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Moment Contours 

Wingwalls of 

For Bridge Abutment 

Constant Thickness 
FOREWORD 

Iowa Engineering Experiment Station Bulletins 
182, 183 and 184 are the final report on a project 
on bridge abutment wingwalls of the flared type. 
The project has been sponsored by the Iowa High­
way Research Board of the Iowa State Highway 
Commission. 

Bulletin 182 reported the first two phases of 
the project. Phase one included a comprehensive 
literature review and a questionnaire survey. 
Phase two included the results of a study to es­
tablish a feasible analytical method for the solu­
tion of this type of plate problem. 

This bulletin (#183) presents design data for 
wing-walls of constant thickness. These design 
data are in the form of moment contours for wing­
walls of the various proportions being used by the 
Iowa State Highway Commission. 

Bulletin 184 will provide an analytical procedure 
for the structural analysis of wingwalls of vari­
able thickness. As an example a typical vari­
able thickness wingwall will be analyzed for mo­
ments which will be presented as moment con­
tours. 

NOTATION AND DEFINITIONS 
NOTATION 

a Base length of wingwall in feet 
b Height of outside vertical wingwall edge 

in feet 
C Numerical value of moment contour 
d Vertical distance from footing boundary in 

inches 
e Normal unit strain 
eu Maximum principal unit strain 
ev Minimum principal unit strain 
E Modulus of elasticity in tension and com-

pression 
Ea Modulus of elasticity for aluminum 
Ee Modulus of elasticity for concrete 
ft Feet 
G Modulus of elasticity in shear, modulus of 

rigidity 
Ga Modulus of rigidity for aluminum 
Ge Modulus of rigidity for concrete 
h Thickness of wingwall or plate 
I Moment of inertia of a plate section of unit 

edge length 
in Inches 
J Torsional constant for a rectangular sec­

tion corresponding to polar moment of in­
ertia for circular sections 

k A dimensionless constant 
lb Pound 
M Bending moment 
lVC Maximum principal bending moment 
Mv Minimum principal bending moment 
Mx, MY Bending moment with respect to x and 

y axes 
Mxy Torsional moment with respect to rec­

tangular coordinates 
p Intensity of a distributed load 
Pr Intensity of a disturbed load at fixed­

fixed corner 
p~ Pounds per square inch 
psf Pounds per square foot 
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w 

x , y , z 
,\ 

fl , 

/J,; 

/l•c 
(j 

O' u 

O' ,· 

Gx 

~b 

D 

H 

K 

N 

Deflection of plate normal to middle 
plane 
Rectangular coordinates 
Finite difference grid spacing in 
inches 
Poisson's ratio 
Poisson's ratio for aluminum 
Poisson's ratio for concrete 
Unit stress 
Maximum principal unit stress 
Minimum principal unit stress 
Direction of maximum principal mo­
ment with respect to x-axis 
Rotation of outer free edge of wing­
wall at the footing boundary with 
respect to an axis along that boundary 

Eh3 
Plate stiffness, 2 

12 (1 - µ ) 

- D(A. 2 

2 
Pf a 

~ 

D ( 1 - µ) 

4;:\. 2 

DEFINITIONS 
Back face of wingwall-Side adjacent to fill 
Front face of wingwall-Side opposite back face 
Fixed-fixed corner-Corner of wingwall at junc-

ture of breastwall and footing boundaries; 
Positive moment-Bending moment producing 

tension on front face 
Positive direction of maximum principal mo­

ment - Direction of stress caused by 
maximum principal moment measured 
clockwise to x-axis when viewed from 
within backfill 



INTRODUCTION 
OBJECTIVES 

A bridge abutment wingwall is an integral and 
often necessary part of a bridge structure. Its 
purpose is to serve as a retaining wall for the ap­
proach fill and as a counterf ort for the breastwall. 
It also acts as a water baffle to prevent scouring 
of the fill from behind the abutment. The wing­
walls may be designed with a constant or variable 
thickness anc! may be built with or without coun­
terforts. Wingwalls are often rigidly connected 
to both the footing and breastwall. This study is 
restricted to constant thickness wingwalls with­
out counterforts which are assumed to be rigidly 
connected to the footing and breastwall (figure 1). 
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Bridge , 
--~--

Bridge 

Wingwoll 
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Ground 
Breostwoll 

Wingwol I 

Fig. 1. Reinforced concrete bridge abutment. 

In the design of a structure such as a wingwall 
a knowledge of the bending moments involved is 
of primary importance. The analysis of the mo­
ments in a wingwall is a complicated problem. 
The average engineer has neither the time nor 
the equipment available for its solution; in fact 
an exact mathematical analysis is almost impos­
sible to attain. Designs in the past have been 
based, for the most part, on experience or empiri­
cal rules . 

This project, which is being conducted by the 
Iowa Engineering Experiment Station, is divided 
into four parts. Part one of the project began in 
1954 and is an extensive review of all available 
material published. In this review no information 
of significance was found. The Portland Cement 
Association 8, P. 12 , stated with reference to wing­
walls, " ... no structural analysis is available by 
which the stresses may be determined". In the 
hope that unpublished information might be in 
use by some engineering organization a ques­
tionnaire was sent to all state highway 
commissions, to many consulting firms in the 
United States and Canada, and to all railroads 
that were American Rail way Engineering Associa­
tion members . Seventy percent of the question-

4 

naires were returned, but none of the answers 
gave any information on a rational analysis of the 
problem. 

Part two of the project, an experimental and 
theoretical investigation was then made. When 
an exact mathematical solution of the problem did 
not prove feasible, an investigation of available 
numerical methods was made. One of these 
methods, finite differences, was chosen as the 
most suitable means of solution. A determination 
of the necessary size of the infinite intervals used 
in the equations and a check on the method's ac­
curacy was made with the aid of experimental 
tests .conducted on a model aluminum wingwall. 

Parts one and two are reported in Bulletin 182 
of the Iowa Engineering Experiment Station. 
Part three of the project, which is this 'investiga­
tion, has several objectives: 
1. Further experimental verification of the finite 

difference theory by tests conducted on a model 
aluminum wingwall of a different size propor­
tion as that investigated in part two of the 
project. (See figure 2 for wingwall size ra­
tios investigated.) 

Wingwoll number 

2 

4 

5 

Size ro tio 
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a • 2 

.r. ig. 2. Wingwall size ratios investigated. 
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2. Development of bending moment contours and 
the determination of an equation which when 
used with the contours will enable the calcu­
lation of moment at any point within the wing­
wall. 

3. Investigation of wingwall footing rotation and 
its resulting effect on the bending moments. 



REVIEW OF LITERATURE 
Little information of value was located in the 

review made in 1954, and no mathematical analy­
sis for the moments in a wingwall was found. The 
material included in the publications was based on 
past experience and empiriGal rules. Diagrams 
were given, ·1 showing typical placement of re­
inforcing. Several coefficients for moments for a 
U-shaped wingwall are published 11• However, 
there is no indication that these coefficients come 
from any rational analysis. Chettoe and Adams 
2 facing p. 288 gave an illustration showing a ten-

Fig. 3. Cracks in wingwalls. 

sion crack on the side of the wingwall facing the 
bridge superstructure. They re.commend the in­
clusion of bars running diagonally across that side 
but give no indication of steel quantities. Simi­
lar cracks on wingwalls (figure 3) were found on 
several bridges across the Skunk River near 
Ames, Iowa. The Portland Cement Association 
8, pp. 10, 12 states, "The joint section between 
breastwall and wingwall is difficult to. analyze, 
and the safe and economical amount of reinforce­
ment can seldom be calculated, ... suitable re­
inforcement may be provided-by judgment or 
empirical rules - in the conventional type of 
abutment ... " 

The possibility of an exact mathematical analy­
sis was investigated as reported in Bulletin 182=$. 
For this analysis the wingwalls were assumed to 
be thin homogeneous plates. A mathematical solu­
tion involved finding an expression to satisfy the 
Lagrange differential plate equation and all 
boundary conditions. Because of the unusual na­
ture of the boundaries such an analysis was con­
sidered by mathematicians to be nearly impos­
sible. An analysis by finite differences was 
found to be most expedient, but this method was 
not without its difficulties. In the use of finite 
differences a grid pattern which controls the 
finite interval of the equations had to be estab­
lished. The practical size of this interval with its 
resulting number of equations was found by an 
experimental theoretical comparison. Sets of 
equations for several different grid spacings w~e 
written for one plate size, and the results of these 
equations were checked against experimental 
studies made on an aluminum wingwall model of 
the same plate dimensions. The results of the 
tests indicated that a grid pattern giving thirty 
to forty linear simultaneous equations was suf­
ficiently accurate. 

The method of analysis was thus formulated. 
Its subsequent application to the determination of 
bending moments in wingwalls of various size 
ratios is reported in this publication. 

THEORETICAL INVESTIGATION 
LAGRANGE PLATE EQUATION 

The Lagrange plate equation 9, 12, 13 is the 
governing equation for small deflections of thin, 
constant thickness plates. The equation can be 
expressed as follows: 

4 4 4 a w aw a w p . h . h 
~ + 2 2 2 + -:::---:,r = 15 ; rn w 1c 
a x ax ay ay 

w = deflection normal to middle plane of plate 
x, y = coordinates in plane of plate 
p = distributed pressure normal to plate 

Eh
3 

D = plate stiffness 2 
12 (1 - f-! ) 

In the derivation of the Lagrange equation for 
thin plates certain assumptions are made: 
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1. The normals of the middle plane b~fore bend­
ing are deformed into the normals of the 
middle plane after bending. 

2. The stress rrz is small compared with the 
other stress components and may be neg­
lected. 

3. The middle plane remains unstrained after 
bending. ... 

A solution of the equation involves finding an 
expression for the deflection w in terms of the 
rectangular coordinates x and y which satisfies 
the Lagrange equation and all boundary conditions. 
Once such equation for the deflections has been 
found the bending moments in any direction may 
be determined. The moment is proportional to 



the curvature or second partial derivitive of de­
flection with respect to the coordinates in the 
plane of the plate. Poisson's ratio must be taken 
into consideration because the plate forms a bi­
dimensional stress condition. Mathematically the 
bending and twisting moments may be expressed 
as follows 1 2· 1 3 : 

... (a2 a2 ) M =-D -::-i+µ w 
Y ay ~ 

2 
M =Mx=D(l-fl,)~ 

xy y axay 

Closed and series solutions of the Lagrange 
equation\ have been found for several types of 
plates with various boundary conditions. These 
solutions have generally been for symmetrical 
plates with symmetrical boundaries. The solu­
tion of a plate problem representing a wingwall 
in which two adjacent edges are clamped and the 
other two, one of which is sloping, remain free 
was considered by mathematicians to be prac­
tically impossible. 

FINITE DIFFERENCE METHOD 
Since closed and series solutions were not feasi­

ble, the problem was to find a rational means of 
analysis for the wingwalls. Several numerical 
methods for the approximate solution of plates 
have been investigated 3• The method of solution 
bf finite differences 10, 1 3 was found to be the 
most simple and direct procedure for application 
to this particular problem. 
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The method of finite differences consists es­

sentially of replacing the governing differential 
equation and equations defining boundary condi­
tions with their respective finite difference equa­
tions. The method requires the selection of a 
grid system in the plane of the plate whose spac­
ing between grid lines controls the finite interval 
of the equations. One equation is written for each 
grid intersection. Each equation is in terms of 
the appropriate finite difference coefficients fo:r 

each grid point within an immediate area multi­
plied by the unknown deflection at the particular 
grid intersections. Mathematically this may be 
demonstrated as follows: Consider point o located 
within the network of grid intersections. 
For point o the Lagrange differential equation is 

4 ,:,4 ,:,4 P 
ow 

2 
uw+uw o 

ax4 + ax 2a/ ~ = D 

The finite difference expressions for the partial 
derivatives of the above equation are: 13 

(_ O:W 2'\ = ~ [w~I!: + Ws:: + W5w + WNW 

\ax ay; :>t. 

o - 2 (wN + Ws + w, + ww ) + 4wa] 

Substituting into the Lagrange equation and col­
lecting terms, 

20w0 - 8 (wN + wE + w 5 + ww) 

+ 2 (wNE + WsE + Wsw + WNw) 

giyes the finite difference equation for the de­

flection of point o. The term ~ is a constant for 

the plate, and the distributed pressure p0 at each 
, node point can be found. Their substitution leaves 

only the various deflections as unknowns in the 
equation. Similar expressions are written for 
adjacent points with appropriate changes made 
to satisfy the various boundary conditions. The 
result is a series of linear simultaneous equations 
whose unknowns are the deflections of the node 
points. The number of equations corresponds with 
the number of grid intersections on the plate. A 
solution of the simultaneous equations gives the 
unknown deflections at each node point. 

6 

The sloping edge of the wingwall presented a 
problem in the fitting of the rectangular mesh 
system to that boundary. A simplifying assump­
tion was made in which the trapezoidal plates 
were replaced with rectangular ones. The nor­
mal loading remained the same, increasing linear­
ly with depth from the now imaginary sloping 
edge (figure 4). The replacement of the sloping 
edge by a boundary passing horizontally through 



Load ordinate diagram 

-...> ~-<'--'<:-~ <c----
- '» -<--«-<2,--

_--;>- "<'«:,-«----

Simplified rectangular edge 

Fig. 4. Loading diagram with approximation for sloping 
edge. 

the approximate mid-point of the original edge 
appeared to be a reasonable approximation. The 
simplification was made in a region of low pres­
sure ordinates, and the changes in plate stiffness 
by this alteration were small. The validity of the 
assumption was proved satisfactory in the experi­
mental tests. 

The results of the tests previously made 3 in­
dicated that a grid spacing resulting in thirty to 
forty linear simultaneous equations was suffi­
ciently accurate. Using this information, one set 
of simultaneous equations was written for each ·of 
the four remaining plates. Each set contained 
thirty to forty independent equations, the exact 
number depending on the particular plate size. 
The results of the 7 x 7 grid pattern were used for 
wingwall No. 2 of figure 2. 

BENDING MOMENT ANALYSIS 

At an interior poin.t, for example, the moments 
in the x and y directions and the twisting .mo­
ments were evaluated by substitution of · the de­
flections into the following finite difference equa­
tions for moment 1 

: 

Mx a - ~[ww + w, + µ (wN + w 8 ) - (2 + 2µ) w 0] 

M = - 0
2 

[wN + w 5 + µ. (wE + ww) - (2 + 2µ.) w 0] 
y A 

M = D (l - µ.) (w 5 F. - wNE - Wsw + WNw) 
xy 4A2 

The principal moments were found by the. _Mohr 
graphical st>lution of the principal moment equa-
tion1: · 

M + M J(M -Mv·2 
M = x y +, x y ·. + (M )2 

u,v 2 - 2 xy 

7 

Directions of the principal moments were deter­
mined by the equation 1

• 

2M xy 
Tan 2 0= M _ M 

X y 

A solution of the equations for twisting moment 
along the free edges gives a finite value, as may be 
observed in Appendix C. This is in agreement with 
the assumptions made in the derivation of the 
dfferential plate equation and is the best that can 
be obtained unless an equation of higher order is 
used. Three boundary conditions are known to 
hold true, that is, the vertical edge force Q, twist­
ing moment, Mxy, and normal Mn must be zero. 
However, it has been shown that only two condi­
tions are required to satisfy the free boundary 1 3 • 

One of these is established by setting the normal 
moment equal to zero. The twisting moment along 
the boundary can be replaced by two vertical 
forces of magnitude, Mxy, at an elemental distance 
dy apart. This substitution produces a couple 
(Mxy) ( dy). Adjacent to this element is another 

couple of different magnitude (Mxy+ \ ~xy dy ) dy. 

A summation of forces at their common point 

. 0 Mxy d d. t 'b t d f . gives ay y or a 1s ri u e orce per umt 

length of 
O 
O 
~xy . A final boundary condition stat­

ing that all edge forces must be zero can then be 
written as 

where: 

8M 
V=Q----2:l..=O 

ay 

Q = vertical edge force per unit of length 

aMxy = distributed vertical edge force per unit 
ay of length resulting from twisting mo-

ment transformation. 

As can be noted the sum of the edge force Q and 
the partial of the twisting moment with respect to 

the tangential direction, 
0 
:;y has replaced the 

exact conditions, Q = 0 and Mxy = 0. Therefore 
a finite value of Mxy on the free border re~ulting 

' from the solution of the equations can be under ­
stood. :The replacement of the twisting moment 
by vertical edge forces affects the stress distribu­
tion only in the immediate region of the edge. 
This necessary substitution can be attributed to 
the assumption that the normals t Q.. the middle 
_plane before bending remain normal after bending. 
Without this assumption a sixth order equation 
can be deveioped for which three equations are 
then necessary for satisfying a free boundary. 
·:F..or · thin plates ·. with s:rpall · deflections the sixth 
·:order -differentials are of· little ··consequence and 
may be neglected. · ··we have remaining the fourth 
order Lagrange partial differential equation. As 



a conservative procedure a principal moment was 
evaluated at each grid point along the free edge 
using the tangential moment and twisting mo­
ment.* Its direction was assumed tangential to 
the edge, as is known to be true. 

MOMENT CONTOURS AND TRAJECTORIES 

All moments were evaluated for the five wing­
wall size ratios for a base or a length of 3 feet and 
pressure ord'inate at the fixed-fixed corner of 1 psi. 
These dimensions correspond with the dimension 
of the experimental test plate. In the practical 
design of a bridge abutment wingwall, however, 

*The normal moment was zero as defined in the boundary 
condition. 
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Fig. 5. Maximum principal moment contours 
giving values of coefficient "C". 

Fig. 7. Maximum principal moment contours 

the soil pressures are usually calculated in units 
of pounds per square foot, and principal linear 
dimensions are in feet. It was, therefore, desir­
able to transform the evaluated moments, which 
are tabulated in Appendix C, to corresponding 
moments for a unit pressure at the fixed-fixed 
corner of 1 psf and a base strength of 1 ft. The 
moments per unit of edge length for any particu­
lar point in a wingwall or plate can be expressed 
by 

where: 
M = k p L 2 

k = a constant 
p = distributed pressure 
L = a particular length 

---Compression on bock face 
--Tension on bock face 

Jt 2 
a • 3 

Fig. 6. Maximum principal moment trajectories. 

Compression on bock face 
Tension on bock face 

giving value of coefficient "C". 8 
Fig. 8. Maximum principal moment trajectories. 
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Fi.g. 13. Maximum principal moment contours 
giving values of eoefficient "C". 

Then by the principles of similitude 6 the relation­
ship between the moments in two geometrically 
similar homogeneous wingwalls may be given as 

2 
Pz L2 

Mz=-:-z Ml 
P1 Ll 

---Compression on bock face 

-Tension on bock face 

.Q. • 1 
a 2 

Fig. -14. Maximum principal moment trajec­
. torie.s. 

so-called principal moments along the edge were 
used, however, on a plot of contours for moment in 
the y direction, the principal edge moments 
created a noticeable discontinuity of the contour 
lines. The contours when using My as evaluated 
directly by the finite difference method gave more 
continuous curves. For this reason tangential 

where the subscripts 1 and 2 refer to the respect- moments given directly by the equations as op-
ive wingwalls. By use of the above expression posed to the principal tangential moments were 
the moments were transformed for the unit di- used for the plotting of the My and M:e contours. 
mensions. The principal tangential moments were used for 

Numerical values of principal moments were the principal moment contours for which the 
plotted along gage lines connecting the node curves exhibited no noticeable discontinuity. This 
points. With the aid of these cross sections prin- illustrates that neither of the free edge moments 
cipal moment contours were drawn for each of the is exactly correct, but this is the best that can be 
five wingwall ratios. These contours are included obtained mathematically unless a sixth rather 
with their respective trajectories (figures 5 to 14). than a fourth order partial differential equation 
In a similar manner, values of moments in the is used. 
x and y directions were plotted separately along The numerical values shown on the contours 
the gage lines and contours for moments in each are bending moments per unit of edge length mul-
of these directions were drawn (figures 15 to 24). tiplied by the factor 104• The bending moments 

As discussed previously, a principal moment result from a unit pressure at the fixed-fixed 
was evaluated from the tangential and twisting corner for a wingwall of unit. base length. The 
moment along the free ~dge. These numerical points of maximum moment on each contour are 
values of prineipal moment along the vertical free indicated by small circles enclosing an x. (See 
edge, · fo.r example, and the values of moment in for example, figure 5). For each principal mo-
the y direction for that edge should be identically ment contour there are thre€ points of maximum 
equal for any particular wingwall. When the moment: 

10 
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Fig. 17. Mx contours giving values of coefficient "C". 
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1. A maximum negative moment along the foot-
ing. 

2. A maximum negative moment at the breast­
wall juncture. 
3. A maximum positive moment usually located 

along the free vertical edge. 
The contours for moment in the x direction have a 
point of maximum negative moment along the 
breastwall boundary and a point of maximum 
positive moment in the central region of the 
wingwall. For the contours of moment in the y 
direction there are points of maximum moment 
along the footing boundary and in the central 
region or on the vertical free edge. 
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Fig. 18. M11 contours giving values of coefficient "C". 

The directions of the maximum priricipal mo­
ment were plotted at each grid intersection allow­
ing the construction of moment trajectories (fig­
ures 6, 8, 10, 12, 14). By direction of principal 
moment is meant the direction normal to the axis 
about which bending occurs. Or it can be visu­
alized as the direction of maxi mum principal 
stress caused by the maximum principal bending 
moment. The dashed trajectories indicate maxi­
mum compression on the back face; the solid lines 
represent maximum tension on that face. At the 
point where maximum compression changes to 
maximum tension the trajectories, of course, cross 
at right angles . . 



FOOTING RO·TATION 
A realization that the footing for a wingwall 

could rotate about its long axis with resulting 
moment incre~ses !in part of -the wall necessitated , 
an investigation. The juncture of the wingwall 
to both the footing and breastwall has been as­
sumed rigidly fixed against any rotation. How-. 

Fig·. 19. Mi· contours givi~g values of coefficient "C". 
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Fig. 21. M~ contours giving values of coefficient.·"(;'';: :-.. 
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ever, it is known there will be a certain limited 
amount of rotation of the footing, since no foun­
dation can be absolutely rigid. This rotation will 
cause an increase of both negative moment at the 
breast-wall and positive moment in the central 
region,: and of course a reduction of negative mo­
ment along the footing. 

E._ • I 
a 

-800 

Fig. 20. M
11 

contours giving values of coefficient "C". 

b 
a 

5 
4 

0 

J._,,,:i -. > • - •r-12 70 
Fig. 22. My contou,,r i;; giving va_lues -~)f-~~efficient "C". 



-980 

b 
0 

3 
2 

®+70 

y 

Lx 

Fig. 23. Ma: contours giving· values of coefficient "C". 

The moment changes due to the limiting param­
eter of considering the base hinged ( complete 
freedom of rotation) was investigated for the 
wingwall of size ratio b/a = 1. A set of finite 
difference equations was written considering this 
boundary hinged, i.e., normal moment zero, with 
remaining boundaries staying the same. The equa­
tions were solved, and the moments were evaluated 
as shown earlier. Principal moment contours were 
drawn (figure 25) . A comparison of the fixed­
hinged contours with the contours drawn for the 
assumed fixed-fixed boundary of the wingwall No. 
3 (figure 9) will indicate a moment increase of 
roughly twice the values of the fixed-fixed con­
tours in the central and breastwall boundary re­
gion of the wingwall. A suggested safety factor 
of two for the central and breastwall boundary 
moments would be highly conservative, for the 
wingwall does not have complete freedom of rota­
tion. It is built rigidly to the footing and the 
footing exercises considerable restraint to this 
boundary because of its own structural rigidity as 
well as that afforded by the soil, rock, or pile 
foundation. 

A comparison between the slope at the footing 
boundary of a hinged wingwall and the rotation 
of a footing for a similar wingwall when connect­
ed monolithically to the footing was desirable as 
a means of determining the moment change. The 
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Fig. 25. Maximum principal moment cont.ours of co-
efficient "C" for hinged footing boundary. 

bending moments have been evaluated by finite 
differences for lower boundary walls with com­
plete fixity (no rotation) and also with a lower 



boundary completely hinged. Then the amount 
of rotation or slope of the hinged wingwall com­
pared to the footing rotation would give an indi­
cation of the actual moment increase due to that 
rotation. A typical wingwall devised for this 
comparison can be seen in Appendix A. By using 
the principles of similitude 6 the slope of the 
boundary for the hinged wingwall was found. 
The prediction equation for the deflection of the 
concrete wing'¾,all was evaluated and is given in 
Appendix A. The solution of the finite difference 
equations for the aluminum model yielded de­
flections at the several node points directly, from 
which the deflections of the typical wingwall were 
pred_icted. A deflection curve was drawn through 
the point , and the slope was determined at the 
hinge by means of a tangent drawn to the curve 
at that point. The slope at the outer hinged edge 
was found to be 0.000308 radian. 

The rotation of the concrete footing with in­
tegral wingwall was then investigated. This 
foundation was assumed to be rigidly fixed to 
the breastwall footing, which was a reasonable 
assumption considering the angle of setback of the 
wingwall and the corresponding angle of juncture 
of footings. No other restraint such as soil or 
piling was assumed to act on the foundation; it 
was given freedom of rotation subject only to its 
own rigidity. The torsional moment resulted 
from the bending moment of the wingwall con­
nected rigidly to the footing. This moment was 
calculated as the bending moment along the foot­
ing when considered rigidly fixed and was as­
sumed to remain constant until rotation was com­
plete which was a conservative procedure, since 
the moment will be reduced instantly on initial 
rotation. The rotation at the free end was found 
by integration of the torsional moment along the 
length of the footing as is shown in Appendix A. 
The angle of rotation found at the free end was 
0.0000244 radian. 

The rotation or slope of the hinged boundary 
was 0.000308 radian, more than ten times the ro­
t ation of the footing with wingwall rigidly con­
nected. The positive moment in the central re­
gion and negative moment along the breastwall 
boundary doubled when the base was hinged. Con­
sidering the moments to vary directly as the rota­
tion, and letting the maximum possible rotation of 
the footing be 1/10 of the slope of the hinged 
boundary, a factor for the moment increase in the 

center and along the breastwall and would be 1: 1. 
Because this factor is evaluated for a single ex­
ample and for conservatism a factor of 1 :2 is sug­
gested for use with the moments as determined 
from the contours. 

USE OF MOMENT CONTOURS 
By selection of one or interpolation between ap­

propriate sets of moment contours, the principal 
bending moment or moment in the x or y direc­
tion may be found for any size wingwall at any 
point under any pressure. The restrictions are: 
1. That the size proportions stay within the range 

b 2 b 3 
of - = - and - = - ; 

a 3 a 2 
2. that the wingwalls be geometrically similar; 
3. that the soil pressure vary linearly with depth; 
4. that the boundaries be fixed rigidly to the 
breastwall and footing. The moment at any point 
will then equal the value from the contours at that 
point times the soil pressure at the fixed-fixed 
corner times the base length in feet squared. By 
equation this is 

where: 

2 
C Pf a 

M = --....-
104 

M = bending moment in ft-lbs/ft of edge 
length 

C = coefficient from moment contours 
Pr = normal soil pressure at the fixed-fixed 

corner in psf 
a = wingwall base length in feet. 

Since rotation of the footing is possible, the factor 
of 1.2 is suggested for use in calculating positive 
moments in the central region and negative mo­
ments adjacent to the breastwall juncture. The 
moment equation will then be 

2 
1. 2 C pf a 

M= 4 
10 

It can be noted that Pr and a2 are constants for 
any given wingwall. The moment expression can 
then be written M = K C and M = 1.2 K C in 
which K is (Pr a 2

) /104
• The directions of the maxi­

mum principal moments may be found from the 
appropriate moment trajectories. The dashed 
trajectory indicates compression on the back face; 
the solid line indicates tension on that face. 
Moment calculations for a typical wingwall are 
shown in Appendix B. 

EXPERIMENT AL INVESTIGATION 
The experimental investigation was made on a b 4 

thin aluminum plate geometrically similar to the - = - would give substantial evidence of ac-
abutment wingwalls. The size ratio of the plate a 5 

b 5 curacy of the equations. (For a comparison of 
was - = - . It was concluded that a verification the sizes see figure 2.) These tests would enable 

a 4 the safe use of the finite difference equations for 
of the finite difference theory by experimental application to the five wingwall proportions being 
tests on a plate of this proportion along with the investigated. 
previously conducted tests on one of size ratio 
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Alum inum plate 

SR-4 strain oaon 

Fig. 26. Diagram of test plate in support frame. 

The ½ x 36 x 45 inch aluminum plate was 
grouted and then bolted between the channels of 
a rigid steel framework that furnished the as­
sumed boundary conditions of two adjacent edges 
fixed. A diagram of the support framework and 
plate can be seen in figure 26, and a photograph 
of the experimental test set-up is shown in figure 
28. 

The plate was gaged for measuring bending 
strains in the following manner. Twenty-two 
pairs of Type A-5 linear Baldwin electrical strain 
gages were placed in regions for which the direc­
tion of principal strain was shown. Twelve pairs 

Fig. 28. Experimental plate before loading showing loca-
tion of strain gages. 

of Type AR-1 rosette gages were placed along the 
lines corresponding with lines of the grid system 
for which the finite difference equations were 
written (figures 27 and 28). This arrangement 
allowed a comparison of theoretical and experi­
mental results by means of moment curves along 
the gage lines. The electrical strain gages were 
placed on both sides of the plate with the gages on 
one side in line with the corresponding gages on 
the opposite side of the plate. Each pair of gages 
acted as a single unit but with twice the sensi­
tivity of a single gage. The gages were wired 
through a switchboard to the opposite sides of the 
wheatstone bridge in the Type M Baldwin South­
wark measuring unit. As the plate was deflected 
normal to its middle plane, bending strains were 
introduced; The resistance of the gage on ·the 
tension side increased while -the other· in:· com;.; 
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Fig. 29. Location of deflection gages. 
pres-sion decreased its resistance. This combina­
tion had a multiplying effect on the balance of 



the wheatstone bridge and caused 
the strain to be indicated as twice 
the value of the actual strain. The 
least count on the measuring unit 
was then 5 micro inches per inch 
instead of the usual 10 micro 
inches per inch. By this means of 
connection, the gages were auto­
matically compensated for any 
temperature changes, and mem-

800 

600 

brane stresse~ under loading were 
also eliminated. This procedure 
was believed to greatly increase 
the accuracy of the results, a fac­
tor especially valuable when the 
strains were in the region of 

400 
Unit strain, e, 

0-1000 \micro-inches per inch, as 
was true in these particular tests. 

Deflections were measured by 
twenty-six Federal full jeweled de­
flection gages with a least scale 
count of 0.001 inch. The gages 
were placed at the intersection of 
grid lines corresponding with the 
grid system for which the finite 
difference equations were written 

(micro-inches 
per inch) 

(figure 29). This allowed a direct 
comparison of the deflections ex­
cept in the region of the sloping 
edge for which interpolation and 
extrapolation of theoretical results 
were necessary for a comparison. 

The soil loading was simulated 
by a number of closely spaced con- · 
centrated loads of combinations of 
modular units of 10, 5, 2, 1, 2/3, 
1/2, and 1/3 pounds. The five and 
ten pound weights were quart size 

200 

-200 

J7 

-4000L--o~.-5--,L.o----'-1.-5--2~.o--2~.~5-~3~_0=--__, 

P1 in psi 
Fig. 30. Typical load-strain curves. 
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For gage notation see fig. 29 

0.600 

0.500 

tin cans containing steel shot, and .• 0.400 
the smaller increments were sand Def I e ct IO n W 
filled plastic ~ag~. The ~eights (inches) 
were arranged m six load umts rep-
resenting hydrostatic soil pres-
sures, with the second to sixth 
loads each multiples of the first. 
The maximum load applied to the 
plate was approximately 3100 
pounds (figure 32). 

A normal test procedure was as 
follows : Strain and deflection gage 
readings were taken under zero ap­
plied load. The first load incre­
ment was placed and recordings of 
strain and deflection were made. 
This was repeated for succeeding 
loads. The final load was removed 
and zero readings again were taken. A ·complete 
cycle of testing took three men appr9xim~tely 
four hours time. ' · 

Load-:strain and load-deflection curves were 
plotteci' for all recorded data (figures 30 and 31). 
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Fig. 31. Typical load-deflection curves. 

2 .5 3.0 

The slopes were determined, and the strain and 
deflection ordinates were found for a pressure of 
1 psi at the fixed-fixed corner. The pressure of 1 
psi was the standard for all experimental-theoreti­
cal comparisons made. 



Principal st-rains and--~irections of principal 
strains from the rosettes were obtained graphi­
cally. Stresses were evaluated by the formulas 
for two dimensional plane stress systems 5. 1 3, 

E 
Cf u = 2 ( eu + i-i- ev) 

. 1 - I-'-

E 
Cf v = ---2 (ev + fJ, eu) 

1 - fJ, 

And bending moment considering a unit edge 
length of plate was found by the equation1 

Cfh2 
M=--

6 

which results directly from the common .expres­
sion for moment of 

Cf I 
M = h/2 

Fig. 32. Experimentaf plate under maximum load. 

COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS 
Comparisons between theoretical and experi­

mental moments are made along several gage lines 
(figures 33 to 35). All experimental-theoretical 
comparisons are made for a distributed pressure at 
the fixed-fixed corner of 1 psi and a base length of 
36 inches. The moment curves along the lines 
A-B and E-F (figures 33 and 34) are for normal 
moments along the fixed boundaries. It can be 
noted that the moments determined experimental­
ly are slightly less than those found theoretically. 
Since it is impossible to attain an absolutely rigid 
fixed support, the resulting rotation along the 
edges would cause this moment reduction provided 
that rotation of both boundaries were approxi-

mately the same. If one boundary rotated, how­
ever, while the other remained rigidly fixed, there 
would be a moment increase along the latter due 
to rotation of the adjacent boundary. Since the 
two supports on the experimental frame had ap­
proximately the same torsional rigidity, it can be 
safely assumed that the small inevitable rotations 
were about the same for each. 

As discussed earlier in the section on the theo­
retical investigation, a twisting moment along the 
free boundary was determined from the theoreti­
cal analysis and was due to certain assumptions 
made in the derivation of the differential plate 
equation. This twisting moment was used with 
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Fig. 33. Bending moment diagrams. 
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Fig. 35. Princip,al bending moment and direction diagrams. 

the tangential moment as given by the finite dif­
ference theory for the development of a principal 
tangential moment. It was found, however, that 
the tangential moment resulting directly from the 
equations gave a closer comparison with the ex­
perimental moment along the free edge than did 
the principal tangential moment and was used for 
plotting the theoretical points on the comparison 
curve (line C-D, figure 33). The differences be­
tween the theoretical edge moments determined 
from the two methods were small. It can be 
noted that the experimental positive moments 
along line C-D are somewhat larger than the cor­
responding theoretical moments which is an 
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agreement with the unavoidable rotation of the 
fixed supports. 

The comparison between the theoretical and ex­
perimental deflections are given in table I. The 
experimental deflections with the exception of 
several gages in the region of the sloping edge are 
greater by a small percentage than the corres­
ponding theoretical deflections. Since shear de­
flection was not considered in the theory but was 
present in the experimental tests and because of 
the slight rotations of the fixed boundaries, the 
above results can be understood. The average 
percent difference of the theoretical with respect 
to the experimental deflections was + 3.9 % . 



Table I. Comparison between experimental and _ 
theoretical deflections. 

Gage~• Test No. l T e st No. 2 Average Theo- P ercent 
No. E xp. Exp. Exp. retical Diffe renc e 

w (in.) w (in.) w (in.) w (in.) with E xp. 

11 o. 006 0.006 o. 006 0.006 o. 0% 
12 . 014 . 014 • 014 ,013 7. l 
13 • 021 • 020 • 020 . 020 0.0 
14 • 028 ,027 • 027 • 027 o.o 
15 . 034 • 034 • 034 . 033 2.9 

23 . 051 • 051 • 051 . 051 0.0 
25 . 088 . 088 • 088 • 087 I. 1 
31 . 019 • 020 • 019 .017 10. 5 
32 . 047 . 049 .048 . 046 4.2 
33 ,077 ,077 ,077 .077 o. 0 

34 • 109 • 108 . l 08 . 107 0.9 
35 . 141 • 140 . 140 . 136 2.9 
43 • 098 • 097 .097 • 094 3. l 
45 . 179 . 178 . 178 . 172 3.5 
51 , 023 . 024 • 023 • 020 13.0 

52 • 061 . 062 . 061 • 059 3.3 
53 • l 05 . 105 • 105· . 104 1.0 
54 • 153 . 153 .153 .148 3.3 
55 • 199 .200 • 199 • 193 3.0 
63 • l 09 • 107 • 108 • 107 0.9 

71 .017 .017 .017 • 018 -5.9 
72 • 053 • 054 • 053 • 059 -11. 3 
E-1 • 015 .013 • 014 • 016 -14. 3 
E-3 . 106 . 106 • 106 . 109 -2.8 
E-4 • 162 . 161 • l 6 l . 159 1. 2 
E-5 . 2 12 , 210 • 2 11 • 207 1.9 

*For gage notation see figure 29 

A conclusive verification of the finite difference 

theory was made 3 on a wingwall model of size 
b 4 

ratio - = - . A portion of the strain gage data 
a 5 

from the tests was used to check the accuracy of 
the principal moment contours for that particu­
lar size proportion. Principal moments and di­
rections corresponding to a pressure at the fixed­
fixed corner of 3 psi ( 432 psf) and base length of 
3.75 feet were evaluated for several points on the 
plate. Principal moments were predicted from 
the contours for the pressure of 432 psf and base 
length of 3.75 feet, and the comparison is given in 
table II. 

Table II. Comparison between experimental and theoretical 
moments calculated from contours. 
b/a = 4/5 
a = 3. 7 5 ft 
pf = 432 psf 

Coordinate~' Experimental 
x y Mu 6x 

(ft.) (ft.) (ft-lb/ft) 

3,00 
3 .75 
2.25 
0.37 
0.00 
3 .00 

0,37 -181 
o. 00 -455 
2.25 97 
2.25 -137 
3, 00 -254 
2 .25 81 

85 
-

-52 
7 

-
-57 

2 
C Pf a 

M =; --;T 

Theoretical Percent Difference 
Mu Ox of Moment with 
(ft-lb/ft) Experimental 

-207 77 14. 4o/, 
-438 .90 -3.7 

82 -49 -15.5 
-146 6 6.6 
-275 0 8.3 

85 -52 4.9 

,:,see figure 17 for direction of coordinates. The 
lo c a tion of the origin i s at the fixed-fixed corner. 

DISCUSSION 
During the process of this investigation several 

items influenced the accuracy of the finite dif­
ference equations and the resulting moment con­
tours: 

1. Simplification of the sloping edge-To write 
the finite difference conveniently the sloping edge 
of the wingwall was replaced by a horizontal edge 
passing through the approximate mid-point of the 
original boundary. The experimental results in­
dicate that this simplification had little effect on 
deflections and moments in the major portion of 
the wingwall. 
· ·. 2. Size of grid spacings - The accuracy of the 
finite difference equations depended largely on the 
grid spacing and the resulting number of equa­
tions written. The use of 30-40 linear simultaneous 
equations for each plate 3 gave satisfactory re­
sults. 

3. Value used for Poisson's ratio - A Poisson's 
ratio of 0.3 was used in all finite difference equa­
tions for deflection and moment. The equations 
are not independent of the ratio; however, it is 
believed that the use of a Poisson's ratio of 0.3 
instead of, say, 0.2 a more common value for 
concrete, had only a small effect on the resulting 
moments. Any discrepancies resulting from this 
difference are believed to be less than those 
caused by other assumptions used in the method, 
1. p. 15. 

4. Sensitivity of moment equations-The bend­
ing moments by finite difference theory were 
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functions of the differences of deflections of near 
equal magnitude. The use of at least five or 
preferably six significant figures for the deflec­
tions will give results for the moment of stresses 
comparable with the over-all accuracy of the 
numerical method. 

The experimental tests were also affected by 
several factors which are given below: 

1. Fixation of edges - It is impossible to at­
tain experimentally an edge absolutely fixed 
against rotation. However, the steel framework 
used in the experimental tests produced as good a 
fixed support as might be attained. 

2. Approximation of load - A series of free 
standing weights closely approached the hydro­
static type of loading which is normally assumed 
for soil pressures. . \ 

3. Use of electrical strain gages - The bending 
strains were measured at a point by two strain 
gages, one located on each side of the plate. The 
two gages acted as a double indicating unit and 
measured the bending strains more accurately 
than by a single gage. ... 

4. Shear deflection - Shear deflection was not 
considered in the theoretical calculation but was 
present in the experimental tests. - These deflec­
tions could not be separated from those due to 
bending, but it is believed the shear deflections 
contributed only a small percentage to the total 
deflections of the plate. 



SUMMARY AND CONCLUSIONS 
This investigation consisted of several sections 

which are listed with their conclusions as follows: 
1. Further experimental verification of the 

finite difference numerical method was made by 
tests on a wingwall model of a different size pro­
portion than that investigated in part two of the 
project. This investigation gave substantial evi­
dence to the accuracy and reliability of the nu­
merical method. 

2. The development of bending moment con­
tours by use of the finite difference method was 
made which enables the calculation of moment at 
any point in the wingwalls. Contours were de­
veloped for maximum principal bending moment 
and for moments in the x and y directions. The 
directions of the maximum principal moments 
were found and presented in the form of moment 
trajectories. The equation for the moment cal­
culation to be used in connection with the con­
tours is given as 

where 
C coefficient from the moment contours 
Pr = normal soil pressure at the fixed-fixed 

corner in psf 
a = base length of wingwall in feet 

The accuracy of the bending moments determined 

from the contours is approximately + 8 % along 
the fixed boundaries and + 15 % in the central 
region where the error, though large in percent­
age, is small in magnitude. 

3. An investigation was made of the footing 
rotation with its resulting effects on the moments 
in the wingwall. It was concluded that a factor of 
1.2 to be used in the previously mentioned mo­
ment equation was satisfactory to cover the mo­
ment increase along the breastwall boundary and 
in the central region of the wingwall. The equa­
tion for these moments will be 
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APPENDIX A: SLOPE OF HINGED WINGWALL AND ROTATION OF FOOTING 
The analysis for deflections and resulting slope 

of the hinged boundary and rotation of the foot-
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ing was made on a typical concrete wingwall 
which is shown in. figure 36 . . 
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F ig. 36. Concrete wingwall for slope and footing rotation analysis. 

PREDICTION EQUATION FOR WINGWALL DEFLECTIONS 
The deflection of a geometrically similar wing-

wall may be predicted from the known deflection 
of another wingwall by use of the principles of 
similitude. 6 

The deflection of a given plate under distributed 
loading at any point can be expressed as 

L4 
w=k~ 

where 

Eh3 
D = 2 

12 (I - µ ) 

k = a dimensionless constant 
The variables involved and the basic dimensions 
in which they can be expressed are given as 

Variable Definition Dimension 
w Deflection L 

p Distributed load P L 
D Plate stiffness P L · 
L A specific length L 
if; Any length L 

The number of required dimensionless and inde­
pendent terms (Pi terms) to express a relation-
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ship between the variables i~ indicated by the 
Buckingham Pi Theorem which states 

s = n -g 
where 

s = number of dimensionless Pi terms re­
quired. 

n ·=---= number of variables involved 
g = number of basic dimensions used to 

describe the variables 
s = 5 - 2 = 3 Pi terms required 

The three dimensionless Pi terms may Be writ­
ten as 

(f-), ({-) ' (~-) 
The Pi term involving deflection, the quantity 
which is desired" ·can be expressed .as a function 
of the remaining terms, thus 

. 3 
w (~ ~) r = f L ' ~ 

Letting the subscript a, designate quantities for 
the aluminuni\ model and the subscript c designate 
those for the ·concrete wingwall the above equation 
can be written 



4Ja 4Jc 
r=r-

a C 

The length scale n can be introduced and is de­
fined as .... 

It may be impossible to satisfy the relationship 

p L3 L3 
a a Pc c -rr- ·=-rr--

a , C 

However, a distortion factor a 

making the above relation valid. 
ten 

with 

It is known that 

L4 
w==k-p-

D 
which can be expressed as 

L3 
w = E.2:!._ f (4J} 

D 
Dividing by L, 

3 . 
~ = p L f f 4J) 
L D \L 

This ·can be written as 

w 
C 

L 
C 

can be inserted 
It is now writ-
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The distortion factor a has been defined as 

D L
3 

a pc c a. _ ___ ..,... 

- D L 3 
cPa a 

and the scale factor n defined as 
Le 

Il = -

La 
Substituting in equation for w c, 

W e = Wa Ila 

which gives the prediction equation for deflection. 

CALCULATIONS FOR PREDICTING DEFLECTIONS AND 
DETERMINING SLOPE FOR HINGED WINGWALL 

The numerical values of the quantities used in 
the prediction equation are given as follows: 

Stiffness 

Eh3 
D=---~ 

12 (1 - µ2} 
6 

in which Ea = 10.4 x 10 psi 
6 

Ee = 3.0 x 10 psi 
ha = 0.511 in 
he = 12 in 
/J,a = 0.3 
/J,c = 0.2 

5 
Da = 1.27 x 10 lb-in 

8 
De = 4.50 x 10 lb-in 

Pressure at fixed-fixed corner 
Pa = 144 psf = 1 psi 
P 0 = 432 psf = 3psi 

Sc~le and distortion factors 
n = Lc/La = 3 

Da Pc -2 

a = - - n3 = 2.29 x 10 
De Pa 

The prediction equation can be expressed as 
W e = W a Il a = W a (0.0687) 

The deflection at the several node points along the 
vertical free edge were obtained directly from the 
solution of the finite difference equations for the 
aluminum model, and the deflections for the con­
crete wingwall were predicted by the above equa­
tion. 

Table III. Predicted deflections along vertical free edge. 

Grid 
No. 

Distance from footing 
da de 
(in) (in) 

Deflection 
wa we 

(in) (in) 

05 o. o. o. o. 
15 7.2 21.6 0,0865 0.0059 
25 14. 4 43,2 0.1549 0.0106 
35 21.6 64.8 0.2002 0. 0138 
45 28.8 86. 4 0. 2257 0.01 55 

A deflection curve along the vertical edge was 
plotted _and the slope at the hinged footing deter­
mined from a tangent drawn to the curve at that 
.poh1t. ·The sJop~·was found to be 

c/> = 3.08 X 10-4 radians 



ROTATION OF FOOTING WITH MONOLITHIC WINGWALL 

The assumptions for the footing rotation analy­
sis are as follows : 

1. Torsional moments are introduced into the 
footing by the rigid connection of the wing­
wall, and the moments along the footing re­
main constant throughout rotation. 

2. The wingwall footing is rigidly fixed to the 
breastwall footing; no soil or pile foundation 
restraint to rotation is afforded throughout 
the remainder of its length. 

The moment at the outside corner can be calcu­
lated by use of the moment contours for a wing­
wall of size ratio b/ a = 9/9 = 1. These contours 
are shown in figure 9. 

The equation for moment is 
2 

C pf a 
M----

- 104 

in which C = 960 (from the contours) 
Pr = 432 psf 
a= 9 ft 

M = 3360 ft-lb/ ft at the outside corner. 

The moment along the footing can be shown to 
vary almost linearly from zero at the fixed-fixed 
corner to a maximum value at the edge (figure 
34, line E-F). Taking the origin at the fixed­
fixed corner, the torsional moment exerted on the 
footing can be expressed as 

T = 374 (x) 
where x is in units of feet. 
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The modulus of rigidity for concrete was found by 
the expression 13, 

E 
G - C 

C - 2 (1 - f-l ) 
C 

in which E = 3 x 10
6 

ps i 
C 

µ = 0. 2 
C 

G = 1. 25 x 10
6 

psi = 18 0 x 10
6 

psf 
C 

For a rectangular section the torsional constant 
corresponding to the polar moment of inertia for 
circular sections can be expressed as 7 

t m 16 m m 
3 [ ( 4 )J J = ~ . 3 - 3.36 T 1 - ~ 

in which t = : the longer side of the rectangle 
= 4 ft 

m = the shorter side of the rectangle = 
1.5 ft 

The angle of rotation cp at the end can now be 
found by the integration of the expression, 

L 
ii, = \ T dx 

~ G J 

Substituting and evaluating the integral for an 
upper limit of 9, the length of the footing, the ro­
tation was found to be 

cp = 2 .44 x 10-5 radians 



APPENDIX B: EXAMPLE CALCULATIONS FOR BENDING ,MOMENT 
A typical wingwall to illustrate the method of 

calculation of bending moments by use of the mo­
ment contours is shown in figure 37. From the 
figure it can be seen that b = 12 ft and a = 15 ft. 
The ratio b/ a indicates that the contours for size 
proportion b/a = 4/5 are to be used. Principal 
moment contours for this size ratio are shown in 
figure 7, and c~ntours for moments in the x and y 
directions are given in figures 17 and 18. 

15' - o" 

Fig. 37. Wingwall for example moment calculations. 

Since it is common practice in a wingwall de­
sign to place the steel reinforcing horizontally and 
vertically the contours for moment in the x and y 
directions will be used to illustrate the moment 
calculations. However, the critical moments along 
the fixed boundaries and vertical free edge, all of 
which are in the x or y direction, can be found 
equally as well from the principal moment con­
tours. 
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The equations for moment are 

M = C ~r
0
~

2 

(for negative moment along footing) 

and 

M = 1.2 C ih~a
2 

(For all positive moments and 

negative moments along breast­
wall) 

in which M = bending moment in ft-lb/ ft 
C = coefficient from contours 
pr = soil pressure at fixed-fixed cor­

ner in psf 
a = wingwall base length in feet 

An equivalent hydrostatic soil pressure 
of 35 psf/ft will be used. 

The pressure Pr at the fixed-fixed corner will then 
be 

Pc = (35) (17.0) = 595 psf. 
The moments can now be expressed by 

M - C (5~~1 (15) 2 = (13.4) C 

The critical moment along the footing occurs at 
the outside edge. The coefficient for My at that 
point is C = -720. The bending moment will 
then be 

My = (13.4) (-720) = -9640 ft-lb/ft. 
At the midpoint along the footing the coefficient 
C is -430. The moment at that point is 

My = (13.4) (-430) = -5760 ft-lb/ft. 
The critical positive moment in the y direction 
occurs along the vertical free edge approximately 
9 ft above the footing. The coefficient C is 
+ 120 and 

My = (1.2) (13.4) (120) = 1930 ft-lb/ ft. 
Along the breastwall juncture the critical region 
for moment in the x direction is near the top 
where C = -460. 

M~~ = (1.2) (13.4) (-460) = -7400 ft-lb / ft. 
The maximum positive moment in the x direction 
occurs about 9 ft horizontally from the bi"eastwall 
and 8½ ft above the footing. At that point 

Mx = (1.2) (13.4) (60) = 965 ft-lb / ft. 



APPENDIX C: T ABUL,ATION OF MOMENTS EV ALU A TED 
FROM FINITE DIFFERENCE EQUATIONS 

The bending and twisting moments originally 
evaluated from the finite difference equations are 
tabulated for the five plate size ratios investigated 
and_ are shown in tables IV to VIII. The princi­
pal moments and direction of maximum principal 
moment determined from the above data are also 
included in the tables. 

The original moments were evaluated for a 
plate base dimension of three feet and pressure 

L. 
70 71 72 73 74 75 

64 / -- .65 

X - I I l54 15s 

44 .45 
/ l--------,f--- --- ----+---~------t 

/1- - I 34 j 35 

24 / -- -- _ 25 

14 15 

04 05 

Fig. 38. Typical grid notation. 
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at the fixed-fixed corner of 144 psf which corres­
ponded to the dimensions and pressure of the ex­
perimental test plate. For use in determining the 
contours the moments were reduced for a wing­
wall of unit base length of 1 ft and unit pressure 
at the fixed-fixed corner of 1 psf. This procedure 
is described in the section on the theoretical in­
vestigation. 

Table IV. Moments in inch-pounds per inch for plate no , l 
b/a = 2/3 

Grid* 
No. 

01 
02 
03 
04 
05 
06 

10 
11 
12 
13 
14 
15 
16 

20 
21 
22 
23 
24 
25 
26 

30 
31 
32 
33 
34 
35 
36 

40 
41 
42 
43 
44 
45 
46 

50 
51 
52 
53 
54 
55 

a = 3 ft 
Pf = 144 psf 

M M 
X y 

-4.5 
-9.9 

'-14. l 
-17.0 
-19.2 
-21. 0 

-15. l 
-1.6 

0.8 
-·o. 1 
-3. 1 
-4.7 

-31. 3 
-5.2 
4.3 
6.0 
4,3 
l. 7 

-41. 9 
-10.9 

3.3 
7,7 
7.0 
3.9 

-48. 5 
- 16. l 

0.5 
7,0 
7,4 
4.5 

-53.2 
-19.6 
-1.6 
6,3 
7,8 
5.3 

-15. 1 
-33. 1 
-46,9 
-56.5 
-64.0 
-70, l 

-4.5 
-0.9 
-3.6 
-8.6 

-13.7 
-17.6 
-20.2 

-9.4 
1.0 
5.6 
6.3 
5,0 
3.3 
2.5 

· -12. 6 
-1. 5 

5. l 
8.0 
8.7 
8 . 4 
8.7 

-14.6 
-3.9 

1. 6 
4. l 
4.9 
5. l 
5.8 

-16.0 

M 
xy 

-6.5 
-7. l 
-5.8 
-4.5 
-3.8 
-3.8 

-6.4 
-8,2 
-7. 6 
-6.3 
-5.5 
-7.0 

-4.8 
- 7. l 
-7. 3 
-6.4 
-5.4 
-5. l 

-3.7 
-6. l 
-6.6 
-5. 7 
-4.3 
-3.0 

-3.4 
-7. 4 
-6. 9 
-5.3 
- 3 . 3 

M 
V 

-4.S 
-9.9 

-14.0 
-16.9 
-19.2 
-21. 0 

-4.5 
5.3 
6.0 
2,4 

-1.5 
-3.6 

-9.4 
5.4 

-3.4 
-1. 6 
-1.8 
-3. 1 

..., 12. 6 
0.5 

-3.0 
0 .5 
1.4 
0.4 

-14.5 
-2. 9 
-5. l 
-1. 2 

o. 3 
0 . 5 

M 
u 

-15. 1 
-33. 1 
-46.9 
-56.5 
-64.0 
-70. l 

-15. l 
-7,8 
-8.9 

-11. 7 
-15,3 
-18.7 
-20,9 

-31. 3 
-9 .2 
13. 2 
13.8 
11. 0 
8. l 
8.4 

-41. 9 
-12.9 

11. 3 
15. 2· 
14. 3 
14.0 
l 1. l 

-48.5 
-17. 1 

7. 2 
12. 3 
12. 1 
9. l 
7. l 

-1 6 . 0 -53 .2 
-20 \ 2 
-8. 3 
10.7 
10 . 5 
6 . 9 

*See figure 38 for t ypical grid notation • 

.... 

6 

(D~.) 

90 
90 
90 
90 
90 
90 

0 
44 
54 
62 
70 
75 
90 

0 
32 

-47 
-45 
-47 
-49 

90 

0 
23 

-49 
-46 
-49 
-56 

90 

0 
16 

-47 
-39 
-39 
-47 

90 

0 
0 
0 
0 
0 
Q 



Table V. Moments in inch-pounds per inch for plate no, 2. Table VI. Moments in inch-pounds per in c h for plate no . 3. 
b/a = 4/5 b/a = 1 
a = 3 ft a 3 ft 

Pf 144 psf pf 144 psf 

Grid'~ M M M M M ex Grid':' M M M M M ex 
No . X y xy V u 

(Deg.) No. 
X y x y V u (Deg .) 

01 -4 . l -13. 7 -4. 1 -1 3,7 90 01 -7. 1 - 23. 7 - 7. l - 23,7 90 
02 - 9.8 -32,5 -9.8 -3 2.5 90 02 -1 6. l -5 3 . 6 - 16. l - 53.6 9 0 
03 -1 4.9 -49.2 -14.9 -49,2 90 03 - 23.8 -79.4 -23.8 -79.4 90 
04 -18.8 - 62.6 -18,8 -62.6 90 04 -30,6 - 102 . l - 30 . 6 -102. 1 90 
05 -22 , 1 -7 3,8 -22, 1 -73,8 90 05 - 37. 2 -123.9 - 37 . 2 -123. 9 90 
06 -25, 3 ..,. -84.4 -25,3 -84, 4 90 
07 -27.9 -93.0 -27,9 - 93 .0 90 10 -23 .7 - 7 . l - 7 . l -23. 7 0 

11 -3.5 -2 . 2 -10. 7 7 . 9 -1 3.6 43 
10 -13.7 -4. 1 -4, 1 -13. 7 0 12 -0.3 -7 . 0 -12. 3 9.2 -1 6.4 53 
11 -3. l -2.7 -6.9 4. 1 -9 .9 44 13 - 3.3 -15 .5 -11. 4 3,6 -22. 3 59 
12 -1. 1 - 6.9 -8,3 4.9 -12.9 55 14 - 6. 7 -23.8 -10 . 7 -1. 5 -29.0 64 
13 -2,5 -13. 5 -7,6 I. 4 -17.4 64 15 -27 . 3 -1 l. 3 -31. 4 90 
14 - 5. 1 -20.4 -6, 6 -2.7 -22.9 70 
15 -7. 8 -26,8 -5.8 - 6.2 - 28.5 74 20 - 50 .0 -1 5 . 0 -15. 0 -50,0 0 
16 - 8.6 - 31. 8 -5.5 -7.4 - 33 .2 77 21 -9. 6 I. 7 -10.4 7.9 -15.9 3 1 
17 - 35 , 6 -5. 2 -36.4 90 22 4.7 9 . 9 -1 3,8 - h.8 21. 4 -50 

23 6 . 7 12 . 1 -13 . 9 -4.7 23 . 6 -50 
20 -31,2 -9.4 - 9.4 -31. 2 0 24 3.8 11. 6 -1 3,4 - 6.4 21. 8 -5 3 
21 - 7.9 -0. 5 -7. 6 -0.3 -8.0 32 25 11. 2 -16,5 23. l 90 
22 1. 6 3.5 -1 o. 3 -7.8 12.9 -48 
23 4. 1 3,8 -1 o. 4 - 6.5 14,4 -45 30 -66,4 -1 9.9 -1 9.9 - 66 . 4 0 
24 3.3 2. 1 -9.5 -6 .9 12. 2 - 43 3 1 -1 8 .4 -1. 0 - 6.8 1. 3 -20. 7 19 
25 1.1 -0. 4 -8.5 -8. 3 8.9 - 42 32 2. 8 13.8 -1 0.6 -3,7 20.4 -5 9 
26 -0. 5 -2.7 -8. 3 6.8 -1 o. 0 49 33 9. 0 18. 1 -11. 8 0.9 26. 2 -56 
27 - 4 . 3 -1 l. 2 -13, 6 90 34 7 . 0 21. 4 -11. 7 0.4 28.0 -61 

35 23.6 -11. 9 28.6 90 
30 -44.5 -1 3.4 -13,4 -44, 5 0 
31 -14.5 -1. 9 -6.0 0.5 -16.9 ?.2 40 - 72. 9 - 21. 9 -21. 9 -72. 9 0 
32 0.3 5.6 - 9 . 1 - 6 . 6 12.6 -52 41 - 26.0 - 5. 3 - 3.4 -4.7 -26.6 9 
33 6.3 9.7 -1 O. 1 -2.3 18. 3 - 49 42 -2 . 1 6. 3 - 6.9 - 6 . 0 l O. 2 -61 
34 7,2 11, 1 -9.7 -0.8 19. 1 -51 4 3 6.9 13. 2 -8. 5 1.0 19 . 2 - 55 
35 5.7 11. 2 -9. 0 -1.0 18 . 0 -54 44 6 . 4 17 . 2 - 8 .4 1.9 21. 8 - 6 1 
36 3.0 10.8 -8.7 -2.7 16,4 -57 45 19.8 -7 .2 22.2 90 
37 11. 0 -9.9 16.9 90 

50 -7 3.7 - 22. 1 - 73. 7 0 
40 -52.5 -15.8 -15,8 -5 2.5 0 5 1 - 31,3 - 7.4 -1.5 -22. 1 - 31. 4 4 
4 1 - 20.8 -4.5 -4.0 - 3,6 -21. 8 13 52 - 7.3 o. 7 - 4.8 - 7. 3 -9. 5 25 
42 - 3. 0 3 .7 -7.0 -7.5 8.2 - 58 53 3,6 5.2 - 6.2 3 , 0 10.7 -49 
43 5.4 8 .9 -8.4 -1.5 15.9 -51 54 4.9 7, 7 - 5.7 -2. 0 12. 2 -52 
44 8, 0 11. 8 -8.7 1.0 18.8 -51 55 9.6 - 3. 8 0.4 11. 0 90 
45 7. 1 13 . 2 -8. 2 1.4 18.9 - 55 
46 4,2 13.9 - 7.6 o. 0 18. l -61 6 0 -70. 3 -21. l -21. l -70. 3 0 
47 14.9 -7. 5 18. 1 ) J 6 1 - 34.8 -0.4 - 34 , 8 0 

6 2 -1 o. 7 -6. 5 -1 3.8 0 
50 - 56 , 8 - 17. 0 -17. 0 -56,8 0 6 3 2. 1 - 6,5 7.7 0 
5 1 -25 , 8 - 6.9 -2. 7 - 6,5 -26,3 8 64 5. 0 - 4.5 7 . 6 0 
52 - 7 . 0 0,5 - 5.3 3.2 -9.7 27 
53 3 , l 5.3 -7, 0 - 2 . 8 11. 2 -50 ~' See figure 38 for t ypi c a l g rid nota tio n . 
54 7. 0 8 . l -7 . 3 0.2 15,0 -47 
55 7. 0 9 . 8 -7. 0 1. 3 15. 5 -51 
56 4.2 10. 8 - 6 . 1 0. 8 14.4 -5 9 
57 12. 1 - 5.2 14 . 0 90 

6 0 - 59.2 - 17 . 8 - 17. 8 - 59.2 0 
6 1 -29 .4 -7.4 -1.9 -7,2 - 29.5 5 
6 2 - 1 o·. 5 -1. 7 -4 .6 0.3 -12,4 23 
63 0.6 1.5 - 6. 1 - 5. l 7,3 - 47 
6e. 5 . 7 3.3 -6.5 -2. 1 11. 1 -40 
65 6.3 4 .4 - 5.8 - 0. 5 11. 2 -40 
66 4 , () 5.2 - 4 . 5 o. 0 9 . 2 -49 
67 6 .4 - 3. 1 7,7 90 

70 - 58.4 -17. 5 -17. 5 -58.4 0 
7 1 - 32.0 -0. 9 - 32, 0 0 
72 -1 3. 0 -6.4 -15.6 0 
7 3 -0. 8 -7. 2 -7. 7 0 
74 5 . 3 - 6 . 7 9 .7 0 
75 6 . 8 -5. 3 9.8 0 
76 4.9 -3.4 6.7 0 
77 

'~ See figure 38 for typical grid notation , 
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Table VII, Moments in inch-pou.nds per inch for plat e no .. 4. Table VIII. Moments in inch - pounds per inch fo r plate no. 5, 
b/a = 5/4 b/a = 3/2 
a = 3 ft a = 3 ft 
Pr = 144 psf Pr = 144 psf 

Grid':' M M M M M ex Grid~' M M M M M ex 
No. X y xy V u (Deg.) No. X y xy V u 

(Deg.) 

01 - 8 . 1 -27. 0 - 8 . 1 -27. 0 90 01 -8.9 -29.6 -8.9 -29. 6 90 
02 -1 9. 2 - 64.3 -19.2 - 64 . 3 90 02 -22.0 -73.4 -22.0 -73.4 90 
03 -29. 8 - 99. 5 - 29. 8 - 99 .5 90 03 -35,0 -116. 7 -35 , 0 -11 6 .7 90 
04 - 39.7 -1 32.4 - 39 . 7 -1 32.4 90 04 - 47.6 -158.7 -47,6 -1 58.7 90 
05 - 49 . 2 -1 64 . 0 -49.2 -1 64 ,0 90 05 - 59.7 -1 99 .1 - 59 . 7 -199. l 90 

10 -27. 0 - 8 . l -8. 1 -27. 0 0 10 -29.6 - 8 .9 -8. 9 -29.6 0 
11 - 6. 2 - 5 .0 - 13. 5 8. 0 -19. 2 44 11 -8.7 -7.5 -1 6. 0 8.0 - 24. 1 44 
12 -2. 8 -1 5.1 -1 6. 5 8 .6 -26 .8 56 12 - 5.2 -17. 9 -2 0.2 9 . 7 -32.7 54 
13 - 6 .4 -24. 7 -16. 0 3.0 -34. 1 60 13 - 9.4 -33.3 -20.3 2.4 -44.9 60 
14 -1 o. 3 - 36. 4 - 15. 6 - 3 . 0 - 43.7 65 14 -13 .7 -48.3 -2 0. 0 -4.5 - 57,4 67 
15 - 45,0 -1 6 . 1 - 50 . 2 90 15 -59.3 -20.3 - 65.6 90 

20 - 6 0. 8 -18. 2 -1 8. 2 - 60.8 0 20 -69.8 -21. 0 -21. 0 - 69.8 0 
21 -1 5. 1 - 0. 2 -14, 3 8 . 5 -23.8 31 21 -20.2 - 2. 1 -17. 8 8.9 - 31. l 32 
22 2. 4 11. 2 - 19. 3 - 13. l 26 , 7 -51 22 -0.2 6.9 - 24.4 -21. 3 28. 1 -49 
23 5. 7 11, l -1 9 . 9 - 11. 7 28 . 5 -49 23 4,4 9.0 -25.6 -1 9. 0 32.5 -48 
24 3. 2 10 . 3 -1 9.8 -1 3.4 26 . 9 -50 24 2,4 7.8 -2 5.7 -20. 7 30.9 -48 
25 9.6 -24. 3 29. 7 90 25 6,6 -31. 4 34 . 9 90 

30 - 85.0 -25 . 5 -25.5 -85. 0 0 30 -101. 4 - 30.4 -30,4 -1 01.4 0 
3 1 -26,8 -2. 5 -1 o. 2 1.2 -30.5 20 31 -34.9 -4. 3 -13. 6 0.9 -40.2 21 
32 o. 2 13. 3 -1 5 . 6 -10. 2 23 . 7 - 56 32 - 2. 8 13.9 - 20 . 5 -1 6 . 6 27.8 -5 6 
33 9. 2 22.6 -17.4 -2.6 34.6 -55 

\ .. 33 8.9 25. 1 -22. 9 - 6 . 5 40.6 - 55 
34 8 . 1 27. 5 -17.7 -2 .4 37.9 - 59 34 8,7 31. 2 -23.5 - 6 . 1 45.9 -58 
35 30. 7 -1 9 . 0 39 . 8 90 35 35. l -25.6 48.6 90 

40 - 97. l -29. l -29. l - 97 .0 0 40 -119.6 -35.9 -35.9 -119 .6 0 
4 1 - 37 . 0 - 6 . 9 -5. 5 -5.9 -38, 0 10 41 - 47.7 - 8.9 -8.0 -7.3 -49.3 11 
42 - 5.5 9. 7 -10, 1 -10 .6 14.8 -61 42 -9.2 11,8 -13,8 -16,0 18 , 7 - 64 
43 7 . 4 20,7 -12.5 -0. 2 28 . 2 -59 43 7.5 26, 1 -16,9 -2.4 36 . 2 -59 
44 8. l 27.4 -13.0 l. 6 34 .0 -63 44 9.6 35, l -17,8 0.5 44 . 3 - 63 
45 31. 8 -12. 5 36 . 2 90 45 40,8 -17.8 47.5 90 

50 - 99.9 -30.0 - 30 ,0 -99.9 0 50 -125.8 -37,7 - 37, 7 -125,8 0 
51 - 44. 1 -1 o. 8 -1. 9 - 10. 7 -44.2 3 51 -56,8 -13.4 - 3. l -13. 2 - 57. 0 4 
52 -12. 0 3.4 -5.5 5.2 -13,7 18 52 -16. 5 5.9 - 7,4 8, 1 -18. 8 17 
53 3, l 12.9 -7.9 -1. 3 17,4 -61 53 3 , 0 19.4 -10 ,5 -2. 1 24.5 - 64 
54 6 . 0 18. 9 - 8.4 1.8 25, l -63 54 7.5 28.6 -11. 5 2.3 33,8 - 66 
55 22.6 - 6.9 24 . 6 90 55 34. l -10, 5 37 . 0 90 

6 0 -97.4 -29.2 - 29. 2 -97. 4 0 6 0 -1 24 . l - 37.2 - 37,2 -124, l 0 
6 1 -48. l -11. 3 o. 2 -11. 3 -48 . l 0 6 1 -61. 9 -16,2 0,3 -1 6 . 2 - 6 1.9 0 
62 -17. 5 -1. 3 - 3.3 -0.6 -18.2 11 62 -23,2 -0.3 -2.7 o. 1 -23,5 7 
63 -1. 2 4,6 -5.4 -4.4 7,8 -59 6 3 - 2. 5 10. 8 -5 . 5 -4. 5 12 . 8 -70 
64 3. 6 8. l -5.3 o. 1 11. 6 - 57 64 4.2 17.9 - 6 . 6 1. 5 20.6 -68 
6 5 l O. 5 - 3. 4 11. 5 90 65 22.0 -5. 1 23 . 2 90 

70 -88.0 -26,4 - 26.4 -88 .0 0 70 -117.1 -35. 1 - 35. 1 -117.1 0 
7 l -50. 8 2.2 - 50.9 0 71 - 63.7 -14,7 2.5 -1 4.6 - 63.9 -3 
72 -21. 2 -5. 7 -22.6 0 72 -28, 4 -3 .4 - 0, 8 - 3. 3 -28 . 5 2 
73 -3.3 - 6 . 2 - 8. 1 0 73 -7.4 3 , 3 -3.3 4.2 - 8. 2 16 
74 3. 2 -4 .4 6.2 0 74 l. 2 7 . 3 -3. 8 -0. 6 9 . 2 - 65 

75 9 . 6 -2 .2 1 o. 1 90 
,:,see figure 38 for typical grid nota tion 

80 -100.6 -30.2 -30.2 -100 ,6 0 
81 - 65,2 5. 4 - 65 , 6 0 
82 -32, 2 -3. 7 - 32.6 0 
83 - 9.8 - 4.8 -11. 8 0 
84 0.3 - 3. 6 3. 7 o. 

>!= See figure 38 for typical grid notatio n . 
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Publications of the 

Iowa Engineering Experiment Station 

The Iowa Engineering Experiment Station publishes reports of the results of completed projects in 
the form of technical bulletins. Other research results are published in the form of Engineering Reports. 

Single copies of publications not out of print may be obtained free of charge, except as noted, upon 
request to the Director, Iowa Engineering Experiment Station, Ames, Iowa. The publications are avail­
able in many libraries. •Indicates out of print. 

No. 176. 

No. 177. 

No. 178. 

No. 179. 

No. 180. 

No. 181. 

No. 182. 

No. 183. 

BULLETINS 

Constants for Design of Continuous Girders with Abrupt Changes in Moments 
of Inertia. R. A. Caughey and R. S. Cebula. 1954. 

Elastic Stability of the Top Chord of a Three-Span Continuous Pony Truss 
Bridge. Frank Kerekes and C. L. Hulsbos. 1954. 

Universal Swing Curves for Two Machine Stability Problem with Multiple 
Switching. A. A. Fouad and W. B. Boast. 1956. ($1.00) 

The Survival of Swine Disease Organisms in the Heat Treatment of Garbage. 
E. R. Baumann, R. A. Packer, et al. 1957. ($1.45) 

Colorimetric Characteristics of Color Television Images Recorded on Black and 
White Film. W. L. Hughes. 1957. ($0.50) 

Parking Practices on College Campuses in the United States. L. H. Csanyi. 
1958. ($0.50) 

Structural Behavior of a Plate Resembling a Constant Thickness Bridge Abut­
ment Wingwall. H. P. Harrenstien and W. C. Alsmeyer. 1959. ($0.75) 

Moment Contours for Bridge Abutment Wingwalls of Constant Thickness. 
C. L. Hulsbos and W. H. Mccasland. 1959. ($0.75) 

ENGINEERING REPORTS 

No. 23. Secondary Stresses in Buried High Pressure Lines. M. G. Spangler. Reprint. 
1954-1955. 

No. 24. The Use of Good English in Technical Writing. J. H. Bolton. Reprint. 1954-1955. 
No. 25. Fertilizer Research, Part I. G. L. Bridger and associates. Reprints. 1955-1956. 
No. 26. Bond Between Concrete and Steel. H.J. Gilkey, S. J. Chamberlin, and R. W. Beal. 

Reprints. 1956-1957. ($1.85) 
No. 27. Fertilizer Research, Part II. G. L. Bridger, D. R. Boylan and associates. Re­

prints. 1957-1958. ($0.75) 
No. 28. Plastics as Materials of Construction. L. K. Arnold. Reprint. 1957-1958. ($0.25) 
No. 29. Flexural Strength of Hollow Unit Concrete Masonary Walls in the Horizontal 

Span. A. R. Livingston, et al. 1958-1959. ($0.50) 
No. 30. Alcoholic Extraction of Vegetable Oils. R. K. Rao, L K. Arnold and associates. 

Reprints. 1958-1959. ($0.75) 
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THE COLLEGE 

The Iowa State College of Agriculture and Mechanic Arts conducts 
work in five major fields: 

Agriculture 

Engineeling 

Home Economics 

Science 

Veterinary Medicine 

The Graduate College conducts research and instruction in all these 
fields. 

Four-year and five-year collegiate curricula are offered in the different 
divisions of the College. Non-degree programs are offered in agriculture. 
Summer sessions include graduate and collegiate work. Short courses are 
offered throughout the year. 

Extension courses are conducted at various points throughout the 
state. 

The College has five special research institutions: the Agricultural 
and Engineering Experiment Stations, the Veterinary Medical and In­
dustrial Science Research Institutes, and the Institute for Atomic Research. 

Special announcements of the different branches of the work are s·up­
plied, free of charge, on application. 

Address, THE REGISTRAR, THE IOWA STATE COLLEGE, Ames, 
Iowa. 
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