State of Jowa 1928

REPORT OF THE

STATE APIARIST

FOR

The Year Ending December 31, 1928

Also Report of the Convention of the Iowa Beekeepers' Association in Cedar Rapids,

November 16-17, 1928
F. B. PADDOCK, STATE APIARIST

Ames, Iowa

LETTER OF TRANSMITTAL

Hon. John Hammmi, Governor - Gnibnal mao h unl
Sis: As required by law, I herewith transmit to you my tenth annual report as State Apiarist for the year ending December 31, 1928.

> F. B. Paddock, State A piarist.

Ames, Iowa, February 14, 1929.

xcel dr|-al higitasmat

TABLE OF CONTENTS

Page
Report of the State Apiarist 5
Clean-Up Work in 1928 16
Beekeepers' Convention 25 25
President's Address, N. Williamson 25 25
Eugene Secor's Contribution to Beekeeping, Frank C.
Pellett
Pellett 26 26
Springtime in the Beeyard, J. H. Merrill
Springtime in the Beeyard, J. H. Merrill 30 30
Treating American Foul Brood in Iowa, A. D. Worthing- ton 32
A Drastic Cure for American Foul Brood, A. F. Karsten. 33
Lessons Learned in the Ten Years of Area Clean-up Work,
C. D. Adams 36
Cooperative Marketing, Ed. G. Brown 39
The Outlook for Honey Consumption, John G. Jessup 40
The Necessity of Knowing About Honey, Dr. E. F. Phillips 43
Races of Bees, Jay Smith 46
Caucasian Bees in New Jersey, Ray Hutson 49
Progress in the Farm West, G. H. Vansell 51
Water Storage by Bees, H. B. Parks 53
The Package Bee Business, Morley Pettit 56
Ultra Violet Rayed Queens, Clifford F. Muth 59
The Proper Temperature for Wintering of Bees, V. G Milum 64
"Mr. Beekeeper and His Markets," Helen Harrison. 72
Some Factors Concerning the Value of Bees to Fruit Grow- ers for Pollination Purposes, R. H. Kelty 73
Granulation of Honey, Setek Ling 76
Studies on the Sugar Concentration of the Nectar of Vari- ous Plants, O. W. Park 80

REPORT OF THE STATE APIARIST

REVIEW OF THE YEAR

The honey producers have been confronted again with unusual conditions under which colony management has been difficult. It was extremely difficult to retain colony strength and morale with which to harvest a maximum crop of honey. The bees of the state in general went into the winter of 1927-28 with good colony population and ample stores. More than the normal number were given winter protection, especially some type of out-door packing.
November temperatures were below normal and precipitation was light and seattered. Wintry weather prevailed during most of December. One severe storm brought most of the snow which did not remain on the fields. Mild winter weather prevailed during most of January, so that any kind of outdoor work was possible. The bees had a very good flight period which was of great value to umprotected colonies and an aid to packed colonies. There was practically no snow so that alternate freezing and thawing was hard on plants. February was considerably warmer than normal but dry. Crops were damaged by lack of snow covering. Outdoor work was possible and the bees enjoyed two periods of flight. The temperature during March was much above normal, so much outside work was possible. There was much alternation of freezing and thawing which was hard on field crops. Vegetation advanced rapidly and fruit buds swelled prematurely. Soft maple, and elm came into bloom early and were worked heavily by the bees with the result that brood rearing was well established in most all colonies. Precipitation was deficient over most of the state.
A great change occurred in April to the wonderful winter and early spring weather. Temperatures were continuously below normal with frequent severe freezes which further damaged field crops. However, fruit was benefited since budding was retarded. Precipitation came in heavy, damaging snow storms. Bees were forced to draw heavily on stores to maintain brood rearing and many colonies pulled out unsealed larvae. The balance of brood rearing was decidedly disturbed and on the whole the colony organization was worse than normal.
Temperatures above normal prevailed during May but the pre-
cipitation was hardly half normal. These conditions had a deeided effect on field crops and early sourees of nectar. Bees again brooded up heavily but at great expense to reserve stores. Towand the end of the month many colonies were starving and others had to be fed. This situation led to much robbing which is such a fruitful source of disease spread. This year gave another wonderful chance to find diseased colonies as the reserve stores were used freely so any disease germs in "Carrier" colonies had a chance to show up in the brood. Disease seemed to be much more prevalent than normal and beekeepers everywhere were confronted with the problem of treatment or destruction. One fact comes out of such a season as this. There are many people handling bees who do not even know that any disease may occur in their bees. Under such conditions the disease usually makes much headway before it is discovered. Such people are seldom prepared to treat diseased bees and they become indifferent to the problem so they become a menace to the honey producing industry.
The feature of the June weather was the persistent coolness. This had an interesting effect on beekeeping. It was expected that colonies would have an opportunity to get up to strength before the honey flow started and thus obtain the maximum returns. However, the flow was so long delayed that colonies started on a swarming rampage such as is seldom experienced, even by old beckeepers. It is interesting that this problem was so severe and so general over the state regardless of local conditions and type of honey produced.
The flow continued strong throughout July with favorable weather conditions. The temperature averaged normal but the precipitation was in excess of normal. The moisture caused a heavy late growth of many nectar producing plants so that the season was somewhat Ionger than normal. In fact the summer flow continued well into August in some areas. Along the Missouri river the climatic factors had the opposite effect as the honey flow there cut off abruptly two weeks earlier than normal. Local beekeepers attributed this to the persistent rainfall.
The honey crop for the season of 1928 was estimated at 87 per cent normal. This seemed like a short crop but it must be remembered that the 1927 crop was estimated at 110 per cent. Relatively the crop of Iowa this year was better than in most states The crop of this year was somewhat spotted and in small spots.
The sweet elover plant was again the most dependable source
of nectar although it was influeneed both ways by elimatic conditions prevailing in different areas. Basswood yielded unusually well in most areas, as there was a heavy set of bloom and excellent weather for gathering the neetar. The white dutch elover seems to be more variable in nectar yield than any of the regular plants. The fall plants produced an unusual amount of nectar over much of the state which aided greatly in getting the bees in shape for winter.
Cold weather prevailed during September with one period of precipitation and the sunshine was much above normal. October continued with good temperatures and well seattered rains. Bees were able to build up in population and stores to go into winter in excellent condition. More bees than usual were given outdoor protection and this was provided earlier than usual. Cellar wintering can never be as successful as outdoor protection under the conditions which prevail in Iowa during the fall and spring.

HONEY PRODUCTION

The problem of production is vital in any industry and in beekecping there are so many factors which are unsolved that the situation is extremely difficult. The price which the producer gets for honey is not based on the cost of production but on what ean be obtained. The cost of production is not known so it cannot be used for the basis of price. Attempts have been made to induce beekeepers to keep records in an effort to arrive at a cost price. Today we camnot even guess intelligently, much less estimate what honey production costs. The government has recently undertaken a study among some of the larger producers to ascertain what factors contribute to the costs. This work has already shown many producers that they are extremely inefficient in their methods of operation. If money cannot be made for the producer at present prices there are two plans to follow. The first is to raise the price of honey and the second is to reduce the cost of production. The finst plan is not so easy and is almost out of the hands of the producer. The second plan is within the power of the producer. The cost of production must be reduced by better practices such as first class equipment, a race of bees better adapted to honey gathering in a region, better swarm control, more successful disease control, more careful winter practices to reduce the 15 per eent losses. Some producers are making money today in spite of all these handicaps and others are not. Some few are making headway to reduce these handicaps.

There is an inereasing interest throughout the north in the ue of package bees. These have been used quite often, to make a start in beekeeping and this plan is as good as any which could be suggested. It offers a means of getting clean stock operated in clean equipment, which is a foundation stone to successful production. Many producers have employed packages to make up losses, either from winter or disease. Some have introduced pack. ages into weak colonies but the value of this is open to detate. There have been advocates of the practice of killing all colonies

A yard established from packages
at the end of the honey flow and restocking the equipment, with packages the following spring. Experiments were conducted by Dr. O. W. Park of the Iowa Experiment Station as early as 1918 on the cost of producing honey with packages and over-wintend colonies. He found that the cost was practically equal for conditions existing in central Iowa. Last year A. F. Karsten of northeast Iowa gave results in favor of packages, even two pomide in that region. In more northern regions more beekeepers are adopting the package type of production. The evidenee at hand would make this plan worthy of trial by honey producers. There is still another angle of the package production as outlined by Morley Pettit of Ontario, Canada. His methods have been unusually successful in the past but the new plan may be even more successful. His proposal is to unite the colonies in the fall and replace the half with packages in the spring. This would auto-
matically requeen every other year and it would reduce the swarm control problem. This is only a step from the Colorado plan which is to double each fall and each spring make the increase from within the yard by new queens. One of the euts in cost of production must come from reduced winter loss. It may be cruel to kill bees after the honey flow but it is equally as cruel to let bees go through the winter without protection and seant stores so that they may starve to death in an effort to meet a situation which is foreed on them by the indifferent beekeepers.
The improved apiary practices for the last quarter of a century have revolved around good stock. The program has been to secure one race of bees to serve under the varied conditions throughout the length and breadth of this land. There can be no question but that much good has resulted from the interest in good stock and frequent improvement of apiary strains. However, the time is at hand when we need to do more good in order to secure still better results in honey production. It is expecting too much of any race, regardless of its merits, to meet all local conditions. It is not done in any other form of animal or plant life, as cattle, poultry, fruits and small grains. It is not sound business for the honey producers to hang on longer to a legend or tradition. The last year or two have seen much interest develop in a race of bees which might meet local conditions better than they are being met now. It is not safe to assume that any one other race will do better under all situations than the one being used now. Work is being done now in several widely scattered distriets which indicate that another race of bees will bring greater returns to the

Better stock is essential
producer. This may be due to the ability of the race to winter better, work under unfavorable conditions, resist disease or gather nectar from plants with longer coralla tubes.
The producer must sense the pasture changes that are taking place. Iowa beekeeping has seen white elover go out and sweet clover come in. During the last decade white clover has been less dependable each year as a source of nectar for reasons thus far unexplained. Crops are now uncertain and cannot be forecasted as was the case former years. Beekeepers and apiaries have disappeared in the old white clover belt and any revival of production in this area is due to the coming in of sweet elover. Sweed clover made its real start in Woodbury county and has spreat in all directions, first, the increase was largely along the river but recently the spread is eastward across the state. In the spring of 1928 ten thousand acres of sweet clover were planted in Boone county. All of this acreage will not be directly available as pasture for bees, some will be used as a green manure crop, some cut for hay but some will be used for stock pasture and some for seed. There is always some sweet clover getting established in the so-called waste spots. The demonstration apiary results in Boone county indicate very good territory for honey production. There are good possibilities for the beekeeper in those areas where dairy interests use sweet clover for pastures.
The disease situation is always interesting and is mentioned here only briefly. European foulbrood was not uncommon ten years ago. In some areas it was prevalent every spring, in other areas the disease would appear only during the unfavorable seasons Requeening with a good stock of Italian bees and more active apiary management were recommended. This disease is seldom encountered today. Sacbrood is seen so seldom that it is not poss sible to make any correlations between its occurrence and condtions of environment. American foulbrood is a factor in the cost of production. It has been shown that the disease can be controlled by area clean-up methods and it can be cleaned up in a locality by a solid community effort, after an educational campaign. It takes time and money for this work as well as the cooperation of the beekeepers.
A very close inter-relationship is developing rapidly between the fruit grower and the beekeeper. It had been recognized for many years that the honey bee was an important agent of pollination but only recently has the bee been regarded as a neecs-
sity. This situation has developed along with intensive plantings of specialized crops. The grower of prunes, pears and apricots in California has been renting bees for the period of pollination. The therry industry of the northwest did not flourish until plenty of bess were placed in the orchards to insure ample set of frait. Bees are rented extensively in New Jersey to aid in the set of fruit in apple orehards and very satisfactorily results have been obtained in Hlinois by the use of bees seattered throughout apple orehards, The practice has been established in Michigan of renting bees for the poltination of cherries. The wonder is expressed now if there will be enough bees in these localities to meet the demand of the fruit grower. Studies have been made on the management of getting the bees into and out of the orchard and also of the best distribution within the orchard.
There is certain to be a growing appreciation of the value of the bee in the pollination of truck and greenhouse crops. The importance of the bee in the growing
 of strawberries and raspberries especially will demand consideration when these crops are grown in large acreages. Bees are now used in the large greenhouses for winter pollination of cucumbers and tomatoes.
The value of the honey bee in the pollination of clovers especially is well known bat not generally appreciated. The extensive growers of sweet clover seed in North Dakota were anxious to secure plenty of bees and made inducements to beekeepers for the establishment of apiaries throughout the territory. The importance of the vaiur in Blackman has found beor of truth and truck buasines. honey bee in the pollination of medium red clover is not fully realized. The importance of the bumble bee in this instance is entirely overrated and founded upon legend.
The development of beekeeping is coincident with the modern plan of general agriculture. The two must be closely associated
for the greatest success of either. As the sweet clover acreage iscreases the opportunities for profitable honey production will inprove. The welfare of the fruit grower and the beekeeper are mutual in a similar manner. Nectar is produced in nature by many flowers which represents a natural resource of the soil. The honey bee is the only agent which can convert this raw product into a finished product for use by man. When nectar is not collected by the bee it is lost to man. It can be said that many times as much neetar is produced as is gathered by the bee and made available for human consumption. When all attention is directed to the utilization of by-products it is certain that the importance of the honey bee can not be overlooked. The functions of the bee are distinctly two-fold; for crop increase through more perfeet pollination of fruit and seed and the conservation of nectar for honey as a further food for man. It must be remembered that the honey bee is of more value to the agriculturist in general than the beekeeper in particular.

CROP DISPOSAL

It is only natural for some to feel that too much attention is being given to increased production. It is the opinion that there is already an over-production of honey, especially in view of the increase which has been accomplished in the last ten years. In reply to such argument let it be said that the increase in production of honey has only kept up with the inerease in population in this country. The consumption of honey in the United States in 1914 was 2 pounds per capita and in 1928 the consumption was still 2 pounds. The production of honey in this country is estimated at $21 / 2$ pounds per capita. No other nation has a honey consumption as low, even Italy has a per capita consumption of 11 pounds and Germany tops the list with 45 pounds. The United States is exporting more than $11,000,000$ pounds of honey annually to such countries as Great Britain and Germany. These countries will accept only the superior grades of honey properly prepared and in the best of packages.
The future of honey consumption in the United States is the concern of the producer. There is every reason to believe that more honey will be used each year in this country. There are three important agencies at work on this problem now and the results are beginning to show what may be expected in the future. The Kellogg Company of Battle Creek, Michigan, is recommending the use of honey in connection with their foods. The word honey
appears on every package when over a million are produced daily, and in every piece of advertising including store window decorations. The home economics staff of this company is constantly testing new recipes for the use of honey.
The work of the American Honey Institute under the direction of Dr. H. E. Barnard at Indianapolis is gaining by great strides. A big effort of the Institute has been the connection with the baking industry of the United States. The use of honey in cakes is now being urged through the schools for bakers maintained by the Fleischmann Yeast Company. Preserves and Honey, Inc. was organized this year after the purchase of the four largest existing bottling plants of honey. This company has been able to treble the sale of honey at the end of three months' effort and they are now engaged in an extensive radio advertising campaign in and around New York. This company has great plans for the future increase in the use of honey by the consuming public.
There is another means of crop disposal which is available to producers everywhere, co-operative marketing. This plan has been in operation many years in Colorado but it has not spread rapidly. More recently the Inter-Mountain States Association was developed and the results have been very satisfactory. There is now one co-operative in Iowa, the Sioux Honey Company of Sioux City. The results of this organization have been equal to the expectations of any of its members. Co-operation is the means which has been widely recommended as a relief measure for agriculture and is considered by many as a magic word. According to Ed. G. Brown co-peration is merely the name of a system of loyal, honest endeavor by which a people can lift themselves to a higher level of living. There are three things required for the successful operation of co-operative marketing. Loyalty of membership is probably the most essential, but the manager must be one who has been trained in modern business methods and who has a vision, and indequate financial backing has had much to do with the failure of many co-operatives.
Honey prices during the fall of 1928 tended to rise in the carlots, whereas in a retail way there has been no such strengthening and in some instances there has actually been a weakening. Perhaps this has been caused by the volume of export sales, perhaps by the increased activity of the newly formed combine, "Preserves and Honey"; likely both. These two agencies must have carlot shipments to be cconomical. And now comes the pooling of several
cars of honey by Louisiana beekeepers to New Orleans, a blending of the same, and carlot shipments in turn. Will the markets in the future become wholesale or jobbing markets, asks the American Bee Journal.
The big reason why more honey is not consumed in this country is that the people are not made to want it more than they want a corresponding article of food. The producer in a feeble way has been trying to get honey used but this method has not brought results. Most producers do not know enough about honey to be able to tell its merits and superior points. In the ease of any other article of food the marketing agency is telling the public. Every company has a staff to find out the merits of their food and hor to use it in ways which are better than any which have been proposed before. It is to be hoped that honey may yet be taken in and treated as other food items are so that the public may be told in an impressive manner. All indications point to the beginning of a new era of marketing and consumption of honey.

During the season of 1928 the Agricultural Extension Service, through its apiary specialists, has conducted demonstration apiaric in eleven counties. Twenty-three apiaries were established which were composed of 480 colonies of bees. The specialists actually operated 115 colonies and 365 colonies were "check" colonies of those operated by the owner. The check colonies were supposed to be operated according to the previous practice of the owner. Thir demonstration colonies were operated in accordance with the principles advocated in all information given out regarding modern apiary practice.

The 1928 yield of Iowa honey placed the average colony production at 70 pounds, which is below the three-year average. It is evident that the owners of the demonstration colonies absorbed some information immediately or were above average producess The average production of the cheek colonies was 100 pounds per colony, an increase in returns of $\$ 3.00$ per colony. The demonstration colonies showed an average yield of 147 pounds per colons, a trifle more than double the State average colony production This means an increase in the returns per colony of $\$ 4.70$ abow the demonstrators or $\$ 7.70$ above the state average. These apiaric were scattered over the state and represent all types of producing conditions.

The production of all colonies of the demonstration apiaries was

53,400 pounds of honey, which has a market value of $\$ 5,340$. This amount of money was actually returned to beekeepers who served as co-operators in the demonstration apiary work,
Extension field work in beekeeping was conducted in 39 counties during 1928. This work consisted of demonstration apiaries, special meetings, general inspection, and area clean-up work. During the year 248 meetings were conducted and 1,016 apiaries were visited in connection with this work. Inspection visits brought

A field meeting In Woodbury County means an interesting diy
the total number of persons given personal assistance as 4,710 . There is no way to estimate the value obtained from extension work by those who attended the meetings and put into operation some practice which might increase production. There is no way to estimate the value obtained by a community when disease is cleaned up in apiaries where it is found. There is no way to estimate the value to beekeepers in general by the increase in honey sales. The co-perative purchase of equipment, bees and queens can be shown to save a very definite amount. It is hard to estimate the value to the industry of the state through the introduction of 3,000 pure stock queens as a result of extension effort,
The Beekeepers' Bulletin was sent every three months to over 17,500 people in Iowa who are interested in keeping bees. The object of this publication is to disseminate timely information and news items of general value, all haying a definite education value. This publication serves a definite purpose to improvement for the
industry of this state. A circular of 4 pages on the Uses of Hoseg was sent out on request, about 3,500 were used. About 4,000 copies of a circular of 6 pages on the Installation and Care of Paekage Bees were needed for distribution. Bulletin No. 198 "Dikeas and Pests of the Apiary" was used in all lines of work as a ready reference. The demand was heavy for Bulletin No. 142 "Wintering Bees in Iowa."
The ammual short course for beekeepers was held for 4 days dur: ing the Farm and Home Week in February. The program was given by the local staff with E. L. Sechrist of Washington and C, D. Adams of Madison, Wisconsin. The attendance was good for the entire program. Work was given to the junior clubs by the staff with the support of Professor F. Jager of the University of Minnesota.

inspection

Disease eradication work was conducted in 32 counties during 1928. Inspection on special request was done in 17 counties; on locality basis in 10 counties and on the area clean-up basis in 5 counties. The number of colonies examined was 21,211 in 816 apiaries. Disease was found in 1,368 colonies, 543 were destroyed and 521 treated either by the owner or inspector. The retirns to the industry from inspection work is hard to estimate. Any colonies which were treated and put on a production basis have a value of $\$ 10.00$ as against no value if left diseased. This will mean a returned inventory value to the industry of $\$ 5,210$ for 1928 . These treated colonies will produce an average of 60 pounds of honey for market, which gives a cash income to the industry of $\$ 3,126$ making a total of $\$ 8,336$ as a direct cash return to the industry from inspection work. A factor which cannot be given a cash value is the indirect value of eliminating disease in a yard, territory or area.

CLEAN-UP WORK IN 1928

The work during 1928 was conducted with a reduction in staff inasmuch as no temporary help was employed during the summer. This change was made necessary through a reduction of funds available for inspection purposes. The permanent organization of the inspection force permitted a concerted effort on carly work with satisfactory results. There is much work to be done by an inspector at times when it may not be possible to open hives for colony examination. It is possible to locate many obscure apiaris
and prepare the owner for inspection later. A big feature of this carly work is the detection of empty hives and the treatment or destruction of them. One of the most fruitful sources of the spread of foulbrood is the early spring robbing. Unprotected honey is almost certain to be found by bees for there is no nectar flow to attract their attention. The modern beekeeper is fully aware of the situation and fearful of results. The indifferent beekeper is a menace to the industry and a serious handicap to disease clean-up effort.
It was possible to time the clean-up work to coincide with honey flow conditions. Reinspection for treatment or destruction took considerable time but was fully justified by the results obtained. General inspection was conducted when possible after clean-up work. More colonies were inspected in 1928 than any previous year. This was possible because the large amount of clean-up work was in old territory. A great deal of effort and time was put in on new territory for organization and survey work. The local cooperation was most excellent this year in the new territory where dean-up work was started. The colonies are in for better equip. ment and general condition in the old clean-up areas. Three or four years of constant, concentrated attention is raising the standard of beekeeping. Inspection can be conducted more rapidly under these improved conditions. Less disease is found in these areas which requires less reinspection and treatment or destruction. The attitude of the beekeepers in these old areas is entirely belpful instead of indifferent or antagonistic.
The problem of treatment or destruction is of interest to both the owner and the inspector. It is demanded by law in some states that the inspector destroy by burning immediately any diseased colony found. The owners have usually felt that this was unnecessarily severe and that there should be some compensation for the destruction of personal property. A diseased colony is a public nuisunce in Florida and must be burned at once. Burning has been used in Texas for many years and in Wisconsin it has been the practice to burn not only colonies but old contaminated equipment. The inspection work in California has recently been reorkanized and clean-up is based on a "careful burning" of all diseased colonies. The "shook" treatment is not permitted longer as experience shows that the diseases is spread by this means instead of controlled. It is therefore of great interest to observe the change in attitude of Iowa beekeepers in regard to the disposition
of treated colonies. Wherever disease is found in new territon the owner requests permission to treat. After two or three years of treatment the owner appears glad to burn any diseased colonis at once. In fact disease is detected by the owner in many instances before the visit of the inspector.

general inspection

The demand for seattered inspection work was heavy during 1928. It is the poliey to discourage this type of work and all r . quests are carefully considered before any start is made on the work. All of the demands were taken care of and on an economical

It is hard to Inspect such colonles
basis. It is the custom to arrange the requests so that several yards can be inspected on a single trip. There are several reasons for the demand for scattered inspections, such as sale of bees, sale of honey, newly diseovered disease, serious situation in a commmity.

This last class of work ustually develops into locality effort, sometimes with the aid of demonstration apiary work. Sometimes general inspection may be made in conjunction with the early organization of demonstration apiaries. Work of this type was done in 15 widely separated counties during 1928 .

LOCALITY INSPECTION

This type of work is more intense than the general and in many instances furnishes the foundation for area clean-up effort later. This kind of inspection is divided into two classes, that which is done purely as inspection, either through or in conjunction with the Farm Bureau office, and that which is done as an adjunct to the organized demonstration work. The first class is done usually by the inspector and the second type by the specialist after the educathonal meetings have been completed. This method is efficient and cheap with highly satisfactory results.
Work of the first type was done in Black Hawk, Bremer, Cherokee, Decatur, Guthrie, Harrison and Shelby counties. The work was continued this year in Black Hawk, Bremer, Cherokee and Harrison counties.
Black Hawk County-The work has been conducted around Cedar Falls for three years. The old area was checked and some new territory was worked. The results are satisfactory although the disease shows higher than 1927. Inspection was made of 21 apharies composed of 224 colonies and 107 colonies were reinspected. The real results are evident in the disposition of the 58 colonies found diseased. Treatment was given to 5 colonies but 53 colonies were destroyed.
Bremer County-The work was cut short in this county because of shortage of funds. The work centers around Waverly where disease has been very bad. Only 33 apiaries of 134 colonies were linsected, and 91 colonies were reinspected. Disease was found in 25 colonies and 9 were treated and 16 destroyed. The per cent of disease was 19.4 compared with 27.2 in 1927.
Cherokee County-Inspection was made of 127 colonies in 11 apiaries in and around the town of Cherokee and every colony was reinspected. Treatment was given to the 4 colonies found diseased, which shows only 3.1% infection.
Decatur County-The work centered around Lamoni and Leon where disease was quite prevalent. Disease was found in 68 of the 485 colonies of which 422 were reinspected. Destruction was com-
pleted of 27 colonies found diseased but conditions did not perait care of the other diseased colonies. The infection in this county was 14.3 per cent.

Guthrie County-Inspection was made of 12 apiaries with $2 \pi 1$ colonies and 246 of these were reinspected. Disease was found in 14 colonies, 9 of which were treated and 1 was destroyed.

Harrison County-The work was not so extensive as last Jear and was more in the nature of check-up work. The disease was 6.0 per cent in 35 apiaries. Inspection was made of 680 colonies, 41 of which were diseased. Treatment was given to 22 colonies and only one was destroyed. No reinspection was made in the county this year.

Shelby County-Considerable work was done in and around Harlan. Twelve apiaries were visited, 116 colonies were inspected, 11 of which were diseased or 9.4 per cent. Seven of the diseased colonies were treated. No reinspection was made as the season was too far advanced.

Inspection in conjunction with demonstration apiary work was continued in Chickasaw, Dallas, Fayette and East Pottawattamie counties during 1928.

Chickasaw County-The results of the work in this county are all that could be expected. The efforts of 1926 and 1927 certainly are proof of the possible chance to reduce disease. From 87.5% infection in 1926 to 5.3% in 1928 is the story. Disease was found in 12 colonies of the 223 inspected and 118 reinspected.
Dallas County-Special mention was made last year of the eroperative effort to eradicate disease in this county. An unusul example of educational effort is offered here. The specialist who also did the inspection conducted treatment demonstrations ant made it possible to treat every one of the 51.2% of diseased colonies. This year inspection was even more extensive and not a single case of foulbrood was found. The work covered 542 colonics in 24 apiaries and reinspection of 162 colonies.
Fayelte County-The work in this county shows the need for drastic action and the first step was taken this year when 177 of the 214 colonies of disease were destroyed and 9 were treated. The infection is very little less this year at 24.7% than last year. Five hundred forty-two colonies were inspected and 162 reinspected in 24 apiaries.
East Pottawattamie County-Inspection was more extensive this
year than last and the results indieate a reduction in disease from 7.5% to 3.1%. Treatment was given to 16 colonies and 4 were deatroyed of the 20 colonies found diseased out of 645 colonies inspected.

AREA CLEAN-UP

Work was continued during 1928 in three comities, Ida, West Pottawattamie and Woodbury. Work was also started in Henry and Page counties. The plan of work on this basis is generally understood and needs only review here. When a campaign is undertaken in a county it is the aim to locate every colony of bees. Where disease is found a vigorous effort is made to clean up or destroy it. It is seldom possible to work over an entire county the first or even the second year. Reinspection is made frequently in those communities where disease is found but the disease cannot be eliminated in a short time. It is not hard to reduce the disease to a very low factor as is indicated by the results obtained in the three old countries.
Ida County-The results obtained in this county are very satisfactory, in fact, the most progress in the eradication of disease has been made here. This is due to the fact that diseased colonies were destroyed according to Inspector Shipton. The beekeepers are now anxious to destroy in preference to treatment. The infection has been reduced from 10.4% to 3.5% and the continued eo-operation for another year should reduce the disease still more,
West Pottawattamic County-Considerable improvement is shown in the eradication of disease. Progress has been retarded to some extent as most beekeepers insist on treating disease under all conditions. The old territory is proving so difficult to clean up that little new area can be included with the present shortage of funds. The local co-operation is improving slowly and will govern the rate of progress in the future. The infection was found to be 14.5% compared with 15.0% last year. Treatment was given to 180 colonies and 17 were destroyed of the 221 colonies found diseased.
Woodbury County-Some disease was found this year among apiaries located along the river for the first time. It has been impossible to locate the source but it is possible to believe that it may have been earried from across the river. Most of the beekeepers in this county are in favor of destroying all colonies found with disease. The results of the campaign over a period of five years are satisfactory to the beekeepers and those in charge of
inspection. The work this year covered 92 apiaries of $6,339 \mathrm{cof}$ onies and 87 were reinspected. Disease was found in 119 countiag of which 66 were treated and 55 were destroyed. The infection non is 1.8%, which is exceedingly low.
Work was started in two new counties during 1928, these ate Heury and Page.
Henry County-A very severe situation was found to exist is this county, centered around the town of Mt. Pleasant. The work covered 47 apiaries composed of 295 colonies, and disease ws found in 95 colonies or 32.2%. Treatment was given to 69 col onies and 19 were destroyed. A heavy recheek was made, in all 191 colonies. A situation of this kind needs attention constanly over a period of several years. It is to be hoped that local oo operation will be extended for future effort,

Page County-Very little disease was found in this county out side of the towns of Clarinda and Shenandoah. Most of the ir: fected colonies were treated. This was considered advisable where entire yards were found diseased. It is understood that any re occurrence of the disease in these yards will be destroyed. Local co-operation in this county was most excellent and an appreciative attitude was expressed at all times. This work covered 577 col onies, of which 117 were diseased or 20.2%. Treatment was given 43 colonies and 76 were destroyed. Reinspection was made of 185 colonies. Future work in this area should give very satisfactory results.

SUMMARY

More colonies were inspected this year than any year under the present management and the amount of reinspection was greater than in any previous year.
The percentage of disease over the state was less this year and in all of the counties where continuous effort has been made there is a material reduction in the infection.
A greater proportion of disease found is either treated or destroyed and the amount of destruction has greatly increased. It is felt that this practice will prove beneficial here as it has in other states.
The results of the inspection effort this year shows again the value of concentrated work to reduce disease, indieated by area clean-up.
There is no way to estimate the ultimate benefit to the industry from inspection work. The control of disease is based on the best
of apiary management. Box hives of all types are being replaced rapidly by modern equipment in all counties in the locality and clean-up areas.
One of the outstanding features is the splendid co-operation received from beekeepers in the old clean-up areas. Hostility has ben replaced with hospitality. Friendship comes with results, beekeepers want to see the good to be obtained from inspection before they give co-operation. Time and special effort has been put on the inexperienced beekeeper where disease was found. The man without experience is seldom successful in handling discase. Co-operation and success will be found together.
There is a lack of appreciation on the part of beekeepers of the shortage of funds for inspection works. There is a common knowlellee that a state fund is provided for such purpose but there is no thought of the amount or what it will actually permit. Local support must be given more in the future if inspection is to bave a fair chance to control disease. Inspection is for the protection of the industry, to make possible the profitable production of honey.

TABLE I-SUMMARY OF 1928 INSPECTION

TABLE 2-SUMMARY OF 1OWA INSPECTIONS

	Aplaries	Colonies	Diseased	Reinspected	
1919 1920	. $\quad 66$	${ }^{\text {d2 }}$	Reinspected	Percesi
1921	155 (81)				
1922	238	4,086	920	,	
1928 1924 1925	198	4.152	567		
1924	629 829	11.631	1,512	+20	14
1926	829	11, 129	1.702		18
1927	964	11.071	1,779		16
1928	816		1,893	2,803	18
		16,84t	1,368	4,367	18

TABLE 3-SUMMARY LOCALITY INSPECTION REGULATORY

	Aplarfes	Colonies	Diseased Per cent	Reinspected		Dr.
			Hlack Hawk County		Treated	stroyes
1926	35	162 180				
1928	21	224	$58 \quad 25.2$	107	is	
1927			Hremer County			
1928	33	169 134	65 27.2 25 19.4	18 91		
1926			Cherokee County			
1927	17	195	28 9 $\quad 14.4$			
1528	11		28 14.3	197		
1328			Deeatur County		1	
	25	485	68 14.3	122		
1928	12	271	Guthrie County			
			Harrison County	246	3	
1927	54	443 763	30 210			
1928	35	680	$\begin{array}{rr}210 & 27,5 \\ 41\end{array}$	250	9	
1928			Shelby County			
1925	12	116	$11 \quad 9.4$		7	
			EDUCATIONAL.			
	Aplaries	Colonies	Diseased Per cent	Rein-		De.
1926			Chickannw County			
1927	33	415	91 219 87.5 2.7			
192x		223		118		
			Dallan County			
1927	17	261	24 9.2			
1928		267 542	137 \$1.2	148		
			Fayette County	162		
1928	21	743	130 25.5	646		
	21	861	214 24.7	861	9	int
1997	29	382	Pottawattamie County			
1928	48	645		68	16	I
			AREA CLEAN-UP			
	Aplaries	Colonies	Dhsemmed Fer cent.	Reinpected	Treated	$\begin{gathered} \text { De- } \\ \text { stroyed } \end{gathered}$
1826			Ifa County			
1927	152	881	$\begin{array}{ll}80 & 10.8 \\ 90 . & 10.4\end{array}$		\ldots	
1928	120	1,312	$\begin{array}{rr}90 & 10.4 \\ 45\end{array}$	73	...	3
		, West	Pottawattamie Counts			
1927	116 219	1,017	476 46.8			
1925	171	2,515	308 221 15.0	997		
		1,5\%	Weodbury County	841	iso	
1921	129	5,936	Wooabury County			
1925	166	2,838	$482 \quad 16.9$			
1926	322	5,719	526 9.2			
1927	914	6,339	223 3,	43		
1928	92	6.442	119 tis	87	66	
1928	17		Menry County			
			95 Counts	191	69	
1998	75	577	117 County	135	43	7

BEEKEEPERS' CONVENTION

The seventeenth annual convention of the Iowa Beekeepers' Association was held at Cedar Rapids, Iowa, November 16-17, 1928.

Officers of the Current Season

President-N. Williamson, Bronson.
Vice President-J. G. Jessup, Councll Bluffs
Secretary-Treasurer-F, B. Paddock, Ames.
Director-Ed G. Brown, Sergeant Bluff.
Director-G. H. Ohmert, Dubuque.
Director-A. F. Karsten, Alta Vista.
Director-Harry A. Pease, Shenandoah.
Chalrman, Legislative Committee, W. S. Walker, Iowa Falls.

PRESIDENT'S ADDRESS

N. Williamson, Bronson

Lam very glad to meet with the Linn county beekeepers to hold chis, our 17 th annual convention. I hope that we may become better acquainted during the sessions, that we may enlist many of you as regular mbers of our Association, and meet you and many others at our members
meetings.
We have had to fight to get from the Legislature the necessary funds carry on the fight against foulbrood over the state. So far we have been able to get only enough to barely make a showing, not enough to make any real progress in the fight against the disease. We need the help and influence of every beekeeper of the state.
The honey crop of Iowa this year has been very unsatisfactory in most of the state. I believe that only the Missouri river valley has had anybing like a good crop: that has not been as good as we would like. Gastern towa, I am toid, has had a very light crop. As usual the beekeeping Industry lives on hopes; we will be looking for a better crop next year.
In a 1915 Aplarist report 1 find a statement made by C, E. Bartolomew, then president of this Association, that beekeeping was not up to the tandard that this state deserves, I have the statement of men who have estimated the possiblitios and have found our present production ar below what it could be, Also t have the verdict of other men who ar below what it could be, Also the state is now producing more honey than is good for beileve that
the industry.
1 am wondering if it will always be said of lowa that it is not producfing as much as it should; then 1 feel that that very thing might be sald of us right now; it probably will be true of us as a state for many years to come, and justly so, because I believe there is hardly a limit to what we might produce. But I have faith to believe that the time will come when Iowa will produce more boney than any other state in the union. I believe that intelligent support of our Association will be the means of bringing this happy result about.
That same year of 1915 the president in his address said that we ought to be thankful that we have a course in Bee Culture added at Ames. it, in the years to come, as many things can be accomplisined as has seen done in the past, what ought we to expect of the future?
We are facing another slege against the Corn Sugar Bili. Some of the leaders in this battle thought that the corn sugar question has been settled for all time when it falled to pass the last time. As I see it we are only In the beginning of the fight. We will surely have to keep on the alert for some time yet or see the bill become a law. Then corn sugar will go into any and every food product without label.

We are to entertain the Honey Producer's League in lowa this wint We are being told that we have a large job on our hands-that minte need the united efforts of all the beekeepers of the state to put we mil So we are not only going to expect the beekeepers of this pat it ore tate to help in the boosting of the meettug, but we will expect of tis tendance also

EUGENE SECOR'S CONTRIBUTION TO BEEKEEPING
 Frank C. Pellett, Hamilton, Illinois

Alas, how brief is the span of man's dotivity and how soon is the mot diligent forgotten! But a few brief years ago, Eugene Secor wat
prominent figure among American beekeepers and horticnlter prominent figure among. American beekeepers and horticulturists, was a man of high ideals, worthy purposes and sincere friendithfor it is well for those of us who knew him and loved him to pause for a fin to consider what he did for our industry, for his home communthy for the state of Iowa. To me has been assigned the task of recording contribution to the business of honey production.
Secor's interest in bees, Hke hif Interost in flowers and frults, cam from his desire to live a rich and full life. His days were filled nit such a round of duties as fall to the lot of a busy man. He had lar business interests for the time and place in which he lived, but th things which meant most to him were his home, his family and the farden. In 1883 , he wrote in the American Bee Jis family and his the amateur list. I keep bees because I like to, in fact becanse I cang the amateur list. I keep bees because I like to, in fact because I cannof
help it, and not merely for the dollars and cents it brings me. I belons help it, and not merely for the dollars and cents it brings me. I belon to that number who believe in occupying their leisure moments in profitable industry, rather than with fast horses, dog or gun, tilttard or baseball. Hence I have drifted into those delightful employments of cultivating fruits and keep bees as a recreation, and as a means ef furnishing the family those luxuries which money cannot buy in the markets of an inland town.
Secor first became interested in bees in 1867. His interest in thes continued until his death on May 14, 1919, a period of fifty-two year During those years he was destined to hold an important place in the affatrs of the industry and to wield a great influence in the patlom organizations of beekeepers.

In the same article already quoted, he wrote, "My love for the faselau ing art, made practical by the immortal Langstroth, increases with my years, and some day I may make it my spectaity."

Eugene Secor never did make his bees a speciaity. He had too maxy Interests, and loved too many things to devote his attention to any on thing closely. In telling of his "Fourth Annual Report," he mentlone having seetred more than 1,200 pounds of honey, an average of alfthty more than 86 pounds per colony and said that he would never be sats fied until his per colony average was a hundred pounds or over. In tha day small aplaries were the rule and such crops of honey as are pro dueed now were seemfngly impossitble.
So great was his interest in his little aplary that he began writind freely for the bee magazines; within a short time his name becomt familiar to the readers of both the American Bee Journal and of Gleas familiar to the readers of both the American Bee Journal and of Giless
ings In Bee Culture. The first article that I have been able to find trom Ings In Bee Culture. The first article that 1 have been able to find trom
his pen appeared in GTeanings in March. 1881 , and told of a report of his pen appeared in Gleanings in March, 1881 , and told of a report of
honeydew stored in large quantities in Oregon. It appears to refer to honeydew stored in large quanti
what is now known as fir sugar.
what is now known as fir sugar.
Within a short time articles from his pen appeared on a varlecy subjects relnting to bees. He told of planting alsike and white clove and the resulting bee pasture; he wrote of extracting honey and breed ing bees with peculiar traits; of results from giving water to bees in the cellar on the approach of spring. Fvidently, he early developed the hilbit of elose observation, for in September, 1882 , he wrote in th American Bee Journal, "It is clear to my mind that the Langstroth hirt is too shallow for outdoor wintering in a cold climate." Time has rif
dicated this opinion, for the shallow combs in that hive have resulted in the loss of untold thousands of ontdoor-wintered-colonies here in the Middle West.

The variety of his interests is manifested in his writings: for along whith his bees he mentions numerous other subjects, sometimes serlously, sometimes humoronsly, and he frequently spices his comments with a few lines of poetry. Finding that late swarms in Iowa frequently filled the hives with honey or even made some surplus, he made over some old rhyme to fit the western conditions.
rhyme "A swarm of been in May, is worth a ton of hay.
A swarm of bees in June, is worth s silver spoon
A swarm of bees in July, isn't worth a fly."
This old couplet he changed to read as follows
A swarm of bees in May is a 'hip, hip, hooraa'-in Iowa.
A swarm of bees in June, is in the same tune-in Iowa
A swarm of bees in July, you need not be afraid to try-in lowa. As August swarm, as the weather is warm,
is all 0 . K.-don't fool it away-in Iowa.
A swarm of bees in September is rare.
Bui even that can be saved with care-in Jowa."
The arrival of a baby daughter was the occasion for an interesting mmentary on "Bees and Bebles," which appeared in Gleanings in Sentemter 1883 He sotd that the arrival of a baby was no particular iovelty for he had had seven before-but they were all boys. This one mas a firl and the extraordinary event aroused great enthusiasm on was a girl and the extraordinary event "That first girl baby ereated an the part of her fond father who said, that first girls baby the young enthasiasm in the neighborhood among the oid maids and beekeeper't convention."
This daughter held a large place in the affections of her father until the day of his death. She grew up to be his constant companion, intereated in all the things whfch fnterested him and after his death she mas the one to carry on the projects which he left inimished. it was happy day for Eusene Secor when Miss Nina arrived and he came to ispend upon her for that intimate companionshin which every individua epentres when the shalows beain to lengthen and the ordinary affair requires when the shadows begin to lien
In 1883, a meeting was. held in the tent of Rev. Clute, superintendent the aplary exhibit at the State Fair at Des Moines. At that time an ssodation was formed with Clute as preslilent. This was probably the Irst attempt at state wide organization in lowa. We are Indebted to Secor for making a record of the fact. He Hkewise reports a very good xhiblt of apiary products at the fair that season and says that there was an eager crowd constantly present.
During those early years he often wrote of the Importance of cul tivating the home market and urged his readers to put up their product in attractive form and use a neat label. Since so many food prodicts vere sold in bulk at that time, Secor was somewiat in advancenof hif lay by appreciating the value of an attractive package in the saie of the goods.
We wrote much on the subject of wintering at a time when winter loteen were so heavy in this region as to be disastrous. He advocated potting the bees into the cellar early, rather than leaving them on the summer stands as long as possible. He advocated a dry cellar and tated that losses were often the result of low temperatures in the cellar, fimte has vindleated his position, for we now know that the warm celtar is safer than the cold one. Secor stated that he secured favorable results with the thermometer standfug at 44 degrees while his neighbors with colder cellars lost heavily. He contended that after the flow was over the beea were safer in a dark cellar where they were quiet than when forngfing far affeld on the mild days of late inutimi.
For many years Secor's veries appeared at frequent intervals in the
bee magazines. Thoy had to do with many subjects until he came 10 be known as the beekeepers' poet. He wrote a poem of elght rerm about the beekeepers' convention of 1887, of which the following vis s part:
"At Chicago they met, a right jolly set,
On a soft balmy day in November, Such a buzz and roar I heard once beforeAt an old cider mill in September.

They talked about bees-their legs and their knees, Of the God-given nectar in flowers,
Of its value as food, of bare-headed brood.
And the late sad fallure of showers."
Everything from "Weighing the Baby" to "The Linden Tree," serred to stimulate him to express his teelings in rhyme. The nineties may br remembered as the great convention period of beedom. In those days there were but few organizations and they attracted men from a layk cerritory, In these days of county and state organizations, conventions have a much more local aspect than was the case then. Now a man can drive a hundred milles to attend a bee meeting and satisfy his cravin for contact with his fellow craftsmen. At that period the Natlonsi Conventlon was the big time of the beeman's year and hundreds took advantage of the occasion.
Songs were a popular feature of those gatherings and on numerous occasions Secor composed the words and Dr. C. C. Miller or George W. York set them to music espectally for a particular meeting. Seveni of these songs, with others, were published and offered for sale. "The Beekeeper's Lullaby," "Beekeeper's Reunion Song," "Buckwheat Caket and Honey" and several more, were composed by Eugene Secor.
Considering that beekeeping with him was but one of severat hobites followed to provide diversion from his business, Secor gave a great deal of his time to furthering the cause of the industry. He was a member of a banking firm and also extensively engaged in the real estate business. Beekeeping and horticulture claimed such time as he could spare from business. His fellows were quick to recognize his ability for leadership and demands followed rapidly until they made large claims upon his time.
In December, 1889, he was elected first vice president of the Intesnational Bee Association at the convention held at Brantford, Ontarlo. This was but the beginning of a long succession of simiflar honors. Is September, 1890, he was elected president of the Iowa State Beekeepers' society and re-elected in 1891 and 1892. He was also president of the lowa Horticultural Society at this time.
In December 1891, the North American Beekeepers' Association held a convention at Albany, where Secor was elected president of the of ganization. The following year he presided at the convention at Waskington. D. C.

In 1893, the World's Columbian Exposition was held at Chicago. If was a magnificent enterprise and set a new standard for shows of this charaoter, Secor was chosen to judge the aplarian exhibits and apeat some time in Chicago as a result.

The adulteration of honey with the near ruin of the market for oxtracted honey as a result, greatly agitated the beekeepers of that day. There was much speculation as to ways and means of meeting the menace of glucose sold as honey. Charles Dadant had urged the enach ment of a pure food law which met with general favor with the beemen. In 1897, a new organization known as "United States Beekeepers" Dnion" was formed for the purpose of combating the adulteration of honey, the defense of legal rights of the beemen and the prosecution of dishonest commission men. Eugene Secor was selected as general manager of the organization.

The following year, Secor received 216 votes of the 229 ballots cast ror re-election.
At thls time much publicity was given to the statement that combs At the made of paraffine and filled with glacose in such manner as to cand be made appearance of honey. Secor gave much attention to addressing have the apper publications in which such statements appeared and adthe editors of hat honey in the comb could not be successfully Imitated, rising them that imited funds of the association secured were spent in Likewise such imiteduterators. The flrst case in the city of Chicago the prosecution of acharge of the defendant but the resulting publicity resulted in the city papers was helpful. Another case in Michigan resulted in is the city papers was helpfurably known among beekeepers. He was involving a man well and honorably known Inrgely adtulterated. The grocer accused of seling honey was convicted and fined.
Next came the defense of a New York beekeeper who was sued for Next came the derense of in a nearby orchard. The justice court purported damage to peaches in a nearby orchar, the bees were exondecided against the beekeeper but ipoil appeat, the bees were exen erated from blame. In such matters, the Union performed a very real service to the beekeeping industry during the period that Secor was general manager. The case of a beekeeper in Rochester, New York, who was arrested for violation of an ordinance against keeping bees in the city without consent of all property owners within 100 fee
With his flth annual report. Secor asked to be relieved of the duties of the office because of the press of other and more congenial work. He was not relieved, however, until a year later when N. E. France He was not reeded him.
In 1899, a fund was raised for the purpose of erecting a monument In 1899, a fund was raised for the purpose of erecting a momument to L. L. Langstroth, inventor of the movable frame hive. Secor was a member of the committee having the tuatter we see to the movement are letters written by him to the bee ences as we
magazines.
When the affairs of the organization no longer required his attention, our friend devoted himself to writing, although his contributions appared In the bee magazines less frequently. He became editor of the bee department of the Northwestern Agriculturist, which claimed a weekly circulation of 150,000 , and wrote frequent articles for the "Twentfeth Century Farmer," and other rural publications. It is doubtful whether any other writer on beekeeping had so wide an audience as Eurene Secor during the years of his greatest activity. When we remember that he also wrote with equal facility on fruits, flowers and country atractions, wonder how he ever found the time to do so much outsitractions, we wo
In his later years, Secor met serlous financial reverses. His friends could see no change in him as a result, unless it be that he manifested even greater interest in the things relating to the out-of-doors. When bisfiess no longer required his constant attention, he gave himself fully to his bees and flowers, his fruits and his farm. He gave no sign of regret for the losses he had met but was the same genial friend. At though he continued to write an occasional article about bees until near the end of his life, hls later years were devoted especially to horticul taral pursuite with emphasis on the culture of peonies. Some of hls soedlings were of outstanding merit and had he been permitted a few more years of life, he would probably have won wide recognition in that field. One of the world's leading authorities states that he considers the Nfna Secor as one of the finest peonfes so far produced.

Our friend was a man of wide interests. When I visited him, I found him apparently as much interested in his shorthorn cattle as in his bees or hif flowers. He welghed the milk and kept careful records of prodretton of each cow. In the evening of IIfe, he seemed to flild the keenest of pleasure in every detail of activity on his little farm.

He kept in close touch with progress in all lines of agriculture. As
an active member of Farmers' Institutes, Agricultural Society, Horticul tural Soclety and Beekeepers' Association, he gave real service to each In the beekeeping field he left no important discovery or invention to perpetuate his name, but his service in establishing the legal rights to the craft, and calling the attention of the public to the service of cite of in the pollination of fruit and the value of honey as food for man, should not be forgotten by his generation.

SPRINGTIME IN THE BEEYARD

J. H. Merrill, Raynham Center, Mass.

Spring management of bees, when properly practiced, begins durisg August of the preceding year. It should include all of the activitier of the beekeeper before the honey flow begins. To postpone these sett does until the spring of the year would be equivalent to locking the barn on our practices, plans and improvements, and then make certain that We carry out these plans during the coming season.
The year in an aplary shonld be divided into two, rather than four. seasons, if the character of the work to be done is considered. There might be called the season before the honey flow begins, and the season of the honey flow, or, the preparation and participation perlods. It nearly every locality the first period will be longer than the secosit. and the amount of honey stored during the participation period will depend upon the nature and thoroughness of work done during the preparatory perlod.
It is a mistake to belfeve that such manipulative practices as requeening and stimulative feeding in the spring, will, alone, result in developing strong colonies. Perhaps it would be well to consider here some of the factors which favor the development of strong colonies. When we understand why a colony becomes strong we can adapt our beekeeping practices to meet the needs of our bees.

Regardless of the locality where beekeeping is practiced there are certain fixed factors which Influence the rate of colony development in the spring of the year. A normal colony of bees will develop in a normal way, and, other things belng equal, will arrive at fts peat of normal way, and, other things belng equal, will arrive at its p
strength in time to reap the fullest benefl from the foney flow.
trength in time to reap the fullest beneflt from the honey flow.
By a normal colony is meant a colony whleh has a large number of young bees. plenty of stores, and sufficient room to permit uninterrupted brood rearing. It will be recognized that it is not possible to fulfill these conditions in the spring of the year. They result rather from attentions and manipulations which the colonies received before being placed is winter quarters. An examination of what happens if these manipals. tions are neglected will reveal the necessity of applying them at the correct time.
In a normal colony of bees the peak of brood rearing is usunlly reached colncident with the beginning of the honeyflow, and will in some cases he reached even prior to this time. Colonies which are Insufficiently supplied with stores do not reach their peak of brood rearing until the honeyflow has continued long enough to enable them to overcome the deffciency of stores in the hlve. Furthermore, even when they do atfait their peak, such colonies will not have as high a rate of brood rearing as did those colonles which were well supplled with stores and which reached their peaks before the honeyflow began. This in ttself should reached their peaks before the honeyflow began. This in itseif shonia
convince us of the fallacy of attempting to stimulate brood rearing by convince us of the fallacy of attempting to stimulate brood rearing by
resorting to so-called stimulative feeding in the spring. It inight to resorting to so-called stimulative feeding in the spring. It inight he
possible to do this feeding early enough to overcome a deficiency in possible to do this feeding early enough to overcome a deficiency
stores but it is not probable that it would be attended to in time.
stores but it is not probable that it would be attended to in time.
The queen automatically begins egg-laying whenever the temperstutt within the hive reaches the egg-laying point. This temperature depends upon the activities of the bees themselves. In weak colonies, in colontes insufficiently supplied with stores, or in colonies supplied with honey of 't poor grade, the activities of the bees will be abnormal. The result
of this is, that the egg-laying temperatare is reached earty in the season, and, consequently, the colonies may have become weakened and perish hefore the honey season even begins. In normal colonies, however, it is an entirely different story. Whenever the bees have had an opporfunity to break the cluster and fly from the hive they avail themselves of this privilege. If this fight be followed by a marked drop in temperature, the bees, In their attempt to restore a normal hive temperature peratly carry their exertions farther than necessary, and as a result the reamperature within the hive is sufficiently raised as to cause the queen tomperatare egg-laying, and brood rearing will continue from this point; if bet, and the colony is normal, it soon rights itself and no harm results If not, this unseasonal egg-laying.
In normal colonfes the worker bees rear to maturity a majority of the eags which the queen lays. The ability to do thls varles in different hives and probably in different localities. It would require considerable study to Jearn fust why this phenomenon occurs. There has, however, seen noticed a definfte relation between the strength of a colony and heen percentage of eggs which are developed fnto adults. This does not the percupon the food supply because it has been observed in colonies depend upon the the as far as the number of bees were concerned and of varying strengle plentifully supplled with stores. The importance of where all were plentifully suppifed with stores. The importance of stores at the proper time has been mentioned before, but there are other factors which cause a variation in the rate of brood rearing. When queens were exchanged from one hive to another it was found that, regardless of the ability of the queen, the amount of brood which was reared correlated with the strength of the particular colony in which the queens were placed. Queen breeders who receive conflicting reports from customers regarding the performance of their queens would probably understand the reason if they could secure accurate information as to the strength of the colonfes in which their queens were placed. A new queen should not be considered as a cure-all for poor beekeeping. This would Indlate the necessity of having a large number of young bees in a hlve at the beginning of winter. Such colonies would not only be able to carry on the work of maintaining a proper hive temperature throughout the winter but would have enough energy in the spring to enable them to successfully perform the duties of brood rearing. If colonles are strengthened by unfing, or by adding package bees, there will be an Increased rate of brood rearing.

Bees are creatures actuated by but one instinct at a time. When they are gathering nectar their attention is turned from brood rearing. Coy are gathering nectar their atiention is caraed fom bees which pertsh every day during the heavy part of the honey flow exceeds the number every day during the heavy part of the honey flow exceeds the number
of new bees which are develoned in the colony. Another argument for of new bees which are developed in the colon
strong colonfes before the honeyflow begins.
since it has recently been demonstrated that brood cannot be reared Since it has recently been demonstrated that brood cannot be reared
on arifficlal pollen it will be necessary to have each bive supplied with on arifficlal pollen it wIII be necessary to have each bive supplied with
combs containing natural pollen, if a maximum development of the combs containing nat
It will not be necessary to call attention to the fact that every colony of bees should be provided with sufficient room to house fts food supply and at the same time furnish pienty of apace for brood rearing. A fallure to observe this will cramp the bees in their activities and retard development. This, too, is a condition which should be met in the fall of the year.
A new queen, fntroduced fnto the five late in the geason, wilf, ordt. aarly, result in an abundance of new bees before winter. Then, if the bees are supplied with plenty of hive room, sufficient stores, and protected from weather changes, the question of spring management of the colonien will the diposed of even betore winter begins.

TREATING AMERICAN FOUL BROOD IN IOWA

A. D. Worthington, Ames, Iowa

The first step in cleaning up American foulbrood is to understat the cause, spread, symptoms and the treatment of disease. This eat be accomplished by carefully reading and stndying a bulletin on Amers Ican foulbrood. Second, is to carefully work out a definite plan to sait your conditions in eradicating disease. Have the operation and actul work to be done clearly outlined in your mind. The actual clespler starts by first disposing of all means of infection in your honey houst and carefully remove all surplus equipment from apfary grounds disinfect them. The aplary is cut down to only strong colonies. This is done by uniting, the uniting belng done by shaking the diseased colony into another diseased colony. The colonles should be thoroughly smolny before shaking them together. After all surplus equipment has hees disinfected, honey disposed of, and all possfble means of infectlon, bets sides that in the one story diseased colony cleaned up, the actual treas. ment begins.
The time of year, per cent of disease and the circumstances in regard to the number of colonies being exposed to disease, determines the exset method of treatment. For example if 30% of the coloufes are diseased I would shake the entire aplary provided this disease was found fiseased $8 p r i n g$ or summer. If on examination of the apiary in spring, summer or tall the aplary shows 10% disease and has not been exposed to disease the apiary shows 10% thsease and has not been exposed to diseased
honey in the aplary I would destroy the diseased colonies. If 20 to 255 honey in the aplary I would destroy the diseased colonies. If 20 to $25 y$
disease showed in the aplary in early spring then in all probability not disease showed in the aplary in early spring then in all probability not more than 10% disease will show later in the remaining colonles. I would treat the above colonies by shaking.
If 30% or more should show disease or if several colonies in the apiary died of disease and were robbed the entire apiary should be treated provided the infection was found in spring or summer. If infection wai found in fall the bees should be killed and equipment cleaned.

In explaining the treatment I think it is best to take a definite aplary, say one consisting of 25 colonies. On inspection in early June of the $\$ 5$ colonies, 10 show American fonlbrood, 5 are new swarms or increase placed in new hives on full sheets of foundations. We at once decide the entire aplary should be treated with the exception of the 5 new swarms. The flrst step is to remove the 5 new swarms, 30 or 40 yards so they will not get disease. Treatment is started as soon as heaithy colonles are moved away. The flrst preparation is to dig a large hole 5 fest are moved away. The first preparation is to dig a large hole 5 feet
deep and 6 feet square, start a good fire in bottom and place an old deep and 6 feet square, start a good fire in bottom and place an old
fron wheel or iron bars in the hole so as to prevent old combs asd Iron wheel or iron bars in the hole so as to prevent old combs atif
honey from falling directly on fire. A large tank filled with boilns honey from falling directly on fire. A large tank filled with boiling
water and lye should be in readiness. The first colony is set to the water and lye should be in readiness. The first colony is set to the
side. The new hive is placed on the original stand, a newspaper is side. The new hive is placed on the original stand, a newspaper is
spread in front and extending into entrance of hive, the paper belos spread in front and extending into entrance of hive, the paper being
held in place by the bottom and lifve body, The diseased tife is the held in place by the bottom and hive body, The diseased tive is the
opened, the top placed in the tank of bolling lye water and the bees opened, the top placed in the tank of bolling lye water and the usu brushed from comb or shook on newspaper in front of clean hive, The off. After all combs from one hire are in sack dump on fire in hole The hive body and bottom is then placed in boiling lve water. Th equipment is left in only several minutes or long enough to take of all honey and comb, provided the tank is not large enough to fak equfpment as it comes from diseased colonies. After shaking the 9 colonles, go back and smoke the bees in, remove and burn the मiens paper and place queen guard on entrance of hive to prevent the beet from absconding.

Three men are required to creat an aplary in that way. I feel certaln It doesn't pay to try and save brood honey or combs taken from the brood nests of the diseased colonies. All supers are bolled in lye water at least 15 minutes. Extracted combs should be rendered up, frames bolled, or the extracted combs are disinfected by placing them in water
formaldehyde solution for 48 lio
Colonies should be shook only during a honeyflow or an ideal condicolonies shous the beginning of the honeyflow. Any colony or even an entire aplary found diseased in the fall should be killed. The best time to do this is in late fall on a cold day when mo bees are flying and there is no chance of robbing. I prefer calcium cyanide to any other chemical is no chance of robbing. I preier caicium cyanide till diseased colonies than to winter them and shake the following spring. A thorough cleaning can be made and hives filled with package bees in the spring.
After bees are treated, great care should be taken to send them into sinter in the best condition. This is a place where beekeepers fall down. For example, 1 know a beekeeper at Guthrie Center who treated sowe 15 colonies during the spring of 1927 which did well that reason. However, he teft them ont exposed and dfd not Eive them suffefen Howter stores. Five colonies died; one of the five showed disease and was robbed out. Seven colonies in his aplary showed disease in 1927, was roblmately ifter the diseased colony was robbed. The aplary did approximately a for 12 months, with the excention of the one colony not show disease for 12 months, with every indication the new infestation came dying in the winter. From every lndication hem from the one colony dying ing he was urged to clean up again he argued it was impossible, that he had mide an earnest effort and he wasne andous to treat again. He did not make an earnest effort. If he had, the one hive would have been found in the spring and destroyed, giving him a clean apiary. The colonies should be carefully examined in the fall and exceptional effort made to prepare them for 100% wintering. They should be examined lis early spring and weak colonies united to prevent any robbing. All supers the following year should be numbered correspondingly to hive they are used on and no brood equipment, supers, etc., should be interchanged. If interchanging is done have a definite record so if disease does show in one or two hives you can stamp it out for certain. Ninety per cent of spread and disease is right at home. A earefal beekeeper can keep a clean apiary in a diseased community.
In Dallas county in June, 1927 some 26 apiaries around Perry, Bouton and Minburn were found to be affected with American foulbrood. The 20 anfaries consfsting from 1 to 60 colonfes were treated as described provionsly and not a single colony showed disease in 1927 or 1928. It proviously and not a single colony
In summing ip it might be said that the canses why beekeepers fall to make a thorough and successful clean-up are:

1. Fall to understand the spread and nature of disease.
2. Fall to understand the spread and na
3. Does not plan definitely in clean-up.
4. Tries to save too much.
5. He is not convinced that he can clean up and keep disease out
6. Tries to control instead of eradicate.
7. Does not dispose of diseased honey, combs and equipment but stores them In hls supposedly beetight honey house.
8. Falls to prevent robbing.
9. Fails to prevent drifting.
10. Does not practice air tight aplary management.
11. Falls to properly disinfect equipment.

A DRASTIC CURE FOR AMERICAN FOULBROOD
A. F, Karsten, Alta Vista, Iowa

Perhaps the subject of this paper should be "How we are trying to radicate foulbrood" for we have not yet seen the results in our aplary Yet it is not an altogether new method. Others have gone at it, at Weast, in a similir way, and have been very successful.
We have been fighting this disease for six years. We came by it innocently enough, getting our flrgt bees from a man who had it and not knowing what we were getting into. We feel that we have been con-
scientious in fighting it, yet we have not succeeded. Some of the res-
sons, I belleve are these: sons, I believe are these
First: We got some of the supers from diseased colonies mitred it WIth the others as we took off supers before we knew they were diseased and then lost track of them and put them back on in the spring, which according to authorlties is not safe. Yet if beekeepers would want to examine every colony before taking off a super, what an expense if would be.
Second: We took all the diseased materlal into the honey house and disposed of it there, which should not be done. One should have a pest-house, where it should be taken, including full supers, and shopld he left there intil thoroughly disfnfected. This house should contull an extra extractor that should be used for nothing else, for I doult an extra extractor that should be used for nothing else, for I doubt
whether anyone throws away all the honey found in supers of disescel Whether anyone throws away all the honey found in supers of diseased colonfes. Needless to say, this house should have bolted windows and a padlocked door. This is expensive, of course, but I knew of to othin way unless one does as we are doing now.
Third: I doubt whether it is possible to find and shake all disessed colonies at one time. How will you find them? You may find all that have diseased brood, even those which show only one call. You may whit to be safe and dispose of all matorfal in a pest-house, but even hen, how do you know you have eradicated the disease? Other colonled may have honey containing spores that have not been ted to larvae, bet will be fed next spring. And there may be spores in the supers of those atme colonfes, so you sprend it next spring, when you distritute themi
Under these conditions how are you ever going to make a thorough clean-up? We at least have come to the conclusion, that it is a hit and miss method, mostly miss. We bave been assured that in certain case it has been accomplished, but in most cases that we have heard of t has not.
So this year we are trying a new way, new at least to us. We killed every bee we had on the place about September 1st- 42 colonies an 12 nuclel with young queens that we had intended to introduce. We used sulphur, which we are-glat to learn is in antiquated and clums method. The latest is calcium cyanide, which we learn is quicker, sure and pleasanter, pleasanter for man. I didn't take time to fnquire hor he bees IIked it. We killed the bees, disinfected or disposed of all materfal and will make a new beginnifig in the spring. The bees wete buried immediately to protect neighbors. This is essential, as a port morten examination revealed particles of honey among them, whics had been shaken or brushed off with them. Also to protect neighbors all materials was taken Into the fioney frouse at once. The combs that contained brood were burned in a pit. Authorities claim it is not safe to contained brood were burned in a pit. Authorities claim it is not safe to
treat them. Most of the others were melted. We kept and treated only treat them. Most of the others were melted. We kept and treated only
enough to supply the packages with drawn comb in the spring. These enough to supply the packages with drawn comb in the spring. These
are mostly surplus combs. The honey was extracted and sealed in tif are mostly surplas combs. The honey was extracted and sealed in ths including supers, were washed, drled and, when dry, scraped and painted nside and outside. Painting, we think is cheaper and safer than scorching. We did not boil them, as that is not practical with double-walled alven, Another objection to bolling is that it takes off all the palnt at least when a lye-solution is used. The frames, inner covers, queen excluders, etc., that were small enough to go into the boiler, were bolled in a lye-solutlon, and immediately taken into a clean buftatng. The ex tractor, storage tanks, uncapping-tank, and melter were disinfected and removed. The floor was scrubbed with a lyesolution, the woodwork was washed, the plaster walls were calcimined. Beside all this we dug a pit where there was a gravel sub-soll, boarded it and covered it with boards. leaving a $6 / 12^{\prime \prime}$ opening, fitted with a $4^{\prime \prime}$ collar and a telescoping cover. eaving a $6 / 12^{\prime}$ opening, fitted with a $4^{\prime \prime}$ collar and a telescoping cove. Into it we poured all waste from the honey-house, being careful not
spill the least little bit. When we are through this pit will be flled.
pill the least little bit. When we are through this pit will be filled.
We believe we are doing a thorough job, and it should be a sure cure.

We have heard of cases, where it was done (except that they shook the bees fnstead of killing) and they had no recurrence in 5 years, when it probably was brought in again from the outside.
But how about the expense? Yes, there is the stumbling block. Yet it is not as great as you might think. We need not flgure painting the outside of hives as an expense, for they need it anyway, and it is more or tess of a permanent improvement, depending on the quality of the paint. Nor (in my case at least) should I figure the labor for painting them on the faside; the time I saved in not needing to feed the bees this fall easily offsets that. I doubt whether I found 50 pounds honey in the last 18 colonies I killed. It surely would have taken more time to feed 60 pounds syrup into each one of the 40 colonies than to serape and paint the insides of their hives. To make it plafn, however, I shall carry 3 days of labor on both sides of the ledger, nor do I figure the loss of the bees. In the paper presented to this body last year I tried to how under certain conditions it is just as cheap to kill all bees in the all and buy packages tn the spring. Those condttions prevafled this fall; he honey flow ceased the first part of August and it would have been necessary to feed $91 / 2$ months till the next honey flow. While that seldom happens in sweet clover sections, it often does in other parts of Iowa. Again It is fair to flgure only a part of the combs that are melted as a loss. Some are not fit for use anyway and should be melted. Some authorities claim it is economy to change all combs every 3 years. Those clogged with pollen should be discarded under all circumstances. The oxpense of giving the honey-honse is thorough cleaning should the figured in part only. Mine needed that cleaning anyway and maybe some others do too.
On the other hand, in following this method you have certain advantages aside from eradicating the disease that must not be overlooked. You get a pure stock of Itallans with all young queens, and forty of the latter should be worth $\$ 40.00$ of anybody's money. I know that it costs me much more than that to get 40 new queens installed, but I am not figuring any more nor am I giving the new method credit for the pure stock, as I want to figure the expense high enough.
But there is an expense and it is by no means negligible. About 500 combs must be treated and 700 replaced with foundation. (Remember I am always figuring on the basis of 40 colonies). At 12 c per comb that mould be $\$ 144.00$, Including labor and material. The other inbor is hard to estimate, as the boys and myself did all the work. Pm stre, however, that it would not take one man more than 15 dayg.

Expenses:

1,200 combs (4) 12c	14.00
Labor, 15 days, $\$ 3.00$	45.00
Labor, painting inside hive	9.00
Paint, painting inside hives	10.00
Lye, calclum cyanide and fuel	4.00

Credits:

According to that It would cost $\$ 3.55$ per colony and I have tried to be fair. In fact, in making my eatimates I have tried to favor the old method, but even at that figure I belfeve it is economy to clean up In his way. If you do not of conrse you do not have that expense all at once but you have it just the same and more of it. A friend of mine Who runs about 60 stands claims it costs him $\$ 150.00$ per year to fight the disease by the ofd method, I belfeve he is exagigeratins, but let ins be conservative and call it $\$ 75.00$. Then in two years it would cost as
much as this method and still you would not be rid of it but that expense would go on year by year. So much is sure, that in the last four years I have treated more colonies by the old method than I treated yy the new method this fall. Consider also the loss sustained by having a number of colonies that are so weak on account of disease that they cannot give you any surplus. And if we maintain a pest house with an extractor you have another source of expense.
All in aft if satisfled (and I consfdered this problem from every angle before going at it) it is cheaper to do the house cleaning all at one time. As far as my experience goes I admit however, it does not go as far as it should.

If we adhere to the old method we will be doing like the woman that swept one room clean, then swept the next one but left the dirt lie there on the floor while she went to tend to the baby. When she got back the wind had got into the window and blown it all over both rooms So she started all over again and got just that far again and was called away and again the wind dfd its busfness and so the whole performance was repeated over and over. Things done by halves are never done right.

LESSONS LEARNED IN TEN YEARS OF AREA CLEAN-UP WORK
C. D. Adams, Madison, Wisconsin

In 1918 Wiscorisin found itself badly infested with both American and European foulbrood. For more than twenty-five years, Mr. N. E. France, our only aplary inspector at that time had been trying to clean up the state. The authority given him by law as well as the appropriation was insufficient to cope with the situation.

At last with the aid of the State Beekeepers Association and the Stafe Department of Agriculture a law with teeth in it was passed by the Legislature and an increased appropriation was made. The State Department of Agriculture canvassed the situation and decided that the only way to cope with the situation was to adopt the "area cleanup" method. A start was made that year, but as the honey crop of 1918 was almost a complete fallure, it was impractical to do much with the bees. The following year an ambitious program was outlined and the work started in several counties.

It was then that our educatfon began. As a sample of what we did not know, I might give the program that was outlined for me. I was Instructed to go to Richland connty and Inspect all the bees and tell the owners how to treat the diseased colonies. This was to be done in Jefferson county also, and the remainder of the season was to be spent in cleaning up Milwaukee county, I did work in all three counties and found hundreds of colonies of diseased bees, but by no stretch of the imagination could the work be called a clean-up. We had yet to tearm that it required more than inspection and education to eradicate disease from a yard.

The next year when we checked up on the results, we found an increase of disease in many yards instead of a decrease. It was then dectded that instead of one inspector cleaning up three countles in A acason, a team of two men would be assigned to two counties. Gradually season, a team of two men would be assigned to two counties. Gradualy
the inspector's territory was cut down until now not less than two mes are assigned to a thickiy populated county, and in one or two fristances four men have been assigned to one county.

Our next lesson was that the beekeeper could not be depended apon to do an expert job of "treating." so the inspectors were told to help the beekeeper. It must be confessed, however that the results were not much better. It dawned on those in charge that we were making little progress, if any in eradicating the disease. True, the colonies treated were, in most cases, freed of the disease but for every one treated two or more colonies became infected in that yard.

Then some beekeepers began to go further than our instructions by burning the diseased colonies instead of treating them. We decided
this was a good plan, and our methods were gradually changed until today treating is done under one condition only. As previously noted, we found that a carefully treated colony was usually free of disease we the next inspection. We reasoned that if a whole yard was infected and all treated, the disease would be eradicated. This did not work out, however, as there always was enough honey scattered about and infeoted oquipment left to reinfect the yard. It is needless to enumerate all the varfatlons of the "shaking" treatment (which really is the brushing (reatment) that we followed out, or found the beekeeper practicing. After six or seven years' experience, we settled upon the burning treatment in nfnety-nine cases out of a hundred. The one exception is where is practical to shake the whole yard at once and move them to a new location, preferably three miles from the original yard. This plan was ocaton, py one of largest beekeepers who had seen his eight originated colonies dwindle down to three hundred under the ordinary hundred colonies dwindle down corried thirty colonies, so he prepared methods of treatment. with foundation in frames that had been thor thirty diviled in lye water. Iate in the afternoon he shook thirty colonies oughly boiled The next forenoon was spent in preparing thirty more hives. In the

The inspector salvaged the hiven and wax, and destroyed the rent
afternoon these were filled with bees and moved during the evening. He continued this moving until his whole yard was in a new location.
While this plan seems to be about as satisfactory a method of treating as can be found, it is not perfect by any means. In the first place it is not often possible to find a satisfactory new location that does not encroach upon some other beekeeper. Aside from the question of suf. ficlent pasturage for the bees no real beekeeper welcomes a recently infected aptary in his netghbortiood. Another real defect in the plan is the well known fact that the single shaking method has a small but perslstent percentage of reoccurrences. The beekeeper referred to knew thls, and planned to reinspect and destroy the infected ones which he did in all but one yard. The two fnfected colonies were left here until did in all but one yard. The two infected colonies were left here until
robbing time and were. robbed out and the tronble started all over again. robbing time and were robbed out and the trouble started all over again. In a small yard the "double shaking" plan would overcome this, but It is a debatable question as to its advisability.
In the few cases where thls plan was chosen by the beekeeper the
worts was supervised by one of our inspectors. In only one case the new yard was found infected that fall and there the suspicions inspecfor
looked in the added supers and found old extracting combs which the beekeeper could not satisfactorily account for. When this method is suggested one question is asked-"Why treat the uninfected colonlear The answer 1 s , that in an infected aplary no inspector can say thr any one hive is not infected. Infected honey is often stored there went or even months before it is fed to the brood. Our motto is to elean one hundred per cent at one time rather than ninety per cent each yeap

The above paragraph explains why the immediate destruction of all known infected colonies does not eradicate the disease at once. It the inspection is done early in the season, we try to reinspect and dentroy infected colonies twice more that year and at least once next year before the yard is pronounced free of disease. It is not surprising thai before the yard is pronounced free of disease. It is not surprising thai
beekeepers with a thirty to forty per cent infection choose to destroy beekeepers with a thirty to forty per cent infection choose to destroy
all at the end of the honey-flow, put in the fall and winter clean-up and start over again with package bees or bees from a disease-free yard in the spring. I believe that most, if not all experienced inspectors knos that this is the most economical thing to do, but beekeepers are an op timistical lot and they frequently choose to put off the day of reckoning as long as possible.

Getting back to lessons we have learned, I think one of the most surprising if that we have had to lay down the rule that it is not safe to allow the beekeeper to burn his own bees. In the finst place he is almost certain to get out of the notion, in some cases it is put off from one week to the next until his neighbor's bees or his own start robbing and then It Is too late. Even worse than this is the man who destroys on time but does a poor job of it. Some of the most discouraging stories our but does a poor job of it. Some of the most discouraging stories our
inspectors have to tell is of the man of good intentions who starts a Inspectors have to tell is of the man of good intentions who starts a
good fire on the bare ground and throws all his old equipment on ft and then adds the hives with the destroyed bees.
Mr. H. J. McMurry, formerly with our department, lald down the rule that "you cannot burn honey" and in practice it is true. The neighbors bees smell the burning wax and come by thousands to clean ip the honey. The only satisfactory way we have found is to dig a plt not less than two feet deep and burn everything in It, and fill up the lole the same night. Simple as this may seem, the beekeeper is not the only one who makes slips. The inexperienced inspector is apt to Ieave some honey or gassed bees uncovered and thus undo the good he has attempted to do. I should add here that we do not destroy hive-hodies or supens that are worth saving. They are easily made safe to the again either by scorching or boling in lye water. Even in this work it is seldom safe to leave it for the owner to do. With the best of it is seldom safe to leave it for the owner to do. With the best of
intentions on his part this work is too often neglected. Whtle the fte Intentions on his part this work is too often neglected. White the tre
is burning in the pit the inspector is busy scorching out the hive bodles, If burning in the pit the inspector is busy scorching out the hive bodies,
It is not every inspector that can do all this for the beekeeper without giving offense. One of the easlest lessons we had to learn is that a first class beekeeper may be a flat failure as an Inspector. On the contrary it is quite possible that some of our best and most popmlar inspec tors have far from Ideal yards at home. I hasten to add, however, that these are exceptions. The point is that in the make-up of an inspector diplomacy is far more important than knowledge of beekeeping. Lest I be misunderstood let me say that by the term diplomat I do not mean at smooth talker that knows how to put things over. I mean as man wha is honest and has the beekeeper's welfare at heart. In addition his orperlence has taught him the best thing to do under the given condition and the ability to get the beelveeper to Usten to a reasonable way out of his difficulties.

Recently just such an inspector reported to me for the first lime in his seven years of service that he had falled to convince a stubborth his seven years of service that he had falled to convince a stakboted
beekeeper that he should do as his neighbors had done. He suggented beekeeper that he should do as his neighbors had done. He suggente
that I might be able to get the co-operation of this man. I had never
net him, but 1 felt sure that there was Iittle fiopes of anyone succeeding where this particular inspector had failed. For the first time in my ife I invited ane futile until I introduced the deputy sheriff. That best argame pit. going in a good sized pit. The lesson is that where all other means fail force may and should be used.
The last big lesson we learned was that the "campaign of education" the beekeeper carried on in this state by all of us co-operating with the help sent us from Washington was apparently very effective in helping us control the European foulbrood as well as making better beekeepers. We are not so sture about its help in controlling American foulhrood, however.
1 regret to say that among the number of those who were and still are regular attendants at these meetings a surprisingly large number were either among the last in their respective neighborhoods to clean iip or have not done so yel. I hope other states have been more fortunate in this respect.

CO-OPERATIVE MARKETING

Ed, G. Brown, Sergeant Bluff, Iowa

Co-operation, the means which has been widely recommended as a rellef measure for agriculture is considered by many to be a magic word. the mere repeating of which will lift them out of their difficulties and do for them what Sesame did tor Alladin. In realty co-operation is merely the name of a system of loyal, honest endeavor by which a people can lift themselves to a higher level of living. It is not a grappling cail lift themselves a a higher will reach down in the quagmire of dehook attached to a hoist which will reach down in the a pression and lift you up and after passing you through a clean rinsing pression and lift you up and after passing you through a clean rinsing solution, deliver you on a high plane with a life licome with no effort
on your part. Co-operation is better illustrated as a cable anchored to on your part. Co-operation is better fllustrated as a cable anchored to a sound mooring of education, fellowship and honest endeavor and within reach of all but it requires that you take hold and by your own strength
and endeavor, and in unison with your fellow befngs in a llke endeavor, and endeavor, and in unison with your feliow
There are three things reguired for successful operation of co-operative marketing: Loyalty, Management, Finance, Loyalty of its membership is probably the most essential for unless its members fully desire and beffeve in the ultimate success of thefr masociation and are wittry to make sacrifices if necessary to bring it into action, then there is fittle liope of its success. Because of the weakness of human nature all of the members should be under contract and they should understand at the time of signing the confract that it is a legal and bfnding oblfgttion and that the terms therein will be enforced. If It was not necessary that co-operation be earnestly desired before it can be brought into being. Management might come before Loyalty and at least a close second if not an equal.
The manager of a co-operative must be one who has been trained in modern business methods and who has a vision capable of grasping the possfblitles and Ideals of co-operation and linking them together. Modern bnsiness has certain channels and ethfes which have to be conformed to and it is easier for a man with a business training to learn the special line he is taking up than it is for the average producer to adjust himself to bustress channels.
tnadequate financial backing has had much to do with the fallure of many co-operative ventures and it is therefore necessary that nome definite plan of financing be determined on in the beginning and that It be a part of the contract. Credtt is the basis of all modern businers and an adequate financlal backing is necessary both for the purpose of eatabishing credit with the business world and with its members. At this point the element of sacriflce comes in as most new businesses do not start off making a startifnt proft but thow a foss for a perfod of Hmes
and this is where the real test of loyalty comes into evidence, A certais amount of actual cash is necessary for the transaction of businers bun a greater source of backing comes from the product furnished by the producers. A good manager, with a fair cash backing and the crops of the producers supplied him for marketing. has Hittle to fear if be of heres to the strict co-operative princlple of economically marketing the product he is dealing in and after deducting the marketing expenses, returns the proceeds pro-rata to the producers.

When co-operative marketing is mentloned the tobacco growers and wool pool are held up as "shining examples" of its fallure but in both of these ventures the true co-operative marketing principle was set asile and a price setting plan set up in its place. If the wool and tohacen had been sold for the best price the market of the time would alford there would have been no disastrous losses but they were held for a price, not sold at the market price and consequently, when they wett price, not sold at the market price and consequentry, when they
sold, they only served to break an already overstrained market.
Co-operatives cannot expect to set prices by holding crops alreal Co-operatives cannot expect to set prices by holding crops alrealy
produced but by orderly control of future production and effictent ind produced but by orderly control of future production and efficfent and
orderly marketing. The benefits of co-operative marketing should bu orderly marketing. The benefits of co-operative marketing should be
far reaching. It should tend to fmprove the quality of goods placed far reaching. It should tend to improve the quality of goods placed
on the market. Return to the producers a large share of the price pold by the consumer. Give its members a better understanding of busines and market conditions and keep them informed on what quality and kind of products the markets demand, and at what price they are sold to the ultimate consumer, and because of the fellowship developed in working for a common end, each stage of improvement lifts all to a higher leve! of living.

An occasfonal man working independently in a community can makea single outstanding success but when these efforts are worked out co-operatively, the whole community is lifted to the same high plane.

THE OUTLOOK FOR HONEY CONSUMPTION

John G. Jessup, Council Bluffs

Honey production has increased remarkably during the last few years. This increase in production is largely due to the increased acreage of sweet clover and commercial methods being used in production. in Iowa and eastern Nebraska car-lots for shipment have doubled in the last five years. Consumer demand has not kept up with this inereaue in production, as there was nothing done to stimulate the demand. A a result the Inevitable happened, the price reached the lowest level is years and there was a large carry-over of the 1925 crop.
To move the large amount of honey that had accumulated, efforts were put forth to dispose of the surplus in foreign markets, fie resul was that by July 1, 1927, eleven million pounds had been exported, is compared with four million the twelve months previous. This takes care of a large volume of honey, but the price is not as high as producers generally feel is necessary to make beekeeping proftable. It has been very effective in arresting the decifine of prices, and is no doubt responsible to a great extent for prices to the western producer belng nearly one cent per pound more than in 1926. This is about a 15% increase in price.

Although the export trade is responsible to a great extent for price being no lower than they are at present, there is little hope that thip trade alone can be expected to result in higher prices. Honey sold in foreign countries has to meet the same competition as other agricul tural products which we have heard so much about during the last four years. With the lower labor cost and a lower standard of living forefign countries, it will be impossible to expeet a satisfactory price fow our honey crop, if the price is based on the price received for our th our honey crop, if the price is based on the price received portable s

Right here in the United States there is a sufficient population to

Consume many times our present production, at a price that would make peekeeping more profitable than it is at the present time. Such an inreased demand conld not be secured without advertising the merits creased demand poullc, so that they might know its real value and so hat it might compete with the many other food products that are widely advertised and bidding for the public's dollar.
The great need of the Industry was recognized by the bee supply manufacturers and honey distributors of the country, and in order to mromote such a program, the Bee Industries Association of America was formed. This organization then promoted and established March 31 . 1998 The American Honey Institute, located at Indianapoils, with its ole object, the widening of markets for honey everywhere. The work Is headed by Dr. H. E. Barnard of Indianapolis, Indiana, a food expert of wide experience and national reputation. He was state chemist of New Hampshire, and State Food Commissloner of Indiana. He organized the Amerlcan Institute of Baking, for the great baking interests, which is an outstanding success. During the war he was Federal Food Admifilstrator for Indiana, and later because of his efficlency, was made chairman of the food administration forces of Illinols, Wisconsin. Michizan, Kentucky and Indiana. His work with foods and food legislation thas been very extensive. He has been a great writer and lecturer on foods, so that he is especially well fitted to undertake the popularization of honey.
Dr. Barnard's promotion plans are extensive and will be developed just as fully and rapidly as funds available will permit. These include big possibilities in tying up honey with the products of various large food manufacturers and securing free publicity for honey in their advertising of all kinds. The W. K. Kellogg Company have been giving honey a great deal of such support, and it is hoped to secure much more of great deal of such support, and it is hoped to secire moch mopartising. A continuous flow of information and propaganda for honey will go to Home Economle Departments of high schools, colleges and universities giving especfally the nutritive and medfetnal values of honey. Information regarding the food value of honey will be constantly furnished to the flour and baking industries, cheese manufacturers, breakfast food manufacturers, preservers and canners,
Special attention is to be given to supplying honey articies and stories not only to the food columns of the newspapers and magazines, but tree press articles on honey and bees will be furnished all newspapers. The headquarters and business office of the American Honey Institute is at 410 Chamber of Commerce Bullding, Indianapolls, Indiana. Dr. Harnard anks all of us to ald him by sending him everything of partienlar valne that you know about honey. If you have a good bee story or good bee pleture, send it along to him, for these will help greatly in securing free press articles for honey,
In Angust Gleanings in Bee Culture there is reported the effort being made to determine what amount of honey should be used in the mannfarture of products such as honey candy, or honey crust bread, to entitle them to the use of the word honey in their name. To ald in this work we are all requested to send in local advertisements of food products containing the word honey in thelr name. October Gleanings in Bee Calture reports a vigorous drive to Increase the use of honey in baking. Oetober American Bee Journal reports several radio talks have been prepared and other interesting material, which will be furnished special locturers and the operators of radlo stations. The Philadelphia Child Heath Society in a pamphlet called, "Food, Teath and Health," classiffes the food that children from 6 to 16 years of age should use in bullding strong teeth. Honey is placed in a picture besides a plate of figs as a wost desirable food for the teeth. The establishment of the Amerlean Honey Institute has been a great step forward for the Industry, and alone should do a great deal toward tnereasing the demand for honey, The resulting higher price.
The establishment of Preserves \& Honey, Inc., was heralded by the

August issue of Gleaningi in Bee Culture as "The Dawn of a New En in Beekeeping," This corporation is backed by American Linseed, an has ample capital for the merchandising of honey on a much large scale than has ever before been attempted. A merger of the thre: largest Aistributons of bottled honey was formed, which Includes the A. I. Root Company's Airline brand, Weber's honey and Hoffmas an Hauck. Since this merger the honey department of the A. I Royde Company of Callfornia has been purchased. Already only three and one-hatf months after the announcement of the formation of the an corporation, sales are reported greater than the combined sales of the individual packers last year.
Plans for newspaper advertising in efght clties are belng develoned and will soon be carried out. Considerable radio advertising will also be carried on. A great deal of this advertising will be for honey to general and not for any speciflc brand. This will be a great help to all honey. Bottling plants will be established at strategic polnts for all honey. Botting plants will be established at strategic polnth for
distrlbution, so that shifpments can be made to all parts of the country distribution, so that shipments can be made to all parts of the countr) to the best advantage. Nation-wide distribution is anticipated. Two or three large preserving plants have been purchased and are belng oper ated. We understand that just as soon as posslble they are golng to market fruit preserved in honey. If this is done it will be a biev outlet, that will require large quantities of honey.
The effect of consolldating the four largest packers in the comniry is bound to be beneficial to beekeeping. These people have consolldated food packing industries in the past, and have never fafted to produc an increase in the volume sold. It is true that it removes a certaln amount of competition in buying, but there are still many small packen in the fleld, and there is no danger that their large buying power wil be used to force prices down. The fact that honey bottling require comparatively IIttle equipment to pack, gives assurance of this. Whet ever the price to the beekeeper becomes sufficiently low, it tends to induce more people to go into the business of merchandising boney Although Preserves and Honey are the largest single dfstrflutors of honey, they by no means have a monopoly, as they distribute only a amal part of the total annual crop produced.
September Gleanings in Bee Culture announces that the blological and experimental department of Preserves and Honey, has made very definite progress in the way of finding new uses for Increasing the consumption of honey. Surely we may expect great things from this new organlation controlled by those who have had a vast amount of experience in the merchandising fleld.
Durlng the last year arrangements have been made by the Bee Cutturt Laboratorles at Washington, for the establishment of another field sta tion in Louislana. A honey poster has been prepared by the governmeal and is available for only 15 cents. Government free grading at various pofnts in the country is now avaflable to all. The government is errryint on research work at Washington, to determine just what claims can be made for boney and to develop new uses.

Honey is being used in new lines of industry. Manufacturers of anttreeze radiator solutions are using it. It is being used by a Cleveland manufacturer in making gaskets. Now it is reported that it is being used extensively by a Cincinnati hair dresser, two to three tablespoot fulls per client per treatment. The W. K. Kellogg Company did a zreat deal for beekeeping last year, by mentionfng honey in their adverthing This year they are doing far more by showing a jar of honey along with their breakfast food, on their advertising materlal that is uned as window trims. These are very attractive and this advertising is goins to help beekeoping a great deal.
The coming administration has promised to ald agriculture. If agri cultural conditions in general are improved the beekeeper will come in for his share of the prosperity that surrounds him. With the many new uses for honey that are đeveloplng, with the Honey Institute anf

Preserves and Honey working full time, with beekeepers Individually and organized, boosting for honey, and the Kellogg Company's advertising the ontlook for the future of the beekeeping indastry is the brightent that it has been for years.

THE NECESSITY OF KNOWING ABOUT HONEY

Dr. E. F. Phillips, Cornell University, Ithaca, New York
Recent years have seen the initiation and continuation of newer types of investigation regarding many foods used by man and animals which have given a better foundation of fact regarding these necessitles. To mike such facts usefut, they must be widely disseminated and become part of our lives, for they do not greatly benefit mankind so long as they are recorded only in scientific journals and books. Not only is it secessary that the expert in nutrition become informed, but it is oven more necessary that the consumer of food have a sound knowledge of these findings, in-so-far as his training and experience will permit.
Honey has been investigated for years, so that there is now avallable a rast information regarding it. Chemists, nutrition experts and physlclans have added to this knowledge, all of which concerns beekeeping. the beekeeper and the consumer of honey. Beekeepers constantly complain that the consumer must be edncated to the use of honey, so there is no lack of appreclation on their part as to the necessity of spreading this knowledge as widely as posafble. Beckeepers tiso complain that consumers are less well informed regarding honey than regarding other foods and that until this balance is restored, beekeeping will not prosper The question which may profitably be considered is: fundamentally whose tusfuess is it to educate the consumer?
There has recently been considerable agitation for further investigations on honey, and we certainly oannot know too much about this product. At the risk of being misunderstood, it should be sald that a spread among beekeepers of the facts afready known is more important than such additional scientific facts as may be obtained from Immediate investigations. A vast literature on honey is now available, practically bone of which has become an integral part of beekeeping knowledge The first task of the beekeeper is to study what is how at hand, and when he finds gaps in the information he will better be able to demand Investigations which will be helpful.
In the recent demands for further research on honey, there has been a tendency to ask for studfes of the use of honey in various ways, such as in cooking, candy making and in the manufacture of various commercial articles. While such knowledge would be helptul a far greater need lles in the obtaining of fundamental facts about honey, such as Hs vitamin eontent, Its enzymes, the composition of the mineral coristituents of honey, the constituents which give honey its flavor and color, the phenomon of granulation and many other fundamental problems whitch might be named. A vast part of the honey produced in this country goes to American tables. The market now demands, whether or unt unwisely, a liquid honey, yet our knowledge of the granulation of honey is so scant as to be lamentable. We have erroneously believed that the per cent of dextrose in honey determines whether or not it will granulate quickly, but this problem is far more complex than such a fheory would suggest. We unwlsely heat honey in bottling until many of its waluable ingredients are destroyed. We have even finfured our
ing of its valuable ingredients are destroyed. We have even infured our
honey to some extent in the ordinary processes of extracting, yet have honey to some extent in the ordinary processes of extracting, yet have
not generally recosnized thls fact. It seems to be time that facts abou not generally racognized thls fact, It seems to be time that facts about
honey Itself be sought, rather than to worry about uses to which at honey itself be sought, rather than to worry about uses to which at best only a minute quantity of the honey crop might be put.
Honey enjoys a commercial advantage possessed by few other foods. since at one stage of 4 ts progress from the hive to the consumer it In owned by almost a miliion people, and the further advantage that these fumerous owners are unusually enthuslastlc about their business. Of ficers of public utilities, for example, now recognize that by spreading
ownership in their corporations they thus create more persons interested in the affalrs of the companies than is possible when the ownersbip rests with a few people. They spend thousands of dollars to bund tor their organizations Just such an advantage as honey already poisesses This advantage for honey is nullified if the owners know Iftle abos. this commodity and cannot intelligently come to Its defense. Until there are thousands of informed boosters for honey among beekeepers, whe are thousands of informed boosters for honey among beekeepers, whe
know the available facts about honey, this wonderful food cannot reach know the available facts about honey, this wonderful food cannot reach
that place in the American diet to which it is entitled by its merits That consumers must be educated fs obvious, but it seems to be less generally appreciated that this education must come about largely through the incessant and intelligent talking and writing of beekeepers. No amount of pald advertising and propaganda can take the place of the publicity which will come when beekeepers know their own product For some months an effort has been made to learn why beekeepet know so little about their product. One would surmise that persons dealing, with so interesting a material as honey would try to learn everything possible about it, and if they do not, there is some reason for this neglect. Beekeepers do not read and study about their product because they apparently labor under the erroneous faea that such thlugs are too technical for them to appreciate and understand. This error is natural and arises in part from the fact that an intelligent discussios natural and arises in part from the fact that an intelligent discussion
of honey entails the use of certain technical terms which are bo fir of honey entails the use of certain technical terms which are bo far
unfamiliar to the beekeeper, sclentifio terms, used solely for brevity unfamiffar to the beekeeper, sclentifio terms, used solely for brevity
and accuracy. The beekeeper is in no position to complain of the use of and accuracy. The beekeeper is in no position to complain of the ase of
technical terms since his literature and conversations are filled with terms such as super nucleus, honey board, excluder, frame, sectlon and the like, words which are utterly meaningless without the technical definitions which beekeepers alone have learned. Occasionally beekeep ers use terms, like entrance and cover, which mean what they say, but most beekeeping terms are unintelligible to non-beekeepers. Why then should beekeepers complain if technical men in other lines use words which appear strange until one delves into the subject? If an article appears in a bee-journal in which the words sucrose, dextrose, and leve lose are used, it often happens that readers simply pass the articles by: Not all the blame lies with the beekeeper. Many persons writing
Nore ase about honey for beekeepers use more technical terms than are necessary about honey for beekeepers use more technical terms than are necessary
and fall to define those used, since these people often do not speat the and fall to define those used, since these people often do not speak the
beekeeper's language. In order properly to present a subject to any special group of readers, one must be able to apprecfate the background which these readers have for the newer information presented and mast above all know what their need for information is. If a chemist who is not a beekeeper writes for beekeepers, he frequently omits these things which are most important to the beekeeper and emphasizes things which are important to the chemist but unimportant to the beekeeper. if, however, a chemisf uses the Greek technical word dextrose, this it no greater crime than for a beekeeper to use the Latin technical term super.
Belleving, first of all, that until beekeepers obtain the informatlon now ayallable about honey beekeeplng cannot prosper, and beliering further that there is no reason why beekeepers cannot understand the further that there is no reason why beekeepers cannot understand the
information which will be applicable to their businesses, some expert information which will be applicable to their businesses, some expert
ments have recently been tried which may be mentioned. This is doot ments have recently been tried which may be mentloned. This is dost to indicate an unfortunate attitude on the part of many beekeopers. The beekeeper claims that the consumer must be edncated but blmself refuses to be educated, an inconslstency which need only be mentloned to be entirely clear.
For some years I have felt that our bee-fournals and other avenues for disseminating information among beekeepers should contain more isformation about honey, and less statements to the effect that "honey nature's own sweet," which means nothing at all. In lauding honey, it is quite necessary to explain the reasons for its superiority. Believing
this, I have for some years been "growling" at the editors for not including more such material, and their replies have been that when they have Included articles on honey, they bave actually received complaints from their readers! It seems incredible that any beekeeper should ever from their readers: is made to present facts to him about his product. complain if an effort is made o present facts to him about tis produch. Part of the such material is presented so as to be somewhat difficult to understand, If such material is presented so as to be somewhat dificuit to underatand, one would think that the beekeeper who has trouble with such ardicies would feel sorry for himself and would not complain that the
are trying to bring to him information which he sorely needs,
Last spring in writing to Mr . George S . Demuth, editor of Gleaning in Bee Culture, on another subject, 1 renewed my complaints at the lack of articles on honey, and he defended lifmsẹif in the usual way. Thereupon I listed twenty-five questions which it seemed justifiable to ask any intelligent beekeeper about his product, without assuming on his part any techinical knowledge of chemistry or nutrition. These questions were submitted to Mr. Demuth, himself a beekeeper rather than a chemist or nutrition expert, asking which ones, in his opinion, were unfair, and what additional questions might properly be included in such a list. He left all twenty-five questions untouched but added nine which occurred to him as indicating desinable information for the nine which occurred to him as indicating desinable information for the beekeeper. One of the questions formulated by Mr. Demuth appeared
to be nearly the same as one already included, yet not exactly the same, to be nearly the same as one already included, yet not exactiy the same,
so in order to omit trick questions, this question was omitted, Ieaving so in order to omit trick questions, this question was omitted, leaving
then thirty-three questions. At Mr, Demuth's invitation, these questions then thirty-three questions. At Mr. Demuth's invitation, these questions
appeared in Gleanings for July, 1928, as a catechism for the honey proappeared in Gleanings for July, 1928, as a catechism for the honey pro-
dacer. At the same time Mr . Demuth asked me to reply to these questions later, since he seemed willing to risk complaints from his subscribers.
The experimental feature of this catechism will appear from the following explanations. In presenting thls catechism, It was stated that answers were not to be sent to either the editor or myself and that the questions presented would not be answered, being given merely that the honey producer might check up on his information. This statement was made for a purpose, for it seemed to both the editor and the author that if beekeepers could not answer the questions but actually wished to know the answers, they would write either to the editor or the author to demand the answers. Naturally when the statement was made that answers would not be given, any such demands would come from those most Intensely concerned to know the replies.

It would be interesting to run a guessing contest as to the number of kuch demands which came in, indicating the insiatence of informed beekeepers that the answers be glven, but further anxfety may be relleved by stating that not a word of comment was recelved. Belng Inexperienced in beejournal affairs, I concluded that beekeepers are not interested fil honey, but the editor took a different view. He wrote that not a single heekeeper hat written in to complain that these questions occupled apace in the journal, from which he concluded that his readers were interested. It appears that many beekeepers strenuously object to ar. ticles which appear and which they do not like but that they rarely or ilever write to commend any article.
Instead of preparing direct answers to the questions, which would have resulted in a disorganized presentation, a series of articles was begun which would ultimately include the answers to all questions formulated In Jity, The Ifrst appeared in August and they will continue until my scant knowledge of honey is exhausted or untll the readers rise in arms against sheh material. The purpose of thls account is to adyertise nelther Gleanings nor these articles, but to outline this experiment in edneation. At this writing. November, it may be reported that several favorable comments have been made which are appreciated and there have been further indications that beekeepers actually desire such information, so that the outlook is more hopeful than it appeared at first to be,

The extenston speciallst in Apleulture, Mr. B. A. Slocum, has tried other experiments. Shortly after the catechism appeared, he asked at some of the meetings attended how many had read the questions, and found fow who had done so. He then asked how many could answer some or most of them, and the beekeepers present usually considered them too technical. Having taken these experimental steps, Mr. Slocum then discussed honey in just the manner suggested in the questions and reported that the beekeepers listened with interest. On one occasion he began discussing honey at about one o'clock and found it necessars to stop in time to make a $5: 55$ train, which does not indlcate a tendery on his part to talk too long but shows that his hearers were interented Other such incidents might be recorded.

Each winter at the Short Course for Beekeepers at the New York State College of Agriculture a special topic is selected for the Important diecussions. For 1929 this topic is Honey and the usual discussions of production and marketing will be omitted or subordinated. A discussion of Honey is a phase of marketing, but emphasis will be placed on homef itself rather than on means of spreading this information to consumers. It will be interesting to see how many beekeepers are enough concerned in this subject to attend such a meeting for a week enough concerned in this subject to attend such a meeting for a week.
but thls feature has progressed slowly, in order better to material, but this feature has progressed slowly, in order better to weigh the results. A press notice on the disinfecting value of honey was prepared not long ago and this has been reprinted in all parts of the country. One Chicago Sunday paper featured it with a scare drawing that would cause anguish to any scientific worker, and this notice was actuilly pubished in one bee-journal. At present it seems less important to learn what the public wants than it is to determine what beekeepers want for the spread of such information must rest chlefly in their hands.
At this stage of the experiment, the following rough results are dicated: (1) Beekeepers are moderately interested in their prodict and may easily be still further interested; (2) they have entertained an unreasonable fear of presentations on honey which contain some teobnical terms; (3) many writers on honey for beekeepers have not written understandingly; (4) when the same material is presented in different form, such material is read intelligently by at least the more interested beekeepers, but (5) this interest is not so intense as it should and musi be if this marvelous product is to occupy Its rightful place in the Ameirlean dlet.
This discussion is not presented as a sermon to beekeepers, to tell them exactly what they must do to be saved from their present marketing problem, but merely to suggest one means of doing this. It is fafr lo conclude that until beekeepers do their share in spreading information about honey, others cannot justly be critfcized for falling to do so. It is time to stop talking vaguely about honey as a superior food and to stop saying that honey is "nature's own sweet" and get down to facts. Silly and sentimental promotion of honey has not been profitable, and it is time to try another method.

RACES OF BEES

Jay Smith, Vincennes, Indiana

I have been a strong advocate of the Italian Bee belleving that if we would continnally breed from the best, we could produce a better strain of bees than any we might Import of other races. However, read with a great deal of interest the series of articles by Phillip 3. Bat densperger in Gleanings on the races of bees. He points out that the different countries in which bees are kept, have each developed a bee differeat countries in which bees are kept, have each developed a bee
peculiar to the country in which the race was developed. For fistance peculiar to the country in which the race was developed. For fastance
in Egypt the bees have lost the instinct to gather and store targe guanIn Fgypt the bees have lost the instinct to gather and store targe guan-
titles of honey as the weather is such that it can gather emough to Ire tities of honey as the weather is such that it can gather enough to tire
on any time of the year. At the weather is warm, the bees do not form a cluster and when moved to cold countries they die when cold weather
comes. The bees in warm countries are invariably cross while those that have Ilved for many generations in cold countries are gentle. Mr. haldensperger gives as the reason that in warm countries there are so many uatural caemies of the bee such as wasps, ants and lizardantries he fighting instuct has been bred into the bee, in the colder cou their where the bee has few or no natural enemies they Fanveians are all irritable disposition. The Cyprians, Palestinians and Egyptians are all
vicfots in neture, while the bees of northern Italy, Caucasia and Carniola are gentle.
As Mr. Baldensperger has made a most thorough study of the different races of bees, their origin and the conditions under which they are kept and has also kept bees in a large way in many countries, he is undoubtedly by far the best authorlty on the races of bees.
After reading his writings, the thought came to me that in an area as large as the United States and Canada, it would be strange indeed f there is any single "Best Race" for this vast territory. As conditions are so different in different parts of this area what might be the best mace for one locality might be a very indifferent race for another. Where here is one large honey-flow it would be desirable to have a race that ill cortall brood rearing as the flow comes on in order to avold provould curtail bood rorkers after the flow is over which would be "useless ucing a hoard of works after the liow is over which would be aseless consumers." The Italian is undoubtediy the best bee where there is but one flow and where that comes early in the season. Thinking there might be another race for certain parts of the United States and Canada where the honey-flow is prolonged and it is desirable that the bees continue brood rearing through the flow in order to keep up strength, I began investigating. The chofce lay between the Caucasians and Carnfolans, Of the ten inquiries I made of those who had kept them only one objected to them and he had had but a few and these were kept in small hives. He said they were excessive swarmers. The others said they were more proliffc than the Italfans and the reason they swarmed was because they illed their hives sooner than the Italians. That when they were given the management they deserved and were provided with plenty of room, they did not swarm to excess. Some used them for comb honey and had no trouble with swarming. Their good points were that they were centle, excellent winterers, kept the hive filled with brood through the honey-flow so that they were strong for winter, wintered well, built up early in the spring and worked well in cold weather. It was also reported thit they gathered almost no propolis and when necessary to chink up cracks for winter, they used wax. My reports from the Caucasians sere that they were gentle and good workers but were such bad propolizers that the frames had to "be dug out" when manipulating. From parties who had tried both races, it was reported that they much preferred the Carnolfans. I found another serfous obfectlon to getting a itart of pure Caucasians and that was that It was very difficult to import them as they were so far away and transportation facilities were unfavorable. I wished to be strre of getting pure stock as It was stated by some who gave them a trial that it was almost impossible to get pure Cansasians in the Enited States. I talled to get replies to my letters for Caucasians, but got immedlate response from Carniola. Mr. Hambleton at Washington ordered three Carnlolans for me as all Imported bees tunst come through the Department of Agriculture. These came from apper Carniola in the famous Alps Mountains. Bees in that region have to be hustlers to survive for there is little flora in that barren country and the winters Are severe. I wut quite impressed by what these bees had to go through before getting to me. First they were put aboard train and were carried to the coast. They they went by steamer to New York. Then by train to Washington where all nurse bees were deetroyed, and the queens placed fn an new- cage with mtrange workers. They then came by train to Vincennes and had to go throngh the ordeal of introduction. I used the Push-In case and all were safely introduced and the three are now in comfortable packing cases for the winter. I
came near having an accident in introducing one of them. To make sure that there was no queen or ripe cell, I introduced one to a colony that had contained a virgin. I removed the virgin and formed a noteley by putting a cup fuil of bees and their own virgin in a small mucleus hive. Two days after, I looked to see if the virgin was laying and found her missing. I guessed she had gone out on her wedding flight and having marked her former location would go back to the colony now containing the cage in which was my valuable fmported breeder.

Requeening will Introduce a new race into a yard
I Kuessed correctly for there she was laying nicely and making herself very much at home. I removed her, putting her back into the nucleus and cllpped her wings to be sure she would stay put. Two days litet the Carniolan was released and at once filled the hive with brood.

In addition to these three breeders, I purchased two dozen Carniolant from the best breeders in the United States. While I have not gose from the best breeders in the United States. While I have not goae
far enough to form a defnite opinion concerning them, I am satiffed that the Carniolan race of bees is a splendid race. Some things that have been said for and against them have not been verified thas far. They say they do not rob. I kept both races in the same yard and when robbing was gofng on, it was $50-50$ ttaltins and Carnfotims. Ther as Carnlolaus do not drift, but again I see no difference between them and Italians. I have found them in Italian hives fifty feet from their own. How about their swarming? I cannot say yet as to that, out I had a number of strong colonies go through a honey flow and no slgms of swarming. I expected to rear a number of queens but although I gave them starters, they built only worker comb and as I could get no dropes,
did not attempt rearing queens from them. I can test them thoroughly the coming season. As to their temper, they are gentle but not as much 50 as my best Italiana. I can handle them without smoke, but get an cecasional sting. I will keep them in a yard several miles away from other bees and give them plenty of drone comb to fisure pure mating. f doubt if they are excessive swarmers provided plenty of room be given If they are, this trait can be bred out in a few generations by giving If they are comb room. On page 86, February issue of Gleanings, 1926. Mr. Baldensperger says of this, "However this exaggerated swarming Mr. Baldenspergermed down in a generation or two provided the bees are hived in good sized spacions homes."

CAUCASIAN BEES IN NEW JERSEY*

Ray Hutson, Assistant Entomologist

Vew Jersey Agricultural Experiment Station

Cancasian bees have been known in the United States for about 50 cari (3). They have never been popularized because Italian bees as deretoped in this country fulfll the requirements of beekeeping practice when compared to the German hybrids that beekeepers are loath to admit an equal or better race exists. The changing conditions of heekeeping have recently, however, fntensified the feeling, never given by by comb honey producers and gradually formed by other beekeepers, p by comblans are not the best possible race of bees for all purposes. haldensperger (1) well known writer on the races of bees, has perRaldensperker istently called attention the broodnest This criticism points out well heir poor provisioning of the broodnest. These habits together with the nown fallings in the italian bee. These habis together with the oor cappings on combs and other less obvious fauls have been murtured by the utter disregard of everything except color by many extensive breeders so long that beekeepers are again trying races previously lighted. The darker races, Carniolans and Cancasians especially, are apparently foremost in this reconsideration.
Charles W. Quinn in Florida and Herman Rauchfuss in Colorado to rame two outstanding figures in this connection have had marked succes with Caucasians. Quinn and Rauchfuss steadfastly maintain that die Cancaslan bee has been underrated by beekeepers at large and point 6 their conisistent production of good crops of fine quality honey as proof of their stand Beekeeping literature (3, p. 197) abounds with estimony as to the swarming propensities of Caucasians and the excesfreamounts of propolls earrled in by them Such hahits wonld seem ive amounts of propolis carried in by them. Such habits would seem oforestall results such as those reported by Quinn and by Rauchfuss. These conflicting reports when all the factors are considered seem to ndicate the exiatence of straing of Cancasians. Reference to the literature confirms this indication. Mikhalloff (2) recognizes two main strains of Caucasian bees while Gorbacheff the leading authority further subdivides them. It is an interesting thing that these men ascribe to different strains the very characteristics which account for the conAleting reports noted in this paper.
The varlous reports given out all agree in two favorable respects. Caticaslan bees bulld up well, and have white cappings, These condiderations are of Interest to New Jersey beekeepers and led to a trial of the face under our condtions.
Trials of two strains were made. In the main the first trial gave the following results. The Caucasians built up quickly to swarming strength and swarmed in some cases in spite of "shook" swarms. Every colony showing any mixture of Cancasfan blood bullt propolfs defenses. Burr and brace combs were excessive. The cappings were uniformly whiter than that of Italfans in the same yard. The original source of these Caucaslans is unknown.
*Paper of the Journal Series, New Jersey Agrleultural Experiment Staton, Department of Entomology.

The queens used In the second trial were daughters of a queen securel direct from C. A. Gorbacheff (5) of Tifils and warranted by him to h of a desirable Caucasian strain.
The first examination of these uniformly grey banded bees was malt without a smoker on a raw windy day during pear blooming time. Th bees did not fly from the combs. Fifteen out of eighteen colonies hhe three frames of brood; one had six; two had two each. Eight colonies el Italians examined the day before in the same region had an averat of two frames. Brace combs were absent. The propolis defense absent, although there was evidence in the hives of Caucasians and Itallans that propolis was available.

This strain of Caucasians when established as three pound package in northern New Jersey bullt up well. The maximum amount of brood fourteen frames, was reached during the first week of the clover flov fourteen frames, was reached during the first week of the clover flow,
The brood was compact. The tendency toward laying a frame full of The brood was compact. The tendency toward laying a frame full of
eggs was so noticeable that it was possible to mark the frame mits eggs was so noticeable that it was possible to mark the frame witb
the queen upon it in the morning and find the queen upon the same the queen upon it in the morning and find the queen upon the same
frame at any time that day. The daughters of these queens exhlitef frame at any time
the same tendency.

The pure Caucaslans were exceedingly gentle. When crossed whit Italians the gentleness of the progeny was not as marked as in the pure race but in over sixty cases showed the influence of the Caucarin blood.
The Caucasians repelled robbers readily in spite of their gentlenen when robbing was induced. Caucasians tried to rob the honey hoas In about the same number as Italians. Caucasians in this test wett not found in Italian colonies during weekly examinations. This lat fact would Indicate that Caucasfans do not practice "sneak thlevery" to any great extent for the Italians were of a good three branded stratis to any great extent for the Italians w
making the Caucasians readily seen.
Burr combs between and upon the top bars were noticeably absent However, there was a tendency present toward the deposition of smal lumps of wax of a height and dlameter of one-elghth inch or less. Brace combs were absent. It is possible that the light crop influenced thit tendency. The absence of brace combs together with the white capping produced should recommend a trial of thls strain of Caucasians to comt honey producers in New Jersey. In the light flow during the season this straln was tested. The Caucaslan colonles ylelded an average of 11 pounds more surplus than the average of an equal number of Itatims in the same yard. At the end of the season there was 14 pounds per colony more honey in the broodnest of Caucasian colonies than in the broodnests of Italfan colonfes in the same yard.
The amount of propolis carried in by the Caucaslans was no greater than that collected by the Italians in the same yard. This conditios obtained for both pure and hybrid Caucasians. There was no attempi at the construction of the propolis defense at the entrance which is at the construction of the propolis defense at the en
associated with Caucasian race in beekeeping literature.
associated with Caucasian race in beekeeping literature.
The results of these tests of two strains of Caucasian bees leave no The results of these tests of two strains of Caucasian bees leave
doubt that the diverse reports found in the Iterature refer to different strains of that race. It is obvious also that the flrst strain terted is responsible for the undesirable reports current concerning this race On the other hand the activities of the second strain show it to possest certain advantages over the Italians. To the New Jersey beekeepet the production of well capped honey appears most important. The er treme gentleness of the race and Its ability or tendency to seek its ows hive successfully should further recommend it.

References

1. Baldensperger, P. J. The Races of Bees, American Bee Journa 68: 67 .
2. Mikhafloff, A. S. 1926. Some Characteristics of the Caucaslas Bee. American Bee Journal 67:573.
3. Phillips, E. F. 1915. Beekeeping. New York (p. 197).
4. Gorbacheff. C. A. Aploulturist and Sericulturist. Tiflis Service Station, Tiftis, Cancasus, D, S. S. R.

PROGRESS IN THE FAR WEST

G. H. Vansell, College of Agriculture, Davis, California

The subject of disease control may have played too large a part in the discussions of bee meetings since much of such discassion is redaitit ift the press to be read by folks unacquainted with bees and their diseases. Be this as it may, the control of disease on The far caltural undertaking is an important phase of the operations and in the west is taking such an important part in honey prodaction and inspecpackage bee busfness that a report of progress. With reference to inspection will undoubtedly prove of interest to beekeepers reading the annual lown report.
Several of the western states have long enjoyed a more or less comslete control of the movement of bees untll such bees were found free of serious trouble. Certain of the states have maintained a quarantine against bees from other states presumably on account of protection against disease. Conditions generally are becoming such that these state line barriers are no longer justiflable. One of the most important recent movements is the interest taken in bees by the Westinterest taken in bees by poard is made up of men from all the seven western states partioularly trained for their work. There is at least an annual meeting with other gatherings as conditions require. A unfform rule relative to bees may soon make this large area a unit.

Until recently Callfornia bee men have been working under an independent county system of apfary inspection with all the resulting county Ifre barriers instigated somewhat at least by selfishness and susplolon. For over a year now a new system of aplary in spection has been followed entall Ing all the county horticultural commissioners and a trained man in the state department of agriculture as a sort of state inspector or J. 8. Harblson, the first man to keep bees extensively in Catifornla, Th state if reported to have been pro-
 head for the system. The horticutturat commissfoner in each county is ex-officio bee inspector which makes him responsible for the work In the confines of his county. In many cases the horticultural commissioner does nothing more with bees than to see that funds are in the county budget for the support of some one or more men according to needs of the area and season, to do the actual inspection or clean-up rork. This sort of an arrangement at once begets the Interest of many thlaking men for things relating to bees. The work inder the horticulfural commissioner proves to be a happy solution of many problems culural commissioner proves to be a happy solution of many probiems
particularly since he is already familiar with the extensive fruit interests.
1 wish to polnt out that in contrast to the eastern United States the I wish to point out that in contrast to the eastern United States the
honey in the west is generally produced in favorable spots on account honey in the west is generally produced in favorable spots on account
of the cultivation of plants yielding nectar (orange, alfalfa, ete.). Irri-
gation is of course confined almost entirely to the level valley whic make up less than one-fifteenth part of the total area. Even mueh en the valley land is unirrigated on account of lack of water. In adatith to the cultivated plants are certain indigenous ones, sage alons the southern coast line of Callfornla, fire weed in parts of Oregon, Washington, etc., and the wild buekwheat of the southern Call fornia foothills and mountains.
It Is admitted that bee disease was all too prevalent in certain spots in this wonderful state. In general, however, the best beekeeping areas both for honey and package bees were in good shape for a loug time because the profitable pursuit of the bee business necessitated efficient control of disease. The none too good spots are now "cleaned u" ${ }^{\prime \prime}$ by the cooperative invasion of outside men working hand in hand with the local owners and men in authority. The practice of burning infected stock is in vogue. An efficient bacteriological procedure must be used In any case for good results, The treatment of infected combs with chemicals is not encourwith chemicals is not encourthe formalin gixtures has with he formalin mixtures has been proved entirely satisfactory from the bacteriologtcal standpoint but its position is not so good from an economic viewpoint. Time is an important item in any undertaking. Many combs are still befng saved by sterlization in the hands of

A Callfornia swarm. Over a harre aplary of Wm. H. Baker of Davis. those properly fited for the wor work and who have enough of the matertil o Justify the practice. In the case of the "clean-up" areas fire is usel almost to exclusion. The bees are killed with cyanide and the contents of the hive burned in a plt so the remaining ashes may be deeply covered.

The efficiency of the new procedure is appreciated by the industry In the west. That the state-wide control of bee disease is meeting with favor among the beekeepers fand others fnterested in the bee indmity is evidenced by the number of commendatory statements received iy the state department of agriculture during the past few weeks. Only recently a letter from one of the most prominent bee journals had this to say:

Let me take this opportunity to commend you (and the commls sioners) on the excellent work you are doing under the new aplar inspection law," lhad the opportunfty to visit some Michigan poopl this year and they are wonderfully encouraged with the progress then are makine by burning Undoubtedly in your own state with the nece: sity there is for bees for pollination you will have no dificulty is is fluencing sentiment rapldly to the burning and quick clean-up method.

The alm here is eradication in so far as this is humanly posstbte

A copy of this may be obtained upon request from the Callfornala sian Department of Agriculture, Sacramento.

Too much is at stake to think otherwise. The importance of honey is an item of tood is no small matter. The 1927 production of honey sas abont 8,000 tons according to State Bee Inspector Frank E. Todd. The value of the bees themselves in their role as pollinators cannot be overestimated. Many millions of dollars worth of an ininite variety of frult and nuts go out of California each year, and all grant our honey bees a place of honor in the production of this wealth. The package and queen business is a large one in this state. Beekeepers outside and queen west may not be so interested in the immense honey tonnage since it may tend to reduce the price paid to the producer everywhere since it may country, but all are favorably interested in the constant supply In our country, but ant to make life more worth while in snow and of fresh fruits going ours and all purchasers of early bees or queens for use in their ice areas, and an parchaseresested in ilsease control.
own apiaries are keenty the day is not far distant when the sale of I, for one, come into its own. Perhaps the millennium is close at honey will Anyway the increased strength of individual beekeepers and hand aiso, Anywh hoost in cooperative efforts is sure to help the in the accompanylug will be more able to help herself (and no one else dustry because she . Dil is gofng to $d o$ it). Enough honey is at shop. The vision of a united to think of making a staple industry working to stimulate the public mind with relerence to the best of foods" honey is not an idle one. Never before in the history of mankind was so much being said and done to strengthen the position of this natural product of the hive. I need but mention the interest now displayed by supply manufacturers and honey dealers in advertising and better merchandising. This is a day of advertising and the time has arrlved when honey is in a position to justify a modern program of marketing. The publle will buy honey only when we sell it to them

WATER STORAGE BY BEES

H. B. Parks, San Antonio, Texas

Contribution from the Texas Agricultural Experiment Station
During recent years considerable misunderstanding has occurred among beekeepars on account of what may be called "locallty difference," A mumber of years ago a statement was published to the effect that a worker honey bee is very similar to a dry-cell battery. It has within It a certain number of responses to certain stimuli and this number of it a certaln is the reaponses matter where the bee may exisi. Matter where it is found. The statemen? bee's behavior is the same no matter where it is come from the fact that Is absolutely true. The misunderstanding has come from the stimult which bring ebont the action in the bee differ in number the stimul! which
and with locality.
One of the peculiar things which is to be noted in the seml-arid districts, where beekeeping is common, is the storage of water by the bees. In the naming of substances stored by bees the ordinary bee teeper wIII seldom mention water although all of them know that been vislt water holes and carry a great deal of this material into the hives, especially during that season of the year when brood rearing is rapidiy advancing. So far as my observation goes the water carried into the hive during brood rearing is used for two separate purposes. The flrst, a small part of the water becomes an ingredient of the food for larvae. The larger amount is used to keep the relative humidity within the brood nest at the correct point for advantageous brood rearing. From thy observattons, made in Illinofs, Mlsgourl, North Carolina and Texas. 1 belleve that the amount of water brought into the hive during this perlod is about the same per colony, no matter which state is mentioned.

In the seml-arid districts of southwest Texas the temperature reaches dally mean of about 93 degrees, the first part of the month of June and the mean relative humidity will be about 51 . Honey bees will not Work in the fleld when the temperature is above 94 degrees and the
relative humidity is below 50. Thus, shortly after sunrise by the midt of June the boney bees no longer are at work in the field. The oulald heat of the colony will be between 94 and 110 . The outside ralatis humidity will be between 28 and 50 . On account of crowding riatify entire force of the worker bees within the hive, due to the excess beal ontside the temperature has a tendency to rise very considerable. Soy. brood must be reared throughout this hot period of the summere. Som would not be a sufficient number of adult bees to rafse the or thete 40 the bees must maintain the brood chamber humldity the fall brool throughout the summer. To do this it becomes necessary to store great amount of water and then to cause the evaporation of this ware a to bring about the desired humidity and with the humidity the water temperature. In all that portion of southwest Texmidity the correct temperature. In all that portion of southwest. Texas which may bec described as semi-arid the bees are fortunate in being able to colloc quite large quantities of dew during the early mornings. They serm to show a preference to collecting dew rather than to the collectfos of water from regular places provided for them. In 1928 . In one son where there were ninety three-story colonies, the bees nsed in one yan of water per week, in addition to what they obtained from dem, gailon the period of time between June 15th and August 20th. The durisg of water which was used prior to the first date and after the secoed date was very small.

To those who have never visited this section of the world the atorage of water within the hives may seem quite curious and a description of where the water is stored is therefore given. Every beekeeper ina noted the presence of small cell-like enclosures on the top-bars, generally made of old wax and propolis. These same cavities are found on th upper surface of all the brood combs and brace combs in the hive in he district of which I write and during the hot period of summer you will remove the cover from the hive the first thing that will attrac the attention is the presence of water in conslderable quantity in each one of these cell-like structures on the top-bars. Very often it is it sufficient quantity that drops of the water will run from the comb that is filted. Removing a frame, especially one which contatns a great dra of sealed brood every indentation in the capping will be found to contals a small amount of water. In fact, the comb looks as if it has bect sprinkled and the droplets had spread out in the cavities over the points where the hexagons meet. All beekeepers have noted that the capplat of brood is very soft and spongy, and here, during hot months this spones capping material will be found saturated with water. Removing combs from the sides of the brood nest a considerable circle of what appears to be fresh nectar will be found in several of the side combs. This supposed nectar proves to be water.

If one will take the time to compare the amount of water found in a hive between 8 o'clock in the morning and 6 o'clock in the evening he will be very much surprised to flnd that during the day the water has almost disappeared from the hives. The water stored is of sufficleal quantity that the hives on scales will show the amount. This ranges from three-fourths to one pound to each three-story hive. During es tremety try perfods the bees very often cannot store sufficient water to last between the periods of the day when the temperature is below the 94 -degree mark and one quite often finds the bees driven to bring is water during the hottest portions of the day. During these periods the Water is not only stored in the brace combs and on the faces of the brood but very often the entire bottom-board is a receptacle for minute droplets of water.

As has been said bees respond everywhere to the same stimulus. If appears that the bee's body is very susceptible to changes in atmospherlc conditions and that the bee can tell somewhat ahead as to what the atmospheric activities will be, It has been noted many times in out seale records that two or three hours prjor to the arrival of hot wind or hot dust storms that the bees increase thelr activity very greath
antore in a short period of time an ample water supply. Another and store which is noted in the storage of water is the difference in位e sources which the bees favor. Diring the early spring the bees eem to favor places where they can suck the water from moist 6round eom to the edge of muddy streams. It has been suggested that they or trom in order to get water which is somewhat warmer than that do this in order in standing containers. It has also been suggested which wonld occur bat there are certang Jnst what the answer is I do not know but I for the growig that in the spring the bees prefer the muddy places and have observed that in the water however, during the the edges of water holes to secure theirnat in great guantities they summer months when they are carrying water in great quater tanks prefer to take the water directly from the surface of open wator fan my or from along the edge of running streams, I have no proof for my theory but I am of the opinion that at this ime of year the water which could be sucked from the mud would be a much higher temperature than that which is obtained from the large bodies
in running a series of welghts of hives containing hygrometers the following relative humidity drops durfollowing relation was tha the the mean relative humidity rises towards a emplor storage babit of the of water stored decreases. Another winters when summer-like weather bees can be noted here during those winters where is a goodly force of occurs throughout the winter months. sufficient low temperature to worker bees in the hive. There is not sufticient low boom pon which bring about clustering and there are no flowers in bloom upon whem the bees can work. The workers have every stimuius to cause thulus fo go to the field and collect something and they respond to this stimery The only two things that can be collected are propolis and water. Every beekeeper in the southwest is ready to verify the statement that during the very warm winters that the bees store immense quanities this propolis and that the storage of water is very frequent. Durimg gentime, however, the water is stored entirely within the empty celis, gen erally at the lower edge of the brood nest. The winter of $1922-23$ was very warm and hives opened during January ahowed large amounts of water stored in the empty cells at the lower edges of the combs. in the writing of this article 1 am making no discussion of the storage of *iter but giving a description of what may be found in any apiary thanthwest Texas during the year To strm up this deseription i can In nouthwest Texas during the year. say that existing within the hives.
That the water storage during the winter time occurs in answer to the stimulus which requires the worker bee to collect and to store nomething. It makes very little difference what this something is. The peonllar one-half cells found on the top-bars and in brace comb are largely built for the purpose of water storage. The porous wax cappings to brood and of the walls of queen cells are 80 made to absorb water in onder to maintain the correct relatlve humldity within the cell. The storage of water in the hive has three described purposes. The first as an ingredient of food, second as a vehicie by which a higher temperature and proper humidity can be obtained and third a storage articie which is of no use whatever to the bee but is collected in response to the stimall which causes all worker bees to seek to bring something to the hive under certain conditions of heat and moisture.
To explain the statement made that the misunderstandings relative to water storage comes from the local dffrerence and thtt these local differences comes from the varying number of stimuli, it is easily seen from the statements given that the stimulus of excess heat within the bive calls for the collection of water and that in the hot semi-arid regfons such stimuli occur in such quantitfes that the bees collect enormous quantities of water during the summer time. The collection of

Water during the winter is due to the lack of anything else collectple It is not only a supposition that these same bees in a locality of lowe lemperature would not collect such great quantities of water but into cooler locations. There is no difference bees shipped from Tera the Texas bees to that of the native bee of the locality in the action of

The study of the per cent of relative humidity withly.
a number of very pecullar problems, A recording the hive presents within the of very pecullar problems. A recording hygrograph place within the hive will give the humidity outside of the living space of th. bees, Every time the hive is opened there will be a break in the recond as the humidity immediately becomes that of the outside area. Th. nearer the hygrograph or hydroscope can be brought to the brood The the less is the variation in the relative humidity shown and while have not been able to devise a hydroscope that the bees will acope within the brood nest or the cluster it is suspected that the relatif humidity within this area varies but very little.

THE PACKAGE BEE BUSINESS

Morley Pettit, Georgetown. Ontario and Valdosta, Georgia
The late A. I. Root is given credit for being among the first to experiment with shipping combless packages by express. Like many oxper early experiments, nothing came of it until years afterward. My first experience was as a boy helping my father, the late S. R. Pettit, ship swarms at the end of the IIght honey season, to a buckwheat region tbout fifty miles away. It was a pioneer effort and for that short distane there was no feed problem involved. The "packages" were soap bore With the tops screened; but an account of how it came about might be of interest, especially to comb honey producers it came about might be Back in the nineties of the last century before manipulat prens day,

The central extracting plant
prevention were generally known, natural increase was considerable in the old home aplary where some of my earliest painful duties wete to "watch the bees." I would rather have been working hard than to spend the long summer day at attention waiting for something to turn up. The method of mnnagement then was to super as needed during the spring with extracting combs then at the beginning of clover remove these from the best colonfes and substitute supers of sections. All such colonies usually cast powertul swarms before work had advanced far

In the sections, and these were hived on the old stand and allowed to antinue the work which they had begun before leaving home. The continue the sift bestde the swarm for five or six days, then carried parent hive was to another part of the in in fine shape for winter
swarming and the newly hived swarm was wanted for honey only and not for increase, its future was sacrificed in the interest of producing the largincrease, mumber possible of well-finished sections. To this end the brootchamber was contracted by the use of "dummies," that is boards cut into the shape of combs on which the bees could cluster without using them for storing honey or rearing brood. Moreover the contracted space did not have even sheets of foundation but narrow starters only. This sringement was calculated to discourage work in the broodchamber and arowd the bees up into the sections. It worked, too. In a short, sharp fow which was all over in three or four weeks after the hiving of the fow wery maximum of comb honey was produced and a fair perwarm a cood combs were bullt below provided the starters were年 airrow enough thich the queen could lay worker eggs,
with which the queen could lay worker egss, colony strength was going During the first three weeks, of course the colony strengt colong with down and when the hight honey came out only a small percentage of good combs at best, since part of the "combs" were boards and part were drones, with practically no honey and an old queen. We had no fall flow in that locality and increase was not wanted so we practiced two things which are becoming common in present day beekeeping. We either killed the surplus bees or shipped them in the kind of combless packages mentioned above to beekeepers In the buckwheat region where they were hived on foundation, requeened, and built up for winter. This was the beginning in my experience of the shipping of combless bees, and of getting rid in the fall of colonies which it did not seem profitable to attempt to winter.

A lot of water has passed under the bridges since those faroff days; hut bee nature has not changed and 1 often wonder if we did not lose something good when those "dummies" went for kinding. I have not somin won since outgrowing the one-apiary mothelp system. produced comb honey since outgrowing the one-aplary, nowelp system. entishable ature of the product were too mach for me; but I have often thought that with package colonies which are less inclined to swarm, the old system might be revived to advantage. You would install your packages in the usual way with plenty of breeding space, build them up the best you can for sections, thea for a short, sharp flow contract the brood nest and even leave them with only starters to force the work all into the supers. At the end of the season you would have the result of their whole effort in comb honey, and the weakened swarm with the old queen could go. Now we have cyanogas for a quick and painless death. We fused to let them cluster in the combless hive until they grew tired of life. If it were put to a rote of the tees I wonder which they would prefer: I know that dead bees are the best fertilizer you can put on a garden.

Whether it is profitable to kill colonies of bees in the fall and buy packages in the spring is a much mooted question. I am not prepared to give it defintte answer for too much depends on eircumstancen for anyone to decide that question for others. There is no doubt in my mind that for an uncertain spring and a short honey flow it is profitable to hold colonies together for all you can get out of them and then make destred Increase by purchasing packages the following spring. It is also probably true that a well wintered colony may store more honey than a well installed package. The argument ranges around the cost of the well wintered colony as compared with the cost of a package Wheh has been guccessfully fnstalled and brought up to the honey flow. The statement that the writer killed twenty-five per cent of his colonies, two hundred in round numbers, at the close of the 1928 season with the intention of Installing twice that number of packages before the 1929
season begins, will add zest to the argument. This was done to sapt the cost of requeening, of preparing for winter and the percentage winter loss which seems inevitable. The writer with one experfetce helper and a boy managed eight hundred colonies and produced orer a hundred thousand pounds of honey so the work of management had a be simplified as much as possible. Requeening and swarm control to rather large items of the summer's work. The package has its row queen and is less fnclined to swarm, Packing bees for winter may not be much more labor than installing packages in the spring; but packing some and installing some divides it up.

The wintered colony must be re-queened, properly built up in the tall fed. prepared for winter, and brought through the spring. Expense if involved in every one of these items. Re-queening takes labor and los If all done by the beekeeper, or expense, less labor and more loss it queens are purchased. Bullding up depends largely on the uncertalnties of the fall flow. Winter feed alse depends on the fall flow ind is 80 much a matter of locality that it can hardly be discussed in general terms. Natural stores may be inexpenslve and adequate-until a bad winter causes heavy loss. Then the whole wintering expense is gove and the package expense is added to it. In any case the cost of feedfng in colony from the end of the light colony flow through the fall building-up period, through the winter and through the spring is prob ably as great as the purchase and transportation cost of a package of bees. I know that a package installed about the first of May takes leas feed to bring it up to working strength late fin June than a wintered colony of similar strength consumes in the same period, after we have already had the expense of requeening, building up in the fall and wintering.
There are always losses of colony strength and of whole colontes is winter. These vary so that one cannot even estimate a conservatio average. The same may be said of losses of package bees. There have

Effielent production means profitable returns from the aplary
been neavy losses en route from the south; but I think those hive been ulmost entirely overcome. Most reliable shippers guarantee safe arrival and satisfaction. There are still some losses of queens, both when belns Introduced and after they have started laying. Shippers are giving their best thought to this problem, are reducing it, and are replacing losses wherever possible. I do not belfeve the losses, all told on pack
ages are as great as on wintered colonfes. After we have done our best, success in wintering all depends on the winter and success with juckages all depends on the spring. Personally, until I get more experijuciagestich may change my views, I am willing to do the most of my ace which with packages. That is, the colonies whose queens are not oftcening wintering will be allowed to die with the queen. Good, young whth wintering queens coming north with packiges inmer and winter, and build it up for pp the colony, carry Naturally some requeening will be done during the second crop, course of swarm prevention, and in the hive without the sekeeper's knowledge. So I shall count on wintering from sixty to jeekeeper's knowledge. sonies and making ap the other thirty or forty seventy per cent of the jer cent with packages.
The whole system will greatly reduce labor, both by dividing fall and pring work and by simpilfying summer management. Given plenty of room at the right time there is far less tendency to swarm in package colonies. Then, once the honey flow is well under way, the loss of the colony queen is not such a vital matter as when the numbers must tept ip for winter. A story is told of a Galifornia beekeeper who gave hin method of requeening as follows: He killed all his queens and then went hunting. That was a rough and ready way, but it might have some place in the system we are discussing. A colony that loses figueen toward the close of the honey flow goes on working fust about suell whe it is bullding cells. In fact the stoppage of egg layfng s well whe for which beglas in three days to cut down the consumption of larval food which allows more honey to be, stored. Of course when the virgins begin emerging swarming may take place and the hive may be left weakened or hopelessly queenless. If the killing of the queen is so timed that surplus storing is past by then we may have a strong requeened colony or a queenless one, but in either case the present crop is slightly affected if th all. Now a check up will discover requeened colonies or broodless ones to be treated accordingly.
At the final count up all brood combs are brought to the central plant and sorted, their topbars are scraped and the hives thoroughly cleaned ready for use in the spring. Bad combs go to the melting pot and good ones are stored away with the honey and pollen right in them, ready for he packares. We find this system greatly reduces our outside work in the fall and gives employment to the permanent help in spring.

ULTRA VIOLFT RAYED QUEENS

Clifford F. Muth, Cincinnati, Ohio
About two years ago the first experiments on treating bees with ultra violet rays began in Cincinnati, or in the world so far as we know We knew nothing about ultra violet rays then, nor do we want to leave rou with the Impression that we know all about it now. I for one am still in the honey business and feel sure that if I knew all about ultra folent rays and their effect upon animals, Insects, human beings, foods and plant life, I would have changed my occupation.
In order to lave a full knowledge of our own particular line of work we must have an open mind in the achlevement of science and work of others or we become otd-fashloned. The moment that Mr. Balfnkin inguired at our office about bee supplfes I had a feeling that he was not an amateur beekeeper and it was but a matter of moments until we had gained each others confidence and he explained that his interest In bees was to see what scientiffo effect ultra vfolet rays wonld have on the colony. Mr. Balinkin is a graduate student of the University of Cinclnnati working for his Ph. degree. Going briefly finto his history he was born and raised in Russia and went to Turkey and graduated from the Roberts College at Constantinople, specializing in physics and more especially IIght radiation. A Cincinnati professor at the Roberts Coilege at the time induced Mr. Balinkin to come to the United Stater and continue his research and study here.

With Mr. Belinkin's knowledge of ultra violet rays and mine of bes we agreed to do some experimenting together. I will give you the summary and results of our first experiment. You must understand before we go any further that we had many failures but our successes ortwimbered our fallures so that we were always making some progres with each change of treatment. Sometimes we would go quite fry before we would have a slip and we would slide back but not all the way. Now we have our treatment to the point where we can say wilthout fear of contradiction that a queen bee treated by these methods that we now use show an average increase in egg-laying between 10 and 41 per cent above the normal untreated queens and that the offspring from these queens are extremely gentle.
Our first experiment was to take five new hives with full sheets of foundation and placed in each hive a two-pound package of bees and as untested Italian queen. The colonies were fed equal amounts of syrap. The queens were sisters, being raised from the same breeding queen The length of treatment was a matter of guess at first. They all recefred three treatments except the first one which was kept as a control queen and colony for comparison. Two of the queens received five and ten minute treatments of ultra violet rays, the other two queens received five and ten minute treatments of infra-red. Carbon are lamps were nsed

with Impregnated carbons which the manufacturer, National Carbon Company, manufactured for the purpose of creating the maximim amount of ultra violet rays and still another carbon to transmit the maximum amount of Infra-red. These two rays are the opposite invisfbit rays on either side of the spectrum. Picture in your mind the rainbow with its red, orange, yellow, green, blue, indigo and violet. The explana fon of the rainbow is that sunlight is split up or divided by passim: through millions of rain drops which act as prisms. Ultra violet is invisible beyond the indigo, the infra-red is invisible beyond the red.
Ultra violet is today used by many physicians in the treatment of ohtldren who have rickets. Ultra violet produces red corpuscles and increases the amount of calcium formed in our bodies. Infra-red on the other hand is a stimulating light, it is used by physicians on patients other hand is a stimulating light, it is used by physicians on
who have low blood pressure or a weak heart, or where there is a who have low blood pressure or a weak heart, or where the condition of improper circulation of the blood. If you take a treatment condition of improper circulation of the blood. If you take a treatmeal
of infra-red you get up feeling "full of pep." To recefve a treatment of ultra violet rays gives you a feeling of restfulness.

With weekly inspections these results were noted on our first experiment. The untreated queen lald beantiful full frames of brood and lot. If. The two ultra violet treated queens were a big disappointment. the one recelving three ten-minute treatments fell way below normal or egg-laying and at the end of the fourth week was superceded. the five-minute ultra vioiet queen showed an increase in egg-laying up to about the fourth week and then began falling off until shortly befor the seventh week she was also superceded. The two infra-red treated the seventh or oun masint amon of manami

queens showed much better results. The five-minute infra-red had an crease in eqg-laying of 10 per cent at the end of the sixth week. The minute infred It the end of the eighth week.
My suggestion to Mr. Balinkin was to pursue the infra-red treatment and drop the ultra violet but Mr. Balinkin had a more thorough knowledge of ultra violet rays and said that it was just a matter of finding the llmit of the ultra vfolet radtation which was beneficial and iliterink out the balance. It was also a matter of exposure, it may have been $t 00$ long. You are no doubt familiar to some extent with the X-ray. Xrays are another form of light radiation but of a much shorter wave (agth than uitra vfolet. For atr example let us think in terms of radio. If your radio is built like mine we receive the stations broadcasting on the shortest wave lengths near zero and as we increase the turning of our dial we get stations of higher wave length to the maximum of 550 Gelari. Now in tichi rattatton X-ray is on a defintte wave length of only six angstrom-units (which is a different way of measuring than in meters) This you will see is very short waves. Ultra violet rays re limited between 2.700 and 3.000 angstrom-units. Then above $\mathbf{3 , 0 0 0}$ AT these comes the series of violet, indigo, blue, green, yellow, orinte ind red up to 8.000 series ohere infrared begin. As Mr Balinkin sug. estad we had $8,000 \mathrm{~A}$. U. Where infra-red begin. As Mr. Balinkin sugmately a quarter of an inch thick, in fact it looked like a very poor mately a quarter of an inch thick, in fact ins because it has numerous air bubbles in it. This was to Whit of glass because it has numerous air bubbles in it wave lengths less than 2,700 angstrom-units because we felt that we were getting some radiation which was approaching the Xray which were sterilizing our queens. The filter worked most satisfactorily. Ultra violet rays cannot penetrate through window glass, but it can pass through quarta.
On our next experiment we changed the source of light, using instead of the carbon arc, a quartz mercury lamp. With the radiation of this lamp for three minutes upon your skin you can recelve a burn without havisg felt heat which will mark you for a long. long time.
With our next experiment worthy of note we decreased the time of exposure from five and ten minutes down to a matter of seconds, the frat day, the queens recolved fifteen seconds, the second day was a day of rest, the third day thirty seconds treatment, fourth day a day of rest and on the fifth day ninety seconds. Femember that the quariz mercury lamp was used with the filter eliminating the short waves. These queens Feri given to colonies on the same basis as the first experiment, afways keeplag an untreated queen and colony as a control. With this experi-
ment there was a steady increase in egg-laying on all of the treated colonies until at the sixth week there was a 30 per cent increase in ags-
laying over and above that of normal. laying over and above that of normal.

To check upon this, 200 treated queens were sent out to almost that many beekeepers, several beekeepers receiving two or more queent and they were given a chance to see for themselves the increase in er? laying if any. Just about this time when Guy LeStourgeon, the editer of Beekeepers' Item, (who had been publishing our experiments durin: this period), came to Cincinnati, Mr. Balinkin and myself simuls during discovered something else among these treated bees. My discouly happened thls way. We were glving a Iive bee demonstration discorery show in Cincinnati and I was getting bees out of the yard for that pood pose. Not wishing to disturb any colonies which we had under ohserr pose. Not wishing to disturb any colonies which we had under obserre tion I was drawing the bees from an untreated colony. It was a bad day and the bees were inclined to sting. After the bees were sately In a shipping box, the uitra violet treated colonies were given anothet Weekly inspection and to my utter dismay these colonies, even in the face of adverse weather conditions, were absolutely harmless. Let the repeat again that all of the queens in our yard came from the same breeding queen and for that reason should be as near alike is it is possible to recelve them. I replaced the untreated bees with framet of treated for the shows. During the course of the week twenty-one demonstrations were given and with most of these I was assisted it the cage by my son, who at that time was four and a half years old Remember, this was last August a year ago. Neither he nor myself received any stings except those stings which I actually eansed the bee to part with its stinger in order to convince the people that they really were bees and capable of protecting themselves.
Immediately we sent out questionnaires to the beekeepers having thest 200 treated queens. They had been divlded into five lots and each recelving a different treatment. Among the numerous questions that were asked these were the results of the best lot which treatment we have since adopted. Elghty-one per cent of the queens showed an increase in egg-laying from 10 to 40 per cent and the offspring were extremely gentle. The remaining 19 per cent either increased esf laying or extreme gentleness. Any that were doubtful as to the results laying or extreme gentieness. Any that were
of either were included in this 19 per cent.
Reallzing that so large a claim would be difficult to convfrice thot Realizing that so large a claim would be difficult to convince thots
sands of beekeepers many of which were older in bee experience thas sands of beekeepers many of which were older in bee ex
myself, I reallzed that further proof would be necessary.
I had know that the Cyprian bees had a reputation of being wondurfal honey gatherers but not used to any extent in this country because of their disposition. I attempted to Import some from the Island of Cypris In the Mediterranean Sea through the Department in Washington bs Mr . Hambleton was out of town at the time, and before we were is communication again I found that 1 could secure some pure Cyprians from a queen breeder in Oakland, California. This arrangement wit made and they were sent to me at Cinclnnati by aeroplane mall, arrivist at our office in thirty-eight hours from the time they were placed in the postoffice. The offspring from one of these queens were the hees which I had used in my demonstration at Xenia, Ohio, in August and at fin other conventions prior to that through the state of Michigan and sou have my word for It that with these Cyprian bees flying promiscuonsly in the open yard, in the schoolroom and on the lawn at the differebi places, there was not one of the audfence nor myself who received i sting. These Cyprian bees were not baby bees, the queens were intro duced into these colonies in early Jnne and at the time of the demos atration in August it was a rarity to find an Italian bee in the colots: stration in August it was a rarity to f

Part 2

Question No. 1-One of the most common questions asked Is: What offect has the ultra violet upon the second or third generation? Answer-Our observation is Ifttle or none. That is to say, a quech
nised from a treated queen does not inherit these qualities which we parent queen.
Question No. 2-The next question usually brought up is: Are the ees prollif in honey gathering?
Answer-Yes, through numerous reports from beekeepers this season A whe hare at the present time some six thousand treated queens miang beekeppers, we have endless letters on file where they say that Wing of the shortage of honey this season due to the excessive rains harg the crop is from 25 per cent to 75 per cent during the molonles prodicing the largest amount of honey were from short and colontes prob ciag the I ean explatn it is in thfs way ntt I the aitra violetill agree that strong colonies will have more field bees believe you whe agres of than the weaker colonies. fild becs it is bound to There is a proportion which in my opinion is sate for beekeepers to work on and that is, if you double the number of bees in the colony you quadruple the amount of surplus honey, you increase your number of bees in a colony 30 per cent you practlcally will double your crop of honey.
Questlon No. g-Have we ever treated larvae or eggs or pollen with ultra violet rays?
Answer-We have and intend to do more work along this line in 1929. We treated a young queen cell all during its period of development, Keeping the frame which contained this queen cell in our office. You have seen a peanut that had three kormels in it. This is as accurate as I can explain the size of this queen cell. When the queen emerged and as I write this article I am running my finger back on the lead pencil trying to estimate the exact length of this virgin queen and in order to sitick entirely to the truth and not be tempted to exaggerate let it be sufficient that I say she was without doubt the largest queen that my father, several beekeepers who bave seen her, and myself have aver witnessed in our lives, She and the observation hive were taken out to our becyard and opened but she never returned to the hive after solng on her flight and Mr. Balinkin and myself have made a solemn gromise that we are going to devote some of our time in 1929 to go further into this particular experiment.

Questlon No. 4- In what other Ines, if any, do they ise uttrit vlotet nys?
Answer-The poultrymen for the past two or three years have been axperimenting with using quartz mercury lamps in their hen houses tifis the winter pertig quarta frimermation that you ean recelye from their bulletins is that the hens show a much Increased egg-laying with the wae of these lamps. Bear in mind that ultra violet rays is a calolum bullder. Calcium is lime which is necessary for the development of the egs. Dalrymen are using lamps in the barns and their result is an lectente fir birtter fats.
Question No. 5 -Would exposing the queen bee to sumlight be beneIlelal?
Answer-No, because the quantity of ultra violet rays is so amall in the ordinary sunlight that the queen would be cooked from heat before the would recelve the stmount of mitra violet rays that she recelven under a lamp over a period of fifteen seconds.

Question No. 6-What effect. If any, has the ultra violet on drones.
Answer-Well, this is I suppose as important as treatment to the Tukein. We have not had time to do very much experfmentlig itong this phase but since Dr. Watson is successful with his artificial mating We expect to subject the male germ to the ultra violet before impregtating the queen artificlally, If We can secure Dr. Watson's co-operation on this the experlment will be carried onl fn 1929.
Question No, 7 -Have there been any other experiments besides yours an bees with ultra violet rays?
Answer-Last summer we read an article in American Bee Journal
of some Austrlan scientist treating the entire population of the colaty with ultra violet rays. His report is that the bees show an increase is
comb building from 150 to 200 per cent. comb building from 150 to 200 per cent.
Question No. 8 - Has there been any work done in treating honey to
itra violet rays? ultra violet rays?
Answer-Yes, at the Michigan State Agricultural College last sinter I secured some data on their method of treating different foods to plet violet rays. They kept record of the effect of these foods on white rin which had rickets and the foods that were treated with witra rits rays cured the rats of rickets, while the others which were given fle untreated food remained in this deformed condition. My experimit was carried on in Cincinnati through the assistance of Dr. Greenehent one of the leading chlld specialists. He put several children of riem condition in the free clinif on a part honey diet. He used both unradiated honey and the radiated. He was compelled to take all the children off of the honey due to causlig looseness of the boself which is more likely the result of the honey than of the radiationels. this result was noted through both the treated and untreated bonenf
Question No. 9-If it is possible to increase the production of hosen by means of these ultra violet treated queens, will not thls be a detriment to the beekeepers in flooding the markets still further?

Answer-While this is still far-fetched as a manufacturer 1 kov that profits increase as overhead decreases. If you can cut the cost of producing a hundred pounds of honey in half or nearly in half, or even 25 per cent you will still be ahead even though the selling price of that hundred pounds is reduced. If we can cut the cost of honey for enough to give syrups an equal break and have our cost of productlon sufficiently lowered so that we can afford to do this we will Increas our per capita consumption tremendonsly and make honey a staple profitable industry.

Question No. 10 -Can anyone treat their own queens?
Answer-In the first place the cost is an outlay of over a thousand dollars for equipment. Then again Mr. Balinkin and myself are appl): Ing for a patent process on this, not to make it a commercial affalr bat to keep someone who might have in mind of capitalizing upon this and excluding others from the benefit.
Question No. 11-How did you count the increase in egg-laying and count it accurately?
Answer-That is a very good question to bring up and I do not take It as a challenge. The method is simple-using a T square with raled inch divisions. The solid brood was a matter of arithmetic, the number of square inches times 25, which is the number of cells to one spuart inch. Then with the T square the remaining brood outside of the solld block of brood was subdivided into square inches again and multiplied by 25 . This sounds like a big job but with two working, one with paper and pencll and the other wfth the square we would flgure a colony is Afteen minutes.

THE PROPER TEMPERATURE FOR WINTERING OF BEES

V. G. Milum, Champaign, Illinois

The question of the proper or best temperature for cellar winterib of bees is one that has cansed a great deal of discussion in the be fournals of the past sixty years. Even at this time, with more emphasi being placed upon outdoor wintering, a review of the literature upas being piaced upon outdoor wintering, a review of the literature up wintering problems.

Many theories have been advanced for the different temperature claimed to be desirable for cellar wintering, but the great variation in most cases, 110 doubt, would have been greatly decreased had the vanow observers been working and abserving under similar conditions is
respects. Much of the evidence presented herewith is that of practial respects. Much of the evidence presented herewith is that of differid
beekeepers who have reported their results in wintering at
temperatures, while not being entirely scientific in all canes, must be considered in determining the approximate correct temperature for considering of bees in cellars or other types of compartments.
As previously stated, differences in temperature stated by various abservers were due to varying conditions, hence an attempt will be made to include a statement of the conditions along with the temperatures reported where possible. So far as the observations of the writer extend about the flrst definite statement as to the proper temperature for winlering bees was made by Carey writing in Volume 3 of The American Bee Journal in 1863. He sald that the cellar ahould be dry, dark, well rentilated, with the temperature as near 36 degrees Fahrenheit as posalble, since high temperatures canse restlessness. fie chaimed that bees consumed only half as much stores when wintered in unprotected places, but have the advantage of not breeding as early in the latter part of the winter and early spring. Our present day conception will the found to differ greatly from the fdeas of Carey.
Then followed a period of six years until 1869 before the question of cellar temperatures was revived. Lattner in giving the results of winterlng in the Amerlcan Bee Journal, suggested that the cellar temwintering in the not ko below $40^{\circ} \mathrm{F}$. while at $45^{\circ} \mathrm{F}$., the bees appeared perature shout which could be remedied by ventilation. Plerson* advised keeping bees in a dry, even temperature of 36 to 42 degrees Fahrenhelt. A. J. Cook, in making a report of the Michigan Beekeepers' Association convention of 1869 sald that all the beekeepers present thought that the best method of wintering required a dry, unfform temperature of 32 to 45 degrees Fahrenheit with good ventilation. In the same insue of the Amertean Bee Journal. Thomas declared that bees winter best in a semiformant state, best secured in a large cellar at a temperature of 35 to 10 degrees Fahrenheit, in which condition the least amount of food is required, hence the bodies are less distended and excrements more easily retained; the waterly substances from the bodies being carried off by evaporation at such a temperature, thus securing a more healthy condition of the stock. Under such temperature conditions, he said that the bees are able to reach any part of the hive to obtain food and the bees always come out in the spring healthy and vigorous.
In 1870, Dayton reported that for best success, he tried to maintain a temperature of $35^{\circ} \mathrm{F}$. in a dry, well ventilated cellar. Briggs reported standard of 40 to $45^{\circ} \mathrm{F}$. preferably as near $45^{\circ} \mathrm{F}$. as possible for December to February, followed by $50^{\circ} \mathrm{F}$. to promote brood rearing. He claimed that temperatures as low as $32^{\circ} \mathrm{F}$. caused too much conumption of stores with probable loss from dysentery. Two years later If 1872, Briggs contradicted his previous statement somewhat when he atd that if bees tre kept at 32 to 45° F., they will remaft almost dormant for the next three months and often for five months.
In 1873, Ronald recommended about 38° F, not below 32° nor above 42°. In 1874 , Quinhy reported good results at 42 to 50° F., and plead for beekeepers to make known thelr records on the proper cellar temperature. Sclentlfic gave his standard as about 45° F., because the bees were very quiet at 40 to $45^{\circ} \mathrm{F}$. Salisbury Insisted on $45^{\circ} \mathrm{F}$, in a good, dry cellar. Both Gleanings in Bee Culture and the American Bee Journal for 1874 have many references to the use of hot beds for purposes of ghving the bees a chance to fly to vold feces when neceasary ander cellar wintering conditions.
In $1875, \mathrm{P}-$ in commenting upon the observations of Newport siven in Philosophoical Transactions, published in London in 1837, said that he considered that a cellar suitable for fruit or as low as 28 to 30° P. was too low for beos, as hif bees with upward ventllation were most quiet at 41° F, then when it was either several degrees above or below

Unless otherwise etated, all references are from the Amerlcan Eee
Journal or Gteanings in Bee Cultore. When no Year is mentioned, the last previous one stated in the paragraph applles.
thin point. He removed his bees from the celliar fir the opring whes he could not keep the temperature below 48 or 49°.
In the prize essay read before the National Beekeepers' Association the colonfes at a He expressed the same idea in 1879 . In 1882 . Cook 35° or above 45° \% cellar wintering required a uniform temperature of 45° th successful 1889. Cook indfcated 38 to $45^{\circ} \mathrm{F}$, preferably the latter for Again is wintering.

At the North Eastern Beekeepers' convention in February, 1881, Dadant read an essay upon the successful wintering of bees in which smant other things he recommended that the cellar temperature should bons 45 or 43° F. when the bottoms are nalled on the hives. Newman be ported that at the close of Dadant's essay the following resolution re offered and adopted by the beekeepers present:
'Resolved, that as bees are natives of warm climates, that in
wintering them in cold climates, the requisites to do it succeasfull In 1894, Dadant reported that 42 , torature, and plenty of good honey., 46° In 1894, Dadant reported that 42 to 46° is best for wintering: at 40^{*} or less, activity causes consumption of stores with resnitant diarrtien, while at 48° or above the bees are uneasy and the queen starts laying If this high temperature is continued for a few days. For these reasons he preferred outdoor wintering.
In 1882, Dzierzon, in his Rational Beekeeping, said that the cellar need not be frost-proof since $10^{\circ} \mathrm{R} .\left(91 / 2^{\circ} \mathrm{F}\right)$) does no harm to the bees, yet at another point he suggested that a temperature kept about the freezing point might be best for the bees. Frith reported good results at 40 to $18^{\circ} \mathrm{F}$; Jones gave 43 to 46° as desirable, saying that in no case shoutd it fall below 42°. Train in 1888 , preferred 44 to 50°, never below 40° which he sald is sure to cause dysentery.
Thielman in 1885, reported successful wintering in a cave at temperature of 40 to 42° Fahrenheit, while most colonies left on their summer stands perished during a winter when the outside temperature dropped to as low as 35° below zero. The next year Thielman warned againet wintering at high temperatures of 65 to 90° Fahrenheit and again stated hls ideal of 42° Fahrenhelt. In 1892, Thifelman gave 40 to $45^{\circ} \mathrm{F}$, along with pure air as the requisite of a good bee cellar.
Heddon in 1885 and later in 1891, expressed the Iđea that when the temperature falls below a certafn point, usually $45^{\circ} \mathrm{F}$, in the hive, the bees add to the heat-producing method of consumption of oxygenized food that of producing heat by exercise, which means waste of tissue and the consumption of tissue making good, nitrogeneous food or pollen which clogs the intestines and produces disease where long confinement Which clogs the intestines and produces disease where long confinement
follows. For successful wintering he suggested honey free from pollent follows. For gnccessful wintering he suggeste
or sugar syrup and a temperature of $45^{\circ} \mathrm{F}$.
In answer to a query in the American Bee Journal in 1885 as to the proper temperature for bee-houses and bee cellars, various beekeepers gave the following answers:
Heddon-Such ventilation, temperature and humidity as the bees re maln most quiet;
Miller-My cellar Indicates about $40^{\circ} \mathrm{F}$., but that temperature will vary, being the temperature at which bees remain the most quiet;
TYnker-Somewhere between 40 and $50^{\circ} \mathrm{F}$., where the bees remati the most quiet;
Doolittle -43^{\prime} to 45°
Hutchinson-That temperature at which bees are most quiet:
Dadant and Son-At 42 to $45^{\circ} \mathrm{F}$
Writing the same year, Alley quoted Barber who safd that if the wure compelled to winter in a dry cellar, he would drench the bottom thoroughly with water before the bees went in and not allow the temperature to go above $50^{\circ} \mathrm{F}$,

[^0]In 1885, Doolitule suggested a cellar temperature not lower than $43^{\circ} \mathrm{F}$ In 1892, he wrote that he preferred outdoor wintering in chaff-packed hives uniess a cellar maintalned an even temperature of 41 to 1894. Doolittie reported sur 42 to $50^{\circ} \mathrm{F}$ with a temperature of 44 to $46^{\circ} \mathrm{F}$. in 1902 , Doolitie gave 42 to $50^{\circ} \mathrm{F}$. as desirable for cellar wintering. That Dooldte varied his statements of the limits of the proper cellar temperature is shown by the fact that in another article, published the same year, he suggested 44 to $48^{\circ} \mathrm{F}$. Writing in 1906, Doolittle said that cellar wintering had proven to be the best plan because of the even temperature maintained which means litle consumption of food to keep up the warmth during the winter period of partlal activity, the small amount of waste materials being easily contained in the bee's body.
In 1886. Tinker gave results of his observations on clusters of bees and concluded that 41° F. was the right temperature for wintering bees or for perfect "hibernation." Hewltt reported results of varying the temperature of the cellar in which he decided that $42^{\circ} \mathrm{F}$. was the best temperature "hitsernation" with a range of 40 to $44^{\circ} \mathrm{F}$.
point for "hibernation, Cheshire in his book published in 1886 recommended $40^{\circ} \mathrm{F}$. as most favorable for wintering since the bees exert the least effort when the favorable for wir is at that temperature. Hatch preferred not much surrounding air is at that temperature, Hatch preferred not much
over $45^{\circ} \mathrm{F}$., but not lower than 40° nor higher than $50^{\circ} \mathrm{F}$. Hatch later over 45° F., but not lower than 40° nor higher than $50^{\circ} \mathrm{F}^{\circ}$. Hatch colater
reduced his limit somewhat for in 1895 he recommended a controllable reduced his limit somewhat for in 1895 he recommended a controllable
temperature of 40 to $45^{\circ} \mathrm{F}$. Again in 1906. Hatch said that an even temperature of 40 to $45^{\circ} \mathrm{F}$. Again in 1906, Hatch said that an even dogree preferably 45° is best for cellar wintering, although a rise to
50° toward spring seems to do no harm, as well as a drop to 40° if the latter does not continue longer than 24 hours.

In 1886. Woodward Indicated good results at 65° F., yet his conclusions have not been born out by actual experimentation. McLain, from observations previonsly quoted, approved a temperature of $44^{\circ} \mathrm{F}$. for cellar wintering.

In 1886 , Miller suggested a cellar temperature of 48 to $45^{\circ} \mathrm{F}$. Miller, In 1895, In answering the question as to why bees could stand lower temperatures outside than in the cellar said he thought that it was due to the occasional opportunity for flights. While 38° is considered as a danger point in the cellar, Miller sald that we think it is all right if the tempersture drops to 15° or 20° or occasionally zero. He reasoned that slnce where air is close and impure the thermometer nust stand higher to keep human occupants warm than in a room with fresh, pure higher to keep human occupants warm than in a room with iresh, pure itr, that the same was probably true of the bees. $45^{\circ} \mathrm{F}$ is a desirable temperature for cellar wintering beplained that $45^{\circ} \mathrm{F}$. is a desirable temperature for cellar wintering be-
cause of the temperature of individual bees of $80^{\circ} \mathrm{F}$, or more which cause of the temperature of Individual bees of $80^{\circ} \mathrm{F}$, or more which
warmed up the air near the cluster to supposed deslrable temperature warmed up the air near the cluster to supposed deslrable temperature of $50^{\circ} \mathrm{F}$. necessary for safety to individual bees.

Miller, writing upon the question of cellar wintering in 1913, pointed out some of the reasons for varlance of desirable or successful cellar temperatures as reported by numerous writers. Among them are Im perfect reading of thermometers, judsment of degree of quietness even by the same writer on succeeding days, difference in temperature at different levels in the cellar, and possibly the number of colonies that were "waking ip." He reported that on succeeding viaits to his bee cellar, different colonies were nofsy, and the number varied from time to thes, suggesting that nofsy spefls were only natural and might not Indicate anything wrong. Milier was sure that the bees were quieter at 45° than 64° and that the point of greatest quietude was somewhere near $45^{\circ} \mathrm{F}$. In 1919, Mitler safd that the latent investifations appear to show that about 50° to 55° fs best temperature for cellar wintering, probably basing this statement upon the report of Philijps and Demuth mentioned later. However, he again stated that the particular degree Ir not as Importanit as that the temperature is that at whtch the bees remais qulet in a perticular cellar.
In 1888 . Boardman placed the proper cellar temperature at 32° to 50^{*}
or 55° F. as a maximum, and 60° as the extreme of high temperature.
In 1895 , Boardman wrote that he preferred a temperature In 1895 , Boardman wrote that he preferred a temperature slightly below 40° F. until brood-rearing was evident in the spring when be wint oc the cellar temperature raised to 50 or 55° by artificial heat.
Tyrrel, in 1888 , gave 32° to 38° F., never over $40^{\circ} \mathrm{F}$., as the desinable
cellar temperature. In 1888 . Holterman stated that bees appen to cellar temperature. In 1888, Holterman stated that bees appear to winter well at 45 to $50^{\circ} \mathrm{F}$., but he admitted that it might not be the best Pearce wrote that he regulated the cellar temperature at 42°. F , as as, that point the bees came nearest to hibernating. At the Michigan as vention in 1891. Mrison recommended for proper cellar wintering eonabundance of food, a dark, dry cellar, with a temperature of ohong an to be maintained from the beginning of settled cold weather in the 45°, to the beginnfig of settled warm weather in the spring. Hutchinson wrote that a temperature of about 45° enabled bees to bear a much longer confinement than does a temperature below freezing. In h/s book, Advanced Bee-Culture, published in 1905, Hutchinson considered book, Advanced Bee-Culture, published in 1905 , Hutchinson considered
40 to 44 degrees best for his particular cellar. if the bottom boards were 40 to 44 degrees best for his particular cellar. If the bottom boards were
removed. He referred to an article in an early number of the Bee removed. He referred to an article in an early number of the Bee
keeper's Review by Taylor who expressed the opinion that no one can keeper's Review by Taylor who expressed the opinion that no one can
determine, other than approximately, the best temperature of another man's bee-cellar. Hutchinson then related various factors which had to be consfdered in determfning the proper temperature. However, he thought that every normal colony could be wintered in an ordinary hee cellar in which the temperature ranged from 32° to $50^{\circ} \mathrm{F}$.
The Amerlcan Bee Journal for December 24, 1891, page 808, gave the answers of varlous heekeepers to the question. "At what temperature shonld a cellar be kept when the bees are in It?" The answers bricfly condensed with the temperature expressed in degrees Fahrenheft were as follows: Mahin-at about 45° : Dadant and Son- 42 to 46° : Hamas follows: Mahin-at about 45°; Dadant and Son- 42 to 46° : Ham-
haugh- 38 to 45°; Doollttle- 42 to 45° : Tavlor- 42 to 45° : Brown-haugh- 38 to 45°; Doolittle- 42 tn 45°. Tavlor- 42 to 45°. Brown-
45 to 50°. Cutting-If a drv cellar, 38 to 40°. If damp. 42 to 45° : Pond45 to 50°; Cutting- if a drv cellar, 38 to 40°. If damp. 42 to 45°; Pond-
bee books give 35 to 50°; Dlbbern- 45°. If dry, 40°, If damp, 50°; Mason- 45° In a dry cellar, hiaher preferable in damp: Secor- 40 to 45°, 48 or 50° for a short time if dry will not hurt: Harrison-the tempera: ture at which the bees are most qufet: Miller the temperature at which bees remain infet. 25 to $50^{\circ}, 45^{\circ}$ Is orthodox point: Meddon- 10 tn 50° debending on humidity, the polnt at which bees are most quift: Cook40 to 45° : Tinker -41 to 45°, never below 41°, except with warm cushons over the brood nest when 38° for a few davs does no harm; the edlfor: Newman-at about 45° or as keeps the bees in quietude.

In 1892. Brose safd an even temperature of 45 to $50^{\circ} \mathrm{F}$, was desitahla for wintering, withont onnecessary disturbances, and the hive in condfflon to absorb all molsture generated by the bees. Jolnson sald that flon to absorb all moisture generated by the bees. Jolnson sald that nvery exmerlenced beekeeper will advise keebing the cellar 45 whrm as possible or from 40° to 45°. Lower sald that winter quar
not have a temperature higher than 47° to keep bees quiet.
Paldridge. in 1894. was satisfled with a temperature of 40° to 80° in his perfectlv dry cellar. Elwood. In 1895 , thonght that 42 to 45° was nhout rimht for the averame cellar although be sald the temnerature named hv तffferent authors varled from 38 to $50^{\circ} \mathrm{F}$.. which ha sugrested was vohably due to difference in humidity, Griffin. in 1898 reomp mented an even temmerature of $4 n$th 45° for snccessful wintering, or a temperstire nt which bees could be kept quiet without artificial hent
In 1907. Alexander wrote that the best success that they ever had in cellar wintering was in cellars where there was rinning water at a temperature lent at 45 to $48^{\circ} \mathrm{F}$. He sald that at beekeepers' meatings many vears before. It was renerally acreed that bees wonld winter well at a temperature fust above freezing, if the onlonies were well protected In donhewalled hives, ont in single walled hives with bottoms remored and only a cloth over the top of the frames, then the cellar should be kent at 45 to $48^{\circ} \mathrm{F}$
In 1911. Byer reported successfal wintering by a Mr. Davidson in a
dry cellar at a temperature of 35° F., thls befng secured by window ventliation until spring, when the temperatures ran somewhat higher in reply to Byer, Miller suggested that Davidson's thermometer might he reading low or that the abundant supply of fresh air might be making he readg difterence or some particulars in the management. He cantioned the big difreepers to stick to the orthodox 45° F. as testiffed by thousands of beekeepers
Root in 1910, stated that "our theory," apparently that of the Roots", Root in "When the temperature is between 40 and 45° the bees go was that, into a state When it goes abover vitiated and uneasiness follows which is manifested which soon by roaring. Uniess the cellar temperature can be ieldotion in in , said a degree or two of 15 , the temperatire of a bee-cellar was $45^{\circ} \mathrm{F}$, but that formerly the proper temperature of a bee-cellar was 45° F, but that there was a tendency toward a higher temperature say 50 dezrees," He says that 50 degrees requires plenty of fresh air, while $45{ }^{\circ}$ F . is better with less ventlation. The interchange of bees from the Fintifide to the inside of the cluster is also described by Root in this same article. Root in 1918 quoted Running as saying that best results in ellar wintering are obtained where the cellar varies from 43 to 47°. Root concluded from other interviews with beekeepers that an average of $45^{\circ} \mathrm{F}$. was about right since the temperature of the bees approached nearly the temperature of least activity or $57^{\circ} \mathrm{F}$. He says that in ater years there has been a tendency towards 50 to $55^{\circ} \mathrm{F}$. because lower femperature cannot be maintained in house cellars. In their own oxperience, with a temperature variable from 40 to $65^{\circ} \mathrm{F}$, he found that harger amount of ventilation was necessary especially at the higher mperature, but he reported excellent results at temperatures of 55 temperatu
to $60^{\circ} \mathrm{F}$,
In the 1923 edition of A B C and X Y Z of Beekeeping, Root and Root say that a temperature of $57^{\circ} \mathrm{F}$. in the cluster is the fdeal. They say also that the average temperature recommended for bee cellars is about $45^{\circ} \mathrm{F}$. but it may be as low as 40° or as high as $50^{\circ} \mathrm{F}$, depending on conditions in the cellar, even up to $60^{\circ} \mathrm{F}$. If the cellar is constantly rentifated. They suggest that a temperature $52^{\circ} \mathrm{F}$. which will result in a cluster temperature of 57° F.. should be maintained on the bottom hoards by incrasaing or decreasing the size of the entrance, probably basing their conclusion from interpretations of the observations of Phitips and Demuth, reported in U. S. D. A. Farmers' Bulletin 93.
Phillips and Demuth in "The Preparation of Bees for Outdoor Winering" (It S. D. A Fermers' Bulletin 1012) suggest that a temperature of $500^{\circ} \mathrm{F}$, on the bottom board is desirable and that the entrance shonld be 10 arranged as to prevent drafts so that at no time should any part of the lilve fall as low as the freezing point. In "Wintering Bees in Cellars" (U. S. D. A. Farmers' Bulletin 1014) they claim that the comCellars" (U. S. D. A. Farmers' Bulletin 1014) they claim that the com-
moniy stated femperature of 40 to $45^{\circ} \mathrm{F}$. Is colder than fs usually best monly stated temperature of 40 to $45^{\circ} \mathrm{F}$. Is cofder than is ukualty best lor finest results. They declare that a temperature below $40^{\circ} \mathrm{F}$. In the cellar is invariably bad for the bees and that freezing temperatares are not it for the bees. These authors found that the bees did the least amount of work when they were fmmediately surrounded within the hive by a temperature of $57^{\circ} \mathrm{F}$., which is best obtained when a temperature of $52^{\circ} \mathrm{F}$. is registered by a thermometer just inside the hive entrance with the cellar at about $50^{\circ} \mathrm{F}$. or slightly higher. They say that if the temperature of the cellar drops to 45 or less, It will be best to have the covers of the hives sealed on tightly and the entrance reduced to three-elghths inch by 2 inches, while at temperatures of 50 and above the entrances may be left open the full width. At $45^{\circ} \mathrm{F}$, the ops at least of the uppermost hives in a plle may be protected by cuthions of chaft.

[^1]Phillips in his 1919 edltion of "Beekeeptig" expresses the same idea in part, but in the latest or 1928 edition, he says that it would be as vantageous to raise the cellar temperature to $50^{\circ} \mathrm{F}$. or above were it not for the fact that at higher tomperatures, the relative humidity of the cellar is usually too low causing activity and excitement of the beens In 1918 Demuth suggested that behavior of the bees is a better fodt. cator than a thermometer to determine the proper temperature for the cellar. This writer suggested that while $45^{\circ} \mathrm{F}$. is considered all right for the early winter, the temperature should be kept lower in the latter comfort. The best then the bees are generating heat because of dis comfort. The best temperature for cellar wintering was given by Demuth as that just below the temperature at which the bees form a rather loose but definite cluster, varying between 55 and $45^{\circ} \mathrm{F}$., according to the time of the winter, the degree of quiescence, the cellar, styles and
sizes of hives, and size of the colonies, sizes of hives, and size of the colonies.
M. G. Dadant, in "Outaplaries and Their Management," indicates is to $50^{\circ} \mathrm{F}$. as suitable for cellar wintering. C. P. Dadant in "First Lessons In Beekeeping," suggests 40 to $45^{\circ} \mathrm{F}$. for a ventilated cellar, with 25 to 30 pounds of good stores per colony. In his "Dadant System of Beekeeping." Dadant gives 42 to 45° F., but suggests that it is best to find the temperature at which the bees are most quiet. In 1922, Dadant gave the limits as 42 to $48^{\circ} \mathrm{F}$., and again suggested that the intetant of the bees is the best indicator for the proper temperature for cellar wintering.
Abshudy in the "Bee World," 1919, suggested maintaining a temperature of $45^{\circ} \mathrm{F}$. in the air chamber of an "Incubation Hive by means of electricity, since this will mean less food consumption to ralse the of to the desired cluster temperature of $65^{\circ} \mathrm{F}$.
An anonymous writer in the American Bee Journal for September, 1919, reported the loss of all but about 20 colonles of 109 colonles, fall count, when he attempted to winter at high temperatures as suggested by the results of some previons investigation. However, the femperi: ture of his cellar was at $62^{\circ} \mathrm{F}$. when he discovered that the bees had practically all deserted the hives.
Miss Wilson of Marengo, Minois, in answering questions in the Amerlcan Bee Journal, 1919, regarding cellar wintering sald that Phillips had shown that 57° F. was the temperature in the hive that the bees Mhed best for good wintering. Miss. Wilson suggested that the temperaturs should be kept not below 50°, although bees have wintered well at 45° F., allowing in enongh cool alr to keep at a temperature of $50^{\text {all }}$ to $55^{\circ} \mathbb{E}_{\text {a }}$ perhaps occasionally running up to $60^{\circ} \mathrm{F}$.
In 1919, in Bee World, Manley indicated that a temperature of 35 to 42° is favorable for wintering. In an edditorial of Gleanings in Bee Culture for February, 1921. Demuth stated that the exact temperature for the bee cellar depends upon so many things that it may range from 40 to $50^{\circ} \mathrm{F}$, but the cellar should be kept at that point at which the bees are most quiescent. In another article in the same insue Demuth suggested that since the bees maintain a hicher cluster temperature in the later part of winter they become more and more suscepthle to higher cellar temperatures as the winter progresses, which sometimes make it necessary to lower the temperature of the cellar as spring appronches.
Wilson reported that "During the winter 1917-1918 it was noticed that wherever the cellar temperatures were below $40^{\circ} \mathrm{F}$, nothing conld be seen of the bottom of the cluster, but when the temperature was abore seen of the bottom of the cluster, but when the temperature was abore 50 F. the lower edge of the cluster would extend below the frames to the bottom board and bees could be seen moving thout more or less freely. It the cellar temperature rises to $60^{\circ} \mathrm{F}$. or above the bees miy be driven to cluster outside the hive. If bees in storage are kept if ahsolute darkness and the temperature is held at a constant range of
U. S. D. A. Eulletin ind Demuth, Goo. S. 1918. Winterting Bees in Cellare
(rom 45 to 50°. F. the sike, shape, or location of the cellar makea little difference. With a few exceptions, Wisconsin beekeepers who have the lowest winter losses keep the temperature at from $45^{\circ} \mathrm{F}$, to $50^{\circ} \mathrm{F}$. the the temperature is kept at $50^{\circ} \mathrm{F}$. bees are not greatly affected by If the in humidity although the importance of bumidity in the cellar changeafect on the bees is not well understood." n
and its effect on theor "Der Warmehaushalt in Pienenyolk", pubArmbruster in his book Der Warmehaushait in Bienenvolk,", pubHished in 1993; attested that theory and practice indicated that a temperature of 7^{6} C. (44.6° F.) is desirable for cellar wintering in order that the reactions indicated by Lammert's tables might be set up. Jaeger reported that he wintered at $40^{\circ} \mathrm{F}$. since at higher temperatures, the stronger colonies broke their cluster and many bees flew out of the hives and were lost in the cellar. Again in 1925, Jaeger wrote that 42 to $43^{\circ} \mathrm{F}$. is a good average for cellar wintering, 40° for strong colonles and 46° for weaker colonies. Above 46° F., he said that bees break the cluster; below $40^{\circ} \mathrm{F}$., they eat too much.
Cale called attention to the investigations of Phillips and Demuth concluding that $57^{\circ} \mathrm{F}$, is an optimum temperature for wintering bees since at that temperature the been are apparently the quietest and the cluster produces little heat.
Atkins and Hawkins in the 1924 edition of "How to Succeed with Bees" recommended a cellar temperature within a few degrees of $50^{\circ} \mathrm{F}$., Dever below $45^{\circ} \mathrm{F}$.
Crane in a discussion in 1925 of the proper temperature for cellar wintering sald that reports of successful wintering gave varied temperatures from 32 to 45° and of late years 50° and even $60^{\circ} \mathrm{F}$, was recommended, but the important thing was to keep the bees quiet at recommended, but the important thing was to keep the bees quiet at colonies in the colder part of the cellar and the weak colonies in the warmer part thus adjusting them to their needs.
Milum in an article published in the 24 th annual report of the Illinois State Beekeepers' Association in 1925 suggested a dark, dry cellar, where the temperature ranges from 45 to $50^{\circ} \mathrm{F}$, as being suitable for wintering.
This revlew of the literature on the best temperature for the wintering of bees shows considerable variation of standards for practical beekeepers and other observers during the past sisty-Ave years. This range has varled from 32 to as high as $60^{\circ} \mathrm{F}$, or more due in part to persona! theorles, differences in conditions of observation and misunderstanding of published reports of temperature readings of eluster temperatures of published reports of
However, the older school of practical beekeopers years ago had almost all decided that the best temperature for cellar wintering was that at which the bees remained the most quiet. In general, they have concluded that temperatures of 42 to 50° F. Were about right for best results, with about 45 or 46 being the ideal. Varlations above or below this point may have been due in part to faulty registering thermometers, the location of the thermometer in the cellar, the number of the colonfes In a cellar of a particular size, the amount of ventilation provided, the type of hives, quality of stores, any disturbing factor, and the general conditions of the bees. Among the latter which may be mentioned are strength of colonies and proportion of young and old bees, as well as the time that the bees were placed in the cellar in relation to thelr last good cleansing filght. Likewise the method of handling the bees when placed in the cellar with the amount of excitement cansed is no doubt an fmportant factor influencing the condition of the bees and the consequent temperature at which the bees can be safely wintered.
With the discovery of the famous 57 , there was a consfderable increase in the temperature thought best for cellar wintering and consequently recommended until actual experience had proven the concloslons faulty.
EWingon, H, F, 1922 . Winter Care of Bees in Wheonsin. Winc. Agr.
Expt, Sta. Bul. 388, pp. $5-6,14-17$.

Phlllips and Demuth sald that when the coldest point among the bees reached 57°, the bees formed a compact ciuster, after which hest bee generated by rarlous forms of setivity and body metabolism. Thes authors did not say that $57^{\circ} \mathrm{F}$. was the temperature of the cluster, These authors did not say that ${ }^{\text {thelr records will clearly Indicate a higher temperature. This last, ast }}$ thefr records will clearly Indicate a higher temperature. This last, fact
has been substantlated by various other observers preceding and foilont has been substan
ing their reports.
ing their reports,
But many writers and speakers upon the subject of wintering immed. ately assumed, and only recently such incorrect statements have been made, that $57^{\circ} \mathrm{F}$, is the temperature of the cluster and that which the bees attempt to maintain. With this as a basis, recommendations started to come thick and fast that temperatures from 50 to 55 or eves 60° F. would be desirable and even practical. As a result many bet keepers were led to attempt cellar wintering at temperatures abore $50^{\circ} \mathrm{F}$. but found that disastrous results usually followed. It has heen the writer's observation that with temperatures up to 50° the bees in a cellar remained comparatively quiet but became restless and nolsy at higher temperatures even of short duration. This was especially true toward the close of the wintering period. These observations were made toward the close of the wintering period. These observations were made
on colonies wintered in modern hives with the full depth entrance on colonies wintered in modern hives with the full depth entrance
without upward ventilation, the inner covers being tightly sealed without upward ventilation, the inner covers being tightly sealed.
In spite of all that has been said in favor of higher cellar temperatures, beekeepers will do well to stick to the old standard of approxmately 45° Fi, maintaining the cellar at or as near this temperature ts possible.
Along with this temperature, other factors are maintenance of a dry atmosphere with adequate ventilation. The cellar should be completely darkened and all other disturbing factors eliminated.
The bees should be provided with winter stores of good quality coidsisting of white honey saved from the early part of the honey flow. Years ago it was advocated and is still recommended that the winter stores should be as free from pollen as possible. Likewise, honeys having a high dexirin content or containing honeydew are usually not safe for wintering in cellars or even with outdoor wintering, except in warmer elimates where good flight weather occurs at regular intervals. Poor winter stores should be eliminated by the feeding of sugar syrup.
Colonles should be so manipulated as to have a large supply of young bees. This can best be accomplished by young queens and plenty of room and stores to accommodate broodrearing after August 1-15. The beekeeper should study the weather reports for his particular locally and make arrankements to place the bees in the cellar stter the last good filght in late October or early November. The colonles should be placed in the cellar with as little disturbance as possible. After they pare auieted down, the full entrance should be given in cellars whase have quieted down, the full entrance should be
Thls temperature of $45^{\circ} \mathrm{F}$. in bee cellars will undoubtedly gire good results in future years as It has in the past if beekeepers will take dise resulis in future years as it has in the

"MR. BEEKEEPER AND HIS MARKETS"

Helen Harrison, Ames

"John, why on earth don't you get rid of those bees? They just cause an extra amount of work, and you aren't getting a thing out of them. You know you don't have time to peddle that honey around to the nelghbors and even at that you can't sell all that surplus honey you've been getting at a profitable price."
"Now, Ma, I don't blame you for gettin' kinda provoked bet I like to work with those bees and I still think that if we paid a little more attention to it when we were sending It, we'd make more money on our honey. Let's go see Mr. Paddock next time we go into town and mayber since he's state apfarist, he can help us."
This conversation took place between Mr. and Mrs. John Beekeeper
one night after John had come in tired out from his work with the bees. Their home was just a few miles from Ames and for several years they tili been tring thelr very small farm as an aplary.
The next day John went to town and having done all the necessary shopping, he drove out to the college. Lack was with him and he found F. B. Paddock in his office. John put his problem before him and F. B. Paded for an answer.
"I've been Interested in that phase of beekeeping myself and you've come at just the right time. Where have you been sending most of your honey?"
"To Chfcago. Can't say as I know why I dtd. Just seemed the most natural, I guess."
"Well, I'll show you what I can from the materlal I have at hand. The United States Bureau of Agriculture sends out a semi-monthly report so I've taken an average of the prices quoted there and made kriphs stiowing the ffuctuations in price. The prices vary so much in just one year that it is almost impossible to arrive at any conclusion. I have noticed, however, that for light or white extracted honey in 1926, 1927 and 1928, Kansas City has paid about one or two cents more per pound. Minneapolls and Chfago have run the lowest and St. Louts has almost equalled Kansas Oity, For the year 1928 as far as reports had come in. September 15 th, Kansas City averaged 103.5 cents per pound while St. Louis averaged $91 / 2$ cents per pound. This does not necessarily mieat that Kansas City is the logleal place to send your honey. Frelght rates must be taken into consideration.
"Another noticeuble feature has been the marked decline in prices "Another noticeable feature has been the marked decine in prices
for each succeeding year. Each market except Chicago has dropped at least one cent each year. Chicago dropped two cents from 1926 to 1927 but came up one cent in 1928."
"In comb honey there hasn't been such a difference in markets nor any noticeable falling off in price for the successive years as there was in extracted honey. But here, as in extracted honey. Kansas City has the highest, most itaple market. For 1928 the average price per 24 section case has been $\$ 4.00$, with St. Louis running a close second, paying $\$ 8.60$. These prices are all averages taken from sales on fancy white or No. 1 comb honey, but a fair Idea of the price may be obtained.
"th looktig up trelght rates i have foumd that from Ames, which is about the center of Iowa, the rate to Kansas City is 69 cents per hunifred, and to Chicago it is 73 cents per hundred pounds. St. Louls is high with $781 / 4$ cents per hundred pounds, and the Minneapolis rate if Th cents. That of course, fs the second ctass trefight charge if fioney is sent in glass or earthen containers or combs in pasteboard boxes. is sent in glass or earthen containers or combs in pasteboard boxes.
if the honey is shipped in any other way, two times the finst class rate It the honey
If charged."
e charged."
"Supply and demand may be a factor causing the difference in price paid at the varlous markets, but the reports would lead one to believe that Kansas City is the best market."
SOME FACTORS CONCERNING THE VALUE OF BEES TO FRUIT GROWERS FOR POLLINATION PURPOSES

R. H. Kelty, East Lansing, Michlgan

Thronghout the fruit belt of Michigan there is a rapidly growing interest in bees, not primarily for honey production, but for polination purposes. Several Years ago the Department of Horticulture, Michigan State College, undertook a study of the reason why some of the best orchards of the best varieties of apples, peaches, pears and sweet clerries, were giving unsatisfactory yields. In most cases these orchards had every renton to bent they were properly located, tilled, ferttlized and pruned. Various speclallsts had presoribed various treatments for further care, and yet the trees did not set profltable crops. Mr. H. D. Hootman, extension specialist for the Horticultural Department, noticed that these orchards were often composed of solld stands of one self-
sterile varlety, say iwenty acres of Mcintosh apples, or; the orchand might be composed of large blocks of two or three varieties which were elther self-sterile or inter-sterile. An old home orchard of four or five acres of several varieties might give a fair crop, even in the absence of careful management, within a short distance of these other orcharil In some cases, hives of bees had been brought into these orchards without marked improvement of yield, except possibly on the side of the orchard near a block of mixed varieties.
A study of these condftions by the hortfcultural department resulted in an experiment in pollination. In one eleven-acre orchard set solid to Northern Spy, in which the greatest yleld any season for eight years past had been 1,500 bushels, a truck load of "bouquets" of Ben Daris, Roxbury, Russet and Tolman Sweet blossoms were placed in tubs of water in an aplary of 40 colonies, right in the orchard. Also, about 40 half-barrel tubs were flled with additional "bouquets" and distributed through the portion of the orchard in which practically no crop had prevfously been harvested. Still other "bonquets" were placed in fucketn and hung in the trees. Six more colonies of bees were moved out into the orchard for the blossoming season and large "bouquets" were placed about ten feet in front of them. By bringing into the orchard the polleto from other varietles, which was carrled to the Spy blossoms by the bees, a fine set of fruit was obtained. As compared with the previom bigh yield of 1,500 bushels, that year the crop was 5,200 bnshels.
In a ten-year-old ten-acre peach orchard at Coloma, Michigan, which was originally planted to J. H. Hale only, cross-pollination was provided by replacfing dead trees with Elberta or South Haven. However, the crop had never been satisfactory, and in 1926 the total yield for the ten acres of orchard was about ten bushels of peaches. In 1927 twenty colonies of bees were moved in and the orchard harvested a one thowsand dollar crop.
Near Ann Arbor, Michigan, Floyd Markham, Ypsilanti, placed an aplary near an orchard of pears which had been blooming regularly for years, but which had never harvested more than elghteen bushels. The years, but which had never harvested more than eighteen busheis. The
These experiments were carried on in 1927 . As these results became known to fruit growers throughout the fruit-belt, some were skeptical, saylng that they had produced many crops without bees, and could get tlong without them still. Others belfeve that wild fnsects were ae wseful as the bees for pollination. Several at their own expense, erected cages of cheesecloth or screen around branches or whole trees. The matter was gaining much attention. Some fruit growers bought bees for thelr orchards. Many rented colonfes from beetcepers. In fact, it is enthmated that approximately six thousand colonies were rented for pollination in the spring of 1928.

An outstanding example of renting bees on a large scale is that of the W, R. Roach Company orchards at Hart, Michigan. This company rented two hundred colonies from Mr. C. J. Freeman of Mesick. The Roach Company furnished three of their own trucks and men to move the bees the distance of eighty miles to their one hundred fifty acres of apples and cherries. Mr. Freeman brought another truck load, and it was an impressive sight to see the four large trucks well loaded with screened colonies on the way. A good testimonial of Mr. Freeman's abllity is the fact that the hives were so well screened that even the "green" help did not get stang once in the operation.
A "caged" cherry tree in this orchard produced four pounds of cherries. Another cherry tree of the same age, in the same orchart, not caged, produced forty-four pounds of cherries. A "caged" appie not caged, produced forty-four pounds of cherries, a cased appe, forty tree in the orchard set twenty-five apples, while an uncaged tree, forn feet away, ylelded over 1,200 apples. The total crop of cherrieg wigh approximately two hundred sixty-five tons in this orchard. And, aithougn the $\mathbf{2 0 - a c r e}$ block of apples, solfd Mcintosh, has never yielded more thas
1,600 bushels, thls year Mr. Hootman's "bouquets" of other varlettes
of apple blooms, together with the bees for pollination, gave a crop of four thousand bushels of nice apples. Naturally, the W. R. Roach Company, are convinced of the value of bees in orchards.
Now, up to this time, this article has presented the fruit grower's stde of the question. It seems probable that there will be more interest in the use of bees in orchards this spring than ever before, and there

Top Limb- 1 spur out of 12 blossoming set frult 8 Lower Limb-7 spurs out of 20 set fruit 35% set
will very likely be a demand for rental bees that cannot be met by the beekeepers. The Horticultural Department estimates that about 250,000 colonfes of bees would be pecessary in Michigan's fruit belt orohards, to properiy pollinize the frult bloom of those varlettes whfeh need fertiliation to properly set and grow salable fruit.
But there is some hesitancy on the part of quite a fow beekeopers, who are approached on the bee-rental question. In the first place, the rental price is not clear profit to the beekeeper by any means, as it might seem at first glance. The arrangement made by the W:R. Roach Company with Mr. Freeman is very satisfactory. In this case the consideration was two dollars per colony rental, and the bulk of the expense nf moving the bees to the orchards and home agatn, was borne by the Roach Company. In the bargain, Mr. Freeman's hives collected about three tons of frult bloom honey, mostly from cherry, during the eleven days spent in the orchards, Mr. Freeman is well satisfied, the Roach Company is well pleased with the bargain, and it wortd seem that this type of an arrangement is a good basis for consideration of price for rental.

The beekeeper must be certain that damage from spraying and danger of contamination from foulbrood is reduced to a mfnimum before he can afford to move bees into a new district at any price. In this connection, the fruit growers, through their state organization, the Michlgan State Horticuitural Soclety, has been of great assistance in obtaining sufficient funds to carry on our foulbrood eradication campaign, for it 80 happened that the foulbrood situation was the worst in the fruit helt. And, now that the orchardists are coming to realize the value of bees for pollination, the danger of Bpray pofsonfng is befng redtrced to a negligible polnt.

The demand for rental bees may provide a new source of fincome,
of considerable proportions, for those beekeepers who will prepare to supply the reguirements. Obvlously, there must be a standard of eolony population for rental purposes. There should be some basls for cal. culating rental prices, under the many varied conditions to be met, for the mutual benefit of the beekeeper and the fruit grower.
In some cases the local fruit growers' exchange has assisted to the extent of "lining up" members who desire to rent bees so that the beekeeper can deal directly with the exchange, distributing the been to members as desired without the added effort of making separate arrange ments with each grower.
Another interesting feature of this rental proposition is the fact that blooming dates in the northern part of the fruit belt, especially aloss the shore of Lake Michigan, are about one month later than for the southern portion. Therefore, those equipped to move bees in quantly, could rent their bees three times in the same season, starting fn south: western Michigan and moving northward with the season at ten-day intervals. The colonies could then be returned to the original location or could be operated in northern Michigan for surplus clover, milkweed and sweet clover honey, as desired.
The difficulty experlenced in finding a reliable supply of rental bees has forced some fruit growers to buy bees outright. These individuals realize that they can afford to replenish the bees, in the form of packages, year after year, better than to get along without suffieient pollinat ing service. These new recruits to the ranks of beekeoping will have ittle effect on the supply of honey, however, for the type of soil which is most compatible for frult growing is in many cases nearly devold of nectar producing plants. At least there is a long perfod in summer when little or no nectar is available. The rapid increase of sweet clover acreage will correct this condition ultimately, however.
In conclusion, relatively few beekeepers are yet aware of the great In conclusion, relatively few beekeepers are yet aware of the great proportions attitude of co-operation already displayed by the organized fruit fine attitude of co-operation already displayed by the organized fruit
growers is sufficient evidence that a satisfactory arrangement can be growers is sufficient evidence that a satisfactory arrangement can be
worked out to meet the demands of the occasion to the mutual benefit worked out to meet the demands of
of both orchardists and beekeepers.

GRANULATION OF HONEY

Setek Ling, Ames
On account of the prejudice many people will not eat granulated honey regardless of its purity and, in many cases commercial bottlers suffer great loss. With this view in mind experiments were began in the fall of 1927. In addttion, the purpose of the experiments described herein was to determine the effect of agitation, addition of granulated honey. storage temperatures, the presence of air in the honey; blending and storage ing on granulation.
The comb and extracted honeys used consisted of 1927 crop of sweed clover honey from A. I. Root Company, Council Bluffs, Iowa. The comb honey was cut into strips of 3 by 1 inch. The extracted honey was heated to $158^{\circ} \mathrm{F}$. The heating was accomplished by placing the bottles of honey In is water bath, gradunlly rafafng the temperature to 158^{2} F. and allowing to cool immedlately. It was cooled to $100^{\circ} \mathrm{F}$. when it was bottled. The one-pound glass botties with metal screw tops in which a chunk of comb was placed, were filled to the top with the heated honey,

Thirty bottles were thus prepared, of which 3 were used as control and the rest were heated over again in a big pan with a wooden board of one-half Inch thick on bottom. The filled bottles were then set on the block and the water was brought up to the top. Three thermome ters, one with the bulb in the center of the pan, one in the middle of the bottle containing the comb honey and the last in one without any comb, were used.
The water in the pan was heated to $110^{\circ} \mathrm{F}$, and held at that tem-
peratare until both inslde and outstde temperatures were identicat. It was from this time on that 6 bottles were heated for $2,4,8,10$ and 12 hours reapectively. The same experiment was repeated at $115^{\circ} \mathrm{F}_{4}, 120^{\circ}$, 125°, and $130^{\circ} \mathrm{F}$.
Afl the samples were stored in the basement of Science building where there is a wide range of temperature from 35° to $70^{\circ} \mathrm{F}$. The results were tabulated in the following table.
Agitation: Two samples of honey were obtained by uncapping the comb and drained through the cheese cloth, and another 2 samples xere secured by ordinary extracting. Both sets of samples were placed is glass containers, covered and kept in the laboratory,
Addition of granulated honey: Four samples of the same honey were taken, of which 2 had granulated honey added, and were subject to the same conditlons as under agitation.
Various storage temperatures: Two samples of honey were placed on a shelf of an Interior store room in the basement of Sclence building, which has a range of temperature from 37° to $75^{\circ} \mathrm{F}$, and might be considered as cellar storage temperature. Another two samples were placed on a shelf in the apiary laboratory in which the temperature did not vary more than 5 degrees from day to day so that this might be termed "room storage temperatures." Still another two samplea were placed In the laboratory of which two were moved from outside the building to the laboratory alternating every other day.
The presence of air in the honey: Four samples were placed in the laboratory, of which two had air admitted by opening the covers once In every other day for 5 minutes.

Blending: Blending was only done with two honeys-sweet clover and sage-which were blended in the following proportions: Sweet clover 75 per cent to sage 25 per cent; sweet clover 25 per cent to sage 75 per cent; sweet clover 50 per cent to sage 50 per cent.
Observations were made on the honeys at frequent intervals. Granulation was judged by outward appearances. The first signs were usually erffenced by cloudfness of the sample or the settling of small granules.

Results

In six weeks the extracted honey began to have granules appear while the stralned honey remained IIquid and clear. On December 15 , the former granulated almost solld while the latter had granules scattered through the container.
Three weeks after the samples were prepared the one with granulated honey sadfed started to crystallize long before the other had hardly begun.

The difference in the beginning of the granulation of the various samples under the three storage conditions, did not vary markedly. Thts was probably due to the fact that the temperature condttons of the three places were nearly allke during the early part of the test. The honeys that started to granulated late under cellar conditions regulred a longer period to complete granulation than under varlable storage temperatures, and the samples under room storage temperatures required the longest period of the three.
thes and
Vnder variable storage temper
lation belng started storage temperatures the samples became solld, gramulation being started on October 2nd. Under cellar conditions, the samples were in various stages of granulation, but nelther of them were solfd by the end of the test and both had started to granulate at later dates than the corresponding samples under variable storage temperature, sranulation in this case started on October 29th. Under room temperature oniy one sample started to granulate but started on December peratures than the corresponding samples under variable storage temDeratures and cellar conditions.
When the different places of storage were fairly similar in tempera. tures, the corresponding samples of honey granulated at similar rates but when the storage temperatures ehanged markedly the rater of
granulation also changed. Gramulation made the most rapid progres under frequent changes in temperatures; it went on at an intermediate rate under the cellar conditions which was second in regard to low temperatures and made the slowest progress in room storage temperaturos which was the last in regard to low temperatures.
Probably the main effect of blending is to change the ratio of sugars. The blend of 75 per cent sage to 25 per cent sweet clover remained liguid for a longer period than elther with 50 or 75 per cent sweet clover.
The samples with air admitted began to granulate on November 1tth while the corresponding samples did not start untll January 5 th.
The set heated at $110^{\circ} \mathrm{F}$. from 2 to 12 hours started to granulate on December 4, at $115^{\circ} \mathrm{F}$, on January 4; at $120^{\circ} \mathrm{F}$. on March 10; at $125^{\circ} \mathrm{F}$. on July 12 and $130^{\circ} \mathrm{F}$, on July 28 .
The controls began to granulate in December and were heavily specked like snow flakes on March 10th and solid on bottom 1 inch thick on June 9, 1928.

Date	Temp. at $110^{\circ} \mathrm{F}$.						Temp. at $115{ }^{*} \boldsymbol{Y}$.							Temp. at $190^{\circ} \mathrm{F}$.					
	Duration, Hours						Duration, Hours							Duratlon, Houts					
	2	$4)$	6	8	10	12		41	6	8		10	12	2	4		8		H
Meptember 10.. (hea ted) (hea ted)																			
October 14 November 19																			
Deeember $97 . .$.January $21 . .$.																			
	${ }^{x}$	x			x	d^{x}	ery	tew	${ }_{\text {spe }}$	ckx ${ }^{\text {x }}$				ott	es 0		e Fe		
February 18...		nui			$\stackrel{\text { are }}{ } \times$	$\mathrm{d}_{\mathrm{x}} \mathrm{y}$	ery						x				ere		
	\times	x	${ }^{\text {x }}$	x	x	x	x			$\stackrel{ }{8}$			\times						
April 14.	Co	irse															day		
	x	\|	x		x	x	x	x	x	x		x	x						
May 12	Co	arse														COO	udy		
	$\stackrel{3}{*}$	\%	*	5	${ }^{x}$	x	$\frac{\mathrm{x}}{\mathrm{x}}$	$\frac{\mathrm{x}}{\mathrm{x}}$	$\frac{\mathrm{x}}{\mathrm{x}}$	$\frac{\mathrm{x}}{\mathrm{x}}$		\times	x						
	${ }_{x}^{x}$	$\frac{\mathrm{x}}{\frac{1}{x}}$		x	8	\times													
June $\mathrm{S}^{\text {a }}$	-	${ }^{5}$	x	x	\times	\times		\times	π	x		${ }^{x}$	${ }_{x}$	x	x	\pm	x	x	x
	\checkmark	${ }^{*}$	8	x	x	\times	${ }_{5}^{5}$	$\frac{\mathrm{x}}{8}$											
July F -.t	\times	${ }^{8}$	\%	x			x	x	x					\underline{x}	${ }^{x}$	x	x	I	*
	${ }^{8}$	$\stackrel{ }{ }$	\underline{x}	x	x	x	${ }_{8}$	\pm					\times	x					
Angust	$\stackrel{8}{x}$	$\frac{\pi}{3}$	$\frac{8}{x}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$			x		x					x	\pm	x	x	x	x
	$\underset{ }{*}$	${ }^{8}$	8		$\underset{ }{\text { x }}$	-	x	x	\underline{x}					X	x				
	${ }^{\text {¢ }}$	-						ott								e	10		

Date	Temp. at 12s F.						Temp. at $130^{\circ} \mathrm{F}$.									
	Duration, Hours						Duration, Hours						Sampler			
	2	4	6.	8	10	12	2	1	6	8	10	18	1			
September 10,Oetoter $11 . \ldots$November $19 \ldots$Deceminer 2\%...January $21 .$.			hea 1	ted					bea	ted			11 (Dnhested)			
													Cloody Granules appesmed Coarse specks appeate!			
February 18,																
March 10..... April 14.....													Coar			
April 14........			Clo	udy												
June 9._.c.a.				ran	ler								Heai	\underline{r}		
	$\mathrm{Gi}_{\mathrm{x}}^{\mathrm{x}}$	app	ear										Granul			
			es o			om	Gra	nut	es a	ppe	are	d,				
Aug			\times	x		x	X	${ }^{1}$				\times				

Note: $\begin{gathered}x-\text { SMghtly gramulated. } \\ x x-\text { Moderately mrannlated } \\ x x x-H e a v i l y ~ g r a n u l a t e d . ~\end{gathered}$ Hank-No granulation.

DISCUSSION

Honey is placed on the market in four different forms: comb honey, extracted honey, bulk comb honey, 1. e. both comb and extracted honey extracted in bulk and granulated honey, i. e. extracted honey that has been kept until it solidifies. Granulation occurs in all of these forms.
Granulation in no way affects the quality and if honey granulates it is one of the proofs of Its purty. To prevent granulation heat ts often applfed, and, in so doing some of the valuable properties of honey are destroyed. Natural, unheated honey taken from the combs is an antifeorbatic of no mean value as being proved by Dr. Goss ${ }^{1}$ in feeding rachltle chlldren and is often tolerated by them better than is cod liver oil. He also states that the part played by honey in a properly balanced ration cannot be replaced by any sweet that he knows of in the world. According to Caillas honey is the only sweet that contains the mineral contents as phosphate of fron, of lime, carbonates and sulphates. These minerals are in a form that can be directly absorbed into the blood stream but when honey is heated the form is so changed that they are preciptitated or became inert Thus heating really lowers the food value of honey.
The theory of granulation is not fully known but it is known that in granulation certain factors are involved. The length of time required for the granulation of honey depends upon certain factors, with a knowlfor the granulation of honey depends upon certain factors, whe it is possible to control, to a large extent, the length of dite of which it is possible to control, to a large extent, the length of honeys do not look allke when granulated: light colored honeys such as clover, as a rule, assume a white lard-like appearance whlle dark honeys, such as buckwheat, become a straw to amber color. In granulation there In a difference in the texture of honeys which is influenced by the size of crystals, and which may be fine or coarse. Most honeys do not all granulate at the same rate and the length of time for honey to complete the process varies accordingly.
The main effect of heating on the honey probably is in the removal of the excess of air which it contains. The amount of air expelled depends upon the temperature to which the honey is heated, and so the highest temperatures cause the greatest amount of air to escape, because heating decronses the speciffe Eravity of the air and also lowert the surface tension of the honey, thus enabling the air particles in the honey to rise more readily

It is true that dextrose is an easily crystallizable sugar, while levnlose tends to remain Itqutd and as it occurs in honey probably never crystallizes. In all honeys, as the percentage of dextrose increased, the number of days for the completion of granulation process decreased. But as the amount of dextrose decreased, the number of days for granulation begail to Increase. Honeys that contain a large amount of dextrose granulate more readily than where the reverse is true. This is confirmed by the analyses made by Browne and the writer in the laboratory.
The probable factors which Influence granulation of honey are (1) agitation, (2) addition of granulated honey, (3) storage temperatures, (4) the presence of air in the honey, (5) blending. (6) changes in temperatures in storage, (7) honey with a heavy density will granulate earlier than the same variety of honey with a lighter density, (8) dry and moist storage place, (9) ripe and unripe honeys, and (10) heating.

Conclusions

From the data thus far secured the following conclusions may be đrawn:
(1) Agitation hastens granulation and shortens the period reguired for its completion.
(2) The addition of granulated honey starts and hastens the granula-
tlon process. Hon process.

Tosa, R. J. Granulated Honey. American Bee Journal. 67:207.

(3) Storage temperatures fnfluence the rate of granulation; the wider range of temperatures the quicker the granulation.
(4) Low temperatures combined with extreme variations in dally temperatures not only hasten the beginning of granulation bat alo shorten the time required for its completion.
(5) The presence of air in the bottle hasten the beginning of grand lation and also shorten the period required.
(6) Granulation of a blend of two or more honeys is influesced by the ratio of dextrose to levulose which it contains.
(7) Heating retards granulation to a greater extent than any of the factors already mentioned.
(8) In commercial comb honey bottling heating extracted honey to $158^{\circ} \mathrm{F}$, cooling to $100^{\circ} \mathrm{F}$. and then bottling as in the usual practice; reheating the filled bottles to $120^{\circ} \mathrm{F}$. for 6 to 8 hours seems to obtalin the best result, and the commercial bottlers will find little trouble with granulation.
(9) The comb in bottles cannot be heated higher than $135^{\circ} \mathrm{F}$. for any Fength of time without being deformed.

STUDIES ON THE SUGAR CONGENTRATION OF THE NECTAR OF VARIOUS PLANTS

By O. W. Park, Ames, Iowa

Nectar is the raw material from which honey is made and, as sacl, the beekeeper is interested in the varlous factors which infuence its production. Bonnfer (1) found that the quantity of nectar secreted varled directly with relative humidity. Ostashenko-Koodryavzeva (6) of Russia, and others have found that nectar usually is secreted toont abundantly during periods of high humidity, but, in most cases, investigators have falled to determine whether, or to what extent, the sugar concentration was altered under such conditions.
An increase in nectar secretion is generally looked upon as faroralle for boney production; but, since nectar may contain much or litue sugar, increased secretion is not necessarily advantageous for hosey production, unless there is an increase in the amount of sugar made avallable to the honeybee. Kenoyer (5). following the lead of Hanpt (4) showed, under experimental conditions, that, although flowery of buckwheat, Fagopyrum esculentwm, and of touch-mesnot, Imnatiens suttani, kept in air having 100 per cent tiumidity, secreted larger amounte of nectar than did those exposed to the rather dry greenhonse alr, the total amount of sugar produced was not increased thereby. It is guite possible, therefore, that increased secretion may be a disadvantage at possible, therefore, that increased secretion may be a
times, so far as the production of honey is concerned.

Historical

In the past there have been two great difficulties in the way of secaring data on nectar and the factors influencing its production. First, the difficulty of obtafnimg sufficfent quantities for investimation, and speond, the Jack of methods of analysis adapted to such small quantites second, the lack of methods of analysis adapted to such smail quanimis
as could be secured. Analyses made prlor to the last few years, with
as as conld be secured. Analyses made prlor to the last few year, wim
few exceptions, have been accomplished by extracting the sugar from a few exceptions, have been accomplished by extracting the sagar from :
given quantity of flowers by means of water or alcohol. Chemical dete given quantity of flowers by means of water or alcohol. Chemical dete
minatlons then showed the total amount of sugar, from which the avenate amount per flower was easily computed. This procedure probably es tracted more or less sugar from the tissues of the plant in addition to that of the nectar. And, since thls method was not well adapted for determining the sugar concentration, very few sueh determinations hare been made heretofore. It is largely due to these facts that our knowledge concerning the concentration of sugar in the nectar of varions plants and under different conditions, has been so very meagre.
The classic reference to nectar analyses is that which gives the te sults obtatned thout ffity years ago by the Swlss ehemist, Planta (7)
tho determined the per cent of sugar in fresh niectar from tour different ources, as follows:

Source protea mellifera .17 .1 Hoya carnosa
\qquad 40.6 fecoma radicans, trumpet creeper. \qquad
fecoma imperalls, imperial crown..................................... 6.6 meng
In 1916, Kenoyer (5) reported that impotiens suitanf, in an atmosphere saturatedowse air, the same specles 23.4 per cent sugar; while in the drier greenh
yielded nectar containing 45.3 per cent sugar. Caillas (3), in 1926, determined the sugar
Callias (3),
dossoms, Citrus aurantium, as 26 per cent. According to Vansell (9) the three plant species from samples obtained reports comparative data for conditions during rain. The following results are under normal conditions and Per Cent Sugar
given: given:

ormal During Rain

Plum 32.5
Mikweed
Horse Chestnut .. 49.1 showing the There appears to be an entire absence concentration of nectar, from a Wide range of variationg in the sugar concentrat

Purpose

The purpose of this paper is twofold: (1) To set forth a method of The phich, the writer believes, has never etcriog sugar concentration of nectar. (2) to before been nsed for indig the sugative correlation between the humdpresent data which show a close mation of nectar in certain flowers. ity of the air and the sugar concentration

Methods

Studies on the sugar concentration of nectar from various plants were Sekn by the writer in June 1926. Since that time, hundreds of samples from numerous species of plants have been collected and analyzed for sugar content. The percentages of reducing sugars and totai sugars wher determined in a large number of samples, but in a still greater number only the total sugar content was determined.*
For collecting the nectar, specially designed pipettes were blown from pyrex glass tubing. These had very slender tips and were constructed pyrex glass tubing. These had very siend the nectar hs it was drawn in with a bulhous portion which received the nectar as secured they were through the slender tip. As soon as samples
Reconds of temperature and humidity were kept at all times by selfRecords of temperature and humidity were kept at alt iner shelter.
recording instruments housed in the usual type of weather sheiter.
Various chemical methods were used during the first ©wo suanon, und considerable amounts of valuable data were secured. onsmed conchemical methods tried required laboratory facilities and consmmed con siderable time. It was not untll the beginning of the thira summer that thoroughly satisfactory method was discovered for making rapld determinatlons of the sugar concentration of nectar.
In casting about for a simpler method, the writer hit upon the fiea of using an Abbe refractometer for the purpose. Such instruments are ised extenslvely in sugar refinerles for finding the concentration of sugar solutions. This instrument superflcfatly bears some resemblance to a microscope, although its use is entirely different.
${ }^{\text {*The writer }}$ desiren to expyean his sincere appreciation of the cordial cooperation recelved from the Department of Chemistry of Iowa State College.
Special thanks are due Dr R. M. Hixon, Plant Chemist, for his valuable asestance and guldance in the anityifis of nectar.

The principle, upon which it works, is based upon the fact that s ray of light, in passing through any transparent material, f , bent of
refracted. In passing through a layer of distilled water, refracted. In passing through a layer of distilled water, a ray of light is refracted only a little, but if a soluble substance, such as sugar, dissolved in the water, the ray is refracted to a greater extent, exact degree being dependent upon the amount of sugar present.
Strictly speaking, the angle of refraction is determined both by the kind and the amount of dissolved sollds in the solution. Instruments constructed upon the above principle may then be used to determine the total dissolved solids in many different kinds of solutlons. Th solution to be tested should, for accurate results, contain only one kis of dissolved solid. For practical purposes, however, the refractometer often gives good results for solutions which are only relatively pure Po Instance, Sheppard (8) has reported satisfactory results from the Por of the Abbe refractometer In determining the solfd contents and specife of the Ahbe refra
gravity of honey.
gravity of honey.
An Abbé refractometer was obtained, and after being subjected to various tests, was found to give results which checked with those of tafined by chemical methods. In fact it is believed that the refractometer readings are more reliable than those secured by chemical means.
Conflidence in the reliability of the refractometer method is incraser by a consideration of the chemical composition of honey and of the relationship between nectar and honey. To the best of our knowledre. the bees remove nothing from nectar except part of the water; and whatever substances may be added by the bees, are present in neglifll. quantities so far as the present discussion is concerned.
Browne (2) has shown that the percentage of ingredients in honeg. other than sugar and water, seldom comprises more than 5 or 6 per cent of the whole. It Is to be expected, therefore, that they rarely compos more than 2 to 4 per cent of nectar, because nectar commonly contains 50 per cent or more of water, while, after beling changed to honey, oaly 15 to 20 per cent water remains.
Analyses of nectar bearing on this point are all but lacking. Planta (7) found that nectar from Profea mellifera contained 0.6 per cent of substances other than sugar and water, and Calllas (3) found 1.34 per cent of such materials in nectar from orange blossoms.
Sheppard (8) has demonstrated that refractometer readings on honey give sattsfactory results. The writer took refractometer readings on honey and found that they checked with those obtained by means of a Baume hydrometer. Since nectar contains a smaller percentage of is gredients other than sugar and water, than does honey, retractometer readings should be even more reliable for nectar than for honey.
Since refractometer readings give results in total dissolved solids, it was to be expected that results obtained with this instrument would min slightly higher than those secured by chemical analyses. Such has bees the case. As a rule, refractometer readings have run from 1 to 3 per oni above chemical determinations, which is well within the expected rang already indicated. In a very few cases, refractometer readings droppw alightly below chemical analyses in comparative tests. It was found that in practically all such cases, the nectar contained an unusual amount of pollen. Duplicate tests, made after filtering out the pollen, showed thai he pollen had caused the chemical analyses to run too high, but that the refractometer readings were unaffected thereby.
In addilfon to simplicity, accuracy and speed obtained by the refratometer method other advantages may be obtained A satistactory deter: mination can be made on less than a drop of ordinary slze. Laboratory mination can be made on less than a drop of ordinary size. Lavoratan facilttles are not needed.
be used right in the field.
It is concluded, from the foregoing considerations, that deferminations of sugar concentration in nectar, made by the use of the Abbe refractometer, are at least as dependable as those obtained by any of the chem:
al methods used. Moreover, ${ }^{\text {a maximum }}$ number lat mined by this method with a minimum of labor.

Results
eroik of the first two seasons showed a conslderable variation The work content of nectar from a given source extensive data along in the sugar day. Plans were made to secure woreter method early that hours of the day 1928 . Discovery of the refractometer ally and so rapldly, his line during 1928. Disle to make determinations so easiny frequent interasson made it possiblons determinations were made of fredoy during that on varlous -occe part of the day durns pats from morning ante ingined. Only a brief summary of some of the which samples could be sili Data secured from basswod, Tha whicianding points whi becian suriact and trumpet creeper, Tecoma fincricanh, makweed. ind most of the points to be discussed in the ancicins. will serve to mustrate most of the variations in the Figs. 1, 2 and 3 are graphic representatiferent hours of the day, tofrentage of sugar found in nectarity conditions existing at the the ther with temperature and ham of the points plotted in the he rarious samples were gathered. Mos represent the mean of several ingar curves for basswood and matistical studies of the data at suar es, sometimes as many as te.
hand are being made and will be pabish

asswood

As rule the nectar from 25 florets was used for each sample from As a rule, the nectar roquired from 2 to 4 flower clusters which were basswood. The lower branches, within ones-reach from the senerally located five trees in the row which rins north and state ground. There a block south of the cawpas one in diameter bordering Weich avew of hill The trees are nearly a coot ln diamented that, College, on the brow of os feet high. It was observed repeatedy that, it the base and about 25 eet are abundant in early morning than later although the nectar was far more abunda on it to any extent untll after In the day,
8 o'clock.
0 ciock, By referring to fig. 1, it will be notted that for sugar content on July 5th of two days, July 5 and 6, 1928 . Tast under 60 per cent, but by $1: 30 \mathrm{p} . \mathrm{m}$. began at 11:30 a. m , at a point just unde later, it was still at that level, had advanced to 70 per cent. An but by $3: 30$ there had been an the sugar content had dropped to 69 blaxinium for the day At 4:30 the sugar to zet in laea of variations per cent and by 8:30, to 54 per cenk. we may observe the results for which take place before $11: 30 \mathrm{a}$. s . m . the basswood nectar conJuly 6, an shown in fig. 1, B. At $6: 30$. tained only 22 per cent sugar but the perceatage only 1 per cent; but. hy $7: 30$. During the next hour the increase 6.45 .5 per cent. which is is between 8:30 and 10:30 it mounted steadily 10 4. hours earlier.
bitle more than double the concentration iound variation in basswood in order to get is gemeral tdea of the extreme varlaty July at Ames, ectar during the course of a fairly typical apon fo - A so as to give nectar during the course operłmpose fig. $1, \mathrm{~B}$ upon fig. 1, A so as to give lowa, we may mentaly from $6: 30 \mathrm{a} . \mathrm{m}$. to $8: 30 \mathrm{p}$. m . The owest continuous curve from $6: 30$ at at $6: 30 \mathrm{a} . \mathrm{m}$., but this is the mean of content indicated is 22 per $6: 00$ and $6: 59 \mathrm{~A} . \mathrm{m}$. With the humidity at 8 samples taken between the first sample taken contained 19.8 per cent 34 per cent at 6 o'clock, the irst saidity dropped to 85 per cent, while fugar. During the nugar content rose to 23.4 per cent. It may be expected, then, that inder conditions of 100 per cent humidity inder conditions of 18 per cent sugar.
tained ipproximately The maximum sugar content found mimum for that day. Had humidity the humidity was 51 per cent, the probable that the concentration of the dropped to a lower level, it seems ill high. An extreme varlation covering a sugar would have gone still high

$+$

range of 50 per cent was tound between the maximum and minimum ragar content of basswood nectar during the two periods shown in f5. 1 . And a pound of basswood nectar gainered bet much surar as a
 pound gathered between 6 and 7 a. I.. Jug
sugar percentages plotted in erg.ture and humidity curves for these two
An inspection of the temperature and humidity curves for these two days. shows that the reshipe to each other which is very striking. On hear an inverse reiatouship to concentration and the mintmem relatise July sth, the maxcurred at 3:30 p. m. following which, the nugar confumidity both occurrapld rate. Between $1: 30$ and $2: 30 \mathrm{p} . \mathrm{in}$, both sugar centration fely romained unchanged.
and humial general, the sugar concentration varied directly with tem While in general, thin between these two factors is not very close perature, the the fact that between $1+30$ and $2: 30-\mathrm{p}$, mi. the sugar as is shown by the fact the temperature curve continned its upward curre falled torine, wore, the maximum sugar concentration was reached progress. Furthermore, mextmum temperature, and the deeline of the a fall hour before the maxi than that of the fomperature. In brief, the sagar curve was more abrupt than thble the temperatare curve, but was sagar curve did not closely resemble tive humility curve.

Milkweed

The common milkweed has been growin for experimeatal purposek on a plot of ground approximately 25 by 75 teet, located near the campus of tome State College, for several years. The ground in about level bat is it it itnet. The soll is fertle, having been used previonsly for truck crops for some years. Durins the spring and summer of 1928 , raini wore. cufficlently frequent to produce vigorous growth and the rown of milksueed plants stood about 6 feet high. Nectar usually was very abundant in early morning, but by noon little if any could be obtained, which ex. fa early morning, but by noon ithoon data for thls plant. During the early plains the stirmee of arternoon datample was unualy obtained troin 25 part of the morning, an adequate sample wondant, toward noon, greater torets, but as the nectar became less abos noticed that in the blossoms numbens of floreti had to be ased. Insects called thrips, it is belleved were large numbers of very small insect ere responuible for the disap these and perhaps other smait insects were-reeponamber of honeybeen pearance of a large part of the nectar because it a mid depletion.
at work there wak far too smair to accoantear in fix 2 . Much as in the
Data obtained on July 24,25 and 26 appear in in milsweed nectar case of basswood, the sugar concentration culves curvas, although the are almost the raverae of the refative humbt the magar concentratiots carrelation may not be quite as close. But hemidiv than with temshows a much closer correlation with retative humidoy when humidperatare, In general, minimum concentrations were found found when ity was hiehest and maximum sugar concentrations were fonso we the hamldity was lowent, bat a slight discrepancy appeari tif sig lay Although fumldity continued to decrease mitil noon, and we ahmuat , the expected nugar concentration to be higher at $11: 30$ than at 10 , at lesset contrary appears to have beea the case, raere was responsible for this an even chance that aome unusuat circuman mintain io faffly rotittant de discrepancy, So long as humiaics corves take apward, but meldom parcreale, sukar and temperature curves both take upward, burye hecomes allel, coursen. On the other hand, when the ture continues io rertlat irregular, an in fig. 2, C, while the temperatas to be very nearly course, the surar curve for milkweed nectar la found to be very nearty course, the sugar curve for mikweea necar found for basiwoot neetar
the reverse of the hamldity curve, Just as was
Trumpet Creeper
Trumpet creeper yields nectar in large quantities as compared to most plants. This was one of the four sources of fresh nectar uned by Planta

Fig. 3. Variations in concentration of sugar in neetar from trumpet creeper, Tecoma radicans
in his ploneer work on nectar analysfs. The samples used in the preasi
work were obtained from five large vines, growing in three difenale work were obtained from five large vines, growing in three differat locations but in similar situations.
Each of the three sugar records indicated for July 12th (llg, \& , at represents the nectar obtained from all the blossoms found at bie af the three locations just mentioned. The differences shown in the surit content of the three samples are just about as expected under the corm sponding changes in humidity.

Each point plotted in the sugar curve shown in fig. 3, B was determined from the nectar content of from four to six individual blossoms, all frol one vine. A general trend which correlates somewhat with the rerent of the humidity curve, can be discovered, but discrepancies are numerons. Some of the factors which are belleved to have contributed to thein discrepancies are as follows. The samples represented too small i number of blossoms, but the principal period of bloom was past it oniy a few blossoms were available; some were too old and some too young to give representative results: some were shaded, others in the sun. It is believed that, upon securing a duplicate set of data from trumpet creeper, based upon a truly representative number of tita from the sugar curve would be found to have a much closer correlation to the humidity curve than is indicated in fig. 3, B,

It is quite clearly indicated, not only by the data shown in fig. 1 but also by many samples obtained at various other times, that trumpet creeper nectar varies much less in sugar concentration than to niectirn from many other sources.

General Discussion

Studies similar to those just described were made upon varlous other sources of nectar. In every case, humidity was found to have an important influence upon the concentration of the sugar in the nectar. If is evident, therefore, that determinations of the sugar content of rectar are of little value unless accompanied by adequate humidity records.

A number of other factors besfdes temperature and relative humidt infuence the concentration of sugar in nectar. It is prohable also, that tifferent plant species may react differently to any given factor or combination of factors. A given factor may exert more influence of ost plant specfes than on another. It is possible then, that fa some phasti the concentration of sugar in their nectar may be correlated mun closely with some other factor than it is with relative humidity; hat. closely with some other factor than
so far, no such case has been found.

As an example of the fact that a given factor may exert more influmer on one specfes than on another, it may be pointed out that relatire humidity appears to have a greater effect on the sugar concentration of basswood and milkweed than on trumpet ereeper nectar. It is believed that differences in types of flowers may be responsible for these varia tions. Flowers in which nectar is usually secreted in comparatively small quantities, and especially those in which the nectar is much as posed, show wide fluctuations in sugar concentration in their nectaris which vary inversely with relative humidity. On the contrary, flowens in which neetar is secreted in comparatively large quantities, and especally those in which the nectar is well protected, show considerably smallet variations in sugar concentration with changes in humidity. To the former class belong basswood, raspberry, milkweed, the various clovers former class belong basswood, raspberry, milkweed, the various ciovens
sweet clovers and many others of our most important honey plants sweet clovers and many others of our most important honey planis
To the latter class, belong trumpet creeper, day Illy, gladiolus and canti. To the latter class, belong trumpet creeper, day Illy, glad
which are comparatively unimportant to the beekeeper.
If is to be observed that in early morning, when humidity is very liff and when most flowers are considered to be secreting nectar mors actively, the sugar concentrations for all three of these sources wry quite similar, ranging in the neighborhood of 20 to 30 per cent, As rela tive humidity decreases, evaporation of water from nectar increases Thus the exposed neetars of basswood and milkweed become concentrated
much more rapidly than does that of trumpet creeper, which is much less erposed. Nectar, being hygroscopic, may be expected to absorb moisture ait wincrease in relative humidity, and the more conromited the nectar the faster will it absorb moisture, Other things cuatrated the larger the amount of nectar, the more slowly will varia. being equal, the lify affect its concentration.
thons in humidity in quantity of nectar under humid conditions is due If the increase in in water content, as shown by Kenoyer (5) and entirely to an increase in reduced honey production in many cases for others, ressons. The nectar is less attractive to the bees because of its two reasons. dilution, and a larger amount of it must be handled for each poand of honey produced. This not only fnvolves additional labor on the poand of the bees, but also tends to reduce the incentive for gathering it. On the other hand there probably are instances in which the honey On the angmented by an increased water content in nectar. In the case cop fowrers, such as red clover. Trifolium pratense, which have corolla of dow so deep that the honeybee's tongue, under normal condftions, cantubes so not reach the nugar by fllling the corolla enable the bees to secure a depth that honeybees can reach some of it. tabe with nectar to such a depth content may make all the difference In such cases, the increased water content production.

Summary

1. The Abbê refractometer was found highly satisfictory for determinIng sugar concentrations in nectar.
2. Sugar concentration in nectar varies inversely with relative liumidity.
3. An increase in the amount of nectar secreted is not necessarily advantageous to the beekeeper, unless there is an increase in the amount of sugar made available to the honeybee.

Literature Cited

1. Bonniler, Gaston
2. Les Nectaires. In Ann. Scl. Nat., Bot., ser. 6, vol. 8, pp. 5-212.
3. Browne, C. A.
4. Chemical analysis and composition of American honeys. Bul. U. S. Bur, of Chem. 110.
5. Calllas, Alin.
6. Composition and changes in nect r. In Amer. Bee Jour. 65: 226-227.
7. Haupt, Hugo.
8. Zur Sekretionsmechanik der extrafforalen Nektarien, If Flora 90: 1-41
9. Kenoyer, L. A.
10. Environmental influences on nectar secretion. Research Bul. Ia. Agr. Exp. Sta. 37.
11. Ostashenko-Koodryavzeva, A
12. The effect of air humidity upon nectar secretion of plants. In Experimental Apiary (Russian) July 1928, pp. 326-328, and Aug. Sept. 1928, pp. 397-410.
13. Root, A. I. and E. R.
14. ABC and XYZ of Bee Culture. Medina, Ohlo.
15. Sheppard, W. J., Finlay, A. W. and Roberts, J. F.
16. Bee culture in British Columbia. Bul. Br. Col. Dept. of Agr: 92.
17. Vansell, G. H
18. The sugars in nectar. In Gleanings in Bee Culture 57: 92-93.

[^0]: ${ }^{(N)}$ Newman, T. G. 1881. Proparing Bees for Winter. A. B. J. 17:245.

[^1]: 28.715t, E. R. 1910, Editorlal on Temperatures of Cellar. Gleaninge 88:715.

