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COV Coefficient of variation 
DCP-CBRSubgrade CBR of subgrade determined from DCP test 
DCP-CBRSubbase CBR of subbase determined from DCP test 
DPI Dynamic penetration index 
D0  Deflection measured under the plate  
D1 to D7 Deflections measured away from the plate at various set distances 
D10 Grain size diameter corresponding to 10% passing by mass 
D60 Grain size diameter corresponding to 60% passing by mass 
E  Elastic modulus  
Es or Es(T307) Dynamic secant modulus 
ELWD-Z3 Elastic modulus determined from 300 mm diameter plate Zorn light weight 

deflectometer 
F Shape factor 
Gs Specific gravity 
I Intercept  
k Modulus of subgrade reaction 
kAASHTO(1972) Modulus of subgrade reaction determined following AASHTO (1972) 

procedure 
kAASHTO(1993) Modulus of subgrade reaction determined following AASHTO (1993) 

procedure 
kcomp Composite modulus of subgrade reaction 
kcomp- AASHTO(1972) Composite modulus of subgrade reaction determined following AASHTO 

(1972) procedure 
kcomp- AASHTO(1993) Composite modulus of subgrade reaction determined following AASHTO 

(1993) procedure 
kcomp- ACPA (2012) Composite modulus of subgrade reaction determined following ACPA (2012) 

online estimator  
kPCA Modulus of subgrade reaction estimated from CBR following PCA (1984) 

procedure 
kFWD-Dynamic Dynamic modulus of subgrade reaction from FWD test 
kFWD-Static Static modulus of subgrade reaction from FWD test 
k1, k2, k3  Regression coefficients in “universal” model 
Ksat  Saturated hydraulic conductivity determined using rapid gas permeameter test 

device 
LL Liquid limit 
LTE Load transfer efficiency 
MDP Machine drive power 
Mr Resilient modulus 
n Number of measurements 
p Number of parameters 
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PI Plasticity index 
PL Plastic limit 
Pa Atmospheric pressure 
R2 Coefficient of determination 
SCI Surface curvature index 
r Plate radius 
su Undrained shear strength 
w Moisture content  
wopt Optimum moisture content 
ε Axial strain 
εp Permanent strain 
εr Resilient strain 
γd Dry unit weight  
γdmin Minimum dry unit weight  
γdmax Maximum dry unit weight  
µ Statistical mean or average 
η  Poisson’s ratio 
σ Statistical standard deviation 
σB Bulk stress  
σd Deviator stress 
σ0 Applied axial stress 
σ1, σ2 , σ3  Principal stresses 
τoct  Octahedral shear stress 
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EXECUTIVE SUMMARY 

Quality foundation layers (the natural subgrade, subbase, and embankment) are essential to 
achieving excellent pavement performance. Unfortunately, many pavements in the United States 
still fail due to inadequate foundation layers. To address this problem, a research project, 
Improving the Foundation Layers for Pavements (FHWA DTFH 61-06-H-00011 WO #18; 
FHWA TPF-5(183)), was undertaken by Iowa State University to identify, and provide guidance 
for implementing, best practices regarding foundation layer construction methods, material 
selection, in situ testing and evaluation, and performance-related designs and specifications. As 
part of the project, field studies were conducted on several in-service concrete pavements across 
the country that represented either premature failures or successful long-term pavements. A key 
aspect of each field study was to tie performance of the foundation layers to key engineering 
properties and pavement performance. In situ foundation layer performance data, as well as 
original construction data and maintenance/rehabilitation history data, were collected and 
geospatially and statistically analyzed to determine the effects of site-specific foundation layer 
construction methods, site evaluation, materials selection, design, treatments, and maintenance 
procedures on the performance of the foundation layers and of the related pavements. A 
technical report was prepared for each field study. 

This report presents results and analysis from a field study conducted on I-94 between mile posts 
23.0 and 6.1 in St. Clair and Macomb Counties, Michigan. The research objectives of this project 
were to assess the in situ mechanistic properties of the newly constructed foundation layers and 
the existing foundation layers. The project involved constructing a 280 mm (11 in.) thick jointed 
PCC pavement by undercutting the existing foundation layers to a depth of about 690 mm 
(27 in.) and placing an open-graded drainage course (OGDC) layer composed of recycled steel 
slag over the subgrade with a geotextile separation layer at the subgrade/OGDC layer interface. 
Review of construction bid documents indicated that the construction cost of the foundation 
layers (i.e., excavation, OGDC base layer, geotextile separator) was about 50% ($5,424,275) of 
the total cost of the project ($10,918,175). 

Field testing was conducted on three test sections (TS). Testing on TS1 and TS3 was conducted 
on the compacted OGDC base layer, and testing on TS2 was conducted on the existing pavement 
system. In situ testing was conducted on TS1, TS2, and TS3 by using point test methods (i.e., 
nuclear gauge, light-weight deflectometer, falling weight deflectometer, dynamic cone 
penetration, and plate load testing) and roller-integrated compaction monitoring to obtain 100% 
coverage over the OGDC base layer. Field point testing was conducted by spacing the test 
measurements about 50 to 100 m apart to capture the variability along the road alignment. 
Testing was also conducted in a dense grid pattern (spaced at about 0.6 to 1.5 m) to capture 
spatial variability over a small area. Geostatistical semivariogram analysis was performed to 
analyze the point test data from the dense grid pattern testing to characterize and quantify spatial 
non-uniformity of the PCC surface and foundation layer properties. Geostatistical analysis was 
also performed on spatially referenced roller-integrated compaction measurements to quantify 
spatial non-uniformity of the foundation layers. 
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Comparison of the measured properties from laboratory and in situ testing, and the design 
assumed values revealed the following:  

• The measured ESB values (either by LWD or FWD or PLT) and the estimated ESB values 
(from DCP measurements) were on average about 1.5 to 7 times lower than the design target 
value. The laboratory determined ESB values were, however, about 1.7 times higher than the 
design target value. It must be noted that the ESB values obtained by LWD, FWD, and PLT 
represent a composite response in situ with the influence of both base layer and the 
underlying subgrade layer stiffness. 

• Mr tests conducted on “undisturbed” in situ subgrade samples showed an average Mr = 61 
MPa (8.8 ksi), which exceeds the design target Mr = 21 MPa (3 ksi). The average in situ 
estimated Mr value from DCP-CBRSubgrade measurements was about 41 MPa (5.9 ksi), which 
also exceeds the design target value. 

• The kcomp values determined in situ from PLT showed an average kPLT* of about 34 kPa/mm 
(124 pci), which was about 2.5 times lower than the design target kcomp = 84 kPa/mm 
(310 pci). The kcomp-AASHTO(1993) values were estimated using ESB based on DCP, LWD, and 
FWD measurements. These estimated values ranged from about 1.1 to 1.4 times the design 
target kcomp, depending on the selected ESB value. The kcomp-AASHTO(1993) determined using 
laboratory measurements was about 163 kPa/mm (600 pci), which is about 2 times higher 
than the design target kcomp value. These results indicate that the kcomp values vary 
significantly based on the method or procedure used. 

• The Cd value assumed in design = 1.1, which represents that the quality of drainage is “good” 
to “excellent” according to AASHTO (1993). Based on the pavement geometry and the range 
of Ksat values obtained from field, the time for 90% of drainage ranged from 0.1 hour to 
1.4 days. For an average Ksat = 2.9 cm/s, time for 90% drainage was estimated at about 
1.1 hours. The average in situ Ksat = 2.9 cm/s compared well with the laboratory measured 
Ksat = 3.1 cm/s. These times for 90% drainage estimates indicate that the quality of the 
OGDC drainage layer is “good” to “excellent” according to AASHTO (1993) and therefore 
that it meets the design requirements. 

Laboratory testing was conducted on foundation layer materials obtained from the field to 
determine index properties, moisture-dry unit weight relationships from compaction tests, 
resilient modulus, and aggregate degradation under cyclic loading. The resilient tests were 
conducted on homogenous samples as well as well as layered composite samples (i.e., OGDC 
base over subgrade) to assess its influence on the resilient modulus values. In addition, 
microstructural analysis using SEM on the OGDC base layer material samples was performed. 
Some key findings from laboratory testing are as follows: 

• Results indicated that the Mr of OGDC base layer material increase with increasing bulk 
stresses, as expected for granular materials. Mr of subgrade materials decreased with 
increasing deviator stress, as expected for non-granular materials. Increasing moisture 
content decreased Mr and increasing dry unit weight increased Mr for both subbase and 
subgrade materials. 

• Comparing Mr values obtained on OGDC base material before and after back-saturation 
indicated that increasing saturation decreased the average Mr value by about 1.4 times. 
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• Comparisons of homogenous and layered composite Mr test results revealed that the average 
Mr of composite sample is about 1.7 times lower than the average Mr of a homogenous 
OGDC sample at a similar density. This reduction in Mr in the layered composite sample is 
attributed to the weaker subgrade layer. 

• Cyclic triaxial testing (up to 100,000 cycles) and corresponding aggregate degradation tests 
were conducted on OGDC base layer material samples compacted to different target dry unit 
weights, fines content, moisture content, and deviator/confining stress combinations. Results 
indicated very low permanent strains (< 0.7%) after 100,000 cycles for the recycled steel slag 
material used in the OGDC base layer for this project. No considerable aggregate degradation 
was found after 100,000 cycles on any of the OGDC base layer samples tested. 

The findings from the field studies under the Improving the Foundation Layers for Pavements 
research project will be of significant interest to researchers, practitioners, and agencies dealing 
with design, construction, and maintenance of PCC pavements. The technical reports are 
included in Volume II (Appendices) of the Final Report: Improving the Foundation Layers for 
Pavements. Data from the field studies are used in analyses of performance parameters for 
pavement foundation layers in the Mechanistic-Empirical Pavement Design Guide (MEPDG) 
program. New knowledge gained from this project will be incorporated into the Manual of 
Professional Practice for Design, Construction, Testing and Evaluation of Concrete Pavement 
Foundations published in 2015. 
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CHAPTER 1. INTRODUCTION  

This report presents results and analysis from a field study conducted on Interstate highway I-94 
between mile posts 23.0 and 6.1 in St. Clair and Macomb Counties, Michigan. The existing 
interstate highway was constructed between 1963 and 1964 and consisted of a 230 mm (9 in.) 
thick jointed portland cement concrete (PCC) pavement underlain by about 100 mm (4 in.) of 
gravelly sand base, about 300 mm (12 in.) of sand subbase, and silty clay subgrade. Field studies 
by Michigan Department of Transportation (MDOT) indicated that the ride quality of the 
existing pavement was poor and that the pavement needed to be replaced. MDOT evaluated two 
reconstruction alternatives. 

Alternative #1 was to reconstruct the roadway with a 20-year design life hot mix asphalt (HMA) 
pavement, and alternative #2 was to reconstruct with a 20-year design life jointed PCC 
pavement. Based on life cost analysis of the two alternatives, MDOT selected alternative #2, 
which involved construction of a 280 mm (11 in.) thick jointed PCC pavement, and undercutting 
the existing foundation layers to a depth of about 690 mm (27 in.) for placement of an open-
graded drainage course (OGDC) layer over the subgrade with a geotextile separation layer at the 
subgrade/OGDC layer interface. Both alternatives were designed using AASHTO design guide 
for design of pavement structures (AASHTO 1993). 

The Iowa State University (ISU) research team was present at the project site from May 27 to 
May 30, 2009, during the construction process to conduct a field study on the existing pavement 
and foundation layers and the newly constructed OGDC base layer. Field testing involved: Kuab 
falling weight deflectometer (FWD) to determine elastic modulus and deflection basin 
parameters; Zorn light weight deflectometer (LWD) to determine elastic modulus; dynamic cone 
penetrometer (DCP) to estimate California bearing ratio and resilient modulus values; Humboldt 
nuclear gauge (NG) to determine moisture and dry unit weight; rapid gas permeameter test 
(GPT) device to measure saturated hydraulic conductivity; static plate load test (PLT) to obtain 
elastic modulus and modulus of subgrade reaction; and roller-integrated compaction monitoring 
(RICM) measurements to obtain 100% subgrade coverage of compacted soil properties. In 
addition, MDOT field personnel used a drill rig to obtain “undisturbed” Shelby tube samples 
from the subgrade layer for laboratory testing. The spatial northing and easting of all test 
measurement locations were obtained using a real-time kinematic (RTK) global positioning 
system (GPS). 

Laboratory testing was conducted on the materials collected from the field to characterize the 
index properties (i.e., gradation, compaction, specific gravity, soil classification). Resilient 
modulus (Mr) and undrained shear strength tests were conducted on the subgrade, existing 
subbase, and the OGDC base materials. Mr testing was also conducted on layered composite 
OGDC base and subgrade materials to assess the influence of the support conditions. Cyclic 
triaxial tests were performed on the OGDC base material for 100,000 cycles at different deviator 
and confining stress combinations to evaluate permanent deformation and aggregate degradation 
characteristics of the base material. Permeability tests were conducted on OGDC material to 
determine its saturated hydraulic conductivity. 
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Field testing was conducted on three test sections (TS). TS1 and TS3 were the newly constructed 
OGDC base layer, TS2 consisted of the existing PCC surface and foundation layers. The length 
of the test sections varied from 100 m to 2600 m. Field point testing was conducted by spacing 
the test locations about 50 m to 100 m apart to capture variability along the road alignment. 
Testing was also conducted in a dense grid pattern (spaced at about 0.6 m to 1.5 m) to capture 
spatial variability over a small area. Geostatistical semivariogram analysis was performed to 
analyze the point test data from dense grid pattern testing to characterize and quantify spatial 
non-uniformity of the PCC surface and foundation layer properties. Geostatistical analysis was 
also performed on spatially referenced RICM measurements to quantify spatial non-uniformity 
of the foundation layers. 

This report contains six chapters. Chapter 2 provides background information about the project, 
including the two alternatives evaluated by MDOT; life cycle cost analysis results; selection 
criteria for the PCC pavement structure; AASHTO (1993) pavement design input parameters; 
and construction methods and specifications. Chapter 3 presents an overview of the laboratory 
and in situ testing methods followed in this project. Chapter 4 presents results from laboratory 
testing. Chapter 5 presents results from in situ testing and analysis and compares laboratory and 
in situ measured values with the design assumed values. Chapter 6 presents key findings and 
conclusions from the field study. 

The findings from this report should be of significant interest to researchers, practitioners, and 
agencies who deal with design, construction, and maintenance aspects of PCC pavements. This 
project report is one of several field project reports developed as part of the TPF-5(183) and 
FHWA DTFH 61-06-H-00011:WO18 studies. 
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CHAPTER 2. PROJECT INFORMATION  

This chapter presents the project background, pavement design input parameter selection and 
assumptions, and construction details and specifications including the selection of pavement 
thickness design parameters and assumptions during the design phase of the project; and the new 
pavement foundation layer construction details. Some of this information was obtained from 
field observations and some was obtained from an MDOT office memorandum dated February 
29, 2008. A full copy of the memorandum is included in Appendix A. 

Project Background 

This project is located on I-94 in St. Clair and Macomb Counties, Michigan (Figure 1). The 
project involved reconstruction of pavement foundation layers of the existing interstate highway 
between about mile posts 23.6 and 6.1 (about Station 794+12 to 1121+70; Michigan Project No. 
IM0877(023) and Job Number 100701A). The existing PCC pavement was constructed between 
1963 and 1964, followed by rehabilitation work comprising full-depth concrete patching and 
partial-depth bituminous repairs undertaken in the mid-1990s. Results from pavement coring and 
borings performed by MDOT at 35 locations (18 on east bound (EB) and 17 on west bound 
(WB) lanes) were reported in the 2008 MDOT memorandum are summarized in the following 
list. 

• Average PCC layer thickness was about 244 mm (9.6 in.) and varied between 214 mm 
(8.4 in.) to 274 mm (10.8 in.) on the EB lanes and was about the same at all core locations on 
the WB lanes. Three core locations showed 3 in. of HMA overlay. 

• Three of the WB lane core locations showed an average of about 110 mm (4.4 in.) thick 
aggregate base layer, while none of the cores on the EB lane showed an aggregate base layer. 

• All cores showed a sand subbase. The average thickness of the subbase was about 373 mm 
(14.7 in.) on the EB lanes and 343 mm (13.5 in.) on the WB lanes. 

• The subgrade soil varied from brown to gray, stiff to very stiff, silty clay with trace sand and 
gravel in 77% of the borings and brown to gray, stiff to very stiff, silty clay with trace sand 
and organics in the remaining 23% of the borings. 

• All cores generally showed similar subgrade soil in the form of stiff, brown gray, silty clay at 
the anticipated new subgrade elevation, and up to depths of at about 1.5 m (5 ft) below that 
elevation. 

Field observations and testing by the ISU research team near the east end of the project (east of 
the Adair rest stop on-ramp) indicated that the existing pavement was about 230 mm (9 in.) thick 
underlain by a 100 mm (4 in.) thick gravelly sand base; an approximately 300 mm (12 in.) thick 
sand subbase; and silty clay subgrade to a depth of 2 m (5 ft) (boring termination depth) below 
the pavement surface. 
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Figure 1. Map showing the project and test section locations 

According to the MDOT memorandum, the ride quality index (RQI) of the existing pavement 
was about 73 and the average remaining service life (RSL) was about 4 on the east and west 
bound lanes, which indicated that the pavement quality was poor. Two new pavement 
reconstruction alternatives were evaluated by MDOT: alternative #1: reconstruct with HMA 
pavement with 20-year design life, and alternative #2: reconstruct with jointed plain concrete 
pavement (JPCP) with 20-year design life. 

The two alternatives were evaluated using the 1993 AASHTO pavement design procedures and 
life cycle cost analysis using the Equivalent Uniform Annual Cost (EUAC) calculation method 
approved by the Engineering Operations Committee, MDOT, in June 1999 (MDOT 2005). The 
estimated construction costs were reportedly historical averages from similar projects, and user 
costs were reportedly calculated using MDOT’s Construction Congestion Cost model developed 
by the University of Michigan. 

Alternative #1 consisted of the following pavement and foundation layer structure: 

• 51 mm (2.0 in.)  HMA, gap-graded superpave, top course (mainline and inside shoulder) 
• 64 mm (2.5 in.) HMA, 4E30, leveling course (mainline and inside shoulder) 
• 152 mm (6.0 in.) HMA, 3E30, base course (mainline and inside shoulder) 
• 51 mm (2.0 in.) HMA, 5E3, top course (outside shoulder) 
• 64 mm (2.5 in.) HMA, 4E3, leveling course (outside shoulder) 
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• 152 mm (6.0 in.) HMA, 3E3, base course (outside shoulder) 
• 406 mm (16.0 in.) Open-graded drainage course (OGDC) with a geotextile separator at the 

subgrade/OGDC interface 
• 203 mm (8.0 in.) Sand subbase 
• 152 mm (6.0 in.)  Underdrain system (diameter) 
• 876 mm (34.5 in.) Total section thickness 

Life cycle analysis of alternative #1 showed the following results: 

Present value initial construction cost: $1,010,802/directional mile 
Present value initial user cost: $499,860/directional mile 
Present value maintenance cost: $127,428/directional mile 
Equivalent uniform annual cost (EUAC): $89,536/directional mile 

Alternative #2 consisted of the following pavement and foundation layer structure: 

• 267 mm (10.5 in.) Non-reinforced concrete pavement with 14 ft joint spacing 
• 406 mm (16.0 in.) OGDC, geotextile separator at subgrade/OGDC interface 
• 152 mm (6.0 in.) Open-graded underdrain system (diameter) 
• 673 mm (26.5 in.) Total section thickness 

Life cycle analysis results for alternative #2 produced the following results: 

Present value initial construction cost: $819,071/directional mile 
Present value initial user cost: $375,461/directional mile 
Present value maintenance cost: $76,707/directional mile 
Equivalent uniform annual cost (EUAC): $69,484/directional mile 

Based on guidelines outlined in MDOT (2005), the alternative with lowest EUAC (i.e., 
alternative #2) was selected. Although the new PCC pavement design thickness was 267 mm 
(10.5 in.), the pavement was constructed with 280 mm (11 in.) thickness to match a previous 
project on the corridor (Email communication with Mark Grazioli, MDOT). The existing 
pavements were removed and the foundation layers were undercut to a depth of about 690 mm 
(27 in.) below the existing pavement surface elevation for placement of the OGDC layer with a 
geotextile separation layer at the interface. Cross-sections of the existing and the old pavement 
and foundation are shown in Figure 3, and a detailed cross-sectional view of the new pavement is 
provided in Figure 4. 
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Figure 2. Thickness of the existing PCC pavement and existing foundation material 

 

Figure 3. Cross sections of the existing (built in 1969; left) and the new (built in 2010; right) 
pavement layers 

 

Figure 4. Detailed cross section of the new (2010) pavement 
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Pavement Design Input Parameter Selection and Assumptions 

A summary of pavement thickness design input parameters is provided in Table 1. A composite 
modulus of subgrade reaction, kcomp = 84 kPa/mm (310 pci), was determined by the MDOT 
design engineer following the AASHTO (1993) design guidelines based on an assumed base 
layer elastic modulus, ESB; subgrade resilient modulus, Mr; and target subbase layer thickness, 
DSB, as summarized in Table 1. The design guide requires determining seasonal variations in the 
ESB and Mr values and then an average value for analysis. The ESB and Mr values provided in 
Table 1 are the average values. Seasonal variations in the ESB and Mr values were not determined 
by the design engineer (Email communication with Mark Grazioli, MDOT). 

Table 1. Pavement thickness design input parameters and assumptions 

Parameter Value 
General Assumptions 
ESALs over initial performance period 22,500,000 (18-kip) 
Design period 20 years 
Surface Layer Design Assumptions 
Pavement Type JPCP 
Initial serviceability 4.5 
Terminal serviceability 2.5 
28-day Mean PCC modulus of rupture, Sc 4620 kPa (670 psi) 
28-day Mean Modulus of Elasticity of 
Concrete, Ec 

29,000 MPa (4,200,000 psi) 

Reliability level 95% 
Overall standard deviation 0.39 
Load transfer coefficient, J 2.7 
Foundation Layer Design Assumptions 
Subbase layer thickness, DSB 406 mm (16 in.) (open graded drainage 

course) 
Subbase elastic modulus, ESB 165 MPa (24,000 psi) 
Subgrade resilient modulus, Mr 20 MPa (3,000 psi) [stiff clay to semi-infinite 

depth, i.e., > 10 ft] 
Composite modulus of subgrade reaction, 
kcomp 

84 kPa/mm (310 pci) 

Loss of support (due to erosion), LS 0.5 
Effective modulus of subgrade reaction, keff 51 kPa/mm (190 psi/in.) 
Overall drainage coefficient, Cd 1.1  
Other Geotextile separator between subbase and 

subgrade and open-graded under drains (6 in. 
diameter) 

Pavement Thickness Design 
Calculated design thickness 267 mm (10.5 in.) [280 mm (11”) actual built] 
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The effective modulus of subgrade reaction, keff, was then estimated based on an assumed 
potential loss of support (LS) from erosion of LS = 0.5. The assumed drainage coefficient 
Cd = 1.1 represents that the quality of drainage is good to excellent (varies as a function of time 
above a threshold base saturation level). These design assumptions are compared with actual 
field measurements in Chapter 6. 

Construction Details and Specifications 

Table 2 summarizes some key bid items, quantities, estimated costs, and bid costs. Based on the 
contractor’s bid costs, the cost of the construction of foundation layers (i.e., subgrade, base, and 
geotextile separator) was about 50% of the total cost of the project. 

A four-sided impact roller was used to breakdown the existing pavement layer (Figure 5). The 
existing foundation layers were undercut to about 690 mm (27 in.) below the top of the new 
pavement elevation. A longitudinal trench was excavated along the side of the road (Figure 6) 
and a drain tile was installed in the trench by wrapping around a non-woven geotextile and 
placing open-graded porous backfill material (Figure 7). Geoturf ® W270 woven geotextile was 
installed on top of the silty subgrade (Figure 7) and then the 405 mm (16 in.) thick OGDC layer 
was placed and compacted in two lifts. The OGDC layer consisted of crushed recycled steel slag 
or crushed limestone. The second lift of the OGDC layer was placed, trimmed to the desired 
elevation, and then compacted using a smooth drum vibratory roller (Figure 8). Figure 9 shows 
photographs of the OGDC layer before trimming and after trimming, and compaction at a 
location. MDOT density guidelines indicate that the OGDC layer be compacted to a minimum of 
95% relative compaction (Note: MDOT density test guidelines are somewhat unique and should 
be reviewed for details on the process). MDOT QA density test results are summarized later in 
Chapter 5. 

Table 2. Summary of bid quantities and estimated and bid costs 

Item Bid 
Quantity Unit Engineer’s 

Estimate 
Contractor 

Bid 
Earth excavation 109,700 yd3 $3.75 $10.78 
Sand undercut (excavation and 

replacement) 28,000 yd3 $8.00 $1.00 

Geotextile separator 531,000 yd2 $1.00 $1.11 

16 in. OGDC layer 387,1000 yd2 $11.00 $10.00 
11 in. PCC layer 174,900 yd2 $26.00 $20.10 
Contraction joint with load transfer 122,000 ft $7.75 $8.41 

Total Project Cost   $10,213,374 $10,918,175 
Total Foundation Layer 

Construction Cost   $5,671,864 $5,425,275 
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Figure 5. Four-sided impact roller used to break the existing pavement layer (top) and 
pavement surface after impact roller passes (bottom)   
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Figure 6. Subgrade layer after undercutting (top) and trench drain installer (bottom) 
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Figure 7. Geoturf ® W270 woven geotextile separator installed on top of the subgrade (top) 
and longitudinal trench drain wrapped around a non-woven geotextile and porous backfill 
material (bottom) 
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Figure 8. OGDC base layer placement and compaction  
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Figure 9. OGDC base layer before trimming (top) and a close-up view of the OGDC base 
layer after trimming and compaction (bottom)  
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CHAPTER 3. EXPERIMENTAL TEST METHODS 

This chapter presents a summary of the laboratory and in situ testing methods used in this study. 

Laboratory Testing Methods and Data Analysis 

Particle Size Analysis and Index Properties 

Samples from existing subbase layers, subgrade layers, and the new OGDC base layer were 
collected from the field and were carefully sealed and transported to the laboratory for testing. 
Particle-size analysis tests on the OGDC base layer samples were performed in accordance with 
ASTM C136-06 Standard test method for sieve analysis of fine and coarse aggregates. Particle-
size analysis tests on the existing sand subbase and subgrade materials were conducted in 
accordance with ASTM D422-63 Standard Test Method for Particle-Size Analysis of Soils. 

Atterberg limit tests (i.e., liquid limit—LL, plastic limit—PL, and plasticity index—PI) were 
performed in accordance with ASTM D4318-10 Standard test methods for liquid limit, plastic 
limit, and plasticity index of soils using the dry preparation method. Using the results from 
particle size analysis and Atterberg limits tests, the samples were classified using the unified soil 
classification system (USCS) in accordance with ASTM D2487-10 Standard Practice for 
Classification of Soils for Engineering Purposes (Unified Soil Classification System) and the 
AASHTO classification system in accordance with ASTM D3282-09 Standard Practice for 
Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes. 

Two laboratory compaction tests were used to determine the relationship between dry density 
and moisture content for the soils obtained from the field. Subgrade soil compaction 
characteristics were determined using standard and modified Proctor compaction methods in 
accordance with ASTM D698-07 Standard test methods for laboratory compaction 
characteristics of soil using standard effort and ASTM D1557-07 Standard test methods for 
laboratory compaction characteristics of soil using modified effort, respectively. Maximum and 
minimum index density tests were performed using a vibratory table on the existing sand subbase 
and OGDC base materials in accordance with ASTM D4253-00 Standard test methods for 
maximum index density and unit weight of soil using a vibratory table and D4254-00 Standard 
test methods for minimum index density and unit weight of soils and calculation of relative 
density. Additionally, moisture-unit weight relationships for the existing subbase sand were 
determined by performing maximum index density tests by incrementally increasing the 
moisture content by approximately 1.5% for each test. 

Resilient Modulus, Shear Strength, and Cyclic Triaxial Testing Sample Preparation 

Two material types were tested for resilient modulus (Mr) and unconsolidated undrained (UU) 
shear strength generally following the AASHTO T-307 procedure—granular base/subbase and 
cohesive subgrade. Layered composite soil samples (i.e., those with both base and subgrade) 
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were also tested. In some cases, the samples were back-saturated prior to Mr and UU testing. The 
following sections describe the methods used to prepare the samples. 

Granular Materials 

Granular materials were prepared using the vibratory compaction method as described in 
AASHTO T-307 for preparation of granular base/subbase materials. Prior to compaction, 
materials were moisture-conditioned and allowed to mellow for at least 3 to 6 hours. A 
101.6 mm (4 in.) diameter split mold was used to compact the sample (Figure 10) in five lifts of 
equal mass and thickness using an electric rotary hammer drill and a circular steel platen placed 
against the material (Figure 11). Calipers were used to verify consistent compaction layer 
thicknesses (Figure 11). AASHTO T-307 procedure requires that the maximum particle size of 
the material should be 1/5th of the sample diameter, which is approximately 20.3 mm (0.8 in.) for 
a 101.6 mm (4 in.) diameter sample. The OGDC base material tested in this study contained a 
maximum particle size larger than 25.4 mm (1 in.). To meet the AASHTO T-307 specifications, 
the particle size distribution of the untrimmed base material was modified by scalping off 
particles retained on the 19.1 mm (0.75 in.) sieve and replacing them with the same percentage 
by weight of the material that was retained on the No. 4 sieve and passing the 19.1 mm (¾ in.) 
sieve. For comparison purposes on the effect of different gradations on Mr, few samples were 
prepared and tested without the scalp and replace procedure. 

 

Figure 10. Split mold, steel platen (4 in. diameter), and vibratory hammer for compaction 
of granular materials 
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Figure 11. Compaction of granular materials in split mold and verification of thickness of 
each lift using calipers 

Cohesive Materials 

The cohesive subgrade samples were obtained from the field in an “undisturbed” state using 
Shelby tube sampling methods. Disturbed bag samples of the subgrade material were also 
obtained for testing by compacting the material to a target moisture and density. 

Undisturbed samples of subgrade materials were collected using an MDOT drill rig (Figure 12) 
by hydraulically pushing a 75 mm (3 in.) diameter thin-walled Shelby tube into the subgrade. 
Samples were obtained from various depths ranging from 0.4 to 1.7 m below the bottom of the 
pavement. Samples extracted from the Shelby tubes were carefully trimmed and cut to about 
142 mm (5.6 in.) height for Mr and UU testing. Prior to testing, the sample dimensions were 
measured and the samples were weighed to determine the wet density. After testing, the entire 
sample was oven dried for at least 24 hours to determine the moisture content and dry density of 
the material. 

Disturbed bag samples were used to prepare samples for testing using static compaction method 
as described in AASHTO T-307. Before compaction, the materials were moisture-conditioned 
and allowed to mellow for at least 16 hours. Static compaction involved a hydraulic press, steel 
mold, and six steel spacers (Figure 13) to form the soil into a 101.6 mm diameter by 203.2 mm 
tall (4 in. diameter by 8 in. tall) cylinder. It must be noted that AASHTO T-307 describes 
compaction procedure to prepare 71 mm diameter by 142 mm tall (2.8 in. diameter by 5.6 in. 
tall) samples. The larger samples were used in this study to compare with layered composite 
(base+subgrade) samples. The static compaction process is shown in Figure 14. When making 
the samples, the soil was compacted in five lifts of equal mass and thickness. Each lift of soil 
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was pressed between the steel spacers to a uniform thickness. After compaction, the soil samples 
were extruded (Figure 14). 

 

Figure 12. MDOT drill rig used to obtain Shelby tube samples from subgrade 

  

Figure 13. Aluminum spacers (4 in. diameter) used during static compaction 
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Figure 14. Photos showing static compaction procedure (left) and sample extrusion 
procedure (right) of a compacted cohesive soil sample 

Composite Samples 

AASHTO T-307 does not describe a procedure for fabricating layered composite samples. The 
sample sizes included 101.6 mm (4 in.) thick base over 101.6 mm (4 in.) thick subgrade. Figure 
15 shows the difference between a layered composite sample and homogenous sample. 

  

Figure 15. Elements of an idealized fabricated layered composite sample versus a 
homogenous sample 

For the layered composite sample of base over subgrade, the bottom subgrade layer was 
compacted first using the static compaction technique described above, in three lifts. The first 
two lifts were about 40.6 mm (1.6 in.) thick, and the third lift was about 20.3 mm (0.8 in.) thick. 
A pre-determined amount of material was placed in each lift keeping the unit weight constant in 
each lift. After compaction of the subgrade, the sample was extruded and placed on the triaxial 
chamber base. The split mold used for granular materials was then placed around the sample, and 

Untrimmed Base

Subgrade Subgrade
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the base layer was compacted in three equal lifts of 33.9 mm (1.3 in.) using the vibratory 
compaction procedure described above. 

Back-Saturation Process 

Back pressure saturation was performed in accordance with the procedure described in ASTM 
D4767-04 “Standard Test Method for Consolidated Undrained Triaxial Compression Test for 
Cohesive Soils.” The process involved incrementally increasing both confining stresses (i.e., cell 
pressure) and water pressures into the bottom of a sample (i.e., back pressure) until the sample 
was saturated using a triaxial cell and a control panel to regulate the cell and back pressures. 
OGDC base samples were tested in this study to evaluate the effect of saturation on Mr and UU 
shear strength properties. Cell pressure was applied to the sample using water around the sample 
and then water was forced into the bottom of the sample at a slightly lower back pressure than 
the cell pressure. For the OGDC materials tested in this study, a low pressure difference worked 
best as the material became saturated quickly. Measurements of pore water pressure were taken 
after each increase in cell pressure by placing the pore water pressure transducer at the center 
height of the sample (Figure 16). The cell pressure was increased first; then the back pressure 
was increased. After the pressures were increased, pore water pressures were monitored until 
they were stabilized, and then the sequence was repeated. The back saturation equipment is 
shown in Figure 16 and Figure 17. 

 

Figure 16. Pore water pressure display, pore water pressure transducer, and triaxial cell 
used in back saturation prior to Mr testing 
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Figure 17. Sample in a triaxial cell and pressure control wall used in back saturation prior 
to Mr testing 

A sample was considered to be adequately saturated when the ratio of the difference in pore 
water pressures (Δu) and the difference in confining stresses (Δσ3) was greater than or equal to 
0.95, as shown in Equation 1: 

 (1) 

where, Δu is the difference in pore water pressure from the previous stress increase and Δσ3 is 
the difference in confining stress from the previous stress increase. 

After the back-saturation process was complete, the samples were allowed to drain for six 
minutes. During this time, all of the drains on the triaxial chamber were opened to atmospheric 
pressure. This draining period simulated wet pavement foundation systems that are still able to 
drain. Once the draining was complete, each sample was immediately tested. 

Resilient Modulus, Shear Strength, and Cyclic Triaxial Testing 

Mr and UU tests were performed using the Geocomp automated Mr test setup (Figure 18) in 
accordance with AASHTO T-307. The setup consists of a Load Trac-II load frame, electrically 
controlled servo value, an external signal conditioning unit, and a computer with a network card 
for data acquisition. The system uses a real-time adjustment of proportional-integral-derivative 
(PID) controller to adjust the system control parameters as the stiffness of the sample changes to 
apply the target loads during the test. Figure 18 shows the triaxial test chamber used in this 
study. The chamber is setup to perform 71 mm (2.8 in.) or 101.6 mm (4 in.) diameter samples. 
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Two linear voltage displacement transducers (LVDTs) are mounted to the piston rod to 
measurement resilient strains in the sample during the test. 

  

Figure 18. Triaxial chamber, load frame, and computer equipment for resilient modulus 
tests 

For this research study, Mr tests were performed following the AASHTO T-307 conditioning and 
loading sequences suggested for base and subgrade materials (Table 3). Each load cycle 
consisted of a 0.1 second haversine-shaped load pulse followed by a 0.9 second rest period. Mr is 
calculated as the ratio of the applied cyclic deviator stress (σd) and resilient strain (εr). The σd 
and εr values from a typical stress-strain cycle during the test are shown in Figure 19. The 
average σd and εr of the last five cycles of a loading sequence are used in Mr calculations. After 
Mr testing, UU shear strength testing was performed on each sample by applying a confining 
pressure of 34.5 kPa (5 psi) to the base and subbase samples and 27.6 kPa (4 psi) to the subgrade 
samples. 

Cyclic triaxial testing was also performed on the OGDC base material using the Geocomp setup 
using a confining stress of 20.7 kPa (3 psi) and a deviator stress of 41.4 kPa (6 psi) or 62.1 kPa 
(9 psi) for 100,000 cycles. These tests were performed to evaluate permanent deformation (εp) 
and aggregate degradation characteristics of the OGDC base material. During sample preparation 
process, the gradation of the OGDC base material was altered by controlling the amount of fines 
content (F200), to assess the influence of F200 on the εp and degradation characteristics. Particle 
size analysis tests were conducted on the sample before and after the cyclic triaxial tests. 
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Table 3. Resilient modulus test sequences and stress values for base/subbase and subgrade 
materials (AASHTO T-307) 

Base/Subbase Materials Subgrade Materials 

Sequence 
No. 

Confining 
Pressure 

Max. Axial 
Stress 

No. of 
cycles 

Sequence 
No. 

Confining 
Pressure 

Max. Axial 
Stress  

kPa psi kPa psi kPa psi kPa psi 
No. of 
cycles 

0 103.4 15 103.4 15 500-
1000 0 41.4 6 27.6 4 500-

1000 
1 20.7 3 20.7 3 100 1 41.4 6 13.8 2 100 
2 20.7 3 41.4 6 100 2 41.4 6 27.6 4 100 
3 20.7 3 62.1 9 100 3 41.4 6 41.4 6 100 
4 34.5 5 34.5 5 100 4 41.4 6 55.2 8 100 
5 34.5 5 68.9 10 100 5 41.4 6 68.9 10 100 
6 34.5 5 103.4 15 100 6 27.6 4 13.8 2 100 
7 68.9 10 68.9 10 100 7 27.6 4 27.6 4 100 
8 68.9 10 137.9 20 100 8 27.6 4 41.4 6 100 
9 68.9 10 206.8 30 100 9 27.6 4 55.2 8 100 

10 103.4 15 68.9 10 100 10 27.6 4 68.9 10 100 
11 103.4 15 103.4 15 100 11 13.8 2 13.8 2 100 
12 103.4 15 206.8 30 100 12 13.8 2 27.6 4 100 
13 137.9 20 103.4 15 100 13 13.8 2 41.4 6 100 
14 137.9 20 137.9 20 100 14 13.8 2 55.2 8 100 
15 137.9 20 275.8 40 100 15 13.8 2 68.9 10 100 

 

 

Figure 19. Graphical representation of one load cycle in Mr testing 
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Resilient Modulus Data Analysis 

Mr values are used in pavement design as a measure of stiffness of unbound materials in the 
pavement structure. The Mr parameter is a highly stress-dependent parameter. Many non-linear 
constitutive models have been proposed that incorporate the effects of stress levels and predict 
Mr values. Most soils exhibit the effects of increasing stiffness with increasing bulk stress and 
decreasing stiffness with increasing shear stress (Andrei et al. 2004). A non-linear constitutive 
model (also called as “universal” model) proposed by Witczak and Uzan (1988) as shown in 
Equation 2 was used in this study:  

 (2) 

where, Pa = atmospheric pressure (MPa); σB = bulk stress (MPa) = σ1 + σ2 + σ3; τoct = octahedral 

shear stress (MPa) ; σ 1, σ2 , σ3 = principal stresses; and k1, 

k2, k3 = regression coefficients. 

Equation 2 combines the effects of bulk and shear stresses into a single constitutive model. Bulk 
stress, octahedral shear stress, and measured resilient modulus values from the last five load 
cycles in each loading sequence were input into the statistical analysis program, JMP, to 
determine the regression coefficients k1, k2, and k3. The k1 coefficient is proportional to Mr and 
therefore is always > 0. The k2 coefficient explains the behavior of the material with changes in 
the bulk stresses. Increasing bulk stresses increases the Mr value and therefore the k2 coefficient 
should be ≥ 0. The k3 coefficient explains the behavior of the material with changes in shear 
stresses. Increasing shear stress softens the material and decreases the Mr value. Therefore the k3 
coefficient should be ≤ 0. 

The R2 values determined from were adjusted for the number of regression parameters using 
Equation 3:  

 (3) 

where, n = the number of data points and p = the number of regression parameters. 

Determination of Dynamic Secant Modulus from Cyclic Stress-Strain Data 

The cyclic stress-strain data obtained from the resilient modulus test was used to estimate 
dynamic secant modulus (Es) to compare with dynamic elastic modulus measurements from 
field. Secant modulus was determined from the slope of the line connecting the origin to a 
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selected point on the stress-strain curve of a material, as illustrated in Figure 20. The difference 
between secant moduli and resilient moduli is the use of permanent strain instead of resilient 
strain in the calculations. 

 

Figure 20. Example plot of cyclic stress-strain data from a Mr test and determination of Es 

Laboratory Permeability Tests 

A specially fabricated 0.3 m diameter by 0.3 m high aggregate compaction mold large scale 
laboratory permeameter (LSLP) was used to perform falling head permeability tests (Figure 21). 
The LSLP test equipment is described in detail in White et al. (2004). Preparation of the test 
samples for the LSLP tests involved uniform mixing and compaction of the material in three lifts 
of equal thickness. Falling head permeability tests were conducted by recording the time taken 
for the water head in the reservoir to drop from H1 to H2 to determine Ksat using Equation 4:  

 (4) 

where Ksat = saturated hydraulic conductivity (cm/s), a = area of the reservoir (cm2), L = length 
of the sample (cm), A = cross-sectional area of the sample (cm2), t = time (sec) taken for the 
water head to drop from H1 to H2, H1 and H2 = water height above the exit (which is at the 
bottom of the sample). 

Microstructural Analysis 

Microstructural analysis features of the OGDC slab base material were determined from 
scanning electron microscopy (SEM). Elemental compositional analysis of the materials was 
determined from energy dispersive spectrometry (EDS) analysis using the SEM samples. 
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Figure 21. Large scale aggregate compaction mold laboratory permeameter (Vennapusa 
2004) 

In Situ Testing Methods  

The following in situ testing equipment and methods were used in this study: real-time kinematic 
(RTK) global positioning system (GPS); Kuab FWD setup with 300 mm diameter plate; Zorn 
LWD setup with 300 mm diameter plate; DCP; calibrated Humboldt NG; rapid GPT device; 
static PLT setup with 300 mm diameter plate; and roller-integrated compaction monitoring 
measurements. Photographs of these devices are shown in Figure 22. 

Real-Time Kinematic Global Positioning System 

RTK-GPS system was used to obtain spatial coordinates (x, y, and z) of in situ test locations and 
tested pavement slabs. A Trimble SPS 881 receiver was used with base station correction 
provided from a Trimble SPS851 established on site. According to the manufacturer, this survey 
system is capable of horizontal accuracies of < 10 mm and vertical accuracies < 20 mm. 

  

0.3 m diameter 
by 0.3 m height 
compaction mold

Water Reservoir

0.25 m diameter 
butterfly valve 
operning

Base mold
holding the valve
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Figure 22. Trimble SPS-881 hand-held receiver, Kuab falling weight deflectometer, and 
Zorn light weight deflectometer (top row left to right); dynamic cone penetrometer, 

nuclear gauge, and gas permeameter device (middle row left to right); static plate load test 
(bottom row) 
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Zorn Light Weight Deflectometer 

Zorn LWD tests were performed on base and subbase layers to determine elastic modulus. The 
LWD was setup with 300 mm diameter plate and 71 cm drop height. The tests were performed 
following manufacturer recommendations (Zorn 2003) and the elastic modulus values were 
determined using Equation 5:  

 (5) 

where E = elastic modulus (MPa), D0 = measured deflection under the plate (mm), η = Poisson’s 
ratio (0.4), σ0 = applied stress (MPa), r = radius of the plate (mm), F = shape factor depending on 
stress distribution (assumed as 8/3) (see Vennapusa and White 2009). The results are reported as 
ELWD-Z3 (Z represents Zorn LWD and 3 represents 300 mm diameter plate). 

Kuab Falling Weight Deflectometer 

Kuab FWD tests on this project were conducted on PCC surface and the OGDC base layers. 
FWD tests on PCC surface were conducted by applying one seating drop using a nominal force 
of about 27 kN (6000 lb) followed by three test drops each at a nominal force of about 27 kN 
(6000 lb), 40 kN (9000 lb), and 54 kN (12000 lb). The test procedure on OGDC base layers was 
also similar to the procedure followed on the PCC surface, but the loading drops varied from 
about 27 kN (6000 lb) to 45 kN (10,000 lb). The actual applied force was recorded using a load 
cell. Deflections were recorded using seismometers mounted on the device. The deflection 
sensor setup used in this study and an example deflection basin data is presented in Figure 23. A 
composite modulus value (EFWD-K3) was calculated using the measured deflection at the center of 
the plate (D0), corresponding applied contact force, and Equation 5, for tests conducted on the 
OGDC base layers. Shape factor F = 2 was assumed in the calculations assuming a uniform 
stress distribution (see Vennapusa and White 2009). For tests conducted on the PCC surface, the 
deflection basin data was used to calculate effective static modulus of subgrade reaction (kFWD-

Static) value using the Engineering and Research International (ERI) data analysis software. The 
kFWD-Static is determined using deflections obtained from D0, D2, D4, and D5, and the AREA 
method as described in AASHTO (1993). 

Other parameters calculated using the FWD deflection basin measurements on PCC surface 
include: (a) surface curvature index (SCI); (b) base damage index (BDI); (c) base curvature 
index (BCI); and (d) area factor. These parameters were calculated using Equations 6 to 9 (D0, 
D2, D4, and D5 are defined in Figure 23):  

SCI (mm) =  (6) 

BDI (mm) =  (7) 
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BCI (mm)  (8) 

Area Factor (mm)  (9) 

The SCI parameter provides a measure of the strength/stiffness of the upper portion (base layers) 
of the pavement foundation layers (Horak 1987). The BDI parameter provides a measure of the 
strength/stiffness properties of layers between 300 mm and 600 mm depth (base and subbase 
layers) from the surface (Kilareski and Anani 1982). The BDI parameter provides a measure of 
the strength/stiffness properties of layers between 600 mm and 900 mm depth (subgrade layers) 
from the surface (Kilareski and Anani 1982). The area factor is primarily the normalized (with 
D0) area under the basin curve up to sensor D5 (AASHTO 1993). The area factor has been used 
to characterize variations in the foundation layer material properties by some researchers (e.g., 
Substad 2002). Comparatively, lower SCI, BDI, BCI, or area factor values indicate better support 
conditions (Horak 1987). 

 

Figure 23. FWD deflection sensor setup used for this study and an example deflection basin 
with SCI, BDI, and BCI calculation procedure 
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Load transfer efficiency (LTE) at joints was determined by obtaining deflections on the loaded 
slab (D0) and deflections of the unloaded slab (D1) (Equation 10). If the entire applied load is 
transferred over to the adjacent slab, then the LTE would be 100%. 

 (10) 

Voids underneath pavement can be predicted by plotting the applied load measurements on the 
X-axis and the corresponding deflection measurements on the y-axis, and plotting a best fit linear 
regression line as illustrated in Figure 24. AASHTO (1993) recommends I = 0.05 mm (2 mils) as 
a critical value for void detection. According to Quintus and Simpson (2002), if I = -0.01 and 
+0.01 mm, then the response would be considered elastic. If I > 0.01 then the response would be 
considered deflection hardening, and if I < -0.01 then the response would be considered 
deflection softening. 

Based on field measurements, Vandenbossche (2005) concluded that the LTEs of doweled PCC 
slabs are not affected by temperature gradients or slab temperature, but the intercept values are 
significantly affected. Large positive gradients (surface warmer than bottom) result in negative 
intercept values, while large negative gradients (surface cooler than bottom) result in positive 
intercept values (Vandenbossche 2005). 

 

Figure 24. Void detection using load-deflection data from FWD test 

Dynamic Cone Penetrometer 

DCP tests were performed in accordance with ASTM D6951-03 “Standard Test Method for Use 
of the Dynamic Cone Penetrometer in Shallow Pavement Applications” to determine dynamic 
penetration index (DPI) and calculate California bearing ratio (CBR) using Equation 11. 
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 (11) 

The DCP test results are presented in this report as CBR with depth profiles at a test location and 
as point values of DCP-CBRBase or DCP-CBRSubbase or DCP-CBRSubgrade. The point data values 
represent the weighted average CBR within each layer. The depths of each layer were identified 
using the DCP-CBR profiles. 

Nuclear Gauge 

A calibrated nuclear moisture-density gauge (NG) device was used to provide rapid 
measurements of soil dry unit weight (γd) and moisture content (w) in the base materials. Tests 
were performed following ASTM D6938-10 Standard Test Method for In-Place Density and 
Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth). Measurements 
of w and γd were obtained at each test location and average values are reported. 

Rapid Gas Permeameter Test  

A rapid gas permeameter test device (GPT) was used to determine saturated hydraulic 
conductivity of OGDC base and the existing subbase layers. The GPT is a recently developed 
rapid permeability testing device that uses gas as a permeating fluid to determine the saturated 
hydraulic conductivity (Ksat) at a test location in situ (White et al. 2010a). Air was used as the 
permeating gas in this field study. The GPT consists of a self-contained pressurized gas system 
with a self-sealing base plate and a theoretical algorithm to rapidly determine the Ksat. The gas 
flow is controlled using a regulator and a precision orifice. The inlet pressure and flow rate 
values are recorded in the device and are used in Ksat calculations using Equation 12:  

 (12) 

where, Ksat = saturated hydraulic conductivity (cm/s); Kgas = gas permeability; Krg = relative 
permeability to gas; µgas = kinematic viscosity of the gas (PaS); Q = volumetric flow rate (cm3/s); 
P1 = absolute gas pressure on the soil surface (Pa) Po(g) x 9.81 + 101325; Po(g) = gauge pressure at 
the orifice outlet (mm of H20); P2 = atmospheric pressure (Pa); r = radius at the outlet (4.45 cm); 
Go= Geometric factor (constant based on geometry of the device and test area; White et al. 
2007), Se = effective water saturation [Se = (S – Sr)/(1-Sr)]; λ = Brooks-Corey pore size 
distribution index; Sr = residual water saturation; S = water saturation; ρ = density of water 
(g/sm3); g = acceleration due to gravity (cm/s2); µwater = absolute viscosity of water (gm/cm-s). 

More details on the test device and Ksat calculation procedure are provided in White et al. (2007), 
(2010a). The degree of saturation (S) values were obtained from in situ dry unit weight and 
moisture content measurements. The Sr and λ parameters can be obtained by determining the 
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soil-water retention properties (also known as soil water characteristic curves (SWCC) of the 
materials). Tests to determine the SWCC parameters can be time-consuming and require precise 
calibration of test equipment. As an alternative, empirical relationships from material gradation 
properties can be used (Zapata and Houston 2008). A summary of these relationships and the 
procedure to estimate Sr and λ parameters are summarized in White et al. (2010a). For the results 
presented in this report, λ = 0.98 and Sr = 12% were used for OGDC base material, and λ = 2.0 
and Sr = 10% were used for sand subbase material. 

Static Plate Load Test  

Static PLTs were conducted on the OGDC layer by applying a static load on 300 mm diameter 
plate against a 6.2kN capacity reaction force. The applied load was measured using a 90-kN load 
cell and deformations were measured using three 50-mm LVDTs. The load and deformation 
readings were continuously recorded during the test using a data logger. The EV1 and EV2 values 
were determined from Equation 5 using deflection values at 0.2 and 0.4 MPa contact stresses as 
illustrated in Figure 25. Modulus of subgrade reaction were also determined from the PLT results 
using Equation 13:  

  (13) 

where kPLT = modulus of subgrade reaction from 300 mm diameter plate load test (kPa/mm), 
D0 = measured deflection under the plate (mm) for 200 kPa to 400 kPa applied stress range, and 
σ0 = applied stress (kPa). 

 

Figure 25. EV1 and EV2 determination procedure from static PLT for subgrade and base 
materials 
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The PLT was performed using a 300 mm (11.8 in.) diameter plate, but the k-value used in the 
pavement design guides is based on a 762 mm (30 in.) diameter plate. Therefore, the measured 
kPLT values were corrected for plate size using a theoretical relationship (Equation 14) proposed 
by Terzaghi (Terzaghi and Peck 1967) for granular soils. 

  (14) 

where kPLT* = modulus of subgrade reaction using a 762 mm (30 in.) diameter plate, 
B1 = 300 mm, and B = 762 mm. 

Roller-Integrated Compaction Measurements 

A Caterpillar CS683 vibratory smooth drum roller was used on the project (Figure 26). The 
device was equipped with two roller-integrated compaction monitoring measurements: (a) 
machine drive power (MDP), and (b) compaction meter value (CMV). Brief descriptions of these 
measurement values (MVs) are provided below, and some key features of the roller are 
summarized in Table 4. 

  

Figure 26. Caterpillar CS683 vibratory smooth drum IC roller 

 

2
1

* 2 



 +

=
B
BBkk PLTPLT



33 

Table 4.  Caterpillar CS683 vibratory smooth drum IC roller features 
Feature Description 
Drum Geometry 2.13 m width and 1.52 m diameter  
Frequency ( f ) 30 Hz 
Amplitude (a) Settings Static, 0.90 mm (low amplitude), and 

Static, 1.80 mm (high amplitude) 
Compaction Measurement 
Values (MVs) MDP40 (shown as CCV in the output) and CMV 
Display Software AccuGrade  
GPS coordinates UTM Zone 15N (NAD83) 
Output Documentation Date/Time; Location (Northing/Easting/Elevation of left and right ends 

of the roller drum); Speed; CCV; CMV; Frequency; Amplitude; 
Direction (forward/backward); Vibration (On/Off) 

 

Machine Drive Power (MDP) Value 

MDP technology relates mechanical performance of the roller during compaction to the 
properties of the compacted soil. Detailed background information on the MDP system is 
provided in White et al. (2005). Controlled field studies documented by White and Thompson 
(2008), Thompson and White (2008), and Vennapusa et al. (2009) verified that MDP values are 
empirically related to soil compaction characteristics (e.g., density, stiffness, and strength). MDP 
is calculated using Equation 15:  

 (15) 

where MDP = machine drive power (kJ/s), Pg = gross power needed to move the machine (kJ/s), 
W = roller weight (kN), A’ = machine acceleration (m/s2), g = acceleration of gravity (m/s2), 
α = slope angle (roller pitch from a sensor), v = roller velocity (m/s), and m (kJ/m) and b 
(kJ/s) = machine internal loss coefficients specific to a particular machine (White et al. 2005). 

 MDP is a relative value referencing the material properties of the calibration surface, which is 
generally a hard compacted surface (MDP = 0 kJ/s). Positive MDP values therefore indicate 
material that is less compact than the calibration surface, while negative MDP values indicate 
material that is more compacted than the calibration surface (i.e., less roller drum sinkage). The 
MDP values obtained from the machine were recalculated to range between 1 and 150 using 
Equation 16 (referred to as MDP40). 

 (16) 

In Equation 16, the calibration surface with MDP = 0 kJ/s was scaled to MDP40 = 150 and a soft 
surface with MDP = 54.23 kJ/s (40000 lb-ft/s) was scaled to MDP40 = 1. 

( )bmv
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Compaction Meter Value (CMV) 

CMV is a dimensionless compaction parameter developed by Geodynamik that depends on roller 
dimensions, (i.e., drum diameter and weight) and roller operation parameters (e.g., frequency, 
amplitude, speed), and is determined using the dynamic roller response (Sandström 1994). It is 
calculated using Equation 19:  

 (19) 

where, C is a constant (300), A2Ω = the acceleration of the first harmonic component of the 
vibration, and AΩ = the acceleration of the fundamental component of the vibration (Sandström 
and Pettersson 2004). 

Correlation studies relating CMV to soil dry unit weight, strength, and stiffness are documented 
in the literature (e.g., Floss et al. 1983, Samaras et al. 1991, Brandl and Adam 1997, Thompson 
and White 2008, White and Thompson 2008). 

Determination of k-values 

The subgrade k values were determined from field measurements, using empirical relationships 
from DCP test measurements, and empirical relationships from laboratory measurements. All 
these values are compared in this report with reference to the design assumed value. The k values 
determined using different procedures and notations are listed below: 

• kPLT* – determined from the static plate load test (and corrected for plate size). 
• kFWD-Static – determined from the FWD test. 
• kcomp-AASHTO(1993) – determined using subgrade Mr determined from DCP-CBRSubgrade, ESB, 

and thickness of subbase/base layer (HSB) using charts provided in AASHTO (1993) (see 
Appendix B). HSB is determined from DCP profiles, and ESB is determined using charts 
provided in AASHTO (1993) (see Appendix B), or directly measured from LWD or FWD 
tests. 

  

Ω

Ω⋅=
A
AC  CMV 2
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CHAPTER 4. LABORATORY TEST RESULTS  

Three soil samples were collected from the field and tested in the laboratory as part of this 
project. A summary of the material index properties (i.e., laboratory compaction test, grain-size 
analysis, Atterberg limits test, soil classification, and specific gravity results) is provided in 
Table 5. 

Table 5. Summary of material index properties 

Parameter 

Untrimmed 
Base 

(Steel Slag) 
Existing Sand 

Subbase Subgrade 
Standard Proctor Test Results (ASTM D698-07)   

     γdmax (kN/m3) — — 18.58 
 wopt — — 13.8 
Modified Proctor Test Results (ASTM D1557-07)   

     γdmax (kN/m3) — — 19.84 
 wopt — — 9.6 
Maximum and Minimum Relative Density Test Results (ASTM D4253-00 and D4254-00) 

     γdmax (kN/m3) 16.23 19.09 — 

     γdmin (kN/m3) 14.05 15.65 — 
Particle-Size Analysis Results (ASTM D 422-63 & ASTM C136-06) 
 Gravel Content (%) (> 4.75mm) 98 2 2 

 Sand Content (%) (4.75mm – 75µm) 0 87 47 

 Silt Content (%) (75µm – 2µm) 
2 

8 25 

 Clay Content (%) (< 2µm) 4 26 
 D10 (mm) 13.44 0.07 — 
 D30 (mm) 19.57 0.15 0.0037 
 D60 (mm) 26.18 0.24 0.17 
 Coefficient of Uniformity, cu 2.0 3.5 — 
 Coefficient of Curvature, cc 1.1 1.3 — 
Atterberg Limits Test Results (ASTM D4318-05) 
 Liquid Limit, LL (%) 

Non Plastic 
32 

 Plastic Limit, PL (%) 17 
AASHTO Classification (ASTM D3282-09) A-1-a A-2-4(0) A-4(0) 
USCS Classification (ASTM D2487-00) GP SP-SM ML 
Specific Gravity, Gs (*Assumed) 2.70* 2.67 2.75* 
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Particle Size Analysis Results 

Grain-size distribution curves from particle-size analysis tests for OGDC base, existing subbase, 
and subgrade materials are provided in Figure 27 through Figure 29, respectively. Figure 27 
includes OGDC base layer material actual gradation and the modified gradation following the 
scalp and replace procedure described earlier in the laboratory test methods section to conduct 
Mr testing on granular materials. 

 

Figure 27. Particle size distribution curves of actual base material and modified gradation 
after scalp and replace procedure (for material retained on 19 mm (3/4 in.) sieve) 
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Figure 28. Particle size distribution curves of existing sand subbase material 

 

Figure 29. Particle size distribution curves of subgrade material 

Moisture-Dry Unit Weight Results 

Moisture-dry unit weight relationships for OGDC base, existing subbase, and subgrade materials 
are provided in Figure 30, Figure 31, and Figure 32, respectively. The figures include in situ data 
from ISU and MDOT testing on OGDC base and subgrade materials. The MDOT field density 
reports are included in Appendix C. The moisture and unit weight measurements of samples 
prepared for Mr tests are also shown on the figures for each of the materials. 
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The in situ relative densities of OGDC base material ranged from 128% to 380% with an average 
of about 260%. The maximum relative density of the Mr and UU test samples was about 178%, 
which was the maximum density that could be achieved using the vibratory compaction process 
and scalp and replacing excess size particles (procedure described in detail in Chapter 3). It is 
likely that the higher densities observed in the field were due to possible segregation and 
variations in gradation in the material. 

In situ moisture-dry unit weight measurements were not obtained for the existing subbase 
material. The Mr and UU tests were performed on the existing sand subbase material at two 
target relative densities: 36% and 106%. These tests were conducted to evaluate the effect of dry 
unit weight on Mr and UU properties on subbase material. 

In situ dry unit of subgrade materials were obtained from “undisturbed” Shelby tube samples 
obtained from the project. Results indicate that in situ subgrade samples were at about 2.8 to 
8.4% wet of standard Proctor wopt and the dry unit weights ranged from about 89 to 93% of 
standard Proctor γdmax. Resilient modulus tests were conducted at three different target moisture 
and dry unit weights, as shown in Figure 32, to evaluate the effect of moisture and dry unit 
weight on resilient modulus of the subgrade material. 

 

Figure 30. Laboratory and in situ moisture-density summary for OGDC base material 
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Figure 31. Laboratory and in situ moisture-density summary for existing sand subbase 
material 
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Figure 32. Laboratory and in situ moisture-density summary for subgrade material 

Mr and UU Test Results  

A summary of the test results for the three materials showing the γd, w%, average Mr of the 15 
AASHTO T-307 loading sequences, Mr at specific stress states, dynamic secant modulus (Es), 
permanent strain (εp) at the end of the Mr test, “universal model” regression coefficients, 
undrained shear strength (su) at failure or at 5% axial strain, and su at 1% strain are presented in 
Table 6. Stress-strain curves from all resilient modulus tests are presented in Appendix D. 

Stress states for granular and cohesive materials were recommended in NCHRP 1-28A report 
(NCHRP 2004) as σ3 = 35 kPa (5 psi) and σcyclic = 103 kPa (15 psi) for base or subbase materials 
and σ3 = 14 kPa (2 psi) and σcyclic = 41 kPa (6 psi) for subgrade materials. Equation 2 and the k1, 
k2, and k3 regression coefficients were used to calculate the Mr at these stress states. 

Deviator stress (σd) versus Mr for the Shelby tube subgrade samples obtained from field along 
with the “universal model” prediction curves are presented in Figure 33 and 33. σd versus Mr for 
laboratory compacted subgrade samples are presented in Figure 35. As expected for cohesive 
materials, these figures illustrate that the Mr generally decreases with increasing σd. The Shelby 
tube and laboratory compacted samples could not be directly compared because of the 
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differences in moisture and unit weight values. The laboratory samples had high dry unit weights 
and low moisture contents, while the Shelby tube samples had low dry unit weights and high 
moisture contents. Therefore, as expected, the laboratory compacted samples showed higher Mr 
compared to the field samples. 

Bulk stress (σB) versus Mr for the OGDC base and existing sand subbase samples along with the 
corresponding “universal model” prediction curves are presented in Figure 36 and 36, 
respectively. Bulk stress is made up of the three orthogonal stresses. For triaxial samples, the 
intermediate and confining stresses are assumed to be equal (σ2 = σ3), so bulk stress is more an 
indicator of the confining stress applied to the sample than the deviator stress. Figure 36 and 
Figure 37 illustrate the confining stress dependency of granular materials (i.e., increasing 
confining stresses increases the Mr, as expected). Also included in Figure 37 are Mr results on 
samples prepared with and without using the scalp and replace procedure (as described earlier in 
Chapter 3). Results indicate that the differences between the modified gradation samples and the 
original gradation samples for the σB versus Mr relationships are minimal. 

Moisture content, dry unit weight, and degree of saturation, and homogenous sample Mr values 
for OGDC base, existing subbase, and subgrade materials are compared in Figure 38. Results 
indicate that increasing dry unit weight and decreasing moisture content generally increased Mr 
values. Comparison of Mr obtained on OGDC base material before and after back-saturation 
indicated that increasing saturation decreased the average Mr value by about 1.4 times, while it 
increased the Es value by 1.7 times. 

Pictures of a layered composite sample (base over subgrade) during and after testing are shown 
in Figure 39 and Figure 40, respectively. σB versus Mr along with corresponding “universal 
model” prediction curves for the layered composite sample are compared with the OGDC base 
layer homogenous sample in Figure 41. The Mr values between homogenous and layered 
composite samples are compared in a bar chart presented in Figure 42. The comparison reveals 
that the average Mr of layered composite sample is about 1.7 times lower than the average Mr of 
a homogenous layer OGDC sample at a similar density. The reason for this reduction in Mr in the 
layered composite sample is attributed to the weaker subgrade layer. This is an important finding 
and must be further studied with adequate testing in various combinations of layered composite 
sample configurations. Efforts are underway in this research study to further investigate the 
influence of layered composite soil layer configurations on Mr properties.
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Table 6. Mr and UU test results for all samples 

Sample 
γd 

(kN/m3) 
w 

(%) 

Mr Test UU Test 

Ave. 
Mr 

(MPa) 

Mr at 
Stress 
States 

(MPa)# 
Es 

(MPa) 
εp 

(%) k1 k2 k3 R2 
su  

(kPa) § 

su @ 
ε = 1% 
(kPa) 

A4*  
(0.39–0.77 m) 17.09 16.6 26.7 26.1 1.4 2.04 996.0 0.64 -9.36 0.80 53.9 28.5 

C2*  
(0.41–0.87 m) 17.17 19.1 41.1 55.9 11.3 0.55 1476.9 -0.13 -8.72 0.87 83.4 37.9 

C2*  
(1.19–1.65 m) 16.78 20.5 29.7 28.5 4.1 1.03 770.5 0.57 -6.67 0.83 84.9 44.4 

C4*  
(0.55–0.98 m) 16.85 21.4 75.9 67.9 17.0 0.36 961.3 0.39 -1.79 0.64 111.3 59.6 

C4*  
(1.19–1.59 m) 16.93 19.0 40.2 42.7 4.8 0.96 924.8 0.33 -5.56 0.77 90.4 44.4 

E2*  
(0.38–0.76 m) 16.70 22.2 22.3 23.7 2.0 1.74 666.9 0.39 -7.56 0.82 66.5 36.1 

E2*  
(1.19–1.60 m) 17.07 21.4 66.9 77.9 21.1 0.28 935.1 -0.09 -1.96 0.58 132.8 63.6 

E4*  
(0.48–1.40 m) 16.54 21.9 107.4 87.5 27.8 0.52 1777.3 0.71 -3.78 0.56 122.7 65.8 

E4*  
(0.94–1.22 m) 16.54 21.5 45.1 57.9 5.5 0.73 1025.1 -0.07 -5.17 0.70 79.8 42.6 

G1*  
(0.48–0.61 m) 16.82 20.2 59.6 60.0 14.3 0.37 825.3 0.20 -2.14 0.47 93.0 53.1 

G1*  
(1.02–1.40 m) 16.65 21.3 72.3 69.2 14.1 0.38 944.2 0.27 -1.84 0.45 140.4 66.2 

G3*  
(0.39–1.00 m) 16.45 22.2 66.9 101.3 10.3 0.49 1291.8 -0.56 -3.98 0.65 104.4 47.7 

G3*  
(1.00–1.45 m) 16.65 21.0 86.6 87.7 60.0 0.16 1401.4 0.30 -3.12 0.54 130.8 73.8 

Subgrade 17.58 18.4 96.6 89.2 31.4 0.21 1491.9 0.43 -3.05 0.64 170.1 91.2 

Subgrade 18.30 9.2 147.7 116.2 92.0 0.11 1376.8 0.44 -0.11 0.36 533.6 337.7 

Subgrade 18.95 13.8 203.0 233.8 142.7 0.08 2287.4 -0.21 -0.61 0.06 541/0 245.1 

* = subgrade Shelby tube; # subgrade: σ3 = 14 kPa (2 psi), σcyclic = 41 kPa (6 psi); §at axial strain ε = 5% or at failure 
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    Mr Test UU Test 

Sample 
γd 

(kN/m3) 
w 

(%) 

Ave. 
Mr 

(MPa) 

Mr at 
Stress 
States 

(MPa)# Es (MPa) 
εp 

(%) k1 k2 k3 R2 
su  

(kPa) § 

su @ 
ε = 1% 
(kPa) 

Existing Sand 
Subbase 16.85 14.4 121.1 69.0 26.3 1.50 460.4 1.05 -0.61 0.96 82.9 81.4 

Existing Sand 
Subbase 19.28 14.9 146.7 94.9 36.5 1.46 655.2 0.80 -0.26 0.97 76.0 75.0 

OGDC Base 15.72 0.9 288.1 189.0 306.0 0.11 1244.1 0.68 0.15 0.92 262.4 261.3 

OGDC Base 13.63 0.9 238.6 154.3 54.1 0.64 916.3 0.51 0.85 0.95 138.5 121.9 

OGDC BaseSR 16.45 1.3 214.7 133.0 73.6 0.69 852.4 0.78 0.06 0.98 146.2 118.1 

OGDC BaseSR 17.93 1.4 281.1 199.0 214.4 0.20 1564.6 0.78 -0.69 0.82 216.8 196.9 

OGDC Base+ 16.21 3.3 154.9 88.4 128.3 0.30 555.1 0.95 -0.20 0.97 220.4 202.9 
Layered 

Composite: 
OGDC Base/ 

Subgrade 

16.65 1.6 
125.8 111.6 37.5 1.35 1084.6 0.43 -0.78 0.72 179.1 154.1 

17.37 15.0 

# Base/subbase: σ3 = 35 kPa (5 psi), σcyclic = 103 kPa (15 psi); SR = scalp and replace method; + = back saturated; §at axial strain ε = 5% or at 
failure 
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Figure 33. Summary of σd versus Mr for Shelby tubes taken 0.4 m to 1.0 m below the 
ground surface 
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Figure 34. Summary of σd versus Mr for Shelby tubes taken 1.0 m to 1.7 m below the 
ground surface 
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Figure 35. Summary of σd versus Mr for subgrade samples (compacted in laboratory) 

 

Figure 36. Summary of σB versus Mr for existing sand subbase samples 
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Figure 37. Summary of σB versus Mr for OGDC base samples 
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Figure 38. Relationships between dry unit weight, moisture content, and degree of 
saturation, and Mr on homogenous samples 
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Figure 39. Untrimmed base (16.65 kN/m3 at 1.6% moisture) over subgrade (17.37 kN/m3 at 
15.0% moisture) during Mr testing 

 

Figure 40. Untrimmed base (16.65 kN/m3 at 1.6% moisture) over subgrade (17.37 kN/m3 at 
15.0% moisture) after Mr testing 
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Figure 41. Comparison of σB versus Mr for layered composite sample and OGDC base and 
subgrade homogenous samples 

 

Figure 42. Comparison of homogenous and layered composite samples of base and 
subgrade Mr(T307) values 
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cyclic load test was conducted with a unique series of test parameters to compare with others and 
evaluate the effect of a single test parameter. These parameters included: (a) fines content, (b) 
dry unit weight, and (c) deviator stress. Fines content was varied from 2% to 8% at every 2% 
increments without varying the compacted dry unit weight, moisture content, and 
deviator/confining stresses. Similarly, to evaluate the effect of dry unit weight, samples were 
prepared at a target 90% and 100% relative density with a target fines content of 2%. All samples 
were prepared at a target moisture content of about 3.3%, which is the mean value from field 
measurements. A summary of the test parameters and results is provided in Table 7. 

The actual relative density (Dr) values varied from 105% to 107% on samples prepared with a 
target Dr = 90%, and the actual Dr value was 119% for the sample prepared with a target of 
Dr = 100%. The reason for these higher than anticipated densities is attributed to the differences 
in the gradation of the sample used in the testing versus the sample used in the relative density 
vibratory compaction test (note that the scalp and replace procedure was not used in the vibratory 
compaction test). The actual fines content varied from about 3.3% to 9.0% prior to triaxial 
testing. 

Results from the cyclic triaxial tests are provided in Figure 43 and are summarized in Table 7. 
These results indicate that the permanent strain (εp) after 100,000 cycles generally increased 
from about 0.3 to 0.7% with increasing fines content from about 3% to 7%. Interestingly, the 
sample with 8% fines resulted in a εp of 0.3%. As expected, increasing dry unit weight from 
about 16.35 kN/m3 to 16.73 kN/m3 resulted in a decrease εp from about 0.4% to 0.2%, and 
increasing σd from 41.4 kPa to 62.0 kPa showed an increase in εp from about 0.3 to 0.7%. 

Results from particle size analysis on samples before and after cyclic triaxial testing are 
summarized in Figure 44 and the gradation properties (i.e., D10, D30, D60, and F200) are provided 
in Table 7. These results did not indicate any considerable difference in gradation properties 
before and after the cyclic triaxial tests. 

Similar cyclic triaxial and aggregate degradation testing is currently being performed on 
materials obtained from multiple project sites as part of this research. Statistical analysis 
combining results from various projects will be conducted to develop models to predict 
permanent deformation and aggregate degradation behavior based on test parameters and type of 
material. 

  



52 

Table 7. Summary of cyclic triaxial and degradation test results on OGDC base material 

Parameter Measurements 
Target F200 (%) 2.0 2.0 4.0 4.0 6.0 8.0 

Nominal σd (kPa) 41.4 41.4 41.4 62.0 41.4 41.4 

Nominal σc (kPa) 20.7 20.7 20.7 20.7 20.7 20.7 

Target w (%) 3.30 3.30 3.30 3.30 3.30 3.30 

Actual w (%) 3.62 3.25 3.64 3.52 3.37 3.40 

Target γd (kN/m3) 15.99 16.24 15.99 15.99 15.99 15.99 

Target Dr (%) 90 100 90 90 90 90 

Actual γd (kN/m3) 16.35 16.73 16.37 16.40 16.48 16.40 

Actual Dr (%) 105 119 106 107 110 107 

Actual F200 (%) 
Pre-test 3.3 3.3 4.5 4.5 6.9 9.0 

Post-test 3.3 3.6 5.0 4.7 7.1 9.0 

D10 (mm) 
Pre-test 0.6 0.5 0.5 0.5 0.2 0.1 

Post-test 0.6 0.5 0.4 0.5 0.2 0.1 

D30 (mm) 
Pre-test 4.0 4.0 4.7 4.7 3.4 3.4 

Post-test 4.9 3.9 4.5 4.9 3.2 3.4 

D60 (mm) 
Pre-test 8.4 9.0 9.5 9.5 8.9 9.1 

Post-test 9.9 9.0 9.5 10.2 9.0 8.9 

εp (%) at the end of 100,000 cycles  0.4% 0.16% 0.32% 0.66% 0.71% 0.34% 
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Figure 43. Results of cyclic triaxial tests on OGDC base material 
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Figure 44. Particle size analysis test results of OGDC base material before and after cyclic 
triaxial tests 
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increase in density was noticed after 50 blows in each layer. The dry density achieved using this 
compaction method was about 14.77 kN/m3 (94 pcf) and the material contained about 2% 
moisture content. Time t was recorded for the water head level to drop from about 90 to 50 cm. 
Using these values, the average Ksat = 3.1cm/s was determined based on three consecutive tests 
on the same sample (Ksat ranged from 3.0 to 3.2 cm/s in the three tests performed). 

Microstructural Analysis 

A sample of OGDC steel slag aggregate material with 12.5 mm to 50 mm diameter chunks with 
varying color were chosen for microstructural analysis. Some samples were blown clean with an 
air duster to examine the surface (referred to as “rough surfaces” in the images). Others were 
rinsed with water in an ultrasonic bath, dried, embedded in epoxy, and ground to prepare a 
polished section (referred to as “polished surfaces” in the SEM images). Color stereo microscope 
images of all samples are presented in Appendix E. A wide range of colors varying from gray to 
light brown to dark brown and appearance were evident from the images. SEM images of one 
selected rough surface and one polished surface at different magnifications (7x, 25x, 100x, and 
300x) are presented in Figure 45 and Figure 46, respectively. 

Most pieces were quite porous, but some were quite dense and uniform. In rough form, the 
chunks showed macro porosity in the SEM. Most of the material was a uniform gray color in 
backscattered electron (BSE) images. Some areas showed light second phases indicating a higher 
content of heavy elements. The elemental analysis showed that the primary constituents of the 
slag material are composed of about 54% Oxygen (O), 16% Calcium (Ca), 14% Silica (Si), 8% 
Magnesium (Mg), 5% Aluminum (Al), among other minor amounts of elements. Figure 47 and 
Figure 48 show spatial distribution of elements for gray vesicular surface (at 300 x 
magnification) and polished surface B (at 400x magnification) samples, respectively. Figure 49 
shows the intensity (counts per second/eV) versus the keV for polished surface A and polished 
surface B samples. 

The composition of all samples was fairly consistent regardless of the visual appearance of the 
chunks. The polished sections showed granular structure and that porosity generally extended 
through the interior of the material. The grains were typically surrounded by another phase. Light 
material (i.e., Mn, Fe-rich) was found at the surfaces of the pores. Some sections (e.g., polished 
surface H) showed a fairly smooth material. It had some pores with isolated islands of light 
material, but did not show the clear granular nature evident in other samples (see Appendix E). 
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Figure 45. Color stereo microscope image of rough gray vesicular surface at 7x 
magnification, and SEM images at 7x, 25x, 100x, and 300x magnification 
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Figure 46. Color stereo microscope image of polished surface B at 7x magnification, and 
SEM images at 7x, 25x, 100x, and 300x magnification 
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Figure 47. Elemental maps of gray vesicular surface at 300x magnification 

  

Figure 48. Elemental maps of polished surface B at 400x magnification 
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Red line : Slag MI-94 pol A 25x (9/11/2009 13:59) 
Blue line : Slag MI-94 pol B 25x (9/11/2009 14:08) 

 

Figure 49. Elemental analysis of polished surfaces A and B at 25x magnification 
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CHAPTER 5. IN SITU TEST RESULTS 

Description of Test Sections 

A total of three TS were tested as part of this project. Of these, two TS consisted of areas with 
the newly constructed OGDC base layer, while one TS consisted investigating the conditions of 
the existing pavement and foundation layers. Various in situ testing methods were used in 
characterizing the pavement surface and foundation layer properties, and a summary of each TS 
is provided in Table 8. 

Table 8. Summary of test sections and in situ testing 

TS Date Location Material 
In situ Test 

Measurements Comments 

1a 5/27/2009 
Sta. 804+00 
to 813+00 
[I-94 EB]  

Newly 
constructed 

base 
NG, DCP, LWD  Section tested after 

trimmed to grade.  

1b 5/28/2009 
Sta. 809+00 

[I-94 EB] 
(7 m x 7 m 

area) 

Newly 
constructed 

base 
NG, DCP, LWD, 

GPT 

Section tested after 
trimmed to grade. 

Testing was 
performed in 0.6 m  

x 0.6 m grid. 

2a 5/27/2009 
East of Adair 

rest area  
on-ramp  

Existing PCC 
surface FWD 

FWD testing was 
performed on inner 

and outer lanes over a 
length of about 80 m. 

2b 5/29/2009 
East of Adair 

rest area  
on-ramp  

Existing PCC 
surface, 

subbase and 
subgrade 

FWD, GPT, DCP, 
LWD 

Testing was 
performed in a grid 

pattern on the surface, 
and on existing 

subbase. Shelby tube 
samples of subgrade 
were obtained for Mr 
testing in laboratory. 

3a 5/28/2009 Sta. 839+50 
to 866+00 

Newly 
constructed 

base 

CMV, MDP, NG, 
DCP, LWD, 
FWD, PLT 

Section tested prior to 
trimming. Rolling 

performed using low 
amplitude setting for 

two passes. 3b 5/28 – 
5/29/2009 

Sta. 866+00 
to 890+00 

Newly 
constructed 

base 
CMV, MDP 

3c 6/1/2009 Sta. 959+00 
to 969+00 

Existing 
Subgrade CMV, MDP 

Rolling performed 
using low amplitude 
setting for one pass. 

Note: NG – nuclear gauge, DCP – dynamic cone penetrometer (DCP) test, LWD – Zorn light weight deflectometer 
with a 300 millimeter plate, GPT – gas permeameter test device, FWD – Kuab falling weight deflectometer (FWD), 
CMV – compaction meter value measured using CS-683 vibratory smooth drum roller, MDP – machine drive power 
measured using CS-683 vibratory smooth drum roller, PLT –static plate load test. 
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Geostatistical Data Analysis  

Spatially referenced near continuous roller-integrated compaction measurements and in situ point 
measurements in a dense grid pattern were obtained in this study. These data sets provide an 
opportunity to quantify “non-uniformity” of compacted fill materials. Non-uniformity can be 
assessed using conventional univariate statistical methods (i.e., by statistical standard deviation 
(σ) and coefficient of variation (COV)), but they do not address the spatial aspect of non-
uniformity. Vennapusa et al. (2010) demonstrated the use of semivariogram analysis in 
combination with conventional statistical analysis to evaluate non-uniformity in QC/QA during 
earthwork construction. A semivariogram is a plot of the average squared differences between 
data values as a function of separation distance, and is a common tool used in geostatistical 
studies to describe spatial variation. A typical semivariogram plot is presented in Figure 50. 

The semivariogram γ(h) is defined as one-half of the average squared differences between data 
values that are separated at a distance h (Isaaks and Srivastava 1989). If this calculation is 
repeated for many different values of h (as the sample data will support) the result can be 
graphically presented as experimental semivariogram, shown as circles in Figure 50. More 
details on experimental semivariogram calculation procedure are available elsewhere in the 
literature (e.g., Clark and Harper 2002, Isaaks and Srivastava 1989). 

To obtain an algebraic expression for the relationship between separation distance and 
experimental semivariogram, a theoretical model is fit to the data. Some commonly used models 
include linear, spherical, exponential, and Gaussian models. A spherical model was used for data 
analysis in this report. Arithmetic expression of the spherical model and the spherical variogram 
are shown in Figure 50. 

Three parameters are used to construct a theoretical semivariogram: sill (C+C0); range (R); and 
nugget (C0). These parameters are briefly described in Figure 50. More discussion on the 
theoretical models can be found elsewhere in the literature (e.g., Clark and Harper 2002, Isaaks 
and Srivastava 1989). 

For the results presented in this report, the sill, range, and nugget values during theoretical model 
fitting were determined by checking the models for “goodness” using the modified Cressie 
goodness fit method (see Clark and Harper 2002) and cross-validation process (see Isaaks and 
Srivastava 1989). From a theoretical semivariogram model, a low “sill” and longer “range of 
influence” represent best conditions for uniformity, while the opposite represents an increasingly 
non-uniform condition. 

Some of the results presented in this report revealed nested structures with short-range and long-
range components in the experimental semivariograms. Nested structures have been observed in 
geological applications where different physical processes are responsible for spatial variations 
at different scales (see Chiles and Delfiner 1999). For the cases with nested structures, nested 
spherical variograms combining two spherical models (with two sill values and two range 
values) are fit to the experimental semivariogram data. A few previous studies (e.g., White et al. 
2010b) have reported nested semivariograms with roller-integrated compaction measurements, 
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where the long-range component of the semivariogram was likely influenced by support 
conditions below the compaction layer, and the short-range component was likely due to the 
compaction layer properties. 

 

Figure 50. Description of a typical experimental and spherical semivariogram and its 
parameters  

TS1 and TS3: Newly Constructed OGDC Base and Subgrade Layers 

Test Sections Construction and Experimental Testing  

TS1 involved testing the OGDC base layer on I-94 EB lanes between Sta. 804+00 and 813+00. 
The material was placed, compacted, and trimmed in this area prior to our testing. TS1-A 
involved testing every +50 station between Sta. 804+00 and 813+00 (Figure 51) along the 
centerline of the I-94 EB alignment and left and right of the centerline at about 4 m offsets. 
TS1-B involved testing a 7 m x 7 m area near Sta. 809+00 in a dense grid pattern (Figure 51, 
Figure 52) with 121 test points. NG, LWD, GPT, and DCP tests were conducted on this test 
section. 
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Figure 51. TS1: Plan view of in situ test locations 

 

Figure 52. TS1-B: Photograph showing testing on the 0.6 m x 0.6 m grid pattern 

TS3-A and TS3-B involved testing the OGDC base layer between Sta. 839+50 and 890+00. The 
material was placed and compacted in this area prior to our testing, but was not trimmed to the 
final grade. TS3-A involved testing using point measurements at every +50 station between Sta. 
839+50 and 866+00 (Figure 53) along the center line of the I-94 EB alignment, and left and right 
of the center line at about 4 m offsets. NG, DCP, LWD, FWD, and PLT point tests were 
conducted on TS3-A. 
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Figure 53. Plan view of in situ test locations on TS3-A (left) and photograph of TS3-A 
untrimmed OGDC base layer (right) 

In addition, CMV and MDP40 roller-integrated measurements were obtained using the CS683 
smooth drum roller in TSs 3a, 3b, and 3c. TS3b was located between Sta. 866+00 and 890+00. 
TS3c was located between Sta. 959+00 and 969+00 and consisted of compacted subgrade layer. 
Roller-integrated measurements were obtained for two roller passes on TS3-A, and one roller 
passes on TSs 3b and 3c. All roller passes were made using low amplitude (0.90 mm) and 
frequency = 30 Hz nominal settings at an average speed of about 4 km/h. 

In Situ Point Test Results and Discussion 

In situ test results from TS1-A are presented in Figure 54 through Figure 56. Results of the three 
tests performed at each +50 station and an average value of the three tests are presented in these 
figures. The 121 test points obtained near Sta. 809+00 (TS1-B) are also presented in these 
figures for reference. Figure 54 presents γd and w measurements obtained from NG test, and 
CBR of base and subgrade layer measurements obtained from DCP test (i.e., DCP-CBRbase, and 
DCP-CBRsubgrade) as point measurements with distance (note that each station is about 100 m 
apart). 

Figure 55 presents in situ modulus measurements obtained from LWD test (ELWD-Z3) on the 
OGDC base layer, estimated ESB values of the OGDC base layer from DCP measurements, and 
estimated subgrade Mr values from DCP measurements. The estimated ESB and Mr values were 
based on the charts presented in AASHTO (1993) (see Appendix B). The assumed ESB and 
subgrade Mr values in design are shown in Figure 55 for reference and comparison. Using the 
ESB and Mr values, and an average base layer thickness of 400 mm (15.7 in.) determined from 
DCP-CBR profiles (Figure 56), kcomp-AASHTO(1993) values at each test location were determined to 
compare with the design kcomp values. 
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In situ test results from TS3-A are presented in Figure 57 through Figure 60. Results of the three 
tests performed at each +50 station and the average values of the three tests are presented in 
these figures. Figure 57 presents γd and w measurements obtained from NG tests; CBR of base 
and subgrade layer measurements obtained from DCP tests (i.e., DCP-CBRbase, and DCP-
CBRsubgrade); and thickness of base layer (HBase) based on DCP-CBR profiles as point 
measurements with distance. Figure 58 presents in situ modulus measurements obtained from 
FWD (EFWD-K3); LWD (ELWD-Z3); and PLT (EV1 and EV2) tests on the OGDC base layer, 
estimated ESB values from DCP measurements; and estimated subgrade Mr values from DCP 
measurements. 

Using the ESB and subgrade Mr values from DCP tests, and an average baser layer thickness of 
500 mm (19.7 in) determined from DCP profiles (Figure 59), kcomp-AASHTO(1993) values at each test 
location were determined to compare with the design kcomp values. The same procedure to 
determine kcomp-AASHTO (1993) was repeated using ESB = ELWD-Z3 and ESB = EFWD-K3, and the 
results are shown in Figure 60. Also included in Figure 60 are the kPLT* measurements. The PLT 
was performed using a 300 mm (12 in.) diameter plate, but the kcomp used in the AASHTO (1993) 
design guide is based on a 720 mm (30 in.) diameter plate. Therefore, the measured kcomp values 
were corrected for plate size as described earlier in Chapter 3. 

A summary of univariate statistics (i.e., mean µ, standard deviation σ, coefficient of variation 
COV) of the in situ point measurements from TS1-A and TS3-A is provided in Table 9. 
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Figure 54. TS1-A: In situ NG and DCP test results from Sta. 804+00 to Sta. 814+00 
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Figure 55. TS1-A: In situ modulus and estimated composite stiffness measurements from 
Sta. 804+00 to Sta. 814+00 
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Figure 56. TS1-A: DCP-CBR profiles along centerline from Sta. 804+00 to Sta. 813+00 
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Figure 57. TS3-A In situ NG, DCP-CBR, and base layer thickness measurements on 
untrimmed OGDC base layer 
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Figure 58. TS3-A: In situ modulus measurements on untrimmed OGDC base layer 
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Figure 59. DCP-CBR profiles along centerline from Sta. 840+00 to Sta. 866+00 – TS3-A 
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Figure 60. Comparison of estimated and measured kcomp – TS3-A 
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Table 9. TS1-A and TS3-A: Summary statistics of in situ test results 
Measurement n µ σ COV (%) 
TS1-A     
γd (kN/m3) 175 20.02 0.63 3 
w (%) 175 2.1 0.4 19 
DCP-CBRBase (%) 175 37.7 9.0 24 
DCP-CBRSubgrade(%) 175 4.0 3.1 79 
Ksat (cm/s) 121 2.9 3.9 135 
Fines (%) 121 3.7 1.4 37 
ELWD-Z3 (MPa) 175 63.1 12.0 19 
Estimated ESB (MPa) [AASHTO 1993] 175 108.5 7.1 7 
Estimated Subgrade Mr (MPa) [AASHTO 1993] 175 33.0 16.0 48 
Estimated kcomp-AASHTO(1993) 175 93.0 28.9 31 
TS3-A     
γd (kN/m3) 162 19.21 0.88 5 
w (%) 162 1.3 0.3 25 
DCP-CBRBase (%) 162 35.1 10.2 29 
DCP-CBRSubgrade(%) 162 6.5 2.2 34 
ELWD-Z3 (MPa) 162 49.0 10.5 21 
EFWD-K3 (MPa) 50 44.7 14.0 31 
EV1 (MPa) 10 23.4 8.0 34 
EV2 (MPa) 10 55.2 22.3 40 
Estimated ESB (MPa) [AASHTO 1993] 162 106.1 8.2 8 
Estimated Subgrade Mr (MPa) [AASHTO 1993] 162 48.3 10.8 22 
kPLT* (kPa/mm) 10 33.8 11.5 34 
Estimated kcomp-AASHTO(1993)

1 162 136.0 21.3 16 
Estimated kcomp-AASHTO(1993)

2 162 104.9 18.1 17 
Estimated kcomp-AASHTO(1993)

3 50 104.4 24.1 23 
1Estimated using ESB determibed from DCP-CBRBase using AASHTO (1993) empirical equations, 2Estimated using 
ESB = ELWD-Z3, 3Estimated using ESB=EFWD-K3. 

Statistical Analysis of Dense Grid Point Testing – TS1-B  

Test measurements obtained from TS1-B in a dense grid pattern with 121 tests over a plan area 
of about 7 m x 7 m provided a robust dataset to characterize the spatial characteristics of the 
measurements using geostatistical analysis. Kriged spatial contour maps, semivariograms, and 
histograms of each in situ point measurement are presented in Figure 61 through Figure 64. The 
spatial statistical parameters (i.e., sill, range, and nugget) are provided in the semivariogram plot 
of each figure. 

With the exception of Ksat and DCP-CBRsubgrade measurements, all other measurements showed a 
clear spatial structure in the semivariogram plots without any need for data transformation. Ksat 
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measurements showed a log-normal distribution, therefore, the data was transformed to log(K) to 
develop a semivariogram. Similarly, transforming the data into a log scale resulted in a better 
spatial structure for DCP-CBRsubgrade. A spherical semivariogram model showed best fit for all 
the measurements. 

Comparison of Kriged contour maps of Ksat and Fines in Figure 62 reveal that zones of high fines 
content (e.g., > 6%) match with zones of low Ksat (i.e., < 0.1 cm/s) and vice-versa. Previous 
studies have indicated that for granular materials, the permeability is highly governed by the 
percentage of fine particles passing the No. 200 sieve (Moulton 1980). AASHTO (1993) reports 
that Ksat of unbound granular materials decreases by two orders of magnitude with an increase in 
fines from 0 to 5% and a decrease by about four orders of magnitude with an increase in fines 
from 5% to 10%. 

Relationships between fines content on Ksat based on the field measurements are presented in 
Figure 65. Exponential relationships showed the best fit for the trend in the data. A similar 
relationship was reported by Vennapusa et al. (2006) and is included in Figure 65 for reference. 
Based on the R2 values, about 50% of the variation in Ksat is explained by the variation in fines 
content. Other parameters that influence Ksat include other gradation parameters (e.g., D10, D60, 
etc.), shape and orientation of aggregate particles and dry unit weight, as expected. 
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Figure 61. Kriged spatial contour map (top), semivariogram (middle), and histogram 
(bottom) plots of γd (left) and w (right) measurements – TS1-B 
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Figure 62. Kriged spatial contour map (top), semivariogram (middle), and histogram 
(bottom) plots of percent fines (left) and Ksat (right) measurements – TS1-B 
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Figure 63. Kriged spatial contour map (top), semivariogram (middle), and histogram 
(bottom) plots of ELWD-Z3 (left) and DCP-CBRBase (right) measurements – TS1-B 
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Figure 64. Kriged spatial contour map (top), semivariogram (middle), and histogram 
(bottom) plots of DCP-CBRSubgrade measurements – TS1-B 
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Figure 65. Effect of fines content on Ksat – TS1-B  
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considerable changes in the variability between passes 1 and 2. TS3b showed about two times 
greater average CMV than TS3-A pass 1, and also showed comparatively more variability as 
indicated by higher standard deviation and semivariogram sill values than TS3-A pass 1. 

Results obtained on TS3c (subgrade layer) showed CMV measurements that are significantly 
lower than on TSs 3a and 3b. Further, the variability observed in TS3c CMV measurements were 
also lower than on TSs 3a and 3b, as indicated by the comparatively lower standard deviation 
and semivariogram sill values. In contrast, the MDP40 values showed significantly greater 
variability in TS3c compared to TSs 3a and 3b. The standard deviation of MDP40 and 
semivariogram sill of MDP40 on TS3c were about 14 and 235, respectively, while they are about 
6 and 34 to 38 in TSs 3a and 3b. 
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Figure 66. CMV and MDP40 maps on untrimmed OGDC base and subgrade layers – TSs 3a, 3b, and 3c 
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Figure 67. CMV histograms on untrimmed OGDC base and subgrade layers – TSs 3a, 3b, 
and 3c 
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Figure 68. MDP40 histograms on untrimmed OGDC base and subgrade layers – TSs 3a, 3b, 
and 3c 
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Figure 69. TS3-A, TS3-B, and TS3-C: Semivariograms of CMV (left column) and MDP40 
(right column) measurements on untrimmed OGDC base and subgrade layers 
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Table 10. TS3-A, TS3-B, and TS3-C: CMV and MDP40 measurements 

TS Measurement 

Univariate Statistics Spatial Statistics 

n μ σ 
COV 
(%) Nugget1 Sill1 

Range1 
(m) Sill2 

Range2 
(m) 

TS3-A 
(OGDC 
Base 
Layer) 

CMV (Pass 1) 18288 16.9 4.3 26 10 18.5 15 NA 

CMV (Pass 2) 18157 59.8 21.7 36 350 450.0 20 480.0 110 

MDP40 (Pass 1) 18288 106.9 6.2 6 19 28.5 40 37.5 400 

MDP40 (Pass 2) 18157 105.9 5.7 5 17 25.5 40 33.5 400 
TS3-B 
(OGDC 
Base 
Layer) 

CMV (Pass 1) 13844 32.8 12.4 38 110 165.0 20 NA  

MDP40 (Pass 1) 13844 102.3 6.0 6 25 32.0 28 38.0 175 

TS3-C 
(Subgrade 
Layer) 

CMV (Pass 1) 13887 8.9 2.8 31 4 6.0 3 NA 

MDP40 (Pass 1) 13887 87.5 13.9 16 50 195.0 13 235.0 52 

 

Comparisons of Design Value, In situ Measurements, and Laboratory Measurements 

Comparisons of the measured, estimated, and design assumed modulus (i.e., base layer ESB, 
subgrade Mr, and kcomp) values are presented in Figure 55, Figure 58, and Figure 60. A summary 
of the average values of in situ and laboratory measured values in comparison with the design 
values is provided in Table 11. These comparisons reveal some important aspects that are of high 
significance to this research project and are summarized as follows: 

Base Layer Elastic Modulus (ESB) 

The measured ESB values (either by LWD or FWD or PLT) in TSs 1 and 3 locations did not meet 
the target design ESB = 165 MPa (24 ksi). On average, the measured ESB values were about 3 to 7 
times lower than the design target value. Although estimated ESB measurements from DCP-
CBRBase measurements resulted in higher values than LWD/FWD/PLT measurements, the ESB 
were still about 1.5 times lower than the design target value. The laboratory determined ESB 
values were, however, about 1.7 times higher than the design target value. 

Subgrade Resilient Modulus (Mr) 

A direct measurement of Mr was not obtained in the TS1 and TS3 subgrades; however, Mr tests 
were conducted on “undisturbed” samples obtained from TS2 subgrade. The results were 
summarized earlier in Chapter 4. Using the stress states recommended by NCHRP 1-28A (2002) 
for subgrade materials (σ3 = 14 kPa (2 psi) and σcyclic = 41 kPa (6 psi)), an average Mr = 61 MPa 
(8.8 ksi) was determined from the laboratory tests, which exceeds the design target Mr = 21 MPa 
(3 ksi). The average in situ estimated Mr value from DCP-CBRSubgrade measurements was about 
41 MPa (5.9 ksi), which also exceeds the design target value. 
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Table 11. Design, in situ, and laboratory values 

Design 
Parameter 

Design 
Value 

In Situ 
Measurements 

(Average)* 

Laboratory  
Measurements  

(Average)** 

Subgrade 
Mr 

21 MPa  
(3.0 ksi) 41 MPa (5.9 ksi)1 61 MPa (8.8 ksi)  

 

OGDC 
Base ESB 

165 MPa 
(24.0 ksi) 

Direct Measurement: 
56 MPa (8.1 ksi)2 

44 MPa (6.4 ksi)3 

23 MPa (3.3 ksi)4 
55 MPa (8.0 ksi)5 

Estimated from DCP: 
107 MPa (15.5 ksi)1 

288 MPa (41.8 ksi) 

kcomp 
84 kPa/mm 
(310 pci) 

Direct Measurement:  
34 kPa/mm (124 pci)6 

Estimated Value: 
114 kPa/mm (420 pci)7 
91 kPa/mm (336 pci)8 
100 kPa/mm (369 pci)9 

Estimated from  
average ESB and Mr: 

163 kPa/mm  
(600 pci) 

Cd 
1.1 

(Good to 
Excellent) 

Good to Excellent  
based on the range of Ksat  

measurements in situ 

Excellent  
based on laboratory  
Ksat measurement 

*Average of all measurements obtained from TSs 1 and 3; **Average based on laboratory tests on all Shelby tube samples from 
subgarde and all laboratory compacted OGDC base material samples (without back-saturation); 1Empirically estimated from 
charts presented in AASHTO (1993); 2Average of ELWD-Z3 measurements; 3Average of EFWD-K3 measurements; 4Average of EV1 
measurements; 5Average of EV2 measurements; 6Based on plate load tests; 7Based on ESB from DCP-CBRBase measurements, 
subgrade Mr from DCP-CBRSubgrade measurements, and HSB from DCP profiles; 8Based on ESB = ELWD-Z3 measurements, 
subgrade Mr from DCP-CBRSubgrade measurements, and HSB from DCP profiles; 9Based on ESB = EFWD-K3 measurements, 
subgrade Mr from DCP-CBRSubgrade measurements, and HSB from DCP profiles. 
 

Composite Modulus of Subgrade Reaction (kcomp) 

The kcomp values were determined in situ from PLT at 10 test locations. The average kPLT* was 
about 34 kPa/mm (124 pci), which was about 2.5 times lower than the design target kcomp = 84 
kPa/mm (310 pci). The kcomp value was also estimated to determine kcomp-AASHTO(1993) using ESB 
based on DCP, LWD, and FWD measurements. These estimated values ranged, depending on 
the selected ESB value, from about 1.1 to 1.4 times the design value. The kcomp-AASHTO(1993) 
determined using laboratory measurements was about 163 kPa/mm (600 pci), which is about 2 
times higher than the design target value. 

The results indicate that the kcomp values vary significantly (from about 2.5 times lower to 2 times 
higher than the design target value) based on the method or procedure used. 
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Drainage Coefficient (Cd) 

The Cd value assumed in design = 1.1, which represents that the quality of drainage is rated as 
“good” to “excellent”. According to AASHTO (1993), if water is removed from the pavement 
system in one day, the quality of drainage is rated as “good” and if water is removed within two 
hours, the quality of drainage is rated as “excellent”. 

Based on the pavement geometry (i.e., cross slope, width of the pavement, thickness of the base 
layer), the measured Ksat values from the field, and assuming an effective porosity = 0.3, time for 
a target 90% of drainage was calculated using “Pavement Drainage Estimator (PDE) Version 
1.0),” an Excel-based Visual Basic program developed by Vennapusa (2004). A target of 90% 
drainage was selected in calculations. The time for 90% drainage was estimated as 1.4 days for 
Ksat = 0.1 cm/s (lower bound) to 0.1 hour for Ksat = 30 cm/s (upper bound). For an average 
Ksat = 2.9 cm/s, time for 90% drainage was estimated at about 1.1 hours. The average in situ 
Ksat = 2.9 cm/s compares well with the laboratory measured Ksat = 3.1 cm/s. Based on these 
estimates, the quality of the OGDC drainage layer can be rated as “good” to “excellent” and does 
meet the design requirements. 

TS2: Existing PCC Surface, Subbase, and Subgrade 

Experimental Testing  

TS2 involved testing the existing PCC surface layer and the foundation layers. TS2-A involved 
conducting FWD tests at the center of the panel and at selected joints along the inner and outer 
lanes of I-94 EB existing pavement over an 80 m long area (Figure 71). TS2-B involved 
conducting FWD testing in dense grid pattern on PCC surface with 203 tests in a 7.4 m x 13.4 m 
area consisting of two PCC panels and a patching area (Figure 71). After testing on the PCC 
surface, the pavement panels were removed to expose the underlying foundation layers (Figure 
77). A gravelly sand base layer of about 100 mm in thickness (4 in.) was encountered directly 
beneath the PCC surface. No tests were performed on the base layer as the layer was disturbed 
during the pavement removal process (Figure 77). A trench was carefully excavated down to the 
existing sand subbase layer at 28 test locations to conduct LWD tests (Figure 77). DCP tests 
were conducted through the disturbed base layer at all 28 test locations extending down to the 
subgrade layer. GPT test measurements were obtained at 8 selected locations on the subbase 
layer. 
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Figure 70. TS2: Plan view showing in situ test locations (left) and detailed view of TS2-B 
(right) 

  

Figure 71. TS2-B: Laying out the test grid (left) and Kuab FWD testing on the grid (right) 
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Figure 72. TS2-B: Bucket loader in place for excavating existing pavement 

  

Figure 73. TS2-B: Bucket loader excavating existing pavement 

 

Figure 74. Measuring the existing pavement depth 
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Figure 75. TS2-B: Preparing test locations for in situ testing (foreground) and the MDOT 
drilling rig obtaining Shelby tube samples 

 

Figure 76. TS2-B: Air permeameter testing device 

   

Figure 77. TS2-B: Plate load testing in progress 
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In Situ Test Results and Discussion 

FWD deflection basin parameters (i.e., D0, SCI, BDI, BCI, and Intercept) from tests conducted at 
the center of the panel on TS2a are presented in Figure 78. LTE, D0, and Intercept measurements 
from FWD tests conducted at joints are presented in Figure 79. According to McCracken (2008), 
intercept ≥ 0.05 mm indicates presence of void beneath the pavement. Results indicated that all 
intercept measurements (both at joints and at center of the panel) were below the 0.05 mm (50 
µm or 2 mils) target limit. The LTE at the joints varied from about 38% to 100%, with 6 out of 8 
measurements below 70%. A summary of univariate statistics (i.e., mean µ, standard deviation σ, 
and coefficient of variation COV) of TS2a measurements is provided in Table 12. 

Kriged spatial contour maps of FWD deflection basin parameters from tests conducted in a dense 
grid pattern on TS2-B are presented in Figure 80. Semivariograms used to develop these contour 
maps are provided in Figure 81. A spherical variograms showed the best fit for all of the 
measurements. The semivariogram range of all FWD deflection basin parameters was about the 
same (2 to 3 m), while the sill values varied between the parameters. Histogram plots of the 
FWD deflection basin parameters are provided in Figure 82. 

Kriged spatial contour maps of in situ point measurements on the existing subbase and subgrade 
layers are presented in Figure 83. Semivariograms of these measurements are provided in Figure 
84, and histogram plots of the measurements are presented in Figure 85. The experimental 
semivariograms did not show a clear spatial structure, so a theoretical semivariogram could not 
be fit to the data. The Kriged contour maps were developed only for visualization purposes 
without the use of a semivariogram. DCP-CBR profiles (Figure 86) were used to determine the 
DCP-CBRSubbase and DCP-CBRSubgrade. A summary of the univariate statistics of these 
measurements are provided in Table 12. 

On average, the ELWD-Z3 on the existing sand subbase is about two times lower than the ELWD-Z3 
on the newly constructed OGDC base layer. Laboratory Mr tests also revealed similar differences 
as noted earlier in Chapter 4 (Table 6). On average, Mr (at a selected stress state for base/subbase 
layers) of the existing subbase layer is about two times lower than Mr of the OGDC base layer. 
The average DCP-CBRSubbase is about 18 times lower than the average DCP-CBRBase (on the 
OGDC base layer from TSs 1 and 3). The DCP-CBRSubgrade from TS2-B is about the same as the 
DCP-CBRSubrade from TSs 1 and 3. The Ksat of the existing subbase layer was on average about an 
order of magnitude lower than on the OGDC base layer (TS1). 
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Figure 78. Results from FWD tests at the center of pavement panels from TS2a 
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Figure 79. Results from FWD tests at pavement joints from TS2a 
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Table 12. TS2: Summary statistics of in situ test results 

 

Measurement 

Univariate Statistics Spatial Statistics 

Test Bed n µ σ 
COV 
(%) Nugget Sill 

Range 
(m) 

TS2-A  
(measurements 
at center of the 
PCC panels) 

D0 (µm) 30 169.3 54.1 32 

NA 

SCI (µm) 30 23.8 17.8 75 
BDI (µm) 30 23.4 14.5 62 
BCI (µm) 30 25.8 11.2 43 

Intercept, I (µm) 30 1.0 7.0 712 

TS2-A  
(measurements 
near joints) 

D0 (µm) 8 271.5 57.0 21 

Intercept, I (µm) 8 1.1 11.5 1086 

LTE (%) 8 88 33 37 

TS2-B 
(Spatial area 
on PCC 
surface) 

D0 (µm) 203 175.5 73.7 42 0 7500 3.0 

SCI (µm) 203 14.5 10.4 72 25 100 3.0 

BDI (µm) 203 19.9 10.3 52 25 85 2.0 

BCI (µm) 203 22.8 10.1 44 10 120 2.2 

Intercept, I (µm) 203 6.1 13.4 221 0 260 3.0 

TS2-B 
(Spatial area 
on subbase 
and subgrade) 

ELWD-Z3 (MPa) 28 26.9 6.9 26 

No clear spatial structure 
DCP-CBRSubbase (%) 28 5.2 1.1 22 

DCP-CBRSubgrade (%) 28 6.1 2.7 45 

Ksat (cm/s) 8 0.12 0.06 53 
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Figure 80. Kriged spatial contour maps of FWD test results (normalized for F = 40 kN 
(9000 lbs)) on pavement surface from TS2-B 
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Figure 81. Semivariograms of FWD test results (normalized for F = 40 kN (9000 lbs)) on 
pavement surface from TS2-B 
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Figure 82. Histograms of FWD test results (normalized for F = 40 kN (9000 lbs)) on 
pavement surface from TS2-B 
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Figure 83. Kriged spatial contour maps of in situ point measurements on the existing 
subbase and subgrade layers from TS2-B 

 

20 
30 
40 
50 
60 

Subbase 
ELWD (MPa) 0.1

0.3
1
3
10
0.0 
0.2 

Subbase 
APT Ksat 
(cm/s)

3 
6 
9 
12 
15 

Col 5 vs Col 6 Col 5 vs Col 6 

Subbase 
CBR (%)

Subgrade 
CBR (%)

13
.3

 m

7.4 m 7.4 m

13
.3

 m

7.4 m 7.4 m

3 
6 
9 
12 
15 



99 

 

Figure 84. Semivariograms of in situ point measurements on existing subbase and subgrade 
layers from TS2-B 
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Figure 85. Histograms of in situ point measurements on existing subbase and subgrade 
layers from TS2-B 
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Figure 86. DCP-CBR profiles on the existing foundation layers from TS2-B 

  

CBR (%)

0 20 40 60 80 100

D
ep

th
 (m

m
)

0

200

400

600

800

1000

Sand Subbase

Silty Clay 
Subgrade

Gravelly Sand Base



102 

CHAPTER 6. SUMMARY AND CONCLUSIONS  

This report presents results and analysis from a field study conducted on the I-94 between mile 
posts 23.0 and 6.1 in St. Clair and Macomb Counties, Michigan. The project involved 
construction of a 280 mm (11 in.) thick jointed PCC pavement, by undercutting the existing 
foundation layers to a depth of about 690 mm (27 in.) for placement of an open-graded drainage 
course (OGDC) layer composed of recycled steel slag, over the subgrade with a geotextile 
separation layer at the subgrade/OGDC layer interface. Review of construction bid documents 
indicated that the construction cost of the foundation layers (i.e., excavation, OGDC base layer, 
geotextile separator) was about 50% ($5,424,275) of the total cost of the project ($10,918,175). 

Field testing was conducted on three test sections. Two of the test sections consisted of 
compacted OGDC base layer, while one test section consisted of existing pavement/ foundation 
layers. In situ testing was conducted by using point test methods (i.e., NG, LWD, FWD, DCP, 
PLT) and using roller-integrated compaction monitoring method to obtain 100% coverage over 
the OGDC base layer. Field point testing was conducted by spacing the test measurements about 
50 to 100 m apart to capture the variability along the road alignment. Testing was also conducted 
in a dense grid pattern (spaced at about 0.6 to 1.5 m) to capture spatial variability over a small 
area. Geostatistical semivariogram analysis was performed to analyze the point test data from 
dense grid pattern testing to characterize and quantify spatial non-uniformity of the PCC surface 
and foundation layer properties. Geostatistical analysis was also performed on spatially 
referenced roller-integrated compaction measurements to quantify spatial non-uniformity of the 
foundation layers. 

Comparing measured properties from laboratory and in situ testing with the design assumed 
values revealed the following:  

• The measured ESB values (either by LWD or FWD or PLT) and the estimated ESB values 
(from DCP measurements) were on average about 1.5 to 7 times lower than the design target 
value. The laboratory determined ESB values were, however, about 1.7 times higher than the 
design target value. It must be noted that the ESB values obtained by LWD, FWD, and PLT 
represent a composite response in situ with the influence of both base layer and the 
underlying subgrade layer stiffness. 

• Mr tests conducted on “undisturbed” in situ subgrade layer samples showed an average 
Mr = 61 MPa (8.8 ksi), which exceeds the design target Mr = 21 MPa (3 ksi). The average in 
situ estimated Mr value from DCP-CBRSubgrade measurements was about 41 MPa (5.9 ksi), 
which also exceeds the design target value. 

• The kcomp values determined in situ from PLT showed an average kPLT* of about 34 kPa/mm 
(124 pci), which was about 2.5 times lower than the design target kcomp = 84 kPa/mm (310 
pci). The kcomp-AASHTO(1993) values were estimated using ESB based on DCP, LWD, and FWD 
measurements. These estimated values ranged from about 1.1 to 1.4 times the design target 
kcomp, depending on the selected ESB value. The kcomp-AASHTO(1993) determined using laboratory 
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measurements was about 163 kPa/mm (600 pci), which is about 2 times higher than the 
design target kcomp value. These results indicate that kcomp values vary significantly based on 
the method or procedure used. 

• The Cd value assumed in design = 1.1, which represents that the quality of drainage is “good” 
to “excellent” according to AASHTO (1993). Based on the pavement geometry and the range 
of Ksat values obtained from field, the time for 90% of drainage ranged from 0.1 hour to 1.4 
days. For an average Ksat = 2.9 cm/s, time for 90% drainage was estimated at about 1.1 hours. 
The average in situ Ksat = 2.9 cm/s compared well with the laboratory measured Ksat = 3.1 
cm/s. These times for 90% drainage estimates indicate that the quality of the OGDC drainage 
layer is “good” to “excellent” according to AASHTO (1993) and therefore that it meets the 
design requirements. 

Laboratory testing was conducted on foundation layer materials obtained from the field to 
determine index properties, moisture-dry unit weight relationships from compaction tests, 
resilient modulus, and aggregate degradation under cyclic loading. The resilient tests were 
conducted on homogenous samples as well as well as composite samples (i.e., OGDC base over 
subgrade) to assess its influence on the resilient modulus values. In addition, microstructural 
analysis using SEM on OGDC base layer material samples was performed. Some key findings 
from laboratory testing are as follows: 

• Results indicated that the Mr of OGDC base layer material increased with increasing bulk 
stresses, as expected for granular materials. Mr of subgrade materials decreased with 
increasing deviator stress, as expected for non-granular materials. Increasing moisture 
content decreased Mr and increasing dry unit weight increased Mr for both subbase and 
subgrade materials. 

• Comparison of Mr obtained on OGDC base material before and after back-saturation 
indicated that increasing saturation decreased the average Mr value by about 1.4 times. 

• The comparison of homogenous and composite Mr test results revealed that the average Mr of 
composite sample is about 1.7 times lower than the average Mr of a homogenous layer 
OGDC sample at a similar density. The reason for this reduction in Mr in the composite 
sample is attributed to the weaker subgrade layer. 

• Cyclic triaxial testing (up to 100,000 cycles) and corresponding aggregate degradation tests 
were conducted on OGDC base layer material samples compacted to different target dry unit 
weights, fines content, moisture content, and deviator/confining stress combinations. Results 
indicated very low permanent strains (< 0.7%) after 100,000 cycles for the recycled steel slag 
material used in the OGDC base layer for this project. No considerable aggregate degradation 
was found after 100,000 cycles on any of the OGDC base layer samples tested. 
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APPENDIX A: MDOT OFFICE MEMORANDUM (FEBRUARY 29, 2008): PAVEMENT 
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APPENDIX B: AASHTO 1972, AASHTO (1993), AND PCA (1984) DESIGN CHARTS 

 
Figure 87. Chart to estimate modulus of subbase layer (ESB) from CBR (from AASHTO 

1993 based on results from Til et al. 1972)  
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Figure 88. Chart to estimate Mr of subgrade from CBR (from AASHTO 1993 Appendix 

FF) 
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Figure 89. Chart for estimating composite modulus of subgrade reaction (kcomp-AASHTO(1993)) 

assuming a semI-infinite subgrade depth (from AASHTO 1993) 
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APPENDIX C: MDOT FIELD MOISTURE/DENSITY REPORTS, AGGREGATE 
INSPECTION REPORT, AND MDOT DENSITY GUIDELINES 
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APPENDIX D: STRESS-STRAIN CURVES FROM RESILIENT MODULUS TESTING 

 

Figure 90. Cyclic stress-strain curves from Mr test for Shelby tube A4 (0.4–1.0 m) 
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Figure 91. Cyclic stress-strain curves from Mr test for Shelby tube C2 (0.4–1.0 m) 
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Figure 92. Cyclic stress-strain curves from Mr test for Shelby tube C2 (1.0–1.7 m) 
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Figure 93. Cyclic stress-strain curves from Mr test for Shelby tube C4 (0.4–1.0 m) 
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Figure 94. Cyclic stress-strain curves from Mr test for Shelby tube C4 (1.0–1.7 m) 
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Figure 95. Cyclic stress-strain curves from Mr test for Shelby tube E2 (0.4–1.0 m) 
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Figure 96. Cyclic stress-strain curves from Mr test for Shelby tube E2 (1.0–1.7 m) 
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Figure 97. Cyclic stress-strain curves from Mr test for Shelby tube E4 (0.4–1.0 m) 
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Figure 98. Cyclic stress-strain curves from Mr test for Shelby tube E4 (1.0–1.7 m) 
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Figure 99. Cyclic stress-strain curves from Mr test for Shelby tube G1 (0.4–1.0 m) 
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Figure 100. Cyclic stress-strain curves from Mr test for Shelby tube G1 (1.0–1.7 m) 
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Figure 101. Cyclic stress-strain curves from Mr test for Shelby tube G3 (0.4–1.0 m) 
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Figure 102. Cyclic stress-strain curves from Mr test for Shelby tube G3 (1.0–1.7 m) 
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Figure 103. Cyclic stress-strain curves from Mr test for subgrade sample 17.85 kN/m3 @ 
18.4% moisture 
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Figure 104. Cyclic stress-strain curves from Mr test for subgrade sample 18.30 kN/m3 @ 
9.3% moisture 
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Figure 105. Cyclic stress-strain curves from Mr test for subgrade sample 18.95 kN/m3 @ 
13.8% moisture 
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Figure 106. Cyclic stress-strain curves from Mr test for existing sand subbase sample 
16.85 kN/m3 @ 14.4% moisture 
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Figure 107. Cyclic stress-strain curves from Mr test for existing sand subbase sample 
19.28 kN/m3 @ 14.9% moisture 
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Figure 108. Cyclic stress-strain curves from Mr test for untrimmed base sample 
13.63 kN/m3 @ 0.9% moisture 
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Figure 109. Cyclic stress-strain curves from Mr test for untrimmed base sample 
15.72 kN/m3 @ 0.9% moisture 
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Figure 110. Cyclic stress-strain curves from Mr test for untrimmed base sample 
16.45 kN/m3 @ 1.3% moisture, scalp and replace method 
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Figure 111. Cyclic stress-strain curves from Mr test for untrimmed base sample 
17.93 kN/m3 @ 1.4% moisture, scalp and replace method 
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Figure 112. Cyclic stress-strain curves from Mr test for untrimmed base sample 
16.21 kN/m3 back saturated, scalp and replace method
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APPENDIX E: SEM IMAGES AND ELEMENTAL ANALYSIS RESULTS FOR OGDC 
BASE MATERIAL 

  

  

Figure 113. Color stereo microscope images of polished surfaces A, B, C, and D at 2 mm 
magnification 

Polished A Polished B 

Polished D 
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Figure 114. Color stereo microscope images of polished surfaces E, F, G, and H at 2 mm 
magnification 

Polished E Polished F 

Polished G Polished H 
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Figure 115. Color stereo microscope images of polished surface I, rough black angular, 
rough black glassy, and rough black vesicular surfaces at 2 mm magnification 

Polished I Rough Black Angular 

Rough Black Glassy Rough Black Vesicular 
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Figure 116. Color stereo microscope images of rough brown and gray vesicular surfaces at 
2 mm magnification 

Rough Brown Vesicular Rough Gray Vesicular 
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Figure 117. SEM images of polished surface A at 25x, 100x, and 300x magnification 
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Figure 118. SEM images of polished surface B at 25x, 100x, and 300x magnification 
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Figure 119. SEM images of polished surface C at 25x, 100x, and 300x magnification 
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Figure 120. SEM images of polished surface D at 25x, 100x, 300x, and 1000x magnification 

  



193 

  

Figure 121. SEM images of polished surface E at 25x and 100x magnification 

  

  

Figure 122. SEM images of polished surface F at 25x, 100x, 300x, and 1000x magnification 
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Figure 123. SEM images of polished surface G at 25x, 100x, and 300x magnification 
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Figure 124. SEM images of polished surface H at 25x, 100x, and 300x magnification 
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Figure 125. SEM images of polished surface I at 25x, 100x, and 300x magnification 
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Figure 126. SEM images of black angular surface at 25x and 100x magnification 

  

Figure 127. SEM images of black glassy surface at 25x and 100x magnification 

 

Figure 128. SEM image of black vesicular surface at 25x magnification 
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Figure 129. SEM image of brown vesicular surface at 25x magnification 

  

 

Figure 130. SEM images of gray vesicular surface at 25x, 100x, and 300x magnification 
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Figure 131. Elemental maps of polished surface B at 400x magnification 

 

Figure 132. Elemental maps of polished surface D at 1000x magnification 
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Figure 133. Elemental maps of polished surface F at 1000x magnification 

 

Figure 134. Elemental maps of polished surface G at 500x magnification 
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Figure 135. Elemental maps of gray vesicular surface at 300x magnification 

Red line : Slag MI-94 pol A 25x (9/11/2009 13:59) 
Blue line : Slag MI-94 pol B 25x (9/11/2009 14:08) 

 

Figure 136. Elemental analysis of polished surfaces A and B at 25x magnification 
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Red line : Slag MI-94 pol C 25x (9/11/2009 14:16) 
Blue line : Slag MI-94 pol G 25x (9/11/2009 14:51) 

 

Figure 137. Elemental analysis of polished surfaces C and G at 25x magnification 

Red line : Slag MI-94 pol H 25x (9/11/2009 14:57) 
Blue line : Slag MI-94 pol I 100x (9/11/2009 15:06) 

 

Figure 138. Elemental analysis of polished surfaces H and I at 25x magnification 
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