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EXECUTIVE SUMMARY 

Quality foundation layers (the natural subgrade, subbase, and embankment) are essential to 
achieving excellent pavement performance. Unfortunately, many pavements in the United States 
still fail due to inadequate foundation layers. To address this problem, a research project, 
Improving the Foundation Layers for Pavements (FHWA DTFH 61-06-H-00011 WO #18; 
FHWA TPF-5(183)), was undertaken by Iowa State University (ISU) to identify, and provide 
guidance for implementing, best practices regarding foundation layer construction methods, 
material selection, in situ testing and evaluation, and performance-related designs and 
specifications. As part of the project, field studies were conducted in several in-service concrete 
pavements across the country that represented either premature failures or successful long-term 
pavements. A key aspect of each field study was to tie performance of the foundation layers to 
key engineering properties and pavement performance. In situ foundation layer performance 
data, as well as original construction data and maintenance/rehabilitation history data, were 
collected and geospatially and statistically analyzed to determine the effects of site-specific 
foundation layer construction methods, site evaluation, materials selection, design, treatments, 
and maintenance procedures on the performance of the foundation layers and of the related 
pavements. A technical report was prepared for each field study. 

This report presents results and analysis of field and laboratory tests from a field study conducted 
on the I-29 interstate highway reconstruction project in Monona and Harrison Counties, Iowa. 
The project involved removal of the existing continuously reinforced concrete pavement 
(CRCP), reconstruction of the pavement foundation layers (base, subbase, and subgrade), and 
placement of a new jointed plain cement pavement (JPCP). The existing CRCP was about 
200 mm thick and was supported on a leveling sand subbase and subgrade. The reconstruction 
involved removing the leveling sand subbase and the subgrade layers to about 300 to 600 mm 
below the existing grade, and placing a nominal 300 to 450 mm thick recycled asphalt 
subbase/select sand subbase layer, and a nominal 150 mm thick recycled portland cement 
concrete (PCC) base layer. The new JPCP was about 279 mm thick and was designed using the 
PCA (1984) design procedure. 

The ISU research team was present on the project site during the reconstruction process. In situ 
FWD tests and DCP tests were conducted on the existing CRCP and the exposed foundation 
layers shortly after removal of the old pavement and on the new JPCP shortly after it was placed. 
The FWD and DCP tests were conducted to compare the foundation layer strength/stiffness 
profile between the old and new foundation layers, and to obtain mechanistic properties of the 
new foundation layers (i.e., modulus of subgrade reaction, k) and compare with the design k 
values. Some key findings from this testing and data analysis are as follows: 

• On average, the plate deflection under a 40 kN applied load on the new JPCP was about 
0.4 times the deflection on the existing CRCP. 

• The FWD intercept values on the existing CRCP and new JPCP were low (< 0.04 mm) 
which do not indicate voids beneath the pavement. 
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• The average static k value determined from the FWD on the new JPCP was on average 
about 1.6 times higher than on the existing CRCP. This indicates that there was 
improvement in the foundation layer stiffness values under the new pavement compared 
to the old pavement. 

• The k values determined from both DCP-CBR measurements and FWD measurements 
indicated higher values on the new JPCP than on the existing CRCP. 

• Based on tests conducted on the new JPCP sections, the k values determined using FWD 
were similar to the values determined using CBR of the weak layer within the top 
450 mm of the subgrade but were about 17 times lower than the values determined using 
CBR of the treated subgrade. This indicates that a weak layer within the top 450 mm of 
the subgrade contributes to low values observed in the FWD testing and that the use of 
high CBR values in the treated subgrade layers can result in unreasonably high k values. 

• The subgrade k values estimated from laboratory CBR measurements in thawed state 
were about 2.8 times lower than the design value. The average treated subgrade k value 
estimated from DCP-CBR measurements was about 23 times higher than the design 
value, while the untreated weak subgrade k value estimated from DCP-CBR was about 
1.4 times higher than the design value. The average k value determined from FWD test, 
however, was about the same as the design value. 

A few foundation layer production areas on the project were mapped during construction using a 
Volvo vibratory smooth drum roller equipped with Trimble’s roller integrated compaction 
monitoring (RICM) system, in conjunction with nuclear gauge density, moisture content, light 
weight deflectometer (LWD), and DCP tests. The RICM system used on this project measured 
compaction meter value (CMV). The in situ tests were conducted to correlate with CMV 
measurements. Some key findings from this testing are as follows: 

• CMV maps with virtually 100% coverage of the compacted foundation layers identified 
“soft” and “stiff” areas as verified using in situ DCP and LWD measurements. 

• CMV measurements were influenced by amplitude settings. CMV measurements were on 
average about 1.1 to 1.5 times greater in high amplitude setting than in low amplitude 
setting. This is likely due to potential differences in the magnitude of stresses applied on 
the materials by the roller drum under different amplitude settings. 

• Results obtained from White et al. (2010) were combined with the results obtained from 
this project to obtain correlations over a wide measurement range between LWD 
modulus, DCP-CBR, and nuclear gauge dry unit weight measurements and CMV. Results 
showed non-linear exponential relationships for CMV vs. LWD modulus with R2 = 0.66 
to 0.86. Relatively weak regression relationships with R2 = 0.12 to 0.18 were observed 
for CMV vs. CBR and no statistically significant relationships were found for CMV vs. 
dry unit weight. CMV provides a measure of composite layer ground stiffness and not 
necessarily the dry unit weight of a single layer. 

Laboratory testing was conducted on foundation layer materials obtained from field to determine 
index properties, moisture-dry unit weight relationships from compaction tests, resilient modulus 
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(Mr), and frost-heave and thaw-weakening susceptibility rating. Mr tests were conducted on 
homogenous samples as well as well as layered composite samples (i.e., RPCC base over 
subbase, subbase over subgrade). Frost-heave tests were conducted on subgrade samples by 
exposing the samples to two freeze-thaw cycles according to ASTM D5918. Thaw-weakening 
susceptibility rating was determined by conducting California bearing ratio (CBR) tests on 
compacted samples before and after freeze thaw cycles. Some key findings from laboratory Mr 
and frost-heave/thaw-weakening susceptibility rating tests are as follows: 

• Comparison of homogenous sample versus composite sample Mr values indicated that the 
average Mr of the composite sample was either similar to the layer with a lower Mr value, 
or about average of the two layer’s Mr values.  

• Frost-heave test results on subgrade samples indicated that the heave rate was greater for 
the second freezing cycle than for the first freezing cycle, which indicates that the 
material is susceptible to increased heave with greater freeze-thaw cycles. Based on the 
frost-heave rate measurements, the subgrade soil is classified to have high potential to 
frost-heave. 

• Post freeze/thaw moisture content profiles of the samples were obtained by taking 
samples at different depths. Results showed that the moisture content was higher at all 
depths in the samples compared to the initial moisture content. The moisture content at 
the top of the sample was higher than at the middle or bottom of the sample, which 
indicates that water was drawn to the top cold plate through capillary action caused in 
part by the temperature gradient in the samples during testing. 

• The CBR test on the thawed samples decreased to an average CBR < 1.0 on the four 
samples from about CBR = 22 on a sample tested before freezing-thawing. Based on the 
thawed CBR values, the soil is classified to have very high potential to thaw-weakening. 
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CHAPTER 1: INTRODUCTION  

This report presents results and analysis of field and laboratory tests from a field study conducted 
on the I-29 interstate highway reconstruction project in Monona and Harrison Counties in Iowa. 
The project involved removal of the existing continuously reinforced concrete pavement 
(CRCP), reconstruction of the pavement foundation layers (base, subbase, and subgrade), and 
placement of a new jointed plain cement pavement (JPCP) on the north and south bound lanes of 
I-29, between just south of County Road F-20 to just north of I-75. The existing CRCP was 
about 200 mm thick and was supported on a leveling sand subbase and subgrade. The 
reconstruction involved removing the leveling sand subbase and the subgrade layers to about 300 
to 600 mm below the existing grade. The exposed subgrade in the excavation was reworked and 
a 300 to 450 mm thick recycled asphalt subbase/select sand subbase layer (referred to as “special 
backfill subgrade treatment” in Iowa DOT specifications), and a 150 mm thick recycled portland 
cement concrete (PCC) base layer were placed. The new JPCP was about 279 mm thick. The 
new pavement was designed by the Iowa DOT in accordance with the PCA (1984) design 
procedure. 

The Iowa State University (ISU) research team was present on the project site during the 
reconstruction process from August 31 to September 3, 2009 and on September 10, 2010. In situ 
falling weight deflectometer (FWD) tests and dynamic cone penetrometer (DCP) tests were 
conducted on the old CRCP and the exposed foundation layers shortly after removal of the old 
pavement and on the new JPCP shortly after it was placed. The FWD and DCP tests were 
conducted to compare the old and new foundation layer strength/stiffness profiles and to obtain 
mechanistic properties of the new foundation layers (i.e., modulus of subgrade reaction k) for 
comparison with the design k values. 

A few foundation layer production areas on the project were mapped during construction using a 
Volvo vibratory smooth drum roller equipped with Trimble’s roller integrated compaction 
monitoring (RICM) system, in conjunction with nuclear gauge density, moisture content, light 
weight deflectometer (LWD), and DCP tests. The RICM system used on this project measured 
compaction meter value (CMV). The in situ tests were conducted to correlate with CMV 
measurements. RICM mapping and tests were conducted in concurrence with another research 
project funded by the Iowa DOT at that time (White et al. 2010). Some results from White et al. 
(2010) are combined with the results from this study to illustrate correlations over a wide range 
of measurements. 

Disturbed bag samples of subgrade, subbase, and base materials were obtained for laboratory 
testing that involved characterizing their index properties, moisture-dry unit weight relationships 
from compaction tests, resilient modulus (Mr) tests, and frost-heave and thaw-weakening 
susceptibility tests. Mr tests were conducted on homogenous samples and on layered composite 
samples (i.e., RPCC base over subbase, subbase over subgrade). Frost-heave tests were 
conducted on subgrade material using a setup fabricated at ISU for this research project to assess 
the foundation materials susceptibility to frost-heave by exposing the samples to two freeze-thaw 
cycles. Thaw-weakening susceptibility ratings of the foundation materials were determined by 
conducting California bearing ratio (CBR) tests on compacted samples before and after two 



2 

thawing cycles. The unthawed and thawed CBR values were also used to estimate k values for 
comparison with design values. 

This report contains six chapters. Chapter 2 provides project background information, pavement 
foundation layer construction details, and the pavement design input parameters. Chapter 3 
presents an overview of the laboratory and in situ testing methods used in this project. Chapter 4 
presents results from laboratory testing. Chapter 5 presents results from in situ testing and 
analysis and compares the laboratory and in situ measured values with the design assumed 
values. Chapter 6 presents key findings and conclusions from this study. 

The findings from this report should be of significant interest to researchers, practitioners, and 
agencies who deal with design, construction, and maintenance aspects of PCC pavements. 
Results from this project provide one of several field project reports developed as part of the 
TPF-5(183) and FHWA DTFH 61-06-H-00011:WO18 studies. 
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CHAPTER 2: PROJECT INFORMATION  

This chapter presents brief background information on the project, photos taken during pavement 
foundation layer construction, and pavement thickness design parameter selection and 
assumptions during the design phase of the project. 

Project Background 

This project was located on I-29 in Monona and Harrison Counties in Iowa and involved 
reconstruction of pavement foundation layers (base, subbase, and subgrade) of the interstate 
highway on I-29 north and south bound lanes between just south of county road F-20 to just 
north of I-75 (Sta. 2097 to 781+70 on north bound (about 11.7 miles) and Sta. 2097+59 to 
2675+93 on south bound (about 4.7 miles); Iowa DOT project number ESIMX-029-5(100)95--
1S-43). The project location map is shown in Figure 1. The existing CRCP was removed and the 
underlying base and subgrade layers were undercut to about 300 to 600 mm below the existing 
grade. The exposed subgrade in the excavation was scarified and re-compacted. The excavation 
was then replaced with a 300 to 450 mm thick special backfill subgrade treated with recycled 
asphalt material and a 150 mm thick recycled PCC (RPCC) subbase layer. Select sand material 
was also used subgrade treatment in some areas. Photographs of the existing CRCP, its removal 
process, and the pavement foundation layers construction process are shown in Figure 2 to 
Figure 10. 

 

Figure 1. I-29 demonstration project location map constructed from aerial photographs 
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Figure 2. Existing CRCP 

 

Figure 3. Breaking existing CRCP  
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Figure 4. Removing existing CRCP  

 

Figure 5. Blading existing subbase material down to subgrade  
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Figure 6. Spreading special backfill material over compacted subgrade  

 

Figure 7. Compacted special backfill layer  
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Figure 8. RPCC subbase layer trimming process 

 

Figure 9. RPCC subbase layer before trimming 
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Figure 10. RPCC subbase layer after trimming 

Pavement Design Input Parameter Selection and Assumptions 

Table 1 summarizes the pavement thickness design input parameters. A composite modulus of 
subgrade reaction, kcomp = 43 kPa/mm (160 pci), was determined by the Iowa DOT engineer 
following PCA (1984) design guide. A 279 mm (11 in.) thick JPCP was designed for the new 
pavement. 
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Table 1. Summary of pavement thickness design input parameters and assumptions 
(PCA 1984 method) 
Parameter Value 
Surface Layer Design Assumptions 

Design period 40 
Average daily traffic (ADT) volume 14,385 (in 2009), 46,400 (in 2049) 
Average daily truck traffic (ADTT) volume 9,915 (in 2049) 
ADT annual growth  ~ 3% 
Doweled joints (yes/no) Yes 
Concrete shoulder (yes/no) No 
Concrete modulus of rupture 3965 kPa (575 psi) 
Load safety factor 1.2 
Equivalent stresses (for single and tandem axles) Single: 1110 kPa (161 psi)  

Tandem: 1061 kPa (154 psi) 
Stress ratio factors (for single and tandem axles) Single: 0.280 

Tandem: 0.268 
Erosion factors (for single and tandem axles) Single: 2.40  

Tandem: 2.62 
Allowable load repetitions Variable for each axle category 
Lane distribution factor, L 1.0 

Foundation Layer Design Assumptions 
Modulus of subgrade reaction, k  34 kPa/mm (125 pci) 
Type of subbase (treated/untreated) untreated 
Subbase layer thickness Variable (150 mm minimum and 200 mm 

average) 
Composite modulus of subgrade reaction, kcomp  43 kPa/mm (160 pci) 

Pavement Thickness Design 
Calculated design thickness 279 mm (11 in.) 
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CHAPTER 3: EXPERIMENTAL TEST METHODS 

This chapter summarizes the laboratory and in situ testing methods used in this research and 
describes the procedures used to determine k values. 

Laboratory Testing Methods and Data Analysis 

Particle Size Analysis and Index Properties 

Samples from existing subbase layers, subgrade layers, and the new special backfill subbase and 
base layers were collected from the field and were carefully sealed and transported to the 
laboratory for testing. Particle-size analysis tests were performed in accordance with ASTM 
C136-06 Standard test method for sieve analysis of fine and coarse aggregates. Particle-size 
analysis tests on the sand subbase and subgrade materials were conducted in accordance with 
ASTM D422-63 Standard test method for particle-size analysis of soils. 

Atterberg limit tests (i.e., liquid limit—LL; plastic limit—PL and plasticity index—PI) were 
performed in accordance with ASTM D4318-10 Standard test methods for liquid limit, plastic 
limit, and plasticity index of soils using the dry preparation method. The results from particle-
size analysis and Atterberg limits tests were used to classify the materials on the unified soil 
classification system (USCS) in accordance with ASTM D2487-10 Standard practice for 
classification of soils for engineering purposes (Unified Soil Classification System) and 
AASHTO classification system in accordance with ASTM D3282-09 Standard practice for 
classification of soils and soil-aggregate mixtures for highway construction purposes. 

Specific gravity tests were performed on the samples in accordance with ASTM D854-10 
Standard test methods for specific gravity of soil solids by water pycnometer. 

Two laboratory compaction tests were used to determine the relationship between dry density 
and moisture content for the soils obtained from the field. Subgrade soil compaction 
characteristics were determined using standard and modified Proctor compaction methods in 
accordance with ASTM D698-07 Standard test methods for laboratory compaction 
characteristics of soil using standard effort and ASTM D1557-07 Standard test methods for 
laboratory compaction characteristics of soil using modified effort, respectively. Maximum and 
minimum index density tests were performed using a vibratory table on subbase materials in 
accordance with ASTM D4253-00 Standard test methods for maximum index density and unit 
weight of soil using a vibratory table and ASTM D4254-00 Standard test methods for minimum 
index density and unit weight of soils and calculation of relative density. Moisture-unit weight 
relationships of subbase materials were determined by performing maximum index density tests 
by incrementally increasing the moisture content by approximately 1.5% for each test. 
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Sample Preparation for Resilient Modulus and Shear Strength Testing  

Homogenous samples of granular base/subbase and cohesive subgrade materials were tested for 
resilient modulus (Mr) and unconsolidated undrained (UU) shear strength generally following the 
AASHTO T-307 procedure. Layered composite soil samples (i.e., those with both subbase and 
subgrade) were also tested. The following sections describe the methods used to prepare the 
samples for testing. 

Granular Materials: 

Granular materials were prepared using the vibratory compaction method as described in 
AASHTO T-307 for preparation of granular base/subbase materials. Prior to compaction, 
materials were moisture-conditioned and allowed to mellow for at least 3 to 6 hours. A 
101.6 mm (4 in.) diameter split mold was used to compact the sample (Figure 11) in five lifts of 
equal mass and thickness using an electric rotary hammer drill and a circular steel platen placed 
against the material (Figure 12). Calipers were used to verify consistent compaction layer 
thicknesses (Figure 12). The AASHTO T-307 procedure requires that the maximum particle size 
of the material should be 1/5th of the sample diameter, which is approximately 20.3 mm (0.8 in.) 
for a 101.6 mm (4 in.) diameter sample. The RPCC base material and special backfill subbase 
material tested in this study contained a maximum particle size larger than 19.1 mm (0.75 in.). 
To meet the AASHTO T-307 specifications, the particle size distribution of the untrimmed base 
material was modified by scalping off particles retained on the 19.1 mm (0.75 in.) sieve and 
replacing them with the same percentage by weight of the material that was retained on the No. 4 
sieve and passing the 19.1 mm (¾ in.) sieve. 

 

Figure 11. Split mold, steel platen (4 in. diameter), and vibratory hammer for compaction 
of granular materials 
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Figure 12. Compaction of granular materials in split mold (left) and verification of 
thickness of each lift using calipers (right) 

Cohesive Materials: 

Disturbed bag samples obtained from field were used to prepare samples for testing using static 
compaction method as described in AASHTO T-307. Before compaction, the materials were 
moisture-conditioned and allowed to mellow for at least 16 hours. Static compaction involved a 
hydraulic press, steel mold, and six steel spacers (Figure 13) to form the soil into a 101.6 mm 
diameter by 203.2 mm tall (4 in. diameter by 8 in. tall) cylinder. It must be noted that AASHTO 
T-307 describes compaction procedure to prepare a 71 mm diameter by 142 mm tall (2.8 in. 
diameter by 5.6 in. tall) samples. The larger size samples were used in this study to compare with 
the layered composite samples. The static compaction process is shown in Figure 14. When 
making the samples, the soil was compacted in five lifts of equal mass and thickness. Each lift of 
soil was pressed between the steel spacers to a uniform thickness. After compaction, the soil 
samples were extruded (Figure 14). 

Layered Composite Samples: 

AASHTO T-307 does not describe a procedure for fabricating layered composite samples. Two 
kinds of layered composite samples were prepared for this study, base over subgrade and base 
over subbase. The base over subgrade layered composite samples consisted of a 101.6 mm (4 in.) 
thick base over a 101.6 mm (4 in.) thick subgrade. The bottom subgrade layer was compacted 
first using the static compaction technique described in AASHTO T-307 in three lifts. The first 
two lifts were about 40.6 mm (1.6 in.) thick, and the third lift was about 20.3 mm (0.8 in.) thick. 
A pre-determined amount of material was placed in each lift to keep the unit weight constant in 
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each lift. After compaction of the subgrade, the sample was extruded and placed on the triaxial 
chamber base. The split mold used for granular materials was then placed around the sample, and 
the top, base layer was compacted in three equal lifts of 33.9 mm (1.3 in.) using the vibratory 
compaction procedure described in AASHTO T-307. 

For the base over subbase layered composite sample, the compaction process for granular 
materials was followed. The bottom, subgrade layer was compacted in three lifts. The first two 
lifts were about 40.6 mm (1.6 in.) thick, and the third lift was about 20.3 mm (0.8 in.) thick. The 
top, base layer was compacted in three lifts as well with the first lift about 20.3 mm (0.8 in.) 
thick, and the remaining two lifts about 40.6 mm (1.6 in.) thick. 

 

Figure 13. Aluminum spacers (4 in. diameter) used during static compaction 

   

Figure 14. Photos showing static compaction procedure (left) and sample extrusion 
procedure (right) of a compacted cohesive soil sample  
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Resilient Modulus and Shear Strength Testing 

Mr and UU tests were performed using the Geocomp automated Mr test setup (Figure 6) in 
accordance with AASHTO T-307. The setup consists of a Load Trac-II load frame, an 
electrically controlled servo valve, an external signal conditioning unit, and a computer with a 
network card for data acquisition. The system uses a real-time adjustment of proportional-
integral-derivative (PID) controller to adjust the system control parameters as the stiffness of the 
sample changes to apply the target loads during the test. Figure 6 shows the triaxial test chamber 
used in this study. The chamber is set up for both 71 mm (2.8 in.) and 101.6 mm (4 in.) diameter 
samples. Two linear voltage displacement transducers (LVDTs) are mounted to the piston rod to 
measure resilient strains in the sample during the test. 

Mr tests were performed following the AASHTO T-307 conditioning and loading sequences 
suggested for base and subgrade materials (Table 2). Each load cycle consisted of a 0.1 second 
haversine-shaped load pulse followed by a 0.9 second rest period. Mr is calculated as the ratio of 
the applied cyclic deviator stress (σd) and resilient strain (εr). The σd and εr values from a typical 
stress-strain cycle during the test are shown in Table 2. The average σd and εr of the last five 
cycles of a loading sequence are used in Mr calculations. After Mr testing, UU shear strength 
testing was performed on each sample by applying a confining pressure of 34.5 kPa (5 psi) to the 
base and subbase samples and 27.6 kPa (4 psi) to the subgrade samples. 

  

Figure 15. Triaxial chamber, load frame, and computer equipment for Mr testing 
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Figure 16. Graphical representation of one load cycle in Mr testing 

Table 2. Resilient modulus test sequences and stress values for base/subbase and subgrade 
materials (AASHTO T-307) 

Base/Subbase Materials Subgrade Materials 

Sequence 
No. 

Confining 
Pressure 

Max. Axial 
Stress 

No. of 
cycles 

Sequence 
No. 

Confining 
Pressure 

Max. Axial 
Stress  

kPa psi kPa psi kPa psi kPa psi 
No. of 
cycles 

0 103.4 15 103.4 15 500-
1000 0 41.4 6 27.6 4 500-

1000 
1 20.7 3 20.7 3 100 1 41.4 6 13.8 2 100 
2 20.7 3 41.4 6 100 2 41.4 6 27.6 4 100 
3 20.7 3 62.1 9 100 3 41.4 6 41.4 6 100 
4 34.5 5 34.5 5 100 4 41.4 6 55.2 8 100 
5 34.5 5 68.9 10 100 5 41.4 6 68.9 10 100 
6 34.5 5 103.4 15 100 6 27.6 4 13.8 2 100 
7 68.9 10 68.9 10 100 7 27.6 4 27.6 4 100 
8 68.9 10 137.9 20 100 8 27.6 4 41.4 6 100 
9 68.9 10 206.8 30 100 9 27.6 4 55.2 8 100 

10 103.4 15 68.9 10 100 10 27.6 4 68.9 10 100 
11 103.4 15 103.4 15 100 11 13.8 2 13.8 2 100 
12 103.4 15 206.8 30 100 12 13.8 2 27.6 4 100 
13 137.9 20 103.4 15 100 13 13.8 2 41.4 6 100 
14 137.9 20 137.9 20 100 14 13.8 2 55.2 8 100 
15 137.9 20 275.8 40 100 15 13.8 2 68.9 10 100 
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Resilient Modulus Data Analysis 

Mr values are used in pavement design as a measure of stiffness of unbound materials in the 
pavement structure. The Mr parameter is a highly stress-dependent parameter. Many non-linear 
constitutive models have been proposed that incorporate the effects of stress levels and predict 
Mr values. Most soils exhibit the effects of increasing stiffness with increasing bulk stress and 
decreasing stiffness with increasing shear stress (Andrei et al. 2004). A non-linear constitutive 
model (also called the “universal” model) proposed by Witczak and Uzan (1988) (Equation 1) 
was used in this study 
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where Pa = atmospheric pressure (MPa); σB = bulk stress (MPa) = σ1 + σ2 + σ3; τoct = octahedral 
shear stress (MPa) = {[(σ1-σ2)2+( σ2- σ3)2+( σ3-σ1)2]1/2} / 3; σ1, σ2 , σ3 = principal stresses; and k1, 
k2, k3 = regression coefficients. The k1 coefficient is proportional to Mr and therefore is always 
> 0. The k2 coefficient explains the behavior of the material with changes in the volumetric 
stresses. Increasing volumetric stresses increases the Mr value and therefore the k2 coefficient 
should be ≥ 0. The k3 coefficient explains the behavior of the material with changes in shear 
stresses. Increasing shear stress softens the material and yields a lower Mr value; therefore, the k3 
coefficient should be ≤ 0. 

The R2 values determined for this model were adjusted for the number of regression parameters 
using Equation 2 
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where n = the number of data points and p = the number of regression parameters. 

Determination of Dynamic Secant Modulus from Cyclic Stress-Strain Data 

The cyclic stress-strain data obtained from resilient modulus tests were used to estimate dynamic 
secant modulus (Es) to compare with dynamic elastic modulus measurements obtained from field 
tests. Secant modulus was determined from the slope of the line connecting the origin to a 
selected point on the stress-strain curve of a material, as illustrated in Figure 17. The difference 
between secant moduli and resilient moduli is the use of permanent strain instead of resilient 
strain in the calculations.  
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Figure 17. Comparison of resilient (Mr(T-307)), cyclic secant (E*s(T-307)), and 
dynamic secant (Es(T-307)) modulus values 

Frost Heave and Thaw Weakening Test 

Frost heave and thaw weakening tests were performed in general accordance with ASTM 
D5918-06 Standard test methods for frost heave and thaw weakening susceptibility of soils. The 
test is used to classify the frost heave and thaw weakening susceptibility of soils based on the 
heave rate and the thawed CBR values. The heave rate and thawed CBR values are compared 
with a classification system provided in the standard to determine the susceptibility ratings 
(Table 3). It must be noted that the test results can only be used to compare the relative frost 
heave and thaw weakening susceptibility between material types and cannot be used to directly 
determine the amount of frost heave or thaw weakening in a pavement system. 

A cross-sectional view and a three-dimensional view of the custom freeze/thaw (F/T) test setup 
fabricated at Iowa State University are shown in Figure 18 and Figure 19, respectively. The 
samples were 146 mm (5.75 in.) in diameter and 152 mm (6 in.) in height and were compacted 
inside six rings with a rubber membrane between the soil and the rings. The compaction mold 
setup is shown in Figure 20 and Figure 21. A water supply was made available at a level of 
13 mm (0.5 in.) above the bottom of the sample using a Mariotte tube (Figure 18) to saturate the 
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sample. A surcharge weight was applied to the sample to simulate the loading of a typical 
pavement section. During F/T testing, laser transducers installed on a ring stand and a bracket 
above the sample obtained measurements of the samples’ heave and consolidation, and 
thermocouples installed in the sample obtained the temperature profile (Figure 18). The laser 
transducers used in this study had a measurement range of 50 mm and a resolution of 0.75 µm. 
The lasers and thermocouples were connected to a data acquisition system that recorded the 
temperature in one-minute intervals. 

Table 3. Frost susceptibility classifications (ASTM D5918-06) 
Frost Susceptibility 

Classification  
Heave Rate 
(mm/day) 

Thawed CBR 
(%)  

Negligible  <1 >20 
Very low  1 to 2 20 to 15 
Low  2 to 4 15 to 10 
Medium  4 to 8 10 to 5 
High  8 to 16 5 to 2 
Very High  >16 <2 
 

 

Figure 18. Illustration of frost-heave and thaw-weakening test assembly 
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Figure 19. Three dimensional illustration of frost-heave and thaw-weakening test assembly 

 

Figure 20. View of frost-heave and thaw-weakening test compaction mold with six rings 
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Figure 21. Frost-heave and thaw-weakening test compaction mold setup with collar 

The F/T test was carried out by exposing four soil samples to two freeze-thaw cycles over a five 
day period. The samples were placed in a temperature controlled chest freezer (Figure 19) and 
then frozen and thawed by changing the temperature at the top and bottom of the samples using 
temperature controlled water baths (Figure 22). The programmable water baths used in this study 
had an operating range of -30°C to +200°C and adjustable to ±0.01°C, and were filled with 50% 
ethylene glycol-water solution. Insulating tape was wrapped around the flexible tubing between 
the water baths and the temperature control end plates, to help reduce temperature variations in 
the solution. The target top and bottom of the sample temperatures (Figure 23) were programmed 
into the water baths and the actual temperatures were measured during the test. An example of 
the measured temperatures at the top and bottom of the sample is shown in Figure 24. Results 
indicated that the measured temperatures were higher during freezing and lower during thawing 
than the target values. This discrepancy likely occurred because of temperature losses in the 
glycol solution when transported from the temperature control baths to the temperature control 
end plates (although care was taken to reduce these variations as indicated above). After the F/T 
test was completed, a CBR test was performed on the thawed samples in accordance with ASTM 
D1883-07 and a moisture content profile of the sample was determined by carefully trimming the 
thawed sample to desired depths. 

The heave rate of the sample was determined from the slope of the heave versus time plot as 
illustrated in Figure 24 for a period of about 24 hours for both the 1st and 2nd freezing cycles. 
The ASTM D5918 specifies determining heave rate during the first eight hours of each freezing 
cycle. However, a few samples that were obtained from other research project sites did not heave 
during the first eight hours, and the samples that did heave during the first eight hours showed 
similar heave rates over the 8 hour and the 24 hour periods. To be consistent in comparing 
measurements from different project sites, the research team decided to present the heave rate 
over the 24 hour period. 

Clamps

Collar

Compaction 
cylinder
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Figure 22. Temperature control water baths used to freeze and thaw samples 

 

Figure 23. Target top and bottom temperatures with time per ASTM standard during 
F/T cycles 
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Figure 24. Example of measured top and bottom temperatures during freeze-thaw cycles 

and determination of heave rate for 1st and 2nd freezing cycles 

In Situ Testing Methods and Data Analysis 

The following in situ testing methods and devices were used in this study: a real-time kinematic 
(RTK) global positioning system (GPS); a Zorn lightweight deflectometer (LWD) setup with a 
300 mm diameter plate; a Kuab falling weight deflectometer (FWD) setup with a 300 mm 
diameter plate; a dynamic cone penetrometer (DCP); and a calibrated Humboldt nuclear gauge 
(NG). Roller-integrated compaction measurements were taken with a Volvo vibratory smooth 
drum roller equipped with Trimble’s roller integrated compaction monitoring (RICM) system. 
Pictures of these test devices are shown in Figure 25. 

Real-Time Kinematic Global Positioning System 

An RTK-GPS system was used to obtain spatial coordinates (x, y, and z) of in situ test locations 
and tested pavement slabs. A Trimble SPS 881 receiver was used with base station correction 
provided from a Trimble SPS851 established on site. According to the manufacturer, this survey 
system is capable of horizontal accuracies of < 10 mm and vertical accuracies of < 20 mm. 

Zorn Light Weight Deflectometer 

Zorn LWD tests were performed on base and subbase layers to determine elastic modulus. The 
LWD was setup with 300 mm diameter plate and 71 cm drop height. The tests were performed 
following manufacturer recommendations (Zorn 2003) and the elastic modulus values were 
determined using Equation 3, where E = elastic modulus (MPa), D0 = measured deflection under 
the plate (mm), η = Poisson’s ratio (0.4), σ0 = applied stress (MPa), r = radius of the plate (mm), 
F  = shape factor depending on stress distribution (assumed as 8/3) (see Vennapusa and White 
2009). The results are reported as ELWD-Z3 (Z represents Zorn LWD and 3 represents 300 mm 
diameter plate). 

1st Cycle 
Heave Rate

2nd Cycle 
Heave Rate
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Figure 25. In situ test equipment: Trimble SPS-881 hand-held receiver, Kuab FWD, and 
Zorn LWD (top row left to right); DCP, NG, and Volvo smooth drum vibratory roller 

equipped with CMV measurement system (bottom row left to right) 

Kuab Falling Weight Deflectometer 

Falling weight deflectometer (FWD) tests were conducted using a Kuab FWD setup with a 
300 mm (11.81 in) diameter loading plate by applying one seating drop and three loading drops. 
The applied loads varied from about 27 kN (6,000 lb) to 54 kN (12,000 lb) in the three loading 
drops. The actual applied loads were recorded using a load cell, and deflections were recorded 
using seismometers mounted on the device, per ASTM D4694-09 Standard Test Method for 
Deflections with a Falling-Weight-Type Impulse Load Device. The FWD plate and deflection 
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sensor setup and a typical deflection basin are shown in Figure 26. To compare deflection values 
from different test locations at the same applied contact stress, the values at each test location 
were normalized to a 40 kN (9,000 lb) applied force. 

FWD tests were conducted at the center of the PCC slab panels and at the joints. Tests conducted 
at the joints were used to determine joint load transfer efficiency (LTE) and voids beneath the 
pavement based on “zero” load intercept values. Tests conducted at the center of the slab panels 
were used to determine modulus of subgrade reaction (k) values and the intercept values. The 
procedure used to calculate these parameters are described below. 

 

Figure 26. FWD deflection sensor setup used for this study and an example deflection basin  

LTE was determined by obtaining deflections under the plate on the loaded slab (D0) and 
deflections of the unloaded slab (D1) using a sensor positioned about 305 mm (12 in.) away from 
the center of the plate (Figure 26). The LTE was calculated using Equation 4. 
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Voids underneath pavements can be detected by plotting the applied load measurements on the 
X-axis and the corresponding deflection measurements on the y-axis and plotting a best fit linear 
regression line, as illustrated in Figure 27, to determine the “zero” load intercept (I) values. 
AASHTO (1993) suggests I = 0.05 mm (2 mils) as a critical value for void detection. According 
to Quintus and Simpson (2002), if I = -0.01 and +0.01 mm, then the response would be 
considered elastic. If I > 0.01 then the response would be considered deflection hardening, and if 
I < -0.01 then the response would be considered deflection softening. 

Pavement layer temperatures at different depths were obtained during FWD testing, in 
accordance with the guidelines from Schmalzer (2006). The temperature measurements were 
used to determine equivalent linear temperature gradients (TL) following the temperature-
moment concept suggested by Jannsen and Snyder (2000). According to Vandenbossche (2005), 
I-values are sensitive to temperature induced curling and warping affects. Large positive 
temperature gradients (i.e., when the surface is warmer than the bottom) that cause the panel 
corners to curl down result in false negative I-values. Conversely, large negative gradients (i.e., 
when the surface is cooler than the bottom) that cause the panel corners to curl upward result in 
false positive I-values. Interpretation of I-values therefore should consider the temperature 
gradient. Concerning LTE measurements for doweled joints, the temperature gradient is 
reportedly not a critical factor (Vandenbossche 2005). 
 

 

Figure 27. Void detection using load-deflection data from FWD test 

The k values were determined using the AREA4 method described in AASHTO (1993). Since the 
k value determined from FWD test represents a dynamic value, it is referred to here as 
kFWD-Dynamic. Deflections obtained from four sensors (D0, D2, D4, and D5 shown in Figure 26) 
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were used in the AREA4 calculation. The AREA method was first proposed by Hoffman and 
Thompson (1981) for flexible pavements and has since been applied extensively for concrete 
pavements (Darter et al. 1995). AREA4 is calculated using Equation 5 and has dimensions of 
length (in inches), as it is normalized with deflections under the center of the plate (D0): 
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where D0 = deflections measured directly under the plate (in.); D2 = deflections measured at 
305 mm (12 in.) away from the plate center (in.); D4 = deflections measured at 610 mm (24 in.) 
away from the plate center (in.); and D5 = deflections measured at 914 mm (36 in.) away from 
the plate center (in.). The AREA4 method can also be calculated using different sensor 
configurations and setups, (i.e., using deflection data from 3, 5, or 7 sensors), and those methods 
are described in detail in the literature (Substad et al. 2006, Smith et al. 2007) 

In early research conducted using the AREA method, the ILLI-SLAB finite element program 
was used to compute a matrix of maximum deflections at the plate center and the AREA values 
by varying the subgrade k, the modulus of the PCC layer, and the thickness of the slab (ERES 
Consultants, Inc. 1982). Measurements obtained from FWD tests were then compared with the 
ILLI-SLAB program results to determine the k values through back calculation. Barenberg and 
Petros (1991) and Ioannides (1990) proposed a forward solution procedure based on 
Westergaard’s solution for loading on an infinite plate to replace the back calculation procedure. 
This forward solution presented a unique relationship between AREA value (for a given load and 
sensor arrangement) and the dense liquid radius of relative stiffness (L) in which subgrade is 
characterized by the k value. The radius of relative stiffness (L) is estimated using Equation 6:  

4

3

2

41ln
x

x
x
AREAx

L



























 −

=  (6) 

where x1 = 36, x2 = 1812.279, x3 = -2.559, x4 = 4.387. It must be noted that the x1 to x4 values 
vary with the sensor arrangement and these values are only valid for the AREA4 sensor setup. 
Once, the L value is known, the kFWD-Dynamic value can be estimated using Equation 7: 

2
0

*
0)(

LD
PDpcik DynamicFWD =−  (7) 

where P = applied load (lbs), D0 = deflection measured at plate center (inches), and D0
* = non-

dimensional deflection coefficient calculated using Equation 8: 
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where a = 0.12450, b = 0.14707, c = 0.07565. It must be noted that these equations and 
coefficients are valid for an FWD setup with an 11.81 in. diameter plate. 

The advantages of the AREA4 method are the ease of use without back calculations and the use 
of multiple sensor data. The disadvantages are that the process assumes that the slab and the 
subgrade are horizontally infinite. This assumption leads to underestimating the k values of 
jointed pavements. Crovetti (1993) developed the following slab size corrections for a square 
slab that is based on finite element analysis conducted using the ILLI-SLAB program and is for 
use in the kFWD-Dynamic: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐷𝐷0 =  𝐷𝐷0 �1 − 1.15085𝑒𝑒−0.71878�𝐿𝐿
′

𝐿𝐿 �
0.80151

� (9) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐿𝐿 =  𝐿𝐿 �1 − 0.89434𝑒𝑒−0.61662�𝐿𝐿
′

𝐿𝐿 �
1.04831

� (10) 

where L′ = slab size (smaller dimension of a rectangular slab, length or width). This procedure 
also has limitations: (1) it considers only a single slab with no load transfer to adjacent slabs, and 
(2) it assumes a square slab. The square slab assumption is considered to produce sufficiently 
accurate results when the smaller dimension of a rectangular slab is assumed as L′ (Darter et al. 
1995). Darter et al. 1995 suggested using 𝐿𝐿′ =  �𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ ×  𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ to further refine slab size 
corrections. However, no established procedures for correcting for load transfer to adjacent slabs 
have been reported so accounting for load transfer remains as a limitation of this method. 

AASHTO (1993) suggests dividing the kFWD-Dynamic value by a factor of 2 to determine the 
equivalent kFWD-Static value. The origin of this factor 2 dates back to Foxworthy’s work in the 
1980’s. Foxworthy (1985) reported comparisons between the kFWD-Dynamic values obtained using 
Dynatest model 8000 FWD and the Static k values (Static kPLT) obtained from 30 in. diameter 
plate load tests (the exact procedure followed to calculate the Static kPLT is not reported in 
Foxworthy 1985). Foxworthy used the AREA based back calculation procedure using the ILLI-
SLAB finite element program. Results obtained from Foxworthy’s study (Figure 28) are based 
on 7 FWD tests conducted on PCC pavements with slab thicknesses varying from about 10 in. to 
25.5 in. and plate load tests conducted on the foundation layer immediately beneath the 
pavement over a 4 ft x 5 ft test area. A few of these sections consisted of a 5 to 12 in. thick base 
course layer and some did not. The subgrade layer material consisted of CL soil from Sheppard 
Air Force Base in Texas, SM soil from Seymour-Johnson Air Force Base in North Carolina, and 
an unspecified soil type from McDill Air Force base in Florida. No slab size correction was 
performed on this dataset. 
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Data from Foxworthy (1985) yielded a logarithmic relationship between the dynamic and the 
static k values. On average, the kFWD-Dynamic values were about 2.4 times greater than the Static 
kPLT values. Darter et al. (1995) indicated that the factor 2 is reasonable based on results from 
other test sites (Figure 28). Darter et al. (1995) also compared FWD test data from eight long-
term pavement performance (LTPP) test sections with the Static kPLT values and reported factors 
ranging from 1.78 to 2.16, with an average of about 1.91. The kFWD-Dynamic values used in that 
comparison were corrected for slab size. For the analysis conducted in this research project, the 
corrected kFWD-Dynamic values (for finite slab size) were divided by 2 and are reported as kFWD-Static-

Corr values. 

 

Figure 28. Static kPLT values versus kFWD-Dynamic measurements reported in literature 

Dynamic Cone Penetrometer 

DCP tests were performed in accordance with ASTM D6951-03 Standard Test Method for Use 
of the Dynamic Cone Penetrometer in Shallow Pavement Applications to determine dynamic 
penetration index (DPI) and calculate California bearing ratio (CBR) using Equation 11. 

12.1DPI
292CBR =

 (11) 

The DCP test results are presented in this report as CBR with depth profiles at a test location and 
as point values of DCP-CBRSubbase representative of the subbase layer, DCP-CBRTreated Subgrade 
representative of the special backfill subgrade treatment layer, and DCP-CBRSubgrade 
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representative of the top 300 mm of the subgrade. The point data values represent the weighted 
average CBR within each layer. Because the subbase layer under the existing CRCP was very 
thin (25 to 50 mm) the DCP-CBRSubbase was not separately calculated. CBR of the weakest layer 
within the subgrade, within the top 450 mm of the subgrade was also calculated and reported as 
DCP-CBRSubgrade-Weak to assess its influence on the overall structural response. 

Nuclear Gauge 

A calibrated Humboldt nuclear moisture-density gauge (NG) device was used to provide rapid 
measurements of soil dry unit weight (γd) and moisture content (w) in the base materials. Tests 
were performed following ASTM D6938-10 Standard Test Method for In-Place Density and 
Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth). Measurements 
of w and γd were obtained at each test location and the average values are reported. 

Roller-Integrated Compaction Measurements 

A Volvo SD116DX vibratory smooth drum roller equipped with compaction meter value (CMV) 
measurement system was used on this project. Features of the CMV are provided below, and 
some key features of the roller are summarized in Table 4. 

Table 4. Volvo SD116DX vibratory smooth drum IC roller features 
Feature Description 

Drum Geometry Smooth drum 

Frequency ( f ) 34 Hz (low amplitude setting) 
30 Hz (high amplitude setting) 

Amplitude (a) 
Settings 

1.60 mm (low) 
2.00 mm (high) 

Compaction 
Measurement 
Values (MVs) 

Compaction Meter Value (CMV) 

Display Software Trimble® CB430/ Sitevision TM office 

Output 
Documentation 

Date/Time; Location (Northing/Easting/ Elevation of left and right ends of the 
roller drum); Speed; CMV; RMV; Frequency; Amplitude (theoretical); Direction 
(forward/ backward); Vibration (On/Off) 

 

CMV is a dimensionless compaction parameter developed by Geodynamik that depends on roller 
dimensions, (i.e., drum diameter and weight) and roller operation parameters (e.g., frequency, 
amplitude, speed), and is determined using the dynamic roller response (Sandström 1994). CMV 
is calculated using Equation 12, where C is a constant (300), A2Ω = the acceleration of the first 
harmonic component of the vibration, and AΩ = the acceleration of the fundamental component 
of the vibration (Sandström and Pettersson 2004). Correlation studies relating CMV to soil dry 
unit weight, strength, and stiffness are documented in the literature (e.g., Floss et al. 1983, 
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Samaras et al. 1991, Brandl and Adam 1997, Thompson and White 2008, White and Thompson 
2008). 

Ω

Ω⋅=
A
AC  CMV 2

 (12) 

Determination of k values 

Subgrade k values were determined from field measurements using FWD testing, empirical 
relationships from DCP-CBR measurements, and empirical relationships from laboratory 
measurements. All of these values are compared with the assumed design k and kcomp values. The 
following list provides the notations for the k values and the procedures used to determine those 
k values. 

• kFWD-Static-Corr determined from the FWD test and corrected for slab size. 
• kFWD-Static-Corr-comp-PCA determined from kFWD-Static-Corr and Table 5 based on HSB = 150 mm 

(thickness of the RPCC base layer). 
• kPCA  determined from DCP-CBR using charts provided in PCA (1984) (see Appendix A). 

For values under the new JPCP, DCP-CBRTreated Subgrade was used and for values under the 
existing CRCP, DCP-CBRSubgrade was used. 

• kPCA-Weak Subgrade  determined from DCP-CBRSubgrade-Weak using charts provided in PCA (1984) 
(see Appendix A). 

• kcomp-PCA determined from kPCA  and Table based on HSB = 150 mm. 
• kcomp-PCA-Weak Subgrade determined from kPCA-Weak Subgrade  and Table 5 based on HSB = 150 mm. 

Table 5. Estimation of kcomp-PCA based on subgrade kPCA and subbase layer thickness 

kPCA (kPa/mm) 
kcomp-PCA (kPa/mm) based on subbase layer thickness (HSB) 

HSB = 100 mm 150 mm 230 mm 300 mm 
13.7 17.8 20.5 23.2 30.1 
27.3 35.5 38.3 43.7 51.9 
54.6 60.1 62.8 73.8 87.4 
82.0 87.4 90.2 101.1 117.5 
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CHAPTER 4: LABORATORY TEST RESULTS  

Two samples from the existing foundation layers (subgrade and existing sand subbase) and three 
samples from the new foundation layers (i.e., recycled asphalt special backfill subgrade 
treatment with recycled asphalt and treatment with select sand and RPCC subbase) were 
collected from field and tested in the laboratory as part of this project. A summary of the material 
index properties (i.e., laboratory compaction test, grain-size analysis, Atterberg limits test, soil 
classification, and specific gravity results) is provided in Table 6. 

Table 6. Summary of material index properties 

Parameter Subgrade 

Existing 
Sand 

Subbase 

Recycled 
Asphalt 
Special 
Backfill 

Subgrade 
Treatment  

Select Sand 
Special 
Backfill 

Subgrade 
Treatment 

RPCC 
Subbase 

Standard Proctor γdmax (kN/m3) 16.47 

— 

Standard Proctor γdmax (pcf) 104.8 

Standard Proctor wopt (%) 19.7 

Modified Proctor γdmax (kN/m3) 18.01 

Modified Proctor γdmax (pcf) 114.7 

Modified Proctor wopt (%) 14.1 

Relative Density Test* γdmin (kN/m3) — 14.20 14.82 16.39 14.76 

Relative Density Test* γdmin (pcf) — 90.4 94.3 104.3 94.0 

Relative Density Test* γdmax (kN/m3) — 20.80 18.87 20.67 19.31 

Relative Density Test* γdmax (pcf) — 132.4 120.1 131.6 122.9 
Gravel Content (%) (> 4.75mm) 3 25 51 36 59 

Sand Content (%) (4.75mm – 75µm) 5 65 42 54 31 

Silt Content (%) (75µm – 2µm) 65 7 
7 10 10 

Clay Content (%) (< 2µm) 27 3 

Liquid Limit, LL (%) 41 
Non-Plastic Plastic Limit, PL (%) 21 

Plasticity Index, PI (%) 20 
AASHTO Classification A-7-6 (19) A-1-b A-1-a A-1-a A-1-a 
USCS Classification CL SW-SM GW-GM SP-SM GP-GM 
Specific Gravity, Gs   2.70 2.80 2.51 2.68 2.65 

— Not measured 
* at oven-dry moisture content 
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Particle Size Analysis Results 

Grain-size distribution curves from particle-size analysis tests on RPCC, recycled asphalt, select 
sand, existing sand, and subgrade materials are provided in Figure 29. The gradation parameters 
(i.e., gravel content, sand content, silt content, and clay content) for each material are 
summarized in Table 6. 

 

Figure 29. Particle size distribution curves of materials collected from the existing and new 
foundation layers  

Moisture-Dry Unit Weight Results 

Moisture-dry unit weight results from laboratory standard Proctor and modified Proctor tests are 
presented in Figure 30. The in situ moisture-dry unit weight measurements from NG testing and 
moisture-dry unit weight of a sample tested for resilient modulus are also shown in Figure 30. 
The average in situ moisture content of the subgrade material was about 20.3% (i.e., 0.6% of 
standard Proctor wopt), and the average relative compaction of the material was about 94% 
standard Proctor γdmax. The relative compaction of the resilient modulus sample was about 109% 
of the maximum standard Proctor dry unit weight with moisture content about 2.9% dry of 
standard Proctor wopt. 

Moisture-dry unit weight results obtained from laboratory relative density compaction tests on 
existing sand subbase, recycled asphalt special backfill, select sand special backfill, and RPCC 
subbase material are presented in Figure 31, Figure 32, Figure 33, Figure 34, respectively. The in 
situ moisture-dry unit weight measurements from NG testing (where available) and moisture-dry 
unit weight of samples tested for resilient modulus are also shown in these figures. A summary 
of the maximum and minimum dry unit weights obtained from relative density tests for the 

#1
0

#4
0

#1
00

#2
00

#43/
8"

3/
4"

SandGravel Silt + Clay

Grain Diameter (mm)

0.0010.010.1110100

P
er

ce
nt

  P
as

si
ng

 (%
)

0

20

40

60

80

100
Subgrade
Recycled Asphalt
Special Backfill Subgrade
Treatment
Select Sand
Special Backfill Subgrade
Treatment
RPCC Subbase
Existing Sand Subbase

1"



33 

special backfill and subbase material samples, and maximum dry unit weights and optimum 
moisture contents obtained from Proctor tests for subgrade samples is provided in Table 6. 

The relative density of the resilient modulus samples of the existing sand subbase material 
ranged from 64–107% with moisture content varying between 0 and 9.4%. 

In situ relative densities for the recycled asphalt special backfill material ranged from about 76–
106%. In situ moisture contents ranged from 6.9–9.3%. Relative densities of the resilient 
modulus test samples on this material ranged from about 68–122% with moisture contents 
varying between 0.5 and 9.8%. 

In situ relative densities for the select sand special backfill material ranged from about 90–129%. 
In situ moisture contents ranged from 4.2–7.1%. Relative densities of the resilient modulus test 
samples on this material ranged from about 99–124% with moisture contents varying between 
3.6 and 7.1%. 

In situ relative densities for the RPCC subbase ranged from about 12–58%. In situ moisture 
contents ranged from 6.4–8.9%. Relative densities of the resilient modulus test samples on this 
material ranged from about 29–56% with moisture contents varying between 5.3 and 13.2%. One 
sample was back-saturated before testing as noted in Figure 34. 

 

Figure 30. Laboratory standard and modified Proctor test results with resilient modulus 
test sample moisture-dry unit weight and in situ moisture-dry unit weight test results for 

subgrade material 
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Figure 31. Laboratory relative density test results at variable moisture contents, resilient 
modulus test samples moisture-dry unit weights for existing sand subbase material 

 

Figure 32. Laboratory relative density test results at variable moisture contents, resilient 
modulus test samples moisture-dry unit weights, and in situ moisture-dry unit weights for 

recycled asphalt special backfill material 
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for  

Figure 33. Laboratory relative density test results at variable moisture contents, resilient 
modulus test samples moisture-dry unit weights, and in situ moisture-dry unit weights for 

select sand special backfill material 

 

Figure 34. Laboratory relative density test results at variable moisture contents, resilient 
modulus test samples moisture-dry unit weights, and in situ moisture-dry unit weights for 

RPCC subbase material 
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Mr and UU Test Results  

The Mr and UU test results for the existing and new foundation materials obtained from field are 
shown in Table 7. The summary results include γd; w%; average Mr of the 15 AASHTO T-307 
loading sequences; Mr at selected stress states; dynamic secant modulus (Es); permanent strain 
(εp) at the end of the Mr test; “universal model” regression coefficients; undrained shear strength 
(su) at failure or at 5% axial strain; and su at 1 strain. Selected stress states for granular and 
cohesive materials were as recommended in NCHRP 1-28A report (NCHRP 2004) as 
σ3 = 35 kPa (5 psi) and σcyclic = 103 kPa (15 psi) for base or subbase materials. Equation 1 and 
the k1, k2, and k3 regression coefficients were used to calculate the Mr at those stress states. 

Bulk stress (σB) versus Mr for laboratory compacted RPCC subbase, recycled asphalt special 
backfill, and select sand special backfill samples along with the corresponding “universal model” 
prediction curves are presented in Figure 35 to Figure 37, respectively. As expected, results 
indicated that the Mr of these granular materials increased with increasing bulk stresses. 
Increasing moisture content generally decreased Mr and increasing dry unit weight generally 
increased Mr for these materials. 

Figure 39 and Figure 41 show σB versus Mr along with corresponding “universal model” 
prediction curves for composite subbase and special backfill samples. σB versus Mr along with 
corresponding “universal model” prediction curves for composite special backfill and subgrade 
samples are shown in Figure 43, Figure 45, and Figure 46. Photographs of these layered 
composite samples after Mr and UU testing are shown in Figure 39, Figure 41, Figure 43, and 
Figure 45. A comparison of average Mr and εp between homogenous samples and layered 
composite samples with similar moisture and dry unit weight values is provided in Figure 47 and 
Figure 48. This comparison revealed that the average Mr of the layered composite sample was 
either similar to the layer with the lower average Mr value or about the average of the Mr values 
of the two layers. This is an important finding and must be further studied with adequate testing 
in various combinations of composite sample configurations. Efforts are underway in this 
research study to further investigate the influence of composite sample layer configurations on 
Mr properties. 
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Table 7. Summary of Mr and UU test results 

Sample 
γd 

(kN/m3) 
w 

(%) 

Mr Test UU Test 

Ave. 
Mr 

(MPa) 

Mr at 
Stress 
States 

(MPa)# Es (MPa) 
εp 

(%) k1 k2 k3 R2 
su  

(kPa) § 

su @ 
ε = 1% 
(kPa) 

Select Sand  

20.61 3.9 212.2 162.8 148.0 0.5 863.6 0.86 -0.25 0.85 161.5 159.8 

21.87 3.6 289.1 252.4 221.8 0.5 1612.6 0.60 -0.20 0.83 337.0 330.9 

20.75 4.3 206.8 171.4 182.0 0.4 947.2 0.80 -0.32 0.97 209.4 198.7 

20.86 3.7 243.6 183.7 152.7 0.5 1022.1 0.79 -0.08 0.87 232.9 214.1 

21.98 7.1 211.1 168.6 136.6 0.6 959.4 0.76 -0.16 0.84 209.3 206.2 

22.04 6.8 206.2 143.8 111.7 0.7 698.4 0.98 -0.16 0.95 216.3 215.1 

RPCC 
Subbase 

15.86 5.3 246.7 181.8 164.5 0.4 1148.6 0.61 0.09 0.92 236.3 175.0 

16.85 8.0 238.4 165.3 92.5 1.0 830.8 0.93 -0.10 0.95 292.7 229.4 

16.85 5.2 274.4 213.8 197.2 0.3 1090.3 0.91 -0.30 0.91 297.4 256.4 

17.00 5.0 251.1 140.4 257.3 0.3 913.0 0.57 0.83 0.88 303.3 305.3 

16.66 10.2 274.9 205.3 262.0 0.3 1044.6 0.92 -0.22 0.92 428.1 428.3 

16.81 13.2 234.8 222.5 169.9 0.4 1451.8 0.57 -0.36 0.63 159.0 159.6 

Recycled 
Asphalt 

17.80 0.5 281.9 231.0 57.4 0.8 1355.2 0.72 -0.16 0.85 152.5 112.6 

20.07 0.5 286.8 205.5 149.3 0.4 1325.6 0.58 0.28 0.85 248.8 217.5 

17.34 7.0 226.0 190.0 31.7 2.2 1218.9 0.59 -0.10 0.94 103.4 94.5 

19.82 7.0 327.4 243.4 201.9 0.3 1413.8 0.73 -0.03 0.97 260.3 248.2 

17.34 9.8 270.3 247.2 83.5 0.8 1472.3 0.70 -0.41 0.87 140.1 125.2 

19.33 9.8 363.4 309.2 106.9 1.1 1608.3 0.89 -0.48 0.83 185.1 160.8 

Existing Sand 
Subbase 

18.83 6.4 163.2 137.5 35.4 1.3 825.0 0.68 -0.26 0.97 91.9 91.0 

19.82 6.4 167.0 127.4 83.5 0.8 839.3 0.55 0.17 0.96 111.2 110.6 

17.84 0.0 192.6 159.8 87.2 0.8 1047.1 0.56 -0.04 0.85 136.5 129.0 
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Sample 
γd 

(kN/m3) 
w 

(%) 

Mr Test UU Test 

Ave. 
Mr 

(MPa) 

Mr at 
Stress 
States 

(MPa)# Es (MPa) 
εp 

(%) k1 k2 k3 R2 
su  

(kPa) § 

su @ 
ε = 1% 
(kPa) 

Existing Sand 
Subbase 

19.33 0.0 205.4 155.5 145.6 0.6 936.4 0.68 0.03 0.99 191.5 187.7 

21.00 10.3 149.0 109.9 40.1 1.8 511.9 1.03 -0.35 0.94 133.7 134.1 

21.54 10.1 163.2 119.0 51.5 1.6 592.9 0.94 -0.21 0.95 140.5 141.5 

RPCC Base + 
Select Sand 
Composite 

16.90 5.8 
239.0 166.6 228.4 0.3 1148.6 0.49 0.44 0.93 264.0 262.1 

20.41 4.9 

15.67 5.7 
223.6 139.4 140.4 0.4 947.7 0.51 0.66 0.98 196.3 180.1 

21.35 5.2 

15.73 5.3 
229.6 182.6 172.6 0.5 1088.0 0.69 -0.10 0.95 160.9 154.3 

20.41 5.0 

16.92 5.7 
202.7 118.1 233.4 0.3 840.2 0.44 0.90 0.94 245.7 214.4 

21.41 4.9 

RPCC Base + 
Recycled 
Asphalt 

Composite 

16.93 4.9 
292.9 227.5 226.6 0.3 1328.2 0.72 -0.07 0.91 244.3 214.4 

19.94 7.3 

15.75 4.5 
239.5 184.0 123.6 0.5 1083.0 0.71 -0.04 0.91 175.2 140.7 

19.86 7.7 

15.67 5.0 
219.9 189.5 83.7 0.8 1110.9 0.72 -0.31 0.88 143.3 122.3 

18.12 6.3 

16.93 4.9 
220.6 159.3 144.0 0.4 1057.7 0.54 0.30 0.95 171.3 158.3 

18.29 5.3 

Select Sand + 
Subgrade 

Composite 

21.13 8.1 
95.0 83.1 22.2 2.3 453.3 0.81 -0.45 0.97 106.6 100.5 

17.39 16.3 
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Sample 
γd 

(kN/m3) 
w 

(%) 

Mr Test UU Test 

Ave. 
Mr 

(MPa) 

Mr at 
Stress 
States 

(MPa)# Es (MPa) 
εp 

(%) k1 k2 k3 R2 
su  

(kPa) § 

su @ 
ε = 1% 
(kPa) 

Recycled 
Asphalt + 
Subgrade 

Composite 

18.82 8.3 
124.2 114.1 31.9 2.3 697.9 0.65 -0.38 0.94 114.0 111.0 

17.29 16.6 

Existing Sand  
+ Subgrade 
Composite 

20.46 6.6 
106.2 95.1 46.5 1.1 571.4 0.68 -0.34 0.98 117.4 112.3 

16.95 16.5 

21.85 4.2 64.8 
  51.2 5.4 8.4 267.8 0.86 -0.23 1.00 Not Performed 

16.80 19.1 
# subgrade: σ3 = 14 kPa (2 psi) and σcyclic = 41 kPa (6 psi), and for subbase σ3 = 35 kPa (5 psi), σcyclic = 103 kPa (15 psi); §at axial 
strain ε = 5% or at failure, whichever occurs first. 
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Figure 35. Mr test results for RPCC subbase samples 
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Figure 36. Mr test results for recycled asphalt special backfill samples 
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Figure 37. Mr test results for select sand special backfill samples 
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Figure 38. Mr test results for RPCC over recycled asphalt layered composite samples 

   

Figure 39. Photos of the RPCC (16.93 kN/m3 at w = 4.9%) over recycled asphalt 
(19.94 kN/m3 at w = 7.3%) layered composite sample after UU testing with the membrane 

intact (left) and open (right) 
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Figure 40. Mr test results for the RPCC over select sand layered composite samples 

   

Figure 41. Photos of the RPCC (16.92 kN/m3 at w = 5.7%) over select sand (21.41 kN/m3 at 
w = 4.9%) layered composite sample after UU testing with the membrane intact (left) and 

open (right) 
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Figure 42. Mr test results for the recycled asphalt over subgrade layered composite samples 

 

Figure 43. A photo of the recycled asphalt (18.82 kN/m3 at w = 8.3%) over subgrade 
(17.29 kN/m3 at w = 16.6%) layered composite sample after UU testing 
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Figure 44. Mr test results for the select sand over subgrade layered composite sample 

 

Figure 45. A photo of the select sand (21.13 kN/m3 at w = 8.1%) over subgrade 
(17.39 kN/m3 at w = 16.3%) layered composite sample after UU testing 
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Figure 46. Mr test results for the existing sand subbase over subgrade layered composite 
samples 
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Figure 47. Average Mr and permanent strain values at the end of Mr testing for 
homogeneous samples and samples with subbase and special backfill layers 
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Figure 48. Average Mr values and permanent strain values at the end of Mr testing of 
homogenous and composite samples with subbase and subgrade layers 

Frost Heave and Thaw Weakening Test Results 
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indicates that the material is susceptible to increased heave with greater freeze-thaw cycles. The 
average heave rates for the 1st and 2nd freezing cycles are summarized in Table 8. Based on the 
frost-heave rate measurements, the soil is classified to have high potential to frost-heave 
according to ASTM D5918. 
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Figure 49. Frost heave and temperature versus time plots for the four lean clay subgrade 
samples 
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the soil during the thawing periods. Moisture contents at six depths were determined for each 
sample immediately after F/T testing (Figure 50). The moisture content at 100% saturation 
(assuming the initial γd of each sample) and the initial moisture content of the sample during 
compaction are also shown on Figure 50 for reference. Results indicated that the moisture 
content was higher at all depths in the samples compared to the initial moisture content. Further, 
the moisture content at the top of the sample was higher than at the middle or bottom of the 
sample, which indicates that water was drawn to the top cold plate through capillary action 
caused by the temperature gradient in the samples. 

CBR values of the post freeze-thaw samples decreased from 22 to an average CBR < 1.0 on the 
four samples (Table 8). Based on the thawed CBR values, the soil is classified to have very high 
potential to thaw-weakening according to ASTM D5918. 

 

Figure 50. Moisture content profiles immediately after F/T testing on compacted subgrade 
samples 
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Table 8. Summary of frost-heave and thaw-weakening test results on subgrade samples 

Parameter µ σ COV (%) 
Number of 

samples 
CBR (%) (standard test) 21.8 — — 1 

CBR (%) (after frost-susceptibility test) 0.7 0.0 12.0 4 

1st Frost-heave rate (mm/day)  8.4 1.4 16.8 

2nd Frost-heave rate (mm/day) 12.4 2.2 17.9 

1st Frost-heave susceptibility rating High — — 

2nd Frost-heave susceptibility rating High — — 

Thaw-weakening susceptibility rating Very high — — 
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CHAPTER 5: IN SITU TEST RESULTS 

Description of Test Sections 

A total of ten test sections were tested as part of this project. Of these, four test sections consisted 
of FWD and DCP testing on the existing CRCP, on test section (TS) consisted of FWD and DCP 
testing on the new JPCP, and the remaining five test sections consisted of RICM mapping and in 
situ testing (NG, DCP, LWD) of foundation layers directly during construction. 

Table 9. Summary of test sections and in situ testing 

TS Date Location Material In situ Tests  Comments 

1 

7/14/09 

I-29 NB Left Lane 
Sta. 2755+00 to 

2852+00 

Existing CRCP 
surface FWD, DCP 

FWD tests every +50 
station on pavement 

surface, and DCP tests 
every +100 station 

directly on foundation 
layers. 

2 
I-29 NB Left Lane 

Sta. 2800+00 to 
2801+00 

Existing CRCP 
surface FWD 

FWD tests about every 
+05 station on left and 

right wheel paths. 

3 7/22 – 
7/23/09 

I-29 NB Left and 
Right Lanes 

Sta. 2890+00 to 
2925+00 

Existing CRCP 
surface FWD, DCP 

FWD tests every +50 
station. DCP tests at 
selected locations on 
foundation layers by 
drilling a hole in the 

pavement 

4 7/22/09 

I-29 NB Left and 
Right Lanes 
Sta. 2892+00  
to 2893+05 

Existing CRCP 
surface FWD 

FWD tests every +02 to 
+05 station on left and 
right wheel paths on 

both lanes. 

5 9/10/09 
I-29 NB 

Sta. 2745+07 to 
2780+07 

New 
JPCP surface FWD, DCP 

FWD tests about every 
+100 station. DCP tests 
every +500 station on 
foundation layers by 
drilling a hole in the 

pavement 
6 

9/1/09 Near Sta. 2900 
Subgrade RICM 

RICM maps in low and 
high amplitude settings 

followed by in situ 
point testing 

7 Recycled asphalt 
subbase over subgrade 

RICM, NG, 
DCP, LWD 

8 9/1/09 

Near Sta. 2890 

Recycled asphalt 
subbase None 

9 9/2/09 
RPCC base over 
Recycled asphalt 

subbase 

RICM, NG, 
LWD 

10 9/10/09 
I-29 NB just south 

of exit ramp to 
Hwy 175 

Select sand subbase 
over subgrade 

RICM, NG, 
LWD, and DCP 

Note: NG – nuclear gauge; DCP – dynamic cone penetrometer; LWD – light weight deflectometer; FWD – falling 
weight deflectometer; RICM – roller-integrated compaction monitoring using Volvo smooth drum roller. 
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In Situ Testing on Existing Pavement Constructed in the 1960s and on New Pavement 
Constructed in 2009 

FWD and DCP tests were conducted on the existing CRCP (TS1, TS2, TS3, and TS4) and on the 
new JPCP (TS5) (see Figure 51 and Figure 52). All tests were conducted on the northbound 
(NB) lanes. On TS1 and TS3, FWD tests were conducted at about every +50 station, and DCP 
tests were conducted at about every +100 station along the center of the lanes (note that +100 
station = 30 m). DCP tests on TS1 were conducted directly on the foundation layers after the 
CRCP layer was removed, and DCP tests on TS3 were conducted by drilling a hole through the 
pavement. On TS2 and TS4, FWD tests were conducted at about every +02 to +05 station on the 
left and right wheel paths over about a 30 m long section. On TS5, FWD tests were conducted at 
about every +100 station along the center of the right lane, and DCP tests were conducted at 
about every +500 station. 

Results from FWD tests from each TS are presented in Figure 53 to Figure 57. FWD deflection 
basins on the existing CRCP and the new JPCP at similar test locations between Sta. 2755 and 
2775 are presented in Figure 58. Figure 59 presents k values determined from DCP-CBR 
measurements (of treated subgrade and weak subgrade) on new JPCP. Histogram plots of FWD 
test measurements on the existing CRCP and new JPCP are presented in Figure 60 and Figure 
61. DCP-CBR profiles on each TS are presented in Figure 62 to Figure 64. Figure 64 presents 
DCP-CBR profiles comparing foundation layers under the existing CRCP and the new JPCP at 
nearby locations between Sta. 2755 and Sta. 2770. Key findings from this testing are as follows: 

• On average, D0 at 40 kN applied load on the new JPCP was about 0.4 times the D0 on the 
existing CRCP. 

• The intercept values on the existing CRCP and new JPCP were low (< 0.04 mm) and did 
not indicate voids beneath the pavement. 

• The k values determined from DCP-CBR measurements and FWD measurements 
indicated higher values on the new JPCP than on the existing CRCP. 

• Based on tests conducted on the new JPCP sections, the composite k values determined 
using FWD (kFWD-Static-Corr-comp-PCA) were similar to the values determined using CBR of 
the weak layers (kcomp-PCA-Weak Subgrade) and were about 17 times lower than the values 
determined using CBR of the treated subgrade (kcomp-PCA). This indicates that a weak 
layer within the top 450 mm of the subgrade contributed to low values observed in the 
FWD testing and that the use of high CBR values in the treated subgrade layers can result 
in unreasonably high k values. 
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Figure 51. FWD and DCP testing on existing CRCP 

  

Figure 52. FWD and DCP testing on new JPCP 



56 

  

Figure 53. D0, I, kFWD-Static-Corr, kPCA, and kPCA-Weak Subgrade on existing CRCP TS1 and TS3 on 
I-29 NB left and right lanes 
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Figure 54. D0, I, and kFWD-Static-Corr on existing CRCP TS2 on I-29 NB left lane along left and 
right wheel paths  
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Figure 55. D0, I, and kFWD-Static on existing CRCP TS4 on I-29 NB left lane along left and 
right wheel paths about every +02 station  
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Figure 56. D0, I, and kFWD-Static on existing CRCP TS4 on I-29 NB right lane along left and 
right wheel paths about every +02 station  
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Figure 57. D0, I, and k values from FWD tests on new JPCP TS5 I-29 NB right lane 
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Figure 58. TS5: Comparison of FWD deflection basins on new JPCP and existing CRCP 
between Sta. 2755 and Sta. 2775 

 

Figure 59. TS5 new JPCP I-29 NB right lane: k values from DCP-CBR tests 

Distance (mm)

-600 -300 0 300 600 900 1200 1500 1800

D
ef

le
ct

io
n 

(m
m

)

0.00

0.05

0.10

0.15

0.20

Sta. 2755 New JPCP
Sta. 2760 New JPCP
Sta. 2765 New JPCP
Sta. 2770 New JPCP
Sta. 2775 New JPCP
Sta. 2755 Existing CRCP
Sta. 2760 Existing CRCP
Sta. 2765 Existing CRCP
Sta. 2770 Existing CRCP
Sta. 2775 Existing CRCP

2750 2755 2760 2765 2770 2775

k 
(k

P
a/

m
m

)
(B

as
ed

 o
n 

D
C

P
-C

B
R

Tr
ea

te
d 

S
ub

gr
ad

e)

0

200

400

600

800

1000

1200
kPCA

TS5 - New JPCP (I-29 NB Right Lane)
Note: Station 2750 to 2760 = 305 m (1000ft)

Station

2750 2755 2760 2765 2770 2775

k 
(k

P
a/

m
m

) 
(B

as
ed

 o
n 

D
C

P
-C

B
R

W
ea

k 
S

ub
gr

ad
e)

0

20

40

60

80

kPCA-Weak Subgrade

kcomp-PCA-Weak Subgrade

TS5 - New JPCP (I-29 NB Right Lane)
Note: Station 2750 to 2760 = 305 m (1000ft)

Design kcomp = 
43 kPa/mm (160 pci)

Design k = 
34 kPa/mm (125 pci)

Design k = 
34 kPa/mm (125 pci)



62 

 

Figure 60. Histograms of FWD test measurements D0 and I from tests on existing CRCP 
(TS1, TS2, TS3, and TS4) and new JPCP (TS5) 
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Figure 61. Histograms of k values on new on existing CRCP (TS1 and TS3) and new JPCP 
(TS5) 
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Figure 62. DCP-CBR profiles from TS3 FWD test locations in the foundation layers 
obtained by drilling a hole in the pavement 
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Figure 63. DCP-CBR profiles from TS1 FWD test locations directly on the foundation 
layers  
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Figure 64. DCP-CBR profiles on new JPCP TS5 (left) and on existing CRCP TS1 (right) at 
FWD test locations between Sta. 2750 and Sta. 2775 (tests conducted in foundation layers 

by drilling a hole in the pavement) 
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low, medium, and high ELWD-Z3 and CBR point measurements. CMV maps obtained on special 
backfill subbase and the overlaid RPCC base layers indicate that “hard” and “soft” zones in the 
subbase layer maps are reflected on the RPCC base layer maps as shown in Figure 66. 

Maps obtained on TS10 (Figure 67) identify the location of a utility concrete culvert (photo in 
Figure 68). The CMV measurements directly over the top of the concrete culvert were higher 
compared to locations beyond the culvert. In situ point measurements (ELWD-Z3, γd, w, and CBR) 
were obtained from directly above the culvert area (points 5 to 8) and along the edge of the 
culvert (points 1 to 4). ELWD-Z3, CBR, and γd measurements obtained directly above the culvert 
area showed relatively high values compared to measurements along the edge of the culvert 
(average ELWD-Z3 = 25.2 MPa along the edge and 37.7 MPa above the culvert; CBR = 8.3 along 
the edge and 16.1 above the culvert; γd = 21.00 kN/m3 along the edge and 21.46 kN/m3 above the 
culvert). Relatively low CMV and in situ point measurements along the edge of culverts are 
commonly encountered because it is difficult to compact material along the edges of concrete 
walls. 

CMV maps in different amplitude settings indicate that the CMV measurements are influenced 
by vibration amplitude. CMV measurements on the subgrade were on average about 1.1 to 1.3 
times greater in high amplitude setting (i.e., a = 2.00 mm) than in low amplitude setting (i.e., 
a = 1.50 mm). Similarly, CMV measurements on the subbase and base layers were on average 
about 1.2 to 1.5 times greater in high amplitude setting than in low amplitude setting. This is 
likely due to potential differences in the magnitude of stresses applied on the materials by the 
roller drum under different amplitude settings (Vennapusa et al. 2010). 

In addition to the CMV measurements obtained from TS6, TS7, TS8, TS9, and TS10, CMV 
measurements were obtained from several other calibration and production areas on this site as 
part of an Iowa DOT research project. Results from all of those areas are presented in detail in 
White et al. (2010). Correlations between CMV obtained in low and high amplitude settings and 
in situ point measurements of all of the test sections are presented in Figure 69 and Figure 70, 
respectively. Non-linear exponential relationships showed the best fit for CMV vs. ELWD-Z3 with 
R2 = 0.66 to 0.86. Relatively weak regression relationships with R2 = 0.12 to 0.18 were observed 
for CMV vs. CBR. No statistically significant relationships were found for CMV vs. γd. 
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Figure 65. CMV spatial maps of TS6 (subgrade layer) and TS7 (special backfill subgrade 
treatment layer) and DCP-CBR profiles at five in situ test locations 
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Figure 66. CMV spatial maps of TS8 (special backfill subbase layer) and TS9 (RPCC base 
layer) and ELWD-Z3, γd, and w at five in situ test locations 
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Figure 67. CMV spatial maps of TS10 (select sand subgrade treatment layer) using high 
and low amplitude settings and a table showing in situ test results from 28 locations 
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Figure 68. Box culvert location in TS10 highlighted on AccuGrade CMV map display (top) 
and photograph of the culvert (bottom) 
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Figure 69. Empirical correlations between CMV and in situ point measurements 
(a = 1.60 mm) 
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Figure 70. Empirical correlations between CMV and in situ point measurements 
(a = 2.00 mm) 
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Table 10. Summary statistics of in situ test results on TS5 new JPCP 
Measurement n µ σ COV (%) 
kFWD-Static-Corr (kPa/mm)  37 36.0 4.7 13 
kPCA (kPa/mm)  6 772.5 87.5 11 
kPCA-Weak Subgrade (kPa/mm)  6 47.1 4.7 10 
kFWD-Static-Corr-comp-PCA (kPa/mm)  37 45.8 5.1 11 
kcomp-PCA (kPa/mm)  6 772.5 87.5 11 
kcomp-PCA-Weak Subgrade (kPa/mm)  6 57.1 4.6 8 
 

Table 11. Summary of design, in situ, and laboratory values 
PCA 

Design 
Parameter Design Value 

In situ  
Measurements  

(Average)* 

Laboratory 
Measurements 

(Average) 

Subgrade k 34 kPa/mm 
(125 pci) 

kPCA-Treated Subgrade = 773 kPa/mm (2,830 pci)1 
kPCA-Weak Subgrade = 47.1 kPa/mm (172 pci)2 

kFWD-Static-Corr = 36.0 kPa/mm (132 pci)3 

ksubgrade = 75 kPa/mm  
(276 pci)  

[as-compacted]8 
ksubgrade = 12 kPa/mm (43 

pci) [thawed]9 
Subbase 

layer 
thickness 

Min. = 150 mm 
Avg. = 200 mm Avg. = 150 mm4 N/A 

kcomp 
43 kPa/mm 
(160 pci) 

kcomp-PCA = 772.5 kPa/mm (319 pci)5 

kcomp-PCA-Weak Subgrade = 57.1 kPa/mm (209 pci)6 

kFWD-Static-Corr-comp-PCA = 45.8 kPa/mm (168 pci)7 

kcomp-PCA = 109.8 kPa/mm 
(404 pci) [as-compacted]10 

kcomp-PCA = 30.1 kPa/mm 
(110 pci) [thawed]10 

*Average of all measurements obtained from TS5; 1Empricially estimated from DCP-CBRTreated-Subgrade following 
PCA (1984); 2Empirically estimated from DCP-CBRWeak Subgrade following PCA (1984); 3Obtained from FWD test 
using the AREA method and corrected for slab size; 4Obtained from DCP measurements; 5The kPCA values calculated 
were significantly higher than the values provided in PCA (1984) in estimating kcomp-PCA values, therefore kPCA was 
assumed to be the same as the composite values; 6Empirically estimated from DCP-CBRWeak Subgrade and 
HSubbase = 150 mm following PCA (1984); 7Calculated using kFWD-Static-Corr  and HSubbase = 150 mm following PCA 
(1984); 8Empirically estimated from CBR-k relationships in PCA (1984) with CBR obtained on a sample compacted 
to a target w = 17.8% and γd = 16.39 kN/m3 during frost-heave and thaw-weakening susceptibility testing; 
9Empirically estimated from CBR-k relationships in PCA (1984) with CBR obtained on a sample compacted to a 
target w = 17.8% and γd = 16.39 kN/m3 and thawed during frost-heave and thaw-weakening susceptibility testing; 
10Estimated using subgrade k and HSubbase = 300 mm following PCA (1984). 

Comparisons of the target design parameters and the measured or estimated parameters from 
laboratory and in situ testing reveal some important aspects that are summarized as follows: 

• The subgrade k values estimated from laboratory CBR measurements from post freeze-
thaw testing were about 2.8 times lower than the design value 

• The average treated subgrade k value (kPCA-Treated Subgrade) estimated from DCP-CBR 
measurements was about 23 times higher than the design value, while the untreated weak 
subgrade k value (kPCA-Weak Subgrade) estimated from DCP-CBR was about 1.4 times higher 
than the design value. The average k value determined from FWD tests (kFWD-Static-Corr), 
however, was about the same as the design value. 
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CHAPTER 6: SUMMARY AND CONCLUSIONS 

This report presents results and analysis of field and laboratory tests from a field study conducted 
on the I-29 interstate highway reconstruction project in Monona and Harrison Counties, Iowa. 
The project involved removal of the existing CRCP; reconstruction of the pavement foundation 
layers (base, subbase, and subgrade); and placement of a new JPCP on the north and south bound 
lanes of I-29, between just south of County road F-20 to just north of I-75. 

In situ FWD tests and DCP tests were conducted on the existing CRCP and the exposed 
foundation layers shortly after the old pavement was removed and on the new JPCP shortly after 
it was placed. The FWD and DCP tests were conducted to compare the foundation layer 
strength/stiffness profiles of the old and new foundation layers and to obtain mechanistic 
properties of the new foundation layers (i.e., modulus of subgrade reaction k) to compare with 
the design k values. Some key findings from this testing and data analysis are as follows: 

• On average, the plate deflection under a 40 kN applied load on the new JPCP was about 
0.4 times the deflection on the existing CRCP. 

• The FWD intercept values on the existing CRCP and new JPCP were low (< 0.04 mm) 
which do not indicate voids beneath the pavement. 

• The average static k value determined from the FWD on the new JPCP was on average 
about 1.6 times higher than on the existing CRCP. This indicates that there was 
improvement in the foundation layer stiffness values under the new pavement compared 
to the old pavement. 

• The k values determined from both DCP-CBR measurements and FWD measurements 
indicated higher values on the new JPCP than on the existing CRCP. 

• Based on tests conducted on the new JPCP sections, the k values determined using FWD 
were similar to the values determined using CBR of the weak layer within the top 
450 mm of the subgrade, but were about 17 times lower than the values determined using 
CBR of the treated subgrade. This indicates that a weak layer within the top 450 mm of 
the subgrade contributes to low values observed in the FWD testing and that the use of 
high CBR values in the treated subgrade layers can result in unreasonably high k values. 

• The subgrade k values estimated from laboratory CBR measurements in thawed state 
were about 2.8 times lower than the design value. The average treated subgrade k value 
estimated from DCP-CBR measurements was about 23 times higher than the design 
value, while the untreated weak subgrade k value estimated from DCP-CBR was about 
1.4 times higher than the design value. The average k value determined from FWD 
testing, however, was about the same as the design value. 

Five foundation layer production areas on the project were mapped during construction using 
a Volvo vibratory smooth drum roller equipped with Trimble’s roller integrated compaction 
monitoring (RICM) system. The RICM system used on this project measured compaction 
meter value (CMV). In situ nuclear gauge density, moisture content, light weight 
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deflectometer (LWD) and DCP tests were conducted for correlation with CMV 
measurements. Some key findings from this testing are as follows: 

• CMV maps with virtually 100% coverage of the compacted foundation layers revealed 
“soft” and “stiff” areas that were verified with in situ DCP and LWD measurements. 

• CMV measurements were influenced by amplitude settings. CMV measurements were on 
average about 1.1 to 1.5 times greater in high amplitude setting than in low amplitude 
setting. This is likely due to potential differences in the magnitude of stresses applied on 
the materials by the roller drum under different amplitude settings. 

• Results obtained from another study (White et al. 2010) were combined with the results 
obtained from this project to obtain correlations over a wide measurement range between 
LWD modulus, DCP-CBR, and nuclear gauge dry unit weight measurements and CMV. 
Results showed non-linear exponential relationships for CMV vs. LWD modulus with 
R2 = 0.66 to 0.86. Relatively weak regression relationships with R2 = 0.12 to 0.18 were 
observed for CMV vs. CBR, and no statistically significant relationships were found for 
CMV vs. dry unit weight. This was expected as CMV provides a measure of composite 
layer ground stiffness and not necessarily the dry unit weight of a single layer. 

Laboratory testing was conducted on foundation layer materials obtained from field to determine 
index properties, moisture-dry unit weight relationships from compaction tests, resilient modulus 
(Mr) values, and frost-heave and thaw-weakening susceptibility ratings. The Mr tests were 
conducted on homogenous samples as well as on layered composite samples (i.e., RPCC base 
over subbase and subbase over subgrade) to assess the influence of composite soil layer 
configurations on Mr values. The frost-heave tests were conducted on subgrade samples by 
exposing the samples to two freeze-thaw cycles. Thaw-weakening susceptibility ratings were 
determined by conducting CBR tests on compacted samples before and after two thawing cycles. 
Some key findings from laboratory Mr and frost-heave/thaw-weakening susceptibility rating tests 
are as follows: 

• Comparing the Mr values of the homogenous samples and the layered composite samples 
indicated that the average Mr of the composite sample was either similar to the layer with 
a lower Mr value or about average of the two layer’s Mr values.  

• Frost-heave test results on subgrade samples indicated that the heave rate was greater for 
the second freezing cycle than for the first freezing cycle, which indicates that the 
material is susceptible to increased heave with greater freeze-thaw cycles. Based on the 
frost-heave rate measurements, the subgrade soil is classified to have high potential to 
frost-heave according to ASTM D5918. 

• A moisture content profile of each sample was obtained after the two freeze-thaw cycles 
by taking samples at different depths. Results showed that the moisture content was 
higher at all depths in the samples compared to the initial moisture content, as expected. 
The moisture content at the top of the sample was higher than at the middle or bottom of 
the sample, which indicates that water was drawn to the top cold plate through capillary 
action caused by the temperature gradient in the samples during testing. 
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• The average CBR of the four post freeze-thaw test samples decreased to CBR < 1.0 from 
the pre freeze-thaw sample with about CBR = 22. Based on the post freeze-thaw CBR 
values, the soil is classified to have very high potential to thaw-weakening according to 
ASTM D5918. 
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APPENDIX: AASHTO (1993) AND PCA (1984) DESIGN CHARTS 

 

Figure 71. Chart for estimating modulus of subbase layer (ESB) from CBR (from AASHTO 
1993 based on results from Til et al. 1972) 
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Figure 72. Chart for estimating resilient modulus (Mr) of subgrade from CBR (from 
AASHTO 1993 Appendix FF based on results from Til et al. 1972) 
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Figure 73. Chart for estimating composite modulus of subgrade reaction (kcomp) assuming a 
semi-infinite subgrade depth (from AASHTO 1993) 



86 

 

Figure 74. Chart for estimating modulus of subgrade reaction (k) from CBR (from PCA 
1984) 
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