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Executive Summary

Numerous modeling studies point to an intensification of the hydrological cycle under projected climate
warming, with increasing frequency of extreme events, including heavy rainfall and flooding. Recently,
the occurrence of extreme flooding has become the norm rather than the exception, with the 2008
Eastern lowa flood representing the “poster child” for this catastrophic situation: during this event, for
instance, the eastern half of our state experienced the closure of a number of roads, including Interstate
80. So, what would projected changes in flooding mean for the lowa Department of Transportation (IDOT)
and the bridges and structures that constitute lowa’s highway system? How resilient are these highway
structures to different climate warming scenarios?

Addressing these questions requires flood frequency analysis. The current methodology relies on the
guidelines by Bulletin 17C. However, issues related to regionalization of at-site estimates as well as
accounting for the projected changes in the climate system have received little attention despite the
potentially large impacts, including to the IDOT’s infrastructure.

Here the authors have focused on the examination of the projected changes in flooding across lowa using
the hydrologic model developed by the lowa Flood Center (IFC). The focus is on high-resolution and
downscaled outputs from CMIP5 (Fifth Coupled Model Intercomparison Project) and CMIP6 (Sixth
Coupled Model Intercomparison Project), and different scenarios. The results point to an increase in flood
hazard across much of state, especially for high emission scenarios and towards the end of the 21st
century. Moreover, the authors have developed a web interface - the lowa Flood Frequency and
Projections tool (IFFP) - that provides projections of flooding to the end of the twenty first century at any
river reaches in the State of lowa.



1. Literature Review!

Surface water quantity presents a substantial risk to lowa in the way of flooding. In the past few
decades, floods (e.g., 1993, 2008, 2019) have devasted the state causing billions of dollars in economic
damage as well as many human fatalities (e.g., Villarini and Slater 2017). Climate change is expected to
exacerbate issues related to flooding as changes in extreme precipitation and temperature are likely to
alter the hydrologic cycle. Changes to the hydrologic cycle need to be understood so that adequate water
resources management and design of engineering structures for flood control can be implemented to help
prepare lowa for the future. For this reason, it is important to understand historical patterns in surface
water quantity, expected future changes due to climate change, and what knowledge gaps are still present.
In this section we assess surface water quantity conditions, primarily related to flooding and the drivers
behind observed and expected changes. We primarily focus on two aspects of surface water quantity in
runoff and streamflow. To provide a distinction, runoff is the overland flow of precipitated water across
the landscape, and streamflow is the flow of water occurring within the river channel.

1.1 Historical Changes

Historically, much of the focus in the literature is on the use of observations at stream gauge locations
to understand trends in magnitude of flood quantiles at the annual scale. The primary approach is to use
annual maximum discharge time series (i.e., largest discharge value per year) to understand trends, as it
is a simple indicator for flooding. For instance, multiple studies (e.g., Lettenmaier et al. 1994; Lins and
Slack 1999; Douglas et al. 2000; McCabe and Wolock 2002; Lins and Slack 2005) apply the Mann-Kendall
(MK) test to observations across the United States to detect monotonic patterns in different flood
quantiles. For lowa, they analyze approximately 20 stream gauges with over 30 years of data, and examine
different percentiles (e.g., annual minimum, 10%, 20t ,30%", 40", median, 60™, 70", 80", 90*", mean, and
maximum daily discharge). A common pattern among these studies is that the detection of trends in
magnitude is most prevalent in lower discharge quantiles with increasing trends. Figure 1-1 highlights how
this pattern is strong not only for lowa, but across the entire United States. The studies highlight how
trends in annual maximum flood peaks are much more difficult to detect.

In recent years there have been many studies about the changes in the magnitude of annual maximum
flood peaks. The methods typically assume that the annual maximum flood peaks are stationary (i.e., not
changing over time), highlighting the importance of examining trends in their magnitudes. Villarini et al.
(2011a) examine trends in annual flood peaks at gauges with 75 years of record for the Midwest (16 in
lowa). The study uses change-point analysis in the mean, finding only three gauges that have a significant
change in the first moment (two decreases, one increase). For the variance, a change-point analysis
reveals four sites (one site) with an increase (decrease) in variance. The year of the change point varies,
ranging from 1940 to 1980. The MK test identifies two gauges with a significant trend, one negative and
one positive. Furthermore, Villarini et al. (2009) performed an in-depth analyses for a single site along the
Cedar River to detect the stationarity of annual flood peaks with multiple non-stationary modeling
methods, not detecting significant trends for any of the methods. Studies such as these highlight the
difficult nature of trend detection for annual maximum flows. However, even if detection is limited, it
should not be viewed as evidence of a lack of trends (Villarini and Wasko 2021).

Slater et al. (2021) provide a global examination of changes in the magnitude of 1%, 2%, and 5% annual
exceedance probability (AEP) floods at gauges using 1970 as reference year. They fit stationary and
nonstationary models to annual peak flows and select the best fitting one at each site to assess the
discharge values with a given AEP. They focus on the sites with nonstationary models as the best fit, and
compare their results to values from the 1970s. For lowa, the study shows that, whenever the authors

! Adapted from draft chapter of the First lowa Climate Assessment.
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detect a change, the percent change in 1%, 2%, and 5% AEP flood magnitude is over 20% or increasing for
most of the area. These sites are the same as previous studies where trend analysis does not show change.
The discrepancies could be due to the longer period of record in Slater et al. (2021) and/or the uses of
different methods.

An important aspect related to annual maximum flood peaks is the spatial variability of changes in
magnitude. For instance, Archfield et al. (2016) examine the multidimensional behavior of flood changes
for stream gauges across the United States. The authors use grid cell analysis to examine trends in
frequency, duration, peak magnitude, and volume; in their study, lowa is within four cells. Of the four
cells, only one shows an increasing trend in magnitude, while the remaining three do not show a
significant trend. Conversely, Wasko et al. (2021) analyze trends in historical flood peaks across the globe
by utilizing gauging stations with 30 years of record. The authors apply linear regression to determine the
percent change over ten-year periods and analyze the median trend of all stations within 5°x 3° grid cells.
For the grid cells, they show that trends in the 50" and 95" peak flow percentiles have percent changes
per ten-years ranging from 6% to 12% and -6 to 6%, respectively. The coarse nature of their analysis
provides an overview of historical changes but lacks clear information for changes in flood peak magnitude,
especially at the community level.

Another important characteristic of annual maximum flood peaks is the frequency of events. The
detection of significant trends for frequency of floods in lowa is overall much more frequent in comparison
to magnitudes. For example, Mallakpour and Villarini (2015) examine the frequency of annual maximum
daily floods from 1962 to 2011 using a peaks-over-threshold (POT) approach. The analysis reveals over 20
gauges with a significant trend in the frequency of flood events (Fig. 1-2). Furthermore, Slater and Villarini
(2016) analyze the frequency of floods based on the National Weather Service (NWS) flood levels with a
Poisson regression to examine trends. Their frequency analysis (Fig. 1-3) shows that the gauges mainly
exhibit increasing trends in the number of annual days above the action and minor stage flood level.
However, trends in days above moderate and major flood stages are much less prevalent. From a seasonal
perspective, the analysis of trends in flood counts by Neri et al. (2019) shows that there are increasing
trends for the spring, summer, and fall seasons. Overall, the existing literature suggests that the frequency
of flood events is increasing.

The changes in characteristics of flood peak observations are likely driven by increases in precipitation
and temperature, especially at the monthly scale. For instance, Lettenmaier et al. (1994) analyze hydro-
climatological trends across the United States. For lowa gauges, they find significant positive trends in
streamflow and precipitation. At the monthly scale, significant positive trends in monthly peak streamflow
are present for the months of January through April as well as December. Increases in winter streamflow
are likely due to increases in temperature during these months, with magnitudes ranging from 2-6°F.
Furthermore, Small et al. (2006) examine trends in precipitation and 7-day low flows, revealing trends
exist in low flow and fall precipitation. Warm and transition season precipitation has increasing trends
matching those in low-medium flow quantiles of streamflow (Lins and Slack 1999, 2005). Villarini et al.
(2013) support these previous findings with a POT analysis that shows heavy rainfall and temperature
have increasing trends (Fig. 1-4). From a frequency perspective, Neri et al. (2019) show that the seasonal
count of flood events for lowa gauges can be predicted with regression models containing precipitation,
temperature, and/or antecedent wetness conditions (i.e., a simple proxy for soil saturation). These
findings highlight how changes in climate variables translate to changes in flooding.

Increases in runoff are likely due to changes in precipitation especially for March and May. Hodgkins
and Dudley (2006) investigate changes in the timing of winter-spring streamflow for the northeastern
United States from 1913 to 2002, using United States Geological Survey (USGS) gauges (26 for lowa). Only
one site shows a significant change in the winter-spring center of volume dates, showing a shift to later in
the year. For most of the sites, the timing of center volumes shifts between 10 to 20 days later in the
winter-spring season. Furthermore, runoff in March and May is increasing for nearly all (24) gauges (Fig.
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1-5), with changes typically from 1-2.5 cm. These results match patterns found in the previously
mentioned studies for rainfall. The increases in runoff are facilitating increases in flood events throughout
the year, as well as increasing low-medium flow magnitudes as more water is making it into streamways.

Finally, we can detect the impacts of climate change on flooding in historical events. For example,
Villarini et al. (2020) quantify the impact of anthropogenic forcing on the 2008 flood in Cedar Rapids. The
study forces the hydrologic model by the lowa Flood Center (IFC) using precipitation with and without
external forcing (e.g., greenhouse gasses, aerosols). The results show that anthropogenic warming leads
to a bigger flood event than without it, with an increase in stage by over 2 meters and a 1.28-fold increase
in flood extent. Furthermore, the results show that anthropogenic forcing causes an increase in the
number of affected buildings and damage costs. This study represents one of the very few analyses that
provide commentary on the impacts and risk of climate change and flooding. At a coarser scale, Merz et
al. (2021) supports these findings as they show increasing trends in the amount of people impacted by
disastrous floods from 1977-2019 (Fig. 1-6).

1.2 Projected changes

Projected changes in surface water quantity are important to provide basic information towards
improving lowa’s preparation and mitigation efforts against flooding. Overall, the literature on flood
projections is more limited compared to the analyses of historical data described above. Most of the
studies focus on specifics basins, but still provide valuable information for understanding possible future
outcomes and impacts.

There are two studies which utilize projections for models’ part of the Coupled Model
Intercomparison Project phase 3 (CMIP3) to examine changes in streamflow at three lowa basins. First,
Hay et al. (2011) analyze watershed scale response to climate change for the Clear Creek watershed. The
authors utilize a hydrologic model and force it with inputs from five global climate models (GCMs) and
three CMIP3 emission scenarios. The results show that the mean daily streamflow is projected to decrease
by the end of the century from 2.5 to 2.0 m3/s on average across the different models and emission
scenarios. Furthermore, Quintero et al. (2018) assess changes in flood frequency due to climate change
by forcing the IFC model with CMIP3 projections. The study examines changes in the 1% AEP flood for the
basins of the Cedar River and Skunk River. They find that the 1% AEP flood is projected to increase for two
basins, with a range of increase from 25% to 52% over historical values. A brief comparison of these two
studies indicates that annual flood peaks could increase, while average streamflow decreases.

Updates to climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5; Taylor
et al. 2012) have led to more studies about projections of surface water quantity. Most of the available
studies focus on Relative Concentration Pathways 4.5 (RCP4.5) and 8.5 (RCP8.5), where RCP8.5 is a
business-as-usual emissions scenario. The literature (e.g., Demaria et al. 2016a; Demaria et al. 2016b; Naz
et al. 2016; Byun et al. 2019) with CMIP5 focuses on climate projections using the Variable Infiltration
Capacity (VIC) model and on results at the basin outlets.

The study by Demaria et al. (2016a) is one the first hydrologic investigations for projected changes
with CMIP5. They focus on the projected changes in streamflow characteristics for the Northwest and
Midwest United States at 124 basins with USGS gauges. For lowa, the study provides information for three
basins (Fig. 1-7). At the three sites, they do not detect significant trends in annual maximum cumulative
5-day precipitation in the historical period (1951-2005). For future projections (i.e., 2028-2082), two of
the three sites show a positive trend in precipitation, while the third site shows a negative trend. However,
these trends in precipitation do not translate to comparable changes in streamflow. The results indicate
that mean base flows for the historical period are increasing for the three sites but decreasing under each
of the future emission scenarios. For 7-day low flows, the three sites show results of positive and negative
trends under the historical and RCP4.5 scenario. However, significant decreasing trends are shown under



RCP8.5. Furthermore, for 3-day peak flows the study shows a positive trend for the sites in the historical
period, decreasing trends under RCP4.5, and a mixture of results under RCP8.5. Percent change in the
magnitude of the 1% AEP 3-day peak flows shows increases between 20-30% under RCP8.5 for two sites,
while the other site shows a decrease by 10%. For the 7-day low flows, a decrease is projected for all
scenarios. The projected changes are attributed to increases in evapotranspiration, lowering water levels
during warm seasons, and site-specific patterns in precipitation change. Demaria et al. (2016b) analyze
the same sites for the impact due to snowpack on hydrology due to climate change and find increases in
the magnitude of spring streamflow under RCP4.5 and RCP8.5 (Fig. 1-8). The changes are attributed to the
decreases in snow cover and more precipitation during these periods.

Byun et al. (2019) find similar results to the previous studies (e.g., Hay et al. 2011; Demaria et al. 2016a;
Demaria et al. 2016b; Quintero et al. 2018). They focus on 20 watersheds throughout the region, with four
watersheds in lowa. These watersheds consist of the Des Moines, the lowa River, the Little Sioux, and the
Skunk Rivers. For the four sites, the results show monthly streamflow is projected to increase in the spring
and summer months under RCP8.5 in comparison with the historical period. Furthermore, on average
under RCP8.5, the 1% AEP peak daily streamflow magnitude is projected to increase (5-20%) by 2050 for
the four basins. A decrease or no change in magnitude is projected under RCP4.5. For changes in the 10%
AEP 7-day low daily streamflow, increases in magnitude are projected under RCP4.5 and RCP8.5 beginning
in the 2020s. The increases in peak daily and low flow conditions are attributed to projected precipitation
increases during the winter and spring, changes in snow water equivalent (SWE), and changes in soil
moisture. Loss of snow in the winter is one of the largest changes projected, with loss of annual SWE close
to 50% under RCP8.5 (Fig. 1-9).

Runoff across lowa is projected to be broadly impacted by climate change. Naz et al. (2016) study the
impacts of climate change on the regional hydrologic response for the United States based on HUC2
regions. lowa is within regions 7 (Upper Mississippi) and 10 (Missouri). They examine the median percent
changes in seasonal total, high (95%), and low (5) runoff between the periods of 1966-2005 and 2011-
2050 (Fig. 1-10). For the regions, total runoff is expected to increase for all seasons, with large changes
expected in December-January-February (DJF) and March-April-May (MAM), with increases ranging from
11.68% to 16.28%, respectively. For the runoff extremes, high runoff is expected to increase by ~5-10%.
Furthermore, the 7-day low runoff is expected to increase from 5% to 20% but is shown to be more
variable in space compared to high runoff. Villarini and Zhang (2020) present similar findings. The authors
analyze runoff from the newest available projections from Coupled Model Intercomparison Project phase
6 (CMIP6). They show that projected changes in annual maximum daily discharge are variable among
GCMs. Projected changes for 2015-2049 are expected to decrease for five of the eight models, with mixed
results for the other three. For the period of 2065-2099, three models point to an increase in annual
maximum daily runoff, three indicate a decrease, and the rest show a mixture of results for lowa. Giuntoli
et al. (2018) analyze the sources of uncertainty in projected runoff indicating that GCMs and global impact
models (GIM) are the largest sources of uncertainty compared to the selected scenarios and climate
variability. Models part of both CMIP5 and CMIP6 highlight uncertainty in runoff projections, and do not
provide irrefutable evidence of an unequivocable pattern of change in flood characteristics for lowa.



Figure 1-1. Number of U.S. stream gauges (out of 435) from 1940 to 1999 with statistically significant
trends across different discharge quantiles (Lins and Slack 2005).



Figure 1-2. Trends in magnitude (a) and frequency (b) of flood events at the annual scale from Mallakpour
and Villarini (2015).



Figure 1-3. Trends in the number of days above NWS flood categories with liquid water equivalent (LWE)
plotted behind (Slater and Villarini 2016).



Figure 1-4. Rain gauges with statistically significant increasing (decreasing) trends represented by blue
(orange) circle and trends in average temperature from March to October 1901-2011 for three datasets
(Villarini et al. 2013).
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Figure 1-5. Magnitude and direction of changes in March (a) and May (b) runoff during 1953-2020 from

Hodgkins and Dudley (2006).
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Figure 1-6. Observed trends for (a) annual maximum flow based on large-scale trend studies and trends
in (b) people affected by floods from 1977-2019 (Merz et al. 2021).
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Figure 1-7. Trends in simulated 3-day peak flows, 7-day low flows, and mean base flows derived from
CMIP5 GCMs for historical (1951-2005) and future (2028-2082) periods from Demaria et al. (2016a).
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Figure 1-8. Changes in the timing (a,b) and magnitude (c,d) of maximum spring streamflow between
historical (2014-2095) and future (1951-2005) periods from Demaria et al. (2016b).
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Figure 1-9. Changes in magnitude and time of annual SWE by ensemble mean based on RCP4.5 (upper)
and RCP8.5 (lower) for 2071-2100 from Byun et al. (2019).
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Figure 1-10. Median ensemble percentage of change on (a) 95th percentile daily runoff and (b) 7-day low
runoff. Number of models predicting increase in (c) high runoff and (d) low runoff (Naz et al. 2016).
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2. Advantages of Physically-based Flood Frequency Analysis with Long
Term Simulations for lowa?

2.1 Introduction

In the United States, a primary approach to estimate flood quantiles is to perform statistical analyses
on discharge data from gauged locations following national guidelines. The guidelines, developed by the
United States Geological Survey (USGS), such as Bulletin 17C (B17C) (England Jr et al. 2019), employ the
log-Pearson type Il distribution to determine annual exceedance probability (AEP) discharges from
recorded data (Dawdy et al. 2012). However, complimentary statistical approaches (i.e., regional
regression models) have been developed to aid in providing localized estimates for locations without
gauge records. For ungauged locations, the development of regional flood quantile estimation equations
has been a focal point since 1868 when O’Connell (O'Connell 1868) discovered a scaling power-law
relationship between discharge and drainage area. This is commonly referred to as scaling theory, which
applies the characteristics of self-similarity in channel networks (Gupta et al. 2007). The USGS establishes
regional flood quantile estimation equations at the state level with a regression framework based on
gauged location data and scaling theory. The regional regression equations can include variables related
to rainfall, landform properties, or catchment physical properties (e.g., shape or slope). A notable
limitation of this approach is that explanatory variables are prioritized based on the reduction of
regression error residuals instead of hydrologic justification (Klemes 1974; Perez et al. 2019).

To address the concerns associated with statistical methods, the identification of governing hydrologic
parameters for regional flood quantile estimation has been a primary research focus. In the past, studies
such as that by Eagleson (1972) have blended statistical approaches with kinematic wave functions to
capture physical processes behind flood frequency dynamics. This approach focused on AEP discharges at
the outlet of a catchment, and determined that catchment area, the area contributing to direct runoff,
and rainfall are important parameters for capturing flood frequency dynamics (Eagleson 1972). Ayalew
and Krajewski (2017) analyzed the impact of channel network geometry by comparing two watersheds
with the same drainage area located near each other; the comparison indicated that network geometry
significantly impacted the AEP discharges but that current USGS regional equations largely ignore this
parameter (Ayalew and Krajewski 2017). Perez et al. (2019) examined the important parameters in
regional regression with respect to scaling-law for a large catchment in lowa. Their study determined that
variability between peak flow and drainage area is due to the channel network structure and spatial
variability of soil moisture. Currently, many USGS regional equations at ungauged locations do not
incorporate climate and stream network parameters, highlighting the need for methods which
incorporate these aspects.

In recent decades, there has been a focus on applying hydrologic models for predictions at ungauged
basins. This focus was started in 2003 with the creation of the Prediction in Ungauged Basins (PUB)
initiative from the International Association Hydrological Sciences (Sivapalan 2003) to address inadequate
predictions at ungauged locations. A review of the literature from a decade of the initiative by Hrachowitz
et al. (2013) highlighted that a movement from data and calibration driven modeling methods to methods
based on physical processes allowed for improved estimates of streamflow at ungauged locations. For
example, physically-based hydrologic models applied in three studies (Dornes et al. 2008; Fang et al. 2013;
Fang et al. 2010) from the PUB initiative showed that the application of a priori model parameters with
flexible structures are able to provide robust estimates of streamflow across catchment scales. Finally,

2 Adapted from: Michalek, A., F. Quintero, G. Villarini, and W.F. Krajewski, Advantages of physically based flood
frequency analysis with long-term simulations for lowa, Journal of Hydrologic Engineering, 27(12), 1-11, 2022.
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the PUB decade brought about an increase in openness towards different modeling approaches and
highlights the importance of continued exploration at ungauged locations (Hrachowitz et al. 2013).

In lowa, lowa Flood Center (IFC) has developed a continuous rainfall-runoff model called the Hillslope-
Link Model (HLM); thus, there is the ability to assess regional flood frequency through physically based
modeling built on major hydrologic parameters without the need for regional equations. The HLM
simulates hydrologic processes at the hillslope-channel link scale, with runoff modeled through soil
moisture accounting (Krajewski et al. 2017). One of the primary challenges of modeling at ungauged
locations is that calibration is difficult as streamflow and stage measurements are not available (Dawdy
et al. 2012). The HLM can address this issue as the model is calibration-free, i.e., a configuration of
parameters is determined a priori, applied for all model inputs, and not adjusted for specific basins
(Quintero et al. 2020). The strong performance of the model to reproduce observed streamflow has been
illustrated in several studies (Ayalew and Krajewski 2017; Ayalew et al. 2014; Cunha et al. 2012; ElSaadani
and Krajewski 2017; Krajewski et al. 2017; Quintero et al. 2016; Quintero et al. 2020). Furthermore, the
HLM has shown success in performing regional flood frequency analysis as illustrated by Perez et al. (2019),
providing a tool to assess flood frequency through physical processes.

Here we use the HLM to conduct a physically-based flood frequency analysis for lowa. It should be
noted that for our approach we apply a catchment modeling philosophy where continuous simulated
flows represent predictions if a gauge was present with typical flood frequency guidelines applied. As
discussed in Ball (2022), this is one of two primary approaches, with the other one applying catchment
models that transfer the probability of rainfall to predicted flows. All subsequent discussion within this
study is based on this philosophy. Our intent is to show the viability of the HLM in place of standard
practices for regional flood quantile estimation analysis by conducting a comparison with current USGS
regression equations at ungauged locations across lowa

We organize this chapter as follows: Sections 2.2 and 2.3 describes the study area and HLM modeling
set up with climate data used to estimate annual maximum discharges at gauged and ungauged locations.
In Section 2.3 we describe the procedures used to evaluate model performance at gauged locations, the
determination of exceedance discharges from modeled annual maxima, and the evaluation of regional
regression exceedance discharge estimates (Eash et al. 2013) with respect to model-based estimates at
ungauged locations. Section 2.5 describes the results from statistical methods and is followed by Section
2.6, where we discuss the differences between flood quantile estimation approaches and the advantages
of the HLM. Finally, we conclude with an overview of our main results and closing remarks.

2.2 Study Area and Data Sources

We focus on the state of lowa and its basins which drain into the Mississippi and Missouri Rivers. lowa
is agriculturally dominated with low relief, fertile soils, and high drainage density (Prior 1991). Its climate
is seasonally variable with significant rainfall occurring during the summer. The combination of landscape
characteristics and significant summer rainfall causes the state to be prone to floods (Baeck et al. 2013;
Mallakpour and Villarini 2015; Villarini et al. 2011a,b; Villarini et al. 2013). Fig. 2-1 shows the three flood
regions determined by Eash et al. (2013) that the authors consider as homogenous based on landform
characteristics for lowa. Each flood region was used to develop region specific regression equations for
flood quantile estimates at ungauged locations. A feature of interest for regional flood quantile estimation
is the Region 1, which is mainly hydrologically disconnected (Des Moines Lobe), especially for low flow
regime.

We use annual maxima and daily-averaged discharges from 150 USGS stream gauges that were active
within the 1981-2020 period. The stations are evenly distributed across lowa (green circles in Fig. 2-1),
with drainage areas ranging from ~10 to 36,000 km?. For prediction of annual exceedance discharges at
ungauged locations, we focused on 445 river communities uniformly distributed across the state (blue
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triangles in Fig. 2-1). At these locations, we performed regional flood quantile estimation using USGS
Streamstats web-based application (USGS 2021). The input data required for the regional estimates
consisted of watershed, landform, and climate characteristics based on flood regions as described in Eash
et al. (2010). These parameters are precalculated by the StreamStats web tool based on the watershed
selected. As a quality control, we only used ungauged locations in which the watershed area from
StreamStats matched the watershed area from the HLM within £5%.

2.3 HLM Setup

The HLM was developed from scaling theory for river networks and water transport (Gupta et al.
2007). The model consists of a large system of ordinary differential equations following river network
topology, solved with parallel implementation of the Runge-Kutta method. The model does not consider
soil type or region-specific parameters and finds the proper configuration based on the spatial distribution
of model parameters. HLM simulations are conducted at every channel link along a river network derived
from a 90-m DEM. This results in a river network with 420,000 pairs of hillslopes and channel links, with
an average hillslope area of 0.4 km? and an average channel length of 700 m (Quintero and Krajewski 2018;
Quintero et al. 2020). For the experiments proposed in this chapter, we changed the HLM structure slightly
compared to the configuration used in Quintero et al. (2020): instead of using a constant value of the
parameter controlling the available water storage in the upper layer of soil, we made the parameter
variable in time, reflecting the changes in the seasonal soil storage capacity, during colder and warmer
months. Please refer to Krajewski et al. (2017), Quintero et al. (2020), and Mantilla et al. (2022) for in-
depth discussion on the HLM.

In this study, we applied the HLM to simulate discharge at an hourly temporal resolution at every
channel in lowa from 1981 to 2020. The inputs required to generate hourly discharge are precipitation
and evapotranspiration data. We used an hourly precipitation with a 4-km spatial resolution, hereafter
referred to as PRISM-NLDAS (described below), and monthly evapotranspiration (ET) inputs taken from
the NLDAS climatology (Mitchell 2004) spatially averaged across lowa. From the simulations, we
determined the simulated annual maximum discharges for every year in the simulation period (1981 to
2020).

For small catchments (<200 km?), it has been determined that basin response is sensitive to the
temporal resolution of precipitation as sub-hourly dynamics control (e.g., Berne et al. 2004; Fiche et al.
2016; Gabellani et al. 2007; Kandel et al. 2005; Krajewski et al. 1991; Nikolopoulos et al. 2011; Zoccatelli
et al. 2015). We recognize that sub-hourly precipitation data could improve model performance but data
availability for this study area was limited. Finally, the use of hourly StagelV precipitation data with the
HLM has been shown to work well in predicting peaks across catchment sizes found in lowa as shown in
Zhu et al. (2018), Quintero et al. (2020), and Ghimire et al. (2022).

Previously, Quintero et al. (2020) evaluated model performance of the HLM using StagelV rainfall
input with success. However, StagelV rainfall is only available starting from January 1%, 2002 (Lin and
Mitchell 2005), limiting its utility for flood frequency analysis. For this reason, we created a new hourly
rainfall product (PRISM-NLDAS) to expand the study period to 1981. We focused on the creation of a long-
term hourly precipitation data set as it is a temporal resolution used in many hydrologic studies
(Praskievicz and Bartlein 2014; Santhi et al. 2008; Schaake et al. 2004). For showing the viability of the
PRISM-NLDAS as a precipitation input, we used hourly precipitation and monthly evapotranspiration from
StagelV to simulate hourly discharge with the HLM across lowa from 2002 to 2020.

We created PRISM-NLDAS using North American Land Data Assimilation System (NLDAS) and
Parameter elevation Regression on Independent Slopes Model (PRISM) datasets from 1981 to 2020. To
achieve this, we used PRISM daily precipitation sets and temporally downscaled to hourly resolution based
on NLDAS hourly precipitation. We used PRISM precipitation as the base for downscaling as it has a high
spatial resolution with a 4-km grid size and is based on observations using a weighted regression analysis
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(Daly et al. 2002). We chose NLDAS to create the hourly distribution of PRISM precipitation as it is
developed with a focus on temporal resolution using four primary datasets (Climate Prediction Center
data, Weather Surveillance Radar 88 Doppler radar estimates, CPC MORPHing technique rainfall data, and
North American Regional Reanalysis simulations) based on temporal disaggregation (Mitchell 2004).

The temporal downscaling method applied a simple way of redistributing the daily precipitation data
from PRISM based on the hourly distribution of NLDAS. For each PRISM cell, we searched for the nearest
NLDAS cell, created a ratio of the daily rainfall totals (PRISM total to NLDAS total), and multiplied the ratio
by the hourly distribution from NLDAS to obtain a PRISM hourly distribution. The goal was to preserve the
daily precipitation totals from PRISM. We performed these steps for each PRISM cell across the study area
from 1981 to 2020. Before the downscaling process, we spatially smoothed the NLDAS data at each hour
using a 15-by-15 cell size moving-window to remove the spatial influence from the 12-km NLDAS grid on
the output PRISM 4-km grid.

2.4 Statistical Methods

We compared the distribution of observed and modeled annual maximum discharge values at 119
streamgauges with a 30+-year period using the two-sample Kolmogorov—Smirnov (KS) test (Massey 1951)
to determine if the model is appropriate for flood frequency analysis. We set two significance levels of
0.10 and 0.05 and applied a Bonferroni correction to account for multiple hypotheses testing (Bonferroni
1936).

Annual maximum discharges for exceedance probabilities of 50%, 20%, 10%, 4%, 2%, 1%, 0.5%, and
0.2% were estimated at USGS gauge locations and for all simulation locations (gauged and ungauged) with
the use of the USGS program PeakFQ version 7.3 (Veilleux et al. 2014). PeakFQ fits the log-Pearson type
[l distribution using the provided instantaneous annual maxima at each station according to procedures
described in B17C (England Jr et al. 2019). We utilized the generalized method of moments estimator
named Expected Moments Algorithm (EMA) (further described in B17C (England Jr et al. 2019) as it
improves on procedures from B17B. The weighted skew option was implemented as it provides a better
estimate for flood frequency analysis (England Jr et al. 2019). For lowa, the regional skew coefficient for
each station is taken as a constant of -0.4 as established by Eash et al. (2013). The determination of
multiple potentially influential low flows (PILFs) or low outliers (LO) was conducted using the Multiple
Grubbs-Beck test which was shown to improve the fit of small exceedance probabilities (Cohn et al. 2013).
Finally, we tested for the presence of non-stationarity in the records by applying the Mann-Kendall test
(Kendall 1975; Mann 1945) with a significance level of 5% with Bonferroni correction (Bonferroni 1936).

Regional estimation of AEP discharges in lowa at ungauged locations utilizes region-specific equations
determined from regional regression analysis based on least squares regression from Eash et al. (2013).
Equations were developed for unregulated streams at each of the three flood regions in lowa (Fig. 2-1.)
using landform and soil parameters (Eash et al. 2013). Regional regression equations are implemented for
lowa in USGS Streamstats (USGS 2021), which provides peak flow statistics calculated according to Eash
et al. (2013).

We compared regional estimates of AEP discharges from the current USGS regression equations for
lowa (Eash. et al. 2013) with estimates from flood frequency analysis using HLM simulations at 445
ungauged communities. Since the HLM simulates annual maxima that would be observed at ungauged
locations we define its AEP estimates as the reference. We used the skill score, relative error, and bias of
AEP discharges between the two models to highlight discrepancies in the current approach.

The skill of the regional regression to reproduce AEP discharges compared to the simulation values
was evaluated using the mean square error skill score (Murphy and Winkler 1992). The mean square error
skill score (SSysg) is defined as:
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SSmse = P,%x - [pfx - (af)]z - [ﬂ]z (2-1)

Ox Ox

where pg, is the correlation of the regional regression model f and reference simulations x; oy and oy
are the standard deviation of the predictions and reference simulations, respectively, while us and p, are
the mean of the predictions and the reference simulations, respectively. The SSms. can be described by
three terms: the first term is the potential skill of the model (i.e., the coefficient of determination), and it
indicates the maximum skill that could be achieved if there were no biases; the second term is the slope
reliability and measures the conditional bias; the third term is a standardized mean error, which
represents a measure of the unconditional bias. A skill score of 1 corresponds to a perfect match between
regional regression model and simulations, while a value of zero represents a skill that is the same as what
would be obtained using the average simulation AEP discharge value across the 445 locations.

The magnitude of difference between AEP discharges from the USGS regional regression models and
HLM simulation were examined by the relative error, which is defined as:

RE — USGSA‘EP—SimAEp (2_2)
Simygp
where USGS,gp and Simypp are the discharge value determined for a specific AEP from USGS

Streamstats and simulations, respectively.

Finally, we examined the extent of overestimation or underestimation in current regional flood
qguantile estimation procedures with respect to the simulations using bias. Bias compares the AEP
discharge from USGS regression equations to those from our simulations. We calculated bias as:

— US'GSAEP (2-3)
Simagp
where a bias greater (smaller) than 1 indicates an over- (under-) estimation of discharge at an AEP using
regional regression equations.

2.5 Results

We start by examining the validity of the PRISM-NLDAS product for use as an input for HLM
simulations. Fig. 2-2 shows a comparison of monthly maximum discharges between the HLM simulations
and USGS observations at 150 USGS gauges in lowa. The results indicate the simulations forced with
PRISM-NLDAS precipitation perform well as the points follow a 1:1 line. The simulations have monthly
bias values ranging from 0.43 to 1.77, with a mean value of 0.80. The bias indicates that the model only
underestimates monthly discharges values compared to USGS observations by an average of 20%.
Quintero et al. (2020) originally found the use of StagelV precipitation data to produce reasonable results
in the HLM model. As a reference, StagelV monthly maximum discharge comparisons (Fig. 2-3) from 2002
to 2019 showed that simulations overestimate maximum values for all months, with a mean bias of 1.46
indicating large differences compared to gauge observations. Overall, simulations with the PRISM-NLDAS
match observations across all seasons, supporting the notion that it can be used for extended simulation
period.

We tested the goodness-of-fit of the modeled annual maximum discharges compared to USGS
observations using the KS test. Fig. 2-4 shows the p-values for each site across lowa. There are 90 sites
(76%) which have a p-value greater than the 5% level under Bonferroni correction, indicating there is
evidence that the simulations and observations for these sites are drawn from the same distributions.
Conversely, only 29 sites (24%) have a p-value lower than the 5% Bonferroni-corrected level, where the
distribution of annual maxima between simulation and observation is not the same. These 29 sites had
drainage area ranging from 12 to 11,222 km?. Our results show that, for most of the sites (76%), the annual
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maximum discharges from the HLM simulations and USGS observations are drawn from similar
distributions. These results, together with those in Fig. 2-2, indicate that HLM is adequately simulating
annual maximum discharge, providing support for use of the HLM in flood frequency analysis.

With HLM results validated, we assessed the performance of Streamstats AEP discharges compared
to those obtained from the HLM for ungauged communities. Fig. 2-5 shows the relationship between
HLM-based and Streamstats AEP discharges across all 445 communities. Streamstats and HLM discharge
values match well for lower probabilities from 50%, 20%, 10%, and 4%, with relatively high R? and skill
scores (Eq. 3-1) ranging from 0.92 to 0.93 and 0.83 to 0.91, respectively. As the AEP decreases and the
associated discharges increase, the skill of the regression equations decreases, with skill scores decreasing
from 0.78 to 0.60 from AEPs of 2% to 0.2%. One important aspect of the results in Fig. 2-5 is the alignment
of points by region. In region 1, which includes the Des Moines Lobe landform, the AEP discharges
between Streamstats and HLM trend along the 1:1 line across all AEPs. Regions 2 and 3 (Fig. 2-5) are
rotated from the 1:1 line, with Streamstats overestimating discharges for small HLM estimates but
converging to the 1:1 line for large discharge values.

To better examine these differences, we explore the relative error (Eq. 3-2) and bias (Eq. 3-3) between
exceedance discharge estimates. Results obtained for relative error in Fig. 2-6 further highlight that the
difference in methods varies based on flood region. The relative error is the smallest across all AEPs in
region 1, where the values range from -0.6 to 0.0; this indicates that Streamstats is slightly
underestimating discharge compared to HLM-derived values. In regions 2 and 3, the variability in the
relative error across communities increases as exceedance probability decreases. For an AEP of 50%,
region 2 has relative errors ranging from 0.0 to greater than 1.0; however, as the AEP reaches 0.2%, the
relative error ranges from -0.6 to greater than 1.0 with no clear spatial pattern. The same relative error
patterns are observed in region 3. For communities in regions 2 and 3, Streamstats overestimates AEP
discharges compared to HLM for high exceedance probabilities (i.e., small return periods), and produces
underestimation in discharges as exceedance probability decreases. The spatial variations in relative error
can be explained by the upstream catchment area for each community. As shown in Fig. 2-7, the relative
error decreases as the catchment drainage area increases, with an exponential pattern for regions 2 and
3. As the AEP decreases in these regions, the drainage area where the relative error converges to near or
below zero also decreases (Fig. 2-7). For example, at an AEP of 50%, the relative error for region 2
decreases to a value of 1.0 at drainage area of 500 km?, but for the 0.2% AEP it occurs at a drainage area
of 50 km?. On average, the largest relative errors are observed in regions 2 and 3 for drainage areas less
than 100 km?, with values above 2.0. For region 1, the relative error does not vary with catchment
drainage area, indicating agreement between Streamstats and HLM discharge. Note that region 1 has the
largest range of drainage areas compared to region 2 and 3. Another example of these patterns can be
observed in the bias (Fig. S2-1) between Streamstats and HLM AEP discharge, which shows an exponential
pattern in relative error and drainage area for regions 2 and 3. However, no pattern is observed between
relative error and drainage area in region 1. For regions 2 and 3, overestimation (bias above 1) of AEP
discharge occurs for Streamstats compared to HLM simulations for most communities. Overall, the region
and drainage area impact the obtained AEP discharges for Streamstats when compared to physically
derived simulations from HLM.

2.6 Discussion

The primary advantage of using a distributed calibration-free model like HLM is that it provides
discharge values at any point on the stream network based on physical processes. Our statistical
comparison of annual maxima highlights the good performance of the model in capturing the distribution
of monthly and annual peaks important in flood frequency analysis across the state of lowa. It should be
noted that seasonal variations in Fig. 2-2 for monthly model performance are due to the model
development, which focused on capturing flood characteristics during the summer season, when peak
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flows typically occur in lowa (Quintero et al. 2020). With the ability to capture the observed processes,
we can assess how well current regional regression equations perform. For the 445 communities
examined here, we found that the most comparable results between the two methods are observed for
exceedance discharges larger than 1000 m3s?, as indicated relative errors near zero and bias values near
one. The best performance between the physically-based and the regional regression models occurred in
region 1 which is part of the hydrologically-disconnected Des Moines Lobe. This region has the smallest
bias and relative error compared to regions 2 and 3, where the regional regression equations vastly
overestimate AEP discharge for small catchments. We note that performance of the HLM was similar
across all flood regions compared to observations and attribute differences in estimates between
methods to the region-specific regression equations.

To further understand the breakdown based on regions, we examine the difference in variables
between the regional regression equations. For region 1, the standard errors for regional regression
equations range from 31.8 to 45.2 percent (Eash et al. 2013), and the model includes drainage area,
maximum 10-year 24-hour precipitation, and a constant of channel maintenance as predictors. This is the
only region in lowa in which a climate parameter (i.e., precipitation) is incorporated into the regional
equations and uses the scaling-law for drainage area. Region 1 shows the smallest differences in AEP
discharge between the regional regression equations and HLM simulations, possibly because of the
incorporation of the rainfall parameter which is important for a physical perspective (Eagleson 1972) in a
river system. In contrast, regions 2 and 3 do not include a rainfall parameter in the regional equations and
place all parameters within a logarithmic scaling-law equation. For region 2, AEP discharges are
determined based on drainage area, percent of Des Moines Lobe area, and a basin shape parameter.
Similarly, AEP discharge for region 3 is dependent upon drainage area, hydraulic conductivity of soil, and
a basin shape measure. The 50% AEP equation for region 3 is the only equation that uses a scaling-law for
drainage area similar to the equations in region 1. The lack of a climate parameter, coupled with using a
logarithmic scaling-law relationship for all parameters, likely leads to the large differences in discharges
across all AEPs. The smaller differences shown in region 1 can likely be attributed to inherent uncertainty
in the 10-year 24-hour rainfall intensity from NOAA Atlas 14 (Perica et al. 2013) used for the rainfall
parameter. Finally, the average standard errors (Eash et al. 2013) for regions 2 and 3 range from 19.4 to
46.8 percent and 26.5 to 43.1 percent, respectively. Overall, the differences in comparison to flood
frequency analysis with HLM highlight the shortcomings of the standard equations employed in
engineering applications.

The use of HLM provides a few distinct advantages over regional regression. It allows to understand
channel nesting within regions as it does not differentiate between regions. More specifically, in the
current method for regional flood quantile estimation in lowa, if a point of interest has a catchment
contained within multiple flood regions, the USGS approach requires the analysis to be performed for
each flood region and weight by the area within each region. This provides inconsistencies as physical
processes within larger regions such as lowa change gradually and are not defined by a strict border.
Additionally, the HLM allows for in-depth modeling of channel nesting and network geometry that impact
peak discharge as shown in Ayalew and Krajewski (2017) and Perez et al. (2018). Furthermore, the HLM is
a continuous simulation system which is an approach that has shown promise for regional flood frequency
analysis (Boughton and Droop 2003; Cameron et al. 1999; Wright et al. 2020). The method allows
capturing the short-term and long-term memory in rainfall that are important for flood peaks (Blazkova
and Beven 2002; Blazkova and Beven 2009; Boughton and Droop 2003; Cameron et al. 1999; Pathiraja et
al. 2012). This allows for the catchment moisture, storage, and infiltration state prior to flood-inducing
rainfall to be captured for a consistent mass balance (Blazkova and Beven 2002; Blazkova and Beven 2009).
This is advantageous compared to event-based methods which require an assumption of losses based on
a design rainfall.
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Another advantage of the HLM model for flood frequency analysis is that it allows the exploration of
future climate scenarios. Quintero et al. (2018) forced the HLM with climate projections to explore
changes in 100-year flood for six basins and found that non-stationarity from climate change impacted
the design event. With a successful framework developed for assessing future scenarios, the
implementation of HLM allows the focus of flood frequency to shift from past observations to develop
flood frequency guidelines based on future climate scenarios. It should be noted that any assessment on
changes in flooding based on climate scenarios is limited to projected changes in precipitation and
evapotranspiration. Currently, no geomorphic changes are accounted for in climate scenarios or the HLM
framework and further research is necessary for more robust flood projections. The projected changes in
flood frequency and its’ limitation across the state will be the focus of future studies. A final advantage is
that the use of physically-based models will help simplify and consolidate the regional flood frequency
framework. Currently in the United States, each of the 50 states specifies several types of documentation
for regional flood frequency, with some using state-developed guidelines and others implementing B17B
or B17C. If models such as HLM are implemented nationwide, then the framework can focus solely on the
modeling of physical processes for each area that would allow for consistency across the United States.

In this study, the configuration of the HLM model does not account for changes of land use. As the
landscape shifts to impervious surfaces, the amount of available runoff from precipitation events
increases, allowing for shorter time to peaks in the hydrographs and greater generation of volume
(Shuster et al. 2005). This is a principal factor that should be investigated to quantify the impact of land
use on annual maxima. Another limitation in our analysis is that the data of reservoir releases were not
included in the model configuration, even though these could be incorporated if available (see Ayalew et
al. 2017). Providing information downstream of a reservoir is important so that flood frequency analysis
can be available along any point in a stream network as current regional regression equations do not apply
to regulated streams. For lowa this is not an important issue as there are only three main reservoirs within
the state, but it should be investigated if the model is applied to regions that have extensive regulation.

Distributions other than log-Pearson type lll, such as extreme value type |, general extreme value,
lognormal and gamma, have been used for modeling annual maximum discharges (Bobée et al. 1993;
Cunnane 1973). We applied the Log Pearson Type Il as it is a standard approach for the United States to
provide a consistent comparison with current guidelines. An additional potential avenue to improve
distribution fitting for simulated discharge is to use the peak-to-volume approach (Bradley and Potter
1992), where probability distributions are estimated from runoff volume and for peak discharges
conditions on runoff volumes which can provide improved consistency for extreme events. Further
exploration of distributions could be considered alongside the use of a calibration-free model to provide
additional improvement for flood frequency analysis.

2.7 Conclusion

This study presented the application of regional flood frequency analysis based on the results of HLM,
a calibration-free physically-based hydrologic model. First, we compared HLM-based and observed annual
maxima at 119 USGS gauge locations across lowa. Our findings indicated that HLM simulations adequately
reproduce the distribution of annual maxima for a majority of gauged locations. Next, we explored the
use of the HLM for regional flood frequency analysis by comparing annual exceedance discharges with
values from USGS regional regression equations for the state (Eash et al. 2013) at 445 communities. The
best performance between the physically-based model and the regional regression model occurred in the
Des Moines Lobe (region 1), where regression equations incorporated precipitation as a variable. For the
other two regions (2 and 3), the largest discrepancies in exceedance discharge occurred when the
discharge value is less than 1000 m3s* where drainage area was typically less than 500 km?2. At these
locations, regional equations only incorporated catchment properties, overestimating exceedance
discharge compared to HLM simulations. We concluded that the use of a physically-based model like HLM
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in flood frequency analysis provides a consistent method for modeling exceedance discharges necessary
for engineering design as well as provides a framework to reassess current regional flood quantile
estimation practices.

This chapter focused on a relevant problem for engineers within the context of climate change as well
as the needs to improve resiliency of the nation’s infrastructure. Our study demonstrates that the primary
advantage of transitioning to flood frequency analysis with physically-based model simulations is
consistency across larger spatial domains. The current standard approach for USGS regional regression
equations for lowa defines flood regions where no true physical or climate boundary exists. This provides
inconsistencies in estimates as it does not allow for physical processes such as channel nesting to be
adequately represented, impacting design discharge estimates. The approach proposed here allows
engineers to design for the future as flood frequency analysis can be conducted for future climate
scenarios. Precipitation and evaporation projections are available from sources such as the Coupled
Model Intercomparison Projected Phase 5 (CMIP5) (Taylor et al. 2012) which can be used as input for the
HLM to simulate future projected discharges. This would allow for the improvement of flood-related
infrastructure as new design guidelines can incorporate the role of nonstationarity in flood frequency
analysis. Overall, we recommend further exploration of physically-based models for flood frequency
analysis as they provide much needed hydrologic justification to current statistically driven guidelines.
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Figure 2-1. Location of flood regions: USGS stream gauges (green circles), and ungauged communities
(light blue triangles).
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Figure 2-2. Ability of the HLM using PRISM-NLDAS as input to reproduce the observed average monthly
maximum discharges at 150 USGS gauges in lowa from 1981 to 2020. The observational data are based
on the daily-averaged gauge discharge. The bias shown is the average ratio of the simulated discharge to
USGS observations for all 150 gauges. A bias above (below) 1 indicates that model simulations
overestimate (underestimate) discharge compared observations. Months are indicated by the letters in
the upper left corner.
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Figure 2-3. Ability of the HLM using StagelV input to reproduce the observed average monthly maximum
discharges at 150 USGS gauges in lowa from 2002 to 2019 where instantaneous gauge data are available.
The bias shown is the average ratio of simulation volume to USGS observation volume for all 150 gauges.
A bias above (below) 1 indicates simulations overestimate (underestimate) volume compared
observations. Months are indicated by the letters in the upper left corner.
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Figure 2-4. P-value for each USGS gauge location determined from the Kolmogorov-Smirnov test. The
points in blue represent the Bonferroni corrected significance levels for 0.05.
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Figure 2-5. Relationship between annual exceedance discharge derived with Streamstats and HLM
simulations at probabilities of 50%, 20%, 10%, 4%, 2%, 1%, 0.5%, and 0.2%. The value of R2 represents the
coefficient of determination, and SSMSE is the mean square error skill score. The three regions refer to

those in Figure 2-1.
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Figure 2-6. Relative error between Streamstats and HLM simulation annual exceedance discharge at each
of the ungauged evaluation sties at probabilities of 50%, 20%, 10%, 4%, 2%, 1%, 0.5%, and 0.2%. Values
near zero indicate identical discharge values between StreamStats-derived discharge and HLM-based

discharge determined with PeakFQ.
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Figure 2-7. Relation between scale of the watershed and the relative error for annual exceedance
discharge at probabilities of 50%, 20%, 10%, 4%, 2%, 1%, 0.5%, and 0.2%. The points are colored by the
flood regions defined in Eash et al. (2013).
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3. Projected changes in annual maximum discharge for lowa
communities?

3.1 Introduction

Over recent decades, lowa has experienced an increasing number of flood events (Neri et al., 2019;
Slater and Villarini, 2016) with large socio-economic impacts to communities (Hicks and Burton, 2008;
Smith and Katz, 2013). Recently, Byun et al. (2019) examined four large watersheds across lowa showing
that monthly streamflow is expected to increase in the spring and summer months over the next century.
This is expected to bring increases in the 100-year daily streamflow magnitude for those four watersheds
and in the frequency of flood events. These streamflow alterations are projected to be driven by increases
in precipitation during the winter and spring, changes in snow water equivalent and in soil moisture across
the state. Moreover, frequent flood events will likely result in an increase in economic losses (Dottori et
al.,, 2018), requiring the development of adaption and mitigation strategies to improve community
resiliency.

To understand future flood impacts at the community scale, we need to utilize localized flood
information. This is supported by Disaster Resilience: A National Imperative (National Research Council,
2012), stating this idea as a characteristic for a more resilient nation. For lowa, two case studies already
demonstrated the benefit of using localized information to deduce social and economic loss information
important for resilience planning. For instance, Tate et al. (2016) used local gauge data and flood models
to examine social equity for the historic 2008 flood in Cedar Rapids, lowa; they found that property
acquisition are an effective measure to reduce flood losses in the future and prioritize vulnerable
neighborhoods. Furthermore, Villarini et al. (2020) used hydrologic and hydraulic modeling to investigate
the role of anthropogenic forcing on socio-economic losses for the 2008 flood at Cedar Rapids. They
determined that anthropogenic forcing increased inundated area by 1.28-fold, which led to a seven-fold
increase in economic losses. Each of these studies demonstrates how the creation of localized flood
information allows for better understanding of socio-economic impacts caused by flooding. To apply these
concepts to climate change preparedness, there is a need to produce flood projections at a community
level.

Currently, the focus of hydrologic projections using climate change scenarios is at the continental and
regional scales. Prior studies (Byun et al., 2019; Demaria et al., 2016a; Demaria et al., 2016b) have typically
applied the Variable Infiltration Capacity (VIC) model (Liang et al., 1994; Liang et al., 1996) forced with
outputs from general circulation models (GCMs) obtained from the Coupled Model Intercomparison
Projected Phase 5 (CMIP5) (Taylor et al., 2012). However, the available projections for communities across
lowa are limited. For instance, Demaria et al. (2016a) investigated projected changes in streamflow
characteristics for the U.S. Northeast-Midwest, but only provided projections for flood peaks at six sites
located in the eastern portion of the state. Other studies, such as Byun et al. (2019), examined a large
spatial portion of lowa by focusing on four watersheds covering the state; however, they only provided
projections at the basins’ outlet, limiting the usefulness of their results to communities. Each of these
studies shows a potential for projected increases in flood peaks but lacks the granularity necessary to
inform community-level action.

At the finer-scale (e.g., basin-level), understanding temporal changes has relied primarily on analyses
of historical records or streamflow simulations. For instance, Mallakpour and Villarini (2015) performed
peak-over-threshold analyses at stream gauges across the Midwest. They examined over 70 locations in
lowa, finding an observed increase in the frequency of flood events from 1962 to 2011. However, these
results only provide insights about changes in the historical past, and not about projected changes.

3 Adapted from: Michalek, A., F. Quintero, G. Villarini, and W.F. Krajewski, Projected changes in annual maximum
discharge for lowa communities, submitted to Journal of Hydrology, 2022.
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Conversely, the work by Tohver et al. (2014) is one of the few studies which provides high-resolution
future flood information that can be utilized by communities to prepare for climate change. The authors
assessed flood projections with the VIC models across the Pacific Northwest to create high-resolution (i.e.,
1/16-degree) 100-year flood maps. Bates et al. (2021) examined flood inundation under Representative
Concentration Pathway 4.5 (RCP4.5) across the United States at a 30-m spatial resolution (~1/4-degree)
with the LISFLOOD-FP two-dimensional hydraulic model. They used a framework to gather input data from
across the United States and account for fluvial, pluvial, and coastal flooding. They indicated that
significant changes in the land area at risk from 100-year floods will occur by 2050 under RCP4.5, with as
much as 16% increases for certain areas. However, their study does not provide flood peak projections
across the United States, which are important for developing flood frequency estimates for engineering
design. These approaches represent a few of the high-resolution modeling efforts in the literature,
providing the foundation for expanding the literature.

For lowa, we can address the current community-level gap in the literature by leveraging the
resources of the lowa Flood Center (IFC). More specifically, we can take advantage of the physically-based
hydrologic model called the Hillslope-Link Model (HLM), which can simulate streamflow, including flood
peaks, anywhere in the state. Here we use the HLM to assess the impact of climate change on annual
maximum discharge for 1,000 communities across lowa under two emission scenarios, and examine the
physical drivers responsible for these changes. This is particularly important for a rural state like lowa, in
which many of the smaller communities do not have access to tailored climate information that may be
available for larger cities. Finally, we examine the role of variability in projections and the impact of climate
model selection on community-level analysis.

This chapter is organized as follows. In Section 2 we describe the study area, model set-up, and forcing
data. In Section 3.3 we describe the statistical methods used to assess CMIP5 model selection and our
annual maxima analysis. Section 3.4 provides the major results and discussion of our analyses. We finish
the chapter with conclusions and final remarks.

3.2 Study Site and Data Sources

We focus on projections in annual maximum discharge characteristics at 1,000 communities across
lowa, located in a close proximity to stream and rivers, through the application of hydrologic simulations.
The domain includes all basins which drain into the Mississippi and Missouri Rivers with drainage areas
ranging from ~10 to 36,000 km?.

We simulate streamflow with the TETIS version of HLM as discussed in Quintero and Velasquez (2022).
The theoretical background and conceptualization of the HLM is well described in Mantilla et al. (2022).
The TETIS version of HLM is a fully distributed hydrologic model structure, which is based on the
decomposition of the landscape into hillslopes and channels. The model estimates runoff generation at
the hillslope by simulating different processes Snow accumulation and melting rates are derived from
precipitation and temperature data, based on the degree-day method. The model simulates precipitation
losses in vegetation and soil pore macrostructure. Surface infiltration takes into account the hydraulic soil
properties of the hillslope, and the conditions of frozen ground during the cold season. Deep percolation
and groundwater losses are also modelled, considering the hydraulic conductivity of soil at the subsurface.
Total hillslope runoff is aggregated in the river channel from the contribution of overland flow, interflow,
and base flow. A nonlinear hydrologic routing model transports flow in the channels and takes into
account the geomorphologic characteristics of the river network. The model equations are written as
ordinary differential equations. HLM integrates a numerical solver that takes benefit of the binary tree
structure of the river network to solve the system of differential equations in an asynchronous manner,
suitable for high performance computing environments (Small et al., 2013). In our implementation, the
HLM outputs streamflow simulations are produced at hourly time step and annual maximum discharge is
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obtained for all channel links in the river network. Projections of precipitation, temperature,
evapotranspiration, and frozen ground conditions are forced into the hydrologic model. The spatial and
temporal resolution of these inputs are key for the performance of the model (see Quintero and Velasquez
(2022) for more details). Simulations are conducted under naturalized flow conditions where stream
regulation (i.e., dams) is ignored due to the lack of available data on future operating procedures.

To study the projections of annual maximum discharge, we force daily precipitation, daily
temperature, daily frozen ground, and monthly ET forcings derived from CMIP5 (Taylor et al., 2012)
through the HLM. For projections, snow accumulation and melting is based on air temperature from GCMS
using a threshold and melt rate for the respective processes. Additionally, the HLM is forced with an input
of frozen ground conditions, that is calculated based on the GCM specific air temperature with a simplified
soil temperature module (Rankinen et al.,, 2004). We utilize 19 climate models and three sets of
simulations (i.e., Historical, RCP4.5, and RCP8.5). We use historical experiments covering the 1950-2005
period as control for our analysis, while RCP4.5 and RCP8.5 represent future midrange and high-emission
scenarios, respectively (Moss et al., 2010). We utilize CMIP5 daily simulations that were downscaled
statistically using bias-correction constructed analogues (BCCA; Maurer et al., 2010) to a horizontal
resolution of 1/8° latitude-longitude (~12km). We use monthly ET from the original GCMs associated with
the downscaled data sets. We utilize the bias-corrected and downscaled results as precipitation with a
high spatial resolution is necessary to adequately model annual flood peaks and biases in native CMIP5
forcings have been shown to influence runoff generation (e.g., Lehner et al., 2019; Seager et al., 2012).
Finally, we force the HLM simulations from 1981 through 2005 with daily Parameter Elevation Regression
on Independent Slopes Model (PRISM) rainfall (Daly et al., 2002) to provide a reference for the GCM
selection.

3.2 Methodology

Before examining the projected changes in annual maxima, we examine the performance of the HLM
to reproduce observed maximum discharge. We use annual maxima and daily-averaged discharges from
150 United States Geological Survey (USGS) stream gauges that were active from 1981-2020. We examine
the average bias across the 150 sites in monthly and annual maximum discharges to assess the ability of
the model to reproduce observed peak flows and the suitability of the model as reference. We define the
bias as:

USGS.
— - max (3'1)
SiMmax
where a bias greater (smaller) than 1 indicates an over- (under-) estimation of maximum monthly/annual
discharge at a gauge location.

After model validation, we evaluate the performance of the GCMs in reproducing the observed trends
in annual maximum discharge. While uncertainties in the input and the hydrologic model exist, we look
for spatial consistency among the GCM derived outputs. For that purpose, we use three performance
metrics to identify the GCMs which reproduce historical annual maximum discharge well. The three
metrics consist of Kendall’s tau matching, Mann-Whitney U test, and the Kolmogorov-Smirnov (KS) test
(Massey, 1951) to ensure that simulated annual maxima in the climate models match the reference
historical trend, magnitude, and distribution, respectively, at each of the 1,000 communities. For each of
the tests, we compare the annual maximum peak discharge when the HLM is forced by PRISM and by the
GCM outputs over the 1981-2005 period. We use these tests to select a subset of suitable climate models
for our primary analysis. For the Kendall’s tau matching, we compute Kendall’s T and its statistical
significance in annual maximum peak discharge when the HLM is forced by PRISM and by the GCM outputs.
Locations where both test statistics match in sign and are statistically significant (p<0.05) along with points
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where both test statistics are not statistically significant (p>0.05) are counted as good performers for
model selection. For the Mann Whitney U test and KS test, we determine the p-value at each of the
communities. We select models which have greater than 90% of the sites agreeing with respect to
Kendall’s tau matching, Mann Whitney U test, and the KS test as adequately capturing the statistical
patterns in the historical experiments.

Our primary focus is to assess projected changes in annual maximum discharge characteristics. We
assess nonstationarity in future scenarios using the Mann Kendall trend test applied to the entire future
period (2006-2099) at significance levels of 5% and 10%. We examine changes in annual maximum
discharge magnitude using the relative difference between the median historical annual peak from 1976
through 2005 and the median annual maxima for future 30-year periods (i.e., 2006-2035, 2036-2065, and
2066-2095). Finally, we apply the KS test to determine a time of emergence for which the distribution of
projected annual maximum discharge is different with respect to the historical one at a 5% significance
level. The reference period is based on the annual maximum discharge from 1956-2005 and the future
periods are 50-year projections starting in 2006 (i.e., 1957-2006; 1958-2007; ...; 2050-2099).

3.4 Results and Discussion

3.4.1 HLM Performance and GCM Selection

We start by examining the suitability of the daily PRISM product for use as an input for HLM
simulations as a historical reference. Daily scale preserves total volume compared to higher temporal
resolution, but it affects the simulated peak timing (delay). However, this aspect of the peak flow is not
important for our analyses. Fig. 3-1 shows a comparison of monthly maximum discharges between the
HLM simulations and USGS observations at 150 USGS gauges in lowa. The results indicate the simulations
forced with PRISM daily precipitation perform well as the points follow a 1:1 line (see Fig. S3-1 for volume
performance). The simulations have monthly bias values ranging from 0.3 to 1.45, with a mean value of
0.76. The bias indicates that the model only underestimates monthly discharges values compared to USGS
observations by an average of 24%. This monthly peak performance is similar to hourly precipitation
forced in the HLM as seen in Michalek et al. (2022), Quintero et al. (2020) , and Quintero and Velasquez
(2022). For the annual maximum discharge, Fig. 3-2 shows the average basin bias as a function of drainage
area. For basins larger than 100 km?, the median bias is about at 1.0 or above. For basins above 1000 km?,
the median bias is near 25% indicating an overestimation of annual maximum discharge in the reference
simulations. The weakest performance is in basins below 100 km? where there is an underestimation of
peak flows (median average basin biases around 0.50) due to the daily resolution of the precipitation.
Overall, we deem that for most of lowa, the reference simulations can adequately capture historical
observations at the seasonal and annual scale and can be utilized as the reference against which to
compare the GCM-driven hydrologic simulations.

Next, we evaluate which models to include for the primary assessment of future projections. We
compare hydrologic simulations derived from the 19 climate models with respect to our reference
simulations. Table 3-1 provides the breakdown of the percentage of sites satisfying the criteria based on
Kendall’s tau matching, Mann-Whitney U test, and KS test for each of the 19 GCMs. Nine of the 19 GCM-
derived simulations met our 90% criteria for all three tests (Table 3-1) and are the primary focus for our
subsequent analyses. Figs. S3-2 - S3-4 show the scatter and spatial plots for each of the three tests.
Additionally, we perform our analyses using all GCMs as well to provide commentary on the differences
in results related to model selection (see Section 4.4).

3.4.2 Projected Annual Maximum Discharge
We start our analyses by examining the presence of nonstationarities in projected annual maximum
discharge. There are strong positive trends for the future period (2006-2099) under RCP8.5 (Fig. 3-3b) at
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the 5% level for a majority of the state (70%). In comparison, under RCP4.5 (Fig. 3-3a) we detect fewer
trends across the state, with positive trends for only 2.2% and 3.8% of the state at the 5% and 10% level,
respectively. These results highlight the importance of examining community impacts across different
emission scenarios. For reference, studies assessing trends in observed streamflow for lowa (Mallakpour
and Villarini, 2015; Villarini et al., 2011) indicate a lack of detectable trend at gauged locations. In relation
to our results, this suggests that the lack of trends in historical data does not guarantee a lack of future
trends as discussed by Villarini and Wasko (2021).

To further understand the patterns in trends for annual maximum discharge, we shift our focus to the
magnitude of change with respect to the historical conditions. Fig. 3-4 presents the results of the relative
difference of median discharge for each of the emission scenarios and three 30-year periods with respect
to the 1976-2005 historical period. Across all scenarios, the median annual maximum discharge within
each period is projected to increase with respect to the historical median value. However, the change
across periods differs between scenarios. This helps explain the difference in trends between emission
scenarios as the change in annual maxima is projected to increase towards the end of the century at a
greater rate under RCP8.5 compared to RCP4.5. For RCP4.5 from 2036-2095, the change in median peak
discharge is projected to be small (Fig. 3-4, panels c and e), with expected increases occurring in the near
term (2006-2035, Fig 3-4a). These patterns can be attributed to the difference in emission projections
between RCP4.5 and RCP8.5, with those for RCP4.5 that are projected to stabilize around the middle of
the century. Finally, we find agreement with Byun et al. (2019) for lowa, who showed that the percent
change in 100-year return flow increases under RCP4.5 compared to RCP8.5 for the nearest 30-year period,
while the highest percent increase is shown towards the end of the century under RCP8.5.

Next, we shift our focus to understanding when (i.e., which decade) the change in the distribution of
historical annual maxima is projected to be first detected. This is important to understand for communities
as the distribution of annual maxima is used to determine the annual exceedance probability of discharge
for design purposes. If the projected distributions change compared to the historical ones, then water
resource planning in those communities would need to be reassessed. In this context, we define the time
of emergence as the end year of the first 50-year period in which the significance level of the KS test with
respect to the historical period (1956-2005) is exceeded (p<0.05). Fig. 3-5 shows the results of the time of
emergence for each emission scenario. Under RCP4.5, the time of emergence for half of the sites occurs
before 2070, with the remaining sites having a time of emergence between 2060 and 2090. For RCP4.5,
296 sites (29%) do not show a significant change in distribution by 2100. RCP8.5 shows differing patterns
as 270 sites (27%) have a time of emergence by 2070. The remaining sites under RCP8.5 have time of
emergence much later in the century compared to RCP4.5, with 53% of them showing a time of
emergence by 2091. RCP8.5 has fewer sites (19%) with no significant change in distribution by 2100
compared to RCP4.5. Each emission scenario indicates that, for a majority of sites, the distribution of
annual maxima is expected to change in the near future. However, under RCP4.5 the change is projected
to occur sooner on average compared to RCP8.5. For many communities across lowa, current water
resource designs may not be adequate as the distributions from which design storms are estimated are
projected to change. This analysis provides valuable information for understanding where stakeholders
and water resource managers in lowa should focus on in reassessing current design and management
plans.

3.4.3 Climate Drivers

To better understand our results, we investigated precipitation across lowa as it is the primary driver
in the HLM. We focus on precipitation in terms of the relative difference in Simple Daily Precipitation
Intensity Index (SDII) and cumulative precipitation volume. The SDII represents the average daily wet day
precipitation within a period. For RCP4.5 we find a percent change in SDII for 2006-2035 with respect to
the historical period (1976-2005) ranging from -1.5 to 3.9% (Fig. 3-6a). For the 2036-2065 (Fig. 3-6¢) and
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2066-2095 (Fig. 3-6e) periods, the percent change in SDIl ranges from -0.6% to 7.5%. Most of the state is
projected to experience an increase in wet day precipitation under RCP4.5 that is expected not to change
between 2036 to 2095. This is consistent with the changes in distribution of annual maximum discharge
which are detected earlier in the century for most sites under RCP4.5 compared to RCP8.5. For RCP8.5 we
find that the change in SDII ranges from -2.9% to 2.2% for the 2006-2035 (Fig. 6b) and -1.6% to 6.3% for
2036-2065 (Fig. 3-6d) periods with average values of -0.4% and 1.5%, respectively. However, by the end
of the century (Fig. 3-6f), the SDII is projected to increase up to 9.6%, with an average of ~4.5%. This
finding suggests that the intense precipitation events are increasing and supports the high detection of
trends in the magnitude of annual maximum discharge for RCP8.5 as well as the later shift in distribution.
We observed similar patterns for the relative difference in cumulative precipitation volume between the
historical and future periods (Fig. S3-3 - 3-5). This is consistent with Wasko et al. (2021) who found that
extreme precipitation has already increased and can be attributed to an increase in the magnitude of
extreme flood events.

3.4.4 GCM Model Selection

A crucial element to consider is the impact of GCM selections on flood peak projections. For our
analyses, we selected nine out of 19 models with precipitation, temperature, and ET that reproduced well
the historical trends, magnitude, and distribution. However, there are many different methods used in
the literature for climate model selection. For instance, Demaria et al. (2016a) selected 16 models from
the bias-corrected and statistically downscaled products as we used (Maurer et al. 2012) based on
Reliability Ensemble Average (REA) method. Others such as Naz et al. (2016) selected ten models from the
original CMIP5 suite based on the availability of sub-daily timescale for hydrologic simulations. Each of
these methods highlights the variability in selection and the importance of understanding uncertainty in
modeling future projections.

To address the uncertainty in our analyses, we compared the previous results from the nine selected
models against those obtained using all 19 available models. Our goal is to assess how the results changes
when utilizing all available GCM simulations. Analyses using all available simulations indicate a significant
trend under RCP8.5 (Fig. S6b) for the entire future period (2006-2099) at the 5% level for 66% of the sites,
which is a decrease compared to using the subset of models (Fig. 3-6b). Additionally, we find that under
RCP8.5 the spatial distribution of communities with significant trends changes. Finally, under RCP4.5 (Fig.
S6a) we find similar lack of detected trend across most sites (98%), similar to the results shown in Fig. 3-
3a.

We further investigate the impact of model selection on annual maximum discharge projections by
comparing the relative difference analysis. On average, the relative difference changes using all models
compared to those selected under RCP8.5 for the 2006-2035, 2036-2065, and 2066-2095 periods by +8.1%,
+10.4%, and -1.1%, respectively. Similarly, for RCP4.5, the relative difference changes by +6.7%, +3.9%,
and +0.6% when utilizing all climate models. The inclusion of all models increases the magnitude of the
projected flood peaks for a majority of communities across lowa compared to the models selected for our
primary analysis.

For the time of emergence (Fig. S3-3 - 3-7), the inclusion of all GCMs points to a shift to earlier in the
future compared to the subset of nine models (Fig. 3-3 - 3-5). Under RCP4.5, the time of emergence occurs
between 2030 to 2060 for the eastern half of the state, and between 2060 to 2090 for the western portion.
Under RCP8.5, a similar shift occurs, with most sites showing a shift in distribution between 2040 and
2060. The inclusion of all models shows more similarities between emission scenarios but keeps the
overall pattern of later time of emergences in RCP8.5. We find this is primarily due to the increase in
discharge magnitude by the middle century under both emission scenarios using all climate models.

These differences highlight the importance of understanding the impact of model selection for
community flood estimation as different climate models will produce varying trends, magnitudes, and
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distributions in flood peak projections. These discrepancies due to model selection must be conveyed to
communities when providing localized flood projections to allow for in-depth discussion of which
estimates to rely on for resilience planning. Furthermore, as discussed in Wasko et al. (2021), we must
use this information to provide flexibility for flood estimate guidelines at the community-level to ensure
adaptability and improved resiliency in water planning.

3.5 Conclusion

In this study we investigated the response of annual maximum discharge over time under climate
change scenarios (RCP4.5 and RCP8.5) at the community level across lowa. We utilized the physically-
based HLM to conduct simulations under naturalized flow conditions from 1950 to 2100 to understand
projections with respect to historical records. Since the HLM keeps track of soil moisture, using a
continuous simulation mimics basin memory and the effects of antecedent moisture on runoff generation.
A significant positive trend is detected for 70% of sites under RCP8.5, compared to only 2% of the sites
under RCP4.5 for the selected GCMs. Under RCP8.5, a more intense increase in annual maxima is
projected to occur later in the century (i.e., between 2066 and 2095) compared to RCP4.5. This is due to
the projected increase in precipitation intensity during 2066-2099 under RCP4.5. This pattern impacts the
time of emergence for when annual maximum discharge distribution changes. Under RCP8.5, we detected
changes later in this century for ~48% of the sites compared to RCP4.5. Finally, our results showed that
trends, magnitude, and distribution shifts can vary between communities even over a climatologically-
similar region. Furthermore, shifts in distribution can occur even when the presence of trends cannot be
detected. This illustrates the need to develop tools utilizing our projections which can improve community
resilience to flooding due to climate change as well as highlights the need to develop models for the
communities outside of lowa.

The primary limitations of this study are related to the hydrologic and climate models. First, we
assumed that the streams in lowa were under naturalized flow conditions, but a few streams are regulated.
This should be investigated in studies when trying to apply future streamflow simulations to engineering
design as the regulatory actions are important to consider. Next, we selected the climate models based
on how well they reproduced historical trends, magnitude, and distribution. However, uncertainty in
CMIP5 projections due to original model spatial coarseness and bias-correction and temporal
disaggregation processes exist and can contribute to the underestimation of extreme events (Demaria et
al.,, 2016a). We explored the impact of model selection by rerunning our analyses using all available
climates models, finding differences in the results over our primary analysis. We suggest that when
providing flood projections for communities that a sensitivity analysis of model selection should be
performed.

Our framework allows for further research into the determination of changes in annual maximum
discharge important for water resources planning and design at the community scale. With the availability
of updated high-resolution CMIP6 GCMs (Eyring et al., 2016), it will be important to run future analyses
with the most up-to-date climate projections. Once this is completed, an exhaustive analysis should be
conducted to create flood frequency guidelines which incorporate nonstationarity and localized
projections. Hydrologic simulations forced with future climate projects can be combined with
nonstationarity distribution fitting methods (e.g., Villarini et al. 2009; Tan and Gan 2015; O’Brien and Burn
2014) to help develop these methods. Finally, we acknowledge the omnipresent and unavoidable
uncertainty in the framework, both in the future forcings as well as the hydrologic simulations.
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Table 3-1. Climate model selection criteria based on comparison of historical peak flow between models
and PRISM forcings. The values represent the number of sites where the statistical metrics are not
significant. A 90% threshold was utilized, and all three tests must be above it for selection. The symbol “*”
identifies the models used for the primary analyses.

Global Climate Kendall’s Tau Mann-Whitney Kolmogorov-Smirnov
Model matching (%) nonsignificant (%) nonsignificant (%)
access1-0* 98 93 91
canesm2 96 94 83
cmcc-cm* 98 98 94
cnrm-cm5* 91 97 94
csiro-mk3-6-0* 98 97 92
gfdl-cm3 98 87 85
gfdl-esm2g 86 90 85
gfdl-esm2m* 92 97 90
hadgem2-cc 98 98 89
hadgem2-es* 97 98 92
inmcm4 98 93 86
ipsl-cm5a-mr 97 73 79
miroc-esm* 97 97 93
miroc-esm-chem 98 96 87
miroc5* 98 96 95
mpi-esm-Ir* 98 94 94
mpi-esm-mr 98 96 89
mri-cgcm3 97 97 86
noresml-m 98 86 84

39



Figure 3-1. Ability of the HLM using daily precipitation, daily temperature, monthly ET derived from PRISM
to reproduce the observed average monthly maximum discharges at 150 USGS gauges in lowa from 1981
to 2020, where instantaneous gauge data are available. The bias reported is the average ratio of
simulation discharge to USGS observation discharge for all 150 gauges. A bias above (below) 1 indicates
simulations overestimate (underestimate) discharge compared observations. Months are indicated by the
letters in the upper left corner.
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Figure 3-2. Average bias for USGS locations with over 30-years of annual maxima data to assess the HLM
model’s ability to recreate observed peaks stratified by drainage area. The dashed line represents a bias
of 1 and the whiskers represent the 5" and 95" percentiles. A bias above (below) 1 indicates simulations
overestimate (underestimate) discharge compared observations.
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Figure 3-3. Trends in annual maximum discharge from 2006 to 2099 determined by the Mann-Kendall
trend test. The left (right) panel shows the results from simulations under the RCP4.5 (RCP8.5) emission
scenario. Blue (red) circles indicate a negative (positive) trend in annual maximum discharge. White circles
are points where the trend is not statistically significant at the 10% level.
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Figure 3-4. Relative difference for median annual maximum discharge between historical (1976-2005) and
future 30-year periods of 2006-2035 (a, b), 2036-2065 (c, d), and 2066-2095 (e, f). Each column represents
one emissions scenario (RCP4.5 in the left column and RCP8.5 in the right one). Values greater than zero
indicate an increase in the median annual maxima compared to the historical median.
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Figure 3-5. Time of emergence where the 50-year distribution of annual maximum discharge is
significantly different (p<0.05) compared to the reference distribution from 1956-2005. The years
associated with the color bars indicate the end of the comparison period (i.e., “2060” represents the
period from 2011 to 2060). Black points indicate sites where the p-value never went below 0.05 for the

entire study period.
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Figure 3-6. Relative differences in simple daily precipitation intensity index (SDII) between historical (1976-
2005) and three future 30-year periods. Cells with values less than zero (blue) represent a decrease in the
intensity of daily wet day precipitation (> 1 mm). Cells with positive values indicate an increase in the
intensity of daily precipitation for wet days.

45



4. Evaluation of CMIP6 HighResMIP for hydrologic modeling of annual
maximum discharge in lowa*

4.1 Introduction

Flooding is one of the most common natural disasters worldwide, causing millions of dollars in damage
and numerous fatalities every year (e.g., Centre for Research on the Epidemiology of Disaster, 2015).
These damages (e.g., structural damages, affected buildings) to communities from flooding are projected
to increase (e.g., Bates et al., 2021; Dottori et al., 2018) as climate change is expected to exacerbate
extreme precipitation, which in turn will change the variability of flood events (Wasko et al., 2021). To
improve our preparedness against this natural hazard, the most up-to-date climate projections are
needed to make informed decisions to alleviate flood risks for communities. This means utilizing the
newest version of climate models as inputs for hydrologic modeling, such as those from the Coupled
Model Intercomparison Phase 6 (CMIP6, Eyring et al., 2016). Another aspect critical to providing
hydrologic information at the community scale is the availability of high spatial and temporal resolution
for the climate forcings (e.g., precipitation) required to simulate realistic hydrologic processes (e.g., Berne
et al., 2004). Typically, global climate models (GCMs) are run at coarse spatial resolutions (e.g., ~1 degree
or ~100 km), requiring the use of downscaling techniques to develop regional climate projections (e.g.,
McSweeney et al., 2014; Schmidli et al., 2006). However, there have been significant efforts as part of
CMIP6 to provide climate forcings by running the GCMs at high spatial resolutions. Specifically, the CMIP6
High Resolution Model Intercomparison Project (HighResMIP, Haarsma et al., 2016) provides outputs from
climate model simulations at spatial resolutions of 25-50 km, allowing for regional climate analysis to be
conducted directly from the model outputs.

Recent evaluation of the HighResMIP suite has shown that increasing the spatial resolution of climate
models leads to an improved representation of many processes. Multiple studies (e.g., Bellucci et al.,
2021; Chang et al., 2020; Lohmann et al., 2021) have shown that the increased spatial resolution of these
models also improves the multiscale climate interactions. Evaluation of precipitation indicates that the
magnitude of extreme events (e.g., Wehner et al.,, 2021), seasonal totals (e.g., Hariadi et al., 2021;
Moreno-Chamarro et al., 2021), and annual totals (e.g., Zhao, 2020, 2022) is projected to increase over
much of the globe. The majority of studies evaluating HighResMIP have focused on the examination of
atmospheric rivers, tropical cyclones, and mesoscale convective systems (e.g., Balaguru et al., 2020; Feng
et al., 2019; Gao et al., 2020; Grist et al. 2021; Huang et al., 2021; Judt et al., 2021; Kreussler et al., 2021;
Li et al., 2021; Lopez-Parages & Terray, 2022; Priestley & Catto, 2022; Vanniere et al. 2020; Vidale et al.,
2021; Yamada et al.,, 2021; Zhang et al., 2021; Zhao, 2022). These works have indicated that the
representation of precipitation related to these phenomena have improved over previous climate model
simulations. However, not all processes have been shown to be improved. For instance, an analysis of
temperature across Europe from the HighResMIP models by Squintu et al. (2021) found little
improvement compared to past climate simulations, highlighting a potential shortcoming of the new
models. Currently, the impact of improved weather processes and their associated shortcomings from the
HighResMIP suite have not been explored from a hydrologic perspective. Furthermore, hydrologic models
typically require even finer spatial resolution (<12 km) of precipitation data (Quintero et al. 2022) than
the resolution from the HighResMIP suite. This highlights an additional gap in the literature to assess bias-
correction and downscaling methodologies on the HighResMIP precipitation products and their
applications in hydrology.

4 Adapted from: Michalek, A., G. Villarini, T. Kim, F., Quintero, W.F. Krajewski, and E. Scoccimarro, Evaluation of
CMIP6 HighResMIP for hydrologic modeling, submitted to Water Resources Research, 2022.
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Beside modeling the rainfall to runoff transformation processes using meteorological variables from
GCMs (e.g., potential evapotranspiration, precipitation, temperature) through a hydrologic model,
another way to obtain discharge from GCMs is through the routing of their runoff. The HighResMIP suite
provides runoff from the models at a high spatial resolution, a topic that has received little attention in
the literature. Most studies (e.g., Byun et al., 2019; Giuntoli et al., 2018; Naz et al., 2016; Villarini & Zhang,
2020) utilize runoff from climate model suites as a proxy for flooding to assess relative changes, trends,
and uncertainty in the future. Review of past climate models from the Coupled Model Intercomparison
Phase 5 (CMIP5) project indicate that runoff outputs have large uncertainties and are not advisable to be
applied directly to water resource applications (Lehner et al., 2019). With improved representation of
climate processes in the HighResMIP project, there is a need to assess if the hydrologic component has
also improved regarding these concerns. Finally, it is important to assess if the generation of flood peaks
for the historical and future periods are similar when utilizing runoff versus precipitation forcings to gain
more confidence in the robustness of results.

The objective of this study is to assess the suitability of the HighResMIP forcings for hydrological
applications by utilizing their outputs to simulate annual maximum discharges at the 1,000 river
communities across the state of lowa. We generate simulations in two ways. First by routing only runoff
through our hydrologic model, and second by forcing our hydrologic model with precipitation,
temperature, and potential evapotranspiration. We assess the ability of the native GCM forcings to match
a reference simulation dataset that captures observations well. We then apply nine bias-correction and
downscaling methods to improve the spatial resolution of precipitation for hydrologic application and
quantify the improvements of performance in hydrologic simulations due to the corrections. Finally, we
analyze the projections in annual maximum discharge based on their changes compared to the historical
period and their respective interannual variability. We organize the chapter as follows. In the next section
we define the study region with relevant information on landform features and gauge locations. In Section
4.3 we describe the data from the HighResMIP climate models, our hydrologic model, the methods used
to bias correct and downscale precipitation, and statistical methods utilized for model assessment. In
Section 4 we describe the results related to the GCMs’ performance compared to historical precipitation
and hydrologic simulations as well as analyze projected changes and variability in flood peaks. Section 4.5
summarizes the results and presents a discussion of the findings.

4.2 Study Region

We focus on the state of lowa and all basins draining into the Missouri and Mississippi Rivers. The
study area is agriculturally dominated with low relief and can be divided into seven distinct landforms (Fig.
4-1). The landscape has a high drainage density in the Southern lowa Drift Plains, Loess Hills, lowan
Surface, Northwest lowa Plains, and Paleozoic Plateau, each of which consist of a loess cover (Prior, 1991).
The Des Moines Lobe has the poorest surface drainage (Prior, 1991). lowa has a seasonally variable
climate, with the largest amounts of rainfall occurring in summer and snow in winter. The combination of
landscape and climate features has caused the region to be prone to significant flooding in the past few
decades (e.g., Smith et al., 2013; Mallakpour & Villarini, 2015; Flanagan et al., 2020).

For our analyses, we utilize 119 U.S. Geological Survey (USGS) gauge streamgauges for model
validation (described below) (Fig. 4-1). The drainage areas of the gauges range from 10 to 36,000
km2.Table S4-1 provides the USGS gauge identification numbers along with the drainage area and a
description of the nearby community and river. We select gauges which have at least 30 years of annual
and daily data from 1981 to 2020. For our primary analysis we focus on annual maximum discharges at
1,000 river communities that have been the focus of the lowa Flood Center (IFC) (Fig. 4-1).
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4.3 Methodology

We use 15 high-resolution ensemble members from CMIP6 HighResMIP tier (Haarsma et al., 2016) to
conduct hydrologic simulations to evaluate their possible use as forcing variables. The GCMs are selected
based on the availability of specific forcing variables at a daily temporal scale. First, we consider daily
runoff from ten ensemble members to examine its suitability for routing in our hydrologic model. Next,
we choose 11 ensemble members with precipitation, temperature, and potential evapotranspiration
outputs for historical and high-resolution future experiments as required for our hydrological model. The
GCMs have spatial resolutions of either 25 or 50 km, with daily temporal scale for precipitation and
temperature and monthly temporal scale for potential evapotranspiration. The historical experiments
represent atmospheric simulations from 1950 to 2014. The future experiments represent a period from
2015 to 2050, following the RCP8.5 emission scenario. Table 4-1 provides the model names, ensemble
members, and resolution for data used in this study as well as references for further information.

For a historical reference, we use precipitation, temperature, and potential evapotranspiration
derived from the 4-km daily Parameter Elevation Regression on Independent Slopes Model (PRISM; Daly
et al., 2002); we use the hydrologic simulations derived from PRISM inputs as reference. Additionally, we
use PRISM-derived forcings from 1981 to 2014 as reference to conduct a bias-correction (precipitation,
temperature, potential evapotranspiration) and downscaling (precipitation) on the GCM forcings. Only
precipitation is downscaled, while temperature and potential evapotranspiration are taken as the
statewide average. This is because of the current setup of the TETIS HLM (Quintero & Velasquez, 2022) as
this version of the model is very computationally expensive to run with spatially distributed temperature
and potential evapotranspiration, especially for 70 years of simulations. The IFC is currently working to
improve the model so all inputs can be managed spatially (Krajewski et al., 2017). However, temperature
and potential evapotranspiration do have spatial gradients across the lowa and readers should note this
modeling limitation.

To downscale and bias-correct precipitation, we employ nine methods consisting of (1) detrended
guantile matching (dgm, Cannon et al., 2015); (2) empirical quantile mapping (egqm, Amengual et al.,
2012); (3) generalized quantile mapping (gpgm, Gutjahr & Heinemann, 2013); (4) local intensity of scaling
(loci, Schmidli et al., 2006); (5) mean variance adjustment (mva); (6) parametric quantile mapping (pgm,
Piani et al., 2009); (7) power transformation (ptr, Leander & Buishand, 2007); (8) quantile delta mapping
(qdm, Cannon et al., 2015); and (9) simple scaling. We utilize functions developed by the Santander
Meteorology Group (2015) to accomplish this task. To achieve the bias-correction and downscaling we
use the following procedure:

1. For a given day i, we pull together the precipitation R all the days that fall within a time
window of +£15 days (i.e., a 31-day window) for all the years (n=34 because we focus on the
1981-2014 period). Therefore, we obtain a vector R; that has 1054 values (i.e., 31x34) values
for the i" day (training dataset). We also collect the /" day of the years in the historical and
future periods (test dataset). This is done for PRISM and each GCM.

2. The training dataset is used to derive statistical differences between PRISM and each GCM
and implement the nine bias-correction and downscaling methods above, and the test
dataset is used to perform the respective corrections.

3. We use a leave-one-out cross validation (looCV) on the historical period, by training the bias-
correction and downscaling approaches for all the values in Ri minus the 31 values for the j®
year, to examine the performance of each bias-correction and downscaling method.

4. These steps are applied to all ensemble members and bias-correction and downscaling
techniques.

Next, we bias-correct temperature and potential evapotranspiration at the state level from the GCMs
using the bias calculated with respect to PRISM from 1981 to 2014. For temperature, we use a two-week
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moving window to take the average temperature representative of each day within a year and then
average across all years from 1981 to 2014. Then we take the temperature bias as the difference between
the GCM value and the PRISM value for each day. The value for each day is used to bias-correct the daily
temperature from 1981 to 2050. For potential evapotranspiration, we take the average monthly potential
evapotranspiration from the GCMs and divide it by the average PRISM-derived potential
evapotranspiration from 1981 to 2014 to compute the bias. The potential evapotranspiration bias for each
month is used to bias-correct the potential evapotranspiration values for the GCMs accordingly. The
temperature and potential evapotranspiration bias-correction is computed on a per-climate-model basis.

For our hydrologic assessment, we focus on annual flood peak characteristics at 1,000 river
communities across lowa (Fig. 4-1). For the initial runoff-only analysis we utilize an HLM structure with
only one storage, which represents the amount of water stored in the channels. The model is forced with
daily runoff inputs from the GCMs and is routed using the nonlinear routing equation as described in
Mantilla et al. (2006). The daily runoff values for a hillslope are taken from the nearest GCM grid cell.

For the primary analysis, we simulate streamflow with the TETIS version of HLM as presented in
Quintero and Velasquez (2022). The theoretical background and conceptualization of HLM s
comprehensively summarized in Mantilla et al. (2022). The HLM is a fully distributed hydrologic model,
which is based on the decomposition of the landscape into hillslopes and channels. The model estimates
runoff generation at the hillslope by simulating different processes. In the TETIS version of the model,
snow accumulation and melting rates are derived from precipitation and temperature data, based on the
degree-day method (Martinec & Rango, 1981; Rango, 1995). The model simulates precipitation losses in
vegetation and soil pore macrostructure. Surface infiltration considers the hydraulic soil properties of the
hillslope, and the conditions of frozen ground during the cold season. Deep percolation and groundwater
losses are also modelled, considering the hydraulic conductivity of soil at the subsurface. Total hillslope
runoff is aggregated in the river channel from the contribution of overland flow, interflow, and base flow.
A nonlinear hydrologic routing model transports flow in the channels and considers the scaling of the
geomorphologic characteristics of the river network. The model equations are written as a system of
ordinary differential equations. A numerical solver that integrates the HLM benefits from the binary tree
structure of the river network to solve the system of differential equations in an asynchronous manner,
suitable for high performance computing environments (Small et al., 2013). In our implementation, the
HLM outputs streamflow simulations at a daily time step and annual maximum discharge can be
determined for all channel links in the river network. Projections of precipitation, temperature, potential
evapotranspiration, and frozen ground conditions are forced into the hydrologic model. The spatial and
temporal resolution of these inputs are key for the performance of the model (see Quintero and Velasquez
(2022) for more details).

We perform four sets of hydrologic simulations. Our reference simulations are conducted from 1981
to 2014 using PRISM forcings (described previously). For our climate model analysis, we run an initial set
of simulations that uses the runoff directly from the GCMs and routed through our model to generate
annual maximum discharge; next, we generate annual maximum discharge using native forcings (e.g.,
potential evapotranspiration, precipitation, temperature) from the GCMs from 1981 to 2014. Additionally,
we run the hydrologic simulations using bias-corrected and downscaled GCM forcings to assess the
improvements associated with the different downscaling methods. Finally, we conduct future simulations
from 2015 to 2050 based on runoff routing as well as for selected bias-correction and downscaling
precipitation methods with bias-corrected temperature and potential evapotranspiration.

For the evaluation of hydrologic simulations, we use the following analysis techniques. For the primary
PRISM reference simulations, we compare the simulated annual maximum discharges to observed data
from USGS stream gauges (Fig. 4-1) to highlight the suitability of the HLM for this application. We
accomplish this by comparing the empirical cumulative distribution functions (ecdfs) between observed
and simulated annual maximum discharges utilizing the two-sample Kolmogorov-Smirnov (KS) test (e.g.,
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Massey, 1951). The KS test is a non-parametric test with the null hypothesis that the ecdfs are the same,
while the alternative hypothesis is that the ecdfs are statistically different from each other.

Furthermore, we assess the bias between the simulated and observed annual and monthly maximum
discharges from 1981 to 2021. We define bias as:

Bias = -2uses. (4-1)
QPRISM
where a bias greater (smaller) than 1 indicates an over-(under-) estimation of annual (monthly) maximum
discharge compared to observations.

To examine the performance of the HighResMIP runoff and precipitation simulations (native and bias
corrected) during the historical period, we apply the KS test as previously described, with the PRISM-
forced HLM simulations at the 1,000 river communities as reference. This statistical analysis allows us to
examine the entire distribution of annual maximum discharge from the HighResMIP outputs with respect
to the reference.

To examine the projected changes in annual maximum discharge, we apply the Mann-Whitney U-test
(Mann & Whitney, 1947) at the 1,000 river communities at a 5% level. The test is a nonparametric version
of the two-sample t-test and allows determining if the central tendencies in the two populations are equal.
More specifically, this test allows us to determine if the central tendencies of the distributions of annual
maxima shift in the future (2017-2050) compared to the historical period (1981-2014). We examine the
relative difference (percent change) to determine the direction of shift in the central tendency at each
location compared to the historical period. We define the relative difference as:

RD = QMpyr—QMy|st (4-2)
QMpjst

where QMryr and QMy;st are the median annual maximum discharge for the future and historical periods,
respectively, at a river community for the selected climate model.

Finally, we examine the change in interannual variability between the historical (1981 to 2014) and
future (2017 to 2050) simulations of annual maximum discharges for each ensemble member. We apply
the F-test of equality of variances for each river community to determine if variability is changing in the
future compared to the past. The null hypothesis for the F-test is that the two populations (historical and
future) have the same variance. The test statistic is the ratio of the sample variances, which follows an F-
distribution. We perform the test at a 5% significance level and present statistically significant results with
an indication of an increase or decrease in future variability.

For the three statistical tests described above, we apply the false discovery rate (FDR) to control for
type I in errors in our multiple hypothesis testing. Specifically, we apply the generalized FDR approach by
Benjamini and Yekutieli (2001), which does not require assumptions to be made regarding spatial
dependence. It should be noted that the test is conservative in its correction and results should be
interpreted accordingly (Ventura et al., 2004).

4.4 Results

Before we present our analyses, we first want to highlight the ability of the PRISM reference
simulation to reproduce observed USGS flood peaks from 1981-2021 at 119 locations by means of the KS
test (Fig. 4-2). We find 90 sites (76%) have a p-value greater than 0.05, indicating that there is not enough
evidence to reject the null hypothesis that the two distributions are the same across most of lowa, and
only 29 sites have a statistically significant p-value (accounting for FDR). Examination of the bias in the
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annual maximum discharges stratified by drainage area is provided in Fig. S4-1. The average annual
maximum discharge bias for watersheds greater than 100 km? ranges from 1 to 1.25 (median line),
meaning that there is an overestimation in the simulations compared to the observations. For watersheds
smaller than 100 km?, the median bias is 0.55, pointing to an underestimation for small watersheds. For
monthly peaks, the average monthly bias (unitless) ranges from 0.6 in June to 1.9 in September but is
close to 1.0 for most months (Fig. S4-2). The performance of our model setup is similar to simulations with
hourly precipitation in Quintero et al. (2020) and Michalek et al. (2022) for lowa. Therefore, these results
indicate that the reference simulations are generating distributions of flood peaks comparable to
observations, supporting their suitability as a control for our experiments, while at the same
acknowledging that there are biases in the magnitude of the annual flood peaks especially for small (<100
km?) and large (>10,000 km?) basins.

After model validation, we ask if the runoff available from the GCMs can be used directly as input into
a routing model to generate annual maximum discharges. Fig. 4-3 shows the results of the KS test when
comparing the distribution of annual maximum discharges from 1981 to 2014 between the reference
simulations and the simulations using runoff. As shown in Fig. 4-3, the four HADGEM3-GC31 ensemble
members and CNRM-CM6-1-HR-r1ilp1f2 can capture the distribution of the reference simulation well for
over 99% of river communities at the 5% level (accounting for FDR). The remaining CNRM-CM6-1-HR
ensemble members along with the EC-EARTH3P-HR ensemble members do not perform as well but still
have over 80% of the communities with nonsignificant p-values. The BCC-CSM2-HR model performs the
worst across all communities, with no ability to capture the distribution of annual maximum discharges
anywhere in the state, likely because the magnitude of runoff values routed through the HLM directly
from this GCM is too small to generate an appropriate hydrologic response. Based on our analysis, three
of the five climate models (5/10 ensemble members) can generate annual maximum discharges
comparable to our reference across lowa, while another four ensemble members exhibit some skill in
reproducing an adequate hydrologic response. No generalization of the viability of runoff from the
HighResMIP suite beyond lowa can be determined and performance should be examined on a per-model
basis.

While routing runoff directly is one method to generate annual maximum discharges, we also want
to assess the ability of utilizing other HighResMIP forcings (precipitation, temperature, and
evapotranspiration) to estimate the discharge values. We calculate the p-value of the KS test between
hydrologic simulations modeled with native climate model inputs and PRISM inputs (reference) from 1981
to 2014. All of the 11 total ensemble members (seven climate models), have zero communities with a
significant p-value (<0.05), which indicates that there is not enough statistical evidence to say that they
are not able to capture the reference distribution of annual maximum discharges for the study sites. For
this reason we do not show a figure of the results. In comparison with the runoff simulations, the
precipitation-based simulations are better at capturing the distribution of annual maximum discharge
across lowa. However, the forcings from HighResMIP still have biases that are masked within this
hydrologic simulation set. We find that the raw precipitation from the GCMs before bias correction and
downscaling is overestimated in the winter and fall seasons and underestimated in the summer (Fig. 4-4,
left column). Furthermore, seasonal biases in temperature (Fig. S4-3) and potential evapotranspiration
(Fig. S4-4) exist across the study region. For temperature, the bias on average ranges from an
overestimation of 2°C to 6°C in the summer season and an underestimation of 4°C to 6°C in the winter
season (Fig. S4-3). For potential evapotranspiration, the bias ranges from 0.5 in the summer months to
1.5 in the spring months (Fig. S4-4). The combinations of these biases are likely providing “the right answer
for the wrong reasons” in terms of model performance and need to be removed.

To improve the suitability of the HighResMIP forcings for hydrologic simulations, we correct the bias
in the GCM-derived forcings and downscale the precipitation to a spatial scale more suitable for hydrologic
simulations. First, we examine the performance of the bias-correction and downscaling methods on the
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precipitation of the 11 climate models/members based on leave-one-out cross validation (looCV). Fig. 4-
4 shows the results for egm-corrected precipitations in terms of daily bias for the GCMs. Fig. S4-5 to S4-
12 provide the same information for the other eight downscaling methods. The egm method centers the
median daily bias around 1.00 for the entire year and removes the seasonality observed in the original
data, leading to more unbiased conditions (Fig. 4-4). The same performance can be observed for mva (Fig.
S4-5) and ptr (Fig. S4-6) methods. Furthermore, their performance is also better than the other six
techniques (Figs. S4-7 - S4-12) and this is why we focus on these three methods in the rest of the chapter.
Overall, the average daily bias for each of the three methods across GCMs ranges from 1.08 to 1.12
compared to values from 0.92 to 1.32 for the original outputs, highlighting the ability of these methods
to remove daily precipitation biases.

Next, we focus on the performance of our hydrologic simulations forced with the bias-corrected and
downscaled precipitation, bias-corrected temperature, and bias-corrected potential evapotranspiration.
Fig. 4-5 shows the results of the KS test between historical (1981-2014) simulated annual maximum
discharges with the bias-corrected HighResMIP forcings and the PRISM reference stratified by bias-
correction method. The plot indicates the percentage of the 1000 river communities which have a
nonsignificant p-value at the 5% level. Our results highlight that the dgm, egm, mva, ptr, and gdm bias-
correction and downscaling methods translate well hydrologically, with all climate models performing
nearly identical to the reference simulations. The method that performed the worst is gpgm, with only
three ensemble members having above 75% of the communities with a nonsignificant KS test result. A
final takeaway from this comparison is that the FGOALS model performed the worst, with its simulations
not reaching the 95% threshold for three downscaling methods.

Next, we assess the impact of the bias-correction and downscaling methods (eqm, mva, and ptr
methods) on projections in annual maximum discharge as well as compare results between precipitation-
and runoff-based projections. To begin, we apply the Mann Whitney U-test to compare the central
tendencies of the distributions of annual maximum discharges between the historical (1981-2014) and
future (2017-2050) periods (34 years) for each community based on the egm, mva, and ptr downscaling.
We find no communities with a statistically significant (p<0.05) shift in the central tendencies for the
future compared to the historical period for any of the three downscaling methods (figure not shown).
The same results are found for the runoff-based simulations across all respective ensemble members
(figure not shown).

To highlight the results of flood projections obtained from HighResMIP forcings, we now examine
future changes in the median (Eq. 4-2), even though they are not statistically significant. Fig. 4-6 provides
the relative difference between future and historical medians for eqm-based simulations with mva- and
ptr-based simulations provided in Figs. S4-13 and S4-14, respectively. For eqm simulations, 65% of
communities on average have a relative difference in the median greater than zero indicating an increase
in median future flood peaks compared to the historical experiments. MPI-ESM1-2-XR-r1ilp1fl had the
least number of communities with a future increase (354 sites) while HADGEM3-GC31-HH-r1ilp1fl had
the most (921 sites). On average 42% of the communities show greater than 25% increase in the median
flood peak across lowa. Only 25% of the communities show a projected decrease in the median and only
6% have a negative difference greater than 25%. Furthermore, the average relative difference per
ensemble member ranges from -0.09 (MPI-ESM1-2-XR-r1i1p1f1) to 0.31 (HADGEM3-GC31-HH-r1ilp1f1).
When taking the yearly median flood peak across the first ensemble member of each model (Fig. 4-6, GCM
Median panel), 930 sites have a relative difference greater than zero, but the average projected increase
across communities is only 16%. For this approach, the signal is more consistent across lowa compared to
other members as the range in projected differences is smaller. We find similar patterns in the projected
changes of the median as well for mva (Fig. S4-13) and ptr simulations (Fig. S4-14). Our results indicate a
projected increase in the median annual maximum discharge for most of lowa according to the
precipitation-based simulations.
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For a comparison of future changes with runoff and precipitation derived simulations, we utilize the
three ensemble members of the HADGEM3-GC31-HM suite. We present the relative difference (Eq. 4-2)
for egqm-corrected precipitation-based and native runoff-based projections in Fig. 4-7. A comparison of
the results for each modeling approach indicates that the runoff-based simulations show less of an
expected increase in annual maximum discharge across lowa. For member r1ilp1f1 (Fig. 4-7, left column),
the runoff simulations show, on average, a ~25% decrease in the median whereas the eqm-precipitation
simulations show a 25-50% increase (Fig. 4-7, top panel). A similar pattern can be observed in member
rli2p1fl as well (Fig. 4-7, 2" column). The r1i3p1f1 member is the most similar between the two methods,
with similar projected changes observed in the southeastern portion of lowa. The median across members
(Fig. 4-7, 4*" column) highlights the stark difference in projections with runoff-based results showing a less
drastic expected increase for most of the communities compared to a larger projected increase for the
precipitation-based projections. Projected changes for runoff-based simulations for all available climate
models can be found in Fig. S4-15.

For our final analysis, we examine how variability is expected to change in the future. Fig. 4-8 shows
the results of the F-test for eqm-based simulations. On average, across all models and ensemble members,
19% of the communities have a statistically significant F-test result, corresponding with an increase in
future flood peak variance compared to historical one. Specifically, four of the eleven ensemble members
(4 out of 7 models) have greater than 25% of the communities with a projected variance increase (p<0.05).
These members include CMCC-CM2-VHR4-r1ilp1fl, FGOALS-F3-H-r1ilp1fl, HADGEM3-GC31-HH-
rlilp1fl, and HADGEM3-GC31-HM-r1i2p1fl. Only the ensemble members of EC-EARTH3P-r2i1pif1, EC-
EARTHP-r3i1p2f1, and MPI-ESM1-2-XR-r1ilp1fl have less than 10% of the communities with a statistically
significant projected increase in variance. When we conduct the F-test on the ensemble medians (Fig. 4-
8, bottom right panel), 24% of the communities are projected to have statistically significant increases in
discharge. No ensemble member has more than 0.5% of the communities with a projected decrease in
interannual variance.

In comparison with mva and ptr-based simulations, we find similar projected changes in variance. Figs.
S4-16 and S4-17 present the results of the F-test similar to Fig. 4-8 for these simulations. On average, 17%
and 24% of the communities have a larger future variance compared to the historical one for mva and ptr,
respectively. For egm, mva, and ptr simulations, CMCC-CM2-VHR4-r1i1p1fl is the only ensemble member
with greater than 50% of the communities having a projected increase (p<0.05) in variance. A projected
increase in variance for over 25% of the communities is found for 5 and 6 ensemble members (5 out of 7
models) with mva and ptr simulations, respectively. The similar ensemble members consist of CMCC-CM2-
VHR4-r1ilp1fl, EC-EARTH3P-HR-rlilp1fl, HADGEM3-GC31-HH-rlilp1fl, and HADGEM3-GC31-HM-
rli2p1fl. When examining the projected variance based on the GCM median yearly values, 4% and 10%
of communities have a projected increase in variance (p<0.05) for mva and ptr simulations, respectively.
This is lower than what found with egm-based simulations. Neither method has an ensemble member
with more than 1% of the communities showing a projected decrease (p<0.05) in the variance. Finally, we
provide the results of the F-test for the runoff-based simulations in Fig. S4-18. For all ensemble members,
at least 84% of the communities do not indicate a significant change in the variance for the future
compared to the historical period. Overall, our results indicate a projected increase in the interannual
variability of flood peaks is detected for more of the communities across lowa with eqm-based simulations
compared to mva, ptr, or runoff.

4-5 Discussion and Conclusions

We evaluated the potential for the CMIP6 HighResMIP suite to be utilized for hydrologic simulations.
We examined two approaches for the generation of annual maximum discharge data, consisting of runoff-
based and precipitation-based hydrologic modeling. As a reference, we utilized simulations at the 1000
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river communities based on PRISM forcings. The reference simulations were shown to capture the
empirical cumulative distribution function at 76% of the gauge locations based on the KS test. We believe
this is adequate for the study as the model performs well across lowa and its performance is similar to
previous studies (e.g., Michalek et al., 2022; Quintero et al., 2022). However, there are still biases in the
model for small (<100 km?, underestimation) and large (>10000 km?, overestimation) watersheds that
should be noted. Another limitation of our model set up is that only precipitation is a spatially varying
input. Due to the model complexity and computational costs, the use of temperature, potential
evapotranspiration, and frozen ground as spatially dependent is not currently feasible. Future work will
be conducted to expand the capability of the model towards the modeling of larger spatial domains.

We started our analysis by evaluating if runoff directly from GCMs could be routed through a
hydrologic model to estimate annual maximum discharges. Our results indicated the runoff-based
simulations captured the reference annual maximum discharge distribution for all of lowa for only five of
the ten ensemble members assessed. Furthermore, the areas of lowa in which poor performance occurred
were not spatially consistent. For instance, one of the CNRM-CM6-1-HR ensemble members performed
poorly for communities in the northern portion of the state, whereas for the EC-EARTH3P-HR members
performance was poor in southeastern lowa. Despite the good performance based on the KS test, we
should interpret the results through the lenses of the results of hypothesis testing: we can say that we do
not have enough statistical evidence to reject the null hypothesis that the distribution of annual maximum
discharge based on the PRISM-forced model and the runoff routing simiulations are the same, which
should not be misinterpreted as meaning that the two distributions are the same. This is especially true
in light of the abovementioned biases Another limitation of this analysis with respect to runoff simulations
is the size of the grid cell (50-km), which might not be suitable for small watersheds. To improve upon our
limitations, we suggest the bias-correcting and downscaling of the runoff from the GCMS. Additionally,
we did not assess the differences in runoff outputs among GCMs, suites, and past experiments (i.e., CMIP5
vs CMIP6) to determine if hydrologic performance has improved due to the higher-resolution climate
models and comparative analysis should be performed in the future.

After examining the performance of runoff routing, we wanted to evaluate how well the native
HighResMIP precipitation, temperature, and potential evapotranspiration worked in our precipitation-
based hydrologic model (HLM). Our results showed that the estimated annual maximum discharges from
1981 to 2014 compared to PRISM reference simulations were able to recreate the empirical cumulative
distributions across lowa for all 11 ensemble members. Our results highlight that the climate forcings
directly from the HighResMIP suite have the potential to be directly utilized for hydrologic purposes,
although risk of biased estimation should not be ignored. Furthermore, the same careful interpretation of
the KS test results as mentioned before should be applied. Additionally, we did not examine the role of
convective precipitation from HighResMIP as we were looking at all precipitations events through a year
to obtain the largest flood peak at a location. Recent literature (e.g., Judt et al., 2021; Moreno-Chamarro
et al., 2022; Moreno-Chamarro et al., 2021; Vidale et al., 2021; Voldoire et al., 2019; Zhao, 2022) suggests
that HighResMIP can represent mesoscale convective processes with some skill; however, we suggest an
analysis of convective processes if event-base hydrologic modeling is conducted. Finally, we recommend
that the discrepancies in climate model biases between precipitation and runoff be examined to improve
runoff for hydrologic application.

A further investigation into input biases indicated that they exist in precipitation, temperature, and
potential evapotranspiration for the native HighResMIP climate forcings compared to the PRISM
references. Precipitation was overestimated in the models for the winter and underestimated for the
summer, while temperature and potential evapotranspiration were found to be overestimated in the
summer and underestimated in the winter. The results about the bias match similar results in other
studies (e.g., Moreno-Chamarro et al., 2022; Moreno-Chamarro et al., 2021; Squintu et al., 2021; Tsartsali
et al.,, 2022; Zhao, 2020, 2022). We did not investigate the sensitivity of the biases on hydrologic
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simulations as the current set up is primarily precipitation-driven. The accuracy of the climate change
signal in temperature and potential evapotranspiration is not known and we urge caution when
interpreting the results. Therefore, we suggest that temperature and potential evapotranspiration be bias
corrected and downscaled as well and used as spatially distributed inputs into hydrologic models.

Due to the precipitation biases, we decided to explore the viability of exploiting nine statistical bias-
correction and downscaling methods to try to match our reference forcings and improve precipitation
spatial resolution. Our results indicated that equivalent quantile mapping (eqm), mean variance
adjustment (mva), and power transformation (ptr) performed the best for precipitation compared to
PRISM. This translated directly to annual maximum discharge simulations, where the performance for the
three methods across all 11 GCMs/members was nearly identical to the PRISM reference simulations.
According to results from the KS test, the 11 ensemble members captured the reference distribution for
all lowa’s river communities across the bias correction methods. Conversely, we found that the gpgm,
loci, and scaling downscaling methods performed the worst. For these downscaling methods, poor
performance was typically observed for communities along the Des Moines and Cedar River. As previously
stated, careful interpretation of the KS test results should be applied. Finally, one of the primary
assumptions of our modeling efforts, as previously noted, was that HighResMIP captured stratiform and
convective precipitation to determine the annual maximum flood peak across lowa. We did not examine
how statistical bias correction and downscaling impacted precipitation for these two processes as it was
outside the scope of this study.

Next, we explored the changes in annual maximum discharge projections based on the eqm, mva, and
ptr corrected precipitation as well as compared to a subset of runoff-based results. We applied the Mann
Whitney U-test to determine if the future annual maximum discharges are expected to differ from the
historical simulations. Our results indicated that no communities are detected to have significant future
changes when utilizing egqm, mva and ptr based simulations. Despite the lack of detected changes in the
future based on the Mann Whitney U-test, we should interpret the results in a similarly to the KS test
results previously discussed. To explain, we can say that we do not have enough statistical evidence to
reject the null hypothesis that the two populations (future and historical) of annual maximum discharge
are equal, which should not be misinterpreted as meaning the two populations are the same. For this
reason, we examined the relative difference in the medians of the future and historical flood peaks for
each community. This is a limited metric but allowed us a simple way to visualize projected changes in
flood peaks based on HighResMIP models. We found that the median in flood peaks from most
communities (65%) is projected to increase (not statistically significant) by ~20% on average. The river
communities across lowa which should be focused on by stakeholders are those along the Des Moines
and Cedar River, with Des Moines and Cedar Rapids that are two major cities in lowa. These areas showed
a consistent increase in the median values across ensemble members and downscaling methods.
Additionally, communities in southwestern lowa within the Missouri River Basin and Middle lowa River
basin also showed this consistent increase. For runoff projections, we also did not detect future changes
in annual maximum discharges, with less than 10% of lowa river communities showing a significant
change. Furthermore, a comparison of relative difference in the median flood peak values showed less of
a change compared to precipitation-based simulations. The discrepancies between methods should be
explored further. Finally, the lack of detection in future changes across both methods might be due to
only examining the immediate future (2050) where the climate change signal might not be strong. We
recommend a comparison of short-term results with other experiments that provide information to the
end of the century to determine if this is the case.

Finally, we investigated how interannual variability was projected to change through the application
of the F-test. For egm-based simulations, four of the 11 members (4 out of 7 models) showed greater than
25% of the communities with a projected increase in variance compared to the historical period.
Furthermore, at least 10% of the communities are projected to have a larger interannual variability in the
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future for nine of the 11 members (5 out of 7 models). Simulations with mva-corrected precipitation
detected less changes in variance in the future. However, ptr-based simulations produced changes in
interannual variability similar to those of eqm results. We found that the choice of downscaling methods
can impact the variability of flood peak projections and should be examined to determine the impact on
the detection of the climate change signal. Projected increases in flood peak variance were commonly
found in northern lowa communities as well as for communities along the main reaches of the Cedar, Des
Moines, lowa, and East and West Nishnabotna Rivers. Lack of detected changes were found in southern
central lowa along the Thompson and Chariton Rivers. Additionally, we found the change in variance for
runoff simulations was less prevalent across lowa compared to precipitation-based projections. We
suggest further exploration of the discrepancies in the changes interannual variability between
simulations methods to determine if they are caused by the climate model forcings or the hydrologic
modeling approach.

In conclusion, our study is one of the first examining the viability of CMIP6 HighResMIP forcings for
hydrologic application. We recommend that hydrologic modeling with HighResMIP projections utilizes
precipitation forcings instead of runoff outputs. Furthermore, bias-correction and downscaling of
precipitation led to a good hydrologic performance in reproducing the distribution of annual maximum
discharges across lowa’s river communities. Projected changes in the magnitude of annual maximum
discharge are not detected for the immediate future across the state, but significant changes in
interannual variability for the future are, with results differing between precipitation and runoff
simulations. Investigation of the discrepancies between approaches should be the focus of future
endeavors to quantify uncertainties in projections of flooding.
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Table 4-1. Breakdown of climate models and ensemble members used in this study with forcing spatial
resolution to generate annual maximum discharges. The runoff simulations highlight which models and
ensemble members are used to force the HLM with daily runoff only. The forcing simulations refer to the
models and ensemble members with daily precipitation, daily temperature, and monthly potential
evapotranspiration to force the HLM. A “Yes” indicates an ensemble member was used in the respective

simulation type.

Model Ensemble Reference Spatial Runoff Forcing
Members Res. Simulations Simulations
(km)
BCC-CSM2-HR rlilp1fl Wu et al. (2021) 50 Yes No
CMCC-CM2-VHR4 rlilp1fl Scoccimarroetal. 25 No Yes
(2022)

CNRM-CM6-1-HR rlilp1f2 Voldoire et al. 50 Yes No
r2ilp1f2 (2019) Yes No
r3ilplf2 Yes No

EC-EARTH3P r3ilp2fl Haarsma et al. 50 No Yes

(2020)

EC-EARTH3P-HR rlilp2fl Haarsma et al. 50 Yes Yes
r2ilp2fl (2020) Yes Yes
r3ilp2fl No Yes

FGOALS-F3-H rlilplfl An et al. (2022) 25 No Yes

HADGEM3-GC31-HH rlilp1fl Roberts et al. 50 Yes Yes

(2019)

HADGEM3-GC31-HM rlilp1fl Roberts et al. 50 Yes Yes
rli2p1fl (2019) Yes Yes
rli3plfl Yes Yes

MPI-ESM1-2-XR rlilp1fl Gutjahr et al. 50 No Yes

(2019)
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Figure 4-1. USGS gauge locations (triangles), river communities of interest (circles), major rivers (grey
lines), and landform features for the study area.
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Figure 4-2. P-values of the Kolmogorov-Smirnov test for annual maximum discharge during the historical
period from 1981 to 2020 between PRISM simulations and USGS observations. The blue circles are for
locations in which the Kolmogorov-Smirnov test is rejected at the 5% level accounting for false discovery
rates.
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Figure 4-3. P-values of the Kolmogorov-Smirnov test for annual maximum discharge during the historical
period from 1981 to 2014 between simulations using native HighResMIP runoff and PRISM reference. The
blue circles represent locations in which the distributions of the reference and HighResMIP simulations
are statistically different at the 5% level accounting for false discovery rates.
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Figure 4-4. Average daily bias in precipitation based on leave-one-out cross validation (looCV). The
columns are the results for original (before bias-correction and downscaling) and egm corrected
HighResMIP precipitation, respectively. The rows represent each of the climate models/members. The
black line represents the median, and the gray lines represent the 5" and 95 quantiles of daily bias. The
red line represents a bias of 1 or perfect match with respect to PRISM precipitation.

61



scaling

F LA LIL-EX 2 L NS I

- LA WH-LEDD-SWIDAVH
F LHAZL-NH-LESD-EWIDAYH
LA LIL-WNH-LEDD-cWIDAVH
FLiLdLIL-HH-LE0D-ENFDAaYH
FLdLL-H-e4-8TV00d
FLZdLg-dEH1¥Y3-03

F LZdLg-dH-deH1YY3-03
FLZdLIZ-HH-dEH1MY3-03

F LedL-dH-dEH 1Y Y3-03

F LA LI PHHA-ZND-DDAD

qdm

LA LIL-EX-2-LINS -1 dIN

F LA LI WH-LEDD-EWIDAVH
- LILAZIL-WH-LEDD-SNIDAYH
F LA LL-WH-LEDD-ENTDAVH
F L dLIL-HH-LEDD-ENFDAYH
FLiLdLL-H-e4-3TV 09
FlizdLigl-deHIEY3-03

F LZdLg-dH-dEH1YY3-03

- LZdLIZ-HH-dEH 1M Y3-03
FLgdLL-"H-dEHLYY3-03
FLLA LI PHHA-ZND-DDAD

ptr

FLLALIL-EX-2- L NS 3-IdIN

F LENL-WH-LEDD-ENTDAVH
F L dZIL-INH-LESD-ENEDAYH
F L LIL-WH-LEDD-ENTDAVYH
F L dLL-HH-LEDD-ENFDAYH
FLLALL-H-E4-8 V00
FlizdLigl-deHIEY3-03

- LgdLIg-HH-dEHLYY3-03

- LZdLIZI-HH-dEH 1 MY3-03
FLgdLL-HH-dEHLYY3-03

F LA PHHA-ZIND-0DND

100% 1

75%

50% 1

25% A

0%

Figure 4-5. Percentage of 1000 river communities with a nonsignificant Kolmogorov-Smirnov test p-values

for annual maximum discharge during the historical period from 1981 to 2014. The statistical test is
conducted between the simulations from bias-corrected and downscaled HighResMIP precipitation and

PRISM reference for each downscaling method. The blue bar represents statistically significant test results

at the 5% level. The black and grey lines represent 90%, 75% and 50% of the river communities,

respectively. The test results account for false discovery rates.
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Figure 4-6. Relative difference (Eq. 4-2) in median annual maximum discharges between historical (1981-
2014) and future (2017-2050) experiments from egm corrected simulations. The GCM Median represents
the relative difference based on the median of the first member (r1) of the three GCMs.
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Figure 4-7. Relative difference (Eq. 4-2) in median annual maximum discharges between historical (1981-
2014) and future (2017-2050) experiments for the HADGEM3-GC31-HM ensemble members. The columns
represent annual maximum discharge generated with egm-corrected precipitation and native runoff,
respectively. The GCM Median represents the relative difference based on the median of the three

ensemble members.
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Figure 4-8. F-test p-values for annual maximum discharge between historical (1981-2014) and future
(2017-2050) experiments for egm-based simulations. The red (blue) represent a larger (smaller) variance
in future simulations compared to the historical period. The test results account for false discovery rates.
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5. lowa Flood Frequency and Projections Tool (IFFP): A tool to
project flood frequency estimates across lowa?

5.1 Introduction

Climate change presents a significant challenge to water resources engineers and planners as it is
expected to increase the likelihood of hydrometeorological extremes, including extreme precipitation and
temperature (IPCC 2021). For many watersheds within the United States, this means that the annual
maximum discharge (i.e., flood peaks) is expected to increase over time, leading to nonstationary
conditions (Milly et al., 2008). Currently, federal guidelines for flood frequency analysis (see England Jr et
al. (2019)) do not provide guidance on how to account for projected changes in the climate system, and
new tools and approaches are needed to improve the resilience of water resources infrastructure (IPCC,
2022; Wasko et al., 2021).

In lowa, the need for understanding changes in design flows due to climate change is especially
important as increases in temperature and precipitation are expected to increase the magnitude of annual
maximum discharges (references). Currently, the U.S. Geological Survey (USGS) provides design flows for
ungauged locations in lowa through a webtool called Streamstats (USGS, 2021). In Streamstats, the design
flows are calculated from regional flood estimation equations established by a relationship between
maximum discharge and drainage area through statistical regression (Eash et al.,, 2013), and the
parameters of these models related to catchments’ physical properties are selected based on
minimization of residuals. However, only one-third of the developed regional equations have a climate-
related parameter (i.e., rainfall), which is an important driver of hydrologic processes (Michalek et al.,
2022). Therefore, the current methods cannot provide projections for design flows, highlighting
limitations of available tools.

Due to these reasons and lack of available online resources, we have created the lowa Flood
Frequency and Projections Tool (IFFP; https://iowafloodfrequency.iihr.uiowa.edu/), which incorporates
climate change projections in flood frequency estimates. We use the lowa Flood Center (IFC)’s Hillslope-
Link Model (HLM) to estimate discharge projections utilizing forcings derived from global climate models
(GCMs) part of the Coupled Model Intercomparison Projected Phase 5 (CMIP5, Taylor et al., 2012) and
Phase 6 (CMIP6; Eyring et al., 2016). This tool addresses two specific objectives. First, we provide flood
frequency estimates based on default settings (IFFP page). Specifically, the approach provides estimates
by fitting a subset of discharge projections to a nonstationary generalized extreme value (GEV)
distribution. These settings cannot be edited by the user and reflect our best assessment of the projected
changes in flood frequency for a given scenario and CMIP suite. The second objective is to provide another
service, which allows users to explore how the selection of the CMIP suite, emission scenario, climate
models, time period, and distribution type (For Research page). For this chapter, we briefly summarize
the hydrologic dataset used for flood frequency analysis, highlight the features of the main and for
research pages, and give a brief discussion on the tool.

This chapter is organized as follows. In Section 5.2 we describe the study area, simulation data,
statistical methods, and the web framework. In Section 5.3 we provide a case study highlighting the ability
of the IFFP tools. Section 5.4 provides some discussion and concluding remarks.

5 Adapted from: Michalek, A., R. Amorim, G. Villarini, F. Quintero, and W.F. Krajewski, lowa Flood Frequency and
Projections Tool (IFFP): A tool to project flood frequency estimates across lowa, 2023 (in preparation)
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5.2 Materials and Methods
5.2.1 Study Area

IFFP focuses on providing information for the State of lowa, located in the central United States.
Information is available at every stream within the state that drains into the Mississippi and Missouri
Rivers with a drainage area greater than 400 km? as shown in Fig. 5-1. lowa is an area dominated by
agriculture, with low relief and a high drainage density (Prior, 1991). It is characterized by seven landforms’
features, with the Des Moines Lobe being the most hydrologically disconnected. The climate of the region
is seasonally variable, with most of the rainfall occurring in the summer. The culmination of the landscape
and climate characteristics has made lowa prone to significant flooding (Flanagan et al., 2020; Mallakpour
& Villarini, 2015; Smith et al., 2013).

5.2.2 Web Interface

The IFFP web tool is a simple interface providing four main pages. First, the web tool opens up to the
About page (Fig. 5-2). This page is populated with information on the web tool discussing the functionality,
related publications, and information on the authors. Additionally, there is a link to a wiki page that
provides in-depth information on the hydrologic model, climate models utilized as a data source for this
tool as well as equations for the distribution types incorporated in the tools. The second page is the IFFP
page, which provides our best estimates of projected changes in flood frequency and is the main tool for
users to interact with. The third page is titled For Research and provides a secondary tool for in-depth and
customizable analyses. More information on the tools can be found below. The final page is a Contact
page that allows users to send questions and information to the research team.

5.2.3 Data Sources

The data included in the IFFP tool is based on simulations of annual maximum discharges from 1981
(1950 for CMIP5) to the end of the 21% century at every stream segment in lowa using the HLM developed
by the IFC. Specifically, we utilized the TETIS-version of the HLM (see Quintero and Velasquez (2022) for
more details). The theoretical background and conceptualization of the HLM is comprehensively described
in Mantilla et al. (2022). The TETIS version of HLM is a fully distributed hydrologic model structure, which
is based on the decomposition of the landscape into hillslopes and channels. Simulations are conducted
under naturalized flow conditions where stream regulation (i.e., dams) is ignored due to the lack of
available data on future operating procedures. The simulations are conducted offline as they require high-
performance computing, and the final results are stored in a PostgreSQL database on our server. All
calculations with the tool are conducted with these simulations.

For the primary function of the tool (IFFP page), annual flood peak projections are developed from
forcings from 20 climate models within the CMIP6 suite. The CMIP6 suite provide climate projections for
four emission or shared socio-economic pathways (SSPs). Each SSP represents a corresponding emission
and land-use scenario. We incorporate SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 into our tool, which
represent end-of-century radiative forcings of 2.6, 4.5, 7.0 and 8.5 W/m?, respectively.

For the research page of the tool, we also include flood peak projections from 1950 to 2100 utilizing
19 CMIP5 GCMs. The CMIPS suite contains two emission scenarios or representative concentration
pathways, RCP45 and RCP85. RCP45 represents a scenario in which the peak emissions occur near 2040
and then decline towards the end of the century. RCP85 is a scenario in which emissions continue to rise
through 2100. The values 45 and 85 represent the radiative forcing level in 2100 (W/m?) indicating 4.5
and 8.5 W/m?, respectively.
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5.2.4 Statistical Methods

The primary function of this tool is to return flood frequency projections for given river segments
based on flood peak projections. To achieve this, we utilize the distribution fitting of the time series of
projected flood peaks based on stationary and nonstationary procedures to determine values at annual
exceedance probabilities (AEPs) of 0.5, 0.2, 0.1, 0.04, 0.02, 0.01 and 0.004 as utilized by the USGS. For the
main function (IFFP page), we determine AEPs by fitting a GEV distribution to the annual flood peak
projections for a scenario of interest. We select the “best” GEV distribution model with respect to the
Bayesian Information Criterion (BIC) among different model configurations: 1) no parameters varying on
time (if no trend is detected); 2) location varying on time; 3) scale varying on time; and 4) location and
scale varying on time. Trend in the projected flood peak is determined based on the Mann-Kendall trend
test (Kendall, 1975; Mann, 1945) at the 5% significance level. We utilize the GEV distribution for the main
page of our tool as it is rooted in extreme value theory and has been shown to be flexible for estimating
AEPs of nonstationary flood peak time series (O’Brien & Burn, 2014; Slater et al., 2021; Villarini et al.,
2009). For the research section of our tool, this same procedure can be applied utilizing stationary and
nonstationary versions of the Gumbel and Lognormal distributions. The distribution fitting is conducted
with the GAMLSS (Rigby & Stasinopoulos, 2005) and extRemes libraries in R. Additionally, on the research
page we provide the ability to determine the percent change between a past and future period at a stream
link. This function returns the percent change of the medians between each user-selected period.

5.2.5 Architecture and System Structure

5.2.5.1 Architecture

The IFFP tool consists of two main toolboxes or pages as previously discussed. Each follows a similar
front-end/back-end system architecture as shown in Fig. 5-3. For the front-end, we utilize HTML and
JavaScript for dynamical visualization of content such as graphs, tables, and maps. We utilize the Google
JavaScript library (Charts, 2023) to provide line plots. We use Leaflet’s JavaScript library (Leaflet-js, 2023)
to create an interactive map for users. For the back-end processes, we utilize PHP to query our hydrologic
dataset from the SQL databases (PostgreSQL, 2023) and to execute an R script with the data for
distribution fitting (when applicable). The primary differences are related to the data flow, and the next
two subsections describe the individual system structure for the IFFP and For Research pages.

5.2.5.2 System Structure IFFP Page

Figure 5-4 provides the schematic overview of the data flow for the IFFP page tool set. The main steps
of the system are as follows:

1. Step 1: The user navigates to a river segment of interests and clicks on it to send a request to the
back-end of the server.

2. Step 2: The request utilizes the ID for the river segment selected and queries the PostgreSQL
database for all climate model flood projections from 1981 to 2099 (18 values per year, 2160 in
total for a segment) for the CMIP6 suite. The default setting is for SSP1-2.6 scenario. The data are
queried utilizing PHP, and a JSON with the results is returned to the client side.

3. Step 3: The queried flood projections for the river segment are averaged across climate models
for each year. This step is completed within JavaScript.
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4. Step 4: The average data time series is fit with a GEV distribution and a JSON file of AEPs over time
is returned. This is completed by sending the time series to a PHP script, which executes an R
script on the server side.

5. Step 5: The final step is to take the JSON file of AEPs and generate a line chart in JavaScript for the
user to visualize.

The requests sent between the server and client side are executed in the background and cannot
be intervened by the user. Furthermore, the user can select a different emission scenario (SSP) with a
radio button on the chart created in step 5, which reruns through steps 1 to 5.

5.2.5.3 System Structure For Research Page

Figure 5-5 provides the schematic overview of the data flow for the For Research page tool set. This
is similar to the IFFP page but allows the users more flexibility in the analyses. The main steps of the
system are as follows:

1. Step 1: The user is allowed to select multiple options to inform their request consisting
of: a) selection of stream segment of interest; b) either distribution fitting or ratio of
historical and future flood peak medians; c) either CMIP5 or CMIP6 climate suite; d) suite
specific climate models; e) the emission scenario of interest (RCP or SSP); and f) analysis
specific parameters. For part f), if distribution fitting is selected, the user specifies only
the start and end time along with the distribution of interest. If the ratio of annual maxima
is selected, the user selects the start and end times for a historical and future period.

2. Step 2: The request utilizes the user specific information (i.e., ID) and queries the
PostgreSQL database. The data are queried utilizing PHP and JSON, with the results that
are returned to the client side.

3. Step 3: The queried flood projections for the river segment are averaged across climate
models for each year and combined into a JSON array, with the individual climate model
results based on the user selection. This step is completed within JavaScript.

4. Step 4a: If the user selects distribution fitting for the analysis, the data from step 3 call to
the server side to run this analysis. In this step the distribution type is utilized as an input
to the server commands as well (i.e., PHP call to R). The distribution fitting is done for
each individual climate model as well as the average time series. All of the distribution
fitting results return the AEP in JSON format, which are stored in a JavaScript array.

5. Step 4b: If the ratio of annual maxima is called, the JSON array of flood projections is
utilized to run a simple function for all models and the GCMs’ average, which are stored
for step 5.

6. Step 5: If step 4a is utilized, a line chart of AEPs is returned, displaying the distribution
fitting results for the average GCMs’ flood projections. A drop down is made available to
toggle between different GCM results. If step 4b is returned, an output box is populated
with the calculated ratios by GCM.

5.3. Case Study

To demonstrate the capability of the IFFP tools, we highlight the outputs of the primary and secondary
analyses for the City of Cedar Rapids. Additionally, we provide brief commentary on how a prospective
users might utilize these results.

To begin, we examine a case study of the primary tool page (/FFP). Figure 5-6 shows the results when
a user selects the river link (highlighted in yellow) for Cedar Rapids. A display is returned providing a line
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chart of AEP projections for SSP1-2.6 scenario for the 1981-2095 period. The box displays a unique id
(LinkID: 367814) for the river segment selected and the drainage area of the basin (6492 mi?). The plot
indicates that the annual maximum discharges have a trend, as the AEP values (y-axis) are changing over
time (increasing). The user can then select a different emission scenario based on the available radio
buttons. Figure 5-7 shows the results if a user selects SSP5-8.5. The new AEPs are different from those in
Fig. 5-6. This example shows the AEP discharge values are projected to increase more throughout the 21*
century for the higher-emission scenario. This allows users the flexibility to toggle between emission
scenarios with minimum input and allows for easy comparisons.

If the user selects the “Build Report” button, a table of the AEP values appears along with a map of
the selected point and the ability to download the simulation and AEP estimates (Fig. 5-8). For the 50%
AEP, a stakeholder would be able to see that from 1981 to 2095 the discharge value are projected to
increase from 41,506 ft3/s to 47,396 ft3/s under SSP5-8.5. This change could be incorporated into a design
or plan to help account for future conditions. Figure 5-8 shows the top and bottom screenshot of the
report that can be built from this page; it provides the AEP estimates in tabular format as well as the ability
to download the AEP estimates and the simulation discharge data to csv.

We now shift our focus to the For Research page tools. The tools on this page are for stakeholders,
engineers, and scientists who would want to examine different scenarios and time spans. We start with a
demonstration of the distribution fitting analysis available. Figure 5-9 shows a user case where the stream
link (yellow) near Cedar Rapids is selected for a distribution analysis. The selected climate model suite is
CMIP5, with RCP4.5 and three models (i.e., access1-0, canesm2, cmcc-cm). The start and end years for the
period of interest can be specified and for this example we have selected 1950 and 2020, respectively.
Finally, the user selects a Lognormal distribution to be fit over time using imperial units. The output
provides the AEP discharges over time as on the first page, except the user can toggle through each
individual model; however, these results are based on a subset of different GCMs and on a different
distribution compared to the IFFP page. In Fig. 5-9 the access1-0 climate model simulation results are
displayed and no trend in the simulation is detected (p>0.05), and hence a stationary Lognormal
distribution is fit. The “Results” boxes highlight the respective parameters selected, trend test results, BIC,
and distribution parameters. In the final line of the “Results” box, the “-999” indicates parameters not
used in the distribution fit. Here the log-mean (mu1l) is 9.63 ft3/s with a variance (sigmal) of 0.68. These
statistics are displayed when selecting a different chart to display as well.

Next, we display the capability of the second tool in this page, which allows the users to see the ratio
of future to present median annual maximum discharges to obtain a scaling factor for the analyses. Figure
5-10 shows an example where a user selects the same climate model scenario as in Fig. 5-4 and is
interested in the ratio between the median annual maximum discharge computed during the 1950-1979
and 2070-2099 periods. The “Results” box provides the ratio (future over reference) of the medians of the
periods for each model and their average. The results show that, for the selected models, the annual
maximum medians are expected to increase by 9% on average, with values ranging from -19% to 49% in
this case. This tool allows users to explore a simple metric to understand how flood peaks are expected
to change and how they vary between simulations with difference climate models.

5.4 Discussions and Conclusions

We have presented the IFFP web-based tool, which provides flood frequency projections for lowa and
allows the exploration of future changes in flood peaks. We have provided simple use cases to
demonstrate its capabilities, which can be efficiently utilized by stakeholders across the state. It fills a
current software gap for stakeholders as current tools do not provide flood projections for end-users. The
main function of the tool provides users with AEP discharge estimates over time to the end of the 21
century by fitting a GEV distribution with parameters that can vary on time. It provides users the ability to

70



download the simulation data, AEP data, as well as a pdf report for a specific river link anywhere in the
state. Furthermore, it easily allows users to search a location with a simple geographical interface. The
research page expands on the ability of the main tool by allowing users to explore how climate model
selection, time period, emission scenario, and distribution type impact flood frequency projections. Finally,
it provides users the ability to see the median change between two periods based on the selected scenario.
To generalize the web-tool for the entire United States, further development of web-tools for flood
frequency projections should be developed and integrated.

71



Figure 5-1. Stream segments in lowa utilized in IFFP.
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Figure 5-2. Home interface of the IFFP tool.
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Figure 5-3. IFFP development architecture.
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Figure 4. IFFP page data flow. The numbers represent the steps within the process described in Section
5.2.5.2.
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Figure 5-5. For Research page data flow. The numbers represent the steps within the process described in
Section 5.2.5.3.
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Figure 5-6. Screenshot showing test case when selecting a link (yellow) at Cedar Rapids, lowa, and the
returned AEP discharges under emission scenario SSP1-2.6.
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Figure 5-7. Screenshot showing test case when selecting a link (yellow) at Cedar Rapids, lowa, and the
returned AEP discharges under emission scenario SSP5-8.5.
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Figure 5-8. The top and bottom of the report bult when selection the “Build Report” button in Fig. 5-2. It
provides the AEP projections in tabular format along with a map of the area selected, and buttons to
download the data.
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Figure 5-9. Screenshot of distribution fitting of the Lognormal distribution from three selected CMIP5
climate models from 1950 to 2020 under RCP4.5 at Cedar Rapids, lowa (yellow highlight) The “Results”
box shows the distribution parameters with the Mann-Kendall statistic and an AEP discharge plot over

time for the average of the models.
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Figure 5-10. Screenshot of ratio of median annual maxima between periods of 1950-1979 and 2070-2099
for three selected CMIP5 climate models at Cedar Rapids, lowa (yellow highlight) The “Results” box
provides a summary of the user’s selections as well as the ratio of median annual maxima between periods

for the models.
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6. Summary and Conclusions

We have focused on the examination of the projected changes in flooding across lowa using the hydrologic
model developed by the IFC using outputs from CMIP5 and CMIP6 global climate models and different
scenarios. The main findings of our effort can be summarized as follows:

- The use of a physically-based model like HLM in flood frequency analysis provides a consistent
method for modeling exceedance discharges necessary for engineering design as well as provides
a framework to reassess current regional flood quantile estimation practices. This is a departure
from the current standard approach for USGS regional regression equations for lowa, which
defines flood regions where no true physical or climate boundary exists.

- We investigated the response of annual maximum discharge over time under climate change
scenarios (RCP4.5 and RCP8.5) at the community level across lowa. A significant positive trend is
detected for 70% of sites under RCP8.5, compared to only 2% of the sites under RCP4.5 for the
selected GCMs, pointing to the increase in flood hazard under higher emission scenarios.

- We evaluated the potential for the CMIP6 HighResMIP suite to be utilized for hydrologic
simulations, and found these models to be fit for purpose. We found that the median in flood
peaks from most communities is projected to increase by ~20% on average across the state. The
river communities across lowa which should be focused on by stakeholders are those along the
Des Moines and Cedar River, with Des Moines and Cedar Rapids that are two major cities in lowa.

- Our study was one of the first examining the viability of CMIP6 HighResMIP forcings for hydrologic
application. We recommend that hydrologic modeling with HighResMIP projections utilizes
precipitation forcings instead of runoff outputs. Furthermore, bias-correction and downscaling of
precipitation led to a good hydrologic performance in reproducing the distribution of annual
maximum discharges across lowa’s river communities.

- Projected changes in the magnitude of annual maximum discharge based on HighResMIP were
not detected for the immediate future across the state, but significant changes in interannual
variability for the future were, with results differing between precipitation and runoff simulations.
Investigation of the discrepancies between approaches should be the focus of future endeavors
to quantify uncertainties in projections of flooding.

- We have developed the IFFP web-based tool, which provides flood frequency projections for lowa
and allows the exploration of future changes in flood peaks. It fills a current software gap for
stakeholders as current tools do not provide flood projections for end-users. IFFP provides users
the ability to download the simulation data, AEP data, as well as a pdf report for a specific river
link anywhere in the state. Furthermore, it easily allows users to search a location with a simple
geographical interface. The research page expands on the ability of the main tool by allowing
users to explore how climate model selection, time period, emission scenario, and distribution
type impact flood frequency projections. Finally, it provides users the ability to see the median
change between two periods based on the selected scenario.

The primary limitations of our work are related to the hydrologic and climate models. First, we
assumed that the streams in lowa were under naturalized flow conditions, but a few streams are regulated.
This should be investigated in studies when trying to apply future streamflow simulations to engineering
design as the regulatory actions are important to consider. Next, we selected the climate models based
on how well they reproduced historical trends, magnitude, and distribution. However, uncertainty in
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CMIP5/CMIP6 projections due to original model spatial coarseness and bias-correction and temporal
disaggregation processes exist and can contribute to the underestimation of extreme events. We explored
the impact of model selection by rerunning our analyses using all available climates models, finding
differences in the results over our primary analysis. We suggest that when providing flood projections for
communities that a sensitivity analysis of model selection should be performed.
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Appendix

Table S4-1. USGS gauges utilized for model validation in this study. The table below provides the gauge
ID, drainage area (sq. miles), and description as provided on the USGS web page for each location.

ID Number Description Area
05387490 Dry Run Creek near Decorah (05387490) 21
05387500 Upper lowa River at Decorah (DEHI4-05387500) 491
05388250 Upper lowa River near Dorchester (DCHI4-05388250) 769
05388310 Waterloo Creek near Dorchester (05388310) 43
05412500 Turkey River at Garber (GRBI4-05412500) 1557
05414400 Middle Fk Little Maquoketa R near Rickardsville (05414400) 31
05418500 Maquoketa River near Maquoketa (MAQI4-05418500) 1550
05420850 Little Wapsipinicon River near Oran (05420850) 95
05421000 Wapsipinicon River at Independence (IDP14-05421000) 1052
05421890 Silver Creek at Welton (05421890) 10
05422000 Wapsipinicon River near De Witt (DEWI14-05422000) 2287
05448400 West Main Drainage Ditch 1 & 2 near Britt (05448400) 21
05449500 lowa River near Rowan (ROWI14-05449500) 426
05451500 lowa River at Marshalltown (MIWI14-05451500) 1534
05451700 Timber Creek near Marshalltown (05451700) 119
05451900 Richland Creek near Haven (05451900) 57
05451955 Stein Creek near Clutier (05451955) 24
05452000 Salt Creek near Elberon (05452000) 201
05452200 Walnut Creek near Hartwick (05452200) 71
05453000 Big Bear Creek at Ladora (05453000) 187
05453100 lowa River at Marengo (MROI4-05453100) 2795
05453200 Price Creek at Amana (05453200) 29
05454000 Rapid Creek near lowa City (05454000) 26
05454300 Clear Creek near Coralville (05454300) 98
05454500 lowa River at lowa City (IOWI14-05454500) 3267
05455100 Old Mans Creek near lowa City (05455100) 201
05455230 Deep River at Deep River (05455230) 30
05455500 English River at Kalona (KALI4-05455500) 576
05455700 lowa River Near Lone Tree (Tri-County Bridge) (LNTI4-05455700) 4291
05457440 Deer Creek near Carpenter (05457440) 96
05457700 Cedar River at Charles City (CCY14-05457700) 1077
05458000 Little Cedar River near lonia (05458000) 298
05458500 Cedar River at Janesville (JAN14-05458500) 1676
05458900 West Fork Cedar River at Finchford (FNHI4-05458900) 852
05459490 Spring Creek near Mason City (05459490) 31
05459500 Winnebago River at Mason City (MCWI14-05459500) 484
05460100 Willow Creek near Mason City (05460100) 80
05462000 Shell Rock River at Shell Rock (SHRI4-05462000) 1711
05463000 Beaver Creek at New Hartford (NHRI4-05463000) 349
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05463500 Black Hawk Creek at Hudson (05463500) 300
05464000 Cedar River at Waterloo (ALOI4-05464000) 5133
05464500 Cedar River at Cedar Rapids (CIDI4-05464500) 6492
05465000 Cedar River near Conesville (CNEI4-05465000) 7753
05465500 lowa River at Wapello (WAPI4-05465500) 12483
05469860 Mud Lake Drainage Ditch 71 at Jewell (05469860) 66
05469990 Keigley Branch near Story City (05469990) 32
05470000 South Skunk River near Ames (AMEI4-05470000) 314
05470500 Squaw Creek at Ames (AMWI14-05470500) 213
05471000 South Skunk River below Squaw Creek near Ames (AESI4-05471000) | 563
05471050 South Skunk River at Colfax (CFXI14-05471050) 813
05471200 Indian Creek near Mingo (05471200) 288
05471500 South Skunk River near Oskaloosa (O0AI4-05471500) 1657
05472390 Middle Creek near Lacey (05472390) 23
05472500 North Skunk River near Sigourney (SIGI4-05472500) 735
05473400 Cedar Creek near Oakland Mills (05473400) 533
05474000 Skunk River at Augusta (AGSI4-05474000) 4333
05476750 Des Moines River at Humboldt (HBTI4-05476750) 2286
05479000 East Fork Des Moines River at Dakota City (DAKI4-05479000) 1304
05480500 Des Moines River at Fort Dodge (FODI4-05480500) 4244
05480930 White Fox Creek at Clarion (05480930) 6
05481000 Boone River near Webster City (WBCI4-05481000) 840
05481300 Des Moines River near Stratford (STRI4-05481300) 5500
05481510 Bluff Creek at Pilot Mound (05481510) 20
05481650 Des Moines River near Saylorville (05481650) 5892
05481950 Beaver Creek near Grimes (GRMI4-05481950) 371
05482300 North Raccoon River near Sac City (05482300) 726
05482500 North Raccoon River near Jefferson (EFWI4-05482500) 1658
05483318 Brushy Fork Creek near Templeton (05483318) 45
05483349 Middle Raccoon River Tributary at Carroll (05483349) 6.58
05483450 Middle Raccoon River near Bayard (05483450) 367
05483600 Middle Raccoon River at Panora (05483600) 411
05484000 South Raccoon River at Redfield (REDI4-05484000) 972
05484500 Raccoon River at Van Meter (VNMI4-05484500) 3436
05484800 Walnut Creek at Des Moines (05484800) 78
05484900 Raccoon River at Fleur Drive at Des Moines (DEMI4-05484900) 3612
05485500 Des Moines River blw Raccoon R. at Des Moines (DESI4-05485500) | 9926
05485640 Fourmile Creek at Des Moines (05485640) 91
05486000 North River near Norwalk (NRWI4-05486000) 350
05486490 Middle River near Indianola (IDNI4-05486490) 499
05487470 South River near Ackworth (AKWI14-05487470) 461
05487980 White Breast Creek near Dallas (05487980) 332
05488200 English Creek near Knoxville (05488200) 91
05488500 Des Moines River near Tracy (TRCI4-05488500) 12526
05489000 Cedar Creek near Bussey (BSSI14-05489000) 374
05489490 Bear Creek at Ottumwa (05489490) 23
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05489500 Des Moines River at Ottumwa (OTMI4-05489500) 13421
05490500 Des Moines River at Keosauqua (KEQI4-05490500) 14083
06482610 Big Sioux River near Hawarden (06483950) 482
06483500 Rock River near Rock Valley (RKVI4-06483500) 1592
06599950 Perry Creek near Hinton (PCHI14-06599950) 33
06600100 Floyd River at Alton (ALTI4-06600100) 268
06600500 Floyd River at James (JMEI4-06600500) 889
06602020 West Fork Ditch at Hornick (HOKI4-06602020) 524
06602190 Elliott Creek at Lawton (06602190) 35
06602400 Monona-Harrison Ditch near Turin (06602400) 764
06605000 Ocheyedan River near Spencer (SPOI4-06605000) 424
06605750 Willow Creek near Cornell (06605750) 81
06605850 Little Sioux River at Linn Grove (LNNI4-06605850) 1541
06606600 Little Sioux River at Correctionville (CRRI4-06606600) 2479
06607200 Maple River at Mapleton (MAPI4-06607200) 671
06607500 Little Sioux River near Turin (TURI4-06607500) 764
06608500 Soldier River at Pisgah (PSG14-06608500) 402
06609500 Boyer River at Logan (LGNI4-06609500) 859
06609560 Willow Creek near Soldier (06609560) 29
06807410 West Nishnabotna River at Hancock (HNKI4-06807410) 611
06808500 West Nishnabotna River at Randolph (RDP14-06808500) 1324
06809210 East Nishnabotna River near Atlantic (ATCI4-06809210) 440
06809500 East Nishnabotna River at Red Oak (RDOI4-06809500) 897
06810000 Nishnabotna River above Hamburg (HMBI4-06810000) 2822
06811760 Tarkio River near Elliott (06811760) 10
06811800 East Tarkio Creek near Stanton (06811800) 5
06816290 West Nodaway River at Massena (06816290) 23
06817000 Nodaway River at Clarinda (ICLI4-06817000) 763
06819185 East Fork 102 River at Bedford (BDFI4-06819185) 86
06898000 Thompson River at Davis City (DVSI4-06898000) 698
06903400 Chariton River near Chariton (CHTI4-06903400) 185
06903700 South Fork Chariton River near Promise City (PRMI4-06903700) 169
06903900 Chariton River near Rathbun (06903900) 542
06904010 Chariton River near Moulton (MOLI4-06904010) 741
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Fig. S2-1. Relation between scale of the watershed and bias for annual exceedance discharge at
probabilities of 50%, 20%, 10%, 4%, 2%, 1%, 0.5%, and 0.2%. The dashed line represents a value of 1 in
which the Streamstats derived discharge is equal to the HLM derived discharge. Bias values above (below)

1 indicate Streamstats overestimates (underestimate) AEP discharge compared HLM.
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Figure S3-1. Ability of the HLM using daily precipitation, daily temperature, monthly ET derived from
PRISM input to reproduce the observed average monthly volume at 150 USGS gauges in lowa from 1981
to 2020 where instantaneous gauge data are available. The bias reported is the average ratio of simulation
volume to USGS observation volume for all 150 gauges. A bias above (below) 1 indicates simulations
overestimate (underestimate) volume compared observations. Months are indicated by the letters in the
upper left corner.
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Figure S3-2. Comparison of Kendall’s B estimates for the historical period (1981-2005) from HLM
simulations forced with PRISM rainfall (tf) and GCM historical experiments (thist). The white circles
indicate communities where the test statistics match in sign and are statistically significant (5% level) or
where both test statistics are not statistically significant. The percentage indicates the number of “correct
detections” with respect to the total sample. Global climate models with percentages greater than 90%
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Thist

were deemed to match historical trends and selected for the primary subset of models.
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Figure S3-3. Mann-Whitney U test results for the historical period (1981-2005) between HLM simulations
forced with PRISM rainfall and GCM historical experiments. The white circles indicate communities where
the test statistics are not statistically significant at the 5% level. The percentage indicates the number of

non-significant points with respect to the total sample.

99



Figure S3-4. Kolmogorov-Smirnov test results for the historical period (1981-2005) between HLM
simulations forced with PRISM rainfall and GCM historical experiments. The white circles indicate
communities where the test statistics are not statistically significant at the 5% level. The percentage
indicates the number of non-significant points with respect to the total sample.
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Figure S3-5. Relative differences in total precipitation volume between historical (1976-2005) and three
future periods (2006-2035 in the left column; 2036-2065 in the middle column; 2066-2095 in the right
column) for the two emission scenarios (one per row).
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Figure S3-6. Annual maximum discharge trend from 2006 to 2099 determined by the Mann-Kendall trend
test. The left (right) panel shows the results from simulations under the RCP4.5 (RCP8.5) emission scenario.
Blue (red) circles indicate a negative (positive) trend in annual maxima. White circles are locations where
the trend is not statistically significant. These results are based on all available 19 GCM as opposed to the
subset of models in Fig. 3.

102



Figure S3-7. Time of emergence where the 50-year distribution of annual maxima discharge is significantly
different (p<0.05) compared to the reference distribution from 1956 to 2005. The years associated with
the color bars indicate the end of the comparison period (i.e., 2060 represents 2011 to 2060). Black points
indicate sites where the p-value never went below 0.05 for the entire study period. For this figure, the
analysis was performed using all available 19 GCMs as opposed to the subset shown in Fig. 5.
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Figure S4-1. Bias between the PRISM-driven reference simulations and observations at USGS locations
with over 30-years of annual maximum discharge data stratified by drainage area. A value greater (smaller)
than 1 indicates an over-(under-) estimation of annual maximum discharge by the model compared to
observations The dark grey line represents a bias of 1. The limits of the box represent the 25th and 75th
percentiles, while the line in the middle the median; the whiskers represent the 5th and 95th percentiles.
The breakdown of number of sites in each category is: 1-100 km? (22 sites), 100-1000 km? (30 sites), 1000-
10000 km? (53 sites), >10000 km? (14 sites).
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Figure S4-2. Scatterplot of monthly peak discharge between PRISM reference simulations and USGS
observations from 1981 to 2021. The bias in the corner represents the average bias across all sites for
each month. A bias greater (less) than zero indicates an overestimation (under) of monthly peak discharge.
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Figure S4-3. Average daily bias in temperature compared to PRISM temperature from 1981 to 2014. For
the HLM, daily temperature is spatially averaged across the state. A bias greater (less) than zero (red line)
Celsius indicates an overestimation (under) of temperature.
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Figure S4-4. Average monthly bias in potential evapotranspiration (PET) compared to PRISM derived
evapotranspiration from 1981 to 2014. For the HLM, monthly evapotranspiration is spatially averaged
across the state. A bias greater (less) than one (red line) indicates an overestimation (under) of

evapotranspiration.
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Figure S4-5. Average daily bias in precipitation based on leave-one-out cross validation (looCV). The
columns are the results for original (before bias-correction and downscaling) and mva corrected
HighResMIP precipitation, respectively. The rows represent each of the climate models. The black line
represents the median, and the gray lines represent the 5th and 95th quantiles of daily bias. The red line
represents a bias of one or perfect match with respect to PRISM precipitation.
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Figure S4-6. Average daily bias in precipitation based on leave-one-out cross validation (looCV). The
columns are the results for original (before bias-correction and downscaling) and ptr corrected
HighResMIP precipitation, respectively. The rows represent each of the climate models. The black line
represents the median, and the gray lines represent the 5th and 95th quantiles of daily bias. The red line
represents a bias of one or perfect match with respect to PRISM precipitation.
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Figure S4-7. Average daily bias in precipitation based on leave-one-out cross validation (looCV). The
columns are the results for original (before bias-correction and downscaling) and dgm corrected
HighResMIP precipitation, respectively. The rows represent each of the climate models. The black line
represents the median, and the gray lines represent the 5th and 95th quantiles of daily bias. The red line
represents a bias of one or perfect match with respect to PRISM precipitation.
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Figure S4-8. Average daily bias in precipitation based on leave-one-out cross validation (looCV). The
columns are the results for original (before bias-correction and downscaling) and gpgm corrected
HighResMIP precipitation, respectively. The rows represent each of the climate models. The black line
represents the median, and the gray lines represent the 5th and 95th quantiles of daily bias. The red line
represents a bias of one or perfect match with respect to PRISM precipitation.
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Figure S4-9 Average daily bias in precipitation based on leave-one-out cross validation (looCV). The
columns are the results for original (before bias-correction and downscaling) and loci corrected
HighResMIP precipitation, respectively. The rows represent each of the climate models. The black line
represents the median, and the gray lines represent the 5th and 95th quantiles of daily bias. The red line
represents a bias of one or perfect match with respect to PRISM precipitation.
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Figure S4-10. Average daily bias in precipitation based on leave-one-out cross validation (looCV). The
columns are the results for original (before bias-correction and downscaling) and pgm corrected
HighResMIP precipitation, respectively. The rows represent each of the climate models. The black line
represents the median, and the gray lines represent the 5th and 95th quantiles of daily bias. The red line
represents a bias of one or perfect match with respect to PRISM precipitation.
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Figure S4-11. Average daily bias in precipitation based on leave-one-out cross validation (looCV). The
columns are the results for original (before bias-correction and downscaling) and qdm corrected
HighResMIP precipitation, respectively. The rows represent each of the climate models. The black line
represents the median, and the gray lines represent the 5th and 95th quantiles of daily bias. The red line
represents a bias of one or perfect match with respect to PRISM precipitation.
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Figure S4-12. Average daily bias in precipitation based on leave-one-out cross validation (looCV). The
columns are the results for original (before bias-correction and downscaling) and scaling corrected
HighResMIP precipitation, respectively. The rows represent each of the climate models. The black line
represents the median, and the gray lines represent the 5th and 95th quantiles of daily bias. The red line
represents a bias of one or perfect match with respect to PRISM precipitation.
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Figure S4-13. Relative difference (Eq. 4-2) in median annual maximum discharges between historical
(1981-2014) and future (2017-2050) experiments from mva corrected simulations. The GCM Median
represents the relative difference based on the median of the first member (r1) of the three GCMs.
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Figure S4-14. Relative difference (Eq. 4-2) in median annual maximum discharges between historical
(1981-2014) and future (2017-2050) experiments from ptr corrected simulations. The GCM Median
represents the relative difference based on the median of the first member (r1) of the three GCMs.
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Figure S4-15. Relative difference (Eq. 4-2) in median annual maximum discharges between historical
(1981-2014) and future (2017-2050) experiments from routed runoff simulations. The GCM Median
represents the relative difference based on the median of the first member (r1) of the three GCMs.
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Figure S4-16. F-test p-values for annual maximum discharge between historical (1981-2014) and future
(2017-2050) experiments for mva-based simulations. The red (blue) represent a larger (smaller) variance
in future simulations compared to the historical period. The test results account for false discovery rate.
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Figure S4-17. F-test p-values for annual maximum discharge between historical (1981-2014) and future
(2017-2050) experiments for ptr-based simulations. The red (blue) represent a larger (smaller) variance in
future simulations compared to the historical period. The test results account for false discovery rate.
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Figure S4-18. F-test p-values for annual maximum discharge between historical (1981-2014) and future
(2017-2050) experiments for runoff-based simulations. The red (blue) represent a larger (smaller) variance
in future simulations compared to the historical period. The test results account for false discovery rate.
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