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Abstract 
 
 

In this paper, we examine the design of permit trading programs when the objective is to 

minimize the cost of achieving an ex ante pollution target, that is, one that is defined in 

expectation rather than an ex post deterministic value. We consider two potential sources of 

uncertainty, the presence of either of which can make our model appropriate: incomplete 

information on abatement costs and uncertain delivery coefficients. In such a setting, we find 

three distinct features that depart from the well-established results on permit trading: (1) the 

regulator’s information on firms’ abatement costs can matter; (2) the optimal permit cap is not 

necessarily equal to the ex ante pollution target; and (3) the optimal trading ratio is not 

necessarily equal to the delivery coefficient even when it is known with certainty. Intuitively, 

since the regulator is only required to meet a pollution target on average, she can set the trading ratio 

and total permit cap such that there will be more pollution when abatement costs are high and less 

pollution when abatement costs are low. Information on firms’ abatement costs is important in order 

for the regulator to induce the optimal alignment between pollution level and abatement costs. 

 

Keywords: delivery coefficient, ex ante pollution target, ex post pollution target, permit trading, 

total permit cap, trading ratio.  

 

JEL codes: Q58, D02 
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1. Introduction 

A highly celebrated property of emissions trading markets is that decentralized decisions 

made by firms will achieve a preset emissions target at the least possible cost and no information 

on the firm’s abatement costs is required to achieve this outcome (Baumol and Oates, 1988; 

Montgomery, 1972).1 Montgomery (1972) demonstrates that this property extends to the class of 

non-uniformly mixed pollutants, pollutants whose damages differ based on their location. He 

shows that if the regulatory authority allows firms to trade emissions according to the ratio of 

delivery coefficients (the effect that a source’s emissions have on resulting pollution loadings) 

and sets the pollution cap equal to the desired pollution standard, the least-cost property is 

retained.  

The basic model underlying these findings assumes that the regulator is interested in 

minimizing the cost of meeting an ex post environmental standard. While ex ante uncertainty 

regarding a firm’s abatement costs is commonly used to motivate the attractiveness of a permit 

system, the pollution constraint is typically specified in ex post terms—the environmental target 

is invariant with respect to realizations of any sources of uncertainty. As has long been 

recognized, characterization of the objective function in this way requires that the pollution 

control level is independent of the actual realization of costs—no trade-off between abatement 

costs and benefits (pollution levels) is permitted.  

In this paper, we study the optimal design of a permit trading system when the regulator is 

uncertain about the firms’ abatement costs and specifies her objective function based on 

minimizing expected costs subject to meeting an expected pollution level. We call this an ex ante 

target. Our model is applicable to cases where the regulator possesses some information about 

                                                 
1 The total permit quantity can be set at the socially efficient level, a legally mandated requirement, or any other 
level deemed appropriate by the regulator. 
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the firms’ abatement costs, but is uncertain about their magnitude either because of the existence 

of genuine aleatory uncertainty in abatement costs or for reasons of asymmetric information, 

where regulator’s uncertainty is epistemic in nature.   

Several striking findings emerge from our model. First, the optimal total permit cap does 

not necessarily equal the regulator’s pollution target. One is an ex ante concept (the desired 

pollution level) while the other is an ex post construct (the emissions cap). This can be viewed as 

a two-stage decision where in the first time period the regulator settles on a desired pollution 

target and then, based on the firms’ expected emissions decisions, sets the number of permits and 

trading ratio to implement the market. 

Second, the optimal trading ratio depends on the moments of the uncertain costs as well as 

the delivery coefficients. Surprisingly, even when the delivery coefficients are assumed to be 

known with certainty, it is not optimal to set trading ratios equal to the simple ratio of delivery 

coefficients—the basic Montgomery (1972) solution. Instead, the regulator can lower expected 

costs by including some information on the uncertain abatement costs in the formation of the 

trading ratio.2 

These somewhat surprising findings come directly from the fact that our regulator’s 

objective function is specified in ex ante terms: she minimizes expected costs subject to an 

expected pollution level. This allows the regulator flexibility that is not present when emission 

levels must be met with certainty.3 In essence, this allows the regulator to anticipate, at least to 

some degree, the actual cost realizations of firms: if costs are unexpectedly high (low), the 

                                                 
2 That the optimal trading ratio depends on both the regulator’s information about costs and the delivery coefficients 
is consistent with the findings of Horan and Shortle (2005) and Malik et al. (1993), although we do not assume 
perfect information on costs.   
3 In this way, our model and findings are in the spirit of Roberts and Spence (1976) and Montero (2001) who each 
recognize that rigidity of a quantity mechanism may be socially costly. Roberts and Spence propose a penalty for 
exceeding the pollution cap, while Montero models incomplete enforcement to provide a softening of the quantity 
constraint.  



 3

resulting pollution levels will be higher (lower) than they would be without this flexibility. 

Intuitively, once the regulator is interested in both costs and benefits, it becomes optimal for the 

regulator to design the system so that if costs are unexpectedly high (a big positive stochastic 

shock), higher-than-expected pollution levels are permitted. In considering this trade-off, the 

regulator recognizes that the ultimate abatement levels chosen by firms will depend upon their 

cost realization, and therefore the ultimate emission levels become stochastic from the 

regulator’s perspective. By choosing the parameters of the trading program to be a function of 

the moments of the distribution of costs, the regulator can lower total expected abatement costs, 

while ensuring that the environmental goal is still being met on the average.4 

Whether the regulator has (or should have) the freedom to design a permit market that 

allows the aforementioned flexibility is a policy question that will have a case-by-case answer. 

However, there are many real-world examples where averages over time or space define 

standards. Examples include carbon monoxide (with both an 8-hour and 1-hour average 

standard), nitrogen dioxide (an annual arithmetic mean), ozone (1- and 8-hour averages), lead 

(quarterly average during the phase-out), and sulfur dioxide (annual means, a 24- hour average, 

and a 2-hour average) (USEPA, 2006a). Examples from water pollution abound as well: values 

for arsenic, cadmium, cyanide, and selenium emissions in storm water under the National 

Pollutant Discharge Elimination System (a key regulatory program that regulates point sources 

of water effluents) trigger need for action only when the annual average exceeds the benchmark 

(USEPA, 2006b). Indeed, when the values of the delivery coefficients are uncertain, expected 

values is the only meaningful way to form pollution constraints. 

                                                 
4 Note that we do not consider the important problem of information extraction from firms but assume that the 
regulator has some independent source of cost information. See Montero (2000) or Lewis (1996) for careful 
discussions of asymmetric information problems. 
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 In the next section of the paper, we present the basic model of firms’ behavior under a 

tradable emissions program and the regulator’s problem. In section 3, we examine the optimal 

permit market design under two different assumptions. First, we consider the case in which the 

delivery coefficient is known. This provides results that contrast with the ex post standards 

studied in Baumol and Oates (1988) and Montgomery (1972), highlighting the implication of 

using ex ante targets and objective functions. Second, we consider the important case in which 

the delivery coefficient is uncertain. While this latter feature is typically viewed as a 

characteristic of nonpoint sources, there are likely many point sources for which the true impact 

of emissions from the source are known with less-than-perfect certainty such as air sheds where 

dispersion of particulates may depend on stochastic weather conditions (Foster and Hahn, 1995). 

Final remarks and conclusions complete the paper in section 4. 

 
2. The model 

Suppose there are two firms acting as sources of emissions and the environmental 

impacts of the two firms’ emissions are not identical. Specifically, we assume that the impact of 

the first firm on the resulting pollution level is such that one unit of Firm 1’s emissions increases 

the resulting pollution level by one unit. The impact of Firm 2 is described by the delivery 

coefficient d , that is, one unit of Firm 2’s emissions increases the resulting pollution level by d  

units. The delivery coefficient can be thought of as describing the relative environmental impact 

of the two firms’ emissions. Specifically, the total resulting pollution level is 1 2e de+ , where 

 for 1,2ie i =  represents Firm i’s emissions. We model both the situation in which the delivery 

coefficient is fixed and known by the regulator, as well as a more realistic case wherein the 

delivery coefficient is random. In the latter case the regulator, however, knows the distribution of 
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the delivery coefficient: its mean, ( )E d μ= , and its variance, 2( ) dVar d σ= . The model lends itself 

to multiple interpretations, including (1) two firms located spatially apart whose emissions 

contribute differentially to loadings at the receptor (Baumol and Oates, 1988); (2) two firms 

whose emissions contribute differentially to loadings for reasons other than spatial location, such 

as production process or concentration of emissions released; or (3) two firms, of which one is a 

point source and the other is a nonpoint source with an uncertain delivery coefficient.5 

The abatement cost function for Firm i is 0( ; )i i i iC e e θ− , where, for 1,2,i =  0
ie  represents 

the initial (unregulated) emissions level for firm i and 0
i ie e−  represents the abatement of Firm i 

after the implementation of a permit trading program. The abatement cost function is assumed to 

be increasing and convex in abatement, that is, ' 0
i

C >  and '' 0
i

C ≥ . The parameter ( iθ ) in the 

cost function captures the information uncertainty regarding the costs of pollution abatement on 

the regulator’s side. We assume that the regulator has some, albeit incomplete, information on 

abatement costs. While throughout our model the formal depiction of the regulator’s uncertainty 

is unchanged, we can endow our formal modeling of uncertainty with two different 

interpretations: asymmetric information or stochastic information not revealed at the design stage 

of the permit market but revealed at the time permit trading decisions are made. Formally, when 

making decisions, firms know 1θ  and 2θ  while the regulator knows only their distribution: the 

means (zero), variances ( 2
1σ  and 2

2σ ), and covariance, ( 1 2cov( , )θ θ ). Furthermore, the regulator 

is assumed to know the covariances, if any, between the delivery coefficient and the cost 

parameters: 1cov( , )d θ  and 2cov( , )d θ . Such correlations may arise, for example, when weather 

affects the efficacy and cost of abatement as well as its spatial impacts.  

                                                 
5 Because of the inherent unobservability of nonpoint source pollution, the focus has been on the trading in expected 
emissions in the nonpoint-source literature (e.g., Horan and Shortle, 2005). See footnote 9 for a related discussion.  



 6

 
2.1. Ex ante and ex post pollution targets, total permit cap, and actual pollution level   

Since cost-minimizing firms equate marginal abatement costs with permit prices in order 

to choose their emission levels, once uncertainty is introduced into the cost functions, there is 

uncertainty in emission levels and it is necessary to clearly differentiate between ex ante and ex 

post measures of pollution as well as other constraints that relate to the design of an emissions 

trading system. Only one of the two constraints will be relevant for a particular policy. The two 

constraints can be written as  

(1) 1 2

1 2 p

(Ex ante pollution constraint)          [ ] [ ] ,
(Ex post pollution constraint)           .

ante

ost

E e E de P
e de P

+ ≤
+ ≤  

If the pollution target is specified in an ex ante manner, the first equation in (1) describes the 

constraint and indicates that the expected pollution has to be less than or equal to a pre-fixed 

target ( anteP ). Under this constraint, the ex post realization of the pollution level can be greater or 

less than the target. In contrast, if the constraint is specified as ex post, the realized ex post 

pollution levels must be less than a pollution target ( postP ) in each realization.  

A third relevant constraint defines the restriction faced by the permit market:  

(2) 1 2(Permit market constraint)              .permite te P+ ≤  
 
Here, t  is the trading ratio for the emissions of the two firms—1 unit of Firm 2’s emissions is 

equivalent to t  units of Firm 1’s emissions—and permitP  is the total permit cap, denominated in 

terms of Firm 1’s emissions. Thus, this constraint requires that total emissions (weighted by the 

trading ratio) be less than or equal to the total permit cap. Note that the firms are only concerned 

with the permit market constraint while the regulator will care predominately about the pollution 

constraint (either the ex ante or ex post version). Finally, 1 2 actuale de P+ =  specifies the actual 
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realization of pollution given firms’ emissions decisions and the realization of the delivery 

coefficient.  

With perfect information, there is no distinction between ex ante and ex post and we 

know from Montgomery (1972) that efficiency dictates that we set t d= , resulting in 

anteP = postP = permitP . That is, the three constraints are essentially the same. However, when there 

is incomplete information, either postP  or anteP  may be used as a target in pollution reduction 

policies, resulting, as we will show, in very different efficient designs for a permit program. If it 

is legally stipulated, or the damage function dictates, that pollution not exceed a deterministic, 

prefixed standard, then postP  is the relevant constraint for cost minimization. This is the 

commonly analyzed case when total pollution is limited to a prefixed cap, regardless of firms’ 

abatement costs. As discussed in the introduction, there are many examples of standards that are 

framed in terms of averages, suggesting that such an inflexible target may not be appropriate or 

necessary in many cases.   

Given an ex ante target, the regulator potentially has the flexibility to issue permits, 

permitP , and set the trading ratio, t , to achieve the expected pollution target at least cost. Figure 1 

illustrates the decision process and the occurrence of events: 

This sequential timing process makes clear that the actual pollution, actualP , varies with 

the realization of firms’ abatement costs and/or the delivery coefficient, whereas anteP  (or postP , 

or permitP ) must be set before the realization of these uncertainties and will not change when the 

uncertainties are resolved.  
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2.2. Firms’ emission decisions in a permit trading market 

Should an emissions trading program be introduced, the firms will face the permit market 

constraint in (2). Suppose the initial permit endowments allocated to Firm i (and denominated in 

Firm i’s emissions) are ie  for 1,2i = ; and 1 2 permite te P+ = . Through trading, both firms can hold 

the permits denominated in terms of another firm’s emissions, and the trading ratio is used to 

convert between the two types of permits. The trading program requires that each firm’s actual 

emissions do not exceed its holding of permits. Let iy , denominated in terms of Firm i’s 

emissions, denote the equilibrium quantity of permits traded. Specifically, iy  is the permit 

quantity sold by Firm i and purchased by the other firm. Assuming that each firm takes permit 

prices as given, then Firm 1’s problem would be as follows: 

(3) 1 1 2

0
1 1 1 1 1 2 2, ,

1 1 2 1

min ( )

  .
e y y

C e e p y p y

subject to e y ty e

− − +

+ − ≤
 

Firm 2’s problem is similar. Solving for the firms’ problems, it is well known that market 

equilibrium requires that 0 *( )i i i i iMC C e e p′≡ − = , for 1,2i = ; and 1 2 1p p t= . This implies that 

the ratio of permit prices must be equal to the trading ratio. Otherwise, costless arbitrage 

opportunities would be available to firms. Then, we have  

(4) 2

1

MC t
MC

= . 

From (4) and the permit market constraint in (2), we can solve for firms’ optimal emissions as a 

function of t  and permitP , that is, *
1 2( , ; , )i permite t P θ θ  for 1,2.i =  When emission decisions are made 

in the permit trading market, firms have complete information about their costs, i.e., 1θ  and 2θ  

are known with certainty. Equation (4) indicates that the results of the permit trading market are 

such that the ratio of marginal costs equals the trading ratio. However, with complete 
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information on 1θ  and 2θ , we know from Montgomery (1972) that social efficiency requires 

t d= , resulting in  

(5) 2

1

MC d
MC

= . 

Any gains in setting t  at a level other than d in an ex ante targeting program would need to be 

weighed against the efficiency costs of not attaining the equality in (5). This is an issue we will 

return to in the next section. 

 
2.3. The regulator’s problem 

Our paper focuses on the design of permit trading programs where the goal is to reach an 

environmental target at the lowest cost when the target is set as an ex ante pollution level, rather 

than an ex post standard.6 When damage is linear in pollution, the solution to our problem 

coincides with the solution to the problem of minimizing the sum of damage and abatement 

costs. While we believe the conditions of uncertainty we model are representative of a broad 

variety of environmental pollutants, water quality provides a strong motivating example. Imagine 

there are two sources of effluent that enter a river: source 1 is a large “point” source that is 

located at the river’s edge and source 2 is a “nonpoint” source that is located some distance from 

the river. Given the proximity of source 1 to the river, its delivery coefficient is known with 

certainty to be unity whereas the nonpoint nature of source 2 means that the delivery coefficient 

is uncertain because of weather variability. 

For the situation analyzed most in the permit trading literature where the delivery 

coefficient is known and an ex post pollution target is used, the regulator must set the trading 

                                                 
6 We focus on the design of permit trading programs in the context of cost-effectiveness for the same reason as 
typically provided in the literature.  Pollution targets are often set by political processes as in the case of sulfur 
permit trading program or water quality trading programs (Horan and Shortle, 2005) and in practice the social 
damage of pollutants is often unknown making cost minimization the most relevant policy approach. 
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ratio equal to d and permitP = postP  if she does not have complete information on firms’ abatement 

costs. Otherwise, there is no guarantee that the target will be met. This is because, from (1), we 

know that  

(6) 2( )permit postP P t d e− = − . 

If t d= , then post permitP P= , regardless of the value of 2e . However, if the regulator is to set 

t d≠ , then she needs to adjust permitP  as well so that the ex post pollution target will be met. 

However, any adjustment will depend on the magnitude of 2e , which is assumed unknown to the 

regulator when designing the permit market (because of uncertain abatement costs).  

Interestingly, as mentioned in the introduction, it is not even feasible to use an ex post 

pollution constraint if the delivery coefficient is uncertain. This is because, for any given 

( ,  P )permitt , the value of postP  will vary with d  and 2e . While the realization of d  is affected by 

weather conditions, the decision regarding 2e  depends on ( ,  P )permitt  and the parameters of the 

abatement cost function. Thus, there may be different realizations of d  for the same value of 2e . 

It is then obvious that (6) will not hold for all possible values of d  and 2e  in a permit trading 

program. In this case, an ex ante constraint is the only meaningful policy option. 

When an ex ante pollution target is used, the realization of total pollution can be higher or 

lower than the target. Even though the regulator cannot directly control the realization of total 

pollution, she may be able to set the parameters of the permit system ( t  and permitP ) in 

conjunction with her (incomplete) knowledge of the firms’ abatement costs to generate higher-

than-average emission levels when firms’ abatement costs turn out to be high and vice versa. 

Formally, we can set up the regulator’s problem as follows: 
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(7) * *
1 1 1 2 2 2 1 2,

min     [ ] ( ( , ; , ) ( ( , ; , ) ,
permit

permit permitt P
E TC E C e t P C e t Pθ θ θ θ⎡ ⎤≡ +⎣ ⎦  

subject to                Ex ante pollution constraint in (1). 

Note that firms’ emission decisions, *
1 2( , ; , )i permite t P θ θ  for 1,2i = , are incorporated into the 

regulator’s program. We next explore the optimal trading ratio and total permit cap. 

 
3. Optimal permit trading ratio and total permits 

  For tractability, we assume that one firm faces a linear abatement cost function while the 

other faces an increasing convex abatement cost function, as specified below:7  

(8) 0 0
1 1 1 1 1 1 1( , ) ( )( )C e e a e eθ θ− = + − , 

(9) 0 0 0 2
2 2 2 2 2 2 2 2 2( , ) ( )( ) ( )C e e b e e c e eθ θ− = + − + − . 

In (8), we assume that 2 2
1a σ− >0, that is, the mean of the marginal abatement cost (which 

represents the deterministic part) dominates the variance (which represents the stochastic part). 

This assumption also ensures that the second-order condition for the problem in (7) is satisfied. 

With the above cost functions, we can derive firms’ optimal emissions from equation (4) and the 

permit market constraint in (2):  

(10) 
0 2
2 2 1*

1 1 2

2 ( ) ( ) ( )
( , ; , )

2
permit

permit

c P e t b t t a
e t P

c
θ θ

θ θ
− − + + +

=  

(11) 
0

* 2 2 1
2 1 2

2 ( ) ( )( , ; , )
2permit

ce b t ae t P
c

θ θθ θ + + − +
= . 

 

                                                 
7 As will be clear later, the linear-quadratic setup used is sufficiently rich while remaining simple enough for the 
intuitive and graphical discussion that follows. 
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Clearly, the amount of emissions generated by the firms depends on regulatory decisions 

on t  and permitP  as well as the values of the parameters 1θ  and 2θ . Note that *
2e  does not vary 

with permitP , implying that when permitP  is altered, *
1e  will absorb all the changes in permitP , i.e.,  

(12) 
* *
1 21       and      0

permit permit

e e
P P
∂ ∂

= =
∂ ∂

. 

This feature comes directly from the linearity in (8), and while not likely typical of real world 

situations, it makes the analysis tractable with no obvious loss of generality. We also note that 

(13) (i) 
2

* *
1 2

, *
2

0  iff  -1 e t
e t e
t e t

ε∂ ∂
≤ ≤ ≡

∂ ∂
, and (ii) 

*
2 0e
t

∂
<

∂
. 

Part (ii), derived by differentiating (11) with respect to t, implies that *
2e  decreases as t  increases. 

Since * *
1 2 permite te P+ = , the sign of *

1e t∂ ∂  is the opposite of ( )*
2te t∂ ∂ . Thus, for any given 

permitP , *
1 0e t∂ ∂ ≤  if and only if the elasticity of *

2e  with respect to t  is greater than or equal to 

1− . Given that *
ie  is adjusted when t  and permitP  change, the regulator can adjust the total actual 

pollution level by changing these policy variables. This important fact will be discussed in detail 

below.  

With analytical solutions in (10) and (11) for the firms’ choice of emission levels, it is 

straightforward to solve the ex ante optimization problem (7)8 and derive the optimal trading 

ratio and permit cap. First, we obtain the optimal trading ratio as a function of the regulator’s 

prior information on the covariance structure of abatement cost uncertainties and the delivery 

coefficient, or specifically,  

                                                 
8 The problem is a standard optimization problem with one constraint and so the details on the derivation of the 
solutions are not presented. To simplify our discussions, interior solutions are assumed throughout the paper, unless 
otherwise noted.   
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(14) ( )* 2
1 1 1 22 2

1

1 cov( , ) cov( , )t a d
a

μ μσ θ θ θ
σ

= + + −
−

. 

To derive the optimal permit cap, we first note that as long as the program is intended to 

reduce emissions, both the ex ante pollution constraint in (1) and the market permit constraint in 

(2) will be binding. Then, we can derive the following: 

(15) 
*

* * * 2 1
2

( , ) ( , )[ ]( )
2permit ante

Cov d t Cov dP P E e t
c

θ θμ −
− = − + . 

The details are provided in the appendix. Equations (14) and (15) imply that with known values 

of 1θ , 2θ , and d (with d μ= ), the optimal trading ratio would be set equal to the delivery 

coefficient, i.e., * ( )t d μ= = , and the total permit quantity allocated to firms would equal the 

pollution target, i.e., *
permit anteP P= . However, in general, *t d≠  and *

permit anteP P≠ . This, of 

course, differs starkly from most permit trading programs in which the trading ratio is the same 

as the delivery coefficient and the total permit cap is set the same as the pollution target that the 

regulator sets out to achieve.  

 
3.1 The total pollution effect and the deadweight loss effect 

To see the effects of setting t d≠  and permit anteP P≠ , we use a benchmark permit trading 

program where t d=  and permit anteP P= . The total abatement costs as a result of implementing 

the benchmark trading program and as a result of any other permit trading program are denoted 

as ( ), anteTC d P  and ( ), permitTC t P , respectively. The difference between these total costs can be 

broken down as follows: 
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(16) 

( ) ( )

( ) ( ) ( ) ( )

, ,

, , , , ,

    

ante permit

ante actual actual permit

TC d P TC t P

TC d P TC d P TC d P TC t P

total pollution effect deadweight loss effect

−

= − + −
 

where actualP  is the actual amount of pollution resulting from a trading program with ( ), permitt P , 

that is, 

(17) * * * *
1 2 1 2( , ) ( , ) and ( , ) ( , )actual permit permit permit permit permitP e t P de t P P e t P te t P= + = + . 

The total cost of each trading program is derived by using firms’ emissions decisions under the 

program, for example, ( ), anteTC d P =  *
1 1( ( , ))anteC e d P  *

2 2( ( , ))anteC e d P+ .  

The total pollution effect represents the cost difference that is due to the deviation of the 

total pollution level from the benchmark program. This deviation can occur because the total 

permit cap is not equal to that of the benchmark program and/or because t d≠ . The latter causes 

a divergence because when t  is used in the permit market constraint instead of d , one unit of 

permit is no longer necessarily the same as one unit of pollution. The total pollution level will 

equal the permit cap in the benchmark program. However, this is not necessarily true in a 

program with a trading ratio not equal to d.  

The deadweight loss effect is directly linked to the use of t  as the trading ratio, instead of 

the delivery coefficient d , which leads to a suboptimal allocation of emissions as we pointed out 

in section 2.2. We refer to this effect as the deadweight loss effect since it represents the extra 

cost incurred by using t  to achieve the same amount of total pollution ( actualP ). Given an ex ante 

pollution target, the regulator would like to induce a high pollution level when abatement cost 

turns out to be high and vice versa, that is, to exploit the total pollution effect by setting t d≠  

and permit anteP P≠ . However, doing so incurs a cost in the form of a deadweight loss. In designing 
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an optimal program, the regulator will seek to achieve a balance between these two effects in 

order to minimize abatement costs to achieve the pollution target on average. 

 
3.2 The case of a known delivery coefficient 

 To isolate the role of uncertainty with regard to the abatement costs, we next examine the 

optimal trading ratio and permit quantity in the absence of uncertainty in the delivery coefficient. 

We have the following from (14): 

(18) 
2

* 1 1 2
2 2

1

cov( , )dt d
a

σ θ θ
σ

−
= +

−
when d is known. 

If 1θ  is known with certainty, i.e., 2
1 0σ =  and 1 2cov( , ) 0θ θ = , then the optimal trading ratio 

should equal the delivery coefficient. However, in general, even if the delivery coefficient is 

known, the optimal trading ratio in our model is not necessarily equal to the delivery coefficient. 

We explore the intuitive rationale behind this result in the rest of this section. 

 
3.2.1 Differences between pollution target, total permits, and actual pollution 

When the delivery coefficient is a known constant, we know from (1) and (2) that the gap 

between the total permits allocated and the pollution target is  

(19) 2[ ]( )permit anteP P E e t d− = − . 

Thus, if t d≠ , then the total permit quantity will also deviate from the ex ante target so that the 

ex ante pollution constraint will be met. Similarly, we can derive 

(20) 2 ( )actual permitP P e t d− = − − . 

That is, if t d> , then the actual pollution will be less than the permit allocated. This occurs 

because 1 unit of Firm 2’s emissions contributes d  units to total actual pollution, but 1 unit of 
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Firm 2’s emissions requires t  units of permits in the market constraint. Adding up the previous 

two equations, we have 

(21) ( ) 1 2
2 2( ) [ ] ( )

2actual ante
tP P t d E e e t d

c
θ θ−

− = − − = − . 

To derive the second equality in (21), equation (11) is used. For any given 2θ , the higher 1θ  is, 

the higher the actual pollution will be if t d> .  

From (18), we know that the optimal trading ratio is greater than d if 1 2cov( , ) 0θ θ = . The 

intuition is as follows. As we described earlier, for any realization of 1θ  and 2θ , the emissions 

that would result in the least abatement cost for any actual ex post pollution level would satisfy 

(5); that is, 

(22) 0
2 2 2 1( ) 2 ( ) ( )b c e e d aθ θ+ + − = + . 

In other words, the marginal cost of controlling total pollution would be determined by 1θ  

regardless of the allocation of emissions from the two firms—a higher 1θ  would imply a higher 

marginal abatement cost. For a regulator who is required to meet a pollution level in expectation 

(i.e., on average), therefore, it makes sense to design policies that require lower abatement (a 

higher pollution level) when the marginal abatement cost ( 1θ ) turns out to be high and vise versa. 

Setting a trading ratio that is greater than the delivery coefficient accomplishes this, since 

equation (21) implies that 
1

actualP
θ

∂
=

∂
 ( ) 0

2
tt d
c

− >  if 0t d− > .   
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3.2.2. The trade-off of the total pollution effect and the deadweight loss effect 

With firms’ emissions decisions, *( , )i antee d P , *( , )i actuale d P  and *( , )i permite t P , we can obtain 

an expression for the two effects (assuming d is known): 

(23) 1 1 2
1  ( )( )( ),  
2

total pollution effect t d a t
c

θ θ θ= − + −  

(24) 2 2
1

1  ( ) ( )  .
4

deadweight loss effect a t d
c

θ= − + −  

Equation (23) indicates that the magnitude of the total pollution effect depends on the parameters 

in the cost functions and how much the trading ratio differs from d. As is expected, (24) implies 

that the deadweight loss effect is never positive. For any given 1θ , the larger the difference 

between the trading ratio and the delivery coefficient, the larger the deadweight loss effect.  

 Figure 2 and Figure 3 illustrate the intuition and magnitude of the two effects. For 

simplicity, the delivery coefficient in the figures is set to one, which is assumed known by the 

regulator. In both figures, the total length of the horizontal axis represents the total permits 

available and the solid downward-sloping line is the marginal abatement cost curve of Firm 2 as 

emissions are increased (i.e., abatement is decreased) for the case in which 2 0θ < . In Figure 2, 

the marginal abatement cost curve of Firm 1 (for 1 0θ = , i.e., 1MC a= ) is represented by the 

horizontal line that intersects with Firm 2’s marginal cost curve at 0B . When 1t d= = , 1t
permitP =  is 

set equal to anteP  by (19). Since 1 2MC MC=  at 0B , 0B  represents the permit market 

equilibrium, indicating the split of the emissions by the two firms with Firm 1’s emissions 

reading from the right ( 1O ) and Firm 2’s emissions reading from the left ( 2O ). As (5) is satisfied 

at 0B , the ex post abatement cost is minimized to reach a total pollution level of 1t
permitP =  (i.e., 

with complete information on 1θ  and 2θ , 0B represents the least-cost solution).   
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When the trading ratio is set greater than the known delivery coefficient several changes 

occur in Figure 2. First, the optimal total permit cap increases to 1t
permitP >  by (19), which is 

reflected by the shifting out of the right boundary of Figure 2 from 1O  to 1 'O . Second, the new 

permit market equilibrium is represented by point 'B , indicating a reduction in 2e . Third, we can 

no longer obtain 1e  from the right ( 1 'O ) to the equilibrium point ( 'B ), since the permit market 

constraint now requires that the total permits be greater than or equal to the weighted sum of 

emissions (with the weight on 2e  equal to t ), not to the simple sum of emissions from the two 

firms. To reflect the weighting, it would be necessary to adjust the MC curve as in the dotted 

downward-sloping curve to represent 2*t e  for every 2e  on 2MC . Then, Firm 1’s emissions can 

be obtained by reading from the right ( 1 'O ) to ''B .   

The two effects of setting t d>  on the total abatement cost of meeting the ex ante 

pollution target are illustrated by the shaded areas in Figure 2. As for the deadweight loss effect, 

note that the marginal abatement cost curve is still the horizontal line a , not the horizontal line 

ta . However, firms make their decisions based on the latter, which leads to too few emissions 

(i.e., too much abatement) by Firm 2, resulting in deadweight loss as reflected by the shaded 

triangle. The area of the triangle is equal to (24). For the case illustrated in Figure 2 (with 1 0θ =  

and 2 0θ < ), we know from (21) that the actual total pollution is greater than the ex ante 

pollution target. The savings in abatement cost are represented by the area of the shaded 

rectangle.  

An optimally designed permit market will try to achieve a balance between the total 

pollution effect and the deadweight loss effect. To show how the regulator can reduce total 

ex ante expected abatement costs by setting t d> ,  we use the illustration in Figure 3, which is 



 19

the same as Figure 2 except that it illustrates a case in which 1θ can take on two values ( 1̂>0θ+  

and 1̂θ− ) with equal probability. For simplicity we assume 1 2cov( , ) 0θ θ = . Consistent with (24), 

the figure shows that there is a deadweight loss regardless of whether marginal abatement cost is 

high or low. The larger (smaller) shaded triangle represents the higher (lower) distortion when 

the realization of Firm 1’s marginal abatement cost is high, i.e., 1 1̂θ θ= +  (low, i.e., 1 1̂θ θ= − ).  

The total pollution difference between setting t d> and t d= is given by (21) and is 

represented by the width of the large shaded rectangle for 1 1̂θ θ= +  and by the width of the small 

shaded rectangle for 1 1̂θ θ= − . When marginal cost is high (i.e., 1 1̂θ θ= + ), setting t d> will 

result in a cost saving from less abatement (or higher than expected pollution level) which is 

represented by the area of the large shaded rectangle. Similarly, when marginal cost is low (i.e., 

1 1̂θ θ= − ), setting t d> will result in an extra cost from more abatement which is represented by 

the area of the small shaded rectangle. When the difference between the cost savings and the 

extra cost is positive, and when the difference is greater than the deadweight loss (the sum of the 

two shaded triangles), the regulator reduces total abatement cost with t d> . As illustrated in 

Figure 3, the area of the larger rectangle is larger than the sum of the areas of the smaller 

rectangle and the two shaded triangles, resulting in a welfare gain from setting t d> . 

 
3.2.3 Effects of the covariance structure on the optimal permit trading program 

As noted earlier, if 2 0iσ =  and 1 2cov( , ) 0θ θ = , then the benchmark program will also be 

the optimal program. However, as long as 2
1 0σ > , in general (14) implies that *t d≠  even when 

d  is known for certain. In this section, we examine the effects of the covariance structure. Since 
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an ex ante design minimizes expected abatement costs, we begin by taking the expectation of the 

total pollution effect and the deadweight loss effect (when d  is known),  

(25) 2
1 1 2

( )
2

[   ] [ cov( , )]t d
c

E total pollution effect tσ θ θ−
= − , and  

(26) 
2

2 2
1

( )[   ] ( )
4

t dE deadweight loss effect a
c

σ−
= − + . 

These two expected effects will help us understand how the covariance structure will affect the 

optimal trading ratio, which will then determine the optimal permit cap through (19).  

First note that if 1 2cov( , ) 0θ θ ≤ , then clearly *t d≥  from (18). However, it is possible to 

have *t d< , if 1 2cov( , )θ θ is positive and large enough. The intuition is as follows. Equation (21) 

implies that the actual pollution level, compared to the ex ante target, depends on 

1 2( )( )t d tθ θ− − . If 1θ  is high when 2θ  tends to be low, then actualP is high if 0t d− > . Since it is 

desirable to have a high pollution level when marginal cost is high (i.e., 1θ  is high), it is optimal 

for * 0t d− > . On the other hand, if 1θ  is high when 2θ  tends to be high, and if 2θ  tends to be so 

high that 1 2( ) 0tθ θ− ≤ , then actualP  will be relatively high only if 0t d− ≤ . In such a situation, 

* 0t d− ≤  is optimal. In the following, most of our discussion will focus on the case in which 

* 0t d− > . The other case can be analyzed similarly. 

The covariance and the trading ratio move in opposite directions since (18) implies that 

*

2 2
1 2 1

1 0
cov( , )

t
aθ θ σ

∂ −
= <

∂ −
. This is because the expected total pollution effect will be larger 

when the cost shocks move in opposite directions than when they move in the same direction, 

according to (25). On the other hand, the deadweight loss effect does not depend on 1 2cov( , )θ θ . 

Thus, a smaller positive or more negative correlation increases the trading ratio because a larger 
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total pollution effect can overcome the effect of a larger deadweight loss effect resulting from a 

higher trading ratio.  

Regarding the impacts of variance on the optimal trading ratio, from (18) we have 
*

2
1

t
σ
∂

=
∂

 

*

22
1

0t
a σ

>
−

; that is, as the abatement cost of Firm 1 becomes more variable, the optimal trading 

ratio increases. Mathematically, (25) and (26) imply that, for t d> , as 2
1σ  increases, the total 

pollution effect increases faster than the deadweight loss effect. Intuitively, as discussed earlier, 

when 1θ  is high, there will be savings of abatement cost due to extra pollution and when 1θ  is 

low there will be extra costs due to a lower pollution level that has to be achieved. As 1θ  

becomes more variable, actualP  also becomes more variable and the total pollution effect will be 

larger because the cost savings become larger while the extra costs become smaller. A larger 

total pollution effect can outweigh a higher deadweight loss and so the optimal trading ratio can 

be set higher.  

 
3.3 Case of an uncertain delivery coefficient 

 The delivery coefficient is likely to be known for some pollutants (e.g., carbon dioxide), 

but there are many pollutants for which delivery coefficients will be uncertain. While uncertain 

delivery coefficients clearly characterize nonpoint source pollution, many point sources can also 

have uncertain delivery coefficients; for example, wind and weather uncertainty can affect air 

pollution deposition rates. Many water pollutants exemplify this notion well. The fate and 

transport of water pollutants is subject to both stochastic elements related to weather as well as 
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scientific uncertainty concerning the physical diffusion process.9 This is true for both point and 

nonpoint water pollution sources. 

The impact of an uncertain delivery coefficient is reflected in (14) by 1cov( , )d θ  and the 

use of the expected value of d . The optimal trading ratio moves in the same direction as 

1cov( , )d θ : 
*

1cov( , )

t

d θ

∂
=

∂
 

2 2

1

0
a

a σ
>

−
. Suppose 1cov( , ) 0d θ > , that is, if the delivery coefficient is 

expected to be high, the marginal cost of abatement by Firm 1 is also expected to be high. For 

given emissions, a high d  means more total pollution in the absence of any abatement. In order 

to reduce pollution to a fixed target, more abatement has to be undertaken. To ameliorate the 

pressure for more abatement, equation (21) implies that the trading ratio is increased and so more 

emissions will be allowed when the delivery coefficient is high and the abatement cost is also 

expected to be high. By the same logic, when the delivery coefficient is low and abatement cost 

also tends to be low (e.g., negative), equation (21) then implies that a higher trading ratio will 

restrict the amount of emissions that are allowed. However, the cost savings from extra pollution 

are higher than the increased cost from more abatement and so total abatement costs are reduced. 

As noted before, a larger total pollution effect can outweigh a larger deadweight loss and so the 

optimal trading ratio can be set higher. 

The optimal permit allocation gap with an uncertain delivery coefficient is given by 

equation (15). Compared to the case with a known delivery coefficient as given in equation (19), 

there are two additional covariance terms, which represent the covariance between 2e  and d  

                                                 
9 In the nonpoint source pollution literature, where one of the defining features of nonpoint source pollution is its 
inherent unobservability (Segerson, 1988), the focus has been on the trading in expected, as opposed to actual, 
emissions from a nonpoint source (e.g., Horan and Shortle, 2005). In this case, basically, another layer of 
uncertainty would be added to the design of the permit market: both firms and the regulator only know the 
distribution of emissions given any action taken by the firms. We can show that, like the uncertainty on firms’ 
abatement costs and the delivery coefficient, this uncertainty will also be reflected in the optimal trading ratio and 
the optimal total number of permits.  
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(see the appendix). The terms indicate that if 2e and d  are positively correlated, then the optimal 

total permit cap should be even higher and vice versa. Thus, with an uncertain delivery 

coefficient, there is an additional reason that the optimal total permit cap might differ from the 

ex ante pollution target. 

 
4. Conclusions 

In this paper, we have investigated the optimal design of permit trading programs in a 

setup that incorporates three key features: (1) the regulator’s objective is to minimize the 

expected abatement costs of meeting an ex ante pollution target (i.e., the pollution standard or 

target is represented as an expectation); (2) the regulator does not have complete information on 

firms’ abatement costs; and (3) the delivery coefficient of emissions can be uncertain. It is well 

known that the regulator does not have to have any information on firms’ abatement costs for a 

permit trading program in order to minimize the cost of achieving an ex post pollution target. 

However, we found that such information is useful in designing a trading program that meets an 

ex ante target at the lowest abatement costs. 

In addition to the result that the optimal total permit cap is in general not equal to the 

ex ante pollution target, we found that the optimal trading ratio is not equal to the delivery 

coefficient even if the regulator has complete information on the delivery coefficient ex ante. 

The latter result arises from the dual roles that the trading ratio plays in a permit trading program. 

First, the trading ratio determines the substitution rate among emissions of different sources. 

Some studies have examined thoroughly the optimal trading ratio in situations in which the 

regulator, with complete information on firms’ abatement costs, seeks to minimize the sum of 

abatement costs and damages from pollution (e.g., Kling and Rubin, 1997). Second, and equally 

importantly, the trading ratio affects the actual amount of pollution resulting from a trading 
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program. This is because when the trading ratio is not equal to the delivery coefficient, the total 

permit cap is no longer the same as the total pollution that will result from a trading program. 

When designing a program, the regulator can use the trading ratio to induce the desirable 

pollution level.  

Our findings indicate that it is important that the nature of a pollution target be clarified 

prior to the design of a trading program, given the stark difference between the optimal trading 

programs with an ex ante pollution target and the optimal trading programs with an ex post 

target. Under an ex ante target, not surprisingly, the actual pollution level as the result of 

implementing an optimal trading program would fluctuate around the target. In contrast, when an 

ex post target is used, the actual pollution level exactly equals the target by construction.   
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Appendix: Proof of equation (15) 

Since the permit market constraint must hold for every level of firms’ emissions, it also 

must hold for expected emissions levels, that is, *
1[ ]E e *

2[ ]=tE e+ *
permitP . Taking the difference of 

this equation and the ex ante pollution constraint in (1), we obtain 

(A1) * * * *
2 2[ ] [ ]permit anteP P E e t E de− = − . 

Note that *
2[ ] E de =  * *

2 2[ ] [ ] ( , )E d E e Cov d e+ , [ ] ,E d μ=  and *
2( , ) Cov d e =  2 1

*( , ) ( , )

2

Cov d t Cov d

c

θ θ− . 

Rearranging equation (A1) with these relationships, we obtain (15). 
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Figure 1. Decision process and sequence of events in emissions trading 
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Figure 2. The effects of setting * 1t d> =  under the ex ante pollution constraint 
1 2 antee de P+ =  and the permit market constraint 1 2 permite te P+ =  (for 1 0,θ =  2 0θ < ). 
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Figure 3. A comparison of the welfare effects when 1θ  is high versus when 1θ  is low for a 

given value of 2θ  ( 2 0θ = ). (In the figure, 1θ  is assumed to take two values, 1 1
ˆ ˆ>0 and θ θ+ − , 

with equal probability.) 
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