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EXECUTIVE SUMMARY 

Quality foundation layers (i.e., the natural subgrade, subbase, and embankment) are essential to 
achieving excellent pavement performance. Unfortunately, many pavements in the United States 
still fail due to inadequate foundation layers. To address this problem, a research project, 
Improving the Foundation Layers for Pavements (FHWA DTFH 61-06-H-00011 WO #18; 
FHWA TPF-5(183)), was undertaken by Iowa State University (ISU) to identify, and provide 
guidance for implementing, best practices regarding foundation layer construction methods, 
material selection, in situ testing and evaluation, and performance-related designs and 
specifications. As part of the project, field studies were conducted in several in-service concrete 
pavements across the country that represented either premature failures or successful long-term 
pavements. A key aspect of each field study was to tie performance of the foundation layers to 
key engineering properties and pavement performance. In situ foundation layer performance 
data, as well as original construction data and maintenance/rehabilitation history data, were 
collected and geospatially and statistically analyzed to determine the effects of site-specific 
foundation layer construction methods, site evaluation, materials selection, design, treatments, 
and maintenance procedures on the performance of the foundation layers and of the related 
pavements. A technical report was prepared for each field study. 

In this study, detailed field testing was conducted with the objective of measuring the seasonal 
variations in the field k values and comparing them with what was assumed in the design. This 
field testing was conducted by using a Kuab FWD and DCP testing on five different pavement 
test sections in the State of Iowa eight times over a two-year period (July 2010 to July 2012) in 
different seasons (winter, spring, summer, and fall). The pavement test sections varied in age 
from 6 to 56 years and showed varying levels of distress and ride quality (very poor to good) at 
the time of testing. The Iowa DOT provided pavement condition index (PCI) values for the test 
sections, based on testing performed in 2011. The PCI values are compared with the in situ test 
measurements in this report. 

Testing was conducted when the foundation layers were in frozen condition (winter), thawed 
condition, and in equilibrium condition (summer and fall). DCP testing was conducted by 
drilling a hole in the pavement, and directly testing the foundation layer properties down to about 
2 m below the surface. Both FWD and DCP test results were analyzed to estimate the k values 
and assess the differences in the estimated values. At one of the test sites, temperatures of the 
foundation layers were continuously monitored during the testing period. FWD testing was 
conducted to determine the modulus of subgrade reaction (k) values. DCP testing was conducted 
to estimate California bearing ratio (CBR) values of the foundation layers. Temperature data was 
analyzed to determine freezing and thawing periods and frost penetrations in the foundation 
layers. Seasonal variations observed in the foundation mechanistic properties were compared 
with the assumed design values. The k values determined from FWD testing are compared with 
the Mr values determined from DCP testing, in relationship with the empirical models used in the 
design procedures to convert k to Mr. 

The key findings from this study are as follows: 
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• On average, there was no significant difference in kFWD-Static-Corr values obtained in thawed 
condition and summer at any of the sites. The CBR values also did not show significant 
differences between thawed condition and summer at most of the sites, except at the 
Plainfield site where CBRSG-Weak increased from about 10 in thawed state to about 40 in 
summer. The kFWD-Static-Corr values in frozen condition was about 10% to 56% higher than in 
summer at four of the five sites. At one test site, the values were about the same at all testing 
times. 

• At two of the five sites, the kFWD-Static-Corr values were about 1.5 to 2 times lower than the 
design assumed k value (41 kPa/mm) in thawed condition and in summer. 

• Results indicated that the Mr-SG values were unrealistically high when compared with the 
kFWD-Static-Corr. Mr-SG-Weak were much lower than the Mr-SG values. A simple linear regression 
fit was applied to Mr-SG-Weak versus kFWD-Static-Corr results, which yielded a R2 of 0.45 with 
RMSE of 11.2 kPa/mm for k values. Compared to the linear regression fit in the data, use of 
the AASHTO model significantly over estimates the k values. 

• It is important for designers and practitioners to recognize this uncertainty in the estimated 
values when using empirical relationships, and also the differences that exist between the 
values calculated from the different test methods. Also, it must be noted that k and Mr are 
stress-dependent parameters and most of the empirical relationships between CBR vs. Mr and 
Mr vs. k do not properly address this issue. 

• Relationship between pavement age and PCI showed a strong linear trend with R2 > 0.93. 
Similar linear regression relationship was documented by White and Vennapusa (2014) 
based on testing on low volume jointed PCC pavement test sites. 

• The relationship between kFWD-Static-Corr and PCI yielded a strong linear regression relationship 
with R2 > 0.95, while the relationship between CBRSG-Weak and PCI yielded a strong non-
linear exponential trend with PCI with R2 > 0.95. These trends suggest that higher foundation 
layer stiffness or strength provide a better ride quality and that ride quality is influenced by 
pavement age. Although additional testing is warranted to further explore and validate these 
empirical models, an advantage of having these models is that designers can use them to 
target a desired ride quality for a target design age by controlling foundation layer 
mechanistic properties. 
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CHAPTER 1. INTRODUCTION  

Pavements in northern hemisphere are subjected to seasonal temperature variations with freeze-
thaw cycles that affect both pavement surfaces and foundation layers. Potential damages from 
freeze-thaw cycles include frost induced vertical heave, surface cracks, pumping of fines under 
traffic loading, and loss of support that reduces ride quality. Pavement foundation mechanistic 
characteristics such as stiffness and strength, are significantly influenced by seasonal temperature 
variations and therefore have to be properly characterized as it has implications to design, 
construction, maintenance, and serviceability (Brandl, 2008; Solanki et al., 2013; White et al., 
2013). 

Various thickness design procedures have been developed since the 1970s for concrete pavement 
design. PCA (1984) and AASHTO (1993) design procedures are currently the most popularly 
used methods by the highway agencies in the U.S., while there is increasing interest in 
implementing the newly developed mechanistic-empirical design guide (AASHTO, 2008). While 
the AASHTO (2008) procedure is a significant advancement over the PCA (1984) and AASHTO 
(1993) procedures in terms of analyzing the pavement responses, the key design parameter used 
to characterize foundation layer support is still the modulus of subgrade reaction (k) value. 
Resilient modulus (Mr) value is one of design parameters in AASHTO (1993) and AASHTO 
(2008), but the Mr value is converted to k value using empirical relationships in the design 
process. AASHTO (1993) provides suggested values for use in design as target Mr values for 
subgrade in frozen, thawed, and summer conditions. AASHTO (2008) deals with seasonal 
variations in a much more sophisticated manner based on local climatic modeling data and 
laboratory test measurements to adjust modulus values for seasonal variations. 

The k value is determined using a static plate load test, which can be time consuming and 
expensive to setup. Therefore, various alternative testing methods have been in use by highway 
agencies to empirically determine the k value. Deflection tests using falling weight deflectometer 
(FWD) is a popular choice for determining k value based on testing performed on pavement 
surface layers (Puppala, 2008; AASHTO, 1993; AASHTO, 2008). Dynamic cone penetrometer 
(DCP) test is another test device that has been recommended in the AASHTO (2008) design 
guide as a method to determine California bearing ratio (CBR), which is then empirically 
correlated to k value. 

Most highway agencies assume k values during the design phase either based on experience from 
historically available data or limited field testing. For rehabilitated pavement designs, agencies in 
the U.S. typically use FWD testing data on the existing pavements, while for new pavements, 
CBR or Mr testing is typically performed on samples obtained from the field. 

In this study, detailed field testing was conducted with the objective of measuring the seasonal 
variations in the field k values and compare them with what was assumed in the design. This 
field testing was conducted by using a Kuab FWD and DCP testing on five pavement test 
sections in the State of Iowa eight times over a two year period (July 2010 to July 2012) in 
different seasons (winter, spring, summer, and fall). The pavement test sections varied in age 
from 6 to 56 years and showed varying levels of distress and ride quality (very poor to good) at 
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the time of testing. The Iowa DOT provided pavement condition index (PCI) values for the test 
sections based on testing performed in 2011. The PCI values were compared with the in situ test 
measurements in this report. 

Testing was conducted when the foundation layers were in frozen condition (winter); thawed 
condition (late winter/spring); and in equilibrium conditions (summer and fall). DCP testing was 
conducted by drilling a hole in the pavement and directly testing the foundation layer properties 
down to about 2 m below the surface. Both FWD and DCP test results were analyzed to estimate 
k values and assess the differences in the estimated values. At one of the test sites, temperatures 
of the foundation layers were continuously monitored during the testing period. FWD testing was 
conducted to determine the modulus of subgrade reaction (k) values. DCP testing was conducted 
to estimate California bearing ratio (CBR) values of the foundation layers. Temperature data was 
analyzed to determine freezing and thawing periods and frost penetrations in the foundation 
layers. Seasonal variations observed in the foundation mechanistic properties were compared 
with the assumed design values. The k values determined from FWD testing were compared with 
the Mr values determined from DCP testing in relationship with the empirical models that 
convert k to Mr that are used in design procedures. 

This report contains six chapters. Chapter 2 provides project background information with a 
review of literature on topics related to seasonal variation in pavement and foundation layers. 
Chapter 3 presents an overview of the experimental test sections and the testing methods used in 
this project. Chapter 4 presents the in situ test results and data analysis. Chapter 5 presents key 
findings and conclusions from this study. 

The findings from this report should be of significant interest to researchers, practitioners, and 
agencies who deal with design, construction, and maintenance aspects of PCC pavements. 
Results from this project provide one of several field project reports developed as part of the 
TPF-5(183) and FHWA DTFH 61-06-H-00011:WO18 studies. 
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CHAPTER 2. BACKGROUND  

This chapter presents brief background information on the projects, photos taken during in situ 
testing, and a review of literature review related to seasonal variation. 

Seasonal Freeze-Thaw Cycles in Pavements and Foundation Layers 

When pavement structures are exposed to frost heaving and thaw weakening, the mechanical 
properties can be significantly affected by the seasonal changes in temperature and soil moisture 
conditions (Simonsen and Isacsson 1999). Simonsen and Isacsson reviewed the available 
literature on the effects of freezing and thaw weakening on pavement structures. The stiffness of 
supporting layers typically increases when frozen because soil particles in the base and subbase 
materials are frozen together and ice lens have formed in the subgrade materials, which result in 
an increase in bearing capacity. The damage caused by freezing is due to differential frost heave 
and thermal cracks in asphalt cement (AC) layers. According to Simonsen and Isacsson (1999), 
once pavements begin to thaw in the spring, bearing capacity can be drastically reduced because 
of increased saturation in the supporting layers. They reported that drainage in pavement systems 
is very important in general, but it is even more important in cold regions because increases in 
moisture content in foundation layers when water from thawing ice causes high pore water 
pressures to develop that lead to reductions in effective stress that influences shear stress and 
bearing capacity. Further, water that results from melting ice becomes trapped between the 
pavement material and the remaining frozen layers below (Simonsen and Isacsson 1999).  

Simonsen and Isacsson (1999) also reported that less severe winters produce conditions for 
larger amounts of heave for given depths of frost because slow frost penetration rates can result 
in more ice lenses being formed. This slow frost penetration leads to the majority of the ice 
accumulating near the surface of the pavement foundation layers. Once the ice begins to melt, 
there is a rapid release of water that can create detrimental support conditions. On the other hand, 
severe winters result in deeper frost penetration, which means that the main concentrations of ice 
are deeper in the pavement foundation. Even though there may be more ice present, the effect of 
the melting ice on the pavement is less rapid and spread over a longer period of time. If drainage 
of the pavement system is high enough, the effects of additional water on the system will be 
lessened. The ability of the system to drain is related to the fines content of the materials. 

According to Johnson (2012), thawing typically progresses from the pavement surface down and 
results in conditions where melted water can become trapped between the pavement surface and 
the frozen layers below. In this condition, where thawing is rapid, the drainage path is 
constrained in the vertical direction so transverse drainage paths must be available. When this 
occurs, transverse drainage can be cut off. If slower thawing takes place, the thawing front will 
work its way from the lower layers up and water will be allowed to drain. The thaw depth affects 
the amount of settlement that will take place and the rate of thawing affects the magnitude of 
change in pore water pressure. The amount of settlement that takes place depends on ice lens 
formation, soil density, pore water pressures, and soil compressibility. 
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Simonsen and Isacsson (1999) found that the following factors can impact the amount of thaw-
weakening damage on pavement systems: road structure, frost susceptibility, subgrade 
conditions, temperature, precipitation, and traffic. They found that the length of recovery from 
thaw weakening is dependent on the frost depth, soil type, water content, and drainage 
conditions. It can take weeks to months to fully recover, depending on the drainage conditions. 
Andersland and Ladanyi (2004) suggested that load restrictions can be used to reduce pavement 
damage during periods of thaw weakening, but that load restrictions are most commonly used on 
flexible pavements because most rigid pavements were determined to be able to resist the loss of 
strength during thawing. 

Simonsen and Isacsson (1999) described that when pavement foundation layers are deformed 
under traffic loads, most of the deflection rebounds once the load has been removed. The 
remaining deformation that does not rebound is called permanent deformation and occurs when 
excess water is present. Spring thawing conditions present the ideal opportunity for permanent 
deformation to occur. When base materials are saturated, vehicle loads are initially placed on the 
pore water. When the pore water is loaded it makes the base material unstable and can cause 
upward stress that can cause cracks in the pavement system. After this process occurs many 
times, it can cause holes in the pavement layer and a loss of base material; this is especially true 
for AC pavements. Salour and Erlingsson (2012) found that when the base course is saturated, 
there can be a pumping of fines in the base course which eventually leads to a weaker and less 
drainable material than what was initially designed. 

Another type of failure can occur when the subgrade is frost susceptible and has been frozen 
(Simonsen and Isacsson 1999). Once, the subgrade begins to thaw and the pore water pressures 
increase due to the additional water, the subgrade is displaced and is unable to sustain the loads 
that are applied from the upper pavement layers. When the subgrade is displaced, a loss of 
support for the pavement layer occurs which can cause deformations in the pavement. Salour and 
Erlingsson (2012) found that the relative damage on AC pavements caused by traffic loading 
during thaw weakening is 1.5 to 3 times higher than the average annual damage. 

Andersland and Ladanyi (2004) reported that determining the 0°C isotherm is an approach to 
analyze temperature variations in pavement focusing on freezing and thawing periods in 
pavement layers (Figure 1). Frozen and thawed zones versus time can be estimated from the 
isotherm depth. Determination of this isotherm presents the maximum frost penetrations and the 
periods that pavements are susceptible to break-up. This period is defined as the time when the 
upper pavement layers are thawed while the lower layers are still frozen. Thawed water from 
upper layers cannot drain into lower frozen layers due to the low permeability. In these 
conditions, the bearing capacity of foundations may significantly decrease, and the upper 
pavements become more fragile under traffic loads. Andersland and Ladanyi (2004) reported 
these fragile conditions are a problem that pavement engineers need to identify, which is the 
primary reason why spring load restriction needs to be implemented in seasonal frost regions 
(Ovik et al., 2000; NDDOT, 2015). 
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Figure 1. Model of seasonal ground freezing and thawing periods beneath pavement 
(Andersland and Ladanyi 2004) 

As part of a study of soil stabilization, Hoover et al. (1962) constructed and examined a 
pavement test section built on US 117 in Jasper County, Iowa during October 1957. They 
computed 0oC isotherms and estimated frost depths using the Modified Berggren Formula and 
U.S. Weather Bureau information. They also estimated the number of freeze-thaw cycles that 
occurred during each winter cycle, as shown in Figure 2 to Figure 4. 
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Figure 2. Winter 1957-1958: Computed frozen zones (top) and cumulative freeze-thaw cycles (bottom) (Hoover et al. 1962) 
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Figure 3. Winter 1958-1959: Computed frozen zones (top) and cumulative freeze-thaw cycles (bottom) (Hoover et al. 1962) 
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Figure 4. Winter 1959-1960: Computed frozen zones (top) and cumulative freeze-thaw cycles (bottom) (Hoover et al. 1962) 



9 

Seasonal Variations in Pavement Foundation Mechanistic Properties 

In situ testing during different seasons to determine mechanistic properties of pavement 
foundation layers such as strength and Mr or k is critical for thickness design because these 
properties of pavement foundations change in response to climatic conditions (Lary et al. 1984, 
Konrad and Roy, 2000). Pavement design guides take this into consideration (AASHTO, 1993; 
AASHTO, 2008). For example, AASHTO (1993) suggests adjusting the design Mr of roadbed 
soil based on the durations of periods of freezing and thawing and in summer. AASHTO (1993) 
provides suggested values for use in design when subgrade is in frozen, thawed, and summer 
conditions. AASHTO (2008) deals with seasonal variations in a more sophisticated manner that 
accounts for local climatic modeling data and laboratory test measurements to adjust design 
modulus values for seasonal variations. 

The next section is a summary of the literature about field investigations into frost heave, 
followed by a review of the literature about thaw weakening. 

Frost Heave 

In a study at MnRoad (Lukanen et al. 2006), frost pins were placed in sections of AC and 
Portland cement concrete (PCC). The AC sections had sand, clay, and granular base as 
foundation materials. The PCC sections had a granular base with either sand or clay underneath. 
The frost pins were placed at 50 ft intervals in the five 500-ft test sections and observed over a 
four-year period. The results revealed uneven heave across each of the sections. This differential 
heave affects pavement ride and performance. Differential heave can greatly increase pavement 
roughness and occurs when material types or properties change (e.g., a change from cut to fill or 
an area with increased moisture content) (Joint Departments of the Army and Air Force 1985). 

Many states require a 3–5 ft subcut into the subgrade, which consists of removing the subgrade 
material and recompacting it in place, a process that helps create a uniform subgrade that will 
reduce differential heave. The test sections at MnROAD were undercut 5 ft but still showed signs 
of differential heave. The sections with clay subgrade in the pavement structure showed the 
highest amount of frost heave. Also the AC on clay sections showed an increase in the 
International Roughness Index (IRI) as the subgrade heaved. The AC on sand sections showed 
smaller increases in IRI because the subgrade had small amounts of heave. Although the PCC 
section with a clay subgrade heaved significantly, the PCC sections showed no increases in IRI. 
Lukanen et al. (2006) reported that ride quality is minimally related to differential frost heave in 
the subgrade and many other factors can affect the IRI in addition to frost heave. They concluded 
that current empirical design and mechanistic empirical design processes do not account for 
differential frost-heave movements. 

Thaw Weakening 

Increased moisture content in supporting layers during thawing weakens pavement structures 
(Janoo and Berg 1996). This additional water in pavement structures reduces the bearing 
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capacity of the pavement system because reduced strength of the supporting layers. The strength 
of AC pavements is largely dependent on the temperature, this results in large variations in 
strength during the high temperature swings that occur during freezing and thawing periods. PCC 
can also be negatively affected during thawing periods because of curling effects that are caused 
by high temperature differentials in the pavement layer. The curling can occur at the edges and 
corners of the pavement which will affect the load transfer efficiency. Janoo and Berg (1996) 
conducted a study of the effects of thaw weakening on PCC for airfields. They conducted falling 
weight deflectometer (FWD) tests and measured temperatures in the pavement structure. Frost 
depths were determined based on where the temperature was 0°C. An example of their frost 
depth versus time can be seen in Figure 5. 

 

Figure 5. Frost penetration plot (Janoo and Berg 1996) 

Janoo and Berg (1996) used the FWD deflection basin area index parameter to analyze the 
effects of thaw weakening. An example of the data can be seen in Figure 6. The higher the basin 
area measurement is, the lower the strength of the pavement structure. They measured joint load 
transfer efficiency (LTE), which is a measure of how well the load is distributed from one PCC 
slab to the next. They found that the LTE typically decreased as the temperature increased as the 
beginning of the spring thaw. However, as thawing progressed, the LTE began to increase 
(Figure 7). 
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Figure 6. Change in basin area during spring thaw (Janoo and Berg 1996) 

 

Figure 7. Joint transfer efficiency during spring thaw (Janoo and Berg 1996) 

Drumm and Meier (2003) compiled seasonal test data from sites across North America. The 
research was conducted as a part of the Long Term Pavement Performance (LTPP) Seasonal 
Monitoring Program (SMP). They collected data from temperature sensors, moisture sensors, 
and FWD tests. They discussed that the temperature in PCC does not affect the performance as 
much as the gradient in the PCC slab. Curling of the slabs can result of the temperature gradient. 
Upward curling will occur when the temperature is cooler on the top compared to the bottom 
(i.e., at night) and downward curling can occur when the temperature on the top is warmer than 
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the bottom (i.e., during day). When the temperature in the slab is colder, the joints open which 
can result in reduced load transfer efficiencies. Reductions in load transfer efficiencies can also 
be caused by curling. FWD testing can be performed at the edge of slabs to observe daily and 
seasonal changes in load transfer efficiency due to curling and opening of joints. FWD 
deflections, from increasing loads, from the slab edges and the center of slab can be compared. If 
the deflections have a near linear relationship between the drop height and response, it is an 
indication that the slab is in good contact with the underlying layers. Any deviations from linear 
can indicate curling. 

Drumm and Meier (2003) mentioned that it is a typical misunderstanding that granular base 
material do not undergo thaw weakening. This is a result of a strong base material requiring a 
significant amount of fines, which as discussed can decrease the permeability and increase the 
frost-heave potential. They found, from several sources, that there is no relationship between 
amount of rainfall and subgrade moisture content variation. Joint faulting in PCC, can be a result 
of pumping (i.e., loss of material), frost heave, or expansive subgrade soils. 

Drumm and Meier stated that, “even under the best of circumstances, FWD backcalculation is as 
much an art as it is a science” (2003, p. 4–5). Spring thaw and recovery moduli were difficult to 
backcalculate because the pavement structure was not adequately modeled by the elastic layer 
theory that was used. Because it is difficult for theory to represent a soft saturated layer trapped 
between a much stiffer base material and the frost subgrade that lies below they recommended 
that advanced modeling would be required to represent this situation. The backcalculated moduli 
during frozen periods are typically too high and inconsistent. They found that it was difficult to 
determine when slab curling was or was not affecting the results, and recommended that 
deflection basins be used rather than backcalculated moduli to determine the effects of frost 
action on the pavement system. 

Drumm and Meier (2003) used the following indices at Mn/ROAD to assess spring thaw 
conditions: SCI, BDI, and D0. The FWD indices are defined in Table 1. These indices are 
expected to decrease during frozen periods (Figure 8). A stress level of 550 kPa was used in the 
study because it corresponds to a stress level that is typically used in pavement design. With the 
data available, they were not able to detect a significant thaw-weakening period. They 
hypothesized that it was a result of one or a combination of the following factors: thaw 
weakening occurred between their site visits, the subgrade soils were not frost susceptible, or the 
pavements were designed to minimize the effects of thaw weakening. The LTPP SMP sites were 
only visited once a month. Drumm and Meier analyzed FWD results on AC pavements from the 
U.S. Army Frost Effects Research Facility and other locations that were collected on a daily 
basis during thawing and reported that the effects of thawing could be seen from SCI and SDI 
indices. 
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Table 1. FWD indices (Drumm and Meier 2003) 
Parameter Formula 

AREA 6 * [(D0/D0) + (2*D305/D0) + (2*D610/D0) + (D914/D0)] 

Deflection at load plate (D0) D0 

Deflection at 1524 mm (D1524) D1524 

Base curvature index (BCI) D610 – D914 

Surface curvature index (SCI) D0 − D305 

Basin damage index (BDI) D305 − D610 

Partial area (PA), m2 
[(D457+D610)/2*0.153] + [(D610+D914)/2*0.304] + 

[(D914+D1524)/2*0.610] 

Subgrade damage index (SDI) D610 − D1524 

Subsurface index (SI) D305 − D1524 

Dx is the surface deflection measured x mm from the loading plate. 

 

 

Figure 8. Expected seasonal variation of FWD indices (Drumm and Meier 2003) 

Jong et al. (1998) performed a study to develop a method for determining when load restrictions 
should be implemented. The data collected measured air and subsurface temperatures, subsurface 
water contents, water phase changes, and pavement moduli. Thermocouples and thermistors 
were used to measure temperature, time domain reflectometry probes were used to determine 
water contents and phase changes, and FWD tests were used to determine the pavement moduli. 
Flexible pavements (i.e., AC pavements) were tested over an 18 month period on three 
secondary highways. They found that the thermocouples, thermistors, and time domain 
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reflectometry probes all resulted in approximately the same frost depth profiles (Figure 9). They 
presented the structural capacity of the pavement in the form of FWD deflection basins and 
backcalculated FWD moduli. An example of the FWD deflection basin can be seen in Figure 10. 
The basins show that the deflection is very low during winter and very high during spring, with 
the deflections for the summer period falling in between. 

 

Figure 9. Frost depth measured with thermocouples, thermistors, and time domain 
reflectometry probes (Jong et al. 1998) 

 

Figure 10. Changes in seasonal FWD deflection basins (Jong et al. 1998) 

Jong et al. (1998) performed FWD tests at approximately 15 m intervals and found that overall; 
the modulus did not vary significantly for the intervals tested, so it was assumed that one interval 
could be used to represent the test section. They found that the moduli of the base and subgrade 
continued to weaken, after thawing began, until both layers were completely thawed (Figure 11). 



15 

The thaw weakening stage lasted approximately one month and continued to recover for an 
additional four months. Figure 11 also shows that the subgrade has a higher modulus than the 
base for a brief period during thawing. 

 

Figure 11. Changes in seasonal resilient modulus (Jong et al. 1998) 

Newcomb and Birgisson (1999) presented a profile of typical deflection response over a year that 
indicates (Figure 12). The deflection response from an applied load is reduced during periods of 
freezing and then drastically increases during the following thaw period. They found from other 
studies that the critical period during thawing is when water is trapped in the base layer between 
the pavement and the frozen subgrade. 

 

Figure 12. Typical pavement deflection response due to seasonal changes (Newcomb and 
Birgisson 1999) 
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The effect on the resilient modulus can be seen in (Figure 13). The result of water being trapped 
in the base course is that the modulus of the subgrade is actually higher than that of the base 
course for a short time, which supports Jong et al. (1998). 

 

Figure 13. Seasonal changes in the resilient moduli of base and subgrade layers (Newcomb 
and Birgisson 1999) 

As a part of the ROADEX II Project in Northern Europe, the effect of thaw weakening was 
studied on low volume gravel roads (Saarenketo and Saara 2005). They used DCP test results to 
determine the changes in stiffness and thickness of pavement layers and to determine the depths 
to layer interfaces and the location of the frost line. They backcalculated a modulus, based on the 
shear strength, from the DCP data. Figure 14 shows the DCP moduli being used to track the 
thawing process. They concluded that the DCP test is very useful for monitoring frost depth and 
stiffness of the road structures, that it has problems penetrating stiff base courses so it is not 
suitable for observing well-built roads. 
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Figure 14. Tracking thawing process by using DCP backcalculated moduli (Saarenketo and 
Saara 2005)  

Baladi et al. (2009) reported seasonal changes in pavement subgrade Mr values. More than 500 
groups of FWD test results, including those conducted in that study and those collected within 
the previous 20 years, were used to determine layer moduli. The backcalculated k values from 
FWD deflections per empirical AREA method were converted to Mr based on AASHTO (1993). 
The converted Mr values were also correlated with previous data to consider limitations in 
applying the AASHTO (1993) conversion process to determine effects on subbase and base 
layers. FWD tests were conducted on two PCC and one ACC pavement test sections in Michigan 
during fall and spring. The results indicated that during thawing, the subgrade Mr under the PCC 
pavements were 30–50% less than in the fall, but subgrade Mr under the ACC pavement 
exhibited similar values in both seasons. 

Becker et al. (2014) investigated the freeze-thaw performance of stabilized pavement 
foundations in Iowa from October 2012 to April 2013 by comparing the CBR and elastic 
modulus in the fall and after the spring thaw. Although several stabilization methods had been 
used, in comparison with the fall CBR values, the spring CBR of both granular subbase (CBRSB) 
and subgrade (CBRSG) decreased. Becker et al. (2014) reported that the thawed CBRSG was as 
low as 10% of the values measured during summer/fall. Results of elastic modulus testing 
indicated the thawed stiffness of the composite foundation layers decreased by 20–90% 
compared to values observed in summer/fall. 
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CHAPTER 3. EXPERIMENTAL TESTING 

This chapter summarizes the in situ pavement test sections, the testing methods used in this 
research, and the data analysis procedures. 

Test Sections 

Information about the test sections and the pavement condition index (PCI) values reported by 
Iowa DOT (2014) during the time of testing (2011) are summarized in Table 2. Pictures from 
each test section are shown in Figure 16 to Figure 21. 

The project sites varied in pavement age from 6 years to 56 years at the time of testing, and the 
ride quality varied between very poor to good conditions. Four of the five sections consisted of 
jointed full depth portland cement concrete (PCC) pavement, while one section consisted of an 
asphalt overlay over jointed PCC. All sections were underlain by a nominal 254 mm thick 
granular subbase. Based on the information provided on Iowa DOT (2014), the granular subbase 
consisted of crushed limestone at four sites. 

Table 2. Summary of the project sites 

Test 
section ID Project site 

Year 
pavement 
built 

Pavement 
thickness 

Granular subbase 
material and 
thickness 

PCI 
(Rating) 

TS1 
US 20 WB, 
MP 18.5, Fort 
Dodge 

PCC 2005 254 mm CLS, 254 mm 87 
(Good) 

TS2 
US 59, NB, 
MP 95.0, 
Denison 

ACC 1987 114 mm 
CLS, 254 mm 55 

(Fair) PCC 1971 203 mm 

TS3 
US 20, EB, 
MP 18.5, 
Moville 

PCC 1958 254 mm 

Information on 
material type not 
available; 254 mm 
(interpreted from 
field testing) 

18 
(Very Poor to 
Serious) 

TS4 

US 30, WB, 
MP 154.85, 
Nevada 
(Nevada east) 

PCC 1992 

254 mm CLS, 254 mm 

82 
(Satisfactory) 

US 30, EB, 
MP 161.35, 
Nevada 
(Nevada west) 

PCC 1998 91 
(Good) 

TS5 
US 218, SB 
MP 214.05, 
Plainfield* 

PCC 2002 241 mm CLS, 254 mm 94 
(Good) 

Note: MP = milepost; CLS = crushed limestone; * pavement temperature was monitored at the site. 
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Table 3. Summary of field testing dates, tests, and locations on the test section 

Project site Testing Dates 
Number of Test 
Locations 

US 20 WB, MP 18.5, 
Fort Dodge 

FWD: 5/11/2010; 7/28/2010; 11/18/2010; 
2/24/2011; 3/16/2011; 8/4/2011; 
11/15/2011; 3/22/2012 

DCP: 11/18/2010; 3/16/2011; 8/4/2011; 
11/15/2011; 3/22/2012 

FWD at mid-panel: 7 
FWD at joint: 7 
DCP: 1 

US 59 NB, MP 95.0, 
Denison 

FWD: 5/11/2010; 7/16/2010; 11/11/2010; 
2/26/2011; 3/16/2011; 8/3/2011; 
11/16/2011; 4/6/2012 

DCP: 11/11/2010; 2/24/2011; 3/16/2011; 
8/3/2011; 11/16/2011; 4/5/2012 

FWD at mid-panel: 7 
FWD at joint: 7 
DCP: 1 

US 20 EB, MP 18.5, 
Moville 

FWD: 5/11/2010; 7/16/2010; 11/11/2010; 
2/24/2011; 3/16/2011; 8/3/2011; 
11/16/2011; 4/5/2012 

DCP: 11/11/2010; 3/16/2011; 8/3/2011; 
11/16/2011; 4/5/2012 

FWD at mid-panel: 8 
FWD at joint: 8 
DCP: 1 

US 30 WB, MP 154.85, 
Nevada (Nevada east) 

FWD: 5/14/2010; 7/28/2010; 11/18/2010; 
3/3/2011; 3/15/2011; 8/8/2011; 
11/17/2011; 3/23/2012 

DCP: 11/18/2010; 3/3/2011; 3/15/2011; 
8/8/2011; 11/17/2011; 3/23/2012 

FWD at mid-panel: 6 
FWD at joint: 6 
DCP: 1 

US 30 EB, MP 161.35, 
Nevada (Nevada west) 

FWD: 5/14/2010; 7/28/2010; 11/18/2010; 
3/3/2011; 3/15/2011; 8/8/2011; 
11/17/2011; 6/6/2012 

DCP: 11/18/2010; 3/3/2011; 3/15/2011; 
8/8/2011; 11/17/2011; 6/6/2012 

FWD at mid-panel: 5 
FWD at joint: 5 
DCP: 1 

US 218 SB MP 214.05, 
Plainfield 

FWD: 5/13/2010; 7/28/2010; 11/18/2010; 
2/26/2011; 3/3/2011; 3/15/2011; 
3/24/2011; 8/4/2011; 11/15/2011; 
3/22/2012 

DCP: 11/18/2010; 2/26/2011; 3/3/2011; 
3/15/2011; 3/23/2011; 8/4/2011; 
11/15/2011; 3/23/2012 

FWD at mid-panel: 7 
FWD at joint: 7 
DCP: 1 

 
Temperature sensor data was available at Moville, Denison, and Plainfield test sites through 
Iowa State Environmental Mesonet (2012). The temperature probes began at approximately 
25 mm below the pavement surface and continued to a depth of about 1.8m below surface. The 
frost depth was determined at 2 P.M. for each day during the freezing and thawing periods. The 
frost depth was chosen when the temperature was at or below 0°C during freezing and at or 
above 0°C during thawing. Several temperature sensors failed at the Moville and Denison site in 
2010, so the data from those sites were not sufficient for analysis. Only temperature data from 
Plainfield site data is used in the analysis presented in this report. 
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Figure 15. Map showing the in situ test sites 

 

Figure 16. TS1: US 20 WB near Fort Dodge 
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Figure 17. TS2: US 59 NB near Denison 

 

Figure 18. TS3: US 20 EB near Moville 
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Figure 19. TS4: US 30 WB near Nevada (Nevada east) 

 

Figure 20. TS4: US 30 EB near Nevada (Nevada west) 
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Figure 21. TS5: US 218 SB near Plainfield 

Kuab Falling Weight Deflectometer 

Falling weight deflectometer (FWD) tests were conducted using a Kuab FWD setup with a 
300 mm (11.81 in) diameter loading plate by applying one seating drop and three loading drops. 
The applied loads varied from about 27 kN (6,000 lb) to 54 kN (12,000 lb) in the three loading 
drops. The actual applied loads were recorded using a load cell, and deflections were recorded 
using seismometers mounted on the device, per ASTM D4694-09 Standard Test Method for 
Deflections with a Falling-Weight-Type Impulse Load Device. The FWD plate and deflection 
sensor setup and a typical deflection basin are shown in Figure 22. To compare deflection values 
from different test locations at the same applied contact stress, the values at each test location 
were normalized to a 40 kN (9,000 lb) applied force. 

FWD tests were conducted at the center of the PCC slab panels and at the joints. Tests conducted 
at the joints were used to determine joint load transfer efficiency (LTE) and voids beneath the 
pavement based on “zero” load intercept values. Tests conducted at the center of the slab panels 
were used to determine modulus of subgrade reaction (k) values and the intercept values. The 
procedure used to calculate these parameters are described below. 
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Figure 22. FWD deflection sensor setup used for this study and an example deflection basin  

LTE was determined by obtaining deflections under the plate on the loaded slab (D0) and 
deflections of the unloaded slab (D1) using a sensor positioned about 305 mm (12 in.) away from 
the center of the plate (Figure 22). The LTE was calculated using Equation 1. 
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Voids underneath pavements can be detected by plotting the applied load measurements on the 
X-axis and the corresponding deflection measurements on the y-axis and plotting a best fit linear 
regression line, as illustrated in Figure 23, to determine the “zero” load intercept (I) values. 
AASHTO (1993) suggests I = 0.05 mm (2 mils) as a critical value for void detection. According 
to Quintus and Simpson (2002), if I = -0.01 and +0.01 mm, then the response would be 
considered elastic. If I > 0.01 then the response would be considered deflection hardening, and if 
I < -0.01 then the response would be considered deflection softening. 

Pavement layer temperatures at different depths were obtained during FWD testing, in 
accordance with the guidelines from Schmalzer (2006). The temperature measurements were 
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used to determine equivalent linear temperature gradients (TL) following the temperature-
moment concept suggested by Janssen and Snyder (2000). According to Vandenbossche (2005), 
I-values are sensitive to temperature induced curling and warping affects. Large positive 
temperature gradients (i.e., when the surface is warmer than the bottom) that cause the panel 
corners to curl down result in false negative I-values. Conversely, large negative gradients (i.e., 
when the surface is cooler than the bottom) that cause the panel corners to curl upward result in 
false positive I-values. Interpretation of I-values therefore should consider the temperature 
gradient. Concerning LTE measurements for doweled joints, the temperature gradient is 
reportedly not a critical factor (Vandenbossche 2005). 
 

 

Figure 23. Void detection using load-deflection data from FWD test 

The k values were determined using the AREA4 method described in AASHTO (1993). Since the 
k value determined from FWD test represents a dynamic value, it is referred to here as 
kFWD-Dynamic. Deflections obtained from four sensors (D0, D2, D4, and D5 shown in Figure 22) 
were used in the AREA4 calculation. The AREA method was first proposed by Hoffman and 
Thompson (1981) for flexible pavements and has since been applied extensively for concrete 
pavements (Darter et al. 1995). AREA4 is calculated using Equation 2 and has dimensions of 
length (in inches), as it is normalized with deflections under the center of the plate (D0): 
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where D0 = deflections measured directly under the plate (in.); D2 = deflections measured at 
305 mm (12 in.) away from the plate center (in.); D4 = deflections measured at 610 mm (24 in.) 
away from the plate center (in.); and D5 = deflections measured at 914 mm (36 in.) away from 
the plate center (in.). The AREA4 method can also be calculated using different sensor 
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configurations and setups, (i.e., using deflection data from 3, 5, or 7 sensors), and those methods 
are described in detail in the literature (Substad et al. 2006, Smith et al. 2007) 

In early research conducted using the AREA method, the ILLI-SLAB finite element program 
was used to compute a matrix of maximum deflections at the plate center and the AREA values 
by varying the subgrade k, the modulus of the PCC layer, and the thickness of the slab (ERES 
Consultants, Inc. 1982). Measurements obtained from FWD tests were then compared with the 
ILLI-SLAB program results to determine the k values through back calculation. Barenberg and 
Petros (1991) and Ioannides (1990) proposed a forward solution procedure based on 
Westergaard’s solution for loading on an infinite plate to replace the back calculation procedure. 
This forward solution presented a unique relationship between AREA value (for a given load and 
sensor arrangement) and the dense liquid radius of relative stiffness (L) in which subgrade is 
characterized by the k value. The radius of relative stiffness (L) is estimated using Equation 3:  
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where x1 = 36, x2 = 1812.279, x3 = -2.559, x4 = 4.387. It must be noted that the x1 to x4 values 
vary with the sensor arrangement and these values are only valid for the AREA4 sensor setup. 
Once, the L value is known, the kFWD-Dynamic value can be estimated using Equation 4: 

2
0

*
0)(

LD
PDpcik DynamicFWD =−  (4) 

where P = applied load (lbs), D0 = deflection measured at plate center (inches), and D0
* = non-

dimensional deflection coefficient calculated using Equation 5: 

cLbeeaD
−−⋅=*

0  (5) 

where a = 0.12450, b = 0.14707, c = 0.07565. It must be noted that these equations and 
coefficients are valid for an FWD setup with an 11.81 in. diameter plate. 

The advantages of the AREA4 method are the ease of use without back calculations and the use 
of multiple sensor data. The disadvantages are that the process assumes that the slab and the 
subgrade are horizontally infinite. This assumption leads to underestimating the k values of 
jointed pavements. Crovetti (1993) developed the following slab size corrections for a square 
slab that is based on finite element analysis conducted using the ILLI-SLAB program and is for 
use in the kFWD-Dynamic: 
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐷𝐷0 =  𝐷𝐷0 �1 − 1.15085𝑒𝑒−0.71878�𝐿𝐿
′

𝐿𝐿 �
0.80151

� (6) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐿𝐿 =  𝐿𝐿 �1 − 0.89434𝑒𝑒−0.61662�𝐿𝐿
′

𝐿𝐿 �
1.04831

� (7) 

where L′ = slab size (smaller dimension of a rectangular slab, length or width). This procedure 
also has limitations: (1) it considers only a single slab with no load transfer to adjacent slabs, and 
(2) it assumes a square slab. The square slab assumption is considered to produce sufficiently 
accurate results when the smaller dimension of a rectangular slab is assumed as L′ (Darter et al. 
1995). Darter et al. 1995 suggested using 𝐿𝐿′ =  �𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ ×  𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ to further refine slab size 
corrections. However, no established procedures for correcting for load transfer to adjacent slabs 
have been reported so accounting for load transfer remains as a limitation of this method. 

AASHTO (1993) suggests dividing the kFWD-Dynamic value by a factor of 2 to determine the 
equivalent kFWD-Static value. The origin of this factor 2 dates back to Foxworthy’s work in the 
1980s. Foxworthy (1985) reported comparisons between the kFWD-Dynamic values obtained using 
Dynatest model 8000 FWD and the Static k values (Static kPLT) obtained from 30 in. diameter 
plate load tests (the exact procedure followed to calculate the Static kPLT is not reported in 
Foxworthy 1985). Foxworthy used the AREA based back calculation procedure using the ILLI-
SLAB finite element program. Results obtained from Foxworthy’s study (Figure 24) are based 
on 7 FWD tests conducted on PCC pavements with slab thicknesses varying from about 10 in. to 
25.5 in. and plate load tests conducted on the foundation layer immediately beneath the 
pavement over a 4 ft x 5 ft test area. A few of these sections consisted of a 5 to 12 in. thick base 
course layer and some did not. The subgrade layer material consisted of CL soil from Sheppard 
Air Force Base in Texas, SM soil from Seymour-Johnson Air Force Base in North Carolina, and 
an unspecified soil type from McDill Air Force base in Florida. No slab size correction was 
performed on this dataset. 

Data from Foxworthy (1985) yielded a logarithmic relationship between the dynamic and the 
static k values. On average, the kFWD-Dynamic values were about 2.4 times greater than the Static 
kPLT values. Darter et al. (1995) indicated that the factor 2 is reasonable based on results from 
other test sites (Figure 24). Darter et al. (1995) also compared FWD test data from eight long-
term pavement performance (LTPP) test sections with the Static kPLT values and reported factors 
ranging from 1.78 to 2.16, with an average of about 1.91. The kFWD-Dynamic values used in that 
comparison were corrected for slab size. For the analysis conducted in this research project, the 
corrected kFWD-Dynamic values (for finite slab size) were divided by 2 and are reported as kFWD-Static-

Corr values. 
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Figure 24. Static kPLT values versus kFWD-Dynamic measurements reported in literature 

Dynamic Cone Penetrometer 

DCP tests were performed in accordance with ASTM D6951 (2003) to determine dynamic 
penetration index (DPI) in units of mm/blow and calculate California bearing ratio (CBR) using 
Equation 8. 

CBR = 292
DPI1.12 (8) 

Tests were conducted down to a depth of about 2m below pavement surface, by drilling a 20 mm 
hole in the pavement down to the top of the underlying base layer. The DCP test results are 
presented as CBR with depth profiles and as point values of CBRSB representative of the subbase 
layer and CBRSG representative of the top 305 mm of the subgrade. The top 305 mm of the 
subgrade was selected as the subgrade layer as it is typically the thickness used to scarify and 
recompact the material during construction. The point data values represent the weighted average 
CBR within each layer. 

All DCP-CBR profiles were also reviewed to determine “weak” layers within the subgrade down 
to the bottom of the profile. An average CBR of a minimum of 75.6 mm (3 in.) thick layer within 
the top 1.5 m of subgrade (represented as CBRSG-Weak) was also calculated. The CBRSG-Weak was 
determined to assess if weak layer would have influence on the k values determined using the 
FWD test. 
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The CBRSG and CBRSG-Weak values were converted to Mr-SG and Mr-SG-Weak of subgrade using 
nomograph provided in AASHTO (1993) as shown in Appendix A. 

AASHTO (1993) uses the following empirical relationship to convert Mr to k value, where k is in 
units of kPa/mm and Mr is in units of MPa:   

𝑘𝑘 = 2.03Mr (8) 

 

Figure 25. In situ testing procedures: Kuab FWD setup with 300 mm diameter loading 
plate (a) and DCP with 2m extension rods (b) 

Pavement Condition Index 

Pavement condition index (PCI) testing was provided by the Iowa DOT based on testing 
conducted in 2011 (Iowa DOT 2014). PCI is a numerical indicator that rates the surface 
condition of the pavement based on distresses observed on the surface of the pavement but 
reflect structural capacity. PCI is commonly used as a rational basis for determining maintenance 
and repair needs. Field distress measurements are entered into PAVERTM 6.5, an inventory 
management software developed by the United States Army Corps of Engineers, Construction 
Engineering Research Laboratory. Pavement ratings based on PCI values are shown in Figure 
26. 

(a) (b)
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Figure 26. PCI rating scale used in PAVERTM 6.5  
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CHAPTER 4. IN SITU TEST RESULTS 

Pictures of the test sections from multiple site visits, raw FWD data plots, and raw DCP data 
plots from multiple site visits are provided in Appendices B to D, respectively. Analysis of the 
test results in terms of key measurement properties, comparisons between the test sites, and with 
the design assumed values are provided below. 

Seasonal Variations in Mechanistic Properties 

Pavement temperature data was continuously (every hour) monitored at the Plainfield test site 
from the surface to about 1.2 m below the surface. Using the temperature data, 0o frost isotherms 
that form the boundaries of zones of frozen layers were estimated for two winters as shown in 
Figure 27a. Results indicate that the freezing period in 2010–11 lasted for about 3.5 months and 
in 2011-12 lasted for about 2.5 months. Thawing periods for the two seasons lasted for about 
0.3-0.5 months. The maximum frost penetrations based on isotherms were around 1.2 and 0.6 m 
for 2010-11 and 2011-12 seasons, respectively. The number of freeze thaw cycles during the 
2010-2011 winter are shown in Figure 28). The data shows that the upper 0.3 m of the pavement 
foundation was subjected to approximate 10 to 46 freeze-thaw cycles and the number of freeze-
thaw cycles decreased to less than three at depths > 0.3 m. 

FWD test results obtained from the Plainfield site are shown in Figure 27b and Figure 27c. The 
D0 and kFWD-Static-Corr varied with variations in ground temperatures, as expected. During frozen 
conditions, D0 values were about 45% lower than values before freezing. During the thawing 
period, the D0 values were about the same as the values before freezing. After the thawing 
period, the D0 values recovered to levels that were similar to before freezing levels and remained 
relatively constant in the summer. 

During frozen conditions, the kFWD-Static-Corr values were nearly twice as higher than the values 
before freezing (Figure 27c). During the thawing period, the kFWD-Static-Corr values dropped to the 
same level as before freezing and remained relatively constant during summer. Under thawing 
and summer conditions, the measured kFWD-Static-Corr values were slightly lower than the Iowa 
DOT design k value (41 kPa/mm). 

The kFWD-Static-Corr values from all sites are presented in Figure 28, in comparison with the CBR 
values in the subbase (CBRSB) and subgrade layers (CBRSG and CBRSG-Weak). The full-depth 
DCP-CBR profiles from the five test sites from three selected testing times are shown in Figure 
30: February 2011 (frozen state), March 2011 (thawed state), and August 2011 (summer). 
Average kFWD-Static-Corr values from each test site (based on 7 to 8 tests) and CBRSB, CBRSG, and 
CBRSG-Weak values are presented as bar charts for measurements obtained in each season (frozen, 
thawed, and summer) in Figure 31, for comparison between test sites and seasons. The Fort 
Dodge, Denison, Moville, and Nevada test sites are within 200 miles of the Plainfield site and 
are in the same climatic zone. Due to lack of temperature data from each site, the time of thawing 
and freezing is assumed to be the same at all sites for analysis in this paper, although some 
variations are expected between the test sites. 
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Figure 27. 0o isotherm with time (a), seasonal variations of D0 (b), and seasonal variations 
of kFWD-Static-Corr (c) at the Plainfield test site 
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Figure 28. Number of freeze-thaw cycles versus depth during winter 2010–2011 at US 
Highway 218 near Plainfield, Iowa 
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Figure 29. Seasonal variations in mechanistic properties at the five test sites: CBRSB (a) 
CBRSG (b), CBRSG-Weak (c), and kFWD-Static-Corr (d) 
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Figure 30. DCP-CBR profiles at the five test sites in February (frozen state), March 
(thawed state), and August (summer) 
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Figure 31. Summary of seasonal changes in CBRSB (a), CBRSG (b), CBRSG-Weak (c), and 
kFWD-Static-Corr (d) at each site 
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kFWD-Static-Corr values in frozen condition was about 10% to 56% higher than in summer at four of 
the five sites. At the Nevada test site, the values were about the same at all testing times. 

At two of the five sites, the kFWD-Static-Corr values were about 1.5 to 2 times lower than the design 
assumed k value (41 kPa/mm) in thawed condition and in summer. 

Empirical Relationships between k, Mr, and CBR Values 

CBR data obtained from this study was converted to Mr values based on empirical relationships 
provided in AASHTO (1993). AASHTO (1993) uses a simple empirical model to convert Mr to k 
for use in design as shown earlier in Equation 8. k values obtained from FWD testing are 
compared in Figure 32 with the Mr values and the CBR values, in reference to the AASHTO 
empirical model for k-Mr and PCA (1984) model for CBR-Mr. CBR and Mr values of the 
subgrade are presented for the average of the top 300 mm of the subgrade and the weak layer 
within the subgrade. 

 

Figure 32. Relationship between Mr values determined from CBR and kFWD-Static-Corr 
compared with the relationship proposed in AASHTO (1993) (left) and relationship 

between CBR values and kFWD-Static-Corr compared with the relationship proposed in PCA 
(1984) 

Results indicated that the Mr-SG and the CBRSG values were unrealistically high. Mr-SG-Weak and 
CBRSG-Weak were much lower. A simple linear regression fit was applied to Mr-SG-Weak versus 
kFWD-Static-Corr results, which yielded a coefficient of determination (R2) of 0.45 with root mean 
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square error (RMSE) of 11.2 kPa/mm for k values. Compared to the linear regression fit in the 
data, use of the AASHTO model significantly over estimated the k values. A best fit regression 
line was not found for the k-CBR data. 

It is important for designers and practitioners to recognize the uncertainties in estimated values 
based on empirical relationships and to note the differences that exist between values calculated 
from results of different test methods. Also, it must be noted that k and Mr are stress-dependent 
parameters and that most of the empirical relationships between CBR vs. Mr and Mr vs. k do not 
properly address this issue. 

Mechanistic Properties versus Pavement Performance 

The pavement ride quality data available for each test section (PCI) is compared in relationship 
with pavement age, and in situ test measurements kFWD-Static-Corr and CBRSG-Weak in Figure 33 and 
Figure 34. The relationship between pavement age and PCI showed a strong linear trend with 
R2 > 0.93. A similar linear regression relationship was documented by White and Vennapusa 
(2014) based on tests conducted on low volume jointed PCC pavement test sites. 

The relationship between kFWD-Static-Corr and PCI also yielded a strong linear regression 
relationship with R2 > 0.95, while the relationship between CBRSG-Weak and PCI yielded a strong 
non-linear exponential trend with PCI with R2 > 0.95. These trends suggest that higher 
foundation layer stiffness or strength provides a better ride quality and that pavement age also 
influences ride quality. 

White and Vennapusa (2014) also conducted multivariate statistical analysis on various 
parameters measured from their study to predict PCI. The parameters are shown in the prediction 
equation provided in Figure 33. The prediction equations suggests that by improving subgrade 
strength/stiffness (within about top 16 in. of the subgrade layer), improving drainage, providing a 
subbase layer, and reducing variability, the PCI value can potentially by improved. White and 
Vennapusa (2014) suggested that subgrade layer properties can be improved by stabilization, 
drainage can be improved by the presence of a relatively thin drainable subbase layer (note that 
subbase layer thickness was not statistically significant), and variability can be reduced by 
adequate in situ testing. It is important to note that the PCI prediction model is based on limited 
data (16 points) and must be validated with a larger pool of data. 

Although additional testing is warranted to further explore and validate these empirical models, 
an advantage these models is that designers can use them to control the mechanistic properties of 
foundation layer and target a desired ride quality for a target design age. 



39 

 

Figure 33. PCI versus pavement age from this study in comparison with results presented 
in White and Vennapusa (2012) and White et al. (2008)  
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Figure 34. PCI versus kFWD-Static-Corr (left) and CBRSG-Weak (right) 
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CHAPTER 5. SUMMARY OF KEY FINDINGS 

Following are some key findings from this study: 

• On average, there was no significant difference in kFWD-Static-Corr values obtained in thawed 
condition and summer at any of the sites. The CBR values also did not show significant 
differences between thawed condition and summer at most of the sites, except at the 
Plainfield site where CBRSG-Weak increased from about 10 in thawed state to about 40 in 
summer. The kFWD-Static-Corr values in frozen condition was about 10% to 56% higher than in 
summer at four of the five sites. At one test site, the values were about the same at all testing 
times. 

• At two of the five sites, the kFWD-Static-Corr values were about 1.5 to 2 times lower than the 
design assumed k value (41 kPa/mm) in thawed condition and in summer. 

• Results indicated that the Mr-SG values were unrealistically high when compared with the 
kFWD-Static-Corr. Mr-SG-Weak were much lower than the Mr-SG values. A simple linear regression 
fit was applied to Mr-SG-Weak versus kFWD-Static-Corr results, which yielded a R2 of 0.45 with 
RMSE of 11.2 kPa/mm for k values. Compared to the linear regression fit in the data, use of 
the AASHTO model significantly over estimates the k values. 

• It is important for designers and practitioners to recognize the inherent uncertainty in 
estimated values when using empirical relationships and further to recognize the differences 
that exist between the values calculated from different test methods. Also, it must be noted 
that k and Mr are stress-dependent parameters and most of the empirical relationships 
between CBR vs. Mr and Mr vs. k do not properly address this issue. 

• The relationship between pavement age and PCI showed a strong linear trend with R2 > 0.93. 
A similar linear regression relationship was documented by White and Vennapusa (2014) 
based on testing on low volume jointed PCC pavement test sites. 

• The relationship between kFWD-Static-Corr and PCI yielded a strong linear regression relationship 
with R2 > 0.95, while the relationship between CBRSG-Weak and PCI yielded a strong non-
linear exponential trend with PCI with R2 > 0.95. These trends suggest that higher foundation 
layer stiffness or strength provide a better ride quality and that ride quality is influenced by 
pavement age. Although additional testing is warranted to further explore and validate these 
empirical models, an advantage of having these models is that designers can use them to 
target a desired ride quality for a target design age by controlling foundation layer 
mechanistic properties.
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APPENDIX A: AASHTO (1993) AND PCA (1984) DESIGN CHARTS 

 

Figure 35. Chart for estimating resilient modulus (Mr) of subgrade from CBR (from 
AASHTO 1993 Appendix FF based on results from Til et al. 1972) 
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Figure 36. Chart for estimating modulus of subgrade reaction (k) from CBR (from PCA 
1984) 
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APPENDIX B: FWD TEST RESULTS 

 

 

 

 

Figure 37. Seasonal FWD test results of US 20 WB near MP 18.5, Fort Dodge 
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Figure 38. Seasonal FWD test results of US 59 NB near MP 95.0, Denison 
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Figure 39. Seasonal FWD test results of US 20 EB near MP 18.5, Moville 
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Figure 40. Seasonal FWD test results of US 30 WB near MP 154.85, Nevada (Nevada east) 
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Figure 41. Seasonal FWD test results of US 30 EB near MP 161.35, Nevada (Nevada west) 
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Figure 42. Seasonal FWD test results of US 218 SB near MP 214.05, Plainfield 
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APPENDIX C: DCP TEST RESULTS 

 

Figure 43. DCP-CBR profiles of US 20 WB near MP 18.5, Fort Dodge 
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Figure 44. DCP-CBR profiles of US 59 NB near MP 95.0, Denison 
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Figure 45. DCP-CBR profiles of US 20 EB near MP 18.5, Moville 
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Figure 46. DCP-CBR profiles of US 30 WB near MP 154.85, Nevada (Nevada east) 
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Figure 47. DCP-CBR profiles of US 30 EB near MP 161.35, Nevada (Nevada west) 
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Figure 48. DCP-CBR profiles of US 218 SB near MP 214.05, Plainfield 

  

Cumulative Blows

0 100 200 300 400 500 600 700

CBR (%)

1 10 100

D
ep

th
 (m

m
)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

11/18/2010
2/26/2011
3/3/2011
3/15/2011
3/23/2011
8/4/2011
11/15/2011
3/23/2012

PCC 241mm PCC 241mm



61 

APPENDIX D: PICTURES FROM EACH TEST SITE  

 

 

Figure 49. US 20 WB near MP 18.5, Fort Dodge on 02/24/2011 
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Figure 50. US 20 WB near MP 18.5, Fort Dodge on 08/04/2011 
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Figure 51. US 20 WB near MP 18.5, Fort Dodge on 11/15/2011 
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Figure 52. US 59 NB near MP 95.0, Denison on 02/24/2011 
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Figure 53. US 59 NB near MP 95.0, Denison on 08/03/2011 



66 

 

 

Figure 54. US 59 NB near MP 95.0, Denison on 11/16/2011 



67 

 

 

Figure 55. US 20 EB near MP 18.5, Moville on 02/24/2011 
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Figure 56. US 20 EB near MP 18.5, Moville on 08/03/2011 
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Figure 57. US 20 EB near MP 18.5, Moville on 11/16/2011 
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Figure 58. US 30 WB near MP 154.85, Nevada (Nevada east) on 03/03/2011 
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Figure 59. US 30 WB near MP 154.85, Nevada (Nevada east) on 08/08/2011 
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Figure 60. US 30 WB near MP 154.85, Nevada (Nevada east) on 11/17/2011 
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Figure 61. US 30 EB near MP 161.35, Nevada (Nevada west) on 03/03/2011 
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Figure 62. US 30 EB near MP 161.35, Nevada (Nevada west) on 08/08/2011 
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Figure 63. US 30 EB near MP 161.35, Nevada (Nevada west) on 11/17/2011 
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Figure 64. US 218 SB near MP 214.05, Plainfield on 02/26/2011 
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Figure 65. US 218 SB near MP 214.05, Plainfield on 08/04/2011 
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Figure 66. US 218 SB near MP 214.05, Plainfield on 11/15/2011 
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