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ON THE AXIALLY-SYMMETRIC DEFORMATION OF A HOLLOW
CIRCULAR CYLINDER OF FINITE LENGTH UNDER THE ACTION OF
AXIALLY-SYMMETRIC LOADING

by
C.T. Sun and K. C. Valanis

The boundary value problem of a circular cylinder under various loading conditions
has been investigated by many authors. As early as in 1833, Lamé (1) obtained the
solution of a long hollow cylinder loaded with constant internal and/or external pressure.
In more recent years the mixed boundary value problems concerning the elastic deforma-
tion of a finite length cylinder have been studied in a number of papers(2'8). However,
none of the above mentioned papers gives the exact solution which satisfies the field
equations of elasticity and the boundary conditions on the curved surface as well as at
the ends of the cylinder. The exact solution of the axially-symmetric deformation of a
solid cylinder of finite length was first achieved by Valov (9). He introduced two sets of
solutions which satisfy the field equations of elasticity. One set of the solution is given in

the form of the modified Bessel functions of r of the first kind and sine and cosine func-
tions of z. Another solution is expressed in terms of Bessel functions of r of the first kind

and hyperbolic functions of z. In order to satisfy all the boundary conditions it is
necessary to expand the modified Bessel functions in terms of Bessel functions and the
hyperbolic functions in terms of trigonometric functions. All the boundary conditions,
then will be satisfied by equating the Fourier coefficients. The final solution was given
in the form of an infinite series.

In this report we solve the fundamental mixed boundary value problem of the theory
of elasticity for the axially-symmetric deformations of a hollow cylinder of finite length.
The approach used here is similar to that employed by Valov.

Take the cylindrical coordinate system as shown in Fig. 1.
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It is required to find the radial displacement u(r, z) and the axial displacement w(r,z)
which in the interior of the hollow cylinder a < r < b, -h < z < h satisfy the Lamé

differential equations
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and which on the surface of the cylinder satisfy the conditions
w(b,z) =0 Trz(a,z) =0 Trz(r ,+h) =0 (2)
u(b,z) =0 o (r,#h) =0 0_(a,2) = £(2) . 3

Here v is Poisson's ratio and e is the dilatation, i e.,
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The stress tensor components can be expressed in terms of u and w by the following

relations:
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where » , G are Lamé constants. The boundary radial stress f(z) is assumed to be sym-
metric with respect to plane z = 0. No generality is lost by the above assumption, since
any loading can always be represented by the superposition of a symmetric and an anti-
symmetric one with respect to plane z = 0.

To solve the problem we introduce the Papkovich-Neuber representation of the solu-
tion of the Lamé equation. In the case of axially-symmetric deformation this takes the

following form (9 in cylindrical coordinates.
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where &, & 1 and & y are functions which satisfy the Laplace equation. Letting



¢ = [C(tll)IO(anr) ¥ C(IZI)KO(Q’nr)] i Olnz P
¢1 =0, (7)
¢2 = [C(i)lo(anr) + C(i)Ko(anr)] cos & z ,

then in view of equation (6) we obtain the solutions of equation (1) in the following
form:
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where L( ) (12]) (3), -(4) and « n are arbitrary constants and I, (« 1), I eyt
and KO ((x nr), 1 (« nx) are modified Bessel functions of the first and second kind

respectively. Further, letting
_ {80 (2)
@ = E& n JO(er) + A o YOO\mr) cosh ?\mz
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¢2=o

then again in view of equation (6) we have a second solution of Lamé equation (1)
as follows:
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where A |, A(m), A o A m and A m are arbitrary constants and JO(/\ mI) d 1A gy EDs
and YO(A mr), Y 1 (n m?P) are Bessel functions of first and second kind respectively.

D

Noting that u = Cor + T, w = 0 are also solutions of equation (1), the complete

3) ,(4)

r ’
solutions u(r,z) and w(r,z) are then expressed in a series form as:
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Since f(z) is assumed to be symmetric with respect to plane z = 0 it follows that u(r,z)
is an even function of z and w(r,z) is an odd function of z as shown in equations (9)
and (10).

With the help of equations (11) and (5), the first and second boundary conditions

(2) lead to the following equations:
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The above two equations will be satisfied if the following relations are satisfied for all

m and n:

i (1) ¢ 4 (2)
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The four relations in equation (16) are homogeneous. In order to have non-trivial
solutions for A(l) A(z) A(‘S) and A(?n) we must equate the determinant of the co-
efficients of A(l) A(2) (3), and A(4) of equatlon (16) to be zero. This leads to the

following characterlstlc equatlon
Jl()\ma)Yo()\mb) - Yl()\ma)JO(Kmb) =0 (17)

Hence, the eigenvalues i ,, which are the solutions of equation (17), are determined.

From equation (16), we have two independent relations as follows:
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In order to satisfy the last boundary condition (2), and with the help of equation (18),
we must have
Z‘” Z (1 (3) (3)
n
n=1 m v|:(C n A n )Il(anr) w2 n Olnr]:O(o{nr) B
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Equation (20) will be satisfied if we set
Sin anh =0 (21)
and
. (3)
-(1-2v) Sin h A h + X h cos h A h) A +
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From equation (21), we must have
anh = nfl (n=1,2,3...)
from which the eigenvalues
nr
= — 23
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are determined. From equation (22), we have
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In view of equations (18) and (24), we have determined A 1, » A 1 and A m) in terms
of A(r?l)' From equations (14), (15) C(i) and C (i) can be eliminated. We have
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With the help of equations (18), (24), and (27), the remaining boundary conditions

(3) lead to the following three equations:
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+ 4G (14V) (é(i)c(rll) + Y(i)c(i))} Ky(@ r) -
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m )—2(1—\)) (s08 b Aok + sin h ?\mh) 2 m

_ I.(x a) K, (o_a)
R(i) (n} = 2(?1-13) E{O’nlo(o’na) - = . } + {anKO(ana) u _l'—an_}é(rzl)

10

Zm(A




K. (> a)
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s i 8 Il(ana)} +

anG

TS {}zv l)a I (a a) + 2(1-2v)

K (cr a)
+ {YnKo(a/na) Pl Tl - } (2 4

K, (x_a)
+ 2 {(Zv-l)anKO(ana) - 2(1-2v) _LG__ - afnzaKl(ozna)} Y(iﬂ C(3)

n

F3(z,A(i)) = 2—)2%_—(% [Z]O(Kma) + BmYO()\maﬂ A(i) - z sin h )\mz +

AmG (3)
+ (1Y) JO(Ama) + BmYo()‘maz‘ (1 - kmh coth )\mh) A a,

cos h ?\mz

[oe]
f(z) = fO + _S_l fn cos oz
n=

In order to equate the Fourier coefficients of the functions of equations (28), (29) and

(30) and thereby to determine the unknown constants Cy D, C(l) C(3) and A(3)
it is necessary to expand F (z, A3 )) F (z A(3)) in terms of cosine serles and Fo(r, n) in

terms of the eigenfunctions J 0(/\ r) + /3 - 0(/\ r). We have

F (2,82 = FD ) +Z D) cos 0z (h<z<n

n=1

F2(r,n) = ; F(ri) (n) E]O(?\mr) + BmYo(?\mrﬂ (a<r<b) (31)

F3(Z,A(§l)) = F(g) (A(i)) 2 ; F(i) (A(i)) cos ¥z (-h <z <h)

In view of the orthogonality of the eigenfunctions(10), it is not difficult to evaluate the
Fourier coefficients and thereby to obtain the expressions:

(1), (3)y =¥ . . 1(3)
F 0 (A n ) = 2(1-h Ao l:]l(?\mb) + BmYl()\mbE| Sin h )\mh A o
1y, (3) ;-l)n'lkm ‘ anz - \)()\m2 + anz)
= n (a m ) = (1-V)h l}l(kmb) + BmYl()\mbg (O 2 - 2)2 X
m n

(3

xSin h A h - A
m m
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o (n) FIEEEY) [G {IO,mn + & n KO,mn + 4(14+Vv) 6 o Ko

,Imn

* *
26 My ¢* ¢ 4 g daqent + YOy "
n n 1l,m n 0,mn n O0,mn

n 1,m

+ 2010+ 4(1+v)Y(i)K; - 2Y(i)anKi mé} c(iﬂ

£3) 4,635 _
Fryo@r ) =0 (32)
1.2 2
2(-1)"7 6N ‘o
(3),,03)s _ m_n Smhxmh (3)
PRy - g [5,0, + 85,0, >J ;a8

o
+n)

where

Io(anr)==;§; Iz’mn [}O(er) + BﬁYo(Am;J
r1, (@ 1) =mZ:l It’m ‘:JO()\mr) + smyo(xmrj
K, (@ r) =mi;l Ko m [JO(er) + BmYO(Kmrzl
K, (o 1) =;§;jxi,mn [go(xmr) + emyo(xmfﬂ

*
The evaluation of IB,mn’ I;,mn’ KB mn and K 1,mn will be shown in the Appendix.

(a<r<hb) (33)

Now substituting the series (32), and the expansion of unity
E (1) ‘ ‘
= < <
1 : L JO()\ r) + 8 YOO\ r) (a r b) (34)

where the expression of constant L(r;) will be given in the Appendix, into equations

(28), (29) and (30) and equating the Fourier coefficients, we have five equations:

D ©
0 v (2), ,(3) _
C0b+b__2—(1__\))'ﬁzm=11'm Am 70 e

(D). (1) MG 4 () . ) _ -
E:nCn +“‘ncn (1 V)h ZH Am 0 (n=1,2,3...) (36)
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4o (1) < (2).(1) , . (3) (3
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1-2v m O n
LA 20 (me1,2,3..0) (37)
c D f
0 0_ 0
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a
o £
2).(1 2) (3 1 4 3
e A _ET%)TZ 1 . A0 . = (1=1,2,3...)(39)
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9
L(m) % %5 [Jl(xmb) + Bmyl(xmbil Sin h Amh (40)
1M _ - [1 1,2 )
®a T2 |2 11D -2 O K ) F 8T Ko () -
- (4v-2)1(1(oznb)-}>] (41)
1 _ "% 1 .(2)
M = Ty (GU-DT () + o bT (b)) - 5 YUK (@) -

- (4v- 2)y(4)K (¢ b) + by (oz b)]

2 2
Xﬁl{§ - VA" + o)
gD n m L] } \Jl()\mb) + BmYl()\mbi’ Sin h Amh (42)

mn 2 2.2
(Am + o )
2 _ _om® [« 5 (2 * )k
Bom = 305 Eoum ¥ ¥ n aun T AP0 Ry o
_ %) _*
26 n nKl né] k.
gl - o’ LOAYTE 4+ 20 T y(®*
mn  2(1l-V) (159 0,mn nll,mn a Ko ,mn +
(4) - %), *
+ 4(1+V)Y O ,mn 2y n O[nKl ,mn (44)
(3) _ _Am h)\m
L o 2 (1Y) (cos h Amh + —5 Kmh) (45)

|

£ (2) I (a a)
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K (C! a) K, (o_a)
+ ——-—}6(2) +2 %2v-1)an1<0(afna) - 2(1-2v) -

@ aK (@ a)} 5(‘*] (46)

]:1 (o/na)

u(i) = - 2(1 \)) l: {(2\) 1)ar I (a' a)y + 2(1-2v)

K, (@_a)
+ afnzall(ana)} + {‘YnKo(ana) + -1_51_} Y(IZI) +
K, (o _a)
i {(2\"1>°’n1<o<°‘na> - 202y i “nzaKlwna)} Y(ﬂ

%) an? Am®

B o= 5 55 [JO()\ma) + BmYOO\ma) Sin h A h 47)

+

(Am~ + on")

From equations (35) and (38), we obtain C0 and DO in terms of A(I'?;l) and fO

S V(1-2v)b Z— HOROR 1-2v 0 am
0 5a-vy [p2-2v) + a%]n &= Q%(1-2v) +1 %
b - Vb L(2), ) _
O 2(1-v) [(-) 1-2v) +1hpt ™ "
a-29p>  fo

= — (49)
&?-2v +1 %

With the help of equations (36) and (39), we express C(rll) and C(?l) in terms of A(rs;l)
and f,

21yl ¢ -1y L, (z)
(v _ 1 n (4),(3) _ (1,3 _
e n L(4) [ (1-v)h ZH mn m —(1-v)h ZH mnA m
n
(1)
v 3
n n
-1, (1) 2~1.42)
-2(-1)™ @ (-7t
(3) _ 4),(3) n (1), (3)
2 (4) (1-Wh Z e B J i ¥ 3 Z R
m=1 m=1
ea?fn]
G (51)



where
4) _ (1), (2 (2), (1
Ln_en“n-enp‘n)

Now, substituting C o C(l) C(3) into equation (37) we obtain an infinite systems of

infinite algebraic equations for the unknown constants A(3)

m
(3) 2v%p B Z‘” @, ,
Y
Ay = K (3) .
-y [pPa-av) +a b1
N | : LD
1 E (3 v m 0
T T1I-h £ s (3) g hl, 62

i=1 (= ) (1 2v) + 1L

(m=1,2,3...)

where
i e 1 n-1 (1), (2), (4) n-1 (2),(2). (1)
Tmi = (3) Z—l L(4) =Ei=L) b L mnPI in * =) Mo 2 mnH in +
L m n= n
n-1_ (1) (3) (%) n-1_ (2) (3) (D)
+2(-1) n mn in - (D mn in] (53)
LS L (2 (1) | (3 (D
Ym - L 3) (4) (# m"™ n mn n ) (353
m

(m=1,2,3...)
Therefore, the boundary conditions have been satisfied, and u(r,z), w(r,z) of equation
(11) represents the solution of the mixed boundary value problem of a finite hollow
cylinder under axially-symmetric loading. The eigenvalues in the radial direction » ;,, are
determined from the characteristic equation (17 ) and the ones in axial direction «,, are
given in equation (21). The constants L C(l) and C (i) are uniquely expressed
in terms of A(m) in equations (46) to (49) respectlvely The constants A(l) A(2) and
A(4) are obtained from equations (18) and (24). From equation (26), we have the con-

stants C (n) and C (;41) which are given in terms of c@) and C(?l). The constant A(m)

is determined from infinite system (52). It was shown by Valov 9 that the infinite system
(52) is bounded. Then equation (11), which gives the solution of the problem, converges
uniformly in the interior of the cylinder-h < z < h,a < r < b.

The stresses can be evaluated readily by using the stress-displacement relations
given by equation (5). The actual formulae are omitted because they are too lengthy.

Finally it is interesting to observe that, in the case of v = 0 and the finite cylinder
is under uniform pressure, the solution will beidentical with the one obtained by Lamé (1)
in 1833.



APPENDIX

The evaluation of constants I* ¥, K* , K* and L(l). From pp. 434
O,mn’ "1,mn 0,mn 1,mn m
Ref. (10), we have
b
Dmn = . ryO(Kmr)yO(Knr)dr = 0 m#n

LI
Dmm . ryo()\mr) dr

b2

where
yo(}\mr) = Jo()\mr) + BmYO(er)

is the solution of the differential equation

and satisfies the boundary conditions

ToOgD) + B Y (A b)

]

Il
o

Jl(Kma) + BmYl()\ma)

0 (i.e.

(i.e.

2 2 2
2 [}1 (}\mb) " BmYl(kmb)] - ;_ |:JO (Kma) + BmYO()\maﬂ

Yo ph) = 0)

dy0

dr r=a

as shown in the second and fourth equations of (16).

& *
To determine the constants I 0,mn’

*
Il,mn’

K

*
0,mn

= 0)

(55)

and K’{ i in equation (33)

and L(r;) in equation (34 ), we multipry (33) and (34) by r [JO(/\ ¥+ P mYO(Amr)]

and then integrate from a to b, getting

b
y ‘/; rIO(Olnr) [JO(Xm,r) + BmYO(?xmr)] dr

I0 ,Mn Dmm

2
. j:] ia Il(Olnr) JO()\mr) + BmYO()\mer dr

T =

1,mn Dmm

(56)



b
L rKO(afnr) Jo()\mr) +BmY0(>\mri| dr

* -
KO,mn - Dmm

b 2
. _‘l R (@ x) Ero(xmr) +BmY0()\mrﬂ dr
Kl ,mn Dmm

b

J. (A +B Y. (A d
L(l) _L r [0( mr) Bm 0( mr;_l r
m Dmm
b
= YD Jl()\mb) + BmYl(?\mb):l (57)

The integrals of equation (56) can not be evaluated by an elementary method. However,
we can obtain their values by some method of numerical integration such as the trap-

ezoidal rule. A numerical evaluation of the solution will be given in the very near future.
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