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EXECUTIVE SUMMARY 

The monitoring and estimations of road surface conditions (RSCs) play a critical role in 

optimizing winter road maintenance (WRM) activities. In recent decades, road weather 

information systems (RWIS), in both stationary and mobile, have gained popularity with many 

road maintenance authorities and become a predominant intelligent transportation system (ITS) 

technology. While RWIS provide real-time and near-future RSC information that is critical in 

making timely maintenance related decisions, RWIS are relatively expensive to maintain and 

operate and are therefore only installed at a limited number of locations.  

The limited number of RWIS stations along with the need to monitor spatially large road 

networks with vastly varied conditions necessitate a strategic and scientific approach to the 

continuous and accurate monitoring of RSCs during inclement weather events. Furthermore, 

most RWIS stations nowadays are equipped with cameras that provide users with a direct view 

of the RSCs; however, the process of classifying RSCs using these camera images is still being 

done manually. If this process can be automated, transportation agencies will be able to use the 

rich image-based road condition data more effectively and, in turn, improve the level of service 

that they provide. 

To tackle the foregoing challenges and provide solutions to better serve the public and road 

authorities, this project aimed to develop a methodological framework for estimating winter 

RSCs and to automate the process of image recognition to fill in the spatial gap of unmonitored 

areas using RWIS and other sensing technologies.  

To evaluate the feasibility and reliability of the proposed methods, a case study was conducted 

by selecting several highway segments from Iowa, where a comprehensive geodatabase was 

constructed by incorporating the historical observations of RSC variables, weather conditions, 

and vehicle-mounted dash camera images collected by the Iowa automated vehicle location 

(AVL) system from October 2018 through April 2019, as well as the geographical and 

topographical features of each highway stretch. 

As a result, a hybrid geostatistical model, regression kriging (RK), was developed by 

incorporating two conceptually different models to map spatial variability and strengthen the 

explanatory power of key RSC variables, which included the road surface temperature (RST) and 

road surface index (RSI), representing road slipperiness.  

Semivariogram modeling was also involved in the RK to investigate the spatial variations of 

target variables. In total, the researchers developed 228 and 34 semivariogram models for RST 

and RSI, respectively. These two variables were also utilized to evaluate the feasibility of RK by 

conducting cross validations.  

By using the results from the case study, the researchers observed that RK is both reliable and 

capable in estimating both RST and RSI in the unmonitored regions between RWIS stations. 

However, the estimation quality is somewhat dependent on the density of the RWIS network. 
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When the number of point measurements increases, the estimation accuracy increases with it. 

Regardless, with as little as one point measurement as input, RK can well mimic the general 

pattern of the RSC variables along a stretch of highway. 

A deep learning (DL) model was developed to automate the process of RSC image recognition. 

The developed DL model was shown to be highly accurate with training and validation 

accuracies being 99.89% and 94.62%, respectively. The confusion matrix, which shows the 

performance of the DL model in terms of both false positive and false negative measures, also 

affirmed that the model can successfully distinguish between the different RSC categories. The 

validation accuracy for each category was over 90%, suggesting that the DL model is a 

practically applicable approach for determining RSC from dash camera images. 

As previously mentioned, RSI was one of the RSC variables that were used in the development 

of the RK method. It is a friction-like surrogate measure used as a numerical indicator for the 

overall RSC. RSI itself is not directly collected at the AVL, but is instead converted from the 

RSC category classified by the trained DL model prior to RK interpolation. To make the 

converted RSI more representative, an image thresholding technique was used to further adjust 

the RSI values for images labeled with the same RSC category. Converted RSI values were then 

used as input in the RK method for RSI interpolation.  

In addition to estimating RSC variables, it is also important to understand the relationship 

between spatial variation patterns of the variables and the underlying meteorological factors, 

which can be used as priori knowledge or fingerprints for implementing RK without the need to 

send personnel to collect data before making decisions on WRM activities.  

The nugget-to-sill ratio (NSR) obtained from the semivariogram model of a target variable 

represents the spatial dependence of the variable and, therefore, can be used to characterize the 

spatial dependence of the RSC. This NSR value can vary depending on the weather event. Based 

on the literature review and other available data, wind and rainfall were used in this study to 

examine potential correlations between RST and wind and rainfall weather events. All variables 

relating to wind and rainfall were aggregated into the three NSR classes (i.e., spatial dependence 

classes). Due to the lack of data, an analysis pertaining to RST was only included in this portion 

of the analysis. Overall, strong wind and heavy rainfall tended to create a stronger spatial 

dependence of RST in the study area. 

Finally, the developed solutions were integrated into a HyperText Markup Language (HTML) 

based visualization application to demonstrate the robustness of the proposed method and the 

resulting estimations between RWIS stations.  
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1. INTRODUCTION 

1.1 Background 

Intelligent transportation system (ITS) technology is an important advancement in modern 

transportation engineering that has played a crucial role in improving traffic safety and mobility. 

For cold regions that experience severe weather conditions, the improvements that ITS 

technology brings is even more significant. Within these cold regions, there is often frequent 

snow, sleet, ice, and frost events. And, depending on the intensity of the precipitation, it results 

in different kinds of road surface conditions (RSCs). If the intensity of precipitation is great, 

RSCs are likely to be poor, resulting in unsafe driving conditions that make drivers more prone 

to crashes, which are statistically far more common in the winter season.  

According to studies sponsored by the Federal Highway Administration (FHWA), about 21% of 

all crashes each year are weather-related. Among these crashes, 5,000 people are killed and more 

than 418,000 people are injured each year (FHWA 2020). In another study, conducted by the 

Ministry of Transportation–Ontario (MTO), its Ontario Road Safety Annual Reports (1993–

2009) revealed that due to wet or snowy and icy road surface conditions, the total number of 

vehicle crashes has increased by about 17% over the last 16 years. Other than road surface 

conditions, snow accumulation and wind-blown debris also pose problems for motorists. These 

create hazardous road conditions that lead to reduced road capacity, decreased traffic mobility, 

and road closures (Goodwin and Pisano 2004).  

The effect of snow events on road performance is a topic that has been backed up by formal 

research. Agarwal et al. (2005) found that, depending on the intensity of the snow event, the 

capacity and average vehicle operating speed can decrease by 4.29 to 22.43% and 4.17 to 

13.46%, respectively (Agarwal et al. 2005). Kwon et al. (2013) conducted a similar yet more 

comprehensive empirical investigation on the effects of inclement weather on highway capacity 

and free flow speed (FFS), where the researchers found that snow-covered road surface 

conditions could reduce capacity and FFS by 44.24% and 17.01%, respectively. 

Given the poor track record with winter weather incidents, transportation agencies strive to 

provide the most optimal driving conditions through the use of various winter road maintenance 

(WRM) operations. These activities include plowing, deicing, and sanding operations that aim to 

reduce the severity and odds of crashes by mechanically removing snow and ice from the road, 

as well as applying abrasives to increase vehicle traction. However, due the uncertain nature of 

weather events and the expansive spatial distance covered by most highway networks, it 

becomes very difficult for transportation agencies to monitor and predict RSCs, which in turn 

makes both planning for WRM operations and providing accurate RSC information to the 

general public quite challenging. 

For transportation agencies to prevent or at least reduce the number of weather-related road 

incidents, staff must first be able to make timely and well-informed decisions regarding their 

WRM operations. If they are unable to do so, it substantially increases the financial burden of 
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these operations as, by nature, WRM operations are very costly due to their reliance on heavy 

machinery and significant manpower demands. It is estimated that North America as a whole 

spends roughly $2.3 billion (US dollars) annually on WRM maintenance operations (Transport 

Association of Canada 2003, Usman et al. 2010).  

A method to determine both real-time and near-future RSCs will allow respective transportation 

agencies to make more informed decisions that not only improve the safety of roads, but 

substantially cut down on WRM operational costs while maintaining a high level of service. 

To help support and facilitate winter maintenance decisions, an advanced ITS monitoring 

technology known as road weather information systems (RWIS), available in both stationary and 

mobile stations, have been utilized by transportation agencies around the world. Through RWIS 

technologies, users are provided with real-time and forecasted weather and RSC information. 

Highway maintenance personnel use the information to improve the efficiency and effectiveness 

of their maintenance operations. The only downside is that installing and operating RWIS 

stations is costly and, because of this, most transportation agencies only deploy RWIS stations to 

a limited number of locations, hampering the coverage and effectiveness that they provide. As a 

result of the limited coverage issue, transportation agencies have been looking ways to infer road 

weather and surface conditions with the spatially limited RWIS information that they possess—

so they can make the most out of their available resources and at the same time maximize their 

return on investment. 

1.2 Road Weather Information Systems 

In the mid-1980s, several US state departments of transportation (DOTs), including Minnesota’s, 

New Jersey’s, Pennsylvania’s, Washington’s, and Wisconsin’s evaluated the effectiveness of 

various pavement data collection methods during the winter months. Among the various methods 

tested, the DOTs discovered that the RWIS were the most reliable. And thus, further research 

into its practical applications began, where it was discovered that, if state highway agencies 

would base their WRM operations on the weather and pavement condition information provided 

by RWIS, their operations would become more efficient and effective (Boselly 2001). 

RWIS can be described as a combination of advanced technologies that collect, transmit, and 

disseminate road weather and surface condition information to data hubs, where it is then 

processed and made accessible to the general public. Road maintenance personnel have access to 

the data in near real-time and make use of it to effectively plan their WRM activities to shorten 

response times and reduce material usage (e.g., salt and sand). RWIS stations collect data using 

environmental sensor stations (ESSs) and live-broadcast cameras to provide real-time and 

forecasted roadway-related weather and surface conditions. Implementation of these systems not 

only enables cost-effective WRM but also helps motorists make more informed decisions for 

their travel. For this reason, RWIS have been widely used in many places in the northern 

hemisphere.  
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North America alone has more than 3,000 RWIS stations currently in operation and is continuing 

to expand their networks to improve their existing WRM services (Kwon et al. 2017, Kwon and 

Gu 2017). This section focuses on introducing the two general types of RWIS stations, stationary 

and mobile, along with discussions on their corresponding advantages and limitations. 

Stationary RWIS stations, as depicted in © 2019 L. Gu, M. Wu, and T. J. Kwon, University of 

Alberta, Edmonton 

Figure 1-1, are generally installed alongside the roadway, with the main purpose of closely 

monitoring weather/road surface conditions.  

 
© 2019 L. Gu, M. Wu, and T. J. Kwon, University of Alberta, Edmonton 

Figure 1-1. Typical stationary RWIS  

Each station typically has the following components: cameras, road surface sensors, remote 

processing units (RPUs), and communication hardware. In terms of the weather and road surface 

measurements collected, they will often include, but are not limited to, air temperature, road 

surface temperature, dew point, wind speed and direction, and surface status. 

A mobile RWIS station, on the other hand, is installed on a vehicle, as shown in Figure 1-2.  
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© 2019 L. Gu, M. Wu, and T. J. Kwon, University of Alberta, Edmonton 

Figure 1-2. Mobile RWIS unit equipped with spectral road surface temperature sensors 

These mobile stations are equipped with a similar suite of sensors and dash cameras that allow 

the vehicles to collect weather and road surface data as they travel along the roadway. The data 

collected by a mobile RWIS unit is sent via cellular communication to the operations center. 

Apart from the measurements that are often collected by the stationary RWIS, some mobile 

RWIS units can also provide direct measurements of roadway treatment chemical concentration 

and pavement friction, which can help maintenance agency staff to utilize treatment methods that 

better match the actual weather/road surface conditions. 

Due to different data collection mechanisms, stationary RWIS stations provide highly temporal 

but spatially limited coverage, while mobile RWIS units provide spatially continuous but 

temporally discrete measurements. Regardless of the differences, both systems are effective in 

collecting and disseminating weather and road condition information.  

In terms of installation costs, a stationary RWIS station with basic functions costs more than 

$50,000 (Canadian dollars) to install, and this does not include continuous maintenance costs and 

additional sensors that one might want (Buchanan and Gwartz 2005). Considering the relatively 

high price tag, finding the optimal locations for RWIS stations has always been a challenge to 

highway planning authorities, as it is not economically feasible to have a RWIS network with 

high spatial density. Additionally, the reliability of point measurements collected diminishes as 

the distance between RWIS stations increases, resulting in an incomplete map of surface 

conditions.  

One possible solution could be utilizing information obtained from mobile RWIS units to fill in 

the gaps between stationary RWIS locations, improving the RWIS and extending its spatial 

representation. For example, thermal mapping (TM) is one of the earlier techniques that aims to 

construct the spatial distribution of road surface temperature profiles over a highway.  
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In previous thermal mapping-related studies, a vehicle equipped with a mounted infrared 

thermometer collected data under different weather conditions, which were then graphically 

depicted by drawing thermal maps or fingerprints (Shao et al. 1996, Chapman et al. 2001a and 

2001b, Marchetti et al. 2011). In other similar studies, areas that are likely to be freezing or snow 

covered are shown to be visually identifiable through the use of thermal maps. This technique 

allowed maintenance personnel to quickly identify hotspots, but it required frequent monitoring 

(Marchetti et al. 2014). 

Unfortunately, due to limited budget and manpower, it is an unrealistic expectation to 

continuously collect high quality and spatially continuous information in frequent intervals. 

Nevertheless, given large spatial areas and long temporal periods that need to be monitored, it is 

important to understand how RSCs vary over distances and time to help maintain safe driving 

conditions and reduce the costs of WRM activities. To resolve this deficiency, focus must move 

away from just measuring and toward modeling using rich data sources collected via intelligent 

road weather sensors.  

1.3 Current Practice of Winter Road Surface Conditions Estimations 

Several numerical models have previously been proposed in an attempt to quantify the spatial 

distribution of RSCs. Sass (1992) developed a prediction model based on heat condition and the 

surface energy-balance models. Chapman et al. (2001a and 2001b) proposed a multiple 

regression model to demonstrate that up to 75% of the residual RST variation can be affected by 

surrounding geographical features using thermal mapping techniques. Sokol et al. (2017) applied 

an ensemble technique for RST forecasting using an energy balance and heat conduction model 

where the results tended to underestimate the true values.  

Perchanok (2002) conducted a discriminant analysis using three friction measurements: peak 

resistance (𝐹𝑝), slip speed at which the peak resistance occurs (𝑉𝑐𝑟𝑖𝑡), and locked wheel 

resistance (𝐹60). These three measurements were used to classify RSCs into categories such as 

bare wet, bare dry, loose snow, packed snow, and slush. The analysis built a series of linear 

discriminant functions that could optimally discriminate different RSC types.  

Although these prior studies helped provide some insights into how RSCs vary, they suffered 

from one major limitation: the models were developed to provide only site-specific RSC 

information rather than for an entire segment of road. Having continuous RSC information over 

a road network is critical, not only to road users for improved safety but also to winter 

maintenance personnel who are responsible for maintaining a good level of service. 

Moreover, RSC estimation can be challenging as an ongoing adverse weather event can abruptly 

change within a short distance and is constantly influenced by many external factors including 

geographical, topographical, and meteorological features. Likewise, considering the high degree 

of uncertainty and randomness associated with inclement weather events and their interactions 

with complex road networks, it has become extremely difficult to accurately estimate conditions 

between RWIS stations.  
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1.4 Research Objectives  

The main objective of this project was to develop a systematic and transferable method for 

estimating RSCs using data from both stationary and mobile RWIS stations and two advanced 

modeling techniques: regression kriging (RK) and deep learning (DL). The research had four 

specific objectives as follows: 

• Develop a spatially continuous method of mapping the characterization and spatial variations 

of road weather and surface conditions 

• Prepare and process event-based RWIS and other data sets (e.g., weather, traffic, camera 

images, remotely sensed digital elevation models) that are required for both spatial mapping 

and image recognition 

• Test and/or improve the existing image recognition models using the new training/testing 

data 

• Implement a web-based application for showcasing the developed spatial mapping solution 

and demonstrate the application with real-world usage scenarios 

The project study area was a stretch of interstate highway located in Iowa. Along this stretch, 

stationary RWIS stations, imagery, and other remote sensing and geographic information system 

(GIS) data sets were collected. These collected data sets were then processed and linked by time 

and space, and then utilized to determine the two key variables of interest in this study: road 

surface temperature (RST) and road surface index (RSI).  

RST was selected for investigation as it is required to generate accurate road weather forecasts as 

well as to predict black-ice potential. RSI was selected because it is considered one of the most 

important performance indicators given it measures the effects of various winter maintenance 

operations on road users (i.e., level of service). 

This report is organized as follows: Chapter 2 describes the proposed methodology for 

estimating RSCs using the stationary and mobile RWIS. Chapter 3 is a discussion on the study 

area and the data sets collected. Chapter 4 focuses on the results of a real-world case study to 

demonstrate its real-world applications. Finally, the last chapter, Chapter 5, summarizes the main 

findings of this project and presents possible future research extensions that can build on the 

work done thus far. 

  



 

7 

2. METHODOLOGY 

RSC estimation has been the topic of study for researchers, road maintenance authorities, and 

policy makers for many years. However, obtaining accurate estimations are difficult due to the 

inherent variability of road weather and surface conditions, especially during inclement weather 

events. To help tackle this challenge, the researchers explored and evaluated two advanced RSC 

modeling techniques, RK and DL, .  

RK is a geostatistical interpolation method that has garnered a lot of attention recently, as it has 

the capability to estimate RSCs between existing RWIS stations with the help of covariates that 

are known to affect the spatial variation along a highway segment. The novelty of this method 

lies in the utilization of point measurements from RWIS stations to quantify the underlying 

spatial structures via a semivariogram model.  

Another method adopted for RSC estimations is DL due to its potential to recognize and classify 

RSC images into descriptive measures (such as snow coverage level). As previously mentioned, 

the two key variables of interest in this study were RST and RSI (converted from RSC). RST is 

indispensable for predicting black-ice potential and for the efficient mobilization of WRM 

services, while RSI is a friction-like surrogate measure used to quantify the level of service.  

The data (i.e., RST and RSI) for developing and evaluating the proposed RK method can be 

obtained from multiple sources. Mobile RWIS units, as mentioned previously, provide the 

continuous measurements with location attributes (e.g., longitude and latitude) of each RSC data 

point including those for RST and RSC images, which allows the investigation of spatial 

variation patterns and exploration of weather event characterization. To obtain the RSI values, 

RSC images are used to develop DL models and, by feeding in new images, the predicted RSC 

categories by DL are converted into RSI values accordingly.  

Other auxiliary information, such as meteorological factors and topographical features are also 

needed as input to the RK method. Data from stationary RWIS stations provide point 

measurements, which can be used as reference data to evaluate the feasibility and reliability of 

the proposed method for RST and RSI estimation. The overall workflow for this methodology is 

illustrated in Figure 2-1.  
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Figure 2-1. Workflow of the proposed framework 

Each process is further explained in later sections, followed by a case study demonstrating the 

practical use case for this framework. 

2.1 Regression Kriging 

2.1.1 The Idea 

Kriging has an extensive history that saw its beginnings in the mining industry. It was originally 

conceived by D. G. Krige and later formally defined mathematically by G. Matheron establishing 

the field of linear geostatistics called Kriging (Krige 1981, Cressie 1990). Kriging is able to 

predict values at unvisited/unmeasured sites by using a stochastic model to measure the 

continuous spatial variation of sparse sample points. It differs from traditional mathematical 

interpolation methods, as kriging takes both the deterministic and stochastic components of 

random variables into consideration. Not only does it provide point estimates, but it also gives 

the uncertainty of its estimates at the unknown locations based on the set of known observations, 

as follows. 

Let 𝑥 be location vectors for the estimation point and 𝑥𝑘  be a set of observations at known 

locations, with k = 1, . . . , n, and Z be a random variable of interest (i.e., RSC in this study). The 

expression of a general kriging model is as follows (Goovaerts 1997): 

�̂�(𝑥) = 𝑚(𝑥) + ∑ 𝜆𝑘[𝑍(
𝑚
𝑘=1 𝑥𝑘) − 𝑚(𝑥𝑘)] (1) 

where �̂�(𝑥) is the estimated value of the target variable at a location of interest. The terms 𝑚(𝑥) 
and 𝑚(𝑥𝑘) are the expected values (means) of the random variables 𝑍(𝑥) and 𝑍(𝑥𝑘) and 𝜆𝑘is a 
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kriging weight determined by the spatial dependence structure of the residual. With the kriging 

weights known, it allows the user to determine the kriging estimation variance by equation (2):  

𝜎2(𝑥0) =

[
 
 
 
 
𝜆1
𝜆2
⋮
𝜆𝑘
𝜇 ]
 
 
 
 
𝑇

[
 
 
 
 
𝛾(𝑥0, 𝑥1)

𝛾(𝑥0, 𝑥2)
⋮

𝛾(𝑥0, 𝑥𝑘)
1 ]

 
 
 
 

 (2) 

where 𝜎2(𝑥0) is the kriging estimation variance for location 𝑥0, 𝜆 is the kriging weights that can 

be found later in equation (5), and 𝜇 is the Lagrange parameter involved in the kriging weights 

calculation. 

Over time, many variations of kriging have been developed based on different assumptions for 

𝑚(𝑥) (i.e., the determinist component). For example, simple kriging (SK) assumes a known 

global mean while ordinary kriging (OK) assumes an unknown global mean (Cressie 1990, 

Oliver and Webster 1990). In recent years, an interest in hybrid interpolation techniques has 

arisen, to incorporate two conceptually different methods to model and map spatial variability 

and strengthen the explanation of the target variable.  

One of the most renowned hybrid interpolation methods is RK, which makes estimations by first 

using regression on auxiliary information (e.g., meteorological factors, geographical features) for 

the deterministic component and then using OK to interpolate the stochastic component (i.e., 

residuals).The final estimate for one location is the summation of these two estimated 

components (Hengl et al. 2007, Ligas and Kulczycki, 2010, Odeh et al. 1995, Hengl et al. 2003). 

RK equations are shown in equations (3) through (5): 

�̂�(𝑥) = �̂�(𝑥) + �̂�(𝑥) = ∑ �̂�𝑘 ∙ 𝑞𝑘(𝑥) + ∑ 𝜆𝑘 ∙ 𝑒(𝑥𝑘)
𝑚
𝑘=1

𝑝
𝑖=0  (3) 

where �̂�(𝑥) is the fitted deterministic part, �̂�(𝑥) is the interpolated residual, �̂�𝑘 are coefficients 

of the estimated drift model, �̂�0 is the estimated intercept, p is the number of auxiliary variables, 

𝜆𝑘 are kriging weights, and 𝑒(𝑥𝑘) is the regression residual. The regression coefficients �̂�𝑘 can 

be determined by any appropriate fitting method, e.g., ordinary least squares (OLS) or, 

optimally, using generalized least squares (GLS) to take the spatial correlation between 

individual observations into account (Cressie 2015). Equation (4) and (5) show how �̂�𝑘 are 

obtained by using GLS and 𝜆𝑘 by using OK, respectively. 

�̂�𝐺𝐿𝑆 = (𝑞
𝑇 ∙ 𝐶−1 ∙ 𝑞)−1 ∙ 𝑞𝑇 ∙ 𝐶−1 ∙ 𝑧 (4) 

where �̂�𝐺𝐿𝑆 is the vector of estimated regression coefficients �̂�𝑘, 𝐶 is the covariance matrix of the 

residuals, 𝑞 is a matrix of predictors at the sampling locations, and 𝑧 is the vector of measured 

values of the target variable. 
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[
 
 
 
 
𝜆1
𝜆2
⋮
𝜆𝑘
𝜇 ]
 
 
 
 

= [

𝛾(𝑥1, 𝑥1) ⋯ 𝛾(𝑥𝑘, 𝑥1) 1
⋮ ⋱ ⋮

𝛾(𝑥1, 𝑥𝑘)
1

⋯
⋯

𝛾(𝑥𝑘, 𝑥𝑘)
1

1
0

]

−1

[

𝛾(𝑥0, 𝑥1)
⋮

𝛾(𝑥0, 𝑥𝑘)
1

] (5) 

where 𝛾 is the semivariance between two locations and its equation can be found subsequent to 

this discussion in equation (6). 

Figure 2-2, adapted from Gu et al. (2019), provides a schematic example of the general concepts 

of RK.  

 
Adapted from Gu et al. 2019, © 2019 L. Gu, M. Wu, and T. J. Kwon, University of Alberta, Edmonton 

Figure 2-2. Example of a regression kriging process 

As can be seen from this figure, the deterministic part of the variation is first estimated using a 

multiple linear regression (MLR) model to remove the possible trend, and then the residuals can 

be interpolated by kriging, which characterizes and quantifies the underlying spatial structure of 

the observed measurements. The estimated residuals are then added back to the regression results 

to generate the final estimations. 

2.1.2 Quantifying Spatial Structures via Semivariogram 

Like all other geostatistical models, the fundamental assumption underlying RK is that the 

observations are spatially autocorrelated and the underlying correlation structure can be 

represented by a semivariogram. A semivariogram model depicts how the data are correlated 

with themselves as a function of the spatial distance based on observations and location 

information (Journel and Huijbregts 1978). In reality, the data points are quite scarce, and, 
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because of this, the data points are typically grouped per distance vector, h, and the 

semivariogram model is calculated as half the variance of this difference (Curran 1988). 

Equation (6) is used to calculate the sample semivariance for a separation distance, h. 

𝛾(ℎ) =
1

2𝑚(ℎ)
∑ [𝑍(𝑥𝑘) − 𝑍(𝑥𝑘 + ℎ)]

2𝑚(ℎ)
𝑘=1  (6) 

where 𝛾(ℎ) is the sample semivariance, 𝑍(𝑥𝑘) is a measurement taken at location 𝑥𝑘, and 𝑚(ℎ) 
is the number of observations pairs separated by the lag, h, in the direction of the vector. 

The three key parameters used to describe a semivariogram model are called the nugget, sill, and 

range. These three parameters are illustrated in Figure 2-3 (Curran 1988). 

 
Adapted from Gu et al. 2019, © 2019 L. Gu, M. Wu, and T. J. Kwon, University of Alberta, Edmonton 

Figure 2-3. A semivariogram and its associated parameters  

The nugget represents microscale variations, measurement errors, or any spatial variability that 

exists at a distance smaller than the shortest distance between two measurements. The range 

indicates the separation distance limit where the data points are considered autocorrelated to each 

other (i.e., values separated by distances greater than this are considered uncorrelated). The 

upper bound is known as the sill and represents the variance of the random field (Curran 1988). 

Since it is customary to use more than 50 samples to build a reliable semivariogram model (Olea 

2006), sufficient RSC data collected by mobile RWIS units are used to construct semivariograms 

as priori information to estimate the RSC along roadways. Several multiple theoretical formulas 

can be used to fit an experimental semivariogram, Table 2-1 shows the expressions for some 

commonly used theoretical semivariogram models (Armstrong 1998, Bohling 2005). 
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Table 2-1. Commonly used theoretical semivariogram models 

Model Expression 

Spherical 𝛾(ℎ) =

{
 

 
0 , ℎ = 0

𝑐0 + (𝑐 − 𝑐0) (1.5 (
ℎ

𝑎
) − 0.5 (

ℎ

𝑎
)
3

) , 0 < ℎ < 𝑎

𝑐 , ℎ ≥ 𝑎

 

Exponential 𝛾(ℎ) = {
0 , ℎ = 0

𝑐0 + (𝑐 − 𝑐0) (1 − 𝑒
−
3ℎ
𝑎 ) , ℎ > 0

 

Gaussian 𝛾(ℎ) = {

0 , ℎ = 0

𝑐0 + (𝑐 − 𝑐0) (1 − 𝑒
−
(3ℎ)2

𝑎2 ) , ℎ > 0
 

Linear 𝛾(ℎ) = {
0 , ℎ = 0
|ℎ| , ℎ > 0

 

Cubic 𝛾(ℎ) =

{
 

 
0 , ℎ = 0

𝑐0 + (𝑐 − 𝑐0) (7 (
ℎ

𝑎
)
2

− 8.75 (
ℎ

𝑎
)
3

+ 3.5 (
ℎ

𝑎
)
5

− 0.75 (
ℎ

𝑎
)
7

) , 0 < ℎ < 𝑎

𝑐 , ℎ ≥ 𝑎

 

Cardinal sine 𝛾(ℎ) =

{
 
 

 
 0 , ℎ = 0

𝑐0 + (𝑐 − 𝑐0)(1 −
sin (

ℎ
𝑎
)

|
ℎ
𝑎
|
) , ℎ > 0

 

where: 𝛾 is the semivariance, ℎ is the points separation distance, 𝑐0 is the nugget, 𝑎 is the range, and 𝑐 is the sill 

2.1.3 Implementation and Evaluation 

The following steps are needed to build a semivariogram model from mobile RWIS 

observations, as well as to combine them with RK to interpolate RSC. 

Step 1: Remove trends for RSC. This step involves developing a model for two purposes: 

determine the covariates (e.g., latitude and elevation) and detrend the RSC data. The RSC data 

are detrended because mobile RWIS units provide continuous measurements in the construction 

of the spatial autocorrelation structure. 

Step 2: Construct semivariogram models using detrended RSC obtained from Step 1. With 

detrended RSC (i.e., residuals) obtained from Step 1, the semivariogram models are constructed 

and calibrated using the residuals as the experimental points. A fitted semivariogram model is 

then chosen to represent the spatial structure that will be used in the subsequent steps. 

Step 3: Perform kriging to generate estimated residuals from the measured residuals obtained in 

Step 1. In this step, kriging is utilized to generate estimated residuals based on the residuals that 

were calculated from Step 1; semivariogram models calibrated in Step 2 are used here as priori 

information. 

Step 4: Generate final RSC estimates. This step generates the final RSC estimates by adding the 

estimated residual results in Step 3 back into the linear regression predicted results from Step 1. 
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To evaluate the estimation accuracy as well as its feasibility, cross validation is done to compare 

the RK estimates with the actual observed RSC values collected by the mobile RWIS unit. Cross 

validation is a resampling procedure used to evaluate the developed model on a limited data 

sample set. In a leave-one-out cross validation method, it is typically done iteratively for all data 

locations by removing a data point from each location, and then making an estimate at the 

removed point using the developed model and the surrounding data points.  

In our case, only point measurements from the locations of existing RWIS stations were used as 

inputs, along with the pre-constructed semivariogram models that were used to estimate RSC at 

an unmeasured location. Following this, the prediction and the observed value were compared to 

evaluate the feasibility of RK. 

To better evaluate model performance, the root mean square error (RMSE) is typically used to 

validate the goodness-of-fit between estimated and observed RSC. RMSE indicates how closely 

the model estimates the measured values. Equation (7) is for the RMSE. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑖−�̂�𝑖)

2𝑛
𝑖=1

𝑛
 (7) 

where n is the total number of observations and 𝑥𝑖 and �̂�𝑖 are the observed RSC and RK 

estimated RSC in site i, respectively. 

Other than the RMSE, other statistical measurements, including mean absolute error (MAE), 

average standard error (ASE), and root mean square standardized error (RMSSE) are also often 

adopted. These alternative statistical measurements are used to quantitatively assess the goodness 

of fit of the developed model from other aspects (e.g., standard error compares sample mean and 

population mean); in this report, only RMSE is included. 

2.1.4 Weather Events Characterization via Nugget-to-Sill Ratio 

Another task of this project was to generalize the characterization of weather events via RSC 

spatial variation pattern, which can be achieved by examining the potential relationship between 

hourly RSC spatial dependence and the corresponding weather events (e.g., wind and rainfall) 

that happened within the same specific hour. Spatial dependence refers to the degree of spatial 

autocorrelation between independently measured values observed in geographical space and is 

necessary for the determination of kriging weights (Cambardella et al. 1994). 

With the semivariogram model calibrated, the nugget-to-sill ratio (NSR), which is calculated by 

dividing the nugget by the sill, can be utilized as a dimensionless measure of the proportion of 

total observed variation that could not be explained by the observed spatial dependence of the 

target variable (Cambardella et al. 1994, Sun et al. 2019). In other words, a small NSR represents 

a strong spatial dependence, while a large ratio reflects a weak spatial dependence on the 

variable. For example, the randomly distributed RST tends to have a large NSR value as the 

variations in different lag distances fluctuate and thus do not fit any pattern.  
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According to the literature (Cambardella et al. 1994, Sun et al. 2019, Karl and Maurer 2010, 

Behrens et al. 2019), three distinct classes of spatial dependence are typically defined in 

accordance to NSR values as follows: if the ratio is smaller than 25%, the target variable is 

considered strongly spatially dependent; if the ratio is between 25% and 75%, the variable is 

considered moderately spatially dependent; and if the ratio is greater than 75%, the variable is 

considered weakly spatially dependent. Sample semivariograms of the three classes are shown in 

Figure 2-4. 

   
Strong (NSR≤ 25%) Moderate (25% <NSR< 75%) Weak (NSR≥75%) 

Figure 2-4. Sample semivariograms of different spatial dependence classes 

2.2 Deep Learning 

2.2.1 The Idea 

Although RK is effective in estimating values at unmonitored areas, its value to WRM 

authorities is greatest when real-time point measurements of RSC are obtained in a timely 

manner, so that it can be used as input in the RK technique quickly. Traditionally, RSC 

monitoring is done by manual patrols by highway agencies or maintenance contractors or by 

using RWIS stations, with each having their own limitations.  

Manual observation by patrollers is typically subjective, inaccurate, and time-consuming, 

particularly since the patrollers will often need to monitor a large area. Some new technologies, 

such as in-vehicle video recorders, smartphone-based systems, and high-end imaging systems 

have been developed to collect RSC data; however, the application of these technologies still 

requires manual image processing as no readily available and reliable computerized image 

recognition solutions are available to automate this process (Pan et al. 2020). Researchers have 

also attempted to apply some traditional machine learning models, including artificial neural 

networks (ANNs), random forests (RFs), and support vector machines (SVMs) to classify winter 

RSC images; however, these models have shown poor accuracy and transferability to date (Panet 

al. 2020, Carrillo et al. 2019). This is changing with the development of a novel machine 

learning technique –DL or deep neural networks (DNNs).  

DL models have been extensively studied and shown excellent performance to solve a variety of 

problems including unsupervised learning-based classification, object detection, forecasting, etc. 

Previous studies have also shown some promising results when applying DL for tackling RSC 

recognition problems (Pan et al. 2020, Carrillo et al. 2019, Pan et al. 2019). 
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2.2.2 Implementation and Evaluation 

In this subsection, the implementation of the DL model is elaborated on, along with a description 

of the model architecture, as well as a demonstration of its usage in RSC image recognition. 

DL models are an evolution of a simpler type of model called the multi-layer perceptron (LeCun 

et al. 2015), which takes an input vector and uses consecutive groups of non-linear functions, 

called layers, to produce higher-level representations of the input data. In contrast, DL models 

use many layers, where each succeeding layer takes the output of the previous layer as its input. 

Most DL models fall into the category of supervised learning because their goal is to make the 

model create a desired output mapping from input observations. In our particular case, we expect 

the DL models to receive images from in-vehicle cameras paired with mobile RWIS units. 

Figure 2-5 shows a simplified architectural diagram of DL models for image classification.  

 
Adapted from Carillo et al. 2019 who cited mathworks.com and that original has Creative Commons Attribution 4.0 

International Free Cultural Works license and approval 

Figure 2-5. Generic architecture of a DL model for image classification 

An input image is represented by a three-dimensional matrix with the height, width, and red-

green-blue (RGB) channels of the image as its initial dimensions. This input image moves 

through the layers in the model and, by the end of it, the model outputs a vector of probabilities 

with the highest probability corresponding to the most likely RSC category for the image. 

The first component (feature learning) of a DL model includes a series of convolutional and 

pooling layers that gradually convert the information contained in the input image into a 

compressed vector representation with smaller height and width but a larger number of channels 

than the original image. Convolutional layers are also known as filters that summarize an input 

matrix into one with smaller dimensions. In other words, these layers learn how to detect features 

such as shapes, contrast patterns, and color variations, and pass along a simplified representation 

of these features to the following layers. 

The second component (classification) starts with a layer that converts the three-dimensional 

vector from the first section into a one-dimensional vector (flattening), which is then fed into a 

series fully connected layers that reduce the size of the vector representation even more, and 
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then, finally, through a softmax layer (Jang et al. 2016, Wang et al. 2018) that outputs probability 

values for each category in the classification task. Fully connected layers are usually 

implemented in the last part of the model to summarize the visual features detected by the 

previous layers. Most DL models have many convolutional layers but only a few fully connected 

layers because the number of parameters in the latter ones is much higher, which in turn requires 

more computational resources to train the models. 

The design of a DL model also includes the consideration of multiple hyperparameters, and their 

role is crucial for the successful implementation of the model. The designer can set 

hyperparameters to manage multiple aspects of the model, but to fine tune them requires 

significant effort and application domain knowledge. By setting these parameters, the designer 

can define the number of neurons per layer, the type of non-linear functions (i.e., activation 

functions) to use, the number of times the data set is passed through the model during training 

(i.e., epochs), how fast the model learns (i.e., learning rate), and the dropout regularization rate 

(Dahl et al. 2013, Gal and Ghahramani 2016), among other characteristics of the model 

definition and training. In practice, researchers focus on fine-tuning the most relevant 

hyperparameters based on previous literature and their experimental findings. 

A DL model is typically trained using 90% of all labeled RSC images and then validated using 

the remaining 10% (Khan et al. 2019, Hamori et al. 2018). When training accuracy is very low, it 

is called an “underfitting” problem, which means the DL model is not capable enough to learn 

useful features from the images. In contrast, when training accuracy is high but validation 

accuracy is very low, this is called an “overfitting” problem, meaning the DL model cannot well 

generalize the pattern learned from the training data sets. In our case, both problems were taken 

into account during development of the DL model. 
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3. STUDY AREA AND DATA 

To evaluate the feasibility of RK and DL for estimating RSCs along highways as well as the 

NSR for characterizing weather events, the content of this chapter demonstrates a real-world case 

study example. The descriptions and results associated with each part of the study are presented 

following the considerations outlined in the study area section . 

3.1 Study Area 

Since RSC can easily be influenced by a variety of factors, the selection of the study area must 

consider and control for any geographical, topographical, and traffic related effects. In addition, 

considering the fact that harsh weather events affect a long stretch of roadway and that winter 

maintenance activities can be done at the same time along a highway, the spatial coverage needs 

to be considered during the study area selection process. Therefore, a road section that was 

completely paved with asphalt in the southern section of I-35 within Iowa was selected for this 

study. The study area is shown in Figure 3-1. 

 

Figure 3-1. Study area - southern section of I-35 in Iowa 

The selected road segment goes through four counties in Iowa and overlaps with I-80 in central 

Iowa. Due to its importance to both the US and Iowa, the Iowa DOT spends a lot of resources to 

monitor and improve conditions on this road segment. The total length of this stretch is about 

73.32 mi (118 km), with three stationary RWIS stations located within its range.  
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RST data and RSC images were collected by the automated vehicle location (AVL) system, 

which can be considered a stand-in version of a heavily simplified mobile RWIS unit, while 

other data (meteorological factors, geographical and topographical features, etc.) can be obtained 

using other data sources, including the three stationary RWIS stations. Details of these other data 

sources are described in the next section. 

3.2 Data Description and Integration 

3.2.1 Road Surface Temperatures and Dash Camera Images 

RST and RSC images of the Iowa road network between October 2018 and April 2019 were 

collected by the AVL system, which is equipped with global positioning system (GPS) data to 

track the locations of the winter maintenance vehicle fleet, along with a regular thermometer and 

an inferred thermometer to measure the air temperatures and RST every 10 seconds along the 

roadway. A standard vehicle-mounted dash camera is utilized to record RSC images along the 

roadway every 5 to 10 minutes. Within the study area for the timeframe, 579,088 RST records 

and 24,586 RSC images were collected. 

The RSC images were manually labeled according to the classification scheme shown in Table 

3-1 through a web-based labeling platform, as shown in Figure 3-2.  

Table 3-1. Definition of different RSC categories 

Sample Images 

RSC 

Description/Definition 

RSC 

Category 

 

At least 9.84 ft (3 m) of 

the pavement cross-

section in all lanes 

clear of snow or ice 

Bare 

Pavement 

 

Only part of wheel path 

is clear of snow or ice 

Partially 

Snow 

Covered 

 

No wheel path clear of 

snow or ice 

Fully 

Snow 

Covered 

 

Not recognizable 

because images are too 

blurry, too dark, or too 

light 

Undefined 
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Figure 3-2. Web-based manual image classifier 

Labeled images were then used to train the DL model and validate its accuracy. Since RSI values 

were not directly collected by the AVL, RSC categories were converted into RSI values 

accordingly before they were implemented in the spatial mapping of the RSI for unvisited areas. 

The conversion method can be found later in section 0. on RSC categories (labeled RSC images), 

which was used in model development, with summary statistics for the images shown in Figure 

3-3. 

 

Figure 3-3. Statistics of labeled RSC images 

To eliminate measurement errors and local random fluctuations of RST and RSI, raw data points 

were aggregated both spatially (every 546.8 yds [500 m]) and temporarily (ever hour) along the 

3786

36%

1327

13%

3166

31%

2116

20%

Statistics of Labelled RSC Images

Bare Pavement

Fully Snow Covered

Partially Snow Covered

Undefined
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road segment. In addition, to ensure each hourly period had enough observations to provide 

sufficient spatial coverage, only those with coverages longer than 40.4 m (65 km) (over half of 

the total stretch length) and more than 50 aggregated data points were kept for modelling (Olea, 

2006). The descriptive statistics of the hourly RST and converted RSI values along the study area 

are shown in Table 3-2.  

Table 3-2. Descriptive statistics of hourly AVL observation 

Variable 

#Hourly  

Observations Minimum Maximum Mean. 

Standard  

Deviation 

RST 228 -13.1℃ 28.3℃ -1.2℃ 3.4℃ 

RSI 34 0.35 0.90 0.59 0.19 

 

3.2.2 Digital Elevation Model 

To obtain topographical features of the Iowa road network that included the study area, a digital 

elevation model (DEM) with a resolution of 128 gigabytes (GB) (for 3 m of data) was 

downloaded from the State of Iowa Open Geospatial Data website (at https://geodata.iowa.gov/) 

using a python web crawler script. The elevation, slope and aspect along the study area were then 

extracted from the DEM using ArcGIS 10.7 (ESRI 2011). The resulting map files for all 

topographical features had a size of 484 GB. Figure 3-4 shows an example the DEM. 

   

Figure 3-4. Data preparation. example of rainfall intensity (left) with elevations (right) 

3.2.3 Meteorological Data 

Meteorological data including but not limited to air/surface temperature, wind 

speed/direction/gust, and rainfall for the entire state between October 2018 and April 2019 

(seven months of data) were downloaded from the Iowa State University Iowa Environmental 

Mesonet (IEM) Roadway Weather Information site (at http://mesonet.agron.iastate.edu/RWIS/). 

Some of the data (e.g., wind relation factors) were in comma-separated values(CSV) files and 

https://geodata.iowa.gov/
http://mesonet.agron.iastate.edu/RWIS/
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collected by RWIS stations at 15- to 20-minute intervals, while other data (e.g., rainfall) were in 

raster image format and collected by remote sensors. The total size of the downloaded files was 

about 7.5 GB. In the end, the data collected by the three RWIS stations in the study area were 

processed and integrated for the following analysis.  

An example of the meteorological data (e.g., rainfall) is shown in the previous Figure 3-4. The 

temporally continuous meteorological factors were used to examine the correlation between 

RSC’s spatial dependence and the meteorological factors themselves. Wind-related factors and 

rainfall intensity were used to characterize the weather events.  

It is important to note that the study area is a stretch of roadway running in the north-south 

direction. A re-Calculated directional Wind Speed (CWS) that integrates wind speed (WS) and 

wind direction (WD) based on the degrees from the north-south direction was calculated for each 

wind record via vector calculation rules; the directional effects of wind on RSC variations can 

thus also be controlled. All meteorological factors were aggregated hourly, and the descriptive 

statistics for the hourly wind factors and rainfall are shown in Table 3-3. 

Table 3-3. Descriptive statistics of hourly meteorological factors 

Factor Month Mean Max. Min. Std. 

WS (m/s) 

Oct. 0.94 0.94 0.94 0.00 

Nov. 5.59 9.06 1.00 2.32 

Dec. 3.64 6.22 1.50 1.60 

Jan. 3.67 7.39 0.92 1.58 

Feb. 2.67 6.39 1.40 1.74 

Mar. 4.25 4.29 4.17 0.07 

Apr. 3.04 3.04 3.04 0.00 

WD (°) 

Oct. 69.45 69.45 69.45 0.00 

Nov. 22.05 63.25 7.55 11.97 

Dec. 48.48 79.87 17.47 17.38 

Jan. 38.86 84.82 9.46 20.87 

Feb. 33.52 44.14 22.07 8.59 

Mar. 67.63 68.97 64.96 2.32 

Apr. 31.67 31.67 31.67 0.00 

CWS (m/s) 

Oct. 0.26 0.26 0.26 0.00 

Nov. 5.09 8.80 0.38 2.27 

Dec. 1.96 4.03 0.41 1.10 

Jan. 2.68 7.26 0.26 1.94 

Feb. 1.94 4.45 1.00 1.15 

Mar. 1.21 1.28 1.18 0.05 

Apr. 2.34 2.34 2.34 0.00 
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Factor Month Mean Max. Min. Std. 

WG (m/s) 

Oct. 2.11 2.11 2.11 0.00 

Nov. 8.89 14.13 1.87 3.68 

Dec. 5.81 9.97 2.56 2.50 

Jan. 5.79 11.12 1.71 2.42 

Feb. 4.30 10.61 2.49 2.65 

Mar. 6.44 6.44 6.44 0.00 

Apr. 5.48 5.48 5.48 0.00 

Rainfall (mm) 

Oct. 0.00 0.00 0.00 0.00 

Nov. 4.60 25.00 0.00 6.16 

Dec. 1.88 25.00 0.00 5.56 

Jan. 3.86 20.00 0.00 4.69 

Feb. 0.00 0.00 0.00 0.00 

Mar. 3.00 5.00 2.00 1.41 

Apr. 0.00 0.00 0.00 0.00 

m/s = meters per second, mm = millimeters, Max. = maximum; Min. = minimum; Std. = standard deviation 
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4. RESULTS AND DISCUSSION 

4.1 Spatial Mapping of Road Surface Temperatures 

Following the previously described procedures, the RK model can be developed via a few key 

steps. First, trend removal is performed to see how much variance in the RST can be explained 

by air temperature and the selected geographical features of latitude, longitude, altitude, and 

slope. Secondly, a semivariogram model is applied to quantify the spatial variation of the 

detrended RST. Following this, the kriging interpolation approach is used to modify the 

estimated RST obtained from the first step. The last part of the process is the cross validation of 

the final estimated results.  

In this section, four examples are selected to illustrate the overall procedure and its associated 

results, while the complete results including all hourly events are included in Appendix A. 

The trend removal was performed by fitting an MLR model using GLS to ensure the target 

variable (i.e., RST) was free of trend. A p-test was then done to confirm the statistical 

significance between RST, air temperature, and each geographical feature at a 5% significance 

level. Table 4-1 shows the fitted trend model results of the selected four examples in the study 

area. 

Table 4-1. Examples of fitted trend models involved in RK for RST 

Date Hour Significant variables Sign of Coefficients R2 

11-18-2018 3 a.m. Air temperature/Latitude/Altitude  (+)/(-)/(-) 81% 

11-25-2018 7 a.m. Longitude/Latitude/Altitude (-)/(-)/(-) 92% 

11-25-2018 6 p.m. Altitude/Slope (-)/(-) 53% 

12-31-2018 2 p.m. Air temperature/Longitude/Altitude (+)/(-)/(-) 48% 

 

By inspecting the signs of the coefficients, the calibration results for the air temperature (AT) 

and geographical features make intuitive sense. For instance, RST is likely to be higher in the 

locations where AT is also higher. By contrast, RST decreases when the altitude value increases 

because the elevation of the study area became higher when moving toward the north. The same 

trend is observed for latitude as temperatures are known to decrease as latitude increases. Since 

the highway stretch isn’t perfectly vertical, longitude, which measures the degree of 

continentality, was also found to have a negative relationship with RST. Slope, the measure of 

steepness or the degree of inclination of the horizontal plane, also has a negative relationship 

with RST as anticipated. Aspect, the compass direction that a slope faces, can also have a strong 

influence on temperature. This is because, in the afternoon, the sun’s rays are coming from the 

west and, with a higher aspect in this direction, the pavement is more exposed directly to the sun, 

which leads to a higher RST (Bennie et al. 2008). Other than the presented examples, trend 

models were established for all hourly observations with sufficient data, and all signs intuitively 

made sense upon further investigation. 
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However, by comparing the R2 value for each regression model, the researchers found that the 

predictive ability of the regression models varied dramatically. One possible reason for this could 

be the different weather events that cause random fluctuations in the RST. The shortfalls in RST 

estimations suggested that using a trend model (i.e., the MLR model) alone may not achieve the 

desired results, and, thus, the kriging method should be incorporated to further refine the model 

and improve its performance. 

With all hourly semivariogram models constructed, RK was then adopted to estimate RST for all 

of the remaining locations in the study area. For this case study, only observations from the AVL 

system were used for interpolation, and the AVL data points at or near the same location as a 

stationary RWIS system were considered surrogate stationary RWIS readings. The main reasons 

for using observations from the AVL data points in lieu of RWIS readings were as follows: 1) 

the real RWIS stations sometimes had missing values and thus could not be used as control 

points; 2) doing so would isolate any variability or differences between the AVL and RWIS 

sensors while also providing observed values, which can be used for model performance 

comparisons, in between RWIS stations; and 3) the measurement mechanisms for the AVL 

system and stationary RWIS stations are different, so only using AVL data points that were at or 

closest to the RWIS stations removed any potential biases. As a result, the semivariogram model 

and point measurements were the only inputs used in the RK technique for RSC interpolation, 

and the remaining unconverted AVL data points were used to cross validate estimation accuracy. 

To evaluate the feasibility of RK, AVL point measurements closest to each RWIS station were 

incrementally added (from one to three) to the road network to cross validate the estimation 

accuracy for RK. In the first simulation to cross validate the RK estimations, only one surrogate 

point measurement station (i.e., the AVL data point that was closest to ROSI4) was used as the 

observed data to estimate the rest of the road segment study area (unmonitored areas). In the 

second simulation, two surrogate stations represented by the AVL data points that were closest to 

ROSI4 and RDSI4 were used as observed data points in estimating all other unknown locations. 

The third and final simulation repeated the same procedure but added the AVL data point that 

was closest to RLEI4 as the additional data input. The cross-validation results of these examples 

are shown in Table 4-2. 

Table 4-2. Examples of the fitted semivariogram models for RST 

Date Hour Nugget Range (m) Sill 

#inputs point  

measurements RMSE 𝜎2̅̅ ̅ 

11-18-2018 3 a.m. 0.000 13,978.186 0.304 

1 0.396 0.369 

2 0.377 0.277 

3 0.396 0.219 

11-25-2018 7 a.m. 0.042 53,658.513 0.051 

1 0.261 0.100 

2 0.242 0.075 

3 0.237 0.063 

11-25-2018 6 p.m. 0.096 28,419.104 0.511 

1 0.805 1.022 

2 0.713 0.767 

3 0.592 0.634 
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Date Hour Nugget Range (m) Sill 

#inputs point  

measurements RMSE 𝜎2̅̅ ̅ 

12-31-2018 2 p.m. 0.042 24,682.661 0.078 

1 0.281 0.156 

2 0.28 0.117 

3 0.307 0.102 

 

Table 4-2 shows that, overall, the RMSE value decreases as the number of point measurement 

inputs increases, and this can be observed on November 25, 2018 at 7 a.m. and November 25, 

2018 at 6 p.m. However, this does not consistently happen for all hourly events, and one of the 

reasons for this can be attributed to the sampling locations of the point measurements (i.e., the 

existing RWIS station locations). Some locations provide inputs values that may not be as 

representative of distant areas as other locations; thus, local attributes of the data point will affect 

the overall estimation performance, especially if the locations have significantly different local 

attributes.  

Different hourly weather events can be another reason for this phenomenon, as the temporal 

variation of meteorological factors tends to affect spatial structures of RSC as well. However, the 

kriging estimation variance does decrease with every additional station. This means that, by 

adding more stations, more variance is accounted for by the model, making it more reliable. 

Ultimately, this shows that adding stations requires an optimal placement strategy that 

incorporates local attributes and different weather events, which is a future research topic worth 

investigating. 

The potential in the method developed and implemented here can be portrayed clearly by the 

comparisons between the estimated and the actual observed RST profiles depicted in Figure 4-1.  
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Figure 4-1. Examples of the RK estimated RST versus observed RST 

Visual inspection of the four sample data sets confirmed that the RK model did well in capturing 

the general spatial variation pattern found in the observed data. The findings further showed that 

the proposed method needed as little as a single point measurement as input to fill in a large 

spatial gap that existed between RWIS stations. 

To promote better visualization, the RST estimation results were illustrated using an interactive 

HTML-based web visualization tool. As shown in Figure 4-2, the tool offers a convenient way of 

visualizing the estimation results, including estimated values and estimation variances, with the 

freedom of choosing a different number of RWIS inputs and also their respective estimation 

accuracy. 
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Figure 4-2. Example of the interactive web visualization tool for RST 

4.2 Spatial Mapping of Road Surface Indices 

To spatially map RSI, as previously illustrated in Figure 2-1, the researchers utilized both DL 

and RK. Given that the RSI values were not directly measured but collected using dash cameras 

from maintenance vehicles, the research team used the DL model to automate the process of in-

vehicle RSC image recognition, and then converted the predicted RSC category to RSI values 

using an image thresholding technique, as discussed in this section. Finally, the RK model was 

adopted again to estimate RSI for the unvisited areas (i.e., locations where RSC images were not 

available). 

4.2.1 Road Surface Condition Image Recognition via Deep Learning 

Following the procedures described in the previous Methodology chapter, the DL model was 

developed using the TensorFlow application programming interface (API) (Abadi et al. 2016) 

and conducted with Compute Canada using a 32 GB graphics processing unit (GPU) (Baldwin 

2012). Figure 4-3 shows the training and validation accuracy of the developed model, with a 

confusion matrix depicting the validation accuracy within each image classification group.  
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Figure 4-3. Deep learning model performance 

The confusion matrix shows the performance of the DL model. The number of correct and 

incorrect predictions are summarized with normalized values (i.e., percentages) and are broken 

down by each category: bare pavement, partially snow covered, fully snow covered, and 

undefined. The values in the diagonal line of dark-shaded squares from upper left to lower right 

represent prediction accuracy, while the remaining values in the lighter-shaded squares in each 

column represent the false positive rate (FPR) (also known as a Type I error, where DL 

predictions are positive but they are false/incorrect predictions) and the values of each row 

represent the false negative rate (FNR) (also known as a Type II error, where DL predictions are 

negative but they are false/incorrect predictions).  
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For example, in the first row of the confusion matrix, 0.94 means the DL model correctly 

classified 94% of new bare pavement images into the Bare category, but incorrectly classified 

0% (0), 5.3% (0.053), and 0.26% (0.0026) of them into the other three categories, and the 

summation of these three values is called the FNR. For other non-bare images, the DL model 

incorrectly classified 0% (0), 6.9% (0.069), and 0% (0) from each category to the Bare category, 

and the summation of these three values is called the FPR. High prediction accuracy with a low 

FNR and FPR implies an accurate DL model. 

Results showed that the developed DL model achieved a high level of training and validation 

accuracy overall. The confusion matrix also implied that the model could successfully 

distinguish different RSC images, as the validation accuracy for each category was over 90%. 

The researchers were able to conclude that the developed DL model can recognize RSC images 

quite accurately. The next step was to convert this direct measure of RSC into a numerical value, 

RSI, for continuous spatial mapping. 

4.2.2 Road Surface Index Conversion 

The RSC category obtained using the DL model is a discrete measure representing the amount of 

snow coverage (bare pavement, partly snow covered, or fully snow covered) on the road surface, 

which cannot be conveniently used for spatial inference. As a result, the researchers adopted an 

approach proposed by Fu et al. (2017) to map the RSC categories to a continuous measure called 

the RSI, as shown in Table 4-3.  

Table 4-3. RSC categories and corresponding RSI values 

Original 

Customized 

(i.e., our case) 

RSC Category 

Road Surface Index (RSI) 

RSC Category Min. Max. Avg. 

Bare and Dry 0.9 1 0.95 
Bare Pavement 

Bare and Wet 0.8 0.9 0.85 

Slushy 0.7 0.8 0.75 
Partially Snow Covered 

Partly Snow Covered 0.5 0.7 0.6 

Snow Covered 0.3 0.5 0.4 
Fully Snow Covered 

Snow Packed 0.2 0.3 0.25 

Icy 0.05 0.2 0.125 N/A 

 

The seven original RSC categories are listed above and in the leftmost column of the table. This 

study used only three categories, as listed in the rightmost column of the table. It is important to 

note that if the camera image is classed as fully snow covered, it cannot distinguish between 

packed or unpacked snow; for this reason, they are grouped together. Additionally, the icy 

category is omitted in this case study as the RSI value is developed using conventional camera 
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technology, making it impossible to identify icy road surfaces. Details of the RSI with regard to 

each RSC category are summarized in Table 4-3. 

Given that the customized RSC categories shown in the rightmost column of Table 4-3 are based 

on one-to-one mapping, using one single value (e.g., mean value of the included original RSC 

categories) to represent each customized RSC category will inevitably eliminate a lot of details. 

For example, in the image labeling process, pavements with one wheel path visible, two-wheel 

paths visible, etc. are all labeled into the partially snow-covered category; however, their degree 

of slipperiness can be very different. To solve this issue, an image thresholding technique was 

adopted (Sezgin and Sankur 2004, Dawson-Howe 2014). 

Image thresholding is a simple form of image segmentation. It is a non-linear operation that 

converts a gray-scale image into a binary image where two levels are assigned to the pixels 

depending on whether they are below or above the specified threshold value. In other words, if 

the pixel value is greater than the threshold, it is assigned one value (white). If not, it is assigned 

the other value (black). 

After separating each partially snow covered image into foreground values (with black 

representing visible pavement) and background values (with white representing snow and/or ice), 

the proportion of background values in each image can be used to adjust the RSI values found in 

Table 4-3. For example, the adjusted RSI of a partially snow covered pavement with 60% 

background values can be obtained as 0.8-(0.8-0.5)×60% = 0.62.  

In our case, an adaptive thresholding algorithm was adopted to calculate thresholds for small 

regions of each image, so that different thresholds can be generated in different regions of the 

same image under varying light conditions. In addition, to eliminate bias caused by unnecessary 

features within the image (e.g., vehicle headlights, roadside vegetation) prior to the image 

thresholding process, each image is cropped to a relatively small extent to represent the 

pavement conditions in the primary driving lane. An example of these two processes is depicted 

in Figure 4-4.  

 

Figure 4-4. Example of image cropping and thresholding process 

The other two RSC categories (i.e., bare pavement and fully snow covered) are uniformly 

converted to the mean values of each RSI range (0.9 and 0.35, respectively) as the snow status in 

these two categories are technically almost the same. All RSC images were converted to their 

RSI values following the same procedures, and descriptive statistics for the converted RSI values 

can be found in the previous Table 3-2. 



 

31 

4.2.3 Road Surface Index Interpolation 

With the developed DL model, the RSI values can be obtained from the images following the 

image thresholding procedures described in the previous section. Then, to spatially interpolate 

the RSI values, RK is adopted again, except, in this case, the trend removal uses a second-order 

polynomial curve. Examples of trend removal results and cross validation with incremental point 

measurements as input are shown in Table 4-4, Table 4-5, and Figure 4-5.  

Table 4-4. Examples of trend removal results involved in RK for RSI 

Date Hour Significant variables 

Sign of  

Coefficients R2 

11-25-2018 10 a.m. Altitude2 (-) 56% 

1-12-2019 1 a.m. Altitude/Altitude2 (+)/(-) 32% 

1-12-2019 8 a.m. Altitude (-) 21% 

1-18-2019 8 p.m. Altitude2 (-) 37% 

 

Table 4-5. Examples of the fitted semivariogram models for RSI 

Date Hour Nugget Range (m) Sill 

#inputs point 

measurements RMSE 𝜎2̅̅ ̅ 

11-25-2018 10 a.m. 0.019 52,330.546 0.019 

1 0.151 0.037 

2 0.152 0.027 

3 0.146 0.023 

1-12-2019 1 a.m. 0.010 30,676.037 0.018 

1 0.160 0.033 

2 0.158 0.023 

3 0.179 0.019 

1-12-2019 8 a.m. 0.007 35,581.762 0.015 

1 0.140 0.026 

2 0.128 0.018 

3 0.116 0.015 

1-18-2019 8 p.m. 0.009 55,272.873 0.009 

1 0.100 0.017 

2 0.154 0.013 

3 0.132 0.011 
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Figure 4-5. Examples of the RK estimated RSI versus observed RSI 

Again, the same four examples are shown in this section for illustration purposes, and the 

complete results are included in Appendix B.  

The results indicated that the general pattern of RSI along the highway stretch can also be well 

captured by the proposed method, even with as few as one RWIS point measurement as input. 

The findings for RSI estimation are very similar to what was discussed for the RST analysis, in 

that the estimation accuracy does not consistently improve with an increasing number of data 

points as input. However, also much like the results from the RST analysis, every additional 

station does in fact provide additional benefit to the kriging estimation variance (i.e., uncertainty) 

in how it decreases with every additional station.  

Minimizing uncertainty in spatial inference is particularly important for winter maintenance 

personnel as operations-related decisions should be made using more reliable condition 

estimates. To maximize the monitoring and estimation return from a limited number of RWIS 

stations, efforts are needed to choose appropriate sites to install RWIS stations by considering 

local attributes and different weather conditions. This helps ensure that the system can produce 

the most accurate information about various hazardous events to help transportation agencies 

make more informed decisions in a strategic RWIS network planning process (Kwon et al. 2015, 

Biswas et al. 2019).  
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Another phenomenon observed that warrants further discussions is that the converted RSI values, 

as shown in the previous Figure 4-5, still have severe fluctuations at some locations with several 

possible causes for this. It could be a result of a lack of data points (i.e., the collected RSC 

images, which have limited spatial coverage). It can also be a result of the image translation to 

RSI valuation. Given that the image is converted for thresholding analysis (pixel proportions), it 

can be highly susceptible to extraneous features in the image such as vegetation or highly 

reflective surfaces.  

To further improve it, a finer scale of RSI conversion can be one of the possible solutions to 

determine a more representative RSI value for each RSC category, so that a more representative 

pattern of the actual road conditions can be reflected. The addition of a thermal camera may also 

provide an additional source of image information that may make the RSI translation more 

accurate. As a final suggestion, the inclusion of a friction sensor may also aid in the 

determination of the RSI values, as it can detect icy roads and will better determine how slippery 

the roads actually are.  

Nevertheless, the findings reported herein provide significant contributions to the advancement 

of our understanding as well as the methodology for inferring large spatial gaps with limited 

point measurements. 

Lastly, the similar interactive visualization tool developed for RST was also made available for 

RSI as shown in Figure 4-6.  

 

Figure 4-6. Example of the interactive web visualization tool for RSI 

The figure well portrays the excellence of the proposed hybrid method that can accurately 

estimate road slipperiness over a long stretch of highway using limited inputs. 
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4.3 Weather Events Characterization 

In addition to interpolating the RSC variables, it is also important to understand the spatial 

variation pattern with respect to meteorological factors. These findings can be used as priori 

knowledge for implementing RK without sending AVL trucks to collect data before making 

decisions on WRM activities. Since the available number (i.e., 34) of hourly events with RSI 

values was not enough to make a generalized result, only RST observations were included in this 

portion of the study.  

The NSR, which represents the spatial dependence of the target variable within the study area, 

was used to characterize the spatial dependence of the RST. This value can vary a lot with 

different weather events. Guided by the literature review and data availability, wind and rainfall 

were used in this study to examine the potential correlations between RST and these weather 

events themselves. All variables regarding these two weather events were aggregated into the 

three NSR classes (i.e., the spatial dependence classes of strong [NSR≤ 25%], moderate [25% 

<NSR< 75%], and weak [NSR≥75%]). Furthermore, to test to see if patterns also existed in 

different time periods, all the observation months were split into shoulder months (October 2018, 

November 2018, March 2019, and April 2019) and typical winter months (December 2018, 

January 2019, and February 2019). The results and interpretations for these two meteorological 

factors are presented in the following subsections.  

4.3.1 Wind 

As previously described, four wind-related factors were involved in examining the correlations 

against RST spatial dependence using NSR classes. The plots in Figure 4-7 reveal an expected 

pattern. 
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Figure 4-7. Relationship between spatial dependence and wind-related factors 

By looking at the results, the researchers concluded that, in general, stronger winds tend to form 

stronger spatial dependencies within RST. Wind gust and wind speed along the north-to-south 

direction are both positively correlated with spatial dependence, with the wind speed relationship 

being the most evident. Paired t-tests statistically proved that, among the four wind-related 

factors, the difference between the strong and weak class and the difference between the 

moderate and weak class are significant, while there is no significance between the difference 

between the strong and moderate class during the shoulder months. Stronger winds can prevent 

the stabilization and inversion of RST, making them more correlated with each other along the 

roadway. The wind direction angle relative to the north-to-south direction also affects spatial 

dependence, with winds closer to the direction of the roadway resulting in stronger RST spatial 

dependence. 

4.3.2 Rainfall 

Similarly, the same examination methods were conducted to compare the potential relationship 

between rainfall intensity and RST spatial dependence. The results are shown in Figure 4-8. 
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Figure 4-8. Relationship between spatial dependence and rainfall intensity 

Overall, heavier rainfall tended to create stronger RST spatial dependence in the study area. This 

is intuitive as heavier rainfall cools down nearby surface air, reducing the random temperature 

variations along the roadway. This observed pattern was similar between the shoulder months 

and winter months. However, given that Iowa winters are often very dry with rare rainfall events, 

the pattern frequency will likely differ. Statistical t-tests using the 90% confidence intervals 

showed similar results, and different levels of rainfall intensities differed significantly among all 

spatial dependence classes for the shoulder months with the lone exception of the strong and 

moderate class, whose differences were found to be insignificant during both the winter and 

shoulder months. The reason for this can be explained by the limited rainfall observations, 

especially during the winter season.  

Given that weather events are such complex entities, analyzing an individual meteorological 

factor typically requires long-term observations and a large sample size (Lundquist and Cayan 

2007, Bogren et al. 2000). In this study, the only available data were from a single season; 

therefore, the research team lacked sufficient data to generate more conclusive results. In 

addition, the mutual effects between different meteorological factors can also influence RST 

variations (Gustavsson 1990, Postgård and Lindqvist 2001, FHWA 2020), which makes 

comparisons even more difficult.  
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5. CONCLUSION AND RECOMMENDATIONS 

Estimating RSC has long been recognized as a challenging task, while it is essential in 

optimizing WRM operations. This project aimed to help address this challenge by utilizing data 

from two types of RWISs that have gained popularity for their ability to help monitor winter 

RSCs. With the RSC data garnered from RWIS stations and mobile units as inputs, several 

advanced modeling techniques can be applied to estimate the RSCs for unmeasured locations. 

Through cross validation, the estimated RSC variables (i.e., RST and RSI) using RK showed 

excellent results, confirming the feasibility of the proposed method. With as few as one point 

measurement as input, RK can well capture the general patterns of the RSC along a stretch of 

highway. The researchers also found that the estimation quality depends on the density of the 

RWIS network. They found that the accuracy of the developed model improves when the 

number of point measurements increases. This was further supported by kriging estimation 

variance, where it decreases with the addition of more RWIS stations, meaning the reliability of 

the model’s predictions improves with the number of stations.  

Contrary to this pattern, some hourly events showed that estimation errors (i.e., RMSE) did not 

decrease with an increased number of input point measurements, which can be attributed to 

different weather events affecting the RK interpolation accuracy, as it is not typically uniform 

over space or time. This also suggested that an optimal placement strategy for RWIS stations is 

needed to account for both local and regional weather characteristics. 

To automate the process of RSC image recognition, a DL model was developed. Its associated 

high training and validation accuracy proved its effectiveness in determining RSC via images 

collected from vehicle-mounted dash cameras. However, the researchers found limitations to this 

DL model, in that it is constructed with a relatively simple architecture fit only for this project’s 

specific purpose. It was also highly dependent on image quality given that images with 

extraneous elements tend to not be accurately classified.  

Furthermore, weather events can be characterized by RST using the NSR. In general, the spatial 

dependence of RST becomes stronger with stronger wind and heavier rainfall. This result can 

help in understanding the correlation between the RST variation pattern and meteorological 

factors, which can also be used as priori knowledge for a more efficient RK interpolation and 

decision-making process for WRM activities. 

In terms of future research, it is necessary to expand the case study area to cover more highway 

sections and other road types to further validate the proposed RK method, and to better 

generalize the weather characterization results. Additional variables, such as meteorological 

factors, geographical and topographical factors, and traffic parameters (e.g., traffic volumes) can 

be added into the analysis to minimize their potential confounding effects on the RSC.  

To improve the generalization of RSC image recognition, more advanced DL models (e.g., 

ResNet-50) can be adopted to improve RSC image recognition performance. In addition, more 
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RSC categories can also be considered to further distinguish the differences between road 

surface slipperiness. Other computer vision or image processing techniques can also be 

developed and applied to convert each RSC image or RSC category into finer RSI values. 

Furthermore, the development and inclusion of better image technology, such as thermal camera 

overlays, have the potential to further improve RSC monitoring and estimation results. 

Lastly, to better aid the decision-making process for WRM activities, the application of the 

RWIS location optimization method can be further extended to determine the optimal number of 

new RWIS stations required. Their corresponding optimal locations should also be considered by 

running multiple simulations and incorporating various objectives (e.g., traffic monitoring), 

weather events, and specific local attributes. 

Using the techniques presented in this report, transportation agencies can expand their RSC 

spatial coverage substantially, enhancing their ability to perform WRM activities faster, more 

efficiently, and more cost-effectively, and ultimately provide the general public with a greater 

level of service in terms of winter traffic safety and mobility.  
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APPENDIX A. RESULTS OF SPATIAL MAPPING OF ROAD SURFACE 

TEMPERATURE  

Note that the following tables summarize the corresponding results involved in the steps of 

spatial mapping of RST, including fitting a trend model for RST, semivariogram model 

parameters and cross validation results. 

Table A-1. Fitted trend models involved in RK for RST 

Date Hour 

Driving  

Direction Significant variables 

Sign of  

coefficients R2 

2018 

10-26 12 p.m. I-35S NA NA NA 

11-7 1 p.m. I-35N Latitude (-) 79% 

11-8 10 a.m. I-35N Longitude (-) 37% 

11-8 10 a.m. I-35S Air/temperature/slope (+)/(-) 10% 

11-8 11 a.m. I-35S Latitude (-) 13% 

11-8 9 p.m. I-35S NA NA NA 

11-8 8 a.m. I-35N Air/temperature (+) 5% 

11-8 9 a.m. I-35N Air/temperature/latitude (+)/(-) 49% 

11-8 9 a.m. I-35S Air/temperature/slope (+)/(-) 13% 

11-9 10 a.m. I-35N NA NA NA 

11-9 9 a.m. I-35N NA NA NA 

11-9 9 a.m. I-35S Longitude/altitude (-)/(-) 39% 

11-17 11 a.m. I-35N NA NA NA 

11-17 12 p.m. I-35S NA NA NA 

11-17 1 p.m. I-35N NA NA NA 

11-17 1 p.m. I-35S Longitude/aspect (-)/(+) 45% 

11-17 2 p.m. I-35N Slope (-) 2% 

11-17 2 p.m. I-35S NA NA NA 

11-17 3 p.m. I-35N Latitude/altitude (-)/(-) 13% 

11-17 3 p.m. I-35S Air/temperature/altitude/aspect (+)/(-)/(+) 19% 

11-17 4 p.m. I-35N Air/temperature (+) 17% 

11-17 4 p.m. I-35S Air/temperature (+) 41% 

11-17 5 p.m. I-35N NA NA NA 

11-17 5 p.m. I-35S Air/temperature (+) 18% 

11-17 6 p.m. I-35N Air/temperature (+) 19% 

11-17 6 p.m. I-35S Longitude (-) 11% 

11-17 7 p.m. I-35N NA NA NA 

11-17 7 p.m. I-35S Air/temperature/latitude (+)/(-) 16% 

11-17 8 p.m. I-35N Air/temperature (+) 5% 

11-17 8 p.m. I-35S NA NA NA 

11-17 9 p.m. I-35S Air/temperature/latitude (+)/(-) 48% 
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Date Hour 

Driving  

Direction Significant variables 

Sign of  

coefficients R2 

11-17 10 p.m. I-35N Aspect (+) 3% 

11-17 10 p.m. I-35S Latitude (-) 4% 

11-17 11 p.m. I-35N NA NA NA 

11-17 11 p.m. I-35S Air/temperature (+) 3% 

11-18 1 a.m. I-35N Latitude/altitude (-)/(-) 50% 

11-18 2 a.m. I-35S Air/temperature/latitude/altitude (+)/(-)/(-) 85% 

11-18 3 a.m. I-35N Air/temperature/longitude/latitude/altitude (+)/(-)/(-)/(-) 88% 

11-18 3 a.m. I-35S Air/temperature/longitude/latitude/altitude (+)/(-)/(-) 81% 

11-18 4 a.m. I-35N Air/temperature/altitude (+)/(-) 73% 

11-18 4 a.m. I-35S Air/temperature/latitude/altitude (+)/(-)/(-) 75% 

11-18 5 a.m. I-35S Latitude/altitude (-)/(-) 46% 

11-18 6 a.m. I-35N Latitude/altitude (-)/(-) 49% 

11-25 10 a.m. I-35N Air/temperature/latitude (+)/(-) 68% 

11-25 10 a.m. I-35S Air/temperature/latitude (+)/(-) 42% 

11-25 12 p.m. I-35N Air/temperature/longitude (+)/(-) 55% 

11-25 12 p.m. I-35S Air/temperature/latitude (+)/(-) 44% 

11-25 1 p.m. I-35N Air/temperature/longitude (+)/(-) 62% 

11-25 1 p.m. I-35S Air/temperature/latitude (+)/(-) 62% 

11-25 2 p.m. I-35N Altitude (-) 27% 

11-25 2 p.m. I-35S Air/temperature/latitude (+)/(-) 35% 

11-25 3 p.m. I-35S Altitude (-) 44% 

11-25 4 p.m. I-35N NA NA NA 

11-25 5 p.m. I-35S Air/temperature/altitude (+)/(-) 30% 

11-25 6 p.m. I-35N Altitude/slope (-)/(-) 53% 

11-25 6 p.m. I-35S Longitude (-) 9% 

11-25 7 p.m. I-35N Air/temperature/altitude (+)/(-) 51% 

11-25 7 p.m. I-35S Air/temperature/latitude (+)/(-) 22% 

11-25 8 p.m. I-35S Air/temperature/Altitude (+)/(-) 39% 

11-25 9 p.m. I-35S Air/temperature/altitude (+)/(-) 43% 

11-25 10 p.m. I-35N Longitude/altitude/slope/aspect (-)/(-)/(-)/(+) 58% 

11-25 6 a.m. I-35N Air/temperature/longitude/altitude/slope/aspect (+)/(-)/(-)/(-)/(+) 89% 

11-25 6 a.m. I-35S Air/temperature/longitude/latitude/altitude/aspect (+)/(-)/(-)/(-)/(+) 94% 

11-25 7 a.m. I-35N Longitude/latitude/altitude (-)/(-)/(-) 92% 

11-25 7 a.m. I-35S Longitude (-) 55% 

11-25 8 a.m. I-35N Air/temperature/latitude/altitude (+)/(-)/(-) 24% 

11-25 8 a.m. I-35S Air/temperature/longitude/altitude (+)/(-)/(-) 43% 

11-25 9 a.m. I-35N Air/temperature/longitude/altitude/slope/aspect (+)/(-)/(-)/(-)/(+) 41% 

11-25 9 a.m. I-35S Air/temperature/longitude (+)/(-) 65% 

11-26 0 a.m. I-35S Altitude (-) 62% 

11-26 11 a.m. I-35N Longitude/altitude/slope (-)/(-)/(-) 31% 



 

45 

Date Hour 

Driving  

Direction Significant variables 

Sign of  

coefficients R2 

11-26 11 a.m. I-35S Longitude/altitude (-)/(-) 20% 

11-26 12 p.m. I-35N Air/temperature/latitude (+)/(-) 72% 

11-26 12 p.m. I-35S Longitude/altitude (-)/(-) 31% 

11-26 2 p.m. I-35N Longitude (-) 11% 

11-26 4 a.m. I-35N Altitude (-) 45% 

11-26 6 a.m. I-35N Latitude/altitude/slope (-)/(-)/(-) 64% 

11-26 8 a.m. I-35S Air/temperature/latitude/altitude (+)/(-)/(-) 36% 

11-27 11 a.m. I-35N Altitude/slope (-)/(-) 38% 

12-3 11 a.m. I-35S Altitude (-) 52% 

12-4 10 p.m. I-35N Air/temperature/altitude (+)/(-) 6% 

12-4 10 p.m. I-35S Air/temperature (+) 8% 

12-4 7 a.m. I-35N Longitude/altitude (-)/(-) 48% 

12-4 7 a.m. I-35S Longitude/altitude (-)/(-) 31% 

12-7 8 a.m. I-35N Air/temperature (+) 24% 

12-12 10 a.m. I-35S Air/temperature/longitude/latitude (+)/(-)/(-) 69% 

12-12 2 p.m. I-35S NA NA NA 

12-12 8 a.m. I-35N NA NA NA 

12-19 9 a.m. I-35S Latitude (-) 87% 

12-24 8 a.m. I-35N Air/temperature/longitude (+)/(-) 68% 

12-24 8 a.m. I-35S Air/temperature/latitude (+)/(-) 80% 

12-24 9 a.m. I-35S Air/temperature/longitude (+)/(-) 36% 

12-28 5 a.m. I-35N Altitude (-) 21% 

12-28 6 a.m. I-35N Altitude (-) 5% 

12-28 6 a.m. I-35S Latitude/altitude (-)/(-) 24% 

12-28 7 a.m. I-35N Latitude/altitude (-)/(-) 20% 

12-28 7 a.m. I-35S Altitude (-) -5% 

12-31 1 p.m. I-35S Air/temperature/longitude/altitude (+)/(-)/(-) 41% 

12-31 2 p.m. I-35N Air/temperature/longitude/altitude (+)/(-)/(-) 48% 

12-31 2 p.m. I-35S Longitude (-) 4% 

12-31 3 p.m. I-35N Latitude/altitude (-)/(-) 30% 

12-31 3 p.m. I-35S Air/temperature/latitude (+)/(-) 13% 

12-31 4 p.m. I-35S Longitude (-) 50% 

2019 

1-11 6 p.m. I-35N Altitude (-) 18% 

1-11 6 p.m. I-35S Air/temperature/altitude (+)/(-) 61% 

1-11 7 p.m. I-35N Air/temperature/altitude (+)/(-) 23% 

1-11 7 p.m. I-35S NA NA NA 

1-11 8 p.m. I-35N NA NA NA 

1-11 8 p.m. I-35S Altitude (-) 26% 

1-11 9 p.m. I-35N NA NA NA 
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Date Hour 

Driving  

Direction Significant variables 

Sign of  

coefficients R2 

1-11 9 p.m. I-35S Air/temperature/latitude/altitude (+)/(-)/(-) 21% 

1-11 10 p.m. I-35N NA NA NA 

1-11 10 p.m. I-35S Air/temperature (+) 8% 

1-11 8 a.m. I-35S Latitude/altitude (-)/(-) 71% 

1-12 0 a.m. I-35N Air/temperature/latitude/slope (+)/(-)/(-) 23% 

1-12 0 a.m. I-35S Air/temperature/latitude (+)/(-) 34% 

1-12 10 a.m. I-35N Air/temperature (+) 7% 

1-12 10 a.m. I-35S Air/temperature (+) 13% 

1-12 11 a.m. I-35N Air/temperature (+) 11% 

1-12 12 p.m. I-35S Latitude (-) 35% 

1-12 2 p.m. I-35N NA NA NA 

1-12 2 p.m. I-35S NA NA NA 

1-12 3 p.m. I-35N Latitude (-) 34% 

1-12 4 p.m. I-35N Air/temperature/latitude (+)/(-) 30% 

1-12 4 p.m. I-35S Latitude/altitude (-)/(-) 27% 

1-12 5 p.m. I-35N Latitude (-) 10% 

1-12 5 p.m. I-35S Latitude/slope (-)/(-) 10% 

1-12 6 p.m. I-35S Latitude (-) 14% 

1-12 7 p.m. I-35N Latitude (-) 22% 

1-12 7 p.m. I-35S Latitude (-) 29% 

1-12 1 a.m. I-35N Slope (-) 0% 

1-12 1 a.m. I-35S Air/temperature/longitude/latitude/altitude (+)/(-)/(-)/(-) 37% 

1-12 8 p.m. I-35N Latitude (-) 18% 

1-12 8 p.m. I-35S Air/temperature/latitude (+)/(-) 56% 

1-12 9 p.m. I-35N Air/temperature/latitude (+)/(-) 41% 

1-12 9 p.m. I-35S Latitude (-) 25% 

1-12 2 a.m. I-35N Air/temperature (+) 2% 

1-12 2 a.m. I-35S Air/temperature/latitude (+)/(-) 37% 

1-12 3 a.m. I-35N Air/temperature/longitude/latitude/slope (+)/(-)/(-)/(-) 45% 

1-12 3 a.m. I-35S Air/temperature/latitude (+)/(-) 19% 

1-12 4 a.m. I-35N NA NA NA 

1-12 4 a.m. I-35S Air/temperature/latitude (+)/(-) 15% 

1-12 5 a.m. I-35N Air/temperature/latitude (+)/(-) 34% 

1-12 5 a.m. I-35S Air/temperature/latitude (+)/(-) 12% 

1-12 6 a.m. I-35N Air/temperature (+) 8% 

1-12 6 a.m. I-35S Air/temperature/latitude (+)/(-) 43% 

1-12 7 a.m. I-35S Latitude (-) 4% 

1-12 8 a.m. I-35N NA NA NA 

1-12 9 a.m. I-35N Latitude/altitude (-)/(-) 16% 

1-12 9 a.m. I-35S NA NA NA 
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Date Hour 

Driving  

Direction Significant variables 

Sign of  

coefficients R2 

1-14 9 p.m. I-35S NA NA NA 

1-14 10 p.m. I-35S NA NA NA 

1-15 7 a.m. I-35N Longitude (-) 3% 

1-15 7 a.m. I-35S Longitude/aspect (-)/(+) 16% 

1-15 8 a.m. I-35N Air/temperature/longitude/altitude (+)/(-)/(-) 77% 

1-17 10 a.m. I-35S NA NA NA 

1-17 9 a.m. I-35N Air/temperature/latitude/aspect (+)/(-)/(+) 64% 

1-17 9 a.m. I-35S Air/temperature/longitude (+)/(-) 67% 

1-18 3 p.m. I-35N Latitude (-) 51% 

1-18 3 p.m. I-35S Latitude (-) 73% 

1-18 4 p.m. I-35N Latitude (-) 56% 

1-18 4 p.m. I-35S Latitude/altitude (-)/(-) 61% 

1-18 5 p.m. I-35N Latitude (-) 63% 

1-18 5 p.m. I-35S Latitude (-) 23% 

1-18 6 p.m. I-35N Longitude (-) 35% 

1-18 6 p.m. I-35S Latitude (-) 39% 

1-18 7 p.m. I-35N NA NA NA 

1-18 8 p.m. I-35N Latitude (-) 50% 

1-18 8 p.m. I-35S Latitude (-) 49% 

1-18 9 p.m. I-35N Latitude/altitude (-)/(-) 43% 

1-18 10 p.m. I-35S Latitude (-) 4% 

1-18 11 p.m. I-35N NA NA NA 

1-19 0 a.m. I-35N Latitude (-) 11% 

1-19 0 a.m. I-35S NA NA NA 

1-19 11 a.m. I-35S NA NA NA 

1-19 1 p.m. I-35S NA NA NA 

1-19 1 a.m. I-35N NA NA NA 

1-19 1 a.m. I-35S NA NA NA 

1-19 2 a.m. I-35N NA NA NA 

1-19 3 a.m. I-35N NA NA NA 

1-19 3 a.m. I-35S NA NA NA 

1-19 4 a.m. I-35N Longitude/altitude (-)/(-) 7% 

1-19 5 a.m. I-35S Latitude/altitude (-)/(-) 36% 

1-19 6 a.m. I-35N NA NA NA 

1-19 7 a.m. I-35N NA NA NA 

1-19 7 a.m. I-35S NA NA NA 

1-19 9 a.m. I-35N NA NA NA 

1-19 9 a.m. I-35S NA NA NA 

1-22 11 a.m. I-35N Longitude (-) 39% 

1-22 2 p.m. I-35N Air/temperature (+) 25% 
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Date Hour 

Driving  

Direction Significant variables 

Sign of  

coefficients R2 

1-22 2 p.m. I-35S Longitude (-) 4% 

1-22 3 p.m. I-35N Latitude (-) 31% 

1-22 3 p.m. I-35S Latitude (-) 26% 

1-22 4 p.m. I-35N Air/temperature/latitude (+)/(-) 52% 

1-22 4 p.m. I-35S Latitude (-) 37% 

1-22 5 p.m. I-35N Latitude (-) 54% 

1-22 6 p.m. I-35S Latitude (-) 41% 

1-22 7 p.m. I-35N Latitude (-) 37% 

1-22 8 p.m. I-35S Latitude (-) 15% 

1-22 9 p.m. I-35N Air/temperature (+) 10% 

1-22 10 p.m. I-35S NA NA NA 

1-22 7 a.m. I-35N Latitude (-) 20% 

1-22 7 a.m. I-35S Air/temperature (+) 18% 

1-22 8 a.m. I-35N Latitude (-) 42% 

1-22 8 a.m. I-35S Latitude (-) 30% 

1-22 9 a.m. I-35S Air/temperature (+) 71% 

1-23 0 a.m. I-35S Air/temperature (+) 13% 

1-23 1 a.m. I-35S NA NA NA 

1-23 2 a.m. I-35N Air/temperature/longitude/latitude/altitude (+)/(-)/(-)/(-) 56% 

1-23 3 a.m. I-35N Altitude (-) -2% 

1-23 3 a.m. I-35S Altitude/slope/aspect (-)/(-)/(+) 1% 

1-23 4 a.m. I-35S NA NA NA 

1-23 6 a.m. I-35N Latitude/altitude (-)/(-) 30% 

1-23 6 a.m. I-35S NA NA NA 

1-23 8 a.m. I-35N Latitude/altitude (-)/(-) 36% 

1-23 8 a.m. I-35S Latitude/altitude (-)/(-) 17% 

1-23 9 a.m. I-35N NA NA NA 

2-4 1 p.m. I-35S Longitude/latitude (-)/(-) 45% 

2-5 2 p.m. I-35N Air/temperature/longitude/slope (+)/(-)/(-) 50% 

2-5 3 p.m. I-35S Longitude (-) 15% 

2-5 4 p.m. I-35N Latitude (-) 17% 

2-5 4 p.m. I-35S Latitude/altitude (-)/(-) 52% 

2-6 12 p.m. I-35S Latitude (-) 45% 

2-6 1 p.m. I-35N Latitude (-) 51% 

3-7 10 a.m. I-35N Longitude/latitude/altitude (-)/(-)/(-) 82% 

3-7 10 a.m. I-35S Longitude/latitude/altitude (-)/(-)/(-) 80% 

3-7 8 a.m. I-35S Longitude/latitude/altitude (-)/(-)/(-) 79% 

4-22 10 a.m. I-35S Altitude (-) 32% 
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Table A-2. Fitted semivariogram models for RST 

Date Hour 

Driving  

Direction Nugget Range (m) Sill 

2018 

10-26 12 p.m. I-35S 0.051 11,958.308 1.372 

11-7 1 p.m. I-35N 0.310 35,966.653 1.760 

11-8 10 a.m. I-35N 0.234 41,126.960 0.466 

11-8 10 a.m. I-35S 0.046 8,847.762 0.295 

11-8 11 a.m. I-35S 0.096 15,605.738 0.272 

11-8 9 p.m. I-35S 0.064 61,591.321 0.302 

11-8 8 a.m. I-35N 0.124 11,374.337 0.151 

11-8 9 a.m. I-35N 0.017 18,433.231 0.297 

11-8 9 a.m. I-35S 0.099 27,231.494 0.547 

11-9 10 a.m. I-35N 0.196 54,424.761 0.546 

11-9 9 a.m. I-35N 0.105 36,909.671 0.483 

11-9 9 a.m. I-35S 0.000 15,226.424 0.478 

11-17 11 a.m. I-35N 0.031 32,846.856 0.056 

11-17 12 p.m. I-35S 0.029 28,823.151 0.098 

11-17 1 p.m. I-35N 0.030 48,381.545 0.109 

11-17 1 p.m. I-35S 0.011 51,751.486 0.026 

11-17 2 p.m. I-35N 0.000 24,143.907 0.044 

11-17 2 p.m. I-35S 0.007 54,911.166 0.036 

11-17 3 p.m. I-35N 0.000 7,771.192 0.012 

11-17 3 p.m. I-35S 0.008 37,135.255 0.045 

11-17 4 p.m. I-35N 0.010 32,000.997 0.069 

11-17 4 p.m. I-35S 0.012 27,161.786 0.056 

11-17 5 p.m. I-35N 0.008 10,607.947 0.071 

11-17 5 p.m. I-35S 0.069 44,777.273 0.153 

11-17 6 p.m. I-35N 0.000 24,402.719 0.248 

11-17 6 p.m. I-35S 0.089 22,791.375 0.194 

11-17 7 p.m. I-35N 0.000 14,628.645 0.257 

11-17 7 p.m. I-35S 0.000 24,613.146 0.395 

11-17 8 p.m. I-35N 0.047 31,166.606 0.311 

11-17 8 p.m. I-35S 0.017 17,577.484 0.407 

11-17 9 p.m. I-35S 0.000 9,016.454 0.240 

11-17 10 p.m. I-35N 0.000 27,187.638 0.454 

11-17 10 p.m. I-35S 0.155 47,559.992 0.540 

11-17 11 p.m. I-35N 0.000 35,359.017 1.125 

11-17 11 p.m. I-35S 0.001 12,424.344 0.361 
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Date Hour 

Driving  

Direction Nugget Range (m) Sill 

11-18 1 a.m. I-35N 0.000 11,171.770 0.212 

11-18 2 a.m. I-35S 0.127 30,020.846 0.265 

11-18 3 a.m. I-35N 0.108 53,933.533 0.185 

11-18 3 a.m. I-35S 0.000 13,978.186 0.304 

11-18 4 a.m. I-35N 0.147 39,044.747 0.166 

11-18 4 a.m. I-35S 0.039 10,729.010 0.109 

11-18 5 a.m. I-35S 0.027 21,147.449 0.366 

11-18 6 a.m. I-35N 0.101 18,631.923 0.222 

11-25 10 a.m. I-35N 0.074 28,960.692 0.167 

11-25 10 a.m. I-35S 0.020 39,291.296 0.040 

11-25 12 p.m. I-35N 0.089 46,984.315 0.608 

11-25 12 p.m. I-35S 0.017 36,624.953 0.126 

11-25 1 p.m. I-35N 0.000 10,535.293 0.178 

11-25 1 p.m. I-35S 0.032 30,118.475 0.338 

11-25 2 p.m. I-35N 0.127 43,838.213 0.190 

11-25 2 p.m. I-35S 0.000 31,751.158 0.442 

11-25 3 p.m. I-35S 0.063 28,211.549 0.247 

11-25 4 p.m. I-35N 0.000 24,615.734 0.744 

11-25 5 p.m. I-35S 0.000 14,561.902 0.226 

11-25 6 p.m. I-35N 0.096 28,419.104 0.511 

11-25 6 p.m. I-35S 0.155 25,984.002 0.290 

11-25 7 p.m. I-35N 0.013 26,070.889 0.393 

11-25 7 p.m. I-35S 0.114 42,536.577 0.358 

11-25 8 p.m. I-35S 0.024 15,740.613 0.264 

11-25 9 p.m. I-35S 0.000 11,494.987 0.483 

11-25 10 p.m. I-35N 0.185 32,565.207 0.345 

11-25 6 a.m. I-35N 0.075 49,252.185 0.157 

11-25 6 a.m. I-35S 0.033 34,969.911 0.118 

11-25 7 a.m. I-35N 0.042 53,658.513 0.050 

11-25 7 a.m. I-35S 0.010 46,263.024 0.010 

11-25 8 a.m. I-35N 0.000 10,941.316 0.041 

11-25 8 a.m. I-35S 0.013 17,800.369 0.054 

11-25 9 a.m. I-35N 0.000 16,410.657 0.189 

11-25 9 a.m. I-35S 0.003 19,481.262 0.063 

11-26 0 a.m. I-35S 0.181 25,413.800 0.539 

11-26 11 a.m. I-35N 0.762 38,253.739 1.849 

11-26 11 a.m. I-35S 0.184 21,060.411 0.651 

11-26 12 p.m. I-35N 0.000 6,771.857 1.633 
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Date Hour 

Driving  

Direction Nugget Range (m) Sill 

11-26 12 p.m. I-35S 0.002 17,311.313 1.557 

11-26 2 p.m. I-35N 0.396 50,707.929 0.971 

11-26 4 a.m. I-35N 0.013 20,697.856 0.611 

11-26 6 a.m. I-35N 0.059 36,787.176 0.256 

11-26 8 a.m. I-35S 0.000 16,315.187 1.100 

11-27 11 a.m. I-35N 0.453 50,124.616 0.899 

12-3 11 a.m. I-35S 0.078 14,498.589 0.136 

12-4 10 p.m. I-35N 0.059 10,312.636 0.120 

12-4 10 p.m. I-35S 0.030 10,141.927 0.126 

12-4 7 a.m. I-35N 0.088 15,374.602 0.169 

12-4 7 a.m. I-35S 0.088 16,924.546 0.175 

12-7 8 a.m. I-35N 0.044 11,056.439 0.618 

12-12 10 a.m. I-35S 0.272 25,569.979 0.638 

12-12 2 p.m. I-35S 0.370 23,815.205 0.652 

12-12 8 a.m. I-35N 0.008 40,592.349 0.054 

12-19 9 a.m. I-35S 0.000 16,224.347 0.315 

12-24 8 a.m. I-35N 0.226 32,127.789 0.491 

12-24 8 a.m. I-35S 0.019 8,743.662 0.302 

12-24 9 a.m. I-35S 0.062 42,354.415 0.253 

12-28 5 a.m. I-35N 0.034 18,662.358 0.337 

12-28 6 a.m. I-35N 0.060 19,367.030 0.347 

12-28 6 a.m. I-35S 0.056 25,494.080 0.245 

12-28 7 a.m. I-35N 0.084 39,760.539 0.648 

12-28 7 a.m. I-35S 0.000 51,878.246 0.436 

12-31 1 p.m. I-35S 0.043 37,286.521 0.065 

12-31 2 p.m. I-35N 0.042 24,682.661 0.078 

12-31 2 p.m. I-35S 0.005 19,812.657 0.206 

12-31 3 p.m. I-35N 0.042 44,858.235 0.051 

12-31 3 p.m. I-35S 0.103 34,591.615 0.108 

12-31 4 p.m. I-35S 0.028 7,391.895 0.069 

2019 

1-11 6 p.m. I-35N 0.016 17,828.126 0.026 

1-11 6 p.m. I-35S 0.017 40,117.781 0.021 

1-11 7 p.m. I-35N 0.004 12,942.280 0.005 

1-11 7 p.m. I-35S 0.003 40,117.781 0.003 

1-11 8 p.m. I-35N 0.000 42,056.932 0.000 

1-11 8 p.m. I-35S 0.000 20,779.439 0.038 

1-11 9 p.m. I-35N 0.023 2,439.208 0.023 
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Date Hour 

Driving  

Direction Nugget Range (m) Sill 

1-11 9 p.m. I-35S 0.000 10,805.346 0.008 

1-11 10 p.m. I-35N 0.004 61611.974 0.004 

1-11 10 p.m. I-35S 0.005 53,420.979 0.005 

1-11 8 a.m. I-35S 0.061 37.390 0.063 

1-12 0 a.m. I-35N 0.031 28,918.797 0.248 

1-12 0 a.m. I-35S 0.000 19,260.806 0.184 

1-12 10 a.m. I-35N 0.021 43,230.283 0.075 

1-12 10 a.m. I-35S 0.000 8,317.595 0.042 

1-12 11 a.m. I-35N 0.005 44,263.670 0.005 

1-12 12 p.m. I-35S 0.000 52,108.606 0.254 

1-12 2 p.m. I-35N 0.084 56,040.403 0.412 

1-12 2 p.m. I-35S 0.017 26,989.937 0.307 

1-12 3 p.m. I-35N 0.037 61,390.778 0.468 

1-12 4 p.m. I-35N 0.007 54,428.692 0.056 

1-12 4 p.m. I-35S 0.024 52,221.455 0.069 

1-12 5 p.m. I-35N 0.002 56,627.964 0.003 

1-12 5 p.m. I-35S 0.000 12,965.825 0.091 

1-12 6 p.m. I-35S 0.000 19,722.426 0.281 

1-12 7 p.m. I-35N 0.044 61,615.509 0.175 

1-12 7 p.m. I-35S 0.023 56,867.566 0.092 

1-12 1 a.m. I-35N 0.000 15,957.429 0.126 

1-12 1 a.m. I-35S 0.016 41.942.636 0.244 

1-12 8 p.m. I-35N 0.043 51,393.142 0.165 

1-12 8 p.m. I-35S 0.014 53,921.407 0.029 

1-12 9 p.m. I-35N 0.009 26,303.517 0.037 

1-12 9 p.m. I-35S 0.010 61,646.963 0.042 

1-12 2 a.m. I-35N 0.000 28,273.347 0.133 

1-12 2 a.m. I-35S 0.108 52,632.815 0.201 

1-12 3 a.m. I-35N 0.081 47,466.667 0.164 

1-12 3 a.m. I-35S 0.033 41,806.368 0.154 

1-12 4 a.m. I-35N 0.000 21,707.843 0.263 

1-12 4 a.m. I-35S 0.053 33,857.080 0.293 

1-12 5 a.m. I-35N 0.107 40,968.285 0.361 

1-12 5 a.m. I-35S 0.000 27,467.551 0.512 

1-12 6 a.m. I-35N 0.061 27,134.475 0.231 

1-12 6 a.m. I-35S 0.049 36,966.970 0.359 

1-12 7 a.m. I-35S 0.193 312.524 0.239 

1-12 8 a.m. I-35N 0.000 22,015.210 0.199 
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Date Hour 

Driving  

Direction Nugget Range (m) Sill 

1-12 9 a.m. I-35N 0.133 61,615.509 0.160 

1-12 9 a.m. I-35S 0.040 61,651.387 0.128 

1-14 9 p.m. I-35S 0.001 53,420.979 0.001 

1-14 10 p.m. I-35S 0.001 53,420.979 0.001 

1-15 7 a.m. I-35N 0.001 47,240.628 0.001 

1-15 7 a.m. I-35S 0.001 47,493.660 0.001 

1-15 8 a.m. I-35N 0.006 45,045.371 0.017 

1-17 10 a.m. I-35S 0.021 43,253.007 0.522 

1-17 9 a.m. I-35N 0.014 30,607.415 0.023 

1-17 9 a.m. I-35S 0.052 51,090.230 0.072 

1-18 3 p.m. I-35N 0.000 17,568.125 0.237 

1-18 3 p.m. I-35S 0.062 4,0267.539 0.266 

1-18 4 p.m. I-35N 0.059 25,751.923 0.354 

1-18 4 p.m. I-35S 0.163 61,651.387 0.203 

1-18 5 p.m. I-35N 0.061 24,118.295 0.293 

1-18 5 p.m. I-35S 0.134 28,239.908 0.314 

1-18 6 p.m. I-35N 0.000 23,133.923 0.569 

1-18 6 p.m. I-35S 0.044 41,966.192 0.646 

1-18 7 p.m. I-35N 0.123 28,757.519 0.450 

1-18 8 p.m. I-35N 0.000 36,377.646 0.993 

1-18 8 p.m. I-35S 0.000 29,919.393 0.934 

1-18 9 p.m. I-35N 0.279 320.177 0.409 

1-18 10 p.m. I-35S 0.000 22,775.763 0.821 

1-18 11 p.m. I-35N 0.000 50,492.153 0.677 

1-19 0 a.m. I-35N 0.000 16,561.519 1.041 

1-19 0 a.m. I-35S 0.000 33,036.641 1.240 

1-19 11 a.m. I-35S 0.000 48,231.128 5.520 

1-19 1 p.m. I-35S 0.677 50,981.737 1.192 

1-19 1 a.m. I-35N 0.000 12,891.462 0.648 

1-19 1 a.m. I-35S 0.284 56,863.120 0.534 

1-19 2 a.m. I-35N 0.321 51,908.604 0.392 

1-19 3 a.m. I-35N 0.000 21,559.645 1.383 

1-19 3 a.m. I-35S 0.237 61,651.387 0.364 

1-19 4 a.m. I-35N 0.131 24,938.996 1.193 

1-19 5 a.m. I-35S 0.001 14,249.759 0.342 

1-19 6 a.m. I-35N 0.000 27,263.761 1.475 

1-19 7 a.m. I-35N 0.378 61,611.974 1.811 

1-19 7 a.m. I-35S 0.000 32,456.021 1.490 
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Date Hour 

Driving  

Direction Nugget Range (m) Sill 

1-19 9 a.m. I-35N 0.107 20,479.940 1.171 

1-19 9 a.m. I-35S 0.023 23,550.910 0.988 

1-22 11 a.m. I-35N 0.023 38,979.604 0.042 

1-22 2 p.m. I-35N 0.000 8,954.332 0.050 

1-22 2 p.m. I-35S 0.000 18,763.525 0.104 

1-22 3 p.m. I-35N 0.000 34,298.760 0.299 

1-22 3 p.m. I-35S 0.049 56,863.120 0.132 

1-22 4 p.m. I-35N 0.016 15,624.883 0.060 

1-22 4 p.m. I-35S 0.095 258.424 0.108 

1-22 5 p.m. I-35N 0.000 12,648.146 0.366 

1-22 6 p.m. I-35S 0.045 23,143.331 0.493 

1-22 7 p.m. I-35N 0.000 26,761.321 1.007 

1-22 8 p.m. I-35S 0.000 22,494.843 0.884 

1-22 9 p.m. I-35N 0.000 33,031.344 1.244 

1-22 10 p.m. I-35S 0.000 25,461.301 1.589 

1-22 7 a.m. I-35N 0.000 25,966.869 0.451 

1-22 7 a.m. I-35S 0.028 17,815.955 0.187 

1-22 8 a.m. I-35N 0.083 364.085 0.094 

1-22 8 a.m. I-35S 0.000 28,703.004 0.292 

1-22 9 a.m. I-35S 0.032 5,3367.243 0.045 

1-23 0 a.m. I-35S 0.010 12,915.149 0.610 

1-23 1 a.m. I-35S 0.067 35,987.972 0.459 

1-23 2 a.m. I-35N 0.276 1,812.654 0.355 

1-23 3 a.m. I-35N 0.000 19,866.694 1.387 

1-23 3 a.m. I-35S 0.000 13,883.415 0.506 

1-23 4 a.m. I-35S 0.282 54,478.743 0.670 

1-23 6 a.m. I-35N 0.000 24,380.660 1.062 

1-23 6 a.m. I-35S 0.000 56,404.708 2.333 

1-23 8 a.m. I-35N 0.299 18,887.605 0.588 

1-23 8 a.m. I-35S 0.000 6,412.863 0.510 

1-23 9 a.m. I-35N 0.275 57,127.195 1.238 

2-4 1 p.m. I-35S 0.279 8,583.810 0.404 

2-5 2 p.m. I-35N 0.210 52,972.533 0.230 

2-5 3 p.m. I-35S 0.016 20,960.062 0.848 

2-5 4 p.m. I-35N 0.193 56,562.711 1.376 

2-5 4 p.m. I-35S 0.084 54,911.166 0.557 

2-6 12 p.m. I-35S 0.390 55,817.658 0.390 

2-6 1 p.m. I-35N 0.070 61,412.866 0.529 
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Date Hour 

Driving  

Direction Nugget Range (m) Sill 

3-7 10 a.m. I-35N 0.120 29,561.928 0.400 

3-7 10 a.m. I-35S 0.301 390.661 0.414 

3-7 8 a.m. I-35S 0.102 18,140.169 0.334 

4-22 10 a.m. I-35S 0.371 35,804.614 0.732 

 

Table A-3. All cross validation results for RST 

Date Hour 

Driving 

Direction 

RMSE  

(1RWIS) 

RMSE  

(2RWIS) 

RMSE  

(3RWIS) 

𝝈𝟐̅̅ ̅  
(1RWIS) 

𝝈𝟐̅̅ ̅  
(2RWIS) 

𝝈𝟐̅̅ ̅  
(3RWIS) 

2018 

10-26 12 p.m. I-35S 1.398 1.268 1.201 0.285 0.278 0.276 

11-7 1 p.m. I-35N 1.399 1.147 1.003 3.519 2.639 1.415 

11-8 10 a.m. I-35N 0.601 0.805 0.624 0.933 0.700 0.562 

11-8 10 a.m. I-35S 0.733 0.865 0.599 0.139 0.131 0.128 

11-8 11 a.m. I-35S 0.617 0.691 0.579 0.211 0.191 0.184 

11-8 9 p.m. I-35S 1.115 0.582 0.529 0.135 0.127 0.124 

11-8 8 a.m. I-35N 1.547 0.862 0.615 0.302 0.226 0.000 

11-8 9 a.m. I-35N 0.714 0.593 0.532 0.593 0.445 0.395 

11-8 9 a.m. I-35S 1.034 0.927 0.746 0.226 0.214 0.210 

11-9 10 a.m. I-35N 0.859 0.697 0.597 0.972 0.756 0.602 

11-9 9 a.m. I-35N 0.733 0.718 0.670 0.966 0.725 0.522 

11-9 9 a.m. I-35S 0.644 0.693 0.851 0.052 0.051 0.051 

11-17 11 a.m. I-35N 0.424 0.247 0.215 0.113 0.085 0.071 

11-17 12 p.m. I-35S 0.319 0.319 0.319 0.062 0.057 0.055 

11-17 1 p.m. I-35N 0.318 0.729 0.547 0.218 0.164 0.119 

11-17 1 p.m. I-35S 0.171 0.226 0.153 0.022 0.019 0.019 

11-17 2 p.m. I-35N 0.228 0.378 0.324 0.089 0.067 0.057 

11-17 2 p.m. I-35S 0.197 0.308 0.236 0.016 0.015 0.014 

11-17 3 p.m. I-35N 0.121 0.130 0.113 0.025 0.018 0.016 

11-17 3 p.m. I-35S 0.291 0.405 0.322 0.018 0.017 0.017 

11-17 4 p.m. I-35N 0.375 0.236 0.237 0.139 0.104 0.068 

11-17 4 p.m. I-35S 0.341 0.186 0.188 0.027 0.025 0.025 

11-17 5 p.m. I-35N 0.269 0.368 0.327 0.143 0.107 0.038 

11-17 5 p.m. I-35S 0.488 0.379 0.365 0.141 0.125 0.119 

11-17 6 p.m. I-35N 0.495 0.474 0.463 0.497 0.372 0.320 

11-17 6 p.m. I-35S 0.971 1.361 0.870 0.185 0.163 0.156 

11-17 7 p.m. I-35N 1.545 0.686 0.686 0.514 0.385 0.340 
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Date Hour 

Driving 

Direction 

RMSE  

(1RWIS) 

RMSE  

(2RWIS) 

RMSE  

(3RWIS) 

𝝈𝟐̅̅ ̅  
(1RWIS) 

𝝈𝟐̅̅ ̅  
(2RWIS) 

𝝈𝟐̅̅ ̅  
(3RWIS) 

11-17 7 p.m. I-35S 0.566 0.745 0.680 0.027 0.026 0.026 

11-17 8 p.m. I-35N 0.549 0.545 0.471 0.623 0.467 0.376 

11-17 8 p.m. I-35S 0.862 0.639 0.518 0.071 0.070 0.069 

11-17 9 p.m. I-35S 0.523 0.511 0.504 0.044 0.043 0.043 

11-17 10 p.m. I-35N 0.678 0.650 0.833 0.909 0.681 0.566 

11-17 10 p.m. I-35S 0.746 0.681 0.623 0.323 0.299 0.289 

11-17 11 p.m. I-35N 0.873 0.849 0.671 2.251 1.688 1.030 

11-17 11 p.m. I-35S 0.951 0.602 0.587 0.051 0.050 0.050 

11-18 1 a.m. I-35N 0.484 0.449 0.453 0.423 0.317 0.282 

11-18 2 a.m. I-35S 0.515 0.449 0.445 0.262 0.230 0.219 

11-18 3 a.m. I-35N 0.396 0.377 0.396 0.369 0.277 0.220 

11-18 3 a.m. I-35S 1.424 0.889 0.809 0.480 0.385 0.354 

11-18 4 a.m. I-35N 0.414 0.823 0.918 0.332 0.249 0.213 

11-18 4 a.m. I-35S 0.383 0.523 0.346 0.089 0.080 0.077 

11-18 5 a.m. I-35S 0.682 0.826 1.252 0.081 0.079 0.078 

11-18 6 a.m. I-35N 0.424 0.492 0.456 0.444 0.333 0.291 

11-25 10 a.m. I-35N 0.540 0.598 0.465 0.334 0.251 0.213 

11-25 10 a.m. I-35S 0.398 0.486 0.313 0.042 0.036 0.034 

11-25 12 p.m. I-35N 0.838 0.683 0.735 0.869 0.714 0.000 

11-25 12 p.m. I-35S 0.539 0.452 0.313 0.188 0.150 0.140 

11-25 1 p.m. I-35N 0.403 0.403 0.401 0.355 0.267 0.237 

11-25 1 p.m. I-35S 0.940 0.663 0.488 0.080 0.078 0.077 

11-25 2 p.m. I-35N 0.489 0.464 0.406 0.381 0.287 0.232 

11-25 2 p.m. I-35S 0.745 0.541 0.521 0.023 0.023 0.023 

11-25 3 p.m. I-35S 0.536 0.465 0.585 0.137 0.128 0.125 

11-25 4 p.m. I-35N 0.901 0.750 1.035 1.488 1.116 0.957 

11-25 5 p.m. I-35S 0.620 0.585 0.535 0.026 0.025 0.025 

11-25 6 p.m. I-35N 0.805 0.713 0.592 1.022 0.767 0.638 

11-25 6 p.m. I-35S 0.536 0.697 0.540 0.318 0.270 0.256 

11-25 7 p.m. I-35N 0.640 0.802 0.733 0.786 0.590 0.498 

11-25 7 p.m. I-35S 0.500 0.516 0.708 0.237 0.217 0.210 

11-25 8 p.m. I-35S 0.708 0.626 0.725 0.074 0.071 0.070 

11-25 9 p.m. I-35S 1.010 0.519 0.633 0.070 0.068 0.068 

11-25 10 p.m. I-35N 0.630 0.567 0.577 0.689 0.517 0.436 

11-25 6 a.m. I-35N 0.447 0.613 0.593 0.314 0.235 0.182 

11-25 6 a.m. I-35S 0.417 0.426 0.376 0.237 0.074 0.072 

11-25 7 a.m. I-35N 0.261 0.242 0.237 0.100 0.075 0.063 

11-25 7 a.m. I-35S 0.146 0.109 0.128 0.019 0.015 0.013 
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Date Hour 

Driving 

Direction 

RMSE  

(1RWIS) 

RMSE  

(2RWIS) 

RMSE  

(3RWIS) 

𝝈𝟐̅̅ ̅  
(1RWIS) 

𝝈𝟐̅̅ ̅  
(2RWIS) 

𝝈𝟐̅̅ ̅  
(3RWIS) 

11-25 8 a.m. I-35N 0.199 0.309 0.238 0.082 0.061 0.054 

11-25 8 a.m. I-35S 0.217 0.267 0.229 0.031 0.029 0.028 

11-25 9 a.m. I-35N 0.462 0.370 0.363 0.379 0.284 0.252 

11-25 9 a.m. I-35S 0.234 0.306 0.243 0.011 0.011 0.011 

11-26 0 a.m. I-35S 0.832 0.898 1.147 0.386 0.352 0.340 

11-26 11 a.m. I-35N 1.471 1.136 1.087 3.698 2.775 2.240 

11-26 11 a.m. I-35S 0.773 0.808 0.796 0.405 0.373 0.363 

11-26 12 p.m. I-35N 1.633 1.469 1.508 3.266 2.450 2.177 

11-26 12 p.m. I-35S 1.218 1.328 1.040 0.152 0.150 0.150 

11-26 2 p.m. I-35N 0.874 1.019 0.975 1.941 1.456 0.954 

11-26 4 a.m. I-35N 1.221 0.839 0.902 1.223 0.917 0.812 

11-26 6 a.m. I-35N 0.550 0.399 0.391 0.512 0.384 0.294 

11-26 8 a.m. I-35S 1.121 1.267 1.182 1.616 1.319 1.220 

11-27 11 a.m. I-35N 1.737 1.305 1.012 1.788 1.343 0.972 

12-3 11 a.m. I-35S 0.371 0.370 0.378 0.163 0.138 0.130 

12-4 10 p.m. I-35N 0.363 0.381 0.361 0.241 0.181 0.000 

12-4 10 p.m. I-35S 0.407 0.358 0.344 0.063 0.059 0.057 

12-4 7 a.m. I-35N 0.396 0.396 0.421 0.338 0.253 0.000 

12-4 7 a.m. I-35S 0.401 0.486 0.452 0.349 0.222 0.204 

12-7 8 a.m. I-35N 1.168 0.814 0.795 1.235 0.927 0.000 

12-12 10 a.m. I-35S 1.018 1.179 0.946 0.567 0.504 0.483 

12-12 2 p.m. I-35S 0.952 0.808 0.850 0.759 0.648 0.612 

12-12 8 a.m. I-35N 0.268 0.193 0.150 0.101 0.077 0.000 

12-19 9 a.m. I-35S 0.505 0.490 0.501 0.032 0.032 0.032 

12-24 8 a.m. I-35N 0.624 0.610 0.610 0.982 0.737 0.614 

12-24 8 a.m. I-35S 0.900 1.000 0.615 0.092 0.088 0.087 

12-24 9 a.m. I-35S 2.418 0.973 0.694 0.363 0.233 0.227 

12-28 5 a.m. I-35N 0.987 0.650 0.627 0.674 0.505 0.000 

12-28 6 a.m. I-35N 0.617 0.567 0.540 0.695 0.521 0.463 

12-28 6 a.m. I-35S 0.481 0.489 0.486 0.124 0.117 0.114 

12-28 7 a.m. I-35N 1.716 0.772 0.825 1.294 0.971 0.379 

12-28 7 a.m. I-35S 0.610 0.577 0.664 0.014 0.014 0.014 

12-31 1 p.m. I-35S 0.253 0.265 0.247 0.087 0.072 0.066 

12-31 2 p.m. I-35N 0.281 0.280 0.307 0.156 0.117 0.102 

12-31 2 p.m. I-35S 0.499 0.480 0.467 0.027 0.027 0.026 

12-31 3 p.m. I-35N 0.371 0.286 0.290 0.101 0.076 0.063 

12-31 3 p.m. I-35S 0.417 0.340 0.328 0.205 0.157 0.140 

12-31 4 p.m. I-35S 0.278 0.275 0.290 0.066 0.058 0.055 
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Date Hour 

Driving 

Direction 

RMSE  

(1RWIS) 

RMSE  

(2RWIS) 

RMSE  

(3RWIS) 

𝝈𝟐̅̅ ̅  
(1RWIS) 

𝝈𝟐̅̅ ̅  
(2RWIS) 

𝝈𝟐̅̅ ̅  
(3RWIS) 

2019 

1-11 6 p.m. I-35N 0.411 0.325 0.268 0.053 0.040 0.035 

1-11 6 p.m. I-35S 0.151 0.164 0.158 0.034 0.027 0.024 

1-11 7 p.m. I-35N 0.088 0.140 0.105 0.010 0.008 0.007 

1-11 7 p.m. I-35S 0.061 0.100 0.077 0.006 0.004 0.004 

1-11 8 p.m. I-35N 0.007 0.007 0.007 0.001 0.000 0.000 

1-11 8 p.m. I-35S 0.206 0.153 0.190 0.003 0.003 0.003 

1-11 9 p.m. I-35N 0.160 0.154 0.563 0.047 0.035 0.031 

1-11 9 p.m. I-35S 0.463 0.263 0.192 0.001 0.001 0.001 

1-11 10 p.m. I-35N 0.283 0.150 0.109 0.008 0.006 0.005 

1-11 10 p.m. I-35S 0.114 0.078 0.073 0.010 0.007 0.007 

1-11 8 a.m. I-35S 0.305 0.248 0.286 0.127 0.000 0.000 

1-12 0 a.m. I-35N 0.422 0.566 0.462 0.495 0.371 0.308 

1-12 0 a.m. I-35S 0.547 0.373 0.704 0.016 0.016 0.016 

1-12 10 a.m. I-35N 0.310 0.265 0.498 0.140 0.107 0.000 

1-12 10 a.m. I-35S 0.283 0.229 0.238 0.008 0.008 0.008 

1-12 11 a.m. I-35N 0.080 0.076 0.205 0.009 0.007 0.000 

1-12 12 p.m. I-35S 0.748 0.412 0.327 0.008 0.008 0.008 

1-12 2 p.m. I-35N 0.765 0.653 0.576 0.818 0.615 0.409 

1-12 2 p.m. I-35S 0.680 0.530 0.530 0.052 0.051 0.051 

1-12 3 p.m. I-35N 0.572 0.442 0.456 0.910 0.693 0.404 

1-12 4 p.m. I-35N 0.202 0.260 0.251 0.112 0.084 0.041 

1-12 4 p.m. I-35S 0.250 0.253 0.253 0.049 0.045 0.043 

1-12 5 p.m. I-35N 0.063 0.063 0.102 0.007 0.005 0.004 

1-12 5 p.m. I-35S 0.362 0.376 0.373 0.012 0.011 0.011 

1-12 6 p.m. I-35S 0.542 0.532 0.533 0.024 0.023 0.023 

1-12 7 p.m. I-35N 0.446 0.393 0.396 0.340 0.259 0.172 

1-12 7 p.m. I-35S 0.391 0.341 0.371 0.048 0.045 0.044 

1-12 1 a.m. I-35N 0.385 0.356 0.345 0.253 0.189 0.168 

1-12 1 a.m. I-35S 0.698 0.554 0.380 0.040 0.039 0.039 

1-12 8 p.m. I-35N 0.423 0.384 0.375 0.329 0.247 0.165 

1-12 8 p.m. I-35S 0.241 0.182 0.161 0.029 0.025 0.024 

1-12 9 p.m. I-35N 0.285 0.183 0.178 0.073 0.055 0.047 

1-12 9 p.m. I-35S 0.208 0.177 0.177 0.021 0.020 0.019 

1-12 2 a.m. I-35N 0.486 0.325 0.314 0.266 0.199 0.163 

1-12 2 a.m. I-35S 0.526 0.593 0.441 0.219 0.189 0.177 

1-12 3 a.m. I-35N 0.383 0.360 0.383 0.328 0.246 0.192 

1-12 3 a.m. I-35S 0.394 0.540 0.481 0.071 0.067 0.066 
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Date Hour 

Driving 

Direction 

RMSE  

(1RWIS) 

RMSE  

(2RWIS) 

RMSE  

(3RWIS) 

𝝈𝟐̅̅ ̅  
(1RWIS) 

𝝈𝟐̅̅ ̅  
(2RWIS) 

𝝈𝟐̅̅ ̅  
(3RWIS) 

1-12 4 a.m. I-35N 0.478 0.577 0.530 0.526 0.395 0.348 

1-12 4 a.m. I-35S 0.952 0.575 0.476 0.117 0.111 0.109 

1-12 5 a.m. I-35N 1.087 0.655 0.718 0.721 0.541 0.415 

1-12 5 a.m. I-35S 1.031 0.663 0.591 0.031 0.031 0.031 

1-12 6 a.m. I-35N 0.483 0.425 0.434 0.462 0.346 0.205 

1-12 6 a.m. I-35S 0.584 0.547 0.511 0.113 0.108 0.107 

1-12 7 a.m. I-35S 0.486 0.482 0.522 0.478 0.358 0.319 

1-12 8 a.m. I-35N 0.479 0.433 0.431 0.399 0.299 0.263 

1-12 9 a.m. I-35N 0.462 0.437 0.494 0.318 0.239 0.204 

1-12 9 a.m. I-35S 0.396 0.319 0.305 0.082 0.075 0.072 

1-14 9 p.m. I-35S 0.025 0.025 0.025 0.002 0.001 0.001 

1-14 10 p.m. I-35S 0.014 0.014 0.014 0.001 0.001 0.001 

1-15 7 a.m. I-35N 0.061 0.037 0.109 0.001 0.001 0.000 

1-15 7 a.m. I-35S 0.028 0.028 0.033 0.002 0.001 0.001 

1-15 8 a.m. I-35N 0.141 0.158 0.154 0.032 0.024 0.000 

1-17 10 a.m. I-35S 1.722 0.882 0.557 0.060 0.059 0.059 

1-17 9 a.m. I-35N 0.171 0.147 0.163 0.047 0.035 0.030 

1-17 9 a.m. I-35S 0.299 0.307 0.386 0.104 0.085 0.078 

1-18 3 p.m. I-35N 0.557 0.505 0.516 0.473 0.355 0.316 

1-18 3 p.m. I-35S 0.520 0.491 0.498 0.132 0.124 0.121 

1-18 4 p.m. I-35N 0.720 0.664 0.628 0.708 0.531 0.453 

1-18 4 p.m. I-35S 0.737 0.439 0.509 0.326 0.260 0.235 

1-18 5 p.m. I-35N 0.685 0.591 0.599 0.586 0.439 0.349 

1-18 5 p.m. I-35S 0.806 0.545 0.495 0.278 0.247 0.237 

1-18 6 p.m. I-35N 0.821 0.849 0.840 1.138 0.854 0.072 

1-18 6 p.m. I-35S 0.665 0.658 0.693 0.112 0.110 0.109 

1-18 7 p.m. I-35N 0.879 0.590 0.589 0.900 0.675 0.565 

1-18 8 p.m. I-35N 0.892 0.905 0.906 1.987 1.490 1.106 

1-18 8 p.m. I-35S 1.298 0.998 0.993 0.052 0.051 0.051 

1-18 9 p.m. I-35N 1.105 0.679 0.643 0.817 0.613 0.545 

1-18 10 p.m. I-35S 0.817 0.859 0.835 0.060 0.059 0.059 

1-18 11 p.m. I-35N 0.997 0.778 0.481 1.355 1.016 0.613 

1-19 0 a.m. I-35N 1.414 1.272 1.239 2.083 1.562 1.364 

1-19 0 a.m. I-35S 1.170 1.112 0.901 0.062 0.062 0.062 

1-19 11 a.m. I-35S 3.069 2.810 1.701 2.047 1.952 1.948 

1-19 1 p.m. I-35S 1.099 3.196 2.164 1.371 1.174 1.097 

1-19 1 a.m. I-35N 1.205 0.816 0.806 1.296 0.972 0.864 

1-19 1 a.m. I-35S 0.764 0.759 1.024 0.575 0.497 0.464 
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Date Hour 

Driving 

Direction 

RMSE  

(1RWIS) 

RMSE  

(2RWIS) 

RMSE  

(3RWIS) 

𝝈𝟐̅̅ ̅  
(1RWIS) 

𝝈𝟐̅̅ ̅  
(2RWIS) 

𝝈𝟐̅̅ ̅  
(3RWIS) 

1-19 2 a.m. I-35N 0.812 0.785 0.707 0.756 0.574 0.000 

1-19 3 a.m. I-35N 1.443 1.660 1.573 2.767 2.075 1.828 

1-19 3 a.m. I-35S 0.676 0.666 0.632 0.478 0.399 0.366 

1-19 4 a.m. I-35N 1.377 1.109 1.027 2.387 1.790 1.536 

1-19 5 a.m. I-35S 0.817 0.630 0.606 0.041 0.040 0.040 

1-19 6 a.m. I-35N 1.316 2.427 1.821 2.950 2.212 1.838 

1-19 7 a.m. I-35N 1.250 1.371 1.342 3.506 2.667 2.078 

1-19 7 a.m. I-35S 1.386 1.282 1.197 0.076 0.076 0.075 

1-19 9 a.m. I-35N 1.197 1.333 1.363 2.343 1.757 0.419 

1-19 9 a.m. I-35S 1.253 1.141 1.679 0.114 0.112 0.112 

1-22 11 a.m. I-35N 0.240 0.188 0.184 0.085 0.063 0.055 

1-22 2 p.m. I-35N 0.243 0.286 0.334 0.100 0.075 0.067 

1-22 2 p.m. I-35S 0.361 0.360 0.365 0.009 0.009 0.009 

1-22 3 p.m. I-35N 0.595 0.520 0.517 0.599 0.449 0.338 

1-22 3 p.m. I-35S 0.488 0.570 0.523 0.100 0.091 0.086 

1-22 4 p.m. I-35N 0.331 0.272 0.337 0.121 0.091 0.081 

1-22 4 p.m. I-35S 0.409 0.428 0.382 0.217 0.163 0.145 

1-22 5 p.m. I-35N 0.766 0.747 0.726 0.732 0.549 0.487 

1-22 6 p.m. I-35S 0.803 0.632 0.640 0.122 0.119 0.117 

1-22 7 p.m. I-35N 1.418 0.793 0.787 2.013 1.510 1.262 

1-22 8 p.m. I-35S 1.013 0.852 0.791 0.065 0.065 0.064 

1-22 9 p.m. I-35N 1.534 0.920 0.615 2.489 1.866 1.430 

1-22 10 p.m. I-35S 1.334 1.143 0.849 0.103 0.103 0.102 

1-22 7 a.m. I-35N 0.642 0.574 0.554 0.901 0.676 0.571 

1-22 7 a.m. I-35S 0.419 0.427 0.397 0.071 0.067 0.066 

1-22 8 a.m. I-35N 0.371 0.395 0.363 0.187 0.141 0.125 

1-22 8 a.m. I-35S 0.659 0.400 0.396 0.017 0.017 0.017 

1-22 9 a.m. I-35S 0.327 0.280 0.269 0.065 0.053 0.049 

1-23 0 a.m. I-35S 0.733 0.737 0.793 0.096 0.094 0.094 

1-23 1 a.m. I-35S 0.772 0.684 0.622 0.152 0.146 0.144 

1-23 2 a.m. I-35N 1.003 0.577 0.609 0.710 0.532 0.473 

1-23 3 a.m. I-35N 1.335 1.305 1.315 2.774 2.080 1.848 

1-23 3 a.m. I-35S 1.126 1.042 0.814 0.060 0.060 0.059 

1-23 4 a.m. I-35S 0.822 0.775 0.763 0.577 0.515 0.488 

1-23 6 a.m. I-35N 0.975 1.499 0.884 2.125 1.594 1.370 

1-23 6 a.m. I-35S 1.660 1.337 1.380 0.069 0.068 0.068 

1-23 8 a.m. I-35N 0.745 0.899 0.816 1.176 0.882 0.784 

1-23 8 a.m. I-35S 0.793 0.799 0.873 0.132 0.127 0.126 
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Date Hour 

Driving 

Direction 

RMSE  

(1RWIS) 

RMSE  

(2RWIS) 

RMSE  

(3RWIS) 

𝝈𝟐̅̅ ̅  
(1RWIS) 

𝝈𝟐̅̅ ̅  
(2RWIS) 

𝝈𝟐̅̅ ̅  
(3RWIS) 

1-23 9 a.m. I-35N 1.310 1.490 0.839 2.446 1.842 1.246 

2-4 1 p.m. I-35S 0.812 0.631 0.838 0.582 0.477 0.442 

2-5 2 p.m. I-35N 0.555 1.049 0.761 0.460 0.345 0.301 

2-5 3 p.m. I-35S 1.018 2.164 1.686 0.097 0.096 0.095 

2-5 4 p.m. I-35N 1.593 0.983 0.984 2.520 1.943 0.902 

2-5 4 p.m. I-35S 0.699 0.897 0.840 0.183 0.175 0.172 

2-6 12 p.m. I-35S 1.121 1.318 1.128 0.779 0.584 0.519 

2-6 1 p.m. I-35N 0.948 0.815 0.829 1.022 0.778 0.478 

3-7 10 a.m. I-35N 0.714 0.715 0.666 0.799 0.600 0.499 

3-7 10 a.m. I-35S 0.942 0.906 0.780 0.827 0.621 0.552 

3-7 8 a.m. I-35S 0.735 0.581 0.579 0.226 0.207 0.200 

4-22 10 a.m. I-35S 0.832 0.887 0.777 0.759 0.661 0.613 
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APPENDIX B. RESULTS OF SPATIAL MAPPING OF ROAD SURFACE INDEX 

Note that the following tables summarize the corresponding results involved in the steps of 

spatial mapping of RSI, including fitting a trend model for RSI, semivariogram model 

parameters and cross validation results. 

Table B-1. Fitted trend models involved in RK for RSI in 2019 

Date Hour 

Driving  

Direction 

Significant  

variables 

Sign of  

coefficients R2 

1-12 1 a.m. I-35N Altitude/altitude2 (+)/(-) 32% 

1-12 4 a.m. I-35N NA NA NA 

1-12 8 a.m. I-35N Altitude (-) 21% 

1-19 0 a.m. I-35N Altitude (-) 14% 

1-19 1 a.m. I-35N NA NA NA 

1-22 7 p.m. I-35N NA NA NA 

1-22 8 p.m. I-35N NA NA NA 

1-22 9 p.m. I-35N Altitude/altitude2 (-)/(-) 32% 

1-22 8 a.m. I-35N NA NA NA 

1-23 4 a.m. I-35N Latitude (-) 25% 

2-12 1 a.m. I-35N NA NA NA 

2-17 8 a.m. I-35N Latitude/slope/latitude2/slope2 (-)/(-)/(-)/(-) 19% 

2-20 1 a.m. I-35N Altitude/altitude2 (+)/(+) 20% 

2-20 2 a.m. I-35N Altitude/altitude2 (-)/(-) 13% 

2-20 3 a.m. I-35N NA NA NA 

2-23 9 p.m. I-35N Latitude (-) 12% 

2-24 0 a.m. I-35N Latitude (-) 9% 

2-24 1 a.m. I-35N Latitude/latitude2 (-)/(-) 10% 

2-24 3 a.m. I-35N NA NA NA 

3-7 8 a.m. I-35N NA NA NA 

3-7 9 a.m. I-35N NA NA NA 

11-25 10 a.m. I-35S Altitude/altitude2 (+)/(+) 56% 

1-12 1 a.m. I-35S NA NA NA 

1-18 8 p.m. I-35S Altitude/altitude2 (-)/(-) 37% 

1-19 3 a.m. I-35S NA NA NA 

1-22 8 p.m. I-35S NA NA NA 

1-22 10 p.m. I-35S NA NA NA 

1-28 0 a.m. I-35S Latitude (-) 9% 

2-10 8 a.m. I-35S NA NA NA 

2-11 9 p.m. I-35S Altitude/altitude2 (-)/(-) 9% 

2-12 2 a.m. I-35S NA NA NA 

2-17 1 a.m. I-35S Latitude/slope (-)/(-) 50% 
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Date Hour 

Driving  

Direction 

Significant  

variables 

Sign of  

coefficients R2 

2-20 4 a.m. I-35S Latitude (-) 19% 

 

Table B-2. Fitted semivariogram models for RSI in 2019 

Date Hour 

Driving 

Direction Nugget Range (m) Sill 

1-12 1 a.m. I-35N 0.010 30,676.037 0.018 

1-12 4 a.m. I-35N 0.016 47,126.735 0.034 

1-12 8 a.m. I-35N 0.007 35,581.762 0.015 

1-19 0 a.m. I-35N 0.013 51,378.292 0.024 

1-19 1 a.m. I-35N 0.017 60,843.049 0.017 

1-22 7 p.m. I-35N 0.024 61,051.271 0.024 

1-22 8 p.m. I-35N 0.015 9,102.644 0.023 

1-22 9 p.m. I-35N 0.010 55,335.794 0.010 

1-22 8 a.m. I-35N 0.003 42,898.411 0.006 

1-23 4 a.m. I-35N 0.015 13,754.682 0.021 

2-12 1 a.m. I-35N 0.010 46,720.326 0.014 

2-17 8 a.m. I-35N 0.012 61,343.116 0.012 

2-20 1 a.m. I-35N 0.015 54,917.779 0.017 

2-20 2 a.m. I-35N 0.017 20,462.764 0.022 

2-20 3 a.m. I-35N 0.020 1,310.306 0.020 

2-23 9 p.m. I-35N 0.006 19,748.756 0.006 

2-24 0 a.m. I-35N 0.017 44,722.581 0.017 

2-24 1 a.m. I-35N 0.011 60,839.910 0.011 

2-24 3 a.m. I-35N 0.008 15,603.060 0.011 

3-7 8 a.m. I-35N 0.007 8,735.845 0.011 

3-7 9 a.m. I-35N 0.003 54,858.401 0.009 

11-25 10 a.m. I-35S 0.019 52,330.546 0.019 

1-12 1 a.m. I-35S 0.004 19,175.416 0.022 

1-18 8 p.m. I-35S 0.009 55,272.873 0.009 

1-19 3 a.m. I-35S 0.007 51,577.888 0.014 

1-22 8 p.m. I-35S 0.019 55,291.390 0.019 

1-22 10 p.m. I-35S 0.009 53,170.563 0.013 

1-28 0 a.m. I-35S 0.005 52,922.557 0.005 

2-10 8 a.m. I-35S 0.001 53,575.737 0.001 

2-11 9 p.m. I-35S 0.021 52,991.753 0.021 

2-12 2 a.m. I-35S 0.009 51,991.032 0.011 

2-17 1 a.m. I-35S 0.003 40,266.124 0.016 
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Date Hour 

Driving 

Direction Nugget Range (m) Sill 

2-20 4 a.m. I-35S 0.016 55,318.410 0.016 

 

Table B-3. All cross validation results for RSI in 2019 

Date Hour 

Driving  

Direction 

RMSE  

(1RWIS) 

RMSE  

(2RWIS) 

RMSE  

(3RWIS) 

𝝈𝟐̅̅ ̅  
(1RWIS) 

𝝈𝟐̅̅ ̅  
(2RWIS) 

𝝈𝟐̅̅ ̅  
(3RWIS) 

1-12 1 a.m. I-35N 0.160 0.158 0.179 0.036 0.027 0.023 

1-12 4 a.m. I-35N 0.193 0.196 0.208 0.068 0.051 0.040 

1-12 8 a.m. I-35N 0.140 0.128 0.116 0.030 0.022 0.018 

1-19 0 a.m. I-35N 0.147 0.201 0.146 0.044 0.034 0.000 

1-19 1 a.m. I-35N 0.156 0.135 0.135 0.033 0.025 0.022 

1-22 7 p.m. I-35N 0.234 0.234 0.156 0.048 0.036 0.032 

1-22 8 p.m. I-35N 0.199 0.199 0.199 0.046 0.035 0.031 

1-22 9 p.m. I-35N 0.102 0.102 0.102 0.020 0.015 0.014 

1-22 8 a.m. I-35N 0.081 0.081 0.171 0.012 0.009 0.007 

1-23 4 a.m. I-35N 0.192 0.141 0.158 0.042 0.031 0.028 

2-12 1 a.m. I-35N 0.155 0.117 0.117 0.028 0.021 0.016 

2-17 8 a.m. I-35N 0.113 0.113 0.108 0.023 0.017 0.015 

2-20 1 a.m. I-35N 0.134 0.130 0.134 0.033 0.025 0.021 

2-20 2 a.m. I-35N 0.152 0.145 0.143 0.043 0.033 0.029 

2-20 3 a.m. I-35N 0.168 0.136 0.138 0.039 0.029 0.026 

2-23 9 p.m. I-35N 0.077 0.085 0.078 0.012 0.009 0.000 

2-24 0 a.m. I-35N 0.144 0.184 0.153 0.033 0.025 0.000 

2-24 1 a.m. I-35N 0.107 0.110 0.118 0.022 0.017 0.015 

2-24 3 a.m. I-35N 0.122 0.170 0.115 0.022 0.017 0.015 

3-7 8 a.m. I-35N 0.103 0.104 0.102 0.022 0.017 0.015 

3-7 9 a.m. I-35N 0.094 0.098 0.090 0.018 0.014 0.008 

11-25 10 a.m. I-35S 0.151 0.152 0.146 0.038 0.000 0.000 

1-12 1 a.m. I-35S 0.142 0.184 0.182 0.045 0.023 0.022 

1-18 8 p.m. I-35S 0.100 0.154 0.132 0.017 0.013 0.012 

1-19 3 a.m. I-35S 0.190 0.133 0.102 0.028 0.000 0.000 

1-22 8 p.m. I-35S 0.189 0.189 0.139 0.038 0.028 0.025 

1-22 10 p.m. I-35S 0.123 0.123 0.123 0.018 0.015 0.013 

1-28 0 a.m. I-35S 0.073 0.079 0.074 0.010 0.007 0.007 

2-10 8 a.m. I-35S 0.028 0.028 0.028 0.002 0.001 0.001 

2-11 9 p.m. I-35S 0.154 0.151 0.158 0.042 0.032 0.028 

2-12 2 a.m. I-35S 0.132 0.113 0.132 0.017 0.014 0.013 
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Date Hour 

Driving  

Direction 

RMSE  

(1RWIS) 

RMSE  

(2RWIS) 

RMSE  

(3RWIS) 

𝝈𝟐̅̅ ̅  
(1RWIS) 

𝝈𝟐̅̅ ̅  
(2RWIS) 

𝝈𝟐̅̅ ̅  
(3RWIS) 

2-17 1 a.m. I-35S 0.215 0.153 0.195 0.032 0.007 0.007 

2-20 4 a.m. I-35S 0.169 0.125 0.126 0.033 0.024 0.022 
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