ST-008 Appendix IX. PROJECT TEST RESULTS

Introduction

Ingios COMP-Score RT provides real-time monitoring of compaction measurements to aid in earthwork and pavement foundation compaction process and quality assessment. Compaction equipment is outfitted on any vibratory smooth drum roller (in less than 1 day) with state-of-the-art hardware for measuring, recording, and visually monitoring the results of the compaction process. Once outfitted, a field calibration process involving the Automated Plate Load Testing (APLT) system is implemented.

COMP-Score RT uses advanced data analytics and requires site specific calibration of the roller sensor measurements using in situ plate load test measurements (i.e., modulus of subgrade reaction, in situ elastic modulus, or in situ resilient modulus), and uses the full spectrum of the drum acceleration signature. This allows the monitoring equipment to deliver a high degree of reliability in the predicted measurements. Recent field calibrations on subgrade and base materials using this approach showed coefficient of determination $(R^2) > 0.9$ are achievable using this technique (compared to R² of 0.6 using compaction meter value (CMV) for the same data (White et al. 2014)). Another recent example was on a recent construction site on an Illinois Tollway construction project west of O'Hare airport (White et al. 2018, Tutumluer et al. 2018), which showed a R^2 of 0.27 for predicting M_{r-Comp} using CMV versus $R^2 = 0.93$ using the COMP-Score RT approach. Similarly, calibration using CMV for predicting static plate load test modulus of subgrade reaction (k) value produced R² of 0.74 versus R² = 0.96 using the COMP-Score RT approach. White and Vennapusa (2017) recently documented calibration results with stress-dependent M_r values with R^2 values ~ 0.9 or greater, from testing on MnROAD field test sections in Albertville, MN with foundation layers consisting of granular and non-granular materials with varying stiffness and layered conditions.

The advantage with the COMP-Score RT approach is that the site calibration process significantly reduces the measurement error associated with the correlation, and the calibration relationships can be reliably used to develop the desired mechanical property maps.

During contractor production operations, the RT technology also uses advanced algorithms to provide real-time feedback of the compaction operations. COMP-Score RT also independently verifies to the project engineering team that the contractor's work: (1) achieves the minimum critical engineering parameter values (e.g., in-situ k-value) over a defined percentage (e.g., 80 to 90%) of the area monitored; (2) limits the variability of critical engineering parameter values of the area monitored; and (3) restricts the size of localized contiguous areas of non-compliance (i.e., "soft spot").

For this project, a CS56 smooth drum vibratory roller weighing approximately 27,450 lbs outfitted with Ingios RT retrofit system was used (Figure 1). Calibration was developed from APLT results to output stress-dependent k and M_r values (Figure 2).

Figure 1 .Caterpillar CS56 vibratory smooth drum roller outfitted with Ingios COMP-Score RT system and GPS.

Figure 2. Automated Plate Load Testing trailer.

Definitions

COMP-Score[®] RT Technology

Ingios COMP-Score[®] RT involves installing a computer/sensor(s) on a soil compaction machine and displaying sensor data to the operator whereby the operator then makes decisions on how best to use the compaction machine to meet compaction target values for the project. The data is presented real-time as color-coded geospatial maps. The compactor is outfitted with GPS equipment to measure drum location which is coordinated with data to create color-coded compaction maps.

Applications

Contractors (local and remotely), Engineers (remotely), and Owners (remotely). Contractors use the <u>real-time</u> data at the operator and project superintendent levels. Engineers use the data to assess quality control and assurance requirements (<u>with</u> <u>results generated within minutes</u>). Owners use the data to validate and document construction, and longer-term, link mapping results to life-cycle cost analysis. The value of the RT data is time-dependent and different for different users. Users access the COMP-Score CONNECT web portal via desktop/laptop computer or mobile device.

Key Features and Scenarios

The compaction machine on the project is setup with the Ingios COMP-Score RT system to collect and present data to the operator. The operator views geospatial and color-coded map results overlain on georeferenced aerial photo and then makes improved decisions about compaction process (e.g., number of roller passes require and other process control decisions such as moisture control). Non-operator users will access the real-time results via a remote desktop application and then receive e-Compaction reports via email/text. Ingios technology is state of-the-art both in terms of the hardware/quality of data and with customized analytics for the project.

Compliance

Ingios data is calibrated with independent testing and validated whereby the data is compared to calibration limits that are preset in the machine. The data output is strictly controlled by Ingios and not the contractor (machine operated per Ingios requirements). Data results are reported as invalid if the compaction machine is not operated per the calibration requirements for compaction amplitude and vibration frequency.

Software Architecture

The computer on the compaction machine runs Windows 7/10 and is connected to the internet via LTE mobile gateway. Data on the compaction machine is collected using Ingios proprietary software and security applications. The raw data exported from the

machine is collected, sent to a server (Microsoft Azure), filtered, analyzed, backed-up, and is then available for report generation.

Remote Real-Time Monitoring Services

Users who want to view the data in real-time (via laptop and mobile devices), can view the data through COMP-Score CONNECT dashboard.

e-Compaction Report

Once the operator is done "mapping" an area with the compaction machine, the operator pushes a button that triggers the raw data file to be submitted automatically into a folder on Ingios server. Ingios software tools read the data and automatically generate the e-Compaction report. The compaction report includes various data analytics/statistical summaries and various plots of color-coded information (see Appendix VIII). A "clean" data file including all data analytics and positional coordinates on a 1 ft x 1 ft grid using state plane coordinates is made available to the user.

Email/Text Alert

When a e-Compaction report is initiated, completed, downloaded, and report generated, email alerts are automatically sent to users associated to the project.

Control Charts

Using results from the individual e-Compaction reports, COMP-Score CONNECT dashboard provides a summary of values on a timeline plot to display selected statistical parameter values over time. The generated e-Compaction report is available for quick reference by clicking on any of the data points presented on the control charts.

Quality Indices

<u>Percent Passing Target Values</u>: % passing the target values is based on the number of geospatial grid points from the output that meet or exceed the minimum target engineering parameter value (e.g., k-value) for the selected material.

<u>Compaction Quality Index (CQI)</u>: Compaction quality index (CQI) is a relative compaction index based on the percentage of the geospatial area that meets the minimum target values for the set engineering parameter value that accounts for the uniformity of compaction using a weighting factor. The default minimum target CQI is 95% using a uniformity weight factor of 50%.

CQI = 100 - (Min. TV % Passing - Measured % Passing) - [(Measured COV - Max. TV % COV) * Uniformity Weighting Factor] <u>Calibration Quality Check:</u> Ingios calculates statistical parameters that can be used to assess the "spread" of the compaction data relative to the allowable spread of the data based on the lower and upper limits of a calibration data set. These indices are traditionally applied for assessing data within control limits in production work. Ingios uses calibration index value to assess variation and centralization between the upper and lower limits determined from in situ calibration testing. The calibration index (CI) parameter provides a measure of whether the calibrated measurements (i.e., predicted k-value) are within or out of calibration. CI parameter value is determined for each production map, using the calibration test results as follows:

$$CI = min\left(\frac{UL - \mu}{3\sigma}, \frac{\mu - LL}{3\sigma}\right)$$

where, UL = upper limit of the calibration; LL = lower limit of the calibration; μ = calculated average of the predicted value, and σ = calculated standard deviation of the predicted values.

- If *Cl* < 0 = reported values are outside calibration limits.
- If CI < 0.5 = Some reported values are outside calibration limits.
- If 0.5 > CI < 1.0 = Most of the reported values are within calibration limits.
- IF Cl > 1.0 = All reported values are within calibration limits.

Statistical Sampling for Calibration

A valid field calibration effort should require statistical determination of the minimum number of test measurements needed to achieve a desired level of reliability and confidence level in future predictions. The minimum sample size needed for this calibration effort was determined using a procedure recommended by Dupont and Plummer (1998). The inputs needed to determine the minimum sample size include the mean and coefficient of variation (COV) of the measured and the predicted values, standard error of the regression fit, the expected slope of the regression fit between the measured and the predicted values, and desired confidence level in the future estimates. These inputs are first estimated based on prior testing/experience and are later clarified based on the in situ calibration test results.

Field Projects

To conduct field demonstrations in the State of Iowa, the project team worked with the Iowa DOT and the Contractor personnel on eleven DOT and two County projects during the 2019 and 2020 construction season. Figure 3 shows the project locations, where the technologies have been deployed, and Table 1 summarizes additional information regarding each of the projects.

Figure 3. Project demonstration locations in 2019 and 2020.

Table 1.	2019	and	2020	Project	Summary
----------	------	-----	------	---------	---------

County	Project Number	Contractor	Type of Project						
2019 Demonstrat	ion Projects								
Blackhawk	NHSX-020-6(71)3H-07	Cedar Valley	PCC Pavement						
Hamilton	IM-035-5(111)13313-40	CJ Moyna	PCC Pavement						
Dubuque	HSIPX-052-2(120)3L-31	CJ Moyna	PCC Pavement						
Adair	LFM-LGG277X-01	County	Grading						
Des Moines	L-P103GRADE73-29	County	Grading						
Des Moines	NHSX-061-2(62)3H-29	Ames Construction	Grading						
2020 Demonstration Projects									
Des Moines	NHSX-061-2(68)3H-29	Streb Construction	PCC Pavement-New						
Dubuque	NHSX-052-2(121)3H-31	CJ Moyna & Sons	PCC Grade and Replace						
Dubuque	NHSX-020-9(183)3H-31	CJ Moyna & Sons	PCC Pavement-Grade and New						
Jasper	IM-NHS-080-5(303)17403-50	Peterson Contractors	PCC Pavement-Grade and New						
Linn	NHSX-013-1(53)3H-57	CJ Moyna & Sons	PCC Grade and Replace						
Plymouth	NHSX-075-2(96)3H-75	Peterson Contractors	PCC Grade and Replace						
Tama	NHSX-030-6(191)3H-86	Manatts	PCC Pavement-New						

Laboratory Characterization of Project Materials

A summary of laboratory index property test results for the materials tested as part of this project is provided in Table 2.

Additional lab testing results by the Michigan State University research group including laboratory permeability and resilient modulus testing (per AASHTO T307 loading sequence on prismatic samples) results at different compaction efforts are included in Appendix A. In the appendix, the results of sieve analyses and specific gravity, Atterberg limits, standard Proctor compaction, permeability, and laboratory resilient modulus (MR) tests are presented for the materials collected from 5 project sites [Dubuque County (US-52), Plymouth County (US-75), Linn County (US-13), Tama County (US-30), and Des Moines County (US-61)]. These materials were a mixture of reclaimed asphalt pavement (RAP) and reclaimed Portland cement concrete (RPCC) materials (modified subbase from US-52), a RAP material (special backfill from US-75), an RPCC material (granular subbase from US-13), crushed limestone aggregates (referred to as Crushed Limestones – granular subbases from US-30 and US-61), and subgrade (SG) materials (from US-30 and US-61).

Dry & wet sieve analyses and specific gravity and Atterberg limits tests were performed to classify these materials based on their index properties. Then, standard Proctor compaction tests were conducted to determine the optimum moisture content (OMC) and maximum dry unit weight (MDU) values of these materials. Based on standard Proctor compaction test results, a series of permeability and MR tests were performed.

Hydraulic conductivity tests were conducted on all materials at 95, 90, and 85% compaction levels to see the effect compaction on permeability (K). Test results showed that a decrease in the compaction level caused an increase in the K values. However, this reduction in drainage characteristics was not as significant and impactful compared to the reduction in stiffness values of the materials at lower compaction levels. Open graded materials (US-30 (CL) and US-61 (CL)) had the highest K values at each compaction level.

MR tests were performed on US-52 (RAP & RPCC), US-75 (RAP), US-13 (RPCC), US-30 (SG), and US-61 (SG) at 95, 90, and 85% compaction levels to see the effect of compaction on MR. Results are summarized in Table 3. Overall, test results showed that a decrease in the compaction level caused a decrease in the MR values (at the 6th loading sequence) and increase in plastic strain at the end of the test. While the MR values of US-52 (RAP & RPCC), US-75 (RAP), and US-13 (RPCC) increased with increasing bulk stress due to the stress-hardening behavior of coarse-grained materials, the MR values of US-30 (SG) and US-61 (SG) decreased with increasing bulk stress due to the stress-softening behavior of fine-grained materials. Among US-52 (RAP & RPCC), US-75 (RAP), and US-13 (RPCC), US-75 (RAP) provided the highest MR values, while US-13 (RPCC) showed the lowest SMR values. In addition, US-30 (SG) yielded higher MR values (at the 6th loading sequence) than US-61 (SG).

			Classif	cation	Gravel	Sand	Fines	
Project	laver	Material	AASHTO	USCS	(%)	(%)	(%)	
Adair 160 th Street LFM-LGG277X- 01	Modified Subbase	Crushed Limestone	A-1-a	GP-GM	50.7	37.2	12.0	
	Granular Subbase	Recycled PCC	A-1-a	GP	74.1	24.3	1.6	
Blackhawk US20 NHSX-020-6(71)	Subgrade treatment (special backfill)	Recycled PCC	A-1-a	GP-GM	58.8	34.4	6.9	
3H-07	Class 10 Subgrade	Glacial Till subgrade	A-6	CL	4.4	53.1	42.4	
Des Moines US61 NHSX-061-2(62) 3H-29	Select Subgrade	Glacial till subgrade	A-6	CL	0.5	44.2	55.3	
Des Moines Iowa	Choke stone Base	Crushed Limestone	A-1-b	GP	48.3	29.7	22.0	
L-P103GRADE 73-29	Class 10 Subgrade	Native glacial till with organics	A-6	CL	11.8	21.5	66.6	
Hamilton IA 175 IM-035-	Select Subgrade	Glacial till subgrade	A-6	CL	6.2	45.8	48.0	
5(111)13313-40	Modified Subbase	Recycled PCC	A-1-a	GW	65.8	32.0	2.2	
Dubuque US52 HSIPX-052- 2(120)3L-31	Modified Subbase	Mixture of recycled PCC and asphalt pavement material	A-1-a	GW	60.3	38.1	1.6	
Dubuque US52 NHSX-052- 2(121)3H-31	Modified Subbase	Mixture of recycled PCC and asphalt pavement material	A-1-a	GW	50.5	44.6	4.9	
Plymouth US75 NHSX-075-2(96) 3H-75	Subgrade treatment (special backfill)	Recycled asphalt pavement material	A-1-a	GW	52.8	45.4	1.8	
Linn US13 NHSX-013-1(53) 3H-57	Granular Subbase	Recycled PCC material	A-1-a	GP-GM	68.7	24.8	6.5	
Tama US30 NHSX-030- 6(191)3H-86	Granular Subbase	Virgin crushed limestone	A-1-a	GP	90.3	5.1	4.6	
Des Moines US61 NHSX-061-2(68) 3H-29	Granular Subbase	Virgin crushed limestone	A-1-a	GP-GM	71.8	20	8.2	
Tama US30 NHSX-030- 6(191)3H-86	Select Subgrade	Glacial till subgrade	A-6	CL	3.8	41.3	54.9	

Table 2. Summary of lab index properties of the different materials.

		Мос	del paramet	Mr (ksi) at	Plastic strain at	
Material	Compaction level (%)	k 1	k ₂	k ₃	loading sequence	end of test, ε _p (%)
	95	1,774	0.60	-0.64	26	0.55
05-52 (RAP &	90	1,479	0.71	-0.78	22	0.80
RPCC)	85	1,565	0.62	-0.72	22	0.89
	95	1,912	0.54	-0.70	28	0.61
US-75 (RAP)	90	1,932	0.49	-0.81	26	0.91
	85	1926	0.53	-1.08	25	1.12
	95	1,022	0.55	-0.27	18	0.10
US-13 (RPCC)	90	980	0.63	-0.45	17	0.21
	85	739	0.57	-0.12	13	0.87
	95	2,215	0.26	-5.34	12	0.12
US-30 (SG)	90	1,594	0.37	-3.63	11	0.16
	85	1,215	0.19	-3.69	9	0.49
	95	2,213	0.29	-7.71	9	0.16
US-61 (SG)	90	1,114	0.15	-4.9	7	0.17
	85	1,139	0.14	-4.77	8	0.76

Table 3. Summary of MR test results.

In Situ Point Testing for Calibration

An experimental plan was developed in collaboration with the Iowa DOT pavement design and construction engineering team to perform field testing to determine mechanistic properties on pavement foundation layers in situ at selected project sites across the State of Iowa. The goal at each site was to perform cyclic APLTs to determine composite resilient modulus (M_{r-comp}) properties using a 12 in. diameter loading plate (Figure 4) and perform static APLTs to determine k values with 30 in. diameter loading plate Figure 5). A dynamic cone penetrometer (DCP) test was conducted at each test location to determine penetration resistance profile and assess layer thicknesses.

The APLT testing plan summarizing the loading sequences for cyclic and static testing provided in Table 4. Cyclic APLTs involved performing a total of 1,500 loading cycles, which involved a 500 cycle conditioning sequence at 15 psi maximum stress followed by 100 to 250 cycles at 5 to 40 psi maximum stresses. Plate deformations and deflection basin measurements at 2x, 3x, and 4x, the plate radius were obtained for back-calculation of the two-layered M_r properties for each stress sequence. The average of the last 5 cycles was used for representation of Mr for each loading sequence. A 0.2 sec load time and a 0.8 sec dwell time was used. Static APLTs were performed following AASHTO T222 (2012), using two loading cycles.

A summary of project locations and testing performed, along with RT mapping is provided in Table 5.

Test Designation	Step	Number of cycles, N	Cyclic Stress, σ _{cyclic} [psi]	Minimum stress, σ _{min} [psi]	Maximum Stress, σ _{max}	Plate Configuration/Notes
	Cond.	500	13	2	15.0	10 in diameter flat plate
	1	100	4	2	6.0	12 In. diameter flat plate
A	2 3	100	8	2	10.0	with denection readings at
[1,100 cycle		100	13	2	15.0	1, 21, 31, and 41 from plate
APLT]	4	150	18	2	20.0	second load time and 0.8
	5	200	28	2	30.0	second dwell time
	6	250	38	2	40.0	
C [Static APLT]	1	2	NA	NA	15.0	30 in. diameter stacked plate, load applied in 2.5 psi increments

Table 4. Cyclic and static plate load testing configuration.

Figure 4. 12 in. diameter loading plate setup for cyclic APLT [picture taken on 08/28/2019 on Blackhawk US20 NHSX-020-6(71)--3H-07 project site over compacted special backfill material]

Figure 5. 30 in. diameter loading plate setup for static APLT [picture taken on 10/23/2019 on Des Moines US61 NHSX-061-2(62)--3H-29 project over compacted select subgrade]

Project	Layer	Material Description	RT Mapping	APLT Test A	APLT Test B	Vu Meter Tests
Adair 160 th Street LFM-LGG27 7X-01	Modified Subbase	Crushed Limestone	5	8 [9/13/2019]	_	
Blackhawk US20	Granular Subbase	Recycled PCC	3	_	8 [8/27/2019 & 9/5/2019]	_
NHSX-020- 6(71)3H-07	Subgrade treatment (special backfill)	Recycled PCC	1	10 [8/28/2019]	4 [8/27/2019]	
	Class 10 Subgrade	Glacial Till subgrade		_	—	—
Des Moines	Select Subgrade	Glacial till subgrade	12	_	9 [10/23/2019]	—
US61 NHSX-061- 2(62)3H-29	Modified subbase (haul road)	Crushed Limestone	Included within above maps		2 [10/23/2019]	
Des Moines	Choke stone Base	Crushed Limestone	5	_	—	—
L-P103GRADE 73-29	Class 10 Subgrade	Native glacial till with organics	1	_	_	
Hamilton IA 175	Select Subgrade	Glacial till subgrade	1			

 Table 5. Summary of project sites, materials, and tests performed.

IM-035- 5(111)13313- 40	Modified Subbase	Recycled PCC	1	10 [9/3/2019]	_	_
Dubuque US52 HSIPX-052- 2(120)3L-31	Modified Subbase	Mixture of recycled PCC and asphalt pavement material	6	10 [9/4/2019]	3 [8/13/2020]	_
Dubuque US20 NHSX-020-	Modified Subbase	Virgin Crushed Limestone	12	_	3 [9/30/2020]	3 [9/30/2020]
9(183)3H-31	Macadam Base	Virgin Crushed Limestone	4	4 —		_
Dubuque US52 NHSX-052- 2(121)3H-31	Modified Subbase	Mixture of recycled PCC and asphalt pavement material	31	_	_	2 [8/13/2020]
Dubuque US52 NHSX-052- 2(121)3H-31	Subgrade Treatment (Cement treated subgrade)	Cement treated glacial till	3	_	6 [8/12/2020]	_
Plymouth US75 NHSX-075-	Subgrade treatment (special backfill)	Recycled asphalt pavement material	2	_	4 [7/29/2020]	_
2(96)3H-75	Class 10 Embankment Subgrade	Native Subgrade	1	—	5 [7/28/2020]	_
Linn US13	Granular Subbase	Recycled PCC material	12	_	5 [8/20/2020]	3 [8/20/2020]
1(53)3H-57	Select Subgrade	Glacial Till		_	4 [8/21/2020]	_
Tama US30	Granular Subbase	Virgin crushed limestone	2	_	11 [7/7/2020 & 7/8/2020]	3 [7/9/2020]
мн5х-030- 6(191)3H-86	Select Subgrade	Glacial Till	7	_	6 [6/25/2020 & 6/30/20201	_
Des Moines US61	Granular Subbase	Virgin crushed limestone	2	—	2 [6/16/2020]	4 [6/16/2020]

NHSX-061- 2(68)3H-29						
Jasper I-80	Select Subgrade	Glacial till subgrade	2	_	2 [6/18/2020]	
5(303)17403- 50	Select Treatment (Modified Subbase)	Crushed Limestone	2	_	5 [6/18/2020]	_

Summary of APLT Results

Example records of APLT results from Test A and Test B are provided in Figure 6 and Figure 7, respectively. All individual test reports are included in Appendix B. No moisture adjustments were made in this study for future changes in saturation levels and those corrections can be applied (AASHTO T222, NCHRP 2000).

The cyclic APLTs were performed to determine stress-dependent M_{r-comp} . The M_r constitutive model parameters (k₁, k₂, and k₃, per AASSHTO 2015) were then determined are presented herein as k*1, k*2, k*3, where "*" is used to differentiate with regression coefficients traditionally developed for laboratory M_r test measurements. A summary of M_{r-comp} for the last loading sequence at all test locations along with the test point ID and materials is provided in Table 6.

The static APLTs were used to determine the modulus of subgrade reaction k-value. The k-value is presented herein as ku which represents the k value after plate bending correction and with no moisture correction applied, per AASHTO T222 (2012). Two loading/unloading cycles were performed in this study and the results are therefore presented as $k_{u(1)}$, and $k_{u(2)}$ representing values for each loading cycle. If the measurement was performed on top of the granular subbase layer, the ku values are presented as $k_{u(Comp)}$. The results are presented for a given target stress level of 10 psi, per AASHTO T222. A summary of $k_{u(1)}$, $k_{u(2)}$, ratio of $k_{u(1)}/k_{u(2)}$ and permanent deformation (dp) at the end of the test at all test locations along with the test point ID and materials is provided in Table 7. The k-value measurements are grouped into 4 categories in Table 7, based on calibration analysis and is explained in the following section.

Summary statistics of k-values and Mr-values are provided in Table 8 and Table 9, respectively.

Permanent or plastic deformation occurring from repeated traffic loading is a recognized cause of pavement distresses. For rigid pavements, increases in total permanent deformation in the unbound layers contribute to increased faulting, roughness, and transverse cracking and reduced load-transfer efficient (LTE). In a study conducted by Birkhoff and McCullough (1979), a void gap of about 0.05 in. can load to loss of support (LOS), thereby increasing the bending stresses in the pavement leading to fatigue failure. For flexible pavements, as total permanent deformation within unbound and subgrade layers increases, surface rutting, roughness, and cracking increase. It is

therefore essential that permanent deformation be measured, and mechanisticempirical models be developed to predict permanent deformation performance.

Permanent deformations (δ_p) were monitored during cyclic and static APLTs conducted for this project. A summary of δ_p values from static PLTs is provided in Table 8. Figure 8 provides a graph of k_{u(1)} versus δ_p from static APLT results at all project sites, which shows a strong power relationship between the two parameters. Based on this relationship, to limit δ_p to a critical 0.05 in., a minimum k_{u(1)} = 200 pci must be achieved. Further, the results indicated that 63 out of the 100 measurements obtained from this project showed k-values less than the assumed value of 150 pci.

Figure 6. Example APLT data record showing 12 in. static plate load test results (Test A)

1		A	utomate	ed Plate	Load Te	st [APL	.T]											
Test:	In-Situ Sta	tic Plate	Load Test:	Two Loading	Cycles.						Polyno	omial Fit Par	ameters					
Date:	6/1	16/2020	Time:		5:21:00 PM	Test ID			PT1		First C	ycle		Second Cycle				
Tested By	1	HG/DW	Location:		US 61	Sta.			NA		a ₁	-1.86E-04		a ₁	2.70E-05	θ_{max} (deg)	0.0579	
Latitude:	40.90	812167	Longitude:		91.17112667	Elev. (ft):			NA		a2	1.88E-02		a2	6.50E-03			
Comments:	Compacted	d granula	rsubbase.								R ²	1.00	1	R ²	1.00			
							_				NOTES:							
			Target	Target	Actual						1 lest pe 2. k-value	ertormed per AA e determined usi	SHI 0 1222/AST ng:	M D 196.				
1010 10	100	Load	Applied	Applied Stross (ns i)	Applied Strace (nei)	D	eformation (in.)	Average		(a) calc	ulated stress at	0.05 in. plate defo	rmation (ô) for first lo	ading cycle, per PCA des	ign guidelines, and		
Cycle	Stage	Step	Load (lbs)	00000 (001)	olioss (psi)	Sensor 1	Sensor 2	Sensor 3	Def. (in.)		(0)1013	a deimed taiget a	ici ess allu calcula	and corresponding by	ate deformations using p	oryno miarnic parameters		
0	Seating	0	1414	2	1.8	0.0209	0.0195	0.0142	0.0182									
		Zero load	d and deform	nation sensors	after applyi	ng the seati	ng stress.							Applied Str	ess (psi)			
1	Seating	0	0	0	0.0	0.0000	0.0000	0.0000	0.0000	0.00	0	1 2 3	5 4 5	6 / 8	9 10 11	12 13 14	15 16	
1	Load	1	1767	2.5	2.5	0.0467	0.0436	0.0567	0.0490	0,00	1	Current Curren		······	0	0	~	
1	Load	2	3534	5	5.0	0.0880	0.0859	0.1001	0.0913	0.05	1	- market			y = -1.86E-04x	2 + 1.88E-02x + 1.5	3E-03 0.2	
1	Load	3	5301	7.5	7.5	0.1266	0.1230	0.1424	0.1307	0.10			-		R	= 1.00E+00	Enr	
1	Load	4	7069	10	10.0	0.1640	0.1619	0.1848	0.1702	0.10	1			-			0.4	eg)
1	Load	5	8836	12.5	12.4	0.1987	0.1962	0.2197	0.2048	<u> </u>	ø						0.6	P) B
1	Load	6	10603	15	15.0	0.2346	0.2377	0.2559	0.2427	5 0.00							1.00	c G
1	Unload	7	7069	10	9.9	0.2221	0.2224	0.2423	0.2289	0.20 E	1					and a second	0.8	tati
1	Unload	8	3534	5	5.0	0.1981	0.1980	0.2171	0.2044	Ë 0.25	-		y =	2.70E-05x ² + 6.5	0E-03x + 1.47E-01		1.0	fRo
1	Unload	9	1767	2.5	2.5	0.1789	0.1773	0.1946	0.1836	0e fo				R ² = 1.0	0E+00			0
1	Unload	10	0	0	0.0	0.1442	0.1438	0.1548	0.1476	e 0.30	1						1.2	Bu
2	Load	11	3534	5	5.0	0.1742	0.1731	0.1903	0.1792	0.35	-						- 1.4	te
2	Load	12	7069	10	10.0	0.2073	0.2096	0.2306	0.2158	ž.	-							0
2	Load	13	10603	15	15.0	0.2431	0.2422	0.2654	0.2502	0.40	1					 Load Cy 	ske - 1 = 1.6	
2	Unload	14	1767	2.5	2.5	0.1859	0.1857	0.2028	0.1914	0.45	1					Correcte	d 1.8	
2	Unload	14	0	0	0.0	0.1534	0.1518	0.1633	0.1562							···· D···· Plate Ro	ation	
Plate Diamet	er:	30.0	in.							0.50	1						2.0	
Shape factor:		2.67													101			100
Poisson's rat	io	B 0.35	A = Conesive,	B = Granular, C	= Intermediate											1 24		
Design Stres	S:	10.0	psi	AASHTO T22	2 Method	k (pci) @	desian str	ess:	62		-	A 18		and the state				-
Target Deform	nation:	0.05	in.	PCA Design C	Criteria	k " (pci) @	δ = 0.05 in.	.:	55			1	X	A LINE AND	and a second second			1114
											-		1 month	The second		1-17		
Modulus at t	arget detorm	ation		Modulus at ta	rget/design a	applied stres	s				1 6		AL-	- minds				
Stress @ 8 = 1	0.05 in. (psi)	2.7		FirstLoading	Cycle			Corr. for Sea	ting	- C1		20	~	+	Carlos and the second			1. J.
E. (mail)		1 0 1 0			of (In.)	0.1694		0.1604			115	1-74		-1-+	and the second second	- Barris		
C ₁ (psi)		1,919			L1 (psi)	2,072		2,188		1 14	11-0	- VE	1 provide the second se				A COLORED	100
κ _u (pci)		55			k (pci)	59		62		11				EMP		-	-	
r _u (pci)		55		0	Ku1 (pci)	59		62		-	8.5		3	- 11	1 100			
				Second Load	ing Cycle	0.0077											-)8	
					62 (m.)	0.0077									2			and the second s
Dists Dark	C				L2 (poi)	5,040					4		1			The second	1111255	and the second
riate Bending	correction I	or			k - (pci)	148				-		Second State	1-1/		CALL CONTRACT	and the start of the	27330	and a
$k_{\mu} \ge 100$ $k_{\mu} = -20.0170$	and 1,000 pci \pm 5 5074 fV	10.7019		E. / E. ork.	/k. Patio	144				1977	\$318 T	S. Frank	2 13		A Start Start	一方である	and the search	57.23
Au 59.91/8	5.5070 [Ku	0		L2/ L1 U/ K2	/ N1 Maulo	2.4												
	In-eitu: M	odulus	of Subgrade	Reaction (k) a	nd Elsetic M	lodulue					In cit	tu Moduluo	of Subarada	Peaction (k) a	d Elastic Modulu	•		
Project Name	lowa TDIP-	AID Dem	onstration Pr	reaction (K) a	ING EIGSUC IV	loudius		ing	ide	Project Name	lowa T	DIP-AID Der	nonstration F	Project	ia Liastic Wodulu	0	ingi	chic l
Project ID:	SIA-00003							IIIB	C ()	Project ID:	SIA-00	003					Ingl	\$2
Location:	US61, Des	Moines	County, IA						BEUTECHNICS	Location:	US61,	Des Moines	County, IA				G	EDTECHNICS

Figure 7. Example APLT data record showing 30 in. static plate load test results (Test A)

			M _{r-comp}
Date	Point	Material	(psi)
8/28/2019	Hwy20_pt_11	RPCC special backfill layer over subgrade.	14,593
8/28/2019	Hwy20_pt_12	RPCC special backfill layer over subgrade.	17,997
8/28/2019	Hwy20_pt_13	RPCC special backfill layer over subgrade.	20,389
8/28/2019	Hwy20_pt_14	RPCC special backfill layer over subgrade.	21,427
8/28/2019	Hwy20_pt_15	RPCC special backfill layer over subgrade.	24,342
8/28/2019	Hwy20_pt_16	RPCC special backfill layer over subgrade.	15,871
8/28/2019	Hwy20_pt_17	RPCC special backfill layer over subgrade.	16,101
8/28/2019	Hwy20_pt_18	RPCC special backfill layer over subgrade.	18,282
8/28/2019	Hwy20_pt_19	RPCC special backfill layer over subgrade.	15,082
8/28/2019	Hwy20_pt_20	RPCC special backfill layer over subgrade.	23,770
9/4/2019	Hwy52_pt_1	Crushed limestone modified subbase over subgrade.	25,464
9/4/2019	Hwy52_pt_2	Crushed limestone modified subbase over subgrade.	37,271
9/4/2019	Hwy52_pt_3	Crushed limestone modified subbase over subgrade.	55,945
9/4/2019	Hwy52_pt_4	Crushed limestone modified subbase over subgrade.	52,216
9/4/2019	Hwy52_pt_5	Crushed limestone modified subbase over subgrade.	9,217
9/4/2019	Hwy52_pt_6	Crushed limestone modified subbase over subgrade.	5,609
9/4/2019	Hwy52_pt_7	Crushed limestone modified subbase over subgrade.	24,784
9/4/2019	Hwy52_pt_8	Crushed limestone modified subbase over subgrade.	31,756

Table 6. Summary of APLT results (Test A)

9/4/2019	Hwy52_pt_9	Crushed limestone modified subbase over subgrade.	26,848
9/4/2019	Hwy52_pt_10	Crushed limestone modified subbase over subgrade.	31,374
9/3/2019	Hwy175_pt_1	Recycled Aggregate modified subbase over subgrade.	29,440
9/3/2019	Hwy175_pt_2	Recycled Aggregate modified subbase over subgrade.	12,567
9/3/2019	Hwy175_pt_3	Recycled Aggregate modified subbase over subgrade.	13,250
9/3/2019	Hwy175_pt_4	Recycled Aggregate modified subbase over subgrade.	15,953
9/3/2019	Hwy175_pt_5	Recycled Aggregate modified subbase over subgrade.	29,984
9/3/2019	Hwy175_pt_6	Recycled Aggregate modified subbase over subgrade.	26,062
9/3/2019	Hwy175_pt_7	Recycled Aggregate modified subbase over subgrade.	25,111
9/3/2019	Hwy175_pt_8	Recycled Aggregate modified subbase over subgrade.	17,782
9/3/2019	Hwy175_pt_9	Recycled Aggregate modified subbase over subgrade.	20,322
9/3/2019	Hwy175_pt_10	Recycled Aggregate modified subbase over subgrade.	17,858
9/13/2019	160th St_pt_1	Crushed limestone modified subbase over subgrade with geogrid at the interface.	34,325
9/13/2019	160th St_pt_2	Crushed limestone modified subbase over subgrade with geogrid at the interface.	32,436
9/13/2019	160th St_pt_3	Crushed limestone modified subbase over subgrade with geogrid at the interface.	32,564
9/13/2019	160th St_pt_4	Crushed limestone modified subbase over subgrade with geogrid at the interface.	28,320
9/13/2019	160th St_pt_5	Crushed limestone modified subbase over subgrade with geogrid at the interface.	26,762
9/13/2019	160th St_pt_6	Crushed limestone modified subbase over subgrade with geogrid at the interface.	22,532
9/13/2019	160th St_pt_7	Crushed limestone modified subbase over subgrade with geogrid at the interface.	28,894
9/13/2019	160th St_pt_8	Crushed limestone modified subbase over subgrade with geogrid at the interface.	5,880
	•		•

Table 7. Summary of APLT results (Test B)

						δ _p at end of test
Date	Test Point	Material ID	k _{u1} (pci)	k _{u2} (pci)	Ratio	(in.)
9/30/2020	Hwy20_pt1	Modified Subbase - Crushed limestone.	129.6	388.7	3.0	0.088
9/30/2020	Hwy20_pt3	Modified Subbase - Crushed limestone.	153.6	341.5	2.2	0.075
9/30/2020	Hwy20_pt5	Modified Subbase - Crushed limestone.	176.9	361.9	2.0	0.066
8/13/2020	US52_pt1	Modifed Subbase material consisting of a mixture of Recycled PCC & RAP	69.4	168.9	2.4	0.162
8/13/2020	US52_pt2	Modifed Subbase material consisting of a mixture of Recycled PCC & RAP	135.5	626.0	4.6	0.118
8/13/2020	US52, pt4	Modifed Subbase material consisting of a mixture of Recycled PCC & RAP	92.9	249.1	2.7	0.126
7/29/2020	Hwy75_pt1	Compacted special backfill.	60.6	158.8	2.6	0.183
7/29/2020	Hwy75_pt3	Compacted special backfill.	20.4	69.0	3.4	0.571
7/29/2020	Hwy75_pt4	Compacted special backfill.	44.3	110.3	2.5	0.257
7/29/2020	Hwy75_pt5	Compacted special backfill.	111.9	369.0	3.3	0.104

8/27/2019	Hwy20_pt7	Recycled PCC special backfill over subgrade.	67.7	219.8	3.2	0.179
8/27/2019	Hwy20_pt8	Recycled PCC special backfill over subgrade.	152.6	318.2	2.1	0.066
8/27/2019	Hwy20_pt9	Recycled PCC special backfill over subgrade.	118.1	268.0	2.3	0.086
8/27/2019	Hwy20_pt10	Recycled PCC special backfill over subgrade.	128.9	267.5	2.1	0.077
10/23/2019	US61, pt9	Aggregate subbase over compacted subgrade.	188.5	451.0	2.4	0.063
10/23/2019	US61, pt10	Aggregate Base (access road) over compacted subgrade (Select)	138.0	372.0	2.7	0.089
8/12/2020	US52_pt1	Cement Stabilized subgrade	173.9	248.9	1.4	0.037
8/12/2020	US52_pt2	Cement Stabilized Subgrade	190.9	286.3	1.5	0.034
8/12/2020	US52_pt3	Cement Stabilized Subgrade	237.3	403.6	1.7	0.028
8/12/2020	US52_pt4	Compacted select subgrade.	112.2	276.8	2.5	0.094
8/12/2020	US52_pt5	Compacted select subgrade.	127.9	301.6	2.4	0.084
8/12/2020	US52_pt6	Cement Stabilized Subgrade, over culvert	371.4	884.9	2.4	0.025
6/18/2020	l80_pt1	Compacted subgrade - Area compacted on 06/10, per contractor. Material wet and visible rutting.	48.8	120.2	2.5	0.203
6/18/2020	180_pt2	Compacted subgrade - Area compacted with a sheepsfoot roller, dry crust near the stuface, and experienced	36.2	101.0	2.8	0.299
8/21/2020	US13, pt1	Subgrade-Select	259.0	413.1	1.6	0.035
8/21/2020	US13, pt2	Subgrade-Select	335.1	581.6	1.7	0.029
8/21/2020	US13, pt3	Subgrade-Select	231.7	729.1	3.1	0.043
8/21/2020	US13, pt4	Subgrade-Select	125.3	303.7	2.4	0.084
7/28/2020	Hwy75_pt1	Compacted Select Subgrade.	209.3	350.1	1.7	0.036
7/28/2020	Hwy75_pt2	Compacted Select Subgrade.	183.1	294.7	1.6	0.044
7/28/2020	Hwy75_pt3	Compacted Select Subgrade.	208.9	342.3	1.6	0.035
7/28/2020	Hwy75_pt4	Compacted Select Subgrade.	219.9	336.0	1.5	0.027
7/28/2020	Hwy75_pt5	Compacted Select Subgrade.	142.5	244.1	1.7	0.061
6/25/2020	US30A_pt3	Compacted Subgrade.	145.1	296.3	2.0	0.076
6/30/2020	US30B_pt1	Compacted subgrade.	72.5	165.9	2.3	0.146
6/30/2020	US30B_pt2	Compacted subgrade.	220.2	392.3	1.8	0.038
6/30/2020	US30B_pt3	Compacted subgrade.	175.0	411.7	2.4	0.057
6/30/2020	US30B_pt4	Compacted subgrade.	104.4	252.9	2.4	0.103
6/30/2020	US30B_pt5	Compacted subgrade.	110.4	227.1	2.1	0.098
10/23/2019	US61_pt1	Compacted Subgrade (Select)	155.8	336.3	2.2	0.067
10/23/2019	US61_pt2	Compacted Subgrade (Select)	209.7	472.6	2.3	0.038
10/23/2019	US61_pt3	Compacted Subgrade (Select)	232.7	524.4	2.3	0.035
10/23/2019	US61_pt4	Compacted Subgrade (Select)	226.2	474.7	2.1	0.041
10/23/2019	US61_pt5	Compacted Subgrade (Select)	239.5	527.0	2.2	0.037

10/23/2019	US61_pt6	Compacted Subgrade (Select)	123.6	306.5	2.5	0.091
10/23/2019	US61_pt7	Compacted Subgrade (Select)	161.2	352.5	2.2	0.051
10/23/2019	US61_pt8	Compacted Subgrade (Select)	214.4	427.1	2.0	0.036
10/24/2019	US61 pt11	Compacted Subgrade (Select)	82.5	220.9	2.7	0.114
6/16/2020	US61 pt1	Compacted granular subbase.	62.3	143.6	2.3	0.156
6/16/2020	US61 pt3	Compacted granular subbase.	129.0	265.9	2.1	0.087
9/25/2020	US20 pt1	Macadam Stone Base	72.5	357.0	4.9	0.210
9/25/2020	US20_pt2	Macadam Stone Base	98.2	339.9	3.5	0.132
9/25/2020	US20_pt2	Macadam Stone Base	69.6	210.6	3.0	0.180
0/25/2020	US20_pt3	Macadam Stone Base	106.0	362.6	3.4	0.100
9/23/2020	0320_pt4	Compacted Granular Subbase - One	100.9	302.0	5.4	0.141
7/7/2020	US30_pt1	vibratory roller mapping pass.	119.5	336.5	2.8	0.108
7/7/2020	US30_pt2	Compacted Granular Subbase - One	90.8	230.1	2.5	0.124
		Compacted Granular Subbase - One				
7/7/2020	US30_pt3	vibratory roller mapping pass.	115.1	359.3	3.1	0.111
7/7/2020	US30 pt4	Compacted Granular Subbase - One	123.4	347.9	28	0 104
	p	vibratory roller mapping pass.		01110	2.0	0.101
7/7/2020	US30_pt5	vibratory roller mapping pass.	156.9	372.8	2.4	0.077
		Compacted Granular Subbase - Test				
7/8/2020 US30_pt8		performed after eight vibratory roller	136.7	310.3	2.3	0.084
		Compacted Granular Subbase - Test				
7/8/2020	US30_pt9	performed after eight vibratory roller	154.3	362.3	2.3	0.076
		passes.				
7/8/2020	US30_pt10	performed after sixteen vibratory	153.1	349.3	2.3	0.088
., .,	p	roller passes.				
= 10 10 0 0 0	11000 1111	Compacted Granular Subbase - Test				0.070
7/8/2020	US30_pt11	performed after sixteen vibratory	144.7	361.9	2.5	0.078
		Compacted Granular Subbase - Test				
7/8/2020	US30_pt12	performed after sixteen vibratory	141.2	358.2	2.5	0.082
		roller passes.				
7/8/2020	11920 pt12	Compacted Granular Subbase - Test	104.5	252.6	24	0 114
1/0/2020	0330_013	passes.	104.5	252.0	2.4	0.114
8/27/2010	US20_pt1_	Recycled PCC granular subbase	02.2	202.4	2.2	0 125
0/27/2019	2019	over special backfill and subgrade.	92.2	292.4	3.2	0.135
8/27/2019	US20_pt2_	Recycled PCC granular subbase	81.9	280.5	3.4	0.158
	US20 pt3	Recycled PCC granular subbase				
8/27/2019	2019	over special backfill and subgrade.	87.6	289.6	3.3	0.148
9/5/2019	US20_pt21_	Recycled PCC granular subbase	111.5	380.0	3.4	0.115
	US20 nt22	Recycled PCC granular subbase				
9/5/2019	2019	over special backfill and subgrade.	122.2	458.2	3.7	0.114
9/5/2019	US20_pt23_	Recycled PCC granular subbase	154 6	454 6	2.9	0.077
0.0.2010	2019	over special backfill and subgrade.	101.0	101.0	2.0	0.011
9/5/2019	2019	over special backfill and subgrade.	140.5	449.6	3.2	0.087

US20_pt25_ 2019	Recycled PCC granular subbase over special backfill and subgrade.	91.3	334.0	3.7	0.141
I80_PT3	Reworked subgrade with nominal 24 inches thick granular treatment over clay subgrade, with biaxial geogrid	166.3	312.0	1.9	0.074
I80_PT4	Reworked subgrade with nominal 24 inches thick granular treatment over clay subgrade, with biaxial geogrid	153.7	302.9	2.0	0.078
I80_PT5	Reworked subgrade with nominal 24 inches thick granular treatment over clay subgrade, with biaxial geogrid	202.2	393.1	1.9	0.057
I80_PT6	Reworked subgrade with nominal 24 inches thick granular treatment over clay subgrade, with biaxial geogrid	171.9	422.8	2.5	0.085
I80_PT7	Reworked subgrade with granular treatment over clay subgrade, with biaxial geogrid at the interface.	93.2	186.2	2.0	0.094
US13_PT1	Granular Subbase - Recycled PCC	175.1	551.4	3.1	0.097
US13_PT2	Granular Subbase - Recycled PCC	59.8	206.0	3.4	0.199
US13_PT3	Granular Subbase - Recycled PCC	55.7	175.0	3.1	0.205
US13_PT4	Granular Subbase - Recycled PCC	99.6	327.9	3.3	0.132
US13_PT5	Granular Subbase - Recycled PCC	119.6	438.7	3.7	0.118
Material Group	DID: k-St-So				
	US20_pt25_ 2019 I80_PT3 I80_PT4 I80_PT5 I80_PT6 I80_PT7 US13_PT1 US13_PT2 US13_PT3 US13_PT4 US13_PT5 Material Group	US20_pt25_ 2019Recycled PCC granular subbase over special backfill and subgrade.180_PT3Reworked subgrade with nominal 24 inches thick granular treatment over clay subgrade, with biaxial geogrid180_PT4Reworked subgrade with nominal 24 inches thick granular treatment over clay subgrade, with biaxial geogrid180_PT4Reworked subgrade with nominal 24 inches thick granular treatment over clay subgrade, with biaxial geogrid180_PT5Reworked subgrade with nominal 24 inches thick granular treatment over clay subgrade, with biaxial geogrid180_PT6Reworked subgrade with nominal 24 inches thick granular treatment over clay subgrade, with biaxial geogrid180_PT6Reworked subgrade with nominal 24 inches thick granular treatment over clay subgrade, with biaxial geogrid180_PT6Reworked subgrade with nominal 24 inches thick granular treatment over clay subgrade, with biaxial geogrid180_PT6Reworked subgrade with nominal 24 inches thick granular treatment over clay subgrade, with biaxial geogrid180_PT7Granular Subbase - Recycled PCCUS13_PT1Granular Subbase - Recycled PCCUS13_PT3Granular Subbase - Recycled PCCUS13_PT4Granular Subbase - Recycled PCCUS13_PT5Granular Subbase - Recycled PCCUS13_PT5Granular Subbase - Recycled PCCUS13_PT5Granular Subbase - Recycled PCCUS13_PT5Granular Subbase - Recycled PCC	US20_pt25_ 2019Recycled PCC granular subbase over special backfill and subgrade.91.3180_PT3Reworked subgrade with nominal 24 inches thick granular treatment over clay subgrade, with biaxial geogrid166.3180_PT4Reworked subgrade with nominal 24 inches thick granular treatment over clay subgrade, with biaxial geogrid153.7180_PT4Reworked subgrade with nominal 24 inches thick granular treatment over clay subgrade, with biaxial geogrid202.2180_PT5Reworked subgrade with nominal 24 inches thick granular treatment over 	US20_pt25_ 2019Recycled PCC granular subbase over special backfill and subgrade.91.3334.0180_PT3Reworked subgrade with nominal 24 inches thick granular treatment over clay subgrade, with biaxial geogrid166.3312.0180_PT4Reworked subgrade with nominal 24 inches thick granular treatment over clay subgrade, with biaxial geogrid153.7302.9180_PT4Reworked subgrade with nominal 24 inches thick granular treatment over clay subgrade, with biaxial geogrid202.2393.1180_PT5Reworked subgrade with nominal 24 inches thick granular treatment over clay subgrade, with biaxial geogrid202.2393.1180_PT6Reworked subgrade with nominal 24 inches thick granular treatment over clay subgrade, with biaxial geogrid171.9422.8180_PT6Reworked subgrade with nominal 24 inches thick granular treatment over clay subgrade, with biaxial geogrid93.2186.2180_PT7Granular Subbase - Recycled PCC175.1551.4US13_PT2Granular Subbase - Recycled PCC59.8206.0US13_PT3Granular Subbase - Recycled PCC59.6327.9US13_PT4Granular Subbase - Recycled PCC119.6438.7US13_PT5Granular Subbase - Recycled PCC119.6438.7US13_PT5Granular Subbase - Recycled PCC119.6438.7US13_PT5Granular Subbase - Recycled PCC119.6438.7	US20_pt25_ 2019Recycled PCC granular subbase over special backfill and subgrade.91.3334.03.7180_PT3Reworked subgrade with nominal 24 inches thick granular treatment over clay subgrade, with biaxial geogrid166.3312.01.9180_PT4Reworked subgrade with nominal 24 inches thick granular treatment over clay subgrade, with biaxial geogrid153.7302.92.0180_PT4Reworked subgrade with nominal 24 inches thick granular treatment over clay subgrade, with biaxial geogrid153.7302.92.0180_PT5Reworked subgrade with nominal 24 inches thick granular treatment over clay subgrade, with biaxial geogrid202.2393.11.9180_PT6Reworked subgrade with nominal 24 inches thick granular treatment over clay subgrade, with biaxial geogrid171.9422.82.5180_PT6Reworked subgrade with granular treatment over clay subgrade, with biaxial geogrid at the interface.93.2186.22.0US13_PT1Granular Subbase - Recycled PCC59.8206.03.43.4US13_PT3Granular Subbase - Recycled PCC59.6327.93.3US13_PT4Granular Subbase - Recycled PCC99.6327.93.3US13_PT5Granular Subbase - Recycled PCC119.6438.73.7Material Group ID: k-St-SoIncles thick St-SoIncles thick St-St-St3.7

Material Group ID: k-SG Material Group ID: k-So-So

Material Group ID: k-St-St

Table 8. Summary of k-value test results.

Material Group ID	No. of Tests	Minimum (pci)	Maximum (pci)	Average (pci)	Std. Deviation (pci)	COV (%)
k-St-So	16	20.4	188.5	111.8	123.5	48.4
k-SG	32	36.2	371.4	177.7	179.1	75.1
k-So-So	25	62.3	156.9	114.4	115.1	28.8
k-St-St	10	55.7	202.2	129.7	136.7	51.3

Table 9. Summary of $M_{r\text{-}comp}$ (at 40 psi maximum stress) value test results.

No. of	No. of Minimum		Average	Std. Deviation	COV
Tests	Tests (pci)		(pci)	(pci)	(%)
38	5,609	55,945	23,905	24,056	

Figure 8. k-value versus permanent deformation (δ_p) at the end of test from field test measurements at all project sites

Calibration Analysis Results

COMP-Score RT calibration records showing the measured versus predicted M_{r-comp} and k-values are provided in Figure 9 to Figure 13. M_{r-comp} value calibration analysis was performed on measurements obtained from a few sites on granular materials. k-value calibration analysis was performed on materials with varying profiles and stiffnesses across the state, which provided four unique trends. These trends are related to the following material groups and are identified with a unique calibration model ID as follows:

- 1. IA-AID_k-SG cohesive subgrade materials (cement treated/untreated)
- 2. IA-AID_k-So-So granular subbase materials over untreated cohesive subgrade
- 3. IA-AID_k-St-So modified subbase or special backfill materials over subgrade.
- 4. IA-AID_k-St-St relatively stiff layer of modified subbase or granular subbase with CBR > 10 over relatively stiff underlying subgrade layer.

A summary of the regression statistics and the measurement validity range for each measurement value for each model is included in Figure 9 to Figure 13, and the regression statistics for all the models are summarized in Table 10. Regression relationships yielded R² values ranging between 0.92 and 0.94 representing strong correlations and high confidence in the predicted values.

Figure 9. Calibration record for treated/untreated subgrade materials (Model ID: IA-AID_2020_k-SG)

Figure 10. Calibration record for modified subbase or special backfill top layer underlain by subgrade layers (Model ID: IA-AID_2020_k-St-So)

Figure 11. Calibration record for granular subbase over soft underlying subgrade layers (Model ID: IA-AID_2020_k-So-So)

		CC	MP-Sco	re [®] RT –	Calib	oratio	on Rec	ord			
Machine	CS56 vibrato	rv smooth dr	um roller (ID: (CATOCS56JECS	S00210)	Senso	ID: SN392	7			
)ate(s):	occo insidio	iy onnoour un	08/27/201	9 to 9/25/2020	Te	sted By	HG.	CV. DW	CAL ID:	IA-AID 2	2020 k-S
Notes/ Comments:	Modulus of sub seating, per A A very stiff grant setting, and ful	ograde reaction ASHTO T222. I ular subbase k I speed.	n value (k-value Field testing con ayer over very s) for the first load ducted at 10 test stiff subgrade (CE	ling cycle locations 3R > 30). I	at 10 psi on comp Roller op	applied stres acted very st erated at high	s with pla iff and thi frequenc	ate bending correct ck (> 2 ft) modifie y (f = 31.25 Hz),	ction and co d subbase k low amplitud	rrection ayer and de vibrati
	поте: миллру к	x 19.79 to cal	CUIATE Elastic IVI	duius (E) [Poisso	on's ratio d	or 0.4 an	a snape racio	01 01 8/3 10	or rigid plate over	granular ma	terialj
		Select	ted Stress,σ≕	= 10 psi				Linear	Fit		
		Actual k- value	Pred.	RT Reported				• 90% Co	onfidence Intervals	6	
Test Point ID	Profile	[pci]	n value (perj	in runne (perl		400					
180_PT3	MSB/MSB	166.3	148.0	128.3		3					
180_P14	MSB/MSB	153.7	144.1	124.8	-	350					
180_P15	MSB/MSB	202.2	208.3	182.6							
180_P16	MSB/MSB	1/1.9	175.8	153.4		300					
	MSB/MSB	93.2	81.7	68.5	ci]	250					
	GSB/SG	1/5.1	167.6	146.0	d]a	200			10		
US13_P12	GSB/SG	59.8	53.9	43.6	alu	200			111.		
	GSB/SG	55.7	67.4	55.7	k-v	200			111		
US13_PI4	GSB/SG	99.6	11/.0	100.4	ual	150		11	11		
0513_215	GOB/SG	119.6	133.1	114.9	Act			11			
					-	100	1	1.1			
							1	1			
						50	11				
						3	1				
						0 -		100 15	200 050	200 250	
						(50	100 150 Bro	d k value [pei]	300 350	400
								Pre	d. k-value [pci]		
					_						
							Desmanda				
							Regressio	n Statist	cs		
								0.044			
							P2/adi)	0.944			
							DMCE	12.0	nci/in		
								12.9	psvin.		
							703E	125.04			
							F-value	135.04			
							*Percent Standa	-0.0001 rd Error (%68	E) in prediction relative f	to mean	
							Desmanala	. Envetin	a denna se da tark		
							Actual k-val	ue = 1.00	0 x RT Pred. k-va	lue + 0	
							∧k-value	5	psi/in		
							-		P. C. D. M. D.		
					SUN	IMARY	STATISTICS	Actual	Predicted	Reported	
							Minimum:	55.7	53.9	43.6	psi/in.
							Maximum:	202.2	208.3	182.6	psi/in.
							Mean:	129.7	129.7	111.8	psi/in.
SB - Modified Cutt-	ee with vissin -	natorio: CoD	Special Postfiller	SG - Subarada		04	Median:	136.7	138.6	119.9	psi/in.
G - Noullied Subba	subarade	ateria, opb - S	ppecial DaCKIII,	- Subgrade;		Standa	rd Deviation:	51.3	49.9	44.9	psı/in.
00000000000000000	e abgrado.				Co	efficient	of Variation:	40%	38%	40%	
RT reported k-value	= (1-%SE) * RT	Pred. k-value	- ∆k-value								
gnature	Pavana Venni	apusa									
yped Name:	Pavana Venna	apusa, Ph.D., P	P.E.								
ate:	4/22/2021		License #		P219	991					
nereby certify that this pla	in, specification, or	r report was prep	ared by me or unde	r my direct supervisio	on and that	am a duly	Licensed Profe	essional Eng	gineer under the laws	of the state of	tiowa.
	<u>م</u> ل	CO	MP-Score [®] F	T – Calibratio	n Record	ł					
roject Name:	lowa TDIP-Al	D Demonstra	ation Project							Ing	I⊕S
roject ID:	SIA-00003										GEOTECHNI
ocation:	Multiple Proje	ect Sites, low	а								

Figure 12. Calibration record for stiff granular top layer (modified subbase or granular subbase) and underlying stiff subgrade layers (Model ID: IA-AID_2020_k-St-St)

		CO	MP-Sco	ore [®] RT –	Calibratio	on Rec	ord			
Machine	CS56 vibrat	ory smooth dru	m roller (ID: 0	CAT0CS56JFCS	00210); Senso	r ID: SN392	7			
Date(s):			08/28/2019	9 to 9/13/2019	Tested By	:	DW, HG	CAL ID:	IA-AID	_2020_Mr4
Notes/ Comments :	Stress-deper (APLT). Field stress seque Roller operate	ndent in situ com testing conducte nce (cyclic stres ad at high freque	posite resilient r ed at 38 test loc is of 39 psi) us ncy (f = 31.25 l	modulus (Mr-comp ations (28 modifie ed for CRT calibra Hz), low amplitude) data obtained fr d subbase over s tion analysis, to n vibration, and fu	om multi-stres ubgrade and match stress o Il speed.	ss sequer 10 specia conditions	nce cyclic automa al backfill over sub anticipated during	ted plate loa ograde). The g compactio	d testing last cyclic n process.
		Sele	cted Cyclic St	ress,			Linear	Fit		
			σ _{cvclic} = 39 psi				90% Pr	ediction Limits		
		Actual M [psi]	M [nsi]	M Insil			• 90% Co	onfidence Intervals	3	
Hww20 pt 11	Profile SpR/SG	14 502	10 001	45.744	55000				1	
Hwy20_pt_11	SpB/SG	14,595	12 799	10,714	50000				14	
Hwy20_pt_12	SpB/SG	20,389	12,733	13,767					111	1
Hwy20_pt_10	SpB/SG	21,303	21,197	17,737	45000				111	
Hw v20 pt 15	SpB/SG	24,342	25,483	21,495	40000			14	11	
Hwy20_pt_16	SpB/SG	15,871	15,672	12,892	isd 25000			1	1	
Hw y20_pt_17	SpB/SG	16,101	12,956	10,510	ੂ 35000 ਛੂ			111	~	
Hw y20_pt_18	SpB/SG	18,282	19,406	16,166	<u>گ</u> 30000					
Hw y20_pt_19	SpB/SG	15,082	17,211	14,241	25000		and a			
Hw y20_pt_20	SpB/SG	23,770	24,067	20,253	ctu		1.	1		
Hw y52_pt_1	MSB/SG	25,464	27,117	22,928	◄ 20000		11			
Hw y52_pt_2	MSB/SG	37,271	38,593	32,990	15000	11				
Hw y52_pt_3	MSB/SG	55,945	56,424	48,625	10000	110	-			
Hw y52_pt_4	MSB/SG	52,216	46,717	40,114	10000	11				
Hw y52_pt_5	MSB/SG	9,217	10,846	8,660	5000	/ Min /				
Hw y52_pt_6	MSB/SG	5,609	8,472	6,579	50	00 1500	0 25	000 35000	45000	55000
Hw y52_pt_7	MSB/SG	24,784	20,873	21,837			CRI	Pred. Mr-comp [psi	1	
Hw y52_pt_8	MSB/SG	31,750	32,287	27,461						
Hwy52_pt_9	MSB/SG	20,040	20,903	24,493		Pegragala	n Statia t	100		
Hwy175 pt 1	MSB/SG	29 440	28 229	23,903		N	38	105		
Hw v175 pt 2	MSB/SG	12,567	15,305	12.570		R ²	0.933			
Hwy175 pt 3	MSB/SG	13,250	15,080	12.373		R²(adj.)	0.923			
Hw y175_pt_4	MSB/SG	15,953	19,687	16,412		RMSE	2,944	psi		
Hw y175_pt_5	MSB/SG	29,984	33,011	28,096		%SE*	12.3%			
Hw y175_pt_6	MSB/SG	26,062	27,645	23,391		F-value	89.68			
Hw y175_pt_7	MSB/SG	25,111	20,527	17,149		p-value	< 0.0001			
Hw y175_pt_8	MSB/SG	17,782	15,633	12,858		*Percent Standa	rd Error (%68	E) in prediction relative f	o mean	
Hw y175_pt_9	MSB/SG	20,322	19,425	16,183		Regressio	n Equatio	on		
Hw y175_pt_10	MSB/SG	17,858	17,150	14,188		Actual M _{r-co}	_{mp} = 1.000	0 x RT Pred. M _{r-com}	_{ip} + 0	
160th St_pt_1	MSB/SG*	34,325	39,707	33,967						
160th St_pt_2	MSB/SG*	32,436	31,903	27,125		∆M _{r-comp}	850	psi		
160th St_pt_3	MSB/SG*	32,564	26,099	22,035					_	
160th St_pt_4	MSB/SG*	28,320	27,352	23,134	SUMMARY	ATISTICS	Actual	Predicted	Reported	noi
160th St_pt_5	MSB/SG*	26,762	25,043	21,109		Maximum:	5,609	7,642	5,851	psi
160th St pt 7	MSB/SG*	22,002	20,141	10,811		Mean	23 905	23 905	20 111	nsi
160th St nt 8	MSB/SG*	5 880	7 642	5 851		Median:	24 056	23,505	18 995	psi
MSB - Modified Subba	ise with virgin	materia; SpB - S	pecial Backfill;	SG - Subgrade;	Standa	rd Deviation	10.608	10.248	8,986	psi
SG* - Subgrade with	geogrid placed	above subgrad	ə.	-	Coefficient	of Variation:	44%	43%	45%	•0.00
CRT reported M _r value	e = (1-%SE) * F	RT Pred. M _{r-comp} -	∆M _{r-comp}							
Signature	Pavana Ven	napusa								
Typed Name:	Pavana Ven	napusa, Ph.D., P	E.							
Date:	4/22/2021		License #		P21991					
I hereby certify that this pla	an, specification,	or report was prepa	red by me or unde	r my direct supervisio	n and that I am a duly	Licensed Profe	essional En	gineer under the laws	of the state o	flowa.
		CO	MP-Score® F	RT - Calibration	Record					
Project Name:	lowa TDIP-A	ND Demonstra	tion Project						ing	(+)S
Project ID:	SIA-00003									GEOTECHNICS
Location:	Multiple Pro	ject Sites, Iowa	1							

Figure 13. Calibration record for granular materials (Model ID: IA-AID_2020_Mr40)

	Model ID										
Parameter	IA- AID_2020_Mr40	IA- AID_2020_k- St-So	IA- AID_2020_k- SG	IA- AID_2020_k- So-So	IA- AID_2020_k- St-St						
N	38	16	32	25	10						
R²	0.933	0.920	0.933	0.936	0.944						
R²(adj.)	0.923	0.891	0.928	0.919	0.937						
RMSE	2,944	15.9	20.1	8.2	12.9						
%SE*	12.3%	14.3%	11.3%	7.2%	9.9%						
<i>F</i> -value	89.68	31.74	202.12	55.44	135.04						
<i>p</i> -value	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001						

Table 10. Summary of calibration model regression statistics.

Mapping Results and e-Compaction Reports

A total of 115 COMP-Score RT maps were obtained from all the project sites. The number of maps for each material type from each project site is summarized in Table 7. All e-Compaction reports generated for this project are included in Appendix C. A few highlights are presented below with a k-value map from the US20 project for granular subbase and special backfill material in Figure 14 and Mr-comp map on modified subbase and subgrade material in Figure 15.

Figure 14. k-value map on granular subbase and special backfill subgrade treatment layers on Blackhawk County US20 project (08/27/2019)

8000 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000 30000 resilient modulus

Figure 15. M_{r-comp} map on modified subbase and embankment subgrade Class 10 material on Hamilton County I-35/Hwy 175 project.

Vu Meter Drainage Test Results

lowa DOT specifications for granular subbase construction require compaction using static roller passes and no vibration is allowed due to particle breakage and the resulting effect on drainage. Field testing was conducted using the Vu meter provided by the lowa DOT to assess relative drainage times on subbase layers after different compaction passes. This testing was performed in selected sections at a few project sites with 1 to 24 vibratory roller passes. Testing was performed on both granular subbase and modified subbase materials.

Pictures from testing are included in Figure 16 to Figure 18. Results from the testing are summarized in Table 11 and Figure 19.

Per John Hart, PCC Field Engineer, Iowa DOT, if the time taken to fully drain the way in the Vu meter is between 30 and 120 sections, the section is considered to provide "good" drainage. Results indicated that all granular subbase test sections showed \leq 12 seconds to fully drain the water, after 1 to 24 vibratory roller compaction passes.

The drainage time in the modified subbase layer test sections ranged between 86 and 261 seconds.

Figure 16. Vu meter testing on crushed limestone granular subbase on Des Moines County US61 project (06/16/2020).

Figure 17. Vu meter testing on crushed limestone granular subbase on Tama County US30 (07/09/2020).

Figure 18. Vu meter testing on crushed limestone modified subbase on Dubuque County US20 project (09/30/2020).

			No. of Vu Drainage Meter – Vibratory Time for Drainage (sec)			r – (sec)	
Date	Location	Material	Roller Passes	No. of Tests	Minimum	Maximum	Average
		Granular	3	1	1	12	12
6/46/2020	US61, Des	Subbase	5	3	9	10	9
6/16/2020	County, IA	Crushed	8	1	1	2	12
		Limestone	12	2	9	11	10
	11830	Granular	1	7	9	14	11
7/9/2020	Tama County, IA	ama (4121) ounty, IA Crushed Limestone	8	3	8	9	8
			24	3	9	12	10
	US13, Linn County, IA	JS13, Linn County, IA Granular Subbase (4121) Recycled Concrete	1	2	9	10	9
8/20/2020			8	1	11		11
			24	2	9	11	10
		Modified Subbase	1	3	108	220	148
8/13/2020	US52, Dubuque County, IA	(4123) ue Mixture of v, IA Recycled PCC and RAP	16	2	101	261	181
	11520	Modified Subbase	1	2	149	153	151
9/30/2020	Dubuque	(4123)	8	1	3	36	86
	County, IA	Limestone	24	2	95	111	103

Table 11. Summary of Vu meter test results from multiple project sites.

Design Life Prediction Analysis

The RT mapping results showing geospatial record of k-values allows for design life prediction analysis. To illustrate this possibility, k-value mapping results form the Blackhawk County US20 project are shown in Figure 20 and the predicted design life values are shown in Figure 21. Both these maps are shown as delta maps with a reference target value as noted in the figures.

The design life was calculated using the AASHTO (1993) rigid pavement design model using the design loading conditions (ESALs) assumed for the project by the Iowa DOT and other input parameters are noted in Figure 21, and applying a reduction in the k-value for a LOS condition. An LOS = 2 was assumed (per AASHTO 1993), because of the potential void gap at locations with > 0.05 inch permanent deformation. This was determined using the empirical relationship between k-value and δ_p from static APLTs (Figure 8), and all grid point locations on the map with k-value < 200 pci was corrected for the LOS condition.

Results indicated a 20% to 25% decrease in assumed pavement design life as an impact of the foundation support conditions. This has significant cost implications in terms of potential maintenance work and safety impacts to public and construction works due to road closures.

Figure 20. Delta k-value map (assuming a target k-value of 150 pci) of granular subbase layer on Blackhawk US20 project (08/27/2020).

Figure 21. Predicted delta design life map (assumed target design life = 40 years) per AASHTO (1993) pavement design assuming LOS = 2.

References

Dupont, W.D., Plummer, W.D. (1998). "Power and sample size calculations for studies involving linear regression," *Controlled Clinical Trails,* Vol. 19, 589-601.

Tutumluer, E., Moaveni, M., White, D.J., and Vennapusa, P. (2018). "Validation of intelligent compaction to characterize pavement foundation mechanical properties," Research Report No: UILU-ENG-2018, Sponsored by the Illinois State Toll Highway Authority, Submitted by University of Illinois at Urbana-Champaign, Champaign, IL.

White, D.J., Vennapusa, P., Cackler, T. (2014). "ICM Report – Ohio River Bridges East End Crossing I-265, Section 6, Sta. 350+00 to 400+00", Report submitted for Walsh Vinci Construction, Inc., by Ingios Geotechnics, Inc. (unpublished report).

White, D.J., Vennapusa, P., Tutumluer, E., Vavrik, W., Moaveni, M., Gillen, S. (2018). "Spatial verification of modulus for pavement foundation system." *Transportation Research Record*, Journal of the Transportation Research Board (in print). https://doi.org/10.1177/0361198118782266

White, D. J., and Vennapusa, P. (2017). "2017 MnROAD Unbound Layer Evaluation Using Intelligent Compaction: Ingios Validated Intelligent Compaction (VIC) Results." Final Report No. 2017-043, Ingios Geotechnics.

http://www.dot.state.mn.us/mnroad/nrra/structureandteams/geotechnical/documents/FINAL Ingios%20VIC%20Compaction%20Report_MnROAD_v7.pdf