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INTRODUCTION 

Many highway and railway bridges are. ~u~­
ported on reinforced concrete abutm:nts Sl!mi­
lar t o the one shown in figure 1. This type of 
abutment is used by the Iowa State Highway 
Commission. The w ingwalls of thi s abutment, 
w hich may be either of constant or variable 
thicknes ·, are the vertical slab of reinforced 
concrete a ttached to the breastwall and foot­
ings . A distributed load of varying intensity 
is exerted on these slabs by the lateral pressure. 
of the oil which they retain. In addition to 
being retaining wall , the wingwall s al so func­
tion a ·counterforts to the breastwall of the 
abutment. As might be expected, the structural 
action of such a wall is very complex; for that 
rea on it does not lend itself readily t o ·com­
mon method of s tructural engineering analysis. 

The practice of the Iowa State Highway Com­
mi sion is to a sume that the wingwall is a thin 
homoo-eneou · plate w hich is subj ected to a 
norm:l distributed load which varie linearly 
w ith depth. The commission considers the plate 
as fixed' a t the juncture to the brea twall and 
footing and free on the other two edges. Sinc_e 
such a plate has mathematical boundary conch­
tions w hich are. quite complex, a solution of the 
governing differential plate equation is not easily 
obtain ed. Most s tructural engineers do not have 
the time necessary to solve such a plate problem. 
Therefore bridge engineer s make variou addi­
tional s.implify ing assumptions as to the stru:­
tural behavior of these w ingwalls t o obtam 

Ground 

Bridge>-. 
--~--

Wlngwoll 

Bridge 

Wingwo II 

Footing 

F ig. 1. Reinforced concrete bridge abutment. 
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practical designs. The assumptions and the 
resulting designs vary greatly with individual 
engineers. 

The first stage of this project was a literature 
review and a questionaire survey. A th orough 
and exhaustive search was made in all publica­
ti ons for material on the subject of bridge abut­
ments and wingwalls. A ll of the several hundred 
available publications w ere reviewed'; but no ex­
perimental or rigorous analytical investigations 
of reinforced concrete wingwalls of the type 
sh own in figure 1 were found . The findings 
ao-reed with those of the Portland Cement As-

b . 
sociation (11, p .12) that " no structural analysis 
is available by which the stresses (in wingwalls) 
may be determined", and "suitable reinforcement 
may be provided by judgment or empirical 
rules" . Letters and questionnaires similar to the 
ones shown in the Appendix were sent to sev­
eral hundred highway, railway, and consulting 
engineers throughout the United States and 
Canada. Answers we.re returned by 80% of the 
highway engineers, 59% of the railway bridge 
eng ineers and 67% of the consulting engineers. 
These answers are tabulated in the Appendix. 

The results of both the literature review and 
the survey confirm the fact that individual en­
gineers analyze and des ig n such wingwalls on 
the basis of different assumptions regarding the 
structural behavior of these walls . The major 
result of the fir st stage of the project was the 
compilation of evidence that a thorough study 
of this subject was needed. 

The second stage of this project establishes a 
feasible analytical method for the solution of 
the type of plate problem associated with a 
wingwall. An aluminum plate of constant 
thickness, considered as a model of a typical 
v.ringwall, was studied both analytically and ex­
perimentally. An exact solution of the basic 
plate equation was not considered feasible be­
cause of the complex boundary conditions in­
volved, but a numerical solution using the meth­
od of finite differences was obtained. An ex­
perime:ntal study was made of the aluminum 
plate to serve as a control in determining the 
refinement of the numerical solution necessary 
to produce adequate theoretical results for a 
particular shape of plate. 



THEORETICAL INVESTIGATION 

Lagrange's differential equation governs the 
small deflections of a flat constant thickness thin 
plate which is subjected to normal distributed 
loads. This equation whose development may be 
found in various sources, 13 , 15, 17, may be written 
as follows: 

o4
w o4

w ifw _ p 
--- + 2. ----- + - - ·· -· . .. 

Ox4 ch2oy2 Qy4 D 

where x, y = coordinates of a point 
p = intensity of distributed load at x, y 
w = deflection of plate at any point x, y 

3 
D Eh 

12 (I - µ, 2) 
and E = modulus of elasticity 

h = thickness of plate 
µ = Poisson 1 s ratio 

The limitations and assumptions on this equa­
tion a.re as follows : 

a. The plate is medium-thick, i.e., not so thin 
that it approaches a membrane in action nor so 
thi·ck that the distribution of stresses at the ends 
appreciably influences the results. 

b. The material is homogeneous, isotropic, and 
perfectly elastic. 

c. A straight line perpendicular to the central 
surface of the plate before flexure remains 
straight and perpendicular to that surface after 
flexure. 

d. Stress is proportional to strain. 
A solution of this equation would permit 

rather precise pre-dictions of structural behavior 
of plates with due regard to the previous as­
sumptions; hence this equation forms the basis 
for all attempts at exact solutions of plate prob­
lems. Unfortunately, it has been solved only for 
a few particular cases, most of which involve 
symmetry or simplified loading and boundary 
conditions. An exact mathematical solution 
of this differential equation for a plate of the 
wingwall type is difficult, if not impossible. 

It was felt that for the case of a reinforced 
concrete wingwall, certain approximate solutions 
to the above equation would yield results which 
were as valid as those of the so-called exact 
solution. Some of the various approximate 

. methods considered were the "Elastic Web", the 
"Trial-Load", "Moment Distribution", the 
Presan Photographic Model Analysis, and the 
Finite-Difference method. 

The Elastic-Web method 7,19 conceives the 
plate as a network of orthogonally crossed 
elastic wires. The loads, if of the distributed 
type, are replaced by equivalent concentrations 
at the web intersections. End conditions repre­
senting different conditions of continuity or free­
dom from restraint at the supports are deter­
mined from the theory of the action of elastic 
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webs, which follows the theory of thin mem­
branes. The deflections of the. web under vari­
ous ·loading conditions give moments, stresses, 
and deflections of the plate much as the equi­
librium polygon can be made to yield analagous 
quantities for beams. The deflections of the web 
are determined by means of difference equation 
that are easily set up. The number of the differ­
ence equations that must be solved simultaneous­
ly is usually equal to the number of web inter­
sections. 

In the Trial Load method of analysis 16, 18 the 
plate is reduced to a number of isolated beams 
running at right angles to each other. The 
load on the plate is so distributed· to these crossed 
beams that final deflections and positions of 
the beams are compatible. Either a trial and 
error method of procedure may be used to obtain 
these compatible deflections or simultaneous 
equations may be written from which results 
may be obtained. 

The Moment Distribution method 4, 2 super­
imposes a grid on the plate and uses a process 
similar to that of the familiar moment distri­
bution in planar structures. Separate distribu­
tion must be made of the fixed end moments 
resulting from unit displacements for each joint. 
Then reactions or holding forces for each of 
these solutions must be calculated at these 
JOtnts; and, finally, to obtain the deflections, 
a set of simultaneous equations which satisfy 
shear relationships must be solve.cl. The number 
of these equations is equal to the number of node 
points corresponding to grid intersections. 

The Presan method 3 consists of building a 
lucite model of the plate to be analyzed and 
then coating one surface with reflective paint. 
A gridwork is constructed and placed parallel 
to this reflective surface some distance away. 
The grid is reflected by the model to a camera. 
When pressure is applied to the lucite plate, 
the reflection of the grid to the camera is dis­
torted. Photographs of the reflected \ grid are 
taken before and after loading. From these 
photographs slopes of the lucite plate may be 
determined. Using these slopes and finite dif­
ference equations the plate may be analyzed. 

The finite difference method 17, PP- 106 - 143 is a 
very powerful numerical method j or the. approx­
imate solution of differential equations. Its 
application to the Lagrange equation consists of 
rewriting the differential equation in terms of 
unknown values of the deflection at a finite 
number of points on the plate, usually corre­
sponding to the intersections of superimposed 
grid lines. The use of this method results direct-



ly in the formulation of one simultaneous linear 
algebraic equation for each grid intersection or 
node point. 

The decision was made to use this finite dif­
ference method; since simultaneous equations 
may be formulated directly instead of after long 
laborious, analogous manipulations. The high­
speed digital computer has made the solution of 
these simultaJ1.eous equations practical, conven­
ient, and in most cases economical. 

The Lagrange plate equation as mentioned pre­
viously is: 

\ 

Expressions for moments, etc. are: 

Moments: M =-D (-+µ-
1
0

2
w d

2wv 
x \<h2 Oy 2 

Shears : 

Edge Force : 

Concentrated 
Corner Force: 

where moments and shears are for a unit length 
of edge and where notation and limitations are 
as previously stated. 

The directions corresponding to positive quan­
tities are shown in the following sketch: 

p 
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Consider the following network which may be 
drawn on the surface of the deflected plate. 

NN 

NW N NE 

.. 
WW w ··o E EE 

SW s SE 

ss 

Fig. 2. Grid network. 

The elevation of the section line through point 
o in the E-W direction may be. drawn as follows: 

X 
Www Ww 

w 
l

wwA lw 
0 

. ., A.IA1 

The slope at point o may be approximated 
in several ways. In general, any of the following 
forms may be used: 

[ ~ .xw]
0 

__ . w, ~ w 0 V I\. , the first forward diC!erence quotient; 

[ ~ xw]
0 

-~ w 0 ~ ww V I\. , the first backward difference quotient ; 

, the !i rst central d il!crence quotient. 

For particular situations, one form may be more 
accurate than the others. In general, however, 
without any other information, there is no par­
ticular preference. The first central difference 
quotient will be used here. 

To approximate the second derivative in the 
x-direction at o, again there is a choice of forms. 
As an obvious extension of the first central dif­
ference quotient, the second derivative may be 
approximated by taking the first central dif­
ference quotient of the first central difference 
quotient. Thus 

However, this form involves values of w a.t 
points which are two grid points removed from 
the point of interest, o. The second derivative 
at o will obviously depend more on the values 



of w at E and W than at points farther removed. 
This factor may be taken into account by ap­
proximating the second derivative by taking the 
first forward difference quotient of the first back­
ward difference quotient, or vice versa since 
both operations give the same form for equal grid 
spacings. Thus : 

[ 0 
2

w] • I (~ w - ww) I """a"7 
0 

- f" A -~ = Ti (w. - 2 w0 + ww) 

Consistent with the above, the third derivative 
may be approximated by 

[bl C I [I ( I -O x3 ,o - z'X'" Iz Wee - 2wE t wo) - p {wo - 2ww + Www)j 

= ~ ( Wee - 2w~ + 2ww - www) 

and the fourth derivative by 

[ o 
4

w] . 1 ~[~J [o 2w] [ o2w] J 
-Vo = Till~, - 2 a:r o + Ox2 w 

= {1 (cwu · ZwE + wo) - 2 (we - 2wo + ww) t (wo. Zww + Www)] 

= ~ 4 (wEE • 4wi + 6wo • 4ww + Www) 

The mixed second derivative may be approxi­
mated by 

[a x
0;;t ! ~ [(~) -(~)] 

.; ZI1 (wse - w,.,E - wsw + wNw) 

The mixed fourth derivative becomes 

r~1 ! _L [ [02
w] _ l [ 02

w] + [£] } [a x2 a/ O l Ox 2 ~ Ox2 
O O x2 

N 

! ~ i [(~~~~ ) - t• -l~~ +w,] + (•• - 2w~; WNW)] 

~ ·p [ wN( + Ws1 -! wsw + w• w - 2 (wN + ws -! w e + ww) + 4wo] 

Hence the approximate values of the partial 
derivatives at point o may be written in terms 
of the deflection at o and neighboring points 
with reference to figure 2 as follows: 

[ g :] = & h · ww) 
0 

r o2wl 1 lax2 t = >-z (w, -
2

wo + w~ 

[o 3wl I { lch 3 = ~ \ 11 - 2.w£ + 2.ww - www) 

[ a4w] = ..:__ (wu - 4w + 6w - 4w + w J 0 x4 6 A 4 I o w ww 

[-frt = z-X f. -w~ 
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[dzw] I la·;z O : ii f:,s - 2.wo + wN) 

[·!;rt= z.~2 fas -2.wS t 2wN - WNN) 

r ~• ] l··3} = }4 (wss - 4w9 + 6w0 - 4wN + wN~ 

0 

[ o
2

w 1 , / 
IJXIJY

0
: ~>,_2 \ts£ - WNI! - WSW+ WNW) 

[a-J:~-21 = -:4 I WNE + wsf + WS W + WN W 

- 2 ( wN + ws + wE + ww) + 4wo j 

Where ,\=Spacing of square network ( in.) . 

If these approx imate values of derivatives are 
substituted into the appropriate differential equa­
tions from the plate theory, the fo llow ing ex­
pressions result: 

Load : 20 w 0 - 8 (w" + wf + w 8 + ww) 

Moments: 

+ 2 ("Mt + ws• + ws,.,+ wNw) 

PoA4 

f WNN f WlE f WSS + WWW=~ 

(M) = -~[-(2.+2f-L)w +w x., \2. . 0 W 

+ wf + f-L (w,., + w s) 1 
(M.\ = - ~ [- (2 + 2a) w + w ' Y/ o \2 r o ,., • 

+ W 8 t fl- hr + WE)] 

(M,, \ : ~ (w8l - Wr,,( - WSW+ WN ~ 

\ y} o 4>,_2 

Shears: (ox)o = - 2:3 [ 4 (ww - wE) + w,.E + ws£ 

- WNW - waw - www + wn j 

(Q \ ,-.. __!:__ 14 (wN - w\ + WIii + WBW 
· Yio 2 >,_3 " 

- wNw - wllE - wHN + wes l 
Edge Forces : (R>t) = - ~ I (6 - 2f-L) (w - w ) 

0 2 >-_3 • w ,. 

+ (2 -f-L) (;.,"' + wsl - w,.w - wew1 - w;,,w + wu] 

(RY)o = -~ [(6 - 2JJ-)(w,. - w 9) 

+ (2 -fl-) (w81 + wsw - w,.,w - w,.,) 

Corner Force: (R)
0 

= D (I -µ) (wst - WNl 

2>-. 2 

- WNN + Was] 

- WSW+ WMw) 

The boundary conditions to be considered 
here correspond to those fo r fixed and fr ee edges. 
Conditions w hich are assumed on these bound­
aries are specified on the foll owing page. 



1 . Fixed Edge on which y = zero: 

Deflection Zero: w = 0 } 
at X = 0 

Slope Zero i: = 0 

2. Free Edge on which y = constant: 

Moment Zero : 

Edge Forces: 

3, Free Corner: 
Moment Zero: 

Corner Force: 
o2

w 
R = 2D ( 1 - fl-) --.. axay 

In terms of finite differences, these boundary 
conditi ons may be expressed as, 

l, Fixed Edge on which y = zero : 
w

0
: 0 

WI - WW= 0 

2, Free Edge on which y = constant: 

- (2 + 2µ) w 0 + wN+ w9 + µ (ww + w,) = O 

(6 1- 2µ) (wN- ws) 
+ (2 -µ) (wsl + Wsw - WNW - w Nil) - WN N 

3. Free Corner : 
w1 - 2w0 + ww = 0 

+ (2 -µ) (wN I+ w"' - wNw - wsw) 

2~_3(R~ 
- Www + w•i = - __ D __ o 

(6 - 2f1-) (wN - w 8) 

+ (2 -µ) (w_, + w 8 w - w.,w - w1111)- WNN 

2 "3 (l\,)o 
+wee= - -D--

2).2 (R)o 

ws£ - w ... ,- wsw + wNw = D(l -µ.) 

Since w 0 in each boundary condition is for a 
point on the edge of the plate, it is apparent 
that some of the deflections indicated are ficti­
tiou ones lying off the plate. To indicate the 
procedure used to express these fictitious de­
flection s in terms of real ones let us consider the 

example of a point on the edge where y = con­
s tant. One may see from the diagrams below 
that there are deflections at four points off the 
plate in the equation for the edge force. 

NN 

NW N NE 
Plate edge 

1ww 
1
w o IE IEE I 

- +-tsw-ts-+sct---J- -
I I I I I I 
T-r- - jss-, -1- 1 -

The fictitious deflections are w sw, w s, w se , and 
Ws s• 

These fictitious deflections may be evaluated 
in terms of the deflections of the plate so that 
the conditions for a fre.e edge can be determined 
in terms of deflections at points on the plate. 
Since four quantities are to be eliminated, five 
conditions are specified along the free edge. 
They are: 

l. Load,: 20 w0 - 8 (wN + w1 + w8 + ww) 

+ 2 (wHW + WNE + wsl + wsw) + WWW+ WNN 

Po A 4 

+ wE l +we•=~ 

2. Edge Force : (6 - zµ.) (wN - w 8) 

+ (2 -µ) (wsf + WSW - WNW - WN a) 
2 ,_3 (Ry)o 

- wN.,,.+ Wea = - -D--

3. Moment at o: - (2 + zµ) w
0 

+ wH + w
8 

Moment at w : - (2 + 2µ.) ww + wNW + w 8 w 

+ µ. (www + w 0 ) = 0 

Moment at1: - (2 + 2J-L) w, + wN1 + w
81 

+ µ, (wu + w 0 ) = 0 

(For an edge with no loading p
0 

= (!\,) 
0 

= 0) 

Eliminating W ss, W sw, Wse, and W s from these 
equations gives: 

(16 - Sµ - OJ-'- 2) w
0 

+ (- 12 + 4µ.)wN 

+ (- 8 + 4µ + 4µ 2J;ww + wl) + (4 - zµ.) 

+ w"w)+ ( l- µ.2 )( www+wu ) 

t z w"II = Po )_4 + 2_~ !. (Ry)~ 
D D 

The equation for this edge condition may be 
schematically represented as follows: 

(2) 

I 
(4 - 2µ.r----- ~--'-12 + 4µ. 1-------< 4- 2µ.) 

(I-µ' ~-8 + .J + 4µ'~-8 + .J + 4µ'~1-µ'J 

8 



This procedure was fo llowed for all typical 
points of a plate resembling a wingwall (with 
simplified upper edge) and the various quanti­
ties were evaluated for µ, = 0.30. Resulting 
coefficient patterns for these typical points are 

Point adjacent to 
fixed - fixed corner. 

• Po A• . 
~D-

. Point inside 
fixed-fixed corner . 

P0 _A4 

D 

Point inside free 
.free - free corner. 

Po A• 
~0-

Point odj~cen_t to free-free 
corner on free edge. 

po A• 2 Aa ( ) 
-D- + T Rx o 

Inside point. 

P0 A4 

. D 

included in figure 3. Among these patterns are 
included for reference purposes points for edge 
conditions which are not specifically used in 
this investigation. 

Point at fixed-fixed 
corner. 

• Po A• 
D 

Point on free edge. 

Po A" 2Aa ( ) 
-0- + D Ry o 

Point adjacent 
to free edge. 

p A• _o_. _ 

Point on 
free corner 

D 

P~A
4 

4A
1
R· + . 2A

3
[(Rx) + {Ry)

0
] = - --o- + D D o 

Point adjacent 
to fixed e~ge. 

Po A• 

D 

Point adjacent to 
. fixed - free corner: 

P0 A4 

D 

Fig. 3. F inite difference equation coefficient patterns for deflection (/J., = 0.30). 
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.... 

Point at fixed-free 
corner on free edge. 

Po "A.4 2"A3 
-0- + D(Ry)o 

Point adjacent 
to hinged edge. 

Point . adjacent to 
hinged-free corner. 

I e Point odjacent ta hinoed-lree 
corner on free edge. 

Point adjacent to 
fixed-hinged corner. 

Fig. 3 cont'd. Finite difference equation coefficient patterns for defl ection C.L = 0.30). 

As stated, the finite difference method usually 
involves one independent equation for each point 
that is used as a node point in the superimposed 
grid. The type of grid used is usually rectan­
gular. It fo llows tha t the method must be modi­
fied for non-rectangular plates. A method has 
been presented 17, P- 138 by which the. difference 
equations may be adjusted at irregular edges, but 
such a meth od is tedious. It has been applied 
to skew slabs 5, 10 usin g oblique coordinates. 
S ince the loading approached zero at the sloping 
edge, it was convenient to a sume the plate rec­
tang ular (figure 4). This simplification greatly 
facilitated the application of the finit e difference 
method in that the theoretical plate was then 
rectangular ( actually square in this case) in­
st ead of trapezoidal. It was found that results 
from this simplified plate varied little from those 
obtained by a more refin ed consideration of the 
slop ing edge involving the double Laplacian form 
of the plate equation. 

An infinite number of grid patterns may be 
uperimposed on a plate. The smaller the grid 

spacing used, the 0 Teater will be the number of 
si:multaneous equations obtained, and the more 
closely their solutions should approximate that 
of a rigorous mathematical solution of the dif­
ferential equation. Solutions were desired for 
sets of equations resulting from the application 

of the finite difference method to grids of 2 x 2, 
3 x 3, 4 x 4, 5 x 5, 6 x 6, and 7 x 7 as shown in 
figures 5 to 10. It was decided that a compar­
ison of solutions for these sets of equations with 
experimental results would give an indication of 
the size of grid that must be used on a thin plate 
of specified proportion to obtain reasonable pre­
dictions of structural behavior. The equations 
correspond ing to the different grid spacings fol­
low: 

y 
/. \ Ac t ual edge of vw ingwoll 

1 Theore ti cal app roximat ion 

-- of edge 

I 
~ 

I -/' 
I I I I I I 

I I V, 
I 

I • 
I I U) 

I 
I ,., 

I I 
I I 

I 45 " I 
I 
I 
I 
I // I / 
I / _J,,/ 
I,:--,-------------

T heoretical loading ordinate diogrom 

X 

Fig. 4. Theoretical approximation of sloping edge. 



Node 

2x 2 

Equation 

II 20w 11 -5 . 4w12 -5 . 4w21 +l.4wz.z 
12. -l0.8w11 +3.4wz.1 -4.62.wz.z. +13 . 06w1z. 

21 -I0 . 8w11 +3.4wiz.-4.62.wz.z. +13.06wz.1 
22. 9 . 2.4wz.z.-9 . 2.4w 1z. -9 . 2.4wz. 1 +5.6wll 

Node Equation 
3x 3 

11 Z.Z.w 11 -8w1z. +w13 -8wz.1 +2wz.z. +w31 
12. -8w 11 +20w1z. -5.4w13 +Z.wz.1 -8w22 +l.7w23 +w32 
13 Z.w11 -I0 . 8w1z. +13.97w 13 +3 . 4wz.z. -6 . 44wz.3 +0 . 9lw33 

2.1 -8w11 +2w12 +Z.Owz.1 -Bw2z. +wz.3 -5 . 4w31 +l.7w32 
2.2. Zw11 -8w1z. +l.7w13 -8wz.1 +18wz.z.-5 . 4wz.3 +l.7w31 -5 . 4w3z. +l.4w33 
23 3 . 4w1z. -6 . 44w13 +Z.w21 -10 . 8wz.z. +12 . 15w23 +3.4w3z. -4 .62w33 

31 -I0.8wz.1 +3 .4w2.2 +13 . 97w31 -6.44w32 +0 . 9lw33 
32 Z.w1z. +3.4wz.1 - l0.8w2z. +3 . 4w23-6 . 44w31 +12. . 15w3z -4.62w33 
33 l.8Zw 13 +5 . 6wz.z. -9.24w23 +l.82w31 "+9.24w33 

Node 
4x4 

11 2.2.w11 -8w1z. +w13 -8w21 + Zwz.z. +w31 

Equation 

12 -8w1 I + 2lw12 -8w13 +w14 + Z.w21 -8w2z + Z.w23 +w32. 
13 W\) -8w12 +20w13 -5 . 4w14 +Zw2z-8wz.3 +l.7w24 +w33 
14 Zw12 -I0.8w13 +13 . 97w14 +3.4w23 -6.44w24 +0 . 9lw34 

2.1 -8w1 I + 2w12 + 2.lwZ,\ -8wz.2 +w23 -8w31 + 2w32 +w41 
2.2. Z.w1 I -8w12 + Z.w13 -8w21 + 20wz.2 -8w23 +wz4 + Z.w31 -8w3z + 2w33 +w43 
23 2w12-8w13 +l.7w14 +w21 -8w2z. +19w23 -5 . 4w24 +2w32 -8w33 +l.7w34 +w43 
24 3 . 4w13 -6 . 44w14 +Z.wz.2 -I0.8wz.3 +13.06w24 +3.4w33 -6.44w4 1 +0 . 91w44 

31 w 11 -8w21 +2wz.z. +Z.Ow31 -8w32 +w33 -5 . 4w41 +l.7w42 
32. w1z +Z.wz.1 -8wz.z. +Zwz3 -8w31 +19w3z -8w33 +w34 +l.7w41 ~5.4w4z. +l.7w43 
33 w13 +lwz.z. -8w;n +l.7wz.4 +w31 -8w3z. +l8w33 -5 . 4w34 +l.7w4z.-5 . 4w43 +l.4w44 
34 0 .9lw1 4 +3. 4w23 -6 . 44wz4 +Z.w32 -l0 . 8w33 +12..15w34 +3.4w43 -4 . 62.w44 

41 Z.wz.1 -I0 . 8w31 +3 . 4w3z. +13 . 97w41 -6.44w4z. +0.9lw43 
42 2.wz.z. +3 . 4w31 -10 . 8w32 +3.4w33 -6.44w4 1 +13 . 06w42 -6 . 44w4 3 +0 . 9lw44 
43 Z.wz.3 +3.4w32 -10 . 8w33 +3 : 4w34 +0.9lw41 -6 . 44w4 z. +12. . 15w43 -4 . 62w44 
44 1.82.wz.4 +5.6w33 - 9 .2.4w34 +l.82w4z. -9.24w43 +9 . 2.4w44 

Node 

5x 5 

II 22w11 -8w12 +w13 -8wz1 · +Zw2z. +w31 

Equation 

12. -8w11 +2lw12 -8w13 +w14 +Zw21 -8w2z. +Z.w23 +w32 
13 w11 -8w1z. +Zlw13 -8w14 +w15 +Z.wz.2 -8wz.3 +Zwz.4 +w33 
14 W)Z. -8w13 +20w14-5.4w15 +2wz.3 -8w24 +l.7w25 +w34 
15 2w13 __ -I0 . 8w14 +13.97w15 +3 . 4wz.4 -6 . 44w25 +0 . 9lw35 

·2.1 -8w11 +Zw1z. +Z.lw21 -8wz.z +w23 -8w31 +Z.w32 +w41 
22 Zw11 -8w1z. +Zw13 -8w21 +2.0wz.z -8wz.3 +w24 +2w31 -8w32 +2w34 +w42 
2.3 Zw1z. -8w13 +Zw14 +wz.1 -8wz.z. t20wz3 -Bw24 +wz.5 +2w32. -8w33 +Z.w34 +w43 
2.4 Z.w13 -8w14 +l.7w15 +w2z. -8wz.3 +19wz.4-5 . 4w 25 +2w33 -8w34 +l.7w35 +w44 
l5 3 . 4w14 -6.44w15 tZ.wz3 -I0.8w2.4 +13.06w25 +3 . 4w34 - 6.44w35 +0.9lw45 

31 w11 -8wz.1 +2.wz.z +2.lw31 -8w3z. +w33 -8w41 +Z.w4z. +w51 
32. w1z +2wz.1 -8wz.z. +Z.wz.3 -8w31 +Z.Ow3z -8w33 +w34 +2w41 -8w4z. +Z.w43 +w52 
33 w13 +2.wz.z. -8wz.3 +Z.wz.4 +w31 -8w3z. +20w33 -8w34 +w35 +Z.w4z. -8w43 +Z.w44 +w53 
34 w14 +Z.wz.3 -Swz.4 +l.7w25 +w32 -8w33 +19w34 -5.4w35 +Z.w43 -8w44 +l.7w45 +w54 
35 0.9lw15 +3.4wz4 -6.44wz.5 _+Z.w33 -I0.8w34 +13. 06w35 +3.4w44 -6 .44w45 +0 . 9lw55 

41" wz.1 -8w31 +Z.w32. +Z:Ow41 -8w4z. +w43 -5 . 4w51 tl.7w5z. 
42. wz.z.-1:Zw31 -8w32 +2w33 -8w41 +19w4z.-8w43 +w44 +l.7w51 -5 . 4w5z. +l.7w53 
43. wz3 _t,Zw32 -8w33 +Z.w34 +w41 -8w42 +19w43 -8w44 +w45 +l.7w5z.-5 . 4w53 +l.7w54 
44 wz.4 \ Zw33 -8w34 +l.7w:fo +w42 -8w43 +l8w44 -5 . 4w45 +l.7w53 -5.4w54 +l.4w55 
45 0 . 9lwz.5 +.3 . 4w34 - _6.44w35 +2w43 -I0 . 8w44 +12 . 15w45 +3.4w54 -4.62w55 

51 Z.w3 1 -_I0 . 8w41,+3.4w4z. +13 . 97w51 -6.44w52 +0.9lw53 
52 2w32 +3.4w41 -I0.8w42 +3 . 4w43 -6.44w51 +13.06w52 -6.44w53 +0 . 9lw54 
53 2w33 +3.4w4z. -l0.8w43 +3.4w44 +0.9lw51 -6 . 44w52 +13 . 06w53 -6.44w54 +0.9lw55 
54 2~34 +3.4w4/-l0 . 8w44 +3.4w45 +0 . 9lw5z. -6 . 44w53 +12.15w54-4,62w55 
55 I, 82w35 + 5, 6w14 -9 . 24w45 + 1. 8Z.w53 •9 , 24w54 + 9, 2.4w55 

Node Equation 
6x 6 

11 Z.Zw1 l -8w12. +w13 -8wz.1 + Zw22 tw31 
12 -8w11 +Z.lw12 -8w13 +W\4 +2w21 -8w22 +Zwz.3 +w3z. 
13 w11 -8w1z. +Z.lw13 -8w14 +w15 +2wz.2 -8wz.3 +2w24 +w33 
14 w1z. -8w13 +Z.lw14 -8w15 +w16 +Z.wz.3 -8w24 +2~25 +w34 
I 5 w13 -8WJ4 + 20w15 -5. 4w16 + 2wz.4 -8wz.5 + I. 7w26 +w35 
~.o Zw14.-I0 , 8w15 tl3 . 97w16 +3.4w25-_6.44w26 +0 . 9lw36 

11 

= 14. 00000 
9, 00000 

o . 00000 
0 . 00000 

0 . 69695 
0. 58454 
0.472.13 

0.35972. 
0 . 24731 
0 . 13489 

0 . 02.2.48 
0 . 00000 
0 . 00000 

0 . 2.5609 
0 . 2.2.941 
0.20273 
0 . 17606 

0. 17606 
0 . 14938 
0 .122.71 
0.09603 

0 . 09603 
0.06936 
0. 042.68 
0. 01601 

0. 01601 
o. 00000 
0. 00000 
o. ooooq 

0 . 11363 
0 . 10489 
0 . 09615 
0. 08741 
0 . 07867 

0 . 08741 
0 . 07867 
0. 06993 
0 . 06119 
0. 052.45 

0.06119 
0 . 052.45 
0. 04371 
0 . 03496 
0.02622. 

0.03496 
0 . 02622 
0. 01748 
0 . 00874 
0. 00000 

o. 00874 
0 . 00000 
o . 00000 
0 . 00000 
0, 00000 

= 0.05761 
= 0 . 05409 
= 0.05058 
= 0. 04707 
~ 0. 04356 
= 0 . 04005 

'. 
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Fig. 5. Node notation for 2 x 2 
grid. 
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21 ·0 8W'!l +2w12 +2lw21 -8w22 +w2 3 -8w31 +2w32 +w41 
_22 2w11 -8w12 .+2w13 ·-8w21 +20w22 -8w23 +w24 +2w 3 1 -8w32 +2w33 +w42 
23 2w12 -8w1 3 +2w14 +w21 -8w22 +20w23 -8w24 +w25 +2w32 -8w33 +2w34 +w43 
24 2w 13 -8w14 ,+2w15 +w22 -8w23 +20w24 -8w25 +w26 +2w33 -8w34 +2w35 +w44 

·25 2w 14 - 8w15 +l.7WJ6 + w 23 -8w24 +19w25 -5 . 4w26 +2w34 -8w 35 +l.7w36 +w45 
26 3 .4w15 ,-6 . 44w 16 +2w24 -l0 . 8w25 +13 . 06w26 +3.4w 35 -6.44w36 +0 . 9lw46 

3 1 w11 -8w21 + 2w22 +2lw 3 1 -8w32 +w33 -8w41 +2w42 +w51 
3 2 w12 + 2w21 - 8w22 + 2w2 3 -8w31 + 20w 3 2 -8w3 3 +w34 + 2w41 -8w42 + 2w43 +w52 
33 w 13 +2w22 - 8w 23 +2w24 +w31 -8w32 +20w33 -8w34 +w35 +2w42 -8w43 +2w44 +w53 
34 w14 + 2w23 -8w24 + 2w25 +w3 2 -8w33 + 20w34 -8w35 +w36 + 2w43 -8w44 + 2w45 +w54 
3 5 w15 + 2w24 -8w25 +l.7w26 +w 33 -8w34 +19w 35 -5.4w36 +2w44 -8w45 +l.7w46 +w55 
36 0 . 9lw16 + 3 . 4w25·-6 . 44w2 6 +2w34-I0 . 8w 35 +13 . 06w36 + 3. 4w45 -6 . 44w46 +0 . 9lw56 

41 w 21 - 8w 3 1 + 2w 3.., +2lw41 -8w42 +w4 3 -8w51 + 2w52 +w61 
42 w22 + 2w3 1 - 8w 3 2 + 2V:, 33 -8w41 + 20w42 - 8w4 3 +w44 + 2w51 -8w52 + 2w5 3 +w62 
4 3 w 23 + 2w3 2 - 8w 33 + 2w 34 + w41 - 8w42 + 20w4 3 -8w44 + w45 + 2w52 -8w53 + 2w54 + w6 3 
44 w 24 +2w33 - 8w3 4 +2w3 5 +w42 -8w4 3 +20w44 -8w45 +w46 ·+2w53 -8w54 +2w55 +w64 
45 w2 5 + 2w3 4 -8w3 5 +I . 7w 36 + w4 3 - 8w44 + l 9w45 -5 . 4W46 + 2w54 -8w55 + 1. 7w56 + W65 
4 6 0 . 9l w26 + 3. 4 w3 5 - 6. 44w36 +2w44 - I0 .8w45 +13 . 0 6w46 + 3 .4w55 -6.44w56 +0.9lw66 

5 1 w3 1 - 8w4j +2w42 +20w5.1 -8w52 +w5 3 -5.4W6J +I. 7w62 
5 2 W3 2 +2w41 -8w42 +2w 4 3 - 8W5J +19 w 52 -8w5 3 +w54 +J.7W6J -5 . 4W62 +J.7w63 
53 w33 + 42 - 8w4 3 +2w44 +w51 -8w52 +19w5 3 -8w54 +w55 +l.7w62 -5.4w63 +l.7w&4 
54 w34 +2w4 3 - 8w44 +2w45 +w5z - 8w5 3 +19w54 -8w55 +w56 +l.7w63 -5 . 4w64 +l . 7w 6 5 
55 w 35 + 2w44 - 8w4 5 +l.7w46 + w 53 - 8w54 +l 8w55 -5 . 4w56 +l.7w64 -5.4w65 +l.4w66 
56 0 .9 i w 36 + 3 . 4w45 - 6. 44w4 6 +2w54 -I0.8w55 +12.15w56 +3.4w65 -4 . 62w6 6 

6 1 2w4 1 -10 .8w 51 + 3. 4w52 + 13.97w6 1 -6.44w6 2 +0 . 9lw63 
6 2 2w42 + 3 . 4 w5 1 -I0 .8w52 +3 .4w53 -6 . 44w61 +1 3. 06w62 -6.44w63 +0 . 9lw64 
63 2w4 3 + 3. 4w 5 2 -10 . 8w5 3 + 3 .4w54 +0 . 9lw6l -6 . 44w62 +13.06w63 -6 . 44w64 +0.9lw65 
64 Zw44 + 3. 4w5 3 -I0 . 8w54 + 3. 4w55 +0.9lw6z -6.44w63 +13 . 06w64 -6 . 44w65 +0 . 9lw66 
6 5 2w45 + 3. 4w 54 -I0 . 8w55 +3.4w56 +0.9lw63 -6.44w64 +12.15w65 -4 . 62w66 
66 l.82w 4 6 + 5 . 6w55 -9 . 24w5 6 +l.82w64-9 , 24w65 +9 . 24w66 

Node Equation 
7x7 

11 22w1 I -8w21 -8w12 +w13 tw31 + 2wz2 
12 2lw12 - 8w 11 -8w13 -8w22 + 2wz1 +2wz3 +w32 +w14 
13 21w13 -8w12 - 8w14 -8w23 +2w22 +2w24 +w35 +w15 +w11 
14 2lw14 -8w13 -8w15 -8w24 +2w23 +2w23 +w34 +w16 +w12 
15 2lw15 -8w14 -8w16 - 8wz5 +2w24 +2w26 +w35 +w17 +w13 
16 20w16 -8w15 -8w26 -5 . 4w17 + 2w25 + 1. 7w27 +w14 +w36 
17 13 . 97w17 -I0.8w16 -6 . 44w27 +3 . 4w26 +2w15 +0.9lw37 

21 2lw21 -8w11 -8w22 -8w31 +2w12 +2w32 +w41 +w23 
22 20w22 -8w12 -8w23 -8w21 -8w32 +2w11 +2w13 +2w33 +2w31 +w42 +w24 
23 20w23 -8w13 -8w24-8w33 -8w22 +2w12 +2w14 +2w34 +2w32 +w25 +w43 +w21 
24 20w24 -8w14 -8w25 -8w34 -8w23 +2w13 +2w15 +2w35 +2w33 +w26 +w44 +w22 
25 20w25 -8w15 -8w26 -8w35 -8w24 + 2w14 +2w16 +2w36 +2w34 +w27 +w45 +w23 
26 19w26-8Wl6 -8w25 -5.4w27 -8w36 +2w15 +2w35 +l . 7w37 +w24 +W46 . 
27 13 . 06w27 -I0 . 8w26 - 6 . 44w17 -6 . 44w37 t3 . 4w16 +3.4w36 +0.9lw47 t2wz5 

31 2lw31 -8wz1 -8w32 -8w41 + 2w22 + 2w42 +w51 +w33 +w1 I 
32 20w3z -8w22 -8w33 -8w31 -8w42 +2w21 +2w23 +2w43 +2w41 +w52 +w34 +w12 
33 20w33 -8w z3 -8w34 -8w43 -8w32 +2wzz +2wz4 +2w44 +2w42 +w35 +w53 +w13 
34 20w 34 -8w24 -8w35 -8w44 -8w33 +2w23 +2w25 +2w45 +2w43 +w36 +w54 +w32 +w14 
35 20w35 - 8w25 -8w37 -8w45 -9w34 +2w24 +2w26 +2W46 +2w44 +w37 +w55 +w33 +w15 
36 19W36 - 8w26 -8w35 -5 . 4w37 -8w46 +2w25 + 2w45 + 1. 7w47 +w34 +w36 + l . 7w27 +w16 
37 13.06w37 -I0 . 8w36 -6.44w27 -6 . 44w47 +3.4w26 +3.4w46 +0.9lw57 +0 . 9lw17 +2w35 

41 2lw41 -8w31 -8w42 -8w51 +2w32 +2w52 +w61 +w43 +w21 
42 20w42 -8w32 -8w43 -8w41 -8w52 + 2w31 + 2w33 + 2w53 + 2w51 +W62 +w44 +wz2 
43 20w43 -8w33 -8w44 -8w53 -8w42 +2w32 +2w34 +2w54 -2w52 +w45 +w63 +w41 +w23 
44 20w44 -8w34 -8w45 -8w54 -8w43 +2w33 +2w35 +2w55 +2w53 +w46 +W64 +w42 +w24 
45 20w45 -8w35 -8w46 -8w55 -8w44 +2w34 +2w36 +2w56 +2w54 +w47 +w65 +w43 +w25 
4 6 19w46 -8w36 -8w45 -5.4w47 -8w56 +2w35 +2w55 +l.7w57 +w44 +W66 +w26 +l.7w37 , 
47 13 . 06w47 -I0 . 8w46 -6 . 44w37 -6.44w57 +3 . 4w36 +3.4w56 +0 . 9lw67 +0.9lwz7 +2w45 

51 2lw51 -8w41 -8w52 -8W61 +2w42 +2w62 +w71 +w53 +w31 
52 20w52 -8w42 -8w53 -8w51 -8w62 +2w41 +2w43 +2w63 +2w61 +w72 +w54 +w32 
53 20w53 -8w4 3 -8w54 -8w63 -8w52 +2w42 +2w44 +2w64 +2w62 +w55 +w73 +w51 +w33 
54 20w 54 -8w44 -8w55 -8w64 -8w53 +_2w43 +2w45 +2w65 +w56 +w74 +w52 +w34 
55 20w55 -8w45 -8w5 6 -8W65 -8w54 +2w44 +2w46 +2w66 +2w64 +w57 +w75 +w53 +w35 
56 19w56-8w46 - 8w55-5.4w57 -8w66 +2w45 +2w65 +l.7w67 +w54 +w76 +w36 +l.7w47 
57 13 . 06w57 -l0 . 8w46 -6.44w37 -6 . 44w57 +3.4w36 +3 . 4w56 +0 . 9lw67 +0 . 9lw27 +2w45 

61 20w61 -8w51 -8W62 -5 . 4w71 +2w52 +I. 7w72 +w41 +W63 
6 2 19w62 -8w52 -8W61 -8W63 -5. 4w72 + 2w51 + 2w53 + 1. 7w73 +w42 +w64 
6 3 19W63 -8w53 -8W62 -8W64 -5 . 4w73 +2w5z + 2w54 + I. 7w72 + I. 7w74 +w43 +W65 +w61 
64 19w64 -8w54 -8W63 -8W65 - 5 . 4w74 + 2w53 + 2w55 + l. 7w73 + I. 7w75 +w44 +w66 +w62 
6 5 19w 65 -8w55 -8w64 -8W66 -5 . 4w75 +2w54 +2w56 +I. 7w74 +l. 7w76 +w45 +w67 +w63 . 
66 l 8w6 6 -8w56 -8W65 -5 . 4W67 -5 . 4w76 +2w55 +l.7w57 +l.7w75 +l.4w77 +w46 +w64 
67 12.15w67 -10.8w66-6 . 44w57 -4 . 62w77 +3.4w56 +3.4w76 +2W65 +0.9lw47 

71 13 . 97w71 -10 . 8w61 -6 . 44w72 +3 . 4w62 +0 . 9lw73 +2w51 
72 13. 06w72 -10 .8w62 -6.44w71 -6 . 44w73 +3 . 4w61 +3.4w63 +2w52 +0.9lw74 
73 1 3. 0 6w73 -10.8w63 -6 . 44w72 -6 . 44w74 +3.4w62 +3.4w64 +2w53 +0 . 9lw75 +0.9lw71 
7 4 1 3. 0 6w74 -I0 . 8w64 -6.44w73 -6 . 44w75 +3.4W63 + 3 .4W65 +2w54 +0.91 w 7 6 +0.9Iw72 
7 5 13. 06w75 -10 .8w65 -6 . 44w74 - 6 . 44w76 +3 . 4w64 +3.4w66 +2w55 +0 . 9lw73 +0.9lw77 
76 12.15w 76 -I0.8w66-6,44w75 -4 . 62w77 +3.4w65 +3.4w67 +2w5 0 +0 . 9lw74 
77 9 . 24w 77 -9 . 24W67 -9 . 24w76 +5.6w66 +l.82w57 +l . 82w75 
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= 0 . 04707 
=0 . 04 3 56 
= 0.04005 
= 0 . 0 3653 
= 0. 03302 
= 0. 02951 

= 0 . 03653 
= 0. 03 302 
= 0 . 02951 
= 0. 02599 
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= 0 . 01897 

= 0 . 02599 
= 0 . 02248 
= 0. 01 897 
= 0 . 01546 
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= 0 . 00 84 3 

= 0.01546 
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= 0.00 84 3 
= 0 . 00492 
= 0. 00141 
= 0. 00000 

= 0 , 00492 
= 0 , 00141 
= 0. 00000 
= 0 . 00000 
= 0 . 00000 
= 0. 00000 

:: o. 03218 
,= 0.03055 
= 0 . 02893 
= 0.02730 
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· = 0 . 02406 
= 0. 02243 

= 0 . 02730 
= 0. 02568 
= 0 . 02406 
= 0.02243 
= 0 . 02081 
= 0 . 01918 
= 0 . 01755 

= 0. 02243 
= 0 . 02080 
= 0 . 01918 
=0 . 01755 
= o. 01593 
= 0. 01430 
':0,01268 

= 0 . 01755 
= 0. 01592 
= 0. 01430 

. = 0. 01268 
= 0 . 01105 
= 0 . 00943 
= o. 00780 

= 0. 01268 
=0 . 01105 
= 0. 00943 
= o. 00780 
= 0 . 00618 

. = 0. 00455 
= 0. 00293 

= 0. 00781 
= 0.00618 
= 0 . 00456 
= 0. 00293 
=0 . 001 3 1 
= 0. 00000 
= 0. 00000 

= 0.00293 
= 0 . 00130 
= 0. 00000 
= 0. 00000 
= o. 00000 
= 0 . 00000 
= 0 . 00000 
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The only practical method for solving the 
simultaneous equations resultin g from the finite 
difference method was that which used high 
speed digital computers. The sets of sixteen and 
forty-nine equations were solved by the Gauss­
Seidel method on the Navy's Logistics Computer 
at George \Vashington University, Washington, 
D . C. The remaining sets of equations were 
solved by International Business Machines Corp­
oration, Ne.w York, New York, on the Type 
650 Drum Calculator. The solutions of all sets 

Table I. Solutions to Equations 
from Z x Z Grid . 

Solution 
Node Pt=l6. 678 psi 

11 I . 8456002 3 
lZ 3.13409361 

Zl z. 20241659 
lZ 4. Zl 796461 

Table II. Solutions to E quations 
from 3 x 3 Grid . 

Theoretical& 
Node Pt =Z . 8498 pai 

II 0 . 12707355 
12. 0. 23565655 
I 3 o. 31949340 

Zl 0.19598481 
zz o. 40846871 
2.3 o. 58251333 

31 o . 21803188 
32 0 .498769 15 
33 o . 72784948 

aValue aa received from I. B. M. ---
Table III . Solutions to Equa ti.ons 

from 4x4 Grid . 

Theoreticala 
Node Pf=2. . 8498 pa i 

II o . 0575381 
1 Z 0.1156772 
13 0. 1585868 
14 o. 1965613 

Zl 0. 1031837 
2.2. 0. 2300458 
23 o. 3352344 
24 o . 4293408 

31 o. 12.24602 
32. o . 2.961565 
33 o. 4522082 
34 o . 5897135 

41 0. 1306534 
42. o. 3395514 
43 o. 5349057 
44 o. 6991052 

avalue aa received from I. B. M. 
and George Washington University . 

Table IV . Solutions to Equations 
from 5x 5 Grid. 

Theoretical a 
Node Pf=l.,8498 ps i 

II 0 . 02948352 
lZ 0 . 06324810 
I 3 0. 0895686 1 
14 0 . 11056832 
15 0. 13006897 

Zl 0 . 0585 3695 
Z2. 0. 13753822 
23 0 . 20674564 
24 0 . 264 341 40 
ZS 0 . 31944521 

31 0 . 0746271 9 
32 0 . 18827106 
33 0 . 2963932.7 
34 0. 389899 86 
35 0 . 478102_65 

41 o. 08154205 
42 0 , Zl 78 3206 
43 0 . 35579272 
44 0 . 47806407 
45 0 . 590027 36 

51 0 . 08420199 
52 0 , 23977177 
53 0. 403_66937 
54 0 . 54898761 
55 0 . 67559680 

avalue aa received from I. B. M. 

The matter of pre­
dicting stresses at vari­
ous node points follows 
from these de:flections 
rather nicely. The par­
tial differential equa­
tions for moments per 
unit length at a point 
in a plate are as state.cl 
previous] y 1 : 

(M) = -~ (- (Z + 2µ) w 0 + w,. + w 8 
, Yo >. z 

+ µ(ww + w1~ 

U )-~(w -w -w -1w \ "'xy o - \ z U Nt aw NW/ 
• 4 /\ 

D [- (2 + zµ) WO+ WW+ wl 

(M.). a • XZ • µ (w• • w~] 
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of equations are listed in tables I to VI. These 
values are theoretical deflections at the various 
node points on the plate under action of a tri­
angularly distributed load corresponding to a 
maximum load ordinate of Pr= 2.8498 psi at the 
fixed-fixed corner, except for the 2 x 2 grid for 
which Pr= 16.678 psi. 

Table V. Solution• to Equation• Table VI. Solutions to Equation ■ 
from 6x6 Grid , from 7 x 7 Gr id . 

Theoretical& Theoretical a 
Node pf=Z. 8498 pa i Node Pf=Z . 8498 pai 

II o . 01659571 11 0. OIOOIZZ 
IZ 0 . 03762697 IZ 0 . 0237897 
13 o . 0551829 9 I 3 0 . 0360156 ,. O. 06896651 ,. o . o•s8019 
I 5 0 . 08!1509l 15 0 . 053-9833 
16 o. 09207324 16 0 . 0617751 

17 o . 0680694 
Zl 0. 03559893 
zz 0 . 08739756 Zl 0. 02.28180 
2.3 0 . I 3546017 zz 0 . 0580875 
24 0 . 17576368 23 0 . 0924476 
ZS 0.21111753 24 0 . I 220 I 12 
26 O. 24593091 25 0 . 1473186 

26 0 . 1706095 
31 0. 04833338 27 o . 1934330 
32. 0 . I 2.624910 
33 0 . 20409736 31 0 . 032.5827 
34 0. 2.7269807 32 0. 087555. 
35 o . 33361650 33 0 . l-l.72.39 
36 0 . 39371353 34 0 . 1964-137 

35 0 . 2418685 
41 0 . 05489 353 36 0 . 2836006 
•z 0 . 15090707 37 o. 3256493 
4 3 0 . 25258 180 ' .. 0 . 3•577057 41 0. 0384426 
• s o . •z943596 42 0 . 1081356 
•6 0 . 51038656 43 o. 1844953 - 44 0. 2564201 
51 0 . 05815912 45 o. 3210959 
52 0 . 16652740 46 o. 3806546 
53 0. 28666490 47 0. 4401452 
54 0 . 3998936. 
55 · 0 . 5017761 I 51 0 . 0415400 
56 0 . 59752615 52 0.1212884 

53 0 . 2124635 
61 0 . 05868831 54 0. 3011918 
62 0 . l 7867 620 55 0 . 3824841 
63 0 . 31632693 56 0 . 4573243 
6• o. 44755731 57 0, 5306064 
65 0 . 56405889 
66 0 . 66~192 37 61 0 . 04 33211 

62 0 . 1303344 
a value aa received from I. B , M. 63 o. 2333938 

64 0. 3362.106 
65 0 . 4314696 
66 0 . 5185744 

Mx = - D ~<) 2w + µ c) z~) 67 o. 6016478 

71 0 . 0427700 dx2 ,Jyz 
72. 0 . 1370165 

(iJ 2. 2) 
73 o . 2521648 

~ = -D~+ µ ~ 74 0 . 3686247 
<)yz axz 75 0 ~4764932. 

76 0 . 5733954 

d2
w 

77 0. 6623876 

Mxy = Myx = D ( I - µ ) ~ 
•value a■ rece \ved from George 
Wa■hington University. 

Coefficient patterns for motllent at typical 
points in the plate, similar to those for deflec­
t ions, are presented in figure 11. 

To compute stress from these moment expres­
sions, multiply by the constant 6/h2 (reciprocal 
of section modulus of a rectangular section one 
inch wide). 
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EXPERIMENTAL INVESTIGATION 

The experimental investigation was designed 
to be consistent with the Iowa Highway Com­
mission assumptions of fixation and loads. 
The investigation was performed on thin trap­
ezoidal aluminum plates 45 in. x 51 in., fixed 
at two edges and free on the other two. In 
plan these plates were geometrically similar to 
the wingwall shown in figure 1. A distributed 
load varying linearly from zero at the, sloping 
edge to a maximum at the fixed corner was 
used. Strains and deflections at various points 
on the plate were measured. Figure 12 shows 
the test setup. 

The actual loading was a distributed load 
imulated by a large number of free-standing 

concentrated loads, each of which was a com­
bination of small modular weights. The 
weight sizes were 10 lb, 5 lb, 2 lb, 0.67 lb, and 
0.33 lb. The 10 lb and 5 lb units were accom­
plished by inserting steel shot in one quart cans. 
The smaller weights were sand-filled plastic 
bags. By using these modular weights, it was 
possible to load the plate in six equal increments. 
The maximum total load was approximately 
4,000 lb. It was not feasible to use more than 
4,000 lb because of the nature of the. loading 
system and the material used . 

Readings at various points on the plate at 
each increment of load deflection were taken 
by Federal full jeweled dial indicators with a 
lea.st count of 0.001 in. and a range of 1 in. 
Simultaneously, SR-4 resistance type strain gage 
readings were taken for a number of points. 
Linear type gages were usedi at points where 
directions of principal stresses were assumed to 
be known, and rosette type gages were used at 
other points. 

The first set of tests was performed on a •¾ 
in. plate of size and shape previously mentioned. 
It was found that the deflections and strains 
even under the maximum load of 4000 lb were 
too small and erratic to be reliable. To obtain 
greater deflections and strains under the maxi­
mum load of 4,000 lb, ½ in . and 3/s in. thicknesi 

Fig. 13. Plate before l,oading. 

Aluminum plate 
_,,, -1'~ Loading ordinate d iagram 

_,,,, I " 
I '\. 
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Ip f " 
I 

SR - 4 gages 

I 

Diagram of test set-up. 

plates of the. same overall size ( 45 in. x 51 in.) 
were obtained. 

The Ys in. plate was tested first. The purpose 
of the test was one of reconnaissance, therefore 
only a minimum number of gages were used. 
Load-deflection and load-strain curves for vari­
ous points on the plate were not linear, and the 
plate did not return to consistent zero positions 
even after a series of loading cycles. Non­
linear slippage of the supports was suspected, 
and an attempt was made to correct this by in­
serting cement grout between the plate and its 
channel supports. This grouting procedure 
solved the problem of support slippage in that 
the plate consistently returned to its original 
position after being unloaded, usually within 
the least count of the deflection dials (0.001 in.). 
On the basis of this performance, it was decided 
to gage the plate ·completely and perform final 
tests . Approximately 80 SR-4 resistance type 
strain gages were then applied, and final tests 
of the plate were commenced using the system 
of six load increments. 

Fig. 14. Plate under maximum load. 



Load-deflection curves for the dial gages and 
load-strain curves for the strain gages were 
traight lines though the lower load range, but 

after a loading equivalent to pr= 1 psi they 
lost their linearity, due to membrane action of 
the plate. It was evident that to obtain suffi­
cient and reliable data in the straight-line range 
of these curves, smaller increments of load with 
a maximum o, 1000 lb must be used. On ex­
amination of the loading procedure and the in­
herc1t errors in experimental observations, it 
was concluded that a further refinement of load 
increments was not justifiable clue to the very 
small deflections and strains that were involved. 

Becau e of the performance of the Ys in. plate 
the decision was made to test the ¼ in. plate in 
an attempt to obtain more reliable observations 
and results in the linear range of structural be­
havior. Photographs of this ¼ in. plate in place 
and during test are shown in figures 13 and 14. 
On the basis of observations on the Ys in. plate_, 
more complete gaging was accomplished in cer­
tain areas where previous data were weak. This 
more complete gaging resulted in a total of 25 
dial gages and 118 SR-4 strain gages, the loca­
tions of which may be seen in figures 15 and 16. 

Three complete tests were perf ormecl on the 
¼ in. plate, each test involving six equal in­
crements of load up to approximately 4000 lb 
total weight. The load was removed and final 
readings with zero load on the plate were taken 
immediately after the maximum load was ap­
plied in each of the three tests. The majority 
of the deflection dial readings before and after 
test agreed within the least count of the dial 
(0.001 in.); the maximum deviation observed at 
the outside corner, was 0.004 in. out of a maxi­
mum deflection of 0.668 in . 

Load-deflection curves for each dial indicator 
and load-strain curves for each strain gage 

y 
/ 

~ B12 
.........., Cl2 

N All BIi r--------,E_l 2 E12 
CI I Fl2 

Gl2 / 
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~Jl2 / 
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/ 

hAI Bl Cl 
' 
01 E l F l GI HI J I Kl LI 

' ' X .,,. 

0 Type AR -I rose t te 

o Ty pe A-5 l in eor 

Fig. 15. Location of deflection 
dial gages. 
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were then drawn for each of the three tests. 
It was found that the load deflection curves 
for each test were almost identical, but load­
strain curves did not agree as closely, du~ to the 
exceedingly small strains involved (in many 
cases less than the least count of the M-uni t). 
It was therefore decided that the best overall 
strain gage results could be obtained by averag­
ing the data from the three tests. Sample load­
deflection and load Ee (modulus of elasticity 
times unit strain) curves are shown in figures 
17 and 18. The linearity of both sets of curves 
throughout the loading sequence is evident. The 
slopes of these curves are respectively deflection 
and Ee for a load corresponding to Pr= 1 psi at 
the fixed corner. The resultant slopes of all ex­
perimental curves are in table VII. The nota­
tion used is shown in figures 15 and 16. 

As a further check on the consistency of the 
experimental observations, figures 19 to 22 show 
deflection sections and Ee sections for each 
corresponding grid line on the plate. In drawing 
these curves, the slopes previously evaluated 
were used as ordinates. With the deflection 
and Ee sections e tablishecI, it was possible to 
construct deflection and Ee. contour diagrams or 
charts for the ¼ in . plate subjected to a triangu­
lar loading equivalent to Pr= 1 psi. The uni­
formity of these contour charts, reduct ions or 

Table VII. Slopes of load-deflection curves. 

P o int of Point of 
5x 5 Grid Slop e (in. / pc ) 5 x 5 Grid Slope (in. /pc ) 

11 0. 0085 41 0. 028 1 
12 0 . OJ 91 42 0. 0716 
13 0. 027 5 43 0. 1203 
14 0 . 0347 44 0 . 1654 
15 o. 04 0 1 45 0. 2016 

21 o. 01 83 5 1 0. 0252 
22 0 . 0445 52 0. 0 725 
23 0. 0685 El 0. 0 2 17 
24 0. 08 73 E3 0,1300 
25 o. 1054 E4 0.1724 

JI o. 0247 
32 o. 0 624 
33 0, 0995 
34 0, 1316 
35 0 . 1595 

y 

Fig. 16. Location of SR-4 gages. 
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miniatures of which are shown in figures 23 to 
26, give another che.ck on the consistency of ex-
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perimental observations. All values for compari­
son of results of experimental with theoretical 
were taken from the original large scale charts. 

COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS 
Comparisons of theoreti cal and experimental 

deflection are li ·ted in tables VIII to XIII. It 
may be observed that the solutions resulting 
from the use of thirty-six and forty-nine equa­
tions agree very favorably with those obtained 
from the experimental investigation. Conver­
gence graphs, which are plots of defle.ctions 
versus the gTid spacing used in their difference 
equations, are included in figures 27 and 28. 
These graphs are for deflections at the center 
point of the plate and the free corner respec­
tively. The experimentally observed value. is 
the superimposed horizontal line. In all cases, 
values ob tained from a grid spacing of 7.5 in. 
(36 nodes) compare very favorably with those 
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obtained experimentally. As the grid spacing 
approaches zero and the number of nodes ap­
proaches infinity, the results should approach a 
constant value. This value should be equal to 
the value that would be obtained from a rigor­
ous mathematical solution of Lagrange's equa­
tion. Because of this, the curves were extra­
polated graphically, and the probable theoreti­
cal values for deflection of the respective points 
when ,\ = 0 are represented by the intersections 
of the curves with the y-axis. 

Inasmuch as the equations for predicting 
stresses in terms of deflections are linear in 
these deflections, it may be assumed that ac­
curate pre.dictions of deflections will result i:n 



Table IX . Defle c t ior, compar i sons fo r 3 x 3 grid, 
T a ble X. Deflection c o mpar isons for 4 x 4 grid. 

Defle ction (in .) 
Theo re t ical E xper imental P e r centa 

Defle c tion (in . ) 
The oretical :::xperimental Percenta 

Table VIII . Deflect ion c omparisons fo r 2 x 2 g r id . 

Node 
11 
IZ 

Zl 
22 

Deflecti on (in .) 
The ore tical 

Pf =l p si 
0 . 11066 
o. 18789 

0. 13ZZO 
0 . Z5287 

Experimenta l Pe r c enta 
Pf= I p s i d ifference 

0. 0 69 59 . 0 
0 . 134 34 . 0 

0. 104 
0 . 228 

27 . 0 
11. 0 

Node Pf= l psi Pf= l ps i 
II 0 . 0445 3 0 . 027 
12 0 . 08259 0 . 0 60 

13 0. 111 9 7 0. 082 

2 1 0 . 0 6869 0. 05 2 
2Z 0. 143 15 0 . 1 20 
2 3 o. 204 15 0. 175 

3 1 0 , 0764 1 o. 0 5 5 
32 o. 1748 0 o. 154 
33 0 . 25509 0, 228 

aBased on experimental. aBas e d on exp_e rimental. 
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d iffe r e nce 
6 5 . 2 
37. 3 
36, 0 

32 . 0 
19. 0 
17 . 0 

39. 0 
13 . 0 
12. 0 

Deflect ion 
( in.) 

Node Pr =! ps i Pf =! p si diffe r enc,e 
II 0 . 02019 0. 015 37 . 0 
I 2 0 . 04059 0 . 030 32 . 5 
I 3 0. 0 5 564 0 . 04 3 28. 0 
14. fl, 063'?7 G. 0 55 25 . 0 

21 0.03620 0 . 028 29 . 0 
22 0 . 08072 0 . 069 l 7 . 0 
23 0. 1176 3 0 . 105 1 2 . 0 
24 0. 15065 0 . 134 12 . 0 

31 0 . 0429 7 0. 035 23 . 0 
32 0. 10 39 1 0. 093 12. 0 
33 0 . 15867 0 . 148 7 . 0 
34 0,20692 0 . 19 3 7 . 0 

41 0 . 04584 0 . 036 12 . 7 
42 0 . 11 9 14 0 . 104 11. 4 
43 0 . 18769 0 . 172 10. 9 
44 0. 24530 0. 228 7 . 5 

aBased o n exf erimenta l. 

0 .24 

0 .24 

0 .23 

0 .23 

0 .22 

:> 

0 .00 

0000 
0 .0 

I 
J 

V 
' 

Theoretical -V 
.,,,· V 

_,,, _ ..... 
-- 0 .228 

Experimental ~ 

2.0 4 .0 6 .0 8 .0 10 0 12 .0 14 .0 

Gr id spacing ). ( in.) 

F ig. 28. Convergence g raph fo r deflection at free 
co rner for Pr= 1 ps i. 

Table XI. Deflection comparisons for 5x 5 g r id . 

Deflec t ion (in. ) 
Theor etical Experimental Perce nta 

Node Pf =l psi Pf=! psi differenc e 

11 0 . 0 10 35 0. 009 1 3. 0 

12 0 . 02220 0 . 0 I 9 17 . 0 

I 3 0 . 03 144 0. 028 1 2 . 5 

14 0 . 0388 1 0. 035 1 1. 0 

I 5 0 . 04566 0 . 04 0 14 . 0 

21 0 . 020 55 o.018 14. 0 

22 0. 04 828 0. 045 7 . 5 

23 0 . 07258 0 . 0 69 5. 0 

24 0. 09279 0 . 087 6 . 5 

25 0 . 1 12 14 0 . I 05 7. 0 

31 0 . 02 620 0. 0 25 5. 0 

32 0. 06609 0 . 0 6 2 6. 8 

33 0 . 10404 0 . 100 4 . 0 

34 0. 13687 o . 132 3 . 0 

3 5 0 . 16783 0. 160 4. 0 

... 
4 1 0.02862 9 . 028 2 . 0 

42 0 . 0 7 647 0 . 072 6. 0 

4 3 0 . 12490 0 . 120 4 . 0 

44. 0 . 16782 0. I 65 4 . 8 

4 5 0 . 20 71 2. 0 . 202 2. 5 

51 0 . 02956 0. 025 18 . 0 

52 0 . 0841 7 0. 0 7 3 I 5 . 0 

53 0. 141 7 0 0. 14 4 -2. 2 

54 0. 19272 0. 188 2.. 5 

55 o. 2 37 16 0 . 228 4 . 0 

aBas e d on ex.P_e r imental. 



Table XII. Deflection comparisons for 6 x 6 grid. 

Deflection (in.) 
Theoretical Experimental Percenta 

Node Pf= 1 psi Pf= 1 psi difference 
11 0 . 00583 0. 006 -2. 8 
12 0 . 01321 0. 012 6 . 0 
13 0 . 01938 0. 019 2 . 0 
14 0 . 02422 0.023 6 . 0 
15 0 . 02849 
16 0 . 03233 

21 0 . 01250 
22 0 . 03069 
23 0 . 04756 
24 0 . 06172 
25 0 . 07413 
26 0 . 0863 6 

31 0 . 01697 
32 0 . 04433 
33 0 . 07167 
34 0 . 09575 
3 5 0. 11714 
36 0. 1 825 

41 0. 01927 
42 0 . 05299 
43 0. 08869 
44 0 . 12141 
45 0 . 15079 
46 0 . 17922 

51 0 . 02042 
52 0 . 05847 
53 0 . 10066 
54 0 . 14042 
55 0.17619 
56 0 . 20981 

61 0 . 02061 
62 0 . 06274 
63 0 . 11107 
64 0 . 15715 
65 0 . 19806 
66 0 . 23484 

0. 027 
0. 031 

0 . 012 
0. 027 
0. 045 

..,. 0. 060 
0 . 070 
o. 082 

0.017 
0. 043 
0. 069 
o. 095 
0.114 
o. 134 

0. 019 
0. 052 
0 . 088 
0 . 120 
0. 149 
o. 175 

0. 019 
0. 055 
0 . 098 
0. 140 
0. 177 
o. 207 

0 . 019 
0 . 055 
0 . 104 
0. 154 
0. 197 
0 . 228 

aBased on experimental. 
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accurate predictions of stress . 
This 1s found to be true of de­
flections are carried t o at least 
five places. A convergence graph 
for stress at Lly, which is similar 
to those drawn fo r deflections, 
1s included in figure 29. This 
curve was also extrapolated 
g raphically so that the probable 
theoretical value for stress at Lly 
when ,\ = 0 is represented by the 
intersection of the curve with the 
y-axis. The results of this con­
vergence graph m addition to 
those for deflection are presented 
in table XIV. 

This invest igation has been 
restricted to observing and pre­
dicting the structural behavior 
of a ¾ m. aluminum plate of 
size shown m figure 12, when 
subjected to a normal distribut­
ed load varying linearly from 
the slop ing edge. If it 1s as­
sumed that reinforced concrete. 
1s homogeneous and of constant 
moment of inertia 19, p. 422, these 
results through the principles of 

Table XIII. Deflection comparisons for 7 x 7 grid. Table XIV. Results of convergence graphs. 

Deflection (in.) 
Theoretical Experimeiltal 

Node Pr= I psi Pr= I psi 
11 0.00351 0.004 
12 0.00836 0,009 
13 0 . 01265 0.013 
14 0 . 01609 0 , 018 
15 0 . 01896 0 .020 
16 0.02170 0.023 
17 v.023Sl 0 . 025 

21 0. 00801 
22 o. 02040 
23 0 . 03247 
24 0. 04286 
25 0. 05175 
26 0.05993 
27 0.06794 

3 1 0. 01144 
32 0 . 03075 
33 0.05083 
34 0 . 06900 
35 0 . 08496 
36 o. 09961 
37 0.11438 

41 0 . 01350 
42 0 . 03798 
43 0. 06480 
44 0 . 09007 
45 0.11278 
46 0 . 13370 
47 0.15460 

51 0.01459 
52 o. 04260 
53 0. 07463 
54 0 . 10579 
55 0.13435 
56 0.16063 
57 0 . 18637 

61 0 . 01520 
62 o. 04578 
63 0. 08198 
64 0 . 11809 
65 0.15155 
66 0.18215 
67 o. 21133 

71 0.01502 
72 0.04813 
73 0. 08857 
74 0.12948 
75 0.16737 
76 0.20140 
77 o. 23266 

o. 009 
0. 019 
o. 031 
0 . 04 3 
o. 052 
o. 059 
o. 067 

o. 012 
0. 029 
o. 051 
o. 069 
0. 087 
0.100 
o. 113 

0.014 
o. 038 
0. 066 
o. 091 
0.114 
0.133 
0.153 

0.016 
0.042 
0. 075 
0 . 107 
0.136 
0.161 
0.185 

0.016 
0. 043 
0. 079 
0.118 
0.153 
0.185 
0. 211 

o. 016 
0.044 
0. 082 
0.126 
0.167 
o. 202 
o. 228 

aBased on experimental. 

Percenta 
difference 

-13 . 0 
-7 . 0 
-3. 0 

- 10. 3 
-5. 8 
-5. 5 
-4.4 

-8. 8 
7 . 0 
5. 0 

-0. 5 
-0. 5 

1. 5 
1. 5 

-4. 5 
6 . 0 

-0 . 5 
0.0 

-2. 5 
-0. 5 

1.0 

-3. 5 
0.0 

-2. 0 
-1.0 
-1. 2 
·1. 0 

o. 5 

-9. 0 
1.5 

-0. 5 
-1.3 
-1.0 
o.o 
o.s 

-6. 5 
6. 5 
3. 5 
o.o 

-1.0 
-1.5 
o.o 

-5. 0 
9.0 
7 . 0 
2.0 
o.o 

-0. 5 
2,0 

similitude 9, may be used t o pre­
dict the structural behavior of a 
reinforced concrete wingwall of 
geometrically similar shape when 
subjected to a similar type load­
ing . The application of these 
principles of similitude is not in­
cluded m this bulletin but will 
be indicated m bulletin no. 183. 

DISCUSSION 
Many items may influence the 

results of the experimental and 
theoretical investigations. A few 
of the more important follow: 

1. Simplification of sloping 
edge. Since loading approached 
zero at this edge, it was decided 
this simplification would be just-
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Deflection, Deflection, Stress 

Nodes free-corner (in.) center (in .) Lly (psi) 
4 0. 253 0. 111 

9 0 . 255 
16 0 . 245 o. 081 3170 

25 o. 237 0. 075 3280 

36 o. 235 0.072 3340 

49 0 . 233 0. 070 3360 

Experimental 0 . 228 0 . 069 3300 

Theoretical 0 . 228 0. 066 3450 

ified. I gnoring other possible 
compensating errors the close 
agreement between the analytical 
and experimental re sults would 
indica te that thi s simplification 
is valid. 

2. Round off errors in co­
efficients and remainders . In 
writing the finite-difference equa­
tions, coefficients and remainders 
were carried to as many places as 
convenient on an electric cal­
culator. 

3. S h ear deflection. The 
theoretical method as used in this 
investigation ignores the effect 
of shear deflection. This omis­
sion would tend t o make theo­
retic:al deflections smaller than 
experi:men tal. 

4. Size of grid spacing . Cer­
tainly the size of g rid spacing 
used in the. finite-difference 
method aff e.cts theoretical r~­

sul t s . The convergence g raphs, 
figures 27 to 29, indicate this 
effect. 

5. Fixation of edges. Abso­
lute fixation could not feasibly 
be. reached in the model. P lots 
of observed s trains clown each 
fixed edge inclica ted slight yield­
ing or rotation of the supports. 
Such rota tion was reduced by 
stiffening the support channels 
on the loading frame. True fix­
ation in the theoretical analysis 
tends to make theoretical deflec­
tions smaller than experimental. 

6. Membrane forces. The 
linearity of load-deflection and 
load-Ee. curves indicate that 
membrane forces for the ¾ in. 
plate were small. Membrane 
forces are neglected in the theo­
retical analysis. 

7. Plate thickness . Measure­
ments of thickness taken at var­
ious points indicated a variation 



of only 0.005 in. in 0.500 in. The plate was, 
therefore, considered to be of constant thickness. 

8. Homogeneity of plate. Tensile tests of 
samples taken at right angles to each other in­
dicated similar physical properties as assumed. 

9. Simulation of distributed load. A suffi­
cient number of individual concentrated loads 
was used to approximate the distributed load of 
the theoretical analysis. 

JO. Compensating gages. Unstressed speci­
mens to which the SR-4 compensating gages 
were applied, because of their size, were more 
sensitive to rapid changes in air temperature 
than the aluminum plate. Lack of consistent 
zero readings on the SR-4 gages before and after 
test tended to confirm this. The SR-4 gages 
should have their temperature compensating 
gages on the opposite side of the plate. This 
would double the strain impulse, eliminate 
measurement of membrane strains, and better 
compensate for temperature. This improvement 
v,,as used in later stages of the project. 

SUMMARY 

Authorization was given by the Iowa High­
way Research Board to the Iowa Engineering 
Experiment Station to conduct a research pro­
gram on the structural behavior of reinforced 
concrete bridge abutment wingwalls of the types 
built by the commission. This bulletin reports 
on stages one and two of a four stage project. 
Stages one and two have been conducted as 
follows: 

1. An exhaustive review of literature was 
performed to determine if such a study had pre­
viously been made. No record of research of 
this type was discovered. 

2. A questionnaire was distributed to sever-
al hundred highway, railway, and consulting 
engine.ers throughout the United States and 
Canada. 

3. The result of the literature review and 
questionnaire survey which together were stage 
one of the project was that a thorough study of 
the subject was needed. 

4. The method of finite differences was used 
to solve the Lagrange plate equation written for 
a plate of the wingwall type. 

5. Solutions were obtained corresponding to 
six clifferen t grid spacings. 

6. The various solutions were compared witl; 
experimental results obtained by testing a ¼ in. 
aluminum plate which was considered a model 
of a typical wingwall. 

7. This comparison indicated that satisfactory 
predictions of structural behavior may be made 
from the set of equation corresponding to the 
6 x 6 grid (36 simultaneous equations). 
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8. Stage three will use these findings to pre­
sent moment contours for constant thickness 
bridge abutment wingwalls of the various pro­
portions being used by the Iowa State Highway 
Commission. This stage will be reported in 
bulletin 183. 

9. Stage four will provide an analytical pro­
cedure for the structural analysis of variable 
thickness wingwalls. A typical variable thick­
ness wingwall will be analyzed for moments. 
This stage will be reported in bulletin 184. 

CONCLUSIONS 

1. A rigorous mathematical solution of the 
governing differential equations for many en­
gineering structures by structural engineers is 
not practical or convenient because of the math­
ematical complexity of such a solution as com­
pared with numerical methods which give ad­
equate results. 

2. The finite -difference method for the ap­
proximate solution of differential equations of 
the types commonly found in engineering phe­
nomena is the simplest and most direct of the 
numerical methods investigated. 

3. With the advent of the high speed digital 
computer, simultan eous linear algebraic equa­
tions resulting from the application of the finite­
difference method may be economically solved. 

4. The finite-difference method for prediction 
of plate behavior gives reasonable results for a 
plate of the type, restraints, and loading used 
in this investigation when a 36 node grid system 
is used. This conclusion was found to agree 
with that of previous investigators 4, p. 20 -

U sing an analogous grid consisting of s ix 
north-south beams and six east-west beams and 
so lving directly linear equations containing all 
three unknowns at each joint, ... the computed 
center moment on a uniformly loaded square 
plate agrees remarkably well with Henri 
Marcus' solution by the theory of elasticity. 

5. Many engineering problems may be solved 
through application of the finite-difference 
method coupled with high-speed digital com­
uters. A few of the more important of these 
types of problems have been outlined, io. 

6. The load system used very closely approx­
imated that of a theoretically distributed load. 
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APPENDIX 

IOWA ST A TE COLLEGE 
OF AGRICULTURE AND MECHANIC ARTS 

AMES, IOWA 

IOWA ENGINEERING EXPERIMENT ST A TION 

A research project on the structural behavior of wing walls of 
bridge abutments is being conducted by the Iowa Engineering Experi­
ment Station under the sponsorship of the Iowa Highway Research 
Board. The purpose of this project is to study the structural be­
havior of typical reinforced concrete wing walls. 

A search of the available literature on wing walls of bridge abut­
ments has been conducted. Few of the references discovered gave 
any idea of the method of designing such walls. The suggestion most 
commonly made was to design the wall as a simple cantilever retaining 
wall and then either eliminate the connection to the breastwall by means 
of a construction joint, or simply ignore it and let the wall crack. We 
believe we can be of service to all engineers engaged in the design of 
such structures if we can assemble the information which may be 
available in organizations such as yours. 

We are sending this letter and attached questionnaire to the various 
highway commissions, railroads, and consulting firms in the United 
States and Canada who might have occasion to design such structures. 
If you do not wish to answer this questionnaire personally, please 
have the person in your organization who is best qualified to do so. 

Though you and your organization are very busy, we feel justified 
in asking you to take a little of your time to provide us with the infor­
mation requested. We hope that the response to this request will pro­
vide us with material of such value that it can be published so that it 
will become available to the profession. 

We shall appreciate any information you can supply us. If you 
would like to have it, we shall be glad to send you a copy of the report 
on this survey when it is completed, 
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Sincerely yours, 

h-et2Lr 
William C. Alsmeye 
Associate Professor of 
Civil Engineering 
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THE COLLEGE 

The Iowa State College of Agriculture and Mechanic Arts conducts 
work in five major fields; 

Agriculture 

Engineering 

Home Economics 

Science 

Veterinary Medicine 

The Graduate College conducts research and instruction in all these 
fields. 

Four-year and five-year collegiate curricula are offered in the different 
divisions of the College. Non-degree programs are offered in agriculture. 
Summer sessions include graduate and collegiate work. Short courses are 
offered throughout the year. 

Extension courses are conducted at various points throughout the 
State. 

The College has five special research institutions: the Agricultural 
and Engineering Experiment Stations, the Veterinary Medical and Indus­
trial Science Research Institutes, and the Institute for Atomic Research. 

Special announcements of the different branches of the work are sup­
plied, free of charge, on application. 

Address, THE REGISTRAR, THE IOWA STATE COLLEGE, 
Ames, Iowa. 
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