

Automated Plate Load Test [APLT]								
Test:	In-situ Cyclic P	late Load Test:	Single Stress,	12 in. diamete	er loading pla	te		
Date:	7/10/2020 Time: 12:04:48 PM Test ID C-2							
Latitude N.		42 49741667	Location.		10, WB Lane	Flev (ft)		Π23+94 ΝΔ
Comments:	Nominal 12 in. A	CC over aggrega	ate base. Tests p	performed prior	to placing the o	overlay.		11/ \
Pavement surfac	e temperature at t	the time of test =	113.6oF		1 0	,		
Step	N	Frequency, f , (Hz)	σ _{cyclic} @ Surface [psi]	Dynamic Comp. Modulus, M _{r-Comp} [psi]	Back-Calc. Dy	namic E [psi]	Temperature Dynamic E	e Corrected ¹ :, E ^{'_{AC} [psi]}
1	1,000	1.0	98.5	29,624	47,4	50	76,563	
0 0.000 0.000 0.020 0.020 0.030 0.040 0.050 0.050 0.060 0.090 0.100 Notes: 1 - Temp. correct using BELLS Eqr 2 - Back-calculate interface. 3. ACC layer thick	Distance Awa 3 6 9 12 ion to reference to a layer moduli va kness = 10.7 in. a	emperature of 22 alues assuming find aggregagte b	nter [in.] 24 27 30 33 Cycle 10 Cycle 10 Cycle 100 Cycle 100	36 39 g Lukanen et al. A/aggregate bas ess = 7.3 in., us	Back-Calc. ² M _{r-Base} [psi] 14,345 Temperature Surf.Temp.Me Prev. 1-day M Mid-Depth Prev (1998) Equations el layer interface ed in back-calco	Back-Calc. ² M _{r-SG} [psi] 16,776 Measureme eas. ean Air ed. on and pred. ce and aggre culation analy	E _{AC} /M _{r-Base} Ratio 5.3 nts (°F): 113.6 70.7 90.3 mid-depth ter gate base/sub /sis, based or	M _{r-Base} / M _{r- sG} Ratio 0.9
	0	n-situ Test Res	sults: k-value a	nd E _{PCC}			ingi	
Project Name: Concrete Pavement Overlays Supported on Geotextile and Asphalt Interlayers							Ingl	() 5
Project ID:	15P_00010						U,	EDTECHNICS
Location:	סו ש, Buchanan (Jounity, IA						

Automated Plate Load Test [APLT]								
Test: Date:	In-situ Cyclic Plate Load Test: Single Stress, 12 in. diameter loading plate							
Tested By	HG. CV Location: D16. WB Lane Sta. 1138+52							
Latitude,N:		42.49745667	Longitude,W:	-9	91.92049167	Elev. (ft):		NA
Comments:	Nominal 12 in. A	CC over aggrega	ate base. Tests p	performed prior t	to placing the o	overlay.		
Pavement surfac	e temperature at	the time of test =	116.5oF					
Step	N	Frequency, f , (Hz)	σ _{cyclic} @ Surface [psi]	Dynamic Comp. Modulus, M _{r-Comp} [psi]	Back-Calc. Dy	namic E [psi]	Temperature Dynamic E	e Corrected ¹ E, E ^{'_{AC} [psi]}
1	1,000	1.0	98.6	47,095	72,1	36	140,	885
	Distance Auro	u from Dioto Co	ntes fin 1		Back-Calc. ²	Back-Calc. ²	E_{AC}/M_{r-Base}	M _{r-Base} / M _r .
0	Distance Awa	19 from Plate Ce	nter [in.]	36 30	M _{r-Base} [psi]	M _{r-SG} [psi]	Ratio	_{sg} Ratio
0.000 +			<u></u>		29,212	24,878	4.8	1.2
— 0.010			0	-0				
ο 0.020 L								
100.030					Temperature	Measureme	ents (°F):	
0.040					Surf.Temp.Me	as.	118.2	1
jo 0.050					Prev. 1-day M	ean Air	70.7	
Q 0.060					Mid-Depth Pre	ed.	97.8	
0.070				_				
0.080								
0.090								
0 100								
0.100								
Notes:								
1 - Temp, correct	tion to reference to	emperature of 22	°C (∼72°E) usin	n Lukanen et al.	(1998) Equati	on and pred.	mid-depth ter	mperature
using BELLS Eqr	n.		()	9	(1000) _quan			np et etter e
2 - Back-calculate	ed layer moduli va	alues assuming f	ully bonded HMA	\/aggregate bas	e layer interfa	ce and aggre	gate base/sub	ograde
interface.	kraaa - 10 0 in a				ad in back as		unin hannal au	
3. ACC layer thic	Kness = 12.3 m.a	ind aggregagte b	ase layer thickne	ess = 5.7 m., us	ed in back-cal	culation analy	ysis, based of	I DCP profile.
		n-situ Test Res	sults: k-value a	nd E _{PCC}			10-	
Project Name:	Concrete Pavem	ent Overlays Su	pported on Geot	extile and Aspha	alt Interlayers		Ingl	() S
Project ID:	157_00010 D16 Buchapan (County IA					U,	GEOTECHNICS
	Dio, Duchanan (Jounity, IA						

		Automa	ted Plate	Load Te	st [APL]	Г]		
Test:	In-situ Cyclic P	late Load Test:	Single Stress,	12 in. diamete	er loading pla	ite		
Date:	7/10/2020 Time: 2:46:55 PM Test ID BL-2							
Tested By	HG, CV Location: D16, WB Lane Sta. 1162+00							
Latitude,N:	Nominal 12 in A	42.49759500	Longitude,W:		01.91176833	Elev. (ft):		NA
Comments: Test performed r	prior to placing the	overlay Pavem	ent surface temp	pase.	me of test = 1	18 2oF		
		ovenay. r avena				10.201		
Step	N	Frequency, f , (Hz)	σ _{cyclic} @ Surface [psi]	Dynamic Comp. Modulus, M _{r-Comp} [psi]	Back-Calc. Dy	namic E [psi]	Temperature Dynamic E	e Corrected ¹ E, E ^{'_{AC} [psi]}
1	1,000	1.0	98.4	40,374	49,2	49,240		574
	Distance Awa	y from Plate Ce	nter [in.]		Back-Calc. ² M _{r Base} [psi]	Back-Calc. ² M _{r sc} [psi]	E _{AC} /M _{r-Base} Ratio	M _{r-Base} / M _{r-}
0	3 6 9 1	2 15 18 21 2	24 27 30 33	36 39	22.261	20.000	2.0	1 1
0.000				-	32,201	29,090	5.2	1.1
<u>م</u> 0.020								
ю́ 0.030	•						0	
0.040					Temperature	Measureme	ents (°F):	1
L 0.050					Surf. I emp.Me	eas. Ioon Air	118.2	
					Mid-Depth Pr		101.0	
			Cycle 1			cu.	101.0]
Å 0.070			Cycle 10					
0.080			Cycle 100					
0.090		-	- Cycle1000					
0.100 1								
Notes:								
1 - Temp. correct	tion to reference to	emperature of 22	2°C (~72°F) using	g Lukanen et al.	(1998) Equat	ion and pred.	. mid-depth te	mperature
2 - Back-calculat	n. ed laver moduli va	alues assuming f	ully bonded HMA	Vaggregate bas	e laver interfa	ce and addre	aate base/su	barade
interface.				1			gate bace, ea	
3. ACC layer thic	kness = 11.5 in. a	nd aggregagte b	ase layer thickne	ess = 7.2 in., us	ed in back-cal	culation anal	ysis, based or	n DCP
profile.								
	I	n-situ Test Res	ults: k-value ar	nd E _{PCC}			•	
Project Name:	Concrete Pavem	ent Overlays Su	oported on Geot	extile and Asph	alt Interlayers		Ing	€S
Project ID:	ISP_00010							GEOTECHNICS
Location:	D16, Buchanan (County, IA						

Test: Date: Tested By Latitude,N: Comments: Pavement surfac	In-situ Cyclic P Nominal 12 in. A te temperature at t	Automa late Load Test: 7/10/2020 HG, CV 42.49765167 CC over aggrega the time of test =	ted Plate Single Stress, Time: Location: Longitude,W: te base. Tests p 119.3oF	Load Te 12 in. diamete D1 -9 performed prior	st [APL] er loading pla 4:27:02 PM 16, WB Lane 01.90728333 to placing the	T] Test ID Sta. Elev. (ft): overlay.		<mark>ВН-2</mark> 1174+00 NA
Step 1	N 1,000	Frequency, f , (Hz) 1.0	σ _{cyclic} @ Surface [psi] 98.4	Dynamic Comp. Modulus, M _{r-Comp} [psi] 30,476	Back-Calc. Dy 35,3	namic E [psi] 22	Temperature Corrected ¹ Dynamic E, E ^{'_{AC} [psi] 76,196}	
Notes: 1 - Temp. correctusing BELLS Equ 2 - Back-calculatinterface.	Distance Awa	emperature of 22	nter [in.] 24 27 30 33 Cycle 10 Cycle 10 Cycle 10 Cycle 100 Cycle 100 Cycle 100 Cycle 100 Cycle 100	36 39	Back-Calc. ² M _{r-Base} [psi] 27,378 Temperature Surf.Temp.Me Prev. 1-day M Mid-Depth Pr Mid-Depth Pr	Back-Calc. ² M _{r.SG} [psi] 22,550 Measureme eas. Iean Air ed.	E _{AC} /M _{r-Base} Ratio 2.8 ents (^o F): 119.3 70.7 101.7	M _{r-Base} / M _{r- SG} Ratio 1.2
Project Name: Project ID: Location:	Concrete Pavem ISP_00010 D16, Buchanan (n-situ Test Res ent Overlays Suj County, IA	ults: k-value ar	nd E _{PCC} extile and Asph	alt Interlayers		ing	

