shown on page 6 of the appendix. Geometric and capacity items comprise 65 points of this rating system and condition 35 points for a possible total of 100 points.
over 2500-150\%o Arteríl
Onder 2500 - 100% Randum Sample
Each of the geometric items on any one section of street is 22% Arturn evaluated against a desirable design guide applicable to that particular street. If a given item meets the design guide criteria it is given the maximum points allowable. If this item fails to meet the design guides, it receives something less than the maximum. The geometric and capacity ratings are applied by a computer program, whereas the condition ratings applied to each street section are determined by field inventory crews.

If a street rates less than 70 points total, the computer program will propose an improvement to bring the rating of this street back to a level above the 70 point cut off. Street sections are also examined for individual deficiencies even though the total point rating may be above 70. This could occur in the case of unacceptable surface type, traffic carrying capacity, or other individual items. The computer program looks at each section of street for each year of the 20 year study period. As each subsequent year is examined the traffic on the road is expanded and the condition rating is depreciated until the end of the study period is reached.

Page 7 and 8 of the appendix contains the tables used for the assignment of geometric points on any given section of road. Page 9 through page 23 of the appendix contains the capacity analysis performed on each section of street for each year of the 20 year study period. Pages 24 and 25 contain the design guides developed for needs evaluation.

We are desirous that all municipal officials review the attached data for informational purposes. We would also welcome any suggestions that might improve our evaluation of municipal streets and structures for needs purposes. It is planned that a report will be prepared for release in the latter part of 1968 showing the needs on all road and street systems in the state of Iowa. It is our wish to review the findings of this report with the League of Iowa Municipalities in September before the final printing is completed.

APPENDIX

Municipal Street Appraisal

																			1	COUNTY Number		
																			2			
																			3	C:TY		
																			2			
																			5	number		
																			0			
																			7	STREET SECTION SEQUENCE NUMDER	000	
																			3			
																			9			
																			10			
																			11			
																			12	STREET SERVICE		
																			- 131	SYSTEM	9 en	
																			14	street ốs		
																			15			
																			10	NUMEER $\%$		
																			17			

population group

10	GROUP
20	SECTION LENGTH
21	
$\frac{22}{23}$	
24	$\underset{\sim}{2} \underset{\sim}{2}$
25	
26	
27	
25	
29	
30	
31	
32	$\begin{aligned} & \text { NEEDS } \\ & \text { STUOY } \\ & \text { SECTION } \\ & \text { NUNOER } \\ & \hline \end{aligned}$
33	
30	
35	
36	SPECIAL CLASS
138	
30	$\begin{gathered} \text { SURFACE } \\ \text { TYPE } \end{gathered}$
40	
61	
62	
43	SURFACE WIDTH
4.4	
45	R.R.CROSSING
46	TYPE SECTION
47	CURD/SHCD.TYPE
40	$\begin{aligned} & \text { RONDVAY } \\ & \text { WDTH } \end{aligned}$
- 60	
51	MEDIAN TYPE
52	MEDIAN WIDTH OR BARRIER
53	

SS TYPE PARRING

| 55 | ACCESS CONTPO |
| :--- | :--- | :--- |
| 57 | TURN LANES |

58 \% TURNS
THROUGH
WIOTH

| 62 | ProBLE: |
| :---: | :---: | :---: |
| 63 | SOLUTION |

R.O.W.

in $20 \rightarrow 0$

MUNICIPAI STREEAS

SURFACE TYPE RARING -- 5 Points

CAPACITY RAPING -- 35 Points

1. Read 10% of ADT volume
2. Select capacity from appropriate capacity table
3. Divide (1) by (2) to get volume/capacity ratio, to 00.00 value
4. Assign rating points as follows

Volume/Capacity Ratio
Rating Points
$00.00-00.59$
35
$00.60-00.64$
33
$00.65-00.69$
30
$00.70-00.74$
$00.75-00.79$
27
$00.80-00.84$
$00.85-00.89$
$00.89-00.95$.
$00.95-00.99$
>1.00

SURPACE WIDME RATING

No Shoulders*

With Shoulders*

112	15	12	9	0	0	0	0	0	0	0	0	0
88	15	15	15	15	15	15	9	0	0	0	0	0
73	15	15	12	9	0	0	0	0	0	0	0	0
69	15	15	15	15	15	15	12	0	0	0	0	0
67	15	15	15	15	15	15	12	3	0	0	0	0
45	15	15	15	15	15	15	15	15	15	15	6	0
43	15	15	15	15	15	15	15	15	15	15	15	0

[^0]
CAPACITY - ARTERIAL STREETS

capacity can be defined as the maximum number of pehicles that has a reasonable expectation of passing over a given section of road in a given time period under presvailing roadway and traffic conditions. One of the more important elements limiting, and often interrupting, the flow of traffic is an intersection. Street width between intersections is, of course, important. It is obvious that a street 100 feet wide could carry far more traffic than a street 24 feet wide, but other items of traffic control also influence the number of vehicles that a given width of street can serve. A. 48 foot wide expressway can carry many more vehicles in an hour than a 48 foot wide undivided city street. The main reason for this difference in capacity is the effect of intersections (crossing traffic and tuning traffic) on a normal city street and the absence of these intersections on an expressway.

A series of traffic volume tables have been prepared as a. basis for determining where capacity problems exist, or are likely to occur in the future. These tables are. for different size cities, different areas of the city, and for arterial streets on and off the State Primary System.

Table 6, on the following pages, gives hourly traffic volumes through street intersections of various widths and with different turning movements. Table ba and bb are for streets without intersections. Table $6 a$ is for divided streets and table bb for undivided streets.

MUNICIPAL ARTERIAL STREEMS
Capacity codes

PROCEDURE FOR DETERMINING CAPACITY

1. Select Basic Capacity Value from following table:

2. IE population group is under 10,000 multiply by 0.70 IE population group is $10,000-49,999$ multiply by 0.80 IE population group is $\geq 50,000$ multiply by 0.96
3. If type area is Central Business District multiply by 1.00 IE type area is not Central Business District multiply by 1.25
4. IE primary extension multiply by 0.95 IE not primary extension multiply by 1.00
5. Multiply by 0.50 for 50% Green rime.
6. The value arrived at after performing steps $1-5$ is referred to as T in the following equations. To fine the appropriate equation check \% turns, turning lanes provided and through width.
I. FOR THROUGG WIDTHS $\leq 27^{\prime}$
A. High \% Tunns
a. No Turn Lane
(.765)
$X=T(.90)(.85)$
b. LeEt Iurn Lane
(.936)
$X=T(1.3)(.90)(0.8)+0.20(x) \quad$.

$$
0.20(x) \text { not greater than } 240
$$

c. Right Turn Lane
(1.020)
$X=T(1.2)(.85)+0.20(x)$
$0.20(x)$ not greater than 600
a. Left \& Right Turn Lane
(1.020)
$X=T(1.3)(1.2)(0.8) \div 0.03(x)$
$0.30(x)$ not greater than 840

The above equations are based on 40% Green Time for through trafinic and 15% Green Time for left turns.
B. Average \% Turns
a. No Turn Lane
$X=T$
b. Left Murn Lane
(1.170)
$X=T(1.3)(0.9)+0.10(x)$
$0.10(x)$ not greater than 160
c. Right Turn Lane
$X=T(1.2)+0.10(x) \quad 0.10(x)$ not greater than 600
a. LeEt \& Right Turn Lane
(1.4.04)
$X=T(1.3)(1.2)(0.9)+0.15(x)$
$0.15(x)$ not greater than 760
The above equations are based on 45% Green Time for through traffic and 10% green time for left turns.
c. Iow \% Turns
a. No Tum Lanes
(2.438)
$X=T(1.16)(1.24)$
B. Left Iurn Iane
(1.508)
$X=T(1.16)(1.30)$
c. Right Turn Lane
(1.4.88)
$X=T(1.20)(1.24)+0.02(x)$ $0.02(x)$ not greater than 600
d. Left \& Right Turn Lanes
(1.560)
$X=T(1.20)(1.30)+0.02(x)$

$$
0.02(x) \text { not greater than } 600
$$

The above equations are based on 50% green time for through traffic and no separate phase Eor left turns.
II. FOR THROUGZ WIDTHS 28' - 31'
A. High \% Tuins
a. No Turn Lane
(.809)
$X=T(.925)(.875)$
D. LeEt Turn Lane
(0.880)
$\begin{aligned} X=T(1.20)(.925)(0.8)+ & 0.20(x) \\ & 0.20(x) \text { not greater than } 240\end{aligned}$
c. Right Turn Lane
(0.984)
$X=T(1.225)(.875)+0.20(x)$
$0.20(x)$ not greater than 600
d. Left \& Right Turn Lanes (1.080)
$\begin{aligned} X=Y(1.225)(1.20)(0.80) & +0.30(x) \\ & 0.30(x) \text { not greater than } 84.0\end{aligned}$
The above equations are based on 40% green time for through traffic and 25% green time for left turns.

B．Average \％sums
a．No Tumn Iane
$X=\Omega$

2．ZeEt Lum Lane
（1．080）
$X=2(1.20)(0.9)+0.10(x)$

$$
0.10(x) \text { not greater than } 160
$$

c．Right Tuin Lane $X=T(1.125)+0.10(x) \quad 0.10(x)$ not greater than 600

C．Le：ヒ \＆Right Murn Lane
（1．215）
$X=2(1.20)(1.125)(0.9) \div 0.15(x)$ $0.15(x)$ not greater than 760

The above equations are based on 45% green time for through． traミミic and 10% green time for left turns．

C．Zow \％mums
a．No Surn Lanes
$\mathrm{X}=\mathrm{I}(1.10)(1.16)$

D．Leet Rum Lanes
（1．320）
$X=I(1.10)(1.20)$
c．Right Iurn Lanes
（2．305）
$X=T(1.125)(1.16)+0.02(x)$ $0.02(x)$ not greater than 600

之．Leモt \＆Right Tum Lanes
$x=2(1.125)(1.20)+0.02(x)$
$0.02(x)$ not greater than 600

Whe above equations are based on 50% green time for through trafiic and no separate phase for left tums

I-I. FOR THROUGE WIDMAS $32^{\circ}-35^{\circ}$
A. Kigh \% Turns
a. No Turn Lane
(.833)
$X=T(.938)(.888)$
b. LeEt Tum Ianes
(0.863)
$\begin{aligned} X=P(1.15)(.938)(0.8)+ & 0.20(x)^{* \prime} \\ & 0.20(x) \text { not greater than } 240\end{aligned}$
c. Right Tuin Lanes
$X=T(1.088)(0.888)+0.20(x)$
$0.20(x)$ not greater than 600
d. Left \& Right Turn Lanes (1.001)
$X=T(1.15)(1.088)(0.8)+0.30(x)$
$0.30(x)$ not greater than 840
The above equations are based on 40% green time for through traEfic and 15% green time for left turns.
B. Average \% Turns
a. No Tunn Lane $X=T$
b. Left Turn Lanes
(1.035)
$X=T(1.15)(0.9)+0.10(x)$
0.10(x) not greater than 160
c. Right Turn Lanes $X=T(1.088)+0.10(x) \quad 0.10(x)$ not greater than 600
a. Left \& Right Turn Lanes
$X=T(2.088)(1.15)(0.9)+0.15(x)$
$0.15(x)$ not greater than 760
The above equations are based on 45% green time for through trazeic and 10% green time for left turns.

C．Lov \％puins
a．No Turn Lanes
（1．298）
$X=T(1.07)(1.22)$

D．Leت̃ Tum Lanes
（1．231）
$X=I(1.25)(1.07)$
c．Right sum Ianes
$X=2(1.088)(1.12)+0.02(x)$
$0.02(x)$ not greater than 600
a．Leミヒ \＆Right Muin Lanes
（1．251）
$X=T(1.088)(1.15)+0.02(x)$
$0.02(x)$ not greater than 600
me above equations are based on 50% green time for through たーaIEic and no separate phase for left turns．

V．ZAROUCK WIDNES 36＇－51＇

A．Zish \％surns
a．No Iunn Ianes
$X=T(.95)(.90)$

D．Lefte Tum Lanes
$x=r(1.10)(.95)(0.8)+0.20(x)$
$0.20(x)$ not greaten than 240
c．Right Tum Lanes
（0．945）
$X=2(1.05)(0.90)+0.20(x)$
$0.20(x)$ not greater than 600
d．Left \＆Right Tum Lanes
（0．924）
$x=2(1.05)(1.20)(0.8)+0.30(x)$
$0.30(x)$ not greater than 840
The above equations are based on 40% green time for through tuazzic and 15% green time Eor lezt turns．
3. Average \% Tuans
a. No Tum Lanes
$X=r$
b. Lezt rum Lanes
(0.990)
$X=T(1.10)(0.9) \div 0.10(x)$
$0.10(x)$ not greater than 160
c. Right Tucn Lanes
$X=T(1.05)+0.10(x) \quad 0.10(x)$ not greater than 600
d. Left \& Right Tum Lanes
(1.040)
$X=2(1.10)(1.05)(0.9) \div 0.15(x)$
$0.15(x)$ not greater than 760
The above equations are basea on 4.5% green time for through traffic and 10% green time for left turns.
c. Low \% Tumns
a. No Turn Lanes
(1.123)
$X=T(1.04)(1.08)$
b. LeEt Tum Lanes
(1.144)
$X=T(1.20)(1.04)$
c. Right Turn Lanes
(1.134)
$X=2(1.05)(1.08)+0.02(x)$
$0.02(x)$. not greater than 600
d. Left \& Right Turn Lanes
(1.155)
$X=T(1.05)(1.10)+0.02(x)$
$0.02(x)$ not greater thàn 600
The above equations are based on 50% green time for through. tanEific and no separate phase for left turns.

V．EOR MGROUGE WIDTAS＞51．
A．ت゙igh \％rumns
a．No Turn Lanes＇
（0．926）
$x=-(.975)(.950)$
D．Lefe Turn Lanes
（0．880）
$X=T(1.05)(.975)(0.86)+0.20(x)$ $0.20(x)$ not greater than 192
c．Right Tum Lanes
（0．974）
$X=7 .(1.02)(.950)+0.20(x)$ $0.20(x)$ not greater than 600
a．Leミた \＆Right Tum Lanes
（0．926）
$X=T(1.025)(1.050)(0.86)+0.30(x)$
$0.30(x)$ not greater than 792
The above equations are based on 43% green time for through tさafitic and 12% green time for left turns．

B．Average \％mums
a．No Tumn Lanes
$X=T$
b．Left Turn Lanes
（0．921）
$X=T(1.05)(0.975)(0.9)+0.10(x)$
$0.10(x)$ ．not greater than 160
c．Right Tum Lanes
$X=T(1.025)+0.10(x) \quad 0.10(x)$ not greater than 600
d．Leミt \＆Right Tumn Lanes
（0．969）
$\begin{aligned} x=T(1.025)(1.050)(0.9) & +0.15(x) \\ & 0.15(x) \text { not greater than } 760\end{aligned}$
The above equations are based on 4.5% green time for through traficic and 10% green time Eor left turns．

```
C. Low % rumens
```

a. No Tuin Zanes
(1.061)
$X=T(1.02)(1.04)$
3. LeEt Tum Lanes
(1.071)
$X=T(1.05)(1.02)$
c. Right Tumn Janes (1.066)
$X=T(1.025)(1.04) \div 0.02(x)$ $0.02(x)$ not greater than 600
d. LeEt \& Right Tum Lanes
(1.076)
$X=T(2.025)(1.050)+0.02(x)$
$0.02(x)$ not greater than. 600

The above equations are based on 50% green time for thirough traEsic and no sepanate phase fon left turns.

RORULSTAO GROUR OVER 50.000 （ 0.96 ）

G\％，	$\begin{array}{r} 20- \\ 23 \end{array}$	$\begin{array}{r} 26- \\ 27 \end{array}$	$\begin{array}{r} 20- \\ 31 \end{array}$	$32-$	$\begin{array}{r} 36- \\ 39 \end{array}$	$40-$	$\begin{array}{r} 44- \\ 47 \end{array}$	$48-$ 52	$\begin{array}{r} 52- \\ 61 \end{array}$	$\begin{array}{r} 62- \\ 72 \end{array}$	$=72$
Santzu2 Dushneas Dinczice											
IISh \％Fuzas（20\％）											
No TuEn \ane	456	596	702	902	－020	1138	－294	14，42	－690	－250	2120
Zost Cuta Lane	667	86.	$\therefore 016$	1033	2219	2332	$\bigcirc 462$	2596	2790	2037	2197
Risht Juch Lunc	742	969	－142	1240	－397	1559	1773	1941	2226	2560	2732
Le a kt Fuxn Eano	983	1204	2322	1362	－ 540	2716	2954	2130	2407	2729	2050
	592	776	922	20：43	2286	1322	2504	2642	1824	2090	2260
2ett Zurn Lano	770	2009	1286	2153	2305	1454，	2649	1786	1884	2143	2325
R－gえt 「unt Lano	769	1036	2216	1222	1368	1547	1750	2820	2078	2309	2596
	978	2252	1337	1352	24．47	2613	2835	2008	2079	2392	2590
Low \％Furns（2\％）											
Lcet Fura zano	905	2283	2290	1297	$\underline{355}$	25：2	2720	2875	2953	2256	26．40
N－ght Eんzi．Zano	906	2185	1298	－2：0	2368	－ 526	$\underline{.737}$	－1694	2984	2283	2477
	960	2255	1286	2342	2394	2550	1770	1933		2303	
Roziconcial a Rこingo azou											
High \％Fuzht（20\％）											
No Fu－n zuno	570	7：6	878	1220	1274	2422	2613	2764	2220	2438	2650
Left＇ars Zuno	626	1001	－256	1323	1463	－605	2793	1933	2193	2493	2699
	926	2223	1426	1552	1751	2955	2225	24：25	2782	3160	3303
ご的 スt Fuzn Juno	2228	1620	1664	2702	1922	2225	2462	2662	2090	3214	3424
dvezage \％Jutas（ 20% ）											
Zoż ご处 こano	2003	1261	1352	24：33	－2627	－2797	2023	2292	2200	2038	2853
Sight Suza Lono	1029	1293	2520	2531	2728	2930	2295	2394	2596	2966	324.5
	2275	2602	2672	1742	1022	2022	2302	2509	2597	2980	3248
Zow \％zuzas（2\％）											
No Sura zano	－1212	1396 1480	14.32	4.63 -497	2660 -693	$\begin{array}{r}1852 \\ \\ \hline 809\end{array}$	2106	2296	2426 24.40	2780 2808	3022 3052
Righe Sǔn Luno	2279	1431	1497	－5：3	－722	－903	22.70	2368	2477	2851	3093
ごくスを TuKn Lano	1252	2570	2628	2680	2746	2946	2214.	2415	2502	2878	3229

ROPULAREOA GROUZ OVZR 50，000（0．96）
Non－2：imazy Extoneion（5\％tzucks）

THROUCH SANRFIC WIDTH（6t）		$\begin{array}{r} 20- \\ 23 \end{array}$	$\begin{array}{r} 24- \\ 27 \end{array}$	$28-$ 32	$\begin{array}{r} 32- \\ 35 \end{array}$	$\begin{array}{r} 36- \\ 39 \end{array}$	$\begin{array}{r} 40- \\ 43 \end{array}$	4．4－ 47	48－ 51	$\begin{array}{r} 52- \\ 6: \end{array}$	62－ 72	－72
Conten Dhukious Dictikct												
\1gh \％¢uzns（20\％）												
30 Suスn zano		480	623	740	550	1074	1293	1362	1486	1786	2054，	2232
Lo大̃ Fuス\％Lana		696	9：0	1073	－140	1271	1390	－548	1667	1832	2135	2303
ぶ－ght Euz\％Lano		780	$\underline{1020}$	1203	－306	1676	1647	1072	2043	2343	2696	2930
		203：	－253	2392	2432	1620	2807	2054	2242	2534	2332	3009
スvuzago \％Suzas（20\％）												
こ0ざ Fuxs こuno		82：	2062	2：37	22：－4	－373	1531	－723	2872	2974	． 2247	24.28
		332	2036	1280	－287	－655	1626	1847	2015	2106	2514	2733
		2030	2340	2207	2406	2525	1702	－937	2112	2180	2510	2735
No \％wan－ano		898	1276	2206	2236	2398	2560	2774	2.936	2036	2340	2544
Lofs Euza ̇ano		952	2247	2254，	1262	2．26	1591	1009	1975	2056	2363	2509
		953	－2：4	2260	1273.	－6．60	1600	1626	2992	2007	2：00	2609
		2020	1322	2356	1412	1469	2032	2365	2034	2209	2423 ．	2634
No Furn Luño		600	786	92．	$\therefore 286$	2362	2496	$\bigcirc 702$	2850	2232	2566	2790
Zロごち Suxa Lano		070	1240	$\therefore 312$	1379	1528	2676	1074	2024	2303	2019	2831
		975	≤ 277	1502	2632	2045	2057	2340	2555	2930	3294	3530
		2293	－622	2740	2706	2024	2257	2567	2002	3002	3342	3563
ござく Suにく Luno		2016	1325	－423	2.517	2704	1603	2220	2298	2428	2760	3069
		2060	1360	$\therefore 1000$	1610	2820	2030	2310	2520	2733	3163	3415
		－200	－636	2759	2034	1900	2220	2422	2642	2735	3244	3420
Z0Et Fuch Luno		23．92	2． 250	2506	$\underline{-577}$	－783	$\underline{2987}$	2262	2：02	2569	2955	3222
righe rusn zabo		2192	1550	25\％	2592	1002	2007	2285	24.93	2609	3001	3262
		1264	1652	1694	2706	1837	2047	2331	2543	2634	3030	3293

PO2ULizEON GROUP $10.000-50.000(0.80)$
Primazy Extanaion（ 20% Ezucks）
Fabic 6

	$\begin{array}{r} 20- \\ 23 \end{array}$	$\begin{array}{r} 2 \cdot i- \\ 27 \end{array}$	$\begin{array}{r} 28- \\ 32 \end{array}$	$\begin{array}{r} 32- \\ 35 \end{array}$	$\begin{array}{r} 36- \\ 39 \end{array}$	$40-$	$4.4-$ 47	$46-$ 51	52－ 61	$\begin{array}{r} 62- \\ 72 \end{array}$	>72
Centiol Dubinces District											
No こuzत 20 0	300.	493	586	752	850	948	1078	1176	1，14\％	1526	1785
2c\＆Furs Laro	550	722	850	902	1020	1237	1274	1368	2521	1720	1853
Kighe Suzn Lañ	617	803	951	1033	2168	1302	1481	． 2616	1055	2133	2320
	614	2057	2097				2615	＇2762	1998	2298	
dverage \％Fuzrs（10\％） No Suzn Eenc	496	645	700	874	938	1102	1254	1268	2520	1748	1900
Zot Tuxn zane	641	83.	500	961	1086	12：1	$\bigcirc 378$	． 2504	2506	2803	2946
Rigite Fuzn zanc	657	062	940	2010	1252	1205	1462	1595	2732	1950	$2: 03$
糺 © AU Fura Lano	812	2063	2065	1060	2208	1340	2534	1672	1736	1996	2268
Low \％Tuchs（2\％\％）	712	930	954	978	1206	2234	1404	2532	1612	1852	2014
Zeft Jukn zane	754	985	991，	997	1220	1258	1432	2562	1.628	1870	2034
Rignt Fuen Lano	755	986	1012	2017	1152	$\div 283$	1461	2593	1653	1898	2065
こと 6 Rt Suzn Lano	798	2043	2070	2126	1262	1296	1475	2609	2669	2917	2005
Rouidential o Pringe dizod											
	476	622	， 732	． 940	2062	1184	1348	1470	1768	2032	2208
Leさt Muzn Lanc	690	901	1061	2127	－259	2376	1534	2652	1853	2.02	2267
Right Fura zune	772	1020	1288	1292	－4，400	－627	1852	2122	2320	2666	2097
	1020	1332	2372	2510	1592	2775	2022	2206	2500	2872	3121
No Tu二大，La＊o	． 613	808	950	$\underline{-1092}$	2236	2378	2568	1710	1200	2186	2370
Zoft Musn Zano	603	2050	2125	$\bigcirc 201$	2356	1515	2712	1852	29.6	2224	2393
R2ght Fuに\％Zanc	823	2076	2266	2273	1461	1606	1628	2994	2163	2406	2705
Le a Re Fuxn Lana	－027	2330	2333	1335	1512	1635	2917	2091	2168	2454	2710
Low \％Fuins（2\％） No Fuxf Dano	888	1262	1293	2224	2384	$25 \div 2$	1750	2916	2014	2316	2518
LCえt Jurn Luno	961	1231	2240	2248	12422	－ 572	1792	－254	2034	2339	2543
Righe＇ura Lano	961	1232	1265	1273	1439	1604	1807	2974	2065	2374	2582
Lt cent Fuza Lane	995	1304	1338	1396	2454	1620	1844	2013	2085	2397	2607

popumitan gnour $10,000-50,000(0.80)$
Non－2rimazy Extongion（ 5% trucka）
Fablo 6

Fanouch rrangze widen（ft）	$20-$ 23	$\begin{array}{r} 24- \\ 27 \end{array}$	28－	$32-$ 35	$30-$	40－		40－	$52-$	$62-$ 72	>72

POPULizzon grour unider 20.000 （0．70） 2amary Extenaion 〈20\％tancka〉

Sabic 6

	$\begin{array}{r} 20- \\ 23 \end{array}$	$\begin{array}{r} 24- \\ 27 \end{array}$	$\begin{array}{r} 28- \\ 32 \end{array}$	$\begin{array}{r} 32- \\ 35 \end{array}$	$\begin{array}{r} 36- \\ 39 \end{array}$	$\begin{array}{r} 40- \\ 43 \end{array}$	$\begin{array}{r} 44- \\ 47 \end{array}$	$40-$ 51	$52-$ 62	$62-$ 72	＞72
Central Duszaces District											
\＃1gh \％Furna（20\％）											
No Furn Lune	33.4	436	$5: 2$	653	74.4	830	9.46	2030	≥ 230	14．22	25：6
Lo大ち FuFs Laso	483	632.	743	783	892	995	1232	1228	1481	2537	2654
R．ght NuEn Lano	542	707	832	903	1022	1143	$\bigcirc 297$	2416	－62	1866	2028
Lt is R6 Euzn Luns	715	934	962	991	1122	2251	2422	1552	2752	2027	2292
Zest Fura Lane	561	735	708	840	950	2060	$\underline{207}$	23.27	2395	2.205	2730
Kight Suzn Lane	575	75.4	887	892	2.007	2224	2230	2396	－ 2124	2742	$\div 892$
Kt C Bt Zusn Lano			932	934	2056	1178	1342	2464	－517	1745	2096
2uスのs（2\％） No SLER Zane	622	814	835	856	968	1080	1228	2340	2410	1622	2762
Le¢t Furn Lane	659	862	867	073	987	2101	1252	2366	24．4．4	＋630	2779
Raghe TuFn Lunc	659	863	872	851	996	1112	$\bigcirc 265$	2380	2．645	2663	－206
Le a 2 L Surn Lane	698	925	938	973	$20: 7$	2234	1269	1408	1460	1679	1824
\＃igh \％Tuzno（20\％）											
－So Eura Lane	426	54，4	640	822	920	1036	1250	2286	2546	1778	1932
Lofe Funn Lunc	602	788	． 927	，986	$\div 115$	1234	$\underline{1372}$	－4974	2654	2873	2019
Right Juzn zano	675	． 883	－ 2040	－130	－270	1423	＋622	1767 +240	2028	2332	2535
Lt \＆R Fuina Lano	892	1165	1202	2240	1402	2562	1780	2940	2192	2522	
Avezage \％Fuzas（20\％），											
LoEs Turs Lano	701	927	S84	2052	2107	1325	1503	26：12	1730	2966	2123
R－ghe fuza zanc	720	9.42	1108	1124	1260	$\bigcirc 405$	1600	－74，4	$\div 592$	$2: 76$	2365
ご a Rt Fuza Lane	859	2162	2205	2106	1320	2475	2677	－ 829	2090	2292	2370
Low \％「üno（2\％） No Fura 2ana	778	1018	1044\％	1070	1210	2350	1536	2676	2762	2026	2202
Loft Fuen Luno	22.4	1079	2085	1092	－236	2377	1566	2709	2779	2046	2224
Right Juzr．Zane	825	1079	2005	1202	2246	2390	1502	－720	1806	2077	2258
ことくスと Futa zonc	874	1144	2173	222	1272	1428	1614	1761	1024	2097	2200

2OLULスEIO：GROUZ UNDER 20 ，uvu（ 0.70 ） Non－frimazy Extension $\langle 5 \%$ ELucks \rangle

	$\begin{array}{r} 20- \\ 23 \end{array}$	$\begin{array}{r} 26- \\ 27 \end{array}$	$\begin{array}{r} 20- \\ 31 \end{array}$	$\begin{array}{r} 32- \\ 35 \end{array}$	$\begin{array}{r} 36- \\ 32 \end{array}$	$\begin{array}{r} 40- \\ 43 \end{array}$	$\begin{array}{r} 46- \\ 47 \end{array}$	$48-$ 51	$\begin{array}{r} 52- \\ 62 \end{array}$	$62-$ 72	772
Sontsal Duskicus District											
\＃itgh \％Fuzac（20\％）											
No こuzn Lano	350	458	－ 540	692	782	872	994	2084	1302	2458	2628
LoEt Turn Lane	507	663	782	830	937	2046	－122	2200	14.23	2609	2732
R－ght בusn Lane	508	7×13	877	952	2075	5298	－297	1490	1708	2965	2130
	750		2020	2042	$\therefore 270$	2324	1422	163：	2800.	2126	2310
go \％Fuzno（20x） so Zuz．．Lano	456	596	700	805	910	2016	1156	1260	1400	2610	2750
Loさt Fukn zono	592	774	920	883	2000	2116	22\％	－365	14．70	2681	2613
Right Suzn Lano	607	79%	933	937	$\div 062$	2184	－347	1470	1594	2833	1992
	750	981	2024	1067	222	2242	2422	2540	2597	2836	2990
No こuスn こana	656	856	879	902	1.020	1136	1294	1．622	$\div 486$	2706	1650
さんたも TuEn Lano Kighe Furn Lana	655	907	931	920	1040	1153	－319	14．60	1493	1723	2874
Righe Furn Lana Lt a kt rusa Lano	605	908	932.	929	－051	1270	1332	1455	2521	± 743	－903
	737	962	200°	2002	2072	1293	1350.	2483	2535	2766	192：
＂2git \％Tucno（20\％）											
2o Furs．Lano	430	572.	67.	866	976	1092	． 2262	2354	2628	2872	2034
Loct Suzn Zano	635	828	976	2036	1272	1288	－432	2539	2732	1952	2216
Rusht Fuza Luad	721	926	2055	1290	－3：3	－502	2707	2061	2136	22.56	2007
\％\＆R Fush Lanc	938	1225	1205	2305	2474	2667	1872	2042	23 ± 0	2652	20.2
Avozug is Suzau（10\％）											
Loさせ Furs Lano	737	956	2137	2105	1.251	2396	2507	$\underline{2} 720$	5813	2062	222%
Right Suzh Lane	755	， 921	1267	1273	1326	－478	1684	2037	2952	2292	2493
ごく ズ フuたt Luno	235	2224	2226	2229	2390	5550	2765	2927	2000	2295	2400
	869	1236	21.60	1250	－ 2298	2．450	2650	2799	． 2.1074	2255	23.1
הight SuEN Lonog	669	1236	$1: 167$	1：162	2.312	－465	2667	2827	2903	2287	2376
	921	2205	2236	1287	1330.	2693	2700	1653	1922	2210	2900

IOWA HGHWAY NEEDS STUDY
DESIGN GUIDES FOR CITY ARTERIALS
DATE 2-1-68

	- TYPE FACILITY	FREEWAY \& EXPRESSWAY		MAJOR STREETS								
	TYPE AREA	ALL AREAS		CENTRAL BUSINESS DIST.			FRINGE \& OUTLYING BUS.			RESIDEMTIAL a RURAL		
	DESIGH CLASS CODE	4	5	1	2	3	1	2	3	1	2	3
$\begin{aligned} & 2 \\ & \vdots \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$	DESIGN YEAR TRAFFIC (D.H.V)	OVER 5000	5000 \& UNDER	OVER 1500\|	700-1500	0-099	OVER 1000	500-1900	0-899	OVER 1900	$000 \cdots 1000$	0-809
	NO. OF TRAVEL LANES	0	4	6	4	2				6	4	2
	TRAVEL LANE WIDTH	12	12	12	12	12	12	12	12	12	12	12
	TOTAL TRAVEL WIDTH	72	48	72	48	24	72	48	24	72	48	24
	PARKHIG LANES	NONE		NONE 1/	$2 \mathrm{AT} 10^{\circ}$	2 AT 10°	NONE 1/	2 A5 10°	2 AT 10^{\prime}	NONE 1/	2AT9	2 AT 9°
	MEDIAN WIDTH	20	20	MINIMUM \square^{\prime}		N/A	MHNMUM 4^{\prime}		N/A			
										MINHMUM 4^{\prime}		MKN - - M - -
	TOTAL ROADWAY WIDTH	112	88	73.21	69.21	45.21	7321	69.21	4521	73 21	6721	13 21
	KHNIKUM R.O.W. WIDTH	140 .	110	- 98	94	65	28	94	65	-		
	TYPE STPEET SECTION	PAVED SHO. 6' LT.-10' RT.		cures			cures			CURBS		
	SURFACE TYPE	- HIGH			- HiGH			HIGH		H16H		
	ACCESS CONTROL	FULL 3/		NONE			NONE			NONE		
	DESIGH LOADMG	- HS-20		HS-20			H5-20			HS-20		
0 0 0 0	ROADWAY WIDTH	TWIN BRIDGES TWIN BRIDGES S2' WIDE $\angle 0^{\prime}$ WIDE SINGLE BRIDGES SINGLE BRIDGES O2' PLUS MEDIAN G8'PLUS MEDIAN		PROACH SURFACE WIDTH PLUS 6 FEET AND SIDEWALKS								
0	VERTICAL CLEARANCE	16^{\prime}		16^{\prime}			16^{\prime}			16°		
	UNDERPASS HORZ. CLEAR.	41		6 FEET BEHIND CURB								

1/ PARKING PERMITTED IN OFF-PEAK HOURS
2/ BACK OF CURB TO BACK OF CURB
3/SOME AT GRADE CROSSINGS ALLOWED ON EXPRESSWAY
4. EDGE OF PAVEMENT $+30^{\circ}$ OR SHOULDER LINE $+4^{\prime}$ WITH GUARDRAIL ON R.R. UNDERPASSES

IOWA HIGHWAY NEEDS STUDY
DESIGN GUIDES FOR LOCAL CITY STREETS

I/HGG SURFACE: PORTLAMD CEMENT COHCRETE 7 MCHES OR MORE IN THICRHESS ON A DASE SUITADLE TO CARRY FREOUENT MEAVY AXLE LOADS; OR ASPHALTIC CONCRETE A INGHES OR MORE IN THICKNESS ON A BASE SUITABLE TO CARRY FREQUENT HEAVY AXLE LOADS; OR ASPHALTIC CONCRETE OVERLAYS WHICH PRODUCE A TOTAL SURFACE THICKNESS GREATER THAN A INCHES; OR EXISTING BRICK OR BLOCK.
 FREQUENCY OF HEAVY AXLE LOADS; OR AT LEAST I INCH BUT LESS THAN \& INCHS OF BITUMINOUS SURFACE ON A PREPARED BASE SUTTABLE TO CARRY A MODERATE FREQUENCY OF HEAVY AXLE LOADS.

LOW SURFACE: A BHTUMHOUS SURFACE LESS THAN I IWCH IN THICKNESS ON A BASE SUITADLE TO CARRY OCCASIONAL HEAVY AXLE LOADS.

MUNICIPAL STREETS
INVENTORY PRINT-OUT

General: The print-out contains the inventory information which was gathered for the 1968-1988 Needs Study. It includes information on all arterial streets as well as information on 20% of the local streets chosen at random. The attached instructions explain each item in the same order in which they appear on the print-out, and are the same as the instructions that the inventory crews used when they gathered the information in the field.

MUNICIPAL STREET

Instructions for Inventory Code Sheets

Columns
1-2 COUNTY NUMBER - Code the county number.

CO
NR

3-6
CITY
NR

7-11
SEQUE
NUMBR Precede single digit county numbers with 0 . Example 01.

CITY NUMBER - Always use four digit code. Precede numbers less than 1000 by 0 's. Example 0080. Highway Commission System. Sequencing of City Streets other Than Interstate and Primary Extensions. The major sequence, minor sequence and subsection sequence digits will be used as a five digit number in sequencing these streets. These streets will be sequenced from south to north, and west to east by an increase of five in each succeeding number. The first number used at the corporation line will always be 00500. An example of the sequence numbers in columns $7-8-9-10-11$ would be 00500 , 00505, 00510, 00515, etc.

Columns

12

PREDOMINANT ROADWAY SERVICE

ST
SERVICE

Code

(1) Freeway - a facility devoted entirely to the movement of traffic which performs no land service function. This type of facility will always be a multi-lane, divided roadway with full control of access and no crossings at grade.
(2) Expressway - A facility devoted to the movement of traffic which performs little land service function. This type of facility will be a multilane, divided roadway with partial control of access and few crossings at grade.
(3) Ramp - A roadway connection between a freeway or expressway facility and a surface street or highway; also a connection between a freeway or expressway and another freeway or expressway. It will have full control of access and no crossings at grade.
(4) Arterial - A roadway which primarily serves through traffic on a continuous route. It may also act as a feeder route for freeway and expressway facilities Although an arterial is primarily intended to move traffic, it may provide a secondary land service function.
(5) Collector - A street which serves the dual function of serving international traffic movements within a specific area and movements from that area to an arterial route.
(6) Local - A street which primarily provides access to adjacent residential, commercial, industrial or recreational properties.

Columns

13-17
ST
NUM

STREET OR HIGHWAY NUMBER
Code
Column 13

1. U.S. Numbered Primary Route
2. Iowa Numbered Primary Route
3. Interstate
4. F.A.S. Extension
5. Other City Streets

Column 14-15-16-17
In the case of Primary or Interstate Routes use columns to show the assigned route number. Example: 0218, 0063.

On all city street systems other than Primary or Interstate routes, each street will be assigned a four digit number. Streets traversing a city or town in a predominately east-west direction will be assigned numbers from 0000 through 4999. Streets crossing in a north-south direction will be assigned numbers from 5000 through 9999. In metropolitan areas use continuous numbers across the entire area.

To allow for future expansion of the city corporate limits the first east-west street on the south corporation line should be assigned the number 1000. The first north-south street on the west corporation line should be designated 6000. The numbers assigned to succeeding streets should be done by assigning numbers by tens and reserving the other numbers for new streets that may be built in the future. An example of the numbers assigned would be 1010, 1020, 1030, etc., and 6010, 6020, 6030, etc. Where large open areas are encountered it would be necessary to skip large blocks of numbers to provide for many additional streets in the future

Columns

Municipal Streets Page 6

Columns
23-38 Continued:

Columns 32-35
Needs Study section number and typical section number

Columns 36-38
Special Class
Col. 36 - code:

1. Freeway (non-primary)
2. Local
3. Collector
4. City Arterial
5. Primary Arterial
6. Primary Expressway
7. Primary Freeway
8. Interstate
9. Expressway (non-primary)

Col. 37 - code:

1. To be abandoned
2. Transferred to city from primary
3. Transferred to city from county
4. Transferred to state from city
5.
6.
7.
8.
9.
10. No change

Col. 38 - code:
0. Outside Urban Boundary

1. Inside Corporation Line
2. Inside Urban Boundary - outside corporation line.

All cities with 1960 population of 5,000 and above have Urban Area Boundaries.

Columns

39-42 SURFACE TYPE - Primary Extensions and interstate routes will have a precoded four-digit number indicating the surface type.

The surface type on all other city street systems should be indicated as follows:

Code:
0000 Non existing streets
1000 Unimproved streets
2000 Gravel or stone streets
3000 Oil surface on non-prepared base
5000 Bituminous surface on prepared base
6200 Asphaltic concrete on prepared base
6700 Asphaltic concrete resurfacing on portland cement concrete, brick, or block

Portland cement concrete Brick or block

43-44
SURFACE WIDTH - Record surface width in feet to nearest foot. Measure this distance from face to face of curbs or from edge of pavement to edge of pavement if there are no curbs. Measure edge to edge of pavement on mountable curb sections. Measure outer edge of shoulder to outer edge of shoulder on gravel streets.
RAILROAD CROSSING - Code as follows:
0. No Crossing
l. Single track with gates2. Single track with automatic signals3. Single track with watchman4. Single track with crossbucks5. Multiple tracks with gates
6. Multiple tracks with automatic signals
7. Multiple tracks with watchman
8. Multiple tracks with crossbucks
9. Other
TYPE SECTION - Code as follows:

Not Divided:
Normal Section 0 Normal Section
$\begin{array}{llll}\text { Climb Lane w/median } & 2 & \text { Climb Lane } & 6 \\ \text { Climb Lane w/o median } & 3 & \text { Intersection } & 7\end{array}$ Intersection w/median 4 One-way street 9

Intersection $w / 0$ median 5 Dual Surface 8

Divided:
Normal Section 1 Climb Lane 6

CURB OR SHOULDER TYPE - Code as follows:
0 None
1 Paved Shoulders 8' wide and over
2 Paved shoulders 4^{\prime} wide to 8^{\prime} wide
3 Paved shoulders less than 4^{\prime} wide
4 Stabilized gravel shoulder 8^{\prime} wide and over
5 Stabilized gravel less than 8^{\prime} wide
6 Gravel shoulder 8^{\prime} wide and over
7 Gravel shoulder under 8^{\prime} wide
8 Earth or Sod shoulder
9 Curbs
ROADWAY WIDTH - Primary road extensions precoded from Primary Road Inventory columns 45-47. Code surface width plus one foot on curb sections or from outer edge of shoulder to outer edge of shoulder if there are no curbs. Code width from outer edge of shoulder to outer edge of shoulder on mountable curb sections. For gravel surfaces use same width as surface width. Code 000 on non-existent streets. Sections which are bridges between adjoining states will be identified by coding a " B " in the first digit of the roadwav width molumn 4Ω.

Columns

M Y T

MEDIAN TYPE - Code as follows:
0 - None of the following
Curbed
1 - Hard surfaced, refuged island
2 - Hard surfaced, no refuge
3 - Grass, refuge island
4 - Grass, no refuge

Not Curbed

5 - Hard surfaced, refuged island
6 - Hard surfaced, no refuge
7 - Grass, refuge island
8 - Grass, no refuge
9 - Legal center parking permitted
Medians greater than 6 feet in width are considered refuge islands

MEDIAN WIDTH OR BARRIER - Record width in feet to nearest foot between edges of traffic lanes. Record average width if width varies. If a barrier exists, code "9" in first column and width of median in feet in second column. . If median exceeds 9 feet, neglect any barriers and code median width.

Barrier types are: barrier guard rail, concrete barrier, cable, fence, trees and shrubs.

TYPE PARKING - Code as follows:
0 No Restrictions
1 No parking
2 Allowed only in off-peak hours
3 Parallel parking on one side
4 Parallel parking on both sides
5 Angle parking on one side
6 Angle parking on both sides
7 Combination of angle and parallel

Columns

D
R
N

56 ACCESS CONTROL - Code as follows:

A
C
C

57
TURN
LANES

58
TURNS
TYPE DRAINAGE - Record existing drainage.
1 Curb and gutter
2 Open ditches
3 None

1 Interstate system or other fully controlled access highway

2 Expressway system, a four-laned divided highway traffic is given primary consideration. consideration.
5 None most critical intersection in each road section.

Code:
1 left turn lane provided
2 right turn lane provided
3 left and right turn lanes provided
0 None

NUMBER OF TURNS - Code the volume of turns at each
critical intersection as follows: with interchanges or separation at major intersections and grade crossings at designated minor public road intersections. Expressway controlled access highway.

3 Planned controlled access highways on which through

4 Planned controlled access highways on which through traffic and land service traffic are given equal

TURNING LANES - Code the turning lane provisions at the

1 High - with signals
2 Average - with signals
3 Low - with signals
4 High - stop sign on arterial
5 Average - stop sign on arterial
6 Low - stop sign on arterial
7 High - no signals or stop signs
8 Average - no signals or stop signs
9 Low - no signals or stop signs
0 No intersections on street section
$\underline{59}$
T
R
F

TRAFFIC FLOW - Code as follows:
1 One Way - south
2 One Way - north
3 One Way - east
4 One Way - west
5 Two Way - north-south 6 Two Way - east-west

60-61
APP WIDTH

62
CA ${ }^{\prime}$
PROB

63
CAP SOLU

THROUGH TRAFFIC WIDTH - Code the width of the driving surface available to through traffic. Do not include the width of lanes reserved for turning movements.

CAPACITY PROBLEM - This item will be determined from capacity tables which will be furnished to the field crews, and included in the computer evaluation.

Code as follows:
0 No apparent capacity problem
1 Existing capacity problem
2 Probable future capacity problem

CAPACITY SOLUTION - Code as follows:
0 No apparent solution
1 Select another parallel street to replace this arterial
2. Select another parallel street to function with this street as a one-way couplet

3 Widen this street
4 Provide additional turning lanes or other wise improve a critical intersection

Columns

64-66
ROW
AVAL

RIGHT OF WAY FOR STREET WIDENING - Record in feet. This entry will allow an office evaluation of whether a street or road can be widened. Determining what is excessive cost is a judgemental consideration but generally will include the necessity of acquiring major buildings or groups of buildings, or other expensive man-made facilities. Also consider damages which would result from widening.

In highly developed business areas, this width will be the distance from the face of the business buildings on one side of the street to the face of the buildings on the opposite side.

In areas of individual homes, record the distance from a point 25 feet in front of the homes on one side of the street to a point 25 feet in front of the homes on the opposite side.

In both of the above areas there will be occasions when some few buildings or homes are closer to the street than the majority. In these cases disregard these structures unless they appear to be of such value that they might encure an extremely high cost to secure.

In open areas record a width which appears to be consistant with the surrounding built up areas.
:olumns

67
TY
AREA

TYPE OF AREA

Code

1 Central Business District
2 Fringe Area
3 Outlying Business District
4 Residential Area
5 Rural

These areas are defined as follows:

1. Central Business District - That portion of a municipality in which the dominant land use is for intense business activity. This district is characterized by large numbers of pedestrians, commercial vehicle loadings of goods and people, a heavy demand for parking space and high parking turnover.
2. Fringe area - That portion of a municipality immdeiately outside the central business district in which there is a wide range in type of business activity generally including small businesses, light industry, warehousing, automobile service activities and intermediate strip development, as well as some concentrated residential areas. Most of the traffic in this area involved trips that do not have an origin or a destination within the area. This area is characterized by moderate pedestrian traffic and a lower parking turnover than is found in the central business district, but it may include large parking areas serving that district.

Columns

67 Continued: Type of Area

3. Outlying Business District - That portion of a municipality or an area within the infulence of a municipality, normally separated goegraphically by some distance from the Central Business District and its Fringe area, in which the principal land use is for business activity. This district has its own local traffic circulation superimposed on through movements to and from the Central Business District, a relatively high parking demand and turnover, and moderate pedestrian traffic. Compact offstreet shopping developments entirely on one side of the street are not included in the scope of this definition
4. Residential Area - That portion of a municipality, or an area within the influence of a municipality, in which the dominant land use is residential development, but where small business areas may be included. This area is characterized by few pedestrians and a low parking turnover
5. Rural - Roadway serves a sparsely developed area primarily devoted to agriculture or conservation usage.

Columns

68
ROW
COST
GR

ROW COST GROUP
Code
1 Central Business District -- Low Cost
2 Central Business District -- Average Cost
3 Central Business District -- High Cost
4 Fringe Area or Outlying Business District
-- Low Cost
5 Fringe Area or Outlying Business District
-- Average Cost
6 Fringe Area or Outlying Business District

7 Residential
8 Residential
9 Residential
-- High Cost
-- Low Cost
-- Average Cost
-- High Cost
0 Rural

When two different type areas occur along the same street, code the lower numbered area. Example -central business district on one side of the street and residential on the other side, code central business district.

Note -- For cities and towns in the Des Moines metropolitan area the Central Iowa Regional Planning Commission will furnish a map showing the areas and cost groups needed to code this entry.

Columns

69-70
SURF
COND

SURFACE AND BASE CONDITION - The rater should remember that he is rating the condition of both the surface and the base in this item. When the condition of the surface reflects a poor and unstable base condition, the item should be rated downward accordingly.

In some cases, a newly laid surface may be observed to be in excellend condition. However, in those cases where it can be determined that poor. base or no base underlies the surface, the rating may be penalized 15 to 20 points.

Indicate pavement condition by numerical rating. Code

24-25 Excellent - New or near-new condition
16-23 Good - Minor cracking or spalling or irregularities. Minor roughness causing little discomfort in riding.

8-15 Fair - Moderate cracking and failures - extensive patching required. Good gravel streets are also in this category.

1-7 Poor - Very heavy cracking, deep failures, obvious instability. Very unsatisfactory riding surface.

0 Very Poor - Completely broken up

Columns
71

columns

CURB OR SHOULDER CONDITION - The physical condition of the curbs or shoulder will be rated as follows:

CURB SECTION
OPEN SECTION
Surfaced Shoulders Sod Shoulders

Excellent	New or likenew condition.	New or near-new condition.	Shoulders are rated on their regularity, uni-
Good	Minor cracking or spalling. Normal maintenance will correct.	Light cracking or spalling.	formity of width, and uniformity of cross slope. Shoulders varying in width, not wel defined or varyin
Fair	Moderate cracking and failures. Requires special repairs.	Moderate cracking and failures. Patching required.	in cross slope should be rated down. Shoulders with cross slopes steeper than l"
Poor	Very heavy cracking Extensive repairs or rebuilding required.	Heavy cracking, deep failures, obvious instability.	per foot, should be rated down. The shoulder must be a distinct part of the road-
Very Poor	Completely broken up. Rebuilding required.	Completely broken up.	way surface or the ditch front slope. Consideration should also be given to the amount of additional roadway width the shoulde affords the drive

Columns

D
A
T

74-78
ADT

79

S
S

80
C
T

73 ADT DATE - Precoded in office. Record the date of the ADT count by entering the last number of the year the count was made. For estimated ADT enter 9 in this column.

ADT - Precoded in office Enter the actual ADT count for each section of road inventoried.

SPECIAL STUDY - This column is being reserved for office use to denote unusual situations

CARD TYPE - For office use
4 Change Card 2
5 Change Card 3

MUNICIPAL STREETS

DEFICIENCIES AND IMPROVEMENT PRINT-OUT

General: The Deficiencies and Improvement Print Out shows the results of a computer program which analyzes each section of street and determines if and when improvements are needed.

To assist in the evaluation of each section of street a point rating system similar to sufficiency rating has been developed for city arterial streets. The maximum possible points that can be assigned to any given section of street are shown on page 6 of the appendix. Geometric and capacity items aonprise 65 points of this rating system and condition 35 points for a possible total of 100 points, and distributed as shown in Table 1.

Each of the geometric items on any one section of street is evaluated against a desirable design guide applicable to that particular street. If a given item meets the design guide criteria, it is given the maximum points allowable. If this item fails to meet the design guides, it receives something less than the maximum. The geometric and capacity ratings are applied by a computer program, whereas the condition ratings applied to each street section are determined by field inventory crews.

If a street rates less than 70 points total, the computer program will propose an improvement to bring the rating of this street back to a level above the 70 point cut off. Street sections are also examined for individual deficiencies even though the total point rating may be above 70 . This could occur in the case of unacceptable surface type, traffic carrying capacity, or other individual items. The computer program looks at each section of street for each Year of the 20 year study period. As each subsequent year is examined, the traffic on the road is expanded and the condition rating is depreciated until the end of the study period is reached.

The first line of the print out shows the condition of the road as it presently exists. The last line of the print out for each section of street shows the condition and physical properties of the street in 1987, if all the proposed improvements are made. All print lines between the present and terminal contain information concerning the improvements called for. The condition ratings and physical features are those expected to exist just prior to , construction of the improvement. Upon completion of the proposed
improvement, the physical features are adjusted to reflect design guide requirements and the condition ratings adjusted to reflect that of the new improvement.

Each item listed on the D \& I Print Out is identified by a title at the top of each page. A description of each of these items follows:

Columns	County Number - Numbered in alphabetical order according to county name.
1-2	
CO	
NR	
5-8	Need Study Section Number - The first three digits of this number are used to combine small
NEED	street sections that have the same general char-
STDY	acteristics into logical reeds sections for the
SECT	purpose of analysis. The first needs study sec-
NUMB	tion on a street will be numbered 0l0, the second section 020, etc. These numbers will be assigned on streets from west to east and south to north beginning at the west or south urban boundary line or corporation line if there is no urban boundary line. One section within each needs study section must be selected as the typical section and is so designated by a "One" in the fourth digit of the needs study number. All other sections within that needs study section will have a zero coded in the fourth digit.
11-15	First Sequence - This number is the first sequence number of a needs study section. Each street is
SEQUENCE	sequenced using a five-digit number. The streets will be sequenced from south to north or from west
1 ST	to east by an increase of five in each succeeding number. The first number used at the corporation line will be 00500.
18-22	Second Sequence - This number is the last sequence number of a needs study section.

SEQUENCE

2 ND

Columns

25-28
CITY
NUMB

City Number The incorporated citics and towns are numbered in alphabetical order using a fourdigit number beginning with 0010, followed by 0020, etc.

S
E
R

32
S
Y
S

35-38
ST
NUMB
30

Y
S

Street Service - Coded according to the service it provides from the following list.

1. Freeway
2. Expressway
3. Ramp
4. Arterial
5. Collector
6. Local

System - Coded from the following list.

1. U. S. numbered primary route
2. Iowa numbered primary route
3. Interstate
4. F.A.S. Extension
5. Other City Streets

Street Number - On all city street systems other than Primary or Interstate Routes, each street will be assigned a four-digit number. Streets traversing a city or town in a predominantly eastwest direction will be assigned numbers from 0000 through 4999. Streets crossing in a north-south direction will be assigned numbers from 5000 through 9999. In metropolitan areas, use continuous numbers across the entire area.

To allow for future expansion of the city corporate limits the first east-west street on the south corporation line should be assigned the number 1000. The first north-south street on the west corporation line should be designated 6000. The numbers assigned to successive streets should be done by assigning numbers by tens and reserving the other numbers for

Columns

35-38	new streets that may be built in the future. An example of the numbers assigned would be
ST	1010, 1020, 1030, etc., and 6010, 6020, 6030, etc. Where large open areas are encountered,
NUMB	it would be necessary to skip large blocks of numbers to provide for many additional streets in the future.
40-43	Section Length - The length of the section is shown to the nearest 0.01 mile, for divided
NEED	sections the length will be the lane length
SECT	of the south or east lane.
LGTH	
46	Surface Type - The surface type on all city street systems will be indicated as follows:
SURE	
T	0 - Non existing streets
Y	7 - Unimproved streets
P	6 - Gravel or stone streets
	```5 - Oil surface on non-prepared base```
	4 - Bituminous surface on prepared
	3 - Asphaltic concrete on prepared base
	3 - Asphaltic concrete resurfacing on Portland cement concrete, brick or block
	```1 - Portland cement concrete, brick or block```

48-49 Surface wiath - The surface width is recorded in feet to the nearest foot. The distance is measured from face to face of curbs or from edge of pavement to edge of pavement, if there are no curbs. The distance was measured from edge to edge of pavement on mountable curb sections and from outer edge of shoulder to outer edge of shoulder on gravel streets.

Columns

51

RDY
WD
57

MED
T
Y
P

Curb or Shoulder Type - Coded as follows:

```
O - None
l - Paved shoulders 8' wide and over
2 - Paved shoulders 4' to 8' wide
3 - Paved shoulders less than 4' wide
4 - Stabilized gravel shoulder 8' wide
        and over
    5 - Stabilized gravel less than 8' wide
    6 - Gravel shoulder 8' wide and over
    7 - Gravel shoulder under 8' wide
    8 - Earth or sod shoulder
    9 - Curbs
```

Roadway Width - Measured from back to back of curbs on curb sections or from outer edge of shoulder to outer edge of shoulder if there are no curbs, or if there are mountable curbs.

Median Type - Coded as follows:
0 - None of the following
Curbed
1 - Hard surfaced, refuge island
2 - Hard surfaced, no refuge
3 - Grass, refuge island
4 - Grass, no refuge
Not Curbed
5 - Hard surfaced, refuge island
6 - Hard surfaced, no refuge
7 - Grass, refuge island
8 - Grass, no refuge
9 - Legal center parking permitted
Medians greater than 6 feet in width are
Considered refuge islands.

Columns

64-65

TH
WD

67-69

Row
AVL

59-60	Median Width or Barrier - The width is recorded
	in feet to the nearest foot between edges of traffic
MED	lanes. It shows average width if width varies.
W	If a barrier exists, a "9" is coded in first column
D	and width of barrier in feet in second column. If median exceeds 9 feet, any barriers are neglected and the median width is coded.
	Barrier types are: Barrier guard rail, concrete barrier, cable, fence, trees and shrubs.
62	Type of Drainage - Coded as follows:
D	1 - Curb and Gutter
R	2 - Open ditches
A	3 - None

Median Width or Barrier - The width is recorded in feet to the nearest foot between edges of traffic If a barrier exists, a "9" is coded in first column and width of barrier in feet in second column. If median exceeds 9 feet, any barriers are neglected and the median width is coded.

Barrier types are: Barrier guard rail, concrete barrier, cable, fence, trees and shrubs.

Through Traffic Width - Shows the width of the driving surface available to through traffic. It does not include the width of lanes reserved for turning movements. Will be blank on local streets.

Right-of-Way for Street Widening - Recorded in feet. This entry will allow an office evaluation of whether a street or road can be widened. Determining what is excessive cost is a judgmental consideration but generally will include the necessity of acquiring major buildings or groups of buildings, or other expensive man-made facilities. Also consider damages which would result from widening.

In highly developed business areas, this width will be the distance from the face of the business buildings on one side of the street to the face of the buildings on the opposite side.

In areas of individual homes, the distance is recorded from a point 25 feet in front of the homes on one side of the street to a point 25 feet in front of the homes on the opposite side.

In both of the above areas there will be occasions when some few buildings or homes are closer to the

Columns
67-69 (cont'd)
ROW
AVI

71

A
R
A

73

R

C
G

Row Cost Group
street than the majority. In these cases these structures are disregarded unless they appear to be of such value that they might incur an extremely high cost to secure.

In open areas width which appears to be consistent with the surrounding built-up areas is recorded. Will be blank on local streets.

Type of Area
Code:
1 - Central business district 2 - Fringe area
3 - Outlying business district
4 - Residential area
5 - Rural

A description of each is given in the instructions for the municipal street inventory listing. Will be blank on local streets.

Code:

1 Central Business District -- Low Cost
2 Central Business District --Average Cost
3 Central Business District -- High Cost

4 Fringe Area or Outlying -- Low Cost Business District

Fringe Area or Outlying -- Average Cost Business District

Fringe Area or Outlying
Business District -- High Cost

7 Residential
8 Residential
9 Residential
0 Rural
When two different type areas occur along the same street, code the lower numbered area. Example -- central business district on one side of the street and residential on the other side, code central business district.

77-78
R
C
G

77

BS
SF
R
C
G

77

BS
SF
Base and Surface Condition - Indicates pavement condition by numerical rating.

Code

24-25	Excellent	New or near-new condition
15-23	Good	- Minor aracking or spalling or irregularities. Minor roughness causing little discomfort in riding.
8-15	Fair	- Moderate cracking and failures -- extensive patching required. Good gravel streets are also in this category.
1-7	Poor	- Very heavy cracking, deep failures, obvious instability Very unsatisfactory riding surface.
0	Very Poor	- Completely broken up.

Adequacy of Drainage - The condition of existing drainage facilities is based on their physical condition and ability to provide adequate removal of runoff and minimize flooding. This condition rating is determined by visual inspection of storm sewer systems, and appurtences, ditches, culverts, pipes, side drains, etc. Inquiry among local residents as to the extent and frequency of flooding is also helpful in determining the condition of the overall system.

Columns
80 (cont'd)
Separate criteria are used for curbed sections
D
R and non-curbed sections as follows:

Curbed Section
5 Excellent Inlets and pipes observed to be in like-new condition.

4 Good

3 Fair

2-1 Poor
Inlets and pipes observed to be in good condition. Possibly some minor cleaning or repair required.

Inlets and pipes observed to be in fair condition. Some moderate cleaning and repair required.

Inlets and pipes observed to be in poor condition. Very extensive repairs required.

0 Very Poor Cannot be corrected by extensive repairs. Replacement required.

Open Section
Ditches and structures clean and in like-new condition.

Ditches and structures generally in good condition. Some minor repair, regrading or cleaning needed.

Ditches and structures generally in fair condition Some moderate cleaning and repair required.

Ditches and structures generally in poor condition. Very extensive repairs required.

Inadequate ditches, etc. Structures in such poor condition that replacement is required.

Curb Or Shoulder Condition - The physical condition of the curbs or shoulder will be rated as follows:
new condition

New or near-new Shoulders are condition rated on their

Curb Section
Surface Shoulders Sod Shoulders
5 Excellent New or like-
Open Section

Columns

82 (cont'd)

C/

4 Good Minor cracking or spalling. Normal maintenance will correct.

3 Fair Moderate cracking and failures. Requires special repairs.

Very heavy cracking. Extensive repairs or rebuilding required.

0 Very Poor

Curb Section
Surface Shoulders

Open Section

Light cracking or spalling.

Moderate
cracking and failures. Patching required.

Heavy cracking, deep failures, obvious instability.

Completely broken up. rated down.

Sod Shoulders
regularity, uniformity of width, and uniformity of cross slope. Shoulders varying in width, not well-defined or varying in cross slope should be Shoulders with cross slopes steeper than 1 " per foot, should be rated down. The shoulder must be a distinct part of the roadway surface or the ditch front slope. Consideration should also be given to the amount of additional roadway width the shoulder affords the driver.

SF
WD

87

Surface Width Design Points
Arterial - Points are assigned for surface width from Table 5. This indicates how the existing width compares to that called for on the design guides, with a maximum of 15 Points.

Columns

87	(cont'd)
SF	
WD	
89	
S	
U	
R	

Local - The surface width is checked against the design guides and rated as follows:
SF
WD
2 - Desirable
1 - Tolerable
0 - Intolerable
Surface Type Design Points -
Arterial - Points are assigned for surface type from Table 2. This has a maximum of 5 points.

Local - The existing surface type is checked against the design guides and rated as follows:

$$
\begin{aligned}
& 2-\text { Desirable } \\
& 1 \text { - Tolerable } \\
& 0-\text { Intolerable }
\end{aligned}
$$

91-92

T
Y
P

$$
94-95
$$

C
A
P

Design Points for Type of Street Section -
Arterial - Points are assigned for type of street section from Table 3. The maximum for this is 10 Points.

Local - The type of street section is checked against the design guides and rated as follows:

$$
2 \text { - Desirable }
$$

1 - Tolerable
0 - Intolerable
Design Points for Capacity
Arterial - Points are assigned from Table 4. Using the Volume/Capacity Ratio, with a maximum of 35 points.

Locals - No special consideration is given to capacity on local streets and will be left blank. Total Condition Points

Columns
101-102 Total Design Points
D
E
S

104-106 Total Points - Sum of the Design and Condition points.
TO'T
108

110
C
A
P

113-114

D
A
T
E

116-120
-ADT-
122-123

T
Y
P
Design Class code - This number is determined from the design guides using average daily traffic for arterial streets, and population and type of area for local streets.

Capacity Code - This is a one-digit taken from Table 6. A capacity code of 3 or greater indiaates a capacity problem. This column will be blank on local streets.

ADT Date - Shows the year of the estimated ADT.

Average Daily Traffic - The estimated average daily traffic for the year shown.

Improvement Type - The first digit is the backlog-Future Code. It indicates whether the the road was deficient in 1968 (Backlog) or whether it became deficient at some future year in the study period, and is coded as follows:

1. Backlog
2. Future

The second digit indicates the type of improvement called for using the following codes:

Columns

122-123	1.	New Construction
(contd)	2.	Reconstruction
	3.	Widen \& Resurface
T	4.	Base \& Surface
Y	5.	Resurface
P		

125-126 Improvement Year - Shows the year the improvement is called for.
YR
129-130 Cause of Improvement - A two-digit code showing the cause of improvement from Table 7.
C
S
E
132
Improvement Number - The possible codes are:
1 Improvement No. 1
2 Improvement No. 2
3 Improvement No. 3
4 Improvement No. 4

IOWA HIGHWAY NEEDS STUDY
DESIGN GUIDES FOR LOCAL CITY STREETS

 OR ASPHALTIC CONCRETE 4 INCHES OR MORE IN THICKNESS ON A BASE SUITABLE TO CARRY FREQUENT HEAVY AXLE LOADS; OR ASPHALTIC CONCRETE OVERLAYS WHICH PRODUCE A TOTAL SURFACE THICKNESS GREATER THAN 4 INCHES; OR EXISTING BRICK OR BLOCK.
 FREQUENCY OF HEAVY AXLE LOADS; OR AT LEAST I INCH BUT LESS THAN 4 INCHS OF BITUMINOUS SURFACE ON A PREPARED BASE SUITABLE TO CARRY A MODERATE FREQUENCY OF HEAVY AXLE LOADS.
LOW SURFACE: A BITUMINOUS SURFACE LESS THAN I INCH IN THICKNESS ON A BASE SUITABLE TO CARRY OCCASIONAL HEAVY AXLE LOADS.

IOWA HIGHWAY NEEDS STUDY
DESIGN GUIDES FOR CITY ARTERIALS
DATE 2-1-68

1/PARKING PERMITTED IN OFF-PEAK HOURS
2/ BACK OF CURB TO BACK OF CURB
3/ SOME AT GRADE CROSSINGS ALLOWED ON EXPRESSWAY
4/ EDGE OF PAVEMENT + 30° OR SHOULDER LINE + 4' WITH GUARDRAIL ON R.R. UNDERPASSES

TABLE 1

MUNICIPAL STREETS

POINT RATING

EFFECTIVE DATE		
JANUARY 1,1968	PAGE	SECTION
IOWA		

SURFACE TYPE RATING -- 5 Points					
$\begin{aligned} & \text { Standard } \\ & \text { Calls } \\ & \text { For } \end{aligned}$	Existing Surface Type is				
High	5	4	1	0	0
Intermediate	5	5	3	0	0
Low	5	5	5	0	0
Gravel	5	5	5	5	0
TABLE 3	TYPE STREET SECTION -- 10 Points				
	Curbs Standard C			$1 s$ for	
Col. 47					Shoulders
code	-				
0	0				0
1	10				10
2	4				6
3	0				2
4	8				8
5	0				4
6	6				6
7	0				2
8	0				0
9	10				10

TABLE 4 CAPACITY RATING -- 35 Points

1. Read 10% of $A D T$ volume
2. Select capacity from appropriate capacity table
3. Divide (1) by (2) to get volume/capacity ratio, to 00.00 value
4. Assign rating points as follows

Volume/Capacity Ratio Rating Points

```
00.00 - 00.59J
35
00.60 - 00.64 33
00.65 - 00.69 30
00.70 - 00.74 27
00.75 - 00.79 25
00.80 - 00.84 20
00.85 - 00.89 . }1
00.89 - 00.95 10
00.95 - 00.99
    5
    5 1 . 0 0 ~ 0
```

SECTION $5-1$

SURFACE WIDTH RATING
No Shoulders*

Standard Roadbed												
Roadbed Width (ft)	72+	67	66	61	56	51	46	41	36	31	$\begin{aligned} & 26 \\ & \text { to } \\ & 24 \end{aligned}$	24
		$\begin{aligned} & \text { to } \\ & 71 \end{aligned}$	to									
			62	57	52	47	42	37	32	27		
112	15	9	6	0	0	0	0	0	0	0		
88	15	15	15	15	15	15	6	0	0	0		
73	15	12	9	5	0	0	-	0	0	0	0	
69	15	15	12	9	6	6	3	0	0	0	0	0
67	15	15	13	12	9	6	3	0	0	0	0	
45	15	15	15	15	15	15	15	12	9	3	3	
43	15	15	15	15	15	15	15	12	11	6	3	
				With	Shou	ders			,			
112	15	12	9	0	0	0	0	0	0	0	0	0
88	15	15	15	15	15	15	9	0	0	0	0	0
73	15	15	12	9	0	0	0	0	0	0	0	0
69	15	15	. 15	15	15	15	12	0	0	0	0	0
67	15	15	-15	15	15	15	12	3	0	0	0	0
45	15	15	15	15	15	15	15	15	15	15	6	0
43	15	15	15	15	15	15	15	15	15	15	15	0

[^1]| EFFECTIVE DATE | | | |
| ---: | :--- | :--- | :--- |
| JANUARY 1,1968 | PAGE | 3 of 3 | SECTION |

TABLE 6

MUNICIPAL ARTERIAL STREETS
Capacity Codes

$\frac{\text { Volume }}{\text { Capacity }}$	Capacity Code
0.00	0
$0.01-0.49$	1
$0.50-0.89$	2
$0.90-1.09$	3
$1.10-1.19$	4
$1.20-1.29$	5
$1.30-1.49$	6
$1.50-1.69$	7
$1.70-1.99$	8
≥ 2.00	9

Municipal Deficiencies and Improvements Program

Arterial

Page	Code	Cause of Improvement	Improvement
28	01	Surface Width Points <3 Surface Type Points <4	Reconstruction
28	02	Surface Width Points <3	Widen and Resurface
28	03	Surface Type Points <1 Surface Width Points <15	Reconstruction
28	04	Surface Condition Points Surface Width Points <12	Widen and
28	06	Surface Condition Points Surface Width Points <12 Surface Type Points <4	Resurface

| EFFECTIVE DATE | | |
| :---: | :---: | :---: | :---: |
| JANUARY 1, 1968 | 1 of 3 | SECTION $5-1 \mathrm{C}$ |

Page	Code	Cause of Improvement	Improvement
29	11	Total Needs Rating Points <70 Capacity Points <25	Reconstruction
29	12	Total Needs Rating Points <70 Surface Condition Rating <8	Reconstruction
29	13	Total Needs Rating Points <70 Type Section Rating <4 Type Area Not Rural	Reconstruction
29	14	Total Needs Rating Points <70 Width Rating <9 Type Area Not Rural	Reconstruction
29	15	Total Needs Rating Points <70 Width Rating <12 Total Condition Rating <20	Reconstruction
29	16	Total. Needs Rating Points <70 Curb \& Drainage Cond. Points <6 And either surface condition <12 or surface type rating <4	Reconstruction
29	17	Total Needs Rating Points <70 Surface Width Rating<12 And either surface cond. <12 or surface type rating <4	Reconstruction
29	18	Total Needs Rating Points <70 Surface width rating<12	Widen and Resurface
29	19	Total Needs Rating Points <70	Resurface
29	20	Total Needs Rating points <70 And either surf. condition <12 or surface type rating <4	Base and Surface
29	21	Total Needs Rating Points <70 Curb \& Drainage Cond. Points <6	Reconstruction

EFFECTIVE OATE
JANUARY 1,1968
PAGE

2

Page	Code	Cause of Improvement	Improvement
40	22	Total Needs Rating Points but >65 Type section rating< Type Area Rural	Reconstruction

| EFFECTIVE DATE | | | |
| :---: | :---: | :---: | :---: | :---: |
| JANUARY 1,1968 | | 3 of 3 | SECTION
 $5-1 C$ |

MUNICIPAL STREETS

Cost Program Drint-Out Interpretation

General: The cost program assigns costs to each individual street section that was analyzed in the municipal streets deficiencies and improvements program. The costs are taken from tables of estimated costs developed by the Needs Study Unit for this purpose. The computer examines each record and collects the information necessary to assign costs for each improvement from the proper cost table. Estimated maintenance and administration costs are assigned to each strect section also at this time. As each record is processed, the cost information assigned from the cost tables is written on the computer tape and summarized by needs section on the computer print-out sheets.

Municipal Street Cost Assignment Print-Out

For each needs section studied, there will be at least one line of print. If improvements have been called for in the deficiencies and improvements program, each improvement will be shown on a separate line with the estimated costs associated with that improvement. The information on the left side of the print-out is identical to that found on the Municipal Streets Deficiencies and Improvements print-out. Other information to be found on the printout is as follows:

```
    Print-Out
Zentification
```

MAINT Maintenance cost - The cost figure shown is summed COST by year as well as by needs section. This was done to eliminate the necessity of showing 20 lines of print for each needs section to show maintenance costs. Example: If the improvement year for the first improvement is 1975, then the maintenance cost shown on the line with the first improvement, will be the estimated maintenance cost for all the years, beginning with 1968, up to and including the year 1975. On the line with the second improvement the maintenance cost shown will be for the years beginning with 1976, up to and including the year of the second improvement. If there is no second improvement, the cost shown will be the maintenance cost for the remaining years in the study period including 1987.

Print-Out
Identification

$\begin{array}{r} \text { ROW } \\ \text { COST } \end{array}$	These costs are estimated costs of making the type of improvement indicated on the line with the cost figures.
GRADE DRAIN	Example: If the grade and drain cost is \$75,000 per mile for new construction (improvement type 1) and the needs section
BASE SUR	length is 2.00 miles then the Grade and Drain Cost shown on the line when Improvement Type 1 is indicated for this needs section
ENG	will be $2.00 \times \$ 75,000=\$ 150,000$
$\begin{aligned} & \text { MISC } \\ & \text { COST } \end{aligned}$	ROW, Base and Surface, Engineering, and Miscellaneous Costs are determined in the same manner.
$\begin{aligned} & \text { ADMIN } \\ & \text { COST } \end{aligned}$	Administration Cost
TOTAL	Total Cost - Gives the total of all costs shown
COST	on the corresponding line.
	At the end of each City there is a City Total which gives the sum of the totals for the City Arterials and Locals.

IOWA HIGHWAY NEEDS STUDY
DESIGN GUIDES FOR CITY ARTERIALS
DATE 2-1-68

1/PARKING PERMITTED IN OFF-PEAK HOURS
2/ BACK OF CURB TO BACK OF CURB
3) SOME AT GRADE CROSSINGS ALLOWED ON EXPRESSWAY

4/ EDGE OF PAVEMENT + 30° OR SHOULDER LINE + 4° WITH GUARDRAIL ON R.R. UNDERPASSES

IOWA HIGHWAY NEEDS STUDY
DESIGN GUIDES FOR LOCAL CITY STREETS

I/high surface: portland cement concrete 7 inches or more in thickness on a base suitable to carry frequent heavy axle loads; OR ASPHALTIC CONCRETE 4 INCHES OR MORE IN THICKNESS ON A baSE SUITABLE TO CARRY fREQUENT HEAVY AXLE LOADS: OR asphaltic concrete overlays which produce a total surface thickness greater than 4 inehes; or existing brick OR BLOCK.
intermediate surface: portland cement concrete less than 7 inches in thickness on a non-prepared base suitable to carry a moderate frequency of heavy axle loads; or at least I inch but less than 4 inchs of bituminous surface on a prepared base suitable to carry a moderate frequency of heavy axle loads.

TABLE 3-M
Arterial Streets Construction Cost Per Mile

Design Type 1

Type Improvement		OW \& il. Adj.	Grade \& Drain	Base \& Surface	Misc.	Engr.	Total
New Construction	\$	74,390	235,118	377,731	7,709	86,878	781,826
Reconstruction		74,390	181,157	346,896	11,563	75,546	689,552
Widen \& Resurface		22,356	181,157	346,896	11,563	75,546	637,518
Base \& Surface				370,022	50,107	58,818	478,947
Design Type 2		Type are	1, 2, or	3			
New Construction		70,314	222,235	357,034	7,286	82,118	738,987
Reconstruction		70,314	171,230	327,888	10,930	71,407	651,769
Widen \& Resurface		21,131	171,230	327,888	10,930	71,407	602,586
Base \& Surface				349,747	47,362	55,595	452,704
Design Type 2		Type Are	4 or 5				
New Construction		68,276	215,794	346,685	7,075	79,738	717,568
Reconstruction		68,276	166,267	318,384	10,613	69,337	632,877
Widen \& Resurface		20,518	166,267	318,384	10,613	69,337	585,119
Base \& Surface				339,609	45,989	53,984	439,582
Design Type 3		Type Area	1				
New Construction		45,85.7	144,936	232,848	4,752	53,555	481,948
Reconstruction		45,857	111,672	213,840	7,128	46,570	425,067
Widen \& Resurface		13,781	111,672	213,840	7,128	46,570	392,991
Base \& Surface				228,096	30,888	36,258	295,242
Design Type 3		Type Area	2 or 3				
New Construction		20,000	99,792	161,568	4,752	29,272	315,384
Reconstruction		20,000	66,528	161,568	2,376	25,352	275,824
Widen \& Resurface		7,000	15,137	91,979	3,131	12,127	129,374
Base \& Surface				161,568	26,136	20,647	208,351
Design Type 3		Type Ar	4 or 5				
New Construction		20,000	95,357	154,387	4,541	27,971	302,256
Reconstruction		20,000	63,571	154,387	2,270	24,225	264,453
Widen \& Resurface		7,000	14,832	90,128	3,068	11,883	126,911
Base \& Surface				154,387	24,974	19,730	199,091

> Table 3-M (continued)

Local Streets

Design Type 1

Type Improvement	$\begin{gathered} \text { ROW \& } \\ \text { Util. Adj. } \end{gathered}$	Grade \& Drain	Base \& Surface	Misc.	Engr.	Total
New Construction		95,146	151,114	2,798	27,396	276,454
Reconstruction		61,565	151,114	2,798	23,699	239,176
Widen \& Resurface		14,615	88,807	3,023	11,709	118,154
Base \& Surface			151,114	30,782	20,009	201,905

Design Types $2,4,6$

New Construction	80,784	128,304	2,376	23,261	234,725
Reconstruction	52,272	128,304	2,376	20,125	203,077
Widen \& Resurface	13,397	81,406	2,771	10,733	108,307
Base \& Surface		128,304	26,136	17,043	171,483

Design Types $3,5, \& 7$
New Construction
Reconstruction
Widen \& Resurface
Base \& Surface

35,839	67,279	3,274	11,703	118,095
21,815	67,279	2,567	10,083	101,744
	46,568	4,437	5,611	56,616
	67,279	13,094	8,841	89,214

TABLE 4-M
 Estimated Maintenance Costs For Arterial and Local Streets

Arterial Streets

High Type Pavement
Surface Width
$\geq 40^{\prime}$
$<40^{\prime}$
Intermediate Type Pavement
All Surface Widths 1520

Low Type Pavement
All Surface Widths 1380

LOCAL STREETS
Paved (High and Intermediate) 1638
Non-paved (gravel) 1390
Dirt 500

MUNICIPAL STRUCTURES
DEFICIENCIES AND IMPROVEMENTS
PRINT-OUT INTERPRETATION

General: The purpose of the municipal structures daficiencies and improvement program is to determine the present adequacy of structures on the municipal system and to project structure needs for the system over the same 20 -year period used in the municipal streets deficiencies and improvements program. For purposes of the study, each structure on the system is identified with a sequence number. This number matches the sequence number of the street section on which the structure exists. This makes it possible to use the structures program in conjunction with the results of the municipal streets program in determining what improvements should be made and when they should be made.

The basic unit analyzed by the deficiencies and improvements program is a single structure. The analysis is made in the following way:

1. The existing structure is rated on a point rating basis with 100 points being the maximum possible rating for structures on arterial streets. The rating is divided between a rating for design considerations (60 pts. possible), and a condition rating (40 pts. possible). For structures on local streets the condition was rated the same as on arterials, and an adequacy rating was used for structure width and vertical clearance instead of assigning design points.
2. The structure is then analyzed, through the computer program, and using the point ratings and other criteria, it is determined if the structure is deficient now.
3. If the structure is deficient now, an improvement type is set based on the type of deficiency. Next, a check is made to see if an improvement is called for on the street section. If so, the improvement year for the structure improvement will be set as the same year as the street improve-ment, except when a critical situation exists which calls for the structure to be improved immediately. If there is no street improvement called for, the improvement year will be set depending upon the severity of the deficiency.

If the structure is not deficient now, a check is made to see if a major street improvement is being called for which would make a structure improvement necessary to bring it up to design standard.

If an improvement is found to be necessary in the future, an improvement type is set, and the improvement year will be set by calling for the improvement to be made at the same time as the major street improvement, or if there is none, the improvement will be called for in the year that the structure theoretically becomes deficient.

It is possible to have two improvements called for in the 20 -year study period. When this occurs the first improvement will always be a waterway opening improvement, or a deck repair improvement. The second improvement will always be a widening improvement, or a reconstruction improvement.

The procedure outlined above is used on each structure, and during each structure analysis, needed information is printed on the computer print-out sheets.

Deficiencies and Improvements Print-Out

For each structure processed in the program, there will always be at least one line of print. There will be two lines if one improvement is called for and three lines if two improvements are called for. The first line will always show the present condition. The second and third lines, if any, will show the condition after each improvement.

Columns

1-2	COUNTY NUMBER - Numbered in alphabetical order
CO	according to county name. Example: Adair - 01
NO	
5-8	CITY NUMBER - Numbered in alphabetical order
CITY	according to city name. Example: Ackley - 0010
NUMB	
11-15	SEQUENCE NUMBER - Same as Sequence Number of the
SEQ	street section on which the structure is located.
NUMB	
18	STREET SYSTEM - The same as that coded for the
STREET	street section on which the structure exists.
S	
Y	
S	
20-23	STREET NUMBER - The same as the street number of
STREET	the street where the structure is located.
NUMB	
26-28	SPECIAL CLASS - The existing classifications are
SP	coded as follows:

$$
\text { Col. } 26
$$

1 - Freeway (non-primary)
2 - Local
3 - Collector
4 - City Arterial
5 - Primary Arterial
6 - Primary Expressway
7 - Primary Freeway
8 - Interstate
9 - Expressway (non-primary)
Col. 27
Proposed future Classification
l - To be abandoned
2 - Transferred to city from primary
3 - Transferred to city from county
4 - Transferred to state from city

Columns

26-28
SP
CLS

N
U
M

32-33
T S
Y T
PR

SPECIAI CLASS
(cont'd)

Col. 27 (cont'd)
Proposed future Classification

$$
\begin{aligned}
& 5 \text { - } \\
& 6- \\
& 7 \text { - } \\
& 8- \\
& 9- \\
& 0-\quad \text { No Change } \\
& \quad \text { Col. } 28 \\
& \text { Existing Location } \\
& 0-\quad \text { Outside Urban Boundary } \\
& 1-\quad \text { Inside corporation line } \\
& 2-\quad \text { Inside urban boundary line - } \\
&
\end{aligned}
$$

All cities with 1960 populations of 5,000 and above have urban area boundaries.

STRUCTURE NUMBER - The structures that are located on each street section will be numbered in conseeutive order from south to north and west to east by the use of this digit. The first structure on a street section will be number 1 , the second number 2, etc. Always start over with 1 on each new street section.

TYPE STRUCTURE - Coded as follows:
Wood Trestle.............. 00
Pony Truss 01
High Truss 02
Steel Beam or Girder 03
Reinforced Concrete
Girder.......... 04
Reinforced Concrete
Slab 05
Columns
32-33
TS
YT

PR \quad| TYPE STRUCTURE (cont'd) |
| :--- |

Columns

45-48
STR
WID

50-53
VER
CLR
55-56
A W
PI
P D
58-59
H
LD

62
S
A
F

64-65
D
A
T

STRUCTURE WIDTH - The horizontal clearance in feet and tenths of feet. This is usually face of curb to face of curb. If this is a divided structure, the narrowest width is shown. For twin structure, each structure will be recorded as a separate entry.

VERTICAL CLEARANCE - The minimum vertical clearance in feet and tenths of feet. Unlimited vertical clearance is blank.

APPROACH WIDTH - The approach pavenemt width in feet at the south or west end of the structure.

H-LOAD - Coded as follows:
Code

$\mathrm{H}-20$	20	$\mathrm{H}-10$	10
$\mathrm{H}-15$	15	$\mathrm{H}-8$	08
$\mathrm{H}-12$	12	$\mathrm{H}-6$	06

SAFETY STUDY - Indicates an obstruction or condition that poses a threat to safe driving and cannot easily be removed at low cost. When a safety study is coded on this form, the roadway form should also indicate that a safety study exists on the appropriate roadway section. Enter the appropriate code.

Code:
0 - No safety study exists
1 - The location, geometrics, or condition of the structure poses a threat to safe driving.
A.D.T. DATE - Shows the year of the estimated A.D.T. AVERAGE DAILY TRAFFIC- The estimated average daily traffic for the year shown.

Columns

73-74
JESIGN POINTS SW
TD

76-77
H
LD
80
V C
EL
R R

STRUCTURE WIDTH DESIGN POINTS - Points are assigned according to how the existing width compares to that shown on the design guides. The number of points to be assigned is found on municipal structure Tables 4, 5, 7, and 8, with a maximum of 30 points.

H-LOAD DESIGN POINTS - Points are assigned from municipal structure Table No. 9 with a maximum of 20 points.

VERTICAL CLEARANCE DESIGN POINTS - Points are assigned from vertical clearance ratings Table No. 10 with a maximum of 5 points.

SAFETY STUDY DESIGN POINTS - Points are assigned from Table No. 11 with a maximum of 5 points.

SUB-STRUCTURE CONDITION - For this evaluation all structural components normally considered as part of the sub-structure will be rated. This includes any part of the structure beneath the beams or girders (i.e. footings, piers, columns, caps, abutments, etc.). Concrete should be examined for cracking, spalling, scouring or other deterioration and rated down accordingly, particularly if reinforcing steel is exposed. Steel sub-structures should be examined for rust or other chemical deterioration severe enough to affect the structure's strength. Damage to steel and timber members caused by ice floe, driftwood or traffic should also be considered and rated down if the structure is weakened.

Enter Code Ratings as follows:

Adequacy Rating
10-14

5-9

New or like new condition Minor deterioration easily remedied by routine maintenance Major deterioration of some

Columns
86-87 (cont'd)

S S
UT
B R
structural members that can be replaced individually.
One or more entire bents need replacing or major repairs (i.e. abutments and first interior bents may be sound, but other interior bents damaged). Very poor condition throughout. Should be replaced.

89-90
S S
UT
P R

1-4

0

Adequacy Rating

5-9 (cont'd)

SUPER-STRUCTURE CONDITION - For this evaluation all structural components normally considered as part of the super-structure will be rated. This includes any part of the structure above the bearings seats, (i.e. beams or girders, trusses, stringers, rail, etc.) exclusive of the actual deck. Components of the super-structure showing wear or deterioration should be noted and this item rated down according to the severity of the structural deficiency. Damage to the superstructure by traffic or other external causes should be examined and taken into consideration on the overall evaluation. Enter code ratings as follows:

Adequacy Rating
15
$10-14$
$5-9$
1

New or like new condition Minor deterioration easily remedied by routine maintenance
Major deterioration of some structural members or damaged members that can be replaced individually One or more entire spans need replacing or major repairs (i.e. approach spans may be sound but main span should be replaced.
Very poor condition throughout. Should be replaced.

Columns

WATERWAY OPENING CONDITION - This item is to evaluate the condition of the opening beneath the bridge or underpass as it affects the structure or roadway being rated. Condition of the banks or slopes under the structure and adjacent to the structure are important considerations as well as the stream bed. This item should be rated down when there is evidence of flooding, erosion, or excessive maintenance on approaches and abutments at stream crossings. Other crossings should be rated down where sloughing or eroding of steep slopes is evident or where insufficient horizontal clearance is provided. Rate this item as follows:

Code

5

4-3-2-1 Conditions varying in degree from satisfactory to very poor. Very poor condition.

DECK CONDITION - The evaluation of the deck contion takes into consideration the riding surface or that portion of the structure actually in contact with traffic. Cracking and spalling of concrete surfaces, raveling and irregularity of bituminous overlays, and wear and deterioration of wooden decks are conditions which will lower this rating. Enter code rating as follows:

Adequacy Rating

5
3-4 Minor maintenance required. Isolated spots need repair.

1-2 Partial reconstruction required. Large sections need to be replaced or repaired.

Very poor. Complete new deck needed.

97-98	TOTAL POINTS - Sum of the design and the
TOT	condition points.
PTS	
103	DESIGN CLASS CODE - Determined from the design
D T	guides the same as the street section.
E Y	
S P	
106-107	IMPROVEMENT YEAR - The year the improvement
I Y	is called for.
M R	
P	
110-111	IMPROVEMENT TYPE - The first digit is called
IT	the backlog or future code, depending on
MY	whether the structure was found deficient
P P	in 1968 (Backlog) or in a future year during the study period (future).
	Code
	1 - Backlog
	2 - Future
	The second digit indicates the improvement type. Improvement types are:
	2 Reconstruction
	3 Widening
	8 Deck Repair Improvement
	9 Waterway Opening Improvement
114-115	CAUSE OF IMPROVEMENT - Indicates what deficiency
I C	caused the improvement to be needed. A list of
M S	these are found in Table 16.
PE	
119	IMPROVEMENT NUMBER - Possible codes are:
I N	Code
M B	1 - Improvement Number 1
P R	2 - Improvement Number 2

MUNICIPAL STRUCTURES*Structure Width 30
*Vertical Clearance 5
*H-Loading 20
*Safety Study 5
Superstructure 15
Substructure 15
Deck 5
Waterway Opening 5
TOTAL 100
*Arterials Only

EFFECTIVE DATE
JANUARY 1,1968

Table 4

Municipal Structures

Clear Roadway Width Rating For Expressway and Freeway (Maximum 30 Points)

Twin
Existing Struc: Rating width

Col. 1

30
25
20
12
6
0

Existing Struc. Rating Width Col. 2 Width Col. 2

Divided

30
36^{\prime}
$34^{\prime} \quad 28$
32' 26
$30^{\prime} \quad 20$
$27^{\prime} \quad 15$
$25^{\prime} \quad 5$
24^{\prime}

Table 5
Municipal Structures
Clear Roadway width Rating
For Expressway and Freeway Structures

Underpasses

(Maximum 30 Points)

Existing Structure Width	$6-$ Lane	Existing Structure Width	4 - Lane
	Col. 1		Col. 2
58^{\prime}	30	46^{\prime}	30
56^{\prime}	25	44^{\prime}	25
54^{\prime}	15	42^{\prime}	20
52^{\prime}	0	40^{\prime}	15
		38^{\prime}	10
		36^{\prime}	0

EFFECTIVE DATE
JANUARY I, 1968

$$
\text { Table } 7
$$

MUNICIPAL STRUCTURES
Clear Roadway Width Rating
(Maximum 30 Points)
ADT
Central Business District
Existing
Structure Width

Table 8

MUNICIPAL STRUCTURES
Clear Roadway Width Ratings for Underpasses
(Maximum 30 Points)
ADT
Central Business District
Existing Structure Width
84^{\prime}
82^{\prime}
80^{\prime}
78^{\prime}
76^{\prime}
74^{\prime}
72^{\prime}
70^{\prime}
68^{\prime}
66^{\prime}
64^{\prime}
62^{\prime}
60^{\prime}
58^{\prime}
56^{\prime}
54
52 '
50^{\prime}
48^{\prime}
46^{\prime}
44^{\prime}
42^{\prime}
40^{\prime}
38^{\prime}
36^{\prime}
34^{\prime}
32^{\prime}
30^{\prime}
28^{\prime}
26^{\prime}
24^{\prime}
22^{\prime}
20^{\prime}
18^{\prime}

* one-half of Design Standard Width

EFFECTIVE DATE
PAGE
JANUARY I, 1968

Table 9

MUNICIPAL STRUCTURES
Load Limitation Ratings (Maximum 20 Points)

Present
H-Loading
20
15
12
10
5
<5.

Design Standard HS-20 $\quad \underline{H}$

20
20
18 20
$13 \quad 18$
5
0
0

13
5
0

Note -- Assign 20 .points to all underpasses

Table 9A
Load Limitation Ratings
(No Present H-Loading)
Superstructure \& Substructure condition Points

$27-30$	20
$24-26$	18
$21-23$	16
$18-20$	14
$15-17$	12
$12-14$	10
$9-11$	8
$6-8$	6
$3-5$	4
$0-2$	2

PAGE
SECTION

Table 10

Vertical Clearance Ratings (Maximum 5 Points)

Code
0
1

Existing Vertical Clearance

| Unlimited -- 16.0^{\prime} | 5 |
| ---: | :--- | :--- |
| $15.0-15.9^{\prime}$ | 4 |
| $14.0-14.9^{\prime}$ | 3 |
| $13.0-13.9$ | 2 |
| $12.0-13.0^{\prime}$ | 1 |
| $0-11.9^{\prime}$ | 0 |

 \(15.0-15.9^{\prime} 4\)
 14.0 - \(14.9^{\prime} 3\)
 13.0 - \(13.9 \quad 2\)
 \(0-11.9^{\prime}\)
 0
 Points54

0

Points
5

Table ll
Safety Study Ratings (Maximum 5 Points) (e 0

Cause for Improvement Codes

Arterial Structures

1. Total Design \& Condition Points less than 40
2. Structure Width less than Approach Width
3. Vertical Clearance Less than 10 '
4. Superstructure rating less than 5
5. Substructure rating less than 5
6. Deck Rating less than 3
7. Waterway opening less than 3
8. Total Design \& Condition Points less than 70
9. Structure Width less than Design Width
10. Vertical Clearance less than 16.0 feet
ll. Deck Rating 0

Local Structures
12. Structure Width less than Approach Width
13. Vertical clearance less than 10 feet
14. Substructure condition less than 5
15. Superstructure condition less than 5
16. Sum of substructure and superstructure condition less than 16
17. Deck condition less than 3
18. Waterway opening condition less than 3
19. Structure Width less than Design Width

Improvement Types Used
2. Reconstruction
3. Widening
8. Redecking
9. Waterway Opening

Backlog Codes Used

1. Backlog
2. Future

MUNICIPAL STRUCTURES

Cost Assignment Program Print-Out Interpretation

General: The purpose of the cost assignment program is to assign costs to structure improvements called for in the structures deficiencies and improvement program. The main steps in the program are:

1. Each structure record is examined to determine if an improvement has been called for.
2. If a reconstruction, widening, or deck repair improvement is called for, the area of the structure is calculated by multiplying length times width.
3. The costs are determined by multiplying the costs per square foot found in the cost table by the area.

If a waterway opening improvement has been called for, the cost is taken directly from the cost table as a cost per project.

As the records are being processed in the program, the cost information is written on the computer tape, and printed on the computer print-out.

Municipal Structures cost print-out

For each structure analyzed in the deficiencies and improvements program, except for the underpasses, there will be at least one line of print on the print-out. The information on the left side of the print-out is identical to that found on the deficiencies and improvements print-out. Other information found on the print-out is as follows:

Print-Out
 Identification

STRUC Structure Width - This is the design width or width
WIDTH that the structure would have after the improvement was made. Width in feet.

Cost Assignment Program Print-out Interpretation Municipal Structures

Page 2

```
    Print-Out
Identification
```

STRUC

Structure Length - This is the length of the struc-

ENG
COST

ADM
COST
TOTAL Total Cost - Total of all costs on the corresponding cost

IMP
YEAR
Administration Cost line.

Improyement Year - Year improvement was called for, except when it is the last line of a record and shows only a maintenance cost, then an 87 will appear to indicate the last year of the study period.

MUNICIPAL STRUCTURES COST TABLE

Cost Per Square Foot (dollars)

Improvement Type	Construction	Engineering	Total
$1,2,3-$ New Construction, Reconstruction, Widening	15.20	2.15	17.35
$8-$ Redecking	1.93	2.27	24,000
$9-$ Waterway Opening Improvement	$21,000 *$	3,000	2

[^0]: *Shouldezs must be on both sides and 8' wide or better. Shoulder surface type must be gravel or better, stable year round.

[^1]: *Shoulders must be on both sides and 8^{\prime} wide or better. Shoulder surface type must be gravel or better, stable year round.

