
fars. Inabrl © . Sunutr
Formerly connected with Iowa State Board of Health work

STATE BOARD OF HEALTH

OF THE

STATE OF IOWA

FORTHE

Fiscal Period Ending June 30, 1912

PRINTED BY ORDER OF THE GENERAL ASSEMBLY
Nuisance 161
Peddling without license 1
Practicing medicine without license 1
Receiving and concealing stolen goods
12
12
Resisting an officer
Resisting an officer 54
Selling cigarette papers 1
selling to or procuring for minor or inebriate, intoxicating liquor 29
Selling drugs without a permit 1
Soliciting orders for intoxicating liquor 2
Selling obscene literature 2
Transporting liquors illegally 1
Vagrancy 13
Violation of city ordinance 7
Violation of pure food laws I

LETTER OF TRANSMITTAL.

STATE OF IOWA,
Office of Secretary State Board of Health Des Moines, Iowa, October 31, 1912

To His Excellency, Beryl F. Carroll, Governor of Iowa:
SIR :-In accordance with the provisions of Section 2565 of the Code, I have the honor to present the Sixteenth Biennial Report of the State Board of Health for the period commencing July 1, 1910 and ending June 30,1912

Very respectfully yours,
Guilford H. Sumner, M. D., Secretary.

MEMBERS OF THE STATE BOARD OF HEALTH, JUNE 30, 1912.

Hon. Geonoe Cosson, Attorney General, Ex-Officio, Des Moines, James I. Gibson, State Veterinarian, Ex-Officio, Des Moines. Lafaybrte Higeins, Ciyll Engineer, Des Moines.

PHYSICLANS.
G. F. Severs, (E) Centerville, Term expires January $31,1912$.

Bert L. Ehker, (R) Leon, Term expires January 31, 1913.
G. A. Smirfi, (R) Clinton, Term expires January 31, 1914.

Alaem De Bey, (R) Orange City, Term expires January 31, 1915.
T. U. McManus, (R) Waterloo, Term expires January 31, 1916.
E. E. Richaroson, (H) Webster City, Term expires January 31, 1917,
G. A. Hustoon, (H) Des Molnes, Term expires January 31, 1918.

OFFICERS OF THE BOARD,

B. L. Eifer, Prestaent.

Gumpond H. Sumnem, Secretary,
Henbe Almert, Director of the Bacteriological Laboratory.
Chamess N. Kinney, Chemist.

District No. 1.-Allamakee, Black Hawk, Bremer, Buchanan, Butler, Chickasaw, Clayton, Delaware, Fayette, Floyd, Grundy, Howard, Mitchell and Winneshiek. Represented by Dr. T. U. MeManus, Waterloo.

District No. 2.-Benton, Cedar, Clinton, Dubuque, Iowa, Jackson, Johnson, Jones, Linn, Muscatine and Scott. Represented by Dr. George A. Smith, Clinton.

District No. 3.-Appanoose, Davis, Des Molnes, Henry, Jefferson, Keokuk, Lee, Louisa, Mahaska, Monroe, Wapello, Washington and Van Buren. Represented by Dr. G. F. Severs, Centerville.
District No. 4.-Calhoun, Cerro Gordo, Emmet. Franklin, Mamilton* Hancock, Hardin, Humboldt, Kossuth, Palo Alto, Pocahontas, Webster, Winnebago, Worth and Wright. Represented by Dr. E. E. Richardson, Webster City.

District No. 5.-Buena Vista, Cherokee, Clay, Dickinson, Ida, Lyon, O'Brien, Osceola, Plymouth, Sac, Sloux and Woodbury. Represented by Dr, Albert de Bey, Orange City.

Drstmer No. 6.-Adair, Audubon, Carroll, Cass, Crawford, Greene Guthrie, Harrison, Monona, Pottawattamie and Shelby. Not represented.
Drstrict No. 7.-Boone, Dallas, Jasper, Madison, Marion, Marshall, Polk, Poweshiek, Story, Tama and Warren. Represented by Dr. G. A. Huntoon, Des Moines.

District No. 8.-Adams, Clarke, Decatur, Fremont, Lucas, Mills, Montgomery, Page, Ringgold, Taylor, Union and Wayne, Represented by Dr. B. L. Eiker, Leon.

When vacancies occur in the state Board of Health it shall be the duty of the governor to appoint to membership on the Board physicians residing in the various health districts until seven such districts are represented on the Board. After which time the annual appointment shall be made from the physicians residing in the district not represented on the Board the preceding year.-The Code.

At the beginning of the biennial period Dr. A. P. Hanchett, of Council Bluffs, and Dr. A. C. Moerke, of Burlington, were members of the Board of Health. The former retired by the expiration of term, January 31; 1911, and the latter by resignation October 1, 1911, and was succeeded by Dr. G. F. Severs, of Centerville. Each held the office of President during his senfor year of membership. Dr. Geo. E. Decker, of Davenport, diso as did Dr. Moerke, and was succeeded by Dr. G. A. Smith of Clinton.

The present Biennial Report which began July 1, 1910, and ended June 30, 1912, will show marked progress in all lines of public health work in the State. It will be noted by reading Section 2565 of the Code that the Seeretary of the State Board of Health is to place before the Governor, biennially, a report of the Board, which shall include "So much of its proceedings, such information concerning Vital Statistics, such knowledge respecting disease, and such instructions upon the subject of hygiene as may be thought useful for dissemination among the people, with such suggestions as to further legislation as may be thought advisable."
This Sixteenth Biennial Report should note that our State has not made any material progress in improving our law relating to Vital statistics. Births and deaths are not properly reported by the undertakers and assessors, as the law provides. Undertakers are derelict in sending in the death certificates which come into their hands, and for some reason unknown to the State Board of Health office, assessors over the state are not proficient in obtaining birth records, though county auditors and county clerks have been repeatedly notified and instructed regarding the law, and have been provided with the necessary blank forms which correspond to those furnished by the United States Census Bureau, at Washington, D. C. There should be some method whereby proper records of births and deaths can be procured and kept by the State. Let us hope for the improvement which should be forthooming in the near future.
The great diseases which should attract our notice more than all others are pneumonia, tuberculosis, typhoid fever, searlet fever, diphtheria, measles, whooping cough, infantile diseases including infantile paralysis and such other diseases as are communicable, for all diseases which are communicable, or transmitted from person to person, should be limited in their spread; in other words, all transmissible diseases should be obliterated as much as possible. Pneumonia and tuberculosis are the diseases which stand at the head of the list and which cause the greatest mortality among our people. More people die from pneumonia in Towa than from any
other disease, and tuberculosis stands next. Much credit should be given Mr. A. E. Kepford, State Lecturer on Tuberculosis, for his excellent efforts along the lines of educating the people of our State in preventing this very much dreaded disease which is taking our people away by hundreds every year. It may not be known that a whole town of inhabitants, composed of fifteen hundred people is wiped from the map of Iowa annually from this disease tuberculosis alone. All praise to Mr. Kepford for holding up his hands in holy horror for this tremendous loss of human life. Some say that we are not making progress along this line, but are we to stop trying to educate the people? I think we should double our energies and make larger appropriations for disseminating knowledge among the people. The Secretary wishes Brother Kepford God's speed and help in his great work, and may he live to see his excellent efforts crowned with permanent and lasting success.
In the matter of hygiene, the Iowa State Board of Health publishes in its rules and regulations certain lines of procedure which should be followed by all health officials and the people, in limiting the spread of communicable diseases. The quarterly health bulletins also contain much valuable information, fourteen thousand copies of which are distributed quarterly free to the people and all officers. Many persons outside of our State have asked to be placed upon the mailing list for the Iowa State Board of Health publications, which we have done; and very favorable comment has been received from the newspaper and magazine press at large, commending the Iowa State Board of Health for its excellent publications. We hope to enlarge our efforts in this field.
As regards our suggestions, it is only necessary to say that we refer and have referred to our former Biennial Report, 1908-1910, and ask that every suggestion made in that report be executed and carried out, as I believe none of them have been considered suffciently to have yet been enacted into law. It is hardly necessary to repeat our suggestions in this Biennial Report, as that would be needless expenditure of time and money, for it is easier to again read our Biennial Report of 1908-1910.

MRS. ISABEL C. SUMNER.
The preparation of this Sixteenth Biennial Report has been delayed because of the long illness of Mrs. Isabel C. Sumner, wife of the Secretary, and which resulted in her passing from this life
to the beyond, on October 14, 1912, Mrs. Sumner had a most wonderful conception of the great needs of our State, and we all feel her loss in the preparation of this very important report. The compiling of the Vital Statistics part of all reports of the State Board of Health office was under her immediate supervision, and because of this fact and her wonderful help in all lines of public health work, the Iowa State Board of Health has kindly dedicated this Sixteenth Biennial Report to her honored memory. She was idolized by every person who knew her personally, for her high ideals and personal interest in others, ever ready with cheerful words of praise and encouragement to all in the State Board of Health office. Her picture appears on the front page of this biennial report and her place made vacant by her death cannot be filled, for her untiring interest in the work of public health, in which her husband was so much interested, led her to outline and carry into effect great schemes for public good. Her memory is sweet and she has gone to her final reward where she has received her welcome from our Heavenly Father: "Well done, thou good and faithful servant; thou hast been faithful over a few things, I will make thee ruler over many things; enter thou into the joy of thy lord." Thus endeth the life of one of God's noble women-absent but not forgotten-and her memory still lives, and her influence for good will ever be present with all with whom she ever associated. We love and revere her true womanly Christian life.

- The following poem, composed by William Gail Andrews, a clerk in the State Board of Health office, conveys the love and esteem in which Mrs. Sumner was held by the employees of the office. Mr. Andrews says: "Her life has been an inspiration, her influence has made us strive harder to live better and to get out of life its full value."

> More than friend to us you've been And now you must go and leave us here, We'll miss you so, but you must go To the land where there's no pain to fear. Oh, friend and comrade that we love, Your life to us has an inspiration been, And now your soul ascends like a dove To God, our Saviour and our friend. And while you go and we stay here; May your departing soul find rest And may you know that your life is dear To us, whom you loved and whose lives you've blessed, Now no pain can come to you And all earth's troubles are o'er, And God, our Maker, kind and true, Has taken you home to the other shore,

The work of the State Board of Health office has so materially increased in the last few years that it seems almost impossible to keep the many departments fully up to standard, for the reason that ample funds and legal procedure have not been furnished in the past by the legislatures, hence in the preparation of this, the Sixteenth Biennial Report, it must be stated that the work of the Secretary is of such a nature as to require most of his time in looking after elerical details instead of being able to devote his time to scientific investigation in order that the people of our State may be informed in regard to preventive measures to be taken to prevent sickness and untimely deaths, for this should be the chief aim of State Board of Health work, and the legislature should see to it that ample funds and legal procedure are fully furnished for this most important work. The work of the State Board of Health office is always pressing and important, and because we have not the money or power to do the work which is put upon us, we are discredited and criticised. This should not be. All departments of public health work should receive first attention from our legislature, because the happiness and prosperity of our people depend first of all upon good health, which is obtainable, but money and methods must be forthcoming in order to secure these grand results. We shall hope for much from coming legislatures.

Three serious epidemics of typhoid fever have occurred in our State during this biennial period, viz., in Des Moines in November and December, 1910, in Cedar Falls in October, November and December, 1911, and in Oskaloosa in March and April, 1912. Reports of all three of these epidemics are to be found in this, the Sixteenth Biennial Report. By perusing these full and complete reports, it will be seen that no provision whatever had been made by any previeus legislature to provide means to investigate into any such emergency epidemics, and it seems proper to state here that some method should be adopted by our law makers that will enable the State Board of Health to fully investigate the sanitary conditions of the whole state in order that these epidemics may be prevented instead of being investigated after they are fully under headway and the people are beginning to die. The proper methods are employed to keep hogs from dying, and why not take as much or more care of the people. These are things for our most careful consideration, and let us consider and act in order that human life may be conserved.

The financial part of this report has received careful consideration from the Seeretary, and he has deemed it advisable at this time to render as complete and full a report as possible of all receipts and expenditures in each department under the immediate jurisdiction of the Board. A detailed statement has also been filed with the Executive Council and will appear in the published report of that body. A careful perusal of these reports, together with the summary, is an essential element in order to gain an intelligent conception of the work which has been done by the State Board of Health. The Board has made the most of the means which it has had at hand for promulgating the health work of the State, and believes that progress has been made and that good has been accomplished. What the Board needs is money and power to educate the people-the opportunity is here, Preventive medicine is the work of all boards of health, and the Iowa State Board of Health is desirous of doing its full duty and discharging its every obligation. Professor Virchow, who was employed by the German Government to investigate an epidemic of typhus fever in Upper Silesia, said in his report: "The remedy lies not in medicine, but in education." This brave young physician wrote that the great era of social progress in progressive medicine is upon us, and it behooves us to meet conditions and educate the people. The German Government awoke to the fact that it found itself reading treatises on sociological questions which related purely and solely to preventive medicine. Young Virchow was relieved from the government service, and with his dismissal, was a request that he take a vacation and leave the country. This most important era of preventive medicine which Dr. Virchow helped to install has come to stay. The cure-all doctor, the exclusively pill-and-potion doctor, the advertising quack, the so-called drugless healer of human ills, the so-called faith healer, the patent medicine man, the medical liberty league man or the teacher who claims that human ills are only imaginary is not the modern, seientific doctor of today,

The sphere of the medical man has been enlarged, and he has discovered that tuberculosis, typhoid fever, diphtheria, scarlet fever, smallpox and many of the diseases are economic maladies, and that trade and occupational diseases will not disappear until social conditions are made better. It will soon become a self-evident truth that no man can become a good physician unless he is thoroughly versed in preventive medicine and is willing to lend his personal influence for the betterment of all social conditions. A
good physician will be a true medical sociologist. Ignorance goes hand in hand with poverty, and poverty walks with disease, and disease destroys:
A few topics have been selected to be treated in this Biennial Report, and it is hoped in such a manner that the people of the State may comprehend the importance of making the department - of health of Iowa equal to any of the other states. The table of contents gives a complete conception of the more important problems which confront the Board of Healthy and it must be construed that the Board has no other motive than to advance all the public health interests of our state and nation.
The pages of this biennial report should be perused carefully by all the people and members of the legislature in order that wise and proficient laws may be enacted for the public welfare. Because the Iowa State Board of Health is the custodian of the public health of the citizenship of our State and as such, is given "general supervision over the interest of health and life," and is required by statute to "make such rules and regulations as it may find necessary for the preservation of the public health;" therefore, it is but reasonable to expect that the public will interest itself in matters which relate to its own general well being and comfort.
We have labored faithfully to keep sickness and disease from our borders, and much has been accomplished along all lines of progress for other interests and our institutions, upon the recommendations of those in charge; and now let us not neglect the health matters of our State when the common budget is made $u p$, in order that we may keep step with other states in protecting human life. The work of the State Board of Health will be successful in so far as the people sustain it, and the legislature gives it power and money with which to work. The State Board of Health can plan and execute those things only, which the people and legislature formulate and make provision for.
It is hoped that the people of Iowa will be interested in the pages of this biennial report, and a few but important articles have been selected and inserted upon various health topics, on account of their special importance, and these have been simplified as much as possible and we hope all of them will be of vital interest to all the people of our commonwealth; and if these pages are carefully read, all will be interested and benefited:

Gumpord H. Sumner, Secretary.

1. Dedicatory Tribute to Mrs. Sumner.
x. Letter of Transmittal,
2. Members of the State Board of Health, 1912.

Officers of the Board.
4. Public. Health Districts by Countles.
5. Foreword to Sixteenth Biennial Report.
6. The State and Public Health.
7. Necessary Appropriations by the Thirty-ffth General Assembly. For the Board of Health Department.
For the Vital statistics Department.
8. State Board of Health.

Financial Statements, Appropriations and Eight Quarterly Reports of Classified Expenditures by Departments.
By the State Board of Health:
By the Embalmers' Department.
By the Nurses' Department.
By the Antitoxin Department.
Four Reports.
By the Bacteriological Department.
Detailed List of Bills of Laboratory for the Blennial Period-
July 1, 1910-July 1, 1912.
By the Medical Examiners* Department.
By the Optometry Department.
By the Vital Statistics Department.
Vital Statistics fees turned into the State.
9. Rules and Regulations adopted by the State Board of Health.
10. Quarantinable Diseases, Statistical.

By Months. By Counties.
11. Deaths Reported for the Years 1910-11.

By Months. By Diseases. By Ages. By Sex. By Color, By
Nativity. By Social Relations.
12. Report of Births, Marriages and Divorces.
13. Deaths from Tuberculosis, $1910-11$.
14. Deaths, Special Reports by Cities.

Burlington, Cedar Rapids, Clinton, Council Bluffs, Davenport, Des Moines, Dubuque, Fort Dodge, Keokuk, Marshalltown, Muscatine, Ottumwa, Sloux City, Waterloo.
15. Embalmers ${ }^{*}$ Department.

Disinterments, biennial period.
16. Nurses Department.

Training Schools in good standing.
17. Board of Medical Examiners.
18. Fourth Biennal Report, Director of the State Board of Health Bacterlological Laboratory.
Number and Kinds of Examinations
Number of Culture Stations.
Rabies-Pasteur Treatment
Typhoid Fever Epidemics
Des Molnes, Cedar Falls, Oskaloosa.
Anti-Typhoid Vaccination
Typhold Bacill Carriers.
Diphtheria and the Public Schools
Examination of Public Drinking Cups.
Co-operative Work, U. S. Public Health and Marine Hospital Service. New Diagnosis Outfits
Personnel of the Laboratory.
Financlal Report and Recommendations
Saving in Time and Money to the People of Iowa by Release of Quarantine for Diphtheria by the Laboratory (Culture Method, Based on 5,611 Specimens for Release).
Table Representing Cost of Work done by the Laboratory if made by a Commercial Institution
Recommendations.
19. Educational Articles.

Reactions Induced by Antityphoid Vaccination.
Drs. Albert and Mendenhall.
Typhoid Bacill Carriers.
Dr. Henry Albert.
Diphtherfa Carriers and Medical Inspection of Schools for lowa. Dr. Henry Albert.
Outbreak of Typhoid Fever in Cedar Falls,
Arthur L. Grover.
Outbreak of Typhoid Fever in Des Molnes.
Dr. L. L. Lumsden.
Outbreak of Typhoid Fever in Oskaloosa.
Dr. Wade H. Frost.
Typhus Fever and Typhold Fever
Dr. Joseph Goldberger.
Dr. Allen W. Freeman.
Dr. C. E. Terry.
Hospitals and the Health Problem. Dr. E. E. Munger.
Public Health Administration.
Dr. John W. Trask
Federal Public Health Administration. Dr. J. W. Kerr.
Plague Relation between Traffic and Spread of Plague.
Dr. W. C. Rucker.
Hookworm Disease (two papers).
Ch. Wardell Stiles.
W. L. Altman.

Gea. F. Leonard
Soelal Hygiene ys. the Sexual Plagues Indiana State Board of Health.
20.
21.

Inde

THE STATE AND PUBLIC HEALTH.

In these days of progress and great finaneial activity, the best asset is good health, for without this most essential feature in ouv economy, we are like a rudderless vessel drifting about upon a shoreless sea, hoping against hope, with no assurance that we shall ever reach any haven of rest and safety.
It is practical economy worked out in a most practical way when a State undertakes to protect the lives and health of its citizens. Wealth is not increased in money and lands alone. The great storehouse of wealth lies in making our people happy and content, and this can be accomplished in no better way than in making ample provision for preventing disease. If we secure wealth in our lands and money, of what practical value is it without health? Any community whose health is such that it ceases to produce its sustenance becomes a burden to the State, and its chief industry is to consume; in other words, the individual or community, as the case may be, at once becomes a public charge, and it needs no argument to convince a proper financier that any commonwealth that provides means, by enacting proper health laws and furnishing money to execute the same, in order that its citizenship may be kept healthy and prosperous, brings about conditions which promote long life, happy homes and prosperous business intereststhree most essentials in a State's wealth.
We must go forward. The most has been made with our appropriations, and we cannot build up any imaginary conditions. Real conditions exist, and our streams are becoming so polluted that we are now beginning to consume our own sewage, cattle are becoming tubercular and our dairy products are surely in a most dangerous state, infant mortality is inereasing and the general health of our State is threatened, hence to go backward is wnscientific and foolish, and extremely non-progressive, and we must now go forward or else we shall become utterly oblivious for our future happiness, as nothing but sickness, death and misery can follow our neglect in this most important work of public health.

The annual appropriation of $\$ 5,000$ has long ago ceased to be sufficient to meet the great needs of a state like Iowa. This amount, when divided among two and a quarter millions of Iowa citizenship, does not amount to very much per person, hence this amount should be increased many times. With this appropriation of $\$ 5,000$ for the entire state of Iowa, the State Board of Health has been able to do much, but not all that should have been done. The last legislature, the Thirty-fourth General Assembly, inereased the Secretary's salary but it did not increase the appropriation therefor, hence it should be remembered that the salary of the Secretary is paid from this $\$ 5,000$ appropriation, and the balance is used for public health purposes.

The great amount of clerical and detail work which is necessary to carry on the work in the State Board of Health office makes it necessary that ample appropriation be made in order that the requirements made upon us may be fully met. The amount given us by the Thirty-fourth General Assembly has not been sufficient to meet the demands. We tabulate below so that a picture of the expenditures can be seen, and it should be observed that it is necessary that a material increase in the annual appropriation should be made by our Thirty-fifth General Assembly.

AMOUNTS NECESSARY TO BE APPROPRIATED BY THE THIRTXFIFTH GENERAL ASSEMBLY, FOR CONTINGENT AND GENERAL EXPENSES OF THE STATE BOARD OF HEALTH.
Board of Health Department. Necessary.

One assistant to secretary.. $1,200.00$
One keeper of accounts......... 900.00

 900.00

Total for Board of Health 900.00
*. B. It should be remembered here that the above amount provides for clerks for the Embalmers, Nurses, Medical and Optometry Examiners, besides the work of the State Board of Health, It will require this amount to carry on the work of these five important departments, and the work will be hard for these clerks to do all that will be required of them.

Total for Vital Statistics.. $2,100.00$
N. B. It must be noted in this department that we receive nearly two thousand death certificates each month, or over twenty thousand yearly, and all these must be transcribed for each county in the state, and sent to the clerk of courts for record in each county; and it requires that there should be an assistant to the registrar and one clerk and stenographer to do this work which is required by law. Besides all this transcribing, records must be obtained from all the counties of all marriages, divorces and births. The law compels the registrar to do this work, hence ample help is essential in order that these important records may be properly kept.

We append herewith the elght quarterly reports in each of the depart ments, connected with the State Board of Health, and which is followed by a statement of the resources from which all these expenditures have been made. A summary will be found at the end of each department ssociated with the appropriation or fees as the case may be. A careful accounting has been Board of Health

The eight quarterly statements of the different departments, located in the state Board of Health office, hereby follow in the order classified below:

1. Board of Health.
II. Embalmers.
III. Nurses.
IV. Antitoxin.
V. Bacteriological.
VI. Medical Examiners.
VII. Optometry.
VIII. Vital statistics.
IX. Vital Statistics. Special Fees.

APPROPRIATIONS FOR THE STATE BOARD OF HEALTH FOR THE FISCAL PERIOD ENDING JUNE 30, 1912.

Board of Health:	
Appropriation	10,000.00
Clerk hire	5,400.00
Bacteriological	12,000.00
Antitoxin	4,000,00
Vital statistics:	
Appropriation	4,000.00
Clerk hire	1,800.00
Total	37,200.00

FEES RECEIVED BY THE STATE BOARD OF HEALTH OFFIOE FOR THE FLSCAL PERIOD ENDING JUNE 30, 1912.

Embalmers ${ }^{*}$ Examine	3,155.00.
Nurses Examiners	1,532.00
Medical Examiners	8,843.00
Optometry:	
Appropration	300.00
Fees	130.00
Total	13,960.00
Appropriations	37,200.00
Fees	13,960.00
Total	51,160.00

FEES TURNED INTO STATE GENERAI. FUND. NOT USED BY THE BOARD.

Maternity Hospital		None
Vital Statistics	\$	165.55
Total	\%	165.55

STATE BOARD OF HEALTH

SUMMARY FOR QUARTER ENDING SEPTEMBER 30,1910
classifien summany of expenses.

salaries and clerk hime

July	30	G. H. Sumner, secretary's salary for July $\$$	100.00
July	30	Isabel Sumner, salary for July	75.00 100.00
August	31.	G. H. Sumner, secretary's salary for August. .*	75.00
August	31	Isabel Sumner, salary for August. ${ }^{\text {a }}$	100.00
September	30	G. H. Sumner, secretary's salary fo	75.00

August		J. H. Welch Printing Co.	\$	14.50
August	2	G. A. Miller Printing Co.		5.00
		misceldaneous.	\$	19.50
August	2	Addressograph Co.	\$	2.34
September	1	Underwood Typewriter Co.		. 50
		telerhone and telegraph.	\$	2.84
August	2	Iowa Telephone Co..	\$	5.00
September	1	Western Union Telegraph Co.		1.86
September	1	Mutual Telephone Co.		6.00
September	1	Iowa Telephone Co.		2.70
September	1	Western Union Telegraph Co.		. 73
September	1	Western Union Telegraph Co.		2.73
		EXPRESS.	\$	19.02
August	2	U. S. Express Co.	\$	2.65
August	2	Adams Express Co.		1.88
August	2	American Express Co...		1.65
August	2	Wells Fargo \& Co. Express		. 95
September	1	American Express Co.		. 32
September	1	American Express Co.		. 25
			\$	7.70
Annual appropriation			\$	5,000.00
Amount credited				36.70
			\$	5,036.70

(The above bill was paid in June; it should have been paid in July.) Expenses of first quarter.

Balance on hand September $30,1910 \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \ldots \overline{4,197.01}$

STATE BOARD OF HEALTH.
SUMMARY OF EXPENSES FOR QUARTER ENDING DECEMBER 31 , 1910.

CLASSIFIED SUMMABX OF EXPENSES.

Members' expense	389.01
Salaries and clerk hire	584.70
Printing and binding.	124.50
Postage	90.00
Telephone and telegrap	56.43
Express	14.47
Miscellaneous	73.99

Members' expense, attending meetings.

postage.

STATE BOARD OF HEALTH.
SUMMARY OF EXPENSES FOR QUARTER ENDING MARCH 31, 1911. CLASSIFIED SUMMARY OF EXPENSES.

TELEPHONE AND TELEGRAPH.

STATE BOARD OF HEALTH

SUMMARY OF EXPENSES FOR QUARTER ENDING JUNE $30,1911$. Classified summary of expenses.

Express	1.95
Postage	150.50
Miscellaneous	115.64

MEMBERS' EXPENSE

May	3	A. P. Hanchett.		17.81
May	3	A. C. Moerke.		13.18
May	17	T. U. McManus.		32.50
May	17	E. E. Richardson.		14.86
May	17	B. L. Eiker.		12.58
May	17	A. C. Moerke.		11.93
May	17	A. de Bey..		25.61
May	17	G. E. Decker.		17.40
June	1	Geo. E. Decker.		12.25
June	1	A. C. Moerke.		10.93
June	20	E. E. Richardson		8.66
		OTHER OFFICIAL.	\$	177.71
April	3	Geo. E. Decker		5.15
June	20	Geo. E. Decker.		1.30
June	31	Geo. E. Decker		3.05
		drawing and engraving.	\$	9.50
April		Des Moines Engraving Co..		4.86
July		Des Moines Engraving Co...		1.44

SALARIES AND CLERTK HIRE.
G. H. Sumner, secretary . \& 100.00

Isabel Sumner 75.00
Lynn Clemens (March salary).................. . 50.00
G. H. Sumner . 200.00
G. H. Sumner . 13.33

Lynn Clemens (April salary).................... . 50.00
Lynn Clemens (May salary) 50.00
G. H. Sumner. 200.00

Lynn Clemens . 50.00
Pauline Mueller

PRINTING, STATIONERY AND BOOKS.

Baker-Trisler \& Co . \$ 7.00
Baker-Trisler \& Co................ 1.00
Homestead Printing Co., (1-3 B.) 80.00
Homestead Printing Co
1.00

IOWA STATE BOARD OF HEALTH.

SUMMARY OF EXPENSES FOR QUARTER ENDING SEPTEMBER 30 , 1911.
classified summary of expenses.

$\$ 2,071.75$

Members' EXPENSE.

November		A. de Bey.		26.29
			\$	26.29
	Other officlal.			
October	17	G. A. Smith.		8.56
November	11	G. H. Sumner.		9.99
November	29	G. A. Huntoon.		8.09
November	29	A. de Bey.		16.80
December	18	E. E. Richardson		82.85
			\$	126.29
		drawing and engraving.		
November	1	Des Moines Engraving Co.		9.12
			\$	9.12
	SALARIES AND OLERK Hire.			
October	31	G. H. Sumner, Secretary		200.00
October	31	R. I. Pelton.		75.00
October	31	Lynn Clemens		75.00
November	29	G. H. Sumner, Secretary		200.00
November	29	R. I. Pelton.		75.00
November	29	Lynn Clemens		75.00
December	30	G. H. Sumner, Secr		200.00
December	30	R. I. Pelton.		75.00
December	30	Lynn Clemens		75.00
	Printing, binding and stationery.		\$	1,050.00
November	1	American Litho Co		1.00
November	1	Des Moines Stationery Co...		2.25
November	29	The Homestead Printing Co.		12.50
November	29	The Homestead Printing Co.		55.59
November	29	The Homestead Printing Co.		734.35
		TELEPHONE AND TELEGRAPH.	\$	805.69
November	1	Iowa Telephone Co...		6.45
November	1	Iowa Telephone Co..		3.29
November	1	Mutual Telephone Co.		. 35
November	1	Western Union Telegraph Co.		. 75
November	1	Western Union Telegraph Co.		. 57
November	29	Western Union Telegraph Co.......		1.07

express.				
November	1	American Express Co.	.	. 60
November	1	Wells Fargo Express Co.		. 65
November	1	Adams Express Co.		. 86
November	29	Adams Express Co.		4.57
November	29	Wells Fargo Express Co.		3.03
November	29	American Express Co.		2.94
ariscellaneous. \$ 12.65				
November	1	Addressograph Co.	\$	9.71
November	1	Des Moines Rubber Stamp Co.		8.35
November	1	The Homestead Printing Co.		4.00
November	1	McNamara-Kenworthy		3.83
November	29	McNamara-Kenworthy		. 24
November	29	The Homestead Printing Co.		2.10
November	29	McNamara-Kenworthy Co.		1.00
			\$	29.23
Balance on hand September 30, 1911				5,436.89
Expenses for quarter ending December 30, 1911				2,071.75
On hand December 30, 1911			\$	3,365.14

IOWA STATE BOARD OF HEALTH.
SUMMARY FOR EXPENSES OF QUARTER ENDING MARCH $30,1912$. CLASSIFIED SUMMARY OF EXPENSES.

PRINTING AND Stationery.
January 17 Homestead Printing Co. 17.65
17 Homestead Printing Co 16.05
abruary 22 Homestead Printing Co. 9.50
February22 Home27.25
-4.80
January
73January17 Iowa Telephone Co.
FebruaryFebruary 22 Western Union Telegraph Co. 57Express.January 17 American Express Co. $\quad 2.55$
1.401 Wells Fargo Express Co.
February 1 Adams Express Co. 55
February 1.50January 17 Annual dues, State and Prov. Boards of Health.\$ 10.00
January 17 The Homestead Printing Co. (electrotype)... 3.35
February 1 Koch Ptg. Co., (file guides) 45.86FebruaryFebruary3.90
Balance on hand December $30,1911$.
Expenses for quarter ending March $30,1912$.
\$ $1,958.15$

IOWA STATE BOARD OF HEALTH.
SUMMARY FOR EXPENSES OF QUARTER ENDING JUNE $30,1912$. Classified summary of axpenses.

Drawing and engraying	24.75
Other official expense	48.39
Salarles	
Printing and stationery	1,230.00
Postage	
Books	150.50
Telephone and telegrams	4.50
Express	
Miscellaneous	25.14

postage.

August	20	It. C. Kurtz P, M. воокs.		150.50
April	2	American Medical Assn.		
April	2	Journal of Public Health		2.00
thephone axy trighams. 4.60				
April	2	Iowa Telephone Co.		17.40
Apri	2	Iowa Telephone $\mathrm{Co}_{\text {, }}$		1.60
April	2	Western Union Telephone Co.		. 85
May	1	Kowa Telephone Cor		8.40
May	1	Western Union Tel Ca.		. 65
June	6	Western Union Tel. Co.		9.47
June	6	Iowa Telephone Co.		5. 10
July	2	Western Union Tel, Co.		8.20
August	20	lowa Telephone Co.		9.68
August	20	Towa Telephone Co.		8.83

expuess.

May

2.93

May
May
1 Adams Express Co.
1 United States Express Co

June $\quad 6$ American Express Co, .. 50

July
${ }^{2}$ Adams Express Co. 30

mischblaneous,

$\begin{array}{lll}\text { April } & 2 & \text { Homestead Printing Co } \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \% \\ \text { April } & 2 & \text { The Gem Ventilator } C 0.0 .\end{array}$

May 1 Addressograph Co...
\qquad
2 MeNamara-Kenworthy Co. 50
2 Frank S. Betz Co. ... 4.0
August 2 Homestead Printing Co.................................. 1.45

	\$	25.14
Balance on hand March 30, 1912	\$	1,958.15
Expense of quarter ending June 30, 1912		1,950.44

EMBALMERS' DEPARTMENT.

SUMMARY OF EXPENSES FOR QUARTER ENOING SEPTEMBER 30, 1910.
Chassified summany of expenses

October $\$$ F. L. Unterkircher $\$ 15.50$

\qquad

salarigs and cherk hire

MEMBERS' EXPENSE.

September 21 A. de Beye.,...........................

отнее 129.50

SUMMARY FOR QUARTER ENDING DECEMIBER 30, 1911. CLASSIFIED SUMMARX OF EXPENBES,

FRLNTEN AXXD STATHONERY.

NURSES.
SUMMARY FOR QUARTER ENDING SEPTEMBER $30,1910$.

NURSES.

SUMMARY OF EXPENSES ENDING DECEMBER, 1910.

classitien summary or expexses.

October	U. S. Express Co.	S	. 30
October	U, S. Express Co.		. 30
*			
\%		\$. 60

postace

November J. I. Myerily		40.00
Balance on hand September $30,1910$.	\$	73.78
Paid State Treasurer November 16.		51.00
Paid State Treasurer February 20, 1911		335.00
Total	\%	459.78
Expense of second quarter		210.64
Balance on hand December 30	\$	249.14
	\$	249.14

SUMMARY OF EXPENSES FOR QUARTER ENDING MARCH 31, 1911.

CLASSIEIED SUMMARY OF EXPENSES

Members" expense ..xe... 227.32

b			

Printing and stationery .. 23.24
Printing and stationery .. 23.
 10.95

NURSES' DEPARTMENT.
SUMMARY OF EXPENSES FOR QUARTER ENDING JUNE 30, 1911.

> CRASBIFIED SUMMARY of expgeises,


```
gmembers' expense.
```


spechat intesthentron.

February 22 Mills \& Perry .. 25.00

Paid State Treasurer February 28, 1912 324.00
\$ 1,567,06
Expense of quarter ending March, 1912 209.65

Balance on hand March $30,1912$.
\qquad

STATE BOARD OF HEALTH.
NURSES DEPARTMENT.
SUMMARY OF EXPENSES FOR QUARTER ENDING JUNE $30,1912$.
CLASSIPIED SUMMARY OF EXPENSES.

Miscellaneous

Pastage		121.00
	\%	955.89
	Shlates Axb clerk horic.	
May	Isabel sumner .	75.00
June	Isabel Sumner.	75.00
July	Isabel sumner	75.00
August		75.00
September	Gan Andrews	65.00
	\%	365.00
	PRiNTME, spathovent and midinc.	
May	The Homestead Printing Co. ${ }^{\text {W }}$	112,00
Tune	J. H. Weleh Printing Co.	6.25
July	The Homestead Printing Co.	17.50
July	The Homstead Printing Co.	7.00
July	The Homestead Printing Co.	2.00
3 uly	Pratt Mendsen Co. ...	6.00
September	Iowa Lithographing Co.	22.50
	\$ \$	173.25
	TELEGRAPIF.	
June	Western Union Tel. Co,	1.10
\$uly	Western Union Tel. Co.	. 33
	\%	1.43
	miscerlameous,	
June	S, Davidson Co. .	105.64
June -as		75.54
September	Underwood Typewriter Co.	83.03
September	S. Davidson Co,	29.60
september	McNamara-Kenworthy Co.	1.40
	\$	295.21
	4- postace.	
Tune		121.00
April 11, 1	, appropriation for department, pro rata.	445.05
-Juy 1,191	ppropriation for department.	2,000.00
$8=0$		2,445.03
nxpenses	five months	955.89

STATE BOARD OF HEALTE.
ANTRTOXIN DEPARTMEXT.
CLASSIFIED STMMARY OF EXPEXSES ENDING DECEMBER 30, 1911.
SALARES

Salaries \qquad
\qquad $8 \quad 29500$ chassified.

December 30 W. Gail Andrews ...s..................................... Th.00

Balance on hand December 30, $1911 . \ldots11,264.16$
STATE BOARD OF HEALTH.

STATE BOARD OF HEALTH.
ANTITOXIN DEPARTMENT.
CLASSIFYED SUMMARY OF EXPENSES ENDING MARCH $30,1912$.

satabies.

STATE BOARD OF HEALTH
 ANTITOXIN DEPARTMENT.

CLASSIFIED SUMMARY OF EXPENSES ENDING IUNE $30,1912$.

 131.00

Telegrams

salamtes.			
AprilMayJure	W. G. Andrews		75.00
	W. G. Andrews		75.00
	W, G. Andrews		75.00
MEMBERS ${ }^{\text {a }}$ EXPENSE. \$ 225.00			
11719	G. A. Smith	\$	220.78
	G. A. Smith		1.75
	E. E. Richardson	1.25	
POSTAGE. ${ }^{\text {S }}$ 223.78			
June 27	L. C. Kurtz		131.00
telecramis,			
May 1	Western Union Tel. Co.	\$	2.04.80
Juy 2	Western Union Tel. Co.		
On hand Mareh	30. 1912	\$	$\begin{array}{r} 2,84 \\ 1,033.10 \end{array}$
Expense fourth	quarter		-582.62
Amount charged off to general revenue fund.			450.48
BACTERIOLOGICAL LABORATORY.			
QUARTERLY REPORTS FROM LABORATORY, JULY 1, 1910, TO JUNE 30, 1912.			
July 1, 1910	Annual appropriation overdrawn		$\begin{array}{r} 6,000.00 \\ 5.74 \end{array}$
June 30, 1910			
Tuly 1, 1910	Balance		6,994.26
EXPENSES BY QUARTERS.			
Sept, 30,1910	Report from laboratory		1,354.39
Dee. 31, 1910	Report from laboratory		1,727.03
Mar 31, 1911			$1,472.35$$1,394.56$
June 30, 1911	Report from laboratory		
	Total expense for year. $\$$ Balance forwara Annual appropriation		$\begin{array}{r} 5,948.33 \\ 45.93 \\ 6,000.00 \end{array}$
Juty 1, 1911			
Juy - 1, 1911			
July 1, 1911	Amount on band		
Sept. 30, 1911	Report from laboratory		6,045.93
Dec. 31, 1911	Report from laboratory		1,432.54
Mav 31, 1912	Report from laboratory		
June 30. 1912	Report from laboratory		$1,430.83$
\%	Total expense for year $\frac{6,045.93}{}$		

EXPENDITERES OF BACTERIOLOGICAL LABORATORY OF THE STATE BOARD OF HEALTH, DURING JULY 1, 1910-JULY 1, 1911.

Youcher No.

July	19.1910	Henry Albert, salary July 8284	\$	100.00
Juy	19, 1910	Jessie B. Hudson, salary July 8285		116.66
Juy	19. 1910	Anna Stach, salary Julyt.5. 8286		40.00
July	19, 1910	Leo Musgrove, salary July 8287		53.00
July	19. 1910	Emory Wescott, P, M., stampses, 8288		30.00
July	19, 1910	U. S. Express Co., expressage 8289		13.20
July	19, 1910	American Express Co., expressage 8290		11.75
July	19, 1910	D. F. Rosenkrantz, laboratory supplies . . 8291		2.45
July	19. 1910	Bausch \& Lomb Opt. Co. supplies....... 8292		1.48
July	19, 1910	G. D. Barth, laboratory supplies 8293		1.60
July	19, 1910	Randall-Faichney Co., supplies 8294		13.01
July	19, 1910	Noyes Bros. \& Cutler, soap jars 8295		4.50
July	19, 1910	J. T, Ries, desk supplies 8296		8.32
$J u l y$	19, 1910	Johannes Andersen, hauling blood, etc. . 8397		20.00
July	19, 1910	Claire Swain, keeping animals 8398		5.00
July	19, 1910	Parke Davis \& Co., culture 8399		. 75
July	19, 1910	Henry Albert, travel expense, Des Moines. 8300		10.42
			\$	431.14
Aug.	16, 1910	Henry Albert, salary August.,......... . 8301	\$	100.00
Aug.	16, 1910	Jessie B. Hudson, salary August 8302		116.66
Aug.	16, 1910	Amna, Stach, salary August 8303		40.00
Aug.	16, 1910	Lee Musgrove, salary August 88304		53.00
Aug.	16, 1910	Emery Wescott, stamps 8305		30.00
Aug.	16, 1910	U. S. Express Co., expressage. 8306		7.50
Aug.	16, 1910	American Express Co., expressage. 8307		12.10
Aug.	16, 1910	Truax Green \& Co., supplies 8308		7.60
Aug.	16, 1910	Katzenmeyer Bros., animal food 8309		4.10
Aug.	16, 1910	Johannes Andersen, hauling, etc. 8310		7.55
Aug.	16. 1910	Geo, D. Barth, suppliesc.4...... 8311		4.10
Aug.	16, 1910	W. U. Telegraph Co.s three telegrams. . . 8312		1.80
Aug.	16, 1910	Noyes Bros. \& Cutler, sterilizer 8813		3.25
Aug.	16, 1910	Merck \& Co., supplies 8814		3.18
Aug.	16, 1910	Smith \& Cilek, supplies 8315		2.85
Aug.	16, 1910	G. M. Bissel, guinea pigs............... . . 8316		6.00
Aug.	16, 1910	Frederick Stearns \& Co., guinea pigs.... 8317		3.00
Aug.	16, 1910	C. A. Webber Printing Co., printing. 8318		52.00
Aug,	16, 1910	Carsons Quality Shop, animal feed....... 8319		. 87
Aug.	16, 1910	Henry Albert, travel expense, Des Moines. 8320		7.47

Sept. 20, 1910	Henry Albert, salary September......... 8321	\$	100.00
Sept. 20, 1910	Jessie B. Hudson, salary September. 8322	116.66	
Sept. 20, 1910	Anna Stach, salary September 8323		40.00
Sept. 20, 1910	Leo Musgrove, salary September 8324		53.00
Sept. 20, 1910	Emory Wescott, stamps 8325		30.00
Sept. 20, 1910	American Express Co, expressage....... 8326		18.45
Sept. 20, 1910	U. S. Express Co., expressage. 8327		13.05
Sept. 20, 1910	Johannes Andersen, hauling, etc. 8328		9.50
Sept, 20, 1910	Noyes Bros. \& Cutler, supplies. 8329		2.00
Sept. 20, 1910	W. U. Telegraph Co, messages 88330		. 80
Sept. 20, 1910	Iowa Telephone Co., rent and toll. 8331		17.00
Sept. 20, 1910	Parke Davis \& Co, two cultures. 83332		1.35
Kept, 20, 1910	Katzenmeyer Bros., animal feed 8333		4.80
Sept. 20, 1910	Churchill Drug Co., supplies 8.8334		19.76
Oct 20,1910		\$	426.37
Oct. 20, 1910	. 8335	\$	100.00
Oct. 20. 1910	. 8336	116.66	
Oct. 20, 1910	Leo Musgrove, salary October 83337	40.00	
Oct. 20,1910	Emory Wescott, stamps	53.00	
Oct. 20, 1910	American Express Co., expressage 8340	12.13	
Oct. 20, 1910	U. S. Express Co., expressage........... 8341	12.55	
Oct. 20, 1910	Columbus Pharmacal Co., supplles...... 8342		
Oct 20,1910	Merck \& Co., supplies 8343	3.61	
Oct. 20, 1910	Katzenmeyer Bros., animal feed 8344	2.70	
Oct. 20, 1910	Frederick Stearns \& Co., guinea pigs. . . 83445	4.50	
Oct. 20, 1910	W. S. Thomas, hardware 8346	1.50	
Oct. 20, 1910	Webber Printing Co., printing. 8347	19.45	
Oct. 20, 1910	Ernst Leitz, supplies 8348		
Oet. 20, 1910	W. P. Hohenschuh, supplies. 8349	54.00	
Oct. 20, 1910	Iowa Telephone Co. 8350	2.95	
Oet. 20,1910	Hurd Co, cabinet, etc. 8351	44,59	
Oct. 20,1910	George Hummer Mer. Co. 8352	1.75	
Oct. 20, 1910	J. W. Andersen, hauling, etc. 8353	7.20	
Ort. 20, 1910	Henry Alluert, travel expense... 8354	11.17	
		\$ 569.91	
av. 19,1910	Henry Albert, salary November 8355	\$	100.00
Nov, 19, 1910	Jessie B. Hudson, salary November. 8356		116.66
Nove 19, 1910	Amna Stach, salary November 8357	40.00	
Nov. 19, 1910	Leo Musgrove, salary November 8358		
Nov. 19, 1910	Emory Wescott, postage 8359	53.00	
Nov. 19, 1910	American Express Co., expressage...... . 8360	16.70	
Now. 19, 1910	U. S. Express Oo., expressage 8361		
Nov, 19, 1910	Parsons Transfer, haullng 8862	16.65	
Nov. 19, 1910	Maresh Bros.; supplies 8363	26.46	

Nox.		Nonemer No.		
Nox.	19. 1910	Fox Hutejinsen		4.00
Nov,	19, 1910	C. A. Weblier		1.95
Nov.	19. 1910	Codmans \& Shurtleff		55.00
Sov.	19. 1910	Parke Davis \& Co., cultur		1.60
Nov.	19, 1910	Hillside Poultry Yards, gui		150
Nov.	19. 1910	Ernst Leitz, supplies 8370		38.36
Nov.	191910	Frederick Stearns Co., guinea pigs. 8371		7.00
Nov.	19, 1910	Seamless Rubber Co., gloves 8372		9.50
Nov.	19, 1910	Illinois Glass Co, test tubes 8373		52.34
Nov.	19, 1910	Columbus Pharmacal Co., supplies...... . 8374		5.40
Nov.	19, 1910	Geo. Barth, animal feed, etc. 8375		10.55
Nov.	19. 1910	Osgood \& Blodgett Co., boxes 8376		80.80
Sov.	19, 1910	J. Andersen, hauling 8377		6.25
Nov,	19,1910	Iowa Telephone Co., rent 8378		3.25
Nov.	19, 1910	Henry Albert trayel expense. 8379		7.1%
	2) 1910		\$	691.15
Dec.	21. 1910	Henry Albert, salary December 83880	\$	100.00
Dec.	21, 1910	Jessie B. Hudson. salary December 8381		116.66
Dec.	21, 1910	Anna Stach, salary December 8382		40.00
Dec.	21, 1910	Leo Musgrove, salary December 8383		58.00
Dee,	21. 1910	Emory Wescott, postage 8384		30.00
Dec.	21, 1910	Bausch \& Lomb Opt. Co., supplies. 8385		12,04
Dec.	21, 1910	Iowa Telephone Co., rent and toll. 83886		3.15
Dee.	21, 1910	W. W. Willis \& Co., supplies. 8388		9.48
Dec,	21, 1910	The Valzahn Co., chain saw 8389		5.14
Dec.	21, 1910	Truax Greene Co., supplies 8390		5.91
Dec.	21, 1910	D. F. Rosenkrans, aprons. 8391		55.00
Dec.	21, 1910	B. W. Abbott, animal feed 8392		2.90
Dee.	21, 1910	Ia. City Gas \& Electrical Co.......... . . . 8393		1.50
Dec.	21, 1910	Katzenmeyer Bros., animal feed 8394		2.35
Dee.	21, 1910	J. Hanson \& VanWinkle Co., supplies. . . 8395		9.12
Dec.	21. 1910	Wasserman Laboratory, supplies....... . 8396		7.00
Dec.	21, 1910	Postal Telegraph Co., messages 8397		. 65
Dec.	21, 1910	H, A. Strub Co, cotton 8398		3.00
Dee.	21, 1910	Smith \& Cllek, hardware 8399		6.20
Dec.	21, 1910	J. Anderson, hauling blood 8400		8.05
Dec.	21. 1910	American Express Co., expressage. 8401		16.45
Dee.	21, 1910	U. S, Express Co., expressage............. 8402		15.75
Dec.	21, 1910	A. C. MeClurg Co. \& 8403		2.55
		־. .	\$	455.90
Jan.	24. 1911	Henry Albert, salary December 8404	\$	100.00
Jant	24, 1911	Jessie B. Hudson, salary December..... . 8405		116.66
Jan.	24, 1911	Anna Stach, salary December 8406		40.00
Jan.	24, 1911	Leo Musgrove, salary December ., 88407		58.00

Mar. 30, 1911 Henry Albert, salary March 475.08
Mar. 30, 1911 Jessie B. Hudson, salary Mareh 8442
Mar 30, 1911 Anna Stach, salary March
Mar. 30, 1911 Leo Musgrove, salary Mareh 8444
Mar 30,1911 H. G. Walker, postage
Mar. 30. 1911 U, S. Express Co., expressage................ 8446
Mar 30, 1911 American Express expressage. 8447
Mar. 30, 1911 Spencer Tens 6 . expressage. 8448
Man. 30,1911 B. W. Abbott, animal feed 8449
30.00
13.45
15.15
18.65

- 2.90
6.00
6.51
6.51
40.00
10.88
1.20
7.90

1080
10.07

June 10, 1911	Henry Albert, salary June	$\begin{gathered} \text { Voueherer } \\ \text { No. } \\ \ldots .8490 \end{gathered}$	\$	100.00
June 10, 1911	Jessie B. Hudson, salary June	8491		116.66
June 10, 1911	Anna Stach, salary June	8492		40.40
June 10, 1911	Leo Musgrove, salary Jume	. 8493		53.00
June 10, 1911	H, G, Walker, postage	. 8494		25.00
June 10, 1911	U. S. Express Co., expressage	. 8495		11.90
June 10, 1911	American Express Co., expressage	. 8496		- 7.65
June 10, 1911	G. D. Barth, cfty supplies	. 8497		6.88
June 10, 1911	Postal Telegraph Co.s supplies	. 8498		. 35
June 10, 1911	Parsons Transfer Co., drayage.	. 8499		. 45
June 10, 1911	Davenport Bag \& Paper Co., paper	. 8500		6.99
June 10, 1911	West Disinfecting Co...	. 8501		12.50
June 10, 1911	J. Anderson, hauling blood.	. 8502		4.00
June 10, 1911	Students Supply Co., aprons.	. 8503		5.20
June 10,1911	Becton Díckinson \& Co.	. 8504		18.37
June 10, 1911	F. S. Betz Co., supplies.	. 8505		10.05
June 10, 1911	Illinois Glass Co., test tubes	. 8506		19.79
June 10, 1911	Burroughs-Wellcome \& Co.	. 8507		. 63

General support fund for laboratory for year July Ist, 1911, to July 1st, 1912..........................
Aeting director, salary, July $\$ 100.00$ 1st Ass't Bact., salary July 120.83 1st Abst Bact.r salary July 120.83
25.00

2nd Ass't Bact., salary, July 25.00
Clerk and stenographer, salary, July............ . 45.00
Attendant, salary, July*
58.00

$\$ 348.83$

H. G. Walker, P. M,-stamps.
\$ 29.00

Amount fix laboratory fund available after payment of above. \qquad Amount in fund October ist.
\$5,618. $2 \mathbf{2}$

8 120.83
M. F. Boyd, salary October
25.00
M. F. Boyd, salary, October

Lee Musgrove, salary, October.......................................
H. G. Walker, postage. .
25.00
a. D. Barth, antmal feed.

Western Unton Telegraph Co, message
Amerlican Express Co.
U. S. Express Co., expressage.

Johannes Andersen, hauling blood
W. P. Hohenschuh, supplies, (index cards) 2.15 6.00 Economy Ad. Co., envelopes and diag. blanks........... 18.00 Henry Louis, gloves and cement.......................... 2.50 Bausch \& Lomb Opt. Co., handle for microtome knives $\quad 95$ W. H. Kemp Co., two pounds aluminum foll.

Parsons Transfer Cos, drayage..
I. C. Gas \& Electric Co., bracket.......................... 2.10

Iowa Telephone, rent and tolls.................................. $\quad 7.70$
Smith \& Cilek, tools. ... 11.85
Henry Albert, travel expense, $B_{\text {r }}$ of H , meeting 12.07

Amount in lund after payment of above. $\$ 3,473,16$ IOWA STATE BOARD OF HEALTH BACTERIOLOGICAL LABORATORY. Henry Albert, Director.

Dec. 13, 1911 Jessie B. Hudson, salary December. $\begin{gathered}\text { Noncher } \\ \text { No. } \\ 8588\end{gathered}$
(120.8 Dee. 13, 1911 M, F. Boyd, salary December.............. 8589 25.00 Dec 13, 1911 Anna Stach, salary December............... . 8590
Dee. 13, 1911 Leo Musgrove, salary December 8591
Dee. 13, 1911 © Express C 0 expressage............... . 8592
Dec. 13, 1911 American Express Co., expressage. 8593

Dec. 13,1911 A. C. Lehman, 12 guinea pigs @ 60 cents. 850
Dec. 13,1911 A. C. Lehman, 12 guinea pigs @ 60 cents. $8594 \quad 72.2$
Dec. 13,1911 W. H. Kemp Co., 21 lbs. alum, foll..... $8595 \quad 27.30$ Dec. 13, 1911 Smith \& Cilek, one wrench.............. 8596 1.00 Dec. 13, 1911 West Disinfecting $\mathrm{Co}_{5}, 32$ gallons Chloro-
naptholeum) 8597
Dec. 18,1911 Geo. D. Barth, animal feed 8598 Dec, 12, 1911 Mercer Transfer Co., hauling.............. . 8599 Dec. 13, 1911 Carson, Pirie, Scott \& Co., wadding 8600 Dec. 19, 1911 W. J. Welch, 6 mantles....................... 8601 Dec. 13, 1911 Clinton Sugar Refining Co., 6 g.p....... 8602 Dec. 13, 1911 W. S. Thomas, hardware. 8603 Dec. 13, 1911 Davenport Bag \& Paper Co., bags........ 8604 Dec. 18, 1911 Bausch \& Lomb Opt. Co., repairing ob-
jective 8605
Dec. 13, 1911 Frederick Sterns Co., 22 g.p. (used) ... 8606 Dec. 18, 1911 Johannes Anderson, hauling blood, etc. .8607 Dec. 13, 1911 lowa Telephone Co., toll service........ 8608 Dec, 13, 1911 R. S. Salyards, 39 hrs, work at 20 cents. 8609 Dec. $13,1011 \mathrm{Mr}$. Holt, 35 1-4 hrs. work at 20 cents. 8610 Dee. 13. 1911 Henry Albert. (receipts attached) 8611

IOWA STATE BOARD OF HEALTH BACTERTOLOGICAL LABORATORY. Henry Albert. Director.

2. \$ 486.71

STATE BOARD OF HEALTH BACTERIOLOGICAL LABORATORY. Henry Albert, Director.
Mar. 12, 1912 Jessie B. Hudson, salary March.......... 8654 \$ 120.83 Mar. 12, 1912 Mark F. Boyd, salary March.............. $8655 \quad 25.00$ Mar. 12, 1912 Anna Stach, salary March 8656 Mar. 12, 1912 Leo Musgrove, salary March, 8657 58,00 Mar. 12, 1912 U. S. Express Co., expressage $8658 \quad 9.06$ Mar. 12, 1912 American Express Co., expressage $8659 \quad 8.97$
Feb. 14, 1912 Martin Gerber, repair work and labor8660
Feb. 6, 1912 B. W. Abbott, animal feed................ $8661 \quad 7.10$
Feb. 6, 1912 T. L. Mathes, 2 rabbits at $75 \mathrm{c} . \ldots8662 \quad 1.50$
Feb, 1, 1912 Maresh Bros., repair and labor.......... 8663
Feb. 7, 1912 Bennison's- 66 wads cotton at 3c......... 8664
Feb. 1, 1912 Geo. D. Barth, animal feed................ 8665

Feb.	6. 1912	Mercer Transfer Co., drayage $\begin{gathered}\text { Woneher } \\ \text { No } \\ 8666\end{gathered}$	9.46
Feb.	23, 1912	Omion Paper Co., mailing cases (4975) . . 8667	41.05
Feb.	23, 1912	W. P. Hohenschuh, 1 dozen flies and cards 8668	4.75
Feb.	14. 1912	Iowa City Iron Works, work on steril- $\text { izer . } 8669$	70.15
Fel.	29. 1912	Jowa City Gas \& Electric Co., 1 minia- ture are 8670	3.00
Mar.	12. 1912	Henry Albert, postage 8671	25.00
Mar.	6, 1912	Johamnes Andersen, hauling blood. 8672	2.00
Fe\%.	桂, 1912	C. A. Webber Printing Co., diph, blanks,. 8673	4.45

407.36

IOWA STATE BOARD OF HEALTH BACTERIOLOGICAL LABORATORX * Henry Albert, Director.

Apr:	12. 1012	Jessfe B. Hudson, 9 days salary........ 8674	\$	32.22
Apr.	12, 1912	A. C. Echternacht, 21 days salary 8675		88.61
Aprs.	12, 1912	M. F. Boyd, salary April. 8676		25.00
Apr.	12, 1912	Anna Stach, salary Aprll . .,.t....... 8677		45.00
Amp.	12. 1912	Leo Musgrove, salary April. 8678		58.00
Apr.	12, 1912	U. S. Express Co, expressage. 8679		8.87
Apr,	12. 1914	American Express Co., expressage. 8680		10.05
Mar.	20, 1912	Iowa City Gas \& Electric Co. mantles.. . . 8681.		2.40
Amp.	9. 1912	Edward Bartow, regulators, etc......... . 8682		26.50
Fels.	10, 1912	State University of lowa, ice box, work. . 8683		38.62
Mar.	26. 1912	H. C. Wieneke, rubber stamps and pad... 8684		1.50
Apr.	12, 1912	W. P. Hohenschuh, 1,000 index cards. . . . 8685		2.15
Apr.	12. 1912	Davenport Bag \& Paper Co., 3 rolls 8686		6.93
Apr.	5.1912	Geo. D. Barth, animal feed. 8687		5.73
Apr.	12, 1012	Mercer Transfer Co., drayage. 8688		5.68
Apr.	12, 1912	Whitall Tatum Co, Jars and corks..... 8689		198.70
Apr.	12, 1912	Frank S. Betz Co., 10 syringes 8690		10.50
Apr.	12, 1912	Johamnes Andersen, hauling blood. 8691		2.00
Apr.	12, 1912	Henry Albert, postage 8692		25.00
Apr.	12, 1912	University Book Store, supplies. 86893		. 65

TOWA STATE BOARD OF HEALTH BACTERIOLOGICAL LABORATORY Henry Albert, Director.

May	13. 1912	A. C. Echternacht, May salary	. 8695	\$	120.83
May	13, 1912	M. F. Boyd, May salary,	8696		25.00
May	13, 1912	Anna Stach, May salary	8697		45.00
May	13, 1912	Leo Musgrove, May salary	8698		58.00
May	13, 1912	U. S. Express Co., expressage	. 8699		9.26
May	18,1912	Iowa Telephone Co., rent,	8700		6.75

IOWA STATE BOARD OF HEALTH BACTERIOLOGICAL LABORATORY. Henry Albert, Director.
 September 30 G. H. Sumner, secretary, salary for September. 25.00

Express.

September 17 Wells Fargo \& Co., express....................... 50
miscellaneoos.
$\$ 3.30$
September 17 Baker-Trisler Co
September 17 Underwood Typewriter Co. 9.00
September 17 Capital City Commerclal College 16.25
\$ 25.68
IOWA STATE BOARD OF MEDICAY EXAMINERS.
SUMMARY OF EXPENSES FOR QUARTER ENDING DECEMBER B1, 1910.

CLASETEIED SOMMARY OF Expenses.

 Printing .. 46.00

 32.24

MEMBERS' EXPENSE,

On October 7 Geo. E. Decker 3 . 24,25
October
October 8 12.00

October 8 A. P. Hanchett.. 35.00

October 8 Albert de Bey $\ldots \ldots \ldots$.
November 1 B. L. Eiker .. 24.25
November 1 B. L. Eiker ... 32.00
November 1 B. Pe Richardson ... 28.00

November 1 Kenyon Printing Co.

mscenlaxeors

December 31 G. H. Sumner, salary for December.25.0postage.

December 2 J. I. Myerly, P. M... 60.00 Express
November 1. U. S. Express Co.. 1.50
November 1 American Express Co. .. 2.10
December 2 Wells Fargo \& Co. Express.. 35
December 2 U. S. Express Co. ... 55

Balance on hand September $30,1910 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .$. Total recelpts for quarter , ... 810.00

Total expenses for quarter 736.99

Balance on hand Deoember 31, 1910 \qquad \$ 428.03

IOWA STATE BOARD OF MEDICAL EXAMINERS. SUMMARY FOR QUARTER ENDING MARCH 31, 1911. classimim summary or expenses.

[^0]54*:

members* expense.

Total

salaries and clebt hire

$\begin{array}{llll}\text { January } & 31 & \text { G. H. Sumner, secretary, salary for January........ } \$ 25.00 \\ \text { February } & 28 & \text { G. H. Sumner, secretary, salary for February..... } & 25.00\end{array}$ $\begin{array}{lll}\text { March } & 31 & \text { G. H. Sumner, secretary, salary for March......... } 25.00\end{array}$
PRINTING AND STATHONBRY,

January 3 Geo. A. Miller Printing Co.................................. 13.50

XPRESSICE \quad \$ 61.05

March 1 American Express Co. 80
March 1 U. S. Express Co.. 46
March 1 Adams Express Co.. 16

MschLANEOUS.

January 3 BakerTrister Co .. 43
January 3 Des Molnes Rubber Stamp Works............................... $\quad 1.50$

March I Capital City Commerciai College,.............................26

Total $\$ 1,711.08$
Total expenditures for quarter.....t.n.................................. 551.31

Balance on hand March $31,1911$.
$\$ 1,150.72$

IOWA STATE BOARD OF MEDICAL EXAMINERS. SUMMARY FOR QUARTER ENDING JUNE 30, 1911.

CEASSIMED SUMMARY OR EXPENSES:

Members expense	565,00
Salaries and clerk hire.	75.00
Other official	33.59
Drawing and engraving	19.38
Printing and stationery	507.12
Books and perlodicals	78.25
Postage	113.00
Express	7.55
Telegraph	2.24
Miscellaneous	179.22
	\$1,580.35
salames and clebe mike.	*
April G. H. Sumner, secretary .	25.00
May G. H. Sumner, secretary	
June G. H. Sumner, secretary	

June
G. H. Sumner, secretary

MEMBERS' EXPENSE.

Apral
Apri
May
May
May
May
May
May
May
June
June
June
A. P. Hanchett. 24.00

April
May
May
May
May
May
June
June
June
.
A. C. Moerke 141.00
G. E. Decker 144.00
onmer ofricial

May	B. L. Eiker	25
May	T. U. McManu	. 25
May	Q. F. Decker,	. 25
May	G. H. Sumner	21,27
May	H. W. Grefe	11.32
May	G. E. Decker.	

brawing and engrating.

May

April
May
May
June

Tune
Jun
"ता
PRONTING AND SEATIONERT.

BOKKS ANO PERTODICALS. 507.12			
June	J. P. Lippencott	\$	62.00
June	A. C. Webster		16.25
Postages. ${ }^{\text {a }}$ (8.25			
June	L. C. Kurtz		113.00

April American Express Co................................... 1.20
April Adams Express Co. ... 64
Adams Express Co. 38

telegraph.

1 Western Union Telegraph Co

miscellaneous.

Baker Trisler Co... 8.27

Des Moines Engraving Co.
printing and statoremp.
3 Homestead Printing Co, ...**.......................... 15.00

1 Homestead Printing Co... 86
1 Pratt Mendsen Paper Co... 5171
Homestead Printing $\mathrm{Co}_{\dot{c}}$....................................... 2750
H. P. Oggel 300

C A Webber .. 800
Homestead Printing Co. ... 125.00
Homestead Printing Co, .. 80.

Pratt-Mendsen Paper Co 12.75 14.00 0

0

American txpress

U. S. Expres Co.S. Express Co

June Wo................................. 58
Wells Fargo Express Co. 55

Pratt Mendsen Co. 80
Prat 8.40
.90
Baker Trisler Co 1.25
Younker Brothers 1.39
Cap. City Com. College 4.00
Baker Trisler Co 14.50

$$
\overline{662.00}
$$

other official expense

> PRINTING AND STATHONERY.

IOWA STATE BOARD OF MEDICAL EXAMINERS.

 SUMMARY FOR QUARTER ENDING JUNE 30, 1912. classified summary of expenses.| Members' expense | 1,088.00 |
| :---: | :---: |
| Other official expense. | 362.57 |
| Salaries and clerk hire | 75.00 |
| Printing and stationery | 118.70 |
| Books and periodicals | 6.00 |
| Express | 2.13 |
| Postage | 113.00 |
| Legal instruments | 6.50 |
| Telegrams | 4.63 |
| Miscellaneous | 103.83 |

MEMBERS' EXPENSE

April	2	A. de Bey .	20.00
April	2	G. A. Smith.	88.00
April	18	T. U. McManus.	36.00
May	1	B. L. Eiker.	32.00
May	17	T. U. McManus.	32.00
May	17	G. F. Severs.	32.00
May	17.	G. A. Smith	40.00
May	17	B. L. Eiker.	32.00
June	5	A. de Bey.	40.00
June	5	G. A. Huntoon	88.00
June	6	E. E. Richardson, .	84.00
June	19	T. U. McManus.	36.00
June	19	G. F. Severs.	16.00
June	19	A. de Bey.	32.00
June	19	G. A. Smith.	80.00
July	2	E. E. Richardson.	60.00
July	2	B. L. Eiker .	8.00
July	2	B. L. Eiker	32.00
July	2	G. A. Smith .	16.00
July	2	A. de Bey.	24.00
July	17	T. U. McManus.	128.00
July	2	G. F. Severs. .	12.00
July	2	G. A. Smith .	104.00
July	2	G. F. Severs.	88.00

OTHER OFFICIAL EXPENSE.
April 2 G. A. Smith..................................... 4.00
April 2 A. de Bey.. $\quad 5.25$$\begin{array}{lrl}\text { May } & 1 & \text { B. L. Eiker . }\end{array} \quad 1.25$

May	17	G. F. Severs.	17.26
May	17	G. A. Smith	28.14
May	17	B. L. Eiker	15.43
June	5	A. de Bey.	30.74
June	6	E. E. Richardson	19.26
June	19	T. U. McManus.	25
June	19	G. F. Severs.	1.54
July	2	E. E. Richardson.	13.56
July	2	B. L. Eiker.	9.97
July	2	B. L. Eiker.	3.00
July	2	G. H. Sumner.	11.70
July	2	H. W. Grefe.	11.37
July	2	G. A. Smith.	8.80
July	2	G. A. Smith	16.70
July	2	A. de Bey.	19.27
July	17	T. U. McManus	17.34
July	17	G. F. Severs.	8.24
July	17	G. F. Severs	. 36

Legal instruments.

DEPARTMENT OF VITAL STATISTICS
SUMMARY OF EXPENSES FOR QUARTER ENDING SEPTEMBER 30, 1910.
classified sumarary of expenses.

July		J. H. Welch Ptg. Co.	\$	24.50
July		J. H. Welch Ptg. Co..		47.75
July	20	J. H. Welch Ptg. Co.		49.00
July	20	J. H. Welch Ptg. Co.		27.41
July	20	J. H. Welch Ptg. Co.		13.50
July	20	J. H. Welch Ptg. Co.		26.50
July	20	J. H. Weleh Ptg. Co.		1.75
July	20	G. A. Miller Ptg. Co.		2.00
July	20	G. A. Miller Ptg. Co.		1.50
July	20	J. H. Welch Ptg. Co.		19.50
September	15	J. H. Welch Ptg. Co.		35.00
September	15	J. H. Welch Ptg. Co.		34.50
			\$	292.41
Appropriation for 1910-1911				2,000.00
Amount overdrawn last quarter				75.08
			\$	1,924.92
Total expense for first quarter				714.91
Balance on hand September 30, 1910			\$	1,210.01

DEPARTMENT OF VITAL STATISTICS.

SUMMARY OF EXPENSES FOR QUARTER ENDING DECEMBER 31, 1910.

Classified summary of expenses.

Salaries and clerk hire	340.00
Postage	54.84
Printing and stationery	105.50
Express	. 25
	00.59

salabies and clepk hire.

October	31	Addie McQuiston	.	60.00
October	31	Pauline Mueller		50.00
November	30	Addie McQuiston		60.00
November	30	Pauline Mueller		55.00
December	31	Addie McQuiston		60.00
December	31	Pauline Mueller		55.00
		printing and stathonery.	\$	340.00
October	18	J. H. Welch Printing Co. .	\$	35.00
November	18	Homestead Printing Co.		19.00
December	17	Homestead Printing Co.		51.50
		Express.	\$	105.50

postage.

October	18	G. H. Sumner		2.84
November	30	J. I. Myerly		52.00
			\$	54.84
Balance on han		September 30,	\$	1,210.01
nses for quarter ending De				500.59

Balance on hand December 31, 1910 $\$ 709.42$ DEPARTMENT OF VITAL STATISTICS.
SUMMARY OF EXPENSES FOR QUARTER ENDING MARCH 31., 1911.
CLASSIFIED suamary of expenses.

Express.

 classified summary of expenses.
Salaries and clerk hire . 8.

Express ... 16

salabies and clemk hibe. \quad \& 264.07

April	30	Pauline Mueller		55.00
April	30	B. H. Rasch		50.00
May	31	Pauline Mueller		55.00
March	31	B. H. Rasch		50.00
printing and stationery. \$ 210.00				
April	29	The Homestead Ptg. Co.	\$	19.00
May	22	The Homestead Ptg. Co.		19.00
5		express.	\$	38.00
April	30	Wells Fargo Express Co......	\$. 16

Balance on hand March 31, 1911.. 264.07
Expense for fourth quarter 264.07
DEPARTMENT OF VITAL STATISTICS.
SUMMARY OF EXPENSES FOR QUARTER ENDING SEPTEMBER 30, 1911.
cLassified summary of expenses.

sadaries and clerk hire.

Balance on hand September 30, 1911............................. $2,185.25$ DERARTMENT OF VITAL STATISTICS.
SUMMARY OF EXPENSES FOR QUARTER ENDING DECEMBER 30, 1911.

- classified summary of expenses.

Salaries ... 480.00
Frinting and stationery s............................. 20.00

PRINTING AND Stationery.
November 29 The Homestead Printing Co................... 20.00
 Total expense for quarter ending December, 1911. \qquad
Balance on hand December 30, 1911............................. 1,685.25

DEPARTMENT OF VITAL STATISTICS.

SUMMMARY OF EXPENSES FOR QUARTER ENDING MARCH 30, 1912. CLASSIFIED SUMMARY OF EXPENSES.

Salaries	495.00
Printing and stationery	169.43
Express	17.04

salaries.

January	31	Mrs. I. Sumner	90.00
January	31	Pauline Mueller	75.00
February	29	Mrs. I. Sumner	90.00
February	29	Pauline Mueller	75.00
March	30	Mrs. I. Sumner	90.00
March	30	Pauline Mueller	75.00

EXPRESS.

January	2	U. S. Express Co. ${ }^{\text {S }}$	45
March	25	American Express Co.	8.41
March	25	Adams Express Co.	8.02
March	25	Adams Express Co.	. 16

Expense for quarter ending March 30, 1912
\$ $\quad 17.04$

DEPARTMENT OF VITAL STATISTICS.
SUMMARY OF EXPENSES FOR QUARTER ENDING JUNE 29, 1912. CLASSIfIED SUMMARY of EXPENSES.
Salaries \qquad . 495.00
Printing and stationery . 470.39
Postage 33.50
Express . .. $\quad 4.89$
salaries.

April	30	Isabel Sumner		90.00
April	30	Pauline Mueller		75.00
May	31	Isabel Sumner		90.00
May	31	Pauline Mueller		75.00
June	29	Isabel Sumner		90.00
June	29	Pauline Mueller		75.00
		PRINTING AND Stationery.	\$	495.00
April	19	The Homestead Printing Co.		59.15
April	19	The Homestead Printing Co.		58.50
June	21	The Homestead Printing Co.		156.65
June	29	The Homestead Printing Co.		140.00
June	29	The Homestead Printing Co.		56.09
		postage.	\$	470.39
June	29	L. C. Kurtz, P. M.		33.50

April 1.9 Wells Fargo Express Co...................... $\$ 4.89$
Total expenses of quarter . \& $1,003.78$
Balance on hand March 30, 1912. \$ 1,003.78
Expense fourth quarter

- $1,003.78$

VITAL STATISTICS FEES TURNED INTO THE STATE AND NOT USED BUT TURNED INTO THE GENERAL FUND OF

THE STATE.
June 30, 1912. 473 certified copies of death certificates have
been issued to this date, at 35 c each, making a total of...... \$ 165.55
This amount has been turned into the general fund of the state, as the Department of Vital Statistics has no authority to use any money appropriated or obtained in this way. The appropriation for this department is as follows:
Appropriation \$ 2,000.00
One clerk

It will be seen that the above $\$ 165.55$ has been turned into the state for the use of the General Fund.

RULES AND REGULATIONS ADOPTED BY THE IOWA STATE BOARD OF HEALTH.

CHAPTER I.

QUARANTINE REGULATIONS

Rule I.-The following diseases are subject to quarantine: scarlet fever, (including scarletina and scarlet rash), diphtheria, (including membranous croup), smallpox, epidermic cerebro-spinal meningitis, anterior poliomyelitis, cholera, leprosy and bubonic plague.

Rule II.-Quarantine shall be established by serving a written notice signed by the Mayor of the city or town, or the Clerk of the township, upon the head of the family or occupants of the premises and by posting in a conspicuous place upon each building, hall, lodging room, or place wherein exists or is suspected to exist a communicable disease, the following described sign: A yellow card not less than twelve inches square, having printed thereon in large letters the word "Quarantine," followed by the name of the disease and the words: "Notice! No person shall be permitted to enter or leave these premises except as provided by the Rules and Regulations of the State Board of Health."

Signed.
Mayor or Township Clerk.
Rule III.-All cases of diseases listed in Rule I shall be immediately reported to the Mayor of the city or town, or Clerk of the township, by the physician, if any be in attendance, otherwise by the householder of the premises wherein such disease exists.
In every case a written notice shall also be sent within twenty-four (24) hours to the Mayor of the city or town or to the Township Clerk.

Rule IV.-Section 1.-It shall be the duty of the Mayor or Township Clerk, upon receiving notice of the existence of any case of scarlet fever, (including scarletina or scarlet rash), diphtheria, (including membranous croup), smallpox, epidemic cerebro-spinal meningitis, anterior poliomyelitis, cholera, leprosy or bubonic plague, to forthwith quarantine the premises as provided for in Rule 2 of this Chapter, and to take such other measures as may be necessary and proper for the restriction and suppression of such disease.
Sec. 2.-It shall be the duty of the Mayor of every city or town and the Clerk of every township, to report to the Secretary of the State Board of Health, within twenty-four (24) hours after being notified thereof, of every case of quarantinable disease reported to him; and upon receiving notice of the subsidence of such disease, to likewise immediately report that fact, together with the mode of termination, whether by death or recovery. All reports provided for in this regulation shall be made upon postal cards in accordance with the following forms adopted by the State Board of Health.
department of public healith.
County...

office, have terminated as follows:

The premises infected by these diseases have been properly disinfected and released.

Sec. 3.-The Mayor of each city or town, and the Clerk of each township shall designate and detail certain peace officers as Sanitary Police.

Sec. 4.-Sanitary Police Officers shall visit all quarantined premises within their jurisdiction at least once in every twenty-four (24) hours to see that Quarantine is properly observed, and shall make daily report thereof to the Mayor or Clerk of the township.

Rule V.-If any person shall wilfully or maliciously, or without written authority, remove or deface or cause to be removed or defaced any quarantine sign or signal of danger, officially posted upon the quarantined premises, as provided by the Regulations of the State Board of Health, he shall be deemed to have violated the Regulations of the State Board of Health, and shall be prosecuted accordingly.

Rule VI.-Section 1.-Upon the termination of any of the diseases named in Rule 1, the attending physician or Health Officer shall report the fact in writing to the Mayor or Township Clerk who shall order the infected persons and infected premises, together with all persons, furniture, bedding, clothing and all other articles therein contained to be disinfected according to the Regulations of the State Board of Health and under the direction of the Local Board of Health, which shall direct the attending physician to superintend or perform the work. In case there be no attending physician or in case the attending physician refuses to perform the work or fails to perform it aecording to the Regulations of the State Board of Health, it shall be the duty of the Local Board of Health to provide some other suitable person to perform such work.
Sec. 2.-Any undertaker or person in charge of the funeral of any person, dying from tuberculosis, shall within forty-eight (48) hours after the death of such person report to the Mayor of the city or town, or to the Township Clerk, the name and residence of the deceased person, together with the cause of death. Upon receipt of the notice as herein provided, the Mayor of the city or town, or Clerk of the township shall cause said premises to be disinfected in accordance with the Regulations of the State Board of Health and the law as enacted by the Thirtyfourth General Assembly.

Sec. 3.-All bills and expenses incurred in carrying out the Rules and Regulations of the State Board of Health, and for all fumigating and disinfecting, must be provided for according to Chapter 156, Acts of the Thirty-third General Assembly and as amended by the Thirty-fourth General Assembly.

Rule VII.-Whenever any premises are quarantined, special attention must be given to all pet animals kept thereon. Cats and dogs shall be excluded from the house, and prevented from running at large. Before the quarantine is raised all such animals shall be thoroughly washed in a disinfecting solution. Special precautions must be taken to destroy all mice and rats. When flies are present, all doors and windows shall be securely screened and fresh fly paper placed in each room daily.

Rule VIII-Quarantine shall be released only upon order of the Mayor or Township Clerk after receipt of a written report from the attending physician or Health Officer stating that the disease has terminated and that the premises and all infected persons have been properly disinfected in strict accordance with Rule 6, Chapter I. This report shall state the number of persons on the premises, the number who have suffered from the disease, their names, ages, when the disease appeared in each case and how it terminated.

When all regulations pertaining to quarantine and disinfection have been complied with the quarantine shall be released.

Rule IX.-No letters or other articles coming from quarantined premises shall under any circumstances be placed in any postoffice, letter box or rural delivery. If on account of carelessness or neglect, any such infected article shall have been placed in a postoffice, letter box or rural delivery, all such letters or articles together with such other articles as have come in contact therewith, shall be detained and immediately disinfected by the Health Officer, without unnecessary delay or removal from the custody of the postmaster. This rule is in accordance with the United States postal laws.

Rule X .-No person except the attending physician shall be permitted to enter or leave any premises while the same are under quarantine, except as specifically provided for by the Regulations of the State Board of Health and in strict accordance therewith. The Secretary or members of the State Board of Health may enter any premises under quarantine whenever, in their opinion, it is necessary for purposes of investigation or to enforce the Regulations of the State Board of Health.

CHAPTER II.

special regulations.

Rule I.-Scarlet Fever.-Section 1. Quarantine shall be maintained in Scarlet Fever until the complete recovery of the patient, including complete desquamation, and this shall be certified to in writing by the attending physician or Health Officer.
Sec. 2.-In case the disease terminates either by death or recovery, quarantine may be released unless there are other children on the premises who have not had the disease, in which case the quarantine shall be maintained for 10 days after the date of death or recovery.
Sec. 3.-Quarantine shall not be released in any case until the infected persons and infected premises have been properly disinfected according to Rule 6, Chapter I.
Rule II.-Diphtheria.-Section 1. The period of quarantine for diphtheria shall be determined by release cultures whenever possible and the following rules shall be rigidly observed:

1. Each culture for release shall be taken by the attending physician from both nose and throat of the patient.
2. No culture for release shall be taken until five days after the disappearance of all membrane or inflammation of the nose or throat.
3. Second and subsequent cultures shall not be taken within twentyfour hours of the preceding culture.
4. All examinations of cultures for release shall be made by a bacteriologist appointed by the Director of the State Bacteriological Laboratory.
5. Quarantine shall not be released until two consecutive negative cultures are reported by the bacteriologist to the Mayor or Township Clerk.
6. The Local Health Officer may in any case take cultures and send them to the Bacteriological Laboratory for verification.
Sec. 2.-In case the culture method for release is not used quarantine shall be maintained for twenty-eight days from the beginning of the last case on the premises, provided however, that antitoxin was administered within the first twenty-four hours from the initial symptoms and the patient has made a complete recovery, and these facts are certified to in writing by the attending physician or Health Officer.

Sec. 3.-If the disease terminates by death, quarantine may be released unless there are other children on the premises, in which case quarantine must be maintained for ten days longer. In case the surviving children have been recently protected by immunizing doses of antitoxin and one negative culture has been made from the nose and throat of each, in accordance with the rules for release cultures, the quarantine may be released immediately.

Sec. 4.-Quarantine shall not be released in any case until the infected persons and infected premises have been properly disinfected according to Rule 6, Chapter I.
Rule III.-Smallpox.-Section 1.-Quarantine shall be maintained in smallpox until the complete recovery of the patient and until after complete desquamation, as certified to in writing by the attending physician or Health Officer.
Sec. 2.-In case of the termination of the disease by death quarantine may be released unless there are persons on the premises who are unprotected from smallpox, either by vaccination or having previously had smallpox, in which case the quarantine shall be continued for fourteen days longer.
Sec. 3.-Any person who has been vaccinated within three years, or who has had smallpox, may be released from quarantine upon proper disinfection of his person and clothing.
Sec. 4.-Quarantine shall not be released in any case until the infected persons and infected premises have been properly disinfected according to Rule 6, Chapter I.
Rule IV.-Vaccination.-Section 1.-Vaccination for smallpox is the introduction by scarification of the bovine vaccine virus through the skin.

Sec. 2.-In addition the Iowa courts have held that the administration by mouth of a proper preparation of variolinum constitutes a legal method of vaccination.
Rule V.-Meningitis.-Section 1.-In case of epidemic cerebro-spinal meningitis, quarantine shall be maintained until the recovery of the patient from the acute symptoms and this shall be certified to in writing by the attending physician or Health Officer.
Sec. 2.-In case the disease terminates by death, quarantine may be released after ten days from date of death.
Sec. 3.-Quarantine shall not be released in any case until the infected persons and infected premises have been properly disinfected according to Rule 6, Chapter I.
Rule VI.-Infantile Paralysis.-Section 1. Quarantine shall be maintained in anterior poliomyelitis (infantile paralysis or epidemic motor paralysis) for a period of twenty-one days from the beginning of the disease.

Sec. 2.-Disinfection of urine, feces, throat and nasal discharges shall be required in accordance with Chapter 3 of the Rules and Regulations for disinfection.

Sec. 3.-When the disease terminates either by death or recovery, quarantine may be released unless there are other persons on the premises who have not had the disease, in which case the quarantine shall be maintained for ten days after the date of death or recovery.

Sec. 4.-Quarantine shall not be released in any case until the infected persons and infected premises have been properly disinfected according to Rule 6, Chapter I.
Rule VII.-The breadwinner of the family quarantined for scarlet fever, diptheria, smallpox or anterior poliomyelitis may be permitted to pursue his usual avocation in the discretion of the Local Board of Health, but no person from the infected premises shall be permitted to attend any public gathering or school in any capacity or to travel upon any public conveyance. To obtain permission from the Local Board of Health to leave the premises, the breadwinner shall agree not to enter the sick room and he shall change his clothing upon leaving and entering the infected house and shall wash his face and hands in a disinfecting solution.
Rule VIII-Cholera.-Section 1.-Quarantine shall be maintained in case of cholera until the complete recovery of the infected person and this shall be certified to in writing by the attending physician or Health Officer.

Sec. 2.-In case the disease terminates by death, quarantine shall be maintained for fourteen days from date of death.

Sec. 3.-Quarantine shall not be released in any case until the infected persons and infected premises have been properly disinfected according to Rule 6, Chapter I.

Rule IX.-Leprosy.-Section 1. All persons affected with leprosy shall be continuously confined upon their home premises. It shall be the duty of the Health Officer of the Local Board of Health to report to the Secretary of the State Board of Health the name, age, social condition and residence of all persons affected with this disease within the community over which he has jurisdiction, and the Local Board shall keep a record of the particulars required herein.
Rule X.-Bubohic Plague.-Section 1.-Quarantine shall be maintained in Bubonic plague until complete recovery of the infected person or persons.
Sec. 2.-In case the disease terminates by death, quarantine shall be be maintained for fourteen days from date of death.
Sec. 3.-Quarantine shall not be released in any case until the infected persons and infected premises have been properly disinfected according to Rule 6, Chapter I. In addition all pet animals and, in so far as possible, all rats and mice shall be destroyed.
Rule XI.-Dairy Products.-Section 1.-The sale of milk or dairy products from any quarantined premises is prohibited.
Sec. 2.-However, if the dairy and barn are situated a safe distance from the quarantined dwelling and if no person, utensil or water from the infected premises comes in contact with such dairy products, the Local Board of Health shall satisfy themselves of these facts and then may allow the said products to leave the premises.

Sec. 3.-But such products as have been exposed to infection shall not be sold or allowed to leave the premises.
Rule XII.-Release of Healthy Persons from Quarantine.-Any adult living on premises under quarantine or any child who has previously had the disease for which the quarantine has been established may be released from quarantine, after proper disinfection, by written order of the Local Board of Health, but persons so released shall not re-enter the premises until the quarantine is released. (In quarantine for smallpox, no unvaccinated person shall be released before the end of the quarantine period.)

Rule XIII.-All persons suffering from any disease subject to quarantine or residing upon premises infected with any such disease, shall be excluded from the public schools. The superintendent, teacher or other official in charge of any school, shall be held personally responsible for the enforcement of this regulation, and under no circumstances shall such superintendent, teacher or official allow any person so excluded to re-enter such school, except upon the presentation of a written permit, showing that such person has been properly disinfected and regularly released from quarantine. All such permits must be signed by the Mayor or Township Clerk, and by the Health Officer of the Local Board of Health. This regulation shall also apply to Academies, Seminaries and Colleges.

Rule XIV.-Section 1.-No person suffering from tuberculosis shall be permitted to attend any public or private school as a pupil, neither shall any such person be employed in any school in any capacity.

Sec. 2.-Whenever any person shall have reason to believe that this rule is being violated he shall so inform the Mayor or Township Clerk and it shall be the duty of the Local Board of Health to investigate the case and exclude said pupil or employe from school upless the Board is fully satisfied that said pupil or employe is not tubercular.
Sec. 3.-The Local Board of Health shall cause the Health Officer to procure from the suspected individual a sample of sputum or other discharge and shall forward this to the State Bacteriological Laboratory for examination, and shall use such other means as are usual and customary to determine the presence or absence of tuberculosis.
Sec. 4.-All examinations made by or for the Local Board of Health shall be free of expense to the patient.

CHAPTER III.

BULES FOR DISINFECTION.
Rule I.-Disinfection of Individuals.-Before being released from quarantine, all persons shall be subject to the following requirements: Section 1.-They shall be removed to a room that has been properly disinfected.
Sec. 2.-The entire body, including the hair, shall be washed with a solution of bichloride of mercury (1 part to 3,000 parts of water) or a $21 / 2 \%$ solution of carbolic acid.
Sec. 3.-They shall then be subjected to a full bath with soap and hot water, after which they shall be provided with clothing that has been disinfected or that has not been on the premises.
Rule II.-Disinfection of Premises.-For every 1,000 cubic feet of space to be disinfected the following materials and quantities shall be used:

$$
\begin{aligned}
& \text { Formalin (} 40 \% \text { solution of formaldehyde) } 11 \text { ounces } \\
& \text { Water .. } 11 \text { ounces } \\
& \text { Potassium permanganate (fine crystals).............. } 9 \text { ounces }
\end{aligned}
$$

Rule III.-Preliminary Preparations.-Before beginning disinfection, the requirements as prescribed in the following sections shall be complied with:
Section 1.-The person employed to do the disinfecting shall wear a cap and gown so constructed as to completely cover his clothing and shall cover his face with a piece of gauze. After all the arrangements have been completed, these garments shall be left on the premises to be disinfected in the same manner as other disinfected articles. The shoes worn by the operator should be covered with a pair of rubbers, otherwise they should also be disinfected with the other garments. This may be done by the use of Standard Disinfecting Solutions, 1 or 2 , given in this chapter.
N. B.-See page 23, showing ilustration of cap and gown, and manner of covering the face. This is a simple method whereby one may properly prepare himself to enter a home where a contagious disease exists. Extreme care should be exercised in this regard.
Sec. 2.-All holes, cracks and other external apertures shall be sealed by pasting over them pieces of paper, or filling them with clean, damp cotton rags.
Sec. 3.-All bedding and other clothing, carpets and rugs should be hung on chairs, or upon lines streched across the room for that purpose. Books should be placed on edge or hung upon a line in such a manner as to spread the pages. Drawers, cupboards and trunks should be opened and while their contents need not be unnecessarily disarranged they should be loosened in such a manner as to give free access to the disinfecting gas. Windows should be securely closed, but left unlocked in order to admit of their being opened from the outside after the disinfection is complete.
Sec. 4.-When using formaldehyde, no open vessel containing water should be left in the room.
Sec. 5.-The temperature of the room shall in no case be below 60 degrees F. (preferably $70 \mathrm{deg} . \mathrm{F}$. or above). If the atmosphere is unusually dry, the amount of moisture should be increased by boiling a kettle of water in the room, or by pouring boiling water from one vessel to another for five or ten minutes before beginning the disinfection.
Sec. 6.-A large washtub should be paced near the center of the room, conveniently situated so as to be seen through one of the windows. In this should be placed a tin or galvanized iron pail about twelve to sixteen inches deep. It is advisable to cover the outside of the pail with asbestos paper, leaving the top open.
Rule IV.-Mode of Operation.-Section 1.-When the room or house to be disinfected has been properly prepared in accordance with the above requirements, the proper quantity of potassium permanganate should be placed in the pail. The solution of 40 per cent formaldehyde mixed with water should be placed in a tin dipper or other vessel convenient for pouring rapidly, and when everything is in readiness, should be poured upon the crystals of permanganate of potash contained in the pail. The operator should immediately leave the room, closing the door and stopping all cracks in the manner indicated. This operation should be performed quickly, as the gas is generated very rapidly. The door should be locked in order to prevent accidents, and the room or building, as the case may be, kept closed for at least 8 hours. At the expiration of this time the windows should be opened from the outside, and in the space of. 15 or 20 minutes the door may be opened, allowing the air to blow through the room. If the odor remaining is very strong, a little ammoniawater sprinkled upon the floor will soon neutralize the formaldehyde and hasten the disappearance of the odor.
Sec. 2.-After the fumigation as prescribed in this Rule has been completed, all bedding, clothing, etc., that will not be harmed by boiling,
should be boiled for at least half an hour. When possible, mattresses, rugs and heavy curtains should be sterilized by steam under pressure at 120 deg. C., for 30 minutes. When this is not possible, these articles should be taken out of doors and thoroughly aired and exposed to the rays of the sun for an hour or so.

Sec. 3.-Papers, cheap books, rags and other articles of little or no value should be burned.

In addition to the above requirements all woodwork and, if possible, the walls should be washed with a liquid disinfectant, such as a solution of bichloride of mercury, one part of bichloride of mercury to 1,000 parts of water. Where the wall paper is loose or dilapidated it should be removed and burned.

Rule V.-Disinfection of Vehicles.-Section 1.-All cabs, boats, hearses, and other vehicles used in the removal of a patient or the body of a person affected with, or who has died from any contagious or infectious disease, shall be disinfected in the manner defined in Section 2 of this Rule.

Sec. 2.-Remove all cushions, curtains and other accessories and place them in a small room or tight cupboard, and disinfect them in accordance with the requirements prescribed in Rule 4 of this Chapter. If the vehicle can be closed up, it should be fumigated in the same manner as prescribed in Rule 4 of this Chapter. If this is impracticable, it should be washed inside and out with a solution of bichloride of mercury, one part to 1,000 parts of water.

Rule VI.-Pet Animals.-All cats and dogs and other pet animals kept upon the premises infected with any contagious or infectiou diseases, shall be thoroughly washed with soap in a tub of hot water containing 5 per cent solution of carbolic acid.
Rule VII.-Additional Requirements.-When it is necessary to disinfect any premises and the presence of bedbugs or other vermin is suspected, sulphur must be used in addition to formaldehyde. The following is the most convenient and effective manner of using the same:
Place in the room a wash boiler containing about 6 to 8 inches of boiling water. Place a brick in the center of the water and upon this a sulphur candle. Light the candle and be sure that it is burning well before starting the formaldehyde fumigation. If possible the water in the wash boiler should be kept boiling by means of a stove or gas lamp.
N. B.-See illustration on page 20 , and description connected therewith, showing a simple method of using sulphur. In this connection, it might be well to state that it is advisable that housekeepers read carefully the advice given on page 19, regarding home disinfection that is most thorough and far-reaching in its results as regards disease prevention.
Rule VIII.-Disinfection should always be done under the direction of the Local Board of Health, and under the personal supervision of the attending physician or the Health Officer. The person employed to do
the disinfecting should be one specially trained to understand the various methods to be used and the precautions to be observed, and should be held personally responsible to the Local Board of Health.
Rule IX.-Standard Disinfectants.- (All should be plainly labeled "POISON.")-Solution No. 1.-Carbolic Acid. Take 95 per cent carbolic acid, one-half pint; water, five quarts. May be used for sputum cups, washing furniture, metal surfaces, various secretions and exudates.

CAUTION.-This should not be used for the face or delicate skins.
Solution No. 2.-Carbolic Acid ($21 / 2$ per cent solution). Mix one part of Sol. No. 1 with one part of water. May be used for washing hands, face or hair.

Solution No. 3.-Bichloride of Mercury Solution, 1 to 1,000.-Prepare by dissolving one drachm (60 grains) of corrosive sublimate in one gallon of boiled soft water. The ordinary solution of bichloride of mercury deteriorates in a very short time. A convenient way of using bichloride is by the use of specially prepared tablets which may be purchased at any drug store, or to have on hand a stock solution which will not deteriorate. This may be prepared as follows:
A little coloring material.
M. Sig. One ounce of this solution mixed with one pint of water makes in a glass, earthen or wooden vessel (not in a metal vessel). Prepare in a glass, earthen or wooden vessel (not isinfecting metal surfaces. Use for disinfecting hands, clothing, woodwork, discharges, etc. Good for sprinkling floors of offices and public buildings before sweeping.
Solution No. 4.-Bichloride of Mercury 1 to 3,000 .-Mix one part of Sol. No. 3 with two parts of water. May be used for bathing entire body. Be careful about eyes.

Solution No. 5. - Chloride of Lime.-Dissolve six ounces of fresh chloride of lime (best quality) in one gallon of water. Especially useful for feces, urine and sputum.
NOTES.-Sunshine is Nature's best disinfectant, and should be utilized as much as possible. Let it enter the sick room freely.
Many of the so-called disinfectants that have been placed upon the market are absolutely worthless and should be avoided. Use the methods recommended by the State Board of Health.

CHAPTER IV.

SECRETARY OF THE STATE BOARD OF HEALTH SHALL SUPERVISE LOCAL bOARDS.
Rule I.-Section 1.-The Secretary of the State Board of Health is the Executive Officer of the Board. He shall have general supervision over

$$
\begin{aligned}
& \text { Bichloride of Mercury } 3301 / 2 \text { grams } \\
& \text { Citric Acid } 156 \text { grams } \\
& \text { Water } 20 \text { liters or } 5 \text { gallons }
\end{aligned}
$$

all Local Boards in the enforcement of quarantine and the prevention of infectious diseases. When he has reason to believe that the Regulations of this Board are not properly enforced by the Local Board of any city, town or township, and that the public health is endangered by reason of such neglect upon the part of any such Local Board, he shall instruct the officials of said Board regarding their duties, and in the event of their failure to conform to such instructions, shall notify the President of the State Board of Health, who may convene the State Board in special session, whereupon the said Board shall, if it deem necessary, immediately assume control within the territorial jurisdiction of such Local Board, and shall continue in control until such time as there is no further danger to the public. All expenses thus incurred by the State Board or its representatives, shall be paid as provided for in Section 2572 of the Code, as amended by Chapter 107, Acts of the 29th General Assembly.
Sec. 2.-The Secretary of the State Board of Health or any member thereof is hereby authorized to enter and leave any and all quarantined premises within the State, when necessary to make an investigation or to enforce the Regulations of the State Board of Health.

LOCAL BOARDS TO KEEP RECORD

Rule II.-All Mayors of incorporated cities or towns, and all Township Clerks shall keep a complete record of all cases of communicable diseases reported within their jurisdiction; said record shall include the name of the disease, patient's name, age, sex, address, social condition, attending physician and nurse, together with the date quarantined, date released, date disinfected, person who disinfected the premises and such other information as may seem necessary. A copy of said record shall be forwarded to the Secretary of the State Board of Health by the 1st day of February in each year, for the year ending January 1st preceding, and shall include all data up to and including December 31st preceding.

```
REPORT OF CONTAGIOUS DISEASES
```

To Mayors and Township Clerks:
On page 2 of these Rules and Regulations will be found two postal card forms to be used in reporting Quarantinable Diseases to the Secretary of the State Board of Health. These postal card forms are very convenient and should be obtained at the expense of the city or township and kept on hand ready for use when a Quarantinable Disease makes its appearance in the community. It is hoped that Mayors and Township Clerks will obtain all of the forms given in these Rules and Regulations and use them according to the directions given by the State Board of Health. It is earnestly hoped that all health officials will put forth their best efforts to carry out all of the requirements as set forth in these pages.
A blank on page 14 is recommended to Mayors and Township Clerks, for the purpose of keeping a proper and complete record of all cases reported to them. These blanks should be printed and bound in book form. The leaves should be of two alternating colors, one for the original
and the other for the duplicate. The duplicate is made by placing a piece of carbon paper between the leaves. The original should be on white, while the duplicate can be on a light yellow, or any color that will make a good carbon copy.

REPORT OF CONTAGIOUS DISEASES.

\qquad
\qquad
Age
Sex
Address
Social Condition
Attending Physician
Nurse
Date Quarantined
Date Released
Date Disinfection
Person who disinfected.
Remarks
\qquad
\qquad
\qquad

Signed
MAYOR OR TOWNSHIP CLERK
health officer, election, qualifications and compensation.
Rule III.-Every Local Board of Health shall, at its first meeting in April of each year, elect a competent physician as Health Officer, whose term of office shall be one year, unless sooner removed by said Board or the acts of a body having superior jurisdiction. In the event of such removal, or if a vacancy occur from other causes, the Board shall immediately proceed to fill such vacancy. To be qualified for election as Health Officer, the person selected must be the legal holder of a certificate regularly issued by the State Board of Medical Examiners of this state, authorizing him to practice medicine in the State of Iowa, and said certificate must be recorded in the office of the County Recorder of the county wherein he resides. The physician selected as Health Officer should be the most competent person available for this position. The salary of the Health Officer shall be determined by the Local Board of Health, and should be an amount sufficient to compensate him for the time and ability required to properly discharge the duties of his office.

7

Rule IV.-The Health Officer shall be the sanitary adviser of the Local Board of Health, and in addition thereto shall personally inspect the schools and all public buildings and public utilities within the jurisdiction of the Local Board. He shall require the owners, managers, or superintendents of all such institutions to conduct and maintain the same in a proper sanitary condition, and order persons affected with any communicable disease or ailment excluded from the schools and other places used by the general public. All orders for the release of quarantine in incorporated cities or towns must have the approval of the Health Officer before such orders are valid. In cases of sickness where no physician is in attendance, the Health Officer shall investigate as to the character of such sickness, and report to the Mayor or Township Clerk, and in like circumstances, when the sickness is caused by a quarantinable disease, determine the fact of its termination. He shall also attend and represent his Local Board at the sanitary conferences called by the State Board of Health, his actual expenses therefor being allowed and paid by the Local Board of Health so represented.
bevocation of physiclan's certificate.
Rule V.-If any physician or osteopath fail or negiect to conform to quarantine regulations or to report promptly to the Mayor or Township Clerk all cases of quarantinable disease to which he has been called professionally, that official shall make affidavit setting forth the facts and the names of witnesses thereto, and file same with the Secretary of the State Board of Health, whereupon the offender shall be cited to appear before the State Board of Medical Examiners and show cause why his certificate should not be suspended or revoked.
disposal of night soil, sewage, creamery wastes, factory and shop wastes, and garbage.
Rule VI.-Section 1.-No priyy vault, cesspool or reservoir into which a privy, water closet, sink or stable is drained, except it be water tight, shall be established or permitted in water-bearing strata or within one hundred (100) feet of any well, spring, or any other source of water used for drinking or culinary purposes.
Sec. 2.-All privy vaults, reservoirs or cesspools named in Section 1 shall be cleaned and emptied of their contents at least once every year, before the flrst day of May; and shall be kept thoroughly deodorized and disinfected by adding to the contents thereof, at least once each month or oftener if necessary, Calclum Hypochlorite as follows: Take the Catcium Hypochlorite in powder form and sprinkle over the contents until the odor is abated, stirring contents if necessary. All privy vaults within the limits of any city or town shall not be less than five (5) feet deep, and shall be constructed of brick set in cement, or of concrete construction, or two-inch tight lumber.
Sec. 3.-No privy vault, water closet, cesspool, sink or stable drain shall open into any ditch, stream or drain, except into the public sewers of the city or into disposal tanks equipped with aerated contact or triekiting filters of ample area.

Sec. 4.-(a) All sewer drains leading to outfalls or disposal plants shall be constructed of standard vitrified sewer pipe, or standard cement sewer pipe, with the joints properly set in cement in such a manner as to make them water tight; and no sewer drain or outlet from any sewage disposal plant, except as hereinafter provided, shall empty into any lake, pond, creek, stream or open field.
(b) Septic tanks or other disposal tanks shall be made of water-tight concrete or masonry construction. The filters of disposal plants, except in isolated locations in non-water-bearing strata, shall be installed in basins with water-tight bottom and side walls.

All disposal plants not discharging their effluent into an established sewer system shall be provided with aerated filter beds constructed of proper filtering materials and of sufficient capacity to render the effluent clear and non-putrescible at all seasons of the year; provided, that in the case of country residences and other isolated locations, the effluent from septic taniks or cesspools, or other types of sewage disposal, need not be subjected to filtration if such effluent can be discharged in sufficient isolation to prevent the creation of a nuisance or a menace to health; and, in any case, the pollution of any source of domestic or public water supply must be avoided.
(c) Non-putrescibility of effluents may be determined by means of the following:

1. The Oxygen Absorbed Test.
2. The Organic Sulphur Method.
3. The Methylene Blue Test.
4. The method recommended by the Royal Commission on Sewage Disposal or by any of the standard chemical methods.*
(d) If the effluent from the filters shall be discharged into any water course, open drain, stream or pond, or source of water supply, or upon any low land, where, in any manner, by drinking the effluent or water polluted by it or by contact with the same, either by man or beast, pathogenic germs may be transmitted, such effluent shall be sterilized by Calcium Hypochlorite or other suitable and safe chemical means.
(e) The discharge of the effluent from septic disposal plants or any other type of disposal plant into abandoned wells or into creviced strata, reaching water-bearing strata, from which domestic or public water supply is drawn, is absolutely prohibited.
(f) The different methods of irrigation and intermittent filtration are not intended to be excluded by the above requirements, but are also permitted and recommended where the conditions and surroundings will allow such methods of sewage disposal to be safely employed without creating a nuisance or menace to health, and without polluting any source of domestic or public water supply.

Sec. 5.-(a) No offal, slops, or other wastes from any creamery, factory, shop, chicken house, slaughter house, tannery, hotel, boarding house,
restaurant, laundry, meat market or private residence, or any other source, shall be thrown or deposited, except in accordance with properly provided garbage disposal, upon any lot or land, or into any ravine or open ditch, stream or pond, or upon any land adjoining which is subject to overflow.
(b) Any of the wastes above mentioned, not properly disposed of as garbage and common sewage, shall be disposed of by independent disposal plants, which latter provision shall particularly apply to creameries, slaughter houses, factories and shops.
Sec. 6.-(a) All dead animals and all decomposed animal matter shall be deodorized and immediately removed to dump grounds provided by the city and there buried at least three (3) feet under ground.
(b) The dump grounds so used must be so located and of such a character as not to affect or contaminate any domestic or public water supply, either by overflow or percolation.
Sec. 7.-No slops, offal, garbage, manure or any other refuse shall at any time be deposited in any of the streets or alleys, or upon any lot in the city, except it be deposited in a regulation garbage box, as provided for in Section 8 of this rule. All property owners shall be held responsible for the sanitary condition of the alley abutting on their premises.
Sec. 8.-Each and all property owners within a city shall provide a suitable garbage box for each of his premises; said garbage box shall be so constructed as to be not more than three (3) feet wide, three (3) feet high and five (5) feet long, and shall be made of tight-matched lumber or galvanized iron, and shall stand at least nine (9) inches from the ground and shall be fitted with an attached cover which shall be fly proof and shall be kept closed.

Sec. 9.-All garbage boxes and their contents shall be kept thoroughly deodorized, and the contents of all such boxes shall be removed at least twice each week, and oftener if so ordered by the health officer.

Sec. 10.-All cellars, caves and outbuildings shall be cleansed and disinfected at least twice each year, and all cattle yards, chicken yards, barns or stables, when in use, shall be cleaned each day and at all times kept free from all offensive odors.

Sec. 11. No privy vault shall be allowed upon any premises where there is a possible connection to the city sewer.
Sec. 12.-A violation of any provision or section of this rule shall be deemed to be the commitment of a nuisance and shall subject the violator to the full penalty provided by statute and the ordinances of any city in Iowa hating like regulations.
Sec. 13.-It shall be the duty of the city marshal and other sanitary police officers to enforce these regulations, as herein set forth, under the supervision of the health officer.

RECOMMENDATION.

The law as it now stands, and which relates to quarantine and disinfection, provides as follows: "But quarantine shall not be established or maintained except in cases of searlet fever (including scarlet rash and scarletina), smallpox, diphtheria (including membranous croup), cholera, leprosy, cerebro-spinal meningitis, anterior poliomyelitis and bubonic plague."
In consequence of this, the Iowa State Board of Health, believing that. erysipelas, typhoid fever, pneumonia and tuberculosis are dangerously communicable, recommends that all premises be thoroughly disinfected: voluntarily at the termination of any of these diseases.
The law relating to quarantine, disinfection and the expenses incurred therefor is found on page 26 of these rules and regulations and should be carefully studied.
Certain forms are also given relating to establishing and releasing quarantine, together with notices to be issued by the mayor or township clerk to the principal or teacher of any school, giving notice of the existence or recovery of a communicable disease.
Local boards of health should have all blanks, given herein, printed at their own expense for the use of their mayors or clerks.

- . bead the "health buluetin."

The "Lowa Health Bulletin" is the official organ of the state board of health. It is mailed quarterly to every mayor, health officer, township clerk, physician, registered nurse, embalmer, school superintendent county auditor, county clerk, county attorney, judge and newspaper in the state. Every issue contains useful information to local boards of health, and the laity in general. It should be read and fled for future reference. Any family may secure the Iowa Health Bulletin by making application to the secretary of the Iowa. State Board of Health, Des Moines, Iowa.

seoretary's cebrificate.

To the County Auditor of. County, State of Iowa:
I hereby certify that the foregoing rules and fegulations pertaining. to quarantine and disinfection were adopted by the Lowa State Board. of Health at its regular meeting, held Juily 19th, 20 th and 21st, 1911; and that the same will go into full force and effect on the fifteenth day of September, A. D. 1911.
(Seal)
Gumbord H. Sumner, M. D.
Secretary, Iowa State Board of Health.
Dated at Des Moines, Iowa, this 1st day of August, A. D. 1911.

[^1]

Home Disinfection that is Most Thorough and Far-reaching in its Resuits as Regards Disease Prevention. Not to be Substituted for Formaldehyde.
sclets as megambs disease prevextion.

To health officers and all who are interested in house cleaning: The Iowa State Board of Health, having the interest of residents of this and other states at heart, and daily endeavoring by every possible, practical procedure embodying scientific principles to mitigate disease, misery, mental anguish and possible death through infectious conditions in the respective homes of Iowa as well as other states, and having received numerous requests to give a simple method whereby houses may be disinfected at house cleaning time, presents to the readers of these pages, to be used when the winter season has closed or any other time when house cleaning is a feature in many households, a photograph showing the possibilities, and a simple method of home disinfection that is most thorough and far-reaching in its results as regards disease prevention.

Obtain at any chemical or grocery store at a cost of a few cents, a pound of sublimated or common flour of sulphur. Pour this material within an iron pot in the form of a pyramidal or conical heap (an old frying pan will do very nicely for this purpose) and set this vessel within a dish pan, the bottom of the latter being covered with water to the depth of an inch or more. Place the dish pan holding the iron receptacle into which the sulphur is poured, upon two or three bricks laid flatwise upon the floor, as shown in the photograph.

Now remove from the room all colored fabrics, such as curtain hangings and draperies, and hang them upon the clothes line in the rear yard where the sunlight may destroy by its natural antiseptic functions tubercular and other disease germs. Remove any silverware that may be in the room to another part of the house, as the sulphur fumes are likely to tarnish it, though not otherwise injuring it. It is best not to leave the colored fabrics in the room on account of possible bleaching from the sulphur fumes.

Open all the bureau drawers, turn the mattress sidewise on the bed, close the hot-air furnace radiators, if there be any, put paper in the keyholes, and otherwise stop up cracks or crevices.

Pour about a teaspoonful of wood or grain alcohol on the top of the pile of sulphur, as shown in the photograph, apply a match, and retire from the room, elosing the door tightly. Allow the pound of sulphur to be completely consumed and do not enter the room for at least six hours after such procedure. At the expiration of this time enter the room and throw wide all the windows. Replace your colored draperies or curtains upon the windows and you may sleep safe and sound in the room after the fumes have been dissipated, with the full knowledge that all disease germs, roaches, bugs and other vermin have been destroyed and the sleeping apartment rendered beneficial and safe from a health standpoint.

If the room should be a large one, it would be well to utilize two pounds of sulphur, but for the ordinary sleeping apartment a pound will suffice.

The pound of sulphur may well be likened unto the trite, old-fashioned proverb that a pound of prevention is worth a ton of cure.
In no case is this method of fumigation to be used instead of the formaldehyde method, recommended in chapter 3 of the rules and regulations of the State Board of Health, where quarantine has existed or where a death has occurred from tuberculosis.
This simple method is given in the belief that every housekeeper will use it to the extent that all sleeping apartments, closets where clothes are kept, and such other rooms as require fumigation at house cleaning time will be fumigated in this manner to prevent contagious and infectious diseases from entering the home. The formaldehyde method as given in chapter 3 of the rules and regulations of the State Board of Health should be used in all places where quarantine has existed or where a death has occurred from tuberculosis.
The photograph here given furnishes an excellent illustration of the plan to be pursued, and if no other method is adopted for fumigation and disinfection of second-hand clothing or goods offered at rummage sales, this method should be used; but in all cases, the formaldehyde method is far superior to any other method now known.

PREVENTION OF DISSEMINATION OF INFECTIOUS MATERIALS; PRACTICAL DISINFECTION.

Even with the best disinfectants available, and with the exercise of the greatest care in their application, practical disinfection is by no means always effective in preventing the transmission of infectious material to new fertile ground. Because of this condition, it is advisable and necessary to keep the infected area as small as possible and to prevent the accumulation of infectious material by destroying it continuously and as quickly as possible after it is thrown off by the body. With the exercise of due care, the waste products which act as vehicles for the infectious agents of our common and occasional scourges may be so effectively dealt with from hour to hour and from day to day as to make the after treatment of the room and its contents somewhat of a mere form, carried out as a matter of routine practice, or in order to make assurance doubly sure.

One of the simple means to be used, in the prevention of dissemination of infectious material, practical disinfection, is the care to be taken by the physician before he visits a home where a contagious disease exists. An illustration is herewith appended, showing a simple method whereby a physician may properly prepare himself to visit an infected home. Any physician can procure at any clothing store a small hand satchel, sufficiently large to carry a pair of common light rubbers, a pair of overalls, a blouse, a handkerchief and a cheap shop cap to be worn when coming in contact with contagion.
After using these articles they may be easily fumigated, satchel and contents, by placing them in a small closet or box, fitted for the purpose.

A. Simple Method Whereby a Physician May Properly Prepare Himself to Vislt a Howe where a Contagions Disease Exists.
and using the formaldehyde method. If it seems better, they may be left at the home where the contagion exists, and hung on a line in the air and sunlight, after which they may be placed in some outside room, readily accessible to the physician when he makes his next visit.
The illustration furnishes an idea which can be quickly put into practice, and should be employed by all physicians when visiting patients afflicted with contagious diseases. No harm can possibly come from using extreme care in all such visits.

In using precautions to prevent the spread of contagious material, it must be remembered that according to the nature of the disease, these agents reside in discharges from the mouth, nose and throat (diphtheria and whooping cough), in sputum (pulmonary tuberculosis, influenza and pneumonia), in discharges from the bowels (typhoid fever, cholera, dysentery and tuberculosis), in the urine (typhoid fever), and in matters thrown off by the skin (acute exanthemata, skin eruptions, essentially accompanied with fever as scarlet fever, etc.) From this knowledge, it should be remembered that the course to be pursued during the continuance of a sickness or convalescence varies according to the nature of the disease,

The limitation of the infected area and of the amount of material which may require disinfection on the termination of the disease should be a matter for immediate action on the discovery of the existence of the disease. The patient, especially in the case of the acute exanthemata, should be placed in a room which, if possible, may be isolated from the rest of the house, and from which all unnecessary furniture, especially of the upholstered kind, hangings, carpets and rugs have been removed. Disinfectants for the prompt treatment of infectious matter should be kept near at hand, together with a sufficient number of appropriate vessels and utensils.

In order to prevent or restrict the carriage of living organisms from the room, ingress should be denied to all whose presence is unnecessary; the wearing of other than cotton and linen dresses, that is, smooth-surfaced and washable, by attendants should be interdicted, and the physician should exercise the same care as those in attendance, by using a covering for his clothing, as shown in the accompanying lilustration herewith; no food remainder should be taken away to be consumed by others; no used bed-linen or body-linen removed until after immersion in disinfectant solutions, and no discharges finally disposed of until after appropriate treatment. If it be necessary to use the broom, the dust should be kept down by the use of wet sawdust or tea leaves which, with the gathered dirt and dust, should be treated by a disinfectant and burned.
Under no circumstances should the process known as "dusting," which is merely the scattering of dust through the air from surfaces where it was at rest and upon which and elsewhere it will again be deposited, be allowed, but such surfaces should be wiped with cloths moistened with or wrung out in a disinfectant solution and afterward soaked and boiled. According to season, the windows should be provided with wire screens to
keep out flies, which not only are an annoyance but, through their habit of visiting all manner of excreta and other filth, act as carriers of infection.

Sputum.-In pneumonia and pulmonary tuberculosis, the sputum should be received in spit-eups partly filled with disinfectant solution, and kept covered when not in actual use. It may be treated with 5 per cent carbolic acid, or about 5 per cent of any of the cresol compounds or with 4 per cent of formalin. Milk of lime and chlorinated lime are also efficient. Corrosive sublimate should be considered as very uncertain. By reason of its consistency and adhesive properties, sputum is one of the most difficult materials to sterilize. It is especially dangerous, as it may contain large numbers of entangled bacteria which, on drying, may be disseminated by air currents.

Through the courtesy of Seabury \& Johnson, we are able to show herewith an illustration of their metal frame for spitting cup. The metal frame is used as a container for the folded cardboard, which should be burned after use. It is not convenient to carry this cup when on the street, hence another one is here illustrated, which may be carried in the pocket, and burned after use. Complete instructions are printed on each cup of this kind. In any case it is well to have more than one of these pockets, or pouches, so that the patient is never without one. The pocket, or pouch, should not be used too long before burning. Of course, all invalids using handkerchiefs, rags, or Japanese paper as receptacles for ex pectoration, are in danger of infecting their hands, and should always wash them thoroughly before touching food. It is well to note here that the rooms occupied by a tuberculosis patient should be thoroughly disinfected at regular intervals, since it is possible that even with great care the furniture, floors, walls, etc., may have been infected.
Pulmonary tuberculosis is an exceedingly dangerous disease and it is absolutely necessary that the greatest precautions should be taken to pre-
vent patients, afficted with this disease, from expectorating in a promiscuous manner. Sanitariums, hospitals, homes and wherever patients reside should see the necessity of preventing the spread oi pulmonary tuberculosis by providing sanitary cuspidors. The facility with which they can be used and their reasonable price make them the ideal arrangement for sputum disposal and control, as they have been endorsed by leading bacteriologists and specialists throughout the world. In these days, with our present knowledge at hand, there is no excuse for the promiscuous expectoration of tuberculosis sputum to become dried and blown about in the air to be inhaled by those not afficted.

CHAPTER 156, ACTS OF THE 33RD GENERAL ASSEMBLY AND AS AMENDED BY THE 34TH GENERAL ASSEMBLY.

QUARANTINE.

Section 1. Repeal-quarantine-care of infected person-expenses "That the law as it appears in sections twenty-five hundred and seventy-a (2570-a), twenty-five hundred seventy-a-1 (2570-a-1), and twenty-five hundred and seventy-b ($2570-\mathrm{b}$) and twenty-five hundred and seventy-one (2571) of the supplement to the code, 1907, are hereby repealed and the following enacted in lieu thereof:
"When any person shall be sick or infected with any contagious or infectious disease, dangerous to the public health, whether a resident or otherwise, the local board of health through the mayor or township clerk, shall make such provisions as are best calculated to protect the inhabitants therefrom, and may remove such persons to a separate house, a
house of detention or hospital, but quarantine shall not be established or maintained except in cases of scarlet fever (including scarlet rash and scarletina), smallpox, diphtheria (including membranous croup), cholera,

- leprosy, cerebro-spinal meningitis, anterior poliomyelitis and bubonic plague. In case any person or persons liable for the support of such person under quarantine or restrained under and by virtue of this act, shall be financially unable to secure the proper care, provisions or medical attendance, it shall be the duty of the mayor or township clerk to procure for such diseased person, proper care, provisions, supplies and medical attendance, while so quarantined or restrained. All bills for supplies furnished and services rendered by order of the mayor or township clerk as herein provided, for persons removed to a separate house, or house of detention, or hospital, or for persons financially unable to provide for their sustenance and care, shall be allowed and paid for, only on a basis of the local market price for such provisions, services and supplies in the locality in which such services and supplies may have been furnished. All services and supplies furnished to individuals or families under the provisions of this section must be authorized by the local board of health or by the mayor or township clerk acting under standing regulations of such local board, and a written order therefor designating the person or persons, employed to furnish such services or supplies, issued before said services or supplies were actually furnished, shall be attached to the bill when the same is presented for audit and payment. No bill for any expenses incurred for any person during quarantine or for disinfecting premises or effects shall be allowed or paid except in cases removed to a separate house, or house of detention unless it shall be found that such person is financially unable to pay said bill.
"Provided that nothing contained in this section shall be construed to prevent any person removed to a separate house or house of detention or hospital as herein provided, from employing, at his own expense, the physician or nurse of his choice, nor from providing such supplies and commodities as he may require. It is further provided that if the person eceiving services or supplies be not a legal resident of the county in which such bills were incurred and paid, the amount so paid shall be certified to the board of supervisors of the county in which said party claims residence or owns property and the board of supervisors of such ounty shall reimburse the county from which such claim is certified, in the full amount originally paid by it.
"All fumigations and disinfections, for the protection of the public health, shall be done in accordance with the regulations of the State Board of Health and under the directions of the local board, which shall direct the attending physician to superintend or perform the work. In case there be no attending physician or in case the attending physician refuses to perform this duty, then it shall be the duty of the local board of health to provide some other suitable person to perform such work.
"The undertaker or person in charge of the funeral of any person, dying of tuberculosis, shall within forty-eight hours after the death of such person report to the mayor of the city or town, or to the township clerk,
the name and residence of the deceased person, together with the cause of death. Upon receipt of the notice as herein provided, the mayor of the city or town, or clerk of the township shall cause said premises to be disinfected in accordance with the regulations of the State Board of Health.
"All bills and expenses incurred in carrying out the provisions of this section and establishing, maintaining and raising quarantine and furnishing necessary detention hospitals shall be filed with the clerk of the local board of health. This board at its next regular meeting or special meeting called for the purpose shall examine and audit the same and if found correct, approve and certify the same to the county board of supervisors for payment. If the board of supervisors determine such bills payable, under the provisions of this act, it shall order the county auditor to draw warrant therefor upon the poor fund of saijd county. The board of supervisors shall not be bound by the action of the local board of health in approving such bill but may increase or diminish the same as may be just and reasonable. The forcible removal of infected persons as herein provided shall be effected by an application made to any civil magistrate in the manner provided in section twenty-five hundred and sixty-nine (2569) of the code, for the removal and abatement of nuisances, who shall issue the warrant as directed in such cases, to remove such person or persons to the place designated by the local board of health and to take possession of a condemned or infected house, lodging room, premises or effects. The officers designated by such magistrate shall be entitled to receive for such services such reasonable compensation as shall be determined by the local board of health. The amount so determined to be certified to and paid in the same manner as other expenses incurred under the provisions of this section."

Sec. 2. Meetings of Local Board-Rules and Regulations. "Local boards of health shall meet for the transaction of business on the first Monday of April and November in each year and at such other times as it may be deemed necessary. Local boards of health shall furnish to the State Board of Health reports of their proceedings at such times and in such form as may be reasonably required by the State Board of Health. They shall give notice of all regulations adopted by publication thereof in some newspaper of general circulation in the town, city or township, or by posting a copy thereof in five places therein. The secretary of the State Board of Health immediately after the adoption of any rules and regulations of said board in accordance with section one of this act, shall forward a certified copy of such rules to the county auditor of each county. Whenever such rules may be amended or changed, similar notice shall be forwarded to each county auditor.
"The State Board of Health shall cause to be printed such number of copies of the rules and regulations by it adopted as may be necessary to supply the needs of the several counties of the state and upon application forward the required number to the county auditors of the state for distribution to the several boards of health within the county.
"The clerk of each local board of health shall upon request furnish a copy of said rules to any resident, physician or citizen. It shall be the
duty of the official when establishing quarantine, to furnish to the person or persons quarantined a copy of the rules and regulations covering such quarantine."

Sec. 3. In effect. "This act being deemed of immediate importance shall take effect and be in force from and after its publication in the Register and Leader and Des Moines Capital, newspapers published in Des Moines, Polk county, Iowa."

Approved April 5, A. D. 1909.

Office of.................................
(Mayor or Township Clerk.)
\qquad
To the Principal or Teacher of. \qquad
Notice having been received of the prevalence of. .School:

Namily of \qquad notified to prohibit the further attendance at school of all children from said family, dwelling house or tenement, and forbid any of them to return until you receive official notification from this office. Such notice will be sent to you in due time after the recovery of the sick, and after the house has been thoroughly disinfected.

Mayor or Township Clerk.
This blank is furnished as a "sample:" Local Boards of Health should furnish it in quantities for the use of their Mayors or Clerks, one copy to be left with the family quarantined and one with the principal or teacher of the school.

Office of (Mayor or Township Clerk.)

$$
\text { .. } 19 .
$$

To the Principal of the.. . School; has fully recovered from an attack of at
and the house and premises having been disinfected under the instructions from this office the patient may be allowed to return to school.

Mayor or Township Clerk.
This blank is furnished as a "sample." Local Boards of Health should urnish it in quantittes for the use of their Mayors or Clerks. One copy to be left with the family quarantined and one with the princlpal of the school.

```
OFFICIAL NOTICE OF QUARANTINE-FOR USE EITHER BY CITY
            OR TOWNSHIP. BOARDS
                BOARD OF HEALTH.
```

City or Townsbip of..
County. Iowa.
To.. You are hereby notifled
that your premises No... . . Street, in City of
. Iowa, Sec.
. Twp.
County
\qquad
and all persons and effects upon or within said premises have this day
been placed in Quarantine, as provided by law.

You are further notified that all persons excepting the attending physician are prohibited from entering or leaving said premises except they be in possession of a written order signed by the mayor (or township clerk) and approved by the health officer of this board.
You are further notified that it is a misdemeanor for any person to remove or deface the official quarantine signs placed upon said premises except upon the written order of the mayor (or township clerk), countersigned by the health officer.

You are further notified that upon failure to comply with any part of this notice or any regulation pertaining to quarantine, the full penalty, as provided by law, will be enforced against you, and in addition thereto you will render yourself liable for all damage resulting therefrom.

Signed:
Mayor of
or Twp. Clerk of

Date.

NOTE-One copy of this should be left with the party notified, and one kept in the office of the Mayor or Township Clerk.
N. B.-Retain this notice until the quarantine is released.

The attending physician has no authority in matters pertaining to quarantine. Such authority is vested in the board of health and its of ficers.

This blank is furnished as a "sample" Local Boards of Health should furnish it in quantitles for the use of their Mayors or Clerks. One copy should be left with the camily quarantined

RELEASE OF QUARANTINE-FOR USE EITHER BY CITY OR TOWNSHIP BOARDS.

BOARD OF HEALTH

City or Township of.
County. \qquad Iowa.

Office of (Mayor or Township Clerk.)
To all Whom it May Concern:
\qquad
Street, in City of . Iowa, Sec..........................

Twp.
Iowa.
Whereas, the above described premises, having been quarantined as provided by law, and the Regulations of the State Board of Health, for ... is a communicable disease; and, whereas the sick having fully recovered, and the premises and there being no fough disinfected, and approved by the Health Offlcer, that the quarantine of said premises be, and the same is, hereby released. Dated.

Mayor or Township Clerk
OrD of the should be left with the party notifed, and NOTE-One copy of this should or Township Clerk.
This blank is furnished as a "sample." Local boards of Health should urnish it in quantities for the use of their Mayors or Clerks. One copy should be left with the family quartined.

BACTERIOLOGICAL LABORATORX.

All bacteriological examinations in the interest of the public health are made free of charge at the State Board of Health Bacteriological Laboratory at Iowa Clity.
Special outfits for the collection of material for the bacteriological diagnosis of diphtheria, tuberculosis and typhoid fever are kept in every city and town in the state for the convenience of physicians desiring to use them. If such are not available in your city, or if you have any other material requiring a bacteriological examination in the interest of the public health, write to Dr. Henry Albert, Director of the State Board of Health Laboratory, Iowa City.

N．B．－The diphtheria diagnosis outfits may，after a few years，be spoiled through drying or contaminations of the media．Whenever a dozen or more are thus spoiled，they may be returned to the laboratory． The tuberculosis bottles should be kept about onefourth full of 5 per cent carbolic acid solution．If it has evaporated，the physician should replenish the same before sending a specimen to the laboratory．

WATER ANALYSIS．

Local boaras of health，corporations or individuals desiring analysis of water should write the secretary for collection blank and directions．
Water or any other substance to be analyzed should be sent direct to the chemist of the State Board of Health，Prof．C．N．Kinney，Drake University，Des Moines．

PLUMBING AND SEWAGE．
Communications relative to plumbing，water supplies，disposal of sew－ age，etc．，should be addressed to Lafayette Higgins，civil engineer of the State Board of Health，Des Moines．

REPORT OF QUARANTINABLE DISEASES FOR THE FLSOAL YEAR ENDING JUNE 30， 1911.

	$\begin{aligned} & \text { d } \\ & \text { d } \\ & \text { U } \\ & \text { 岂 } \\ & \text { Un } \end{aligned}$	㡶	$\begin{aligned} & \text { ü } \\ & =0 \\ & \infty \\ & \infty \end{aligned}$			W
1910						
July	41	54	24		52	171
August－－	30	37	20	1	145	233
September	14	62	9	5	211	831
October	94	90	17	1	112	314
	108	94	61	1	38	292
December \qquad	119	82	155	4	7	387
	165	47	58	1	12	283
February	225	72	65		3	365
Mareh	192	66	90	5		352
April	147	48	124		5	324
May－	89	44	185	1	－ 1	330
	47	38	90	2	2	185
Total	1，840	734	894	21	588	3，547

REPORT OF QUARANTINABLE DISEASES FOR THE IISOAL XEAR ENDING JUNE 30， 1012.

		罢	会 綈 品			淢
1911						
July	81					100
August－	${ }_{4} 8$	25 56		1		
October	72	107	23		12	214
November	95	200	63	2	7	387
${ }_{1912}$	116	68	35	1		220
1912						
January－	120		37			219
Mebruary	117 104	55 58	49	8	2	226
Apry	187	29	41	2	1	210
May	58	100	66	4	1	229
June	81	26	42	1	1	101
Total	850	812	406	18	52	2，332

TABLE NO. 1.
QUARANTINABLE DISEASES REPORTED TO THIS OFFICE FROM JULY 1, 1910, TO JANUARY 1, 1911, ARRANGED ACCORDING TO COUNTIES.

TABLE No. 1-Continued.

TABLE NO. 2.
QUARANTMABLE DREEASES REPORTED TO THIS QEFICE FROM-JANUARY 1, 1911 TO JULY 1, 191, AREANGED ACCORDING TO COUNTIES

TABLE No. 2-Continued.

TABLE No. 2-Continued.

TABLE NO. 3.
QUAKASMMARLE DISEASES REPORTED TO THUS OFFICE RROM JULY 1 , 1911, TO JANUARY 1. 1912, ARRANGED ACCORDING TO COUNTIES.

TABLE No, 3 -Continaed

QUARANTINABLE DISEASES REPORTED TO TBIS OEFICE FROM JANUARY 1, t912, TO JULY 1, IOR2, ARRANGED AOCORDING TO COUNTIES.

	育				$\begin{aligned} & \text { H. } \\ & \text { 兑 } \\ & \text { O } \\ & \text { K } \end{aligned}$	芯 芯 品	
Typhoid fever	22	37	54	49	35	49	14
Malarial fever	2	2					1
Measles	8	2	2	8	1	1	1
Scarlet fever	6	4	3	3	10	16	7
Whooping cough	15	17	2	9	14	7	8
Diphtheria and croup	10	14	14	19	23	13	11
Erysipelas	1	1	1	2	4	10	1
Cholera infantum	109	291	192	97	28	14	39
Septicemia and pyaemia Pellagra	6	8	13	9	8	12	12
Tuberculosis of lungs	95	113	96	125	97		84
Other forms of tuberculosis	8	5	6	3	7	3	3
	24	45	48	29	49	54	31
Cancer and other malignant tumors	117	122	147	122	113	114	73
Rheumatism	4	19	6	9	5	8	7
Anemia	17	16	18	18	${ }_{7}^{19}$	30	7
Alcoholism	6	6	1	4	6	4	4
Other general diseases	3	3	17	27	48	56	67
Simple meningitis	16	5	11	10	9	15	8
	6	16	8	8	2	6	4
Oerebral bemorrhage and softening of the brain	40	38 59 58	62 41	58 38	40 36	${ }_{6}^{68}$	52
Apoplexy	40	${ }_{47} 4$	56		${ }_{66}$	${ }_{63} 6$	41 37
Convulsions（under 5 years）	15	4	9	8	11	9	8
Anterior poliomyelitis	8	10	${ }^{6}$	${ }^{8}$	9	11	3
Organic heart disease	120	144	99	144	115	178	18
Endocarditis	11	5	14	15	13	11	8
Pericarditis	2	3		1	2	5	
Angina pectoris	11	6	${ }^{6}$	12	9	13	8
Embolism and thrombosis	3	3	6	$\stackrel{6}{7}$	0	4	
Hemorrhage Bronchitis	11	114	9 17	${ }_{17}$	10	5	11
Broncho pneumonia	9	6	9			${ }_{65}$	9
Pnemmonia	30	25	53	78	123	295	4
Congestion of lungs	6	8	10	1	12	5	2
Diseases of stomach	28	2	10	8	17	20	13
Diarrboea and enteritis－－	19	67	59	27	7	9	14
Hernis and obstruction of bowels	24	16	24	13	17	26	16
Appendicitis	20	20	${ }_{16}^{20}$	12			23
Cirrhosis of liver	18	18	10	18	14	12	
0 ther discases of liver	8	12	4	6	11	11	d
Nephritis and Bright＇s disease	71	63	109	67	81	97	6
Other diseases of kidneys	21	20	10	8	5	10	5
Other discases of genito－urinary system	1			21	10	22.	6
Puerperal septicemia－－－－－	5	8	2	2	7	7	
Other puerperal diseases	10	7	1	3	15	14	3
Gangrene	4.	6	10	8	7	10	3
Maliormation and lojurics at birth	25	13	12	10	17	24	8
Inanition	51	59	7	71	44	π	82
Arterioscherosis	17	26	25	21	19	32	18
Senile debility－	-100	117	110	119	110	158	102
Ratiroad injuries	18	14	14	9	14	2	11
Suicide Horoicide	18	19	25	20	14	27	13
in－defined causes		4	4	3	6	7	1
Accidents－－－	94	72	116	85	92		1
Violence	－ 8	1	，			1	2
Unknown eauses	－5	7	0	12	8	12	9
Legal exccution Itghtning	1						
Ilghtning							2
Totat［．．．．－．－．．．．．	1，504	1，785	1，768	1，615	1．620	2，090	1，238

REPORT OF DEATHS FROM JULY 1，1910，TO JANUARY 1，1911，OLASSIFIED WITH REFERENCE TO AGES．

	弇	范			$\begin{aligned} & \text { 另 } \\ & \text { 品 } \\ & \text { 花 } \end{aligned}$	¢ 䍖 مٌ	
Under 1 year	245	350	325	271	259	375	180
1 to 5 years．	82	181	128	00	76	82	77
5 to 10 years＿	34	49	49	85	37	48	25
10 to 20 years	98	88	83	59	60	80	54
20 to 30 years	－ 97	116	122	125	105	106	80
30 to 40 years	113	97	105	107	113	115	71
40 to 50 years	115	117	145	114	118	157	94
50 to 60 years	128	141	129	147	165	203	109
60 to 70 years	191	168	218	197	202	250	166
70 to 80 years	228	271	235	281	259	371	211
80 to 90 years	127	170	150	182	188	255	135
90 to 100 years	27	29	33	22	32	48	20
100 years and over	2	1	1		3	1	1
Unknown	7	7	5	5	3	5	9
Total	1504	1785	1768	1615	1620	2096	1232

REPORT OF DEATHS FROM JULY 1，1910，TO JANUARY 1，1911，OLASSIFIED WITH REFERENCE TO SEX．

Mate	835 669	985 800	952 816	${ }_{688}^{928}$	895 725	1127 969	${ }_{669}^{667}$
Total	1504	1785	1768	1615	1620	2056	248？

REPORT OF DEATHS FROM JULY 1，1910，TO JANUARY 1，1911，OLASSIFIED WITH REFERENOE TO OOLOR．

White Colored	$\begin{array}{r} 1491 \\ 18 \end{array}$	1771 14	$\begin{array}{r} 1756 \\ 12 \end{array}$	$\begin{array}{r} 1602 \\ 13 \end{array}$	1604 16	$\begin{array}{r} 2082 \\ 14 \end{array}$	1224 8
Total	1504	1785	1768	1015	1620	2096	1232

REPORT OF DEATHS FROM JULY 1，1910，TO JANUARY 1，1911，OLASSIFIED WITH REFERENOE TO NATIVITY．

TABLE No．4－Continued．
REPORT OF DEATHS FROM JULX 1，1910，TO JANUARY 1，1911，OLASSIFIED WITH REFERENOE TO SOOIAL RELATIONS．

	会	䓵		号		岕 咠 a	
Single	${ }^{002}$	841	748	${ }_{608}^{641}$	557	761	${ }_{467}$
Married－	${ }_{281}^{596}$	${ }_{828}$	${ }_{323} 64$	342	370	439	${ }_{249}$
Divorced	18	19	19	18	21	21	14
Unknown	12	12	14	8	4	8	11
Total	1504	1785	1768	1815	1620	2096	10\％

＊These certificates were received too late to be classifled necording to the mooth is whleh the death occurred．
${ }^{+}$Stillbirths are not included in the above ciassifleation of the deaths．

TABLE NO． 2.
REPORT OF DEATHS FROM JANCARY 1，1911，TO JULI 1，1911，CLASSIFIED WITH

TABLE No. Z-Continmed.

REPORT OF DEATHS FROM JANUARY 1, 1911, TO JULY 1, 1911, CLASSIFIED WITH REFERENOE TO AGES.

REPORT OF DEATHS FROM JANUARX 1, 1911, TO JULY 1, 1011, OLASSIFIED WITH REFBRENOE TO SEX.

REPORT OF DEATHS FROM JANUARY 1, 1911, TO JULX 1 , 1911, OLASSIFIED WITH REFERENOE TO COLOR.

White	2573 16	2072 16	2117 28	${ }^{1875}$	1701 80	1499 16
Total	2589	2488	2745	1898	1751	1215

REPORT OF DEATHS FROM JANUARY 1, J11, TO JULY 1, 1911, OLASSIFIED WITH REFERENOE TO NATIVITY.

TABLE No. 2-Continued.
REPORT OI DEATHS FROM JANUARY 1, 1911, TO JULY 1, 1911, CLASSIFIED WLTH REFERENCE TO SOCIAL RELATIONS

*Stsilbirths are not included in the above classification of the deaths.

REPORT OF DEATHS FROM JOLT 1, 1911, TO JANUARY 1, 1912, CLASSIFIED WITH REFERENCE TO DISEASES

TABLE No. 3-Continued.

REPORT OF DEATHS FROM JULY 1, 1911, TO JANOARY 1, 1912, OLASSIFIED WITH REFERENOE TO AGES.

REPORT Of DEATHS FROM JULY 1 , 1911, TO JANUARY 1, 1912, OLASSIFIED WITH RETERENOE TO SEX

Male ${ }_{\text {Female }}$	7698	7807	${ }_{\text {¢ }}^{818}$	968	${ }_{768} 88$	${ }^{891} 75$	417 845
Total $=$	1756	1688	1516	1597	1800	1847	762

REPORT OR DEATHS FROM JULY 1, 1911, TO JANUARY 1 , 1912, OLASSIFIED WITH REFERENOE TO OOLOR.

White Colored \qquad \qquad	1734 22	$\begin{array}{r} 1652 \\ 16 \end{array}$	$\begin{array}{r} 1494 \\ 21 \end{array}$	$\begin{array}{r} 15 \pi \mathrm{~T} \\ 20 \end{array}$	$\begin{array}{r} 1581 \\ 19 \end{array}$	$\begin{array}{r} 103 t \\ 17 \end{array}$	758 4
Total	1756	1668	1515	1597	1600	184	762

RERORT Of DEATHS FROM JULY 1 , 1911, TO JANUARY 1 , 1910, OLASSIFIED WITH

RUEFERENOE TO NATIVITY.
Native
Forelgn
Unknown
Total

TABLE No．3－Cortinued．

REPORT OF DEATHS FROM JULY 1，1911，TO JANUARY 1，1912，CLASSIFIED WITH REFERENCE TO SOCIAL RELATIONS．

！	；	合	菏	気 首 管	岇		宮	淢 或 \％
Married		706	627	640	656	649	${ }_{848}$	${ }_{280}^{301}$
Divorced		316	339	298	368	395	410	147
Unknown		18	${ }^{24}$	$\stackrel{26}{7}$	23	18	18	7
			16	7	19	14	18	18
Total		1756	1668	1515	1597	1600	1647	762

＊Stillbirths $\ldots \ldots \ldots \ldots$

＊These certifleates were received too late to be classifled according to the month ＊＊Stillirths are not iacluded in the above classification of the deaths．

REPORT OF DEATHS FROM JANUARY 1，1912，TO JULY 1，1912，CLASSIFIED WITH REFERENOE TO DISEASES．

	咸	$\begin{aligned} & \text { e. } \\ & \text { 岂 } \\ & \text { 骨 } \\ & \text { a } \end{aligned}$	気	妥	永	号
Typhoid fever	20	18	23	16	18	13
Smarlipox－－－						1
Measles	2	1	3	8	5	
Scarlet fever	9	5	18	8		2
Whooping cough		7	15	11	11	15
Diphtheria and croup	15	11	8	3	6	3
Influenza	14	39	35	14	5	3
Erysipelas ${ }_{\text {Other }}$ epidemic diseases	8	8	10		6	5
Other epidemic diseases		1				
Rabies	13	21	16	20	15	18
Pollagra						
Tetanus		1.	2	3	8	7
Tuberculosis of lungs	127	119	140	122		100
Tuberculous meningitis	13	6	7	4	8	3
Pott＇s disease		5	${ }^{3}$	1		
Other forms of tuberculosis	${ }^{9}$	16	13	12	17	15
Oancer and other malignant tumors	136	128	125	106	150	111
Acute articular rheumatims	10	7	14	13	16	6
Diabetes Exophthalmic goitre	23	22	28	21	26	14
Exophthalmic goitre	1	1	3	3		3
Anemia，chiorosis	10	23	22	23	23	18
Other general diseases	5	2	10	3		4
Alcoholism	8	5	5	6	3	8
Simple meningitis	－ 1	6	9	5	10	9
Cerebrospinal meningitis	，	12	5	9	θ	
Locomotor ataxia	3	3	7	2	？	
Acute anterior poliomyelitis		1	1	${ }^{2}$		
Cerebral hemorrhage，apoplexy	135	124	125	119	126	128
Softening of brain	${ }_{8}^{8}$	9	3	2		5
General paralysis of insane	37	36	36	30	40	$\stackrel{8}{9}$
Other forms of mental alienation	1	5	3	5		9
Epilepsy	7	4	7	6	6	13
Convulsions（nonpuerperal）		2		8	2	1
Convulsions of infents	22	18	25	18	13	
Ohorea－－－－－－－－	1	1	1	1		
Neursigia and neuritis－－－	1	1		2	2	1
Other diseases of nervous system	8	$\stackrel{6}{8}$	10	1	$?$	6
Diseases of the ears	8		4	3	8	
Acute endocarditis		23	26	30	12	15
Organic diseuse of the heart	183	180	150	127	117	112
Angina Dectoris	11	9	13	12	7	\％
Diseases of arteries，atheroma，ancurism，ete．	39	41	89	13	53	37
Embolism and thrombosis	13	13	9	11	12	7
Hemorrhage，other diseases of circulatory systema．．．	17	19	3	5	11	14
Bronchitis	22	21	47	32	18	9
Broncho pneumonia	38	27	51	87	13	6
Pneumonia	220	245	241	176	102	45
Pulmonary congestion	15	22	13	15	4	6
Asthma－－－－	14.	10	18	11	14	5
Other diseases of respiratory system	7	3	6	1	4	2
Dicer of stomach	10	4	11	12	9	8
Otber diseases of stomach	27	82	11	14	28	32
Diarrhoea and enteritis（under 2 years）	19	10	21	21	16	10
Diarrhoea and enteritis（over 2 years）	4.	8	15	2	5	7
Appendieftis and typhlitis	22	17	22	9	21	17
Hernla and obstruction of bowels	20	18	18.	${ }_{23}^{14}$	25	22
Oirrhosis of liver	21	15	12	14	12	15
Other diseases of liver	14	17	2	22	17	20
Peritonitis ${ }^{\text {a }}$－Bright＇s alseas	28	17	22	20	25	10
Nephritis and Bright＇s disease Other diseases of kidneys	$\begin{array}{r} 129 \\ \hline \end{array}$	101	122	$\begin{array}{r} 188 \\ 1 \end{array}$	$\begin{array}{r} 119 \\ 6 \end{array}$	127

REPOR OP DEATAS FROM JANUS

REPOR OP DEATHS GROM JANUARY 1, TM2, TO JULY 1, 1912, OLASSTFIED WITH | REFERENCE TO AGES. |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

TABLE No. 4-Continued.
REPORT OF DEATHS FROM JANUARY 1, 1912, TO DULT 1, TMI, CLASSIFIED NYTH REFERENCE TO SEX.

REPORT OF DEATHS FROM JANUARY 1, 1912, TO , OLT 1, 1912, OLASSHFLED WTHE REFERENOE TO COLOR

White
Colored
Total

REPORT OF DEATHS PROM JANUARY 1,1912 , TO JULL 1 , 1912, OLASSIFIED WITE REFBRENOE TO NATIVITY

Native
Foreign Unknown Total

REPORT OF DEATHS FROM JANDARY 1, 1912, TO JULY 1, 1012, OLASSIFIED WITH REFERENOE TO SOCIAL RELATIONS.

**Stilibiths are not ficluded in the above classifeation of the deaths.

RERORT OF BHEHS FOR CALENDAR YEAR 1910 AND MARRAGES AND DTVOROES WOR PISCAL TEAR ENDING JUNE $30,1911$.

TEPORT OF BIRTHS FOR OALENDAE YFAR 190 AND MARRAGES AND DNOROES FOR FISCAL IEAR ENDING JUNE B0, 1911-COntinued.

*No birth records received from this county

REPORT OF BIRTHS FOR CALENDAR YEAR 1 GI AND MARRIAGES AND DIVORCES FOR FISCAL YEAR ENDING JUNE 30, 1912.

*No birth records recelved from thls countr
deaths from tuberoulosis in lowa for the following tears.

County	1910	:+11	County	1910	1911
	9	6	Jefferson	9	12 20
Adams	${ }_{8}^{3}$	5	${ }^{\text {Jonhhson }}$	13	9
Allamakee	20	${ }_{2}^{9}$	Keokuk	11	13
Appanoose	2	3	Kossuth	11	9
Audubon	14	14	Lee	${ }_{5}^{40}$	${ }_{63}^{24}$
Benton	27	37	Linn -		
Black Hawk	25	21	Louisa -	${ }_{7}$	
Boone	21	8	Lucas	4	8
${ }_{\text {Bremer }}$ Buchanan	43	4	Madison	9	14
Buena Vist	14 4	$\stackrel{8}{7}$	Mahaska	14	18
Butler	${ }_{9}^{4}$	6	Marion	11	21
Calhoun	5	9	Marshall		
Carroll	10	12	Mills -		
Cass	10	6	Mitchell	9	
Cerro Gordo	9	9	Monroe	22	14
Cherokee	20	19	Montgomery	13	8
Chickasaw	${ }_{6}$	$\stackrel{5}{7}$	Muscatine		8
Clarke	5	1	Oscrien	5	
Clay ---	13	16	Page	22	32
Clayton	27	36	Palo Alto	9	6
Clinton ${ }^{\text {Cra }}$	7	7	Plymouth	6	8
Dallas -		12	Pocahontas	9	5
Davis	8	14	Pottawattamie	31	34
Decatur	14	13	Poweshiek	15	9
Des Moines	31	37	Ringgold	6	7
Des Mickinson	1	3	Sac	9	6
Dubuque	$\stackrel{53}{8}$	5	Scott	59 2	74
Emmet	15	15	Sioux	7	14
Fayette	12	10	Story	21	21
Ployd -	7		Tama	8	11
Franklin	3	6	Taylor --.	9	7
Fremont	12	6	Union .-..-	,	9
Greene	9	6	Van Buren	11	12
Guthrie	8	14	Wapello ----		47
Hamilton	8	${ }_{8}^{15}$	Warren ---	10	19
Hancock	11	12	Wayne --	7	11
Hardin -		7	Webster	15	20
Harrison	20	25	Winnebago	12	10
Henry	10	10	Winneshiek	${ }_{51}^{31}$	${ }_{56}^{12}$
Humboldt	6	8	Woodbury	50	12 1
Ida ---	1	14	Wright	10	7
Jowa	11	11		1,484	1,560
Jasper	16	8	Total		

DEATHS IN BURLINGTON, IOWA, FOR 1909, 1910 AND 1911. (Exclusive of stillbirths.)

| | | |
| ---: | :--- | ---: | ---: | ---: | ---: |
| | (Exclusive of stillirths.) | |

DEATHS IN BURLINGTON, IOWA, FOR 1909, 1910 AND 1911-Contiuued. (Exclusive of stillbirths.)

DEATHS IN CEDAR RAPIDS, IOWA, FOR 1809, 1810 AND 1811.

DEATHS IN CEDAR RAPIDS, IOWA, FOR 1909, 1910 AND 1911-Continued.
(Exclusive of stmbirths.)

| | |
| :--- | :--- | ---: | ---: | ---: | ---: |

DEATHS IN CLINTON, IOWA, FOR 1909, 1910 AND 1911.

| |
| :--- | :--- | ---: | ---: | ---: | ---: |
| (Exelusive of stillbirths.) |

	1909	1910	1911
Pneumonia	15	8	24
Asthma	1	0	0
Oongestion of lungs	2	1	0
Diseases of stomach	3	5	3
Hernia and obstruction of the bowels	2	1	3
Peritonitis	2	3	
Appendicitis	1	0	2
Cirrhosis of liver		2	
Nephritis and Bright's disease		9	22
Other diseases of kidneys .--	${ }_{3}$	1	22
Puerperal septicemia	0	0	
Other puerperal diseases	0	0	2
Gangrene -------	1	0	
Maiformation and injuries at birth	6		
Premature birth ---------------	4	12	7
Arteriosclerosis	$\stackrel{4}{2}$	${ }_{3}$	
Senile debility	9	17	
Railroad injuries	3	7	
Suicide	2		
Accidents	0		
Violence	1	0	0
Injuries in mines	0	0	0
Effects of heat	0	0	0
Ill-deflned causes	1	0	0
Total	223	222	251

DEATHS IN COUNCIL BLUFFS, IOWA, FOR 1909, 1910 AND 1911-Continued. (Exclusive of stillbirths.)

DEATHS IN DAVENPORT, IOWA, FOR 1909, 1910 AND 1911.
(Exelusive of stillbirths.)

DEATHS IN DAVENPORT, IOWA, FOR 1909, 1910 AND 1911-Cont:nued. (Exclusive of stillbirths.)

| | |
| :--- | :--- | ---: | ---: | ---: |
| | |

DEATHS IN DES MOINES, IOWA, FOR 1909, 1910 AND 1911.

	1902	1910	1911	
Males	$\begin{gathered} 638 \\ 459 \end{gathered}$	$\begin{aligned} & 586 \\ & 478 \end{aligned}$	$\begin{aligned} & 645 \\ & 545 \end{aligned}$	
FemalesTotal			1,190	
	1,127	1,064	1,100	
White	1,565	1,016 48	1,232 58	
Colored-				
	1,127	1,064	1,190	
Native	931	886	965	
$\begin{aligned} & \text { Native } \\ & \text { Foreign } \end{aligned}$	162 34	154 24	${ }_{42}$	
ForengnUnknownTotal				
	1,127	1,064	1,180	
Single	483 403	465 388 3	${ }_{460}^{448}$	
Married	192	173	232	
widowed Divoreed	28 21	$\begin{aligned} & 22 \\ & 16 \end{aligned}$	21 29	
UnknownTotal				
	1,127	1,064	1,190	
	232	214	204	
Under 1 year --	75	58		
1 to 5 years	12 52	20 54	24 50	
10 to 20 years	103	109	95	
20 to 30 years	107	92	112	
30 to 40 years -	86	97	119	
40 to 50 years -	106	106		
50 to 60 years 60 to 70		106 134	136 159	
70 to 80 years	7	65	85	
80 to 20 years	14	8	19	
20 to 100 years 100 years and over	${ }_{13}^{2}$	1	0	
	1,127	1,174	1,180	
Lotal	14	29	28	
Typhold fever	6	3		
Measlos Scarlet fever	${ }_{12}^{2}$	2 4	$\frac{1}{4}$	
Whooping cough		10	5	
Diphtheria and croup	2	1	4	
Influenza	3	5	6	
Erysipelas --.-...-.	4	${ }_{22}$	15	
Septicemla and pyaemia	8	80	78	
	7	,	8	
	59	69	81	
Cancer and other malignant	10	9	10	
Riabetes	7	- 6	14	
Diabetes -Anemia and leukemisAlcoholism	10	5	11	
			34	41
			11	5
			68 38	
		\%	15	
		21	27	
		9	- 6	
Apopiexy - under 5 years		0	1	
Epliepsy Anterior poliomyelitis		2	28	
		9		
Organic heart disease		${ }_{2}^{7}$	$2{ }^{2}$	
Embolism and thrombo		511	11	
		- 12	$1{ }^{18}$	
		-	($\quad \begin{gathered}\text { c9 }\end{gathered}$	
Broncho pneumonia Pneumonia	103		8 -	

DEATHS IN DUBUQUE, IOWA, FOR 1909, 1910 AND 1911. (Exelusive of stimbirths.)

DFATHS iN DUBUQUE, IOWA, FOR 1909, 1910 AND 1911-Continued (Exclusive of stillbirths.)

DEATHS IN FORT DODGE, IOWA, FOR 1909, 1910 AND 1911. (Exclusive of stillbirths.)

	1909	1910	1911
Hemorrhage	1	1	2
Bronchitis	4	1	1
Broncho pneumonia	1	0	3
Pneumonia	21	21	16
Asthma	0	1	1
Congestion of lungs	0	0	0
Diseases of stomach -	4	4	2
Diarrhoea and enteritis	0	2	1
Hernia and obstruction or the Dowe	2	1	2
Peritonitis	1	3	0
Appendieitis	2	6	6
Oirrhosis of liver	1	1	
Other diseases of liver	0	1	0
Nephritis and Bright's disease	9	6	
Other diseases of kidneys	1	1	1
Puerperal septicemia	0	1	
Other puerperal diseases	1	0	2
	1	3	
Premature birth .-...............	${ }^{0}$		0
Inanition	8	8	6
Arteriosclerosis	2	3	
Senile debillty	8	15	13
Railroad injuries	2	4	3
Suicide	2	1	2
Homicide	0	0	
Accidents	10	13	6
Lightning	0	0	1
Injuries in mines	0	0	1
III-defined causes	0	-	1
Unknown causes	0	0	1
Total	144	- 178	170

DEATHS IN KEOKUK, IOWA, FOR 1909, 1910 AND 1911-ContInued. (Exclusive of stillbirths.)

DEATHS IN MARSHALLTOWN, IOWA, FOR 1909, 1910 AND' 1911. (Exclusive of stillbirths.)

DEATHS IN OTTOMWA, 10WA, FOR 1909, 190 AND 4911-Conthued.

 (Exclusive of smbirin.)| | 9969 | 1910 | 1011 |
| :---: | :---: | :---: | :---: |
| Mates | 169 | 176 | 150 |
| Pemales | 151 | 144 | 157 |
| | 314 | 380 | 337 |
| White | 502 | 818 | 38 |
| Colo | 12 | | |
| Total | 314 | 320 | 387 |
| Native | 268 | 241 | |
| Foreign | 38 | 48 | 38 |
| Cnkmown | 8 | 1 | 5 |
| Total | 314 | 320 | 337 |
| Single | 133 | 115 | 146 |
| Married | 116 | 188 | 123 |
| Widowed | 41 | 72 | 64 |
| Divorted - | 10 | 5 | 2 |
| Enknown | 8 | | |
| Total | 314 | 320 | 337 |
| Under 1 year | 55 | 68 | 59 |
| 1 to 5 years | 29 | | -2 |
| 5 So 10 yenis | | | |
| 20 to 30 years - | 29 | 32 | 85 |
| 30 to 40 years | 83 | 27 | 82 |
| 40 to 50 years | | 20 | 2 |
| 60 to 60 years | 48 | ${ }_{36}^{80}$ | 37 |
| 70 to 80 years | 95 | 4 | 4 |
| 80 to 90 years | 18 | 27 | 䚚 |
| 190 to 100 years | 5 | ${ }_{6}^{6}$ | ${ }_{6}$ |
| Unknown | -4 | 3 | |
| Total | 314 | 320 | 337 |
| Typhold tever -mumb | | | |
| Measles -- | | | 1 |
| Scarlet | 2 | 2 | 2 |
| Diphtherfa and croup | 4 | 1 | 3 |
| Tnfluenza - | | ${ }_{6}$ | 8 |
| Cholera infantum | 19 | 7 | 11 |
| Septicemia and pyaemia | 1 | 1 | 0 |
| Pellagra | | | |
| - Tuberculosis of the lungs | | | 8 |
| Other forms of tubereulosis. | | | ${ }^{6}$ |
| Cancer and other malignant tumors | | 0 | d |
| Phetmatism - Dabetes $^{\text {a }}$ | | 1 | 4 |
| Anemia and lenkemia | | | |
| Alcoholism | \% | | 10 |
| Other general aiseases | | | |
| Simple meningitis | 1 | 1 | 8 |
| Cerebras hemorrhage and softening of the branu. | 10 | 7 | 6 |
| | | 6 | 8 |
| Apoplexy --4-4 | 2 | 2 | 1 |
| Convaisions under | 0 | a | 1 |
| Antepsior poliomyelitis | 0 | 9 | 0 |
| Other nervous disenses | | | 16 |
| Organic heart disease | | 1 | 1 |
| Angina pectoris --- | 2 | 1 | 4 |
| Embolism and thrombosis | 0 | ${ }^{1}$ | 1 |
| Bronchitis | 2 | 1 | ${ }_{3}^{8}$ |
| Broncho pneumonia | | | |

DEATHS IN OTTCMWA, 10WA. FOR 1000, 1010 AND 1911. (Exclusive of stillirths.)

| | |
| :--- | :--- | ---: | ---: | ---: |
| | |

DEATHS IN SLOUX CHTY, HOWA, FOR 1909, 1910 AND 191. (Exclusive of stmbirths.)

DEATHS IN SLOUX CITY, LOWA, FOR 1009, 1910 AND I911-COnthued. (Exclusfye of sthbirtbs.)

DEATHS IN WATERLOO, IOWA, FOR 1909, 1910 AND 191. (Exclusive of stimbirtis.)

| | | |
| :--- | :--- | ---: | ---: | ---: | ---: |
| | | |
| | | |

" (Exclusive of athbiths,)

EMBALMERS' DEPARTMENT.

On the 30th day of June, 1912, there were in the state of lowa, 1101 licensed embalmers in good standing with the Iowa State Board of Health.

During the blennial period, July 1, 1910, to June 30,1912 , there were 122 embalmers' licenses issued upon examination and 11 through reciprocity, making a total of 133.

Iowa has reciprocity with Colorado, Idaho and Ininois.
The embalmers feel that they are a constituent part of the state board of health, and the office of the board is the general center for the diffuston of knowledge relative to the prevention and spread of disease.

DISINTEMMENTS.

During the blennial period, ending June 30, 1912, a total of 2,197 disinterment permits were issued from the state board of health office as follows:

NURSES' DEPARTMENT.

At the end of the biennial period, June 30,1912 , there were 1,220 nurses registered in Iowa. Of this number 251 were granted certificates during the last biennial period.

Since January 1, 1910, all nurses who have applied for registration were required to pass an examination as the time for registration without examination as fixed by law expired January 1, 1910. Nurses holding diplomas from any of the following list of training schools are eligible to examination before this board:
tratining schools in good standing with the state board of health.

June 30, 1912.

Atlantic \qquad Atlantic Hospital Training School
Boone \qquad Eleanore Moore Hospita
Burlington Burlington City Hospital.
Burlington Merey Hospital
Carroll.......... . St. Anthony's Hospital.
Cedar Rapids.......... Mercy Hospital.
Cedar Rapids St. Luke Hospital.
Centerville \qquad St. Joseph's Mercy Hospital.
CherokeeCherokee State Hospital.
ClarindaClarinda State Hospital.
ClintonAgatha Hospital.
Clinton $\ldots \ldots \ldots \ldots$. St. Joseph's Mercy Hospital.
Council Bluffs.........Jennie Edmundson Memorial Hospital.
Council Bluffs......... Mercy Hospital.
CresesSt. Joseph's Mercy Hospital.
Creston Cottage Hospital.
Creston . Cottage Hospital.
Davenport Davenport Hospital.
Davenport . Mercy Hospital.
Davenport
Des Moines........... Des Moines General Hospital.
Des Moines. Iowa Methodist Hospital.
Des Moines Merey Hospital.
Dubuque Finley Hospital

Dinbuque

St. Joseph's Mercy Hospital.
Ft. Dodge St. Joseph's Mercy Hospital.
Glenwood Glenwood State Hospital.
Ida Grove

IndependenceIndependence State Hospital.
Iowa City............ State University Hospital, (Regular).
Iowa City............ State University Hospital, (Homeopathic).
KeokukGraham Hospital.
KeokukSt. Joseph's Hospital.
MaquoketaIowa Sanitarium Training School.
MarshalltownSt. Thomas' Mercy Hospital.
Mason City............ City Park Hospital.
Muscatine Benjamin Hershey Memorial Hospital.
MuscatineBellevue Hospital.
Mt. Pleasant...........Mt. Pleasant State Hospital.
Nevada Iowa Sanitarium Training School.
Oskaloosa Abbott Hospital.
Oskaloosa Oskaloosa Public Hospital.
OttumwaOttumwa Hospital.
Sioux City............. German Lutheran Hospital.
Sioux City............ Samaritan Hospital.
Sioux City............ St. Joseph's Mercy Hospital.
Sioux City............St. Vincent's Hospital.
Waterloo Synodical Presbyterian Hospital.
WaverlySt. Joseph's Mercy Hospital.

BOARD OF MEDICAL EXAMINERS.

The total number of physicians registered and practicing in this

Ratio 1 to every 609 persons.
Number of certificates issued during biennial period................. 333
Number of certificates issued upon examination....................... 202
Number of certificates issued under reciprocal agreements with other
\qquad
Number of itinerants' licenses issued during biennial period...... 21
Number of osteopathic certificates issued.
The state board of medical examiners, believing that the standard of medical education should be advanced, has adopted a preliminary require ment; therefore all-persons contemplating the study of medicine, surgery and obstetrics, or who expect to appear before the Iowa state board of medical examiners for examination must be graduates of a fully accredited* high school, academy, or seminary in which at least two years of foreign language is required, and in addition thereto, two full years of college work in an accredited college, which shall include at least ten semester hours \dagger of chemistry, ten of physics (or six, if one year in the subject was done in high school), six of biology, and ten of foreign lan guage. The foreign language taken in college must include enough Latin to make the total Latin taken in high school and college together equal to two years' work in that subject.

All colleges requiring a lesser standard of quallifations will not be considered in good standing with the Iowa state board of medical examiners.
*By an "accredited" high school, academy and seminary is meant one that has been inspected and fully accredited by the state university of the state in which it is located; or, in other words, a high school, academy or seminary, a diploma from which would admit the holder to the college of liberal arts of the state university of Iowa without examination. The matriculation examination for entrance on the study of medicine must be conducted by one especially qualified and not by any member of the medical facuity. Any disputes arising as to an accredited school or as to the standard of examination for applicants for matriculation shall be referred for settlement to the Iowa state inspector of schools.
\dagger By "semester hour".is meant a subject taken for one hour a week dur ing one semester. This equals from sixteen to eighteen hours of didactic class-room work or thirty-two to thirty-six or more hours of laboratory work.

OUUTH BIENNNAL REPORT OF THE DIRECTOR OF THE IOWA STATE BOARD OF HEALTH BACTERIOLOGICAL LABORATORY.

July 1, 1910-July 1, 1912.
I herewith submit the fourth biennial report giving an account of the work done and expenditures made during the past two years and recommendations as to work for the coming biennium.

number and kinds of examinations.

During the past biennium 27,078 examinations were made and pre ventive treatments given in the bacteriological laboratories of the Iowa state board of health. Of these 21,691 were examnations made in the central laboratory of the board of health at Xowa City, 2,669 were pre ventive treatments and 2,718 were examinations made in the auxiliary laboratory of the board of health. In the total number of examinations 9,994 were for, diphtheria; 3,611 for typhoid fever, 6,127 for tuberculosis and 4,677 miscellaneous.

Diphtheria-Of the 9,994 examinations for diphtheria, 4,283 were for diagnosis of which 1,524 were positive, 2,584 negative and 175 questionable; 5,611 were for release from quarantine of which 2,346 were positive, 3,239 negative and 26 questionable.
Typhoid Fever-Of the 3,611 examinations for typhoid fever, 1,133 were positive, 2,137 negative and 341 questionable.
Tuberculosis-Of the 6,127 sputum examinations, 1,344 were positive and 4,783 negative.
Miscellaneous-See table following.
Tabulated, the examinations are as follows:

kind or Specimen	\#	苞		嫘
Diphtheria	3,870	5,823	201	
Typhold fever	1,133	2,137	341	3,611
Mriscelianeous-				
Water				${ }_{46}^{420}$
Raples				82
Oerebro-spinal meningitis				${ }_{57}$
Trices --------------				s6
Tissue -------				75 400
Glanders ---				${ }_{70}^{32}$
Animal inoculations				48
Hogs ${ }_{\text {Ele }}$				${ }_{80}^{95}$
Ear specimens -- --				50
Secretions, excretions and exucates				2,818
				${ }_{4}^{4,667}$
ntive				
				27,078

Table giving the number of examinations made annually and biennially since the establishment of the laboratory:

July 1st, 1904-July 18t,	3,580
July 1st, 1905-July 1st, 1906	5,193
July 1st, 1900-July 1st, 1907	8,453 ' 17,289 -Second
July 1st, 1907-July 1st, 1908	
Juty 1st, $1909-\mathrm{July}$ 1st, 1900 -	$\left.\begin{array}{l}10,437 \\ 12,524\end{array}\right\} 22,961$-Third Biennial Period
July 1st, 1910-July 1st, 1911 July 1st, 1911-July 1st, 1912_	${ }_{13,641}^{13,437}\{27,078-$ Fourth Biennial Per

Table giving reports from auxiliary laboratories:

LOCALITY	In Charge of	思			呂		¢ ¢
		$\begin{aligned} & 537 \\ & 420 \\ & 252 \\ & 147 \\ & 195 \\ & 2296 \end{aligned}$	40	228	4	12	809
		57	121	27		457	
		56	166			369	
			17		93	305	
		1	7			234	
						2,718	

NUMRER OF CULTURE STATIONS.

There are at the present time, 824 culture stations of the bacteriological laboratory. These are located in 764 cities and towns. During the past biennium 34,188 diagnosis outfits have been supplied to the various culture stations. Of these 19,138 were diphtheria outfits; 6,316 typhoid fever, and 8,734 tuberculosis outfits.

The establishment of culture stations has brought the benefits of the laboratory of the state board of health very close to the people of the state. The supplying of the culture stations with the diagnosis outfits makes such available to all physicians at any time and without charge. In other states the outfits are sent to physicians only on request and at their expense. This no doubt, accounts for the unusually large number of physicians in Iowa who make use of the laboratory

rabies.

During the past two years, 82 examinations were made in the laboratory for evidence of rabies or hydrophobia. The specimens examined consisted of the following animals, 73 dogs, 5 cats, 3 horses, 1 hog. A positive report is given when either Negri bodies are found on microscoplcal examination or when the disease develops in an inoculated animal. In a number of cases, the brain was so destroyed or the specimen so putrid that a satisfactory laboratory examination could not be made. It should be borne in mind also that the laboratory examination does not always reveal the disease even if it exists, for that reason it is exceedingly important that the animal which does the biting should not be killed but be confined and watched. If the animal does not develop typi-
cal symptoms or die within ten days it is safe to say that it was not affected by rabies. If the animal cannot be secured without danger to others, it should be shot through the heart rather than the head. The development of so many cases of rabies in Iowa is due, I am sure, to the fact that the people are not sufficiently informed as to the possibility of eradicating the disease. There is no fact in preventive medicine better established than that rabies may be entirely exterminated. If all stray or unlicensed dogs were killed and if, when the disease makes its appearance in a community, all dogs were muzzled for a period of six months, the disease can be practically stamped out in the course of a few years.

PASTEUR TREATMENT.

During the past two years 74 persons applied for the Pasteur treatment for the prevention of rabies. The treatment was given to 67 , it being found unnecessary to give it to the remainder because of the absence of rabies in the animal which did the biting. In only one case did the disease develop subsequently, due, no doubt, to an unusually severe infection as indicated by the extremely rapid development of rabies in lower animals bitten by the same dog. If instead of making the great mistake of killing an animal as soon as it is suspected that it is affected by rabies, the animal be shut up and watched, it will no doubt be found that some of the Pasteur treatments which are now being given are unnecessarily, but under the circumstances, advisedly administered. The patients who received the Pasteur treatment have come from the following localities:

During the biennium, there have been a rather large number of epidemics of typhoid fever, three of which have been very serious. These occurred at Des Moines, Cedar Falls and Oskaloosa.
The Des Monves Eptovicio-During the latter part of 1910 and the early part of 1911, Des Moines was visited by an epidemic of typhotd fever during which there occurred 209 cases of the disease. An examination of a sample of the city water made soon after the beginning of the epidemic revealed sewage pollution as indicated by the presence of an
unusually large number of colon bacilli. A careful investigation made subsequently by Dr. L. L. Lumsden (see Pulbic Health Reports, Vol. XXVI, No. 4, Jan. 27, 1911) proved that the water supply was the source of the epidemic.

The Cedar Falls Epidemic-During the fall of 1911 there occurred an epidemic of typhoid fever in Cedar Falls during which there were 170 cases of the disease, with a death rate of about 10 per cent. Many of the cases were students at the state teachers college. The investigation was made by Dr. A. L. Grover of the university department of pathology and bacteriology by permission of the president of the university, who found the city water supply was the source of infection. (See An Outbreak of Typhoid Fever in Cedar Falls, Ia., in the Journal of Infectious Diseases, Vol. X, No. 3, May, 1912, pp. 388-403; also embodied in this biennial report.)

The Oskaloosa Epidemic-During this epidemic which occurred in the spring of 1912 , there were 65 cases of typhoid fever. An investigation made by Dr. W. H. Frost of the U. S. public health and marine hospital service and Dr. M. F. Boyd of our laboratory traced the source to the city water supply. (For report, see Public Health Reports; also embodied in this biennial report.)
ANTI-TYPHOID VACCINATION.

During the past biennium 248 persons received the anti-typhoid vaccination. Every person, with but few exceptions, received three treatments. The persons vaccinated consisted of students at the university of , Iowa, of physicians, and nurses who came to the laboratory for treatment, and in a few instances of persons residing in localities where typhoid fever was prevalent. There is no doubt as to the protection offered by the vaccination. In 1911, the director of the laboratory and Dr. Mendenhall of the department of pathology and bacteriology conducted an investigation as to the extent to which the protective substances are produced in the body as the result of the administration of the vaccine. (See Reactions Induced by Anti-typhoid Vaccination, American Journal of the Medical Sciences, February, 1912, also supplement to this report.) It has for some years been known that anti-typhoid vaccination was of great value. It has not as a rule been advised during an outbreak of typhoid fever in a community; we believe that there is no good reason for withholding the vaccination at such times. Accordingly we advised the vaccination during the outbreak at Cedar Falls. Such was carried out with a result most noticeable in connection with the nurses. It was estimated that each of the 170 cases of typhoid fever had a nurse; of these 88 were vaccinated, none of whom developed typhoid fever; twelve of the remaining 82 contracted the disease. (See An Outbreak of Typhoid Fever in Cedar Falls, Ia., Journal of Infectious Diseases, Vol. X, No. 3, May, 1912, p. 401; also supplement to this Report.) We would strongly urge the more general adoption of anti-typhoid vaccination.

```
TXPHOMD BACNITI OARRIERS.
```

During the past biennium an outbreak of typhoid fever occurring near Muscatine was traced to a typhoid bacill carrier, that is, a person who
is a carrier of typhoid bacilli but who at the time is not affected by typhoid fever. (See Typhoid Bacilli Carriers, Journal of the Iowa State Medical Society, September 15, 1911, also Supplement to this Report.; This outbreak was unusual in that a large number of persons became carriers without contracting the disease. The importance of typhoid carriers as disseminators of typhoid fever is not appreciated by the public in general. Typhoid fever is entirely too common a disease in Iowa. If what we now know regarding the prevention of the disease were put into operation, I confidently believe that the number of cases of typhoid fever would be reduced to less than one-tenth of what it is at present. It is of the highest importance that a sanitary survey more particularly with reference to the water supply should be made as soon as possible. Such work can in part be done by an epidemiologist for which there is urgent need.
diphtherla and the public schools.
It is now quite generally recognized that probably most cases of diphtheria are contracted through association in the public schools. Occasionally the development of a large number of cases in a certain school calls particular attention to such. More recently it has been shown that the source of infection is frequently a "bacilli carrier," i. e., a person who carries diphtheria bacilli in his nose and throat but who at the time is not, or possibly at no time has been, affected by diphtheria. Until the recognition of this fact and the adoption of correspondingly appropriate regulations, diphtheria often continued among the school children of a community for months. The closing of the schools and the repeated disinfection of school buildings was of little avail. On the other hand, the examination, clinical and bacteriological, of the throats of persons exposed and the isolation at home of those found to be carriers has served to place a sudden check on every outbreak in which it has been faithfully tried. By such means, severe outbreaks of diphtheria among school children in. Charles City, Waterloo, Davenport, Muscatine and other places which occurred during the past biennium, were rapidly brought under control. (See article "Diphtheria Carriers and Medical Inspection of Schools," Iowa Medical Journal, Dec., 1911; also Supplement. to this Report.)

examination of public drineing cups.

At the request of Secretary Sumner, we made a bacteriological examination of a number of common drinking cups obtained from various public places. Disease-producing bacteria were found on a number of them. The complete findings were published in the Iowa Health Bulletin of the State Board of Health, Vol. XXV, October, November, December 1911, No. 2.
co-operative work with the unitbe states public heaith. and marine hospital service.
The United States public health and marine hospital service is making an investigation of the extent to which interstate streams are being polluted with sewage. For the investigation of the Missouri river they
have asked for the co-operation of the boards of health of the several adjacent states. In compliance with such, daily examinations of water from the Missouri river at Sioux City are now being made at the laboratory. The results of this investigation which will be published by the public health and marine hospital service, will serve to stimulate an investigation as to the degree of pollution of the streams within the states and point out the supreme importance of the prevention of such pollution in order that the water supply of our cities may be rendered more safe.
NEW diAgnosis outfits.

During the past two years the diagnosis outfits, both for tuberculosis and diphtheria, have been altered. The change of the tuberculosis outfit consisted simply of adding an inner all-tin case to comply with recently adopted postal regulations. The diphtheria outfit was markedly alteredhaving been changed from an express package to a mailing case. This change has been of decided value, first, in reducing the expense of transportation from 25 cents to 8 cents and second, in more rapid delivery since there is no delay in the transferring of specimens as was formerly done by express companies. That this change is being appreciated is evidenced in part by the increase in the number of specimens submitted.

personnel of the labobatory.

Dr. Henry Albert has continued as the director of the laboratory since its establishment eight years ago. Dr. Jessie B. Hudson, first assistant bacteriologist, resigned in April, 1912, to accept the position of pathologist to the Woman's Hospital, Philadelphia. A. R. Alden, her successor, began work July 1st. During the interval this work was done by Dr. A. C. Echternacht. Dr. M. F. Boyd, who has, during the past year been second assistant bacteriologist, has resigned to become health officer of Oskaloosa, Ia. Anna Stach was secretary-clerk, and Leo Musgrove attendant during the biennium. During the past winter, pressure of work required additional help for a few weeks. The several employes of the laboratory have worked faithfully-appreciating at all times the great responsibility associated with the nature of the work.
financial report. Classified summary of expenditures for biennium july 1, 1910-JULY 1, 1912.

PERAAANENT EqUIPMENT:
$\begin{array}{llr}\text { Furniture and filing cases } \ldots \ldots \ldots & 141.99 \\ \text { Apparatus } \ldots \ldots \ldots \ldots \ldots \ldots & 1,148.23 \\ \text { Diagnosis outfits } \ldots \ldots \ldots \ldots \ldots & 1,062.35\end{array}$
\$ 2,352.57
CURRENT EXPENSE:

Salaries	6,923.07
Express	619.24
Postage	641.73
Animals and feed	214.82
Travel expense	117.84
Telegraph and telephone	106.30
Printing	324.30
General laboratory expense	695.39

Total

Bills indicating exactly for what the various items are and receipts for same are to be found in the offices of the auditor of state and secretary of the Iowa state board of health and are also found in this biennial report.

SAVING IN time and money to the people of lowa by release of quaran-
TINE FOR DIPHTHERTA BY THE LABORATORX (CULTURE METHOD,
bASED ON 5,611 sPECTMENS FOR RELEASE.)
Period of quarantine by "time-limit" method (in days) 28
Average period of quarantine by "culture" method... 16
Number of days saved per each quarantine. 12
Number of families in which diphtheria occurred...... 518
Average number of persons in family. 4.6
2,382
Number of persons quarantined for diphtheria $.2,382$
Number of days saved per each quarantine. 12

Total number of days (for individuals) saved from quarantine

Number of "school" days saved to children (2-5 of family)

Number of days saved to heads of families (1-5 of family) Average daily earning capacity of heads of family.... \qquad 2.50

Total earnings saved (by heads of families alone)... commercial institution.
(All examinations in the board of health laboratory are made free of charge.)
(Based on examinations made and treatments given during the past biennium July 1, 1910-Juiy 1, 1912.)

KIND OF SPECIMEN	鮭		发
Diphtheria	9,994	\$ 2.00	\$ 19,989.00
Typhold fever	3,611	2.00	7,222.00
Tuberculosls	6,127	2.00 10	$12,254.00$ $4,200.00$
Water	${ }_{48}^{420}$	10.00 3.00	4,200.00
Trissue	400	5.00	2,000.00
Rabies	88	10.00	820.00
Animal fnoculations	248	10.00	2,480.00
Pasteur treatments --	-67	100.00 5.00	$6,700.00$ 1
Anti-typhoid vacelnation	2288	5.00 2.00	$1,240,00$ 520.00
General miscellaneous examinations ---	8,491	5.00	17,455.00
Investigating typhoid epidemies-36 days; \$25 per day--..-			875.00
Total			\$ 75,892.00

Add to such $\$ 14,296.00$ saved to the people of the state by release of quarantine for diphtheria by the laboratory method, we have a grand total of $\$ 90,188.00$ saved to the people of the state by their bacteriological laboratory. The biennial appropriation for the laboratory is $\$ 12,000.00$. This does not take into consideration that the physicians have had the advantage of having the outfits on hand and obtaining them free of charge instead of sending away for the outfits for which they must pay and also wait several days before they arrive.

RECOMMENDATIONS.

1. That the resignation of Dr. M. F. Boyd as assistant bacferiologist be accepted.
2. That Dr. Mildred E. Sheetz be appointed assistant bacteriologist at a salary of $\$ 400.00$ per annum (for one-half of her time) for the year beginning July $1,1912$.
3. That Dr. A. C. Echternacht be named as bacteriologist in charge of the auxiliary laboratory in Mason City, and Dr. M. F. Boyd in charge of a similar laboratory in Oskaloosa.
4. That the director have charts showing some of the results of the board of health laboratory work made for the Iowa exhibit of the international congress of hygiene and demography to be held in Washington, D. C., in September, 1912.
5. That the board of health consider the advisability of
a Asking the executive council to issue 300 paper-covered reprints of this bfennial report of the director of the laboratory.
b Adding the making of laboratory examination of venereal diseases to the work of the laboratory and of asking the legislature for an additional appropriation of $\$ 2,000.00$ per annum for carrying on such work.
c Having an epidemiologist, and of asking the legislature for an additional appropriation of $\$ 2,500.00$ per annum for epidemiological work.
The work of the laboratory during the past biennium has consisted almost entirely of routine diagnostic work, there having been but very little time for work of a research nature. The work of the board oi health laboratory may be very profitably increased along a number of lines as suggested in the recommendations. If the scope or amount of work should be increased it will require an additional support fund and the service of additional assistants.

Very respectfully submitted,
Henby Albert.

Educational Articles

REACTION INDUCED BY ANTI-TYPHOID VACCINATION.

By Henry Albert, M. D., Professor of Pathology and Bacteriology, Univerversity of Iowa, and A. M. Mendenhall, M. D., Instructor in Pathology and Bacteriology, University of Iowa, Iowa City.
(From the Laboratory of Pathology and Bacteriology, University of Torsa.) With the object of determining the reactions induced by typhoid bacillus vaccines, we made a series of examinations of ten medical students, who voluntarily received the vaccination during the early part of the past year. We were especially interested in the change in the number and proportion of leukocytes, but made such other determinations as were necessary to demonstrate that specific antibodies were actually produced. Finding that better results were obtained with a vaccine prepared at the Army Medical School, Washington, D. C., than one which was prepared from our own culture, we used vaccines supplied by Major Russell. This vaccine (No. 44) was prepared by cultivating a nonvirulent strain of the typhoid bacillus on slanted agar for eighteen hours, then making a suspension of the growth in sterile salt solution and diluting it so that each cubic centimeter contained $1,000,000,000$ bacilli. This was then sterilized at a temperature of $56^{\circ} \mathrm{C}$. for one hour and its. sterility tested by aerobic and anaerobic cultivation and by animal inoculation. After the addition of tricresol (to make a 0.25 per cent. solution) as a preservative the vaccine was placed in sterile glass ampoules, which were sealed by heat.
Artificial immunization against typhoid fever was first tried on lower animals by means of living cultures of typhoid bacilli. Among the earlier experimenters were Simmons and Frankel (1886), Beumer, Chantemesse, Widal and Sanarelli. ${ }^{2}$ In 1892 Brieger, Kitasato, and Wassermann ${ }^{2}$ de termined that the use of killed typhoid bacilli was quite as efficient in inducing the production of antibodies as were living bacteria. Pfeiffer's ${ }^{3}$ work in 1893 and the following year, in demonstrating the possibility of inducing marked bacteriolysis in the body (Pfeiffer's phenomenon) was a great stimulus to further research, as was also the work on agglutinins by Grubler and Durham in 1896. In 1896 Pfeiffer and Kolle, working together, and A. E. Wrights independently, inoculated two men with typhoid vaccines. The laboratory evidence of the production of immunity was sufficiently great to warrant the application of the vaccination on a more extensive basis. In 1897 Wright ${ }^{\text {s }}$ reported the inoculation of eighteen persons, and the following year introduced anti-typhoid vaccination on a rather large scale among the English soldiers engaged in the Boer

[^2]War in southern Africa. Certain unfavorable reports regarding the work in southern Africa caused a partial suspension of the work for a few years. In 1904, on the advice of R. Koch, it was introduced in the German army, and a little later reintroduced among the English soldiers through the efforts of Col. Leishman. In 1908 it was introduced in our own army, the vaccine being prepared under the direction of Major Russell, of the Army Medical School in Washington. The submission of our soldiers to vaccination was at first voluntary but was made compulsory in 1911.

Clinical Evidence of Protection. The statistics of Wright on his vaccinations during the Boer war are based on 19,069 soldiers vaccinated as compared with 150,231 not vaccinated. Roughly considered, the vaccination reduced the incidence of the disease about 50 per cent, and the mortality almost 75 per cent. Later, with better technique in the preparation of the vaccine and having the vaccination consist of two or three injections, the results have been still better. According to a recent report of Leishman,s based on 5,473 persons vacinated as compared with 6,610 not vaccinated, the number of cases of typhoid fever and deaths from that disease was only about one-tenth as high among the former as among the latter. Instances in which protection was definitely proved, although on a smaller scale, are quite numerous.

Our vaccinations consisted of three subcutaneous injections in the arm at intervals of ten days, the first dose consisting of $500,000,000$ typhoid bacilli and the other two of $1,000,000,000$ each. The reaction may be both loeal and systemic in character. The local reaction begins usually in from four to five hours after injection and gradually subsides in three to five days. At its height it usually consists of an area of redness about 70 cm . in diameter, which is swollen and tender. Occasionally the axillary lymph nodes are also slightly enlarged and tender. A systemic reaction, consisting of one or more of the following symptoms, pyrexia up to 103° F., headache, malaise, insomnia, nausea, and in rare instances backache, vomiting, chills, herpes labialis, loss of weight, and albuminuria; also sometimes develops. These general symptoms begin usually in five to six hours after injection and disappear before the lapse of fortyeight hours. The reactions following the different injections in the same individual may vary somewhat, but taken on an average they become progressively less (see Table I).
"Quoted by Russell, The Milltary Surgeon, 1909.
Soyal Army Medical Corps, 1909, xil, p. 166.

TABLE NO． 1.

							发	\＃	䂞	碳	永	哭	
Pirst injection	10	5	4	6	0	0	2	3	4	2	3		
Second injection－．．．－－	10	2	3	7	0	0	1	1	0	0	0	2	
Third injection（on	9	0	2	7	0	0	0		0		0		

The frequency with which the signs and symptoms of the reaction developed in the individuals vaccinated，who were male students from twenty－one to thirty years of age，is given in the aoove table．Ten stu－ dents received two injections，but only 9 were vaccinated a third tme．
The mild character of the reaction is indicated by the fact that of more than 30,000 injections given to the soldiers of the United States Army，there was either no general reaction or only a mild one（tempera－ ture elevated but not up to $100^{\circ} \mathrm{F}$ ．，or merely headache and malaise） in about 95 per cent．，and that in no instance were there any untoward results．In addition to the ten individuals of our series mentioned above，we also obtained a volunteer for vaccination who had had an at－ tack of typhoid fever nine years previously．Following the first injec－ tion he had a severe local reaction consisting of swelling and redness． of the entire upper arm and extending for two inches below the elbow． This inflamed area，which was very tender，continued for twenty－four hours．After his second injection the above－mentioned symptoms were even more marked and the individual had a temperature of 103.5° and was delirlous for ten hours．In consideration of the severity of these reactions it was Iut thought advisable to give the usual third injection． Russell also reports more severe reactions in those who have previously had typhoid fever．
The reactions upon which the immunity depends or by which it may be measured may be divided into leukocytic，opsonic，phagocytic，ag－ glutinic，and bacteriolytic．That the bacteriolysins are increased can easily be determined by the method of Pfeiffer．The bacteriolytic tests： are，however，very unsatisfactory，inasmuch as no method has yet been devised by which the amount of bacteriolysins may be accurately deter－ mined．Although some observers ${ }^{\circ}$ have demonstrated that there is a． marked increase in the opsonins，determination of the opsonic index is． rather unsatisfactory．Somèwhat more satisfactory is the estimation of the power of phagocytosis by the dilution method of Neufelt．Using this method，Russell ${ }^{10}$ has found that，beginning about the fifth to eighth day after the first injection，there was a rapid rise in the power of phagocytosis，reaching its height in about three weeks，when the phago－ cytic titer was one to two，occasionally five or six，thousand times as

[^3] ${ }^{10}$ Boston Med．and Surg．Jour．，January 5，1911，clxiv，No．1，p． 1.
high as that of normal blood，after which it gradually declined until at the end of one year it was again normal．The agglutinins begin to in－ crease at about the same time as the opsonins，as determined by the power of phagocytosis，and rise rapidly until，at the end of three or four weeks，it is possible to get agglutination（Widal reaction）with a dilu－ tion of blood serum 500 to 5,000 times，or in some cases even 20,000 times．After this time it gradually declines，although it may still be possible to secure agglutination with a dilution of 1 to 100 at the end of a year．
Although a number of investigations relative to the degree of im－ munity as measured by the factors just mentioned have been made，we have found no record of a study of the leukocytic reaction following anti－ typhoid vaccination in the human being．With the object of making such a study，careful leukocyte counts，both total and differential，were made of the ten subjects of our experiment．All of the counts were made at a time to avoid，so far as possible，the influence of digestion． Controls made by injecting as much salt solution and tricresol as is found in one dose of the vaccine did not give any leukocytic reaction，
Table II gives the average leukocyte count（total and differential） of the ten persons as determined before and at different times after the three injections．
TABLE NO. II.
FIRST' 'TNJECTION.

	Total and Percentage of Various Trpes of Leukocytes										
		Polymor-phonuelear neutrophiles		$\begin{gathered} \text { Small } \\ \text { lympho- } \\ \text { cytes } \end{gathered}$		$\begin{gathered} \text { Large } \\ \text { mono- } \\ \text { nuclears } \end{gathered}$		Eosinophiles		Transitionals	
Just before	8400	5088	60.7	2544	30.0	424	5.0	187	2.8	132	2.7
One day after	10360	7148	69.3	2020	19.5	736	7.1	176	1.7	124	1.2
Two days after-	8880	5900	${ }^{67.6}$	1300	15.0	868	10.0	195	2.6	130	1.5
Etour days after-...----	${ }_{7140}^{8180}$	${ }_{\text {LSPO6 }}^{1378}$	${ }_{58} 61.2$	${ }_{2070}^{2057}$	25.3 29.0	${ }_{885}^{772}$	${ }_{9.6}^{9.6}$	${ }_{764}^{138}$	1.7	162 57	2.0
Flve days after-.........	7111	4388	61.0	1586	${ }_{22.3}^{29.0}$	704	9.9	185	2.3	57 92	0.8 1.3
Six daya after..	7210	4297	59.6	1859	25.8	576	8.0	331	4.6	201	2.8
Seven days after-	7960	5150	64.7	1926	24.2	${ }_{56} 6$	7.1	127	1.6	166	2.1
SECOND INJEOTION.											
Just betore	6510	3647	54.8	2070	31.8	560	8.8	100	2.6	104	1.6
One hour after	7483	4150	57.8	2378	32.0	520	7.0	74	1.0	170	2.8
S1x hours after	18540	9522	70.4	2978	22.0	947	7.0	121	0.8	119	0,8
One day after......---	9280	6958	71.0	1859	21.0			55	0.6		
Two days after---	7911	5605	39.6	1879	17.4	688	8.7	63	0.8	158	2.0
Four days after---	7000	${ }_{4}^{4770}$	59.7	1799	25.7	749	10.7	98	1.4	188	1.4
Seven days after-..	6311	$: 4077$	59.0	2142	31.0	463	7.0	276	0.4	138	2.0

Just before	7742	4830									
One hour after-----.--	9600	6375	62.4	${ }_{1920}^{1485}$	${ }_{22.4}^{18.8}$	8888	${ }_{5}^{10.8}$	155	2.0	155	2.0
Two days after--------	7400	4884	86.0	1659	22.4	444	6.0	${ }_{59} 5$	1.2	182	2.0
Four days after-.	6400	2667	57.3	1536	24.0	728	11.2	256	4.0	211	3.3

CELART I.-Total leukocyte, count following anti-typhold vaucination.
Chart I shows in a graphic way that the increase and decline in the total number of leukocytes occurs relatively about the same time fol lowing each injection. The degree of leukocytosis was highest following the first injection, and was successively less for the two subsequent in-
jections. The curve following the second injection is the most represen tative one, inasmuch as several counts were made at short intervals following this injection. It indicates that the rise in the number of leukocytes in the peripheral blood is rapid and probably at its height in about six hours when the average count was 13,540 as compared with 6,510 just before the injection. This corresponds to the time when the subjective symptoms are just beginning. The total count rapidly falls again, to reach the normal level on the second or third day after injec tion. In one instance the leukocyte count raised from 7,200 just before injection to 8,600 one hour later and 22,800 six hours after injection.
Chart II represents in a graphic way the total leukocyte count and the total number of each of the different types of leukocytes following the several injections. It will be noticed that the increase in the total number of leukocytes is due almost entirely to an increase in the number of the polymorphonuclear neutrophile leukocytes and the large mono-

Crart II.-Leukocyle count, total and differential, following antityphoid vaccination.
nuclears; the small lymphocytes, the transitional cells and eosinophiles re maining about the same. It will also be noticed that the fall in the number of neutrophiles is more rapid than that of the total count, due to the fact that the large mononuclear counts remain rather high for from four to seven days after the injection.

Chart III represents graphically the percentage of the different types of leukocytes following the several injections. Considering the curves given in Chart II, it is very apparent that the fall in the percentage of small lymphocytes, due to a corresponding increase in the percentage of the neutrophiles during the first six hours after injection, caused a

Ceart III.-Differential leukocyte count following antityphoid vaccination.
slight decrease in the percentage of the large mononuclear leukocytes. The percentage of the latter rose, however, to above normal, even while the percentage of the neutrophiles was still high. The percentage of the large mononuclears, moreover, continued to remain above the normal even after the total count had become normal. I
It will be noted that there are two things abont the leukocytic reactions that stand out prominently-(1) the high leukocytosis following injection of the vâccine, and (2) the considerable increase, both relative and absolute, in the number of large mononuclear leukocytes.
The increase in the total leukocyte count is of interest, inasmuch as there is usually no leukocytosis in uncomplicated cases of typhoid fever. It is due princtpally to an increase in the number of polymorphonuclear leukocytes, such may readily be explained by the rather marked local reaction induced by the vaceine.

The increase in the number of large mononuclear leukocytes is, however, we believe, of more significance. The large mononuclear cells mentioned all had the same general appearance, but varied in size. A few of them were about the size of the polymorphonuclear leukocyte, but most of them were two to three times as large. The nucleus was usually slightly eccentric, but not peripheral, there being a tnin ring of cytoplasm entirely around it. The diameter of the nucleus was usually about onehalf the diameter of the whole cell. It was stained deeply blue, being of about the same intensity as the nucleus of the small lymphocytes. The cytoplasm was of a paler blue than the nucleus, but not purplish. There were no definite granules in the cytoplasm, but it was occasionally ${ }^{\top}$ noted that there seemed to be a very slight fibrillar character to it. At times it was noted that the nucleus was rather indefinite in outline and merged imperceptibly into the surrounding cytoplasm. The stain used was eosinated or erythrosinated methylene blue.

Various observers have noted that there is an increase in the number of the large mononuclear leukocytes in typhoid fever and during convalescence from that disease. Thayer, ${ }^{11}$ on analyzing the blood findings of 832 cases of uncomplicated typhoid fever, found that the large mononuclear leukoytes represented on an average 12.4 per cent. of the leukocytes during the first week of the disease, 14.4 per cent. during the fourth week, 16.8 per cent. during the eighth week, at about which percentage it remained until after the fifth week of convalescence.

De Sandro, ${ }^{22}$ conducting certain experiments in fatigue with dogs, rabbits, and guinea-pigs, and using "typhoid toxin" as a test of resistance, found that, after injection, there was an initial leukopenia, followed by a leukocytosis, at first of the polymorphonuclear type and later of the mononuclear (especially large) type. Of importance is the observation that in the fatigued animals the initial leukopenia was more marked and prolonged and the subsequent leukocytosis (both polymorphonuclear and mononuclear) was less intense and persistent than in the normal controls. He also found that the influence of fatigue caused the agglutinins to develop less rapidly and to a less extent than under normal conditions.
Summary and Conclusions. 1. Statistics based on a large number of cases show conclusively that anti-typhoid vaccination confers a marked degree of protection against typhoid fever.
2. The injection of typhoid vaccines induces a local reaction in all cases and a general reaction in some cases.
3. A previaus attack of typhoid fever apparently causes the reaction to be more severe than is observed in individuals who have not had typhoid fever.
4. Anti-typhoid vaccination causes a marked increase in the specific agglutinins, opsonins, and bacteriolysins.
${ }^{11}$ Johns Hopkins Hosp. Rep., 1900, vili, 487.
${ }^{19}$ Riforma Med., 1910 , xxxv, 841 to 871 ; abstract in Journal of Amer. Med. Assoc., September 17, 1910, p. 1064.
5. The injection of typhoid vaccines causes a marked polymorphonuclear neutrophile and large mononuclear leukocytosis.
6. The marked increase (both absolute and relative) of the large mononuclear leukocytes in the peripheral blood is the only leukocytic change which is common to both clinical typhoid fever and anti-typhoid vaccination.
7. Such occurrences suggests that these leukocytes have something to do with the formation of antibodies concerned with the production of anti-typhoid immunity.
8. It seems well worth while to attempt experiments on the artificial production of large mononuclear leukocytosis and to see what relation such may have to the production of antibodies in the presence of typhoid infection or anti-typhoid vaccination.

TYPHOID BACILLI CARRIERS.

Hentry Albert, M. D., Iowa City, Iowa.

There is at the present time, I believe, no problem of public health work that deserves more serious consideration than the methods of preventing the spread of typhoid fever.
We have all, I am sure, often wondered at the source of infection of isolated cases, and at times of endemics and epidemics of this disease. We have for some time known that typhoid bacilli are excreted by a typhoid fever patient, probably in all cases with the feces and in about 25 per cent of all cases with the urine. In some instances they are also excreted with the sweat, saliva, nasal secretions, etc. We had thought that they disappeared with, or soon after, the convalescence of the patient and so have been inclined to blame the privy vault and soll for all cases that could not be explained as coming from the water or through it, the milk supply or contact with existing cases.

We are beginning to learn and appreciate the importance of "typhoid bacilli carriers"-individuals who continue to excrete typhoid bacilli with the feces and urine for days, yes months, even years (in one instance as long as fifty-two years) after recovery from the disease, Not only people who have had the disease, but many who have never had it, may become carriers. We have known for some time that in typhoid fever as in all other infectious diseases, the question of resistance has much to do with infection, i. e., not all exposed to, or who ingest or inhale pathogenic germs are infected; but that they should harbor the bacilli and continue to harbor and excrete them for long periods of time without being affected by them has come to our knowledge only during the past few years.
The majority of typhoid fever patients continue to excrete typhoid bacilli for some time after clinical recovery. It has now become quite generally agreed that those who cease to excrete typhoid bacilli within a period of three months after recovery, as indicated by normal temperature, from an attack of typhoid fever are to be regarded as temporary carriers, and those who continue to excrete them after a period of three months or longer, as chronic carriers.

Although Frosch called attention to the existence of typhold bacilli carriers and the possibility of their transmitting typhoid fever in 1902 and Lentz in 1905 wrote an exhaustive article in which he mentioned a

[^4] society, May, 1911.
*Reprinted from Journal I. S. M. S., Sept., 1911.
number of cases of typhoid fever traceable to such carriers, the first recognized striking example of the influence of a chronic typhoid bacilli carrier was reported by Kayser (7) of Strassburg in 1906. The person in question was a woman, the proprietress of a bakery, who had typhoid fever ten years previous, but who still harbored the typhoid bacilli. Attention was called to her because of the fact that for several years almost all of her employes and apprentices and many of the people who took meals at her establishment contracted typhoid fever.

The following table represents the principal findings of a number of the more significant epidemics of typhoid fever traceable to typhoid bacilli carriers:
Endemics and Epidemics of Typhoid Fever Traceable to "Typhoid Bacilli Carriers"

--REPORTED--		\%	occuration		Never had typhoid fever asfar as known	Cases of typhoid traceable to carriers		Typhoid bacill found	
						$\begin{aligned} & \text { し. } \\ & \text { 首 } \\ & \text { z } \\ & \hline \end{aligned}$			
Albert \& Gunn 1--.---100\%	1	M	Milker ----......						
Albert \& Hudson .-.. 1191	2		Heads of family	2 yrs.		2			X
Albert \& Painter ---- 1910	1	M	Milker	4 mos.		60			
Friedel 2 \qquad 1906	1	F	Kitchen work..-		X	70			
Gregg 3 \qquad 1908	1	F	Boarding H'k---				3 3 3rs.	X	
Huggenberg 4--------1908	1	F	Housekeeper	31 yrs.		13	${ }^{3} \mathrm{yrs}$ yrs.		
Jondell 6 -	1	${ }_{\text {F }}$	Hausekeepe		X		54 yrs .	X	
Kayser 7 ---------------1906	1	F	Prop. bakery	10 yrs.		Many		X	
Kayser --------------1906	1	F	Milk trade---			17		X	
Kossel 8 ----------- 1907	1	M	M1uker -------		X	00			
Levy \& Kayser $10 \ldots 11907$	1	F	Inmate asylum-	3 yrs .		00			
11 - When a Woward 1900			Muker			50		x	
Ravanel \& Smith 13--1909	1	M	Wash did		stage				
					incub.	40			
Seheller 16 ------------1908									x
	1	$\stackrel{F}{\text { F }}$	"Typhoid Mary" child 16 mos		X		7 yms .	X	
Soutrwoth 18 .-.-----100\%				under 1 yr.					

Permit me to call particular attention to a few of the more interesting of these outbreaks:
In the fall of 1907, there was an outbreak of thirteen cases of typhoid fever in three families of a certain community in Cedar Falls, Iowa. The water used by these people was from the general city supply. All of these used milk from one source and theirs were the only familles that obtained milk from this source. It was quite obvious therefore that the outbreak was due to this milk supply. Investigation showed that the man who did the milking lad had typhoid fever one year previous and examination revealed the presence of typhoid bacilli in his urine. Hexamethylenamin Was administered, the bacili could not be found for some time, but one
year later when several cases of typhoid fever again occurred among students boarding at his house, examination again showed typhoid bacilli to be present in his urine. He was ordered by the local authorities to discontinue the maintenance of a boarding house.
In the autumn of 1910 , we examined specimens of urine from ten melr bers of a family and found typhoid bacilli in seven of them. Of the seven-I am informed by the attending physician, Dr. Loose of Maquoketa, Iowa-two gave a history of severe prolonged illness (which was probably typhoid fever) within two years; two had just recovered from severe attacks of the disease, and three had never presented symptoms suggestive of such. The water supply was apparently free from pollution.
During the months of January and February, 1911, there occurred about eighty cases of typhoid fever in Oskaloosa, Iowa. Most of these cases were fairly definitely traceable to a person in the country who had had typhoid fever four months before and who did some of the milking. The milk was sold to a central milk depot in the city. Typhoid bacilli were found in his urine.

The most remarkable case as regards the duration of the "carrier" condition is the one reported in 1908 by Gregg (3). Seven cases of typhoid fever had occurred among the customers of a boarding house in Massachusetts between July, 1906, and April, 1908. An investigation revealed the fact that the keeper of the house had had typhoid fever in 1856-52 years previous. During the time that these seven cases occurred no other cases of typhoid fever were known to exist in the city. The water and milk supply were the same as that was used in the greater part of the city. An examination of the housekeeper's feces revealed typhoid bacill in considerable number. The woman gave no history of any second attack of the disease. It is presumed, therefore, that she has been a carrier for 52 years.

The largest number of cases of typhoid fever traceable to a single carrier has been reported by Johnstone (5) of England. The carrier was - employed as a milker on several farms in succession. Milk from these farms was supplied to people in the city of Folkestone and vicinity. Typhoid fever appeared in turn among the customers of milk from different farms corresponding to the places on which the man worked. During the period 1893-1909, it is figured that 230 eases of typhoid fever were attributed to this carrier, which represents 64 per cent of the cases of typhoid fever of that city. The number of cases annually varied from a few to 68 (1899).

Ravenel \& Smith (13) report an unusual outbreak of 40 cases of typhoid fever occurring among the students of the University of Wisconsin, traceable to a carrier who during the stage of incubation of that disease was engaged in washing dishes in a boarding house.

Scheller (16) refers to an estate in Prussia in which typhoid fever was endemic for 14 years, during which time 32 of the 180 people living on the estate contracted the disease. On investigation it was found that a woman who had for 14 years been employed in the dalry
4. Carriers who have never had typhoid fever, so far as known, have been responsible for a number of severe epidemics of the disease.
5. Endemics of typhoid fever traceable to a given carrier, have extended over long periods of time-in one instance, 54 years.
6. Typhoid bacilli carriers may excrete the germs with the feces or urine or both. Most frequently they have been found in the feces alone. This raises the question as to the source of the typhoid bacilli.

It is quite certain that they may multiply in the urinary bladder. It is possible also to conceive of the retention and multiplication of the bacteria in the various folds and pockets of the gastro-intestinal canal, more especially in such blind pouches as the appendix. The gall bladder, however, seems to be the place where the typhoid bacilli develop most frequently and in largest number. So constantly have the bacteria been found in the gall bladder of all cases of typhoid fever examined bacteriologically that it is quite probable that this organ becomes infested and we know, also frequently infected, in probably all cases of typhoid fever.

Marchildon (12) has recently pointed out that the source of typhoid bacilli of chronic bacilli carriers may come from infected seminal vesicles and prostrate gland. He found these to be involved in two fatal cases of typhoid fever. In this connection it is of interest to note that Huet has shown that influenza of horses may be transmitted to females after males have apparently recovered. He found by examining the seminal vesicles of some of the domestic animals that some which were apparently healthy had pathogenic bacteria in the vesicles. He also found that if animals were experimentally infected, bacteria could usually be recovered from the vesicles and occasionally only from such.
The finding of typhoid bacilli is the only positive evidence that we have of the existence of the carrier condition. A high opsonic index or a positive agglutination test is only of suggestive value. The value of bacteriological examinations is considerably diminished by the observation that the bacillif are often excreted intermittently-there being intervals when no typhoid bacill can be found. Another difficulty arises from the fact that typhoid bacill soon die when left in fecal material, so that it is impracticable to send specimens. very far for examination. Nevertheless, where facilities are available, the laboratory may be advantageously employed, to determine the cessation of the carrier condition.
A large number of examinations have been made to indicate the danger of typhoid bacilli carriers to the public health. I have collected some of these and considered them under the following heads:

1. The proportion of cases of well recognized typhold fever which became carriers. Lentz, examining 400 cases, found that 4.5 per cent excreted typhoid bacill for more than ten weeks after recovery and 3 per cent for more than thirteen months after recovery. Klinger, examining 482 cases, found typhoid bacilli in the excretions of 1.7 per cent six weeks after recovery. Semple \& Greig, making daily examinations of

86 cases, found that 11 per cent excreted typhoid bacilli for more than six weeks after recovery. Frosch, examining 6,708 cases, found that 2.1 per cent of these were temporary carriers, i. e., did not excrete them beyond a period of three months after recovery, and 2.5 per cent were chronic carriers, i. e., continued to excrete them for more than three months. Prigge, examining 10,481 cases, found that 3 per cent continued to excrete them for more than one year; Kayser, examining 200 caess, found that 3 per cent, and Bruckner, examining 316 cases, found that 3.8 per cent continued to excrete them for more than one year after recovery. Taking the average of these figures, it may be stated that about 5 per cent of all cases of typhoid fever continued to excrete typhoid bacilli for at least three months after recovery, and that 3 per cent are found to continue to excrete them for more than one year after recovery,
2. The proportion of carriers who have never had-so far as knownan attack of typhoid fever. Klinger, examining 1,700 persons closely associated with typhoid fever, found that .009 per cent became temporary carriers without developing the disease. Prigge, examining 10,841 persons, found 35 carriers among them; of these 27 had previously had typhoid fever and 8 gave no history of having had typhoid fever. Klinger found that 56 per cent of 211 cases of temporary carriers and 20 per cent of 220 cases of chronic carriers gave no history of typhoid fever. It is therefore to be noted that when persons who have not had typhoid fever become carriers they are more prone to be of the temporary than of the chronic type. It appears from statistics that fully one-half of all temporary carriers have never had typhoid fever, so far as known.
3. Proportion of the general population who are carriers. There occur annually about 200,000 cases of typhoid fever in the United States; if 3 per cent of these become chronic carriers and remain so for three years, it would mean that there are 18,000 carriers all the time; if we add to it one-fourth that number, representing chronic carriers who give a history of typhoid fever, we have 22,500 . It is probable that there are constantly fully as many temporary carriers as there are chronic ones which would give us a total of 45,000 . The population of the United States last year was slightly more than $90,000,000$. According to such figures one out of every 2,000 people is a typhoid bacilli carrier. Menilli found one carrier among 250. Rosenau, Lumsden and Castle found 3 carriers out of 993 healthy people living in a certain block of the average type in Washington, D. C. Such figures would seem to indicate that one out of every 500 people of the general population is a typhoid bacilli carrier. To be conservative let us place it at $1: 1000$.
4. Proportion of cases of typhoid fever traceable to carriers. Kayser traced 9.5 per cent of 505 cases to bacilli-carriers; Forster, 20 per cent of 386 cases; Schumacher, 26.6 of 45 cases, and Mayer, 32.3 per cent of 495 cases; Frosch, investigating 2,080 cases, was unable to learn of the source in 53 per cent, but traced 5 per cent of the balance, the source of which was definitely known, to bacill carriers. It is probable that a considerable higher proportion of the cases, the sources of which is not known, may have resulted from bacillus carriers. It would seem from
these figures that at least 10 per cent of all of our cases of typhoid fever may be traceable to carriers. Germans who have recently studied the subject very carefully believe that they are the source of the majority of our cases of typhoid fever. If such were the case it would seem that cities which have witnessed severe epidemics of typhoid fever due to causes that did not appear before nor after such outbreak should have a considerable larger number of cases of typhoid fever after than previous to the outbreak. Statistics, however, from several places would not seem to bear out such conclusion. The typhoid bacilli of the carriers seem less virulent than those from persons affected by the disease. This, no doubt, accounts for the fact that a relatively smaller number of cases of typhoid fever are traceable to contact with carriers than with those affected with the disease. The number of bacteria excreted by the carrier is often higher than from those affected with typhoid fever.
What may be done to prevent typhoid fever patients from becoming typhoid bacilli carriers, and typhoid bacilli carriers from giving the disease to others?

As remedial measures more or less applicable may be mentioned:

1. The administration of hexamethylenamin. The administration of this substance in sufficiently large doses gives antiseptic properties to both the urine and the bile. Richardson has recommended the giving of hexamethylenamin as a prophylactic to all typhoid fever patients in doses of 30 grs . a day for ten days, beginning with the third or fourth week of the disease. Crowe has recently shown that when given in doses of 75 grains per day; it has a distinct influence in ridding the gall bladder of contained bacilli. It has been found, however, that this drug cannot be depended upon to free carriers from typhoid bacilli. Soper's case received $100-150 \mathrm{grs}$. a day without the desired effect.
2. The feces and urine of typhoid fever patients should preferably be disinfected for at least six weeks after the patient has entirely recovered from the disease, just as during the period of illness.
3. The prohibition of persons known to be "bacilli carriers" from engaging in any occupation as cooking, baking, dairy work, etc., which may, from the articles handled, endanget the lives of others. This prohibition may well apply to all who have had typhoid fever, for a period of one year after recovery or until by repeated examinations no typhoid bacilli can be found. If such precautions cannot be observed, it is exceedingly important that such persons should be carefully instructed as to personal cleanliness.
4. The isolation of chronic bacilli carriers in institutions such as insane asylums.
5. Operation in the nature of a cholecystotomy and drainage of the gall bladder or complete removal of that organ has resulted in a number of instances in removing the source of typhoid bacilli. Such an operation may very properly be performed on patients such as insane, where because of careless habits, they may transmit the disease to others. It may also be very properly performed on individuals who have symptoms point-
ing to gall bladder disease. The fact, however, that the gall bladder is not the only source of the typhoid bachli of carriers and that there have been instances in which operation failed to remove the carrier condition together with the severity of the operation makes it impracticable to recommend it as a routine procedure.
6. The administration of typhoid vaccines has in several instances been successful in freeing carriers from typhoid bacilli; in others, however, it appears to have had no effect.
summary and conclusions.
7. Chronic typhoid bacilli carriers must be regarded as a menace to the public health, it having been shown that probably:
(a) Five per cent of all cases of typhoid fever become chronic typhoid bacilli carriers.
(b) Three per cent of all cases of typhoid fever continue to excrete typhoid bacilli for more than one year after recovery.
(c) Twenty-five per cent of all chronic typhoid bacilli carriers have never had typhoid fever.
(d) One in every 1,000 of the population is a typhoid bacilli carrier.
(e) Ten per cent of all cases of typhoid fever are traceable to carriers.
8. Whenever there are household epidemics or a series of outbreaks of the disease in a locality or an institution or among soldiers in the field we should consider that a bacilli carrier is the most probable source.
9. If an individual has an attack of cholecystitis or biliary colic soon after an attack of typhoid fever, we should suspect that such has been caused by typhoid bacill and that such a person is a typhoid bacilli carrier.
10. Chronic typhoid bacilli carriers transmit the germs to others, practically, only by the handling of articles of food, consumed without being cooked, or handled after being cooked.
11. Persons who have recovered from an attack of typhoid fever should preferably not engage in an occupation such as dairying, doing kitchen work, etc., for at least one year after the attack.
12. Persons who have ever had typhoid fever or within a year been exposed to infection with typhoid fever should thoroughly wash their hands with soap and water before handling any article of food which is to be consumed without being cooked or reheated to the bolling point.
13. That the spirit of the rule of the Iowa State Board of Health namely, "That no person in the state of lowa who is known to harbor typhold baclli in the body, or in other words, to be a typhold carrier, shall be permitted to handle milk or other dairy products offered for sale," may very properly be applied to all in whom there is a strong probability that they may be a typhoid bacilli carrier.
14. The administration of hexamethylenamin and typhoid vaccines and ocasionally the performance of a cholecystotomy may be advantageously employed to remove the carrier condition.

BIBLIOGRAPHY.

1-Albert \& Gunn-Am. J. Pub. Hyg. 1909, XIX, 260.
2-Friedel, Hyg. Rundschau, 1906, No. 1, p. 5.
3-Gregg, Boston M. \& S. J., 1908, CLIX, 80.
4-Huggenberg, Cor.-Bl. f. Schweiz. Aertte, 1908, XXXVIII, 622.
5-Johnstone, quoted by Thompson, Proceedings, Royal Soc. Med., Vol. IV, No. 1.
G—Jundell, Abst. J. AM. M. Assoc. 1909, LII, 388.
7-Kayser, Milch und Typhusbazllentrager-Arb. a. d. k., Gesndhtsamte XXIV, 1906, p. 173-176.
8-Kassel, Deut. Med. Woch. 1907, XXXIII, 39.
9-Lentz, Ueber Chronische Typhusbazillentrager, Klin. Jahrb. Jena 1905, XIV 475-494.
10-Levy \& Kayser, Bef, bei der Autopsle elnes Typhusbazillentrager, Munchener medizinische Wochenschrift, Vol. LIII, No. 50.
11-Lumsden \& Wloodward, J. A. M. A. Chicago, 1909, LII, 749.
12-Marchildon,-Typhoid Spermatocysitis and Prostatitis and their relation to chronic typhoid bacilluria, Am. Jour. Med. Sc. 1910, CXL 74.
13-Ravenel \& Smith, J. A. M. A. Chic. 1909, LII, 1635.
14-Roscoe, Lancet, Lond., 1909, II, 1137.
15-Rosenau, Lumsden, Castle, U. S. P.H. \& M. H. S. Hyg. Lab. Bull., No. . 52, 13, 143.

16-Scheller, Centralb. f. Bakt. Orig. Jena, 1908, LXXVI, 385.
17-Soper, J. A. M. A. Chic. 1907, XLVIII, 2019.
18-Southworth, Typhoid Infection conveyed by Convalescent Infant, Archives of Pediatrics, March, 1907.

NOTE-For additional reference see text book by Chopin on the source and modes of infection, article by Thompson on The Enteric Fever Carrier, Prof. Roy. Soc. Mad. Vol. IV, No. ${ }^{1 ;}$ and article by Public Health, Amer. Jour. of Am. Sci., Vol. CXI, No. 2, page 247.

DIPHTHERIA CARRIERS AND MEDICAL INSPECTION OF SCHOOLS FOR IOWA.

The recognition of the presence of diphtheria bacillus carriers among school children furnishes another strong argument in favor of efficient medical inspection of schools. With the increase of our knowledge in regard to the bacteriology of diphtheria and the habits of that microorganism, we have learned that the Klebs-Loeffler bacillus may linger for varying lengths of time in the nose and throat of persons who have recovered from an attack of diphtheria. In recognition of this fact our state board of health several years ago changed the basis for the release from quarantine of diphtheria patients from a definite time limit to the absence of diphtheria bacilli from the nose and throat as determined by bacteriological examinations. According to the old time limit every person who had diphtheria was kept in quarantine for twenty-eight days if antitoxin had been used-otherwise for thirty-five days. According to the culture method the average period of quarantine of diphtheria patients in Iowa has been about sixteen days. Unfortunately, however, there are some in whom the bacteria remain so persistently that they "can still be found after five to seven weeks, in one of our cases for seven weeks and in one case on record for twenty-three weeks. Another condition which has been the subject of considerable study in recent years has been the presence of diphtheria bacilli in the throats of persons who are not nor, so far as known, have ever been affected by diphtheria. These diphtheria bacilli carriers are of most frequent occurrence when diphtheria is prevalent in a community. Fortunately the bacilli living under such conditions are frequently of low virulence and in some instances have lost their disease-producing power entirely. On the other hand, their virulence is often of full strength, and even though they may not produce any disease in the carrier, when transferred to other persons, they may produce the disease in its most virulent form. It is very certain that diphtheria has been kept alive for months in institutions and communities by diphtheria carriers. Indeed; it is quite probable that carriers are the source of more cases of diphtheria than persons actually affected by the disease.
In view of such the examination of the throats of school children is of the highest importance whenever there is an outbreak of diphtheria among them. Such examination should consist both of an inspection of the throats and of swabbing the throat for the purpose of making a bacteriological examination, for, although it has been shown that the specific germs are found most often in throats that are "sore," as indicated by excessive redness, etc., they are also frequently found in throats that
are perfectly normal. The proportion of children not affected by what is recognized as clinical diphtheria, but who are diphtheria carriers, varies naturally according to the extent of the exposure. In 1894, Park found virulent diphtheria bacilli in about 1 per cent of healthy throats in New York City. In 1907, Fisher, examining the throats of 4,081 healthy individuals living in the Connecticut Hospital for the Insane, where there were a number of cases of diphtheria, found that 2.08 per cent of them were diphtheria bacillus carriers. It has been shown that by the examination of a large number of cases that when diphtheria is not present in a community from 1 to 2 per cent of the people are carriers of diphtheria bacilli, but that when diphtheria is present in a community the percentage is very much higher, ranging from 5 to 10 per cent. Basing the percentage on the examination of healthy persons who have been quite directly exposed to infection, the percentage often reaches as high as 50 per cent. On account of the greater exposure of children in schools, the proportion of carriers among such children would naturally be higher than among the population in general. Last winter the Chicago Board of Health found that 50 per cent of the children of one school were diphtheria carriers. During the past month we have. assisted in a similar investigation of school children in a city in Iowa among whom there were twenty-five well known cases of diphtheria. Bacteriological examination showed that about 20 per cent of the other children of the school where the cases occurred were diphtheria carriers. The virulence test, which consists of inoculating a guinea pig with a culture of the bacteria, was positive for most of the cultures for which it was tried. Fortunately that city has an efficient and faithful medical inspector of schools. Through his efforts the disease is rapidly being stamped out.
how to rid diphtheria cabriers from diphtheria bactill.
In many individuals the carrier condition is only a temporary one; in others, however, they persist for a longer period of time. The following methods have been used to get rid of the specific bacilli:

1. Local Application of Antiseptics. The nasal cavities should be sprayed with a weak antiseptic, such as hydrogen peroxide, or throat should be sprayed, gargled or swabbed with disinfectants, among the more efficacious of which are hydrogen peroxide, silver nitrate and Loeffler's solution. The liquid application of such antiseptic does not, however, always succeed in getting rid of the speciftc germs. Belleving that the crypts of the tonsils afforded a good hiding place for the bacteria, Dr. L. W. Dean attempted several years ago the disinfection of such by the use of a swab dipped in a 10 per cent solution of silver nitrate and well introduced into the crypts of the tonsils. By doing so he succeeded in getting rid of the bacteria in all of the cases on which such Was attempted, and in many instances after they failed to disappear by simply swabbing the surface. Squeezing the tonsils and forcing out the
exudate often in the form of plugs in the tonsillar crypts has been tried with some success by Kretschmer, who succeeded in freeing thirteen patients from the carrier condition
2. Spraying of a Living Culture of Staphylococci. In December, 1909, Schiotz, a Danish physician, described a method of freeing throats from diphtheria bacilli which seems destined to be a procedure of very common use. Thus far it has proved more successful than any other method, and so far no unfavorable results have been reported. Schiotz inoculated the throat with a pure culture of staphylococci. He obtained his suggestion from the fact that a person with a staphylococcic sore throat placed in a diphtheria ward under a mistaken diagnosis did not contract diphtheria. He also found that several patients after recovery from diphtheria in whom the diphtheria bacilli persisted for some time, the germ disappeared on the development of an ordinary staphylococcic sore throat. He reports the treatment of six cases with the staphylococcic culture obtained from a throat of a healthy person. The diphtheria bacilli disappeared after one inoculation in the throat of the man who had been detained in the hospital for three months as a diphtheria bacilli carrier, and a woman who had likewise been detained for two months. The other patients who had had diphtheria more recently recovered from the diphtheria condition with equal rapidity after one treatment with staphylococci. During the early part of this year Page tested the method with equal success. More recently Catlin, Scott and Day tried the staphyloccocic spray on carriers in connection with an epidemic of diphtheria occurring at the Rockford (Ill.) hospital. Out of a population of 70 persons 17 per cent developed diphtheria and 31 per cent became carriers in spite of liquid antiseptic treatment, and some of them continued to remain as carriers; the bacilli soon disappeared after the use of the staphylococcic spray. The spray used was a 24 hour old broth culture of the staphylococcus pyogenes aureus which had been isolated one year previous from a factal carbuncle and had been grown continuously since on agar. The material was sprayed into the nose and throat two or three times dally. In no instance did any harmful condition develop as the result of the introduction of the staphylococci. In all cases the bacilli disappeared; in most of them within a day or a few days after the beginning of the treatment.

conclusions.

1. From 1 to 2 per cent (varying according to communities) of normal persons are carriers of diphtheria bacill.
2. During outbreaks of diphtheria the percentage of diphtheria carriers (persons not affected by clinical diphtheria) is inoreased to 5 or even 50 per cent of the population, depending on the degree of contact with cases of diphtherla or carriers of the germs-the larger percentages occurring where "contact" is rather intimate, as in school or, more especially, at home.
3. The bacilli of carriers are transmitted to other persons principally by rather intimate contact, as by use of common drinking or eating utensils, towels or close proximity to a person coughing or sneezing.
4. The diphtheria bacilli of carriers are ordinarily of little or no virulence, consequently there is no need of paying any particular attention to carriers when the disease in its clinical form is not present in the community.
5. When diphtheria breaks out in a community it means that there must be some virulent diphtheria bacilli. Under such conditions not only does the number of carriers increase, but proportionately the number of persons with virulent diphtheria bacilli also increases.
6. The nose of diphtheria carriers should be sprayed with some weak antiseptic such as hydrogen peroxide and the throat should be sprayed, gargled or swabbed with antiseptics-among the most efflcacious of which are hydrogen peroxide, silver nitrate and Loeffler's solution. A spray of staphylococcl has proved very efficacious in the cases tried.
7. Whenever there is an outbreate of diphtheria among the children of a certain school, the throat of every pupil, teacher or other worker in such school should be examined both by inspection to note the condition of the throat and by bacteriological examination.
8. Those with a "sore" throat should be sent home immediately and should not be permitted to return to school until proved by bacteriological examination not or no longer to be aiphtheria carriers. Or in case the bacill persist in remaining after a thorough attempt at removing them, the patient should remain isolated until it is proved that the bacilli are not virulent.
9. Those who have no "sore" throat may remain in school until resutt of bacteriological examination inalicates that they are aiphtheria carriers. If such is the case they should remain at home and be treated as mentioned under (2).
10. If the epidemic is extensive among the chitdren of a certain schoot, immunizing doses of diphtheria antitoxin may be given to all.

REFERENCES.

1-Park, W.-Report New York City Board of Health 1894.
2-Fisher, J. W.-A Diphtheria Epidemic, J. A. M. A. Feb. 6, 1909.
3-Kretschmer, M.-Zur Bekamffung der Bazllenpersistenz bei DiphtheriereKonvaleszenten, Medizinische Klinkd, Berinn, Jan. 15, 1911, VII, No. 3.
4-Schiotz, A.-Uskadeliggoreke of Infektionsbaere ved Difteri Ugeskrift for Laeger, Copenhagen, Dec. 16, 1909, No. 50. Abstr. in The Journ. A. M. A., 1910, Hv. 422.

5-Page, H.-Diphtherla Bacillus Carriers, Archives of Internal Medicine, Chicago, Jan., 1911.
6-Catlin, Scott and Day-Successful Use of the Staphylococcus Spray on Diphtheria Carriers, J. A. M. A. Oct. 28, 1911, p. 1452.
conclusions. These facts and conclusions will be briefly enumerated so that the results and the manner in which they were obtained may be seen.

Four cases of typhoid fever occurred during July, 1911, two of which were apparently due to swimming in the river and the other two were traced to carriers. These appeared to have nothing to do with this epidemic. Of the 80 cases of typhoid fever investigated all were white, 34 were male, and 46 female.

As compared with previous epidemies we had the following:
percentage of typhoid fever at specified ages during various outbreaks.
Cedar Falls is a city of about 5,000 inhabitants, situated on Cedar river about seven miles above Waterloo in Black Hawk county. The Iowa State Teachers College is located in the city and has an attendance of about 1,100 . As many of the students are regular residents of Cedar Falls the combined population is in the neighborhood of 6,000 . The city is principally a residential one, being the home of well-to-do people, many of whom are retired farmers and their families. There is a flour mill and several smaller manufacturing establishments in the town, hut none of these employ very many hands. Outside of the students, who are somewhat overcrowded in rooming and boarding houses, most of the people live in their own homes-that is, are not lodgers.
About November 1, 1911, several cases of typhoid fever developed in the city. At the request of Dr. Albert, Director of the Bacteriological Laboratory of the State University, I was assigned to represent the State Board of Health in order to make an epidemiological investigation of conditions at Cedar Falls. This investigation was started November 9 , 1911. Attempts were at once made to prevent further infection, by publishing in the local papers a notice which was signed by the mayor of the city (in Iowa the mayor is president of the board of health, the city council being the board), warning the public against uncooked foods.
Samples of water were taken at various points from the public supply and sent to the laboratory for bacteriological examination. The study of each fndividual case was now commenced by visiting the homes of those reported sick' with typhoid fever. As the disease is not a reportable one in Iowa, although Cedar Falls had an unenforced ordinance compelling the report of same, I was obliged to obtain my reports of cases from the local physicians. In every instance I found the physicians willing and even anxious to facilitate the work. For abtaining the necessary data a very full inquiry blank was filled out in each case.

Each night on returning to the hotel the data obtained in this way during the day were tabulated, and from the resulting information my attention would be directed to whatever phase of the subject might be brought to the front. After 80 cases had been thus thoroughly investigated It seemed as if we had enough knowledge on which to make final

[^5]| $\begin{aligned} & \text { Age in } \\ & \text { Years } \end{aligned}$ | Waterville.
 Maine,* 1908 Caused by Water | Stamford, Conn. Cansed by Milk | Des Moines, Ia.* 1910
 Caused by water | | Texarkana, Ark.-Tex. \dagger Caused by Milk | $\begin{gathered} \text { Cedar Falls, } \\ \text { Ia. } \pm \\ 1921 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Investigator | | Investigator | Investigator |
| | | | Sayler | Lumsden | Redlon | Grover |
| 0-10 ------ | 17 | 35 | 14 | 20 | 40 | 15 |
| 10.20 | 38 | 24 | 43 | 44 | 42 | 35 |
| ${ }^{20-30}$------ | ${ }^{26}$ | 23 | 26 | 28 | 12 | 32 |
| ${ }_{40}^{30-40}$------ | 10 | 12 | 11 | 4 | ${ }_{6}^{6}$ | 11 |
| ${ }_{50-70}$ | $\stackrel{4}{5}$ | 1 | 1 | ${ }_{0}^{4}$ | 0 | 1 |
| Totals .- | 100 | 100 | 100 | 100 | 100 | 100 |

*Public Heaith Rep., U. S. Public Health and Marine Hospital Service, 1911, 26. +1bid., 1912, 27.
!Rep. to William F. Merner, Mayor of Cealar Fralls, Nov. 20, 1911.
The percentages in this outbreak, given in the above table, resembled more closely the ones obtained from outbreaks that were due to water rather than those due to milk. Further comparisons might be made but seem unnecessary.

The accompanying charts showed the dates of the onset of first symptoms of those infected and the dates when the patients first took to their beds. The four cases in July and August have been omitted.

From these we saw that the beginning of the epidemic was about November 4 , that November 8 was the high point, and that from then on it gradually diminished. The difference in the dates of first symptoms and those of first going to bed gave marked evidence of prodromal symptoms. We allowed fourteen days as the incubation period for typhoid fever and counted back from November 5. This gave October 21 as the approximate time of infection.

At the time of my investigation there were reported to me by the physicians 95 cases of typhoid fever, 80 of which were examined. Since that time there have been reported to the mayor, including the above, about 170 cases. These, with reports from other parts of the state of persons ill with the disease who undoubtedly contracted it in Cedar Falls, make a total of at least 200 infections. The death rate has been about 10
per cent, which compares favorably with the usual water-borne typhoid fever epidemic death rate. The diagnosis was confirmed in a great many of the cases by the Widal test. As in all epidemics, there were some cases reported as typhoid that could not be proved, and on the other hand there were, as usual, many more cases that were light and passed unnoticed. The students of the Teachers College went home in numbers and carried the disease to many parts of the state.

Nearly all of the persons infected, except the students, had lived in their residence for pore than a year-the students about 10 weeks. Thus previous residence was excluded as having any bearing on the outbreak. The occupations had nothing to do with the infection, as is shown by the following table.

OCCUPATIONS OF THOSE INFECTED WITH TYPHOID FEVER.

Infant	2	Driver	1
Retired	1	Servant	1
Student (college)	18	Electrician	1
School child	30	Farmer	1
Housewife	8.	Post-office clerk	1
Bookkeeper	2	Conductor	1
Undertaker	1	Librarian	1
Teacher (public school)	2	Grocer	1
Teaeher (college)	1	Not obtained	3
Laborer	4		

There was a greater proportion of the cases among scholars and students, but these of course were all at the typical "typhoid age." The table of ages has already shown that there was no great proportion of
very young children infected. Then again, nearly all the children of school age in this community are to be found in school rather than at work, as in many other places.
The places of business of those infected were distributed well over the city and the school children evenly distributed throughout the schools in proportion to each school's attendance. The sanitary conditions of the premises were excellent. Sixty of the houses were connected with the public sewer. The privies in some of the other places were open to objection on account of faulty construction and improper care, but these very evidently had no connection with the source of infection. There were a few cases where old wells driven down to limestone foundation were used as cesspools-which seemed a most dangerous and pernicious practice and one that should be absolutely forbidden.
The season, the distribution, and the general character of the outbreak entirely eliminated flies and other insects as the cause of the outbreak. Every house bad been screened during the previous summer. There had been no unusual amount of wind and apparentiy no dust at time of infection. Also there was no history to be obtainey that would point to either carriers or contact as a cause of the epidefic. From the explosive type of the outbreak we know that the infecting agent must have been spread by some beverage or food. Outside of the students nearly all obtained their food at home. As to the student bonarding houses, the cases were scattered pretty well throughout all, and no concuecion was to be found as to carriers, etc.
The milk supply was most carefully examined, both from the inquiry into the source of supply of those sick and from a most careful sanitary inspection of the dairies involved. Forty of the cases had taken milk as a beverage, 20 on cereals only, three in tea or coffee only, 13 denied using milk in any form, and information could not be obtained in one case. Thus we see that 16 per cent of those sick with typhoid fever used no milk at all. The milk dealer with the greatest number of customers had the most cases among his patrons-in other words, no one milk dealer had a number of cases disproportionate to the size of his business. The following table shows the number of cases taking milk from each distributor:

In epidemics that have been traced to milk as the inciting factor we have generally seen that there were apt to be several cases in one family, that prodromes were absent, due to virulence of the infecting organismsmilk being such a good culture medium for the typhoid bacillus that it would be present in immense numbers-and that those of the so-called "milk-drinking age" (young children) were more apt-to be infected. Those of any age drinking milk as a beverage of course will show the greater proportion of infections in such an epidemic. This condition was not manifested in Cedar Falls.
There were many cross clues to work out on the milk question and it took some time and an immense amount of work successfully to rule out milk, although in the main the evidence tended from the start to point away from milk as the incitor of the outbreak. It was found, as stated above, that the milk drinkers were not especfally affected, nor the young (of the milk-drinking age), nor were prodomes absent, nor were there more than one case per family except in a few instances. Many dairies were visited and samples of their well water taken and examined at the laboratory. These sanitary examinations showed absolutely no evidence of carriers or contaminated wells where the milk was produced. One of the first cases in July, which I have already referred to as probably having been infected from swimming in the river, was in the milk business until the day before he died. While sick he apparently had very little care and was accustomed to sleep on his ice chest in the cellar in order to try and keep cool. He was evidently up and about more or less all the time. Why an epidemic did not start then is hard to say. The day previous to his death he sold out to another man. This second milkman in October also sold out his business to milkman "A" and went to work for milkman "B," delivering but not otherwise handling the milk. He soon developed typhoid fever and died. The last two weeks that he worked he undoubtedly had the disease. His death took place around the first of November. Milkmen " A " and " B " had together 31 of the cases, or 38.75 per cent of the total. Hence it will be seen that this all taken tögether rather complicated the situation. However, everything taken as a whole, when all the dairies had been investigated and all other data obtained, pointed against milk being the infective agent.
Forty-one of those sick with typhoid fever had eaten ice cream, of Whom 16 obtained it at one place, eight from another place, and the pther 17 at both places or at home. Both ice cream manufacturers had their own private source of cream and denied any trading from one to the other-in fact they appeared rivals rather than friends. The first place had twice during October bought cream of millkman "A." This further complicated matters. Further investigation showed, however, that none of this cream was made into ice cream, but was all retalled over the counter. All the dairies supplying these places were inspected but no possible source of Infection was found. Milk and tee cream were finally ruled out as a source of infection from the fact that the disease as manifested did not resemble a "milk type" of infection and for the other reason given above.

All the grocery stores in the city, with one exception, got their butter from a local creamery which collected cream from 250 farms and dairies in the surrounding country. The owners of this creamery appeared to be keeping a very careful watch over their producers and had reports of sickness as to only two places (one scarlet fever and one small-pox), the milk from which had been immediately discontinued. It was of course impossible to look into all these sources of cream. Also, two of the cases of typhoid fever bought their butter from the store not supplied from this creamery and it was learned that many of the college boarding houses obtained their supply of butter from farmers who brought it in from the surrounding country. On these grounds further consideration of butter was given up.

Apples and grapes had been eaten by about all of those sick with typhoid fever, but the sources of supply were so various and scattered that it would have been unreasonable even to have considered them. Celery had been eaten by less than 50 per cent of those infected. Many of the people raised their own celery and the remainder obtained that which had been about all raised by one gardener who used deep well water with which to irrigate his land and wash the celery. He used no "night-soil" as fertilizer. The water from the well on examination proved to be good. Therefore, on account of the rather small percentage of cases who had used this celery and from other data obtained in regard to other phases of the subject, celery was ruled out as the inciting factor. Other vegetables were eaten raw but by a very small percentage-less than 25 -and the vegetables and their source were, as in the case of apples, varied and scattered. Raw shellfish fad been eaten by only one or two. Only a few persons had taken a trip out of town at the time of infection. There was no history of previous typhoid or intestinal trouble to be ostained, either in the households where sickness was found or in the households of their servants. In this manner carriers as the source of infection were ruled out.
The city water the source of supply for all the residents of Cedar Falls who contracted typhoid fever in this outbreak, except in two cases-one of which worked where he drank city water and the other attended public school where city water was furnished. Three cases outside the city limits had their own private water supply-but they all obtained city water either at their places of business or on dally trips to town.
The city of Cedar Falls had always prided itself on the purity of its water supply. Chemical analysis had failed to defect any pollution with sewage material. The chlorine and nitrate content were always high and showed some variation, but such had been explained as coming from natural sources. According to Dole, ${ }^{1}$ this variation pointed rather strongly to surface water pollution. The source of water supply is a collection of springs at the foot of a hill southeast of the city, along the banks of a "dry run" which empties into the Cedar River about 200 yards below, after passing under the tracks of the Chicago, Rock Island \& Paciflc Rail-

[^6]road. The sanitary sewer of the city empties into the river a short distance above this point. The location of these springs is lower than the city itself and also lower than most of the surrounding country. The water-shed comprises about 30 square miles. These springs cannot be seen, as they are inclosed with brick and roofed over with some sort of material. Other springs (one of which is known as the Pfeiffer) are to be seen gushing forth large streams below, along the banks of the "run." From the inclosure noted above, an overfiow pipe of iron, fitted at the end with a swinging trap valve, empties into "dry run." A wooden conduit (iron under "dry run") conducts the water by gravity from the spring about 1,000 feet northeast to a brick and cement collecting cistern from which it is pumped directly into the city mains. The pumping station is situated beside the cistern. The excess pumpage overflows from the mains into a water tower some distance from the water plant on a high ridge of land in the central portion of the city.

The formation from which these springs issue is what is known as the Cedar Valley Limestone and is a broken formation full of laults and water runs. Most of the drilled wells in the surrounding country go down to this same stratum. It outcrops in the bed of this "dry run" and can be seen in several quarries upstream along its course. This "dry run" some distance from the springs disappears in its gravelly bed and possibly reappears again below. It is admitted by all that during high water or after severe rains the water from these springs is apt to be roily; also that the water in both the drilled wells and the quarries mentioned above becomes roily. These facts, together with the fact that the geological formation tends to intercommunication between these various sources of ground water, show that at times there certainly has been contamination with surface water. Whether this contamination comes from the overflowing river or from the water-shed itself cannot be ascertained. We do know that crevices into which brooklets run and disappear are present along "dry run." These crevices have in the past been sealed up whenever found. We know also that the overflow pipe from the spring is under water when the river is high enough to back up along "dry run;" that the collecting cistern has no impervious bottom; and that the wooden conduit is not water tight. These last two portions of the system are constructed under water, owing to the springy condition of the ground. It would seem therefore that there was and is yet a chance for contamination at all these points.

On October 19 and $20,^{2}$ the flour mills in Cedar Falls had to shut down on account of high water, the rise being of about four and a half feet and taking several days to return to normal. It requires about a two-foot rise to cover the spring overflow. This high water followed the flooding of the headwaters of the river and did not take place until four or five days after the heavy local rains in October. Now the previous season was one of almost no rainfall and this October rain had therefore an unusual amount of surface contamination to wash into the river. The
${ }^{1}$ According to the records of Superintendent John Lemmer of the Waterloo and
Cedar Falls Union Mill Co.
river thus became a much more concentrated source of contamination than for a long time previous. The time of the high water and that of the infection were the same. On October 20 or 21 the college filled its swimming pool and made a somewhat extra draw in that direction. It was noticeable that a large number of cases appeared in the general direction of the college and along the principal main. The standpipe takes the excess pumpage by a pipe running to it from the principal main. It is possible that infected water may have been pumped into the tank at night when little was being used and distributed the following morning. Water has been seen to be the only thing that was common to all. It could easily have been contaminated from the river, from crevices along "dry run," from seepage into wooden conduit, into the cistern, or into spring itself. Bacteriological examination of the water at different times varies considerably and shows some possibility of contamination. It certainly shows more variation than a deep ground water should. The following table gives these analyses previous to reporting. Analyses made since show no evidence whatever of contamination.

$\stackrel{\circ}{\circ}$	SOURCE	Colonies			Gas in	
合		At Room Temp.	At Incuba tor Temp.	$\underset{\substack{\text { Of Colon } \\ \text { Group }}}{ }$	$1 \mathrm{c} . \mathrm{c}$.	$2 \mathrm{c} . \mathrm{e}$.
1513.	City water not packed properly (not exam ined)	$\begin{array}{r} 30 \\ 140 \end{array}$	4-35	5	None 95 per cent	None 20 per cent
1522	Pumping station (not					
1523.	Pumping station (iced)	7	3	0	Trace	Trace
1526.	Spring overflow (iced)	480	40	0	30 per cent	60 per cent
1635.	Pumping station (ieed)	3	3	0	60 per cent	Trace
1537	Spring overflow (iced)	12	1	0	Trace	30 Trace
1589	Oity water (iced)		1	0		Large trace
1541.	City water (iced)	20	8	0	*	" "
1527	Burr House Pool near pumping station (condensation water from pumps)	2,000	1,500		$5 \overline{\text { per chent }}$	48 per cent

The following were the conclusions given as to the source of the epidemic: ${ }^{1}$
"I feel convinced that the city water was the source of the epidemic for the following reasons:
"1. Every patient used the city water:
"2. Every other cause of infection can be absolutely eliminated.
"3. Laboratory examinations show at times pollution of water with sewage material.
"4. City water becomes cloudy after high water, fndicating that it is subject to change in the surface soil.
"5. Time of infection corresponds with high-water period,
"6. The construction of the water plant is such as to permit of pollution.
${ }^{1 R}$ Rep. to William H. Merner, Mayor of Cedar Falls, November 20, 1911.
${ }^{7} 7$. The emptying of the standpipe may have influenced the determination of water polluted at that particular time in the direction of the standpipe and account for the great number of cases along main leading directly into or out of it.
" 8 . The season of occurrence, the extent and the explosive character of the outbreak are all in favor of water being the cause of the epldemic.'

During the investigation it was advised that the water be treated with hypochlorite of lime. This was at once done. In the final report made it was also recommended:
"i. That there be instituted a system of public water supply which shall be free from the possibility of pollution with sewage material.
". 2 . That the ordinance relating to the reporting of cases of typhoid fever be very strictly complied with.
all " parts of the city sewerage system be extended as rapidly as possible to all parts of the city.
" 4 . That privy vaults be abolished in all places where it is possible to
connect with the sewer or where such connectlons have already been established.
"5. That all drilled wells used as cess-pools be abolished."
One recommendation made, viz., that the people become vaccinated against typhoid fever, was readily taken up. The following data as to the results of this vaccination were obtained from local physicians.

1. Number of persons vaccinated against typhoid fever between January 1. 1911, and February 1, 1912, 911.
2. Number of persons vaccinated who contracted typhoid fever, 12.
Number after one inoculation, 4.
Severity of disease, all mild.
Number after two inoculations, 3. \quad How long after $\left\{\begin{array}{ll}7 & \text { days } \\ 6 & \text { weeks } \\ 8 & \text { days } \\ 8 & \text { days }\end{array}\right\}$

Number after four inoculations, 0.
How long after \qquad

Number of person's vaccinated who were nursing cases of typhoid, 88.
Number of these who contracted typhold, 0 .
Number not vaccinated and nursing cases of typhoid, who contracted the disease, 12.
We find that 911 persons were vaccinated at this time and one two years previous, which, with 12 infections, gives a percentage of infection of 1.2. The population of Cedar Falls plus the students of about 6,000. Estimating the percentage on a basis of 170 cases, we have a percentage of infection of the whole population of 2.8 . It is almost impossible to figure percentages in this epidemic, since we have no exact knowledge of the time when the last 90 cases took sick. Everyone probably was exposed to the infection at the same time. Over half of the
cases were taken sick before vaccination was begun, so that the percentage of cases developing afterward was somewhat reduced. None of the first hundred cases had been vaccinated. The percentage of infection in those vaccinated was, as stated above, 1.2, which, compared with 2.8 per cent in the case of the total population, seems to indicate that vaccination will at least reduce the number of secondary infections. It also seems to have a tendency to reduce the severity of the infection, for nearly all those given in the table above were infected before vaccination was begun. The death-rate of the whole epidemic was about 10 per cent, of those infected after vaccination, 16.6 per cent. Both of the deaths were in cases with a particularly virulent type of the disease, which were infected before vaccination. The mild course of all the other cases would seem to indicate that as a general thing vaccination tends to reduce the severity of infection whether patient became infected before or after the vaccination. This is borne out by the fact that after three inoculations there were no deaths and a mild infection only. The fact that 88 nurses were vaccinated with no infections is certainly significant when compared with the fact that there were 12 infections in the non-vaccinated nurses. The number of nurses is not known, but allowing one for a case, we would have an infection percentage rate in the 88 nurses not vaccinated of 14.6 .

Although the epidemic was disproportionately large for the size of the city, the conditions were handled in the best possible way. Nearly every patient had a trained nurse-the state maintained two hospitals for the students and the city one for those without homes. Every precaution was taken, which together with the vaccinations did .much, to prevent secondary infections.

As a result of these epidemiological findings Professor A. Marston from an engineering standpoint made the following recommendations: ${ }^{1}$
"1. I recommend that the city of Cedar Falls at once install permanent reliable apparatus for sterilizing the present spring water supply with hypochiorite of lime. and that the city continue such sterilization with all possible precautions, at all times when the spring water supply is used.
"t2. I further recommend that the city of Cedar Falls proceed at once to sink an artesian well similar to those at Waterloo, and to properly equip it with pumping apparatus, pump house, and clear water basin, all at an estimated total cost of $\$ 15,000$. I recommend that when artesian supply is developed the present spring water supply be used only as a reserve in case of breakdown and only with proper sterilization.
"3. I further recommend that in due time a second artesian well be sunk, and the spring water supply abandoned entirely."
For safety while the wells are being installed he also advised the construction of a sort of chimney on roof of spring enclosure with a manhole at top above high-water level so that the condition of the spring water might be determined at high water. This has been done.
On December 30, 1911, R. B. Dole, chemist of the United States Geological Survey, was sent to Cedar Falls to make a sanftary survey of the

[^7]water supply-necessarily limiting his inquiry to what would be pertinent to the Survey's investigation of Pollution of Rivers of Iowa, that is, to sources of ground water pollution. At his request I was present and assisted him in this phase of the investigation from a bacteriological standpoint only. His description of the water plant and supply is in much more detail but yet essentially the same as I have given. He made a most exhaustive geological survey and found the condition of the Cedar Valley limestone as has been explained. An attempt was made on the so-called "Carpenter quarry" in a crevice, and in the bed of "dry run" itself at varying distances above the spring, to prove that contamination with surface water could take place, by using fluorescin. Owing to the amount of snow on the ground and the severe cold freezing the ground, or because the right place was not selected, no results were obtained. There did not seem to be enough water present at the time properly to wash the coloring matter into the ground. Possibly this will take place with the spring thaws.

Mr. Dole gives the following comparative table of chemical analysis:

(Parts per Million.)				
Date	Analyst	Eixed Solids	Total Solids	Ohlorine
August 8, 1205 ----------------	Bates	288	${ }^{432}$	7.0 6.75
September 26,1803 ----------	"	190	342	6.75 3.0
February 26, 1907 --------------	Kinney	1234	342	5.5
	Kin	144	261	4.75
December 12, 1910 ---...---...-	"	106	306	5.76
November 7, 1911 --------.--	"'	185	324	7.12
November 7, 1911 ------------	"	155	${ }_{418} 41$	7.0
November 7, 1911 ---------------	"	169	810	6.50

*Samples from four different taps.
tEvidently an error in computation. Should be 818.
In his report he goes carefully into the questions of filtration of the river water and of artesian wells. He appears to think it is a matter to be decided only after long and careful tests. He thinks the question of forming a water district with Waterloo should be looked into. He sums up as follows:
"As it is apparent that the water in the limestone immediately underlying the city is liable to dangerous contamination, measures should be taken to abandon this source of supply not only by the public but by individuals, and to further this action the use of water for domestic purposes from welis entering this rimestone on the shallow beds of gravel overlying it should be prohibited by the city authorities. The best way to insure such abandonment is to remove the cily aup fill up the well. The use of privies and cess-pools wherever the pump and and connection can be made withthe city sewe to extend the sanitary sewerage through the eity."
At about the same time Clark H. Streeter, city engineer and superintendent of water works, recommended that certain improvements in the line of safety be carried out while the question of obtaining a new supply was being considered. In the main these were: to replace the wooden conduit with a tight cast-iron gravity conduit to pumping sta-
tion, to put a checking valve on spring overflow, to continue use of hypochlorite of lime, and to observe condition of spring at next overflow of river. He also recommended other improvements in the operating system. ${ }^{2}$
It is interesting to note that this community has had always present for years the danger of an epidemic of typhoid fever, yet the water only beeame contaminated for a short time and since has been as good as before. What is done to prevent future repetitions yet remains to be seen, but I feel that the community is one that will take the proper steps to safeguard its health.

summary.

The city of Cedar Falls, Ia., during November, 1911, suffered from an outbreak of typhoid fever. The time of infection was probably about October 20 or 21,1911 . The city water was used by all those afflicted, and, as all other possible causes can be ruled out, was undoubtedly the cause of the outbreak. There were about 200 cases with about 10 per cent of deaths.

Further investigations were made by Professor A. Marston and by Mr. R. B. Dole. Both agreed that the city water supply was the cause of the epidemic. All investigators, including Mr. C. H. Streeter, agreed on certain precautions to be taken immediately, and, in the main, on certain future improvements, particularly as to the fact that the city should seek a new water supply, although past and present analyses of the water show no particular pollution present.
The epidemic was handled in a proper manner and secondary cases well provided against by vaccination against typhoid fever, the results of this preventive treatment agreeing with previously published reports.

2M. F. Arey, professor of Natural Science in the Iowa State Teachers College, was able to render great assistance in pointing out the gological formations and establishing the drifts, dips, etc., of the water-shed.

REPORT OF AN OUTBREAK OF TYPHOID FEVER IN DES MOINES, IOWA, IN 1910. ${ }^{2}$
(By L. L. Lumsden, Passed Assistant Surgeon, United States Public Health and Marine-Hospital Service.)

The investigation of the recent typhoid fever outbreak at Des Moines, Iowa, was made in compliance with a request to the Surgeon General of the Public Health and Marine-Hospital Service from the secretary of the Iowa State Board of Health.
The investigation was begun on December 22, 1910, and completed on January 7, 1911. It comprised a sanitary survey of the Raccoon River from Valley Junction to the filter galleries from which the water supply of Des Moines is obtained, bacteriological examinations of the water supply, an epidemiological study of about 50 individual cases of the disease, a review of the epidemiological data previously collected by the eity health office, a study of the death records at the State health office, an inspection of a number of places such as dairies, grocery stores, and ice-cream manufactories, where foods are sold or prepared for sale, a careful inquiry into the origin and distribution of fruits, vegetables, and shellish sold in the city during the period in which the outbreak was caused, a clinical study of a number of cases of the disease, a survey of the general sanitary conditions of the city, and a consideration of all other conditions which appeared to be likely to throw any light on the situation.

TIME OF OCOURRENCE AND EXTEANT OF OUTBREAK.
As there is no law requiring a report of cases of typhoid fever in Des Moines, the records of deaths (supposed to be complete since 1905) give the only figures available from which the prevalence of the disease in recent years can be estimated. The following table and chart (No. 1), based on complations from the records at the office of the State Board of Health, show the number of deaths reported from typhoid fever in Des Moines by months since January, 1905.

Months	1905	1906	1007	1908	1809	1910	Total
January		2			2	1	6
February		2		1	2		6
March		2	1	1		1	
May			2	2	2		6
June	1		8	1			5
July -	2		4	1		1	10
August	2	1	3	4	${ }^{2}$		14
September	2	$\frac{1}{2}$	8	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	2	4	13
October	2	2	8	2 2 2	$\frac{1}{2}$	1	
November	2	1	3	1	2 2	16	10 23
Total	14.	13.	25	16	15	28	111

${ }^{1}$ Reprint from the Public Fiealth Reports, Vol. XXVI, No. 4, Jan. 27, 1011. 15

It is evident that the number of deaths in December, 1910, was unusually high. Most of the deaths occurring in December were of persons who were taken sick in the latter part of November and in the early part of December.

Between November 25 and December 31, 1910, 209 cases were reported to the city health office. So far as can be ascertained the vast majority of these cases developed definite symptoms (took to bed) between November 15 and December 10. That this period of 25 days represents the time of occurrence of the outbreak proper is indicated by the results of (1) an investigation conducted by the city health officer, in which the dates of onset of 106 cases were carefully collected, and (2) an investigation conducted by the writer, in which the dates of onset of 50 cases reported during the outbreak were determined. The rate of admission of cases to the two largest hospitals of the city also points to this period as the time of occurrence of the outbreak. The time of admission of cases to hospital probably averaged about 5 days subsequent to dates of definite onset of illness. The rates of admission of cases to the Methodist and Mercy hospitals were as follows:

DATE OF ADMISSION	Number of cases		
	Methodist Hospital	Merey Hospital	Total
October 1 to 14			1
October 14-....	1		1
October 15 to 28		1	1
October 29 to November 15			
November 15	1		1
November 16 to 22 .-----			
November 22 -------	1	2	3
November ${ }^{\text {Normber } 24}$		2	${ }_{10}^{2}$
November 25	${ }_{1}^{6}$	$\frac{4}{2}$	${ }_{3}$
November ${ }^{26}$	3	5	8
November 28	3	$\stackrel{1}{3}$	${ }_{6}^{4}$
November 29			4
November ${ }^{\text {December }} 1$	3		3
December ${ }^{1}$ December 2 -	2	1	3 3 3
December 3	3		3
December 4	1		1
December 6			2
December 7		1	1
December 8 Decermber 9	1		1
December $10-$	1		1
December 11	1	1	2
December ${ }^{12}$			
December 14	1	1	
December 15		1	2
December 16		1	1
December 18		1	1
December 19	1		2
December 20			
December 22			
December 23			
December 24			
December $25 .$.			
	46	28	74

The time of high admission rate was from November 22 to December 7. The number of cases admitted to the two hospitals in this period was 57, while from October 1 to November 22 only 3 cases were admitted, and from December 7 to December 25 only 14 cases. The dates of onset of illness in the 50 cases which the writer investigated personally are shown in chart No. 2. The dates of onset, as given in this chart, were determined certainly with reasonably sufficient exactuess and probably represent fairly accuratcly the rate of occurrence of all the cases developing during the outbreak.

From all the facts ascertained it seems certain that the outbreak began sharply about November 17 , reached its maximum about November 24 , and continued high, but at a gradually declining rate, until about December 7. Therefore, accepting 12 days as the usual incubation period of the disease in instances of sudden and extensive outbreaks, it appears that the chief cause of the outbreak became operative about November 5 , reached its maximum about November 12, and continued until about November 25 , when it either ceased entirely to operate or continued to operate, but at a markedly diminished rate.

The exact number of cases which occurred in the outbreak is not known. Inability to secure a report of cases which could be regarded as reasonably complete was a great handicap in the investigation. The lack of law requiring the reporting of cases of typhoid fever in Iowa and the existence of statutes which prohibit municipalities in the State from enacting ordinances requiring the reporting of local cases constitute a condition urgently needing immediate correction.

Without legal enactment a prompt report of cases can not be reasonably expected and outbreaks may occur without the health authorities learning of them in time to have even a possible chance to apply preventive measures. The recent outbreak in Des Moines, it seems, was first brought to the attention of the authorities by publications in the local newspapers 10 or 15 days after the outbreak had begun. It is fortunate that the outbreak was learned of even at that early period, and the local press is to be congratulated for its vigilance.

Other communities in Iowa are liable at any time to be visited by outbreaks, and in some of these communities there may be no local press or one not so vigilant as that of the capital city.
Between November 29 and December 31, 209 cases were reported to the city health office. That this number does not comprise all the cases that occurred is certain, and how many more did occur can only be estimated.

In the course of the investigation of 40 reported cases between December 27 and December 31,5 cases were found which had not been reported. Of these 5 cases, 2 were in homes from which a previous case had been reported, and 3 were in homes from which a previous case had not been reported. Thus, if 5 cases which had not been reported were found by inquiring at about 40 homes it is reasonable to believe that quite a large number of cases which had not been reported could have been found if all the homes in the city had been canvassed.

At a meeting of the Polk County Medical Society on the evening of December 23 several physicians stated that they had not reported all of their cases. Thereupon the writer requested that all the physicians send to the city health office a complete report of all cases which they had treated since November 1, giving name, address, and onset of illness of each patient, the list to include all cases whether previously reported or not. A motion for compliance with this request was put to the society and carried without a dissenting vote, but such report as was requested was received from only one physician.
There were very probably some cases which were not attended by a physician and which were not reported.
In view of all the facts and on a basis of strong probability the number of cases which occurred between November 15 and December 31 is estimated at about 300 . Of these 300 cases probably about 250 occurred in the period from November 17 to December 7, that is, when the outbreak was at its height, and resulted from the operation of the chief cause of the outbreak. On this estimate one person in about every 290 in the city's population was affected. That the infection was widely and synchronously distributed over the city is beyond question.

dragnosis.

Among the many positively or negatively helpful suggestions received from various sources in the course of the investigation one was that on account of the popular excitement many cases had been reported as typhoid fever under mistaken diagnosis. Judging from the histories obtained in about 80 cases and from clinical inspection of about 30 cases, the writer is convinced that over 90 per cent of the cases reported as typhoid fever were correctly diagnosed as such.

> EPIDEMIILLOGICAL INVESTIGATION OF CASES.

When an extensive and explosive outbreak of typhoid fever occurs in the cold winter season in a city having a generally distributed public water supply, suspicion usually falls first upon the water supply as the source of the infection. As the water has been used for drinking purposes by most of the people in the community it has to be considered certainly as a possible common factor in the causation of the outbreak. But just because the water is used by most of the people it is difficult to either eliminate or definitely involve it as the source of the infection and although in such instances extraordinary precautions should be taken at once to safeguard against the possible spread of infection by the water supply, final decisions should not be rendered until after a thorough investigation has been made of the water supply and of the other possible sources of infection. To determine the possible sources of infection a careful epidemiological study of cases is necessary in order to ascertain to what conditions the persons affected were exposed prior to illness. As the facts are collected and studied one suspected source after another may be eliminated until the true principal source or sources of the infection can be determined, as a rule, with reasonable certainty.

Before the beginning of this investigation of the situation in Des Moines epidemiological data in regard to 106 cases reported after the beginning of the outbreak had been collected under the direction of the city physician, Dr. H. L. Sayler. From certain quarters some doubt as to the accuracy of these data was expressed on the ground that the canvass had been made hastily and by college students inexperienced in epidemiological work. For this reason, and also in order to collect data regarding certain conditions not covered by the canvass of the 106 cases, the writer personally investigated 51 cases. In the investigation of these 51 cases the homes of the patients were visited and a careful inquiry was made to ascertain all the facts called for by the following blank form:

TYPHOID FEVER CASE CARD.
Case No. -.
Name ——. Age —. Sex —. Nationality —.
Date of first symptoms ——. Date took to bed ._
Date of death -. Date of recovery
Widal reaction positive or negative -
Rose spots \qquad Intestinal hemorrhages
Previous attack of typhold \qquad When \qquad
Residence when taken sick
Previous residence \longrightarrow from \longrightarrow to \longrightarrow.
Subsequent residence \longrightarrow, from ___ to
Character of residence ——. Sewage disposal _.
Whater-closet in house \qquad Wage disposal \qquad Privy vault \longrightarrow. Conditions of sanitary devices Relation of privy to well General sanitary conditions of residence:

Good —. Fairly good —. Rather bad —. Bad —. .
Previous cases of typhoid in house
Previous cases of typhold in neighborhood -.
Occupation —. Where —— from —_ to
Water used at place of employment:
Solely —. Principally —— Occasionally
Was patient away from Des Moines within 30 days prior to fliness
Where \longrightarrow, from \quad to
Exposed to known infection while away
-Water for drinking 30 days prior to illness:
Solely
Soda water \quad Where
Source of fee —— How used
Meals, where taken Milk, how used \qquad
Beverage _ In cereals. In coffee or tea only
Source of milk —. Usually ——. Occasionally —.
Milk used, boiled or pasteurized __ Ice cream \quad. Source
Celery \longrightarrow, lettuce , radishes—, raw shell fish \longrightarrow, applep-. Contact:

Association with patients in febrile stage.
Association with suspected cases.
Association with convalescents.
Assoclation with persons who were in contact with patients.

Prophylaxis:

$$
\begin{aligned}
& \text { Are stools disinfected -. Is urine disinfected _. How . How } \\
& \text { How disposed of } \\
& \text { How disposed of - } \\
& \text { her precautions: } \\
& \text { Efficient }
\end{aligned}
$$

Name and address of attending physician -.
Summary
Date of investigation.

Of the 51 cases investigated by Dr. Sayer and the writer, 43 had.been covered in the previous canvass conducted under Dr. Sayer's direction, and the findings in the two separate investigations of these 43 cases were found to be in substantial agreement. That the findings of one investigation checked in salient features with the findings of the other is, of course, an indication of the accuracy of the findings of both investigations.

The 51 cases investigated were reported after the beginning of the outbreak. They were from among persons living in widely separated parts of the city and in all ways were selected so that they could be considered fairly representative of all the cases which occurred during the outbreak. The data collected in the investigation of these 51 cases, therefore, may be considered to indicate sufficiently accurately what would have been found generally true for all the cases occurring during the outbreak.

The following interpretations of the findings in these 51 cases were as follows:

IMPORTED CASES.
One of the cases was in a person who came to the city after onset of illness and who undoubtedly contracted the infection elsewhere. Another was in a person who had been away from the city about half of the time during the 30 days prior to illness and whose chances of contracting the infection in or away from the city were about equal. Three others were in persons who had been away from the city for a day or two or less during the 30 days prior to illness and whose chances of contracting the infection while away were estimated at about 10 per cent. All of the remaining cases (46) were in persons who had not been away from the city within the 30 days prior to onset of illness. From these findings it appears that in less than 2 per cent of the cases occurring during the outbreak was the infection contracted away from Des Moines.

AGE AND SEX.

For the 50 cases investigated and considered of local origin, the age and sex of the persons affected were as follows:

In extensive outbreaks caused by milk-borne infection the proportion of cases in children under 10 usually is considerably larger than was that found among the cases in the Dee Moines outbreak, as shown by the following table:

It appears that in the Bes Moines outbreak the age distribution of cases more nearly approached that usual in outbreaks due to water than that in outbreaks due to milk-borne infection.
occlipation.
The following table gives the occupations of the persons affected:

occopations	Mule	Female	Total
School children	8	18	26
Watchmakers			$\frac{1}{3}$
Housewives Telegraph instrument fixers	1	3	1
Telephone office clerks-		2	
Students (university) -		2	
Bookkeepers ----		1	1
Ice-wagon drivers --.-	1	1	1
Salesmen and saleswomen Seamstresses		1	1
Cashiers (storē)	1		1
Waiters and wastresses (restaurant)		1	1
Firmen (city) --.--	1	-	1
Newspaper-advertising solictiors		1	1
Míliners		1	1
No occupation		5	5
Total	13	37	50

It is evident that the disease was distributed through the population regardless of occupations in which persons were engaged.

CHARACTER AND GENERAL SANITARY CONDITION OF BESIDENCES.
Four of the cases were in persons living in rooming houses, 3 among persons in apartment houses, 4 among persons in public institutions (boarding schools), and the remaining 39 were among persons who lived at private residences. The disease certainly did not appear to prevail at a disproportionately high rate among persons who would be most closely associated with transient visitors to the city.

Twenty-three of the cases occurred at residences where the general sanitary conditions were good, 20 at residences where the general sanitary conditions were fairly good, and 7 at residences where the general sanitary conditions were rather bad... From these findings it appears that the disease did not prevail disproportionately among persons living in insanitary neighborhoods and, therefore, that in the causation of the outbreak faulty sanitary conditions at place of residence of persons affected did not constitute an important factor.

SEWAGE DISPOSAL

Thirty-three of the cases occurred at residences connected with the city sewerage system and at which water-closets were used, and 17 at residences not connected with the city sewerage system and at which privy vaults or surface privies were used. No instance was met with in which it appeared likely that faulty plumbing or seepage from privy to well could have been responsible for the infection.

FOODS AND BEVERAGES,

The season of occurrence, the geographical distribution, and the general features of the outbreak taken together definitely eliminated flies and other insects and contact infection as major factors in the causation
of the outbreak, and from the outset it seemed on general principles, drawn from present knowledge of the modes of spread of typhoid fever that the outbreak had been caused by infection in some beverage or foods which had been widely distributed over the city. Therefore, in the epidemiological investigation of cases it was endeavored to ascertain as nearly exactly as possible just what foods and beverages, liable to convey infection, had been used by the persons affected, in order to determine which foods and beverages could be eliminated and which involved as the principal source of infection.
MEALS-WHERE TAKEN.
'Of the 50 cases, 45 were in persons who had taken meals within the 30 days prior to illness at their places of residence only, 3 in persons who had taken meals at their places of residences usually, but at restaurants occasionally, and 2 in persons who had taken meals usually at res taurants and boarding houses.
From these data it is certain that the outbreak was not caused by infection introduced into foods and beverages at public eating places.

мMIK.

In cities where large milk dealers distribute their supplies over large territories extensive and widespread outbreaks of typhoid fever may be caused by milk-borne infection. Outbreaks caused by milk occur most frequently in the summer and early fall, but as milk is a favorable culture medium for the typhoid germs such outbreaks may occur at any season of the year. The likelihood of milk being the source of the infection causing the Des Moines outbreak, therefore was given particular consideration.

The 50 cases investigated gave the following history. as to the way in which milk was used during the 30 days prior to illness:

$$
\begin{aligned}
& \text { As a beverage } \\
& \text { In fruits or cereais, but not as a beverage... } 15 \\
& \text { In hot tea or coffee only... } 14
\end{aligned}
$$ As ice cream only.$\begin{array}{r}14 \\ . \quad 2 \\ \hline\end{array}$

; The proportion of cases giving a history of having used milk as a beyerage is one point in the evidence that the outbreak was not due to milk, as in outbreaks due to milk the proportion of cases among milk drinkers is usually considerably larger.
There was no disproportionately large number of cases among the customers of any dairyman. Of the 50 cases specially investigated 2 used milk from their own cows only, 3 used no milk in any way, and the remaining 45 cases were distributed among the customers of 25 different dairymen. The source not only of the milk used habitually, but also of that used occasionally (as from grocery stores, for instance, was ascertained as completely as possible for each case. Sixteen of the cases gave, a history of having used habitually or occasionally milk sold by the largest dealer, in the city and 8 of having used milk sold by the second largest dealer in the city. These two dealers sell about 50 per cent
of the milk distributed in Des Moines, so that the number of cases among their customers was entirely proportionate to their business. Groups of cases in widely separated parts of the city occurred synchronously and absolutely disconnected in respect to the source of milk used prior to illness.
Two or more cases developing at about the same time in the same household is of frequent occurrence in milk outbreaks, but this was of very infrequent occurrence in the Des Moines outbreak. In outbreaks due to milk a considerable proportion of cases, particularly in children, will have a sudden onset of illness without prodromal symptoms, while over 90 per cent of the cases in the Des Moines outbreak gave a history of prodromes.
In view of all these facts the milk supply can be eliminated, beyond reasonable doubt, as the chief and primary source of the infection which caused the recent outbreak in Des Moines. If milk operated as a factor it must have done so in a secondary way, the bottles or cans becoming infected by being exposed in some way to germs which had already been distributed through some other medium.
ICE CREAM.

Fifteen of the cases were in persons who had eaten ice cream within the 30 days prior to illness, 30 cases gave a history of not having eaten ice cream, and for 5 accurate information regarding the eating of ice cream was not obtainable. The 15 cases giving a history of having eaten ice cream were among the customers of several different ice-cream makers. Evidently ice cream can be eliminated as a considerable factor in the production of the outbreak.

RAW GHFLLIFXH

Only one case out of the 50 gave a history of having eaten raw oysters clams within 30 days prior to illness, so that raw shellfish may be definitely eliminated.

SODA WATER

The history of the 50 cases in regard to the drinking of soda water within the 30 days prior to illness was as follows: Yes, 2 ; no, 44 ; not determined, 4. Soda water could not have been a considerable factor.

roe.

Two cases were in persons who had used ice in beverages, while 48 gave a definite history of not having done so. Ice can be eliminated as a considerable factor.

RAW VEGETABLES AND FRUITS

Most persons will give a history of having eaten some kind of raw fruits or vegetables within any period of 30 days, so as a rule these products can not be definitely exciuded on the history of the cases alone as possible sources of infection. Yet when the history of the cases in respect to the eating of the different fruits and vegetables is considered
along with the general features of the outbreak and the likelihood of any particular supply of possibly infected fruits or vegetables having been distributed so as to have reached the persons affected, reasonably definite conclusions may be formed. The history of the cases in regard to the eating of vegetables and fruits within the 30 days prior to onset of illness was as follows:

FRUIT OR VEGEABLE	Yes	No	Not definitely determined	Total
Celery	186729	31424848	12118	
Lettuce				50
Radishes				50
Apples				50

Thus, the history of the cases along is sufficient to exclude all of these except apples as having been a possibly major factor in the causation of the outbreak. From what is known about the viability of the typhoid bacillus and the way in which apples are gathered and subsequently handled it would certainly seem highly improbable that apples could have been responsible for such an outbreak as the recent one in Des Moines, even if every case had given a definite history of having eaten apples. Furthermore, it was found that the apples eaten by the persons affected had been distributed from the storehouses of at least three of the large wholesale dealers in the city, and it is contrary to the laws of probability that each of these dealers, obtaining his supply of apples from different sources, would have been selling highly infected apples in November, 1910. In view of all the evidence, fruits and vegetables may be eliminated, beyond reasonable doubt, as having played a very considerable part in the causation of the outbreak.
CONTACT.

Only two of the cases gave a history of free association with previous cases in the febrile stage of the disease and were attributable to infection by contact. These two cases had onsets of illness on December 19 and December 20, respectively, and had lived in the same house with and helped nurse a case whose onset of fllness was November 22. A considerable proportion of the cases occurring since the 10th of December probably would be found to be attributable to contact infection; but all the evidence indicates that in the outbreak, contact operated only as a factor secondary to some other, which was chief and primary.

water.

Of the 50 cases, 49 gave a history of having used the city water unbofled as the sole or principal source of drinking water during the 30 days prior to illness. The one case giving a history of not having used any city water not previously bolled was one of the cases attributed to contact infection and referred to above.
of the $4!$ cases, 41 had used the city water solely, while 8 had used the city water principally, but water from some other sources, such as wells, occasionally. Thus the city water presents itself as a common factor, and certainly as a possible chief source, of the infection which caused the outbreak. Along with this fact the season of occurrence, the extent and the explosive character of the outbreak, the distribution of the disease in relation to the distribution of the water supply, and the exposure of the water supply to dangerous pollution constitute a very strong chain of evidence that the city water was the source of the infection which caused the outbreak.

POLLUTION of tife water supply.
As the water from a new gallery was turned into the city supply at about the same time as the outbreak occurred, and as it had been observed that proper sanitary arrangements were not provided for the men engaged in the work while the construction of this gallery was going om; it was assumed by many people of the community that the outbreak had been caused by infection in the water from the new gallery.

The officials of the Des Moines Water Co. state that none of the water from the new gallery could have entered the city supply before November 15, and that little if any water from the new basins could have entered the city supply before November 30 , when the gate of the new gallery was opened and the water taken from the river and filtered through the new sand basins first entered the city supply. According to this information the water from the new gallery, although possibly contributing somewhat, could not have been the sole source of the infection which caused the outbreak, since the period of causation of the main outbreak, as determined by onset of eases, was from about November 5 or 10 to about November 25 or 30 .

According to further information received from the water company the scraping away of the surface sand over the two filtration galleries crossing the river, which had been done from time to time throughout the summer and fall in order to secure more rapid filtration of the water from the river into these galleries, was done to a greater extent in the week ended November 5 than in any other week of the year. The next largest amount of scraping for any one week was in the week ended November 12, and the last scraping of the sand over the river galleries was done on November 26 . Beginning on November 10 and continuing for some time thereafter a centrifugal pump was operated on the water in the river galleries. This pumping was for the purpose of producing a negative pressure in the galleries, so that the filtration of the river water through the sand over the galleries crossing the river would be more rapid. The time of the unusual amount of scraping of the sand over the river galleries, and the work of the centrifugal pump on these galleries in relation to the period of causation of the outbreak is very suggestive of cause and effect.

According to the description of the work as given by the water company it would seem that there was ample opportunity for dangerous polIution to enter the city water supply during the period extending from

November 5 to November 26, provided there was dangerous pollution in the water of Raccoon River as it flowed over the galleries at that time.
As to the dangerous pollution of the Raccoon River at points within a few miles above the location of the galleries there is no question whatever. The attached map, prepared by Prof. Lafayette Higgins, engineer of the Iowa State Board of Health, and based on observations made conjointly by Prof. Higgins and the writer, will give some idea of the pollution of the Raccoon River with human excrement at Valley Junction and at points between Valley Junction and the location of the galleries from which the water supply of Des Moines is obtained. Considering the amount of pollution which enters the river, there is no room for doubt that typhoid infection may more or less continuously reach the water of the river below Vailey Junction and above (upstream from) the Des Moines filter galleries.

According to information received from the physicians of Valley Junction there were cases of typhoid fever under treatment in Valley Junction in October and November, 1910. The occurrence of cases as given was as follows: In September, 3; October, 4; November, 5; and in December, 1.
bactertologioal examinations of the des motnes city water supply.
Since the investigation was not begun until December 22 , the bacteriological study of the water could not be expected to throw any very definite light on what was the condition of the water when the outbreak was caused. Therefore the bacteriological examinations were made with a view principally to determining if the filtration of the water under what may be called "normal" conditions of filtration could be relied upon entirely to remove from the river water and from the "ground" water obtained from the river basin such disease-producing micro-organisms as might be present in the water. Bacteriological examinations were not made of the river water above the filter galleries because they were not considered necessary, the sanitary survey of the river from Valley Junction down showing more unmistakably than bacteriological examinations could that the river is dangerously polluted with human excrement.
Efforts were not made to recover typhoid bacilli from the water for the following reasons:

1. Negative findings at this time would have been no indication of conditions at the time the outbreak was caused.
2. From waters containing typhold bacill in sufficient numbers to cause a very high rate of prevalence of typhoid fever among persons using such waters the isolation of the organism is, by present bacteriological technique, very difficult and largely a matter of chance. Only a few ounces of water a day can be properly examined for the presence of the typhoid bacillus and though none of the organisms might be found in the few ounces examined, quite a number might be at the same time present in the hundreds of gallons of water drunk by the people in the
community supplied; therefore, in a search for typhoid bacilli under such circumstances negative findings can be expected and such negative findings throw no light whatever on the situation.

Samples of water from the following sources were examined:

1. Siphon well, this sample representing the mixture of effluents from all the filtration galleries.
2. Pumping station, this sample representing the water just before it is pumped into the mains for distribution to the city.
3. Tap at the laboratory building, at Fourth and Center Streets; and
4. Tap at the city hall; the last two representing the water after it has traversed the city mains.
The dates and results of the examinations are presented in the following table:

Source of Sample	$\begin{gathered} \text { Date of } \\ \text { Examination } \\ \text { (planting) } \end{gathered}$			Fermentation with gas production lactose boullion				B. Coll in-			
										10 cc.	20 cc.
								\pm			
Siphon well	Dee. ${ }^{\text {Dec. }}$ De, 26,1910					\pm				-	
Pumping station.	Dec. ${ }^{\text {De, }}$ Dec. ${ }^{26}, 1910$	12	1			ఫ				+	
Laboratory tap...-	Dec. 22, 1910	,									
City Hall tap-	Dec. 31,1010										
Laboratory tap....	Dee. ${ }^{\text {Den }}$ 31, ${ }^{21} 1910$	1									
Laboratory tap..-.	Jan. 2, 1911										

It should be noted that the bacterial counts were made from the number of colonies on agar plates incubated at $37^{\circ} \mathrm{C}$, and not on gelatin plates incubated at $20^{\circ} \mathrm{C}$, the medium and temperature usually employed in making bacterial counts of water. Gelatin plates will usually give somewhat higher counts than will agar plates. The laboratory was not equipped for the use of gelatin plates.
The proportion of samples of the city water taken prior to December 29 which gave fermentation in lactose-boullon and which contained colon bacilli is significant. The presence of colon bacilli in the city water in such numbers indicates that even at that time the filtration of the water was not efficient to remove from the river water whatever dangerous pollution it might have contained. That the filtration was still less efficient in the early part of November, when the filtration was being forced, is certainly a reasonable deduction.
The improvement in the city water, as shown by the results of the examinations of samples taken on and after December 29 is striking. The three samples examined on and after that date gave average counts 16
of two bacteria to the cubic centimeter, and none gave fermentation in lactose-bouillon or other indication of the presence of the colon bacillus. The results of the examinations of chese three samples compare favorable with those usually from examinations of waters from deep wells of unquestionable safety. Should the water supply of the city of Des Moines be maintained constantly in the condition in which it was found to be at the time these last three samples were taken, it certainly would appear to be safe, so far as bacterial contents is concerned, and to need no boiling previous to use.
chemical treatment of the water supply.
According to information received from officials of the water supply, chemicals were applied to the whole or a part of the city water supply from July 1 to December 25, 1910, on the following dates:
July 7 and 8 , December $5,7,8,14$ and 15 , and after $4.45 \mathrm{p} . \mathrm{m}$. of December 26 the whole city supply was treated with hypochlorite of lime. Therefore the improvement of the city water noted in the samples examined on and after December 29 may be attributed to the use of hypochlorite and not necessarily to any extent to more efficient filtration.

On the evening of December 26 the writer was apprised by a represen. tative of the water company of the use of and the contemplated continued use of hypochlorite in the water, and therefore the difference in finding in the examinations of the water made subsequent to chat date occasioned no surprise.
GEOGRAPHIC DISTRIBUTION OF THE OUTBREAK IN RELATION TO THE DISTBIBUTION of the water supply.
So far as could be ascertained, the occurrence of cases in the outbreak was largely confined to persons living in districts supplied by the city water. Districts of the city, containing altogether probably about 10;000 to 15,000 of the city's population, not supplied with city water, but with water from wells, remained singularly free from the disease. Most of the cases learned of in these districts were found on investigation to be in persons who had used the city water on frequent occasions while on visits of a business or social nature to other parts of the city. Fort Des Moines, located 5 miles from the city, but supplied with water from the Des Moines supply, had 3 cases. These 3 cases had their onsets of illness as follows: Two on December 2 and 1 on December 19. The first 2 cases gave a history of not having eaten when on visits to the city any foods such as are considered likely to serve as media of typhoid infection. The last case to develop at Fort Des Molnes gave a history of having drunk milk at restaurants in the city on several occasions within the two or three weeks prior to illness. The population of the fort is about 900 , so that the disease evidently prevalled there during the outbreak at about the same rate as it did. in the city. The distribution of the disease in relation to the city water supply is very significant.

1. The outbreak of typhoid fever in Des Moines in November and December, 1910, was caused, beyond reasonable doubt, by infection dis-
seminated in the city water obtained from the Raccoon River and Raccoon River basin. A small portion of the cases may have been caused by infection received immediately through personal contact, milk, vegetables, fruits, etc., but the vast majority of the cases resulted from infection distribution primarily and chiefly in the city water supply. This conclusion is based on the following points of evidence:
(a) The season of occurrence and the explosive character of the outbreak.
(b) The distribution of the disease in relation to the distribution of the city water.
(c) The pollution of the Raccoon River at points within a few miles upstream from the location of the flltration galleries.
(d) The results of the bacteriological examinations of the water, showing that even about a monti after the scraping away of the upper layer of sand from over the filtration galleries crossing under the river and the working of a centrifugal pump on these galleries, in order to secure rapid or forced filtration, had been discontinued, the filtration was stili inefficient to remove from the water, to a reasonably reliable extent, such disease-producing micro-organisms as the water in the river and the river basin may have contained.
(e) The correspondence in time between the period of special forcing of the filtration galleries and the period of main causation of the outbreak.
(f) The decline in the outbreak in due time, according to what is known about the viability of the typhoid bacillus in water and sand, after the forcing of the filtration had been discontinued and after the time in which the bulk of whatever infection may have reached the sand of the new basins, as a result of the lack of proper sanitary precautions while the work on these new basins was going on, probably would have elapsed.
(g) The results of the epidemiological studies of the cases, which implicate the city water supply and which definitely eliminate, except perhaps as secondary and minor factors, all other media which according to the whole history of the epidemiology of typhoid fever, could be reasonably considered to have served to convey infection causing an outbreak of such character.
2. The water supply as obtained from the filtration galleries is thoroughly susceptible to purification from whatever bacterial disease-producing organisms it may contain by the proper use of hypochlorite of lime; and when it is assured that the whole supply is being properly treated at all times with hypochlorite the water may be used, certainly with reasonable safety, for drinking and other domestic purposes without boiling previous to such use.
3. The milk supply and the general food supply of the city can be definitely eliminated as the chief and primary source of the infection which caused the recent outbreak, but it is readily conceivable, in view of the
way in which much of the milk in the city is handled, that cans and bottles and consequently the milk itself were exposed to whatever infection was in the water or upon the hands of persons working in public dairies; and, therefore, milk may have operated to some extent as a secondary factor. Milk and other food supplies of the city, as handled at present, are liable at any time in the future to be important sources of infection and therefore should be made subject to official inspection as soon as practicable.
4. Most of the privy vaults and privies in the city are of very faulty construction and constitute a menace to the health of the city in respect not only to typhoid fever but to all other diseases caused by organisms disseminated from faulty disposal of human excrement. The danger from these faulty privies will be greatest during the summer weather when flies and other insects are abundant.

RECOMMENDATIONS.

1. Safeguard the city's water supply.-To accomplish this the following measures are suggested:
(a) Protection of the Raccoon River on both sides from sewage pollution at points upstream from the location of the filtration galleries as far as Valley Junction certainly and as much farther upstream as practicable. The Des Moines sewers could be extended to receive the sewage from Valley Junction, or the sewage from Valley Junction could be subjected to purification before being discharged into the river. The dumping of night soil from the privies of Valley Junction at places where it will be liable to seep or be washed into the river should be prohibited. Special attention should be given to surface drainage toward the river from privies at settlements located to the south (the right bank) of the river and within 5 or 6 miles up country from the filtration galleries.
(b) The abandonment as soon as practicable of the filtration galleries which cross under the river and their replacement with closed conduits, so that the whole water supply will be received from the sand basin to the south side (right bank) of the river
 the safety of the water as then delivered has been determined by prolonged and careful bacteriological and chemical studies conducted by competent and officially appointed investigators, the whole water supply should be treated constantly and under official supervision with hypochlorite of lime applied in accordance with methods approved by unbiased expert opinion.
(d) Until definitely and officially assured that the water has been made safe by the use of hypochlorite of lime, the people should be adyised to boil the city water before using it for drinking purposes.

The enactment of an ordinance requiring that all water sold in the city of Des Moines shall be within certain chemical and bacterlological standards of purity is suggested.
2. Use every effort to secure legislation which will acquire the prompt reporting of all cases of typhoid fever in the State of Iowa. This is urgenly and immediately important. Without such law outbreaks due to realily removable causes may go on in different communities for some time before being discovered, and so cause much needless and preventable suffering and loss of life.
3. decure official inspection of dairies and dairy farms and of other places where public food supplies are sold or prepared for sale. The enactrent of an ordinance requiring the pasteurization of milk and sterilization of all milk cans and bottles, under official supervision, is sugges ${ }^{\text {ded. }}$
4. 1 bolish all faulty privy vaults and surface privies and replace them vith privies provided with water tight vessels for receiving the excrement, and constructed so that flies and other insects will not have excess to the excrement.
5 Have all cases of typhoid fever investigated and the precautionary measures to prevent spread of infection from the bedsides of patients officialy supervised by the local health officer.

REPORT OF EPIDEMIC OF TYPHOID FEVER IN OSKALOOSA AND VICINITY.

By Dr. Wade H. Frost, Past Assistant Surgeon United States Public Health and Marine Hospital Service.
The Honorable Mayor and City Council, City of Oskaloosa, Iowa:
I have the honor to present herewith a report upon the prevalence and causes of typhoid fever in this city during the months of March and April, 1912, as determined by a study, at request of the city of Oskaloosa and the Iowa State Board of Health, by Dr. M. F. Boyd of the State Board of Health and myself. While Dr. Boyd is not present to sign this report, nor to discuss it with you, he has reviewed it in abstract, and concurs in it. He has taken an active part in all the details of the collection and analysis of data, and this may be considered as a joint report.

TYPHOID FEVER IN OSKALOOSA IN PREVIOUS YEARS.
From the records of the Registrar of Vital Statistics of the State a report had been compiled by the Secretary of the State Board of Health, showing the number of deaths from typhoid fever each year, from 1902 to 1911 inclusive, in Oskaloosa and in the rest of Mahaska County. The figures furnished by him are as follows:

Deaths from typhoid fever (including typhoid pneumonia) in Oska-- loosa, and in Mahaska County outside of Oskaloosa, 1902 to 1911 inclusive:

Since the case-mortality of typhoid fever seldom exceeds ten per cent, it is safe to estimate that these deaths represent about ten times as many cases; that there have been in Oskaloosa, in the last ten years, from 300 to 400 cases of typhoid fever-an average of 30 to 40 cases per annum. Since the population of Oskaloosa during this period has been something less than ten thousand, the average annual death-rate from typhoid fever has been about 40 per 100,000 , a figure considerably greater than the annual death date (25.8 per 100,000) for all the cities of the registration area of the United States in 1908. According to the above figures typhoid fever has not been rare, during the last ten years, either in Oskaloosa or in the surrounding country; it has, in fact, been much more prevalent than it should have been, since it has been demonstrated that in cities in or above this latitude in the United States the annual death rate from typhoid fever may quite readily be kept below 20 per 100,000 and should not exceed 10 per 100,000 if careful preventive measures are consistently carried out.
During the first three months of 1910, there were nine deaths from typhoid fever in Oskaloosa, indicating the prevalence of a grave epidemic at that time. While I have been unable to secure a copy of the report upon this epidemic submitted by Dr. Henry Albert, of the Iowa State Board of Health, who investigated it, I am told that it was satisfactorily traced to infection of one of the dairies supplying milk in the city at that time.
During 1911, cases of typhoid fever occurring in Oskaloosa were reported to the Board of Health as follows:

From September, 1911, till the latter half of March, 1912, no cas of typhoid fever were reported in Oskaloosa, whereas, from the latter half of March to the present time there have been reported 72 cases in the city and immediate vicinity.
Oi the 72 cases recorded, five have been in persons residing in the country near Oskaloosa, six in persons residing in the neighboring corporation, University Park, and sixty-one in residents of Oskaloosa. It is evident then, that since the middle of March there has been a sudden and great increase in the number of eases of typhoid fever in Oskaloosa and University Park. In the population of the surrounding country the proportion of cases during this period has been much less. While it may well be that the reports received from the country are incomplete, Dr. Morgan, the City Health Officer, has made inquiry of the physicians of the county and has been unable to obtain record of any cases other than the five mentioned above, so it is evident that there has not been a coincident epidemic in the county generally.

diagnosis.

As to the question of diagnosis, there can be no reasonable doubt that the majority of cases reported as typhoid fever have been correctly diagnosed, since the clinical course has been, in most of them, sufficiently characteristic. To confirm the clinical diagnosis, Widal tests have been made with the blood from twenty cases of clinical typhoid fever and suspected typhoid. These tests have been positive in 9 cases, suspicious in 5 cases, negative in 4 , and unsatisfactory in 2 cases. The negative and suspicious results were obtained mostly with blood from suspected cases, early in the course of illness, at a time when the Widal reaction is by no means constant, and most of these cases have since been shown not to have been typhold fever. Where the clinical diagnosis was definfte, it was confirmed by the Widal test in as large a proportion of cases as could be expected. Unfortunately, there has been insufficient opportunity for the more accurate method of bacteriological diagnosis by blood-culture, but even so there is abundant evidence that the epidemic has been one of typhoid fever.
general distribution of cases.
The distribution of cases by time of onset as nearly as this could be ascertained is as follows:

Week ending March 16th .. Week ending March 23rd .. 2 cases Week ending March 30th... 15 cases Week ending April 6th .. 34 cases Week ending April 13th .. 14 cases Week ending April 20 th \qquad $?$
$19 t h$
It is apparent that the epidemic had its beginning about March 19th, the date of the earliest reported case, reached its maximum during the tirst week of April, and had commenced to decline by the second week of April. It is too early yet to arrive at an accurate estimate of the cases having their onset in the last week, as it not infrequently requires a week or more to arrive at a diagnosis of typhoid fever. It is believed, however, that the number of new cases will be considerably less than for the previous week.

It is also impossible to make accurate predictions as to the occurrence of cases in the immediate future. It would appear, however, that the epidemic has passed, and that for the last week-perhaps for several weeks past, the original cause of the outbreak has not been operative. On the other hand, there is good reason to expect that without rigid preventive measures there may be a considerable number of secondary cases infected from persons now ill or convalescent.

The distribution of cases according to age and sex has not been unusual. In the following table are given the ages and sex of the sixtyfive cases investigated:

AGE	Males	Females	Total
Under 1 year -	0	0	
1 to 5 years inclusive	2	5	7
6 11	${ }^{5}$	${ }_{5}^{4}$	$\stackrel{9}{15}$
16 to 20 years inclusive	4	$\stackrel{5}{4}$	15
21 to 25 years inclusive	5	1	
26 to 30 inclusive	4	4	8
31 to 35 inclusive -	3	1	
36 to 40 inclusive - 41	3 1	3	${ }_{2}^{6}$
Total	37	28	6

The proportion between children and adults affected in epidemics of typhoid is usually about that shown above, except that in milk-borne epidemics the proportion of children is frequently greater, since children, as a rule, use milk more freely than grown persons.

An analysis of the cases according to occupation fails to show any undue proportion among persons engaged in any particular kind of work, or among those employed in any section of the city. A very considerable number of the cases were among students and school children, namely, five cases among college students in Oskaloosa and University Park, and 28 cases among pupils of the Oskaloosa public schools. This apparently large number of cases among school children is not surprising, however, when considered in proportion to the total number of pupils. According to figures furnished by the superintendent of schools, the total attendance at the schools of the city is approximately 1,835 . Twenty-eight cases among these pupils are equivalent to one in each 65 pupils. In the city as a whole, with an approximate population of 10,000 , there were about 61 cases, equivalent to one case in each 165 persons. The higher rate in school children may quite probably be explained by the greater susceptibility of young people, between the ages of ten and twenty.

Maps have ben prepared showing the location of the residence of each patient. From a study of these maps it is apparent that the cases have been pretty generally and evenly distributed throughout the city, in a manner roughly proportionate to the distribution of the population. A map giving the location of cases according to dates of onset of ilness shows no indication of a progressive spread of infection from one section of the city to other parts. The earliest cases as well as the later ones are widely separated. Mention has already been made of the fact that coincidently with the epidemic in Oskaloosa there was an outbreak in University Park. In this community of 500 to 600 persons there were six cases of typhoid fever during the period of this epidemic. The proportion of cases to total population was somewhat greater in University Park than in Oskaloosa. On the other hand, in the rest of Mahaska county, with a population more than twice that of Oskaloosa, there have occurred, during the same period, only five cases, so far as can be ascertained. Of these five cases two have been investigated, and one of them can be ascribed to the same cause as the epidemic in the city; the
other camot be so accounted for. The third case has not been investigated, but the patient was employed in the city previous to iliness. Definte information has not been obtained concerning the other two eases.
In attempting to find the otigin of this epidemic the following considerations muse be borne in mind:
(1) The epidemte was practically limited to Oskaloosa and University Park. The cause of the enidemfe must, then, haye been common to trese two communities and limited to them.
(2) Whin these two communities the distribution of cases was fairty unform, affocting persons of various ages and occupations, living in all parts of the towns, under the most diverse conditions. The cause of the epldemic must therefore be expected to be something Hhewise uniformly astributed.
(3) The outbreak was sudden, affecting at almost the same time a targe number of people who had little in common. This indicates a single common cause, aince it is highly improbable that a number of different causes should have begun to be operative at so nearly the same time.
(4) So far as known, typhoil fever is usually, if not always, caused by the taking of typhold germs into the mouth, most commonly in the food or drink. The germs are destroyed by the temperature usually em* ployed in cooking food.
(5) Typhold fever germs, wherever, found, have come recently from the bowel discharges or urine (or possibly the expectorations) of people infected with the germs. The infected person may be one sick at the the wifh typhoid fever one who has recovered from an attaek of the disease but continues to harbor and discharge the germs, or one in whose intestines the germs are present without causing symptoms of finess.

The most probable cause of the epidemic is, then, to be sought in some article of food or drimk pretty unfiormly distributed among the residents of Oskatoosa and University Park, distributed less commonly if at all tmong the residents of the neighboring country, llkely to become contaminated with human sevage, and consumed without cooking.

Investranton or cases.
To ascertain if such a cause could be found a careful investigation has beem made of 65 of the reported cases. Dr. Boyd has personally visited these cases, making careful inquity of the patient or some member of the family as to the age, sex and ocupation of each patient, the date of onset of Ilness, places visited within a month prior to illness, association with previous cases of typhold fever, places where food and drink have been taken, the use and sources of milk, ice cream, raw fruits and vegetables, raw shellfish, ice and water. Note has also been made of the sanitary conditions at the yarious residences, with special reference to The sewage disposal. The cases investigated include six residing in Unversity Park, two in the country, and fifty-etght in Oskaloosa.
mportana cases.
The question may be raised as whether a large proportion of tha patients contracted their infection outside of the city. Bight of the patients living in Oskaloosa and faiversity Park stated that they had been out of the city at some time during the thirty days preceding their inness. Most of these patients had been away for such a short period or at such a time as fo make it highly improbable that they contracted the discase white away. One had been away the greater part of the time, and another had made several trips out of the city, and these may have cantracted the disease elsewhere. The remainder of the eases investigated, except those residing in the country, had been in the city continuously during the thirty days preceding thef ilness. It seems probable that the number of cases exported, that is, contracting the disease here and developing it elsewhere, exceeds the number imported.

ASSOCLATLON WTH RREVIOCS CASES OF TYPHOM FEVER

Persons intimately associated with a byphoid fever patient, especially $^{\text {pent }}$ those living in the same house, are liable to contract the disease. The usual incubation period of typhoid fever is probably from seven to thirty days. Where two cases develop in the same family, if the interval between them is greater than seven days, there is always to be considered the probability that the second may have contracted the infection from the first. If the interval between the cases is less than sexen days it is generally more logical to assume that both were infected from some other source.

Of the sixty-five cases frvestigated, six were found to have been intimately associated with previous cases in the same familes. in three instances the interval between the first and second cases was greater than seven days, so there is a probability that these three cases may have been due to contact-infection.

Five other patients had probably been to some extent associated with previous cases at their boarding places, but in none of these instances was the interval between the first and last cases more than one week. Two patients had been intimately associated with persons who had recovered from typhoid fever less than a year prior, and fourteen lived in familles of which one or more members had at previous time had typhoid fever, and who might therefore be "typhold carriens." This, however, cannot be considered significant. Considering the prevalence of typhoid fever in past years, it is not surprising to find, in twenty per cent of families questioned, that some member had previously suffered from typhoid fever.

Probably there was some association at school between chilaren in the early stages of infection and well children, but considering the sanitary conditions of the schools it is not probable that such contact could aecount for any considerable number of cases.

Altogether only three of the patients gave histories of such association with previous cases of typhoid as to justify the belief that they were probably infected in this way.

SEWAGE DISPOSAL AND GENERAL SANITARY CONDITIONS ON PATIENTS' PREMISES,
The provision for sewage-disposal on the premises occupied by patients was:
Water closet in the house in. 47 cases Privy in the yard in.. 22 cases
In four cases there were both water closets in the house and privies in the yard.
The general sanitary conditions on the premises occupied by patients were found to be:

Not determined in .. 2 cases
It is evident that there was no disproportionate occurrence of cases among those living under poor sanitary conditions, with inadequate sewage-disposal and unclean habits.

міLк.
Milk, raw or commercially pasteurized, was taken as food to some extent by fifty of the sixty-five patients visited.

Milk was used as a beverage by 25 patients; on cereals or desserts, not as a beverage, by 14 patients; in tea or coffee only by 9 patients; extent of use not stated, 2 patients. Condensed milk only was used by 3 patients. No milk at all was used by 12 patients. Total 65.

The milk consumed by the fifty persons who used it was supplied from twenty-two different dealers, from two sources not definitely ascertained, and in four instances from cows owned by the patients' families. So far as could be ascertained no two of the dealers regularly obtained their supply from a common source. It is evident therefore that infection of a single dairy could not account for all the cases. Seven dairles had each more than one case of typhoid fever among their regular or occasional customers; but a careful comparison of the number of cases with the amount of milk sold by each dairy shows that generally the number of cases was roughly proportionate to the amount of milk distributed.
While it is, of course, possible that some of the cases may have been caused by infection of milk-bottles returned to various dairfes from the homes of typhoid fever patients and refilled without proper sterilization, there is no evidence specific that such was the case, and such infection could not, at most, account for more than a small proportion of the total cases. The comparatively small number of cases on any single mills-route definitely excludes the probability that the epidemic was due to infection of any one dairy; and it is beyond all probability that a large number of them should have become simultaneously infected.

ICE CREAM.
Twenty-two patients stated that during the month preceding their illness they had eaten more or less of ice cream. In one case this was made at home, in two cases it was obtained from unknown sources and in the remainder from the six principal dealers解的 the city. There was no strikingly disproportionate number of cases among the customers of the cream of any singular manufacturer. Three of the five largest local manufacturers of ice cream had obtaned some part of their supply of cream from a common source-one of the dairies retailing milk in the city. Altogether fourteen patients had eaten ice cream prepared by these three manufacturers. There is, however, no probability that the ice cream was the cause of their infection, since if there had been an infection of the dairy which was the only source of supply common to the three dealers it would almost certainly have been evidenced by a disproportionate number of cases among the milk customers of this dairy. In five cases it was not known whether ice cream had been taken or not, and in more than half of the cases, thirty-eight, it was definitely stated that no ice cream had been eaten within a month.

raw frutti and vegetables.

In thirty cases it was stated that raw fruits or vegetables such as lettuce, celery, onions, radishes, tomatoes, etc., had been eaten previous to the attack of fever. In the rest of the cases it was stated that the patient had not taken such articles of food or could not definitely recall having done so. It is probable that typhoid fever may be contracted from raw vegetables grown in contaminated soil, or from fruits or vegetables contaminated by the hands of those who handle them. Considering the very varinus sources from which the supply of such foods comes it is altogether improbable that there would be a simultaneous infection of a sufficient number of these sources to cause such an epidemic as this one.
ree.
Since freezing does not necessarily destroy typhoid germs, ice used in drinking water may be considered as a possible source of infection, though an improbable one at this season of the year, when the majority of people do not use ice in their drinking water. In thirty-three of the cases it was ascertained that no ice had been used. In most of the remainder no definite information was recorded on this point. It is understood that practically all the ice used in this city to cool drinking water is furnished by the local ice plant, which manufactures its ice from distilled water, and that the ice used during the winter and early spring months is taken from a supply kept in storage. The ice used during March was, therefore, from the same supoly used during the winter, when there had been no epidemic of typhoid.

Some ice is said to be taken by various parties from the Skunk river and from ponds which are probably polluted, but in no case was information obtained that such ice had been used by any of the patients.

water.

All but two of the cases investigated were in persons who had drunk the public water-supply of Oskaloosa and University Park.
This water had been used for ormklng at home by st patients

One of the two patients who had drunk none of this water lived in the eountry; the offer had been out of town for a considerable part of the time prior to illness.
In order to show that a water suphly used by the majority of the restdents of a dity has been the cause of an epidemic of typhold fever, it is necessary not only to show that this water has been used by all, or the greater majority of the patients, but also that the occurrence of the disease has been approximately limited to the distribution of the water supply; that the water has been subject to probable pollution with typhoid germis, and, finally, to exclude other cases which might reasonably nccount for the enidemic.

In an explosive epidemie affecting a whole city, only two probable sourcess of infection can, as a rule, be seriously considered as capable of causing the outbreak, viz., water and milk.
As shown above, milk, raw, fruits and vegetables ice and contact with previous known causes may be quite definitely excluded as important factors in causing the epidemic in oskaloosa. The sixty-five cases investlgated occurred in persons widely scattered throughout the ity, who had not been associated collectively in any way. The only food or drink common to these persons, as far as could be ascertained by a coreful study, was their water supply. The character of the epidemie was similar to that of water-borne epidemies generally. Epidemics of typhoid fever due to water-borne infection occur most frequently in the late fall, winter or early spring months. They are usually sudden and explosive. Cases are generally pretty evenly distributed througbout the area of distribution of infected water without regard to sanitary condtions.
All these characteristics are presented by this epidemic. It remains to be seen whether the source of the water was such that it might probably have become sufficiently polluted to have produced such an epiatemte

> Water suppex.

Oskaloosa and Unfversity Park have the same publie water supply, obtaned from three different sources, viz., from wells sumk in flats on the north bank of Skunk river opposite the pump house; from the slank river direct, and from a reservoir of about $5,000,000$ gallons capacity, situated south of the pump house and at a considerable elevation above it. The water in this reservoir is pumped for the most part from the skunk river, occasionally perhaps, from the wells. Accord-
ing to statements curished by the superintendent of the water company, the capacity of the wells is approximately $1,000,000$ gallons a day. It is probably at times somewhat less thap this, The well water must, therefore, be supplemented by water from the river or the reservoin when the consumption in the city exceeds an average of $1,000,000$ gal lons per day. Also, it is necessary to turn water from the river or the reseryoir directly into the city malns when the occurrence of a fire in the city necessitates raising the water pressure from the usual 40 pounds to about 90 pounds.
Under ordinary circumstances the water supplied to the eity is passed through pressure fiters located in the city but when for fre protection it is necessary to raise the water pressure, these fiters are by-passet. A stand pipe of about 300,000 gallons capacity is connected with the filter water mains, serving as a reservoir for surplus water and to equalize the pressure.

A statement of the total amount of water pumped to the city, dally, from February ist to date has been fumished by the superintendent of the People's Water Company, According to this statement it was nee essary for a part of this time to supplement the supply of the wells with water pumped from the river or reservoir. From February 1st to March 14 th, such water as was needed beyond the capacity of the wells, was taken from the river direct; from March 15 th to March 23 rd , water from the reservoir was used, and from March 23 rd to date, practically all of the water has been supplied from the wells, with only the occasiona wise, for a short time, of water from the river or reservoir in case of fires, The relative amounts pumped from the wells, from the river and from the reservoir during February and March camot be exactly determined, and no attempt will be made to make an estimate

The, wells mentioned are twenty-two in number, each from forty to sixty feet deep. They consist of 4 -inch or 6 -inch iron plpes driven into the ground to the depth mentioned, and having at the lower end a socalled sand point. The wells pass through the top layer of loam, then through a variable depth of quick-sand into a water bearing layer of gravel which is said to immediately overlie solid rock. It has not been determined whether the water in this layer of gravel comes by seepage from the river-bed or from the opposite direction. In either case it must undergo a process of natural fitration. Four of these wells are conundergo a process of natural filtration. Four of these wells are con-
nected with a large brick cistern about thirty feet deep and fifteen feet in diameter. This cistern was examined April 13 th , at a time when the flats on which the wells are located were flooded, and it was found that surface water was draining freely through the mason work into it. At that time the cistern and the four wells connected with it had been ou of service for several days, as they have been slnce that time. The re maining wells are connected directly with a maln which passes under the river bed to the pumps. These wells have been recently opened, their depth ascertained and samples of water taken from several of them One of them, was found partially filled and presumably out of service; the remainder were reported to be in good condition.

The water of the Skunk river, like that of all rivers flowing through polluted areas, is necessarily subject to pollution with human sewage. So far as known, no city sewage is emptied directly into this river, below Colfax; but the surface drainage, not only of towns, but of the many farms on the water shed, finds its way eventually into the river. The extent pollution of the river at any time will depend largely upon the amount and character of rain fall. Very probably the pollution is at its maximum immediately following the spring thaw.

The reservoir mentioned cannot be considered altogether satisfactory; it has been constructed by damming a natural ravine. Above the reservoir, on the south side, is a small pond into which the surface water drans from the hillsides above, on which are located some stables, a particularly filthy hog pen and an open privy receiving human discharges. This pond is separated from the reservoir only by a dirt embankment, through which seepage may possibly occur. Atter a very heavy rainfall there may even be a direct overflow from the pond into the reservoir, polluting the latter.
bacteriological examination of water samples.
To determine the quality of the water from the three sources mentioned, and of the water supplied to the city, daily, bacteriological examinations have been made from April 14th to April 21st, inclusive. Altogether torty samples have been examined, including samples from the river at the intake, from the reservoir, from several of the individual wells, from the unfltered water main at the filter plant, from the filtered water main at the filter plant and from taps in various parts of the city. In bacterlological examinations of water, an estimate is madé of the total number of bacteria per cubic centimeter of the water, and tests are made to determine whether or not bacteria characteristic of sewage are present. The so-called colon bacilli are bacteria which are normally present in the intestines of man and the lower animals, and which are belleved to have no other natural breeding place. The presence of colon bacill in water Indicates, therefore, pollution with the intestinal discharges of man or the lower animals. The extent of pollution may be approximately estimated by estimating the number of colon bacill in a given volume of water.
It is not at present possible to determine by bacteriological examination whether the colon bacilli found in water have come from the intestines of man or from lower animals. To properly interpret the re sults of the bacteriological examination of water from a stream it is necessary to have some knowledge of its sources. If the water shed is a country sparsely populated but largely used for grazing, it would be inferred that the majority of colon bacilli present come from the intestines of lower animals. If, on the other hand, the water shed is thickly populated, and especially if the sewage from towns is known to empty di rectly into the river, the pollution shown by bacteriological examination may be inferred to be, to a greater extent, from human sewage and to be, consequently, more dangerous. The detailed results of the bacteriological examination of water samples are given in an appendix to thi $\mathcal{B}_{\bar{B}}$ report.

A brief summary of the results of these examinations may be given here, as follows:
Four samples of river water examined showed an average of 5,225 bacteria per cubic centimeter. Colon bacilit, indicative of sewage pollution, were demonstrated in all four samples. The average number of colon bacilli present in these samples may be roughly estimated as about 30 per 10 cubic centimeters.
Five samples of water from the reservoir gave an average of 263 bacteria per cubic centimeter. Colon bacilli were present in all samples, but less abundant than in the water from the river. The number of colon bacilli may be roughly estimated as an average of five per 10 cubic centimeters.

Nine samples were taken from wells at the pump house, namely, seven from individual wells, and two from the main leading from the pumps to the city. The average number of bacteria present in these samples was 38 per cubic centimeter; the maximum number of any sample, 90 ; the minimum in any sample, 2 per cubic centimeter. There was no evidence of sewage pollution in any of these samples.
Six samples were taken at the filter plant, from the main leading to the filters. The average number of bacteria present was 53 per cubic centimeter; the maximum number in any sample 105 ; the minimum, 15. None of the samples showed evidence of sewage pollution.

Five samples takes from the filtered water main at the filter house showed an average of 39 bacteria per cubic centimeter, a maximum of 65 in one sample, a minimum of 5 . None showed evidence of sewage pollution.

Four samples taken from city taps in various parts of the city showed an average of 16 bacteria per cubic centimeter, a maximum of 40 , a minimum of 4. None showed evidence of sewage pollution.

These examinations show that during the week ending April 20 th the water from the wells was of good sanitary quality, free from sewage pollution demonstrable by the methods used, and presumably safe for drinking purposes. The water supplied to the city during this time, probably almost wholly from these wells, was of approximately the same quality. Comparison of water taken from city taps with water taken from the mains and directly from the wells shows no evidence of serious or definitely appreciable contamination in the city mains.

Water taken from the reservoir above the pump house was found to be of very considerably better sanitary quality than water taken directly from the river, as was to be expected. A part of the water now in this reservoir has been pumped there from the wells; the remainder, probably the most of it, has been pumped from the river. It may be stated in this connection that small amounts of alum and lime have been added to at least a part of the river water now in the reservoir, as a coagulant, to assist in its purification by settling.

The water of the skunk river is found to be quite considerably polluted with sewage, which, indeed, might safely have been asserted even without bacteriological examinations, as the river receives the surfacedrainage of a wide and thickly populated territory.
evidence that the watek supplied to the cty caused tae outbreak of TYPHOLD FEVER.

To summarize the evidence that the city water was responsible for the epldemic of typhoid fever.

1. This water was the only article of food or drink found to have been common to the great majority of the patients within the thirty days previous to their illness. All but two of the sixty-five cases investigated gave a definite account of having used this water.
2. The epidemic was pretty definitely limited to the area of distribution of this water-supply, namely to Oskaloosa and University Park.
3. Other probable causes for the epidemic can be excluded by a careful analysis of the data obtained from investigation of cases.
4. The epidemic presented the general characteristics of water-borne epidemics of typhoid fever, namely, sudden explosive onset, even distribution among the consumers of the water, regardless of occupation, sanitary conditions of their homes, and relation to previous known cases of the disease. The proportion between children and adults affected wes about what has been found usual in water-borne epldemics of typhoid fever.
5. A part of the water supplied to the city during the thirty days preceding the outbreak came from a source subject to pollution, namely, the skunk river. While it is not possible to definitely locate the exact source of pollution of the river in this instance, it is at least highly suggestive that about the middle of February a case of typhoid fever occurred in a person living about elght miles above Oskaloosa; and that, according to information obtained from the family, up to the first of March, that is, until the diagnosis of typhoid fever had been made, the discharges from this case were emptied, without draining directly into a small stream which flows into a creek tributary to the Skunk river. 'An associate of this patient was taken sick at about the same time, with what may have been a mild case of typhoid fever, though no definite statement can be made as to the diagnosis, as this case was seen by a physidian only once. The stools and urine of this patient were likewise emptied upon the ground where they would probably have been washed eventually into the river.
6. The time of the beginning of the epidemic, about March 19 th, would indicate that the infection of the water which caused the outbreak probably took place about March 1st, about the date of a considerable thaw, which might be expected to wash a considerable accumulation of sewage into the river. March 14th, and from the reservoir March 23 rd, since which time very little water has been pumped from either source. At the present time, about four weeks after the discontinuance of this water the epidemic has apparently ceased.

aECOMMENDATHONS.

In making recommendations for the future prevention of typhoid fever in this city, it is considered that the prevention of an occasional epidemic is not more important than the prevention of the less noticed annual cases. Epidemics may be considered as accidents, which are to a certain extent preventable. The occurrence in a community of an excessive number of cases of typhoid fever year after year, cannot be considered an accident. In the course of ten or twenty years fewer cases occur in epidemics than occur in other times unnoticed by the public. It is, then, of even more importance to reduce the usual prevalence of typhoid fever than to prevent occasional epidemics, and this may be accomplished the more easily as the same general measures are effective in both directions.

WATER SUPPLY.

The prime requisite for a city, as a precaution against the excessive prevalence of typhoid fever, is a water supply which shall be at all times free from sewage pollution. It is not sufficient to have a supply which is usually safe. It must be so protected as to be safe every day in the year.
In recommending the measures for rendering the water supply of this city safe, it is necessary to consider first the temporary measures which can be adopted immediately, pending the more extensive changes necessary for a satisfactory, permanent system.

It is recommended that for the present the water supply be obtained as far as possible from the wells now in use. The brick cistern which has previously been used to receive the supply from three of the wells should be abandoned; these wells being connected directly from the main leading from the other wells to the pump.

It is almost certain, however, that the wells now in use will not prove sufficient at all times to afford a supply for the city, and it will be necessary from time to time to use water from other sources.

It is recommended that for a reserve supply, water be pumped from the river into the reservoir, or, preferably, if there is any surplus available from the wells that this be pumped to the reservoir. Storage of water in the reservoir will allow time for the natural processes of purification, viz., the settling of suspended particles, including particles of mud and bacteria, and the destructive action of sunlight upon bacteria.
To assist in the most important of the natural purification processes, sedimentation, it is recommended that a coagulant be added to the river water as it is pumped into the reservoir. For this purpose alum or
iron and lime may be used, as determined by careful chemical studies. When alum is added to water containing limestone (carbonate of calcium) the alum combines with a part of the limestone, forming jellylike flakes of aluminum hydroxide; and at the same time part of the lime present combines with some of the constituents of the alum, forming an almost insoluble compound of lime. The result is, that instead of having lime and alum dissolved in the water, the alum, and to some extent the lime, are made insoluble and are precipitated. If the process is carefully regulated by a competent chemist, no alum at all should remain in the water. Under some circumstances it is more practicable and economical to add lime and sulphate of iron instead of alum. The lime and iron combine, as do the alum and lime, forming compounds which are not dissolved in the water and which settle to the bottom. The settling of these particles, whether alum or iron and lime is used, causes at the same time the settling of particles of mud, bacteria and other suspended matters, thereby clarifying and purifying the water treated.
The use of a coagulant, when properly regulated, is free from any reasonable objections. The waters of many rivers in this country can not be satisfactorily and at the same time economically filtered without the use of coagulants.
The choice of the coagulant to be used for any given water and the regulation of the amounts applied should be left to a competent chemist. The careless use of chemicals in water is sure to prove either ineffective or wasteful, and is likely to result in objectionable substances remaining in the water.
In addition to the materials added to the water to cause better sedimentation, which can be added best at the inlet, it is recommended that an apparatus be installed for applying to the water as taken from the reservoir small amounts of hypochlorite of lime. This is now used in many places for the destruction of bacteria in water. While it can not be recommended as a permanent substitute for effective filtration, it has, in many places, proven effective in reducing the numbers of bacteria present in water in rendering it safer for drinking purposes.
The application of this, as of the materials used for coagulant should be carefully supervised by a chemist, and the results controlled by frequent chemical and bacteriological examinations of the water. The exceedingly small amounts of hypochlorite usually necessary for water that is clear and fairly free from organic matter do not usually make any appreciable change in the taste or chemical composition of the water. The use of hypochlorite for the partial sterilization of water is now generally recognized as a valuable emergency process. The necessary apparatus is Inexpensive, and can be very quickly installed.
In addition, the reservoir should be emptied, flushed and reflled, and should be protected by draining the pond above it, so that the drainage from the hilsides passes around the reservoir, Instead of being held above it as at present.

With these changes it is expected that the water from this reservoir may be made reasonably safe for drinking, very much safer than water pumped directly from the river. It is recommended, however, that until the water supply shall have been proven, by careful and extended tests, to be quite uniformly safe, people be warned to continue boiling their drinking water.
To avoid the necessity of increasing the pressure in the water mains and by-passing the filters whenever it is necessary to take water for a fire, it is recommended that a fire engine be provided to furnish the necessary pressure. Even with the use of a fire engine, it will still be necessary, with the present arrangement, to increase the rate of pumpage to supply water sufficient to extinguish large fires, but if the standpipe is kept filled this will not be necessary in the case of small fires. There will thus be the advantage of having such water as is necessarily pumped from the reservoir passed through the filters.
The filters, as at present used, do not materially reduce the number of bacteria present in the well water which passes through them, and could not be relied upon to purlify water from the river or reservoir. Filters of the type in use here are intended to be used in connection with a coagulant, as they are not sufficiently fine to remove bacteria and fine silt from water to which no coagulant has been added. The coagulant should be added before the water reaches the filters, allowing just time enough for the chemical reactions to take place before the water passes the filters. A basin or settling-tanks are usually provided for the purpose of allowing the coagulant time to act after it has been applied to the water and before it reaches the filters. As there is no such provision at this plant, it is doubtful whether a coagulant could be used to advantage, although possibly it might be added in the main a short distance before the filters are reached.
It is recommended that to avoid the possibility of raw river water being pumped into the city supply by the negligence of some employe, the valves leading from the river to the main pumps be sealed, also the valves leading to the city mains from the auxiliary pumps, which are used to pump from the river to the reservoir.
To permanently provide for a satisfactory supply of water, of good quality and sufficient in amount for the increasing consumption of the city, it is recommended that the wells be increased in number or provision be made for the proper filtration of water taken from the Skunk river, or else that another source of supply be sought. The advice of an expert engineer should be obtained as to the relative cost and practicability of these propositions.
Before it is decided to rely altogether upon wells such as are now in use, it should be definitely determined that they will give an abundant supply of water at all seasons, and that they will at all times furnish water of good sanitary quality. The examinations reported, extending over only one week, while they show that the well water has been of good quality during that time do not prove that it is safe at all times.

There are to be considered the possibilities that surface water may be drawn into the wells when they are flooded, and that under certain conditions the natural filtration which the water receives in passing through the sand and gravel to reach the wells may be insufficient to render it altogether safe.
If it is decided to take the supply in the future from the Skunk river altogether, it will be necessary to remodel the filtration plant. It would probably be necessary and at the same time economical to have the filter plant located at or near the intake, and to provide a setling basin to receive the water before filtration. It would also be necessary to provide a basin to receive the filtered water, holding a sufficient quantity for ordinary fire purposes. With a filtration plant properly constructed and operated it should be possible to obtain from the Skunk river water of good, safe quality.
It may be repeated that the planning of permanent improvements in the plant should be on the advice of a thoroughly competent sanitary engineer, and that the operation of the plant when constructed should be under the constant supervision of an expert capable of making and interpreting the necessary chemical and bacteriological tests. The chemical treatment and filtration of water are fairly complex processes, requiring constant adjustment to meet changing conditions, and to make such adjustments requires considerable technical knowledge. The purity and safety of the water from a purification plant depends upon the accuracy of its operation as well as upon the construction of the plant.
It is also recommended and urged that the, city employ a competent bacteriologist to make examinations of the water at frequent intervals in order that the authorities and the public may be kept officially informed as to the quality of the water which they are receiving. The necessity of such examinations is generally recognized, and filter-plants supplying large cities usually have provision for examining numerous samples daily. The necessity for examinations of the water is no greater in a large than in a small city except for the greater number of people whose safety is being guarded.

SEWAGE DISPOSAL.

An abundant and absolutely safe water supply will not of itself insure the elimination of typhoid fever. It is necessary also to make such provision for sewage-disposal that no human discharges are disposed upon the ground or exposed to flies, chickens; etc. This is especially necessary at this time, when there are in the city a number of cases of typhoid fever, who during their illness and in some cases during their convalescence constitute a menace to the health of the community. To minimize the danger of the discharges from these patients being received into open privies and being carried by drainage or by flies to the food or drink of others, immediate attention should be paid to the rigid enforcement of an ordinance requiring sewer connection and water closets on all premises sufficiently near a sewer. The sewer system should be extended as rapidly as possible to provide for sections of the city not already
sewered. Until this can be done, a privy ordinance should be enforced prohibiting the employment within the city of an open privy, and requiring all privies to be water-tight and fly-proof. The construction of a sanitary privy is a matter of small expense. A satisfactory model, ap proved by the board of health, should be required on all premises not provided with tlush-closets.
The care of privies and the disposal of their contents should also be under rigid supervision.

ith destruotion.

Typhoid fever may be conveyed by flies, which therefore become a danger in communities where typhold fever is present and where sewage disposal is inadequate. Flies do not originate typhoid fever; they merely carry the germs from discharges to which they have access. In preventing the spread of typhoid fever by flies it is of primary importance to so dispose of discharges that flies can not have access to them. It is also important, however, to reduce the prevalence of files as far as possible. This is most effectively done by attacking their breeding places. Horse manure, which is a favorite breeding place, should be required to be kept in tightly closed receptacles, to which flies can not have access, and all stables in the city should be required to be kept clean. Garbage should also be kept always in closed vessels, the contents of which should be collected as often as necessary and safely disposed of by removal to a considerable distance or preferably by burning. Now, when fies are not abundant, is the time to begin a campaign against them.

SUPERVISION OF DAIRIES AND IOE CBEAMY DEPOTS.
Dairies supplying milk to the city should be subject to regulations requiring the strictest cleanliness and care in the handling of milk, and the prompt reporting to the board of health of all cases of filness in their families or among their employes. The past experience of this city should demonstrate the importance of such regulations. Even with the utmost care on the part of dairies there remains a danger of their milk becoming infected with typhoid fever germs, so long as the disease is prevalent in the community. It is recommended that efficient pasteurization, under official supervision, be encouraged, as the most effective safeguard against typhoid fever. Proper pasteurization destroys typhoid germs which may be present in milk; but unless the utmost precautions are exercised in the handling of the milk after pasteurization it is liable to subsequent infection.

SCREENING OF FOOD-STUFES.

Food-stuffs exposed for sale, especially fruits and vegetables which are eaten raw, confectionery, etc., should be required to be kept protected from flles, which may carry typhoid germs. A screening ordinance is recommended for this purpose.

Since every case of typhoid fever is a menace to his associates and eighbors, it is a legitimate and important function of the board of health to have supervision over the preventive measures carried out in the care of these cases. In order that this may be done it is necessary that all cases be promptly reported to the health officer, and it is recommended that a representative of the board of health be detailed to instruct the family of each case in the proper preventive measures, and, if necessary, to enforce their observance. It is economy on the part of the community to supply the poor the necessary disinfectants, and, in some instances, attendance.
The passage of ordinances covering the above points will be of little avail unless the board of health is provided with an executive organization sufficient to make the necessary studies of the prevalence and causes of typhoid fever and to enforce the observance of its regulations. It is only by continued, well-directed efforts that typhoid fever can be reduced to a minimum in a community. If, as the prevalence decreases, these efforts are continued, there is every reason to expect a progressive reduction with ultimately almost complete eradication of the disease.
The manufacture and sale of ice cream should be under supervision similar to that exercised over dairies. Public restaurants should also be under the supervision of the board of health, and required to be kept and conducted in such manner as to minimize the danger of infection through them.
In conclusion I desire to express for Dr. Boyd and myself the most hearty thanks for the cordial treatment and energetic co-operation of the city officials, especially the mayor, the health officer and the cilty engineer, also our appreciation of the courtesy of the physicians of the city, the interest they have taken in this work, and the invaluable assistance that they have given.

Respectfully submitted,

W. H. FROST,

Past Assistant Surgeon, U. S. Public Health and Marine Hospital Service.

Oskaloosa, Iowa, April 23, 1912.

TYPHUS FEVER AND TYPHOID FEVER.-A REPORT ON PAPERS READ AT THE SOUTHERN MEDICAL ASSOCIATION MEETING AT JACKSONVILLE, FLA., NOVEMBER 12-14, 1912.

At the meeting of the Southern Medical Association in Jacksonville, November 12-14, 1912, a number of interesting papers having public health bearing were presented. Of very special interest was a paper presented by Dr. J. E. Paullin of Atlanta, Ga., on typhus fever. In this paper Dr. Paullin reports seven cases of typhus observed in Atlanta since 1910. The features of these cases are summarized by him as folIows:

TYPHUS FEVER IN ATLANTA, GA.
Onset has been sudden, with chills, as a rule; intense aching pain in back and limbs ; persistent and intense headache, in two cases severely distressing to the patient, and remaining throughout the course of the alsease; delirium was present in one case; prostration has been quite marked in all of the cases. The eyes are generally bright and shiny, the face flushed, tongue heavlly coated; between the fifth and eighth day of the disease the characteristic eruption appears first on the chest and abdomen, rapidly spreading to the back, arms forearms, hands, neck, face, legs and feet, although it is stated that frequently it is absent from the face. The rash resembles somewhat the typhotd roseola; it is more extensive and of a brighter color, maculopapular, varying in size from 1 to 12 mm . in diameter, appearing rapidly over the body, becoming petechial in places and not completely disappearing under pressure. In these case the rash had completely disappeared before the subslönce of the fever, leaving behind a darkish brown discoloration, which soon disappears. The rash has not been observed on the buccal mucosa. No subcuticular flushing has been noted in these cases.
The temperature is high from the onset and having within the first few days reached its fastigium maintains this with very slight remissions for 10 to 15 days, when it ends by lysis or erisis. With a normal temperature the patients feel well, and headache disappears. The pulse is, as a rule, full, good volume, occasionally dicrotic; slow in comparison with the height of fever.

The spleen has been palpable at the first examination in all of the cases except one, the percussion area of splenic dullness is here fncreased. The border is hard and firm. The largest spleen-Case VI-extended 3.0 cm . below the costal margin. All of the cases have shown slight leucocytosis, the highest count 12,400 -the lowest 7,000. Repeated widals with the Bacillus typhosus and Bacilhis paratyphosus have been negative.

Blood cultures have been made on all cases except the first two, all remaining sterile.

Most patients have had a slight bronchitls at the beginning of the disease, and in two it persisted throughout its course.

There have been no relapses in these cases and no complications.
${ }^{1}$ Reprint from the Public Health Reports, Vol. XXVIII, No. 2, Jan. 10. 1913.

This paper is of very great practical importance because it emphasizes what Dr. Anderson and myself have several times stated-that typhus fever is endemic in the United States, a fact which physicians and sanitarians do not as yet sufficiently appreciate.

Two other papers of wide practical public health interest were presented in the section on preventive medicine, one "The present status of our knowledge regarding the transmission of typhoid fever," by Dr. A. W. Freeman, and the other, "Fly-borne typhoid fever and its control in Jacksonville," by Dr. C. E. Terry. These two papers are of such wide sanitary interest that I would recommend their publication in the public health reports and herewith transmit copies of them for that purpose.

THE PRESENT STATUS OF OUR KNOWLEDGE REGARDING THE TRANSMISSION OF TYPHOID FEVER.
By Allen W. Freeman, M. D., Assistant Commissioner of Health of Virginia.

With the possible exception of tuberculosis, there is no disease in all the long catalogue of those classed as infectious which has been more studied than has typhoid fever. Both diseases present complex epidemiology, and in both effective practical prevention has come only after long and arduous study. The epidemiology of typhoid fever has become more complex as our knowledge has increased. The infectious agent of the disease can survive for a long enough time and under supficiently varied conditions to render the study of its transmission difficult in the extreme.

Prior to the discovery of the specific etiological agent of typhoid fever the studies which were made were for the most part fragmntary and unsatisfactory, and until the time of Budd, whose immortal work has never received the recognition which it deserves, nothing of great value in the specific prevention of the disease had been recorded. Budd, whose researches will always remain a model for pure epidemiology, clearly established the infectious nature of the disease, located the infectious agent in the excreta of the patient, and laid the foundation for our modern ideas regarding the disease. The discovery of the infectious agent, coming shortly after the publication of Budd's work, gave great impetus to the prevention of typhoid fever, and from that time to this the history of sanitary science records a continuous series of triumphs over the disease.

At the present time, in summing up our knowledge regarding typhoid fever, we may say without hesitation that it is caused by the Bacillus typhosus of Eberth. The work of Metchnikoff and Besredke, together with the results of anti-typhoid vaccination, have disproved forever the theory so frequently advanced that typhoid fever is of the same nature as swine cholera, and the typhoid bacillus only a secontary invader, the real infectious agent being a filterable virus to be found in the blood.
We may say, too, with certainty that the typhoid bacillus is of much wider distribution than was thought, even up to a few years ago. It is to be found in the discharges not only of the patient, but of many healthy persons, who may or may not have had the disease, and in the discharges of many persons who are sick with intestinal fevers so mild as to bear little or no clinical resemblance to true typhoid fever.

We have learned within the past few years that the typhoid bacillus is disseminated, not only as was formerly thought, by water and milk, and occasionally by other foods, but also by flies and fingers and in fact by
almost any material object which comes in contact with human filth, and directly or indirectly with human mouths. We have learned by sad experience that the measure of typhoid fever in any community is the measure of the distribution of human filth in that community, and that the dissemination of human excrement will inevitably result in the spread of typhoid fever.
Water has, of course, long been regarded as the great carrier of typhold infection, and rightly so. Sometimes in epidemics, sometimes in the continuous infection of a large population, sometimes in scattering single cases, water must be held responsible for a considerable proportion of our typhoid. Without adequately protected or purified public and private water supplies, typhoid prevention is impossible.
Milk has, likewise, for many years been regarded as a most important vehicle for typhoid infection. Epidemics without number have been caused by infection of milk supplies. Experience, dearly bought, has demonstrated that even the most rigid inspection of milk supplies can not prevent the occasional infection of a public supply, and that real protection against typhoid fever from infection of milk supplies is to be purchased only at the expense of pasteurization under municipal supervision.

Other food causes of typhoid infection have received much attention, but in spite of much study little has been learned as to their real importance. We have seen much agitation of recent years in regard to the role played by shellfish, and particularly oysters, in the transmission of typhoid. A careful study of the evidence would seem to show that while an occasional outbreak of typhoid has been found to be due to infection of oysters, in such cases the pollution has been obvious and inexcusable, such as the fattening of oysters in the harbors of large cities or even at the mouths of sewers. We believe that for the most part the average market oyster is not the cause of any great proportion of our typhoid and is in fact about as safe as any of the foods which we are in the habit of eating uncooked.

TXPHOID FEVER IN CITIBS AND TOWNS.
The studies. which have been made of the prevalence of typhoid fever In the cities and towns of the United States have revealed much that is of value in the prevention of the disease. The relative value of water purification, general sanitation, and food protection has been worked out in detail and the practical prevention of the disease has been made almost an exact science.
Everyone knows that frequent explosive outbreaks of typhoid fever have occurred as a result of the infection of public water supplies. From such supplies the typhoid bacillus has been recovered so frequently as to leave no doubt of the accuracy of the results. It has been proved too many times to admit of further question that the use of an impure water supply by a community will result in a continuously high typhoid rate, fand that purification of such a water supply will result in a marked and tmmediate lowering of the rate.

In cities in the more northern sections of the United States the purification of a public water supply of a city will result in the reduction of the annual typhoid death rate to a figure usually under 20 per hundred thousand. In the south the purification of the public water supply will in the absence of other measures seldom bring the figure below 50 per hundred thousand. In a southern city, possessing a pure public water supply, the sanitation of the city, and by sanitation is meant the complete protection from human filth in the community by perfect sewering or by rigid screening and supervision of dry closets, will usually result in reducing the annual typhoid death rate to the figure usually reached by the northern city from water purification alone, namely, 20 per hundred thousand. Unfortunately no figures are available as to the result of the perfect sewering of any southern city of considerable size, as, so far as we are aware, such a city is not to be found.

No more important addition has been made to our knowledge of the practical prevention of typhoid fever in urban communities than the facts which have come to light regarding the importance of protecting the people of any community against that infection which is not brought in from without the city gates but which is generated within and disseminated from foci close at hand. When we seek to work out a plan of protection for the citizens of any community against typhoid fever we should classify accurately our sources of infection into two groups. We should first consider those sources of exogenous infection without the city, from which infection is brought in, usually in water, milk, or other food, and which are guarded against by water purification and milk and food inspection. We should by no means neglect those sources of endogenous infection within the city, whence typhoid is distributed by an almost infinite variety of means, and which must be guarded against by what we speak of as general sanitary measures, such as sewerage, sanitary inspection, fly prevention, and, in addition, by the very especial supervision of the known cases of typhoid fever.

TYPHOID NEVER IN RURAL DISTRICTS.
It is to be regretted that our knowledge regarding the transmission and prevention of typhoid fever in rural districts as far from being complete as that regarding urban conditions. The subject is one which has been studied but little in this country, notwithstanding the fact that in many of our states typhoid fever is almost entirely a rural problem. We have learned, however, some facts regarding the transmission of typhoid fever in rural districts which are of value in practical prevention. We know that in most cases water infection has but little to do with the spread of the disease; that existing sanitary conditions in rural districts are utterly inadequate for the proper protection against human filth; and that the general dissemination of fecal matter consequent upon the presence of these insanitary conditions is inevitably followed by the presence of typhoid fever.

We know, too, that the country people at the present time have not learned those precautions whicl are absolutely necessary to prevent the spread of the disease from the bedside of the patient, and that frequently the disease is spread over large areas of country by contact alone. From our knowledge of the transmission of typhoid fever, taking into account the isolation and lack of intercommunication of the country people, we may confidently expect that an improvement in the sanitary arrangements of our farms, specifically in the building of a sanitary privy for every home and a more careful observance of the precautions of the sick room, will result in a marked decrease in the prevalence of typhoid fever in rural districts.
-
ANTI-TYPHOID VACCLNATION.
The results already obtained indicate clearly that vaccination with killed cultures of the typhoid bacillus confers upon the individual marked resistance to typhoid infection. In military organizations the great value of this method of protection has already been demonstrated, and results are rapidly accumulating to show that in civil populations the method may also be of great service in the prevention of endemic and possibly of epidemic typhoid.

SUMMARY.

Summing up, we may say that the essential basis for the prevention of typhoid fever has been laid, and that we are now in possession of the information, biological and technical, necessary for the actual eradication of the disease from the urban communities of the United States. The basis for prevention in rural communities, while not complete, is suffciently certain to insure a great reduction in present rates. The problem is no longer an investigative or scientific problem, but a problem of administration. When the people of the United States wish to pay for absolute protection against typhoid fever it can be bought with the full assurance that the goods can be delivered.

CONClUSION.
As physicians and sanitarians, we are most interested in the practical question, Can typhoid fever be prevented? We know that it can. We know that our methods are certain, that they will yield the desired result in every case where they are properly applied. The problem remaining for solution is how to convince the American people that protection from typhoid fever is something worth spending money for.

FLY-BORNE TYPHOID FEVER AND ITS CONTROL IN JACKSONVILLE.

By C. E. Terry, M. D., City Healih Officer, Jacksonville, Fla.

It is not my intention in this paper to present any new facts regarding the carriage of typhoid fever by flies nor to make any valuable contribution to the literature on fly transmission of intestinal diseases, but rather to state an experience which is unique, I believe, in municipal sanitation.
The source of the water supply of Jacksonville, as well as systematic bacteriological examination of this supply, have enabled us, we feel, to completely eliminate it as a factor in the spread of our typhoid fever. The entire absence of open wells, owing to a city ordinance prohibiting them, removes such source of water supply from consideration. The only other water supply that could have been questioned in individual cases are the driven surface wells, and here again local conditions, namely, a perfect sand filter, which our soil furnishes naturally, has enabled us, after repeated examinations for possible sewage contamination of these wells, to disregard them as factors in the spread of this disease.
The city water is artesian from flowing wells of an average depth of a thousand feet. As it issues from these wells it is practically sterile, and outside of continguous breaks in sewer and water mains there appears no opportunity for its contamination. No facts connected with any of our cases of typhoid fever would indicate that such an accident had eyer occurred. Below is a table of the bacterial counts taken from reservoirs and taps in different portions of this city for the past three years. It will be seen from a perusal of this table that our supply is of unusual purity.

Bacteria in city water during 1910, 1911 and 1912.

SOUROE OF SAMPLE	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Samples } \end{aligned}$	Average Bacteria perc.c.	Bacillus Coli.
Reservoir -	2	(222	
New reservoir	${ }_{8}^{1}$	118	${ }_{\text {A }}^{\text {Absent. }}$
South aerating basin	O		Absent
North aerating basin	8	38	Absent

The average of all counts is 23 bacteria per cubic centimeter, exclusive of reserve basin. This basin is called upon only in case of emergency, such as large fires. It lies near Main street and is uncovered

Twice Bacilli coli have been found in it, due probably to dust from the street and birds. In none of the other basins have we ever found the colon bacillus.
Together with the elimination of the water supply as a possible carrier of our typhoid fever, I have been able, since January, 1910, to eliminate milk as a factor, with the exception of three cases during the spring of the present year. The milk supply of every case occurring since January 1, 1910, has been determined, and in no instance has there been reason to believe that any milk route was at fault. In fact, only 16.6 per cent of all cases during 1911 and 1912 used any cows' milk prior to the onset of the disease. Since January, 1911, a case record has been kept of all the local conditions surrounding each case, such as milk and water supply, location as to privy or sewer district, recent contact with known cases, eating places, screening, etc.
With the elimination of water and milk, ordinarily the two main factors in the distribution of typhoid fever, it became apparent that some other common condition must be sought in order to account for the undue prevalence of the disease. There remained in my mind but two possibilities worthy of much consideration-contact cases and those due to fly carriage. My attention was first called while I was doing general practice in this city, prior to my appointment as health officer, to the possible agency of the fly, principally by the seasonal incidence of the disease. After my appointment, January 1, 1910, the distribution of the cases was found to be such as to corroborate this belief.
The conditions existing in the privy district at that time were such as to further in every way fly transmission of intestinal diseases. There were about 8,500 privies in the city, which accommodated 40 per cent of our population. Had these privies been confined to any particular locality their existence would not have entailed such a widespread distribution of infection; but they were about evenly distributed throughout every section of the city. In fact, there was at that time no point within the city limits of Jacksonville farther than nine blocks from one or the other of the privy districts, while about 75 per cent of the population lived either in this district or within three or four blocks of it, notwithstanding the fact that their own premises may have had sewer connections.
These 8,500 privies were such as are commonly seen in rural districts, and I can truthfully say that not a single one made the slightest pretense of protection against flies; indeed, so poorly were they constructed that many had no backboards and more than one householder objected to the visit of the city scavenger on the grounds that the chickens did his work to the entire satisfaction of the family. Few had seat covers, all had wide cracks and unscreened windows and many of these privies in the poorer negro settlements lacked even doors, denying to the occupant the privacy which the name would indicate could we rely on etymology for meaning. A large proportion of these privies existed in thickly settled districts where only a few feet separated the cottages and where small yards required the placing of the privy close to the kitchen
windows. In many instances, where a number of houses were owned by the same landlord, to economize space and money one community privy would be found within 25 or 30 feet of from three to six kitchens. Sereens are not furnished to this class of tenants. Each privy was a reeking mass of filth swarming with flies, which abandoned it only when the odor of cooking attracted them through the near-by windows. Surely here were present the three essentials to fly carriage of intestinal diseases-exposed human excrement, unprotected food supplies, and an abundance of flies. Ignorance and disregard for decency could scarcely have devised more ideal conditions for the dissemination of intestinal infections.
I regret that prior to 1910 scarcely any case reports were made to the health office, so that I can not determine the distribution of the disease before that period. The deaths, however, furnish sufficient information to show that its seasonal prevalence was the same as for the past three years. In 1910 we had a considerable increase in the number of deaths over the preceding two years. I attribute this increase in part to more accurate data and to the fact that the city had grown'so rapidly during this period that sewerage extension lagged far behind the requirements and each year the number of new privies constructed outnumbered the new sewer connections. At the same time in default of any law governing the construction and maintenance of these places, the old ones were falling constantly into a worse state of repair.
During 1910 our attention was early called to the distribution of the cases and it was also noted that a marked increase occurred after the onset of the fly season. Careful abservations on the prevalence of flies were made during this season about the public dumps and stables, and it was found that they reached their height about the end of the week in July, while the same month furnished the high-water mark of the typhoid cases reported.
Acting on this, we succeeded, in August, 1910, in securing the passage of an ordinance requiring all privies to be rendered fly proof. This ordinance was modeled after the one devised by Dr. Levy of Richmond. Its enforcement was begun at once, and by April 1, 1911, the beginning of the fly season, between 80 and 85 per cent of all privies had been reconstructed according to its requirements. The ordinance required tight construction, the screening of ventilating openings, self-closing doors and seat covers, and well-fitting hinged backboard. In order to avold, as far as posisible, imposing unnecessary hardships upon property owners, the law was so framed as to permit the repairing of privies already constructed where it was possible in this manner to insure fly proofing. Where, however, such repairs would not have accomplished the desired result entire new construction was required.
Beginning with January, 1911, the department has required that the sick room in every case of typhoid fever be screened and the flies destroyed by means of poison or sticky fly paper. This routine has been carried out by detailing an inspector to visit each case every other day
from the time of its reporting until convalescence is established, Where the financial condition of the family renders the screeming of the sick room a hardship, mosquito netting, sticky fly paper, and disinfectants have been furnished by this department and their use has been strictly enforced and watched. Printed instructions supplement verbal ones in each case.

As a result, I believe, of the screenfig of the privies and slek rooms the number of cases of typhoid fever reported to the health department during 1911 was 158 against 329 for 1910, the deaths for the same years being 40 against 62. There was actually a greater reduction in the number of cases, as the reports for 1911 were more complete than those of 1910. Not only did this reduction occur, but we found that the distribution of the cases as to privy or sewer districts was practically reversed in 1911 from that of 1910, showing no disproportion of cases in the privy districts. The 1911 cases were distributed according to the population, regardless of methods of sewage disposal.

It is interesting to note that of the 158 cases occurring in Jacksonville during 1911, 88, or 55 per cent, were imported, the large majority from the surrounding country districts, where the privy and "back lot" unite to solve the question of sewage disposal. A large proportion of these cases are imported in the summer from rural communities where typhoid fever is continuously epidemic. In all of these settlements open privies are used. During 1911 the enforcing of the privy ordinance was vigorously pushed and by January, 1912, these places were in as nearly a sanitary condition as it is possible to keep them where 50 per cent of the population is composed of negroes devoid of responsibility, and others of the type which looks with ridicule upon the necessity for care in the disposition of human excrement, or is too indifferent to matters concernIng the public welfare to observe more than the naked letter of the law.

The enforcement of this ordinance has cost property owners a large amount, and it was not accomplished without considerable opposition from various sources, but the results obtained have removed most of the objections and during the past year notices to repair or reconstruct dilapidated privies have generally met with prompt, if not always cheerful, response.

The most marked reduction in the typhoid case rate has taken place this year. At the present writing we have had only 87 cases reported with 16 deaths. Of these, 48 acquired thelr infection elsewhere and were brought here for treatment. In only 39 cases could the infection be charged to jacksonville. Three of these cases and one death were due to infeoted milk of a privately owned cow which supplied three famllies, a needless sacrifice to ignorance.

I am fully aware that the facts above stated do not furnish all the requirements of strictly selentific proof that our typhoid fever was for the most part fly borne, but it would appear that this was the case, as the only measures we have made use of to reduce our typhoid rate have been directed against this insect, and the only change in sanitary conditons throughout the city has been the fly proofing of the privies. Con-
tact has undobbtedy played its part, as it does everywhere, but in view of the fact that our water and milk supplies could be eliminated, as al ready stated, I feel that we are justified in attributing the major portion of our cases, prior to the enforcement of the privy law, to the house fy,

There arises, in this connection, a point of considerable scientife interest, namely, just how the disease is transmitted by the fly. We have been taught that the fly infects food by means of the speeffe bacill carried on its feet from infectious material. The commission appointed to investigate the causes of typhoid fever prevalence during the Spanish-American War call attention to the fact that flies "with their feet whitened with lime from the latrines" were seen walking over the food of the soldiers in the mess tents and kitchens. It has also been demonstrated by several investigators that fles fed on infected material will deposit the typhoid bacillus in their specks. Maj. N. Faichnie, Royal Army Medical Corps, in the November (1909) number of the Journal of the Royal Army Medical Corps, presents a most interesting paper on the exact source of this infection. It is his opinion that neither the legs of the Hies "nor their excreta when they feed on the contents of latrines are common vehicles of flyborne infection* quoting further from Maj. Faichnie:

But, on the other hand, the chlef and most common method is by exerement when the files are bred in an enteric infected materfal. By this I mean that one station may swarm with flies, bred only from the excreta of cows and horses, and yet have no enteric: while another place, where there are very station, may have an ese are bred from human excreta either in or out of the the flies, and the insects themselves being carriers.

Maj. Faichnte, in his report, adduces considerable evidence to support his contention. In view of his observations and some experiments which Dr. McKay and I conducted in 1911, I am inclined to believe, at least. that the fly bred in infectious material is a carrier for a longer period and hence more dangerous than the insect obtaining its infection through contact or feeding after maturity. It is a matter that is worthy of careful investigation. The fy-proofing of privies, however, is protection against either mode of infection, and I am convinced from inspections made of these places prior to the passage of our sereening ordinance that, second only to stables, they furnish the most prollfe fly hatcherfes in the city.

What is true of Jacksonyille is, I belleve, true of many of our southern towns and cities, where the sewerage systems are inadequate to the re quirements and where the old type of privy is in common use, and in such communities I am convinced the screening of these places will beat fruit in reducing the typhoid-fever rate, as it has done in Richmond, Asheville, and this city. The old type of privy is an abomination, and even the best is but a poor substitute for the sewer; but in the south, where lack of public funds, the poverty of large numbers of our people, and, as everywhere politics retard sewerage extension, and where climatie conditions prolong the fly season, the rendering fly-proof of these places is a necessity if we would secure even reasonable fmmunity from the fnfections they entall.

HOSPITALS AND THE HEALTH PROBLEM.-WITH SPECIAL REFERENCE TO THE NEEDS OF RURAL AMERICA.*

> E. E. MUNGER, M. D., SPENCER, IOWA.

What is America's health problem? Briefly, it is to prevent preventable disease, cure curable disease, relieve suffering, prolong life and to do all these things in the most intelligent, satisfactory and economical manner possible. Toward the solution of this problem much is being done by states and cities through more and more efficient health departments; a part of the public press is giving generously of its space for the dissemination of knowledge pertaining to health and disease; the church is concerning itself with the problem in a manner that augurs well for the future, as, witness, Hospital Sunday, Tuberculosis Sunday, and health sermons based not on fads and fancies but on facts.

more country hospitals needed.

It is not my purpose to deal with the question of prevention, except to point out how necessary it is to care for and cure disease in order to prevent it. I shall have accomplished my purpose in part if even in small degree my paper helps to fix attention on the necessities of rural America in the solution of the health problem and on the fact that the modern hospital is everywhere a necessary adjunct to the application of preventive and scientific medicine and surgery. Notwithstanding the advantages of natural environment, rural people have not the same opportunity for health conservation that urban residents have.

The mortality-rate for almost all diseases is lower in rural districts than in cities. It is probable that a considerable proportion of the difference is due to the fact that residents of the former, when critically ill, resort to the institutions and hospitals in cities for treatment, and when deaths occur they are registered in the cities and increase the mortality of the latter. ${ }^{1}$
One notable exception is typhoid. The mortality-rate for this disease in 1910 for cities in registration states was 22.4 per 100,000 population; for the rural part. of registration states 23.3.2

In view of the fact that rural typhoid in America is nearly always treated in the home, two significant statements are quoted: ${ }^{3}$

This rural frequency is important for dwellers in cities. The water-supply and milk-supply, as well as many articles of food, are derived from the country. milk-supply, as well as many articles of 100 , are derived from the country. city may spread infection far and wide through the country, while from the country there may be a steady stream of infected persons into the city.

The stamping out of typhoid fever is one of the great tasks before the profession of this country. The story is such an old one that little attention is paid to it. We of the profession shrug our shoulders and wonder at the apathy of civic authorities. Are we guiltless? Every patient with typhoid fever means infection from a previous one. If thorough disinfection were carried out in infection irom a previous one. If thorough aisinfection were carried out in there would be in the incidence of the disease! Disinfection is often in the there would be in the incidence of the disease! Disinfection is often in the hands of persons who do not realize the importance of its being thorough, and he does not realize his own responsibility and is thoroughly satisfied if he brings the patient well through the attack, heedless of the danger to the combrings the

If possible the patient should be treated in a hospital. The advantages of this are many, for in few houses can a patient be handled as satisfactorily as in a hospital. The nursing can be done in a better way, the complications may be recognized and treated earlier and the requisite disinfection carried out more thoroughly. In country practice and in many places hosiptals are not available and the best that can be done has then to be done.
It has been estimated that probably 8,000 persons in the United States die every year from perforation of the intestine in typhoid fver and perhaps 2,500 of these can be saved by proper treatment.

In a country physician's practice, a typhoid patient with this complication has no more chance for existence than a snowball in a kettle of boiling water.

In 1910 the death-rate from tuberculosis of the lungs was 139.7 per 100,000 population; from pneumonia, 147.7 ; organic heart disease, 141.5; diarrhea and enteritis (under 2 years), 100.8; nephritis and Bright's disease, 99.0. In other words, there were in the United States in 1910, approximately 131,000 deaths from tuberculosis of the lungs; from pneumonia, 140,000 ; organic heart disease, 133,000 ; diarihea and enteritis, 95,000 ; nephritis and Bright's disease, 93,000 .

TREATMENT OF PREVENTABLE DISEASES.
On every hand we are being taught a great deal about tuberculosis; the instruction, most of it , is authoritative, timely and important, and is accomplishing results. Nevertheless, when it is known that the total number of deaths in the United States from the great white plague (all forms) is approximately 151,000 , while from the other four diseases just mentioned it is about 461,000 , one must inquire why tuberculosis: should occupy the stage to the exclusion of the other characters whose

[^8]parts must be played if the sequel is not to be disappointing. Is not a man who has died of heart disease just as dead as the one from tuberculosis? True, the latter has had with him the infective element in larger measure and he is entitled to the title role; still, the deaths from other infections disclose the real tragedy of preventable disease.
"Heart disease in about 50 per cent of all cases is a sequence of caute endocarditis. Among 670 cases of chronic heart disease at the Leipsic clinic 58.5 per cent followed acute rheumatism. In the all-important endocarditic group of the acute infections, rheumatic fever plays the important role. There is no single problem of greater impcrance in preventive medicine than the reduction of the enormous waste of life in children in consequence of the rheumatic infection." ${ }^{*}$

Here is one of the peculiarities of mortality statistics: If a patient with a crippled heart contracts pneumonia, typhoid or other disease and dies because his limited heart-power is not sufficient to carry him through the crisis, death is attributed to the preceding acute disease. If he dies from heart-disease some time after apparent recovery from the acute infection which caused it, the latter is infrequently mentioned as even a contributory cause of death. Hence we find the death-rate from reumatism only 7.4 per 100,000 of population, while it is responsible for more than one-half the cases of chronic heart-disease.

In no disease is it more important than in rheumatism that the physician "should be a watchman all the time," for on the early detection of heart complications may depend the life or future usefulness of a patient. If it were possible in the beginning of the attack to remove patients with acute rheumatism from their unhygienic surroundings to hospitals near at hand and there find proper diet and facilities for care and treatment, including that important adjunct to modern medicine, the trained nurse, all would be done that can be done toward lessening the severity of the attack, adding to the comfort of the patient and preventing the disastrous complications, of which heart-disease is the most common.

Rarely, indeed, can one find in a rural district a patient with rheumatism receiving the benefits of hospital care, or one who can be prevailed upon to provide for himself early and suitable nursing at home, or tolerate on the part of the physician the watchfulness so necessary for sensible and successful treatment.

The rural pneumonia portion of the health problem can be solved in part, at least, if suitable hospital provision for its treatment can be made. It is well known that when we are dealing with this disease "the scenes change rapidly and the passage of an hour or two may present an entirely different picture. The obvious lesson of this is that pneumonia patients should be watched carefully and seen by the attending physician at frequent intervals, especially during the latter part of the disease, when judicious and well timed medication may tide the patient over the crisis to recovery?

[^9]Musser and Norris: Osler's Modern Medicine, 1907, 11, 636.

How is the country physician to follow this sound advice? The reasons why he cannot are perfectly plain to both the patient and the physician. In cases of diarrhea and enteritis and other children's diseases, the rural hospital, with its complement of visiting nurses, can materially help to solve the infant-mortality part of the health problem.
Time does not permit a discussion of the whole question, yet your attention is asked to two of its minor, but none the less important, elements:

In 1910 there were approximately 8,000 deaths from appendicitis in the United States-not a large number when compared with deatis from other causes, but rather formidable in the light of this indictment by one of the world's greatest surgeons. ${ }^{\circ}$ He says:

It seems to me that every death from appendicitis is chargeable directiy to the people, for not calling in the physician sufficiently early after the onset of the symptoms, or to the physician and surgeon for not acting promptly when they are called. We are sorry to admit that the latter represents the greater percentage. We should have no deaths from appendicitis, but we are having them. We should accept the force of numbers and experience to guide us against the culpable, if not criminal, error of delay in this class of cases.

Granted that delay is both culpable and criminal, blame should not be laid entirely on the people or on the physician, or even on both; it is due rather to the want of 'instruction relative to the achievements of scientific medicine and surgery. Some there are who, practicing what they teach, cure every case of appendicitis with colon tube and olive oil-excepting only those that die of peritonitis.
In a great city, living under the very eaves of a modern hospital, a physician who would allow a patient to die from appendicitis for the want of timely surgical treatment is no doubt culpable in a degree approaching criminality. In the country, when one has any serious sickness, especially if the trouble is appendicitis, procrastination is as common as it is dangerous. An operation in the home is never consented to excepting as a last resort; in order to get to the hospital the patient
must endure a variety of hardships incident to a long railway journey for a very sick person. The patient dies while waiting to recover sufficiently to be able to go away; the death certificate is made out as best suits the exigencies of the occasion, and thereby hangs a tale which mortality statistics do not tell.

In 1910 approximately 15,000 mothers died from diseases and accidents incident to childbirth; nearly 7,000 of these from puerperal septicemia. There were 70,000 deaths from premature birth and diseases and injury peculiar to early infancy-a total of 85,000 mothers and infants dying annually in the United States from causes which all authorities agree are largely preventable or curable. These cold figures do not disclose their sorrowful story; the resulting desolation, woe and despair beggar description.
${ }^{\circ}$ Murphy, J. B.: Keen's Surgery, 1908, iv. 778.

HOSPITALS AND SANATORIUMS

State	Proportion of Beds to Population		Publie	
	Population	IEeds	Hospitals	Beds
Alabama	2,138,093	2,774	10	1,627
Arizona	204,354	2936	5	58
Arkansas	$1,574,449$ $2,377,549$	2,236 13,709	14 96	¢ 0 0
Colorado	2,399,024	13,709 4,769	${ }_{30}$	6,326
Conneeticut	1,114,756	4,407	24	2,349
Delaware	202,322	448	6	402
Florida	752,619	1,066	20	540
Georgia	2,609,121	3,076	16	1,809
${ }_{\text {Idina }}$	- $\begin{array}{r}325,594 \\ \hline, 68,591\end{array}$	1,157	19	643
Indiana	2,700,876	18,285	95	7,028
Iowa	2,224,771	4,890	60	2, 2,396
Kansas	1,690,949	3,382	30	1,535
Kentucky	2,289,905	2,751	27	1,930
Louisiana	1,656,388	2,718	7	1,613
Maine -	7, 74, 2731	1,542	21	1,159
Maryland --ts	$1,295,346$ $3,366,416$	4, 4, 866 15,474	33 69	8,023 6,974
Michigan	2,810,173	7,237	69	2,612
Minnesota	2,075,768	6,286	57	3,678
Mississippi	1,777,114	1,061	9	429
Missouri	3,293,335	7,349	33	3,516
Nebraska	1,192,214	2,384	15	606
New Hampshire	1,192,214	1,166 1,102	${ }_{22}^{28}$	3,543
New Jersey	2,537,167	6,700	48	4,434
New Mexico	327,301	947	8	
New Yorik	9,213,279	42,904	180	23,012
Nevada	81,875	498	9	296
North Carolina	2,206,281	2,364	19	725
North Dakota	577,056	1,200	17.	611
Ohio	4,767,121	15,126	109	11,838
Oktahoma	1,657,155	1,245	10	270
Oregon ----	672,765	2,109	11	795
Pennsylvania	7,665,111	29,340	88	22,643
Rhode Island	542,610	1,628	8	305
South Carolina	1,515,400	834	8	332
South Dakota	583,888	1,069	10	442
Tennessee	2,184,789	2,753	18	1,365
Utah	3,896,542	7,444	30	1,726
Vermont	${ }_{355,976}$	1,327	9	920
Virginia	2,061,612	2,870	22	1.076
Washington	1,114,990	4,285	42	3,012
West Virginia	1,221,119	2,078	12	657
Wisconsin	2,333,860	6,015	54	3,084
Wyoming District of Columbia	$\begin{aligned} & 145,965 \\ & 331,069 \end{aligned}$	394 1,789	7 8	${ }_{395}^{289}$
Totals	91,944,925	260,643	1,586	189,340

how in ane hospitals, reformatories, homes for aged, feeble-minded, blind and orphans, Show in a general way the number of kinds of hospitals. in the United States and the

OF THE UNITED STATES.

Private		Tuberculosis				Corporation		TotalHospit'le
Hospitals	Beds	Public		Private		Hospit'ls	Beds	
		tospit'Is	Beds	dospit'ls	Beds			
30	1,036	2	48			2	62	4
20	478	2	58	6	225	1	74	34
15	907	1	74			1	264	31
183	6,032	${ }_{5}$	397	13	698	2	258	299
48	1,535	4	214	10	787	4	480	96
27 1	1,401 38	1	110 8	5	547			57
17	406					2	120	39
40	880	2	82	5	205	1	100	64
21	${ }^{374}$			1	100	1	40	42
140	8,497	2	1,835	4	815	2	110	248
74	3,001	2	110	4	122	2	207	128
$\stackrel{64}{68}$	2,260	2	144	1	20	1	70	128
${ }_{36}^{68}$	1,711		50	2	21	1	115	92
20	1,055			2	60			29
12	283			1	100	----		36
22	990	2	600	3	235	3	18	63
158	6,367	2	1,482	13	651			249
97	4,075 2,118	2 4 4	322 260	1	- 48	1	180	164
${ }_{22}$	2,118	4	260	3	75	2	155	151
93	4,011	1	150	1	22	1	150	120
25 35	1,630 713	----	--------			5	148	45
- 12	222	1	35					${ }_{37}^{7}$
- 33	1,663	4	445		158			86
19		2		- 8	445	3	98	40
284	16,035	15	2,817	16	906	2	184	447
50	-173	1	50	7	185	2	28 37	19
23	1,589.		0	7	185			40
107	2,990	${ }^{6}$	284			1	4	223
${ }_{29}^{40}$	${ }^{263}$			1	40			51
92	4,289	7	1,862	4	396	1	50	15^{7}
11	931							-238880
179	431 618		$\begin{aligned} & 65 \\ & 14 \end{aligned}$			1	6	$\frac{28}{30}$
49	1,322			2	66			69
90	5,277	1	60	5	256	4	125	130
11	395					2	12	22
14 43	400 1,545			$\begin{aligned} & 1 \\ & 2 \end{aligned}$			91	27
49	1,210	1	31					93
42 80	1,376 2,584	\cdots	190			2	45	${ }^{6}$
8	${ }^{2} 90$	2	10	3	107	1	18	16
6	734	2	170					16
2,484	97,745	96	12,737	128	7,451	58	3,570	4,292

county poor farms and similar finstitutions included. The table was prepared to proportion of beds to population. No ciaim is made for more than approximate accuracy.

Mortality statistics for maternity hospitals confirm the following statement: ${ }^{\text {i }}$

The hospital is now the safe place for a woman to be delivered in; it is in the private dwellings that danger lurks. The poorest, the dirtiest, the most dissolute women are safely confined in a hospital; the richest, the youngest, the purest and the loveliest sometimes succumb in giving birth to a child in their own homes.
hospital legislation in iowa.

In 1909 the Thirty-Third General Assembly of Iowa becane interested in the hospital and health problem; its members recognized that rural communities, in dealing with accident and disease, do not have the same advantages as urban residents. Little argument was required to convince this body of intelligent and earnest men that any considerable number of people should have at least the right to work out their common health problem. They scarcely listened to the contention that such a privilege would result in a tax on the many for the benefit of the few. Proportionate taxation for the benefit of all admitted of no argument, and this legislature deliberately enacted the law making possible, in Lowa, the ultimate establishment of an adequate supply of hospitals with equal rights to all and special privileges to none. ${ }^{8}$

The author of this law had in mind the necessity that exists, and it was his purpose to establish a public hospital with a board of trustees that will become a board of lay sanitarians who, in formulating such rules and regulations as will enable the hospital to be of the greatest good to the greatest number, will become informed about health matters and will be influential factors in the solution of the community's health problem.

There will be neither incentive nor opportunity to make such a hospital a money-making institution. Crime and graft in the form of illegal and unnecessary operations, wrong diagnoses for the sake of prolonged treatment, unwarranted division of fees and other evils cannot go on undiscovered and unexposed. It will furnish its care at the lowest price
${ }^{7}$ Garrigues : Quoted by Dobbin, Handbook of the Medical Sciences, 1907, v. 379.
${ }^{\text {s }}$ Some Fundamental Truths: (1) A number of people will have a varying amount of sickness. (2) Of this amount of sickness, a fairly definite and constant Dortion requires and should have the advantages of hospital treatment. thing wherever it exists. (4) Whatever is known to be the very best treatment of any disease should be made available to all persons afficted with disease. (5) Of the total number of persons who are ill a few may have homes and the means that will enable them to be fairly well cared for, but the vast
majority are not so situated. (6) In all cases of serious sickness, whether medical or surgical, nursing, diet and sanitary environment are of prime importance in treatment. (7) While trained nursing is an essential part of the treatment, the cost of such nursing is so high that it is next to impossible for any but the very well-to-do to avail themselves of its great benefits. (8) Peofinancially every year, every month, every week and every day, because of the lack of hospital advantages within their reach and means. (9) Every human being, with only enough excentions to prove the rule, having arrived at the age of discretion, regards his health as his most valuable possession and his
life as the one thing for which he is willing to exchange all else. (10) Hospitals, to fulfil their missions, should be established with reference to a given numher of people, be maintained by the people and conducted primarily for the
requisite for proper maintenance; it will not concern itself with the fees of its physicians and surgeons except in those cases in which pat tients are subjects for charity. It may, however, frown on exorbitant and extortionate charges. It will be conducted on a strictly ethical basis and be made the health center for a community-a center from which health information will be disseminated by both precept and example. Its equipment will be complete with every facility for up-to-date work; it will have a pathologic and bacteriologic laboratory, which should be auxiliary to the laboratcry of the state board of health. An ambulance service will be provided. A necessary and most important adjunct will be a training school for nurses. An x-ray laboratory will confer great benefits on both patients and physicians. At such a hospital the fact will be recognized that there are many specialists of signal ability whose services may be required from time to time. In order that the people of a community may, on occasion, have the benefit of their skill and experience, a consulting staff acceptable to the people will be selected by its physicians and surgeons.

It was not the intent of the law to supplant standard hospitals; all have the common function of caring for the sick and disabled. Some perform a dual service by reason of their affliation with medical colleges, furnishing the practical training for surgeons, physicians and nurses. Many are of high class, others are good, some tolerable, some merely boarding-houses with "operating room" and "rooms for rent," and some are positively bad. The present and urgent need is the establishment of an adequate supply of reputable hospitals, all to be standardized and inspected as the logical sequence to the same processes for medical colleges and their graduates. As a result the great surgeon will become greater and the good physician and surgeon better. The poor, careless, indifferent few who endanger society and who are the curse of reputable medical men will be driven out of the profession, removing the point of attack for carping critics who, under the auspices of the league for medical riot, go about the country, disguised with the cloak of freedom, noisomely assailing the honor and integrity of the entire medical profession and offering themselves as a substitute ior safety.

It is noteworthy that the first hospitals built under the Iowa law were located in counties bearing the names of Washington and Jefferson. The table shows the hospital situation in the United States, and the map the number and location of public and private hospitals, the number of beds and the proportion of beds to population in Iowa. In studying this bear in mind that "those best qualified to judge seem to be of the opinion that every civilized community requires one hospital bed for each 100 inhabitants. ${ }^{10}$

Women and ehildren first on the sea! What of mothers and infants on the land? We stand aghast at news of an appaling Titanic disaster, telling of over 1,500 lives lost at sea. The governments of two nations instantly prepare for an investigation of causes and quickly fix

- Compiled from American Medical Directory, 1912, Ed. 3.
${ }^{10}$ Ochsner and Sturm: The Organization, Construction and Management of Hospitals, 1909, D. 11 .
responsibility. There is no delay. The court of inquiry has convened beside the sea and is the port of entry for survivors. This alertness is striking, compared with the dilatory tactics pursued when measures are proposed for the remedying of needless waste of life on land.

CONClUSION

In conclusion, and in order that more and better means may be provided for the safety of passengers and crew, competition here and there and now and then should reasonably yield to co-operation for health conservation; there should be developed a public hospital system fashioned somewhat after the public-school system, and our national health should be made an ever-increasing national asset. With these ends in view Congress should enact into law the measure creating a national department of health with as many bureaus as may be necessary to enable it too perform its main function of "enlightening and directing public opinion in regard to the broad problems of hygiene and representing to the world the practical accomplishments of scientific medicine." Congress should realize that such legislation will promote the physical welfare and domestic tranquility of our people and clearly be in accord with the high idleals of the fathers who wrote these words into our constitution.

If we think of each state as a gigantic Titanic carrying its cargo of human souls across the sea of life, having in mind the icebergs that hazard the voyage from birth to death, we are blind, or will not see, if we do not pay attention to the insufficient number and uncertain character of some of each ship's life-boats.

PUBLIC HEALTH ADMINISTRATION-ITS DEPENDENCE UPON REPORTS OF CASES OF SICKNESS. ${ }^{1}$
By John W. Trass, Assistant Surgeon General, United States Public Health Service.

The accomplishment of effective public health work depends largely upon the use of information obtained from the notification of cases of the preventable diseases. Adequate notification shows the occurrence, prevalence, and grographic distribution of these diseases, and without this knowledge attempts at their control are to varying degrees ineffective, and the proper protection of the health of the community is impossible.

Originally the duties of the health officer were very simple, and related only to the control of certain diseases associated with popular dread. As knowledge, however, of the causes of diseases and their means of spread has been acquired, the responsibilities of the health department have rapidly increased, so that at the present time the health department is properly the guardian of the community's health in so far as health can be conserved by the prevention or control of disease.

Only those diseases may be properly classed as preventable or controllable of which something is known of the cause or means of spread. Given this knowledge, the first and essential step in their prevention or control is the securing of information of the occurrence and location of the factors that produce disease and of the foci from which disease may spread. Of the communicable diseases a knowledge of the existence and location of cases is necessary, as each such case constitutes a focus from which the disease may spread. Of the diseases that are preventable but not communicable, a knowledge of the occurrence of cases and of the conditions under which they are occurring is necessary, as it shows the existence of the conditions which produce these diseases. This knowledge can be obtained only when the occurrence of cases is made known to some authority-that is, when cases are reported. Any attempt at the prevention of disease will be at best incomplete and in large measure a makeshift unless it is based upon a knowledge of the occurrence and prevalence of disease.

The health department in a community is able to control disease in proportion to the completeness and exactness of its knowledge of the occurrence of cases. With full information of existing cases it can work effectively; it can direct its .efforts at prophylaxis against the disease itself; it can work in the light of knowledge of the situation. Without such information its attempts at control must be of a general nature, sometimes effective, more often not, for it is working in the darkness of ignorance of the location and prevalence of that which
${ }^{1}$ Reprint from the Public Health Reports, Vol. XXVIII, No. 1, Jan. 3, 1913.
it is attempting to control-as well hunt birds by shooting into every green bush, a practice that would cost much in ammunition and yield but poor results. If they are not reported there may be hundreds of cases of typhoid fever, or infantile paralysis, or scarlet fever, or smallpox in a locality, and the health officer not be aware that there are any present.

Tuberculosis is a communicable disease. With the exception of the relatively small proportion of cases contracted through milk from diseased cows each case is contracted directly or indirectly from some preexisting human case. To control this disease pffectively, it is necessary that each case be known to the health department so that it may ascertain that the patient is not unnecessarily exposing others to infection. Tuberculosis is usually chronic in nature, and those affected frequently remain for months and sometimes years a focus from which the infection may spread to others. To control this disease the health department should make sure that the patients understand how to so conduct themselves that others may not be infected and that those associated with the sick know the manner in which the disease is spread and how to protect themselves from it. Then, too, the health department should know of those suffering from tuberculosis, as those so affected, for the protection of the community, should not engage in certain occupations in which they would be especially apt to spread the disease.

Typhoid fever is another disease in which the health department should be informed of the occurrence of each case. Every case of typhoid fever has potential possibilities for harm to the community through the contamination of water, milk, or other food supply. A. knowledge of all cases is necessary for the protection of others, for each case is a focus from which, under suitable conditions, an outbreak may arise. When there are a number of cases of this disease, there is usually some one or more sources from which it is being spread, and it is only when cases are reported that the health department can ascertain their relationship to each other or their common source of infection when such exists. It is only through the notification of cases that outbreaks due to infected milk or the infection of a common water supply can be recognized and proper remedies applied or that typhoidbacillus carriers can be traeed and controlled.
Scarlet fever is alother common disease in which the need for the notification of cases is universally understood. Every case of this disease comes from some pre-existing case. No community would expect and no health department would attempt to control this disease in the absence of the notification of the cases that were occurring. The same is true of plague, yellow fever, and cholera. There are many other diseases, however, in which the importance of the reporting of cases has not been generally appreciated, but in which the necessity is just as great if they are to be prevented. The necessity for notification exists in all preventable diseases. Their causes or methods of spread may be different and the measures necessary to prevent them may vary, but the
notification of the occurrence of cases is essential in all for their successful control. The health department can not prevent the spread of diseases of the existence of which in the community it is uuaware. '
For purposes of public health administration, cases of the communicable diseases may be divided into four groups, namely: first, the wellmarked cases; second, the mild, concealed cases; third, the mild unrecognized cases; and, fourth, the well, or apparently well, carriers. To prevent the spread of these diseases control of all four groups is necessary. The control of only the first group by quarantine or other means, a practice these diseases, as the well-marked cases usually comes less in contact with others than do the cases of the other groups, and are likely, therefore, to be less potent factors in spreading infection. The well-marked. cases are presumably usually reported. The mild cases should also be reported. The notification of the cases in the first two groups should enable a well-organized health department to discover most of those in the other two by a careful study of the conditions under which the reported cases occur. To find the unrecognized cases and carriers, to which is largely due the spread of the communicable diseases, is a prime duty of the health officer. The accomplishment of this requires intelligence and watchfulness and will be possible in proportion to the completeness with which the recognized cases are reported.
But the health department of a city, township, or county needs to know not only of the occurrence and prevalence of disease in its own jurisdiction, but also of the prevalence of disease in neighboring cities, towns, and counties, so that it may be informed of the possibility of the introduction of disease from other communities. The prevalence of infectious diseases in every city and county has an important bearing on the welfare of every other city and county in a state. In a wellorganized state, therefore, the local health authorities keep the state health department currently informed of the prevalence of disease in their respective jurisdictions, that the information may be made available to the various local authorities and that the state department, acting in its broader field as the agent and representative of all localities and all the people, may perform its proper functions in the prevention and control of disease. Without the information of the prevalence and geographic distribution of disease obtainable in tbis way the state health department will remain in ignorance of the sanitary condition of the state, and, because of this lack of knowledge, will be unable to perform its proper functions and will therefore constitute a health department. largely in name only.
In addition, a state health department needs for the proper performance of its functions a knowledge of the prevalence of disease more extensive than that of its own state. It needs to know of the prevalence of disease in neighboring states and even in those more remote. It is as necessary that one state should know of the prevalence of disease in other states as that a city should know of the prevalence of disease in surrounding communities. Therefore, to complete the usefulness of the health organization it is important that the states report to some national agency the occurrence of disease in their various jurisdictions.
that the information may be made available to the several states, and that the national health service, acting as the representative of all the states, may, when occasion arises, perform those functions with which it has been intrusted and for which it has been made responsible. A resolution providing for reports of this kind by the states for the purpose of making available current information of the prevalence and geographic distribution of the notifiable diseases was adopted in June, 1912, by the state and territorial health authorities in conference with the United States public health service. ${ }^{1}$

Thus, it is apparent that the notification of cases of the preventable and controllable diseases is the only satisfactory foundation upon which public-health work-local, state, or national-can be builded. There is no other foundation upon which work that will yield a proper return for the amount expended can rest, nor is there likely to be for a long time to come. Public health work based upon the knowledge furnished by the notification of cases is not only the only rational and effective work, but is the only one that gives results commensurate with the outlay and effort made.

A discussion of either public health organization or the notification of disease-morbidity reports-would be incomplete without a consideration of the relation of the practicing physician to the subject. The person responsible in most cases for the reporting to the proper authorities of the occurrence of cases of the notifiable diseases is necessarily: the practicing physician who first comes in contact with such cases. The practicing physician constitutes the picket of the health organization, the sentinel who must give the first notice of the presence of disease and upon whom rests the responsibility of discovering and reporting new cases as they occur. The practicing physician, therefore, constitutes in reality an essential part of any plan of health administration.

The physician is engaged in a work which placed him in a position of especial and peculiar responsibility to the community, a work which carries with it moral and usually statutory obligations, upon the proper fulfilment of which depends to a large degree the ability of the health department to perform its functions. The requiring of those desiring to practice to pass an examination and to be duly licensed and registered is a partial recognition of this, and presumably such licenses are given on the assumption that the recipient will comply with the requirements imposed upon physicians by law, among which is invariably the duty of reporting cases of certain diseases coming to his knowledge. The physician who does not comply with such statutes not only places himself in the class of those who violate the law, but shows himself indifferent to his moral obligations as they affect the welfare of the community. It would be well to give more definite recognition to the relationship the physician holds to the health department and to the

[^10]crmmunity. Sucin recognition would undoubtedly be agreeable to physicians and bring them into closer co-operation with the health authorities i) whose jurisdictions they practice.

The citizen also stould co-operate with the health department. The individual who oijects to complying with the requirements regarding the notification of disease when they apply to himself or his household can not expect his neighbors or associates to report the cases in their families. The moral obligation of the individual to his neighbors and the community is such that he should make the same effort to protect them from his illnesses as he expects them to make to protect him. The health officer needs the assistance of the people at least to the extent of camplying with the health laws, and the requirements for the notification of sickness are among those to which especial attention should be paid. The health officer is the servant of the community. He is the ome employed by the people to look after their health interests, taken in the aggregate. It is no more rational to employ a health officer and then not give him every facility and assistance for accomplishing the things for which he has been employed than it would be to hire a gardener and then not supply him with tools.
As the local health department expects to have cases of the notifiable diseases reported to it by physicians, so it should give every assistance to the state health department by keeping the state department informed of the sanitary status and occurrence of disease in its local jurisdiction. If there is law or regulation requiring the city, town, or county authorfttes to notify the state, this is sufficient reason. In the absence of law, however, the importance of the matter, and the fact that both state and local health departments are working for a common end, is sufficient reason why the local authorities should give all possible assistance to the state, and especially should report the occurrence of the preventable diseases in so far as they have the information. No city can be so large nor its health department so efficient that it is reHieved of this obligation. The larger the city and the better equipped its health department the greater the obligation to the state, just as the more influential and prominent the citizen the greater his obligathons to the community. The local health department that does not co-operate with the state authorities has but little moral right to expect the citizens within its jurisdiction to render to it any assistance beyond that insisted upon by the courts or inspired by fear of fines or imprisonment. The local health department and its jurisdiction are to the state department what the individual and his household are to the local đepartment.
On the other hand the state, too, in so far as the control and prevention of disease is concerned, is but a unit. Disease is no more a respecter of state boundaries than it is of those of counties or municipalities. It ignores such boundaries established by man. What the household is to the municipality, and the city and county to the state, thie state is to the nation.

With the several states alone responsible under the constitution for the sanitary conditions and public health administration within their respective boundaries in so far as these do not affect the welfare of other states, and with a large part of this responsibility in many instances delegated by the states to local authorities, a comprehensize plan of pub ic hcalth administration will need to be one of co-operation. Within the states it will need to be one of co-operation of the locen authorities acting with and through the state health departments, ana for the nation a co-operation of the state health authorities with fhe federal public health service.

FEDERAL PUBLIC HEALTH ADMINISTRATION-ITS DEVELOP\therefore MENT AND PRESENT STATUS IN THE UNITED STATES. ${ }^{12}$:By J. W. Kerr, Assistant Surgeon General, United States Public Health Service.

The jurisdiction of the federal government in public health matters extends over foreign intercourse, interstate intercourse, federal territory, and federal administrative affairs, including protection of the Indian tribes.
federal healtif administration in relation to foreign intercourse.
Federal health administration had for its fundamental object the prevention of the introduction of pestilential diseases. As long ago as May 27, 1796, a national law authorized the president to direct the revenue officers and revenue cutters to aid in the execution of quarantine, and also in the execution of the health laws of the states. As a further means of aiding foreign commerce, provisions were made in successive navigation laws to promote the health and comfort of passengers at sea, and in 1798 provision was also made for the care and treatment of persons employed in the merchant marine.

Foreign and insular quarantine.-The necessity for more and more extensive federal supervision over international trafflc was made apparent by repeated epidemics. The first permanent quarantine law, passed April 29, 1878, was a result of the widespread and severe epidemic of yellow fever during the previous year. The passage of the law of February 15, 1893, was intimately associated with the outbreak of cholera in Europe in 1892, and the quarantine act of June 19, 1906, followed the epidemic of yellow fever in the Southern States in 1925. Under the above-mentioned laws and a few minor ones, there was finally developed the national system of quarantine as it exists to-day-a system the development of which occupied approximately 100 years.

All quarantine operations are conducted under the supervision of the federal government, and, with two or three exceptions, all stations are conducted by federal officers. Under the above-mentioned laws, regulations have been issued which automatically become operative on the occurrence of outbreaks of infectious diseases. The necessity for the promulgation of quarantine against a particular foreign port is thus obviated.

[^11] raphy, Washington, D. C., Sept. 24, 1912.
${ }^{2}$ Reprint from Publie Health Reports, Vol. XXVIII, No. 3, Jan. 17, 1913.

Quarantine regulations prescribe the measures that shall be observed at foreign ports, at sea, and at domestic ports to prevent the introduction of infectious diseases. In foreign ports these regulations are required by law to be enforced by American consular officers, and at certain ports medical officers of the United States public health service are detailed by the president for duty in American consulates to issue bills of health to steamships and to make reports on sanitary conditions and the prevalence of diseases. Among the ports where such medical officers are stationed may be mentioned Santiago, Chile; Callao, Peru; Guayaquil, Ecuador; Rio de Janeiro, Brazil; La Guaira, Venzuela; Habana, Cuba; Libau, Russia; Naples, Italy; Calcutta, India; Hongkong and Shankhai, China; and Yokohama, Japan. In order to facilitate the shipments of fruit, these officers are also on duty during certain seasons of the year in the ports of Central America and the West Indes.
Officers of vessels en route to the United States are required to observe specific regulations to preserve health, and, in the event of outbreaks of disease aboard, to take precautions to prevent its spread.
On arrival at domestic ports from abroad vessels are subject to quarantine inspection. The detailed requirements specified in quarantine regulations are not here described. Suffice it to say they include the hygienic measures to be taken with vessel, cargo, crew, and passengers to prevent infection from being carried ashore. The provisions of law relating to quarantine apply not only to the continental United States but to its island territory, and possessions.
International sanitation.-With the view to aiding commerce by the prevention of the spread of disease, the federal government participates in the benefit derived from international sanitary agreements. It contributes annually to the support of this work, the public health service conforms to the agreements entered into, and through official channels strives to perfect them. As a means to this end, representatives of the public health service are assigned as delegates of the United States to international sanitary conferences.

Sanitary supervision of immigration.-A long series of immigration laws have been enacted between the periods March 20, 1819, and February 20, 1907, their general objects from a hygienic standpoint being the improvement of the health and comfort of arriving aliens, and the development of a stronger race in the United States.

The medical inspection of immigrants is a federal function performed by federal officers. Some of these inspections are made abroad. In addition, the ship's manifests are required to contain certain data respecting the physical and mental condition of each alien, and reports must be made by the ship's officers of all diseases, injuries, births, or deaths occurring during the voyage.

On arrival at domestic ports, all aliens are required to undergo medical inspection, and for those suffering with disease, hospitals are maintained. The object of the medical supervision of immigration is to exclude the physically and mentally unfit, and especially the latter, who will endow their offspring with an unstable mentality, thereby bringing about the further increase of insanity in the United States.
federal healtil administration an relation to interstate intercourse.
The administration procedures in international sanitation having been established, and their further improvement assured, the great public health problems of the nation are now of an interstate and intrastate character.
The federal public health statutes are based upon, or are carefully in accord with that clause of the constitution which gives the right to congress to regulate commerce between the states. On account of the far-reaching effect of interstate intercourse on our national life, the field for public health activities on the part of the federal government is wide. But it must not be occupied in such manner as to usurp the power of the states or impair the efficiency of state and local public health authorities.
The first federal statute relating to the public health provided that there should be co-operation between federal and local authorities, and this principle has been recognized in all subsequent legislation and followed in its enforcement.
Quarantine and sanitation.-Under the quarantine act of February 15, 1893, the secretary is authorized to issue regulations for the prevention of the spread of infectious and contagious diseases from one state to another, where the regulations of the states are inadequate. These regulations may be enforced by state and local authorities, but the federal public health service is authorized to co-operate in their enforcement, and should the states fail or refuse, the president may adopt such measures as in his judgment shall be necessary.

The powers under the above-mentioned statutes are broad, and the extent of their enforcement by the federal government depends on the facilities provided, the necessities in each case, and the state of public opinion in respect to the advantages of sanitation. Examples of work of this character that may be mentioned are co-operative measures for the collection and examination of rodents to prevent plague; anti-typhoid campaigns in urban and rural districts, and sanitary surveys of interstate and international waters in relation to the prevention of the spread of typhoid fever. There are great possibilities of extending work of this character, and it is along these lines that federal public health work may be expected to advance.
There is necessity not only of quarantine measures to prevent the spread of communicable diseases, but sanitary measures to prevent their propagation. These include the sanitation of trains and vessels and the supplics used aboard, the regulation of conditions under which the employes of commen carriers work, and the exclusion of dangerous or infected merchandise from transportation. The limitations of the federal laws in this respect may be determined only by judicial interpretation.
The control of epidemics.- On account of 'the relation of epidemics to the hygienic and commercial welfare of the country, the federal publle health service any, under the provisions of the above-mentioned law,
assume responsibilities in respect to their control under the direction of the secretary of the treasury and the president. In the event of outbreaks of chotera, yellow fever, smallpox, plague, or typhus fever in any part of the United States, the president is also authorized to cause sanitary regulations to be issued and enforced to prevent their spread, and an epidemic fund of approximately half a million dollars is appropriated annually for expenditures of the federal public health service in suppressing epidemics of these diseases.
It is. under such authority that the epidemics of yellow fever in the southern states, the outbreaks of plague in California and our island possessions, and similar outbreaks have been handled. In every instance, however, there has been thorough co-operation on the part of the federal, state, and local authorities. The equity of our form of government requires that the two latter shall exercise their police powers to the fullest extent, and it is on request of these authorities that the federal government goes to their assistance. This may be advisory in character, or may assume a more active form.
When material aid is extended, the government's funds are required to be expended by officers of the federal public health srvice, and these latter are therefore placed in charge, and have the co-operation of state and local officials as well as officers of the federal government.
The occurrence of epidemics affords opportunity for investigations of an epidemiologic character, and advantage is taken of such situations. As an example may be mentioned the studies of plague in California and typhus fever in Mexico City.
Control of biologic products in interstate traffic.-The dangers to the public health from the exploitation of contaminated or inert biologic products impelled congress to pass the act of July 1, 1902, regulating the propagation and sale in interstate traffic of viruses, serums, toxins, and analogous products. By its provisions, licenses are issued to establishments to engage in such traffic. Prior to the issue of licenses inspections are made of each establishment by officers of the United States public health service, and examination is made of all products for which license is desired. These examinations are repeated from time to time, samples obtained in the open market being used.
Under the law, regulations are issued governing inspections of establishments, examinations of their products, the issue of licenses, and the compliance with adopted standards of purity and potency. Samples accompanying each importation of any of the biologic products in question are required to be examined before release by customs officers. By this means only is it practicable to prevent the dissemination of those blologic products which may be the means of conveying infections that give rise to disease.
Supervision of foods and drugs.-In the interest of foreign commerce, meat products prior to shipment abroad have for some years been subject to inspection, and on June 30, 1906, provision was made by congress to prevent the use in interstate traffic, as well as foreirn traffic, of meat
products which are unsound, unwholesome, or unfit for human food. The enforcement of these laws devolves upon the bureau of animal industry of the department of agriculture. All establishments affected by the law are required to be inspected; the animals slaughtered and the meat produced from them are also subject to inspection, and regulations are prescribed for the sanitation of establishments engaged in the meat Industry.
On June 30, 1906 , there was also enacted by congress the law to prevent the manufacture and sale in interstate traffic of impure foods and drugs. This law is enforced by the secretary of agriculture through the bureau of chemistry of that department.

COLEEOTLON AND COLLATION OF SANITABY INFORMATHON.
The successful administration of public-health laws depends essentlally upon a knowledge of the existence and current prevalence of communicable diseases, the conditions that favor their propagation and spread, and the measures that are required for their control.
Information is received by the federal public health service fram American consuls throughout the world regarding dangerous diseases that exist or are epidemic in foreign ports. For this purpose the telegraph is resorted to, and in addition reports are made weekly by mail. In addition, special reports are made of matters pertaining to hygiene in the respeetive Iorelgn countries.

Of even greater importance to the health of the country are the collection and collation of sanitary information and reports regarding the prevalence of diseases and the occurrence of epidemics within the states. This work on the part of the federal government is carried on with the voluntary cooperation of state and local authorities.
Reports of births and deaths are compiled by the census bureau. Sanitary information and reports of the occurrence and prevalence of disease are collected and published by the United States public health service.

The extent to which notification of cases of sickness can be carried depends upon the fachities provided the federal public health service and, primarly, upon the development of local health organization within the respective states. The diffeulties encountered in the enforcement of the notification of cases of disease in the United States are not unlike those encountered by sanitary authorities abroad, but in overcoming them there will be performed the most important duty in connection with the preservation of the public health.
hnvastrations of matiers periaining to the pubite healith.
Another important function of the federal government in relation to the public health, and perhaps the most important one, is the conduct of scientific investigations. By this means federal administration in public health matters is simplified and rendered more accurate; local authorities are likewise aided, and through them the people are benefited by being taught the degree of sanitary excellence that may be attained.

By an act of March 3, 1901, investigations of contagious and infectious diseases and matters pertaining to the public health were given definite status in law. Provisions was made whereby laboratory investigations would be systematically carried on. Through this provision and in connection with the enforcement of the quarantine laws investigations have been made in Washington and different parts of the country. In order to comply with the law, however, this work was carried on largely through the hygiene laboratory.

By an aet of congress approved August 14, 1912, broader powers were conferred on the public health service to "study and investigate the diseases of man and conditions influencing the propagation and spread thereof, including sanitation and sewage and the pollution either directly or indirectly of the navigable streams and lakes of the United states."

There is thas abundant authority for both laboratory and field investigations by the public health service. As in the past the investigations will be conducted by officers specially trained and with such co-operation as state and local health authorities may be able to render. But in order that the great needs of the country may be met, more men and more money must be provided and the public health service must have the active support of individuals, professional associations, and other organizations to be benefited.

Many highly important problems await solution. Among them may be mentioned the standardization of biologic and other therapeutic products, the determination of the conditions causing pellagra and certain other diseases, the extent of the migrations of tuberculous and other patients from one locality to another, the ascertainment of the influence of artificial illuminants on health, the determination of the relation of housing and other conditions to labor efficiency, and the preseribing of reasonable standards to control stream pollution.

Requests are received daily from all parts of the country for information regarding sanitary problems and their method of handing. These requests are an excellent indication of the amount and extent of work to be performed in the immediate future. In one section of the country the question of the pollution of streams is pressing for solution; in another, it may be industrial accidents and poisoning; in another, the question of the reduction of infant morbidity; and in still another, the measures that must be taken to eradicate malaria or other communicable disease. Federal health administration involves a wise selection of the problems to be investigated and the securing of appropriations neces* sary to earry them on.
dissemination of miformation belatine to the pubico heavith
Sanitary reports and statistics and the results of scientific investigafions are of value only as they are made public and used. An important administrative measure, therefore, is the distribution of public health literature and the presentation of public health lectures and exhibits. By
thesc means the federal publis health service has been able to disseminate a considerable amount of sanitary information and parteipate in the educational propaganda.

Among the publications issued are the hygienic laboratory bulletins, bulletins of the yellow fever institute, public health bulletins, the weekly public health reports, and miscellaneous documents. The hygienic laboratory bulletins represent the results of scientific investigations conducted in the laboratory. The public health bulletins are more popular in character, and are utilized to convey sanitary information to health officials and to the public generally. The weekly public health reports are issued primarily for the benefit of health authorities as in aid in administration. Their utility is recognized throughout the world, and their improvement as contemplated will render them the most useful organs in health administration in this country.

The public health bulletins are to be further popularized and made of interest to individuals, and they should be distributed by millions. The recognition by the secretary of the treasury of the value of public health education, and his deep interest in sanitary administration generally, has been responsible for a material increase recently in the amount of public health literature issued and, indeed, in the amount of scientific and practical sanitary work performed.
healte administration in relation to federal territory and federay ADMINISTRATIVE AFFAIRS.
Administrative measures taken in the interest of international and interstate sanitation, and the investigations conducted in relation thereto, have a direct or indirect value in connection with federal administration generally. But in federal territory and in relation to federal administrative affairs special provision is also made. The sanitation of the military forces is performed by their respective medical corps. 'Sanitary inspections of government buildings and workshops to control tuberculosis devolves on the public health service, and through cooperation it performs under regulations sanitary duties for other bureaus and departments.
The extent to which the co-operation may be rendered depends on the number of officers available, since the comptroller of the treasury has decided in effect that officers of the public health service may undertake public health duties for other bureaus providing the expenses are borne by those bureaus. Under this provision, for instance, steps are being taken for the sanitary betterment of the Indian in Alaska, and inspections have been made of mines and the mining industry with particular reference to lung diseases among miners and the measures necessary for their control.
organization of the federal public health service.
The federal public health service is a bureau of the treasury department. Through successive acts of congress it has undergone a process of evolution so that all of its duties are essentially of a public health character, and it is organized with a view to their performance.

The central bureau at Washington, which is presided over by the surgeon general, has seven divisions, as follows:

1. Personnel and Accounts.
2. Foreign and Insular Quarantine and Immigration.
3. Domestic (Interstate) Quarantine and Sanitation.
4. Sanitary Reports and Statistics.
5. Scientific Research.
6. Marine Hospitals and Relief.
7. Miscellaneous.

Each of the six divisions first mentioned is in charge of an assistant surgeon general, who is directly responsible for administrative matters in connection with his division. In the absence of the surgeon general the officer next in rank acts in his stead. This is the officer who has charge of the division of personnel and accounts, and who has immediate supervision of the entire personnel and appropriation, and the preparation of the annual estimates therefor.

Through the division of foreign and insular quarantine and immigration are administered all matters relating to maritime quarantine and medical inspection of aliens. In the field this division is represented by 44 quarantine and inspection stations scattered along the several coasts in the continental United States, 25 insular stations, and 37 stations $10-$ cated at foreign ports, and 83 immigration stationg.

Through the division of interstate quarantine are administered all matters relating to the control of contagious and infectious diseases in interstate traffic. In the field this division is represented by officers engaged in the inspection of government buildings, suppression of plague outbreaks, and control of epidemics of typhoid fever and other diseases in co-operation with State and local authorities.

The division of sanitary reports and statistics handles all matters relating to the collection of morbidity reports, reports of epidemics, and of information pertaining to the geographic distribution of disease, and to climate in relation to health and disease. It prepares and publishes the weekly public health reports and reprints therefrom.

In the fleld it is represented by officers of the service wherever stationed, and through the department of state by American consuls at foreign ports. In the United States it depends largely on the voluntary cooperation of state and municipal authorities to furnish information and forward reports of sanitary conditions within their respective jurisdictions.
The division of scientific research administers all matters relating to investigations of contagious and infectious diseases and matters pertaining to the public health wherever made. In the field it is represented by the hygienic laboratory with its four divisions, the plague laboratory in San Francisco, the leprosy investigation station in Hawail, the pellagra investigation station at Savannah, Ga., the station at Wilming ton, N. C., for the investigation of the parasites of man, and by officers engaged in investigations of typhoid fever, Rocky Mountain spotted fever, poliomyelitis, etc., in different parts of the country, and sanitary surveys of navigable waters wherever conducted.

In the division of marine hospitals and relief are adminstered all matters connected with the care and treatment of seamen and recruiting for the several bureaus of the department. In the field it is represented by 22 marine hospitals and 121 relief stations.

In the miscellaneous division are handled all matters in relation to the care and distribution of publications, and to the examinations of surfmen of the life-saving service, and to claims for disability in that service.

To-day the public health service has a corps of approximately 450 medical officers, 50 pharmacists, and a total personnel of about 2,000.

Advisory conferences on administrative matters.-Under the constitution and existing statutes, the federal public health service is restrained from assuming duties that properly devolve upon state and municipal authorities. But their relations are so intimate that congress has made provisions not only for co-operation, but for conferences on public health matters. In the public health law of July 1, 1902, provision is made for annual conferences between the public health service and state boards and departments of health. Provision is also made for special confer ences with all or a part of the state health organizations, and upon the application of not less than five state health authorities, a special conference must be called. The deliberations pertain particularly to administrative measures. In effect, there is thus provided an advisory council on administrative matters, which in its development will insure co-operation and be an arbiter on vexed sanitary questions, and in whicheach state is entitled to representation.
Advisory conferences on scientific matters.-In the previously mentioned law congress also provided for an advisory board for consultation relative to investigations to be inaugurated and the methods of making them in the hygienic laboratory. This board consists of 9 members, 4 of whom are officers of the government, the remaining 5 being scientists eminent in laboratory work and connected with the leading endowed institutions of the country. By this means the service is brought in touch with the great scientific laboratories, and may avail itself of advice from the highest sources.
Congress has thus made provision for councils in respect to both administrative and scientific matters. Their utilization in the highest degree is one of the most important means of development of public health organization and public health work.
The foundations have been laid for further development and for the performance of a greater amount of efficient sanitary work: In order that health administration shall be effective, however, it must be adequately supported by appropriations, and it is the securing of these and their wise expenditure that constitute efficient administration.

PLAGUE-THE RELATION BETWEEN TRAFFIC AND THE SPREAD. OF PLAGUE. ${ }^{12}$
\therefore
By w. C. Rucker, Assistant Surgeon General, United States Public Health Service.

Sanitary science in the ultimate analysis resolves itself into a defense against the animal and vegetable forms of life which produce disease in man. It is a manifestation of the law of the survival of the fittest ${ }^{f}$ through the erection of bulwarks of one sort and another against those ${ }^{6}$ agencies which will exterminate man if 'man' does not control them. All nature is at war one with the other. Each species has its natural enemies. Man in particular has been assailed since the beginning of time by a myriad of hostile lower-life forms, and it is to the constant whetting of the wits in this struggle for supremacy that he owes the development of his superior intelligence.

With the dawn of reason came traffic, and man as the only animal that sells and barters has been obliged to erect special barriers 10 prevent his vegetable and animal foes from attacking him through the avenue of commercial intercourse. Disease, which, after all, is but an outward and visible presentment of this never-ceasing battle, has always been recognized as the constant companion of commerce, and of no disease in particular is this more true than of plague. Who can doubtt that at some remote age plague was confined to some small valley, from which it has been carried to all parts of the globe by the roads of trade "which lead you o"er the world?" What galley seeking Cornish" tin brought the first plague rat to England just as the Ark of the Covenant carried the disease to the Philistines?
The relation of traffic to the spread of bubonic plague is a simple equation, the one being to the other directly as the opportunity which traffic affords for the spread of rats from plague foci. It may therefore be taken as axiomatic that if we would prevent traffic from spreading plague we must cancentrate our efforts on the prevention of the migration of rodents in traffic. If we successfully control the peregrinations, of the murinae we will control the spread of plague, because for all practical purposes man may be disregarded as a great factor in the grand tactics of plague. It is true that human pneumonic plague has been held responsible for certain outbreaks, and it is also a fact that verminous persons suffering from the septicemic form of the disease have acted as infection nidi, but these are local matters only and bear no vital relation to the world-spread of plague. Plague usually passes. from rats to man, not from man to rats.
${ }^{1}$ Read before the joint sessions of Section V and VII, Fifteenth International Congress on Hygiene and Demography, Washington, D. C.; Sept. 27, 1912.
2Reprint from the Public Health Reports, Vol. XXVIII, No. 4, Jan. 24, 1913.

It were better that the sanitary authoritles had constant and accurate information as to the existence of rodent plague in the various ports, but unfortunately such knowledge is not always obtainable, or is perhaps obtained too late to prevent an exodus of the diseass from a previously unrecognized focus of rodent plague. The measure then is onvious-let there be a world-wide embargo on rats. Let no rat take passage on any ship whatsoever, and if at the port of destination any cat is found on board, the penalty which he shall suffer is death. Every ship-borne rat must be regarded as a potential enemy not only to be infe but also to the prosperity of man. Emphasis may be laid on the stifp-borne rat because the averland spread of plague is not of material influence on the end result. Plague does not follow the caravall routes by reason of the transportation of rats; in fact, it is more than probable tiat verminous persons act as disseminating agents in such a situation; the carriage of infected rodents by freight trains undoubtedly does accasionally occur, but these are matters of minor consideration in the universal spread of plague in which the chief agent is the ship-borne rat.
We have laid too much stress in the past on the human passenger, and we have paid too little attention to the rodent passenger. It is fütile to examine and detain persons who have been exposed to plague infection and to neglect rodents which actually have the disease. It is equally absurd to quarantine against passengers from infected ports and to permit the landing of rats from ports which are constdered safe merely because plague has not been reported from them. There is only one policy which we can logically pursue; that is to regard all ship-borne rats as elements of danger and to prevent their entering oi leaving ships, and to confine our operations against passengers to the prozention of embarkation by persons actually suffering from the disease or in a verminous condition. It is time that there was a revision of the regufations of the international sanitary convention of Paris to meet the present-day interpretation of the method of the dissemination of bubonic plague. It is the plague rat which we musf prevent from taking passage; and we shiould not conffine our attention to the human passenger.
The first element in preventitag rats from entering ships is a rat-proof water front. This is not only a matter of importance in relation to the spread of plague by traffic; it is also an fnsurance against the fire and destruction losses which rodents cause. Kat-free vessels need not be abliged to breast-off from rat-proof, rat-free wharves. This facilitates the handing of cargo, because vessels may then discharge at the dock on: one side and to lighters on the other.
It is equally necessary that vessels be prevented by other means from receiving rats while tied up to the wharf and from dischaxging them under similar conditions. For this purpose the use of proper rat guards on. mooring lines is to be recommended, care being taken that the guards are always perpendicular to the line; and that they are of sutfieleent diameter to prevenf rats from leaping over them. It is entirely practical to construct a wharf and vesseI in such a way that rats will be captured almost as soon as they get on them. For this purpose, when the. dock is built, or the shit is laid down, suitable runways, which
will entice the rats, should be installed. By means of swing doors, which operate from a platform, it is very easy to capture all the rats on board of a ship, or on a dock, in this way. The rats are imprisoned in the runways and can at any convenient time be driven by smoke or other means into a common chamber, the doors of which can be shut, and the rodents asphyxiated.
It is not, however, practicable at the present time to secure an immediate world-wide adoption of the measures above referred to. This is a matter for the coming years, one demanding and deserving our careful and continuous labors. In the meantime, the periodic fumigation of ships for the purpose of killing the rats thereon is a most desirable measure. This may be accomplished by the use of sulphur dioxide, produced by the old pot and pan method, or injected by one of the various types of machines devised for this purpose. The corrosive effect of this gas, however, and the deterioration which it produces on fine fabrics, are serious objections to its frequent use, particularly upon vessels of the finer type. Carbon monoxide has been successfully used for this purpose, and recently the United States public health service has adopted a special apparatus for this purpose. If the larger steamships could be induced to install this apparatus on board, and to use it themselves at frequent intervals, many of the difficulties of the eradication of the ship-borne rat could be overcome. Just one point about the fumigation of ships to kill rats. No portion of the vessel should be overlooked. Lifeboats should be swung out, and any rats contained therein should be driven out with live steam. Unless such measures are enforced with the greatest care, a few rats remain in spite of repeated fumigations.

In conclusion, it may be stated that where trade will go, there rats will go, and where rats will go, there plague will go. The relation between traffic and the spread of bubonic plague, therefore, resolves itseif into the relation between traffic and the spread of rats. If this murire enemy of man can be banished from the highways of the world-if his isolation from the human species can be made complete and lastingthen shall we have won the victory over plague. That such a culmination will crown the labors of the working, teaching, sanitarians of today is not beyond the bounds of possibility; but we must work and we must teach, and we must by wise rules and regulations bring about an antipathy toward the rat which is greater than the present antipathy toward the snake. We must inculcate the lesson that the rat is the most expensive animal which man maintains, and that the limitation of this species, its isolation from the dwelling place of man, and the control of its migrations are as important from an economic as from a humanitarian standpoint.

HOOKWORM DISEASE-PROPORTION OF MALES TO FEMALES IN THE AMERICAN HOOKWORM (NECATOR AMERICANUS), BASED IN 13,080 WORMS FROM 102 CASES. ${ }^{12}$

By Ch. Wardell Stiles, Professor of Zoology, and W. L. Altman, Assistant, Hygienic Laboratory, United States Public Health Service.

The point was raised by Leichtenstern in 1885 that by counting the male and female hookworms passed by a patient and drawing the proportion, the clinician has a practical clue to the completeness or incompleteness of the cure effected. This point was based upon the premises that the males and the females are present in relatively fairly constant proportion and that the males are more difficult to expel than are the females.
This view of Leichtenstern, based upon the old World hookworm (Ancylostoma duodenale), appears to be one that might in certain cases be of practical importance, and it seemed wise, therefore, to test it as applied to our American hookworm.
The opinion seems to prevail that in case of Ancylostoma duodenale the female worms are much more numerous than the males. Bearing on this point the following data are found in our notes (absence from library facilities at present prevents us from consulting some of the original articles):
Bilharz (1853, 55), Heller (1876b, 778), and R. Blanchard (1888a, 765) report 1 male to 3 females. White (1867, 427) states that the males are less numerous than the females. The following cases are reported with the number of males and females passed:

[^12]In the foregoing 11 cases it is clear that the females (78 per cent) ave in excess of the males (21 per cent). In 7 cases from Schulthess the females and males were about 6 to 1 .
Leichtenstern (1886, 216-217) quotes two series of cases from Schulthess, as follows:

Number of-			
Cases	Worms	Males	Females
${ }_{(?)}^{26}$	6,134 4,111	1,811 1,367	4,323 2,744
$26+$	10,245	$\begin{array}{r} 3,178 \\ 31 \text { per cent. } \end{array}$	68 per cent.
			,

In these two series also it is clear that the females (68 per cent) are in excess of the males (31 per cent). In the series of 26 cases the variation was between 10 males to 360 females and 10 males to 11 females.

Leichtenstern remarks that the males may roll themselves up in the feces and be overlooked. He also states that cases occur in which only the females appear for two days after the anthelmintic; then the males appear.
From the foregoing statistics, based upon Ancylostoma duodenale, we were prepared to find similar conditions in the case of Necator ameri canus, especially since Lutz (who probably had Necator before him) is quoted as reporting for 3,000 worms a proportion of 3 females to 2 males.
In hospital work we usually have hookworm patients under observation only one day per week. It becomes necessary to inquire, therefore, into the number and proportion of worms passed in successive stools and on successive days in order to have an indication of the proportion of worms that escape collection on the day of treatment.

Number of worms and proportion of sexes found in successive stools on day of thymol treatment.-The stools may follow each other so slowly or so rapidly, namely, so ununiformly, that a tabulation by actual stools has been followed in only a very few instances.
Case No. 3 (age 21 years) of our 1911 series shows the following data on day of treatment; dose, 45 grains of thymol:

Althoig'l in the second stool the males and females were not separated, it is char that in the first stool the males were greatly in excess of the females, and therefore that they were not more difficult to expel.
Case $\therefore 0.63$ (age 16) of our 1911 series shows the following data on first treatment; dose, 10 grains of thymol. (The patient had received one treatment before he came to the marine hospital.)

Date and Number of Sĩool	Mates		Females		Total Worms	Per cent.of 347
	Number	Per cent.	Number	Per cent.		
Aug. 4:						
${ }_{\text {dirst }}$	50	${ }_{39}^{60} .6$	${ }_{76}^{1}$	${ }_{60.3}^{50}$	126	36.31
	48	44	61	55	109	81.4
Fourth	18	60	12	40	30	8.6
Fifth	21	36.8	36	63	57	18.3
Aug. ${ }^{\text {es }}$					19	
Seventh	2	50	,	50	4	1.1
Total	153	44	184	55	347	100.00

In this treatment it is clear (a) that the female worms were in excess of the males for the total treatment (7 stools) and for stools Nos. 2, 3, and 5; (b) that the males and females were equal in stools Nos. 1 and 7; and (c) that the males were in excess in stools Nos. 4 and 6.

The two cases cited do not seem to give us any clue of practical value in use of statistical data as to sexes in their order of expulsion in a given treatment.

In our notes we find two literature references for comparison. E. Parona, according to R. Blanchard (1888a, 765) reports a case as follows: First stool contained 8 males and 104 females, total 112 worms; second stool contained 16 males and 19 females, total 35 worms; third stool contained 107 males and 66 females, total 173 worms.
Blanchard (1888a, 765)) also reports a case from Leichtenstern as follows: First stool contained 10 males and 124 females, total 134 worms; second stool contained 28 males and 7 females, total 35 worms.
It is not clear to us whether Parona's case involved 3 courses of treatment or 3 stools after 1 course of treatment, but our notes give the following data for Leichtenstern's $(1885,101)$ case: First treatment, 15 extr. fil mar., first 4 days; 10 males and 124 females, total 134 worms. Second treatment, 10 extr. fil. Mar., 28 males and 7 femaleg, total 35 worms. Total, 38 males and 131 females. Grand total, 169 worms.
Accordingly, positive data for comparison between Necator americanses and Ancylostoma duodenale, in respect to the point under discussion, are not available to us at present.

Duration of passage of worms after thymol.-In hospital woric the average hookworm patient is, as stated above, usually under observation for only about 18 to 24 hours at a time. He is admitted to the wards late in the afternoon or early in the evening. He takes his thymol the next morning. By 1 to 4 o'clock in the afternoon he is over the effects of the salts and thymol to such an exfent that he either desires to go home or from a financial (administrative) point of view there is little or no justification in retaining him longer. Accordingiy, under ordinary circumstances, opportuaity is presented to collect the worms passed only up to 3 or 5 p . m . of the day of treatment. While this permits, doubtless, the collection of most of the worms, a number escape the abserver, for they continue to pass for three or four days or more, as the follwing cases show.

CASE NO. 63.

DATEE	Thymol	Worms				Tatal	$\left\{\begin{array}{c} \text { Per cent of } \\ \text { total of } \\ \text { each treat } \\ \text { ment } \end{array}\right.$
		Male		Femafe			
		$\begin{gathered} \text { Num- } \\ \text { ber } \end{gathered}$	Per cent.	Num-	Per cent.		
August 4				186	57.5		
August 5	0	15	65.2	8	34.8	23	6
Aagust 6	0	6	22.2	21	77.8	27	7.2
Total	10	159	42.5	215	57.5	374	-----
August 8	10		25		75		80
August ${ }_{\text {August }} 9$	0	0	0	1	100	1	20
August 10 -	0	0	0		0		0
Total	10	1	20	4	80	5	- --..----

OASE NO. 179.

OASE NO. 200.

From the foregoing cases it is clear that all worms expelled by a given course of treatment need not necessarily be passed on the day of treatment, but while about 75 to 95 per cent of the specimens expelled may be passed within 12 hours after the drug is administered, worms may continue to pass for 5 or 6 days.

It further seems evident from the foregoing records that the males and females do not follow any regular order in passing which can be uséd as a practical indication as to the completeness or incompleteness of the cure.

Two practical conclusions are to be drawn from the foregoing data.
(1) Since 75 to 95 per cent of the worms pass during the first 12 hours after administration, all hospital records that give the number of worms collected during this period are subject to a theoretical error of about 5 to 33 per cent; that is to say, the actual number of worms passed may be from one-twentieth up to one-third larger than actually reported. This point should be borne in mind when comparing statistics derived from treatment with statistics derived from autopsy not preceded by treatment.
(2) It occasionally occurs that on the day of treatment not a single worm is collected, but later microscopic examination is negative. Probably the correct conclusion is that the worms have been passed after the patient has been discharged.

Proportion of male and female nookworms passed after thymol treat-ment.-In nearly all of the following cases the worms were collected within 12 hours (namely, by $6 \mathrm{p} . \mathrm{m}$.) after the first dose of thymol (which is given at 6 a. m.).

Two groups of cases, each with three subgroups, may be compared.
In the first group are found 58 cured male cases, arranged in three subgroups according to the preponderance of male worms, equal number of males and females, and preponderance of female worms.

Of these 58 patients, 18 cases (or 31 per cent) showed more male (59 per cent) than female (40 per cent) hookworms; 5 cases (8 per cent) have an equal number of male and female worms; 35 cases (60 per cent) have an excess of females. Thus, on a basis of these cases, the chances are about 6 out of 10 that there will be an excess of females, but this percentage is not high enough to put to any practical account in determining, by counting the males and females collected, whether or not the patient is entirely freed from his worms. In fact, the labor involved would be much greater, more tedious, and more disagreeable than the labor involved in making a new microscopic examination a few days later.
The 18 cases with an excess of males showed 1,378 worms, 821 of which (or 59 per cent) were males, and 557 of which (or 40 per cent) were females.
The 5 cases with equal numbers of male and female worms were all light infections, everaging only 11.6 worms each.
The 35 cases with more immales than males showed $6,524^{1}$ worms, 2,797 of which (or 43 per cent) were males, and 3,727 of which (or 57 per cent) were females.
Of the total $7,960^{1}$ worms collected from the 58 cases, 3,647 specimens (or 45 per cent) were males, and 4,313 specimens (or 54 per cent) were females.

In respect to number of worms present, the cases with equal males and females averaged the smallest number of worms (11), those with an excess of males came next (76), and those with an excess of females came next (186). The average was 137 worms. Thus, in general, the heaviest infections were those with the largest number of females, but this is not of much significance since only 9 of the 35 female-excess cases were about the average (139) in number of worms present, while 2 of the 18 male-excess cases were above the average.

The "cured" cases are given in the following table:

[^13]TABULATION OF GURED MALE HOSPITAL CASES ACCORDING TO TOTAL NUMBEN OF WORMS AND PREPONDEIZANCE

OF SEX OF PARASITES.
A. Eighteen cabes with excess of males.

Case No.	Worms			Case No.	Worms		
	Total	Males	Females		Total	Males	Females
	47414313811197957268624242	$\begin{array}{r} 277 \\ 74 \\ 82 \\ 65 \\ 68 \\ 68 \\ 67 \\ 38 \\ 36 \\ 45 \\ 31 \end{array}$	10769584639273532171711		37	21	18
					8	5	3
					8	${ }_{6}$	1
					7	4	8
					6	4	2
					1	1	D
					1	1	0
					1,378	*821	¢557
					1,378		

B. FIVE daSES WITE EQUAL MALES AND FEMALES.

c. 35 OASES WITH EXCESS OF FEMALES.

*59 per cent; +40 per cent; 450 per cent; $8 P I u s 26$, sex not counted; 443 per cent; 1157 per cent.
D. SUMMART OF 58 CURED OASES.

| | | |
| :--- | ---: | ---: | ---: | ---: |
| | | |
| | | |

Plus 20, sex of which was not determined; 445 per cent; t54 per cent.

For comparison with these 58 complete cures, 44 male hospital cases can be presented in connection with which it is either definitely known that later microscopic examination (in 1911) was positive (hence the cure was incomplete), or through failure to obtain specimens the completeness or incompleteness of the cure was left in doubt.

Of these 44 cases, 19 patients (or 43 per cent) showed an excess of males; there was a total of 2,738 worms, 1,468 of which (or 53 per cents) were males and 1,270 of which (or 46 per cent) were females. These percentages are not very different from those of the corresponding cured cases.

Of the 44 cases, 4 patients (or 9 per cent) showed an equal number of males and females. All were light infections, averaging only 10.5 worms each.
Of the 44 cases, 21 patients (or 47 per cent) showed an excess of females; of a total of 2,340 worms, 1,001 specimens (or 42 per cent) were males, and 1,339 specimens (or 57 per cent) were females.
The cases in question are tabulated as follows:
TABULATION OF 44 MALE HOSPITAL CASES, SOME WITH INCOMPLETE CURE, SOME WITHOUT FINAL DATA AS TO CURE,

ARRANGED ACCORDING TO TOTAL NUMBER OF
WORMS AND PREPONDERANCE OF SEX
of Parasities.
A. NINETEEN OASES WITH EXCESS OF MALES.

Case No.	Worms			Oase No.	Worms		
	Total	Male	Female		Total	Male	Female
85	710695368815172158857068743420	387 ' 359 188 163 163 89 82 60 39 31 29 11	323		11		
${ }_{94}^{57}$			342			7	3
69			152		9 7	5	$\stackrel{4}{3}$
141			83		5	5	0
12			78		5	3	2
			25		5	8	2
47			31		3		
$\stackrel{3}{3}_{143}$			5		2,738	*1,468	+1,270.

B. FOUR OASES WITH EQUAL MALES AND FEMALES.

0. TWENTY-ONE OASES WITH EXOESS OF FEMALES.

TABULATION OF 44 MALE HOSPITAL CASES, SOME WITH INCOMPLETE CURE, SOME WITHOUT FINAL DATA. AS TO CURE, ARRANGED ACCORDING TO TOTAL NUMBER OF WORMS AND PREPONDERANCE OF SEX OF PARASITES-Continued.
D. SUMMARY.

*48 Der cent; 451 Der cent.
Comparing these statistics with the sex statistics of the cured cases, it is not evident that the proportion of the sexes gives us any practical. clue to the question whether our patient is or is not cured.

Combining the two sets of statistics we have the following table:

*PJus 26 worms, sex of which was not determined.
Proportion of male and of female worms passed in different treatments of 58 cases.-The following 58 cases of complete cures give data as to sex of parasites passed in successive treatments:
A. FORTY-THREE OASES OURED IN ONE TREATMENT.

A. FORTP-TUREE CASES CURED IN ONE TREATMENT-Continued.

	Case No.	Age	'hymol	Worms collected				
				Total	Mules		Females	
					Number	Per cent.	Number	Per cent.
58		20	50	7			1	
157		12	25	21	10	47	11	52
3		19	45	37	21	57	16	4.3
a5	-	14	25	9	6	66	3	33
92		36	50	58	24	41	34	58
42	-	25	45	44	22	00	22	20
73		26	42.5	6	4	66	2	3.3
170	--	11	25	4	2	50	2	50
169		11	25	2	1	50	1	0
125		13	25	1	1	100	0	0
109		12	25	6	2	${ }^{33}$	4	60
88	--------	9 5	${ }_{7.5}^{20}$	7	4	57 0	3 1	109
${ }_{53}^{53}$	-	60	50.6	6	3	50	8	10
81		33	50	8	3	87	5	62
772		7	15	2	0	0	2	10.
29	------------	21	60	95	${ }_{8}^{88}$	71	27	20
103		13	20	138	82	59	56	40
80	---------	31	60	17	4	23	13	76
153		9	20	2	0	0	3	100
89	-----	9	20	3	0	0	3	100
108			30				4	
32		38	60	28	11	39	17	60
${ }_{68} 5$	--------	16	20	73	27	37	46	${ }_{5}^{63}$
52		${ }_{20}^{11}$	15 45	ra^{2}	1 5	$\begin{array}{r}50 \\ . \quad 45 \\ \hline\end{array}$	1 6	50 54
$3{ }^{4}$		29	60	80	35	43	45	56
26		21	60	143	74	51	69	48
	Total		1,485	1,418	660	46	758	53

B. SIX OASES OURED IN TWO TREATMENTS.

78	5	10	13 1	4	30 100	9 0	69 0
Tatal	-----	20	14	5	35	9	6
67	12	20 20	65 5	34 2 2	$\begin{aligned} & 64 \\ & 40 \end{aligned}$	29 3	${ }_{60}^{46}$
Total	--.---	40	68	36	58	32	47
II	13	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	97 14	$\begin{gathered} 59 \\ 6 \end{gathered}$	$\begin{aligned} & 60 \\ & 42 \end{aligned}$	$\begin{array}{r} 38 \\ 8 \end{array}$	${ }_{5}^{39}$
Total	------	45	: 111	65	58	46	41
110	15	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	1,094 48	539 25	$\begin{aligned} & \hline 49 \\ & 62 \end{aligned}$	555 23	50 47
Total	---	50	1,142	584	49	578	51
88.	18	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	83 9	16 0	$\begin{array}{r} 19 \\ 0 \end{array}$	67 8	500
Total	--7---	100	92	18	17	76	82
15	27	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	1	1	$\begin{array}{r} 100 \\ 0 \end{array}$	0	0
Total	-...--.-	120	1	1	100	0	0
- Aggregate (6) ...--	-	375	1,428	F 687	48	741	51

O. SIX CASES CURED IN THREE TREATMENTS.

Total --i. T. TWO OASES CURED IN SEVEN TREATMENTS.
24 \qquad
Total \qquad

20	109
20	267
20	53
25	24
25	36
25	8
25	9
160	600

$\begin{array}{r}49 \\ 91 \\ 15 \\ 6 \\ 10 \\ 2 \\ 0 \\ \hline 178\end{array}$

$\begin{array}{r}44 \\ 84 \\ 28 \\ 25 \\ 27 \\ 25 \\ 0 \\ 0 \\ \hline\end{array}$
F. TWO CaSES CURED in SEVEN TREATMENTS-Continued.

Case No.		Age	Thymol	Worms collected					
		Total		Males		Females			
		Number		Per cent.	Nuinber	Per cent.			
63			16	1015251515253030	374	159	42	215	
		218			67	30	151	69	
		0			0	0	0	0	
		15			2	13	13	86	
		2			1	50	1	50	
Total Aggregate (2)		-------	150	633	234	36	399	63	
		-----	310	1,139	407	35	732	64	

Tabulating the summaries according to the number of treatments, we obtain the following:

		Cases	$\left\lvert\, \begin{gathered} \text { Treat- } \\ \text { ments } \\ \text { cure } \end{gathered}\right.$	Worms collected					
		Total		Males		Females			
		Number		Per cent.	Number	Per cent.			
\qquad			4366112	 	1,418	660	46	758	53
		1,428			687	48	741	51	
		+ $+1,251$			1,0040\%	${ }_{46} 6$	1,202+	47 53	
		, 295			${ }^{99}$	33	${ }^{196}$	${ }_{68} 6$	
		1,139			407				
		*59	96	17,960	3,647+	46	1,313	58	

*The 58 cases given on p. 14, plus 1 case, in which worms were not found in the stools. \dagger Plus 26, sex of which was not determined.
From these tables it is not evident that the greater the percentage either of males or of females the greater the number of treatments necessary. Accordingly, it is not evident that there is any striking difference in difficulty in expelling males or females, so far as the number of treatments is concerned.
Summary.-In view of the statements published in reference to the proportion of the sexes in Ancylostoma duodenale, a study of the statisties in 102 cases of infection with Necator americanus is distinctly disappointing, and the conclusion seems justified that whatever may the the practical value of estimating the sexes of A. duodenale, from a standpoint of obtaining a clue as to whether or not the cure is complete, this method of procedure, as applied to the average hospital case of N. americanus, does not appear to present any practical advantage. In fact, the method is much more tedious, more time consuming, and less reliable than our present method of microscopic examination, and therefore its adoption in our hookworm-eradication campaign is not to be recommended.

As a purely academic matter, it is interesting to note that of 13,080 specimens of Necator americanus collected from 102 cases 46 per cent of the specimens were males and 53 per cent were females; but the proportion for different cases varied, some cases presenting more males than females, others more females than males.

Of 102 cases examined 37 presented an excess of males, 9 presented an equal number of males and females, and 56 preseuted an excess of females.

In 58 cured cases in New Hanover county, N. C., the greatest number of worms collected from any c.ne caso was 2,277 ; the smallest number 1; the average number 135 .

About 75 to 95 per cent of the worms of a given course of treatment may be passed within 12 hours after the early ($6 \mathrm{a} . \mathrm{m}$.) dose of thymol, and worms may continue to pass for several, apparently for at least 6 , days following.

From this latter fact the important practical conclusion may be deduced that treatment once per week, as is usual at present, is as 'frequent as it seems either necessary or wise to give it. Treatment more often than once a week may be entirely unnecessary, even if "eggs be found the fifth day after treatment; and since the factor of safety to the patient should be constantly held in mind, thymol treatment oftener than once a week seems justified only in exceptional cases which may present special features or circumstances that indicate the practicability of more frequent dosage.

HOOKWORM DISEASE-NUMBER OF TREATMENTS AND NUMBER OF FULL DOSES OF THYMOL ADMINISTERED IN 61 HOSPITAL AND 22 HOME-CURED CASES OF

HOOKWORM INFECTION. ${ }^{12}$

By Ch. Wardell Stiles, Professor of Zoology, and Gid. F. Leonarp, Assistant. Hygienic Laboratory, Unitea States Public Health Service.

In this paper the term "cured" means that a week or more after treatment a miscroscopic re-examination of the patient gave negative results.
In practical hookworm-eradication work the question is frequently asked, "How long does it take to cure a case?" This question has a practical basis from the standpoint of the patients, for many of them refuse to take a second course of medication. From the standpoint of the person giving the treatment the question has a double signifcance: (1) The greater the number of patients who can be cured in a single treatment the more rapidly will a certain-and a very impor-tant-part of the work be finished. (2) Many patients are, however, very ignorant and can not be relied upon-as experience shows-to carry out directions; accordingly, the clinician has his choice between (a) assuming a certain amount of risk by giving a larger dose, and (b) giving repeated treatments with smaller doses, thus giving to himself and to the patient a greater amount of trouble but at the same time increasing the factor of safety for his patient; running the risk, however, that his patient'will not return for more than one treatment, and therefore possibly leaving one more uncured case at large to infect other people.
There are known to us not less than 11 deaths in this country, due, so far as it has been possible to determine, either to following thymol with castor oil instead of with salts, or to carelessness in respect to following out the usually adopted procedure. But whatever the explamation of these deaths may be, the fact remains that many patients whom we treat are exceedingly ignorant and illiterate and are unreliable when it comes to following out instructions.
It is therefore more than an academic matter to determine how small a dose can cure or does cure a case of hookworm Infection, and the extent of the infection in question.
The present paper contains two series of cases-one series treated in the hospital, the other at home.

[^14]In a certain cotton mill village in eastern North Carclina, 257 inhabitants (140 males, 127 females) out of a population of 700 volunter red for microscopic examination. Thus 38.1 per cent of the population volunteered.
Of these 267 (white) inhabitants, 140 persons (or 52.4 per, cent) were found infected with hookworms.

Of 140 males, 79 persons (or 56.4 per cent) and of 127 females, 61 persons (or 48 per cent) showed hookworm infection.

Most of the patients mentioned in this paper came from the cotton mill in question.
Number of treatments of femaies.-A number of the females were treated at their homes, with a mill nurse to visit them during the day of medication. In some instances is was impossible to obtain specimens to determine whether or not t, treatment was complete in results, but the following data may be to, orted.
Total number of females examined, 127 ; found infected, 61 persons, or 48 per cent; treated, 52 ; cured, 19 ; data incomplete in 33 ; not treated, 9.
Treated 1 or more times, 52 ; cured in 1 treatment, 12; not cured in I treatment, 21; data incomplete in 19.
Treated 2 or more times, 21; cured in 2 treatments, 7 ; not cured in 2 treatments, 5 ; data incomplete in 9 .
Treated 3 or more times, 5 ; cured in 3 treatments, ?; not cured in 3 treatments, 1 ; data incomplete in 4.
Treated 4 times, 1; data incomplete.
Number of treatments of males.-The following tabulation gives the male cases treated at the hospital and also [in brackets] male cases treated at home.

Treated 1 or more times, $94[+9]$; cured in 1 treatment, $45[+3]$; not cured in 1 treatment, $15[+1]$; data incomplete in $34[+5]$.
Treated 2 or more times, $29[+1]$; cured in 2 treatments, 6 ; not cured in 2 treatments, $14[+1]$; data incomplete in 9.

Treated 3 or more times, $14[+1]$; cured in 3 treatments, 6 ; not curcd in 3 treatments, $6[+]$; data incomplete in 2 .
Treated 4 or more times, $6[+1]$; cured in 4 treatments, 1 ; not cured in 4 treatments, 5 [1].
Treated 5 or more times, $5[+1]$; cured in 5 treatments, 1 ; not cured in 5 treatments, $3[+1]$; data incomplete in 1.
Treated 6 or more times. $3\lceil+11$; cured in 6 treatments, 0 ; not cured in 6 treatments, $2[+1]$; data incomplete in 1.
Treated 7 or more times, $2[+1]$; cured in 7 treatments, 2 ; not cured in 7 treatments, [1].

Comparing the male hospital cases with the male home cases and the female (home) cases, it is clear that a greater proportion (45 in $9 f$ equal 47.8 per cent) of cures on 1 treatment are known for the hospital than for the home cases (15 in 61 equal 24.5 per cent). That this result is not due entirely to incomplete data is rendered probable by two facts: (1) That there is a smaller number of known incomplete cures in 1 treatment (15 in 94 equal 15.9 per cent) for the hospital than for the home cases (22 in 61 equal 36 per cent), and (2) in leaving thymol at the home the tendency in all cases is to leave, smaller doses so as to increase the factor of safety to the patient, in view of the risks necessarily connected with leaving the drug among people who can not be relied upon to carry out directions, even when printed directions are given. In other words, a larger dose of thymol given under hospital conditions involves less of a risk to a patient in a. given physical condition than it does to the same patient at home, and we are fully justified in giving larger doses in hospital practice.
Total size of dose used.-Tabulation of the cured cases in question, according to the total amount of thymol used per age of patient, gives the following results:
tabulation of nineteen female cases oured at home.

From the foregoing tabulation it is seen that of 19 complete cures in home treatment, 12 had only one treatment and 7 had two treatments each; 14 were cured with less than a full dose of thymol, and 5 had above one full dose, but not over one and one-half full doses.
Illustrating the possibilities of accident, even when the patients are cautioned as to details, it may be stated that a few moments after one of the children took her thymol, some kind neighbor learning that the child had had no breakfast attempted to give to the patient some wine: It was only by a mere chance that the good intentions of the kind neighbor were frustrated, and thereby that probable accident was avoided.

Although it was not feasible to draw a comparison in these cases etween the size of the dose and the number of worms passed, the table shows that some cases may be cured at home in one course of treatment with even as low as one-third of the present standard dose.

AGE	$\underset{\text { ber }}{\text { Num- }}$	Basic maxi- mum sin- gle dose of thym- oi	First dose	Total thymo given	Portion of single $\operatorname{maxi}_{\text {mum }}$ dose given
	1 1 1	15 15 15	3 5 5 71	8 5 7 7	0.2 .33 .5
	3	45	151	151	. 34

In case of these children it was distinctly unwise to give the maximum dose for the age group, and all three were cured with half a dose or less. In one other case, seven home doses (small) failed to effect a complete cure.

It was not feasible to count the worms in these cases.
TABULATION OF SIXTY-ONE CURED HOSPITAL MALE CASES, ARRANGED AC-

tabelation of sixty-one cured hospital male cases, arranged acCORDING TO AGE AND DOSE-Continued

Age	No.		$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{*} \\ & \stackrel{\rightharpoonup}{*} \end{aligned}$		\% \% O \%		$\begin{aligned} & \mathscr{0} \\ & 0 \\ & 0 \\ & \underset{y y y y}{*} \end{aligned}$		芯			
14 years	1	30	25							25	. 83	
14 years	1	30	30							30 30		
14 years	1	${ }_{30}^{30}$	30		25					65	2.16	72
14 years	1	80	2	25	25					50	1.11	1,142
15 years	1	45 45	2							20	. 44	73
16 years	1	45	30							30	-66	
16 years	1	45	20	25	30					75	2.33	538
16 years	1	45	10	15	25	15	25	30	30	150	3.33	683
17 years	1	45	25							100		(?) ${ }_{\text {2, }}$
18 years	1	45	45 50	50						100	2.22	92
19 years	1	45	45							45		37
20 years	1	60	45							45	. 75	11
20 years	1	60	${ }_{50}^{45}$							${ }_{50}^{45}$. 83	72
20 years	1	60	${ }_{60}^{60}$							60	1	95
${ }_{21} 21$ years	1	60	60							60	1	143
23 years	1	60	60	-----						60	1	167
24 years	1	60	60							${ }_{45}^{60}$		24
25 years	,	60	${ }_{42}^{45}$. 70	${ }_{6}^{46}$
${ }_{27}^{26}$ years	1	60	${ }_{60}^{42.5}$	60						120	$2^{.0}$	
${ }_{29}^{27}$ years	1	60	60							60	1	80
30 years	1	60	45							60	1	8
31 years	1	60	60							${ }^{60}$		17
${ }_{36} 3$ years	1	${ }_{60}^{60}$	50 50							50	${ }^{.83}$	8
36 years	1	60	${ }_{60} 0$							60	1	97
38 years	1	60	60							-60		28
60 years	I	45	50							50	1.11	6
Total	61	2,355								,722	1.15	12,980

From the foregoing table it will be seen that of 61 cured hospital cases in this series 45 received 1 treatment; 6 received 2; 6 received 3 , 1 received $4 ; 1$ received 5 , and 2 received 7 courses of treatment. If, however, we base the comparison on the standard maximal dose for the age group in question, the following results are obtained: 4 cases were cured with a total of 0.5 of the maximal dose or less; 21 with between 0.5 and the maximal dose, 16 with the maximal dose, 10 with a total dose of between 1 and 2 maximal doses; 8 cases with a total dose of from 2 to 2.48 maximal doses; 1 case was cured with 3.33 maximal doses; and 1 with 5.33 maximal doses; a total of 61 were cured with a total dose averaging 1.15 maximal dose.
Comparing now the 61 hospital with the 22 home cases it is seen that while, from a standpoint of caution, a smalled number of home cases were cured on 1 treatment, the cures in general were effected with smaller sized doses (average 0.84) than those used in the hospital cases (average 1.15).
From the hospital cases it is seen that in the cure of 58 cases 2,637 grains of thymol were used and that from the stools of these patients 12,980 worms were collected. Thus, on an average, 1 grain of thymol
expelled at least 4.7 worms. This conclusion it not, however, of any significance, for in 1 case 60 grains expelled only 1 worm, while in one course of treatment 25 grains expelled 2,246 worms (an average of 89.8 worms per grain of thymol).

CONCLUSIONS.

The general conclusions from the foregoing study seem to be:
(1) The present more or less frequently expressed desire to increase the dose of thymol considerably in excess of the present generally accepted maximal doses is not entirely unnatural, in view of the fact that so many patients fail to follow out the treatment until all the worms are expelled, and therefore a considerable number of persons continue to distribute the infection.
(2) Many cases of hookworm infection are cured by less than one maximal dose for the age group in question.
(3) When the thymol treatment is properly carried out, namely, when it is given under proper precautions, and the margin of safety to the patient is properly safeguarded, the present maximal doses seem to be entirely safe.
(4) The fact can not, however, be ignored that many of our patients are ignorant and illiterate, and can not be relied upon to carry out directions, and if the thymol dose in home treatment is in general increased this must be done with a distinct risk that involves a totally unnecessary danger to a large number of patients who may be completely cured with less than the present maximal dose.
(5) In view of the fact that not less than 11 deaths have occurred in the United States because of following thymol with castor oil instead of with salts or because of carelessness on the part of the patient or his family, we do not consider it wise to have a general increase in the size of the dose of thymol in the home-treatment cases. We entirely concur with the field men who in clinic practice cut the doses down below the present accepted maximal dosage.
(6) With an increase of sanitary privies, or with a repetition of smaller doses, the same eventual curative result will be obtained as would follow with an increased single dose of thymol; and while the former plan will take a longer time, it involves less risk and the improved sanitation will give additional results in other diseases.

SOCIAL HYGIENE VS. THE SEXUAL PLAGUES By the Indiana State Board of Health.

Do you know that gonorrhea is said to be the most widespread disease among the adult male members of the human family, and in the light of increased knowledge is held to be doing more harm to the race than syphilis?
Do you know that medical observation indicates that 80 per cent of males, between the ages of 18 and 30 years, contract gonorrhea?
Do you know that a majority (some hospital authorities assert 70 per cent, others 85 per cent) of abdominal and pelvic surgical operations on women are the result of gonorrheal infection, in many cases ignorantly transmitted by the husband?
Do you know that a husband may infect his wife with either syphilis or gonorrhea long after he may think himself free from the disease?
Do you know that gonorrheal infection is responsible for 20 to 30 per cent of blindness? (Formerly an asserted 80 per cent until the discovery of the Crede method of applying a solution of nitrate of silver to the eyes of the new-born.)

Do you know that gonorrhea is the principal cause of race suicide? (This from superinducing certain abnormal changes in the reproductive tract of the male by which the process of fertilization is interrupted.)

Do you know that gonorrhea permanently maims one in a hundredkills one in two hundred?

Do you know that practically every prostitute is infected, if not today then tomorrow, and continuously as long as she follows prostitution.

Do you realize the extent of this dangerous disease in high school, college, university, private and preparatory school-in store, mill, shop, office and boudoir? Per examples: A girl, in an Indiana school, recently seduced and contaminated thirteen boys attending the school. But a short time ago, the mayor of an Indiana city called a meeting of fathers, to place before them the alarming extent of infection among the boys of the community.

You are asked the foregoing questions in order that you may be brought to realize the wide extent by which the homes of the American people are being invaded by one of the most dangerous diseases known to the human family. The social diseases, shielded by what has been termed the "Anglo-Saxon sense of prudery," are doing enormous damage to the race. The lack of correct information among the masses of the people as to their extent and danger, constitutes one of the most men-
acing problems of American civilization. Has not the time come for parents, and in fact for all thoughtful citizens, to abandon the false delicacy, the prudery, which, by surrounding sex nature with absurd mystery, invites the destruction of national health?

Young men are taught in school the physiology of the brain, heart, lungs, stomach, and other vital organs. Why should such instruction cease when it comes to the most important function of the body-that of reproduction on which depends the perpetuation of the species? The health of the reproductive organs also has an important effect on the other organs of the individual. Is it not social stupidity to insist on the education of young men in arithmetic, geography, grammar, and in other branches which fit them for business life, and at the same time deny them proper knowledge of a function, the impairment of which constitutes a most destructive assault upon their physical and mental capacity and unfits them for success?
If four-fifths of the young men of the United States contract gonorrhea, may not one of these young men be your son? It is asserted that from 8 to 18 per cent (there are no official statistics) of American young men contract the syphilitic infection. May not one of this latter percentage be your son? Have you ever warned him as to the malignant and widespread character of the social diseases? If you have not, are you not in part responsible for the great misery that may come to him? Why permit a son ignorantly to contract the poisons of diseases which have injured or destroyed more lives than any other disease? Is the young man not entitled to social protection, to warning, to knowledge, to moral exhortation?
If the subject is too "delicate" for you to discuss in your home life, if your "moral susceptibilities" will not permit you to establish such a confidential relation with your son, why not dispose of the matter in a sensible way and turn the problem over to the school educators? They stand ready and willing to give you such instruction as soon as you say the word. Since a young man must learn of his sex nature some time, which is the better for him-the wholesome and noble truths of science and morality, or misleading, degrading street or "curb-stone" information that today often constitutes his sole knowledge? Which kind of information is best designed to strengthen a young man in moral resolution, to help him in a determination to remain pure in heart and body, to guard him between the ages of 12 and 21 , when the will is unstable, and during which period many contaminations are incurred? It has been established that a large number of contaminations among young men are the result of sheer "curiosity." Without knowledge as to the seriousness and universality of prostitutional disease, thousands of young men fall into the venereal trap practically without warning, and thus become infected with poisons which may cause them lifelong anguish. Ignorance is always a curse and knowledge a blessing.

Bacteriologists tell us that not many disease germs known to them can survive a few hours of sunlight. Tuberculosis shows a statistical decline under the light of popular knowledge. Widespread information
will certainly do much to minimize the virulency and extension of venereal infection. Secrecy, with its 80 per cent of young men infected with gonorrhea and fiom 8 to 18 per cent infected with syphillis, has certainly forfeited any rights it may once have had as a sane social or puble policy.

Earnest physicians and scientists who make a study of the difficult problem stand almost as one in the opinion that when a broad system of popular education in sexology or social hygiene is established, the first step will have been taken in intelligent public warfare against the venereal scourges. Our best physicians are thoroughly alarmed over the vast extent of venereal infection. The great cities, themselves rapidly becoming venerealized, are serving as centers for the distribution of infection to the population outside the cities that previously has remained comparatively free from contamination and from which the nation in the past has drawn its reserve strength. This is a development caused by the passing of rural isolation with its condition of enforced sex probity. The trolley, good roads and cheap transportation have made communication easy between the city and country. Public health is paying the price. A wide national effort is now being made to arouse parents to the seriousness of the situation. Should you not do your part in preventing the advance of the social scourges?

There are some well meaning people who still cling to the oldfashioned moralist view that venereal affliction is the just punishment of those who violate the Seventh Commandment, and therefore nothing should be said or done. The weakness of this view is that the evil worked is not confined to the transgressor. The infection is often brought home and transmitted to innocent wife and child. It will hardly be contended that the Supreme Intelligence ever intended a human being should contract a loathsome disease and then infect the innocent. The so-called moralist view will not stand the light of twentieth century analysis. The truth made manifest shall make men free.

Prince A. Morrow, A. M., M. D., Emeritus Professor of Genito-Urinary Diseases in the University and Bellevue Medical College and Surgeon to the City Hospital, New York, president of the American Society of Sanitary and Moral Prophylaxis, has written much and ably in an effort to get the fearful venereal truths before the people. In a talk before the Y. M. C. A., Indianapolis, April 10, 1907, Dr. W. N. Wishard, Professor of Genito-Urinary Surgery in the Indiana Medical College, quoting Dr. Morrow, said in references to the venereal diseases:
We may well ask why certain infectious diseases are elevated to the dignity of a danger to the public health and every effort made to prevent their spread, while another class of diseases, compared with which the morbiaity of the former is but a molehill to a mountain, is completely ignored.

The venereal diseases are social assassins. They spare neither virtue nor innocence. Who deny the existence of an assassin by professing to ignore his presence? Is that wise, brave, or in any sense good policy? It would seem to be very much like the policy of the silly ostrich which, hiding its, own eyes to danger, believes it is secure.

In pursuance of a resolution adopted by the Medical Society of the County of New York in 1901, a Committee of Seven was appointed for the "Study of Measures for the Prophylaxis (prevention) of Venereal Diseases." Dr. Morrow acted as chairman of the committee and Dr. L. Weiss as secretary. A report of the committee was issued from the press of the Medical News, New York City, December 21, 1901. The report states that circulars were sent to each of the 4,750 resident physicians and to all hospitals, dispensaries, etc., in greater New York, making inquiry as to the character and extent of venereal infection. The figures are:

Total new cases gonorrhea and syphilis for one year........243,000
The foregoing figures do not intude...........................800,000
fection. The United so not include the destructive chancroidal in1900, a population of $4,113,043$. Thus it will be observed that about every fifth person in New York, men, women and children included, is or has been infected with venereal poison.
Notwithstanding the terrible import of these statistics, they appear to hold little, if any, meaning to the New York Board of Health. In an article contributed to the Journal American Medical Association, Chicago, Ill., March 4, 1905, Dr. Morrow says he approached two successive administrations of the health department of New York City and urged the adoption of a method of sending out circulars of warning to the general public somewhat after the manner of diffusing popular knowledge as to tuberculosis. Dr. Morrow says his request was refused on the ground that such circulars would "offend the moral susceptibilities of the community."
Thus it goes on year after year, from 250,000 to 300,000 persons residing in or near New York City initially infected annually with the poi sons of diseases fully as deadly in eventual race effects as any scourges known to mankind But nothing must be said. It might "offend the moral susceptibilities of the community." Think of the unborn generations that must bear the stigmata, the physical ills and deterioration as the result of such tender "moral susceptibilities." It would seem these "moral susceptibilities" are not very tender when it comes to injuring the innocent.
The Committee of Seven in its report sadly says:
The estimate of the fruits of prostitution in New York City takes no cognizance of its incidence among the strangers within our gates. Among the million or more of the floating population of this city it is well known that many are worshippers at the shrine of Venus and carry with them to thefr homes sad souvenirs of their sojourn in the metropolis. In this rich harvest field of infection they often reap more than they sow.
Which paragraph means nothing more or less than a visitor to New York becomes contaminated, carries the infection back to his home, perhaps to wife or unborn, perhaps bringing a pure wife to the operating table; injury done to self and home; divorce-a marred business career.

Health, happiness and social dignity all dumped into the rot-pot of venereal poison. In justice to the unfortunate, he probably did not know that practically all prostitutes are infected. No one ever told him that.
It is only fair to state in behalf of New York, that it is not greatly worse than other large eities.

SYPHILIS.
The Century Dictionary defines syphilis as: "An infectious venereal diseases of chronic course communicated from person to person by actual contact with discharges containing the virus or by heredity. The initial lesion at the point of inoculation is the hard or true chancre; this after a short period is followed by skin affections of varied form, sore throat, with mucous patches and swelling of lymphatic glands and later by diseases of the bones, muscles, arteries and viscera." This disease is also known as the "pox."
The germ of syphilis is the spirochetae pallida, or the "pale, spiralshaped" germ. It was established in 1895 by Schaudinn and Hoffman of Germany and is now generally accepted by the medical world. Metchnikoff, successor to Pasteur in Paris, states that the syphilitic germ has the effect of hastening old age. The spirochetae pallida is a very stubborn germ and destroys the phagocytes, or life-preserving scavenger police-cells of the blood, which are often unable to cope with such a stout adversary and the victim quickly ages. A syphilitic child often has the weazened face of an old man.
Medical view as to syphilis is being revised constantly. The disease has been thought curable, but since the isolation of the organism, the germ has been found in the brain and other parts of the body twenty years after the infection has been contracted.
Physicians say this disease is exceedingly infectious in its first stage and certain phases of the second stage.
L. Duncan Bulkley, A. M., M. D., New York City, in his book "Syphilis in the Innocent," states that the disease can be acquired from "kissing, biting, scratching, use of spoons, knives, forks, cups, glasses, tobacco, pipes, cigars, cigarettes, troches, candy, underclothing, masks, towels, sponges, toothbrushes, syringes, the implements used by glassblowers, assayers, weavers, musicians, cooks, furriers, upholsterers, shoemakers and servants."
This is the disease responsible for an asserted 90 per cent of locomotor atazia, a large per cent. of insanity (syphilis, acquired and hereditary,) for a great number of still-born children and for a heavy percentage of premature deaths of children, for apoplexy, paralysis and sudden death long after the disease is supposed to have been eliminated. Insurance actuaries hold that on an average syphilis shortens life onethifd. Fet because of ignorance of the terrible character of this disease, it is not uncommon to hear a young man laughingly boast to a companion as if it were something to be proud of: "I've caught a dose of chancres." What a mockery!

This disease has been found not infrequently in the public schools and colleges. Yet no word as to its character or existence is permitted to be said in some of the schools even to more mature pupils. How long must such a debauchment of American manhood continue? What an enormous bill of damages is laid to the door of prudery-"social cowardice," if you please!

Again, it is not permitted to say to a young man: "If after being warned you go deliberately to the prostitute and contract this disease, you should consider yourself a social menace until informed that you are no longer an infectious agent. Moreover, young man, you have no moral, physical, or social right to enter into the state of marriage until you have been pronounced free from it, for if you are not free from it you may infect your wife, bring dead or diseased children into the world, this inflicting a wrong not only on the innocent, but on society."
Has not the time also come when a woman shall have the tacit right to say to a young man who may ask her hand in marriage: "You demand chasity from me. In return, I ask that you certify that you have the physical right to become my husband and the father of a family.

gonorretea.

The Century Dictionary defines gonorrhea as follows: "In pathology a specific, infectious, muco-purulent inflammation of the male urethra or the female vagina or urethra."
The belief that gonorrhea and syphilis were but the different expressions of a single disease held sway from the earliest knowledge of the disease, 2,000 years before Christ, until the year of 1838, when they were finally differentiated. In 1879, a physician named Niesser discovered the specific organism of gonorrhea. The organism or germ is called "Niesser's gonococcus." Gonorrhea is also known in vernacular as "clap," from the old French word "clapior," meaning "to flow."
J.' Bayard Clark, M. D., surgeon to Bellevue Hospital, New York, in an address before the Medical Society of the county of Westchester, at Yonkers, November 21, 1905, address published in the New. York Medical Journal, March 3, 1906, sald:
It was not many years ago that goriorrhea was looked upon as a local inflammation which ran in a majority of cases a mild course ending in complete
cure. Today we recognize in gonorthes a formin - cure. Today we recogntze in gonorrhea a formidable infection, which has invaded every tissue of the human body and from which no class of society is immune, Gonorrhea is said to be the most widespread and universal disease affecting the adult male population.
Following are some of the things that gonorrhea has done to many males and may do to any male who becomes infected and neglects the disease:

Causes stricture or narrowing of the urethra. The inflammation leaves a scar. The urine not being able to pass freely sets up an annoying irritation in the urethra. A stricture often can be removed onlly by a long course of painful treatment. A surgical operation is sometimes necessary.

Causes epididymitis or inflammation or swelling of one or both of the testes. Where there is double inflammation complete sterility may and often does result. Exceedingly painful and dangerous. Victim often suffers distinct loss of moral tone. Mental disturbances.
Causes inflammation of delicate ducts and vesicles in deep urethra, Cometimes superinducing an abscess, very grave and painful, necessitating dangerous aperation. Sterility is again sometimes the result. Often loss of moral tone and mental disturbance.
Causes gonorrheal rheumatism, one of the most painful diseases in medical knowledge. Here the germ enters the blood, finds a home in the joints, which swell to enormous size, with extreme suffering. Ankylosis, or stiffening of the affected joints, is not infrequent, leaving the sufferer a permanent cripple.
Causes gonorrheal ophthalmia. Gonorrheal pus transferred to the eye may extinguish sight in a few hours. It is an exceedingly stubborn and dangerous affliction.
Causes disease of the prostate gland. The prostate gland situated at the neck of the bladder, is the "heart of the sexual system." Infection of that organ may be the cause of the disease becoming chronic or incurable with destructive effects on the generative function. Abscess sometimes results, necessitating a serious surgical operation. Deep melancholy and suicidal tendency sometimes develop.
Couses of tendency, it is thought, toward tuberculosis of prostate gland and testes, resulting in dangerous and often fatal surgical operations.
In woman, causes inflammation of the ovaries, the Fallopian tubes and the uterus, often necessitating radical surgery to save life of victim. Barrenness and life-long invalidism are, of course, the result.
Yet this is the disease referred to by many misled men who say: "I would just as leave have it as a bad cold." Think of the vicious popular ignorance that permits of a statement like that! Think of the youth of the country being brought up on such carrion talk! Well may it be said in the words of Sir Oliver Surface, as he raises his hands to heaven: "Mercy upon me! I shall never forgive him this! Never!

It has been learned that the gonococcus may sometimes remain in a quiescent or attenuated state in the urethra for a considerable period-. often for years; that the infected may suffer no immediate inconvenlence; in fact, he or she may consider themselves free from the infection, but when this germ is transplanted to a virgin or fresh soil it may resume its malignancy. The fact that many unhappy wives have undergone severe or fatal surgical operations, places a seal of truth upon this statement. A majority of these wives were clean and virtuous women; they married men "who had gone the pace;" these men brought to their wives the "germ of debauchery" in most cases unwittingly, only to learn, too late, they have ruined the woman of their choice.

In justice to the human race it must be maintained there are but few men, however immoral or debased, who would deliberately infect their wives. It is ignorance,-lamentable, fearful, widespread ignorance that is largely responsible for these disasters to pure womanhood-certainly not wilful intent. Does not every principle of human justice, of real morality, call for decent public enlightenment?
In the "Critic and Guide," Dr. Wm. W. Robinson, editor, New York City, May, 1907, is the story of "Rose and Edward." There is nothing in" life quite so tragic as this type of story. There are thousands of similar incidents. The story is told in popular vein and in brief is as follows:

Rose was 22, bright, cheerful and joyous of the future. It was her happlest day, for she had just married Ed, a rising young lawyer, age 28. Ed was a kind-hearted gentleman-a real gentleman in the finest sense of the word. Just the man for Rose. They were married in October. They expected to stay away three months on their honeymoon, but they returned after about three weeks. Rose was not feeling well. Hotel life had not agreed with her. She looked haggard and fagged out. Rest did not seem to do her any good. She began to fail rapidly, and was suddenly seized with severe pain. The physician announced that in order to save her life an immediate operation was necessary. On January 5 at midnight the bride was removed to a private hospital. The operation was a success, but you would not know Rose now. She aged ten years in ten weeks. She is making no plans; she has no hopes; she is dreaming no dreams. Never again will she be the happy Rose that she was before she became a wife. Never will her home be gladdened by the noise, romp and laughter of little children. A confidentral talk was had by the physician with mr. Edward. Ed couldn't remember at first, but flnally admitted under persistent questioning, that he had suffered from a little "strain" about two years before. It was mild. It had not bothered him much. He had gone to a physician who "fixed him up in a couple of weeks." Edward was requested to submit to an examination. The examination showed the presence of the fatal gonoccus. The despair of Mr. Edward that he was the unwitting cause of his wife's ruin can be better imagined than described.

As to the terrible wrong done innocent children by the gonorrheal infection, the following is quoted from a lecture delivered by Prof. $\dot{J} .0$. Stillson, Oculist and Surgeon to the Indianapolis City Hospital and the Protestant Deaconess Hospital, Indianapolis, before nurses and internes, May, 1898:
Someone has sald that the surgeon to be really worthy of the name must have the eye of an eagle, the courage of a Hon, the hand of a malden and the heart of a dove. Certainly one can say that if ever in the life of a physician there comes a time when all the stering qualities of his character are called for and put to the severest possible test, it is when he is brought face to face with one of those cases of gonorrheal eye disease of the new born infant in a cultured and refined family. Here the oculist needs to be, yea, has to be! brave, shrewd, tactful, skillful, gentle, firm, pliable, severe, diplomatic, frank, sincere and truthful all at the same time; in tact, absolutely dependable. He is, to use a common phrase, "up against it, and no mistake." Generally it is the fourth or fifth day, sometimes the tenth or fourteenth day after birth. The family physictan has done his best, the poor nurse has borne the blame of "having taken the baby to the light too soon," or she "neglected to properly clean it" or somebody "put breast milk in its eyes," etc. Vanity of vanities; all is vanity, sayeth the preacher! Behold that beautiful young mother as she lies there in all her purity, innocence and sweetness! The eloquence of her agonizing countenance melts your heart. Oh, yes, Mr. Oculist, you must now begin your deception. "It is a very mysterious case. There is no way in the world to account for it," etc. What is the use of poisoning her heart and wrecking her hap-
piness and blasting all her life! This is no time to talk. The less said is the easiest mended. There also stands the husband. Look at his knees: how they smite together. See the lines of his drawn countenance! How his lips quiver! Or perhaps, poor fellow, he does not know what a fool he made of himself that time when he "went down the line." Charlty, charity, brother; have charity in your heart for the ignorance of common humanity, Silence again becomes golden. But the baby! The baby! Now here is where your heart does break in twain. You almost look up to God and feel Hke asking Him, "Why did You do this? Why did You make it thus that this innocent, helpless, defenseless being should pay the price, should bear the blame of that father's ignorance and folly?" But what meets it-philosophy or reflection at this point? What you are for, Mr. Oculist, is to save this babe from the blind asylum. It is up to you. And woe be unto you is lan and skill come in, come out blind. So here is where your truthfulness, bravery and skil come in, and first it is absolutely necessary to see and know whether the eyeball is perforated. If it is, that , settles it. You stop and simply say, his eye. It is gone." But if it is not perforated, then, quick, quick with your lariat of the silver saits to head off the deadly tarantula from sleeping innocence and all is well.
Set forth succinctly, Prof. Stillson's lecture means that gonorrheal infection is responsible for the blindness of many children. He presents the drama of the unsuspecting wife, the innocent babe, the nurse with sealed lips, the guilty father, the unhappy family physician confronted with a serious domestic crisis, and the oculist called in at the eleventh hour, who must glibly lie to save the situation all around. The infection is often transmitted by husband to wife shortly before the birth of the child. The infection finds its way into the eyes of the babe by contact with the maternal passages during birth. Men know where they get the infection. Before exposing themselves to the infection, men should think of the blind beggar on the street corner, who, with rolling white eyeballs, clatters a tincup and beseeches pennies from the passersby. A gonorrhealized father was probably responsible for the beggar's sad condition.
Medical literature abounds with distressing pictures of infection, stories of weird venereal accidents not greatly varying as to the baneful climax-differing only as to detail. Occasionally there is the diseased boy in military or preparatory school who is' responsible for the loss of an eye of a companion by infecting a common towel, or the father who is blinded from bathing in a bathtub infected by his son. All this is very gruesome, very sad, but, alas, very true.

PBOSTITUTION.

Prostitution, which has given the venereal diseases to humanity, is as old as humanity itself, and the venereal diseases are as old as prostitution. The polygamous or "more than one wife" instinct in the male is largely responsible for prostitution. While evolution is gradually impelling the male into monogamy, he is secretily rebellicus. The polygamous instinct in him is still quite strong. On the other hand, the polyandrous or "more than one husband" Instinct is practically extinct in the female. Sexual desire in her is a means to an end-maternity. In the male, sex gratification is still largely the end. Biologically (science of evolution), the female is the original, much older, superior, more refined type, the male
being a later development or offshoot from the female in the order of evolution. Thus while the female embodies in a large measure the intuitions, the emotional characteristics, the moral instincts of the race the male by reason of his more recent origin has the larger share of primitive impulses. His passions are stronger, his morals less defined, and thus he is often thoughtless, cruel, relentless, and destructive in the pursuit of gratification. While evolution has assigned to the female the supreme function of the race, that of reproduction, yet at the same time she has been made physically dependent on the male who, released from the responsibilities of race perpetuation, is enabled to concentrate his energies to secure the means of existence. Largely holding the right of existence in his hands, enjoying this coigne of vantage, the male arrogantly dominates the weaker but superior type and levies sexual tribute upon her. Thus it is the male himself who compels and largely maintains the institution of prostitution, and prostitution can never be extirpated from society until the male becomes a creature of morals and calm reasoning intellect, instead of instincts. As punitive measures to force men into the monogamous relation necessary to the reproduction of the species, it would seem that the Supreme Intelligence has authorized the venereal scourges. Considered in their final aspect, these scourges are probably benevolent, since they drive men into the quiet family relation, the path of peace and industry. As an antidote to the fighting instinct in men, it is significant the scourges will disintegrate the strongest standing army in a few years. Though the scourges be benevolent, it is supremely important that as many members as possible of the human family shall be saved from infection.
It is useless to attempt an amelioration of prostitution or the eradication of its attendant evils by the application of radical measures. The moral radical the prosecution of prostitution, the more pestilential it becomes in its social consequences.
Prostitutes unduly oppressed, seek cover and practice clandestine prostitution often in the midst of respectibility. Clandestine prostitution is much more dangerous to public health than open prostitution, for in clandestine prostitution the hygienist has no power to cope with secret foci of disease. When not regulated too severely, there is a natural tendency among prostitutes to segregate or come together in a special locality.
In early days prostitutes were burned at the stake, drowned, scourged, branded, flayed and tortured in divers ways. But as one writer has stated, if all the prostitutes in the world were to be removed today, on the morrow the ranks would be completely filled with fresh recruits. The polygamous instinct in man causes the demand and the supply follows.

Hygimine.

It may be taken as a medical truism that all public prostitutes are in a probable condition of gonorrheal infectiousness. Efforts to control this disease in brothels by a system of medical inspection have proved failures both in this and other countries. In Paris, where the system of reglementation or inspection has state sanction and high scientific direction, it is sald venereal infection continues to show increase.

The effort of Cincinnati to reduce the amount of venereal disease by a system of medical inspection is set forth in Ohio Sanitary Bulletin, published by the State Board of Health, Columbus, Ohio, Janaury-March, 1907. Dr. S. E.'Allen, Cincinnati, in an address at the annual conference of the State Board of Health of Ohio, January 24, 1907, describes the results of the inspection system of Cincinnati as follows:

The examination could not be made oftener than twice a week, and between examinations a woman might be infected, and, of course, a woman infected with gonorrhea does not get well, practically; that is, she may get well, but for a long time there is always more or less infection present. Then the great trouble with the whole thing was that it gave everybody a sense of security which dia not exist; they thought that they were inspected, and here was a woman bearing a certificate from the board of health showing that she was healthy and that to the male would indicate that everything was all right, whereas it was not so. It gave them a false sense of security, so that I think less care was perhaps exercised and less trouble given to avoid those things, and in that way the effect of the inspection was counterbalanced. I am just as much up in the air as to the regulation of these diseases as I am to the regulation of doing anything for the whole nefarious business.

Gonorrhea as a hygienic problem in brothels seems to be unsolvable. Observation in public and private practice does not warrant the belief that more than 25 per cent of brothel prostitutes are at any time in an infectiously syphilitic condition. At this point the hygienist can be of value to society by demanding the prompt isolation of an infected inmate as a menace to the race. The physician or hygienist knows that young prostitutes living at home with small understanding of the value of hygiene, and that careless street prostitutes living in furnished rooms, are even more dangerous as disease breeders than brothel prostitutes. He would that all young men should know these truths, and he stands ready to furnish society with many other helpful suggestions as soon as society is ready to listen to him.
In view of the present moral standard of the race, many eminent venerealists are strong advocates of circumcision as a practical prophylactic measure against the ravages of syphilis. This meritorius sanitary rite which has stood the test for more than 5,000 years is practiced today by $15,000,000$ Jews, $300,000,000$ Mohammedans, by countless black men in Africa, and by thousands of Christians in all parts of the world. The Jewish race, which adopted the custom from an older nation, is remarkably free from syphilis. Circumcision is not a preventive, however, of gonorrhea.
Many physicians feel that if circumcision should become general in the United States that it would have a most beneficial effect in raising the standard of public health. Dr. William T. Belfield, a medical writer of authority and secretary of the Chicago Society of Social Hygiene, states in one of his essays that probably one-sixth of the American population is now infected with syphilis but with general circumcision this dreadful scourge would be lifted largely from American social life within forty years.
When circumcision is performed at an early age, the skin of the part becomes toughened by contact with the clothing-becomes somewhat like the palm of the hand. In ease of exposure the skin does not easily abrade.

If the scarf of the skin should not break, the syphilitic poison does not find entrance to the circulatory system, which is necessary to the development of syphilis.

Circumcision is also recommended as a preventive of self abuse among boys. The removal of the foreskin keeps the part clean and cool, with a resultant absence of annoying irritation. Circumcision also has been found efficacious in reducing the frequency of emissions.

Marriage.

It must be considered that the sex relation properly understood is chiefly psychic (that is, mind attraction or congeniality of temperaments), the physical being but an incident of harmonious concordance with or submission to nature's mandate that there be reproduction of the species. Submission on the part of the male is associated with a sense of responsibility; as the head of a household, he becomes a factor of social consequence. Again, as husband and parent, stability and dignity and qualities of love, kindness and cherishing protection over wife and offispring are developed in him. The marriage relation thus rightfully understood and exercised becomes a function of supreme value to the state in that it gives new lives to the state, and by necessitating regularity of habits and a conservation of energy, increases the value of the male as an economic unit. The marriage relation should be the consummation of psychic affinity and should carry with it a manifestation of all the nobler atributes of man, fulfilling the poet's conception:

$$
\begin{aligned}
& \text { True love: 'Tis fashioned in a cup of gold. } \\
& \text { Kindness, forgiveness, these the measure hold. }
\end{aligned}
$$

The needful psychic conditions are rarely if ever presented in mer cenary prostitution. Love, esteem, self-respect, forgiveness, courage, sense of social obligation and hope certainly do not form the psychical basis of public prostitution. On the other hand, as the conspicuous and inevitable concomitants of an atmosphere of harlotry are to be found hatred, contempt, self-loathing, quarrelsomeness, fear, criminal impulse and despair. Such an atmosphere is deeply antagonistic to the develop ment of the higher nature of man.

morals.

In its last analysis, from whatever standpoint the problem may be considered, it is clearly one of morals, and it cannot be met on any other basis with a hope of accomplishing lasting results. Should the hygienist enter into the problem with the determination to surround prostitution with physical immunity, he tacitly becomes a co-partner with and protector of an infamous traffic with its sure moral degradation, even if its physical dangers could be overcome.
The opposing views of morals and science are frequently presented in the discussions of physicians as to the social evil and its disease consequences. Occasionally there is a physician who would battle with venereal disease on purely scientific lines, having no other thought than to pre-
serve the physical purity of the race. This type of physician would ignore or fails to perceive any harmonious design in the evident purpose of the Supreme Intelligence to develop the moral nature of man by demanding that he exercise will-power and restraint over his desires. Physicians recognizing that phase of the problem are prompt to antagonize the coldly physical view of evolution in which the moral is forgotten or subordinated. Such physicians, while anxious that race health be preserved, also realize that too great a price may be paid for it if the moral stature of man is to be lowered by giving prostitutional intercourse the safety of hygienic protection-even if such were possible. The majority view of physicians is that the medical profession can not afford to take such position, and those who have given the problem a more thoughtful study admit in its final aspect it must be considered purely as one of morals.
Stated briefly, the position of the physician or venereal hygienist is as follows: He knows he can eradicate neither prostitution nor its associated diseases. He knows he can often prevent the spread of venereal infction, but that even then his best efforts are only incidntal as to the entire mass of venereal disease over which he has no preventive control, and can have none, though he earnesly asks that he be permitted to do what he freely can do to minimize infection. He realizes he can do much to mitigate race deterioration as to the venereal diseases if an enlightened public sentiment will permit him and join with him to enforce a reasonable standard of physical purity before the marriage relation is contracted. Above all, while realizing that he does not come into contact with infection until the harm has been done, yet he feels that the harm should not have been done, and he knows the only way to prevent the harm from being done is by a general and persistent education of the masses in sex matters, which education he knows to be of supreme importance to the individual and the race.

EDUCATION.

The problem accepted as a moral problem, resolves itself into a problem of education, and the problem of education, from the standpoint of the male, in turn resolves itself into two propositions:
(1) It is possible so to train a young man by pointing out to him the evil physical and moral consequences of illicit intercourse as to strengthen him in determination to remain continent until he shall have arrived at the psysical and economic period when he may justly contract the marriage relation?
(2) This failing, is it possible so to impress on a young man the solemnity of marriage in its physical relation to wife and unborn, that he will refrain from contracting the relation in case of having acquired infection until he shall have been pronounced free from the probabillty of transmitting disease?
That the problem as presented by the first proposition is a difficult one, all will adinit, but on examination, there are several encouraging features that give hope, if proper educational measures adopted, that
much may be done in the reinforcement of young men in a determination to maintain a condition of sex purity. It must be remembered that there are many young men who, either by instinct, special training or environment, reach the time of marriage unpolluted by contact with the prostitute. Even should the heavy figures as to gonorrheal contamination be accepted, their analysis shows there is still 20 per cent of young men who have escaped the contamination. But admitting that many of these in truth have not been continent, but owe their escape to "good luck" or lack of opportunity and that only 10 per cent of marriageable young men can say sincerely that they have remained away from the courtesan by sheer force of self-control, even that small percentage would seem to indicate that there is a saving grace among the young men of America that could be rapidly developed into a rallying point for a wide national movement pledged to physical purity. Goethe, dying, called ior "more light!" Such has been the cry of the ages, but has been persistently fought by trembling fear and foolish prejudice. Freed from the stumbling block of ignorance and darkness, humanity will find its way. It is not a morbid but a natural and entirely justifiable curiosity on the part of young men to desire an intelligent knowledge of the mysteries of life. Youth is the psychologic time for right suggestion, the plastic period of mental development for the making of lasting impressions which, when crystalized into definite conviction, constitute the attitude of mind, conduct or character. Here lies the crux of the whole matter. Education marks the chief distinction between the conduct of the savage and civilized manspelling the difference between the exercise of reason and blind following of instinct. While the sexual impulse may be "uncontrollable," or "without conscience," given certain conditions, yet if the soil of the mind has been well prepared, if the reason has been strengthened by the stern truths governing sex well-being, then men eventually will learn instinctively to avoid those conditions which lead to their undoing. A steadily increasing number will not so deliberatèly or persistently seek such conditions, and thus a vast amount of needless social injury will be prevented.

Education is certain to work for greater self-control and eventually to develop a profound change for the better in the general view entertained by young men as to sex-responsibility.
The sexual life will become vested with a serious meaning taking the place of the prevailing atmosphere of cheap levity and assumed bravado. Sense will be substituted for folly-often safety for ruin. Gross errors and wrongful conceptions will be uprooted and destroyed. Some young men are so uninformed or indifferent at present as to sexual responsibility that it is not uncommon to hear one of them say: "That girl gave me a disease and I propose to get even by giving it to as many girls as I can." Such a youth does not realize the atrocity of his view or conduct. He feels the physical pain and mental anguish of the disease and seeks to avenge himself on society for the supposed wrong done him by scattering his misery as widely as possible. He does not realize that
the female from whom he acquired the infection, did not contract it as an intentional part of her misstep. No one likes to suffer. The unfortunate female probably did contract the infection from some male who perhaps held precisely the same view as the aggrieved youth who announces his intention to do as much harm as possible.
Young men should understand the right of this matter. The venereal diseases do not originate spontaneously. The germs of the diseases are persistent types of perverted cell life. They are passed from one person to another. When the female becomes infected, almost without exception, she contracted the infection from a sexual relationship with an infected male. The female no more desires maliciously to cause pain to the male than she wilfully desired to contract the infection. The female is largely above the desire to cause sexual misery. The young female is often weak and ignorant, sometimes in need; she does not understand her physical condition and often does not realize it until brought to the hospital operating table where nature demands payment for her "good times" to the last farthing. As long as the male holds his cruel view that he has the right to spread sexual contamination ad infinitum, keep disease going as a sort of endless chain, simply because some female infected him, there can be little betterment in conditions. When the male is brought to know that he who wilfully infects a female is a social criminal of the most depraved type, then there will be hope for improvement.

What a great gain if coming generations of young men could be made to believe that true manhood consists in not acquiring infection instead of the false view now often held that infection is a sign of manhood. Certainly it requires more strength of character to fight the battle for self-control than to yield weakly to a passion largely capable of sensible direction. The young man who keeps himself well in hand sexually, has certainly built up a reserve of will power which will serve him well in later life.

It is admitted that home education would be the ideal method of the instruction of youth in the mysteries of life but how many fathers are equipped with the scientific knowledge or parental courage to enter into intimate discussion with a son on such matters. Many fathers do nerve themselves to the point of briefly warning a son as to the "dangers" of masturbation, hinting at the possibility of the madhouse, etc. That such warnings have not been of great hygienic value to the race in the past is evidenced by the enormous amount of venereal disease existent and the wreckage of youth on every side. While the admonishment as to masturbation undoubtedly has been well meant, yet it often has had exactly the opposite result from that intended. Standing at the crossroads between masturbation and prostitutional exposure, thousands of youths have accepted the latter as the only course left open to them to escape the terrors of self-abuse as depicted by father. Some fathers again go so far as to say to a son: "il you have to do a thing of that kind, go to some first class house. If you get a disease, go to a good physician and send me the bill." Such advice simply means that the father is advising the son to expose himself to the danger of syphilis. Fathers in the
past have made these mistakes and are still making them because of their erroneous belief that sex nature is impossible of control. Science now knows better and asks that the old way make way for a new and better way.
The evils of masturbation have been grossly exaggerated. It is wrong to terrify the mind of youth with the formidable insanity specter. While the practice is admitted to be weakening and debasing and while physicians understand that the youth who wisely refrains or keeps the practice under control makes the better balanced man in maturity, yet exact knowledge asserts that masturbation is rarely the specific cause of insanity. The popular impression that the practice is the frequent cause of mental overthrow, is based on the observation that many insane people practice the vice. Those who make a scientific study of the insane have now learned that perhaps the larger percentage of demented persons owe their condition to delinquency at birth. Frequently they are the offspring of underfed, overworked or alcoholized and often venerealized parents. Lacking in physical and mental stamina at birth, the delinquent has not sufficient moral strength to resist the temptation to selfabuse, which may hasten but is not the primary cause of insanity.
Admonition as to the evils of masturbation is not the most important thing in sex-education. The important thing is to teach young men the physiologic truths of their ow nnatures. The question of selfabuse is quickly disposed of under such instruction, since science teaches the practice is not necessary, can largely be restralned and gives the reasons why. Science presents the possibility of a sensible, well regulated young manhood that constitutes an infinitely more invigorating and noble animus for the right conduct than the detestable threat of the madhouse with its hateful and unnecessary mental anguish.

Whenever a suggestion is made to educate boys and young men as to the truths of the sexual life someone generally appears quickly with the old fashioned argument that there might be "some boy" in ignorance of the meaning of sex nature "whose curiosity might be aroused and who might be led into bad things" by such moral and scientific instruction. Those who advocate such education are not giving much thought to this sort of saintly youth who exists largely as a figment of the imagination. Advocates of sex instruction have their eyes fixed firmly on the ninety and nine shrewd, sharp boys, who have reached or are nearing puberty, who have observed the creative process in plant life and who have seen the generative function in performance in animal life. These boys will gladly receive intelligent moral instruction and will profit by it, for a moral high toned atmosphere can be built up about the sexual life by proper education to take the place of the present immoral atmosphere which comes from street education with its filth and ignorance. It is a crass delusion to believe that any boy can reach the age of 14 or 15, unless imbecilic, who has not acquired a pretty fair idea of the reproductive process, so the suppositious "saintly youth" should be sent to the scrap heap of pitiful bogies. Even admitting the existence of such a youth, common sense demands that a strong effort be made to educate and prop-
erly guide the majority. As president-emeritus Dr. Charles Eliot of Harvard expresses it: "Innocence among the young is not essential. What we should strive for and which is vitally necessary to preserve the race, is virtue. Education of the young is a chief incentive to virtue."

Not the least value of such an education will be the development of a healthy and powerful public opinion that will place the stamp of stern disapproval on the man who does sexual wrong to the innocent. Employers also will begin to learn that sexual morality lies at the basis of all morality and that a venerealized employe often is even more inefficient as an economic unit than the victim of drink. Railway managers will learn that the man suffering venereal torment is an unsafe man to have charge of the lives of other people, because of pathologic disturbances affecting mind concentration.

Whatever may be one's views as to the ultimate of fumanity, one truth stands out clear and strong, the race always must be largely a failure as long as it clings to promiscuity and will advance just as it gets sexual intelligence and makes an effort toward the monogamic standard.
What a mass of misery is swept out of the life of the man when monogamy is accepted as a matter of vital belief and conscientiously lived up to. If the race could ever reach the monogamic altitude, many of the most grievous problems that afflict the world would be solved. But this can never be until there is regeneration of the individual and there can be no such regeneration without slow, painful effort and the broadest enlightenment. Most all the lower animals have learned the monogamic law and subscribe to it. Those that do not are fearfully punished by epidemics, e. g., the rabbit, which is swept by disease and killed by the thousands, the rabbit being a "varietest" not even observing "respectable" animal polygamy. Humanity has been endeavoring for thousands of years to defeat the monogamic law, has been relentlessly beaten back and hurt persistently-thousands have died-and yet society has declined to grapple resolutely with the problem. But this is the twentieth century. The race has been fed on sex lies and abominations so long and with such disaster, it would seem the time has come to apply an antidote of truth and science, and however toilsome the way, to crawl to the heights of better things.
As for the second proposition advanced as to the educational problem, all certainly will concede that the average young man would halt before embarking upon matrimony should he think there might be the least probability of infecting the woman chosen as a life companion. As has been stated, the gonorrheal infection is responsible for 20 to 30 per cent of blindness in the new-born and for a large percentage of the surgical operations on women; that syphilis is responsible for a menacing percentage of insanity. It is also known to be responsible for a large number of premature breakdowns of men and consequently for a vast amount of public indigence and criminal tendency. Education would bring about astonishing benefits for both individual and state should it be successful in eliminating even part of the venereal tragedies.

The question that offers itself: In what way should an education be extended to a young man to give him a proper view of sex nature and responsibility? Students of the problem agree that the first work to be done is to kill a number of popular lies as to sex matters, which lies are in strong variance from the truth. These lies are very harmful, obnoxious and dangerous, and widespread education alone can remove them.
sex necessity lie.
The father of these lies is called the sex necessity lie. This lie is founded on the doctrine that cohabitation is essential to health. This lie is a prostitute in itself in that it beckons to the young man and professedly gives him the sanction of nature to cohabit with the prostitute. That this is a malignant lie, one that nature bitterly opposes, is demonstrated by the fact that nature punishes those who believe it with disease. It is the popular acceptance of this lie that seems to extend a sort of apologetic social pardon to a young man who grievously sells his physical birthright for a mess of verereal pottage; it is this lie that keeps alive the "wild oats" delusion with its wreckage of human hope and happiness; it is this lie that defends downright wickedness.

Dr. Wm. T. Belfield of the Rush Medical College, Chicago, says in connection with the sex necessity lie:
That cohabitation is necessary to physical health, that continence and health are incompatible, is the comfortable creed of men addicted to promiscuous sexual intercourse though such a man flies into a virtuous rage if an unmarried sister or daughter adopts his creed and conserves the health of her male frlends by administering to sexual necessity. It is only the other Kelow. sister whose philanthropic interest in masculine health should be encouraged.
The American Society of Sanitary and Moral Prophylaxis unanimously resolved that: "Continence is compatible with health and reprobates the contrary doctrine as a menace to the physical and moral welfare of the individual and society." Fournier, a distinguished French spectalist, says: "Referring to the so-called dangers of continence, I do not know them, and I have never observed them." Prize fighters, athletes and men engaged in high effort, physical or mental, frequently are continent for long periods. They practice continency because it conserves their health and strength.
The sexual capacity has been likened to the tear duct. The eye is always ready to shed tears copiously, but because the tear duct does not continually shed copious tears is no indication that the duct has been injured or has lost its capacity for shedding tears. If there is such a thing as sex necessity in the same meaning that it is necessary to eat, sleep and drink, then men who have been held in prisons for extended periods constitute a paradox, since many men come from prison, after long terms, greatly benefited in health. They have been compelled to live regularly, they have not been able to gratify "sex necessity" and are stronger and better men physically.
It should be thoroughly understood that the sexual organs differ essentially from other organs of the body. It is a great mistake to
think that they can be developed or strengthened by exercise like the arm or chest. The sexual organs of the male are generally much stronger when not used and never suffer from non-use.

Young men should also understand from a biologic (science of life) standpoint that from the ages of twelve to twenty-one the body of a boy is being made over into that of a man. Nature has no large amount of vital energy that may be wasted safely in excesses of any kind during the adolescent period, for all the forces of the body are needed for rebuilding. Sexual excesses during that period are certain to be punished with a dwarfing or stunting effect on mental and physical development. Self-control is the thing.
Remember the words of "Old Adam" in "As You Like It," as he talks to young Orlando, who is in trouble. Thus saith Old Adam as he offers to Orlando his savings for old age, signifying he was ready to go back to work:

Though I look old, yet I am strong and lusty,
For in my youth I never did apply
Hot and rebellious liquors in my blood,
Nor did not with unbashful forehead woo
The means of weakness and debility.
Therefore my age is as a lusty winter.
Frosty but kindly.
The sex necessity lie is without justification in either the physical or psychic nature of man. It should be slain without compunction and an enlightened people will eventually do it.

DOURLE STANDARD OF MORALITY LIE.

The double standard of morality lie is the twin brother of the sex necessity lie. The lie simply means that the young man has the right to debauch himself sexually, but that the young woman may not do so. This lie has one benevolent feature, in that it largely confines the mass of distinctly venereal punishment and pain to the male members of the race, but just the same it is a disgraceful lie and should be ruthlessly destroyed. Nature plainly points out to a young man that he must exercise self-restraint and thus assist her in bringing the race to the point of evolution where reason shall be persistently triumphant over instinct or desire.
Dr. Edward L. Keyes, Jr., Secretary of the American Society of Sanitary and Moral Prophylaxis, in an address before that society at the time of its organization, said, in discussing the double standard of morality:
This spirit of recognizing a certain sexual right on the part of the male, therefore exists, and is accepted and tolerated by the community as a wholenot by the church, not by the law, not theoretically by the community-but practically it is a fact that it is so tolerated. How, then, is this sentiment, this tradition, this unwritten law, to be overcome? Only by educating the joung male, teaching him to develop his charactex, teaching him that his sexual yearnings are to be restrained like his propensity to overeat, to overdrink, to overexercise; teaching him that, because he wants a thing it is not, therefore,
necessarily good for him that he should have it, but often harmiul ; by assuring him that not only will he not perfect or retain his sexual potency by indulging in illicit intercourse, but that he is more likely by excess and irregularity to impair ft .

The "Double Standard of Morality" lie is the lie that protects the libertine and gives to him social standing, while it outlaws his sister, the prostitute. The lie also gives the syphilitic the right to enter a home of respectability and to marry a pure woman. The wife often finds out too late she has been married to a walking pest, a being who properly should be in a sanitarium or hospital or in isolation upon some island where he could not injure the innocent or assist in social disintegration. It is to be hoped under a system of sane education that the parents and young woman of America will realize that a syphilitic husband makes a mighty poor parent, whether he be foreign duke or American millionaire. There is nothing quite so fine as good, red blood free from disease. It maintains the home and sustains the state.

EMISSION LIE.

The Emission lie is a cheap medical faker lie. It is used as a bogy man to scare a young man into fits and make him believe that an automatic function of nature for the relief of overcharged seminal vesicles, is an indication he is suffering from sexual weakness and is on the road to the mad house. This lie has brought a good deal of money to the medical fakers, and is still bringing them substantial returns. It has been exploded long ago, but because of the lack of proper knowledge, there is still plenty of ignorance to be preyed upon. Education would kill the "emission lie" almost at once, saving many young men from unnecessary mental anguish and at the same time depriving the fakers of a field for harmful exploitation. Circular No. 2 issued by the Chicago Society of Social Hygiene, says in connection with emission.
These occur during sleep in perfectly healthy young men; they do not indicate an unhealthy condition of the sexual organs unless they take place oftener than once in ten or fourteen days. The scarecrow newspaper advertisements of "quacks" are designated to frighten ignorant boys and young men into paying heavily for unnecessary treatment.
When emissions occur too frequently, the cause is often sexual excitement in thought or deed, lack of physical exercise, overeating or drinking of alcoholic beverages-all of these habits are injurious to the body in general and to the sexual organs in particular. A young man who will take plenty of muscular exercise, eat moderately, avoid constipation and alcoholic drinks, and keep his attention diverted from lewd subjects, will seldom need medical treatment for seminal emissions.
Moreover the prostatic vesicles are engaged in a continuous work of secreting an excess of seminal and prostatic fluids into the urethra where they are carried from the system in a natural way. At times the young man may feel the sexual call to be pressing but if he will take a five mile walk or engage in a half hour "stunt" in the gymnasium he will be surprised at the rapid disappearance of the desire. The explanation of this is perfectly clear. Exercise causes activity of the glands and the excess of fluids that awaken the sexual desire are eliminated. It is much better to accept the exercise cure for sex desire during youth than to risk
prostitutional exposure with its strong probability of suffering and injury. So-called sex necessity in the young man is largely imaginary and the desire is the easist of all to be controlled when properly understood The best investment that can be made in this life is to get an understanding of the physiology of sex nature and rigorously adapt one's life to such understanding.

bad cold lie,

Then there is the "Bad Cold" lie, "I would just as leave have the clap as a bad cold." This is one of the most dangerous lies as to sex matters in existence. It is a lie uttered by thousands of men who, whether they really believe it when they give it expression, find out sooner or later they have been the victims of a vast delusion. This lie should be promptly garroted and embalmed in prussic acid, to make sure there shall never be a possibility of its popular resurrection. The killing of this lie would go far to save many wives from the operating table, to save many men and women from sterility and many babes from blindness. The killing of the lie would also have the result of the male learning that gonorrhea is a dangerous disease, and that he should lose no time in placing himslf in the hands of an honest and competent physician in case of contracting infection, since the successful treatment of gonorrhea is often dependent on its immediate treatment. When the disease finds its way into the deeper tissues of the body it is then sometimes a grave question as to its eradication. Young men will learn to keep away from uncertain and perhaps dangerous drug store remedies, and will also learn to keep out of the clutches of quack advertising doctors, whose first thought is money, the welfare of the patient being a minor consideration. Again quacks are often black-mailers, who, after learning the secret of their patient, bleed him for excessive fees under the threat of exposure by bringing suit. A young man also will learn that he must not marry with any of the germs of this disease in his body. A Iatent gonorrhea or gleet is scarcely less capable of infecting than is active gonorrhea. A young man who contracts the marriage relation in such a condition, commits a physical and moral crime. It is also a statutory offense in the state of Indiana, which state has passed a law demanding that the applicant for a marriage license shall make a statement he is free from the venereal diseases. Would that all states might pass similar laws, and that an enlightened public sentiment should demand their enforcement to the letter!

WAY FOR EDUCATION OPENED.
There are a number of other sex lies, some of them of such a wretched character that they have no place outside of the medical lecture or treatise. But with the killing of the principal lies the subject of social hygiene can be opened up within proper limits to young men in all institutions of public or private learning. The presentation of the necessary truths is a work of the highest moral character, for such knowledge will equip young men with stamina to resist coercive invitations
to visit the prostitute. Today a young man who is reluctant to "go down the line" is liable to be derided by his fellows as a "mamma's boy," "baby," "molly-coddle," "sissy," and in spite of an instinctive feeling that he should remain away from danger, he often has no effective argument to advance against the invitation. His will thus is overcome and he is brought into contact with the prostitute, whose wiles may be depended upon to do the rest. Thus many a young man is compelled to pay the penalty of disease and suffering as the result of a short-sighted social policy that will not arm him with a cuirass of knowledge suffcient to resist the gibes and sneers of reckless companions. It is certainly to be expected when there shall be widespread knowledge of the profound danger of the prostitute the visit to her will become a distinctly unfashionable and unsociable thing on the part of the male., A system of persistent, intelligent education cannot fail to do immense good. To longer withhold such education from young men is little else than a national crime.
best of all investments.
Parents and taxpayers should bear this in mind: Instruction in social hygiene is the cheapest yet best paying investment that can be made by any community. An ounce of disease prevention in the way of education is worth a pound of heavy taxation cure to take care of disease consequences. One or two lectures during the term in the high schools will go far to post young men as to fundamental truths. It is desirable, though not strictly essential, that the instructor be a physician. One thing is advisable, however-he personally should be a man of high moral character who by open life and manifestation of physical health, constitutes an example of the value of moral and physical restraint, thus arousing a spirit of emulation in young men. Boys do not want to be preached at. They simply want to be told how to live, in order that they may become successful and respected men. There is no subject they'are more deeply. interested in than sex nature; they instinctively realize it to be the supreme thing in manhood. What a great wrong society does to them by denying them proper knowledge.

RESUME.

Whichever way we look we see disease, sorrow and disaster, as the result of sexual error. It fils the streets with unambitious, venerealized men, the penitentiaries with hopeless, syphilized criminals, fills our insane asylums, our institutions for the blind, homes for imbeciles and other delinquents, hospitals and divorce courts. It is probable with the venereal scourges gone there would be little need of the physician, as we know him today, for many human ills would likely vanish as if by magic with the social diseases eliminated. But whether or not, there would be such a reinforcement of resisting power to the human body, freed from the venereal taints, that future generations would be largely immune to the diseases that now prey on and destroy the members of the human family.

At the door of improper sex education must be laid the blame of much of this social misery. Therefore proper education is the great, the deep, the vital question. It is the axe that will attack moral and physical sickness of the human kind at the root. Such education must no longer be ignored in this country. We are not building this American civilization that it shall be weakened or destroyed by the foul venereal scourges. With our fine free school system and general national shrewdness we are in unexampled position to try the experiment of broad education in social hygiene. In some parts of Europe, whole villages are swept by the venereal plagues. Densely ignorant, the unfortunate inhabitants are incapable of grasping even the rudimentary principles of hygiene or morals in their relation to the sexual plagues-and therefore must die. But such conditions do not exist in the United States. They never must be permitted to exist.
Who is so low, so forlorn, as would wish to be marred or slain by the venereal poisons? Who would have offspring fall victim? Is there any other heart-anguish quite so bitter as to bring a child into the world, the child of disease, and then to look on it and say: "What have I done! What have I done!"

There is still time in the United States to build a bulwark of popular knowledge against the advance of these scourges. Should we not bend our every energy to protect the young people of today and those who may come after! Verily, sex education is almost synonymous with national health.
Is it not the supreme duty of every conscientious American to use his influence and insist that sex education may be made a functional part of the public school system in order that no young man in the future shall have the right to say:
"If I had only known."

Expert Opinton.

I think it is our duty to give young men such knowledge as will protect them against the physical evils of venereal diseases.-James J. Walsh, M. D., New York.

Before the boy reaches the age of puberty, I think he should be taught the sacredness and naturalness of the sexual instinct, and this can be done in a quiet sacredness and naturainess of the sexual instinct
way.-E. L. Stephens, M. D., Des Moines, Iowa.

The subject should engage the attention of the parent; the teacher and the physician; in fact, on the proper solution of the subject depends the future welfare of the nation.-M. M. Smith, M. D., Austin, Texas.
I. belfeve it an infustice to allow these boys to go without this precious knowledge. I think it is not so much the knowledge as the mental impression which keeps these boys moral-F. W. Robins, M. D., Detroit.
If I were obliged to answer the question, "What do. our boys and girls most
need to have added to their education?" I need to have added to their education?" I think I should have to reply: "More intelligent training in the mysteries of physical life and sexual functions." Herbert W. G'ates, Department Secretary, Y. M. C. A., Chicago.

I do believe, however, that public education will accomplish a great deal. It is no use to point out simply the danger of venereal diseases without telling a young man how to lead a consistent life. We should, therefore, make a strong plea in favor of continence.-Geo. M. Kober, M. D., Washington, D. C.
I think that if anything is to be accomplished toward protecting the young of this country it should be done at a time when it would be effective. I really believe that physicians should teach physiology in the public schools, and at which its abuse entail.-Walter Shropshire, M. D., Yoakum, Texas.
The whole subject of physiology should be taught and not, as at presentonly in part, and that imperfectly. The truth should be taught, and that is that there are two great functions of the organism, namely, the preservation of the individual and perpetulty of the race; that the functions of the various organs of the body are subsidiary to one or other of these great functions. DeLancey Rochester, M. D., Buffalo, N. Y.
This is the point: The young man goes free for the first time when he enters college and since human nature is imperfect, when he reaches the time of freedom something goes wrong, and it is largely through lack of proper instruction. It has been my habit to talk to boys at home and at my house. I know that my efforts have been crowned with success so far as instructing them is con-cerned.-Theociore Potter, M. D., Indianapolis, Ind.
The parasites known as gonorrhea, chanchroid and syphilis are as destructive to the human body as the dodder vine is to the alfalfa plant, and our axiom is that "The proper way to avoid dodder is not to plant the seed." Let us, therefore, prepare the soil of the mind by well chosen education begun very early and continued into adult life, because in that way we may best avoid venereal diseases by teaching the youth or maiden not to plant the seed, and also by giving it no encouragement to grow.-George Whiteside, M. D., Portland, Ore.
Every year of my life I am struck more and more by the ignorance that permeates the general laity. My experience makes me belleve that education lies at the bottom of the whole thing, and we shall never gain much headway until every young man and every young woman even before she falls in wave and becomes engaged knows what these diseases are and what it will mean if she marries a man that has contracted them. I believe that many young men-perhaps most of them-can be impressed with a sense of honor and of the moral features of the problem. I also belleve that many a woman becomes a prostitute without heredity being an influence. I believe that many fall through ignorance.-Seneca. Egbert, M. D., Philadelphia, Pa.
A young man said to me: "If my father had given me ten minutes of sound advice and warning, I should have been saved years of sickness. As it was, I knew nothing; it was a question of guessing. I kept on guessing until I found out by bitter experfence." What can be reasonably expected from this hygienic education? It will constitute a safeguard and a valuable safeguard against venereal exposure. Fournier says: "Many young men thus instructed will expose themselves, but they will expose themselves less often, less readily, less recklessly, less foolishly, and thus a greater number of contaminations will be prevented."-Prince A. Morrow, M. D., New York City.
This committee has confined its studies to the enormous spread of venereal diseases without deciding on the merits or the demerits of a "Regulation of the Social Evil," It has come to a conclusion that systematized action emanating from the medical profession-a dissemination of knowledge to teach the populace the hygiene of sexual life-is the first step to diminish the consequences of venereal disease. * * A propaganda of action having as its alm to interest the profession and especially to enlfghten the broad masses of the importance and dangers of venereal diseases is the next step in the crusade to attack the hydra which endangers humanity in the present and threatens it in the future.Second Annual Report of the Committee on Prophylaxis of Venereal Diseases. Ludwig Weiss, M. D., Secretary, New York City.

There are sad things in this world, and they go on year after year just the same, even if we close our eyes and say we do not see them. I conceive of no possible improvement worthy of the name unless the truth is made manifest and a spirit of humanitarism prevails. A liberal education is incomplete if it does not include a knowledge of the most important function of the body, its proper performance under suitable conditions, its disastrous results when misdirected. * * There must be an awakening on the part of the profession and our philanthropists to the paramount importance of venereal diseases. * * The limitation of venereal diseases must be effected by educational methods and by affording adequate provision for systematic and thorough treatment. Denstow Lewis, M. D., Chicago, Ill., in "The Limitation of Venereal Diseases."

You cannot readily suppress anything of the kind, but you can control it, and after a time through education of the people you may perhaps be able to suppress it. Our school teachers must be educated properly. Let them consider that the moral character of their pupils is placed under their charge and rests largely upon them. Instruct them and let them know what they should teach and how to teach it; let them learn how to guide these children along. I want to tell you that you will never have a moral body of people, I don't care how much you legislate, until you train them in morals. You have got to make a boy or girl understand that they will derive pleasure from being moral. Do what we may, the fact remains that the bulk of the reproduction of the race will come from the sexually clean.-L. S. Tuckerman, M. D., Cleveland, Ohio.

Young men greatiy underestimate the disease gonorrhea. Besides producing a long train of other physical ailments, the gonococcus frequently finds its way into the deep urethra, where, by setting up inflammation, causes a damming or occlusion of the seminal vesicles, which serve as the receptacles of the spermatozoa or reproductive principal. Because of this occlusion, the spermatozoa tozoa or reproductive principal. Because of this occlusion, the to meet with the prostatic fluid constituting the major portion of are unable to meet with the prostatic fluid constituting the major portion of
the emission. Thus many a husband blames his wife for barrenness when he in fact has become sterlized by the gonococcus. General public ignorance is refact has become sterilized by the gonococcus. General public ignorance is re-
sponsible for much of this mischlef. The crying need of the youth of the sponsible for much of this mischief. The crying need of the youth of the
American nation is thorough education in sexology. Education alone will stop the terrible infury that is belng done to national health.-R. F. Sloan, M. D., wilmington, Del.

It is time for all those who value the national health and morality to unite in a reasonable, earnest and patient campaign for sexual purity. For apathy and neglect there is no longer excuse. * * As parents and teachers we are called upon to protect children and youth from the physical and moral ruin information. We may reasonably hope that, some day, perhaps not soon, the state will require a certificate of freedom from "Social Diseases" in the interest of innocent wives and children. ** Venereal diseases are most of all the effect of human volition and habit; with a higher moral control they would disappear. It is to this crusade we address ourselves and summon to our ranks every chivalrous man who would protect the innocent from the effects of a vice for which there is no excuse, and every good woman whose sympathy arises from her pity and her purity, her love for children and her patriotism and arises from her pity and her purity, her love for chid ren and her patriotism and religion.-Prof. Charles R.
Society of Soclal Hyglene.

What, then, is the hope in social prevention of syphilis? It is this: That we train our young men to higher ideals of women and marriage; that we remove the ldeas of false modesty and prudery in regard to matters sexual existing among our young women; that we protect the innocent; that we guard the unwary ; that we expose the infamous; that we have charity for the unfortunate, and alms and pity for the diseased and suffering. That we educate instead of legislate; that we cure instead of scold; that we pray instead of scoff. And when the moment shall be generally conceded that our Anglo-Saxon prudery and civilization shall not inhibit or prevent general discussion on these mat-
ters; when papers similar to this may be given without question, without excitn g he jealousy and envy of other professional men, and when general knowledge of $t_{1 e}$ far-reaching disasters of venereal disease can be inculcated into the minds of he laity ; then, and not until then, in my judgment, will there be any rellif, any suppression, any let up in the category of venereal tragedies. In a wora, the only hope is education. Let this, then, be our creed-let education be our watchword. For it is the hope, the main hope, the greatest hope in the our watchword. For it is the hope, the main hope, the greatest hope in the
sochl prevention of syphilis-the disease ever in our midst. Education on socal prevention of syphilis-the disease ever in our midst. Science-nature
bro ${ }_{i d}$ and open lines alone can lead us in the path of safety. Science-nation broid and open lines alone can lead us in the path of safety. Science-nature enned through the language of experience-alone can quell our passion, can ent ble our sentiment, can modify our emotions, can quell our passion, can rempe us from the blight and bane of this soclal tragedy and make us noble, make us good, and make us free.-Nelson D. Brayton, A. B., M. D., Governmeit Physiclan to the Isthmian Canal Commission, Panama, in "Syphilis, Past and Present."

TWO VIEWS-Quo vadis Domine? old moralist view- 1869 .
WM. Lecky, "History of European Morals."
"The essentially exclusive nature of marital affection, and the natural desire of every man to be certain of the paternity of the child he supports, renders the incursions of irregular passions within the domestic circle a cause of supreme suffering. Yet it would appear as if the excessive force of these passions. would render such incursions both frequent and inevitable. Under the circumstances there has risen in society a figure which is certainly the most mournful and in some respects the most awful upon which the eye of the moralist can dwell. The unhappy being whose very name is a shame to speak, who counterfeits with a cold heart the transports of affection and submits herself as a passive instrument of lust, who is scorned and insulted as the vilest of her sex and doomed for the most part to diseases and an early death, appears in every age as the perpetual symbol of the degradation and sinfulness of man. Herself the supreme type of vice, she is ultimately the most efficient guardian of virtue. But for her the unchallenged purity of the countless homes would be polluted and not a few, who in the pride of their untempted chastity think of her with an indignant shudder, would have known the agony of remorse and despair. On that degraded and ignoble form are concentrated the passions that might have filled the world with shame. She remains while creeds and civilization rise and fall, the eternal priestess of humanity, blasted for the sins of the people."

$$
\text { NEW SCCIENTIFIC vIEW- } 1910 \text {. }
$$

Modern science holds there is absolutely nothing in the physical structure of the normal male that immutably demands that any female be immolated on the altar of prostitution and strongly protests against the view that the mournful figure is the "guardian of virtue." Science disposes of this ancient and gross error simply by asserting with a confidence born of exact knowledge that in the adolescent period when much of the injury to the race is done through venereal contamination, that the sex relationship is not necessary and that youth is much better and stronger without such relationship.

The scientific view does admit, however, that the race is largely ignorant of the physiology of sex-nature and its proper direction. Science further accepts the biologic origin of man as opposed to the strictly scriptural view and consequently concedes the natural existence in the human breast of primitive instincts and savage longings. Science also
realizes the presence of an atavistic or inherited but erroneous social attitude as to sex-responsibility with its poor encouragement for increased morality. Science is compelled therefore to confess the sad and humiliating social condition that even in this enlightened age, thousands of females are condemned to suffering and death in order that an imaginary sex necessity and the polygamous sexual pride of the male be gratified.

The scientific view demands that the "instinct" conception of sexnature be corrected; that there be enlightenment and a serious and courageous effort on the part of the male for his own sake and in behalf of the welfare of the race to strive for a modification of the savagery of the sex instinct in order that it may be directed along channels of safety demanded by his modern environment. Science makes an appeal to him in order that the venereal scourges, which are the result of promiscuity, be eliminated as largely as possible. The individual owes this effort to the sanitarians and hygienists of the world who are working heroically to rid humanity of disease. Their work must always fall far short of success unless the individual loyally co-operates in an effort to keep himself free from the venereal infections. Medical discovery holds out faint hope at present of the immunization of the race against the sex scourges and therefore the the battle must be largely fought out on the moral and self-control lines.

Having before it an ideal of a race free of disease, science indignantly denies that the mournful figure conserves the "purity of the home;" in fact, holding an exactly opposite view, indicating the mournful figure as an arch-polluter and destroyer of the race, since the seeds of her vice are carried from her by the male to the marriage bed, mutilating and destroying the chaste female and afficting the innocent even unto the third and fourth generation. Mournful figure she is, but more mournful is that blinded and indifferent social state that will not accept the supreme necessity of proper education and guidance of the young in matters sexual, that will not endeavor slowly but surely to teach men that the sex-capacity is primarily for reproduction and not for pleasure and that the noblest right given to man is the right of reproduction; that will not strive to impress on men that in its last analysis the human organism has but two chief functions, the preservation of itself and the perpetuation of the species, and that the species cannot be perpetuated healthfully if the diseases of the mournful figure are to continue to pollute humanity. When the male through persistent education admits finally he has no physical, moral or social right by an act of deliberate volition to drag a female into the slough of degradation for selfish gratification; that he has no right to do a thing that may entail great suffering on himself and posterity; that if he is stronger than the female physically that he is still the weaker entity, if morally he is not the stronger; that his claim of manhood is indeed a sham if his manhood holds no higher strength or aspiration than the pursuit and persistent effort to overthrow the female sexually; that the sex-relation in its true and finest significance means protecting: parental responsibility; then indeed when men have learned these truths
and endeavor to apply them, they will have grasped the ultimate law of homo genus. Just as men observe the ultimate law so will crime, divorce, harmful industrial pressure on women and children degradation and general inefficiency begin to show diminution. With a more intelligent knowledge of the meaning of life, there will be released a vast stream of human kindness and helpfulness that will radiate altruism into every avenue of the social body. When the race shall endeavor even approximately to achieve the moral ideals contained in the ultimate law then will it have perceived its high evolutionary goal and will have taken the road leading to an ideal social condition which ever must be dreamed of and vigorously striven for, even though its attainment be Utopian or in the far distant future.

SOME SEX tBUTHS AND BELIEES.

Man cannot play "sneak" with nature.

The man who "keeps it up" will get hurt.
Whose sister? Whose blind child? Whose maimed wife?
Gonorrhea and leucorrhea are often one and the same thing.
Clean out the sewers of humanity and the flowers will bloom above.
Children should be taught to avoid the venereal infection as they would a snake.
"Hygiene can do more for the supression of crime than any law."Hugo Munsterberg.
Dirt must be swept out of the human soul as it is out of the house if one would be healthy.
"What man needs is not reform but regeneration."-Thomas R. Marshall, Governor of Indiana.
The man who pulls down another man's daughter may expect to have his own daughter pulled down. That's the law.
Syphilis and gonorrhea are traps for the ignorant and foolish. Nature has no mercy on ignorance or folly.
There are 50,000 blind children in the United States. It is asserted that gonorrhea is responsible for 12,000 of them.
The man who does not believe in educating young men in the sexual life invites the destruction of his daughter. Is it not true?
"Science is bound by every law of honor to face fearlessly every problem that can be fairly presented to it."-Sir William Thompson.
Don't be too quick to blame your wife for sterility if you have been infected. Try the physician's microscope as to your own condition.
Races that practice polygamy are the backward races of the earth; those who practice monogamy are the strong and progressive races.
In cheaper houses of prostitution many of the inmates are infected with both gonorrhea and syphilis. It is often a case of both "money and your life,"

Don't marry your cousin. It is contrary to Indiana law, and invalid. Family intermarriages have a tendency to produce the deaf, imbeciles and crippled children. ,
Women and children are the innocent and helpless victims of the venereal diseases. There can be no higher honor in man than to protect them from such infection.
"Pollute not thy lips with dirty storics."-Joaquin Miller. The dirty sex story teller should be suppressed. Let him tell the story to his own son and daughter.
No female should use a syringe, douche or any other instrument that has been used by another female. Many sad cases of innocent infection have resulted from such errors.
A young man may be sterile and not impotent. There is an important truth concealed in this statement. Look up the meaning of the two words and then talk to your physician.
Woman is the moral thermometer of humanity. She rises with the moral standard of the male and falls as his standard falls. Wherever prostitution is rife, the moral tone of men is low.

Don't use a public common towel if you can avoid it. Be specially careful of contact with eyes and mouth. Use every precaution in public toilets, protecting exposed parts by use of clean paper.
Stop the indiscriminate kissing habit. There are thousands of syphilitic mouths. Don't let strangers kiss your children in the mouth under any circumstances. The less mouth kissing, all around, the better.
Every young man should make a confidant of some reputable physician. Your troubles are nothing to what the average physician has met with. Have no "false modesty" about it. Be brave and sensible. Conceal nothing.
There is no more reason why the average healthy young woman should be hauled off to a hospital a few weeks after marriage than there is a necessity of a dispensary for cats. Man's ignorance and wickedness is largely the cause.
"Syphilis" was the name of a shepherd in an old Latin play. He was cursed with an ugly disease for offending the gods. The word means "dear hog." Certainly the disease has proved a "dear hog" to an unfortunate humanity.
George Francis Train who originated and promoted the Union Pacific railroad, finally became so "eccentric" he would not shake hands with a man. Why? Most men wash their hands after visiting a toilet room. Some do not. A gentleman always does.
Man here below is in prison to nature. If the prisoner learns and obeys the prison rules the earth sentence becomes bearable and often enjoyable. Confinement in solitary cell of disease, pain and remorse, is the consequence of disobedience of the prison rules.

Morally, it is assault and battery with intent to kill to infect a female with gonorrhea. An enlightened public sentiment some day may make it a statutory offense. A male has no more right to pass a venereal disease to a female than he has to infect her with hydrophobia or smallpox.
Enlightenment for both young men and women means that in a few years America will give to the world the finest physical and noblest intellectual specimens of manhood and womanhood in the history of the race.
Men say: "Don't put all the blame on us. The women are just as bad as we are." Adam again. But who generally takes the initiative in immorality, who pays out cold cash for immorality, who supports the brothel? Looks very much as if Adam cannot make out a very good case against Eve.
The man who marries a pure woman and risks prostitutional exposure may be proud of one distinction should he infect his wife-he has committed a wrong that would be scorned by the beasts of the field. An animal when sick seeks to hide. Man alone deliberately destroys those nearest and dearest to him.

The man who places his sex function on a pedestal and secretly worships it-who makes sex gratification the chief object of existencetotally misunderstands the purpose of his life. Social failure and the gloomy misery of premature decay often bring home to him the bitterness of his sad misconception.
"He goeth after her straightway as an ox goeth to the slaughter or as a fool to the correction of the stocks." Read that wonderful chapter VII of Proverbs. The great hospitals of today are necessary and humane staughter houses largely built for and sustained by the male and female victims of venereal disease.
The child conceived at a moment when either parent is drunk is likely to be an epileptic, imbecile or non-resistent victim of tuberculosis. A woman who conceives while recovering from severe illness is liable to have a degenerate offspring. How important it is that parents should carefully guard themselves in the reproduction of life.
A young girl should remember that there is just as much danger from contamination as there is from maternity. The comparatively strange young man met at the dance or in the park may carry the possibility of physical destruction with him. The straight and narrow path is much the better from the standpoint of health, morals and happiness.
Two young men may expose themselves with the same woman. One may acquire gonorhhea and the other not. The reason advanced for this is, that in the case where the male becomes infected, the gonorrheal germ is thrown out by the female from the pus-filled ovary during the orgasm. In the case where the male escapes infection no orgasm occurred.

The sexual diseases differ from all other diseases in that they are acquired generally by the male by an act of volition, that is, by deliberately exercising the right of choice, the choosing to risk exposure Correct education as to sex nature means a more intelligent control of the will and the consequent gradual elimination of the sex scourges.
A woman may have syphilis and look as fair as a rose. The same woman may infect a man who may die in two or three years. This same woman again, may live for years as a trap for the unwary males. Medical scientists are not clear as to why the syphilitic germ has a different pathological effect on woman from man-but it does act differently.
"Clean up inside and outside" is the new manhood slogan. One can't be clean and touch the prostitute, street or brothel. They are living incubators of poisonous germ life. The day will come when a young man with syphilis or gonorrhea will be ordered out of a business office or wellordered home as a walking pest, in danger himself and dangerous to others.

Life is a game. To assure success, no point in the game can be overlooked. Health is the first point in the game. The youth whose vitality is drained for a number of years by a gonorrheal gleet "cashes in" early, for a drained vitality is no good in man fighting. Such a youth accepts as his a portion of venereal slop in lieu of the really good things of later life.

So-called health certificates in a house of prostitution are a delusion and a snare. No public prostitute can long escape infection. A microscopic examination might fail to reveal the germ, but it may be there just the same. Antiseptics cannot reach it. The gonococcus burrows deep, but is thrown out in sexual excitement. In prostitutes it is usually there to inflict damage.

Who would hunt lions and be a boy at fifty like Roosevelt? Who would die past the age of ninety, a marvel of physical perfection, like Pope Leo XII? It isn't on the map of venery to produce such men-the whole category of sexual indulgence never produced a Roosevelt or Leo Does it pay to stay away from the prostitute and her foul diseases? What's the use of asking such a question.
They are teaching the pathology of venereal điseases in open classes of male and female students in the Leland Stanford University. Social hygiene is taught in Vassar. No student has as yet withdrawn because of shocked sensibilities. The instruction is being given in the schools of Germany with hopeful results. Why not teach this vital matter in all American schools at the proper age?

The sexual hog, the man who boasts of his sexual prowess, of his fictitious capacity to have sexual relations numerously and repeatedly, should remember that he has a prostate gland at the neck of his bladder. When that gland is abused by overwork, it not infrequently enlarges, shutting off the proper passage of the urine. Decayed urine in the bladder means slow, torturing poison and eventually death. Sometimes there is a dreadful surgical operation.

The sensations of hunger and sex desire are almost identical, showing there to be a close sympathy between the stomach and sex-organ nerve centers. Physicians say this identity of sensation accounts for many cases of sexual perversion, and sexual perversion often comes when the male sex organs have been injured and weakened by gonorrhea, the disease switching or cross-currenting the hunger and sex-desire nerve centers. Think over the proposition!

The finest compliment that any young man can pay to his bride-tobe is to place in the hand of her father or best friend a certificate of "freedom from communicable disease," given by a reputable physician. It shows that the young man is "on the square." This should become a national custom. No young man who has been infected should risk marriage without the advice of a physician. A timely consultation of this kind may save much future unhappiness. -

If young men could see the diseased vagina as the physician sees it, by electric light and microscope, they would not be so quick to throw away the priceless heritage of good health for the privilege of contact with the pus-poisoned genitals of the prostitute. No one has such a profound respect for venereal disease as the physician who daily may come in contact with infection. Observe him hasten for antiseptics after coming into contact with infection. None of it for the wise physician!

Think of the millions that would be released for helpiul things if men were to surrender polygamous pursuit. Think of the millions that are spent in the chase after the sexual joys that turn to gall and wormwood, the millions that are apparently largely wasted as far as benefiting the world is concerned. The courtesan will consume as much wealth in a year as would aid many to a happier life. Then after it is all over, and the man has had his "fun," it is universal experience that his reflection must be "I was an ass!"-and there is none to dispute the admission.

It will soon be impossible for any man to deceive his wife as to the venereal infections. The Ladies' Home Journal, with a million circulation, has placed before the women of the country definite information on the subject. Other magazines treat the subject openly in their columns. The future generation of intelligent young women will be fully conversant as to the results of infection. The poisoning of women and children must come to an end. Soon society will not accept any excuse for a gonorrheally blinded child or for the venereal debauchment of the wife.
Young men ask: "Why is circumcision advisable now and was not necessary at an earlier period?" Biology answers that at one time the human species was much lower in the animal scale than at present-perhapg man crawled on his "hands and knees" or his four legs. He, roamed through forest and field; lived a wild rough life and the portion now excised was necessary then to protect the part from injury. Now that man has risen to his "hind feet," with his head toward the stars and his body protected by proper clothing, circumcision often becomes an hygienic aid and physical comfort.

Much of the bibliography used in the preparation of this pamphlet was furnished by Dr. Homer G. Hamer, Indianapolis, Ind., secretary of the Indiana Society of Social Hygiene. Many of the pamphlets consulted are now out of print. Those who desire the latest writings in connection with the popular education of the people in sex matters should address Dr. William T. Belfield, secretary Chicago Society Social Hygiene, 100 State St., Chicago, Ill.; Dr. Prince A. Morrow, president American Society of Sanitary and Moral Prophylaxis, New York City, or Journal American Medical Association, Chicago, Ill.
The burden of taxation to take care of social delinquents is steadily growing, With the progress of civilization and the further acceptance of the principle that the weak must be looked after, this tax burden bids fair to become crushing. A farmer gladly favors state appropriations for scientific knowledge which will save his live stock, yet the profits earned by such knowledge are wrested from the farmer in the way of taxation to support human misfits. Has the time not come for an entire reversal of state policy-to prevent disease instead of trying to cure it? It costs money to issue printed matter but the returns are of enormous social and economic value.

A minor sexual erratum may be responsible for a boy's deficiency in school. Mothers all over the nation should insist on medical examination of school children. The physician must co-operate with the teacher and parents in the future for the proper guidance of children. A medical examiner attached to each school is a sort of child advisor tor the neighborhood. He is worth his weight in gold to any community. If he were to save one blind child in a year, he would more than make his cost back to the state, for it costs from $\$ 300$ to $\$ 500$ a year to maintain and educate a blind child. Mothers must take more public interest in the future in matters relating to the physical welfare of their children.

- They can bring about astonishing reforms if they will co-operate, agitate and educate.
A young man has a deep-seated posterior gonorrheal gleet-hardly noticeable, perhaps. He gets married. The germ, half-starved and attenuated from trying to live in worn-out, non-responsive tissue, is thrown out from the husband. The bride becomes infected. She develops an acute gonorrhea, since the germ transplanted to a fresh soll, gratefully welcomes the change and comes to life with renewed and malignant, vitality. To his amazement, the young husband may acquire an anterior infection or a "new dose" of gonorrhea. The husband becomes suspi-r cious and angry and accuses his wife of having infected him. Results: tearful denial, separation, divorce, perhaps hospital operation for wife; husband seeks another bride to infect. Is humanity any better off for such ignorance?
It is considered quite the proper thing to inform a young girl as to the truths of her nature when she approaches the menstrual period: Intelligent persons are conyinced that such knowledge affords a valuable safeguard for the maiden in every way. But when a boy is approaching a parallel critical period in his life-the period of emissions
and erotic (love) fancies-it is considered very bad form and "dangerous" to give him the slightest information. The lad is expected to stumble his way into knowledge, to suffer and to die, perhaps, from the venereal poisons. If moral and physiological instruction is good for the maid, why should it not be good for the youth? No wonder President David Starr Jordan of Leland Stanford university should remark sadly that probably one-third of the young men of today are maimed for life before they get a good start.
Many ask: "How did the venereal diseases originate?" They are supposed to have originated from long violation of the laws governing sexual purity. The cells of the venereal diseases are supposed to be perverted cells-that is, they were good cells originally but constant abuse, filth and ignorance of or indifference to hygienic law, slowly changed the types of the originally good cells to debased cells until finally the cells reached a type of permanent malignity, this transformation perhaps requiring many, many years. This transformation is on the same principle of making a bad child out of a naturally good child by constant abuse and poor environment. Social workers have records of certain families so debased, that they produce criminals and perverts for generations, not a single member of such families for perhaps a hundred years showing normality.

This professional, dyed-in-the-wool polygamist with his overheated brain, is continually on the search for excessive amativeness in the female and mournfully deplores the fact that the "majority" of females are not up to "expectation." This is a favorite excuse for divorce. The polygamist does not understand that nature has wisely ordained a certain degree of passivity in the great majority of females for both physiological and moral reasons. Physiologically, if the normal female were to be filled with the persistent and excessive sexual desire demanded by the pelygamist, the sexual tract of the average male would soon be destroyed by overwork; morally, if the female should be in a continual state of sexual excitation, there would be a few virtuous women in the world and the race would die out. Nature is much wiser in such things than most of us suspect.

Isn't it time America looks itself squarely in the eye in connection with this sex problem? Isn't it time there should be a little common sense clear along the line? Isn't, it time that some remedial measures be attempted-the elimination, of the pander play, for instance? Think of theatrical managers making money out of teaching men to be vile, by presenting a drama apologetic for sex error or the drama that encourages sexual wrong doing by sly indirection. Yet there are men who put cocaine in catarrh snuffs to cure catarrh victims; put morphine in medicine to cure morphine victims; put aphrodisiacs in gin to drive negroes to sexual frenzy so that they will attack white women. The theatrical manager who caters to sexual bestiality belongs to the same class, only he is worse, for he strikes directly at national health by breaking down moral sentiment. Where the commercial flend can ruin one, bad teaching will ruin many.

Young women ponder: "Why does a young man often get tired of lis bride so quickly?" Biology answers: The polygamous instinct in the male is largely responsible, for it must be known that the male once roamed the hillside free and captured any female subject to his prowess. The male has not quite gotten over the habit yet, though the venereal diseases have risen to cut short his career. The male often does not understand his own nature or that of a female. His chief point is his vanity, and his pride in his sexual power constitutes not the least part of this vanity. Possession breeds dissatisfaction-the other girl unpossessed is perhaps just a little more desirable than his wife-so he thinks. He aspires to be loved, and coddled by a bevy of females. He gives little thought to the dignity or responsibility of the marriage relation. He may admit its social and conventional necessity but maintains secret reservations. When a man forswears the social, moral and physical right to practice promiscuity, there is small danger of that man having much domestic trouble, for the average woman will stay "good and true" if given half-encouragement. It's a great big subject but the uneradicated polygamous instinct lies at the bottom of the divorce evil and divorce can never be eliminated by law. Education of the sexes as to their own natures will alone serve to modify the evil.
If it were possible to designate any one gland of the male body as more important than another, it is possible the prostate gland might be entitled to that physiological distinction. Specialized study of the prostate is comparatively recent but enough has been found out about the gland to know that it is of extreme importance in connection with the physical and mental stability of the male organism. Pathologic (disease) disturbance of the gland is often accomplished by the most pronounced disturbance of other functions. Nature has shown her great solicitude for the gland by so placing it in the anatomy that its traumatic (blow) injury is very rare. When the male is in an erect position the gland is "directly between the legs" so to speak, where, for instance, a kick neither from the rear nor the front, can reach it. Nature evidently places much higher store on the gland than on the testes, which are so exposed as to be susceptible of injury. That nature has a deep design in so hiding and shielding the gland is now beginning to be perceived by venereal specialists, for they note the evil results of its disturbance. There are two things however that can reach the prostate gland-excessive intercourse and the gonorrheal inflammation. Excessive intercourse is silly, vulgar, brutal and destructive. Kept up persistently, injury is sure to result to the gland from overwork and many men suffer from an enlarged prostrate with its inconvenience and danger as the result of their folly. But gonorrhea-the gonococcus-is the deady enemy of the prostrate. The inflammation gradually extending to the deep urethra involves the organ. Nature seems to resent this intrusion with the deepest indignation. Her carefully laid plans have been de-feated-she flares up angrily and woe to the victim! Dame Nature lays on the strap unmercifuly.
Young men often ponder: "Why is it the race should be punished by venereal diseases when such a strong passion awakens at a period when
it is not feasible to contract the marriage relation from an economic standpoint and when the body of neither the male nor the female is prepared for reproduction?" Biology answers: Humanity was cradled in a warm climate. It lived in such a clime perhaps for thousands of years before venturing to colder lands. Life of all kinds matures more rapidly in a warm than in a cold climate. In the evolution of the race it is quite likely that thousands of years ago, nature placed no bar against puberty mariages. Again, the conditions of life during the early period were probably much more hazardous to the individual notwithstanding the softer climate than they are today. It is speculatively probable that the average life of the male was much shorter then than at present that the male began to make his own living at the age of twelve,-perhaps thirty years was an average long life then. In order to secure the perpetuation of the species, it is probable nature found it necessary to awaken the sexual instinct at an early age. This early awakening has been retained, though a large portion of the race now lives in the temperate zone where life matures more slowly than in the tropical zone. It might be that if the race were to live continuously in a cold climate for thousands of years, perhaps sex awakening would be delayed until eighteen or twenty years of age. However the awakening does come now at an awkward time, but it serves no useful end to lament over the conditions that bar the possibility of safe sexual exposure. Nature is determined to perpetuate the race and she has authorized the venereal scourges to force the race into the reproductive relationship, which is marriage or monogamy. Nature apparently cares little for the individual, though he cares for himself and if he wants to live long in the land the Lord his God has given him, he must accept the conditions as he finds them and live up to nature's laws even if they are heartless or "brutal,"
Let us then hear the conclusion of the whole matter. Fear God and keep his commandments, for this is the whole duty of man.
For God shall bring every work into judgment with every secret thing whether it be good or whether it be evil.-Ecclesiastes, ch. 12, verses 13-14.
And so he does.

PRACTICE OF OPTOMETRY.

(Chapter 167, Acts of the Thirty-third General Assembly and as amended by the Thirty-fourth General Assembly.)

Section 1. Practice of optometry defined. The practice of optometry is defined to be the employment of any means other than the use of drugs for the measurement of the powers of vision and the adaptation of lenses for the aid thereof.
Sec. 2. Board of optometry examiners-term-vacancies. The board of optometry examiners shall be appointed by the governor and consist of three optometrists who have been engaged in the practice of optometry not less than five years in the state of Iowa, and are recommended by the Iowa state association of optometrists, one physician member of the state board of health, and the secretary of the state board of health. They shall be appointed on or before July 1, 1909, and each year thereafter and their terms of office shall be one year from July 1st of each year. Vacancies shall be filled by the governor, but the number of optometrists shall neither be increased nor diminished by any appointment to fill vacancy.
Sec. 3. Organization-meetings-quorum-regulations. The board shall organize by selecting one of its members as president and the secretary of the state board of health shall serve as the secretary for the board. They shall meet at least once each year the second Tuesday in July and at such other times as they may deem necessary in the office of the state board of health. A majority of the board shall constitute a quorum and its meetings shall at all reasonable times be open to the public. This board shall have power to make all needed regulations for its government and proper discharge of its duties in accordance with this act.

Sec. 4. Who not eligible to appointment. No members of the faculty of any optical school or college, or members of any wholesale or jobbing optical house shall be eligible to an appointment upon the state board of examiners in optometry.
Sec. 5. Examination-license or certificate-record kept. The board shall, at any regular meeting, and may at any special meeting, examine applicants for a license to practice optometry. Such examintion shall be confined to such knowledge and requirements as are essential to the practice of optometry. Said board shall issue a license or certificate duly authorizing such as are found to be qualifled to practice optometry. Such certificate shall be conclusive as to the rights of the lawful holders of same to practice optometry in the state of Iowa. The name, age, nativity, location, number of years of practice of the person to whom a
license is given, the number of the license and the date of registration thereof shall be entered in a book kept in the office of the secretary of the board, which shall be open to the inspection of the public, and the number of the book and page containing such entries shall be noted on the face of the license.

Sec. 6. Qualifications-examination-license-certificate for practitioners from other states-fee. On and after October 1, 1909, every person desiring to begin or continue the practice of optometry in this state must furnish satisfactory evidence that he is twenty-one years of age, and of good moral character; that he has a preliminary education equivalent to at least two years' study in an accredited high school; that he has studied three years in the office of a registered optometrist, or is a graduate from a standard school of optometry before he shall be eligible to examination by the board. The standard school of optometry shall include a course of instruction of not less than two years' durattion, and the terms of school shall not be less than three months' actual attendance each year. The requirements of a standard school of optometry shall be that each student shall devote seventy-eight hours to each subject named in this section during each three months' course. He shall not be entitled to be registered or to receive a license from the board unless he shall show proficiency in the following subjects: physiology of the eye, optical physics, anatomy of the eye, opthalmology, and practical optometry. Any person successfully passing such examination, and meeting all of the requirements in this section shall be registered by the board, and receive a license. The board of examiners may issue a certificate to any person taking up a permanent residence in the state of Iowa, and desiring to practice optometry, providing satisfactory evidence is furnished, of his qualifications, including credentials from the state board of examiners in optometry of the state in which he formerly resided, and upon payment of a fee of fifteen dollars.

Sec. 7. Certificate of exemption-revocation of license or certificate -public hearing. Every person entitled to a certificate of exemption from examination as herein provided must make application therefor and present the evidence to entitle him thereto on or before six months after the passage of this act or he shall be deemed to have waived his right to such certificate. Any license issued by said board of examiners may be revoked by said board for violation of the law, incompetency, immorality or inebriety. Provided that'before any certificate or license shall be revoked, the holder thereaf shall have notice in writing of the charge or charges against him, and at a day specified in said notice, and at least five (5) days after the service thereof, be given a public hearing and have ample opportunity to produce testimony in his behalf and confront the witnesses against him. Any person whose certificate has been revoked may, after the expiration of ninety (90) days, apply to have same regranted upon a satisfactory showing that the disqualifleation has ceased.

Sec. 8. Fees. The fee for said examination shall be fifteen $(\$ 15.00)$ dollars, for which a license shall be issued, to practice optometry in this state. Fee payable in adyance to secretary of the board. Should
the applicant fail in his first examination he shall have the right to apppear at the next meeting of the board for another examination free of charge. For a certificate of exemption a fee of ten dollars ($\$ 10.00$) shall be paid to the secretary of the board of examiners, for which a license shall be issued to practice optometry in this state; said fees constitute a fund for expenses made necessary by this act. From. this fund the board shall cause to be paid all necessary expenses incurred in the administration of this act.

Sec. 9. License filed with clerk of district court-fee. Every person to whom a license is issued under this act shall file the same for record with the clerk of the district court in the county or counties in which he desires to practice optometry and the clerk of the district court shall be entitled to a fee of fifty cents (50 c) for recording such license.

Sec. 10. Compensation-expenses Each member of the board of examiners (except the secretary) shall be paid five dollars ($\$ 5.00$) for each day actually engaged in the duties of his office with actual expenses incurred by him in the discharge of such duties, from the fund created by the payment of fees by applicants for examination. Secretary shall receive his necessary expenses incurred for services which cannot be performed at the capitol. All printing, postage and other contingent expenses necessarily incurred under the provisions of this act shall be paid from said fund. All expenses incurred under the provisions of this act shall be itemized thereupon and audited and a warrant drawn therefor on the optometrists' fund in the same manner as other expenses of the state board of health.

Sec. 11. Not applicable to merchants or dealers-unlawful practice. This act shall not be construed to apply to merchants or dealers who self glasses as merchandise and who do not profess to be optometrists or practice optometry as herein defined. Any person practicing optometry shall be prohibited from using the prefix doctor to his name unless he is a duly registered and licensed physician and surgeon and his rights to such being allowed by the state board of medical examiners, nor shall he advertise himself in such a manner as to lead the public to believe him to be different than an optometrist as defined in this section.

Sec. 12. Penalty. Any person who shall practice optometry in this state in violation of the provisions of this act, shall be guilty of a misdemeanor and upon conviction thereof shall be punished by a fine not exceeding one hundred dollars ($\$ 100.00$) or imprisonment in the county jail not more than thirty (30) days.

Sec. 13. Disposition of unappropriated funds. All unappropriated Punds arising under this act, shall be accounted for and turned into the state treasury on June 13 th of eachyear, except the sum of five hundred dollars $(\$ 500.00)$, which shall be placed to the credit of the optometry fund, by the state treasurer, to defray current expenses of the board of optometry examiners.

IN DEX

Albert, Dr. Henry, papers by 190, 199
Antitoxin Depabtment, Appropriation and Fees Received by 20
Classified summary of expenses 49. 51
Appropriation, Negessahy for Use of State Board of Health. 19
For use of Vital Statistics Department 19
Received by department, 1910-1912 20
Bacilli carriers, typhoid, paper relating to. 199
bacteriologlcal Departacent, Fees and Appropriation Received 20
Quarterly report for 1910 -12 52
Classified summary of expenses 53
Itemized vouchers, 1911-12 59
Bacteriological Laboratory, Fourth Biennial Report 79
Number and kinds of examinations by 79
Number of culture stations 180
Rabies, Pasteur treatment 180, 181
Typhoid fever epidemics 181
Diphtheria and the public schools 183
Personnel of the laboratory 184
Financial report 188
Recommendations 186
Remarks concerning 113
Burlington, Iowa, report of death, 1911-12, classified 147
Cedar Falls, Iowa, outbreak of typhold fever in 212
Cedar Rapids, Iowa, report of deaths for 1910-11, classified 147
Clinton, Iowa, report of deaths for 1910-11, classified 151
Contagious diseases, rules and regulations relating to 96
Contents, subjects covered by this report 13
Council Bluffs, Iowa, report of deaths for 1910-11, classified 153
Davenport, Iowa, report of deaths for 1910-11, classified 155
Deaths from Tuberculosis, 1910-1 146
In Burlington, Iowa, classified 147
In Cedar Rapids, Iowa, classified 149
In Clinton, Iowa, classified 151
In Council Bluffs, Iowa, classified 153
In Davenport, Iowa, classified 155
In Des Moines, Iowa, classified 157
In Dubuque, Iowa, classified 159
In Fort Dodge, Iowa, classified 161
In Keokuk, Iowa, classified 163
In Marshalltown, Iowa, classified 165
a In Muscatine, Iowa, classified 167
In Ottumwa, Iowa, classified 169

In Sioux City, Iowa, classified 171
In Waterloo, Iowa, classified 173
Chart of, by months, ages, sex, color, nativity and diseases, 19101911
.Folder
Dedication of this report to Mrs. Sumner 1
Des Mones, Iowa, Outbreafi of Typhoid Fever in.................... 225
Report of diseases in, 1910-11, classified 157
Diphtherla Carriers and Medical Inspection of Schools............. 208
In the public schools .. 183
Districts covering public health, by counties 7
Disinfectants, Rules and Regulations Relatino to...................... 92
Home treatment, should be thorough 103
Practical suggestions and operation 104
Disinterments, report on by embalmers' department.................... 176
Dubuque, Iowa, report on diseases, 1910-11, classified 159
Educational papers and topics.. . . 190
Embalmers' Department, Appropriation and Fees.................... 20
Expenditures classified and by quarters 47 , 40
Disinterments, report on .. 175
Federal public health administration, paper by Dr. J. W. Kerr. 292
Fees Received by the Departments, Period Ending June 30, 1912.... 20
Turned into the general fund, not used 21
Foreword by the secretary ... 9
Freeman, Dr. Albert W., paper relating to typhoid fever.............. 267
Frost, Dr. Wade H., paper by, "Typhoid Fever in Oskaloosa, Ia." 240
Fort Dodge, Iowa, report of diseases in, classified 161
Grover, Arthur L., paper by, "Typhoid Fever in Cedar Falls, Ia.".... 212
Health Officers, Election and Qualification of Competent........ 97

Hookworm disease, papers by Dr. Ch. Wardell Stiles.............. 304 , 318 Hospitals and Health Problems, Paper by Dr. E. E. Munger......... 276

In the United States by states ... 280
Legislation in Iowa relating to ... 282
Map showing locations of in Iowa 284
Indiana State Board of Health, paper prepared by on "Hygiene vs.
Social Plague"
324
Keokuk, Iowa, report of diseases in, classified 163
Kerr, Dr. J. W., paper by, Federal Public Health Administration...... 292
Lecky, William, paper by, "Two Views" 350
Letter of transmittal of report to governor 5
Local boards, secretary of state board shall supervise..............95, 96
Lumsden, Dr. L. L., paper by, "Typhoid Fever in Des Moines"......... 225
Marshalltown, Iowa, report of diseases in, classified 165
Medical examiners, fees receiyed by, 1912 20
Members of State Board of Health for 1912 6
Munger, Dr. E. E., paper by, "Hospitals and Health Problems"....... 276
Muscatine, lowa, report of diseases in, classified 167
Night soll and disposal sewage and creamery waste 98
Nurses' Department, Training Schools in Good Standing. 176
Classified summary of expenses 43,49
Optometry Department, Fees Received by, 1912 26
Practice of, laws relating to 361
Oskaloosa, Iowa, outbreak of typhoid fever in 246
Cttumwa, Iowa, report of diseases in, classified 169
Paullin, Dr. T. E., paper by, "Typhus Fever and Typhoid Fever" 265
Piague, the relation between traffic and spread. 301
Public health administration, paper by Dr. John W. Trask. 286
Public health districts, by counties 7
Quarantine Rules and Regulations Relating to 86, 108
Official notice of by city or township officers 112
Report of diseases for 1911-12 115
Table of diseases by counties 116
Reaction induced by anti-typhoid vaccination 190, 270
Report, Births. Marriages and Divorces, by Counties 142, 144
Deaths from tuberculosis 146
Quarantinable diseases, by counties 116
Deaths in 1910-12, classified by diseases 130, 141
Classified by ages, sex, color, nativity and social relations.131, 141
Rucker, Dr. W. C., paper by relating to plague 301
Rules and regulations adopted by State Board of Health. 85
Schools of Iowa, medical inspection o 208
Sloux City, Iowa, report of diseases in, classified 171
Social Hygiene vs. Sexual Plague, relating to 324
State Board of Healifi, Members for 1912. 6
Officers of ${ }^{6}$
Appropriation asked for 19
Classified summary of expenses, September, 1910, to June, 1912.21, 34
Rules and regulations adopted by85
State Board of Medical Examiners, Expenditures for Biennial Period 75
Report of certificates issued 17
State and public health, remarks relating to 17
Stiles, Dr. Ch. Wardell, paper by, "Hookworm" 304, 318
Sumner, Mrs. Isabel C., Portrait 318
2
1
Dedication of report to 1
Remarks concerning her life work 10
Terry, Dr. C. E., paper by, "Fly Borne Typhoid Fever" 271
Training schools for nurses, in good standing 176
Trask, Dr, John W., paper by, "Public Health Administration". 286
Transmittal, letter of to the governor 5
Two Views. Quo vadis Domine?, paper by Wm. Leekie 550
199
Typhoid bacilli carriers
Typhoid Fever, Fly Borine and its Control. 271
Reaction induced by vaccination 190, 270
Case card, form for 230
Epidemics, report by bacteriological laboratory 181

Outbreak in Cedar Falls, Iowa. 212 Des Moines, Iowa

Water system map . 299
Oskaloosa, Iowa . 246
Typhus Fever and Trphoid Fever, Paper Relating to.................. 265
Our present knowledge regarding 267
In cities and towns .. 268
In rural districts . 269
Vaccination, reaction induced by anti-typhoid.. 270,270
Vital Statistics, Appropriation Asked for. 19
Fees and appropriation received for 20
Classified expenditures for biennial period by quarters....... 78, 83
Fees turned into state treasury . 8
Waterloo, Iowa, report of diseases in, classified 173

REPORT

by the

GOVERNOR OF IOWA

OF

Pardons
Suspensions and Conmutations of Sentence

AND

Remissions of Fines

From January 1, 1911, to December 31, 1912

[^0]: Members' expense

 Printing and stationery

 Miscellaneous .. 346

[^1]: Note-According to recent conclusions reached by the best American investigators, affirmative results by all of these methods should be accepted, 3 , should be confrmed by exhaustive chemical analyses before

[^2]: ${ }^{2}$ Handibuch der Technik und Methodik der Immunitatsforshung, i, 723.
 ${ }^{2}$ Zeitschr, f. Hyg., 1892, xi1, $137 . \quad{ }^{4}$ Duet. med. Woch. 1896, p. 735. Woch., 1896, Nos. 7 and 8. ${ }^{0}$ Brit. Med. Jour., January 30,1897, p. $16{ }^{\text {S Lancet, September 19, 1896, p. } 807 .}$

[^3]:

[^4]: *Read In Section on Preventive Medicine, 60th Session, Iowa State Medical

[^5]: * Recelved for publication April 9, 1912.

[^6]: ${ }^{\text {1Rep. to }}$ Director U. S. Geological Survey, 1911; Gedar Falls Datly Record, January 15 , 1912 .

[^7]: ${ }^{1}$ Rep. to C. H. Streeter, Superintendent of Water Works; Cedar Fralls Daily Record, January 8, 1912.

[^8]: ${ }^{3}$ McRae, Thomas: Osler's Modern Meäicine, 1907, if, 78, 71, 209, 208.

[^9]: Osler and Gkbson: Osler's Modern Medicine, 1908, iv, 205, 256

[^10]: ${ }^{1}$ See Public Health Reports, Vol. XXVII, No. 23, June 7, 1912, p. 895.

[^11]: ${ }^{1}$ Presented at the Fifteenth International Congress on Hygiene and Demog-

[^12]: ${ }^{1}$ Reprint from the Public Health Reports, Vol. XXVIII, No. 1, Jan. 3, 1913. ingioad at the XV International Congress on Hygiene and Demography, Wash-

[^13]: ${ }^{1}$ Plus 26 worms, the sex of which was not determined.
 ${ }^{2}$ "Cured" means that later microscopic examination was negative.

[^14]: ${ }^{1}$ Reprint from the Public Health Reports, Vol. XXVIII; No. 3, Jan. 17, 1918. ${ }^{2}$ Read at the XVth International Congress on Hygiene and Demography With North Carolina State Board of Health since June 1, 1912,

