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EXECUTIVE SUMMARY 

Background 

Atmospheric rivers (ARs) are long, narrow features in the atmosphere that transport most of the 

water vapor outside of the tropics (Zhu and Newell 1998, Ralph et al. 2020). ARs are the largest 

“rivers” of freshwater on Earth, transporting on average more than double the flow of the 

Amazon River (AMS 2017). When ARs make landfall, or rise over mountainous terrain, the 

water vapor is released in the form of heavy rain or snow, which can have significant social and 

economic impacts (NOAA 2015). Like other forms of inclement weather, ARs can decrease the 

safety of roadways by bringing heavy rainfall, winds, ice, and snow and increasing crashes, road 

closures, delays, and travel time. 

ARs have been shown to cause significant damage to property and infrastructure in the western 

US (e.g., Dominguez et al. 2018, Corringham et al. 2019, Vano et al. 2019). In the transportation 

sector, the U.S. Geological Survey (USGS) ARkStorm project (Porter et al. 2011) predicted the 

costs of a 1-in-1,000-year series of ARs to be $2.9 billion for road damage repair and 

reconstruction, $50 million for national freight network disruptions, and $23 million for business 

interruptions (all costs in 2021 dollars). A case study of a 2019 AR in California (Hatchett et al. 

2020) estimated transportation costs of $21 million associated with slowdowns on I-5 and the 

closure of I-80. 

These studies provide useful benchmarks for understanding an extreme worst-case scenario and 

the costs of a single impactful event. To date, there have been no comprehensive studies that 

quantify the costs of annual AR impacts on the road transportation system. This project 

developed a methodology to estimate the impacts of ARs on traffic, crashes, and road closures; 

applied the methodology to five test sites in California, Colorado, and Utah; and provided 

estimates of the direct costs of these impacts. 

Objectives 

The goal of this research was to develop a better understanding of the impacts of ARs on a 

number of road safety and mobility outcomes. The research objectives were as follows: 

1. Develop a methodology that links data on AR occurrence and intensity to state department of 

transportation (DOT) traffic flow and road safety data 

2. Develop statistical analyses to quantify the impacts of ARs on traffic flow and road safety 

outcomes 

3. Quantify the impacts of AR occurrence and intensity on traffic flow rates over four sections 

of I-5 in California 

4. Quantify the impacts of AR occurrence on traffic incidents, crashes, road closures, and delay 

times associated with road closures at five sites in Colorado and Utah 

5. Quantify the economic costs associated with AR impacts at the case study locations 
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6. Propose ways in which operational AR forecasts of varying lead times could be used to 

mitigate the impacts of ARs on road transportation systems 

Research Approach 

The work documented in this report was conducted in four steps: (1) literature review; (2) 

acquisition and processing of AR and transportation data; (3) analysis of AR impacts, estimation 

of costs, and interpretation of the results; and (4) discussion of potential areas of future research. 

The literature review included a number of studies on the impacts of adverse weather events on 

road safety and mobility, and cost estimation methods related to road transportation systems. 

The AR and state DOT datasets are described and summarized. A set of spatially stratified 

multivariate regression analyses were executed to estimate the impacts of AR occurrence and 

intensity on the road safety and mobility outcomes of interest, controlling for confounding 

factors. 

The statistical methods were applied to test sites in California, Colorado, and Utah. In California, 

the impacts of ARs on total flow rates on I-5 were quantified and translated into reductions in the 

economic value of vehicle miles traveled (VMT). In Colorado, the impacts of ARs on road 

closures on a section of I-70 west of Denver were quantified and translated into delay costs. In 

Utah, the impacts of ARs on crashes were quantified at four sites known to be impacted by 

adverse weather events. Following a discussion of the results and their limitations, possibilities 

for future research on ARs and the transportation sector were identified. 

Summary of Project Findings 

On I-5 over an 18 year period, ARs were associated with reductions in traffic flow from 2.5% in 

southern California to 6.8% in northern California. In absolute terms, total flow rates averaged 

over monitoring stations by region decreased by between 500 vehicles per day in northern 

California and up to 6,000 vehicles per day in southern California. The costs associated with 

these AR-related reductions in daily traffic flow were estimated at $106 million per year, with a 

possible range of $67 million to $467 million per year, depending on the assumed elasticity of 

road travel demand. 

On an 84 mile section of I-70 west of Denver, during the significant avalanche month of March 

2019, ARs increased the number of traffic events, spinouts, chain restrictions, full road closures, 

and closure durations. Crashes and traffic events decreased due to the closures and reduced flow 

rates, but the decreases were not statistically significant. Using observed traffic flow rates 

combined with closure durations, the delay costs to passenger vehicles and trucks associated with 

road closures were estimated to have exceeded $1.5 million over the corridor for the month. 

Similar increases in the number and duration of road closures were associated with ARs at four 

sites in Utah from 2012 to 2019. Additionally, the number of crashes increased significantly 
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during AR conditions. The costs of the AR-related increases in crashes were estimated to exceed 

$700,000 per year at the four sites. 

Future Research 

The methods developed in this study could be extended to estimate AR transportation impacts 

over wider geographic regions. Additional data on traffic flows could be used to improve the cost 

estimates of AR impacts on traffic volume, speed, delay, and travel time. Freight probe data 

combined with network modeling tools could be used to quantify the costs of ARs to freight 

transport networks. Broader economic costs of AR transportation impacts could be estimated as 

well, including those associated with reductions in demand for consumer goods in urban areas 

and reductions in tourist activities in mountain areas that depend on open and clear freeways for 

access. 

An understanding of the impacts of ARs on road safety and mobility is critical to improved 

management of road systems during AR events. In recent years, there have been significant 

improvements in AR forecast technology with expanded observation networks and advances in 

dynamical modeling and machine learning capabilities. An operational AR transportation 

impacts index could be developed to enable transportation managers to better allocate resources 

during AR events and to mitigate against negative and costly outcomes. Further research could 

develop such tools and tailor them to the needs of transportation users and managers. 
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INTRODUCTION 

Atmospheric Rivers 

Atmospheric rivers (ARs) are narrow and lengthy dynamical structures that are responsible for 

the majority of horizontal water vapor transport outside of the tropics (Zhu and Newell 1998). 

They originate in the tropics via local moisture convergence (Bao et al. 2006) and form relatively 

narrow bands that stretch poleward. When these features make landfall, heavy and prolonged 

precipitation events can occur. Once an AR makes landfall, the presence of mountainous 

topography leads to the orographic ascent of air parcels, resulting in highly variable precipitation 

rates during an event. ARs contribute significantly to flooding and snowpack changes in western 

North America (Neiman et al. 2008). 

The strongest events are often accompanied by anomalously warm temperatures, rain or snow, 

flooding, landslides, and debris flows (Neiman et al. 2008). Mountain ranges enhance lift, which 

dries out air masses and inhibits the downstream spread of moisture (Rutz et al. 2015). ARs that 

begin over the northern Pacific Ocean most often cause extreme precipitation over the Sierra 

Nevada and Cascade ranges but occasionally reach farther inland. A number of synoptic patterns 

are responsible for AR penetration into the northwest and southwest interior of the US (Rutz et 

al. 2014). When ARs pass through lowland corridors from the west, they are able to travel longer 

distances and generate extreme precipitation in the form of rain or snow throughout the 

intermountain western US (Rutz et al. 2014). 

The economic impacts of ARs can be significant. A series of ARs following an anomalously wet 

period contributed to the failure of the emergency spillway at Lake Oroville dam in northern 

California in February 2017, resulting in repair costs in excess of $1 billion (Vano et al. 2019). In 

general, the economic costs of flooding due to ARs have been estimated at $1.1 billion per year 

over a 40 year period across the western 11 coterminous states (Corringham et al. 2019). In 

California, the U.S. Geological Survey (USGS) ARkStorm project estimated the total costs of a 

1-in-1,000-year series of ARs to exceed $860 billion, almost one-third of California’s annual 

state product (Porter et al. 2011). 

Road Weather Impacts 

Transportation is the lifeblood of the economy; the efficiency of the road transportation network 

is a fundamental contributor to economic growth (Sweet et al. 2014). Adverse weather events 

cause a number of impacts on the transportation system. Severe winter storms, hurricanes, and 

flooding can result in major stoppages or evacuations of transportation systems and cost millions 

of dollars. Day-to-day weather events such as high winds, rain, fog, snow, and freezing rain can 

have a serious impact on the mobility and safety of the transportation system users. These 

weather events result in increased fuel consumption, delay, and crashes and significantly impact 

the performance of the transportation system (Hranac et al. 2006). 
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The goals of transportation management include improving safety and mobility within road 

network systems. Weather events increase the variability of conditions faced in operations. With 

effective decision-support tools and sufficient data, weather events can be forecast with varying 

degrees of precision and accuracy, and their impacts can be predicted. Improved weather and 

impact predictions lead to improved operational response (Hranac et al. 2006). 

Scope of Project 

Weather impacts on road systems include the following: 

 Stoppages, road closures, and evacuations 

 Reduced flow rates, demand, speeds, and capacity 

 Increased delays and travel times 

 Canceled, postponed, and modified trips 

 Increases in the number and severity of crashes and road safety incidents 

 Increased maintenance, staffing, reconstruction, and recovery costs 

 Freight delay, detour, and disruption costs 

 Business disruption costs 

This project focused on the impacts of ARs on road closures, flow rates, delays, and changes in 

the number and severity of road safety incidents. It did not consider maintenance costs, freight 

network impacts, or costs to the broader economy due to road network disruptions. 
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LITERATURE REVIEW 

ARs in the United States 

Atmospheric rivers (ARs) consist of narrow bands of enhanced water vapor transport at the 

boundaries of large areas of divergent surface air flow, including frontal zones associated with 

extratropical cyclones over the oceans (Zhu and Newell 1998, Ralph et al. 2020). In North 

America, ARs originating over the tropical Pacific Ocean travel toward western North America 

and make landfall from Baja California, Mexico to British Columbia, Canada. Atmospheric 

rivers are typically several thousand kilometers long and only a few hundred kilometers wide, 

and a single one can carry a greater flux of water than the Earth’s largest river, the Amazon 

River (AMS 2017). When ARs make landfall or are lifted over mountainous topography, they 

can bring sustained, heavy precipitation in the form of rain and snow and can sometimes cause 

extensive flooding and other adverse effects, often with severe economic consequences 

(Corringham et al. 2019). 

Impacts of Adverse Weather on Road Transportation 

An understanding of the impact of various weather conditions on roadside crash frequency and 

traffic intensity serves as an essential knowledge base for developing road management 

strategies. Wind speed impacts visibility distance due to blowing snow and dust and can cause 

lane obstruction due to wind-blown snow and debris, affecting traffic speed, travel time delay, 

and crash risk. Precipitation impacts visibility distance and pavement friction and can cause lane 

obstruction, affecting roadway capacity, traffic speed, travel time delay, and crash risk. Fog 

impacts visibility distance, affecting traffic speed, speed variance, travel time delay, and crash 

risk (FHWA 2020). 

Adverse weather conditions cause important changes in travel decisions: mode, departure time, 

and route diversions. Adverse weather increases operating and maintenance costs of winter road 

maintenance agencies, traffic management agencies, emergency management agencies, law 

enforcement agencies, and commercial vehicle operators. Winter road maintenance accounts for 

roughly 20% of state DOT maintenance budgets. Each year, state and local agencies spend more 

than $2.3 billion on snow and ice control operations (FHWA 2021). 

Shi and Fu (2018) presented an edited collection of studies on sustainable winter road operations, 

including work on the safety and mobility effects of winter weather and road maintenance and 

the economic benefits of winter road operations. 

Lawrence et al. (2014) provided a primer on a road weather benefit-cost analysis. They identified 

a number of costs to users associated with adverse weather, including travel time and delay, 

reliability, crashes, and vehicle operating costs. Costs to agencies include design and 

engineering, land acquisition, construction, reconstruction and rehabilitation, preservation, 

routine maintenance, and mitigation. 
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IHS Global Insight (2010) estimated the broader economic costs of road transportation 

disruptions from a snowstorm in the northeastern US and Canada to be on the order of $300 to 

$700 million for a single-day event, that is, roughly $360 to $845 million in 2021 dollars. 

Motor Vehicle Crashes 

The Federal Highway Administration (FHWA) reported 5,891,000 vehicle crashes annually over 

the period of 2007 to 2016. One-fifth (21%) of these crashes were weather-related, where 

weather-related crashes are defined as those crashes that occur in adverse weather (i.e., rain, 

sleet, snow, fog, severe crosswinds, or blowing snow/sand/debris) or on slick pavement (i.e., wet 

pavement, snowy/slushy pavement, or icy pavement). Annually, 5,000 people are killed, and 

more than 418,000 people are injured in weather-related crashes. The majority of weather-related 

crashes occur on wet pavement (70%) and during rainfall (46%). A smaller percentage occur 

during winter conditions: 18% during snow or sleet, 13% on icy pavement, and 16% on snowy or 

slushy pavement; in addition, 3% of weather-related crashes occur in the presence of fog. 

Blincoe et al. (2015) quantified the economic and societal impact of motor vehicle crashes across 

the US. They noted that in 2010, there were 32,999 people killed, 3.9 million people injured, and 

24 million vehicles damaged in motor vehicle crashes in the US. They estimated the economic 

costs of these crashes to be $242 billion in 2010 dollars, 1.6% of the $14.96 trillion real US gross 

domestic product for 2010. Of this total, medical costs were responsible for $23.4 billion, 

property damage losses for $76.1 billion, lost productivity (both market and household) for $77.4 

billion, and congestion impacts for $28 billion. All other crash-related costs totaled $37 billion. 

In 2021 dollars, the total cost amounts to approximately $292 billion, a 20% increase over 2010 

dollars; component costs scale proportionally. 

More recently, Harmon et al. (2018) estimated crash costs for highway safety analysis. They 

provided updated per person injury costs and per vehicle property damage associated with motor 

vehicle crashes. They also provided a comprehensive literature review of crash cost studies. 

Maze et al. (2005) investigated the impacts of weather-related crashes on I-35 in northern rural 

Iowa from 1996 to 2000. They found that winter weather conditions were associated with 21% of 

all crashes over the study period but that crash severity and average loss per crash are lower 

when related to winter weather. 

The National Research Council (2004) provided a research agenda for improving road weather 

services. They reported that adverse weather and weather-related degradation of road conditions 

were associated with over 1.5 million vehicular crashes per year, which resulted in 800,000 

injuries and 7,000 fatalities annually. The injuries, loss of life, and property damage from 

weather-related crashes cost an average of $64 billion annually (Lombardo 2000) in 2021 

dollars. 



5 

Mobility Impacts 

Capacity reductions can be caused by lane obstruction due to flooding, snow accumulation, and 

wind-blown debris. Road closures and restrictions due to hazardous conditions also decrease 

roadway capacity. Light rain can decrease freeway capacity by 4% to 11%, and heavy rain can 

cause capacity reductions of 10% to 30%. Capacity can be reduced by 12% to 27% in heavy 

snow and by 12% in low visibility (FHWA 2020). 

Weather events reduce mobility. On arterial routes and freeways, speed reductions due to 

adverse weather events range from 10% to 25% on wet pavement, from 30% to 40% on snowy 

or slushy pavement, and from 3% to 16% in light rain or snow. Heavy rain decreases average 

speed by 3% to 16%; heavy snow decreases speed by 5% to 40%. Low visibility reduces speed 

by 10% to 12%. Free-flow speeds are reduced by 2% to 17% in rain and by 5% to 64% in snow. 

Traffic volumes decrease by 15% to 30%, saturation flow rates decrease by 2% to 21%, and 

travel time delay increases by 11% to 50% in adverse weather conditions (FHWA 2020). 

At the network level, adverse weather events increase the uncertainty in system performance, 

resulting in a network capacity reduction ranging from 10% to 20% in heavy rain for instance 

(De Palma and Rochat 1999). Day-to-day weather conditions such as fog and precipitation can 

reduce travel, e.g., drivers postpone or cancel discretionary activities, but can also have an 

increased effect on traffic when travel modes are shifted from slow modes (walking, cycling) 

toward motorized vehicles (Hranac et al. 2006). 

Afrin and Yodo (2020) surveyed traffic congestion measures and noted that adverse weather can 

affect traffic flow and driver behavior. They considered impacts on a number of metrics 

including speed reduction index (SRI), speed performance index (SPI), travel rate, delay ratio, 

delay rate, volume-to-capacity (V/C) ratio, relative congestion index, congested hours, travel 

time index, and planning time index. They presented a case study applying these metrics to one 

week of traffic data in Chicago, Illinois in 2018. 

Agarwal et al. (2005) considered the impacts of light rain, heavy rain, light snow, and heavy 

snow on urban freeway traffic flow and capacity in the Minneapolis–Saint Paul, Minnesota 

metropolitan area from 2000 to 2004. They found that adverse weather reduced capacity and 

operating speeds with the greatest impacts from heavy snow events. 

Akin et al. (2011) considered the impacts of weather on traffic flow across two highway bridges 

in Istanbul in 2009, providing a number of assessments of speed-density-volume relationships. 

They found that rain reduced speeds by 8% to 12% and reduced capacity by 7% to 8%. 

Blattenberger and Fowles (1995) presented a model of road closure and avalanche danger 

applied in a case study of Little Cottonwood Canyon in northern Utah. Their focus was on 

evaluating the costs and benefits of road closures to mitigate avalanche damages. They estimated 

road closure costs to ski resorts in the 1991–1992 season to be approximately $2.4 million per 

day in 2021 dollars. 
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Chin et al. (2004) considered temporary losses of highway capacity and their impacts on road 

network performance at the national level in 1999. They included an analysis of weather impacts 

in which they estimated normal delay times and delay times during adverse weather conditions. 

They also estimated capacity losses and delay times. They found that weather events accounted 

for 9% of lost time due to delays, which they valued at approximately $7.8 billion in 2021 

dollars. 

Clydesdale (2000) quantified the economic impact of road closures caused by natural hazards in 

New Zealand’s Kaikoura District and found disruption costs of over $220,000 in 2021 US 

dollars associated with increased travel time costs and vehicle operating costs. 

Cools et al. (2009) assessed the impact of temperature, sunshine, precipitation, hail, snow, and 

thunderstorms on traffic intensity in Belgium at three urban locations in 2003 and 2004. They 

noted that traffic intensity is a primary determinant of traffic safety and that injury crashes are 

proportionally related with exposure. They found that inclement weather decreased traffic 

intensity while higher temperatures and sunshine increased traffic intensity. 

Dalziell and Nicholson (2001) investigated the impacts of snow and ice, volcanic eruptions and 

lahars, earthquakes, and traffic crashes on road closures and road closure costs on the Desert 

Road section of New Zealand’s State Highway 1. They modeled the effects of road closures on 

traffic flow using a traffic assignment model with and without allowing for the elasticity of travel 

demand. They estimated annual costs of road closures due to snow and ice at over $1.5 million in 

2021 US dollars. They also assessed the costs and benefits of mitigation options for reducing the 

risk of road closure. 

Hallenbeck et al. (2014) estimated the travel costs associated with flood closures of state 

highways near Centralia and Chehalis, Washington using the INRIX travel time database and a 

survey of motorists. They estimated the costs of a 100 year flood to be on the order of $13.3 

million, due to a 5 day closure of I-5. The costs included $9.4 million in additional time and 

mileage associated with detours and $1.8 million in costs associated with abandoned trips (all 

costs in 2021 dollars). 

Mallela and Sadasivam (2011) estimated costs associated with work zones, some of which were 

related to adverse weather. They included methods on calculating travel delay costs, vehicle 

operating costs, crash costs, emission costs, network impacts, and non-monetary and qualitative 

impacts. Their final report included a number of useful cost parameters provided in tables. 

Maze et al. (2005) investigated the impacts of weather on traffic demand, traffic safety, and 

traffic flow on I-35 in northern rural Iowa from 1996 to 2000. They found that rain reduced 

capacity by 2% to 14% and speeds from 2% to 6%, depending on intensity. Snow had the 

greatest impacts, reducing capacity by 4% to 22% and speeds by 4% to 13%. Low temperatures 

reduced capacity by 1% to 8% and speeds by 1% to 2%. High winds reduced capacity and speeds 

by 1%. Low visibility due to fog reduced capacity by 10% to 12% and speeds by 7% to 12%. 
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The Oregon Department of Transportation (DOT) (2019) estimated the hourly costs of 

unexpected delay and increases in travel times for vehicles in Oregon in 2017. The method 

combined value-of-time estimates with data from automatic traffic recorders. Value-of-time 

estimates are derived from household income and compensation data, national average vehicle 

occupancy rates, and estimates of the share of trips taken for business purposes. 

Peng et al. (2018) used analysis of variance (ANOVA) and logistic regression methods to 

quantify the effects of rain and fog on mean headway distance, the standard deviation of speed, 

and the standard deviation of headway distance. They considered a test site on I-4 in Polk 

County, Florida from 2007 to 2009. They found that both rain and fog increased mean headway 

distance, and increased variability in speeds and headway distance, with greater impacts for rain. 

The National Research Council (2004) study reported that heavy rain and wet pavement 

conditions led to speed reductions of 25% and decreases in road capacity of 10%. Snow events 

led to speed reductions of 40% and capacity reductions of 25% to 30%. Low visibility caused 

drivers to reduce their speed by 15% to 40%. Delays on highways and principal arterial roads 

due to fog, snow, and ice were estimated to exceed 500 million hours. 

Road Freight Networks 

Trucking companies or commercial vehicle operators lose an estimated 32.6 billion vehicle hours 

annually due to weather-related congestion in 281 of the nation’s metropolitan areas. Nearly 12% 

of total estimated truck delay is due to weather in the 20 cities with the greatest volume of truck 

traffic. The estimated cost of weather-related delay to trucking companies ranges from $3.2 

billion to $5.1 billion annually (Maccubbin 2002) in 2021 dollars. 

Mesa-Arango et al. (2013, 2016) estimated the economic impacts of disruptions to intermodal 

freight systems traffic associated with 2008 northwestern Indiana floods, using the Freight 

Analysis Framework version 3 (FAF3). They estimated total economic loss from the delay of 

shipments of commodities in the study region to be 60 fewer jobs, $12.3 million in sales, $3.7 

million in labor income, $1.3 million in taxes, and $6.0 million in value added, in 2021 dollars. 

Krechmer et al. (2012) estimated weather delay costs to trucking and regional weather impacts 

on freight. They considered the impacts of rain, snow, thunderstorm, hail, and fog at the national 

level using the Highway Performance Monitoring System and a number of freight data sources 

including the FHWA’s FAF. They estimated weather-related delay costs to the road freight 

industry to be on the order of $9 to $10 billion in 2021 dollars. 

In a follow-up paper, Krechmer et al. (2016) conducted a regional analysis using similar methods 

and found that ice and snow events were associated with half of all lost time due to weather-

related decreases in traffic speed, with associated costs of $27 per segment hour and $0.27 per 

truck per segment in 2021 dollars. 
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Transportation Agency Costs 

Weather-related costs are also incurred by state and local agencies that maintain and operate 

roadways. More than $2.8 billion is spent annually on snow and ice control operations and over 

$7.1 billion annually on infrastructure repair due to ice and snow damage, in 2021 dollars. 

Winter road maintenance accounts for 20% of state maintenance budgets (FHWA 2020). 

Venner and Zamurs (2012) surveyed the increasing maintenance costs to DOTs associated with 

extreme weather events and climate change. Specifically, they considered the impacts of climate 

change on heat, forest fires, wind and dust storms, intense precipitation, flooding, and winter 

storms. They presented a range of short-term and long-term mitigation strategies for road 

management agencies. 
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RESEARCH METHODOLOGY 

Overview 

The research methodology included the following steps: 

1. Combine data on AR location and intensity with road safety and mobility data from state 

DOTs 

2. Calculate the impacts of ARs on crashes, road closures, delays, and traffic flows 

3. Estimate the costs of the AR road safety and mobility impacts 

AR Data 

AR data were obtained from two sources. ARs are typically defined in terms of a combination of 

geometric constraints and above-threshold levels of integrated vapor transport (IVT). There are a 

number of AR detection algorithms (Shields et al. 2018). In this study, two catalogs based on 

work by Guan and Waliser (2015, 2017, 2019) and Guan et al. (2018) were used. 

The first catalog provides the occurrence of ARs at specific locations across the US. The second, 

more recent catalog also provides IVT values at each grid cell, which allows for analyses of the 

effects of AR intensity on road safety and mobility outcomes. 

The first catalog applies the Guan and Waliser (2015) AR detection algorithm to Modern-Era 

Retrospective analysis for Research and Applications version 2 (MERRA-2) reanalysis data. The 

second applies an updated AR detection algorithm, the Guan and Waliser (2019) version 3 

Tracking Atmospheric Rivers Globally as Elongated Targets (tARget) algorithm. The Guan and 

Waliser (2019) catalogue was developed for the period between 1979 and 2019 using six-hourly 

instantaneous fields of global IVT at 1.5° resolution from the ERA-Interim reanalysis (Dee et al. 

2011). 

MERRA-2 is a weather reanalysis product developed by National Aeronautics and Space 

Administration’s (NASA’s) Global Modeling and Assimilation Office (GMAO) that assimilates 

a wide range of weather data sources and spans the satellite observing era of 1980 to the present. 

The spatial resolution of MERRA-2 is 0.625° longitude × 0.5° latitude. Details on the dataset can 

be found in Gelaro et al. (2017). 

ERA-Interim is a weather reanalysis product developed by the European Centre for Medium‐

Range Weather Forecasts (ECMWF) that assimilates a wide range of weather data sources and 

covers the period of January 1, 1979 to August 31, 2019. The spatial resolution of ERA-Interim 

is approximately 0.7°. It has been superseded by the ERA5 reanalysis. Details on the dataset can 

be found in Dee et al. (2011). 
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The availability of IVT levels associated with ARs allows for the application of the Ralph et al. 

(2019) AR ranking scale (Figure 1).  

   

Figure 1. Ralph AR ranking scale 

The AR scale ranks ARs on a scale of 1 to 5 based on AR duration and intensity as measured in 

terms of IVT. ARs are defined according to one of several detection algorithms and then 

classified based on peak IVT at a given timestep. If IVT exceeds 250 kg m-1 s-1 and duration is 

between 24 and 48 hours, then the AR is classified as an AR1 storm. With each increase in IVT 

of 250 kg m-1 s-1, the rank of the AR is increased up to a maximum of AR5. Additionally, if the 

duration of the AR is less than 24 hours, then the AR is demoted in rank by one level. If the 

duration is greater than 48 hours, then the AR is promoted in rank by one level. 

There are several ways in which the ranking algorithm can be applied, including over the entire 

event or at a specific location. Here, the algorithm is applied at specific locations. A grid cell 

with maximum IVT over the course of the AR of 600 kg m-1 s-1 for which the AR is present for 

60 hours would be classified as an AR4 event. Were an AR with the same peak IVT to persist for 

only 36 hours over the same location, it would be classified as an AR3 event. 

State DOT Data 

Caltrans PeMS V-Class Traffic Flow 

Data on traffic volumes were extracted from the California DOT (Caltrans) freeway Performance 

Measuring System (PeMS). Descriptions of the data can be found in Chao (2003), and Kwon et 

al. (2007). More extensive documentation is available at the PeMS website: pems.dot.ca.gov. 

The main PeMS dataset used in the traffic flow analysis was the Census V-Class Day dataset. 

The dataset covers the period of January 1, 1996 to December 31, 2012 and consists of 

observations taken from 94 census substations on I-5 from absolute postmile 42.5 to 795.6. The 

dataset includes 173,116 observations, of which 107,479 had positive values for total flow. Flow 

AR Ranking (1-5)
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rates were also reported for specific vehicle classes from motorcycles and passenger cars to light 

trucks and heavy trucks with a number of different configurations. 

The data were linked to a separate dataset containing the latitude and longitude of I-5 postmiles 

in order to locate the census substations to the nearest AR grid cell. 

The California V-class daily total flow data were divided into four regions: southern California 

defined as latitude less than 34.75°N, central California between 34.75°N and 37.25°N, Bay 

Area between 37.25°N and 39.75°N, and northern California north of 39.75°N. 

Additionally, data on vehicle miles traveled (VMT) were obtained from PeMS Performance 

Aggregates datasets for I-5 in both directions from postmiles 0 to 525 over the time period of 

January 1, 2010 to December 31, 2019. The VMT data were used to estimate the economic 

impacts of ARs on mobility. 

Colorado DOT Incidents and Traffic Flow 

Colorado DOT (CDOT) incident data consisted of location descriptors (road, direction, location, 

and mile marker start and end), the event start and end dates and times, event type (chain law, 

event response, incident, and weather event), event sub class (24 values, including descriptions 

of whether the event affected a single vehicle, multiple vehicles, or all vehicles), a measure of 

severity (minimal, moderate, or severe), and durations of partial and total freeway closures. The 

I-70 data were obtained from CDOT on April 3, 2020. 

Utah DOT Incidents 

Utah DOT incident data consisted of location descriptors (main street, cross street, direction, 

latitude, and longitude), a description of the event (i.e., web description), the date and time that 

each incident report was created, and the date and time that each incident report was last updated. 

Two fields indicating the incident type were provided, one describing the incident with text and 

the other coded from a set of 16 types. A measure of impact was provided on a scale of 0 to 10. 

A second description field was also provided that included information on crash severity, 

priority, and impact. Severity was rated high, medium, low, or none. Priority was ranked on a 

scale of 1 to 10. 

An example of the web description field is “Vehicle Fire I-80 AT MP 131 CLEARED AT 11:37 

AM.” The field contains information on the nature and location of the incident and the time the 

incident was cleared. Various items were extracted from the web description field. Simple text 

searches extracted information on partial and full closures, e.g., “Crash I-80 AT MP 133 LEFT 

LANE CLOSED CLEARED AT 11:35 PM” was classified as a partial lane closure, and “I-80 

CLOSED MP 130 USE ALT ROUTE” was classified as a full closure. 
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Duration of incidents, including road closures, were calculated in minutes as the difference 

between the date and time at which the incident report was created and the date and time at 

which the incident report was last updated. 

The I-80 data consisted of 2,244 incidents from October 10, 2012 to December 31, 2019 from 

milepost 129 to 141. The I-70 data consisted of 219 incidents from December 17, 2012 to 

December 31, 2019 from milepost 0 to 23. The US 6 data consisted of 1,094 incidents from 

October 14, 2012 to December 31, 2019 from milepost 179 to 230. The US 91 data consisted of 

208 incidents from February 5, 2014 to December 31, 2019 from milepost 4 to 16. The I-80 data 

were obtained from the Utah DOT on March 31, 2020, and the data on the remaining sites were 

obtained on December 29, 2020. 

Linking AR Data to Transportation Data 

For California and Colorado, only the milepost locations of census substations and incidents 

were given. Latitude and longitude were applied to mileposts by matching to a U.S. Census 

Bureau dataset providing the locations of the mileposts. The California and Colorado data were 

then matched to nearest AR grid cell. The Utah incident data provided the latitude and longitude 

of each event directly. This location information was used to link the incident data to the nearest 

AR grid cells. 

Temporally, the AR data were aggregated from six-hourly resolution to the daily level. In this 

way, a given location-day was classified as an AR day or a non-AR day using the Guan and 

Waliser (2015) MERRA-2 dataset. In the Colorado and Utah data, all AR grid cells nearest to 

any milepost in the study region were spatially aggregated. If any of the grid cells on a given day 

was classified as an AR day, then that day was classified as an AR day for that study site. All 

incidents at any of the Colorado or Utah sites were then classified as AR or non-AR incidents. 

These classifications were used to build models and test hypotheses about the impacts of ARs on 

road safety and mobility. 

In the California analysis, the AR data were processed in the same way, but additionally the data 

were classified according to the Ralph et al. (2019) AR ranking system using the Guan and 

Waliser (2019) ERA-Interim data that also contained IVT magnitudes. In this way, all traffic 

flow observations in each section of I-5 were classified as AR or non-AR traffic flow rates, and 

as AR1 through AR5 traffic flow rates. 

Methodology 

California Costs of Reduced Mobility 

A multivariate linear regression approach was used to quantify the impacts of AR conditions on 

road safety and mobility. In California, the dependent variable was I-5 traffic flow in vehicles 

per day over four regions (southern California, central California, Bay Area, and northern 

California). The independent variable for each geographic location was the occurrence of AR 
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conditions in addition to control variables including the direction of traffic (north or south), the 

day of the week, and whether the day was a holiday. An additional analysis was conducted in 

which the independent variable was a categorical variable indicating the ranking of the AR, with 

a reference value of “no AR” for non-AR days. 

To estimate costs associated with reduced flow rates, daily VMT at each census substation were 

estimated as a function of regional AR occurrence, controlling for day of week and holiday 

effects using separate regression models for each census substation. From these models, the 

impacts of ARs on VMT at each census substation were estimated. These VMT impacts were 

then aggregated over census substations by region. Baseline estimates of VMT for each census 

substation were also estimated over the 1996 to 2016 period. From the baseline VMT and the AR 

effect on VMT, it was possible to calculate the percent change in VMT associated with ARs for 

each region. 

Several assumptions were made in order to estimate the economic impacts of reduced flow rates. 

Gillingham (2014) estimated the elasticity of VMT for passenger vehicles with respect to the 

price of gasoline to be -0.22. That is, a 1% increase in the price of gasoline is associated with a 

0.22% decrease in VMT. 

The cost of gasoline is one component of vehicle operating costs, which also include 

maintenance and repair costs, tires, and mileage-dependent depreciation. Mesa-Arango et al. 

(2013) reported vehicle operating costs of 29.04 cents per mile, in 2021 dollars, for passenger 

cars and vans, of which gasoline costs account for 9.48 cents per mile. Another element of the 

cost of a VMT is the value of time. Mesa-Arango et al. (2013) report an average value of $27.07 

per hour for passenger cars, in 2021 dollars. Assuming an average driving speed of 60 miles per 

hour on I-5, this translates into a cost of 44.9 cents per mile. Hence, the total cost of a VMT for 

passenger vehicles is estimated to be 73.9 cents per mile. 

It is assumed that VMT are of value to vehicle operators, i.e., trips will be taken when the value 

of or willingness to pay for a given number of VMT exceeds the cost. Assuming that the cost 

components of each element of VMT are additively separable and assuming a linear demand 

curve with an elasticity of demand of -0.22 at the equilibrium price and quantity of VMT, it is 

possible to specify the relationship between the demand, or willingness to pay, for an additional 

VMT and the total number of VMT observed in a given region over a given time period. The 

area below the demand curve but above the known VMT cost is the consumer surplus, i.e., the 

value of VMT to travelers (Boardman et al. 2018). The reduction in consumer surplus due to 

reduced VMT demand under AR conditions is used as the estimate of the cost to road users of 

decreased mobility due to AR conditions. 

Colorado Costs of Delay Times Due to Road Closures 

In Colorado, a number of outcomes are modeled as a function of the incidence of AR conditions: 

the number of events; the number of chain restrictions; the duration of events; the number of 

spinouts; the number of partial and full road closures; the number of minimal, moderate, and 

severe events; the number of incidents; the number of crashes; the number of debris events; the 
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number of traffic events; the duration of partial and full road closures; and the number of hour-

miles closed. Day-of-week controls are included in the model. 

Hourly traffic volumes were obtained from the CDOT Online Transportation Information 

System (OTIS) for the month of March 2019 over six monitoring stations in both freeway 

directions. Hourly vehicle flow rates in each direction were matched to the road closure times 

and durations. A sample of 744 hours (31 days times 24 hours) was created in which average 

hourly flow rates over the domain were linked to the number of minutes of road closures 

observed that hour. A set of regressions were then used to estimate the impact of road closures 

on vehicle hours of delay, controlling for the time of day. In this way, the flow reductions 

associated with eastbound, westbound, and full closures were estimated. 

Using estimates of delay costs for passenger vehicles and commercial trucks (Ellis 2017) 

combined with average annual daily traffic (AADT) counts to estimate the fraction of vehicles in 

each class, the costs of the estimated additional vehicle hours of delay associated with AR 

conditions were calculated. 

Utah Costs of Crashes 

In Utah, the following outcomes were modeled as a function of the incidence of AR conditions, 

controlling for day of week and holiday effects: the number of events, the number of crashes, the 

number of partial and full closures, the cumulative impact rating events over the course of a day, 

and the duration of each event. 

For crashes, cost estimates were calculated using crash cost statistics from Blincoe et al. (2015), 

who broke down crash costs by property damage and injury costs for injuries of varying severity. 

Assuming that the distributions of injury severity, number of cars involved in crashes, and 

number of injuries per crash at each site were equal to the distributions presented in Blincoe et al. 

(2015), the total damage plus injury cost of each crash was estimated at $21,500 in 2021 dollars. 

AR-related crash costs were obtained by applying this estimate to the estimated increases in 

crashes associated with AR days for each site. 
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CASE STUDY: I-5 IN CALIFORNIA 

The main arterial north-south route in the California road network is I-5, which extends from the 

Mexican border at San Ysidro in San Diego, California to the Oregon border at Hilt, California. 

California road networks and the MERRA-2 data grid for ARs are shown on the left in in Figure 

2. Gray cells indicate the 0.5° latitude by 0.625° longitude cells over which ARs are defined. 

Line segments indicate different types of highways in California. I-5 is shown on the right in 

Figure 2, divided into four regions for analysis, named northern California, Bay Area, central 

California, and southern California. Additionally, the figure on the right shows the MERRA-2 

grid cells used for AR occurrence analysis compared to the ERA-Interim grid cells used for AR 

intensity and AR ranking analyses. 

   

Figure 2. California road network, AR grid cells, and study regions 

The effects of ARs on V-class traffic flows obtained from the Caltrans PeMS database are shown 

in Table 1.  

126°W 124°W 122°W 120°W 118°W 116°W 114°W 112°W

3
2

°N
3
4
°N

3
6
°N

3
8

°N
4

0
°N

4
2

°N I−5 Freeway

MERRA Grid Cells

ERA Grid Cells

S.Cal.

C.Cal.

Bay

Area

N.Cal.

California I−5 Extents



16 

Table 1. Impacts of ARs on I-5 V-class flows 

All ARs 

Section 

Mean 

flow 

AR 

effect 

% AR 

effect p-value 

% AR 

days 

Northern California 14,581 -735 -5.0 2.5 × 10-55 *** 21.1 

Bay Area 16,297 -621 -3.8 2.2 × 10-48 *** 19.6 

Central California 18,514 -563 -3.0 2.0 × 10-6 *** 19.5 

Southern California 107,490 -2,702 -2.5 2.3 × 10-27 *** 17.7 

Moderate to Strong ARs 

Section 

Mean 

flow 

AR 

effect 

% AR 

effect p-value 

% AR 

days 

Northern California 14,581 -796 -5.5 4.6 × 10-41 *** 11.9 

Bay Area 16,297 -711 -4.4 1.5 × 10-38 *** 10.7 

Central California 18,514 -906 -4.9 1.8 × 10-9 *** 9.6 

Southern California 107,490 -3,702 -3.4 1.2 × 10-31 *** 8.2 

Strong ARs 

Section 

Mean 

flow 

AR 

effect 

% AR 

effect p-value 

% AR 

days 

Northern California 14,581 -771 -5.3 2.2 × 10-23 *** 6.6 

Bay Area 16,297 -615 -3.8 2.7 × 10-18 *** 6.2 

Central California 18,514 -1,184 -6.4 4.4 × 10-9 *** 5.1 

Southern California 107,490 -6,191 -5.8 5.1 × 10-46 *** 4.1 

Significance: *** p <0.001 on linear regression controlling for location, day of week, and holidays. AR conditions: 

at least one six-hour period with AR conditions in the spatial grid cells, which cover the road extent on the day in 

question, using the Guan and Waliser (2015) MERRA-2 AR detection algorithm. Moderate-to-Strong AR: at least 

half the grid cell time periods are associated with AR conditions. Strong AR: at least three-quarters of the grid cell 

time periods are associated with AR conditions. 

AR conditions were found to reduce traffic flows by 5% in northern California, 3.8% in the Bay 

Area, 3% in central California, and 2.5% in southern California. In absolute terms, the reductions 

were greatest in southern California, with a reduction in flow of 3,700 vehicles per hour from a 

baseline of 107,000. 

To reduce the proportion of days considered to be AR days, more stringent requirements were 

imposed, namely, days where at least half of the grid cell time periods were detected as ARs 

were classified as moderate AR days, and days where at least three-quarters of grid cell time 

periods were detected ARs were classified as strong AR days. Traffic flow rates generally 

decrease as AR intensity increases, though slight increases in flow rates were observed for strong 

ARs relative to moderate-to-strong ARs in northern California and the Bay Area. This is likely 

due to noise in the data. Under strong AR conditions, reductions were on the order of 4% to 6% 

across the different regions, or 600 to 6,000 vehicles per hour. It should be noted that these AR 

classifications were ad-hoc classifications based on the available fields in the MERRA-2 AR 

detection product. Additional analyses of the impacts of AR intensity on traffic flows are 

presented below using the ERA-Interim IVT data to classify ARs according to the Ralph et al. 

(2019) ranking system. 
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As an alternative to considering the Guan and Waliser (2015) MERRA-2 numbers of grid cell 

time periods as a measure of AR intensity, an additional analysis was performed using ERA-

Interim IVT data associated with the Guan and Waliser (2019) detection algorithm. The ERA-

Interim data are projected over a larger spatial grid (1.5° instead of 0.5° by 0.625° in the 

MERRA-2 reanalysis) but have the advantage of allowing for the classification of ARs using the 

1 to 5 AR ranking scale. As described in the Research Methodology chapter, the scale (shown 

previously in Figure 1) categorizes ARs based on peak IVT in increments of 250 kg m-1 s-1 and 

then adjusts the category based on the duration of the event. Effects of ARs by rank range from 

mostly beneficial, e.g., replenishing the water supply (categories 1 and 2: short duration, low 

IVT), to mostly damaging (categories 4 and 5: long duration, high IVT). 

The results (Figure 3) are largely as expected. Notably, the reductions in average traffic flow 

rates across monitoring stations range from 7% to 18% under extreme AR4 and exceptional AR5 

conditions. 

 

Figure 3. Impacts of ARs on I-5 V-class flows by AR ranking 

The decreases in traffic flow are not monotonic with increases in AR scale in northern 

California, the Bay Area, or southern California, although the general trend is as expected. In 

addition, AR1 and AR2 storms are associated with increased traffic flow in central California, 

though the increases are not statistically significant. The central California section of I-5 is 

located farther inland in the Central Valley, on the leeward side of the Southern Coast Ranges, 

where AR impacts are less intense than on the windward side of the Coast Ranges or on the 

windward side of the Sierra Nevada Range to the east. This may explain this result. 

Finally, the greatest impact in terms of reduced traffic flow occurs in northern California during 

AR5 events. AR activity is known to be most intense in northern California, so this result is 

consistent with expectations. 
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In order to calculate costs associated with mobility reductions due to ARs, it is simpler to work 

with VMT as these can be consistently aggregated over monitoring stations to the regional level 

(Chao 2003). Daily VMT values were obtained from PeMS Performance Aggregates Time 

Series from January 1, 2010 to December 31, 2019 over specified sections of I-5 (north and 

south combined): southern California postmiles 0 to 197, central California postmiles 197 to 417, 

and Bay Area postmiles 417 to 525 (Table 2). VMT values were not available from PeMS on the 

I-5 north of the postmile 525 crossing, so the region of northern California was excluded from 

the cost analysis. 

Table 2. Impacts of ARs on I-5 V-class VMT 

Region 

Mean daily 

VMT 

AR effect on 

daily VMT 

% effect of AR 

on VMT 

Annual change in 

consumer surplus due 

to ARs (millions $) 

Southern 

California 

30,331,000 -370,000 -1.22 80.5 

Central 

California 

4,607,000 -64,000 -1.40 14.0 

Bay Area 4,027,000 -53,000 -1.31 11.4 

All I-5 38,965,000 -487,000 -1.25 105.9 

 

For each region, VMT regressed on an indicator variable for AR conditions in that region, day of 

week, and holiday effects. Using a linear demand curve estimated using VMT costs of $0.73 per 

mile in 2021 dollars (adapted from Mesa-Arango et al. 2013) and an assumed VMT demand 

elasticity of -0.22 (Gillingham 2014), the baseline (non-AR day) VMT per region were 

combined with the change in VMT due to ARs to calculate the associated change in consumer 

surplus. 

A VMT demand curve (Figure 4) represents the quantity of VMT demanded at any given price 

of VMT. 
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Figure 4. Change in I-5 consumer surplus due to AR conditions 

The demand curve represents the willingness of vehicle operators to pay for each additional mile 

traveled. For low quantities of VMT, consumers are willing to pay high prices; for high 

quantities, consumers are willing to pay lower prices for additional VMT. The difference 

between the willingness to pay for a given number of VMT and its price is the consumer surplus, 

or the welfare gain to vehicle operators associated with that VMT (Boardman et al. 2018). For a 

fixed price, the consumer surplus or welfare to consumers of VMT is represented as the area 

under the demand curve above the price level. 

AR conditions decrease observed VMT in all regions. This is represented graphically by a 

leftward shift in the demand curve: at any hypothetical price of VMT, vehicle operators will 

choose fewer VMT during AR conditions. The change in the area under the demand curve and 

above the price is shaded light blue and represents the loss of consumer surplus to vehicle 

operators associated with AR conditions. 

Daily changes in consumer surplus were calculated for each region and then summed to generate 

a total cost over I-5 from postmile 0 to 525. The values were then multiplied by the number of 

AR days in each region to obtain annual costs of AR conditions in terms of reduced VMT 

consumer surplus. The Gillingham (2014) VMT demand elasticity of -0.22 applied at the mean 

daily VMT of 38.5 million and the Mesa-Arango et al. (2013) VMT price of $0.73 per mile were 

used to generate a linear demand function, which was then shifted based on the estimated effect 

of AR conditions on VMT. This yielded an estimate of the annual cost of ARs in terms of 

reduced consumer surplus of $106 million. 

The demand elasticity of -0.22 is one of several that have been estimated in the literature. Litman 

(2019) presented a range of road travel demand elasticities from a number of different studies. 



20 

To consider the sensitivity of the estimate of annual AR costs to vehicle operators on I-5 in terms 

of reduced VMT, the calculations were repeated over a range of elasticities from -0.35 to -0.05. 

The results generated a range of AR cost estimates from $67 million to $467 million per year, 

corresponding to demand elasticities of -0.35 to -0.05, respectively (Table 3). 

Table 3. Annual reduction in consumer surplus due to AR conditions (millions $) 

Elasticity 

Southern 

California 

Central 

California Bay Area I-5 

-0.35 51 9 7 67 

-0.30 59 10 8 78 

-0.25 71 12 10 93 

-0.20 88 15 13 116 

-0.15 118 20 17 155 

-0.10 177 31 25 233 

-0.05 354 62 50 466 

 

VMT demand elasticities in the literature are typically calculated with respect to fuel price 

changes, which make up a small component of the total cost of VMT (between 10% and 20% of 

the total cost). Calculating a VMT demand elasticity with respect to total VMT costs, including 

the implicit costs of inclement weather, is a potential area for future research. It is expected, 

however, that such an estimated elasticity would fall within the range presented above in Table 

3. 
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CASE STUDY: I-70 IN COLORADO 

Colorado road networks and the data grid for ARs are shown in Figure 5. Grid cells over which 

ARs are defined are indicated in gray. The highway network in Colorado is indicated as a set of 

light blue line segments. I-70 is indicated in pink, with the section of interest (mile marker 156 to 

240) in red. The five AR grid cells that intersect this section of I-70 are outlined in green. 

 

Figure 5. Colorado road network, AR grid cells, and study region 

The data included all CDOT incidents that occurred in the study region during the period of 

March 1 to March 31, 2019, a month known for the occurrence of extreme avalanches in 

Colorado. Over the 31 days, there were 10 days classified as AR days. The impacts of AR 

conditions are presented in Table 4.  
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Table 4. Impacts of ARs on I-70 incidents and road closures 

Variable 

Mean No 

AR Mean AR Difference 

% 

difference p-value 

Full closure (Hours) 2.36 20.5 18.14 768.6 0.0053 ** 

Chain restrictions 0.682 4.9 4.218 618.5 <0.001 *** 

Hour-miles 296 2090 1794 606.1 <0.001 *** 

Spinout 0.409 2.7 2.291 560.1 0.0016 ** 

Duration (hours) 28.1 121 92.9 330.6 <0.001 *** 

Severity: moderate 1.36 4.3 2.94 216.2 <0.001 *** 

Full closures 1.59 4.8 3.21 201.9 0.012 * 

Events 11 19.3 8.3 75.5 0.0048 ** 

Severity: severe 8.5 13.7 5.2 61.2 0.055 

Incidents 10.2 14.2 4 39.2 0.186 

Partial closure 

(Hours) 
7.64 9.95 2.31 30.2 0.654 

Severity: minimal 1.09 1.3 0.21 19.3 0.827 

Debris 1.14 1.3 0.16 14 0.984 

Partial closures 4 4.3 0.3 7.5 0.892 

Crashes 2.95 2.8 -0.15 -5.1 0.522 

Traffic 0.864 0.5 -0.364 -42.1 0.303 

Data from I-70 mile marker 156 to 240 from March 1 to March 31, 2019 with 10 days with AR conditions. 

Significance: *** p <0.001; ** p <0.01; * p <0.05 on linear regressions (equivalent here to analysis of covariance) 

controlling for day of week effects. Variables are ordered by percent difference in descending order. AR conditions: 

at least one six-hour period with AR conditions in the spatial grid cells, which cover the road extent on the day in 

question, using the Guan and Waliser (2015) MERRA-2 AR detection algorithm. 

While ARs are known to cause avalanches (e.g., Hatchett et al. 2020), this analysis does not 

explicitly consider the impact of avalanches due to ARs on road events, as information on 

specific avalanche occurrences on I-70 were not present in the data. A specific exploration of the 

links between ARs, avalanches, and road impacts is a potential area for future research. 

Of all the variables, the mean duration of full road closures (eastbound, westbound, or both 

directions) was most affected by AR conditions, increasing from a mean of 2.4 hours on non-AR 

days to 20.5 hours on AR days, over the 168 mile domain (84 miles in each direction). This is 

more than an eightfold increase in closure durations. At least some portion of I-70 was 

effectively closed on AR days during this study period. The increase in the number of hour-miles 

of closures from 296 to 2,090 can be translated into more meaningful metrics by dividing by the 

168 miles in the domain. On an average non-AR day, there was a road closure in effect 

somewhere on I-70 in the study domain for 1 hour and 46 minutes. On an average AR day, this 

rose to 12 hours and 26 minutes, a sevenfold increase. The number of full closures per day 

increased from 1.6 to 4.8. The number and duration of partial closures also increased on AR 

days, although the increases were not as large or significant as the increases in full closures. 

The duration of all incidents from the time they were reported to the time they were resolved 

increased from 28 to 121 hours. The number of events increased from 11 to 19 per day. A full 

description of the types and frequencies of events are provided in Table 5.  
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Table 5. CDOT number of events by sub types 

Event sub type # of events % of events 

Crash 93 21.4 

Safety closure 48 11.1 

Mechanical 45 10.4 

Chain Law Code 18 38 8.8 

Debris 38 8.8 

Spun out/Slide off 36 8.3 

Snow removal ops 29 6.7 

Chain Law Code 15 26 6.0 

Heavy traffic 24 5.5 

Emergency roadwork 15 3.5 

Outside agency activity 15 3.5 

Environmental 9 2.1 

Runaway ramp closure 8 1.8 

Continuous flow metering 5 1.2 

Warning 3 0.7 

Abandoned vehicle 1 0.2 

Road open 1 0.2 

 

Events of all severity levels increased, although differences were only significant at the 5% level 

for moderate events. The lack of statistical significance for other events is likely due to the low 

power of the tests, given the small sample size of 31 days. Unsurprisingly, chain restrictions 

were more likely to be in effect during AR events. 

Finally, and interestingly, the number of crashes and traffic incidents decreased on AR days. 

Although the differences are not statistically significant, the observed differences in means are 

likely due to the road closures: when roads are closed there are fewer crashes and fewer traffic 

incidents. In most studies, adverse weather is associated with increases in crashes (indeed, this is 

observed at the Utah sites as described in the next chapter), but adverse weather is also 

associated with decreased traffic flow rates through reduced demand, as some drivers cancel or 

postpone trips. The relationship between crashes and flow rates is complex, but under normal 

conditions the number of crashes varies directly with traffic flow. Generally, the worsening of 

road conditions due to adverse weather has a greater impact on the number of crashes than the 

associated reductions in traffic flow rates, but in extreme cases, such as that observed here, the 

effects can be reversed. However, even here the size of the effect is very small (5%) and not 

statistically significant. 

In this case study, the effects on road closures were the most pronounced. To estimate the direct 

costs in terms of delays associated with the closures, data on traffic volumes were obtained from 

the CDOT OTIS for the month of March 2019. Mean non-AR and AR traffic flows over the 

study domain, averaged over six monitoring stations in both directions, are presented by time of 

day in Figure 6. The timing of road closures was fairly uniformly distributed by time of day or 

night, but the greatest impacts occurred during normal driving hours. 
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Figure 6. Impact of ARs on I-70 traffic flow by time of day 

Hourly traffic flow rates were linked to the number of minutes of full closures per hour in each 

direction. Through a series of regressions of traffic flow on closure states, stratified by direction 

(east, west) and controlling for time of day, AR days were found to increase delays by 5,218 

vehicle hours over the study domain. Assuming average occupancy of passenger cars of 1.5 

persons and using delay costs of $17.81 per person per hour in passenger cars and $53.69 for 

commercial trucks (Ellis 2017), the average cost of delay time is $28.76 per hour in 2021 dollars. 

OTIS AADT flow rates by vehicle type were used in this calculation: 92.4% of vehicles over the 

study domain were assumed to be passenger vehicles, and 7.6% of vehicles were assumed to be 

commercial trucks.  

With these estimates, the cost of AR-related delays due to road closures was estimated to be 

$160,000 per day, or $1.6 million for the month of March 2019. 

These cost estimates included only time costs and did not include fuel or maintenance costs. 

Further, the estimates did not compare flow rates in March 2019 to average March flow rates, 

which would allow for the estimation of the number and cost of trips canceled or postponed. I-70 

is not only the primary east-west freeway in Colorado, but the 84 mile section considered in this 

study is the main route from Denver to over a dozen economically important ski resorts, 

including Aspen and Vail. The economic impacts of AR-related road closures on this section of 

I-70 to ski resorts and to winter mountain tourism more broadly are likely to be significantly 

larger than the road travel delay times estimated here. On the other hand, ARs and AR-related 

snowfall are likely to increase demand at the ski resorts, which may offset the negative effects of 

road closures. It may be possible to separate these effects with additional data on lift ticket 

purchases or vacation rental rates. 
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CASE STUDIES: UTAH 

Utah road networks are shown in Figure 7 with the AR grid cells for the study sites. In each 

figure, the freeway of interest is indicated in pink, with the section of interest indicated in red. 

The AR grid cells that intersect the study region are outlined in green. 

 

Figure 7. Utah road network, AR grid cells, and study regions 
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ARs were associated with increases in all key mobility and road safety metrics for the Utah study 

areas. Annual increases in crash costs associated with ARs ranged from $42,000 to $376,000 

(Table 6). The total average annual cost of AR-related increases in crashes over baseline for the 

four sites was $710,000. 

Table 6. Costs of crashes due to AR conditions at Utah sites 

Site I-70 I-80 US 6 US 91 

Miles of freeway 24 13 52 13 

Days in sample 2,571 2,639 2,635 2,156 

Number of non-AR days 2,164 2,162 2,089 1,767 

Number of AR days 407 477 546 389 

Annual number of crashes 22 222 112 26 

Annual number of crashes on non-AR days 118 1260 539 104 

Annual number of crashes on AR days 36 344 267 49 

Annual AR crashes above non-AR baseline 2.0 9.1 17.5 4.4 

Annual crash cost ($) 471,000 4,778,000 2,404,000 558,000 

Annual crash cost on non-AR days ($) 360,000 3,754,000 1,607,000 379,000 

Annual crash cost on AR days ($) 110,000 1,024,000 796,000 179,000 

Annual AR crash cost above baseline ($) 42,000 196,000 376,000 95,000 

Annual cost per mile ($) 20,000 368,000 46,000 43,000 

Annual cost per mile on non-AR days ($) 15,000 289,000 31,000 29,000 

Annual cost per mile on AR days ($) 5,000 79,000 15,000 14,000 

Annual AR cost per mile above baseline ($) 2,000 15,000 7,000 7,000 

 

I-70 at Clear Creek Canyon 

This section of the Utah study area included AR data from December 17, 2012 to December 31, 

2019, a total of 2,571 days that included 407 AR days. The study area was along I-70 from 

milepost 0 to 23 (24 miles). 

All incident metrics increased on AR days (Table 7).  

Table 7. Impacts of ARs on I-70 at Clear Creek Canyon 

Variable 

Mean No 

AR Mean AR Difference 

% 

difference p-value 

Events 0.0652 0.1007 0.0355 54.4 0.09 

Crashes 0.0545 0.0885 0.0340 62.4 0.08 

Partial closures 0.0065 0.0098 0.0033 50.8 0.51 

Full closures 0.0009 0.0025 0.0016 177.8 0.43 

Duration (hours) 6.65 9.45 2.79 41.9 0.28 

Impact (1-10) 0.0850 0.1744 0.0894 105.2 0.01 
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Increases in events and crashes were 54% and 62%, respectively, with p-values <0.1 on the two-

way hypothesis test of a non-zero AR impact in a linear regression or analysis of covariance 

framework, controlling for day of week and holiday effects. Partial and full closures increased by 

51% and 178%, respectively, although the effects were not statistically significant. Duration of 

events increased by 42%, but the increase was not statistically significant. Finally, the mean sum 

of impact metrics over all events on a given day doubled. 

Crash cost statistics from Blincoe et al. (2015) yielded a per-crash cost estimate of $21,500 in 

2021 dollars. Using this estimate, the average annual cost of crashes over the I-70 Clear Creek 

Canyon domain was $471,000, including AR and non-AR days (shown previously in Table 6).  

The crash costs attributable to AR events (i.e., the difference between actual annual cost and 

estimated annual cost assuming no AR days, labeled in Table 6 as Annual AR Crash Cost Above 

non-AR Baseline) were $42,000, roughly the cost of two additional crashes per year over the 

domain. For comparison with other sites, the average annual crash cost per mile at Clear Creek 

Canyon was $20,000, of which $2,000 per mile was attributable to AR events. 

I-80 at Parley’s Canyon 

This section of the Utah study area included AR data from October 10, 2012 to December 31, 

2019, a total of 2,639 days that included 477 AR days. The study area was along I-80 from 

milepost 129 to 141 (13 miles). 

All incident metrics increased on AR days. Crashes increased by 23.7% on AR days (Table 8).  

Table 8. Impacts of ARs on I-80 at Parley’s Canyon 

Variable 

Mean No 

AR Mean AR Difference 

% 

difference p-value 

Events 0.7655 0.9811 0.216 28.2 8.5 × 10-4 

Crashes 0.5828 0.7212 0.138 23.7 0.013 

Partial closures 0.1619 0.2180 0.0561 34.7 0.019 

Full closures 0.0088 0.0147 0.0059 67.0 0.27 

Duration (hours) 71.75 105.99 34.20 47.7 0.056 

Impact (1-10) 1.3571 1.8805 0.523 38.6 0.0053 

 

On average, there were 222 crashes per year at this site, costing $4.8 million, of which 9.1 

crashes were attributable to AR conditions, generating a cost of $196,000 over what would have 

been expected with no AR days. The average annual crash cost per mile at Parley’s Canyon was 

$368,000, significantly higher than annual costs per mile at other sites. Of this, annual costs of 

$15,000 per mile were attributable to AR events, more than double the per mile costs at the US 6 

and US 91 sites, and more than seven times the per mile costs at the I-70 Clear Creek Canyon 

site. 
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US 6 from Spanish Fork to Helper 

This section of the Utah study area included AR data from October 14, 2012 to December 31, 

2019, a total of 2,635 days that included 546 AR days. The study area was along US 6 from 

milepost 179 to 230 (52 miles). 

All incident metrics increased on AR days. Crashes increased by 89.5% on AR days (Table 9).  

Table 9. Impacts of ARs on US 6 from Spanish Fork to Helper 

Variable 

Mean No 

AR Mean AR Difference 

% 

difference p-value 

Events 0.3040 0.5696 0.2660 87.4 4.6 × 10-12 

Crashes 0.2580 0.4890 0.2310 89.5 2.63 × 10-11 

Partial closures 0.0359 0.0714 0.0355 98.9 9.22 × 10-4 

Full closures 0.0105 0.0330 0.0225 214.3 7.55 × 10-4 

Duration (hours) 30.69 73.05 42.40 138.0 3.81 × 10-9 

Impact (1-10) 0.6395 1.3022 0.6630 103.6 3.81 × 10-8 

 

At this site, average annual crash costs of $376,000 were attributable to ARs. These were the 

highest average annual AR-related crash costs over the four sites, largely due to the 52 mile 

length of the test site. On a per-mile basis, the average annual AR-related crash costs were 

$7,000 per mile. 

US 91 from Brigham City to Wellsville 

This section of the Utah study area included AR data from February 5, 2012 to December 31, 

2019, a total of 2,156 days that included 389 AR days. The study area was along US 91 from 

milepost 4 to 16 (13 miles). 

All incident metrics increased on AR days. Crashes increased by 113.9% on AR days (Table 10).  

Table 10. Impacts of ARs on US 91 from Brigham City to Wellsville 

Variable 

Mean No 

AR Mean AR Difference 

% 

difference p-value 

Events 0.0668 0.1337 0.0669 100.1 0.0022 

Crashes 0.0589 0.1260 0.0671 113.9 6.12 × 10-4 

Partial closures 0.0079 0.0180 0.0101 127.8 0.083 

Full closures 0.0023 0.0051 0.0028 121.7 0.28 

Duration (hours) 4.62 7.60 2.98 64.5 0.06 

Impact (1-10) 0.1347 0.2211 0.0864 64.1 0.10 
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At this site, average annual crash costs of $95,000 were attributable to ARs. On a per-mile basis, 

the average annual AR-related crash costs were $7,000 per mile. 
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CONCLUSIONS 

Main Results 

California 

In California, ARs were found to decrease average daily traffic flow rates on I-5 by 3.8% to 

5.5% in northern California and the Bay Area, depending on event severity, and by 2.5% to 6.4% 

in southern and central California. Using the Ralph et al. (2019) AR ranking system, extreme 

AR4 and exceptional AR5 events reduced traffic flow by 7% to 18%, with greater percent 

reductions in northern California and the Bay Area and greater absolute reductions in numbers of 

vehicles per day in southern California. 

The direct costs associated with reductions in passenger car VMT due to ARs were estimated at 

$106 million per year. Here, cost is quantified as the change in consumer surplus associated with 

the reduction in VMT due to AR conditions. The final cost estimate was dependent on a number 

of simplifying assumptions, including a linear demand relationship for each region of I-5 and a 

demand elasticity of -0.22 at the equilibrium VMT price and quantity. Over a plausible range of 

alternative VMT demand elasticities, the possible range of AR costs on I-5 was $67 million to 

$467 million per year. Improved estimates of annual AR mobility costs could be obtained by 

using higher frequency data and more sophisticated modeling techniques. 

Colorado 

In Colorado, AR impacts on a number of mobility and road safety outcomes were quantified on 

an important 84 mile stretch of I-70 west of Denver during March 2019. In spite of a small 

sample size, ARs were found to have significant impacts on the duration of road closures, the 

number of spinouts, moderately severe events, and the imposition of chain restrictions. Crashes 

and traffic incidents decreased in frequency, likely due to the increased durations of road 

closures and attendant decreases in traffic flow. The costs of AR-associated increases in delay 

times due to road closures were estimated at $1.6 million over the 10 AR days in the 31 day 

sample. 

Utah 

The Utah case study quantified the impacts of ARs on crashes, road closures, and delays from 

2012 to 2019 at four sites: I-80 at Parley’s Canyon, I-70 at Clear Creek Canyon, US 6 from 

Spanish Fork to Helper, and US 91 from Brigham City to Wellsville. 

Across all four sites, ARs were consistently associated with increases in the number of crashes, 

the daily cumulative event impact classification, and the number and duration of partial and full 

road closures. Percent increases in events and crashes were greatest at the US 91 site. Percent 

increases in number and duration of road closures were greatest at the US 6 site. 
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Increases in crash costs associated with ARs were calculated at the four sites. The average annual 

increase in crash costs due to ARs was estimated at $710,000, with the greatest annual cost 

impact of $376,000 observed over the 52 mile stretch of US 6, and the greatest cost per mile 

impact of $15,000 observed over the 13 mile stretch of I-80 at Parley’s Canyon. It should be 

noted that these cost impacts do not indicate the total cost of crashes on AR days but instead the 

increase in cost on an AR day relative to a baseline non-AR day. 

Limitations and Extensions 

Different analyses were conducted in each state owing in part to differences in data availability. 

With additional data at each site, comparable cost estimates of the impacts of ARs on mobility, 

road closures, delay times, and road safety could be generated. Costs and impacts could then be 

compared across sites, in absolute terms, on a per-mile basis, or on per-VMT or per-vehicle 

hours traveled (VHT) bases. Such information would be useful in prioritizing resource 

allocations within road management agencies and investments in road weather safety systems. 

This study focused on estimating the direct impacts and costs of ARs to road users in terms of 

mobility and road safety. A significant cost of adverse weather that was not considered is the 

cost to road management agencies of road maintenance and weather response. With data on road 

maintenance and road safety response efforts, the direct costs of ARs to road management 

agencies could be estimated and compared to the costs of ARs to road users. 

California 

Daily census data are used in the California analysis of AR impacts on traffic flows for ease of 

analysis. Caltrans daily V-class census data are limited to the period of 1996 to 2016. Improved 

estimates could be obtained by using more recent higher-frequency data from a wider sensor 

network. 

The California VMT cost estimates derived from data over the period of 2010 to 2019 were 

highly sensitive to the functional form of the demand function, which was chosen to be linear to 

simplify the analysis. Other methods could be used to estimate the direct elasticity of VMT to 

total costs of VMT, including weather-related costs, rather than relying on the elasticity of VMT 

with respect to gasoline costs that make up only a fraction of total costs of VMT. Finally, more 

sophisticated methods could be used to estimate the change in consumer surplus associated with 

reductions in VMT. 

Colorado 

The Colorado study was limited to a single month due to the initial data request, which was 

chosen to focus on a location and time period where extreme adverse weather events were 

known to have caused a number of road closures. Extending the direct impact analysis to a 

longer time series and a wider spatial domain could provide additional useful information on the 

impacts of lower intensity events. 
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The estimates of AR impacts on delay costs associated with road closures relied on statistical 

methods that quantified mean AR effects and then applied these values to observed hourly traffic 

volumes to estimate delay times. Improved delay times results could be obtained more directly 

from the available data by explicitly making use of the locations of closures. Such an approach 

would generate more accurate measurements of user costs. 

Finally, the VHT delay times and associated cost estimates did not explicitly consider the costs 

of detours or changes of destination. Many I-70 road users are sophisticated consumers of 

weather forecast information and are often well aware of road conditions before planning or 

making a trip. Hence, the costs of trips avoided or canceled may significantly exceed delay costs 

associated with road closures. These costs were not quantified in this analysis. 

Utah 

The Utah sites covered areas of key concern to road managers but of relatively limited spatial 

domains. Extending the domain could yield useful information on impacts to the broader state 

transportation network. Due to data limitations on the precise location and timing of road 

closures, and the chosen focus on incident rather than mobility data, only the direct costs of 

crashes were estimated in the economic analysis. The other case studies indicated that the 

impacts of ARs on mobility may be more costly than the road safety impacts at these sites. 

Finally, average crash costs were used in the cost estimation procedure. More precise estimates 

could be generated by taking crash severity into account. If data on type and number of vehicles 

per crash were available, these could further improve the accuracy of cost estimates. 

Cost Estimation 

Cost estimates in each of the case studies were sensitive to value of time and vehicle operating 

cost parameters. Allowances were made for the fraction of observed traffic accounted for by 

passenger vehicles and commercial trucks, but further improvements in cost estimates could be 

obtained by allowing cost components to vary by location and over time. 

AR Classification 

The Guan and Waliser (2019) AR detection algorithm uses a location-specific IVT threshold of 

the 85th percentile at each location. This has the advantage that it allows for the quantification of 

impacts in areas with diverse topographic and meteorological characteristics. It may, however, 

also be useful to consider ARs based on fixed IVT thresholds, e.g., those with IVT over 250 kg 

m-1 s-1 over some fixed duration. This would more accurately account for the variation in 

frequency of ARs over the western US. 
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Future Research 

Use and Value of AR Forecasts in Road Management 

AR observation networks and forecasting capabilities have improved significantly in recent years 

(Ralph et al. 2020). Skillful forecasts of AR landfall location, duration, and intensity are 

available with lead times of up to one week from dynamical models (Martin et al. 2018) and 

machine learning methods built on them in a postprocessing framework (Chapman et al. 2019). 

Preliminary results for longer-lead forecasts up to two weeks ahead are encouraging, as are 

subseasonal (from two to four weeks per DeFlorio et al. 2019) and seasonal (two to six months 

per Gibson et al. 2021) forecasts. The short-term forecasts present clear operational 

opportunities, and the longer-term forecasts offer improvements over climatology and could 

potentially have value for operations. 

Weather forecasts have long been used to predict adverse road weather events and to inform 

operational road management decision-making (Lawrence et al. 2014). Road weather 

management information systems (RWMISs) are a fundamental component of the road 

management toolkit. Improved AR forecast technologies could be used to improve existing 

RWMIS capabilities. Dynamic traffic signals (DTS) and maintenance decision-support systems 

(MDSS) in particular could benefit from AR forecasts. 

Finally, climate change is predicted to change the frequency, magnitude and spatial distribution 

of ARs (Dettinger 2011). As AR projections improve, they could be used to inform long-term 

(i.e., decadal) planning and road infrastructure investment decisions. 

Development of an Operational AR Transportation Impact Index 

Of potential value to road management agencies would be the development of an operational AR 

transportation impacts index. Such an index, similar in form to the Ralph et al. (2019) AR 

ranking scale, could be used by road managers to inform the public of risks on roadways and to 

allocate road weather maintenance and response resources ahead of significant AR events. 

Economic methods (e.g., Murphy and Katz 2005) could then be used to quantify the value of 

such a tool and of AR forecast technologies more generally. 

Impacts of ARs on Freight Transportation Networks 

A number of studies have quantified the impacts of adverse weather on trucking and freight 

networks (Mesa-Arango et al. 2013, 2016; Krechmer et al. 2012, 2016). A similar analysis could 

be conducted to quantify the impacts of ARs on trucking and freight in the western US, both in 

terms of closures of major freeways, particularly over mountain passes, and of AR-related 

inclement weather in high density areas or areas with existing freight network bottlenecks. 

Recently developed INRIX probe data could be used in such an analysis, in addition to the 

network models described in previous studies in the literature. 
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Broader Economic Impacts of AR-Related Road Disruptions 

The present study considered only the direct economic impacts of ARs on road closures, crashes, 

and reductions in traffic flows. In the intermountain west, ski resorts provide significant winter 

revenue to mountain communities. With sales and revenue data from ski resorts or with data 

from vacation rental providers, it may be possible to quantify the broader economic impacts of 

AR-related road closures and adverse road weather conditions on the winter mountain tourism 

sector in these regions. 

Furthermore, traffic congestion and increased delay times associated with ARs in more densely 

populated areas may have spillover effects on local and regional economies. Disruptions in 

freight networks have been shown to have significant economic costs (Mesa-Arango et al. 2013, 

2016), but there may be additional impacts in terms of retail sales and revenues. High resolution 

retail sales data, combined with state DOT and AR data, could potentially be used to quantify 

these impacts. 

National Analysis of AR Transportation Impacts 

ARs predominantly affect the west coasts of the world’s major landmasses. The analyses 

developed in this study could be readily extended to consider impacts in Washington and 

Oregon. West Coast ARs can penetrate inland through the Transverse and Peninsular Ranges of 

southern California and Baja California, Mexico to impact Arizona, Utah, and Colorado, 

generating the types of impacts quantified in this study. Similarly, ARs have been shown to 

penetrate inland through the Columbia River Gorge in Washington, generating impacts as far 

east as Idaho and Montana. Additionally, recent research indicates that some ARs or AR-like 

structures pass over the Gulf of Mexico and impact the eastern US (Mahoney et al. 2016, 

Martinez-Claros et al. 2020). Hence, the methods developed in this study could also be applied 

beyond the western US. 

Road safety and mobility data could be obtained from state DOTs in the coastal states of 

Washington and Oregon and inland states of Arizona and Idaho to extend AR impact analyses to 

these regions. In California, the combination of Caltrans PeMS data and AR occurrence and 

intensity data could be used to quantify impacts on other major freeways, or potentially for the 

entire state’s network of freeways and arterial roads. A complete national analysis of AR impacts 

would require the collection and processing of data from all state DOTs on mobility, road safety, 

staffing and maintenance, and freight network flows. Such an analysis would provide road 

managers and policymakers a complete picture of AR impacts on road networks across the US, 

allowing for improved response strategies and allocations of resources to mitigate the adverse 

impacts and outcomes. 
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