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EXECUTIVE SUMMARY 

For winter road maintenance, a fleet of snowplow trucks is operated by government agencies to 

remove snow and ice on roadways and spread materials for anti-icing, de-icing, or increasing 

friction. Winter road maintenance is essential for providing safe and efficient service for road 

users (Usman et al. 2010). It is also expensive due to the high cost of equipment, crews, and 

materials.  

According to a recent survey by the American Association of State Highway and Transportation 

Officials (AASHTO), 23 reporting states spent approximately $1.131 billion from October 2014 

to mid-April 2015 to pretreat, plow, and spread chemicals and other materials on roadways 

(AASHTO 2015). Optimizing winter road maintenance operations could result in significant cost 

savings, improved safety and mobility, and reduced environmental and social impacts (Salazar-

Aguilar et al. 2012). 

The Iowa Department of Transportation (DOT) is responsible for servicing 24,000 lane miles of 

roadways, including Interstates, US highways, and Iowa roads. This project focused on District 

3, located in northwest Iowa. District 3 has 20 depots and services about 4,000 lane miles.  

Two optimization problems were solved to determine the optimal snowplow routes in this 

district. The first problem focused on designing routes for winter maintenance trucks for single 

depots under the current responsibility map. The second problem focused on designing routes for 

multiple depots with intermediate facilities, with the depot service boundaries among the 

multiple depots able to be redesigned. Both optimization problems were solved as capacitated arc 

routing problems (CARPs) using a memetic algorithm (MA) and considering the constraints of 

road segment service cycle time, heterogeneous vehicle capacities, fleet size, road-vehicle 

dependency, and work duration.  

The results from solving the single-depot optimization problem show a 13.2% reduction in 

deadhead distance compared to current operations. The deadhead savings could be even larger 

because while the optimized routes strictly satisfy all constraints, the current operations might 

not. For the multiple-depot optimization problem, due to the network structure and current depot 

locations, the difference between the optimized routes based on a multiple-depot configuration 

and those based on a single-depot configuration is insignificant. 
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1. INTRODUCTION 

Winter road maintenance activities include removal of snow and ice from roadways and 

spreading materials (e.g., salt and sand) to increase friction and provide anti-icing and de-icing. 

The Iowa Department of Transportation (DOT) is responsible for servicing 24,000 lane miles of 

roadways, including Interstates, highways, and Iowa roads.  

This project focused on District 3, located in northwest Iowa. District 3 has 20 depots and 

services about 4,000 lane miles. Each depot has a fleet of trucks. Two types of maintenance 

trucks are used in Iowa, medium duty single trucks and heavy duty tandem trucks, each with 

different capacities. The roadways maintained by the district are categorized into different levels 

of service. Road segments with higher levels should be serviced more frequently than lower level 

roads. Snowplows generally push snow towards the right shoulder. However, on divided 

roadways with a median that is wide enough to store snow, trucks are able to push snow towards 

the median. The current routes for District 3 are designed based on staff knowledge and past 

experience.  

To minimize the deadhead distance and meet service expectations, an optimization-based 

approach was used for this project. The first task was to design optimal routes under current 

configurations. That is, the snowplow routes were optimized while the depot responsibility areas 

and the fleets managed by the various depots remained unchanged. The second task was to 

design the depot responsibility areas and the routes simultaneously, allowing trucks to reload at 

other depots or reload stations than their own. 

The report is organized as follows. Chapter 2 presents a brief literature review. The data used in 

this project are described in Chapter 3, followed by a description of the data preparation in 

Chapter 4. The practical constraints are discussed in Chapter 5. The formulation and solution 

algorithms are presented in Chapter 6. Chapter 7 presents the results and discussion. Conclusions 

and recommendations are summarized in Chapter 8.  
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2. LITERATURE REVIEW 

A snowplow route optimization problem can be formulated as a capacitated arc routing problem 

(CARP). The CARP considers an undirected graph G=(V,E), where V represents the set of 

vertices and E represents the set of undirected edges that can be traversed in both directions. 

Each edge is associated with a demand (in this case, materials) and a cost (in this case, time or 

distance). The objective is to minimize the total travel cost of all trucks. All edges must be 

serviced by a fleet of vehicles, each vehicle with a predefined capacity of Q. All vehicles must 

start and end at the same depot. 

When solving winter road maintenance routing problems, specific constraints concerning real-

world operations have been considered in the literature. Haghani and Qiao (2001) considered 

time window, capacity, and route duration constraints. A heuristic algorithm was proposed to 

solve the problem. Later, Haghani and Qiao (2002) added the service continuity constraint, 

where a route can only consist of service arcs with possible deadhead from the depot to the 

beginning of the first service arc and from the end node of the last service arc to the depot. The 

problem was formulated as a capacitated minimum spanning tree and solved by the linear 

approximation of the problem. 

Tagmouti et al. (2007) proposed a time-dependent service cost model. The model considered that 

the application of salt on road segments should be neither too early nor too late. This problem 

was formulated as a piecewise linear service cost function. The problem was solved by a column 

generation approach. Later, the same authors applied the variable neighborhood descent (VND) 

algorithm (Tagmouti et al. 2010) to solve the problem. 

Perrier et al. (2008a) considered road hierarchical constraints. Specifically, road segments that 

are higher in the hierarchy must be serviced before road segments that are lower in the hierarchy. 

Different service and deadhead speeds, road-vehicle dependencies, load balances, and turn 

restrictions were also included in the formulation. A parallel construction heuristic and a cluster-

first route-second heuristic were proposed to solve the problem. 

Salazar-Aguilar et al. (2012) introduced the synchronized arc routing problem, where a multilane 

street must be plowed simultaneously by an echelon of vehicles. The problem was solved by the 

adaptive large neighborhood search algorithm. 

Dussault et al. (2013) considered the fact that plowing uphill takes a much longer time than 

plowing downhill and that sometimes it is impossible to plow uphill. A variant of the windy 

postman problem was formulated and solved using a local search algorithm. 

Hajibabai et al. (2014) formulated the snowplow routing problem as a vehicle routing problem 

considering plowing priorities, resource replenishment, turning delay, and U-turn allowance. The 

problem was solved by a constructive heuristic and local search algorithms. Later, some of these 

authors solved a stochastic version of the problem that considered uncertain service demand and 

service disruptions (Hajibabai and Ouyang 2016). 
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Kinable et al. (2016) considered heterogeneous capacity, fuel and salt limits, and intermediate 

facilities. The authors used an integer program, a constrained program, and a two-phase heuristic 

algorithm to solve the problem. They concluded that the heuristic algorithm performs best in 

terms of computation time and solution quality. 

Quirion-Blais et al. (2017) introduced a constraint that requires streets to be plowed and spread 

sequentially. The authors also took into consideration turning restrictions, the various speeds of 

different truck types, road class hierarchy and operations, and road-vehicle dependency. The 

problem was solved using the adaptive large neighborhood search algorithm. 

Gundersen et al. (2017) proposed a mixed integer model that considered road class hierarchy and 

road-vehicle dependency as constraints. The model was solved using a mixed integer program 

solver to find exact solutions. 

The winter road maintenance routing problem becomes more complicated when the service 

boundaries can be redesigned. Assigning road segment service responsibilities to depots is 

considered to be a sector design problem. A simultaneous solution for the responsibility 

assignment and routing problems is considered a multiple-depot capacitated arc routing problem. 

Muyldermans et al. (2002) introduced the salt spreading districting problem. Road segments 

were combined into small cycles and then assigned to depots heuristically. Later, Muyldermans 

et al. (2003) developed an integer programming model that minimizes the lower bound of the 

fleet size. 

Perrier et al. (2008b) proposed using the sector design problem for snow disposal. The problem 

involved assigning disposal sites and road segments to each sector. The problem was solved 

using a two-phase approach. In particular, two integer programs were solved, one that assigned 

disposal sites to sector and one that assigned road segments to sector.  

Jang et al. (2010) considered the problems of depot allocation, sector design, route design, fleet 

configuration, and vehicle scheduling as a whole. A heuristic approach iteratively solved these 

subproblems from higher to lower level decisions until all constraints were met. Road segment 

service frequency and vehicle capacity were considered in the formulation. 
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3. DATA DESCRIPTION 

Area of Responsibility Maps 

Table 3.1 shows the 20 depots in the service region of Iowa District 3, with each depot’s 

responsibility region color-coded and labeled.  

 

Figure 3.1. Service region of Iowa District 3, with 20 depots color-coded and labeled 

These depots are separated into six sectors, as shown in Figure 3.2.  
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Figure 3.2. Sectors of District 3 

The “Garage” and “Supervisor Home Garage” nodes represent the locations of the depots.  

The current snowplow routes were provided by District 3. Figure 3.3 shows an example of the 

current routes originating from the Storm Lake depot.  
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Figure 3.3. Area of responsibility map for the Storm Lake depot, color-coded with current 

routes 
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In Figure 3.3, the boundaries of the responsibility area are labeled by the mile markers. Each 

route is highlighted with a unique color. The number next to each color in the legend is the truck 

ID for that route.  

Weather Data 

Weather data were used to determine the snow dates and storm severities. Two winter seasons, 

from October 1, 2016 to April 1, 2017 and from October 1, 2017 to April 1, 2018, were 

considered in this study. The weather data were collected from three sources: the National 

Weather Service Cooperative Observer Program (NWS COOP), the Automated Surface 

Observing System (ASOS), and the Roadway Weather Information System (RWIS). NWS 

COOP reports daily snowfall and daily snow depth. This was the primary data source for 

determining storm severity. In this study, 0 to 4 inches of snow is considered to be a light storm, 

5 to 8 inches is considered a moderate storm, and 9 inches and above is considered a severe 

storm. ASOS reports precipitation types and rates, which are updated every 5 minutes. However, 

the precipitation rates are measured as liquid precipitation (rain or melted snow). RWIS reports 

roadway surface conditions, such as “dry,” “trace moisture,” “wet,” “chemically wet,” “frost,” 

“ice watch,” and “ice warning,” which are recorded at 10-minute intervals. Since RWIS 

measures roadway surface conditions and truck plowing or spreading activities change the 

roadway surface conditions, data from this source might not accurately represent the storm 

conditions. Therefore, ASOS and RWIS data were used to verify the storm severity determined 

by NWS COOP. Figure 3.4, Figure 3.5, and Figure 3.6 show the locations of NWS COOP, 

ASOS, and RWIS stations in Iowa, respectively. The red dots on each map indicate the station 

locations, and the black square indicates the region of District 3.  

 

Figure 3.4. NWS COOP stations 
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Figure 3.5. ASOS stations 

 

Figure 3.6. RWIS stations 

Maintenance Truck Operation Data 

An automatic vehicle location (AVL) system records the operational data of each maintenance 

truck. The information collected includes the GPS location, plow position, spreading rate and 

type, truck speed and direction, truck ID, and timestamp. The data were retrieved from the 

SkyHawk data portal. The Iowa DOT collects the AVL data at a high resolution (less than 30-

second intervals). Figure 3.7 illustrates the user interface for the SkyHawk system. In this 

example, the truck tracking tool shows an urban route in Sioux City.  
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Figure 3.7. SkyHawk system showing an example truck route in Sioux City 

On the morning of December 19, 2017, District 3 carried out a test run for this study to illustrate 

the routes included in its AVL system. The maintenance trucks traversed their current routes 

empty but had their spreaders on as if they were spreading material. An example of the test run 

routes for the Storm Lake depot is shown in Figure 3.8.  

 

Figure 3.8. AVL route map for the Storm Lake depot 
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The total travel distance for each route was calculated based on the AVL data, and the 

turnaround locations were found by carefully scanning the vehicle trajectory data. Figure 3.9 

illustrates an example of a U-turn location. 

 

Figure 3.9. Example of a U-turn location as indicated by AVL data 

Traffic Network 

The Roadway Asset Management System (RAMS) was used to build the basic traffic network 

for this study. The RAMS database stores many types of roadway information in separate data 

layers. In particular, six data layers were utilized in this study, including linear referencing 

system (LRS) network, reference posts, facility type, and three maintenance-related layers: cost 

center, district, and service level. The next chapter will introduce the consolidation and editing 

methods used to process the data layers. 

LRS Network and Reference Posts 

The LRS organizes several types of roadway data into a single network by relating the data’s 

linear locations. The reference posts layer, a subsystem of the LRS network, contains the mile 

markers along the roadways. This layer allows multiple locations of interest to be compared by 

linearly measuring each location from a reference post. 
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Facility Type 

Six roadway types were considered in this study: one-way, two-way, ramp, non-mainline, non-

inventory direction, and planned unbuilt. These are shown in Table 3.1.  

Table 3.1. Facility types and codes 

Facility Type Code 

ONE-WAY 1 

TWO-WAY 2 

RAMP 4 

NON-MAINLINE* 5 

NON-INVENTORY DIRECTION 6 

PLANNED UNBUILT* 7 

* Not considered in this study 

One-way roadways represent the northbound or eastbound directions of divided roadways, while 

non-inventory direction roadways represent the southbound or westbound directions of divided 

roadways. Two-way roadways represent undivided roadways. Non-mainline and planned unbuilt 

roadways were not included in the analysis. 

Maintenance-Related Data 

The data layers for cost center, district, and service level indicate which garage and district a 

road segment belongs to and the maintenance service level, respectively. Each garage is assigned 

a unique six-digit cost center code. Road segments are divided into four categories based on 

service priority. Service Level A indicates a high service priority and is used for roadways that 

experience heavy traffic, such as Interstates. Service Level B represents highly traveled roads 

that are given a medium-level priority, such as US highways. Service Level C represents low 

travel demand roads, such as Iowa highways.   
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4. DATA PREPARATION 

Estimating the Performance of Current Operations 

Travel Distance 

The AVL data collected during the test run on December 19, 2017 were used to calculate the 

total travel distance of each maintenance route in District 3. The location data from the AVL 

system were first snapped to the nearest roadways using the snapping tool in ArcGIS.  

The distance traveled between consecutive timestamps was then calculated based on the real-

world road network. The total distance traveled by each truck was computed as the sum of the 

distances traversed during all of the time intervals.  

Truck Speed and Spreading Rate 

Maintenance trucks, when plowing or spreading material, traverse road segments at a low speed. 

Typically, the service speed is around 20 to 35 mph and can be slower if the snow is heavy. 

When deadheading, maintenance trucks tend to travel at a higher speed. However, depending on 

the weather and road conditions, the deadhead speed could still be much lower than the speed 

limit. The spreading rate is usually set based on the precipitation type and surface temperature. 

Table 4.1 shows the salt application guidelines provided by Iowa DOT.  

Table 4.1. Salt application rate guidelines for Iowa DOT (in pounds of salt) 

Assumptions Conditions 

Surface Temperature (°F) 

33–30 29–27 26–24 23–21 20–18 17–15 

Prewetted salt, 

12-foot lane, 

2-hour run 

Heavy frost, 

light snow 
50 75 95 120 140 170 

Medium snow 

(1/2 inch/hour) 
75 100 120 145 165 200 

Heavy snow  

(1 inch/hour) 
100 140 185 250 300 350 

Freezing rain, 

drizzle, sleet 
140 185 250 300 350 400 

Prewetted salt,  

2-foot lane, 

3-hour run 

Heavy frost, 

light snow 
75 115 145 180 210 255 

Medium snow 

(1/2 inch/hour) 
115 150 180 220 250 300 

Heavy snow  

(1 inch/hour) 
150 210 275 375 450 525 

Freezing rain, 

drizzle, sleet 
210 275 375 450 525 600 
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This section examines the service speeds, deadhead speeds, and spreading rates for the District 3 

routes based on AVL data. 

AVL data from the following dates were used to examine the truck speeds and spreading rates: 

January 24 and 25, 2017, January 22 and 23, 2018, and March 6, 2018. On these dates, light, 

medium, or heavy storms occurred. Furthermore, the AVL data on these dates cover all road 

types, including Interstates, US highways, and Iowa highways. Four routes were retrieved for 

each storm magnitude and road type combination. Thus, AVL data from 36 routes were 

extracted. These routes were classified as either urban or rural. 

Figure 4.1 illustrates the service speeds for the 36 routes. The left boxplot shows the distribution 

of speeds in urban areas, while the right boxplot shows the distribution of speeds in rural areas.  

 

Figure 4.1. Service speed boxplot: urban (left) versus rural (right) routes 

The service speeds were identified based on the set spread rate. When the spreading rate was 

greater than 0, the snowplow truck was considered to be in service. Since the AVL system 

recorded speeds approximately every 10 to 30 seconds, when a snowplow truck is traveling at a 

very low speed or is idling the AVL system collects many data points to skew the speed 

distribution. Therefore, records showing a speed of 0 mph in urban areas or less than 5 mph in 

rural areas were removed. In rural areas, maintenance trucks usually service the additional 

turning lanes of intersections by making U-turns, resulting in low traveling speeds. A 5-mph 

service and deadhead speed was assumed for trucks traveling on the road segments of rural 

intersections. The median speeds were used as the service speeds when designing the routes. The 

median speeds were 22 mph for urban areas and 26 mph for rural areas. Figure 4.2 illustrates the 

deadhead speeds for the 36 routes.  
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Figure 4.2. Deadhead speed boxplot: urban (left) versus rural (right) routes 

Since it is possible for snowplow trucks to plow without spreading material and the “plow 

up/down” data in the AVL records are not reliable, the deadhead speed was estimated using the 

95th percentile of all of the speed records. Accordingly, the urban deadhead speed was set at 32 

mph and the rural deadhead speed was set at 40 mph. 

Figure 4.3 shows boxplots of the spreading rates. In the left graph, the spreading rates are 

categorized by road type: Interstate, US highway, and Iowa highway. In the right graph, the 

spreading rates are categorized by storm magnitude: light (0 to 4 inches of snow), moderate (5 to 

8 inches of snow), and heavy (9 or more inches of snow). 
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Figure 4.3. Spreading rate versus roadway type (left) and storm magnitude (right) 

The figure shows that the maximum set spread rate is 300 lbs per lane mile and the median is 

150 lbs per lane mile. More material is spread on Interstates than US highways and Iowa roads. 

In addition, more severe storms correspond to more variation in the spreading rates. 

Building the Traffic Network 

The traffic network used in this study was based on the roadway layers from RAMS. However, 

the following issues needed to be addressed.  

First, undivided roadways in RAMS are represented by one polyline for the inventory direction 

(north or east), but there is no polyline to represent the non-inventory direction. While the 

inventory polyline record includes the total number of lanes in both directions, it was crucial for 

the routing algorithm to know the number of lanes in each direction. 

Second, the traffic network needed to include some non-service road segments, such as the local 

roads that connect the depot to the service road segments and the turnaround locations. To 

separate the service road segments from the non-service road segments, an attribute called 

“Service Flag” was added to the database. 
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Third, the data needed careful inspection for missing and erroneous data records. The estimated 

service and deadhead speeds for urban and rural areas were also attached to the corresponding 

road segments.  

The detailed procedure that was used to manually fix the network is presented in Appendix A. 

After the network was built, the shapefile was exported. Using the NetworkX library in Python, 

the shapefile was converted to edge lists and saved as a series of comma-separated value (CSV) 

files. Table 4.2 summarizes the network attributes, including the number of nodes and number of 

arcs.  

Table 4.2. Network attributes  

Depot 

# of 

Nodes 

Arcs 

Req. 

Arcs Not 

Req. Depot 

# of 

Nodes 

Arcs 

Req. 

Arcs Not 

Req. 

Alton 253 489 131 Pocahontas 81 96 14 

Ashton 166 320 66 Rock Rapids 64 89 11 

Carroll 128 211 53 Rockwell City 87 142 35 

Cherokee 122 174 43 Sac City 85 106 37 

Correctionville 62 93 13 Sioux City Hamilton 208 418 141 

Denison 112 151 34 Sioux City Leeds 253 525 119 

Emmetsburg 82 101 30 Sloan 49 78 12 

Ida Grove 53 57 17 Spencer 65 91 18 

Le Mars 134 219 44 Spirit Lake 83 134 23 

Onawa 117 138 33 Storm Lake 97 116 41 

 

The “Arcs Req.” column indicates the number of arcs that require service, whereas the “Arcs Not 

Req.” column represents the number of non-service arcs.  
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5. PRACTICAL CONSTRAINTS 

Maintenance Trucks 

Maintenance trucks are capable of plowing and spreading materials simultaneously or separately. 

Figure 5.1 shows a typical snowplow truck used by the Iowa DOT. It has a front plow, a wing 

plow that helps clean wider roadways, an underbody scraper, a preset tank, and a dump body.  

 
Iowa DOT 

Figure 5.1. Winter road maintenance truck 

The Iowa DOT has three types of snowplow trucks. A single-axle truck has a capacity of 12,000 

lbs for solid material. A tandem-axle truck has a capacity of 16,000 lbs. A tow-plow is a 

steerable trailer-mounted component that is pulled behind a truck. It is equipped with a 

snowplow and a tank for spreading materials. A tow-plow can service two lanes simultaneously. 

In District 3, tow-plows are only used in Sioux City Leeds and Sioux City Hamilton. 

Practical Constraints 

Four types of practical constraints were considered in this project. The first was the capacity of 

the maintenance trucks, that is, 12,000 lbs for single-axle trucks and 16,000 for tandem-axle 

trucks.  

The second was the fleet size. Each depot has a limited number of snowplow trucks of each type. 

The truck inventory is shown in Table 5.1.  
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Table 5.1. Truck inventory of District 3 depots 

Garage name 

Medium duty 

(single-axle trucks) 

Heavy duty 

(tandem-axle trucks) Total 

Alton  4 5 9 

Ashton  7 8 15 

Carroll  3 2 5 

Cherokee  5 2 7 

Correctionville  3 3 6 

Denison  5 3 8 

Emmetsburg  2 3 5 

Ida Grove  2 2 4 

Le Mars  2 7 9 

Onawa  3 6 9 

Pocahontas  3 4 7 

Rock Rapids  2 3 5 

Rockwell City  2 5 7 

Sac City  2 4 6 

Sioux City-Hamilton  6 3 9 

Sioux City-Leeds  3 4 7 

Sloan  2 4 6 

Spencer  1 5 6 

Spirit Lake  5 4 9 

Storm Lake  3 4 7 

 

The third constraint was road-truck dependency. In Iowa, all trucks can be equipped with either a 

left-wing plow or a right-wing plow. Road-truck dependency arises when snow and ice must be 

pushed to one side, either to the median or to the shoulder. Figure 5.2 and Figure 5.3 illustrate 

the snowplow setup when plowing undivided and divided multilane highways, respectively.  

 
Background roadway diagram from Knapp et al. 2014, FHWA 

Figure 5.2. Undivided multilane road, all trucks with right-wing plows 
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Background roadway diagram from Knapp et al. 2014, FHWA 

Figure 5.3. Divided multilane road, with an inner-lane truck with a left-wing plow and an 

outer-lane truck with a right-wing plow 

Roadways that do not have a wide median need to be serviced by right-wing plow trucks. But for 

roadways with a median that is wide enough to hold snow, the snow on the inner lane can be 

pushed to the left. 

The fourth constraint was the road segment cycle time, which corresponds to the service 

frequency of the road level. Some urban roads are serviced every 1 hour. Interstates are serviced 

every 1.25 hours. Most US highways are serviced every 2 hours. Most Iowa roads are serviced 

every 2.5 hours. Table 5.2 summarizes the service cycle times of different road levels. 

Table 5.2. Service cycle times 

Index Road Level Cycle Time (Hours) 

Metro Urban Area 1 

A Interstate 1.25 

B US Highway 2 

C Iowa Road 2.5 

 

  



20 

6. MATHEMATICAL MODELS  

In this chapter, mathematical models are presented to solve two problems. The first problem is 

formulated as a single-depot winter maintenance routing problem (SDWMRP). The second 

problem is formulated as a multiple-depot winter maintenance routing problem with 

reload/intermediate facilities (MDWMRP). 

Single-Depot Winter Maintenance Routing Problem 

The single-depot winter maintenance routing problem is solved for each depot, where there is 

only one depot and the maintenance truck must start and end at the depot. The demand road 

segments must be serviced, with all of the constraints stated in Chapter 5 satisfied. The objective 

of the solution is to minimize the total travel distance.  

The following notation is used: 

𝐺 = (𝑉, 𝐴): A connected directed graph, where 𝑉 is the node set and 𝐴 is the arc set.  

𝐴𝑅: The set of service arcs.  

𝑣0: The depot node.  

𝑐𝑖𝑗: The cost of traversing arc (𝑖, 𝑗) in 𝐺.  

𝑞𝑖𝑗: The demand of arc (𝑖, 𝑗). If 𝑞𝑖𝑗 > 0, the arc needs to be serviced; if 𝑞𝑖𝑗 = 0, the arc is a non-

service demand arc.  

𝐻1 and 𝐻2: The set of single-axle and tandem-axle trucks, respectively. 

𝑚1 and 𝑚2: The fleet size of the two types of vehicles, respectively. 

𝑄ℎ: The capacity of a truck, ℎ ∈ 𝐻1 ∪ 𝐻2.  

𝑓𝑖𝑗: The service cycle time of arc (𝑖, 𝑗).  

𝑓𝑘: The route cycle time for route 𝑘.  

ℱ: The set of service cycle times.  

𝑡𝑖𝑗
′ : The service time on arc (𝑖, 𝑗). 
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𝑡𝑖𝑗: The deadhead time on arc (𝑖, 𝑗).  

𝑟𝑖𝑗: The arc plow direction on arc (𝑖, 𝑗). 𝑟𝑖𝑗 = 1 represents a right-wing plow, and 𝑟𝑖𝑗 =  −1 

represents a left-wing plow. 

The decision variables are as follows: 

𝑥𝑖𝑗
𝑘 = {

1 𝑖𝑓 𝑟𝑜𝑢𝑡𝑒 𝑘 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 (𝑖, 𝑗) 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑦𝑖𝑗
𝑘 = {

1 𝑖𝑓 𝑟𝑜𝑢𝑡𝑒 𝑘 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒 (𝑖, 𝑗) 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑢𝑘ℎ = {
1 𝑖𝑓 𝑡ℎ𝑒 ℎ𝑡ℎ 𝑡𝑟𝑢𝑐𝑘 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 𝑟𝑜𝑢𝑡𝑒 𝑘 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑓𝑘  ∈  ℱ  

The formulation is shown as follows: 

∑ 𝑐𝑖𝑗(𝑥𝑖𝑗
𝑘 + 𝑦𝑖𝑗

𝑘 )(𝑖,𝑗)∈𝐴,𝑘∈𝐾  (1) 

∑ (𝑥𝑖𝑗
𝑘 + 𝑦𝑖𝑗

𝑘 )(𝑖,𝑗)∈𝐴 − ∑ (𝑥𝑗𝑖
𝑘

(𝑗,𝑖)∈𝐴 + 𝑦𝑗𝑖
𝑘) = 0  ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑉 (2) 

∑ (𝑥0𝑖
𝑘 + 𝑦0𝑖

𝑘 )(0,𝑖)∈𝐴 = 1 ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑉 (3) 

∑ (𝑥𝑖0
𝑘 + 𝑦𝑖0

𝑘 )(𝑖,0)∈𝐴 = 1 ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑉 (4) 

∑ 𝑥𝑖𝑗
𝑘

∀𝑘∈𝐾 = 1 ∀(𝑖, 𝑗) ∈ 𝐴𝑅  (5) 

∑ 𝑞𝑖𝑗(𝑖,𝑗)∈𝐴 𝑥𝑖𝑗
𝑘 ≤ ∑ 𝑄ℎ𝑢𝑘ℎℎ∈𝐻1∪𝐻2

 ∀𝑘 ∈ 𝐾  (6) 

∑ 𝑢𝑘ℎℎ∈𝐻1∪𝐻2
= 1 ∀𝑘 ∈ 𝐾  (7) 

∑ 𝑢𝑘ℎ𝑘∈𝐾 ≤ 1 ∀ℎ ∈ 𝐻1 ∪ 𝐻2  (8) 

∑ 𝑢𝑘ℎ𝑘∈𝐾,ℎ∈𝐻1
≤ 𝑚1   (9) 

∑ 𝑢𝑘ℎ𝑘∈𝐾,ℎ∈𝐻2
≤ 𝑚2   (10) 
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𝑓𝑘  ≤ 𝑓𝑖𝑗𝑥𝑖𝑗
𝑘  ∀𝑘 ∈ 𝐾, (𝑖, 𝑗) ∈ 𝐴𝑅  (11) 

∑ (𝑥𝑖𝑗
𝑘 𝑡𝑖𝑗

′ + 𝑦𝑖𝑗
𝑘 𝑡𝑖𝑗)(𝑖,𝑗)∈𝐴 ≤ 𝑓𝑘 ∀𝑘 ∈ 𝐾(12)(12) 

𝑥𝑖𝑗
𝑘 𝑟𝑖𝑗 =  𝑥𝑖′𝑗′

𝑘 𝑟𝑖′𝑗′  ∀𝑘 ∈ 𝐾, (𝑖, 𝑗) ∈ 𝐴𝑅 , (𝑖′, 𝑗′) ∈ 𝐴𝑅  (13) 

𝑥𝑖𝑗
𝑘 , 𝑦𝑖𝑗

𝑘 , 𝑢𝑘ℎ ∈ {0,1} ∀𝑘 ∈ 𝐾, ℎ ∈ 𝐻1 ∪ 𝐻2, ∀(𝑖, 𝑗) ∈ 𝐴  (14) 

𝑓𝑘  ∈  ℱ ∀𝑘 ∈ 𝐾  (15) 

The objective of the solution is to minimize the total travel cost. Constraint (2) is the flow 

conservation equation for each route. Constraints (3) and (4) ensure that all routes must start and 

end at the depot. Constraint (5) ensures that the service demand arcs are all serviced exactly 

once. Constraint (6) is the capacity constraint. Constraint (7) guarantees that each route is served 

by exactly one vehicle. Constraint (8) states that each vehicle at most services one route. In other 

words, some vehicles might not service any route. Constraints (9) and (10) are the fleet size 

constraints. Constraint (11) states that the service cycle time of a route is greater than the service 

cycle time of any arc in that route. Constraint (12) ensures that the travel time for each route 

never exceeds the route cycle time. Constraint (13) ensures road-truck dependency by forcing the 

arc plow direction within a route to stay the same.  

Solution Algorithm 

A memetic algorithm (MA) was used to solve the single-depot winter maintenance routing 

problem. An MA is similar to a genetic algorithm (GA), but in an MA a local search is employed 

instead of the mutation operator used in a GA. Each solution is represented by a chromosome (a 

sequence of arcs), and a set of chromosomes comprises a population set. The evolutionary 

process of the population depicts the improvement of the population set in terms of the fitness 

values of the chromosomes. At every iteration, new chromosomes (children) are produced based 

on selected existing chromosomes (parents). The desired new chromosomes replace some 

existing chromosomes. The procedures for selecting parents to reproduce, generating children, 

and replacing some parents with children are called the selection operator, reproduction operator, 

and replacement operator, respectively. The strategies employed by the operators are often 

problem specific. 

The framework of the MA used in this study is shown in Figure 6.1.  
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Figure 6.1. Pseudocode showing the framework of the MA used in this study 

After the initialization of the population, the MA generates a new chromosome using the 

Crossover operator. The local search is performed on the new chromosome with a fixed 

probability of 𝑃𝑙𝑠. Then, the new chromosome replaces an existing chromosome in the 

population. The iterative local search is employed in the Replacement function (i.e., line 12 in 

Figure 6.1). The entire population goes through a MergeSplit (MS) operator every msFreq 

iterations. The main search process (i.e., lines 5 through 16 in Figure 6.1) are looped maxRestart 

times. In the restart phase, the local search probability 𝑃𝑙𝑠 is updated, and new chromosomes are 

generated. 

Parallel Metaheuristic 

A parallel metaheuristic approach was developed to improve the solution quality and 

computational efficiency of the algorithms. The parallel metaheuristic was designed at the 

iteration level using a master-worker model. In this approach, an elite chromosome set is 

maintained by a master CPU. Other worker CPUs work on a population set and run the MA. The 

worker CPUs communicate with the master CPU at a predefined frequency, at which point the 
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elite set replaces the partial worker populations and the workers return newly evaluated solutions 

to the master. Figure 6.2 shows a diagram of the parallel MA approach. 

 

Figure 6.2. Parallel MA scheme 

As the figure shows, each of the workers sends its best chromosome to the master immediately 

after every MS operation and replaces the worst chromosome in the worker’s population with the 

chromosome sent by the master. The master holds only one chromosome, and this chromosome 

is sent to the worker immediately after the master receives communication from a worker. Then, 

the master compares the two chromosomes, i.e., the one it is currently holding and the other 

received from the worker. The better chromosome is left in the master. In this way, all workers 

remain largely independent of each other but are continuously updated with the best known 

chromosome.  

Table 6.1 presents the results of 10 runs of single-CPU computation on 18 instances (depots).  
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Table 6.1. Results of 10 runs of a single CPU 

Depot 

Min. 

Total 

Fitness 

Median 

Total 

Fitness 

Max. 

Total 

Fitness 

Std. dev. 

of Total 

Fitness 

RSD 

Total 

Fitness 

Ashton 540.59 557.36 569.31 9.00 1.62% 

Carroll 205.46 211.32 233.71 13.13 6.01% 

Cherokee 212.01 213.58 213.58 0.50 0.23% 

Correctionville 254.68 254.68 254.68 0.00 0.00% 

Denison 252.38 253.11 253.11 0.23 0.09% 

Emmetsburg 169.52 169.52 169.62 0.03 0.02% 

Ida Grove 139.31 139.31 140.95 0.52 0.37% 

Le Mars 335.13 337.19 338.64 1.34 0.40% 

Onawa 489.09 518.08 525.70 12.38 2.41% 

Pocahontas 259.55 259.55 259.55 0.00 0.00% 

Rockwell City 276.19 276.19 276.24 0.02 0.01% 

Sac City 313.83 314.79 314.79 0.38 0.12% 

Sioux City-Hamilton 331.93 347.48 382.84 20.70 5.86% 

Sioux City-Leeds 251.13 266.59 270.22 6.04 2.28% 

Sloan 162.87 162.87 162.87 0.00 0.00% 

Spencer 206.98 213.37 245.26 12.55 5.78% 

Spirit Lake 223.76 226.18 240.91 4.95 2.18% 

Storm Lake 231.65 231.65 231.89 0.07 0.03% 

 

The minimum, median, and maximum of the total fitness values are presented, along with the 

standard deviation and relative standard deviation (RSD) of the 10 runs. The instances with an 

RSD larger than 1% are colored red. It can be seen that 11 instances have an RSD less than 1%, 

which means that all 10 runs provided solutions of almost the same quality. This indicates that 

the proposed MA can generate stable solutions for these instances, and parallel computation 

would not result in a significant improvement in these instances. Therefore, only instances with 

an RSD larger than 1% were tested for parallel computation. The results of this test are shown in 

Figure 6.3 and Figure 6.4. 
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Figure 6.3. Comparison of the total fitness values of single-CPU (red lines) versus parallel 

(blue dots) computation 
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Figure 6.4. Comparison of the computational times of single-CPU (red lines) versus parallel 

(blue dots) computation 

Parallel computation was run five times. Figure 6.3 compares the total fitness values resulting 

from the parallel computation and the single-core CPU computation runs. Each blue dot 

represents one run of the parallel computation. The red lines represent the minimum, median, 

and maximum values from the 10 runs of the single-CPU computation. 

Figure 6.3 shows that parallel computation produced better solutions for two of the seven depots. 

In 18 out of 35 instances, parallel computation found a solution better than or equal to the best 

solution found by the single-CPU computation. In only one instance did parallel computation not 

find a solution better than the median. These results indicate that parallel computation can 

enhance solution quality. 
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Figure 6.4 compares the computational times of the single-CPU and parallel computations. The 

stopping criterion in this study was a fixed number of iterations. Therefore, significant 

improvement in the computational time was not expected. Nevertheless, almost all of the parallel 

computation instances took less time than the median computational time of the single-CPU 

computation. This indicates that parallel computation can enhance computational efficiency. 

Multiple-Depot Winter Maintenance Routing Problem with Reload/Intermediate Facilities  

As a hypothetical scenario, this section explores a different business model for District 3’s 

routing. In this scenario, the depot boundaries within each of the six sectors, shown in Figure 3.2, 

were permitted to be redesigned. Within each of the six sectors, the maintenance trucks were 

required to start and end at their home depot, but they could reload at any depot or reload station 

(if any) within the sector. All other constraints remained the same as in the SDWMRP.  

The set of routes assigned to a truck is called a rotation. Each rotation ends at the same home 

depot where the truck starts. The same route travel time constraint as in the single-depot model 

applies. Let a node set 𝐵 ⊂ 𝐴 represent the depot locations. Let 𝑚1
𝑙  and 𝑚2

𝑙 , where 𝑙 ∈ 𝐵, 

represent the fleet sizes of the two types of vehicles assigned to each depot, respectively.  

The decision variables are defined as follows: 

𝑥𝑖𝑗
𝑘𝑝 = {

1 𝑖𝑓 𝑟𝑜𝑢𝑡𝑒 𝑘 𝑜𝑓 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑝 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 (𝑖, 𝑗) 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑦𝑖𝑗
𝑘𝑝 = {

1 𝑖𝑓 𝑟𝑜𝑢𝑡𝑒 𝑘 𝑜𝑓 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑝 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒 (𝑖, 𝑗) 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑢𝑝ℎ = {
1 𝑖𝑓 𝑡ℎ𝑒 ℎ𝑡ℎ 𝑡𝑟𝑢𝑐𝑘 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑝 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The MDWMRP is formulated as follows: 

∑ 𝑐𝑖𝑗(𝑥𝑖𝑗
𝑘𝑝 + 𝑦𝑖𝑗

𝑘𝑝)(𝑖,𝑗)∈𝐴,𝑘∈𝐾,𝑝∈𝑃    (1) 

∑ (𝑥𝑖𝑗
𝑘𝑝 + 𝑦𝑖𝑗

𝑘𝑝)(𝑖,𝑗)∈𝐴 − ∑ (𝑥𝑗𝑖
𝑘𝑝

(𝑗,𝑖)∈𝐴 + 𝑦𝑗𝑖
𝑘𝑝) = 0 ∀𝑘 ∈ 𝐾, 𝑝 ∈ 𝑃, 𝑖 ∈ 𝑉  (2) 

∑ (𝑥𝑙𝑖
𝑘𝑝 + 𝑦𝑙𝑖

𝑘𝑝)(𝑙,𝑖)∈𝐴,𝑘∈𝐾  = 1 ∀𝑝 ∈ 𝑃, 𝑖 ∈ 𝑉, 𝑙 ∈ 𝐵 (3) 

∑ (𝑥𝑖𝑙
𝑘𝑝 + 𝑦𝑖𝑙

𝑘𝑝)(𝑖,𝑙)∈𝐴,𝑘∈𝐾  = 1 ∀𝑝 ∈ 𝑃, 𝑖 ∈ 𝑉, 𝑙 ∈ 𝐵 (4) 

∑ 𝑥𝑖𝑗
𝑘𝑝

∀𝑘∈𝐾,𝑝∈𝑃 = 1 ∀(𝑖, 𝑗) ∈ 𝐴𝑅 (5) 
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∑ 𝑞𝑖𝑗(𝑖,𝑗)∈𝐴 𝑥𝑖𝑗
𝑘𝑝 ≤ ∑ 𝑄ℎ𝑢𝑝ℎℎ∈𝐻1∪𝐻2

 ∀𝑘 ∈ 𝐾, 𝑝 ∈ 𝑃 (6) 

∑ 𝑢𝑝ℎℎ∈𝐻1∪𝐻2
= 1 ∀𝑝 ∈ 𝑃 (7) 

∑ 𝑢𝑝ℎ𝑝∈𝑃 ≤ 1 ∀ℎ ∈ 𝐻1 ∪ 𝐻2 (8) 

∑ 𝑢𝑝ℎ𝑝∈𝑃,ℎ∈𝐻1
≤ 𝑚1

𝑙  ∀𝑙 ∈ 𝐵 (9) 

∑ 𝑢𝑝ℎ𝑝∈𝑃,ℎ∈𝐻2
≤ 𝑚2

𝑙  ∀𝑙 ∈ 𝐵 (10) 

𝑓𝑘  ≤ 𝑓𝑖𝑗𝑥𝑖𝑗
𝑘𝑝 ∀𝑘 ∈ 𝐾, 𝑝 ∈ 𝑃, (𝑖, 𝑗) ∈ 𝐴𝑅  (11) 

∑ (𝑥𝑖𝑗
𝑘𝑝𝑡𝑖𝑗

′ + 𝑦𝑖𝑗
𝑘𝑝𝑡𝑖𝑗)(𝑖,𝑗)∈𝐴 ≤ 𝑓𝑘  ∀𝑘 ∈ 𝐾, 𝑝 ∈ 𝑃 (12) 

𝑥𝑖𝑗
𝑘𝑝𝑟𝑖𝑗 =  𝑥

𝑖′𝑗′
𝑘𝑝

𝑟𝑖′𝑗′  ∀𝑝 ∈ 𝑃, (𝑖, 𝑗) ∈ 𝐴𝑅 , (𝑖′, 𝑗′) ∈ 𝐴𝑅  (13) 

𝑥𝑖𝑗
𝑘𝑝, 𝑦𝑖𝑗

𝑘𝑝, 𝑢𝑝ℎ ∈ {0,1} ∀𝑘 ∈ 𝐾, 𝑝 ∈ 𝑃, (14) 

 ℎ ∈ 𝐻1 ∪ 𝐻2, ∀(𝑖, 𝑗) ∈ 𝐴  

𝑓𝑘  ∈  ℱ ∀𝑘 ∈ 𝐾 (15) 

In this formulation, constraints (3) and (4) ensure that all rotations must start and end at a depot, 

and each rotation must end where it starts. Constraint (7) ensures that each rotation is assigned to 

one truck. Constraint (8) ensures that each truck services at most one rotation. Other constraints 

are the same as in the SDWMRP. 
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7. RESULTS 

Single-Depot Winter Maintenance Routing Problem 

This section presents the optimized routes generated for each sector in District 3 by solving the 

single-depot maintenance routing problem. Among the 20 depots in District 3, the Alton and 

Rock Rapids depots each use one truck from the Rock Valley depot. Therefore, the routing 

problems for the Alton and Rock Rapids depots are treated as multiple-depot problems and are 

presented in the next section. Table 7.1 presents the results for the remaining 18 depots.  
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Table 7.1. Sector service lane miles, test run travel distance, and optimized distance in miles, current and optimized number of 

routes  

Depot Name 

Service 

Distance 

Test Run 

Distance 

Optimized 

Distance 

Current # 

of routes  

Optimized 

# of routes Result 

Ashton 307.4 738.0* 499.6 10 10 
Change boundary, Change route 

due to time constraint 

Carroll 151.5 255.4 205.4 5 4 Saving deadhead and truck 

Cherokee 180.3 219.1 212.01 6 6 Saving deadhead 

Correctionville 192.9 227.0* 254.7 4 6 
Add # of lanes, Change route due 

to capacity constraint 

Denison 237.4 320.1* 252.4 6 6 Change boundary 

Emmetsburg 150.2 225.0* 169.5 5 4 Saving deadhead 

Ida Grove 128.6 177.0* 139.3 4 3 Saving truck 

Le Mars 264.0 375.4 335.1 8 7 Saving deadhead 

Onawa 298.3 504.1 475.7 7 10 
Saving deadhead, Change route 

due to time constraint 

Pocahontas 229.6 298.5* 259.6 6 6 Saving deadhead 

Rockwell City 199.4 259.7 276.2 6 6 
Change route due to time 

constraint 

Sac City 185.6 434.1* 313.8 5 7 Add # of lanes 

Sioux City Hamilton 189.7 504.7* 332.6 9 10 
Change route due to time 

constraint 

Sioux City Leeds 157.0 376.0* 251.1 7 8 
Change route due to time 

constraint 

Sloan 126.6 163.7 162.9 6 5 Currently efficient 

Spencer 171.5 297.3* 207.0 6 5 Currently efficient 

Spirit Lake 176.7 424.9 223.8 8 5 Saving deadhead and truck 

Storm Lake 163.8 243.1 231.7 6 5 Saving deadhead and truck 

* Test run included duplicated distances on multiple road segments 
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The “Service Distance” column shows the responsibility distance for each depot in lane miles. 

The “Test Run Distance” column shows the total distance traveled by all trucks in a given depot, 

which was calculated from the test run AVL data. The test run distance indicates the actual travel 

distance under current operations and can be viewed as the baseline. However, due to unknown 

reasons, several trucks traveled some unnecessary distances during the test run. The depots to 

which these trucks are assigned are labeled with an asterisk. The “Optimized Distance” column 

shows the travel distance of the optimized routes. The “Fleet Size” column lists the total number 

of trucks at each depot, including both single-axle and tandem-axle trucks. The “Optimized Fleet 

Size” column shows the number of trucks needed to serve the optimized routes. Note that four 

depots need one additional truck because the changes to the road network or current operations 

prevent the time constraint from being satisfied.  

The “Result” column summarizes the optimized route solutions. In particular, the label “saving” 

in this column indicates that the optimized routes can reduce deadhead distance by altering the 

current routes. The label “efficient” indicates that the current routes are efficient, and no change 

is needed. The label “change boundary” indicates that the service responsibility maps for Ashton 

and Denison are changed slightly for the optimal solution, which is taken into account in the 

optimized routes but not in the current routes. The label “change route” indicates that the current 

routes should be changed because some of the current routes are too long to be serviced due to 

the cycle time constraint. The label “add # of lanes” is listed for the Correctionville and Sac City 

depots because the reconstruction of US 20 in those regions would change the road from an 

undivided two-lane road to a divided four-lane road after April 2019. For depots with savings or 

changes, detailed route maps are provided for each depot and compared to the current 

operational maps in the following section. 

Optimized Routes by Solving SDWMRP 

Figures 7.1 through 7.18 show the current and optimized routes for each depot.  
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Figure 7.1. Ashton routes – current (left), optimized (right) 
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Figure 7.2. Carroll routes – current (left), optimized (right)  
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Figure 7.3. Cherokee routes – current (left), optimized (right)  
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Figure 7.4. Correctionville routes – current (left), optimized (right)  
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Figure 7.5. Denison routes – current (left), optimized (right)  
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Figure 7.6. Emmetsburg routes – current (left), optimized (right)  
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Figure 7.7. Ida Grove routes – current (left), optimized (right)  
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Figure 7.8. Le Mars routes – current (left), optimized (right)   
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Figure 7.9. Onawa routes – current (left), optimized (right) 
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Figure 7.10. Pocahontas routes – current (top), optimized (bottom)   
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Figure 7.11. Rockwell City routes – current (top), optimized (bottom)   
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Figure 7.12. Sac City routes – current (top), optimized (bottom)   
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Figure 7.13. Sioux City Hamilton routes – current  
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Figure 7.14. Sioux City Hamilton routes – optimized 
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Figure 7.15. Sioux City Leeds routes – current (top), optimized (bottom)  
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Figure 7.16. Sioux City new depot routes – current (left), optimized (right)   
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Figure 7.17. Spirit Lake depot routes – current (above left), optimized (below)   



50 

  

Figure 7.18. Storm Lake depot routes – current (left), optimized (right)   
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In the optimized route maps for all depots, the service miles for each route indicate the total 

running distance for that route. Since the spreading rate is set at 300 lbs per lane mile, a single-

axle truck with a capacity of 12,000 lbs has a maximum service distance of 40 miles, and a 

tandem-axle truck with a capacity of 16,000 lbs has a maximum service distance of 53.3 miles. 

The route time minutes for each route indicate the total travel time for that route. The road 

segments with the highest priority in a route dictate the required cycle time for all of the road 

segments in that route. That is, if a route includes both Service Level B and Service Level C road 

segments, the required cycle time for a Service Level B road segment is met for the entire route. 

If a left-wing plow or a tandem truck is needed for the route, it is noted next to the priority index. 

A solid colored line indicates that the truck will service all lanes in both directions if no other 

colored line overlaps the same streets. A dashed colored line indicates that the truck will service 

ramps, additional turning lanes, or one lane of a multilane road. 

The current and optimized routes for the Ashton depot are shown in Figure 7.1. For this depot, 

the current service routes along US 18 end at Hull, whereas the optimized routes would extend to 

the US 75 intersection at Perkins, as per the request from this project’s technical advisory 

committee (TAC). However, this change would make the route too long to be serviced by truck 

A34012, as shown in Figure 7.1. Similarly, truck A32897 would exceed the cycle time constraint 

of two hours.  

The optimized routes are shown in the right-hand map in Figure 7.1. Routes 2 and 3 share the 

segment of US 59 between Iowa 9 and US 18, with each truck servicing only one direction. 

Route 2 also includes ramps on Iowa 60. Route 5 services the entirety of Iowa 9. Routes 6 and 7 

share a segment of Iowa 60 South. Route 8 services the area from Sheldon to Perkins. Route 9 

services ramps that are not covered by Routes 6 and 7 and services Sheldon to the intersection of 

US 18 and Iowa 60. 

Figure 7.2 shows the current and optimized routes for the Carroll depot. In the optimized map, 

Routes 2 and 3 both service US 30: Route 2 services one lane in both directions and Route 3 

services all locations with additional lanes. This could reduce deadhead distance, since in current 

practice truck A32552 deadheads from the depot to the junction of US 71 and US 30. Similarly, 

deadhead distance is reduced by assigning Routes 1 and 5 to service US 71. 

The current and optimized routes for the Cherokee depot are shown in Figure 7.3. The only 

change is within the metropolitan area. To achieve a one-hour cycle time, the optimized solution 

includes two routes to cover the urban area of Cherokee, which is currently serviced by one 

route, i.e., truck A32016. The other routes remain the same. 

The current and optimized routes for the Correctionville depot are shown in Figure 7.4. For this 

depot, since US 20 has been expanded to a four-lane divided roadway, a left-wing truck is added 

for both the eastbound and westbound directions. Route 2 services additional turning lanes near 

Correctionville, resulting in longer travel times. In current practice, truck A30442 exceeds the 

cycle time constraint. Therefore, the optimized solution assigns the road segment between 

Anthon and Correctionville to Route 4 instead of Route 3. This leads to additional deadhead for 

Route 3. However, if operational staff decide to allow the truck on Route 3 to drive slightly 
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faster than the average service speed, they can maintain the current practice and save deadhead 

distance. 

The current and optimized routes for the Denison depot are shown in Figure 7.5. Based on the 

suggestion of the TAC, the Denison depot now services US 59 only to the intersection with Iowa 

37. The optimized routes are almost the same as the current routes. Routes 1 and 2 service US 59 

in the Denison urban area. 

The current and optimized routes for the Emmetsburg depot are shown in Figure 7.6. The 

Emmetsburg depot had previously used a different service responsibility map than the one it 

currently uses. The current service routes shown in Figure 7.6 (left) were designed mostly based 

on the outdated service area map. In this map, the route serviced by truck A31320 in particular 

generates unnecessary deadhead distance. In the optimized route map, the road segments from 

Emmetsburg to East US 18 can be serviced by one route.  

The current and optimized routes for the Ida Grove depot are shown in Figure 7.7. The current 

routes serviced by trucks A31099 and A30812 can be serviced by Route 1 in the optimized map. 

Routes 1 and 2 both service the four-lane road in the Ida Grove urban area. Thus, one less truck 

is needed. 

The current and optimized routes for the Le Mars depot are shown in Figure 7.8. The current 

map uses four trucks on US 75 and Iowa 60 (the routes shown in red, black, purple, and green). 

The optimized solution needs only three trucks to service these roads. The other routes stay the 

same. 

The current and optimized routes for the Onawa depot are shown in Figure 7.9. The optimized 

routes for the Service Level C roads have almost the same travel distance as the comparable 

current routes. Therefore, no change is needed for this part of the network. However, the current 

routes servicing Interstate 29 south of Onawa have a cycle time of about 85 minutes, which 

exceeds the desired cycle time. If the operational staff allow the trucks on these routes to drive 

slightly faster than the average service speed, the trucks might be able to traverse the route in 75 

minutes. Otherwise, an additional truck is needed, as shown in the optimized route map. 

The current and optimized routes for the Pocahontas depot are shown in Figure 7.10. The 

optimized solution reduces deadhead by using Route 6 to service Iowa 4 south of Pocahontas. 

During the TAC meeting, District 3 representatives mentioned that in current practice truck 

A32551 services Iowa 7 because of drifting snow. Therefore, if drifting snow is a concern during 

a specific storm, the current route map can be applied. Otherwise, the optimized routes can 

reduce some deadhead distance.  

The current and optimized routes for the Rockwell City depot are shown in Figure 7.11. In 

current practice, the travel time of truck A32018 exceeds the desired cycle time. In the optimized 

routes, Route 3 services one lane in each direction of part of US 20. Route 4 services the 

additional turning lanes that are not serviced by Route 3 and the eastern portion of US 20. In 
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addition, Route 2 starts from the depot and services Iowa 4, thereby reducing deadhead distance 

compared to the current practice.  

The current and optimized routes for the Sac City depot are shown in Figure 7.12. Because US 

20 has been expanded to a four-lane divided road, one additional truck is needed to supplement 

A33513, the truck currently used to service that road. In addition, in current practice the route 

serviced by truck A32097 exceeds the desired cycle time and is therefore split into Routes 3 and 

5 in the optimized map.  

The current service routes of the Sioux City Hamilton depot are shown in Figure 7.13, and the 

optimized service routes for this depot are shown in Figure 7.14. In the optimized solution, one 

additional truck is needed to service the urban area in Sioux City Hamilton due to the cycle time 

constraint. The urban area would be serviced by Routes 1 to 3. 

The current and optimized routes for the Sioux City Leeds depot are shown in Figure 7.15. In the 

optimized map, the Sioux City urban area needs more trucks because of the one-hour cycle time 

constraint. The current routes are sufficient for a two-hour cycle time in the Sioux City urban 

area. 

A new Sioux City depot has been created at the intersection of US 75 and US 20, as shown in 

Figure 7.16. When operational, this new depot will service the entire Sioux City area, with the 

Hamilton and Leeds depots being closed. The optimized solution for the new depot includes 19 

routes, compared to a combined total of 21 routes for the Hamilton and Leeds depots. The total 

travel distance of all routes for the new depot is 636.9 miles, compared to a combined total of 

659.3 miles for the Hamilton and Leeds depots. The mileage savings mainly come from two 

changes: Routes 10 and 11 from the new depot would cover the road segments on US 20 that 

previously were covered by the Hamilton and Leeds depots, and Routes 4, 5, and 6 would cover 

the road segments on US 75 that previously were covered by the Hamilton and Leeds depots. 

Since Routes 10 and 11 would service the through lanes on US 20, the additional turning lanes 

on US 20 would be serviced by Routes 5 and 6.  

The current and optimized routes for the Spirit Lake depot are shown in Figure 7.17. Since the 

Spencer depot is currently efficient, the service boundary between the Spencer and Spirit Lake 

depots is at Fostoria, as shown in Figure 7.17. Many road segments in the Spirit Lake area are 

multilane road segments. These are mostly serviced by more than one route in the optimized 

solution. 

The current and optimized routes for the Storm Lake depot are shown in Figure 7.18. The 

deadhead savings come from Route 1 and 4 servicing Iowa 7 in the area around the town of 

Storm Lake. 
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Sensitivity Analysis of Spreading Rates 

To explore how the spreading rate might change the optimized routes, a sensitivity analysis with 

regard to the spreading rate was conducted. The spreading rate was set at 150, 200, 250, and 300 

lbs per lane mile to solve the SDWMRP for all depots. Table 7.2 presents the total travel 

distances under different spreading rates.  

Table 7.2. Sensitivity analysis summary of travel distance under different spreading rates  

Depot 

150 lbs/lane 

mile 

200 lbs/lane 

mile 

250 lbs/lane 

mile 

300 lbs/lane 

mile 

Ashton 500.3 499.6 499.6 499.6 

Carroll 205.4 205.4 205.4 205.4 

Cherokee 213.6 212.0 213.6 212.0 

Correctionville 237.9 237.9 237.9 254.7 

Denison 253.1 253.1 252.3 252.4 

Emmetsburg 169.5 169.5 169.5 169.5 

Ida Grove 139.3 139.3 139.3 139.3 

Le Mars 335.1 335.1 335.1 335.1 

Onawa 475.7 475.7 475.7 475.7 

Pocahontas 247.0 247.0 247.0 259.6 

Rockwell City 276.2 276.2 276.2 276.2 

Sac City 313.8 314.2 313.8 313.8 

Sioux City Hamilton 332.5 332.6 332.4 332.6 

Sioux City Leeds 251.3 251.1 251.1 251.1 

Sloan 162.9 162.9 162.9 162.9 

Spencer 207.0 207.0 207.0 207.0 

Spirit Lake 223.8 223.7 223.7 223.8 

Storm Lake 231.7 231.7 231.7 231.7 

 

With spreading rates less than 300 lbs per lane mile, the Correctionville and Pocahontas depots 

can significantly reduce their deadhead distances. The routes for the Correctionville and 

Pocahontas depots that result in deadhead savings have a desired cycle time of 2.5 hours. This 

result shows that only the Service Level C routes, which include Iowa roads with a service cycle 

time of 2.5 hours, are sensitive to spreading rates. The reason is that the other road levels are 

more strongly bound by the cycle time constraint than the capacity constraint. 

Figure 7.19 compares the optimized route maps for the Correctionville depot with a spreading 

rates of 150 lbs per lane mile (left) and 300 lbs per lane mile (right).  
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Figure 7.19. Optimized Correctionville routes with a spreading rate of 150 lbs/lane mile 

(left) and 300 lbs/lane mile (right) 

The current practice uses the same routes as shown in the left-hand map, where Routes 3 and 4 

both start from the depot. However, if the spreading rate is set at 300 lbs per lane mile, Route 3 is 

not feasible. The total distance from the depot to Mapleton is about 58 lane miles. At 300 lbs per 

lane mile, this road needs 17,400 pounds of material, which exceeds the capacity of a tandem 

truck.  

For the Pocahontas depot, if a lower spreading rate is used, a new set of routes can be created to 

reduce the deadhead distance. Figure 7.20 shows the optimized routes for this depot with a 

spreading rate of 150 lbs per lane mile (top) and 300 lbs per lane mile (bottom).  
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Figure 7.20. Optimized Pocahontas routes with a spreading rate of 150 lbs/lane mile (top) 

and 300 lbs/lane mile (bottom) 
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Route 4 on the top map services 61 lane miles. At a spreading rate of 300 lbs per lane mile, this 

route would exceed the capacity of a tandem truck. But at lower spreading rates (e.g., 150, 200, 

or 250 lbs per lane mile), this route can be serviced by only one truck.  

Multiple-Depot Winter Maintenance Routing Problem with Reload/Intermediate Facilities 

This section presents the optimized routes generated for each sector in District 3 by solving the 

multiple-depot winter maintenance routing problem with reload/intermediate facilities. The depot 

sector boundaries are shown in Figure 3.2. The reload time, 𝑡𝑅, was set at 15 minutes, and the 

work span was set at 8 hours. 

The MA was used to solve the MDWMRP for each sector using the same algorithm parameters 

as those described in Chapter 6. Table 7.3 summarizes the total distances and fleet sizes required 

for the optimized routes in each sector.  

Table 7.3. Total travel distance and fleet size comparison: single depot versus multiple 

depot  

Sector Garage Name 

Total 

Optimized 

Single-

Depot 

Distance 

Optimized 

Sector 

Distance 

Optimized 

Single-

Depot 

Fleet Size 

Optimized 

Sector 

Fleet Size 

Ashton 

Ashton 

717.2 712.2 

10 10 

Rock Rapids 4 4 

Rock Valley (for Rock Rapids) 1 2 

Le 

Mars 

Alton 

1,072.7 1,061.1 

9 10 

Rock Valley (for Alton) 1 0 

Correctionville 6 6 

Le Mars 7 7 

Onawa 

Denison 

1,030.3 1,016.3 

6 7 

Ida Grove 3 4 

Onawa 10 9 

Sloan 5 5 

Sac 

City 

Carroll 

1,054.9 1,053.5 

4 4 

Pocahontas 6 7 

Rockwell City 6 6 

Sac City 7 6 

Storm 

Lake 

Cherokee 

1,043.9 1,016.7 

6 6 

Emmetsburg 4 3 

Spencer 5 6 

Spirit Lake 5 4 

Storm Lake 5 5 
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For each of the five sectors, the “Total Optimized Single-Depot Distance” column lists the sum 

of the optimized route distances generated by solving the SDWMRP for each depot. The 

“Optimized Sector Distance” column lists the optimized route distance generated by solving the 

MDWMRP for the sector. The last two columns list the optimized fleet sizes assigned to each 

depot for the SDWMRP and MDWMRP scenarios, respectively. Because Rock Valley acts as a 

depot in the Alton and Rock Rapids network, the routing problems for the Alton and Rock 

Rapids depots are solved as multiple-depot problems, and the results for those depots are 

presented under the SDWMRP section above. 

It can be observed from Table 7.3 that the optimized route distance generated by the MDWMRP 

for each sector is less than the sum of the distances found by the SDWMRP. Additionally, in the 

MDWMRP scenario some depots require smaller or larger fleets than in the SDWMRP scenario. 

The reason is that the road segment service responsibilities for these depots have changed, and 

the routes are optimized under new circumstances. 

The total optimized travel distance for all sectors under the MDWMRP scenario is 4,859.8 miles, 

slightly lower than the total distance under the SDWMRP scenario (i.e., 4,919 miles). The 

deadhead distance savings in the MDWMRP scenario compared to the SDWMRP scenario are 

1.2%. 

As an example, Figure 7.21 illustrates the current responsibility map for the Onawa sector, and 

Figure 7.22 illustrates the optimized routes for that sector.  

 

Figure 7.21. Current responsibility map of the Onawa sector 
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Figure 7.22. Optimized routes for the Onawa sector 

The road segment covered by Route 11 is closer to Denison than to Onawa. Therefore, in the 

optimized solution Route 11 is assigned to the Denison depot. Similarly, the road segment 

serviced by Route 4 is assigned to the Ida Grove depot. Optimized routes for the other parts of 

the new Onawa network are changed accordingly. The other routes are the same as those in the 

SDWMRP scenario. This example shows that the MDWMRP algorithm can find better sector 

partitions than those in the current route plans. 

As shown in Table 7.2, the MDWMRP does not significantly reduce travel distance compared to 

the SDWMRP. This could be due to the network structure of the depots tested in this study. To 

explain, Figure 7.23 illustrates three different situations in which a reload is needed.  
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Figure 7.23. Three reload situations 

In the figure, the triangles represent depots, and the trapezoid represents a reload station. Each 

arc has a specific demand for material. For simplicity, let the length of all the arcs be the same. 

Assume that each truck has a capacity of 30 units of material. 

The first diagram in Figure 7.23 illustrates that for a route that requires less than 30 units of 

material, combining two depots into one sector (so that a truck from depot A can reload at depot 

B, and vice versa) will not change the total travel distance because the deadhead distance is 0 in 

both scenarios. The second diagram in Figure 7.23 illustrates that for a route that requires more 

than 30 units of material, combining two depots will not reduce deadhead. The recommended 

solution is to add a reload station, as illustrated in the third diagram in Figure 7.23.  

The current network structure and depot locations do not require a long haul between any two 

depots. Since the current operation needs to make the SDWMRP work for any single depot, the 

whole district network was partitioned into individual depots under the scenario where no reload 

is required. Therefore, the depots are placed near the center of their responsibility map and such 

that no road segment is too far to be serviced in a single haul. 
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8. CONCLUSIONS 

Summary 

This study developed methods to design optimized routes for winter road maintenance 

operations. Two types of winter road maintenance routing problems were studied, considering 

practical constraints. The proposed solution algorithms were applied to real-world networks. The 

results show that the proposed methods can reduce deadhead distance. 

The SDWMRP incorporated real-world winter road maintenance constraints, including road 

segment service cycle time, heterogeneous vehicle capacities, fleet size, and road-vehicle 

dependency. The problem was solved using an MA approach. In addition, a parallel 

metaheuristic algorithm was proposed to enhance the quality and computational efficiency of the 

solution. The results show that the optimized routes reduced deadhead distance by a total of 

13.2% compared to current operations. The deadhead savings percentage could be even larger 

because while the optimized routes strictly satisfy all constraints, the current operations might 

not. 

The results of the sensitivity analysis of the spreading rate parameter show that this parameter 

only impacts routes that service roadways with a service level of C, which have a service cycle 

time of 2.5 hours. This is because roadways with service levels of A or B or those in 

metropolitan areas are more strongly bound by the cycle time constraint. Trucks that service 

these roadways will exceed the operation time constraint before using up their material. 

Meanwhile, the trucks that service roadways with a service level of C will use up their material 

before they exceed the operation time constraint if the deadhead time of the route is relatively 

short compared to the service time. Since the spreading rate is highly related to the snowfall 

amount, the agency can choose the best plan to execute for the network based on the storm 

severity. 

The MDWMRP considered a work duration constraint of eight hours in addition to the 

constraints of road segment service cycle time, heterogeneous vehicle capacities, fleet size, and 

road-vehicle dependency. Due to the current network structure and depot locations, the 

difference between the optimized routes based on the MDWMRP and SDWMRP is insignificant.  

This study proposed methods for agencies to optimize their winter maintenance routes. The 

results can be used to guide route designs and sector partitions. Inefficiencies in current 

operations can be discovered by comparing current plans with the optimized plans generated by 

the methods proposed in this study. Note that the optimized routes are calculated based on the 

assumed speed and spreading rate under the fleet sizes, truck capacities, service cycle times, and 

plow directions of the current network. If any of these factors change, the agency should 

recalculate the optimized routes. Otherwise, the optimized routes can be used as a static plan. 
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Limitations and Future Research 

The present study formulated and solved winter maintenance routing problems based on fixed 

speeds and spreading rates and under current fleet size, truck capacity, service cycle time, and 

plow direction constraints. There are several caveats and limitations regarding this approach. 

First, the service cycle time is treated as a hard constraint in this study, whereas in reality the 

cycle time is a guideline set by the Iowa DOT. In practice, the cycle time is not strictly enforced. 

For some routes, exceeding the cycle time by a few minutes might result in significantly 

improved operational efficiency. Therefore, in future studies the cycle time constraint can be 

incorporated as a penalty in the objective function or as a soft constraint.  

Second, this study assumed a fixed service speed and deadhead speed. However, in real-world 

operations, these speeds could vary depending on driving habits, road conditions, and traffic 

conditions. Therefore, speed could be incorporated in the model as a random parameter that 

follows a probability distribution. A stochastic programming approach can be explored in future 

research to capture speed. 

Third, the optimized routes were designed by assuming the maximum spreading rate. However, 

as shown in Table 1.1, different spreading rates should be applied for different temperatures, 

precipitation amounts, and road surface conditions. The sensitivity analysis with regard to 

spreading rates suggests that the optimized routes could be different if a lower spreading rate is 

used on certain networks. Using a conservative estimate for the spreading rate might result in 

longer deadhead distances for such networks and inefficient use of resources. 

Fourth, the mathematical models may not represent all of the practical considerations in real-

world operations. Although the optimized routes may reduce deadhead distance, a different plan 

might be used in real-world operations for practical reasons. For example, to address drifting 

snow on a certain road section, a particular truck may need to be assigned to the problematic 

road section. The district maintenance manager should be consulted regarding these practical 

concerns, and routes should be adjusted accordingly. 

Lastly, since this study uses the metaheuristic algorithm approach, it is not guaranteed that the 

optimal result was found. The metaheuristic algorithm can solve a problem in a relatively short 

amount of computational time, but it usually only generates a locally optimal solution. An exact 

algorithm, in contrast, is guaranteed to find the global optimum, but it can only solve small-sized 

problems. By carefully tailoring the metaheuristic algorithm to the winter maintenance routing 

problem, the local optimal solution found through the metaheuristic algorithm could approach 

the global optimum in a statistical sense. 
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APPENDIX: PROCEDURE FOR MANUALLY FIXING THE NETWORK 

To ensure the accuracy of the transportation network data, the network of each depot was 

manually checked and edited in ArcGIS following the procedure summarized in this appendix. 

Building Non-Inventory Polylines 

First, segments were separated by direction so that roadways with opposing traffic flows did not 

share the same nodes. To be consistent, all inventory roads (northbound and eastbound) were left 

untouched, while the non-inventory roads (southbound and westbound) were offset using the 

“Move” command by (-20, 0) for southbound roads and (0, 20) for westbound roads (Figure 

A.1). Then the polyline was “Flipped”. 

 
 

 
 

Figure A.1. Procedure for building a new polyline for one direction of a non-inventory road 
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Adding Non-Service Roads 

Second, to distinguish between service and non-service roads, a “Service Flag” attribute was 

created. Service Flag = 1 was given to all service roads and 0 to all non-service roads. Non-

service roads were drawn to connect the following (Figure A.2): 

• The service boundary of each garage 

• The garage to the service network 

• Off-ramps to on-ramps 

 

Figure A.2. Adding turnaround points at the service boundaries 

For each location indicated by a green circle in Figure A2, a polyline was drawn to connect the 

end of an eastbound to a westbound roadway or a northbound to a southbound roadway (see 

Figure A.3). 
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Figure A.3. Unconnected versus connected endpoint 

In Figure A.4, the non-highlighted lines represent the service network.  

 

Figure A.4. Connecting depot to service network 

The highlighted portion in Figure A.4 was added to connect the route to the garage (i.e., the red 

triangle). 

Additionally, polylines at intersections (Figure A.5, left) were added as service roads, and U-

turns (Figure A.5, right) were added as non-service roads.  
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Figure A.5. Intersections (left) and U-turns (right) 

The AVL data were used to locate garages, turnaround points, and U-turns.  

As shown in Figure A.6, garage locations were determined by finding where all the maintenance 

trucks started and ended their routes.  

 

Figure A.6. Garage location 

These spots usually stood out because they diverged from the main roads. Turnaround points 

were also identified (Figure A.7).  
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Figure A.7. Turnaround point 

Verifying Attributes 

Third, each road segment’s attributes, namely facility type, number of lanes, and direction, were 

examined (Figure A.8). 

 

Figure A.8. Facility types identified in an of ArcGIS map 

Facility Type 

1 – Divided Roadway, Inventory 

2 – Undivided Roadway 

4 – Ramp 

6 – Divided Roadway, Non-Inventory 
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To represent the road-truck dependency constraint as described in Chapter 5, each roadway 

segment was assigned a facility type to indicate whether a left-wing truck or a right-wing truck is 

needed to service the roadway. In particular, all undivided roadways and their intersections, as 

well as all divided roadways spanning less than 16 miles, were given Facility Type = 2 (colored 

purple in Figure A.8). These roadways are serviced by right-wing trucks. Note that divided 

roadways spanning less than 16 miles can also be serviced by left-wing trucks, provided that the 

median is wide enough to hold the snow. However, if a left-wing truck were assigned to such 

roadways, the truck’s full capacity would not be used. A single-axle truck with a capacity of 

12,000 lbs can service 40 lane miles at a rate of 300 lbs/lane mile. For divided roadways longer 

than 16 miles, Facility Type = 1 was used to denote inventory roads (colored red in Figure A.8) 

and 6 to denote non-inventory roads (colored blue in Figure A.8). These roadways can be 

serviced by left-wing trucks because plowing the inner lanes in both directions covers 32 lane 

miles or more and can effectively use the truck’s capacity. Facility Type = 4 was used for 

entrance and exit ramps (colored green in Figure A.8). 

Each road segment’s attributes were verified in Google Maps (Figure A.9). 

 

Figure A.9. Corresponding Google map of facility types 

Number of lanes ranged from 1 to 5, and direction was classified as E, N, S, or W, for eastbound, 

northbound, southbound, or westbound, respectively. 

Finally, consecutive segments with the same facility type, number of lanes, direction, 

maintenance service level, garage, and service flag were merged in order to reduce the number of 

segments in the network (Figure A.10). 
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Figure A.10. Merging segments 

Using the ArcGIS Data Reviewer 

The fourth step was to use the ArcGIS Data Reviewer for additional checks. In particular, “Find 

Dangles Check,” “Orphan Check,” “Polyline or Path Closes on Self Check,” “Multipart Line 

Check,” and “Evaluate Polyline Length Check” were run on the network. 

The “Find Dangles Check” is shown in Figure A.11.  
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Figure A.11. Find Dangles Check 

A distance of 20 meters was input for the dangle tolerance. All dangles were deleted from the 

network. 

The “Orphan Check” is shown in Figure A.12.  

 

Figure A.12. Orphan Check 
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Unconnected polylines found using this check were deleted. 

The “Polyline or Path Closes on Self Check” is shown in Figure A.13.  

 

Figure A.13. Polyline or Path Closes on Self Check 

This check used a “closed” error type. Polylines were split where they contacted themselves. 

The “Multipart Line Check” is shown in Figure A.14.  

 

Figure A.14. Multipart Line Check 
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To fix a multipart line, the line was split and the problem area was deleted. The remaining part of 

the line was then redrawn or stretched to connect the network. 

The “Evaluate Polyline Length Check” is shown in Figure A.15.  

 

Figure A.15. Evaluate Polyline Length Check 

Segments less than 5 meters in length were examined. Corrections involved zooming to where 

two vertices were very close to each other and deleting one of them. 

The network was edited until no records were returned by the checks. Intersection connectivity 

was also reviewed, because disconnects are common and difficult to see in these places (Figure 

A-16). 

 

Figure A.16. Process for reviewing intersection connectivity 

First, the endpoints of all polylines were created with the “Add Geometry Attributes” tool 

(Figure A.17). 
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Figure A.17. Add Geometry Attributes 

Next, “Make XY Event Layer” and “Copy Features” were used to format these points as an 

independent layer (Figure A.18). 

    

Figure A.18. Make XY Event Layer (left) and Copy Features (right) 

The second step was to find the point distance, or the distance between the points of two layers 

(Figure A.19).  
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Figure A.19. Process for finding point distance 

Both input layers were the “Garage Points” layers. A search radius of 10 meters was applied 

(Figure A.20). 

 

Figure A.20. Point Distance function in ArcGIS 

A “Near” table was output (Figure A.21). A distance of zero indicated that the endpoints are 

identical. If the distance was slightly larger than zero, the corresponding points required 

examination. 



77 

 

Figure A.21. Near table in ArcGIS 

Calculating Service and Deadhead Speed 

Lastly, service speed, the speed at which a maintenance truck services the network, and 

deadhead speed, the speed at which a maintenance truck travels when it is not servicing the 

network, were added as attributes. The speeds differed for urban roadways (inside city limits) 

and rural roadways (outside city limits) (Table A.1). 

Table A.1. Service and deadhead speeds 

Speed (mph) Service Deadhead 

Urban 22 32 

Rural 26 40 
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