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EXECUTIVE SUMMARY 

Lane closures are a necessity for the expansion, improvement and maintenance of transportation 

infrastructure. Unfortunately, most lane closures have an impact on the traveling public and, in 

some cases, may lead to significant delays and loss of reliability. Data-supported methods to 

evaluate the impact of past closures and predict the impact of planned closures are critical in 

designing and evaluating impact-mitigation strategies.  

Transportation agencies use intelligent transportation system (ITS) devices, such as smart work-

zone trailers (SWZTs) to monitor traffic and disseminate information during construction. 

SWZTs are equipped with multiple sensors and can collect data that have the potential to help 

agencies plan, evaluate, and optimize work-zone management. Common challenges faced when 

using data for the direct evaluation of work-zone impacts include data quality, coverage, spatial 

and temporal aggregation, and the lack of clearly defined metrics of performance that accurately 

represent the system conditions given the characteristics of available data. 

This report summarizes research on two topics: the refinement of a data-based method to 

estimate work-zone-related delays and user cost for ongoing and past closures and the 

implementation of machine learning (ML) techniques to forecast the impacts of planned work 

zones on speeds and volumes and for short-term travel-time prediction. The data used in this 

effort were collected on a 20.4-mile section of I-35 in Austin, Texas, and includes SWZT point 

speed and volume data, along with INRIX segment speed data. Forecasting models were trained 

and tested using data from 133 work zones.  

To enhance the estimation of work-zone-related delays and user costs, the researchers developed 

a systematic approach to calculate typical travel times at 15-minute intervals, which were used as 

the reference value against which work-zone travel times were compared. The method considers 

both the need to eliminate outliers that may bias the estimates and the importance of accounting 

for the variation of travel times across weekdays and months of the year. This work proposed 

clusters of days of the week and months of the year expected to have similar typical travel time 

values throughout the day and conducted statistical analyses to confirm that the differences 

among clusters are significant.  

The final workflow involved computing typical travel times within each cluster at 15-minute 

intervals after removing data outliers using a three-sigma rule. Typical travel time estimates were 

provided by sensor and cluster and observed differences among clusters suggest that the 

proposed method is likely to provide more accurate delay estimates than approaches that 

consider a single reference value. 

This effort also explored the use of artificial neural networks (ANNs) to forecast speed and 

volume reduction for planned closures. Speed forecasting models performed well on average 

(root mean square error [RMSE] of10.19 mph) but tended to underestimate speed reductions 

when they were significant. The latter is likely a result of having a small fraction of time steps 

exhibiting significant speed reductions in the training dataset, which consist mostly of nighttime 

closures.  
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Models used to forecast changes in traffic volumes have an average error of 57 vehicles per hour 

per lane (vphpl) RMSE, which is comparable to that of linear regression models that may be 

preferable given they are simpler to estimate. While these results were promising, the trained 

models can only be expected to perform well when analyzing nightly closures. Further training 

with a more balanced dataset that includes daily and nightly closures is required to support a 

broader set of applications.  

The research team also analyzed the performance of three short-term travel-time prediction 

(STTTP) methods, trained as part of a separate effort, during work-zone activity. STTTPs are 

intended to provide a more precise estimate of expected travel times in real time.  

The trained models, which included a time series approach and two types of ANNs, were very 

successful on average, outperforming traditional approaches by up to 50% during peak periods. 

While model performance was not as impressive during the presence of work zones, preliminary 

results were promising, with ML models consistently outperforming traditional approaches. 

Further model refinements to explicitly consider the presence of work zones and their 

characteristics are expected to improve model predictions during the presence of work zones. 

The efforts described in this report illustrate the potential value of emerging data sources and 

modeling techniques to support work-zone planning and management.  

The original workplan for this project involved incorporating successful workflows into an 

existing web application. Unfortunately, the data pipeline that feeds such web application 

became inactive in late 2020 due to COVID-related budget costs. Instead of working on 

implementation, researchers emphasized the exploration of ML methods to support work-zone 

planning and operations. All findings were documented to facilitate their integration into the web 

application once the data pipeline is restored. 
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INTRODUCTION 

U.S. Department of Transportation (DOT) statistics show that work zones resulted in nearly 24 

percent of non-recurring freeway and 10 percent of overall congestion in 2014, leading to an 

approximate delay time of 888 million hours (Schnell et al. 2002). Data-supported methods to 

evaluate the impact of past closures and predict the impact of planned closures are critical to 

designing and evaluating impact-mitigation strategies.  

Evaluating the impact of past roadway closures allows practitioners to assess the benefits of and 

need for congestion mitigation strategies. Forecasting the impact of planned work zones based on 

specific work-zone characteristics and typical traffic conditions is important to support the 

identification of optimal time windows to schedule work zones to minimize negative impacts. 

This can also support the design of traffic management strategies. 

This report describes research that enhances existing methods to evaluate the impact of work 

zone-related lane closures and work that explores the use of machine learning (ML) techniques 

for work-zone impact forecasting.  

Work-zone impacts are often measured in terms of user delay and delay costs, although other 

metrics, such as queue length and traffic diversion, are often helpful when designing and 

evaluating traffic management strategies and public information dissemination. Given that delay 

is typically computed as the difference between travel times during the work zone and typical 

travel times, the estimation of typical travel times is important for impact evaluation and 

forecasting applications.  

For this effort, the researchers proposed a replicable workflow to estimate typical travel times in 

order to provide consistent impact estimates for work zones occurring at different times of the 

day and days of the week. The research presented in this report also explores forecasting three 

different types of work-zone impacts using ML: speed and volume changes through the work 

zone and corridor-level travel-time increases. The latter was studied from the perspective of 

short-term forecasting and is intended to support the provision of real-time traveler information.  

The data used to support this research was provided by the Texas DOT (TxDOT) and included 

point speed and volume data from smart work-zone trailers (SWZTs) as well as segment-level 

data provided by INRIX. The data used in this project were collected on a 20.4 -mile segment of 

I-35 in Austin, Texas, in 2019. The proposed models used work-zone characteristic parameters 

such as closure length, location, and duration, along with typical traffic conditions, as predictors 

to forecast traffic conditions on work-zone days. Work-zone characteristics were provided by 

TxDOT, and data from 133 closures were used for model training/estimation and testing. 

The following chapters describe the data used in this project, the workflows proposed to enhance 

the estimation of typical traffic conditions, and the testing of ML models for work-zone impact 

forecasting.   



 

2 

DATA DESCRIPTION 

There were 33 SWZTs on I-35 through Austin, with 17 in the northbound (NB) direction and 16 

in the southbound (SB) direction. The locations of these SWZT sensors are shown in Figure 1. 

 

Figure 1. SWZT locations 

SWZTs collected point speed and volume data every minute, which was streamed in real-time. 

The TxDOT Austin District was using SWZTs from two different vendors and, in a previous 

effort (Chen et al. 2019), the Center for Transportation Research (CTR) at Austin collaborated 

with the general engineering consultant (GEC) for TxDOT’s Austin District to develop a 

pipeline to retrieve and archive data from both vendors in order to evaluate the impact of work 

zones. Data quality issues, such as missing data and erroneous data, were reported to TxDOT and 

documented in a technical memorandum titled 2020-6: Post-Event Estimation of Work Zone 

Traffic Impacts – Methodology White Paper, which is available from the authors of this report. 

INRIX data consisted of spatial average speed in one-minute intervals for pre-defined segments, 

and the data provided were ready for use in this analysis without further processing. INRIX 

segment data were used for the stretch of segments shown in Figure 2.  
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Figure 2. INRIX segments 

There were 30 segments in the NB direction, with an average length of 0.545 miles each, and 32 

segments in the SB direction, with an average length of 0.517 miles each. 

A total of 1,919 work-zone records were provided by TxDOT. Of those, 133 occurred in 2019 

and were located on the corridor segment shown in Figure 1. The locations of work zones were 

manually geocoded. Important attributes included start hour of closure, closure direction, 

coordinates of start and end points of closure, existing lanes, number of closed lanes, number of 

closure days, closure length, and closure durations. Examples of the work zone-related data are 

shown in Table 1. 
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Table 1. Work-zone data samples 

Start 

Date 

Start 

Time 

End 

Date 

End 

Time Direction 

Existing 

Lanes Lanes Closed 

From 

Latitude 

From 

Longitude 

To 

Latitude 

To 

Longitude 

7/22/2019 10 p.m. 7/23/2019 5 a.m. SB 5 Auxiliary Lane; Lane 3; Lane 4 30.3392 -97.6999 30.3328 -97.7043 

7/21/2019 9 p.m. 7/22/2019 5 a.m. NB 3 Lane 1 30.2233 -97.7472 30.2283 -97.7443 

7/22/2019 9 p.m. 7/26/2019 5 a.m. NB 5 Auxiliary Lane 30.3222 -97.7067 30.3328 -97.7043 

7/22/2019 10 p.m. 7/24/2019 5 a.m. NB and SB 5 Lane 1; Lane 2 30.3391 -97.7001 30.3222 -97.7067 

8/5/2019 8 p.m. 8/7/2019 5 a.m. SB 5 Lane 1 30.3392 -97.6999 30.3328 -97.7043 

7/24/2019 8 p.m. 7/26/2019 5 a.m. NB 5 Lane 1; Lane 2 30.3222 -97.7067 30.3328 -97.7043 

7/22/2019 9 p.m. 7/24/2019 5 a.m. NB and SB 5 Lane 1; Lane 2 30.3582 -97.6881 30.3222 -97.7067 
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Figure 3 shows the distribution of selected work-zone characteristics from the dataset that was 

used.  

   

 

 

Figure 3. Distributions of selected work-zone characteristics  

Most of the closures were nightly closures. In addition, in both directions, more than one third of 

the total closures were located at the intersection of I-35 and US 183. As a result of these 

limitations, the models trained in this effort were not expected to perform well during daytime 

hours, and their performance at different sites and during daytime hours may require further 

testing.  
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ESTIMATION OF TYPICAL TRAFFIC CONDITIONS 

In this effort, the researchers analyzed travel times and speeds on segments defined between two 

consecutive SWZTs in the same direction. Segment speeds, travel times, and traffic volumes 

were computed as functions of point speeds and volumes for each 15-minute interval, shown as 

Equations 1 through 3. 

1( ) ( )
( ) , [1, 1]
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i i
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s s

v t v t
v t i N
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=  −  (1) 
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where ( )iv t  and ( )in t  indicate the speed and volume measured by the ith sensor during time t, 

( )i

sv t  and ( )i

sn t  represent the segment speed and volume on the ith segment during time t, il  is 

the length of the ith segment, and ( )i

sT t  is its travel time during time t. Corridor travel time is 

defined as the sum of the corresponding segment travel time for the same time interval.  

Typical travel times were used as a reference value to assess the delays imposed by work zones 

and as inputs in the proposed ML predictive models. To provide consistent delay estimates, it 

was important to estimate typical values in a systematic way. The approach that was used 

addressed the following practical considerations: 

• Data may be missing or contain errors: Missing data points were identified, and duplicate 

data and records with zero speed or a zero volume count were removed 

• Typical values may vary by day of the week and month of the year: Used a data grouping 

approach and assessed whether differences among the proposed clusters were significant 

• Estimates may be biased by the presence of outliers: Used a simple data cleaning method to 

reduce the impact of outliers 

In the analyses described in the following sections, we considered data for individual SWZTs 

aggregated into five-minute intervals, which is the aggregation level recommended by the 

Highway Capacity Manual (HCM) (TRB 2000). The aggregated speed was calculated as the 

average of the speed data in each five-minute interval, and the aggregated volume was the sum 

of the counts of one-minute intervals within each five-minute interval. In addition, if there were 

missing data within a five-minute interval, the aggregated volume was adjusted proportionally 
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(available volume × 5 ÷ number of available data intervals). For example, if the data points at 

08:01:00 and 08:03:00 were missing, the aggregated volume between 08:01:00 and08:05:00 

were multiplied by 1.67 (5/3) to compensate for the two missing data intervals and, therefore, the 

underestimated volume. 

Data Grouping  

There are various factors affecting traffic conditions, such as time (time-of-day, day-of-week, 

month), weather, and location. The goal of this section is to identify groups of days-of-week and 

months with statistically similar traffic patterns. The researchers estimated typical traffic 

conditions for each of these groups in order to provide consistent delay estimates across multiple 

work zones.  

First, they considered day-of-week data groups. Figure 4 and Figure 5 show the volume and 

speed on different days of the week for an sample sensor (WZ I-35 NB near Brandt Road, as 

boxed in the previous Figure 1).  

 

Figure 4. Sensor volume data on different days of the week 
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Figure 5. Sensor speed data on different days of the week 

Both the speed and volume data were averaged over the year (2019). The figures show that the 

traffic conditions on weekends was distinct from that on weekdays. In addition, the data on 

Friday evenings presented a different trend from other weekdays. 

Based on this analysis, the researchers classified the data in each month into five day groups: 

Monday, Tuesday/Wednesday/Thursday, Friday, Saturday, and Sunday. For simplicity, the 

Tuesday/Wednesday/Thursday grouping is referred to as Weekdays in this report.  

Examination of the differences between Group Weekdays and each other group was significant, 

so two-sample t-tests were conducted. A t-test is a type of inferential statistic used to determine 

if there is a significant difference between the means of two groups, which may be related in 

certain features. The t-test is one of many tests used for the purpose of hypothesis testing in 

statistics.  

In the t-tests for this study, time was aggregated into 15-minute intervals, and the traffic 

condition in each interval was assumed to be stable. Raw speed and count data were grouped into 

15-minute intervals. Figure 6 shows the t-test results in January for a sample sensor (NB I-35 

mile marker [MM] 2 after East 51st Street).  
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Figure 6. T-tests results for volume comparison between group weekdays and other groups 

There were 96 points in each plot because there was one test for each 15-minute interval, and the 

plots showed one day, or 24 hours, of time (4 per hour × 24 hours = 96). In each t-test, the null 

hypothesis was that the mean value in a 15-minute interval from Group Weekdays was the same 

as the mean value in the same interval from other groups. The p-value was used to determine if 

the researchers should reject the null hypothesis.  

In this example, the confidence level is 0.95, which means the null hypothesis should be rejected 

if the p-value is less than 0.05, as indicated by the red dashed line on each figure. In other words, 

if the p-value at a time point is less than 0.05, the mean value from Group Weekdays is different 

from the corresponding group. Figure 6 indicates the p-values for most 15-minute time 
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increments in each of the other groups are less than 0.05, with the weekends showing more 

significant results than Monday and Friday. The t-test results for all sensors are available in a zip 

file of pdf charts as Appendix I. 

In addition to the t-tests on individual sensors related to day-of-week data groups, the researchers 

used two metrics to validate the day-of-week data groupings across multiple sensors: the number 

of significant months for group i , 
i

mn  and the number of significant sensors for group i ,  
i

sn . 

These were defined as follows: If the number of significant points of group i  in a month is larger 

than the threshold dN , regard this month as a significant month for group i . If the number of 

significant months of group i  of a sensor is larger than the threshold 
i

m mN , where 
i

mN  is the 

number of available months of group i  and m , is a ratio less than 1, regard this sensor as a 

significant sensor for group i . If 48dN = , which indicates more than half of the time points in 

the month are significant, and 0.75m = , which indicates more than 3/4 of the total months for 

the sensor are significant, the number of significant sensors based on volume and speed is shown 

in Figure 7.  

 

Figure 7. Number of significant sensors 

The dashed line shows the half point for the total number of sensors. These results showed that 

most of the sensors were significant in Group Saturday and Group Sunday. More than half of the 
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sensors were significant in Group Friday. There were only two sensors significant in Group 

Monday based on the volume data. However, there were more than half of the sensors that were 

significant in Group Monday based on the speed data. Therefore, combining Group Monday with 

Group Weekdays might lead to inaccurate speed estimation on Mondays. Overall, Figure 7 

indicated the data day-of-week group classification is appropriate.  

In addition, the data was further grouped into four groups by month as follows: January–May, 

June–August, September–November, and December. 

Outlier Removal 

The three-sigma rule (Zhang et al. 2013) was used to remove data outliers. Normal distributions 

are required by this method. Therefore, the researchers first used the Box-Cox transformation to 

normalize the data in each group defined in the previous section (Box and Cox 1964). Then, the 

team removed the records if the transformed speed or volume was more than three standard 

deviations (or sigmas) outside the mean of the group (thus, the three-sigma rule). Figure 8 and 

Figure 9 show the outlier removal for Group Weekdays for a sample sensor (NB IH-35 MM 2 

after East 51st Street) in August.  
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Figure 8. Outlier removal for volume  
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Figure 9. Outlier removal for speed 

Five-minute aggregated data are used in this example. The data in the ovals were removed after 

using the three-sigma method. 

In summary, 3.98% of the raw data were removed for all sensors. The percentage of data points 

removed for each sensor is available in the Appendix II spreadsheet file.  

Typical Traffic Condition Estimation 

After removing the outliers, both one-minute speed and traffic count data were aggregated into 

15-minute intervals. Typical traffic conditions were calculated as the average value in each 

interval in the same group across all considered days. A sample is shown in Table 2. Typical 

traffic condition data sample.  
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Table 2. Typical traffic condition data sample 

Sensor Time weekday_group* month_group** Year 
Mean Speed 

(mph) 
speed.sd 

Mean 15-

minute 

Counts 

(vehicle/15-

minutes) 

count.sd 

WZ-IH-35 

SB near 

Woodward 
Street 

12:15:00 3 1 2019 59.78813559 3.289833973 999.0254 135.3667 

EB US 

183 MM 1 
after 

Burnet 

Road 

12:30:00 3 1 2019 57.10610932 10.7252338 972.8778 149.1259 

EB US 
183 MM 2 

after 

Lamar 
Boulevard 

12:30:00 3 1 2019 55.69874477 9.76236764 984.2887 135.0292 

EB US 

183 MM 3 
after 

Cameron 

Road 

12:30:00 3 1 2019 64.33755274 3.883360735 398.4177 99.87347 

* weekday_group: 1=Tuesday–Thursday, 2=Monday, 3=Friday, 4=Saturday, 5=Sunday 

** month_group: 1=January–May, 2=June–August, 3=September–November, 4=December 

The volume.mean and volume.sd columns show the average vehicle count and its standard 

deviation during the corresponding 15-minute interval across days in the same group. The 

corresponding hourly quantities can be obtained by multiplying this value by 4. The integrated 

table is available in the Appendix III spreadsheet file. Figure 10. Typical speed in each day-of-

the-week group for the four month-of-the-year groupings shows the typical speed evolution 

during the day-of-the-week groups for each month-of-the-year grouping.  
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Figure 10. Typical speed in each day-of-the-week group for the four month-of-the-year 

groupings 

In order to better understand the benefits of considering multiple reference speeds based on the 

day-of-the-week and month groups, the researchers compared the 2019 values to the 65th 

percentile speeds for each 15-minute interval at sensor WZ-IH-35 SB near Brandt Road. The use 

of a specific percentile to define typical speed values is a method that is often used by data 

providers, such as INRIX (Du et al. 2017). Figure 11. Speed comparison for day-of-the-week 

groups within the January–May month group shows the comparison between the 65th percentile 

of SWZT speeds in 2019 and the average speed for each day-of-the-week group during the 

January–May month group.  
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Figure 11. Speed comparison for day-of-the-week groups within the January–May month 

group 

Figure 12. Speed comparison for month groups within the Weekdays group (Tuesday, 

Wednesday, and Thursday) shows the comparison between the 65th percentile of SWZT speeds 

in 2019 and the average speed in each month group for the Weekdays group (Tuesday, 

Wednesday, and Thursday).  
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Figure 12. Speed comparison for month groups within the Weekdays group (Tuesday, 

Wednesday, and Thursday) 

Both figures suggest that the 65th percentile method may not be able to capture the speed 

variation between defined groups. Thus, it would lead to biased estimations. For example, as 

shown in Figure 11. Speed comparison for day-of-the-week groups within the January–May 

month group, the 65th percentile value overestimates the typical speed for all day-of-the-week 

groups within the January–May group.  
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MACHINE LEARNING MODELS 

This chapter describes the ML models that were proposed to forecast the work-zone impact on 

traffic. First, an artificial neural network (ANN) was developed using INRIX speed data to 

predict the impact of work zones on speeds through the work zone. Second, an ANN with a 

similar structure was developed using the SWZT volume data to predict the impact on traffic 

volume. The researchers proposed two metrics to estimate volume: the volume on the segment 

upstream of the work zone (demand) and the volume on the work-zone segment (through-

volume). Both values were averaged over the duration of the work zone.  

The researchers also tested the performance of three short-term travel-time forecasting models to 

estimate corridor travel time in near real time. These models would support traffic operations and 

the provision of traveler information. The models were trained in the context of a separate 

project and without explicitly considering the presence of work zones, but their promising 

performance under typical conditions motivated the short-term travel-time model testing 

conducted in this effort.  

Overview of Artificial Neural Network Models 

ANNs are a widely used ML model used to process the complex relationship between inputs and 

outputs that would prove impossible or difficult to process by human or statistical standards (Du 

et al. 2016 and 2017, Hou et al. 2015, Lana et al. 2018, Kamyab et al. 2020, Weng and Meng 

2013). An ANN consists of nodes (artificial neurons) and connections of neurons between 

adjacent layers. Each neuron has an input and output; the output is equal to the input processed 

by an activation function. The number of neurons in the first layer is equal to the number of 

predictors, and the input for each neuron is the value of the corresponding predictor. Similarly, 

the number of neurons in the last layer is equal to the number of target variables, which are the 

variables predicted by the ANN. The input for a neuron in the middle layers is the weighted sum 

of the outputs of all neurons from its previous layer.  

The mission of an ANN model is to find the optimal weights that can minimize selected metrics 

encoding the difference between the outputs of the last layer and the target values. The root mean 

square error (RMSE), mean squared error (MSE) and mean absolute error (MAE) are examples 

of the most commonly used metrics to evaluate the success of an ANN model. Figure 13 shows 

the structure of a typical ANN with four layers.  
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Figure 13. Example of an ANN model structure 

The first layer and the last layer have 16 and 3 neurons, respectively, which indicates there are 

16 predictors and 3 target variables. The lines between nodes in adjacent layers represent the 

weights that need to be optimized. The performance of ANNs depends on the selection of the 

parameters that define the structure of the network, which are called hyperparameters.  

Common hyperparameters include the number of layers, the number of neurons in each layer, 

batch size (or number of samples considered in one iteration), and number of epochs, which are 

explained in the next section. These hyperparameters are usually tuned to find an optimal 

combination of hyperparameters that minimizes the predefined loss function to give better 

results. 

ANN Model for Speed Impacts 

In this section, we describe the implementation of an ANN model to forecast the speed changes 

introduced by a planned closure, characterized by the variables defined in Table 3 and located on 

specific INRIX segments for which the researchers considered the attributes, as also listed in 

Table 3.  
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Table 3. Predictor variables for ANN models of work-zone speed impacts 

Predictor Variable Description 

Closure length Length of work zone 

Closure start time Start hour of work zone 

Closure duration Number of hours of work zone 

Percent of lanes closed Number of closed lanes ÷ total existing lanes 

Closure direction  – 

Closure location Distance between start point of work zone and start point of 

corridor 

Day of week index – 

Time step index – 

Typical travel speed for relevant 

segments 

Typical travel speeds every 15 minutes for duration of study 

period (normalized) 

 

For these models, the researchers aggregated segment speed data into 15-minute intervals and 

defined a study period that consisted of one hour prior to the beginning time of the work zone 

and one hour after the end time of the work zone. The selection of the study period was done 

empirically based on the characteristics of the work zones considered in this effort. The proposed 

models produce speed forecasts at 15-minute intervals for all relevant segments during the study 

period. For each closure there were three relevant INRIX segments (Figure 14):  

• Upstream segment: the upstream segment from the start point of the work zone (shown in 

green) 

• Start segment: the segment in which the start point of the work zone is located (shown in 

blue) 

• End segment: the segment in which the end point of the work zone is located (shown in 

orange) 

 

Figure 14. Segment definition for speed prediction model 

Typical speeds were estimated using INRIX data using the same day-of-the-week and month 

grouping approach proposed for SWZT data and 2019 data. The speed was normalized using 

Equation (4) to stabilize the training process: 

min
normalized

max min

x x
x

x x

−
=

−
  (4) 
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where, x  is a raw speed data point for segment s at interval t, and minx  and maxx  are the 

minimum and maximum speed values, respectively, across all segments and time intervals. The 

researchers used the MSE (Equation 5) as the loss function that the training process aimed to 

minimize: 

( )
2

1

1 ˆMSE=
n

i i

i

Y Y
n =

−
 (5) 

where, n  is the number of samples, iY  is the real value of a target variable, and Ŷ is the 

predicted value. The sigmoid function, Equation (6), was used as the activation function: 

1
( )

1 x
S x

e−
=

+
. (6) 

Available data were split into training data and testing data with a ratio of 0.75:0.25. Training 

data were used for the model to learn the relationship between predictors and target variables, 

and testing data were used to evaluate the performance of the trained model. Keras, which is a 

Python (programming language) deep learning application programming interface (API), was 

employed to train the model. Keras further splits the training data into trained data and validation 

data with a ratio of 0.67:0.33 to avoid overfitting. Only the trained data are used to train the 

model; validation data are used to evaluate the model performance at each iteration and adjust 

the model parameters correspondingly. The evolution of the loss value with the epoch is shown 

in Figure 15.  

 

Figure 15. Loss value for speed prediction model 

One epoch is one iteration in which all data in the trained set is trained once. As Figure 15 

shows, the training process converges after 2,500 epochs.  

In this case, Figure 15 compares observed and forecasted speeds on the three relevant segments 

for all work zones in the testing dataset. The green segment has a slope of 1 and represents a 

perfect prediction. The RMSE and MAE for the model performance were equal to 10.19 mph 
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and 5.78 mph, respectively. The MAE value was within 10 percent of the mean value of the 

speeds for work zones in the testing data, which was equal to 59.5 mph, so the trained model was 

considered to perform well overall. However, Figure 16 suggests that the model performed well 

when the true speed was high but tended to overestimate the speed when the real speed was low.  
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Figure 16. Performance of ANN model for speed impact forecasting on testing data 

The poor performance for closures in which traffic speed was significantly reduced was likely a 

result of having few data points in the training dataset for which speeds through the work zone 

decreased by more than 5 mph. The former is not surprising given that most of the closures were 
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scheduled during nighttime hours when the traffic volume was low and the travel speed was not 

significantly reduced. In other words, the model is not able to generate accurate predictions for 

cases that it is not trained to predict.  

Figure 17 shows the comparison between typical speeds and speeds during work zones for all 

available work-zone data.  

 

 

 

Figure 17. Observed work-zone speed impacts for all work zones 

This figure shows a small portion of the work-zone data had reduced speeds, while most of the 

speeds were similar to typical speeds. Only 10.5 percent of SB and 23.5 percent of NB closures 

had more than 30 minutes out of two hours in which the speed reduction was more than 5 mph 
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compared to the typical condition. As a result, the lack of enough samples with significantly 

reduced speed made the model unable to predict reduced speed accurately. It is expected that the 

model performance could be improved if a larger dataset is used for training. 

ANN for Work-Zone Volume Impacts 

This section describes an ANN model to forecast the impact of work zones on traffic volume. In 

the context of this effort, volumes that were lower than typical values may be interpreted as a 

reduction of travel demand through the work zone, since the types of closures analyzed in this 

study did not lead to substantial queues. For this model, the researchers used SWZT volume data 

as predictors. The studied time period was the work-zone duration, and relevant sensors for the 

analysis are defined as shown in Figure 18.  

 

Figure 18. Segment definition for volume prediction model 

The first set of sensors are upstream sensors within two miles of the start point of the work zone. 

The second set of sensors are on the work zone. The average volume measured by sensors 

located in the upstream segment was regarded as travel demand for the work-zone segment.  

Table 4. Predictor variables for ANN models of work-zone volume impacts presents the 

predictor variables for this ANN model.  

Table 4. Predictor variables for ANN models of work-zone volume impacts 

Predictor Variable Description 

Closure length Length of work zone 

Closure start time Start hour of work zone 

Closure duration Number of hours of work zone 

Percent of lanes closed Number of closed lanes ÷ total existing lanes 

Closure direction  – 

Closure location Distance between start point of work zone and 

start point of corridor 

Day of week index – 

Time step index – 

Typical vehicle counts for 

relevant segments 

Typical average vehicle counts every 15 minutes 

for duration of study period (normalized) 

 

The target variables were the average volumes (vehicles per hour per lane [vphpl]) for the 

duration of the closure on each segment. 
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A preliminary analysis of the training data suggested that sensor errors may have been present in 

the sample. Figure 19 shows a cluster of data points for which traffic volumes on the day of the 

closure were larger than typical volumes. These data points were removed from the data for final 

model training and validation. 

 

 

Figure 19. Comparison between typical volume and volume during work zones 

The performance of the trained model on the testing data is shown in Figure 20, which suggested 

that model performance was consistently good for a range of actual volumes.  
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Figure 20. Performance of the volume prediction model 

The RMSE and MAE were equal to 57 vphpl and 44 vphpl, respectively. The MAE 

approximated 14 percent of the average volume in the testing data, which was 309.4 vphpl.  

The researchers compared the performance of the ANN model to the volume estimates obtained 

by using a fixed reduction ratio model based on historical data and a linear regression model. 

The two alternative approaches are appealing because they are simpler to estimate than an ANN. 

The fixed ratio reduction model assumes the volume reduction ratio for any work zone is equal 

to the average volume reduction ratio over all work zones, which equaled 3.7 percent and 12.6 

percent for the upstream segment and work-zone segment, respectively. The linear regression 

model takes the same predictors as the ANN model. The RMSEs and MAEs are shown in Table 

5. 
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Table 5. Performance comparison after suspicious data removal 

Model RMSE (vphpl) MAE (vphpl) 

ANN 57 44 

Fixed reduction ratio (3.7%, 12.6%) 144 112 

Linear regression 50 37 

 

The linear regression model had higher accuracy than the ANN. The average volume in the 

testing data without outliers was 309.4 vphpl. Therefore, the MAEs of the ANN model and the 

linear regression model approximate 14 percent and 12 percent of the average volume, 

respectively, and both models are considered to perform well overall. 

Short-Term Travel-Time Prediction 

This section describes the application of three short-term prediction models to the estimation of 

corridor travel times during work zones. Short-term travel-time prediction models are intended to 

provide real-time information to travelers or to support traffic operations. The models that were 

implemented were developed in the context of a separate project and will be documented in a 

final report to be submitted to TxDOT by August 31, 2021. The goal of the analysis presented in 

this document is to explore the potential value of short-term travel-time predictions models in the 

context of work-zone traffic management. 

The models that were implemented were trained using 5-minute INRIX data and produce travel 

time forecasts at 5-minute time steps, one hour into the future. A separate model was trained for 

each segment on the corridor and for every 5-minute forecasting horizon. For each segment, 

model inputs consisted of the travel times on selected upstream and downstream segments during 

the previous time steps.  

Corridor travel times were estimated using a dynamic approach that is expected to closely 

resemble the actual travel time experienced by a vehicle during a trip on multiple segments. Most 

practical methods to estimate travel times in real time use an instantaneous approach, in which 

the corridor travel time at time step t=0 is estimated as the sum of segment travel times at t=0. 

However, it is possible for vehicles to arrive to downstream segments at time 1t t= , during 

which the travel time may be different than what was observed at t=0. Therefore, the 

“instantaneous” prediction could be biased. A “dynamic” travel-time prediction framework uses 

the travel time for each segment corresponding to the arrival time at the segment, which requires 

forecasting future travel times for downstream segments.  

The analysis that follows compares the performance of a naïve model, which uses the current 

travel times on each segment as the predicted travel time for future time steps (instantaneous 

travel time) to two dynamic travel-time prediction methods: 1) a linear time series (LTS) model 

that uses the INRIX speed from all INRIX segments and the SWZT speed and volume from all 

SWZT sensors in the past half hour to predict travel time for each INRIX segment in the next 

hour by applying linear regression and 2) a recurrent neural network (RNN) that uses the current 
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INRIX speed and SWZT speed and volume to predict the travel time on each INRIX segment in 

the next hour. RNN is a type of neural network that is able to predict temporal dynamic behavior. 

Note that these models do not consider the work-zone information as predictors, so the 

researchers expected a larger error for the prediction for a work-zone day than for a typical day.  

Figure 21 exemplifies the prediction results for these models on two work-zone days.  

 

 

Figure 21. Performance of short-term prediction models for a work-zone day 

The dashed lines indicate the start and end times of the work zone. For closure 1317, the model 

can accurately forecast the increased travel time, while, during closure 1339, all models 

underestimate the increase in travel times. This is likely due to the fact that the model is trained 

without considering work-zone characteristic parameters.  

Figure 22 and Figure 23 show the RMSE and MAE of the travel time prediction during the 

work-zone hours (closure) and during the same hours of the day for all other days (typical) for 

the entire corridor (Figure 22) and for the work-zone segments (Figure 23).  
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Figure 22. Performance of short-term travel-time prediction models for total corridor 

travel time forecasting  

 

Figure 23. Performance of short-term travel-time prediction models on segments affected 

by work zone 

It is important to consider that the average performance of the RNN and LST models was 

observed to be up to 50 percent better than that of the naïve model during a.m. and p.m. peak 

periods. The benefits of these models at nighttime (when most of the analyzed closures took 

place) is less pronounced, as reflected by the similar height of all red bars in Figures 22 and 23, 

particularly on typical days and when only the closure links are considered. However, the ML 

approaches were observed to perform consistently better than the naïve approach during work 

zones. All models performed worse during work zones, but it is expected that errors may be 

reduced by explicitly considering work-zone variables in the training process.  
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SUMMARY AND FUTURE WORK 

This report summarizes the implementation of ML techniques to forecast the impacts of planned 

work zones on vehicle speeds and traffic volumes and for short-term travel-time prediction. The 

data used in this effort were collected on a 20.4-mile section of I-35 in Austin, Texas, and 

includes SWZT point speed and volume data, along with INRIX segment speed data. Forecasting 

models were trained and tested using data from 133 work zones.  

To enhance the estimation of work-zone related delays and user costs, the researchers developed 

a systematic approach to calculate typical travel times at 15-minute intervals, which were used as 

the reference values against which work-zone travel times were compared. The method 

considered both the need to eliminate outliers that may bias the estimates and the importance of 

accounting for the variations in travel times across days of the week and months of the year. This 

work proposed clusters of days of the week and months of the year expected to have similar 

typical travel time values throughout the day and conducted statistical analyses to confirm that 

the differences among the clusters were significant.  

The final workflow involved computing typical travel times within each cluster at 15-minute 

intervals after removing data outliers using a three-sigma rule. Typical travel time estimates were 

provided by sensor and cluster and observed differences among clusters suggested that the 

proposed method is likely to provide more accurate delay estimates than approaches that 

consider a single reference value. 

This effort explored the use of ANNs to forecast speed and volume reduction for planned 

closures. Speed forecasting models performed well on average (RMSE of 10.19 mph) but tended 

to underestimate speed reductions when they are significant. The latter is likely a result of having 

a small fraction of time steps exhibiting significant speed reductions in the training dataset, 

which consisted mostly of nighttime closures.  

Models used to forecast changes in traffic volumes had an average error (RMSE) of 57 vphpl, 

which is comparable to that of linear regression models that may be preferable since they are 

simpler to estimate. Although the ANN model had slightly higher errors than a linear regression 

model, the researchers believe the ANN model would outperform the linear regression model if 

data for more daytime closures and more types of highway closure locations becomes available.  

The research team also analyzed the performance of three STTTP methods, trained as part of a 

separate effort during work zones. STTTPs are intended to provide a more precise estimate of 

expected travel times in real time. The trained models, which included a time series approach 

and two types of ANNs, were very successful on average, outperforming traditional approaches 

by up to 50 percent during peak periods.  

While model performance was not as impressive during the presence of work zones, preliminary 

results were promising, with ML models consistently outperforming the traditional approaches. 

Further model refinements to explicitly consider the presence of work zones and their 
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characteristics are expected to improve model predictions during the presence of work zones. 

The efforts described in this report illustrate the potential value of emerging data sources and 

modeling techniques to support work-zone planning and management.  

The original workplan for this project involved incorporating successful workflows into an 

existing web application. Unfortunately, the data pipeline that feeds such web application 

became inactive in late 2020 due to COVID-related budget costs. Instead of working on 

implementation, researchers emphasized the exploration of ML methods to support work-zone 

planning and operations. All findings were documented to facilitate their integration into the web 

application once the data pipeline is restored. 
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