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AXTISYMMETRIC WAVE PROPAGATION

IN A SOLID VISCOELASTIC SPHERE

by

K. C. Valanis and C. T. Sun

Introduction. The problem of wave propagation in an elastic

isotropic solid sphere has not been attacked in its full generality
in the past. A restricted problem of steady oscilla:ions has been
investigated(l) but we are not aware of any work beyond this stage.
This is all the more surpricing because this problem has a variecy
of practical applications pertaining to seismic waves, as well as
propagation of disturbances due to explosions on the earth's surface.
In this paper we solve the more complex problem of the visco-
elastic sphere under axisymmetric loading; the material of the sphere
may have general relaxation characteristics but its Poisson's ratio
is restricted to having a constant value for all time. Evidently the
solution of the elastic problem may be obtained as a special case.
The method of solution is based on a superposition principle proposed
by Valanis; this principle was discussed at length in previous
papers(2’3). However, for the sake of completeness, we give here an
outline of its essential features.

The Superposition Principle. Since the elastic problem is a

particular case of viscoelastic éroblem we proceed to treat the

latter only, in its full generality. Let the interior of the body be
denoted by D and its boundary by B. Let B} be part of B, and By its
compliment. The following wave problem is defined with respect to a

cartesian coordinate system xi for a linear, homogeneous, isotropic,



viscoelastic body. A comma preceding a suffix denotes differentiation
with respect to the corresponding co-ordinate, and a repeated index

denotes summation over the range of values of the suffix. In the usual

notation:

o u.

i
o155 =2 (1)

i ot
035 = bi3 M ¥ exk T 2 * ey (2)
Oij nj== Pi on By (3)
u; = 0 on By (4)
Bui

. el 0, t =0 (5)

where for convenience of notation,

t afz
£ % £y = j fl(t-'r) ST dr (6)

With the assumption of constant Poisson's ratio

A(E) = A G(E), w(t) = pg G(t) Q)

where A, and puo are constants. Thus using eq. (2) in egqs. (1) and (3)

we have the following displacement problem:

azui
* i % = 1
(Ko + MO)G uk,ki + by ¢ ui,kk P atz in D (8)
Ao B % U g 0y + pg G * (ui 3 uk,i) n, = P, on By 9)

u; = 0 on B, (10)



w ==— =0, t=0 (11)

To illustrate an essential feature of the problem, take Laplace Trans-

form of eq. (9) to find

)\O PE Ek’k nj + Ko pa (El,k + Gk,l) np = Pi (12)

Thus, in view of eqs. (8), (10), (1l1) and (12), if u; is a solution

of the above problem, then A ;i is a solution with A Ei replacing

P, in eq. (12). We write eq. (12) in the form:
Fi
Ao Tk 0y T b (U i Yy ) n = 5F (13)

Therefore without great loss of generality we can replace the right
hand side of eq. (13) in the real plane by P; (x)H(t) and thus obtain

canonical solution*. The actual solution will be obtained from the

relation,
Y tact) = Ui(can) % =P" U (can) B (14)
where
B, ¥ Pi(xk) g(t) (15)
pG = 1/pJ (16)

and J(t) is essentially the creep function in shear.
For the sake of conciseness we introduce at this point the

following notation:

* This inevitably implies that the most general form Pi can take is given
by eq. (15).



Ly {00 = O + 80 W g ¥ Bo% e (17)
By () = Ao Bt Ho(uy o ) m (18)
Le <“1> = (g + ) Gruy oy B G* Uy g (19)

We are now in a position to formulate the canonical viscoelastic

problem as follows:

32
Yy
Lg (ui> = —5 in D. (20)
ot
B {ui>= P, (x,) H(t) on B,. (21)
u; = 0 on B2 (22)
aui/at =u; =0, t =0, (23)

It is assumed that P;(xyx) do not give rise to any resultant moments
but they may possibly give rise to a resultant force R;.
To derive the stresses we make use of eqs. (2) and (14) in view

of which,

61j = P8 {30 ﬁ(can)k,k 61j + uo<ﬁ(can)i,j ¥ u(can)j,ii}(24)

Thus to obtain the stress distribution from the canonical solution

we employ elastic stress-strain relations.

In particular if g(t) = H(t), i.e., the surface loading on the
body is a step function of time, then one obtains from eq. (24) the

simple result

Gij - Ao u(can)k,k 6ij " Ho {%(can)i,j * u(can)j,ij} (25)



The superposition principle consists in defining (i) a static

solution U; which satisfies the conditions:
L, {u,)=0inD (26)
B, {U;) = Py(x) on By, U; = 0 on By, (27)
or, where By in null,
L, (pi} = poj (26a)
Bo (?i) = Pi(xk) on B2 (27a)

where o; is the rigid body acceleration vector to the unbalanced re-
sultant force Ry; (ii) a reduced solution V; which satisfies the fol-

lowing conditions:

2
97V
LG <Vi> =p 2 in D (28)
ot
B, {yi} =0 on By, V; = 0 on B, (29)
BVi
Vi = Ui’ 3t ° 0, t = 0. (30)
Then, uss such that
u; = Ui =Wy (31)

is the solution to the canonical problem. The reduced solution can be

further decomposed into an eigensolution and a solution to a Volterra

integral equation of the second kind, through the substitution

v, =D A v,™ £ (o) (32)
n



The functions A (n) satisfy the conditions

{(“}+pk2 (™ =0 4n D (33)

n
B, { } 0 on By, vl( P 0 on B, (34)
The initial conditions are satisfied if
> Ay vi® =y (35)
= ,
and fn satisfies the integrodifferential equation
2 d2fn
k G* £ (t) + =0 (36)
n n 2
dt
with the initial conditions
df |
£,(0) =1, 3 =0, t =0 37)

It was shown by the author in previous papers(2 ) that the

(n)

vector functions vy are orthogonal (and may thus be made ortho-

normal) so that in view of eq. (35)

A =f vi(“) U, dv (38)
D

Thus in summary, the superposition principle reduces the solution

of the wave problem to those of a static elastic problem, an elastic
eigenvalue problem, and an integrodifferential equation of the
Volterra type involving time only. Thus
- _ (n)
u; (x,,8) = U, (x,) En Ay v ™) £,(0) (39)

Definition of the problem. We consider a solid isotropic visco-




elastic sphere of radius a, unstressed and unstrained and in a state
of rest at time t = 0. At this time an impulsive axisymmetric normal
stress is applied to a small region of the sphere's surface so as to
consistute a reasonable approximation to (a) a concentrated load
applied to a point on the surface, and (b) two concentrated loads
diametrically opposed. In case (a) the sphere will acquire rigid
body motion in addition to its being deformed, whereas in case (b)

the center of the sphere will remain at rest. See Fig. 1.

(a)

Figure 1

In terms of the spherical coordinates r, 6 and ¢. See Fig. 2.

P(r,0,¢)

Figure 2



and in view of the prevailing axisymmetric conditions with respect to

¢ we have the following relations in the usual notation:

w =0, for all r, 8, ¢ and ‘t. )
u =u(r,8,t), v = v(r,8,t)
Ur¢ = 06¢ =0, for all r, B, ¢ and t . >(40a)

Op = or(r,e,t), Og = Oe(rae,t)s U¢= 0¢(r,e:t):

where u, v and w are the displacements in the r, 6 and ¢ directions
respectively.

The initial and boundary conditions of the problem are:

u=v=%‘§=%=oatt=o (40Db)
Org = Opg = 0, (40c¢)
Org ¥ 0 at r = a, (404d)

GOH(t), 0<6< 90
ag_ = (40e)
0,86: < 8.s5mn

Problem (b) differs from (a) only in the boundary condition
(40e) which now is

o H(t), 0<6<B,mB <06<m
o - " =0 o— -~ —=
0, = (40f£)

0, 90 <p<m- eo

In accordance with the stated superposition principle we obtain



the static solutions first. Note that the eigenvalue problems (a)
and (b) are identical.

Analysis of the Static Problems. We proceed with the analysis

of the static problem (a). As stated in the general theory this is
an elastic problem. 1In the absence of body forces the static problem
is solved conveniently(A) by the use of the Papkovich-Neuber harmonic

potentials ¢ and ¥ such that
u = Grad(¢p + r-¥) - 4(1-v)Y (41)

When body forces are present eq. (41) is still true but the scalar

potential ¢ is no longer harmonic but now satisfies the equation

= )

? kk 5 (42)
1

where () is the potential from which the body force is derivable and c¢;

is the speed of the dilatational wave. In effect if g; is the body

force vector then

gi = "‘Q . (43)

s 1

In terms of the spherical coordinates (r, 6, ¢) and in view of

the axisymmetric conditions indicated above, eq. (41) may be written

in a more special form(z) given by eq. (44), i.e.,
U = %% + (r %% - (3-4v)%} cos B (44a)
vV = % %% + cos f %% + (3-4v) sin B | (44b)

where Y is the only non-vanishing component of the vector ¥ (0, 0, Y).
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To simplify the presentation of the solution let

9= 0, + 9, (45)

where

and ¢2 is the particular solu;ion of eq. (42). At this point some
elaboration on the boundary conditions of the static problem (a) is
pertinent. In general, the stresses obtained from the particular
solution ¢2 will not vanish on the boundary r = a. So the boundary
conditions will inevitably have to be modified. In particular, in

our case:

¢2,kk = - Pz (46)
where

B = - £ (47)

@) T ( + 2)

and F is the total vertical unbalanced force acting on the surface

of the sphere. The particular solution of eq. (46) is

¢, = - % 23 = - % r> cos 8 (48)

Let Uy, Vy, 0p95 Org2 be quantities associated with ®y. Then it

transpires that

o9
2 2 3
Uy =35 = = % r” cos™H (49)
a9
Vy = % 5—2 = % r2 c0326 sin B (50)
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A e S {}r cos B + 2ur cos3e> (51)
i 2 :
Org2 = wBr cos™ O sin O (52)

It is obvious from eqs. (51) and (52) that 09 and Srg2 do not
vanish on the boundary r = a. So, to satisfy the static boundary

conditions at r = a:

o = ; (53)

Ore =0 (54)

we must set

A
@
A
@

-a, + B {Xa cos O + 2ua cosze}, 0<

Or1 (55)
+ B(Aa cos B + 2ua cos36), B, <6 <m

Oppgl = - 2uB a c0329 sin 6 (56)

where 0.1 and 0.g) are the stresses derived from the potentials ¢;
and Y. It further U; and V; are the displacements associated with

¢1 and Y then the solution of the static problem can be written as

follows:

v=u; +0, (57)
V=V, +Vy (58)
Op = 0p1 + 0pps Org T 9rp1 * Orp2 (59a,b)

The solution now to the static problem is straight forward; fol-
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lowing Sternberg,et al.(5)

- 00 - 0
- . n+1 _ (nt+l) (nt+4-4V)
U1 Z %n "pt2 By ) Z bn ntl
n=-2 T n=- r
PG (60)
- sin 0 P'n(x) =t
Vl - — an n+2 - e — bn
n=-2 r n=-
(n-3) + 4-v p’
rn+1 n+1(x) (6L)
L P (x) =00
o1 = 2u, an(n+l)(n+2) 3 + 2u E bn(n+1)
n== Y n=-
P (x)
n+1
+ i L5
[ (n+1) (nt+4) 2v] rn+2 (62)
n+2 ¢ 4
= 2 S a sin 6 P _(x) +
o
o1 ‘-3 n rn+3 L
, v
E 2 1 + 2V) sin © P an®
24 5 bn (n + 2n - rn+2 (63)
n=_

where Pn(X) is the Legendre polynomial of order n; the argument x
stands for cos § and the prime indicates differentiation with respect
to x. The coefficients a, and b will be determined from the stress
boundary conditions at r = a.

Let

]
(4]
=]
+J
=}
~
bl
~

o (a,x) = £(x) (64)

n:

ore(a,x) = g(x) = sin 6:2:: ﬂnPln(x) (65)
1
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Then it may be shown that

(n2+2n-1+2\))§n + (n+1)(n2-n-2-2\))T|n

-n-1 = 2 2
2(n-1)<b +n+1+(2n+1)§> a™”
(n=2,3,4...) (66)
b_n_z ) Sn + nnn
2 {n2+n+1+(2n+1)v} a®
(n=0,1,2...) (67)
where
1
) 2n+1
S =—5‘2——f £(x)P_ (x)dx, (68)
-1
1

+ -1):
My 22 L LEIT%_ sin eg(x)P'n(x)dx, (69)

-1

f(x) is given in eq. (55) and g(x) is given in eq. (56); in particular
g(x) = -2uBax? (70)

The solution of the static problem (b) is obtained along the same
lines. 1In this case there is no body force and the solution can be
obtained directly from the harmonic Papkovich-Neuber potentials ¢

and Y. The boundary conditions at r = a are now:

o 0<6< 96
Oy = 0 6, < 6 <Tm- 6, (71)
“Tq me B, €£8Em

Org = 0. (72)
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In this case, the solution for U and V has the form given by eqs.

(60) and (61) but of course the values of the coefficients a_ and bn

n
are different; their values are still obtained from eqs. (66) and (67)
only now T, = O for all n. The coefficients §, are obtained from eq.

(68) where f(x) now stands for the expression given in eq. (71).

The stresses, naturally, have the same form as eqs. (62) and (63).

Analysis of the dynamic problem. The dynamic solution is derived

most conveniently in terms of the displacement scalar and vector
potentials ¢ and V. Again, because of the prevailing axially-

symmetric conditions the vector ¥ has only one non-vanishing com-
ponent which will be denoted by Y. 1In spherical curvilinear co-

ordinates, ¢ and Y satisfy the following differential equations:

2
ve=-1_229¢ (73)
2 Atz
€1
. 2,
PR e i S (74)
Z .. 2 2 2
r sin" @ c, ot
where
2 oAt 2u 2 _p
€1 0 » €2 o
and
213 23 1 3 (sin g2
¥ 2 or 0% ar) + 2 . o6 i 56) L
r r sin 0
The derivation of eq. (74) is given in Appendix I.
The solution, in terms of displacements u and v, may then be
obtained from the relations
_d0, ¥ 1 3¢
u St + - cos B + T 56 (76)
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~logp oY ¥
M r 96 or r (73

The boundary conditions are now homogeneous, i.e.,

0, = ggidw 0 atr =a (78)

u =U (79)
t=0

v =V (80)
t=0

-a—u -— é‘! - =

St 3t 0 at t 0 (81)

Following the general theory and in view of eq. (73)

¢ = E & (r,0)f (t) (82)
n:
where
-5k
$,(r,0) =Ar ° Jo4u CEI r) Ph(x), (83)

Pn is the Legendre polynomial of order n and Jn+% (EL r) is spherical
c
1

Bessel function of order n. Similarly in view of eq. (74)

y =Z ¥ (r,0) £_(t) (84)
-

where
=L k
%n(r,e) = B 2 Jn+% (EE r) Pnl(x) (85)

and Pnl(x) is the associated Legendre function of order n and degree 1.
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Because of regularity requirements at © = o, the modified Lengdre func-

tion in(x) of degree one and order n is excluded from the solution.

Using eqs. (76) and (77) the disblacements are obtained readily
and are given in eqs. (86) and (87), i.e.,

Q0

u = §= Anun(r,k)Pn(x)fn(t) (86)
where
_ .-% In k k
un(r,k) =r 2 [% Jn+% (EI r) -.%E-Jn+3/2 (EI rﬂ
B
- k
-Toam) 325 1) (86a)
n n+3s Cy
and
_:if: 1
v = - Anvn(r,k)Pn (x)fn(t) (87)
where
3/2 k Bn -3/2 k
v, =t Jn+% (Z_ r) - N (n+l)r Jn+% (E_ r)
1 n 2
k=% k
SR S — r) (87a)
Cy n+3/2 <, ]

Using now isotropic elastic stress strain relations the stresses are
found to be

o = 2u AF (r,k) P_(x)E_(t) (88)
=

where

= k
F(r,k) = [{l(n-l) - %_—;—chlrﬂ} ) (lcilr)
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B
k k _5/2 n
T2 T sy r>] £ - B P

k =
[:(n-l) Jn+15 (c_ r) - 1;— r Jn+3/2 (—(1:5— r):] r 5/2 (88a)
2 2 2
and
o5 =2 #AG (r,k) B lGE (1) (89)

n=1

where
- k k k -5/2
Gn(r,k) =2 (n"'].)Jn_*_}é ('C_l' r) - C—lrJn+3/2 (C—l r)] r

4

:s>|:sw =~

2

2 k 2 k

[(-Zn e R ) Tty )
Co 2

k k -
= 2 o Jn+3/2 (_C_E r)] r 5/2 (89a)

It remains now to satisfy the homogeneous boundary conditions given

by eq. (78). These yield the relations:

F_(a,k) = 0, G_(a,k) = 0 (90)
ie.,
A [{n(n-l) o (%I a)z} Tt (ff—1 2 + 235 a Jpay (%‘I a)]
-B_n(n+l) [(n-l) Tl € ey 1;—2 a Ju3/z (& a)] =0 (1)
and

k k k
2An [%n-l).]n_‘_% (E-]': a) - 'C—l' a Jn+3/2 (C_l a:]

2

k k k
+Bn [(-2n2+ 2+—2 a2) Jn+% (F- a) - e B

c, 2 2

k -
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Equations (91) and (92) lead to the characteristic equation

k_ k L3
2n(n+1) En-l) Jn+1/2 C2 a) A C2 a Jl’l+3/2 (C2 a]

En—l) I+ (%I a) - 1;—1' a Jp+3/2 (-1c{—1 aﬂ + [{n(n-l)

1-v k 2 k k
_1—_'2—\)(2_1&)} n+/ (_ a)+2 1aJn+3/2 (C—la)]

2
2 k k k k
E-Zn + 2 + — —5 a ) J (—'C2 a) - 2 _CZ a Jn+3/2 (—c,) a)] =0
c 'S

2

(n=1,2,3...) (93)

Also either of eqs. (91) or (92) relates B, to A,.
It is important to observe that for each n eq. (93) possesses
an infinity of roots k. It is, therefore, more meaningful to denote

the roots of eq. (93) byk ;.. Thus eqs. (86) to (89) are now re-

written in the form

u = _ AnmunmPn(x)f (t) (94)
n,m=1

EE:::: AnmVnmPn (X)fnm( t) (95)
n,m=1

E ZuAannmPn(x)f (t) (96)
n,m=1

Srg =iﬂ Zemy HA L rChmt n (X)f ( ) (97)

where
Bon = un(r,knm) (98a)

Viin = W Ur ke (98b)
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o]
I

nm F (rs nm) (98¢c)

(2]
]

Gn(r k

ko) (984)

nm

It now remains to determine the unknown constant Anm‘ This is ac-
complished by satisfying the initial conditions of the dynamic problem
given by eqs. (79) and (80). (Condition (8l) is automatically satis-
fied by the appropriate of initial conditions on f_ _(t) according to
the general theory.) This concludes the anélysis of the dynamic
problem.

Solution of wave propagation problem (a). Before we proceed

with the analysis it is more convenient to express the static solution

in the slightly different form shown below

U =j§ rd [a-j-Z(j+1)Pj+1(x) + b-j-lj(’ j+3- 4v)Pj_1(x)]
% 3P (x) + 2P3(x)] (99)

vV = -j; j sin 6 [ J°2P,j+1(x) + b_J g{>"3 b + 4v)
Plj-lg%ﬂ +2¢% sin 0 [}Pz(x) +-g;(;i (100)

Utilization of eq. (38) in the light of the previous discussion, and

as a consequence of the spherical geometry

f f (u Uty V)r51n6drde

] f . mnvnm)r sin 6 dr db

(101)

Substitution in eq. (101) of U and V from eqs. (99) and (100) and of u

v from eqs. (86a), (87a), (98a) and (98b) and use of the following
nm

orthogonality conditions

and
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1 0, m#n
f Pa(Pq()dx=( (102)
= nts > 0
1 0 m#n
j sin 8 Pl (x)P’  (x)dx = (103)
<1 -2 e

(See Appendix II) yield the following expression for Anm

Ar(“}‘) + Ar(“i) n=1, 2, 3.

Anm = (104)
NG n=4,5, ...,
nm
{mo® 1.3, '3, 3 o)
where
-1 2 +1
1y O] a g2act- () [n®H4n(1-v)-2(1-20)] b_y_pan
B & R__ + n(n+l) e
nm nm n(n Qnm
a
(2)
Ay = - __S)E r* uy dr (106a)
0
a
(2) _ _ 24 4
Aom 15 T g (106D)
0
a
(2)_ _ 8B 4
A3m 20 r u3mdr (106¢c)
0
and
a
S _ 2 s
P f ru r dr (107a)
0
a
Q= j r?y  rSdr (107b)
0
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a

s r’@ )%ar (107¢)

Q rz(vnm) 2dr (1074d)

nm

J
;

Thus the solution of the wave propagation problem (a) can now be put

in the explicit form in terms of the displacements

u(r,8,0 = U(r,68) - D Au ()P (x) £, (t) (108)
n,m=

v(r,8,t) = V(r,8) - A v ()P F()E, () (109)
n,m=

The stresses o, Org can be expressed in similar fashion using
eqs. (88) and (89). 1In particular,

[e2]

O = (or)static - 2“:2:::; Aannm(r)Pn(x)fnm(t) (110)
n,m=

& 1
= - E f t
%0 = (98 graric ~ M 1’Aannm(r)Pn L LtE) (111

n,m=

Solution of wave propagation problem (b). This will be obtained

by putting T, = 0 for all n in eq. (66) and (67) and by taking B = O.
Naturally, § 6 now will be different and will be obtained by inserting
the appropriate loading function f(x) in eq. (68).

Conclusion. An exact solution has been obtained to the axially
symmetric wave propagation problem of a viscoelastic sphere. The
elastic problem is obtained as a special case by replacing fnm(t)
by cos k, .t in the appropriate equations. To our knowledge this is

the first time that such solution has been obtained.
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Appendix I. It is well known that, in terms of the displacements,
the solution to the wave propagation problem of isotropic elastic

materials is obtainable from the scalar and vector potentials ¢ and

Y where
2 1 3%
VTR = —5 5 (1I1)
C]. Bt
— 25
c22 8t2
and
U=Vp+ Vx¥ (13)

The frame of reference of the above equations may be cartesian
or curvilinear. However, when the component form is used, great care
must be taken in expressing eq. (I2) in curvilinear coordinate systems.
For instance, in certain cases (such as ours), symmetry conditions
make two of the components of | vanish, in which event, if the frame
of reference is cartesian, eq. (I2) is reduced to what appears to be

a scalar equation in the remaining nonvanishing component VU, i.e.,

I - i |
VY = 5 (14)

Unfortunately, this has been misconstrued by some authors to
mean that the left hand side of eq. (I4) is a Laplacian in all co-
ordinate systems. This of course is not true, as will be demonstrated
in the case of spherical coordinates.

k : ; k s i
Let x be cartesian coordinates and 6 general curvilinear co-
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ordinates. Then the covariant base vectors Ek in the fO-system are

given by the relation

= axk -
By = =1 (16)
36% k
where Ek are the cartesian unit vectors. The unit vectors Za, tangent
to the coordinates 6% are obtained from (I6) through eq. (I7),
eOI B h ga (I7)
o

where, ha = Jgau and 8ap 18 the metric of the curvilinear systems.

Using eqs. (I6) and (I7) it is easily proved that
—Z = = —8% +5¢ r.ozY (18)

(¢ not summed; Yy summed)
where r’BY is the Christoffel symbol of the second kind.
o

In the case of spherical coordinates

2
oe oe o€
9 _ _9 _ .

Symmetry conditions with respect to ¢ require that
¥ = Yeg (110)

Substituting eq. (I10) in eq. (I2) and using eq. (I9) one obtains

the following differential equation for V¥:

2
w2y - —4 .1 ot (111)

rzsinze c22 at2

where the operator V2 is given by eq. (75). Notice that the left

hand side of eq. (I1l) is not Laplacian.
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Appendix II. The differential equation of the Legendre poly-

nomial Pn is
dx dx

dp
g, ﬁl-xz) B3 4 n(ntl) Py = O (111)

Multiplying eq. (IIl) by P, (x) and integrating between the limits

of -1 and +1, one obtains

1 1
f (1-x2)PIn(x)P'm(x) = n(n+1) ] P (x)P (x)dx (112)
-1 -

1
A well-known result(A) is
1 _
1 E;% n=m
Pn(x)Pm(x) dx = (113)
-1 0 n#m
Thus:
n(n+l) _
1 : / 5T , DN=m
f (1-x )Pln(x)P _(dx = (114)
-1 0, n#m

6)

We now make use of the classical formulae(
2yp’ = - y
(1-x°)P rl(x) n(xPn Pn-l) (I15)
and
n(xPn ~ P 1) = #in 6 Pnl(x) (116)

where Pnl(x) is the associated Legendre function of order n and degree
one. Substitution of eqs. (II5) and (II6) in eq. (II4) yields the

desired result:

+
1 - Eﬁggll , m=n
. 1
f sin 6 P_ (x)P:n (x) =
-1 0, m#n.
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