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EXECUTIVE SUMMARY 

The goal of this project was to examine the performance of granular roadways constructed with 

aggregates of varying quality used alone and in mixtures, and determine whether it was cost-

effective to haul high-quality aggregates from greater distances to locations with relatively low-

quality aggregate sources nearby. Aggregate materials were collected from four different 

locations in Iowa and used to build test sections on the same stretch of granular road. Several 

series of laboratory and field tests were conducted to characterize the materials and assess their 

performance in service through three seasonal freeze/thaw periods, from 2016 to 2019. 

Laboratory tests included sieve and hydrometer analyses, Atterberg limits, compaction tests, 

gyratory compaction tests, and California bearing ratio (CBR) tests. Field performance was 

evaluated via abrasion resistance, freeze/thaw resistance, density, material loss, modulus, 

gradation change, dust production, ride quality, and shear strength. Field tests include dynamic 

cone penetrometer (DCP), International Roughness Index (IRI), dust measurement, multichannel 

analysis of surface waves (MASW), lightweight deflectometer (LWD), and falling weight 

deflectometer (FWD) tests.  

Overall, two main types of materials were used: Class A, which is a common aggregate type 

used for granular roadways, and clean large-sized aggregates. Seven test sections were built for 

this project. The test site consisted of three Class A sections (Lime Creek Formation [LCF] Class 

A, Oneota Formation Dolomite [OFD] Class A, and local Bethany Falls Limestone [BFL] Class 

A) and four test sections built with mixtures of local BFL Class A and different clean aggregates: 

LCF Clean, OFD Clean, local BFL Clean, and Crushed River Gravel (CRG) Clean. The length 

of each test section was 500 ft except for one section at 300 ft long, and each was 30 ft wide and 

4 in. thick. The sections with mixtures contained Class A and clean aggregates at the following 

ratios by weight: 70% BFL Class A + 30% LCF Clean, 80% BFL + 20% BFL Clean, 70% BFL 

Class A + 30% OFD Clean, and 70% BFL Class A + 30% Clean CRG.  

The construction and maintenance procedures were documented in detail and are presented in 

this report. Extensive laboratory and field tests were performed before and after the three 

freeze/thaw seasons in order to monitor and evaluate the performance of the different surface 

aggregate materials alone and when mixed with local Class A materials. In order to monitor 

changes in ground temperature, thermocouples were installed to a depth of 7 ft at the center and 

one shoulder of the road, in the middle of the first test section.  

A benefit-cost analysis (BCA) was conducted based on the construction and maintenance costs 

extrapolated to estimate cumulative costs per mile. Accordingly, the benefit-cost ratio, user cost 

savings, and maintenance cost savings values were calculated based on the BCA and different 

service lives, discount rates, and maintenance frequencies were compared to continuing the 

current maintenance practices.  

Laboratory test results of the virgin materials used in construction showed that Class A 

aggregates hauled from long distances and mixtures of local Class A and clean aggregates had 

higher abrasion resistances than those of local Class A (BFL) materials and local Class A (BFL) 

+ clean aggregate (BFL) mixtures. Compared to the local aggregates, the higher quality 
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aggregates hauled from longer distances exhibited relatively smaller changes in gradation and 

total breakage in laboratory gyratory compaction tests.  

Field DCP test results showed that the performance of all test sections were classified as 

excellent to very good throughout the project duration. While gradation characteristics (fines 

content, gravel-to-sand ratio, and gravel content) of all test sections changed over time, it was 

clearly observed that the addition of LCF Clean, OFD Clean, and CRG Clean aggregates to the 

local BFL Class A resulted in less degradation as evidenced by relatively smaller changes in 

gradation compared to the test sections built with local aggregates. Among the sections with 

aggregate mixtures, the ones exhibiting the lowest changes in these characteristics were the 70% 

BFL Class A + 30% LCF Clean and 70% BFL Class A + 30% CRG Clean mixtures. Based on 

the stiffness values computed from MASW, LWD, and FWD test results, all test sections 

performed similar to each other over the project duration. No clear trend was observed between 

the index properties and stiffnesses of the test sections. It was concluded that these stiffness tests 

require modification in order to be suitable for granular roadway performance testing. IRI results 

showed that the maximum roughness value was observed for the mixture of 70% BFL Class A + 

30% CRG Clean.  

The BCA showed that hauling LCF Clean and CRG Clean to be mixed with local BFL Class A 

material resulted in the most cost-effective method when considering the following performance 

criteria: change in fines content, gravel-to-sand ratio, gravel content, total breakage, and material 

and thickness loss. Benefit-cost analyses were also made for both truck and rail hauling, and the 

results showed that rail hauling was highly dependent on the locations of quarries, construction 

sites, and transition points of the railways. 

Overall observations, challenges, and recommendations are summarized based on the results of 

this project as follows: 

 Changes in gradation and increases in fines contents in particular had a significant impact on 

the performance of the granular roadways.  

 The spreadsheet developed in this study can be utilized to assess the benefit-cost analysis of a 

variety of granular roadway construction and maintenance alternatives. 

 Currently available stiffness tests were required to be modified to evaluate the performance 

of granular roadways. 

 Labor costs and equipment time do not vary significantly between test sections that are built 

at 500 ft in length. It is recommended that test sections in future studies be at least 0.25 mile 

in length to produce discernable differences between them.  
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CHAPTER 1. INTRODUCTION 

1.1 Problem Statement 

Approximately 68,400 miles of granular roadways exist in the 114,000 mile road network in the 

state of Iowa. Operation and maintenance of these granular roadways costs roughly $270 million 

annually. The sustainability of granular roadways is very important to the rural economy, since 

these roads provide access to rural land and enable the transportation of agricultural products. 

The timing of the transportation of these products is often tightly constrained by economic and 

weather considerations. Any interruption in access via these granular roadways can, thus, have a 

significant impact on agricultural productivity and the economy of Iowa. Heavy traffic loads and 

freeze/thaw cycles during the winter and spring seasons can cause extensive damage to granular 

roads. Such damage leads to many problems such as material loss, gradation change, loss of 

crown, surface erosion, rutting, and potholes. The rate of deterioration (or damage) is directly 

correlated to the quality of the granular aggregate materials used in the design of granular roads. 

Performance and long-term sustainability of granular roadways are dependent to a considerable 

degree on the quality of the aggregate materials used, which varies considerably from one source 

to another across Iowa. There are a wide range of granular material sources in Iowa, each 

producing different qualities, supply amounts, and prices. County engineers and Iowa 

Department of Transportation (DOT) personnel have observed considerable differences between 

regions of the state with respect to the level of performance that granular materials are able to 

provide. They have reported that quarries located in certain counties have higher quality granular 

materials offered at prices similar to others of lesser quality. For instance, materials in northeast 

Iowa (e.g., Ordovician and Silurian bedrock) perform better and degrade more slowly than those 

in the southern regions of the state (e.g., Pennsylvanian bedrock). Thus, roads in some counties 

require more maintenance efforts and therefore, higher costs in comparison to other counties. A 

similar contrast occurs for the cost of new construction of granular roads. 

County engineers and their employees invest considerable effort in managing and maintaining 

granular roads. However, to date there are no readily available tools to evaluate the costs versus 

field performance of granular road materials. When maintenance and construction of granular 

roadways is costly due to use of low-quality materials, it is necessary for counties to spend a 

considerable portion of their budget (sometimes up to 28% of the total county budget) just to 

purchase granular materials (excluding placement and maintenance) to replace those lost during 

the service life of a granular road. The problems commonly encountered with granular roads are: 

(1) unsuitable material usage, (2) inadequate material distribution, (3) surface deterioration 

through aggregate loss, (4) surface abrasion, (5) ineffective drainage, and (6) insufficient road 

maintenance. This study aims to test the problems associated with unsuitable material usage and 

surface abrasion. 

In this project, the research team conducted laboratory and field tests to examine the link 

between quality and performance of granular aggregate materials used in granular road designs, 

using materials collected from various quarries in Iowa. Field test sections were constructed 

using materials with different aggregates collected from different locations in the state. The field 
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performance (abrasion resistance, freeze/thaw resistance, density, material loss, modulus, and 

gradation change) of sections built with different quality materials were compared. Then, a 

comprehensive cost-performance analysis was conducted to evaluate the cost-effectiveness of the 

different materials to determine whether it was economically advantageous to transport high-

quality aggregate materials from quarries located at different locations in the state. 

1.2 Research Objectives 

The overall goal of this project was to determine the cost-effectiveness of hauling high-quality 

coarse (clean) aggregates to improve the performance and reduce the maintenance frequency of 

granular roadways in regions with low-quality aggregates. The specific objectives of this project 

were as follows:  

1. Evaluate the quality of aggregate materials collected from various sources around Iowa  

2. Monitor the change in material properties over time and the impact of these changes on 

granular roadway performance 

3. Determine the relationships between the material properties and performance of granular 

roadway materials 

4. Conduct a comprehensive cost analysis for each test section 

1.3 Site Selection 

A 3,600 ft stretch of granular roadway was selected in Decatur County, Iowa. It is located at 

County Road (CR) J22 (Popcorn Road) off of US 69 extending approximately a mile east. Figure 

1 shows the location of the project.  
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Figure 1. Location of the project 

This site was selected for several reasons. Annual average daily traffic (AADT) for this location 

was 80. Daily traffic load and the percentage of trucks were slightly above average compared to 

other granular roads in Iowa (Iowa DOT 2012). The surface level of the road was reasonably 

higher than the ground surface around the road. This provides better conditions for drainage. In 

addition, the site was three miles away from an interstate, which provided reasonable 

accessibility. Furthermore, the subgrade was very strong (California bearing ratio [CBR] >5). 

Figure 2 shows the site prior to construction. 

  

Figure 2. CR J22 before construction 
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1.4 Significance of the Research 

The purpose of this research was to investigate the surface aggregate materials’ mechanistic 

properties over time and develop a cost-benefit analysis methodology to compare the benefits of 

utilizing aggregates from different resources based on the construction and maintenance costs 

over the three years of this project.  

1.5 Organization of the Report 

This report includes eight chapters: 

 Chapter 1 (Introduction) explains the problem statement, objectives, site selection, and the 

significance of the research  

 Chapter 2 (Background) consists of a review of previous studies on granular roads and 

briefly summarizes the methods of field testing and cost analysis  

 Chapter 3 (Methods) presents different methods of laboratory and field tests that were 

conducted in this project 

 Chapter 4 (Materials) provides information about the geomaterials and the preliminary 

results of the laboratory tests, which presents the index properties, compaction 

characteristics, strength, abrasion, and freeze/thaw resistance 

 Chapter 5 (Construction and Maintenance) describes the site, sections, and the construction 

and maintenance procedures 

 Chapter 6 (Results and Discussion) provides the results of the field tests over the three-year 

period of the project 

 Chapter 7 (Cost Analysis) contains the results of the economic analysis on all different test 

sections 

 Chapter 8 (Conclusions and Recommendations) presents the conclusions of this project and 

recommendations 

 Appendices present supporting materials for the project  
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CHAPTER 2. BACKGROUND 

2.1 Aggregate Deterioration 

Aggregate deterioration is described as progressive worsening of aggregate conditions, and it 

depends on the index properties of the aggregates themselves, subgrade soils, drainage 

conditions, traffic load, and environmental effects (Alzubaidi and Magnusson 2002, Paterson 

1987, Provencher 1995, Strombom 1987). The performance of a granular road is highly 

dependent on gradation characteristics, plasticity index (PI), abrasion resistance, morphology, 

and mineral composition. In addition, other conditions such as traffic loads, moisture contents, 

and degree of compaction during construction are other very important factors that could impact 

the gravel loss and deterioration of gravel roads (Fathi et al. 2019, Hardin 1985, Lade et al. 1996, 

Lees and Kennedy 1975, Marsal 1967, Nurmikolu 2005, Paterson 1991, White et al. 2004, 

Zeghal 2009). 

It is well-known that abrasion and freeze/thaw resistances of granular roads are highly dependent 

on the aggregate quality (Alzubaidi and Magnusson 2002). Traffic flow affects the gravel 

deterioration due to the removal and breakage of surface aggregates. This depends on traffic 

volume, speed, and traffic loads (Dobson and Postill 1983, Isemo and Johansson 1976). Under 

heavy traffic loads (especially during spring seasons), gravel particles are either scattered or are 

broken into finer-sized particles, which may result in general loss of stability in the granular 

roadways. Moreover, aggregates with low abrasion resistances tend to experience considerable 

increases in fines contents. Thus, it causes a significant decrease in the overall performances of 

granular roadways and requires more frequent maintenance. Freeze/thaw durability of surface 

aggregate materials is also another factor that could influence the performance of granular roads. 

(Li et al. 2015a; Vallejo et al. 2006; White and Vennapusa 2013, 2014a).  

Li et al. (2015a) investigated the use of several stabilization methods including use of cement, fly 

ash, bentonite, macadam stone base, and geosynthetics to improve the serviceability of granular 

roadways. The results showed that macadam stone base, fly ash, and cement stabilized sections 

concluded the highest elastic modulus values immediately after construction. However, 

macadam stone base can be more cost-effective to implement (Li et al. 2017a). Vallejo et al. 

(2006) reported that particle crushing in the base and subbase layers of paved roads occurs in 

unfavorable conditions such as the use of low-quality aggregates, high loads, and unfavorable 

weather (Vallejo et al. 2006). Nurmikolu (2005) investigated the important factors in frost 

susceptibility of aggregates. The results of this study showed that higher porosity and water 

content were disadvantageous in case of frost susceptibility (Nurmikolu 2005). Freezing and 

thawing and the effects of high traffic loads cause a lack of drainage for the melt water and 

capillary water trapped in the surface course and top of the subgrade of unpaved roads. 

Consequently, saturation of the materials leads to a loss of strength and stiffness in the road 

layers. Blading the surface aggregates and dumping virgin aggregates typically are practices for 

repairing freeze/thaw damage instead of improving frost susceptibility of aggregates (White and 

Vennapusa 2013, 2014b). 
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2.2 Multichannel Analysis of Surface Waves  

Multichannel analysis of surface waves (MASW) is one of the wave-propagation methods that is 

commonly used to calculate the elastic moduli of different layers of the roads. Elastic modulus of 

roadway layers is one of the main important parameters that is used in roadway design.  

Wave-propagation methods have been used in determining the properties of soils. These 

properties include soil structure, stiffness, and strength (Gheibi and Hedayat 2018). MASW is 

used to measure the surface wave velocities and the stiffness properties of the soil by matching 

the experimental and theoretical dispersion curves (Lin and Ashlock 2012, 2015; Nazarian and 

Stokoe 1985; Park et al. 2001; Park et al. 1995; Ryden 2009). In recent years, the MASW 

method has been used to evaluate the moduli of pavement layers (Li et al. 2018c, Lin and 

Ashlock 2015, Lin et al. 2016, Park et al. 2001). Studies on surface wave testing to measure the 

properties of pavement layers started by conducting the continuous surface wave (CSW) method 

developed by Van der Poel (1951) and improved over the years (Heukelom and Foster 1962; 

Jones 1955, 1958, 1962; Vidale 1964). Afterward, spectral analysis of surface waves (SASW) 

was developed and widely used (Heisey et al. 1982a, Nazarian and Stokoe 1985, Rix et al. 1991, 

Stokoe et al. 1994). 

Yusoff et al. (2015) found a satisfactory match between the results of the elastic modulus of the 

subgrade layer from falling weight deflectometer (FWD) and SASW tests on a paved road 

system. However, it is speculated that moduli values calculated from MASW can be more 

precise than those calculated from FWD, due to a higher number of geophones, the lower 

distances between them, and their unique method of calculating the elastic modulus compared to 

the back- and forward-calculations (Lin et al. 2016).  

2.3 Falling Weight Deflectometer  

The FWD was developed in the 1960s and has been one of the most common non-destructive 

tests to evaluate the elastic modulus (stiffness) of roadway layers in the US for more than three 

decades (Akbariyeh 2015). The FWD method simulates the traffic load by obtaining the roadway 

deflection data and uses the concept of “deflection bowl” to measure the modulus of the layers 

(Brown et al. 1987, Hadidi and Gucunski 2010, Hudson 1997, Kuo et al. 2016, Uddin 2000, 

Uddin et al. 1985, Ullidtz 1987). This method applies to static and dynamic loads. Many studies 

have been conducted to back-calculate the elastic modulus of roadway layers from FWD test 

data (Sebaaly et al. 1986; Xu et al. 2002a, 2002b), and these studies concluded that FWD back-

calculation methods are mainly dependent on the seed value (100 to 200 ksi for the surface layer 

and 5 to 15 ksi for subsurface layers) of the elastic modulus and error minimization techniques 

(Tarefder and Ahmed 2013).  

The majority of the FWD back-calculation methods apply the linearly static theory that ignores 

the static loading mode and duration, assumes material properties are homogenous and isotropic, 

and layers are infinite in the horizontal direction (Uddin 2000). The combination of the modulus 

values for each roadway layer, even assuming a semi-infinite subgrade depth and an infinite 

horizontal extent of roadway layers are non-unique in the calculation of the same deflection 
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basin on the surface due to its dependence on the thickness of the layers and the temperature. 

This creates uncertainty about the results of the modulus from the iterative method of back-

calculation of the FWD results (Nega et al. 2016, Uddin et al. 1985). Static-based analysis of the 

FWD data without considering the existence of sources of nonlinearity, consideration of stress 

hardening for surface and stress softening for the subgrade layers, and dynamic response 

analysis, can cause unreliable results for roadway performances (Ceylan et al. 2005, Nega et al. 

2016, Uddin 2000). Chang et al. (1992a) showed the importance of considering the dynamic 

deflection basin on the back-calculated moduli of surface and subgrade layers. However, 

considering nonlinearity and dynamic loading effects in back-calculation methods has its own 

complexity. These methods included large number of variables and dynamic motion while 

evaluating the pavement responses in modulus values (Nega et al. 2016; Xu et al. 2002a, 2002b).  

Heisey et al. (1982b) stated that the FWD test was better suited for deflection measurements in 

roadways due to its capacity to apply high loads compared to the wave propagation methods 

such as SASW. SASW uses Rayleigh waves to measure the shear wave velocity through layers 

of the roadway (Heisey et al. 1982a). FWD is a dynamic method involving wave propagation. 

However, static loading is assumed in the analysis, which causes considerable differences in 

their actual and calculated stress distributions. On the other hand, wave-propagation methods 

follow a unique solution to find the moduli and thickness of the layers (Nazarian 1983). 

Moreover, the nonlinear elasto-plastic response of materials on deflections under dynamic 

loading in the FWD test is related to subgrade stiffness, and the subgrade participates in 60 to 

80% of the central deflection. Therefore, errors in the subgrade moduli back-calculation can be a 

source of significant errors in the back-calculated moduli of the other layers (Appea 2003, Chang 

et al.1992b, Ghadimi et al. 2015, Nega et al. 2016). The FWD is insensitive to the modulus of the 

surface layer if the thickness of the surface layer is a few centimeters (Yusoff et al. 2015). In 

addition, the temperature variation can cause difficulties in getting accurate results from back-

calculation (Nega et al. 2016).  

2.4 Life-Cycle Cost Analysis 

Every project is a combination of different alternatives, and selecting the most cost-effective 

option is important in asset management of the project. Life-cycle cost analysis (LCCA) is a 

common cost analysis method that considers the costs of construction, maintenance, 

rehabilitation, service life, and discount rates to find the most cost-effective option in the service 

life of any project. LCCA was first used by state agencies in the 1950s for cost evaluations to 

compare proposed pavement systems (AASHTO 1960). Different pavement types, qualities of 

pavement, effects on the motoring public, and maintenance and rehabilitation costs should be 

considered in this type of analysis (Wilde et al. 1999). It evaluates overall long-term costs 

including initial, maintenance, rehabilitation, user, and salvage costs (Walls and Smith 1998). 

The LCCA period is the period over which future costs are evaluated. This period should be long 

enough to reflect long-term cost differences associated with reasonable design strategies. After 

determining the construction and probable maintenance costs, future costs including any 

maintenance procedures are discounted to the current year and added to the construction costs to 

calculate the net present value (NPV) for the LCCA alternatives (equation 1). 
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𝑁𝑃𝑉 = Initial Costs +  ∑ 𝑅𝑒ℎ𝑎𝑏𝑖𝑙𝑖𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡𝑘 [
1

(1+𝑖)𝑛𝑘
] − 𝑆𝑎𝑙𝑣𝑎𝑔𝑒 𝑉𝑎𝑙𝑢𝑒 [

1

(1+𝑖)𝑛𝑘
]𝑛

𝑘=1  (1) 

Routine annual maintenance costs including regular blading for granular roads usually are not 

different for different alternative sections and do not change significantly annually and thus, have 

negligible effects on the total NPV compared to initial construction or maintenance costs, 

particularly with high service life values (over 20 years). Moreover, salvage value represents the 

value of an investment alternative at the end of the service life. (Vosoughi et al. 2017). 

2.5 Benefit-Cost Analysis 

Cost analyses are helpful to determine whether transporting materials from high-quality sources 

to replace low-quality local materials in granular roadway construction. Cost calculations include 

different possible routes and transportation modes between high-quality aggregate sources and 

construction sites lacking nearby high-quality sources. This project presents a case study of a 

benefit-cost analysis (BCA) of a gravel road constructed in a rural road system. The findings 

could help the Iowa DOT and Iowa county engineers to determine the most beneficial material 

alternatives with lower costs of hauling, material, labor, and equipment for construction and 

maintenance of granular roadways. 

Conducting a BCA is very important before any investment in transportation infrastructure to 

find out the efficiency of the project in utilizing resources, due to the need to facilitate social and 

economic activities (Carlsson et al. 2015, Dharmadhikari et al. 2016, Prest and Turvey 1965). 

Deterministic BCA is considered a traditional decision-making approach in pavement 

management (Nahvi et al. 2018, Walls and Smith 1998). Prest and Turvey (1965) presented four 

main criteria prior to performing any benefit-cost analysis: (1) enumeration of costs and benefits, 

(2) valuation of costs and benefits, (3) choice of interest rate, and (4) relevant constraints. 

Dharmadhikari et al. (2016) presented four main steps to perform a life-cycle benefit-cost 

analysis: (1) determining the project base case and alternatives, (2) defining the benefits, (3) 

costs and benefits calculation, and (4) determining the current value of costs and benefits. The 

base case is defined as the condition where no alternatives are suggested, and the alternatives are 

the other options to be considered in order to make the project beneficial. In this case, the 

minimum value of the construction cost was considered as the base case. The determination of 

the base case and benefits should be done with extreme care to have a solid and trustable cost 

analysis.  

Moreover, agencies should avoid using the BCA framework of a project on another project 

because of the differences in various considerations and assumptions in each project (Gibson and 

Wallace 2016). The values of the annual costs and benefits and the project’s present value 

considering the properly suggested discount rate are included in the overall approaches to the 

BCA (Layard and Glaister 1994). Jones et al. (2014) called traffic forecast, cost estimation, 

discount rate, value of life, safety, value of time, regional impacts, local impacts, equity, 

environmental impacts, and residual use as the major challenges in performing BCA for 

transportation infrastructure. The main factor in deterministic BCA is the benefit-cost ratio 
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(BCR), which is the ratio of the NPV of the benefits divided by the NPV of the costs of a project 

(Walls and Smith 1998). 

Hauling and placing aggregate are the most costly processes. Therefore, it may prove beneficial 

to construct granular roads using higher quality materials that can sustain their performance for 

longer durations with less maintenance. However, there is a lack of high-quality aggregate 

sources in certain regions of Iowa. It has been reported that sources in certain parts of Iowa, such 

as the northeast, have higher quality aggregates than other regions, such as the west and south, 

possibly enabling the use of half as much aggregate for the same roadway performance. Li et al. 

(2018c) observed similar findings from field tests on granular roads in southwestern Iowa.  
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CHAPTER 3. METHODS 

This chapter includes the methods for both laboratory and field tests. Laboratory tests were 

conducted to determine the classification and soil index properties, abrasion resistance, and 

compaction behavior of the surface and subgrade materials, while field tests were performed to 

investigate the mechanistic properties of the surface and subgrade layers such as strength, 

stiffness, in situ water content and dry density, the amount of dust, surface roughness, and 

friction. 

3.1 Laboratory Tests 

Laboratory tests such as particle-size analysis, Atterberg limits, Proctor, California bearing ratio, 

and gyratory compaction tests were conducted in the laboratory to acquire the particle-size 

distribution, plasticity of soil, maximum dry density (γdmax), optimum water content (wopt), shear 

strength, and compaction characteristics. The Los Angeles (LA) abrasion, C-Freeze, and Micro-

Deval tests were conducted at the Iowa DOT Central Materials Laboratory to determine the 

abrasion and freeze/thaw resistance of the aggregate materials. 

3.1.1 Particle-Size Analysis 

Particle-size analyses were performed in accordance with ASTM D422 Standard Test Method 

for Particle-Size Analysis of Soils. Sieve sizes were in the range of 1 ½ in. (75 mm) to sieve 

#200 (75 μm). In addition, to determine the size distribution of fine particles (i.e., particles that 

pass through a #200 sieve), hydrometer tests were conducted on the materials passed through 

sieve #10 (2 mm). To test a representative sample, the sampling method ASTM D75-13 Standard 

Practice for Sampling Aggregates was followed. Figure 3 shows the sieve test setup used during 

sieve analysis. 
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Figure 3. Shaker for sieve analysis 

3.1.2 Atterberg Limits 

Atterberg limits tests were performed on the surface aggregate and subgrade materials to 

determine the liquid limit (LL), plastic limit (PL), and the plasticity index (PI) of materials. The 

wet preparation-multiple point test method was conducted on materials after they were sieved 

through a #40 (425 μm) sieve. ASTM D4318-10e1 Standard Test Methods for Liquid Limit, 

Plastic Limit, and Plasticity Index of Soils were followed for these analyses. A standard brass 

cup and a glass plate were used to find the liquid and plastic limits, respectively (Figure 4).  

 

Figure 4. Liquid limit test device  
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3.1.3 Soil Classification 

The results of the sieve analyses and Atterberg limits were used to classify the materials. 

Materials were classified in accordance with ASTM D2487-11 Standard Practice for 

Classification of Soils for Engineering Purposes (Unified Soil Classification System [USCS]) 

and ASTM D3282-15 Standard Practice for Classification of Soils and Soil-Aggregate Mixtures 

for Highway Construction Purposes, which uses the American Association of State Highway and 

Transportation Officials (AASHTO) classification system.  

3.1.4 Abrasion Tests 

Abrasion is a common phenomenon that geomaterials experience especially in cold regions 

during the winter and spring seasons due to the freeze/thaw effect. Abrasion can be observed 

more severely in spring (during the thawing season), when granular roads are subjected to heavy 

traffic loads, which are transporting large amounts of agricultural/poultry products and 

construction/maintenance supplies. Therefore, abrasion resistance of the granular surface 

materials should be scrutinized as a main factor for evaluation of different surface aggregate 

materials. In this regard, the abrasion resistance of the aggregates were measured using several 

abrasion tests including the LA abrasion and Micro-Deval. 

3.1.5 Los Angeles Abrasion 

The LA abrasion test was performed on aggregate particles over ¾ in. in size to evaluate their 

degradation. It was conducted in accordance with ASTM C535-12 Standard Test Method for 

Resistance to Degradation of Large-Size Coarse Aggregate by Abrasion and Impact in the Los 

Angeles Machine. Soil samples were placed into the LA abrasion machine’s steel drum 

alongside 12 steel spheres, and the drum was rotated at 30–33 rpm for 500 revolutions. The 

change in the weight of the washed and dried aggregate materials above sieve #12 is reported as 

the percentage of loss (Iowa DOT 2018). This test was performed on granular road surface 

aggregate materials from all sections to determine the degradation resistance of each material. 

Figure 5 shows the LA abrasion equipment. 
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Figure 5. LA abrasion test device  

3.1.6 Micro-Deval 

The Micro-Deval abrasion test measures the degradation of the granular road surface aggregate 

materials of all sections in the presence of water, steel balls, and rotation. It was conducted in 

accordance with ASTM D6928-10 Resistance of Coarse Aggregate to Degradation by Abrasion 

in the Micro-Deval Apparatus. The abrasion loss is the difference between the masses of the 

original sample and the washed and oven-dried sample after performing the test.  

3.1.7 C-Freeze Test 

A set of seven C-freeze tests was performed on the aggregate samples for materials from all 

sections to determine the soundness of the aggregates during freeze/thaw cycles. It was 

conducted in accordance with Iowa 211-B Method of Tests for Determining the Soundness of 

Coarse Aggregates by Freezing and Thawing. This method is similar to the AASHTO T 103 

Soundness of Aggregates by Freezing and Thawing (Procedure A Total Immerse in Water). 

AASHTO T-103-Method C of freezing and thawing is usually used to measure the change in the 

percentage of the materials that are passed through a US #8 sieve before and after the test. This is 

supposed to represent the potential of materials to have gravel loss when used in granular roads. 

In this method, 25 freeze/thaw cycles were applied on specimens that were soaked in water 

(Iowa DOT 2018). Figure 6 shows the equipment for freezing control during this test. 
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Figure 6. C-Freeze test device 

3.1.8 Proctor Test 

Standard Proctor tests, ASTM D698-12e1 Standard Test Methods for Laboratory Compaction 

Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)), were conducted 

on all materials (both surface aggregates and subgrade) to determine their optimum water content 

(wopt) and the maximum dry density (γdmax). Figure 7 shows the equipment used for compaction 

tests. 
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Figure 7. Hobart mixer, left, and automated mechanical rammer, right 

3.1.9 California Bearing Ratio 

The CBR test was performed to evaluate the shear strength of the granular road surface 

aggregate and subgrade materials. It was conducted in accordance with ASTM D1883-16 

Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils. Each 

specimen was compacted at optimum moisture content with standard Proctor energy. CBR tests 

were performed on both unsoaked and soaked specimens to simulate the optimum and saturated 

conditions in the field, respectively. Figure 8 shows the CBR equipment.  
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Figure 8. California bearing ratio device  

3.1.10 Moisture Determination  

The moisture contents of all materials from each section were measured in the laboratory in 

accordance with ASTM D2216–10 Standard Test Methods for Laboratory Determination of 

Water (Moisture) Content of Soil and Rock by Mass.  

3.1.11 Gyratory Compaction Test 

Granular road surface aggregate materials undergo significant deterioration due to steadily 

increasing traffic loads and volumes. The durability of surfacing aggregates has been determined 

via LA abrasion and Micro-Deval tests for many years. However, these two tests do not simulate 

the effects of normal and shear stresses applied from the traffic loads on a roadway and do not 

test the actual full gradation and resulting particle packing of the material used in the field. The 

gyratory compaction test has been developed to determine the maximum density of asphalt 

materials by applying specific values of normal pressure while inducing shear stresses by 

applying specified degrees of gyration (Bozorgzad and Lee 2017). The effects of gyratory 

compaction in reducing the void ratio of asphalt specimens has been investigated for many years 

(Ghasemi et al. 2016, 2018; Notani et al. 2019). Gyratory compaction has also been used for 

granular materials by applying certain vertical loads with a specific degree and number of 
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gyrations, which enable shear distortions and particle reorientations, to simulate traffic loading of 

granular roadway materials.  

While conducting the gyratory test, the shear resistance, void ratio, and applied gyratory energy 

can be determined in addition to the dry unit weight of the material for each gyration. The 

gyratory compaction test usually applies a greater energy than other common compaction tests 

such as the standard and modified Proctor tests. Therefore, conducting gyratory compaction 

(gyration number) to obtain optimum void ratio, resistive shear strength, and dry unit weight 

values could be important for proportionally large size surface aggregate materials such as those 

used in granular roadways. Such values could help improve the efficiency of field compaction 

operations by determining the required number of compaction passes beyond which little 

improvement is obtained. 

Gyratory compaction test was conducted in accordance with AASHTO T 312 Standard Method 

of Test for Preparing and Determining the Density of Hot-Mix Asphalt (HMA) Specimens by 

Means of the Superpave Gyratory Compactor. A Brovold gyratory compactor was used to 

perform the gyrations and a pressure distributer analyzer (PDA) was used on top of the molds to 

record the load applied on top of the surface and the eccentricity of the cumulative load (Figure 

9).  

 

Figure 9. Brovold gyratory compactor, left, and PDA device, right 

The gyratory mold had a 150 mm diameter and a 200 mm internal height. The vertical pressure 

applied to the top of the specimens was held constant at 600 kPa for all of the tests. The 

maximum number of gyrations that the device could deliver was 299. Due to this limitation, tests 

were performed in two stages of 250 gyrations to reach a total of 500 gyrations for each 

specimen. Two dwell gyrations were performed to square each specimen after the first 250 
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gyrations. The gyration angle during testing was set to 1.25°, and the rate of gyration was set to 

30 rpm. The specimen height was recorded by the device to the nearest 0.1 mm after each 

gyration. The operational parameters used in the gyratory compaction tests are summarized in 

Table 1. 

Table 1.Gyratory device operational parameters 

Parameters Value 

Vertical pressure 600 ± 10 kPa 

Gyration angle 1.25 ± 0.02° 

Number of gyrations 500 

Gyration rate 30 ± 0.5 rpm 

Number of dwell gyrations 2 

 

The PDA was used to calculate the undrained shear strength of the specimens by measuring the 

resultant gyratory force (R) and eccentricity while performing the gyratory test, where R is the 

summation of forces from three load cells (P1, P2, and P3) at any time. The eccentricity (eR) of 

the resultant force relative to the center of the PDA plate can be calculated based on the general 

moment equilibrium equations along two perpendicular axes (equations 2–5), in which the 

distance between each pair of load cells for the PDA used in this study was 100 mm.  

∑ 𝑀𝑦 = 0 →  𝑒𝑥(𝑅) =  𝑃3 (
100 𝑚𝑚

2
) − 𝑃1 (

100 𝑚𝑚

2
) (2) 

∑ 𝑀𝑥 = 0 →  𝑒𝑦(𝑅) =  𝑃2(100. 𝑐𝑜𝑠30°) (3) 

𝑒𝑅 = √ 𝑒𝑥
2 + (𝑟𝑦 −  𝑒𝑦)2 (4) 

𝜏𝐺 =
𝑅𝑖𝑒𝑖

𝐴ℎ𝑖
 (5) 

where, τG is the bulk frictional shear resistance of the specimen (kPa), eR is the eccentricity of the 

resultant ram force (mm), Ri is the magnitude of the resultant ram force (kN), ei is the 

eccentricity for each gyration, A is the constant sample cross-section area (m2), and hi is the 

sample height (m), all at the same gyration number. 

The total compaction energy of the gyratory compactor is the sum of the work per unit volume 

due to the resultant force (P) and the work per unit volume due to the moment caused by the 

eccentricity of the applied force (equation 6): 

𝐸𝑛𝑒𝑟𝑔𝑦𝑔𝑦𝑟𝑎𝑡𝑜𝑟𝑦 =
𝜎𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝐴(ℎ0−ℎ𝑖)+4𝜃 ∑ (𝜏𝐺𝑖

𝑉𝑖)𝑛
𝑖=0

𝑉𝑖
 (6) 
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where, vertical is the applied vertical pressure (600 kPa), h0 is the initial specimen height before 

compaction (m), θ is the gyration angle (radians), and Vi is the specimen volume (m3) for each 

gyration (DelRio-Prat et al. 2011, Li et al. 2015a). 

3.2 Field Tests 

FWD, MASW, lightweight deflectometer (LWD), dynamic cone penetrometer (DCP), and 

nuclear gauge tests were performed on five points for each test section as a preliminary 

assessment of the difference in support capacity of the different sections related to the different 

aggregate sources utilized on the surface. For all sections, the spacing between the test points 

were 100 ft, except the section two (OFD Class A), where the length of the section was smaller 

than others and the spacing between the testing points was 50 ft. In addition, International 

Roughness Index (IRI) and dustometer tests were performed on each test section. On the other 

hand, a ground temperature monitoring system was placed in the midpoint of the first test section 

to investigate the frost depth and number of freeze/thaw cycles per year.  

3.2.1 Falling Weight Deflectometer  

An SN121 JILS model FWD was used for this project (Figures 10 and 11).  

 

Figure 10. Falling weight deflectometer overview 
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Figure 11. FWD device 

The loading plate is segmented into two parts to make the pressure distribution uniform under 

the loading plate. This model of FWD has nine sensors with 6 in. to 12 in. horizontal spacing to 

measure the deflections on the road and to provide a measured deflection basin. The schematic 

diagram of the FWD test setup, deflection bowl, and the granular road layers are shown in Figure 

10. Before performing the test, a static load equal to 5.3 kN was applied to the plate to achieve a 

good contact between the plate and the surface materials. Then, three different dynamic 

pressures (36 psi, 40 psi, and 44 psi) were applied on the plate. Table 2 describes the FWD 

configuration.  

Table 2. FWD configuration 

Parameter FWD 

Number of geophones 9 

Geophone spacing (in.) 6 to 12a 

Total length (in.) 66 

Distance from the source to the first geophone (in.) 0 

Static load (lb) 1,200 

Dynamic loads (lb) 4,000; 4,500; 5,000 
a Distance between the transducers in FWD are -12, 0, 6, 12, 18, 24, 36, 48 and 54 in. 

Boussinesq’s solution was utilized to obtain the stress, strains, and deformation at every given 

depth and radius in a homogeneous, linear-elastic half-space, and Odemark’s theory was used to 

assume equivalent layer thickness and match the measured surface deflections with the 

calculated deflections over the equivalent single layer (Li et al. 2018a). According to this 

combined theory, back-calculation was done based on the dynamic loads and peak deflections 

that were observed under the geophones on the two-layered system (Boussinesq 1885, Grasmick 
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et al. 2013, Li et al. 2017a, Odemark 1949, Saltan et al. 2013, Stokoe et al. 1994). In addition, 

the BAKFAA and Modulus 7.0 programs were used for back-calculation analyses to evaluate the 

accuracy and consistency of the results obtained from the combination of Boussinesq’s solution 

and Odemark’s equivalent layer thickness assumption. The bedrock depth was assumed to be 

equal to 158 ft below the ground surface based on the bedrock geology of south-central Iowa 

(Iowa Geological Survey 2002). 

FWD data are generally followed by a back-calculation procedure to acquire the results of the 

elastic modulus for surface and subgrade layers. In that regard, AASHTO’s Guide for the Design 

of Pavement Structures approach (AASHTO 1993) was used for the back-calculation by using 

combined Bousinesq’s and Odemark’s theories for a homogeneous, linear-elastic two-layered 

system of pavement. Bousinesq’s method is helpful to find the stress, strain, and deformation 

values in different depths and horizontal distances from the loading point as shown in equation 7. 

Moreover, an integrated Boussinesq’s solution to find the vertical deflection beneath the center 

of the circular loading plate is shown in equation 8. 

𝑑𝑟,𝑧 =
(1+𝜈)𝐹𝑀𝑎𝑥

2πE√𝑧2+𝑟2
[2(1 − 𝜈) +

𝑧2

𝑧2+𝑟2] (7) 

𝑑0,𝑧 =
𝑓(1−𝜈2)𝐹𝑀𝑎𝑥

πaE

1

√1+(
𝑧

𝑎
)2

 (8) 

where,  

𝑑𝑟,𝑧 = vertical deflection at depth z and radius r 

𝑑0,𝑧 = vertical deflection beneath the loading plate at the surface  

𝜈 = Poisson’s ratio, which is assumed 0.4 and 0.3 for surface and subgrade, respectively 

𝐹𝑀𝑎𝑥 = vertical force 

E = elastic modulus 

𝑧 = depth 

𝑟 = radius from the center of the loading plate  

f = shape factor, which is assumed equal to 2 for uniformly distributed stress condition 

a = radius of the circular loading plate 

For the points with the horizontal distances greater than 2a, the measured surface deflection is 

almost the same and is mainly developed due to the subgrade deflection (Ullidtz 1998). 

Therefore, using equation 7 and based on the surface deflection at r>2a, the subgrade elastic 

modulus is calculated by using equation 9.  

𝐸𝑆𝐺 =
(1−𝜈2)𝐹𝑀𝑎𝑥

πr𝑑𝑟,0
 (9) 

According to Odemark’s theory, an equivalent thickness (ℎ𝑒) was assumed for the calculation of 

the surface elastic modulus in a two-layered system under loading point as it is shown in 

equation 10. Moreover, the measured surface deflection for horizontal distances greater than the 
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stress bulb’s effective radius (𝑎𝑒) should be taken into consideration for calculation of the 

subgrade elastic modulus. However, at relatively greater distances from the loading point, the 

error in the measured deflection can be significant. Accordingly, a radius greater than 0.7𝑎𝑒 

should be considered to be placed in equation 9 to calculate the elastic modulus of the subgrade 

layer (AASHTO 1993). The radius of the stress bulb (𝑎𝑒) is shown in equation 11. 

ℎ𝑒 = ℎ √
𝐸𝐴𝐺𝐺

𝐸𝑆𝐺

3
 (10) 

𝑎𝑒 = √𝑎2 + (ℎ√
𝐸𝐴𝐺𝐺

𝐸𝑆𝐺

3
)2 (11) 

where,  

ℎ𝑒 = equivalent thickness 

ℎ = thickness of the surface layer 

𝐸𝐴𝐺𝐺  = elastic modulus of the surface layer 

𝐸𝑆𝐺  = elastic modulus of the subgrade layer 

𝑎𝑒 = is the radius of the stress bulb 

The back-calculation procedure to determine the elastic modulus of the surface materials is 

followed by a combined Boussinesq’s and Odemark’s solution, as it is shown in equation 12. 

The formula follows a matching procedure between the calculated and measured surface 

deflections beneath the loading point by minimizing the value of the error between those values 

with the change in the surface elastic modulus values (𝐸𝐴𝐺𝐺) (Grasmick 2013). 

𝑑0,0 =
𝑓(1−𝜈2)𝐹𝑀𝑎𝑥

πa
{

1

𝐸𝑆𝐺√1+(
ℎ

𝑎
√

𝐸𝐴𝐺𝐺
𝐸𝑆𝐺

3
)2

+

[1−
1

√1+(
ℎ
𝑎

)2
]

𝐸𝐴𝐺𝐺
} (12) 

3.2.2 Multichannel Analysis of Surface Waves 

The MASW device used for this project had 24 vertical geophones (4.5 Hz) that were fixed in 

steel land streamers to ensure a good contact with the granular road surface. The geophones on 

the land streamer have a higher quality of data in a shorter period of time, compared to the ones 

with spikes to fix the geophones into the ground surface. Heisey et al. (1982b) suggested that the 

spacing between the geophones should be less than two wavelengths and greater than one-third 

of a wavelength. The spacing between the geophones for the device used in this study was 6 in. 

All receivers were connected to a 24-channel Geometrics Geode seismograph. Figure 12 shows 

the schematic diagram of the MASW test setup used in the current study.  



23 

 

Figure 12. MASW general view 

Table 3 shows that the number of geophones in the MASW is greater than those of FWD.  

Table 3. MASW configuration 

Parameters MASW 

Number of receivers 24 

Receiver spacing (in.) 6 

Total length (in.) 138 

Distance from the source to the first receiver (in.) 12 and 72a 
a Distance from source to the first geophone in MASW is 12 in. for small hammer and 72 in. for large hammer 

The spacing of geophones in MASW is less, and they record the velocity as a unique value (Park 

et al. 1999a) compared to the FWD, which only records the maximum deflection beneath the 

geophones. 

MASW presents the change in the Rayleigh wave velocity (VR) with the change of frequency as 

the dispersion curve (Park et al. 1999a). Figure 13 shows the dispersion curve generated based 

on the field data by recording the phase velocity and the frequency by using a small hammer as 

the active source for one of the test points.  
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Figure 13. Experimental dispersion of the results of MASW 

A new hybrid genetic-simulated annealing (GSA) inversion procedure (Lin 2014) was used in 

this study by employing the thickness (m), dry unit weight (kg/cm3), and Poisson’s ratio values 

for the surface and subgrade layers beside the dispersion curve, as the inputs, to back-calculate 

the actual shear wave velocity. Figure 14 represents the final match between the results of the 

change in phase velocity and the change in frequency for dispersion and inversion.  

 

Figure 14. Experimental dispersion and theoretical dispersion in inversion process 

Shear wave velocity is directly related to the elastic modulus (Li et al. 2015b). In this regard, 

equations 13–15 were used to calculate the elastic modulus of the surface and subgrade layers as 

follows:  

𝑉𝑆 = 𝑉𝑅 × (1.13 − 0.16𝜈) (13) 
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𝐺 = 𝑉𝑆
2 × 𝜌 (14) 

𝐸 = 2 × 𝐺 × (1 + 𝜈) (15) 

where, 𝑉𝑆 is shear wave velocity, 𝑉𝑅 is the Rayleigh wave velocity, 𝜈 is the Poisson’s ratio, G is 

the shear modulus, and E is the elastic modulus. 

Figure 15 summarizes the elastic modulus calculation procedures for the FWD and MASW tests.  

 

Figure 15. Procedure to get the elastic modulus from FWD and MASW in situ tests 

The triggering load applied for the MASW test was much smaller than that applied during the 

FWD test and was produced by hitting a 2 lb (small) and a 12 lb (large) hammer on an inch thick 

2.3 in.2 aluminum plate to couple the impact energy from the hammer with the underlying layers. 

The base plate as a coupler mechanism improves the conversion of the impact energy of the 

hammer into the seismic wave energy (Mereu et al. 1963). The change in the shear wave velocity 

due to the change in the frequency is called dispersion (Park et al. 1999b). The resolution of the 

dispersion curve depends on the number of geophones (Mahvelati and Coe 2018). After getting 

the dispersion curve from the field tests, the inversion curve was matched with the dispersion 

curve to obtain the results for the actual shear wave velocity. Poisson’s ratios, as the inputs for 

the surface and subgrade layers were assumed to be 0.3 and 0.4, respectively. The thickness 

values of the surface layers were determined from DCP tests and the subgrade layer thickness 
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was assumed to be infinite for a two-layered system. Then, the shear and elastic modulus of the 

surface and subgrade layers were calculated using equations 13–15. 

3.2.3 Lightweight Deflectometer 

The LWD equipment as a non-destructive test was specifically developed to perform rapid field 

testing of pavement materials, and LWD tests in this study were conducted to determine the 

maintenance frequency required for the test sections. The tests were performed on five points 

within each test section to evaluate the in situ composite elastic modulus (EComp) (stiffness) of the 

granular surfaces and subgrades, as a measure of road serviceability. This stiffness is a function 

of several factors, including compaction quality, packing structure of the various particle sizes 

(Tirado et al. 2017, Xiao et al. 2012), density of the road layers, water content, and temperature 

(Oloo et al. 1997). Any changes in these factors can result in severe distresses (e.g., potholes, 

rutting, etc.), creating a need for road maintenance. Therefore, along with the Ecomp data for each 

test section, the surface layer temperature and water content are presented. The ambient 

temperature of the surface course was measured using a thermocouple installed in the middle of 

the first section, and the same ambient temperature was assumed for all the sections. The water 

content values were measured from samples collected during field testing. The LWD device used 

for testing in this study features a 22 lb hammer with a drop height of 19.69 in., and a base plate 

diameter of 11.81 in. Figure 16 shows the LWD test setup used in this study.  
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Figure 16. Lightweight deflectometer device  

The in situ elastic modulus then was calculated based on the average vertical deflection as shown 

in equation 16.  

𝐸𝐿𝑊𝐷 =
(1−𝜈2)𝜎0𝐴𝑓

𝑑0
 (16) 

where, 𝐸𝐿𝑊𝐷 is elastic modulus, as the result of LWD test, 𝜎0 is vertical stress applied on top of 

the plate, 𝜈 is Poisson’s ratio (assumed as 0.4), 𝑑0 is applied stress, A is plate radius, and f is 

shape factor (assumed to be 2 for a uniform stress distribution) (Vennapusa and White 2009). 

3.2.4 Dynamic Cone Penetrometer 

DCP was used to determine the shear strength and thicknesses of the granular surface and 

subgrade layers for each test section. DCP tests were conducted in accordance with ASTM 
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D6951 (D6951M-09 2015). A DCP cone with a 0.79 in. base diameter was used to penetrate to 

the soil up to 23 in. by using a 17.6 lb hammer. Figure 17 shows the DCP setup.  

 

Figure 17. Dynamic cone penetrometer device  

Using the DCP index (DCPI) (in./blow) as the rate of penetration and empirical correlations 

based on the ASTM standard, the CBR values for each layer were calculated, as noted in 

equations 17 and 18. 

CBR= 
292

DCPI1.12 (17) 

where, CBR > 10 

CBR= 
1

(0.017019×DCPI)
2 (18) 
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where, CBR < 10 

Sudden changes in the cumulative blows versus depth is identified as the change in the layer 

characteristics. Therefore, the depth of the penetration to the transition zone is the thickness of 

the surface layer, as shown in Figure 18.  
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Figure 18. Cumulative blows vs. cumulative depth 

The weighted average of the surface and subgrade CBR values then were calculated as shown in 

equations 19 and 20. 

𝐶𝐵𝑅𝐴𝐺𝐺 =
∑ 𝐶𝐵𝑅𝑖×𝐷𝑖

𝑛
𝑖=1

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠
 (19) 

𝐶𝐵𝑅𝑆𝐺 =
∑ 𝐶𝐵𝑅𝑖×𝐷𝑖

𝑚
𝑖=𝑛+1

𝐹𝑖𝑛𝑎𝑙 𝑑𝑒𝑝𝑡ℎ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡−𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 
 (20) 

where, 𝐶𝐵𝑅𝐴𝐺𝐺 and 𝐶𝐵𝑅𝑆𝐺 are the weighted average CBR values for the surface and subgrade, 

𝐶𝐵𝑅𝑖 is the CBR value calculated by (equations 17–18) formulas for each reading in the surface 

or subgrade layer, 𝐷𝑖 is the reading of the depth of penetration in each layer, n is the number of 

readings in the surface layer, and m is the total number of readings. 
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3.2.5 Automated Plate Load Testing 

Automated plate load test (APLT) was performed on the surface of each testing point to provide 

the stiffness, based on the load-deformation response in accordance with ASTM D1195 Standard 

Test Method for Repetitive Static Plate Load Tests of Soils and Flexible Pavement Components, 

for Use in Evaluation and Design of Airport and Highway Pavements. The results of the APLT 

field testing are to provide the long-term loading performance of the road layers by applying a 

target cyclic stress of 90 psi as a static load for 1,000 cycles on a 12 in. circular flat plate at each 

point for vehicle-loading conditions simulation. Figure 19 shows the plate load test mounted on a 

trailer unit.  

  

Figure 19. APLT setup mounted on a trailer 

The cyclic loading process uses a load pulse during and a dwell time beside the deformation, 

which can be monitored by the operator as shown in Figure 20.  

 

Figure 20. Real-time APLT results of load pulse and deformation 
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Permanent deformation (δp) as the result of the cumulative plastic shear strain, compaction, and 

consolidation (White and Vennapusa 2017) and the composite resilient modulus (Mr) are 

calculated as shown in equations 21 and 22. 

Mr-comp = 
(1−𝜈2)𝜎0𝑎𝑓

𝛿𝑟
 (21) 

𝛿𝑝 = 𝐶𝑁𝑑 (22) 

where,  

Mr-comp = in situ composite resilient modulus 

𝜈 = Poisson’s ratio (assumed to be 0.4) 

𝜎0 = cyclic stress 

a = radius of the plate (6 in.) 

f = shape factor (assumed to be 8/3) 

𝛿𝑝 = permanent deformation 

C = the plastic deformation after the first cycle of repeated loading 

N = number of load cycles 

d = scaling exponent 

3.2.6 International Roughness Index 

Roughness of the road surface as representative of ride quality is an important factor to evaluate 

the granular roadway performance, and lower IRI values reflect higher ride quality, lower fuel 

consumption, and longer service life (Jia et al. 2018). In the current study, the collection of road 

roughness measurements representative of road condition was done using a smartphone 

application named Roadroid. This software used a built-in smartphone accelerometer to evaluate 

roughness index of the different surfaces in a rapid and cost-effective manner (Akinmade et al. 

n.d.). In this method, the smartphone was mounted on the windshield of a one-ton truck and, 

after adjustments, the calculated International Roughness Index (cIRI) values were measured and 

stored in the phone while driving between 40 and 50 mph. Moreover, photos are taken during the 

survey. In addition, the software has the ability to do a friction survey. To accomplish the friction 

survey, the driver should reach to above 30 mph and then push the break until the car completely 

stops. The friction value (μ) and a photo of the stop point are stored to the phone. The data in 

addition to the location of the test are uploaded and available on the Roadroid website. 

3.2.7 Dustometer 

The dustometer test is another road-performance measure used in this study to estimate the 

appropriate granular road maintenance frequency. To evaluate the dust production of each test 

section in relation to the different aggregate sources utilized in the surface layers, dustometer 

tests were performed several times over the length of the project. Figure 21 shows the setup of 

the dustometer device attached by a steel bracket to the bumper of a one-ton truck.  
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Figure 21. Dustometer setup, top, and dust production measurement paper, bottom 

The dustometer has a 12 in. × 12 in. steel mesh with a 0.0079 in. mesh size sieve to prevent large 

particles from damaging the tightly held filter paper. A 1/3 horsepower suction pump is 

connected to the mounted dustometer with a 2 in. diameter flexible hose to collect dust behind 

the rear wheel while driving at a speed of 45 mph. A 4,400 watt gasoline-powered generator 

provides power for the suction pump. The filter paper was removed after performing the test over 

a section, and the mass of the dust on the paper is divided by the length of the sections to 

determine the amount of dust per unit length. 

3.2.8 Nuclear Gauge Test 

A nuclear gauge test is a fast and non-destructive test and was performed by Iowa DOT to 

measure the in situ density and the moisture content of the surface material by attenuation of the 

gamma radiation at a known depth. It is conducted in accordance with ASTM D6938-15 

Standard Test Methods for In-Place Density and Water Content of Soil and Soil-Aggregate by 

Nuclear Methods (Shallow Depth). In this test, the setup should be placed in a good contact to 

the surface of the granular roadway. The device recorded the wet density and the water content. 

Then, the dry density (γdry) was calculated by using equation 23.  

γdry = 
γ𝑤𝑒𝑡

1+𝑊𝐶/100
 (23) 

where, the γdry is the dry density, γwet is the wet density, and WC is the water content. 



33 

Figure 22 shows the nuclear density gauge device.  

 

Figure 22. Nuclear density gauge test device 
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CHAPTER 4. MATERIALS 

Results of the sieve analysis, Atterberg limits, compaction, abrasion, and C-Freeze tests for the 

geomaterials used for this project are summarized in this chapter. 

4.1 Geomaterials 

Surface aggregate materials for this study were collected from quarries featuring four different 

Iowa bedrock types: Lime Creek Formation (LCF), Oneota Formation Dolomite (OFD), Bethany 

Falls Limestone (BFL), and Crushed River Gravel (CRG) (Figure 23).  

 

Figure 23. Location of the aggregate quarries for this project 

The first three quarries provided both conventional (Class A) and coarse clean aggregate 

materials, while the CRG quarry provided crushed coarse clean gravel materials. The main 

difference between the Class A and clean materials was their particle sizes, whereby the Class A 

materials had higher fines contents and lower percentages of coarse aggregates than the clean 

materials. Figures 24 to 26 show the samples of the Class A, clean, and the mixture of the Class 

A and clean materials. 
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Figure 24. Class A surface aggregate materials 
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Figure 25. Clean surface aggregate materials  



37 

 

Figure 26. Mixture of clean and BFL Class A surface aggregate materials 

Seven field test sections were built in Decatur County, Iowa. The first three sections consisted of 

Class A materials: LCF Class A, OFD Class A, and BFL Class A, while the local BFL Class A 

material was also mixed with clean aggregate materials collected from all four quarries for the 

final four sections. Therefore, the local BFL Class A material was the only one mixed with the 

four clean materials to examine the mechanistic performance of such mixtures. To achieve the 

best performance and durability for the mixture sections, the optimum target particle-size 

distribution (PSD) curves of the mixtures were determined via the gradation optimization method 

described in (Li et al. 2018b). According to the optimization analyses, it was determined that the 

mixing ratios by weight for the last four test sections should be as follows: 80% BFL Class A + 

20% BFL Clean, 70% BFL Class A + 30% OFD Clean, 70% BFL Class A + 30% LCF Clean, 

and 70% BFL Class A + 30% CRG Clean aggregate.  

4.2 Gradation 

Figures 27 and 28 show the particle-size distribution of Class A aggregates and clean aggregates 

that were collected from each test site during construction, as well as the subgrade.  
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Figure 27. Particle-size distribution of the surface aggregate materials  
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Figure 28. Particle-size distribution curve of clean aggregate materials  

Table 4 also summarizes the soil index properties. 
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Table 4. Index properties 

Parameter 

LCF 

Class 

A 

OFD 

Class A 

BFL 

Class A 

80% 

BFL 

Class A 

+ 

20% 

BFL 

Clean 

70% 

BFL 

Class A 

+ 

30% 

OFD 

Clean 

70% 

BFL 

Class A 

+ 

30% 

LCF 

Clean 

70% 

BFL 

Class A 

+ 

30% 

CRG 

Clean Subgrade 

LCF 

Clean 

OFD 

Clean 

BFL 

Clean 

CRG 

Clean 

 Particle-size analysis results (ASTM D422-03) 

Gravel content (%) (>4.75 mm) 46 54 61 79 72 65 71 12 97 97 94 98 

Sand content (%) (4.75 mm–75 μm) 45 37 24 13 18 23 19 24 1 2 2 1 

Silt content (%) (75 μm–2 μm) 8 8 14 8 8 11 9 53 
2 2 4 1 

Clay content (%) (< 2 μm) 1 1.3 2 0 2 0 0 11 

D10 (mm) 0 0 0 1 0 0 0 0 10 10 14 9 

D30 (mm) 2 1 3 7 5 4 5 0 14 15 20 13 

D60 (mm) 6 8 9 15 12 11 11 0 19 21 29 17 

Coefficient of uniformity, Cu 48 91 185 25 111 154 103 0 2 2 2 2 

Coefficient of curvature, Cc 7 2 17 5 19 17 19 7 1 1 1 1 

 Atterberg limits test results (ASTM D4318-10e1) 

Liquid limit (%) 15 NA 20 20 19 17 19 31 - - - - 

Plasticity index 1 NA 4 5 4 3 5 12 - - - - 

 AASHTO and USCS soil classifications (ASTM D2487-11 and D3282-09) 

AASHTO A-1-a A-1-a A-1-a A-1-a A-1-a A-1-a A-1-a A-6 A-1-a A-1-a A-1-a A-1-a 

USCS group symbol GW GW GW GW GW GW GW CL GP GP GP GP 

USCS group name 

Well-

Graded 

Gravel 

Well-

Graded 

Gravel 

Well-

Graded 

Gravel 

Well-

Graded 

Gravel 

Well-

Graded 

Gravel 

Well-

Graded 

Gravel 

Well-

Graded 

Gravel 

Sandy 

Lean Clay 

Poor-

Graded 

Gravel 

Poor-

Graded 

Gravel 

Poor-

Graded 

Gravel 

Poor-

Graded 

Gravel 
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Table 4 shows the gravel, sand, and fines content of the Class A materials, and they ranged from 

46 to 61%, 26 to 45%, and 9 to 15%, respectively. In addition, the gravel, sand, and fines 

contents for the clean aggregate materials ranged from 94 to 98%, 1 to 2%, and 1 to 4%, 

respectively. BFL Clean and CRG Clean have the aggregate top size of 1 ½ in. and ¾ in., 

respectively. However, LCF Clean and OFD Clean have the aggregate top size of 1 in.  

Sections with LCF Class A, OFD Class A, BFL Class A, and the mixture of 70% BFL Class A + 

30% CRG Clean have the aggregate top size of ¾ in. for their surface aggregate. On the other 

hand, sections with 80% BFL Class A + 20% BFL Clean, 70% BFL Class A + 30% OFD Clean, 

and 70% BFL Class A + 30% LCF Clean have the aggregate top size of 1 in. All of the granular 

road surface aggregate materials are classified as well-graded gravel (GW), or A-1-a, while the 

subgrade is classified as sandy lean clay (CL), or A-6, by USCS and AASHTO classification 

systems, respectively. All clean materials are classified as poor-graded gravel (GP) and A-1-a by 

USCS and AASHTO classification systems, respectively. OFD Class A did not show any 

plasticity. On the other hand, the liquid limit and plasticity index of materials collected from 

other sections ranged from 15 to 20 and 1 to 5, respectively. 

4.3 Compaction Test Results 

The standard Proctor test was performed on the surface aggregate materials and subgrade to 

determine the optimum moisture content (wopt) and the maximum dry density (γdmax) of each 

material (ASTM D698-12e1). A summary of the results is shown in Table 5.  

Table 5. Optimum moisture content and the maximum dry density results of the Proctor 

test 

Materials 

Optimum moisture 

content (%) 

Maximum dry 

density (pcf) 

LCF Class A 5 141 
OFD Class A 5 142 
BFL Class A 9 130 
80% BFL Class A + 20% BFL Clean 6 134 
70% BFL Class A + 30% OFD Clean 9 135 
70% BFL Class A + 30% LCF Clean 5 134 
70% BFL Class A + 30% CRG Clean 10 132 
Subgrade 13 113 

 

Moreover, the eight graphs in Figure 29 show the compaction curves obtained for all materials 

along with zero air void lines.  
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Figure 29. Dry density vs. water content graphs from standard Proctor tests for all 

materials 

The zero-air-void lines (100% degree of saturation line) were also drawn for all materials to 

check the accuracy of the compaction test results. The γdmax of the subgrade was lower than those 

of all granular road surface aggregates (113 pcf) and its wopt was the highest (13%). The wopt of 

granular road surface aggregates were between 4.9% and 9.6%. 

4.4 California Bearing Ratio Test Results 

Figure 30 shows the results of the laboratory CBR tests that were performed on the surface 

aggregate and subgrade materials.  
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Figure 30. Penetration depth vs. stress on piston during CBR test 

The CBR specimens were prepared at their wopt with standard Proctor energy. In this project, the 

CBR tests were performed under both soaked and unsoaked conditions.  

Figure 31 shows the CBR values for each specimen, which are measured using the corrected 

stress values for 0.1 in. depth of penetration.  
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Figure 31. CBR values for all sections 

Duplicate tests were conducted, and the average of these duplicates were presented as the CBR 

of each granular road surface aggregate and subgrade soil. 

4.5 Abrasion Test Results 

The results of the LA abrasion and Micro-Deval tests performed on all of the surface materials 

are presented in Figure 32.  
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Figure 32. LA abrasion and Micro-Deval test results 

The Micro-Deval test results showed that the LCF Class A experienced the least material loss 

(11%) while local BFL Class A had the highest material loss (49%). This indicates that the BFL 

Class A does not have high durability under wet conditions. After LCF Class A, OFD Class A 

had the second lowest Micro-Deval material loss (17%). Material loss for the mixtures of BFL 

Class A with the four clean aggregates were between 33% and 43% according to the Micro-

Deval tests. These results indicate that inclusion of BFL Class A in the surface mixtures will 

yield a significant decrease in the resistance to abrasion. 

The results of LA abrasion tests were similar to those of the Micro-Deval tests. LCF Class A 

experienced the lowest material loss of 27%, while the rest of the materials have similar losses 

ranging from 36%–40%. All of the granular road surface aggregates used in this study met the 

Iowa DOT specification for Class A surface materials, which requires an LA abrasion loss below 

45%.  

4.6 C-Freeze Test Results 

Figure 33 shows the results of C-Freeze test, which was performed on all surface materials.  
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Figure 33. C-Freeze results 

LCF Class A and OFD Class A had 1% and 3% loss, respectively, during the test. Loss of other 

surface materials were between 8% and 9%. BFL Class A had the highest loss (9%) indicating 

that local material had the least durability under freeze/thaw conditions. As a result, inclusion of 

BFL Class A in the surface materials makes the roadways more prone to abrasion during 

freezing and thawing. Overall, the results of C-Freeze tests showed that all surface materials met 

the Iowa DOT specification for granular roadways (<15%).  

4.7 Gyratory Compaction Test Results 

Gyratory compaction tests were conducted on the geomaterials of all seven granular road 

surfaces to evaluate the changes in dry unit weight (γdry) and shear resistance. Figure 34 shows 

the changes in the height of the specimens after 500 gyrations.  
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Figure 34. Height changes in the specimens after 500 gyrations 

LCF Class A followed by OFD Class A had the minimum changes in the height, 1.1 in. and 1.9 

in., respectively. However, the rest of the specimens, which have BFL Class A, had higher 

amounts of height loss (2 in. to 2.2 in.). 

Figure 35 shows the increase in the γdry of the specimens after 500 gyrations.  
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Figure 35. Dry unit weight (γdry) changes in the specimens after 500 gyrations 

BFL Class A with 156 pcf had the maximum and 70% BFL Class A + 30% LCF Clean with 143 

pcf had the minimum γdry. The increase in γdry was observed to be faster for OFD Class A while 

the decrease rate slowed down after 20 gyrations. 

Figure 36 compares the γdry obtained from the Proctor test and gyratory tests.  
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Figure 36. Comparison of the γdMax obtained from gyratory and Proctor compaction tests 

Results showed that the γdmax obtained through gyratory compaction were higher for all materials 

than those determined via the Proctor compaction test. The reason for these results could be due 

to the higher energy levels applied on the specimens during gyratory compaction process.  

Figure 37 shows the change in the shear resistance (τG, pcf) and void ratio (e) in the specimens 

after 500 gyrations.  
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Figure 37. Change in the void ratio vs. shear resistance during gyratory test 

The results showed that there was always a fluctuation in the shear resistance while the void ratio 

follows a gradual change. The reason for this behavior was reported to be the kneading-shearing 

mechanism induced by the gyratory test due to the change in aggregate coordinates and point-to-

point contact between the aggregates during the test (Li et al. 2017b). Moreover, a small change 

in the void ratio after the first 250 gyrations (while the test was stopped) caused a tremendous 

change in the shear resistance for all materials. 

Figure 38 shows the change in the particle-size distribution of each material after 500 gyrations.  
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Figure 38. The change in particle-size distribution of materials after 500 gyrations 

Results showed that the minimum change in particle-size distribution was observed for LCF 

Class A, followed by OFD Class A and 70% BFL Class A + 30% OFD Clean. The maximum 

changes in particle-size distributions were observed for 80% BFL Class A + 20% BFL Clean and 

70% BFL Class A + 30% LCF Clean indicating that local BFL Class A has the worst resistance 

under gyratory loads. 

Figure 39 shows the changes in the fines content of each granular roadway surface material after 

being subjected to 500 gyrations.  
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Figure 39. Fines content change in the materials after 500 gyrations 

Results showed that the LCF Class A and OFD Class A had the smallest decrease in fines 

content, while the rest of the materials with BFL Class A inclusion experienced an increase in 

their corresponding fines content. The maximum increase in fines content was observed for the 

BFL Class A and 70% BFL Class A + 30% LCF Clean mixture. 

Results showed that sand content of each material was increased after 500 gyrations. The 

maximum sand content increase was observed for 80% BFL Class A + 20% BFL Clean and 70% 

BFL Class A + 30% LCF Clean while the minimum increase was observed for LCF Class A and 

OFD Class A (Figure 40).  
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Figure 40. Sand content change of the materials after 500 gyrations 

Gravel content was also decreased for all materials after being subjected to 400 gyrations. The 

maximum gravel content decrease was also observed for the 80% BFL Class A + 20% BFL 

Clean and the 70% BFL Class A + 30% LCF Clean, the same results as for the sand content. The 

minimum increase in gravel content was observed for LCF Class A, OFD Class A, and 70% BFL 

Class A + 30% OFD Clean (Figure 41).  
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Figure 41. Gravel content change in the materials after 500 gyrations 

Figure 42 shows the total breakage of the aggregate materials after 500 gyrations.  



56 

 

Figure 42. Total breakage calculated for each material after 500 gyrations 

The maximum total breakage was observed for the 80% BFL Class A + 20% BFL Clean (0.29) 

and the 70% BFL Class A + 30% LCF Clean (0.26), while the minimum total breakage was 

observed for LCF Class A (0.03), OFD Class A (0.09), and 70% BFL Class A + 30% OFD Clean 

(0.08). 
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CHAPTER 5. CONSTRUCTION AND MAINTENANCE 

5.1 Site Description 

The test sites were located on CR J22 Popcorn Road, Decatur County, Iowa. Figure 43 represents 

the accessibility of the project location from I-35 south. 

 

Figure 43. Directions to the project location from I-35 south 

Figure 44 shows the schematic diagram of the locations of the test sections. Sections aimed to 

avoid being near private properties. Therefore, there was some distance between sections 2 and 

3, 4 and 5, 5 and 6, and 6 and 7. The BFL Class A section was selected as a control section.  

 

Figure 44. Schematic diagram of the locations of the test sections 
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The road width was 30 ft and built in seven sections. The granular road surface aggregate 

materials were compacted to achieve a final thickness of 4 in. (Figure 45).  

 

 

Figure 45. Schematic diagram of the test sections 

The length of each section was 500 ft, while the second section length was 300 ft, due to the lack 

of material (OFD Class A). The research team conducted the field tests on five points for the 

seven sections. The first testing point was placed 50 ft from the beginning of the section, and the 

spacing between each point was 100 ft. However, due to the shorter length of the second section 

(OFD Class A), 50 ft was considered as the interval between the testing points.  

DCP, FWD, MASW, APLT, and nuclear gauge tests were conducted at each testing point, and 

samples of the granular road surface materials were collected to monitor the changes in the 

gradation characteristics (fines content, gravel-to-sand ratio) and the breakage indices over time. 

Test sites were monitored from fall 2016 to spring 2019.  

5.2 Construction 

The existing (original) surface of the granular road was a chip seal layer (Figure 46), which was 

ripped off from the surface before the construction of test sections (Figure 47).  
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Figure 46. CR J22 before construction 

 

Figure 47. Scraped surface of the roadway 

In this regard, the scarifier blades, which were attached to the motor grader, were used to remove 

the existing materials from the surface. The removed materials then were dumped into trucks by 

a loader. Afterward, the top of the surface was compacted using a drum roller in order to have a 

uniform subgrade layer. Then, the specific aggregate materials for each section were brought by 

tandem-dump and bottom-dump trucks. The blading and compaction were performed to achieve 

a smooth road surface by using the motor grader and drum roller, respectively. Figure 48 

summarizes the five steps of the construction.  
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Figure 48. Construction steps 

Photographs of the construction process are shown for each section in Appendix A. Details of the 

time spent for the labor and equipment for all sections are reported in Table 6.  

Table 6. Labor and equipment hours for the construction 

Sections 

Labor 

(hr) 

Grader 

(hr) 

Tandem 

dump 

(hr) 

Bottom 

dump 

(hr) 

Drum 

roller 

(hr) 

LCF Class A 66 16 21 7 5 

OFD Class A 46 11 15 5 4 

BFL Class A 66 16 21 7 5 

80% BFL Class A + 20% BFL Clean 66 16 21 7 5 

70% BFL Class A + 30% OFD Clean 66 16 21 7 5 

70% BFL Class A + 30% LCF Clean 66 16 21 7 5 

70% BFL Class A + 30% CRG Clean 66 16 21 7 5 

 

5.3 Maintenance 

Granular roadways in cold regions, such as Iowa, are prone to harsh surface deteriorations and 

distresses due to freezing and thawing. Figure 49 shows a few examples of these distresses, 

including potholes, rutting, and wash boarding.  
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Figure 49. Distress types on surface materials: (a) big pothole in middle of BFL Class A, (b) 

severe rutting in 80% BFL Class A + 20% BFL Clean, (c) scattered potholes in 70% BFL 

Class A + 30% LCF Clean, and (d) material movement 70% BFL Class A + 30% CRG 

Blading is a common maintenance procedure for county engineers to make the roadway surface 

smooth and as convenient as possible for the drivers. 

In order to determine the ride quality on the road surface after the freeze/thaw seasons (spring 

2017 and spring 2018), a field survey was conducted in April 2017 and May 2018 to monitor the 

aggregate deteriorations. After the survey, samples from 10 different locations from each test 

section were collected for gradation analyses, and surface layer thickness measurements were 

conducted. The weight of the newly added materials were calculated based on the existing 

surface of the test sections to ensure that surface thickness went back to initial construction 

thickness (4 in.).  

The maintenance procedure started with scraping the surface of each test section with the motor 

grader. Scarifier blades were used for the second section (OFD Class A) to scrape the surface, 

due to the stiffer surface of this section than the others. The new aggregate materials were 

brought from the piles and placed on each section accordingly. Then, the existing and new 
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aggregate materials were bladed to get the optimum mixture, and then the motor grader shaped 

the surface. In order to wheel compact the surfaces, the motor grader passed several times on the 

road surfaces. Table 7 shows a summary of the labor and equipment hours for the maintenance.  

Table 7. Labor and equipment hours for the maintenance 

Sections 

Labor 

(hr) 

Grader 

(hr) 

Tandem 

dump (hr) 

Loader 

(hr) 

LCF Class A 10 3 6 2 

OFD Class A 7 2 4 1 

BFL Class A 10 3 6 2 

80% BFL Class A + 20% BFL Clean 10 3 6 2 

70% BFL Class A + 30% OFD Clean 10 3 6 2 

70% BFL Class A + 30% LCF Clean 10 3 6 2 

70% BFL Class A + 30% CRG Clean 10 3 6 2 

 

Figure 50 shows the equipment used for construction and maintenance. 

 

Figure 50. Equipment used: (a) motor grader for blading, (b) dump trucks, (c) loader for 

collection the existing chip seal layer, and (d) vibratory roller for compaction 
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5.4 Quality Assurance and Quality Control 

Quality assurance (QA) and quality control (QC) were performed on the sections during and 

after construction and maintenance. In that regard, the required thickness, moisture content, and 

the quality of the compaction were monitored and controlled by visual observation and the 

experience of the county engineers and crew.  

The thickness of the surfaces was checked immediately after dumping the aggregate materials, 

blading, and compacting the granular roadway surface. Accordingly, a ruler was pushed to the 

surface at several points of each section in the middle and the shoulders of the road to ensure that 

the thickness of the compacted granular road surface was 4 in. Moisture contents were measured 

via nuclear density gauge and adjusted accordingly.  

To ensure adequate compaction, a drum roller and wheel compaction with a motor grader were 

used, respectively, for construction and maintenance. 
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CHAPTER 6. RESULTS AND DISCUSSION 

6.1 Gradation Change 

In order to monitor the material deterioration over time, samples were collected at different 

times, and sieve analysis was performed on each sample. The materials were collected from 

between the surface and the top of the subgrade layer from five points in each section. Then, the 

samples were combined and one sample was used to perform sieve analyses per each section. 

Particle-size distribution curves of each surface material sample collected from seven sections 

over time are shown in Appendix B. The change in fines content, gravel-to-sand ratio, and total 

breakage, were calculated to evaluate the change in each surface material over time from 

September 2016 to May 2019 (Figures 51–53). 

 

Figure 51. Fines content change of materials over time 
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Figure 52. Gravel-to-sand ratio changes of all materials over time 
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Figure 53. Total breakage change of all materials over time 

Moreover, the changes in the values of the fines content and gravel-to-sand ratio, from 

September 2016 to April 2019, are also shown in detail in Tables 8 and 9.  

Table 8. Fine content change for all section over time 

Sections 

Fines content 

Sep-16 Apr-17 May-17 Jun-17 Apr-18 May-18 Apr-19 

LCF Class A 9 11 10 10 11 14 12 

OFD Class A 9 12 11 11 10 11 12 

BFL Class A 15 20 18 24 22 24 24 

80% BFL Class A + 20% BFL Clean 8 17 14 17 18 21 22 

70% BFL Class A + 30% OFD Clean 10 20 15 14 17 17 16 

70% BFL Class A + 30% LCF Clean 11 15 11 15 19 15 22 

70% BFL Class A + 30% CRG Clean 10 19 12 16 20 12 17 
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Table 9. Gravel-to-sand ratio changes for all sections over time 

Sections 

Gravel-to-sand ratio 

Sep-16 Apr-17 May-17 Jun-17 Apr-18 May-18 Apr-19 

LCF Class A 1.0 0.8 1.0 1.1 0.9 0.6 0.7 

OFD Class A 1.5 1.2 1.3 1.3 1.2 1.1 1.2 

BFL Class A 2.5 1.4 1.4 0.6 1.0 0.8 0.7 

80% BFL Class A + 20% BFL Clean 6.0 2.1 1.8 1.8 1.1 1.0 0.9 

70% BFL Class A + 30% OFD Clean 3.9 1.8 1.7 1.8 1.5 1.5 1.8 

70% BFL Class A + 30% LCF Clean 2.8 2.1 2.6 1.3 1.3 1.7 1.0 

70% BFL Class A + 30% CRG Clean 3.7 1.5 2.8 1.1 1.2 2.2 1.6 

 

The variations in the fines content for LCF Class A (9 to 14%) and the OFD Class A (9 to 12%) 

were the lowest. However, the rest of the sections, which were built with BFL Class A, showed 

higher variations in fines content over time (Figure 52 and Table 8). Moreover, the lowest fines 

content change was observed for LCF Class A and OFD Class A. Within the mixtures, the 80% 

BFL Class A + 20% BFL Clean mixture experienced the highest increase in fines content over 

the three-year period, while the 70% BFL Class A + 30% Clean OFD had the lowest fines 

content increase. 

Figure 52 and Table 9 show the changes of the gravel-to-sand ratio values over time. Gravel-to-

sand ratios of all materials were the highest right after construction, when none of the sections 

had been exposed to high volume of traffic yet. The minimum variations in the gravel-to-sand 

ratio were observed for OFD Class A (1.2 to 1.5) and LCF Class A (0.6 to 1.1). However, the 

rest of the sections, which included BFL Class A, experienced a decrease in their gravel-to-sand 

ratios over time (Figure 52 and Table 9). Moreover, the highest gravel-to-sand ratio was 

observed for 80% BFL Class A + 20% BFL Clean after the construction where the maximum 

size of the aggregate was 1.5 in., while for the rest of the sections this value was 1 in. Figure 52 

shows that 80% BFL Class A + 20% BFL Clean experienced the highest decrease in gravel-to-

sand ratio. The mixture of 70% BFL Class A + 30% OFD Clean seemed to be the most stable in 

terms of keeping the gravel-to-sand ratio constant over time.  

Figure 53 and Table 10 show the total breakage changes of the aggregate materials over the time 

of the project. The maximum total breakage was observed for the 80% BFL Class A + 20% BFL 

Clean, where the top size aggregate material was higher than those of others (1.5 in.). The 

minimum total breakage change was observed for OFD Class A (0.08 to 0.12), while the 

maximum change in total breakage was observed for 70% BFL Class A + 20% BFL Clean.  
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Table 10. Total breakage changes for all sections over time 

Sections 

Total breakage 

Sep-16–

Apr-17 

Sep-16–

May-17 

Sep-16–

Jun-17 

Sep-16–

Apr-18 

Sep-16–

May-18 

Sep-16–

Apr-19 

LCF Class A 0.13 0.05 0.02 0.10 0.25 0.20 

OFD Class A 0.12 0.09 0.08 0.08 0.12 0.12 

BFL Class A 0.24 0.17 0.51 0.35 0.43 0.44 

80% BFL Class A + 20% BFL Clean 0.41 0.38 0.43 0.59 0.68 0.72 

70% BFL Class A + 30% OFD Clean 0.37 0.29 0.25 0.39 0.38 0.31 

70% BFL Class A + 30% LCF Clean 0.14 0.03 0.27 0.35 0.21 0.46 

70% BFL Class A + 30% CRG Clean 0.37 0.09 0.38 0.46 0.15 0.32 

 

6.1.1 September 2016 (Construction) 

The sample collection started in September 2016, immediately after the construction of test 

sections. Sieve analyses were performed on the samples. Based on the results of the sieve 

analyses, the fines content of the surface aggregate materials were in the range of 8 to 15%, 

where the minimum fines content was for the 80% BFL Class A + 20% BFL Clean section and 

the BFL Class A had the highest fines content. In addition, the gravel-to-sand ratio values ranged 

from 1 to 6 for LCF Class A and 80% BFL Class A + 20% BFL Clean, respectively. The 

breakage potential values ranged from 1.56 to 2, where the minimum breakage potential is for 

OFD Class A, and the maximum breakage potential is for 80% BFL Class A + 20% BFL Clean. 

6.1.2 April 2017 

The second sample collection was carried out after the first winter season, in April 2017, in order 

to monitor the effects of freezing and thawing on the surface materials. Fines contents for all test 

sections increased in the range of 21 to 109%, where the minimum increase was observed for the 

LCF Class A section, and the maximum increase for the 80% BFL Class A + 20% BFL Clean 

section. However, gravel-to-sand ratios for all surface materials decreased from 21% to 65%. 

The maximum gravel-to-sand ratio decrease was observed for 80% BFL Class A + 20% BFL 

Clean, and the minimum change was observed for OFD Class A. The breakage potential values 

for all sections decreased from 8% to 20% for OFD Class A and 80% BFL Class A + 20% BFL 

Clean, respectively (Table 11).  
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Table 11. Fines content, gravel-to-sand ratio, and breakage potential changes of all sections 

in April 2017 

Sections 

April 2017  

Fines content 

(%) 

Gravel/Sand 

(%) 

Breakage 

potential (%) 

LCF Class A 21 -25 -8 

OFD Class A 29 -21 -8 

BFL Class A 33 -45 -15 

80% BFL Class A + 20% BFL Clean 109 -65 -20 

70% BFL Class A + 30% OFD Clean 109 -53 -20 

70% BFL Class A + 30% LCF Clean 33 -25 -8 

70% BFL Class A + 30% CRG Clean 95 -60 -20 

 

6.1.3 May 2017 (Maintenance) 

Maintenance was first conducted in May 2017 to reshape the surfaces and arrange the PSD of the 

surface materials as close as possible to the target gradation. Accordingly, new aggregate 

materials were placed on top of the surfaces and were mixed and compacted with the existing 

aggregate materials by the motor grader. The fines contents of test sections only decreased by 

3% for the 70% BFL Class A + 30% LCF Clean after the addition of coarser aggregates. Fines 

contents of all other sections were higher than their initial fines contents (September 2016). 

Gravel-to-sand ratio change was between 0.96 and 2.58 for LCF Class A and 70% BFL Class A 

+ 30% CRG Clean, respectively. The percent change in gravel-to-sand ratio was between -7% 

for the LCF Class A and -71% for the 80% BFL Class A + 20% LCF Clean. Gravel-to-sand 

ratios changed between 1.52 and 1.72 for the LCF Class A, the 70% BFL Class A + 30% LCF 

Clean, and the 70% BFL Class A + 30% CRG Clean. The lowest change in gravel-to-sand ratio 

from initial condition was for the 70% BFL Class A + 30% LCF Clean, with -2% and the highest 

change in gravel-to-sand ratio was for the 80% BFL Class A + 20% BFL Clean with -19%. 

Breakage potentials of the surface materials after the first maintenance were also lower than 

those for all sections after construction. 

Table 12 shows the results of the sample testing in May 2017. 

Table 12. Fines content, gravel-to-sand ratio, and breakage potential changes in May 2017 

Sections 

May 2017  

Fines 

content (%) 

Gravel/Sand 

(%) 

Breakage 

potential (%) 

LCF Class A 3 -7 -3 

OFD Class A 23 -11 -6 

BFL Class A 16 -44 -11 

80% BFL Class A + 20% BFL Clean 83 -71 -19 

70% BFL Class A + 30% OFD Clean 56 -58 -16 

70% BFL Class A + 30% LCF Clean -3 -9 -2 

70% BFL Class A + 30% CRG Clean 24 -23 -5 
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6.1.4 June 2017 

In order to monitor changes in the gradation properties of surface materials one month after the 

maintenance, another sample collection was performed in June 2017. The fines content for the 

BFL Class A section, the 70% BFL Class A + 30% LCF Clean, and the 70% BFL Class A + 

30% CRG Clean changed significantly since maintenance, where it increased 40%, 31%, and 

31%, respectively. Likewise, the gravel-to-sand ratios decreased significantly for the BFL Class 

A section (60%), the 70% BFL Class A + 30% LCF Clean (51%), and the 70% BFL Class A + 

30% CRG Clean (61%), while the changes in the gravel-to-sand ratio for other sections was 

negligible. Moreover, the breakage potential was notably changed just for the aforementioned 

sections, where the breakage potential decreased 23% for the BFL Class A section, 14% for the 

70% BFL Class A + 30% LCF Clean, and 17% for the 70% BFL Class A + 30% CRG Clean.  

Table 13 shows the results of the sample testing in June 2017. 

Table 13. Fines content, gravel-to-sand ratio, and breakage potential changes in June 2017 

Sections 

June 2017  

Fines 

content (%) 

Gravel/Sand 

(%) 

Breakage 

potential (%) 

LCF Class A 1 13 2 

OFD Class A 0 1 0 

BFL Class A 40 -60 -23 

80% BFL Class A + 20% BFL Clean 16 2 -3 

70% BFL Class A + 30% OFD Clean -7 10 3 

70% BFL Class A + 30% LCF Clean 31 -51 -14 

70% BFL Class A + 30% CRG Clean 31 -61 -17 

 

6.1.5 April 2018 

In order to monitor the changes in the material properties after the second freeze/thaw period, 

samples were collected from the sections in April 2018, and sieve analyses were performed. The 

fines contents of the 70% BFL Class A + 30% LCF Clean (69%) and the 70% BFL Class A + 

30% CRG Clean (65%) changed significantly after maintenance. However, the OFD Class A had 

a decrease in its fines content. The gravel-to-sand ratios of all materials decreased since the first 

maintenance, ranging from 4% to 58%. The minimum and maximum changes in the gravel-to-

sand ratios for this period were observed for LCF Class A and 70% BFL Class A + 30% CRG 

Clean, respectively. The breakage potentials for all sections decreased with the exception of 

OFD Class A. The maximum decrease in the breakage potential was observed for 70% BFL 

Class A + 30% CRG Clean. 

Table 14 shows the results of the sample testing in April 2018. 
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Table 14. Fines content, gravel-to-sand ratio, and breakage potential changes in April 2018 

Sections 

April 2018 

Fines 

content (%) 

Gravel/Sand 

(%) 

Breakage 

potential (%) 

LCF Class A 11 -4 -3 

OFD Class A -10 -8 1 

BFL Class A 26 -32 -12 

80% BFL Class A + 20% BFL Clean 22 -38 -13 

70% BFL Class A + 30% OFD Clean 16 -12 -6 

70% BFL Class A + 30% LCF Clean 69 -50 -18 

70% BFL Class A + 30% CRG Clean 65 -58 -22 

 

6.1.6 May 2018 

Another sample collection was implemented in May 2018 after maintenance completed in April 

2018. The results of the sieve analyses showed that the fines contents of all sections since spring 

2017 (maintenance) increased while the gravel-to-sand ratios and the breakage potentials 

decreased as expected. OFD Class A had the minimum and 80% BFL Class A + 20% BFL Clean 

had the maximum changes in the fines content, gravel-to-sand ratios, and the breakage potentials 

among all of the sections.  

Table 15 shows the results of the sample testing in May 2018. 

Table 15. Fines content, gravel-to-sand ratio, and breakage potential changes in May 2018 

Sections 

May 2018 

Fines 

content (%) 

Gravel/Sand 

(%) 

Breakage 

potential (%) 

LCF Class A 44 -35 -13 

OFD Class A 1 -14 -2 

BFL Class A 39 -43 -17 

80% BFL Class A + 20% BFL Clean 48 -41 -19 

70% BFL Class A + 30% OFD Clean 15 -10 -5 

70% BFL Class A + 30% LCF Clean 34 -36 -11 

70% BFL Class A + 30% CRG Clean 3 -23 -4 

 

6.1.7 Comparisons between the Sections over Time 

Table 16 shows the comparison between the mean values and the standard deviations of the 

results of the fines contents, gravel-to-sand ratios, breakage potentials, total breakages, and 

breakage ratios over the three years during which samples were collected. 
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Table 16. Mean value and the standard deviations of fines content, gravel-to-sand ratio, 

breakage potential and total breakage of all sections 

Sections 

Fines content 

(%) Gravel/Sand 

Breakage 

potential 

Total 

breakage 

Mean SD Mean SD Mean SD Mean SD 

LCF Class A 11 1.65 0.87 0.18 1.47 0.09 0.13 0.09 

OFD Class A 11 0.96 1.27 0.12 1.47 0.04 0.10 0.02 

BFL Class A 21 3.73 1.20 0.67 1.32 0.18 0.36 0.13 

80% BFL Class A + 20% BFL Clean 17 4.79 2.11 1.79 1.54 0.25 0.54 0.15 

70% BFL Class A + 30% OFD Clean 16 3.32 1.99 0.86 1.55 0.13 0.33 0.06 

70% BFL Class A + 30% LCF Clean 15 3.80 1.82 0.70 1.54 0.17 0.24 0.15 

70% BFL Class A + 30% CRG Clean 15 3.83 2.01 0.96 1.55 0.17 0.30 0.14 

 

6.1.8 Fines Content 

The maximum average fines content change was observed for BFL Class A (21%), while the 

minimum average fines content change was observed for LCF Class A and OFD Class A (11%). 

The presence of BFL Class A was the main reason for higher fines content changes in other 

sections. The maximum standard deviation of the fines content was observed for 80% BFL Class 

A + 20% BFL Clean, while the minimum standard deviation was observed for OFD Class A 

(4.79). Sections with BFL Class A generally had higher standard deviations compared to the first 

two sections without BFL Class A. This may be due to the deterioration of BFL Class A, which 

showed lower abrasion resistance (Table 16). 

6.1.9 April 2019 

In order to monitor the changes in the material properties after the third freeze/thaw period, 

samples were collected from the sections in April 2019, and sieve analyses were performed on 

them. The fines content of all sections increased significantly, especially for 70% BFL Class A + 

30% LCF Clean (96%). The minimum change in the fines content was observed for OFD Class 

A (3%). The gravel-to-sand ratios decreased for all sections since the last maintenance (spring 

2018) in the range of 9% to 60%, except for 70% BFL Class A + 30% OFD Clean, which had an 

11% increase in the gravel-to-sand ratio. The minimum and maximum changes in the gravel-to-

sand ratios since the first maintenance (May 2017) were for OFD Class A (-9%) and 70% BFL 

Class A + 30% LCF Clean (-60%), respectively. The breakage potentials for all of the sections 

decreased, where the maximum decrease was observed for 70% BFL Class A + 30% LCF Clean 

(25%), and the minimum decrease was observed for 70% BFL Class A + 30% OFD Clean (1%). 

Table 17 shows the results of the sample testing in April 2019. 
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Table 17. Fines content, gravel-to-sand ratio, and breakage potential changes in April 2019 

Sections 

April 2019 

Fines 

content 

(%) 

Gravel/Sand 

(%) 

Breakage 

potential 

(%) 

LCF Class A 27 -31 -10 

OFD Class A 3 -9 -2 

BFL Class A 39 -48 -18 

80% BFL Class A + 20% BFL Clean 55 -49 -21 

70% BFL Class A + 30% OFD Clean 5 11 -1 

70% BFL Class A + 30% LCF Clean 96 -60 -25 

70% BFL Class A + 30% CRG Clean 43 -43 -13 

 

6.1.10 Gravel-to-Sand Ratio 

The maximum average gravel-to-sand ratio changes were observed for the 80% BFL Class A + 

20% BFL Clean (2.11), which had the highest aggregate top size. On the other hand, the 

minimum gravel-to-sand ratio change was for the LCF Class A (0.87). The mixture of 80% BFL 

Class A + 205 BFL Clean had the highest standard deviation (1.79). This could be due to the 

breakage of the BFL Class A and BFL Class A + BFL Clean mixture over time. On the other 

hand, the lowest standard deviation was observed for the OFD Class A (0.12) (Table 16).  

6.1.11 Breakage Potential 

The average breakage potential values for the mixture sections (1.54~1.55) were higher than 

those with Class A aggregates (1.32 to 1.47). BFL Class A had the minimum breakage potential 

(1.32) due to the presence of the higher fines content. The 80% BFL Class A + 20% BFL Clean 

mixture had the highest (0.25) and the OFD Class A had the lowest (0.04) standard deviation of 

breakage potential over the past three years.  

The maximum and minimum average total breakages were observed, respectively, for the 80% 

BFL Class A + 20% BFL Clean (0.54) and the OFD Class A (0.10). The 80% BFL Class A + 

20% BFL Clean and 70% BFL Class A + 30% LCF Clean mixtures had the highest (0.15) and 

OFD Class A had the lowest (0.02) standard deviation of the total breakage over the project 

period (Table 16).  

6.2 Nuclear Density Gauge Tests 

In order to determine the in situ wet and dry densities and water content of the surface materials, 

nuclear gauge tests were performed in October 2016, May 2018, and April 2019 on 38 testing 

points in total, and the results are shown in Figures 54–56.  
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Figure 54. Wet density results of nuclear gauge test 

 

Figure 55. Dry density results of nuclear gauge test 
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Figure 56. Water content results of nuclear gauge test 

The dry density results were used as inputs in the FWD and MASW analyses. 

Table 18 shows the average values of the dry and wet densities and the water content for each 

section for October 2016, May 2018, and April 2019.  
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Table 18. Nuclear gauge results for dry density, wet density, and water content 

Sections 

October 2016 May 2018 April 2019 

ɣw 

(pcf) 

ɣd 

(pcf) 

ω 

(%) 

ɣw 

(pcf) 

ɣd 

(pcf) 

ω 

(%) 

ɣw 

(pcf) 

ɣd 

(pcf) 

ω 

(%) 

LCF Class A 128 131 4 127 122 5 138 133 4 

OFD Class A 130 136 5 122 116 7 137 131 4 

BFL Class A 123 131 7 128 121 6 137 129 6 

80% BFL Class A + 20% BFL Clean 124 131 6 129 123 5 141 135 5 

70% BFL Class A + 30% OFD Clean 122 130 6 127 120 6 140 133 6 

70% BFL Class A + 30% LCF Clean 120 126 5 137 131 5 140 133 5 

70% BFL Class A + 30% CRG Clean 117 123 5 134 127 6 140 132 6 

 



77 

The nuclear gauge test results are discussed in the following sections. 

6.2.1 October 2016 

The first set of nuclear gauge tests was performed after construction in October 2016. The 

maximum dry density (140 pcf) and wet density (132 pcf) were observed on the OFD Class A 

section. On the other hand, the minimum dry density (123 pcf) and wet density (117 pcf) were 

measured for the 70% BFL Class A + 30% CRG Clean. The water content values ranged 

between 4% (LCF Class A) and 7% (BFL Class A). 

6.2.2 May 2018 

The second set of nuclear gauge tests was conducted after the second freeze/thaw season in May 

2018. The highest dry density (131 pcf) and wet density (137 pcf) were observed on the 70% 

BFL Class A + 30% LCF Clean section. The lowest dry (116 pcf) and wet (122 pcf) densities 

were for the OFD Class A. The water content values ranged between 5% (LCF Class A) and 7% 

(OFD Class A). 

6.2.3 April 2019 

The third set of nuclear gauge tests was conducted after the second freeze/thaw season in April 

2019. The highest dry density (135 pcf) and wet density (141 pcf) were observed on 80% BFL 

Class A + 20% BFL Clean. The lowest dry (129 pcf) and wet (137 pcf) densities were for the 

BFL Class A. The water content values ranged between 4% (LCF Class A and OFD Class A) 

and 8% (BFL Class A, 80% BFL Class A + 20% BFL Clean, and 70% BFL Class A + 30% CRG 

Clean). 

Nuclear gauge measured the water content and wet density of the surface layers, and the dry 

density was calculated accordingly. This test was done three times in October 2016, May 2018, 

and April 2019. The results showed that the water content did not change significantly for all 

sections. In addition, dry and wet density values of the surface layers were relatively higher in 

April 2019. 

6.3 DCP Test Results 

DCP tests were conducted to determine the shear strength of the surface and subgrade layers. 

They were conducted in October 2016, November 2016, April 2017, June 2017, May 2018, and 

April 2019. Moreover, the thickness of the surface layer could be determined, where the 

cumulative blows versus cumulative depth has a sudden slope shift, and the thickness is 

considered both in FWD and MASW back-calculation analyses. The cumulative blows, DCPI, 

and correlated CBR values versus the cumulative depth for all of the testing points of the field 

sections are presented in figures in this section, based on the time of conducting the tests. In 

order to evaluate the conditions of the surface and subgrade layers according to their weighted 

average CBR values, a relative rating system was utilized, in accordance with the “Statewide 

Urban Design and Specification Design Manual”(SUDAS 2015) and it is shown in Table 19. 
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Table 19. Relative ratings of subbase and subgrade layers based on CBR values  

CBR (%) Material Rating 

> 80 Subbase Excellent 

50–80 Subbase Very good 

30–50 Subbase Good 

20–30 Subgrade Very good 

10–20 Subgrade Fair to good 

5–10 Subgrade Poor to fair 

<5 Subgrade Very poor 

Source: Statewide Urban Design and Specifications (SUDAS) 2015 

Results of the DCP tests showed that the surface thickness for all of the sections was in the range 

of 7 to 10 in. DCP-CBR values for the subgrade were very close for all the sections (6 to 10%). 

The mixtures of 80% BFL Class A + 20% BFL Clean and 70% BFL Class A + 30% CRG Clean 

had, respectively, the highest and lowest DCP-SCR values for the surface layer. 

6.3.1 October 2016 

The DCP test in October 2016 was performed in order to investigate the as constructed values of 

the thickness of the surface and the CBR values of the surface and subgrade layers. The results 

are briefly shown in Table 20, while the cumulative blows, DCPI, and correlated CBR values 

versus the cumulative depth for the first section is shown in Figure 57. 

Table 20. DCP results of thickness for the surface, surface and subgrade CBR, and rating 

in October 2016 

Sections 

October 2016 

Thickness (in.) CBR (%) Rating 

Surface Subgrade Surface Subgrade Surface Subgrade 

LCF Class A 9 Inf 89 5 Excellent Very poor 

OFD Class A 8 Inf 86 9 Excellent Poor-fair 

BFL Class A 9 Inf 85 8 Excellent Poor-fair 

80% BFL Class A + 20% BFL Clean 5 Inf 99 10 Excellent Poor-fair 

70% BFL Class A + 30% OFD Clean 6 Inf 104 10 Excellent Poor-fair 

70% BFL Class A + 30% LCF Clean 6 Inf 55 8 Very good Poor-fair 

70% BFL Class A + 30% CRG Clean 6 Inf 48 9 Good Poor-fair 
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Figure 57. Cumulative blows, DCPI, and correlated CBR versus cumulative depth for the 

first section 

The 70% BFL Class A + 30% LCF Clean and 70% BFL Class A + 30% CRG Clean had the 

minimum surface DCP-CBR values after construction. According to the SUDAS, all of the 

surfaces rated excellent except the 70% BFL Class A + 30% LCF Clean and the 70% BFL Class 

A + 30% CRG Clean, which were rated, respectively, as very good and good. The subgrade 

DCP-CBR values for all sections were rated poor-to-fair, except the LCF Class A subgrade, 

which had a rating of very poor.  

6.3.2 November 2016 

The DCP test in November 2016 was also performed in order to evaluate the changes in the 

values of the thickness for the surface and the CBR values of the surface and subgrade layers, in 

the one month since construction. The results of thickness, CBR values, and rating are briefly 

shown in Table 21, while the cumulative blows, DCPI, and correlated CBR values versus the 

cumulative depth for all of the testing points are shown in Appendix C.  

Table 21. DCP results of thickness for the surface, surface and subgrade CBR and rating in 

November 2016 

Sections 

November 2016 

Thickness (in.) CBR (%) Rating 

Surface Subgrade Surface Subgrade Surface Subgrade 

LCF Class A 9 Inf 111 5 Excellent Poor-Fair 

OFD Class A 8 Inf 78 8 Very Good Poor-Fair 

BFL Class A 9 Inf 63 6 Very Good Poor-Fair 

80% BFL Class A + 20% BFL Clean 6 Inf 86 6 Excellent Poor-Fair 

70% BFL Class A + 30% OFD Clean 6 Inf 74 7 Very Good Poor-Fair 

70% BFL Class A + 30% LCF Clean 8 Inf 66 6 Very Good Poor-Fair 

70% BFL Class A + 30% CRG Clean 6 Inf 81 9 Excellent Poor-Fair 

 

The surface DCP-calculated thickness values for all of the sections ranged from 4 in. to 9 in. The 

surface DCP-calculated thickness values for the 80% BFL Class A + 20% BFL Clean and the 

70% BFL Class A + 30% LCF Clean sections increased from October 2016. The increase in the 
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surface thickness can be due to the increase in the uniformity of the mixture of gravels. The 

surface DCP-calculated thickness values of other sections did not change significantly.  

The maximum and minimum changes in the average values of the surface DCP-CBR were for 

the 70% BFL Class A + 30% CRG Clean (68%) and the OFD Class A (-9%), respectively.  

Table 22 shows the results of surface thickness and CBR between October and November 2016. 

Table 22. DCP results of change in surface thickness and subgrade and surface CBR from 

October 2016 

Sections 

October 2016–November 2016 

Surface 

thickness (%) 

CBR (%) 

Surface Subgrade 

LCF Class A 0.22 25.08 12.12 

OFD Class A -3.42 -8.98 -2.22 

BFL Class A 0.23 -26.68 -22.87 

80% BFL Class A + 20% BFL Clean 16.01 -12.62 -36.37 

70% BFL Class A + 30% OFD Clean -1.33 -28.53 -28.65 

70% BFL Class A + 30% LCF Clean 24.96 19.65 -17.20 

70% BFL Class A + 30% CRG Clean 3.39 67.95 6.12 

 

According to the SUDAS, relative rating of the average weighted-CBR values for the 80% BFL 

Class A + 20% BFL Clean was still excellent. The surface DCP-CBR values of other sections 

were rated very good and excellent. The changes in the subgrade average weighted-CBR values 

was the lowest for the OFD Class A (-2%). The CBR values for the subgrade of all other sections 

were rated poor-to-fair. 

6.3.3 April 2017 

DCP tests were conducted in April 2017 before the first maintenance, in order to evaluate the 

changes in the values of the thickness for the surface and the CBR values of the surface and 

subgrade layers, after the first freeze/thaw season. The results of thickness, CBR values, and 

rating are briefly shown in Table 23, while the cumulative blows, DCPI, and correlated CBR 

values versus the cumulative depth for all of the testing points are shown in Appendix C.  
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Table 23. DCP results of thickness for the surface, surface and subgrade CBR, and rating 

in April 2017 

Sections 

April 2017 

Thickness (in.) CBR (%) Rating 

Surface Subgrade Surface Subgrade Surface Subgrade 

LCF Class A 10 Inf 85 3 Excellent Very poor 

OFD Class A 9 Inf 73 5 Very good Poor-fair 

BFL Class A 8 Inf 109 6 Excellent Poor-fair 

80% BFL Class A + 20% BFL Clean 6 Inf 116 8 Excellent Poor-fair 

70% BFL Class A + 30% OFD Clean 6 Inf 119 13 Excellent Fair-good 

70% BFL Class A + 30% LCF Clean 7 Inf 116 7 Excellent Poor-fair 

70% BFL Class A + 30% CRG Clean 6 Inf 101 11 Excellent Fair-good 

 

The thickness of the surface layers ranged from 5 in. to 10 in. The average of the DCP-calculated 

thickness values of the surface layers for all sections did not change significantly, except the 

80% BFL Class A + 20% BFL Clean and the 70% BFL Class A + 30% LCF Clean. The surface 

thickness values of these two sections increased 14% and 13%, respectively. 

The average of the surface DCP-CBR values for the LCF Class A and the OFD Class A sections 

decreased, while the DCP-CBR values of all other sections increased. The maximum change in 

the surface DCP-CBR values were observed for the 70% BFL Class A + 30% LCF Clean 

(110%) and the 70% BFL Class A + 30% CRG Clean (109%). 

Table 24 shows the changes in results between October 2016 and April 2017.  

Table 24. DCP results of change in thickness for the surface and surface and subgrade 

CBR between October 2016 and April 2017 

Sections 

October 2016–April 2017 

Surface 

thickness (%) 

CBR (%) 

Surface Subgrade 

LCF Class A 9 -5 -31 

OFD Class A 9 -15 -41 

BFL Class A -9 28 -25 

80% BFL Class A + 20% BFL Clean 14 18 -21 

70% BFL Class A + 30% OFD Clean -5 15 34 

70% BFL Class A + 30% LCF Clean 13 110 -4 

70% BFL Class A + 30% CRG Clean 4 109 25 

 

The rating of the average DCP-CBR values for all of the surfaces were excellent with the 

exception of the OFD Class A, which was very good. 

The subgrade average of the DCP-CBR values for all sections decreased except for the subgrade 

of 70% BFL Class A + 30% OFD Clean and 70% BFL Class A + 30% CRG Clean. The 

subgrade DCP-CBR values were rated poor-to-fair except for the LCF Class A, which was rated 

very poor. 
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6.3.4 June 2017 

DCP tests were performed in June 2017 in order to evaluate the changes in the values of the 

thickness for the surface and the CBR values of the surface and subgrade layers after the second 

maintenance. The results of thickness, CBR values, and rating are briefly shown in Table 25, 

while the cumulative blows, DCPI, and correlated CBR values versus the cumulative depth for 

all of the testing points are shown in Appendix C.  

Table 25. DCP results of thickness for the surface, surface and subgrade CBR and rating in 

June 2017 

Sections 

June 2017 

Thickness (in.) CBR (%) Rating 

Surface Subgrade Surface Subgrade Surface Subgrade 

LCF Class A 9 Inf 190 9 Excellent Poor-fair 

OFD Class A 9 Inf 170 9 Excellent Poor-fair 

BFL Class A 8 Inf 132 9 Excellent Poor-fair 

80% BFL Class A + 20% BFL Clean 7 Inf 169 23 Excellent Very good 

70% BFL Class A + 30% OFD Clean 7 Inf 112 6 Excellent Poor-fair 

70% BFL Class A + 30% LCF Clean 7 Inf 169 7 Excellent Poor-fair 

70% BFL Class A + 30% CRG Clean 7 Inf 135 7 Excellent Poor-fair 

 

The thickness of the surface layers ranged between 5 in. and 9 in. The average of the DCP-

calculated thickness values of the surface layers for all of the sections did not change 

significantly, except the 80% BFL Class A + 20% BFL Clean, the 70% BFL Class A + 30% 

OFD Clean, and the 70% BFL Class A + 30% CRG Clean mixtures. The surface thickness 

values of these mixtures increased 38%, 23%, and 25%, respectively. 

Table 26 shows the changes in results between October 2016 and June 2017. 

Table 26. DCP results of change in thickness for the surface and surface and subgrade 

CBR between October 2016 and June 2017 

Sections 

October 2016–June 2017 

Surface 

thickness (%) 

CBR (%) 

Surface Subgrade 

LCF Class A -1 115 94 

OFD Class A 2 98 11 

BFL Class A -8 54 11 

80% BFL Class A + 20% BFL Clean 38 71 139 

70% BFL Class A + 30% OFD Clean 23 8 -34 

70% BFL Class A + 30% LCF Clean 10 206 -8 

70% BFL Class A + 30% CRG Clean 25 180 -16 

 

The average of the surface DCP-CBR values for all of the sections increased after maintenance. 

According to the SUDAS, rating of the average DCP-CBR values for all of the surfaces were 

excellent. The subgrade average of the DCP-CBR values for all of the sections increased except 
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for the subgrade of the 70% BFL Class A + 30% OFD Clean, the 70% BFL Class A + 30% LCF 

Clean, and the 70% BFL Class A + 30% CRG Clean sections. The subgrade DCP-CBR values 

were rated poor-to-fair except for the subgrade of the 80% BFL Class A + 20% BFL Clean, 

which was rated very good. 

6.3.5 May 2018 

DCP tests were performed in May 2018, in order to evaluate the changes in the values of the 

thickness for the surface and the CBR values of the surface and subgrade layers after the second 

freeze and thaw season (right before the second maintenance). The results of thickness, CBR 

values, and rating are briefly shown in Table 27, while the cumulative blows, DCPI, and 

correlated CBR values versus the cumulative depth for all of the testing points are shown in 

Appendix C.  

Table 27. DCP results of thickness for the surface, surface and subgrade CBR, and rating 

in May 2018 

Sections 

October 2016–May 2018 

Thickness (in.) CBR (%) Rating 

Surface Subgrade Surface Subgrade Surface Subgrade 

LCF Class A 11 Inf 82 3 Excellent Very poor 

OFD Class A 9 Inf 73 6 Very good Poor-fair 

BFL Class A 8 Inf 123 13 Excellent Fair-good 

80% BFL Class A + 20% BFL Clean 8 Inf 142 8 Excellent Poor-fair 

70% BFL Class A + 30% OFD Clean 9 Inf 102 6 Excellent Poor-fair 

70% BFL Class A + 30% LCF Clean 9 Inf 67 4 Very good Very poor 

70% BFL Class A + 30% CRG Clean 8 Inf 79 6 Very good Poor-fair 

 

The thickness of the surface layers ranges from 5 in. to 11 in. The average of the DCP-calculated 

thickness values of the surface layers for all of the sections increased (1% to 52%), except for the 

BFL Class A (-8%). The average of the surface DCP-CBR values decreased for the LCF Class A 

(8%), OFD Class A (15%), and the 70% BFL Class A + 30% OFD Clean (2%), while these 

values increased for the BFL Class A (44%), 80% BFL Class A + 20% BFL Clean (44%), 70% 

BFL Class A + 30% LCF Clean (21%), and 70% BFL Class A + 30% CRG Clean (65%).  

Table 28 shows the changes in results between October 2016 and May 2018. 
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Table 28. DCP results of change in thickness for the surface and surface and subgrade 

CBR between October 2016 and May 2018 

Sections 

May 2018 

Surface 

thickness (%) 

CBR (%) 

Surface Subgrade 

LCF Class A 20 -8 -38 

OFD Class A 4 -15 -31 

BFL Class A -8 44 58 

80% BFL Class A + 20% BFL Clean 52 44 -21 

70% BFL Class A + 30% OFD Clean 41 -2 -40 

70% BFL Class A + 30% LCF Clean 46 21 -45 

70% BFL Class A + 30% CRG Clean 28 65 -34 

 

According to the SUDAS, the relative rating of LCF Class A, BFL Class A, 80% BFL Class A + 

20% BFL Clean, and 70% BFL Class A + 30% OFD Clean were excellent. OFD Class A, 70% 

BFL Class A + 30% LCF Clean, and 70% BFL Class A + 30% CRG Clean were rated as very 

good. The subgrade average of the DCP-CBR values for all sections decreased (21% to 58%), 

except the BFL Class A, which increased 58%. The subgrade DCP-CBR values for LCF Class A 

and 70% BFL Class A + 30% LCF Clean were rated very poor. OFD Class A, 80% BFL Class A 

+ 20% BFL Clean, and 70% BFL Class A + 30% OFD Clean were rated poor-to-fair and BFL 

Class A was rated fair-to-good. 

6.3.6 April 2019 

DCP tests were performed for the last time in April 2019 in order to evaluate the changes in the 

values of the thickness for the surface and the CBR values of the surface and subgrade layers 

after the third freeze and thaw period (before the third maintenance). The results of thickness, 

CBR values, and rating are detailed in Table 29, while the cumulative blows, DCPI, and 

correlated CBR values versus the cumulative depth for all testing points are shown in Appendix 

C.  

Table 29. DCP results of thickness for the surface, surface and subgrade CBR, and rating 

in April 2019 

Sections 

April 2019 

Thickness (in.) CBR (%) Rating 

Surface Subgrade Surface Subgrade Surface Subgrade 

LCF Class A 10 Inf 97 4 Excellent Very poor 

OFD Class A 7 Inf 64 5 Very good Very poor 

BFL Class A 9 Inf 108 6 Excellent Poor-fair 

80% BFL Class A + 20% BFL Clean 8 Inf 107 5 Excellent Very poor 

70% BFL Class A + 30% OFD Clean 8 Inf 91 4 Excellent Very poor 

70% BFL Class A + 30% LCF Clean 8 Inf 97 2 Excellent Very poor 

70% BFL Class A + 30% CRG Clean 6 Inf 81 4 Excellent Poor-fair 
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The thickness of the surface layers ranged from 5 in. to 10 in. The average of the DCP-calculated 

thickness values of the surface layers for all sections increased (3% to 18%) for all sections 

except the 70% BFL Class A + 30% OFD Clean (-5%) and the BFL Class A (-9%). 

The average surface DCP-CBR values decreased for LCF Class A (4%), OFD Class A (17%), 

and control section (48%), while these values increased for BFL Class A (38%), 80% BFL Class 

A + 20% BFL Clean (21%), 70% BFL Class A + 30% OFD Clean (21%), 70% BFL Class A + 

30% LCF Clean (92%), and 70% BFL Class A + 30% CRG Clean (65%).  

Table 30 shows the changes in results between October 2016 and April 2019. 

Table 30. DCP results of change in thickness for the surface and surface and subgrade 

CBR between October 2016 and April 2019 

Sections 

October 2016–April 2019 

Surface 

thickness (%) 

CBR (%) 

Surface Subgrade 

LCF Class A 9 -4 -27 

OFD Class A 9 -17 -42 

BFL Class A -9 38 -33 

80% BFL Class A + 20% BFL Clean 12 21 -33 

70% BFL Class A + 30% OFD Clean -5 21 48 

70% BFL Class A + 30% LCF Clean 11 92 -4 

70% BFL Class A + 30% CRG Clean 4 65 23 

 

According to the SUDAS, the relative rating of all sections were rated excellent, while OFD 

Class A was rated very good. The subgrade average of the DCP-CBR values for all of the 

sections decreased for all sections (4% to 42%), while the values increased for 70% BFL Class A 

+ 30% OFD Clean (45%) and 70% BFL Class A + 30% CRG Clean (23%). The subgrade DCP-

CBR values for all sections was rated as very poor, except the subgrades of the BFL Class A and 

70% BFL Class A + 30% CRG Clean, which were rated poor-to-fair. 

Figure 58 shows the LCF Class A and 80% BFL Class A + 20% BFL Clean had the excellent 

rating according to the SUDAS for the surface DCP-CBR values.  
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Figure 58. Surface DCP-CBR results over the course of the project 

OFD Class A DCP-CBR rating for surface was excellent in October 2016 and June 2017, after 

construction and maintenance, but it was rated very good for other times of testing. BFL Class A 

and 70% BFL Class A + 30% OFD Clean DCP-CBR rating for surface was always excellent, 

except for the November 2016 testing. The surface DCP-CBR of 70% BFL Class A + 30% LCF 

Clean was rated very good for all testing periods (except April 2017, June 2017, and April 2019, 

which were excellent). The surface DCP-CBR for 70% BFL Class A + 30% CRG Clean was 

rated good in October 2016, and the values of DCP-CBR increased over time, and it was rated 

excellent in June 2017. However, the DCP-CBR value for this section decreased, and it was rated 

very good in May 2018 (after the second freeze/thaw season) and again increased to excellent in 

April 2019.  

Figure 59 shows that the subgrade of LCF Class A DCP-CBR values were always rated very 

poor according to the SUDAS, except November 2016 (one month after construction) and June 

2017 (after maintenance), where it was poor-to-fair.  
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Figure 59. Subgrade DCP-CBR results for different times 

Subgrade DCP-CBR values of OFD Class A had poor-to-fair relative rating. DCP-CBR values of 

BFL Class A was rated poor-to-fair, except May 2018, where it was fair-to-good. The 80% BFL 

Class A + 20% OFD Clean subgrade DCP-CBR values was rated always poor-to-fair, except 

June 2017 (after maintenance) and April 2019, where it was rated very good. The subgrade DCP-

CBR values of 70% BFL Class A + 30% LCF Clean were always rated poor-to-fair, except May 

2018, when it was rated very poor. The subgrade DCP-CBR of 70% BFL Class A + 30% CRG 

Clean was rated poor-to-fair for all tests, except April 2017 (before maintenance) and April 

2019, when it was rated fair-to-good. 

6.4 MASW Test Results 

The multichannel analysis of surface waves (MASW) test is a non-destructive, wave-

propagation-based geophysical test, which was conducted with two different active sources 

(small and large hammers). MASW tests were performed three times throughout the course of 

the project in October 2016, April 2017, and May 2018 to evaluate the possibility of performing 

geophysical tests on granular roads. Results of the MASW tests were compared for surface and 

subgrade moduli to those calculated from FWD tests. MASW analysis was performed on a two-
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layered system consisting of surface and subgrade with an infinite subgrade thickness. The 

thickness of the surface layer was calculated by DCP tests. The density of each test section was 

collected from the nuclear gauge density tests. Poisson’s ratio of the surface and subgrade were 

assumed at 0.4, and 0.3, respectively. The same values of the thickness, density, and Poisson’s 

ratio were considered also in the FWD back-calculation. The results of modulus for surface and 

subgrade layers for small and large hammers are presented in Figures 60–67.  

 

Figure 60. Surface elastic modulus of MASW–large hammer 
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Figure 61. Surface elastic modulus ranges of MASW–large hammer 

 

Figure 62. Surface elastic modulus of MASW–small hammer 
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Figure 63. Surface elastic modulus ranges of MASW–small hammer 

 

Figure 64. Subgrade elastic modulus of MASW–large hammer 
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Figure 65. Subgrade elastic modulus ranges of MASW–large hammer 

 

Figure 66. Subgrade elastic modulus of MASW–small hammer 
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Figure 67. Subgrade elastic modulus ranges of MASW–small hammer 

Subgrade elastic modulus values from the small and large hammer had better agreement 

compared to the surface elastic modulus values attained by the small and large hammer. 

Moreover, the large hammer showed higher ranges of surface and subgrade elastic modulus 

values, while the surface and subgrade elastic modulus values for small hammer were closer. 

BFL Class A, LCF Class A, and 70% BFL Class A + 30% LCF Clean had the highest, and 80% 

BFL Class A + 20% BFL Clean, 70% BFL Class A + 30% LCF Clean, and BFL Class A had the 

lowest surface elastic modulus values in October 2016, April 2017, and May 2018. On the other 

hand, subgrade elastic modulus values for all of the sections were in a close range. 

6.4.1 October 2016 

The first set of MASW tests was performed in October 2016, one month after the completion of 

construction. Tables 31 and 32 show the mean, minimum, maximum, and ranges of the surface 

and subgrade elastic moduli of both surface and subgrade soils calculated for small and large 

hammers.  
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Table 31. Surface elastic modulus of MASW small and large hammer tests in October 2016 

Surface 

Sections 

Large hammer modulus (ksi) Small hammer modulus (ksi) 

EMean EMax EMin Range EMean EMax EMin Range 

LCF Class A 93 166 66 100 88 162 55 107 

OFD Class A 107 118 95 23 92 141 58 83 

BFL Class A 125 289 36 252 87 196 38 158 

80% BFL Class A + 20% BFL Clean 57 114 25 88 124 193 57 136 

70% BFL Class A + 30% OFD Clean 110 174 66 109 81 97 61 35 

70% BFL Class A + 30% LCF Clean 57 88 33 55 69 84 45 39 

70% BFL Class A + 30% CRG Clean 76 103 33 70 132 194 58 137 

 

Table 32. Subgrade elastic modulus of MASW small and large hammer tests in October 2016 

Subgrade 

Sections 

Large hammer modulus (ksi) Small hammer modulus (ksi) 

EMean EMax EMin Range EMean EMax EMin Range 

LCF Class A 7 9 4 5 7 9 5 4 

OFD Class A 7 11 4 7 5 8 3 5 

BFL Class A 8 11 5 6 8 10 6 4 

80% BFL Class A + 20% BFL Clean 8 12 4 7 8 11 4 8 

70% BFL Class A + 30% OFD Clean 9 12 5 7 8 14 4 10 

70% BFL Class A + 30% LCF Clean 7 11 3 9 7 10 4 6 

70% BFL Class A + 30% CRG Clean 8 10 7 3 7 10 4 6 
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Based on the results of MASW with the large hammer, 80% BFL Class A + 20% BFL Clean had 

the minimum mean value of the surface elastic modulus. Moreover, the highest elastic modulus 

among the test sections was determined to be BFL Class A. On the other hand, the results of 

MASW surface elastic modulus with the small hammer showed that BFL Class A had the 

maximum and the 70% BFL Class A + 30% LCF Clean had the minimum surface modulus. The 

subgrade elastic modulus for both methods of MASW (small and large hammer) were in a better 

agreement than the surface elastic modulus, and it was in the range of 7 to 9 ksi for the large 

hammer and 5 to 8 ksi for the small hammer. The results of MASW–large hammer mean the 

subgrade elastic modulus for all test sections are in a better agreement for those calculated for the 

large hammer. This could be due to the higher energy applied through the large hammer. 

Therefore, the waves would be able to pass through a greater depth into the subgrade layer. 

6.4.2 April 2017 

In order to monitor the effects of the freeze and thaw, the second set of MASW tests was 

performed on the test sections in April 2017. The mean value, maximum, minimum, and range of 

change in the elastic modulus of the surface and subgrade layers are shown in Tables 33 and 34. 
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Table 33. Surface elastic modulus of MASW small and large hammer tests in April 2017 

Surface 

Sections 

Large hammer modulus (ksi) Small hammer modulus (ksi) 

EMean EMax EMin Range EMean EMax EMin Range 

LCF Class A 183 220 131 89 153 189 116 73 

OFD Class A 116 139 80 60 109 132 52 80 

BFL Class A 91 316 6 311 119 188 58 129 

80% BFL Class A + 20% BFL Clean 83 120 24 96 110 138 71 68 

70% BFL Class A + 30% OFD Clean 173 257 96 161 154 265 78 187 

70% BFL Class A + 30% LCF Clean 72 81 54 27 100 128 63 65 

70% BFL Class A + 30% CRG Clean 80 170 4 166 102 148 60 88 

 

Table 34. Subgrade elastic modulus of MASW small and large hammer tests in April 2017 

Subgrade 

Sections 

Large hammer modulus (ksi) Small hammer modulus (ksi) 

EMean EMax EMin Range EMean EMax EMin Range 

LCF Class A 7 10 4 6 9 11 3 9 

OFD Class A 7 9 5 4 8 10 5 5 

BFL Class A 8 16 2 14 9 15 6 9 

80% BFL Class A + 20% BFL Clean 11 13 7 6 10 11 6 5 

70% BFL Class A + 30% OFD Clean 10 13 7 5 10 13 6 7 

70% BFL Class A + 30% LCF Clean 10 12 7 5 7 10 6 4 

70% BFL Class A + 30% CRG Clean 7 8 4 4 7 9 4 5 
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The mean value of the MASW–large hammer surface elastic modulus of almost all sections 

increased since October 2016, with the exception of BFL Class A. Likewise, the results of the 

modulus for MASW–small hammer increased except the following sections: 80% BFL Class A 

+ 20% BFL Clean and 70% BFL Class A + 30% CRG Clean. On the other hand, the subgrade 

elastic modulus calculated with both small and large hammers did not change significantly 

except the subgrade of the 70% BFL Class A + 30% LCF Clean section (large hammer) and 

OFD Class A (small hammer). The reason of for the increase in the elastic modulus for both 

surface and subgrade could be the presence of the frozen zone and/or compaction due to the 

traffic load (which may have caused stronger bonding between the aggregate materials and better 

gravel packing). 

6.4.3 May 2018 

The third set of MASW tests was conducted in May 2018 after the second freeze/thaw season. 

Aggregate materials were placed on the aggregate section in May 2017 after the first 

maintenance. Elastic moduli of the majority of sections decreased in the surface since the 

construction (MASW–large hammer). The maximum decrease in elastic modulus was observed 

for the BFL Class A. However, the surface elastic modulus for the 80% BFL Class A + 20% 

BFL Clean, 70% BFL Class A + 30% LCF Clean, and 70% BFL Class A + 30% CRG Clean 

increased and the maximum increase in elastic modulus was observed for the 70% BFL Class A 

+ 30% LCF Clean. On the other hand, the surface elastic moduli of sections determined via 

MASW–small hammer did not change significantly except the 70% BFL Class A + 30% LCF 

Clean section, which experienced a 54% increase in the surface elastic modulus. Therefore, it 

can be concluded that the mixture of the BFL Class A and LCF Clean tends to get stiffer even 

after deterioration. The subgrade elastic modulus for both MASW–small and –large hammers did 

not change significantly since construction (October 2016). 

The surface and the subgrade results from the May 2018 tests are shown in Table 35 and 36. 
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Table 35. Surface elastic modulus of MASW small and large hammer tests in May 2018 

Surface 

Sections 

Large hammer modulus (ksi) Small hammer modulus (ksi) 

EMean EMax EMin Range EMean EMax EMin Range 

LCF Class A 91 164 31 133 97 147 71 77 

OFD Class A 72 92 54 38 83 97 60 37 

BFL Class A 65 136 29 107 98 154 58 96 

80% BFL Class A + 20% BFL Clean 81 125 32 93 108 142 62 81 

70% BFL Class A + 30% OFD Clean 79 161 47 114 92 129 66 63 

70% BFL Class A + 30% LCF Clean 133 236 88 148 106 120 87 32 

70% BFL Class A + 30% CRG Clean 82 148 18 130 93 164 64 100 

 

Table 36. Subgrade elastic modulus of MASW small and large hammer tests in May 2018 

Subgrade 

Sections 

Large hammer modulus (ksi) Small hammer modulus (ksi) 

EMean EMax EMin Range EMean EMax EMin Range 

LCF Class A 7 10 6 4 6 7 5 3 

OFD Class A 6 11 3 8 6 8 3 5 

BFL Class A 8 11 4 7 8 10 7 3 

80% BFL Class A + 20% BFL Clean 10 14 4 10 9 12 7 5 

70% BFL Class A + 30% OFD Clean 10 12 8 4 10 13 7 6 

70% BFL Class A + 30% LCF Clean 8 9 5 4 8 13 5 7 

70% BFL Class A + 30% CRG Clean 8 10 4 6 8 11 5 6 
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6.5 FWD Test Results 

FWD tests were conducted in this project on five points of each test section in October 2016 

(after construction), May 2017 (after maintenance), June 2017, May 2018, and May 2019. The 

FWD is the most common test that is used to simulate the traffic load and evaluate the elastic 

modulus of the road layers. The two-layered system assumption was considered for the back-

calculation of FWD and the back-calculated elastic modulus were compared with MASW 

results, in order to come up with a trend in the in situ elastic modulus variation for a wide range 

of stress and strain levels. The surface layer thicknesses are the same as calculated from DCP 

data. Moreover, density values are measured by nuclear gauge test data. Poisson’s ratios of 

surface and subgrade layers were assumed 0.4 and 0.3, respectively (the same as MASW). The 

FWD moduli results for surface and subgrade layers are shown in Figures 68–71.  

 

Figure 68. Surface elastic modulus of FWD 
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Figure 69. Subgrade elastic modulus of FWD 

 

Figure 70. Surface elastic modulus ranges of FWD 
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Figure 71. Subgrade elastic modulus ranges of FWD 

Back-calculation of the FWD results in October 2016, May 2017, June 2017, May 2018, and 

May 2019 showed that 80% BFL Class A + 20% BFL Clean (49 ksi - October 2016), 70% BFL 

Class A + 30% OFD Clean (82 ksi - May 2017), 80% BFL Class A + 20% BFL Clean (87 ksi - 

June 2017), BFL Class A (62 ksi - May 2018), OFD Class A (62 ksi - May 2019) had maximum 

surface elastic modulus values, and BFL Class A (24 ksi - October 2016), OFD Class A (36 ksi - 

May 2017), OFD Class A (43 ksi - June 2017), OFD Class A (39 ksi - May 2018), 70% BFL 

Class A + 30% CRG Clean (27 ksi - May 2019) had minimum surface elastic modulus values. 

Back-calculated subgrade elastic modulus for all of the sections were generally constant in the 

range of 8 to 14 ksi. The 80% BFL Class A + 20% BFL Clean (63 ksi) and BFL Class A (42 

ksi), respectively, had the maximum and minimum surface elastic modulus values. However, 

OFD Class A, 70% BFL Class A + 30% LCF Clean, and 70% BFL Class A + 30% CRG Clean 

had almost the same surface elastic modulus values (44 ksi). 

6.5.1 October 2016 

The first set of FWD tests was conducted after the construction of test sections in October 2016. 

The mean, minimum, maximum, standard deviation, and range of the surface and subgrade 

elastic moduli are summarized in Tables 37 and 38.  
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Table 37. Surface elastic modulus of FWD test in October 2016 

Sections 

Surface elastic modulus (ksi) 

EMean EMax EMin SD Range 

LCF Class A 46 78 32 18 46 

OFD Class A 41 43 37 2 6 

BFL Class A 24 28 21 3 8 

80% BFL Class A + 20% BFL Clean 49 61 37 10 24 

70% BFL Class A + 30% OFD Clean 45 68 31 15 36 

70% BFL Class A + 30% LCF Clean 33 47 21 10 26 

70% BFL Class A + 30% CRG Clean 41 61 32 12 29 

 

Table 38. Subgrade elastic modulus of FWD test in October 2016 

Sections 

Subgrade elastic modulus (ksi) 

EMean EMax EMin SD Range 

LCF Class A 10 12 8 2 4 

OFD Class A 9 10 8 1 3 

BFL Class A 8 10 7 1 3 

80% BFL Class A + 20% BFL Clean 10 11 8 1 3 

70% BFL Class A + 30% OFD Clean 10 12 9 1 3 

70% BFL Class A + 30% LCF Clean 9 11 7 1 4 

70% BFL Class A + 30% CRG Clean 10 10 9 1 1 

 

The surface elastic modulus for the sections ranged from 24 ksi for the BFL Class A to 50 ksi for 

the 80% BFL Class A + 20% BFL Clean. Table 37 shows that the addition of clean aggregates 

certainly increased the elastic modulus of the surface layer. The maximum elastic modulus 

variation within the five points of each section was observed for the LCF Class A section. The 

maximum standard deviation and the ranges of back-calculated subgrade elastic moduli were 

observed for the subgrade of the LCF Class A (Table 38). 

6.5.2 May 2017 

The second set of FWD tests was conducted after the first maintenance of all sections in May 

2017. Tables 39 and 40 show the mean, minimum, maximum, standard deviation, and the ranges 

of the surface and subgrade elastic moduli of all sections.  
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Table 39. Surface elastic modulus of FWD test in May 2017 

Sections 

Surface elastic modulus (ksi) 

EMean EMax EMin SD Range Change (%) 

LCF Class A 40 47 32 6 14 40 

OFD Class A 36 44 29 5 15 36 

BFL Class A 48 72 27 16 45 48 

80% BFL Class A + 20% BFL Clean 77 103 63 16 40 77 

70% BFL Class A + 30% OFD Clean 82 127 62 25 65 82 

70% BFL Class A + 30% LCF Clean 50 64 35 11 29 50 

70% BFL Class A + 30% CRG Clean 51 66 33 14 33 51 

 

Table 40. Subgrade elastic modulus of FWD test in May 2017 

Sections 

Subgrade elastic modulus (ksi) 

EMean EMax EMin SD Range Change (%) 

LCF Class A 11 12 10 1 2 11 

OFD Class A 10 12 8 1 4 10 

BFL Class A 10 11 10 1 2 10 

80% BFL Class A + 20% BFL Clean 10 12 8 1 4 10 

70% BFL Class A + 30% OFD Clean 10 11 9 1 2 10 

70% BFL Class A + 30% LCF Clean 10 11 8 1 3 10 

70% BFL Class A + 30% CRG Clean 9 10 9 1 1 9 

 

The mean surface elastic modulus ranged from 36 ksi (OFD Class A) to 82 ksi (70% BFL Class 

A + 30% OFD Clean). The addition of clean aggregates to BFL Class A (local material) resulted 

in a higher elastic moduli than those of only Class A aggregates. Moreover, all sections except 

the LCF Class A and the OFD Class A had higher surface elastic moduli than those measured 

after construction. The BFL Class A section had the highest increase in the surface elastic 

modulus (102%) after the first freeze/thaw cycle. The 70% BFL Class A + 30% OFD Clean 

mixture had the highest elastic modulus in May 2017. The maximum standard deviations for the 

surface elastic modulus was found to be for 70% BFL Class A + 30% OFD Clean mixture, 

where the ranges of the elastic moduli for this section’s five points were wider than those 

observed within points in other sections. On the other hand, the subgrade elastic moduli of all 

sections did not experience any significant change over this period, and the maximum change in 

the mean value of subgrade elastic modulus since October 2016 was observed for Class A 

sections (7 to 24%). Moreover, the 70% BFL Class A + 30% OFD Clean section’s subgrade had 

the highest ranges of change for the subgrade elastic moduli. The more scattered data for the 

surface and subgrade elastic moduli could be due to the differences in the compaction levels for 

testing points. 
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6.5.3 June 2017 

The third set of FWD tests was performed one month after the first maintenance of the sections, 

in June 2017. The mean, minimum, maximum, standard deviation, and the range of the surface 

and subgrade values of elastic moduli are summarized in Tables 41 and 42.  

Table 41. Surface elastic modulus of FWD test in June 2017 

Sections 

Surface elastic modulus (ksi) 

EMean EMax EMin SD Range Change (%) 

LCF Class A 60 78 42 17 35 60 

OFD Class A 43 56 37 7 19 43 

BFL Class A 48 58 34 10 24 48 

80% BFL Class A + 20% BFL Clean 87 127 58 29 69 87 

70% BFL Class A + 30% OFD Clean 66 78 53 11 26 66 

70% BFL Class A + 30% LCF Clean 53 70 36 14 35 53 

70% BFL Class A + 30% CRG Clean 59 78 41 14 38 59 

 

Table 42. Subgrade elastic modulus of FWD test in June 2017 

Sections 

Subgrade elastic modulus (ksi) 

EMean EMax EMin SD Range Change (%) 

LCF Class A 9 10 7 1 3 9 

OFD Class A 9 10 8 1 3 9 

BFL Class A 11 15 8 3 7 11 

80% BFL Class A + 20% BFL Clean 10 12 8 1 4 10 

70% BFL Class A + 30% OFD Clean 11 15 10 2 5 11 

70% BFL Class A + 30% LCF Clean 10 10 9 0 2 10 

70% BFL Class A + 30% CRG Clean 9 11 8 1 3 9 

 

The maximum mean value of surface elastic moduli ranged from 43 ksi (OFD Class A) to 87 ksi 

(80% BFL Class A + 20% BFL Clean). All sections resulted in a stiffer surface than those 

observed after construction (from 5% for OFD Class A to 103% for BFL Class A). Subgrade 

elastic modulus values ranged from 9 to 11 ksi. The significance of the change in the back-

calculated subgrade elastic moduli from October 2016 was negligible (1%–9%) for all the 

sections except the BFL Class A section (32%), which also had the highest surface elastic 

modulus increase. 

6.5.4 May 2018 

The fourth set of FWD tests was performed after the second freeze/thaw cycle, in May 2018. The 

mean, minimum, maximum, standard deviation and the ranges of the surface and subgrade 

elastic moduli are summarized in Tables 43 and 44.  
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Table 43. Surface elastic modulus of FWD test in May 2018 

Sections 

Surface elastic modulus (ksi) 

EMean EMax EMin SD Range Change (%) 

LCF Class A 54 74 42 12 31 54 

OFD Class A 39 51 30 10 21 39 

BFL Class A 62 92 28 27 65 62 

80% BFL Class A + 20% BFL Clean 55 76 46 12 29 55 

70% BFL Class A + 30% OFD Clean 48 75 36 16 38 48 

70% BFL Class A + 30% LCF Clean 51 66 40 14 27 51 

70% BFL Class A + 30% CRG Clean 44 57 32 10 25 44 

 

Table 44. Subgrade elastic modulus of FWD test in May 2018 

Sections 

Subgrade elastic modulus (ksi) 

EMean EMax EMin SD Range Change (%) 

LCF Class A 11 12 10 1 2 11 

OFD Class A 11 12 9 1 3 11 

BFL Class A 12 13 10 1 3 12 

80% BFL Class A + 20% BFL Clean 13 15 11 1 3 13 

70% BFL Class A + 30% OFD Clean 12 14 9 2 5 12 

70% BFL Class A + 30% LCF Clean 12 14 10 2 4 12 

70% BFL Class A + 30% CRG Clean 10 12 9 1 4 10 

 

The maximum mean value of surface elastic modulus among the aggregate sections was BFL 

Class A (62 ksi) and the minimum was OFD Class A (39 ksi). All sections were stiffer than their 

initial condition measured in October 2016 after construction, except OFD Class A section, 

which experienced a 4% decrease in two years. The BFL Class A section experienced the highest 

stiffness increase since construction (70%), while 70% BFL Class A + 30% LCF Clean 

experienced the second highest increase (55%). The mean subgrade elastic moduli stayed almost 

unchanged for all sections (10 to 13 ksi).  

6.5.5 May 2019 

The last set of FWD tests was performed after the third freeze/thaw cycle, in May 2019. The 

mean, minimum, maximum, standard deviation, and the ranges of the surface and subgrade of 

elastic moduli are shown in Tables 45 and 46.  
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Table 45. Surface elastic modulus of FWD test in May 2019 

Sections 

Surface elastic modulus (ksi) 

EMean EMax EMin SD Range Change (%) 

LCF Class A 52 65 27 14 37 52 

OFD Class A 62 137 31 43 106 62 

BFL Class A 28 46 14 12 32 28 

80% BFL Class A + 20% BFL Clean 46 64 30 16 34 46 

70% BFL Class A + 30% OFD Clean 31 44 17 11 27 31 

70% BFL Class A + 30% LCF Clean 34 40 24 8 16 34 

70% BFL Class A + 30% CRG Clean 27 48 19 12 29 27 

 

Table 46. Subgrade elastic modulus of FWD test in May 2019 

Sections 

Subgrade elastic modulus (ksi) 

EMean EMax EMin SD Range Change (%) 

LCF Class A 10 11 9 1 2 10 

OFD Class A 9 12 7 2 6 9 

BFL Class A 13 17 10 3 7 13 

80% BFL Class A + 20% BFL Clean 13 15 11 2 4 13 

70% BFL Class A + 30% OFD Clean 14 21 10 4 11 14 

70% BFL Class A + 30% LCF Clean 12 13 11 1 2 12 

70% BFL Class A + 30% CRG Clean 8 10 6 2 4 8 

 

The maximum mean value of surface elastic modulus among the aggregate sections was 

determined to be OFD Class A section (62 ksi), while the minimum surface elastic modulus was 

calculated for the 70% BFL Class A + 30% CRG Clean section (27 ksi). All sections except BFL 

Class A/BFL Clean, BFL Class A/OFD Clean, and BFL Class A/CRG Clean were stiffer than 

those measured in October 2016, after construction. The maximum increase in the mean surface 

elastic modulus value was for the OFD Class A. The mean values of subgrade elastic moduli 

were almost the same for all sections and ranged from 10 ksi to 13 ksi.  

6.6 APLT Results 

APLT tests were conducted in order to perform a preliminary assessment of the differences in 

support capacities of the different sections in relation to the different aggregate sources utilized 

in the surface layer in October 2016. Tests were conducted at one location on each section using 

a target cyclic stress of 90 psi for 1,000 cycles at each test point. The support capacities were 

evaluated by determining the composite resilient modulus (Mr) values and permanent 

deformation (δp) characteristics.  

Figure 72 presents the in situ Mr‐Comp results with cycles at each test point.  
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Figure 72. In situ Mr‐Comp results at each test point 

Similarly, results of δp are presented in Figure 73. 
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Figure 73. Permanent deformation (δp) results at each test point 

The results of each test section are provided in Appendix D. 

Table 47 summarizes the average in situ Mr‐comp values for the last 50 loading cycles and δp at the 

end of the test.  

Table 47. Comparison of in situ Mr‐comp and δp at the end of the test results (cyclic stress = 

90 psi) 

Aggregate source Mr-comp (ksi) δp (in.) 

LCF Class A 28.12 0.19 

OFD Class A 20.17 0.19 

BFL Class A 28.09 0.18 

80% BFL Class A + 20% BFL Clean 20.66 0.17 

70%BFL Class A + 30% OF Clean 24.7 0.15 

70% BFL Class A + 30% LCF Clean 19.49 0.18 

70% BFL Class A + 30% CRG Clean 21.94 0.17 

 

The lowest Mr‐Comp of about 19.5 ksi was measured for the 70% BFL Class A + 30% OFD Clean 

test section, and the highest Mr‐Comp (28.1 ksi) was measured in LCF Class A. No significant 

differences in δp were found between test sections.  
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Table 48 summarizes C and d parameters for comparisons between N*, δp at N*, and adjusted δp 

at N* (δp at N* minus C), and N to reach δp = 0.5 in. The N* value represents the number of 

cycles to reach a near‐linear elastic deformation state.  
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Table 48. Summary of permanent deformation prediction parameters (cyclic stress = 90 psi) 

Aggregate source C d R2 

N* at Δδ = 

10-6 in./cycle 

δp (in.) at 

N* 

Adj. δp (in.) 

at N* 

N at δp = 

0.5 in. 

LCF Class A 28,118 0.19 0.98 46,320 0.34 0.26 837,404 

OFD Class A 20,174 0.19 0.98 50,871 0.35 0.28 628,416 

BFL Class A 28,090 0.18 0.98 42,966 0.31 0.24 1,369,689 

80% BFL Class A + 20% BFL Clean 20,659 0.17 0.98 35,539 0.27 0.2 3,694,398 

70%BFL Class A + 30% OFD Clean 24,703 0.15 0.99 34,275 0.25 0.19 5,335,089 

70% BFL Class A + 30% LCF Clean 19,486 0.18 0.99 39,963 0.3 0.23 1,779,304 

70% BFL Class A + 30% CRG Clean 21,943 0.17 0.99 22,354 0.23 0.14 >>107 
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Based on the power model parameters, 70% BFL Class A + 30% Clean produced the lowest N* 

value (22.3k cycles) and OFD Class A produced the highest N* value (50.9k cycles). The lowest 

number of cycles required to achieve a δp = 0.5 in. was OFD Class A with approximately 628k 

cycles. 

The results presented herein demonstrated the response of the composite foundation system 

(aggregate layer + underlying subgrade) to cyclic loading at the different test points. The 

differences observed among the test points can be attributed to variations in the following: 

 Underlying subgrade layer strength/stiffness 

 Aggregate layer’s material properties 

 Aggregate layer’s stiffness (because of the differences in material type and compaction) 

 Thickness of the aggregate layer 

The DCP test results confirmed that variable base and subgrade layer conditions existed between 

the different sections, and the thickness of the base layer may not have been a constant 4 in. 

Because of the combined effect of these variables on the overall response, the influence of the 

material type on the resilient modulus or permanent deformation could be observed accurately. 

6.7 IRI Results 

In this project, IRI was measured by “Roadroid,” an Android-based application. In order to 

remove any additional movement of the phone while performing the IRI tests, a firm mount was 

used to connect the phone to the windshield. Moreover, the same truck and mounting location 

were used each time the test was performed. The calculated IRI (cIRI) with a narrower range of 

speed between 37 and 50 mph was used, rather than of the estimated IRI (eIRI), which had a 

broader range of speed between 12 and 62 mph. Therefore, cIRI values provided higher accuracy 

than eIRI values (41). The cIRI values measured during this study are shown in Figure 74.  
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Figure 74. cIRI values over the length of the road 

The IRI values are categorized into four different specifications as shown in Table 49. 

Table 49. IRI classification 

IRI specification IRI values 

Good <4 

Fair 4–6 

Poor 6–8 

Bad >8 

 

The average values of each section for different times are presented in Figure 75 and Table 50.  
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Figure 75. Average values of cIRI for each section over time 
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Table 50. Average IRI values for each section over time 

Sections 

Oct 

2016 

Nov 

2016 

Feb 

2017 

Apr 

2017 

Jun 

2017 

May 

2018 

Apr 

2019 Average Condition 

LCF Class A 2 9 3 4 3 5 3 4 Fair 

OFD Class A 3 5 3 3 7 7 6 5 Fair 

BFL Class A 2 3 4 4 8 6 3 4 Fair 

80% BFL Class A + 20% BFL Clean 3 3 7 4 6 6 4 5 Fair 

70% BFL Class A + 30% OFD Clean 3 9 7 7 6 8 6 7 Poor 

70% BFL Class A + 30% LCF Clean 3 7 4 5 6 8 3 5 Fair 

70% BFL Class A + 30% CRG Clean 3 10 6 5 8 8 4 6 Poor 
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The average values of cIRI for all sections had a fair quality of smoothness except the following 

sections: 70% BFL Class A + 30% OFD Clean and 70% BFL Class A + 30% CRG Clean, which 

had poor quality of smoothness. The average cIRI values over time showed that LCF Class A 

and BFL Class A had the best smoothness among the sections. 

6.8 LWD Results 

LWD tests were performed in October 2016, November 2016, December 2016, February 2017, 

April 2017, June 2017, May 2018, and April 2019. The objective of this testing program was to 

assess the composite elastic modulus (EComp) of each test section. Figure 76 and Table 51 present 

the in situ EComp values over time.  

 

Figure 76. Average LWD composite elastic modulus results for each section over time 

Table 51. LWD composite elastic modulus values (ksi) for all sections over time 

Sections 

Oct 

2016 

Nov 

2016 

Dec 

2016 

Feb 

2017 

Apr 

2017 

Jun 

2017 

May 

2018 

Apr 

2019 

LCF Class A 11 12 54 11 14 14 13 12 

OFD Class A 12 13 65 7 7 11 9 7 

BFL Class A 8 8 35 7 10 7 10 10 

80% BFL Class A + 20% BFL Clean 9 9 32 9 12 8 14 9 

70% BFL Class A + 30% OFD Clean 9 10 34 8 11 9 10 6 

70% BFL Class A + 30% LCF Clean 9 10 25 6 11 9 10 8 

70% BFL Class A + 30% CRG Clean 8 10 21 6 9 6 6 6 
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The results of the EComp and the change of EComp from the initial results in October 2016 for other 

times are explained in the following sections. 

6.8.1 October 2016 

The first set of LWD field testing was conducted in October 2016 (after construction, 36℉). 

OFD Class A (12 ksi) and BFL Class A (8 ksi) had the minimum and maximum EComp, 

respectively. The maximum and minimum standard deviations were observed for OFD Class A 

(4 ksi) and 70% BFL Class A + 30% CRG Clean (1 ksi), respectively (Table 52). 

Table 52. Surface elastic modulus of LWD test in October 2016 

Sections 

Composite elastic modulus (ksi) 

EMean EMin EMax Range SD 

LCF Class A 11 10 11 1 0 

OFD Class A 12 7 16 9 4 

BFL Class A 8 7 10 4 1 

80% BFL Class A + 20% BFL Clean 9 8 11 3 1 

70% BFL Class A + 30% OFD 

Clean 
9 8 10 3 1 

70% BFL Class A + 30% LCF Clean 9 7 10 3 1 

70% BFL Class A + 30% CRG 

Clean 
8 7 9 2 1 

 

6.8.2 November 2016 

The second set of LWD field testing was conducted in November 2016 (32℉). The highest and 

the lowest in situ EComp were measured in OFD Class A (13 ksi) and BFL Class A (8 ksi), 

respectively, similar to October 2016. The maximum and minimum standard deviations were for 

BFL Class A (4 ksi) and 80% BFL Class A + 20% BFL Clean (1 ksi), respectively. The EComp of 

BFL Class A did not change from those values observed in October 2016. All sections with the 

exception of 80% BFL Class A + 20% BFL Clean (-6%) had an increase in their EComp (3 to 

28%) in one month due to the decrease in the initial void ratio and compaction (Table 53). 
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Table 53. Surface elastic modulus of FWD test in November 2016 

Sections 

Composite elastic modulus (ksi) 

EMean EMin EMax Range SD Change (%) 

LCF Class A 12 10 15 5 2 12 

OFD Class A 13 9 17 7 3 13 

BFL Class A 8 7 10 4 1 8 

80% BFL Class A + 20% BFL Clean 9 8 10 2 1 9 

70% BFL Class A + 30% OFD Clean 10 8 12 4 2 10 

70% BFL Class A + 30% LCF Clean 10 8 11 3 1 10 

70% BFL Class A + 30% CRG Clean 10 8 13 5 2 10 

 

6.8.3 December 2016 

The third set of LWD field testing was conducted in December 2016 (-16℉). All sections had a 

significant increase in their EComp due to the frozen ground conditions (123% to 445%). The 

highest EComp was measured for the OFD Class A (65 ksi), and the lowest EComp was measured 

for the 70% BFL Class A + 30% CRG Clean (21 ksi) section. OFD Class A and LCF Class A 

had the maximum standard deviations (54 ~ 56ksi), while the rest of the sections’ standard 

deviations ranged from 2 to 7 ksi (Table 54). 

Table 54. Surface elastic modulus of FWD test in December 2016 

Sections 

Composite elastic modulus (ksi) 

EMean EMin EMax Range SD Change (%) 

LCF Class A 54 23 153 130 56 54 

OFD Class A 65 32 160 127 54 65 

BFL Class A 35 31 40 9 4 35 

80% BFL Class A + 20% BFL Clean 32 22 43 20 7 32 

70% BFL Class A + 30% OFD Clean 34 25 39 14 6 34 

70% BFL Class A + 30% LCF Clean 25 17 31 13 5 25 

70% BFL Class A + 30% CRG Clean 21 14 29 15 6 21 

 

6.8.4 February 2017 

The fourth set of LWD tests was conducted in February 2017 (30℉). EComp values decreased for 

all sections due to the initial thawing after winter, from 3% (80% BFL Class A + 20% BFL 

Clean) to 42% (OFD Class A), except the LCF Class A with an almost 1% increase in EComp. 

LCF Class A had the maximum (11 ksi) stiffness. Table 55 shows that the 80% BFL Class A + 

20% BFL Clean and 70% BFL Class A + 30% OFD Clean sections had the highest stiffness 

among the mixture sections.  
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Table 55. Surface elastic modulus of FWD test in February 2017 

Sections 

Composite elastic modulus (ksi) 

EMean EMin EMax Range SD Change (%) 

LCF Class A 11 10 12 2 1 11 

OFD Class A 7 6 8 2 1 7 

BFL Class A 7 2 9 7 3 7 

80% BFL Class A + 20% BFL Clean 9 8 10 2 1 9 

70% BFL Class A + 30% OFD Clean 8 7 10 3 2 8 

70% BFL Class A + 30% LCF Clean 6 4 10 5 2 6 

70% BFL Class A + 30% CRG Clean 6 4 8 4 2 6 

 

6.8.5 April 2017 

The fifth set of LWD field testing was conducted in April 2017 (70℉), after the freezing and 

thawing season. The maximum and minimum EComp were observed for LCF Class A (14 ksi) and 

OFD Class A section (7 ksi). The LCF Class A and OFD Class A sections also had the highest 

and lowest standard deviations (3 and 2.3 ksi, respectively). EComp values increased for all 

sections from 16 ksi (70% BFL Class A + 30% CRG Clean) to 32 ksi (LCF Class A), except for 

OFD Class A (Table 56). 

Table 56. Surface elastic modulus of FWD test in April 2017 

Sections 

Composite elastic modulus (ksi) 

EMean EMin EMax Range SD Change (%) 

LCF Class A 14 12 19 7 3 14 

OFD Class A 7 6 8 2 1 7 

BFL Class A 10 8 14 6 2 10 

80% BFL Class A + 20% BFL Clean 12 8 14 6 2 12 

70% BFL Class A + 30% OFD Clean 11 9 12 3 1 11 

70% BFL Class A + 30% LCF Clean 11 9 12 3 1 11 

70% BFL Class A + 30% CRG Clean 9 8 11 3 1 9 

 

6.8.6 June 2017 

The sixth set of LWD field testing was conducted in June 2017, after maintenance (106℉). The 

highest EComp was observed for LCF Class A (14 ksi), and the lowest EComp was observed for the 

70% BFL Class A + 30% CRG Clean (6.2 ksi), similar to April 2017. Except LCF Class A, 

which had a 29% increase in the EComp, all of the other sections experienced decreases in their 

EComp, from 2% (70% BFL Class A + 30% LCF Clean) to 23% (70% BFL Class A + 30% CRG 

Clean). The 70% BFL Class A + 30% OFD Clean and 70% BFL Class A + 30% LCF Clean 

yielded the highest EComp among the mixture sections (Table 57).  
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Table 57. Surface elastic modulus of FWD test in June 2017 

Sections 

Composite elastic modulus (ksi) 

EMean EMin EMax Range SD Change (%) 

LCF Class A 14 10 24 14 6 14 

OFD Class A 11 8 18 11 4 11 

BFL Class A 7 5 9 4 2 7 

80% BFL Class A + 20% BFL Clean 8 6 9 4 1 8 

70% BFL Class A + 30% OFD Clean 9 8 10 2 1 9 

70% BFL Class A + 30% LCF Clean 9 7 10 3 1 9 

70% BFL Class A + 30% CRG Clean 6 4 9 4 2 6 

 

6.8.7 May 2018 

The seventh set of LWD field testing was conducted in May 2018 (43℉), after the second 

freeze/thaw period. EComp values increased for all sections except OFD Class A (-28%) and 70% 

BFL Class A + 30% CRG Clean (-23%) sections. The highest EComp was observed for 80% BFL 

Class A + 20% BFL Clean (14 ksi), and the lowest EComp was observed for 70% BFL Class A + 

30% CRG Clean (6 ksi). OFD Class A had the minimum standard deviation (~1 ksi), and 70% 

BFL Class A + 30% OFD Clean and 70% BFL Class A + 30% LCF Clean had the maximum 

standard deviations (2 ksi) (Table 58). 

Table 58. Surface elastic modulus of FWD test in May 2018 

Sections 

Composite elastic modulus (ksi) 

EMean EMin EMax Range SD Change (%) 

LCF Class A 13 11 16 5 2 13 

OFD Class A 9 8 9 1 1 9 

BFL Class A 10 9 13 3 1 10 

80% BFL Class A + 20% BFL Clean 14 13 15 2 1 14 

70% BFL Class A + 30% OFD Clean 10 8 13 5 2 10 

70% BFL Class A + 30% LCF Clean 10 8 12 5 2 10 

70% BFL Class A + 30% CRG Clean 6 4 9 4 2 6 

 

6.8.8 April 2019 

The last set of LWD field testing was conducted in April 2019 (46℉), after the third freeze/thaw 

period. EComp values increased for all sections except LCF Class A (27%). The highest EComp was 

observed for 80% BFL Class A + 20% BFL Clean (14 ksi), and the lowest EComp was observed 

for 70% BFL Class A + 30% CRG Clean (6 ksi). Standard deviations of all sections were below 

1 ksi except for OFD Class A and BFL Class A (~ 1 ksi) and 70% BFL Class A + 30% LCF 

Clean (3 ksi) (Table 59). 
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Table 59. Surface elastic modulus of FWD test in April 2019 

Sections 

Composite elastic modulus (ksi) 

EMean EMin EMax Range SD Change (%) 

LCF Class A 14 13 14 2 1 14 

OFD Class A 7 6 8 2 1 7 

BFL Class A 11 10 12 3 1 11 

80% BFL Class A + 20% BFL Clean 9 9 10 1 0 9 

70% BFL Class A + 30% OFD Clean 6 5 6 1 1 6 

70% BFL Class A + 30% LCF Clean 9 7 13 6 3 9 

70% BFL Class A + 30% CRG Clean 6 5 7 2 1 6 

 

In order to compare the stiffness of the road sections over time, the average results and the 

standard deviations of the EComp values from the LWD tests are shown in Table 60.  

Table 60. LWD composite elastic modulus mean values and the standard deviations for 

each section 

Sections 

EComp-avg 

(ksi) 

SD 

(ksi) 

LCF Class A 13 1 

OFD Class A 9 3 

BFL Class A 9 1 

80% BFL Class A + 20% BFL Clean 10 2 

70% BFL Class A + 30% OFD Clean 9 1 

70% BFL Class A + 30% LCF Clean 9 2 

70% BFL Class A + 30% CRG Clean 7 2 

 

The EComp results for December 2016 are excluded from the average values since those 

measurement were taken when the ground was frozen. 

Table 60 shows that LCF Class A had the highest (12 ksi) EComp values over time. OFD Class A, 

had higher standard deviations (3 ksi) compared to the other sections with standard deviations 

equal to and below 2 ksi. 

6.9 Dustometer Test Results 

In order to evaluate the dust production of each test section in relation to the different aggregate 

sources utilized in the surface layers, the dustometer tests were performed in October and 

December 2016; February, April, and June 2017; May 2018; and April 2019. Figure 77 and 

Table 61 show the results of dust production (lb/mile) during the three years of the project for all 

seven test sections.  
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Figure 77. Dustometer results for each section over time 

Table 61. Dust production (E-03 lb/mile) for all sections over time 

Sections 

Oct 

2016 

Nov 

2016 

Dec 

2016 

Feb 

2017 

Apr 

2017 

Jun 

2017 

May 

2018 

Apr 

2019 

LCF Class A 3 2 2 0.5 1 1 2 1 

OFD Class A 10 9 2 6 2 2 3 3 

BFL Class A 4 3 1 1 2 2 3 1 

80% BFL Class A + 20% BFL Clean 7 7 1 2 2 2 4 1 

70% BFL Class A + 30% OFD Clean 14 17 3 3 4 8 8 1 

70% BFL Class A + 30% LCF Clean 14 13 1 4 2 5 4 1 

70% BFL Class A + 30% CRG Clean 17 13 2 5 6 13 5 0.2 

 

6.9.1 October 2016 

The first dustometer test was conducted in October 2016 (after construction). The lowest dust 

production of about 3 E-03 lb/mile was measured in the LCF Class A, and the highest dust 

production of about 18 E-03 lb/mile was measured in 70% BFL Class A + 30% CRG Clean.  

6.9.2 November 2016 

The second dustometer test was conducted in November 2016. The lowest dust production of 

about 2 E-03 lb/mile was measured in the LCF Class A, and the highest dust production of about 

17 E-03 lb/mile was measured in 70% BFL Class A + 30% OFD Clean.  



121 

6.9.3 December 2016 

The third set of dustometer tests was conducted in December 2016, during the freezing season. 

All of the test sections showed a significant decrease in their dust production, especially the 70% 

BFL Class A + 30% OFD Clean. The BFL Class A, 80% BFL Class A + 20% BFL Clean, and 

70% BFL Class A + 30% LCF Clean sections had the lowest dust production (1 E-03 lb/mile), 

while the maximum dust production was for 70% BFL Class A + 30% OFD Clean (3 E-03 

lb/mile).  

6.9.4 February 2017 

The fourth set of dustometer tests was conducted in February 2017, at the end of the freezing 

season. The change in the dust production was not significant for all sections. The highest dust 

production was observed in OFD Class A (6 E-03 lb/mile), while the lowest dust production was 

for BFL Class A (1 E-03 lb/mile). 

6.9.5 April 2017 

The fifth set of dustometer tests was conducted in April 2017, during the thawing season. Almost 

all of the sections had a low dust production (1 to 6 E-03 lb/mile) because of wet surfaces due to 

thawing. Nevertheless, the highest dust production was observed for 70% BFL Class A + 30% 

CRG Clean (6 E-03 lb/mile), and the lowest dust production was for LCF Class A (1 E-03 

lb/mile). 

6.9.6 June 2017 

The sixth set of dustometer field testing was conducted in June 2017. An insignificant change in 

dust production was observed for all sections compared to April 2017, except for 70% BFL Class 

A + 30% CRG Clean, where the highest dust production was observed (13 E-03 lb/mile). The 

lowest dust production was observed for LCF Class A (1 E-03 lb/mile). 

6.9.7 May 2018 

The seventh set of dustometer field testing was conducted in May 2018, after the second 

freeze/thaw period. The highest dust production was observed for 70% BFL Class A + 30% OFD 

Clean (8 E-03 lb/mile), and the lowest dust production was observed for LCF Class A (2 E-03 

lb/mile). 

6.9.8 April 2019 

The last set of dustometer field testing was conducted in April 2019, after the third freeze/thaw 

period. The amount of dust for all sections was lower than other times (<3 E-03 lb/mile). The 
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highest dust production was observed for OFD Class A (3 E-03 lb/mile), and the lowest dust 

production was observed for 70% BFL Class A + 30% CRG Clean (0.2 E-03 lb/mile). 

Table 62 shows the average results of dust production for each of the sections for the different 

times of performing the dustometer test.  

Table 62. Average dust production for each section 

Sections 

Average dust production 

(E-03 lb/mile) 

LCF Class A 2 

OFD Class A 5 

BFL Class A 2 

80% BFL Class A + 20% BFL Clean 3 

70% BFL Class A + 30% OFD Clean 7 

70% BFL Class A + 30% LCF Clean 6 

70% BFL Class A + 30% CRG Clean 8 

 

The table shows that the 70% BFL Class A + 30% CRG Clean section had the maximum dust 

production, equal to 7.75 E-3 lb/mile, and LCF Class A had the lowest dust production value, 

which was 1.60 E-3 lb/mile. 

6.10 Ground Temperature Monitoring Results 

In order to monitor the change in the temperature at different depths, eight thermocouples were 

installed in the center and at the shoulder of the LCF Class A section, on November 10, 2016. 

The first two thermocouples were placed at a depth of 6 in. and 1 ft below the ground surface. 

The spacing between the other thermocouples was 1 ft, and the last thermocouple was placed 7 ft 

below the ground surface. All thermocouples were connected to two data loggers, which were 

placed in a pelican case on top of a wooden table on the shoulder of the road (Figure 78). 
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Figure 78. Data loggers to record the temperature changes 

Figure 79 shows a sketch of the thermocouples.  

 

Figure 79. Sketch details of the center and shoulder thermocouples and the data loggers 

In addition, photographs of the step-by-step installation are provided in Appendix E. 

Figure 80 shows the temperature values at the different depths for the center of the road.  
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Figure 80. Temperature variations recorded for the center of the road 

The thermocouples at the center recorded the temperatures between December 22, 2016 and 

March 18, 2019. The center thermocouples showed the hottest and coldest surface temperature as 

96°F on July 21 and 22, 2017, and 6°F on January 1, 2018, respectively. In addition, the ambient 

temperature at the center of the road ranged between -22 and 130°F. Based on the results of the 

temperature obtained from the thermocouples at the center of the road, three freeze/thaw periods 

were observed between December 22, 2016 and April 7, 2017; October 28, 2017 and April 19, 

2018; and November 10, 2018 and March 16, 2019. 

Figure 81 shows the temperature values at the different depths for the shoulder of the road.  
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Figure 81. Temperature variations recorded for the shoulder of the road 

The thermocouples at the shoulder of the road recorded the temperature between January 31, 

2017 and March 18, 2019. The hottest and coldest surface temperature were measured as 94°F 

on July 22, 2017, and 17°F on January 17, 2018, respectively. In addition, the ambient 

temperature at the shoulder of the road ranged between -25 to 125°F. Three freeze/thaw periods 

were observed between January 31, 2017 and March 16, 2017; November 6, 2017 and April 20, 

2018; and November 14, 2018 and March 16, 2019. 

Figures 82 and 83 show that the variation of the temperature decreased with the increase in 

depth.  
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Figure 82. Freeze/thaw periods for three consecutive years, recorded at the center of the 

road 
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Figure 83. Freeze/thaw periods for two consecutive years, recorded at the shoulder of the 

road 

Moreover, the temperature observed for the deeper thermocouples was always higher during the 

cold season and lower during the hot season, compared to the shallower thermocouples. 

Figures 82 and 83 show the depth of the frozen zone for the three freeze/thaw periods observed 

for the length of the project. The results for both center and shoulder thermocouples show that 

the depth of the frozen zone for the second freeze/thaw period was higher than the first, and the 

third freeze/thaw period was deeper than the second. Therefore, the ground was frozen for a 

longer period of time compared to the first freeze/thaw period. The frost depth at the center was 

always deeper than the shoulder because the snow plowed to the shoulder acts as insulation, 

which caused a lower frost depth and higher ground temperature. 

The number of the freeze/thaw cycles can be measured by the number of times that the 

temperature went below and above 32°F. The number of the freeze/thaw cycles also were depth 

dependent. Table 63 shows how many of the freeze/thaw cycles the different depths experienced. 
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Table 63. The number of the freeze/thaw periods that each layer experienced 

Depth 

(ft) 

Shoulder Center 

1st F/T 2nd F/T 3rd F/T 1st F/T 2nd F/T 3rd F/T 

0.5 4 12 7 8 25 24 

1 0 5 7 15 7 17 

2 0 2 5 0 17 1 

3 0 0 0 0 0 9 

5 0 0 0 0 0 0 

6 0 0 0 0 0 0 

7 0 0 0 0 0 0 
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CHAPTER 7. COST ANALYSIS 

Granular road surface aggregate materials were hauled from different quarries as shown in 

Figure 84.  

 

Figure 84. Locations of the aggregate resources and the site in Iowa 

The haul time (min), material and cost (/ton), and the delivered prices for each of the aggregate 

types are summarized in Table 64.  

Table 64. Aggregate and hauling time costs for each material 

Source 

Aggregate 

cost 

($/ton) 

Haul 

time 

(min) 

Labor haul 

cost ($/truck) 

Labor haul 

cost ($/ton) 

Delivered 

price ($/ton) 

BFL Class A 10.80 32 15.73 1.05 11.85 

BFL Clean 13.45 32 15.73 1.05 14.50 

CRG Clean 18.00 102 50.15 3.34 21.34 

LCF Class A 9.55 182 89.48 5.97 15.52 

LCF Clean 13.45 182 89.48 5.97 19.42 

OFD Class A 3.35 612 300.75 20.05 23.40 

OFD Clean 3.35 612 300.75 20.05 23.40 

 

The labor haul rate was considered to be $29.50/hr per 15 ton tandem-dump truck. Haul times 

were estimated based on Google Maps for round-trip travel. The costs of the OFD materials 
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(Class A and Clean) were lower than those of other materials. However, the longer haul time 

caused these materials’ costs to be more expensive than the others. 

The construction procedure required utilizing road construction equipment such as a motor 

grader, tandem- and belly-dump trucks, loader, tractor, and drum roller. The labor cost and the 

costs of the equipment per hour are presented in Table 65. 

Table 65. Labor and equipment unit costs 

Category 

Unit cost 

per hour 

On-site labor $30.40 

Grader $69.11 

Bottom-dump truck $76.64 

Tandem-dump truck $49.37 

Loader $47.29 

Tractor $76.64 

Drum roller $59.41 

 

7.1 Construction Costs 

The total granular road surface aggregate material tonnages and costs required for the 

construction based on the tonnage required for each section are summarized in Table 66.  
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Table 66. Weight of the surface aggregate materials required for each section for construction 

Sections 

BFL 

Class A 

(ton) 

BFL 

Clean 

(ton) 

CRG 

Clean 

(ton) 

LCF 

Class A 

(ton) 

LCF 

Clean 

(ton) 

OFD 

Class A 

(ton) 

OFD 

Clean 

(ton) 

Total 

cost 

($) 

Total 

cost 

($/ton) 

LCF Class A 0 0 0 325 0 0 0 5,043 15.52 

OFD Class A 0 0 0 0 0 195 0 4,563 23.40 

BFL Class A 325 0 0 0 0 0 0 3,851 11.85 

80% BFL Class A + 20% BFL Clean 210 55 0 0 0 0 0 3,286 12.40 

70% BFL Class A + 30% OFD Clean 130 0 0 0 0 0 65 3,061 15.70 

70% BFL Class A + 30% LCF Clean 140 0 0 0 72 0 0 3,057 14.42 

70% BFL Class A + 30% CRG Clean 145 0 70 0 0 0 0 3,212 14.94 
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The costs in Table 66 include the labor costs for hauling and the costs of the aggregate materials.  

Table 67 shows the separated costs of labor for hauling and aggregate. 

Table 67. Gravel and labor cost of hauling the gravel for each section for construction 

Sections Gravel ($) Labor hauling ($) 

LCF Class A 3,104 1,939 

OFD Class A 1,047 3,516 

BFL Class A 3,510 341 

80% BFL Class A + 20% BFL Clean 3,008 278 

70% BFL Class A + 30% OFD Clean 1,753 1,308 

70% BFL Class A + 30% LCF Clean 2,480 576 

70% BFL Class A + 30% CRG Clean 2,826 386 

 

The hours for labor and equipment for construction of the test sites are presented in Table 68.  

Table 68. Labor and equipment required times for construction 

Sections 

Labor 

(hr) 

Grader 

(hr) 

Tandem 

dump 

(hr) 

Bottom 

dump 

(hr) 

Drum 

roller 

(hr) 

LCF Class A 66 16 21 7 5 

OFD Class A 46 11 15 5 4 

BFL Class A 66 16 21 7 5 

80% BFL Class A + 20% BFL Clean 66 16 21 7 5 

70% BFL Class A + 30% OFD Clean 66 16 21 7 5 

70% BFL Class A + 30% LCF Clean 66 16 21 7 5 

70% BFL Class A + 30% CRG Clean 66 16 21 7 5 

 

The labor and equipment time required for all sections were the same except for OFD Class A, 

due to the shorter length of this section. 

Tables 69 and 70 show the calculated costs of the equipment and labor during test sites’ 

construction, respectively. The labor costs included the costs for the construction and the cost of 

hauling labor.  
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Table 69. Equipment costs for each section for construction 

Sections 

Tandem 

dump 

($) 

Bottom 

dump 

($) 

Grader 

($) 

Drum 

roller 

($) 

Total 

($) 

LCF Class A 1,037 536 1,106 297 2,976 

OFD Class A 741 383 760 238 2,122 

BFL Class A 1,037 536 1,106 297 2,976 

80% BFL Class A + 20% BFL Clean 1,037 536 1,106 297 2,976 

70% BFL Class A + 30% OFD Clean 1,037 536 1,106 297 2,976 

70% BFL Class A + 30% LCF Clean 1,037 536 1,106 297 2,976 

70% BFL Class A + 30% CRG Clean 1,037 536 1,106 297 2,976 

 

Table 70. Labor costs of the sections for construction 

Sections On-site ($) Hauling ($) Total ($) 

LCF Class A 2,006 1,939 3,945 

OFD Class A 1,398 3,516 4,914 

BFL Class A 2,006 341 2,347 

80% BFL Class A + 20% BFL Clean 2,006 278 2,284 

70% BFL Class A + 30% OFD Clean 2,006 1,308 3,315 

70% BFL Class A + 30% LCF Clean 2,006 576 2,583 

70% BFL Class A + 30% CRG Clean 2,006 386 2,393 

 

Table 71 summarizes the final construction costs based on the labor, equipment, and aggregate 

costs for each of the sections.  

Table 71. Equipment, gravel, and labor total costs for each section per square yard 

Sections 

Equipment 

($/yd2) 

Gravel 

($/yd2) 

Labor 

($/yd2) 

Total 

($/yd2) 

LCF Class A 1.80 1.88 2.39 6.08 

OFD Class A 2.14 1.06 4.96 8.16 

BFL Class A 1.80 2.13 1.42 5.35 

80% BFL Class A + 20% BFL Clean 1.80 1.82 1.38 5.01 

70% BFL Class A + 30% OFD Clean 1.80 1.06 2.01 4.88 

70% BFL Class A + 30% LCF Clean 1.80 1.50 1.57 4.87 

70% BFL Class A + 30% CRG Clean 1.80 1.71 1.45 4.97 

 

The equipment costs for all sections were the same except for OFD Class A, which was shorter. 

The surface aggregate cost for BFL Class A was higher than the other sections ($2.13/yd2). The 

labor cost in Table 71 is the sum of the labor costs for hauling and the costs of the labor hours 

spent on-site. Due to the longer distance between the OFD quarry and the test sites, the labor cost 
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for hauling was much higher than those of other sections ($4.96/yd2). Table 71 shows that test 

sections built with clean aggregates had lower total costs. 

7.2 Maintenance Costs 

Based on the field survey and material collection in April 2017, it was decided to add more 

surface aggregate materials in order to get the particle-size distribution curve as close as possible 

to the initial construction gradation. The minimum aggregate materials (by weight) were dumped 

on the OFD Class A section and the maximum were added to the 70% BFL Class A + 30% OFD 

Clean section. The total surface aggregate material tonnages and costs required for the 

maintenance based on the tonnage required for each section are summarized in Table 72.  
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Table 72. Weight of the surface gravel materials required for each section for maintenance 

Sections 

BFL 

Class A 

(ton) 

BFL 

Clean 

(ton) 

CRG 

Clean 

(ton) 

LCF 

Class A 

(ton) 

LCF 

Clean 

(ton) 

OFD 

Class A 

(ton) 

OFD 

Clean 

(ton) 

Total 

Cost 

($) 

Total 

Cost 

($/ton) 

LCF Class A 0 0 0 60 0 0 0 931 15.52 

OFD Class A 0 0 0 0 0 20 0 468 23.40 

BFL Class A 80 0 0 0 0 0 0 948 11.85 

80% BFL Class A + 20% BFL Clean 75 10 0 0 0 0 0 1034 12.16 

70% BFL Class A + 30% OFD Clean 75 0 0 0 0 0 30 1591 15.15 

70% BFL Class A + 30% LCF Clean 45 0 0 0 20 0 0 922 14.18 

70% BFL Class A + 30% CRG Clean 45 0 20 0 0 0 0 960 14.77 
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This cost includes the labor costs for material hauling and the costs of the aggregate materials. 

Table 73 shows the separated labor cost for hauling and aggregate cost. 

Table 73. Aggregate and labor cost of hauling the gravel for each section for maintenance 

Sections Aggregate ($) Labor hauling ($) 

LCF Class A 573 358 

OFD Class A 107 361 

BFL Class A 864 84 

80% BFL Class A + 20% BFL Clean 945 89 

70% BFL Class A + 30% OFD Clean 971 620 

70% BFL Class A + 30% LCF Clean 755 167 

70% BFL Class A + 30% CRG Clean 846 114 

 

The hours for labor and equipment for maintenance of the test sites are presented in Table 74.  

Table 74. Labor and equipment required times for maintenance 

Sections 

Labor 

(hr) 

Grader 

(hr) 

Tandem 

dump (hr) 

Loader 

(hr) 

LCF Class A 10 3 6 2 

OFD Class A 7 2 4 2 

BFL Class A 10 3 6 2 

80% BFL Class A + 20% BFL Clean 10 3 6 2 

70% BFL Class A + 30% OFD Clean 10 3 6 2 

70% BFL Class A + 30% LCF Clean 10 3 6 2 

70% BFL Class A + 30% CRG Clean 10 3 6 2 

 

The belly-dump truck and drum roller were not used during maintenance. The surface 

compaction was done by tire compaction with a motor grader and loader. 

Tables 75 and 76 present the calculated costs of the equipment and labor for the maintenance, 

respectively. 
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Table 75. Equipment costs for each sections for maintenance 

Sections 

Tandem 

dump ($) 

Grader 

($) 

Loader 

($) 

Total 

($) 

LCF Class A 1,037 1,106 94.58 598 

OFD Class A 741 760 47.29 383 

BFL Class A 1,037 1,106 94.58 598 

80% BFL Class A + 20% BFL Clean 1,037 1,106 94.58 598 

70% BFL Class A + 30% OFD Clean 1,037 1,106 94.58 598 

70% BFL Class A + 30% LCF Clean 1,037 1,106 94.58 598 

70% BFL Class A + 30% CRG Clean 1,037 1,106 94.58 598 

 

Table 76. Labor costs for each section for maintenance 

Sections 

On-Site 

($) 

Hauling 

($) 

Total 

($) 

LCF Class A 304 358 662 

OFD Class A 213 361 573 

BFL Class A 304 84 388 

80% BFL Class A + 20% BFL Clean 304 89 393 

70% BFL Class A + 30% OFD Clean 304 620 924 

70% BFL Class A + 30% LCF Clean 304 167 471 

70% BFL Class A + 30% CRG Clean 304 114 418 

 

Table 77 summarizes the final maintenance costs including the labor, equipment, and aggregate 

costs for each section.  

Table 77. Equipment, gravel, and labor total costs for each section per square yard  

Sections 

Equipment 

($/yd2) 

Gravel 

($/yd2) 

Labor 

($/yd2) 

Total 

($/yd2) 

LCF Class A 0.36 0.35 0.40 1.11 

OFD Class A 0.39 0.11 0.58 1.07 

BFL Class A 0.36 0.52 0.24 1.12 

80% BFL Class A + 20% BFL Clean 0.36 0.57 0.24 1.17 

70% BFL Class A + 30% OFD Clean 0.36 0.59 0.56 1.51 

70% BFL Class A + 30% LCF Clean 0.36 0.46 0.29 1.11 

70% BFL Class A + 30% CRG Clean 0.36 0.51 0.25 1.13 

 

The equipment costs for all sections were the same except the OFD Class A, which was shorter. 

The gravel cost for 70% BFL Class A + 30% OFD Clean was higher than those of other sections 

($0.59/yd2), and the OFD Class A had the lowest gravel cost ($0.11/yd2) because it had the 

lowest material loss and thickness change. The labor cost in Table 77 is the sum of the labor 

costs of material hauling and labor hours spent on-site for maintenance. OFD Class A had the 
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highest cost for labor due to the long distance between the test site and quarry. The maintenance 

costs per square yard for all sections were almost the same (≈ $1/yd2). However, the 70% BFL 

Class A + 30% OFD Clean section had the most costly maintenance within all sections 

($1.51/yd2), while the section built with LCF Clean had the lowest maintenance cost. 

7.3 Hauling Costs 

There are several methods to haul aggregate materials from quarries, including railways and 

roadways. It is common practice for LCF and OFD aggregates sources to be hauled via railways. 

All aggregate materials used in this study were hauled via roadways. However, the research team 

also investigated the costs benefits of material transportation via railways.  

Table 78 presents the hauling costs per ton for the Class A and clean materials used in this study. 

It should be noted that none of the materials were actually transported via railway in this study; 

however, possible hauling cost via railway were estimated and used in the cost analyses.  

Table 78. Comparisons between the labor costs of hauling materials for railway and 

roadway 

Source 

Labor haul cost ($/ton) 

Truck Rail 

BFL 1.05 - 

CRG 3.34 - 

LCF 5.97 47.8 

OFD 20.05 14.63 

 

The lowest hauling cost is by truck for BFL (Decatur City) materials due to the proximity of the 

quarry to the construction site. LCF has a higher hauling cost than CRG because of the longer 

distance from LCF quarry (Ames) than CRG (West Des Moines) to the construction site. OFD 

materials are from northeast Iowa (Clayton), and the distance between the Clayton quarry and 

the site is almost 271 miles (based on Google Maps). Therefore, the most expensive truck 

hauling cost was for the OFD materials.  

LCF and OFD sources also use railways for hauling. The OFD quarry transports the majority of 

its aggregate materials through its transload location in Clayton by rail. These materials are 

shipped to the closest transload location, which is Centerville, Iowa. Once the materials are 

unloaded from railcars, they are reloaded into trucks and transported to the site. The 

transportation cost of this method is the costs of rail and truck transportation. Therefore, the rail 

transportation costs for the OFD materials ($14.63/ton) are cheaper than the truck transportation 

($20.05/ton) as expected. On the other hand, the rail transportation cost for the LCF material 

($47.80/ton) is much more expensive than the truck transportation ($5.97/ton). For rail 

transportation, LCF materials are shipped by trucks from the Ferguson quarry to Newton 

(transload location). The LCF source is served by a single railroad, originating in Newton, and 

ending in Council Bluffs. Any changes to the route requires an interchange from one railroad to 
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another, which incurs switching charges and delay. The handling costs for the loading and 

unloading are also added to the freight rail cost. In addition, there is an additional truck hauling 

cost from Council Bluffs to the construction site, like with the OFD source hauling. (144 miles). 

7.4 Benefit-Cost Analysis 

This project collected Class A and clean aggregates from four different quarries. Three sections 

were built with Class A materials, and four sections were built by mixing local Class A material 

(BFL) with clean aggregates. Each section has different properties and conditions. The main 

differences are construction and maintenance costs, durability (gradation change, total breakage), 

dust production, and engineering properties (stiffness and strength). A benefit-cost analysis 

(BCA) was performed in order to find the benefits of each section and compared them to each 

other. In order to conduct a BCA for this project, three main steps were followed: defining the 

base case and alternatives, determining the benefits, and calculating the current value of costs 

and benefits. These steps for BCA analyses are discussed in the following sections. 

7.5 Base Case and Alternatives 

The first step in BCA is to concisely determine the base case. Accordingly, BFL Class A (the 

local commonly used material) was considered as the base case, and the other sections were 

selected as alternatives. Table 79 shows the total construction costs of all sections.  

Table 79. Total costs of construction for each section 

Sections Total ($) 

Length 

(mile) 

Total 

($/mile) 

LCF Class A 10,025 0.09 105,864 

OFD Class A 8,083 0.06 142,261 

BFL Class A 8,833 0.09 93,280 

80% BFL Class A + 20% BFL Clean 8,268 0.09 87,312 

70% BFL Class A + 30% OFD Clean 8,044 0.09 84,943 

70% BFL Class A + 30% LCF Clean 8,039 0.09 84,894 

70% BFL Class A + 30% CRG Clean 8,195 0.09 86,535 

 

Due to the differences in the length of sections, the total construction costs were converted for 1 

mile for each section.  

7.6 Defining the Benefits 

 User Cost Saving: In order to preserve the surface conditions of the road sections, 

maintenance was performed once during the three years of this study, in May 2017. During 

the maintenance, traffic will slow down, and it was assumed that this would cause delays to 

the travel time, which is about two times (6 min) greater than the time to pass the road (3 
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min) without maintenance. The truck percentage for this road was assumed at 25%, based on 

the information from subject matter experts (county engineers at the Decatur County 

Engineer’s Office). Moreover, the total AADT of this road is 80, based on the Iowa DOT 

Traffic Map. The delay will affect annually the costs of driving on the road. In this regard, 

the U.S. Bureau of Labor Statistics (BLS) provides access to the data of user cost value for 

trucks and cars in order to consider the value of time. This value is equal to $54/hr for trucks 

and equal to $25/hr for cars. 

 Maintenance Cost Saving: Cost saving by decreasing maintenance frequency is another 

benefit that can have a major impact on the final BCA. In that regard, maintenance can be 

conducted less frequently, such as once every three years, instead of once every two years. 

This can happen based on monitoring the performance of each alternative section over the 

three years of the study. Therefore, assumptions were made to consider the maintenance 

frequency once in every three to five years, in order to find its effect on the BCA. 

7.7 NPV Calculation for Benefit-Cost Calculation 

Based on the decisions that were made for the base case consideration and the types of benefits, 

the annual values of the costs and benefits were calculated. The service life and the discount rate 

are two of the main factors in net present value (NPV) calculation. Equation 24 shows the 

formula to calculate the net present value.  

𝑁𝑃𝑉 = Construction Costs +  ∑ 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝐶𝑜𝑠𝑡𝑘 [
1

(1+𝑖)𝑛𝑘
] −𝑛

𝑘=1

𝑆𝑎𝑙𝑣𝑎𝑔𝑒 𝑉𝑎𝑙𝑢𝑒[
1

(1+𝑖)𝑛𝑘
] (24) 

where, i is the discount rate and n is the service life of the project. The salvage value of the road, 

which represents the value of an investment alternative at the end of the analysis period, is 

assumed to be zero because it is assumed that there is no remaining life for the surface materials 

after the service life of the road. 

In order to provide a framework for the BCA calculation in this project, an Excel sheet was 

prepared and attached to this report. A sample calculation of BCA is also in Appendix F. The 

NPV of the benefits divided by the NPV of the total costs of the project presents the BCR. 

Moreover, the benefits are divided into two categories: user cost saving and maintenance cost 

saving. The BCA was conducted with three main variable assumptions: (1) a service life between 

20, 30, 40, and 50 years; (2) a discount rate of 3%; and (3) maintenance frequency for the 

alternative sections for once in three, four, and five years. The results are presented in the 

following sections. 

7.8 Results and Discussion 

In a BCA model, so many possible assumptions can be made on input variables such as the costs, 

benefits, discount rate, and service life, which can result in a range of outputs. Therefore, a 

sensitivity analysis should be taken into consideration in order to elucidate the effectiveness of 
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each variable in a BCA model. In this regard, BCA models were prepared for the discount rate 

equal to 3%; service life of 20, 30, 40, and 50 years; and scenarios could be given to alter the 

maintenance frequency, due to observing the change in the BCR values, of once in every one, 

two, or three years for low-performance; two, three, or four years for medium-performance; and 

three, four, or five years for high-performance alternatives. 

Figure 85 shows the costs per mile for aggregates and hauling for different sections, which are 

used in the BCA.  

 

 

Figure 85. Construction, top, and maintenance, bottom, costs for materials and hauling 

(truck) 

BFL Class A was selected as the control section since it is local material. The construction costs 

for OFD Class A was higher than those of other sections due to the higher hauling costs of these 
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materials (~$8,000). The 70% BFL Class A + 30% OFD Clean and 70% BFL Class A + 30% 

LCF Clean had lower construction costs (~$32,000). However, OFD Class A ($8,000) and 70% 

BFL Class A + 30% OFD Clean ($16,000) had, respectively, the minimum and maximum 

maintenance costs. 

When the two hauling options were compared for OFD sources, the hauling cost for the OFD 

materials could be lower than the hauling costs with truck. Therefore, hauling costs with rail for 

OFD Class A and 70% BFL Class A + 30% OFD Clean were also considered in the BCA (Table 

80).  

Table 80. Hauling costs of OFD materials per mile with rail and truck 

Sections 

Hauling costs ($) per mile 

Truck Rail 

OFD Class A 61,882 43,280 

70% BFL Class A + 30% OFD Clean 23,021 16,820 

 

The rail hauling option for LCF materials was not considered in the analysis because it was 

obviously more costly compared to truck hauling. 

7.8.1 Material and Thickness Loss 

One of the methods to find the benefit of using different aggregate materials is to compare them 

based on abrasion rates. Figure 86 shows the material loss for each section before performing 

maintenance.  
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Figure 86. Material loss for each section before maintenance 

The materials loss values were calculated by the amount of change in the surface thickness and 

the required materials to bring the surface thickness to 4 in., and then the values of thickness loss 

were divided by the length of the sections to normalize the effect of length. Sections then were 

categorized into three categories of high, medium, and low material loss per length. The sections 

were categorized as follows: BFL Class A, 80% BFL Class A + 20% BFL Clean, and 70% BFL 

Class A + 30% OFD Clean had high (>0.15 ton/ft); LCF Class A, 70% BFL Class A + 30% LCF 

Clean, and 70% BFL Class A + 30% CRG Clean had medium (0.1 to 0.15 ton/ft); and OFD 

Class A had low (<0.1 ton/ft) material loss per length. These results show that 70% BFL Class A 

+ 30% LCF Clean and 70% BFL Class A + 30% CRG Clean is more durable than local BFL 

materials (BFL Class A and 80% BFL Class A + 20% BFL Clean) when material loss is 

considered.  

Figure 87 shows the thickness changes in the granular road surface layers for each section before 

maintenance in May 2017.  
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Figure 87. Thickness loss from initial thickness (4 in.) for each section before maintenance 

Accordingly, sections were then categorized into three groups of high, medium, and low 

thickness loss per length. The sections were categorized as follows: BFL Class A, 80% BFL 

Class A + 20% BFL Clean, and 70% BFL Class A + 30% OFD Clean had high (>1 in.); LCF 

Class A, 70% BFL Class A + 30% LCF Clean, and 70% BFL Class A + 30% CRG Clean had 

medium (0.5 to 1 in.); and OFD Class A had low (<0.5 in.) thickness loss per length. Based on 

these results, it can be concluded that 70% BFL Class A + 30% LCF Clean and 70% BFL Class 

A + 30% CRG Clean is more durable than local BFL materials (BFL Class A and 80% BFL 

Class A + 20% BFL Clean) when thickness loss is considered. 

Table 81 shows the different scenarios based on the results of thickness and aggregate (material) 

loss for each section.  

Table 81. Scenarios for maintenance frequency based on the thickness and aggregate loss 

Sections Worst case Most likely Best case 

LCF Class A 2 3 4 

OFD Class A 3 4 5 

BFL Class A 1 2 3 

80% BFL Class A + 20% BFL Clean 1 2 3 

70% BFL Class A + 30% OFD Clean 1 2 3 

70% BFL Class A + 30% LCF Clean 2 3 4 

70% BFL Class A + 30% CRG Clean 2 3 4 
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Sections were categorized into three groups. Three scenarios were determined for each group and 

named worst case, when the maintenance needs to be done with a conservative decision; most 

likely, when the maintenance needs to be performed as a common decision; and best case, when 

the contractor makes an optimistic decision about the performance of the materials to perform 

maintenance less often.  

For the sections with high material and thickness loss (BFL Class A, 80% BFL Class A + 20% 

BFL Clean, and 70% BFL Class A + 30% OFD Clean), maintenance could be performed every 

one, two, or three years. Sections with medium aggregate loss (LCF Class A, 70% BFL Class A 

+ 30% LCF Clean, and 70% BFL Class A + 30% CRG Clean) could have maintenance every 

two, three, or four years, and OFD Class A with low aggregate loss requires maintenance less 

often (three, four, or five years). 

Figure 88 shows BCA results based on the scenarios from material and thickness loss.  

 

 

Figure 88. BCR values for material and thickness loss 

The BCR for LCF Class A was lower than 1 for worst-case scenarios (maintenance every two 

years). However, this section had a BCR > 1 for most likely and best-case scenarios 

(maintenance every three or four years). OFD Class A always proved to be beneficial to use 

compared to the base case (BFL Class A) by having a BCR higher than 1 for different scenarios 

and service life values. The BCR values for 80% BFL Class A + 20% BFL Clean were lower 

than 1 for worst-case and most likely scenarios (maintenance every one or two years), and higher 

than 1 for the best-case scenario (maintenance every three years). The 70% BFL Class A + 30% 

OFD Clean had the minimum BCR values (<1) for all scenarios. The BCR values for 70% BFL 

Class A + 30% LCF Clean were lower than 1 for the worst-case scenario (maintenance every two 

years) except for 50 years of service life of which it was 1. However, the most likely and best-

case scenarios (maintenance every three or four years) showed BCR values higher than 1 for 

70% BFL Class A + 30% LCF Clean. The BCR values for 70% BFL Class A + 30% CRG Clean 

for the worst-case scenario (maintenance every two years) were lower than 1. However, the most 

likely and best-case scenarios (maintenance every three or four years) showed higher BCR 

values than 1. The highest BCR value was observed for 70% BFL Class A + 30% LCF Clean 
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(2.47) and 70% BFL Class A + 30% CRG Clean (2.33) for service life, indicating that the 

transportation of high-quality clean aggregate materials offer the potential to be more cost-

efficient when material and thickness losses are considered.  

Figure 88 shows the BCR values for OFD Class A and 70% BFL Class A + 30% OFD Clean 

increase when hauling materials by rail rather than truck. This increase for OFD Class A is 

higher (0.3) than 70% BFL Class A + 30% OFD Clean (0.07). However, 70% BFL Class A + 

30% OFD Clean was still not cost-effective compared to use of local aggregate materials. 

Nevertheless, this case caused OFD Class A section to become the second most beneficial (cost-

effective) section after 70% BFL Class A + 30% LCF Clean with BCR values higher than 70% 

BFL Class A + 30% CRG Clean. 

7.8.2 Gravel Aggregate Content Loss 

Gravel loss (aggregate size> US #4, 0.19 in.) is one of the main degradation indicators on the 

surface materials of granular roadways. The benefits of using alternative sections compared to 

the base case section were evaluated by considering the coarse aggregate loss. Figure 89 shows 

the gravel loss from construction (September 2016) to before maintenance (May 2017).  

 

Figure 89. Gravel percentage change from construction to maintenance 

Test sections then were categorized into the three categories of high, medium, and low gravel 

loss. The results were as follows: 80% BFL Class A + 20% BFL Clean, 70% BFL Class A + 

30% OFD Clean, and 70% BFL Class A + 30% CRG Clean had high (>20%); BFL Class A had 
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medium (10 to 20%); and LCF Class A, OFD Class A, and 70% BFL Class A + 30% LCF Clean 

had low (<10%) gravel loss. 

Table 82 shows the different scenarios based on the results of gravel loss for each section.  

Table 82. Scenarios for maintenance frequency based on the gravel loss for each section 

Sections Worst case Most likely Best case 

LCF Class A 3 4 5 

OFD Class A 3 4 5 

BFL Class A 2 3 4 

80% BFL Class A + 20% BFL Clean 1 2 3 

70% BFL Class A + 30% OFD Clean 1 2 3 

70% BFL Class A + 30% LCF Clean 3 4 5 

70% BFL Class A + 30% CRG Clean 1 2 3 

 

For the sections with high gravel loss (80% BFL Class A + 20% BFL Clean, 70% BFL Class A 

+ 30% OFD Clean, and 70% BFL Class A + 30% CRG Clean), maintenance could be performed 

every one, two, or three years. BFL Class A with medium aggregate loss could have maintenance 

every two, three, or four years, and the sections with low aggregate loss (LCF Class A, OFD 

Class A, and 70% BFL Class A + 30% LCF Clean), require maintenance less often (three, four, 

or five years). 

Figure 90 shows BCA results based on the scenarios from gravel loss.  

 

Figure 90. BCR values for gravel loss 

LCF Class A, OFD Class A, and 70% BFL Class A + 30% LCF Clean always proved to be 

beneficial to use compared to the base case (BFL Class A) by having a BCR higher than 1 for 

different scenarios and service life values. The BCR values for 80% BFL Class A + 20% BFL 

Clean and 70% BFL Class A + 30% CRG Clean were lower than 1 for worst-case and most 

likely scenarios (maintenance every one or two years) and higher than 1 for the best-case 
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scenario (maintenance every three years). The 70% BFL Class A + 30% OFD Clean had the 

minimum BCR values (<1) for all scenarios. The highest BCR values were observed for 70% 

BFL Class A + 30% LCF Clean (2.99), LCF Class A (2.26), and OFD Class A (2.04) during 

their service life when gravel loss was considered.  

Figure 90 shows the BCR values for OFD Class A and 70% BFL Class A + 30% OFD Clean 

increase when hauling materials by rail rather than truck. This increase for OFD Class A was 

higher (0.3) than that of 70% BFL Class A + 30% OFD Clean (0.07). However, 70% BFL Class 

A + 30% OFD Clean was still not beneficial. Nevertheless, rail hauling resulted in OFD Class A 

section being the second most beneficial section after the 70% BFL Class A + 30% LCF Clean 

section. 

7.8.3 Performance-Based Benefit-Cost Analysis 

Several different laboratory and field tests including FWD, DCP, Dustometer, IRI, and sieve 

analyses (total breakage, fines content, and gravel-to-sand ratio) were conducted on each section 

multiple times during the project timeline. In this study, these results were divided into three 

different categories based on their degree of importance for maintenance, and a weight of each 

parameter was considered for each group to come up with an overall value of BCR (Figure 91).  

 

Figure 91. Classification of the laboratory and field results for BCA 

The results of sieve analyses (total breakage, fines content, and gravel-to-sand ratio) were placed 

in the first group due their importance by being representative of the total deterioration of the 

sections and a weight of 0.75 or 1, depending on the condition, was selected for this group. The 

FWD and DCP results were categorized as the second group since they provide mechanical 

properties of each section (stiffness and strength) and a weight of 0.5 was used. Finally, 

dustometer and IRI tests (dust production and ride quality) were assigned to the third group with 

a degree of importance of 0.25. Material and thickness loss and gravel content change were also 

included in weighted models with a weight of 1 while the first, the second, and the third groups 

were weighted as 0.75, 0.5, and 0.25, respectively. The BCR results for each of the laboratory 

and field tests are presented in the following sections. 
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7.8.4 First Group (Sieve Analyses Results) 

7.8.4.1 Total Breakage 

Total breakage is an indicator of material degradation and is defined as the area between the 

particle-size distributions curves of materials collected at different times. Figure 92 shows the 

total breakage of all test sections since construction (September 2016).  

 

Figure 92. Total breakage average values over the length of project 

Test sections were categorized into the three groups, where BFL Class A, 80% BFL Class A + 

20% BFL Clean, and 70% BFL Class A + 30% OFD Clean had high (>0.3); 70% BFL Class A + 

30% LCF Clean and 70% BFL Class A + 30% CRG Clean had medium (0.15 to 0.3); and LCF 

Class A and OFD Class A had low (<0.15) total breakage values. The 70% BFL Class A + 30% 

LCF Clean and 70% BFL Class A + 30% CRG Clean were better than BFL materials.  

Table 83 shows the different scenarios based on the results of average total breakage over the 

maintenance period.  
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Table 83. Scenarios for maintenance frequency based on the average total breakage 

Sections Worst case Most likely Best case 

LCF Class A 3 4 5 

OFD Class A 3 4 5 

BFL Class A 1 2 3 

80% BFL Class A + 20% BFL Clean 1 2 3 

70% BFL Class A + 30% OFD Clean 1 2 3 

70% BFL Class A + 30% LCF Clean 2 3 4 

70% BFL Class A + 30% CRG Clean 2 3 4 

 

For the sections with high average total breakage (BFL Class A, 80% BFL Class A + 20% BFL 

Clean, and 70% BFL Class A + 30% OFD Clean), maintenance could be performed every one, 

two, or three years. The 70% BFL Class A + 30% LCF Clean and 70% BFL Class A + 30% 

CRG Clean with medium average total breakage could have maintenance every two, three, or 

four years, and the sections with low aggregate loss (LCF Class A and OFD Class A), require 

maintenance less often (three, four, or five years). 

Figure 93 shows BCA results based on the scenarios from average total breakage.  

 

Figure 93. BCR values for average total breakage 

LCF Class A and OFD Class A always proved to be beneficial compared to the base case (BFL 

Class A) by having a BCR higher than 1 for different scenarios and service life values. The BCR 

values for 80% BFL Class A + 20% BFL Clean were lower than 1 for worst-case and most likely 

scenarios (maintenance every one or two years) and higher than 1 for the best-case scenario 

(maintenance every three years). The 70% BFL Class A + 30% OFD Clean was not beneficial to 

use in any case compared to the base case (BFL Class A) that had BCR values lower than 1 for 

all scenarios. The BCR values for 70% BFL Class A + 30% LCF Clean and 70% BFL Class A + 

30% CRG Clean were lower than 1 for the worst-case scenario (maintenance every two years) 

and higher than 1 for the most likely and best-case scenarios (maintenance every three or four 

years). The highest BCR value was observed for 50 years of service life and the best-case 
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scenario (maintenance every four years) for 70% BFL Class A + 30% LCF Clean (2.47). The 

lowest BCR value was observed for 20 years of service life and the worst-case scenario 

(maintenance every one year) for 80% BFL Class A + 20% BFL Clean (0.04).  

Figure 93 shows the BCR values for OFD Class A and 70% BFL Class A + 30% OFD Clean 

increase when hauling materials by rail rather than truck. This increase for OFD Class A was 

higher (0.3) than 70% BFL Class A + 30% OFD Clean (0.07). However, the 70% BFL Class A + 

30% OFD Clean was still not beneficial. Nevertheless, rail hauling resulted in the OFD Class A 

section being the second most beneficial section after 70% BFL Class A + 30% LCF Clean with 

BCR values higher than 70% BFL Class A + 30% CRG Clean. 

7.8.4.2 Fines Content 

Average values of fines content over time could be good for comparing alternative sections to 

the base case (BFL Class A) since fines content affects dust production and distresses such as 

rutting and pot holes. Figure 94 shows the average fines content values over the length of the 

project and test sections, which were categorized into three groups where BFL Class A had high 

(>20%); 80% BFL Class A + 20% BFL Clean, 70% BFL Class A + 30% OFD Clean, 70% BFL 

Class A + 30% LCF Clean, and 70% BFL Class A + 30% CRG Clean had medium (15% to 

30%); and LCF Class A and OFD Class A had low (<15%) average fines content values.  

 

Figure 94. Average fines content values over the length of project 
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Results showed that the BFL Class A mixed with LCF Clean and CRG Clean were more 

beneficial than only the local BFL material and mixtures. 

Table 84 shows the different scenarios based on the results of average fines content.  

Table 84. Scenarios for maintenance frequency based on the average fines content 

Sections Worst case Most likely Best case 

LCF Class A 3 4 5 

OFD Class A 3 4 5 

BFL Class A 1 2 3 

80% BFL Class A + 20% BFL Clean 2 3 4 

70% BFL Class A + 30% OFD Clean 2 3 4 

70% BFL Class A + 30% LCF Clean 2 3 4 

70% BFL Class A + 30% CRG Clean 2 3 4 

 

BFL Class A with high average fines content could have maintenance performed every one, two, 

or three years. Sections with medium average fines content (80% BFL Class A + 20% BFL 

Clean, 70% BFL Class A + 30% OFD Clean, 70% BFL Class A + 30% LCF Clean, and 70% 

BFL Class A + 30% CRG Clean) could have maintenance every two, three, or four years, and 

LCF Class A and OFD Class A with low average fines content require maintenance less often 

(three, four, or five years). 

Figure 95 shows BCA results based on the scenarios from average fines content.  

 

Figure 95. BCR values for average fines content 

LCF Class A and OFD Class A always proved to be beneficial compared to the base case (BFL 

Class A) by having a BCR higher than 1 for different scenarios and service life values. The BCR 

values for 80% BFL Class A + 20% BFL Clean were lower than 1 for the worst-case 

(maintenance every two years) and higher than 1 for the most likely and best-case scenarios 

(maintenance every three or four years). The 70% BFL Class A + 30% OFD Clean was not 
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beneficial compared to the base case (BFL Class A) that had BCR values lower than 1 for its 

most likely and worst-case scenarios (maintenance every two or three years). However 70% BFL 

Class A + 30% OFD Clean had BCR values higher than 1 for the best-case scenario 

(maintenance every four years). The BCR values for 70% BFL Class A + 30% LCF Clean and 

70% BFL Class A + 30% CRG Clean were lower than 1 for the worst-case scenario 

(maintenance every two years) and higher than 1 for the most likely and best-case scenarios 

(maintenance every three or four years). The highest BCR value was observed for 20 years of 

service life and best-case scenario for 70% BFL Class A + 30% LCF Clean (2.47), and the 

lowest BCR value was observed for 20 years of service life.  

Figure 95 shows the BCR values for OFD Class A and 70% BFL Class A + 30% OFD Clean 

increase when hauling materials by rail rather than truck. The increase for OFD Class A was 

higher (0.3) than 70% BFL Class A + 30% OFD Clean (0.1). Rail hauling resulted in OFD Class 

A section being the second most beneficial section after 70% BFL Class A + 30% LCF Clean 

with BCR values higher than 70% BFL Class A + 30% CRG Clean. 

7.8.4.3 Gravel-to-Sand Ratio 

Average values of gravel-to-sand ratio over time show the amount of large-size particles (sand 

and gravel) that became finer materials, and these values could be compared for each alternative 

section with the base case (BFL Class A). Figure 96 shows the average gravel-to-sand ratio 

values over the length of the project.  

 

Figure 96. Average gravel-to-sand ratio values over the length of project 
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The test sections were categorized into three groups, where 80% BFL Class A + 20% BFL Clean 

and 70% BFL Class A + 30% CRG Clean had high (>2); OFD Class A, BFL Class A, 70% BFL 

Class A + 30% OFD Clean, and 70% BFL Class A + 30% LCF Clean had medium (1 to 2); and 

LCF Class A had low (<1) average gravel-to-sand ratio values.  

Table 85 shows the different scenarios based on the results of average gravel-to-sand ratio.  

Table 85. Scenarios for maintenance frequency based on the average gravel-to-sand ratio 

Sections Worst case Most likely Best case 

LCF Class A 1 2 3 

OFD Class A 2 3 4 

BFL Class A 2 3 4 

80% BFL Class A + 20% BFL Clean 3 4 5 

70% BFL Class A + 30% OFD Clean 2 3 4 

70% BFL Class A + 30% LCF Clean 2 3 4 

70% BFL Class A + 30% CRG Clean 3 4 5 

 

LCF Class A with low average gravel-to-sand ratio could have maintenance every one, two, or 

three years. Sections with medium average gravel-to-sand ratio (OFD Class A, BFL Class A, 

70% BFL Class A + 30% OFD Clean, and 70% BFL Class A + 30% LCF Clean) could have 

maintenance every two, three, or four years, and 80% BFL Class A + 20% BFL Clean and 70% 

BFL Class A + 30% CRG Clean with high average gravel-to-sand ratio require maintenance less 

often (three, four, or five years). 

Figure 97 shows BCA results based on the scenarios from average gravel-to-sand ratio.  

 

Figure 97. BCR values for average gravel-to-sand ratio 

The BCR values for LCF Class A and 70% BFL Class A + 30% OFD Clean were lower than 1 

for the worst-case and most likely scenarios (maintenance every one or two years for LCF Class 

A and two or three years for 70% BFL Class A + 30% OFD Clean) and higher than 1 for the 
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best-case scenario (maintenance every three years for LCF Class A and four years for 70% BFL 

Class A + 30% OFD Clean). OFD Class A was not beneficial for the worst-case scenario 

(maintenance every two years), but it was beneficial for the most likely and best-case scenarios 

(maintenance every three or four years). The 80% BFL Class A + 20% BFL Clean and 70% BFL 

Class A + 30% CRG Clean were always beneficial compared to the base case (BFL Class A) by 

having a BCR higher than 1 for different scenarios and service life values. The BCR values for 

70% BFL Class A + 30% LCF Clean were lower than 1 for the worst-case scenario (maintenance 

every two years) and higher than 1 for the most likely and best-case scenarios (maintenance 

every three or four years). The highest BCR value was observed for 50 years of service life and 

the best-case scenario for 70% BFL Class A + 30% CRG Clean (2.82), and the lowest BCR 

value was observed for the worst-case scenario and all service life values for LCF Class A (0.01) 

when fines gravel-to-sand ratio was considered. 

Figure 97 shows the BCR values for OFD Class A and 70% BFL Class A + 30% OFD Clean 

increase when hauling materials by rail rather than truck. This increase for OFD Class A is 

higher (0.27) than 70% BFL Class A + 30% OFD Clean (0.1). 

7.8.5 Second Group (Surface Elastic Modulus - FWD, Surface Shear Strength - DCP) 

7.8.5.1 Surface Elastic Modulus - FWD 

Surface elastic modulus (stiffness) is another factor that was considered in order to investigate 

the benefits of constructing alternative sections for the base case (BFL Class A). Figure 98 shows 

the back-calculated surface elastic modulus of each section as a result of the FWD tests.  
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Figure 98. Average back-calculated surface elastic moduli during the project 

Test sections then were categorized into three groups, where LCF Class A and OFD Class A had 

high (>50 ksi); 80% BFL Class A + 20% BFL Clean, 70% BFL Class A + 30% OFD Clean, and 

70% BFL Class A + 30% LCF Clean had medium (30 ksi to 50 ksi); and BFL Class A and 70% 

BFL Class A + 30% CRG Clean had low (<30 ksi) average back-calculated surface elastic 

modulus values.  

Table 86 shows the different scenarios based on the results of average surface elastic modulus.  

Table 86. Scenarios for maintenance frequency based on the average surface elastic 

modulus 

Sections Worst case Most likely Best case 

LCF Class A 3 4 5 

OFD Class A 3 4 5 

BFL Class A 1 2 3 

80% BFL Class A + 20% BFL Clean 2 3 4 

70% BFL Class A + 30% OFD Clean 2 3 4 

70% BFL Class A + 30% LCF Clean 2 3 4 

70% BFL Class A + 30% CRG Clean 1 2 3 
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BFL Class A and 70% BFL Class A + 30% CRG Clean with low average surface elastic 

modulus could have maintenance every one, two, or three years. Sections with medium average 

surface elastic modulus (80% BFL Class A + 20% BFL Clean, 70% BFL Class A + 30% OFD 

Clean, and 70% BFL Class A + 30% LCF Clean) could have maintenance every two, three, or 

four years, and LCF Class A and OFD Class A with high average surface elastic modulus require 

maintenance less often (three, four, or five years).  

Figure 99 shows BCA results based on the scenarios from average back-calculated surface 

elastic modulus.  

 

 

Figure 99. BCR values for average back-calculated surface elastic modulus 

LCF Class A and OFD Class A always proved to be beneficial compared to the base case (BFL 

Class A) by having a BCR higher than 1 for different scenarios and service life values. The BCR 

values for 80% BFL Class A + 20% BFL Clean were lower than 1 for worst-case (maintenance 

every two years) and higher than 1 for most likely and best-case scenarios (maintenance every 

three or four years). The 70% BFL Class A + 30% OFD Clean was not beneficial compared to 

the base case (BFL Class A) with BCR values lower than 1 for the worst-case and most likely 

scenarios (maintenance every two or three years). However, 70% BFL Class A + 30% OFD 

Clean had BCR values higher than 1 for the best-case scenario (maintenance every four years). 

The BCR values for 70% BFL Class A + 30% LCF Clean were lower than 1 for the worst-case 

scenario (maintenance every two years) and higher than 1 for the most likely and best-case 

scenarios (maintenance every three or four years). The BCR values for 70% BFL Class A + 30% 

CRG Clean for the worst-case and most likely scenarios (maintenance every one or two years) 

was lower than 1 but for the best case (maintenance every three years) were higher than 1. The 

highest BCR value was observed for 50 years of service life and the best-case scenario for 70% 

BFL Class A + 30% LCF Clean (2.47), and the lowest BCR value was observed for 40 and 50 

years of service life values and worst-case scenario for 70% BFL Class A + 30% CRG Clean 

(0.01) when stiffness of the roadways were considered.  

Figure 99 shows the BCR values for OFD Class A and 70% BFL Class A + 30% OFD Clean 

increase when hauling materials by rail rather than truck. This increase for OFD Class A is 
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higher (0.3) than 70% BFL Class A + 30% OFD Clean (0.1). Rail hauling resulted in OFD Class 

A section being the second most beneficial section after 70% BFL Class A + 30% LCF Clean 

section. 

7.8.5.2 Surface Shear Strength - DCP 

Surface shear strength is another factor that was considered in order to investigate the benefits of 

constructing alternative sections for the base case (BFL Class A). Figure 100 shows the surface 

shear strength of all sections as a result of the DCP tests.  

 

Figure 100. Average surface shear strength values over the length of project 

Test sections then were categorized into three groups, where 80% BFL Class A + 20% BFL 

Clean had high (>120%); LCF Class A, BFL Class A, and 70% BFL Class A + 30% OFD Clean 

had medium (100% to 120%); and OFD Class A, 70% BFL Class A + 30% LCF Clean, and 70% 

BFL Class A + 30% CRG Clean had low (<100%) average surface shear strength.  

Table 87 shows the different scenarios based on the results of average surface shear strength.  
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Table 87. Scenarios for maintenance frequency based on the average surface shear strength 

Sections Worst case Most likely Best case 

LCF Class A 2 3 4 

OFD Class A 1 2 3 

BFL Class A 2 3 4 

80% BFL Class A + 20% BFL Clean 3 4 5 

70% BFL Class A + 30% OFD Clean 2 3 4 

70% BFL Class A + 30% LCF Clean 1 2 3 

70% BFL Class A + 30% CRG Clean 1 2 3 

 

OFD Class A, 70% BFL Class A + 30% LCF Clean, and 70% BFL Class A + 30% CRG Clean 

with low average surface shear strength could have maintenance every one, two, or three years. 

LCF Class A, BFL Class A, and 70% BFL Class A + 30% OFD Clean with medium average 

surface shear strength could have maintenance every two, three, or four years, and 80% BFL 

Class A + 20% BFL Clean with high average surface shear strength require maintenance less 

often (three, four, or five years).  

Figure 101 shows BCA results based on the scenarios from average surface shear strength.  

 

 

Figure 101. BCR values for average surface shear strength 

The BCR values for LCF Class A were lower than 1 for worst-case (maintenance every two 

years) and higher than 1 for most likely and best-case scenarios (maintenance every three or four 

years). OFD Class A, 70% BFL Class A + 30% LCF Clean, and 70% BFL Class A + 30% CRG 

Clean were not beneficial compared to the base case (BFL Class A) with BCR values lower than 

1 for worst-case and most likely scenarios (maintenance every one or two years). However, the 

aforementioned three sections had BCR values higher than 1 for the best-case scenario 

(maintenance every three years). The 80% BFL Class A + 20% BFL Clean always proved to be 

beneficial compared to the base case (BFL Class A) by having a BCR higher than 1 for different 

scenarios and service life values. The 70% BFL Class A + OFD Clean was not beneficial 

compared to the base case (BFL Class A) with BCR values lower than 1 for worst-case and most 
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likely scenarios (maintenance every two or three years). However, 70% BFL Class A + OFD 

Clean had BCR values higher than 1 for the best-case scenario (maintenance every four years). 

The highest BCR value was observed for 50 years of service life and the best-case scenario for 

80% BFL Class A + 20% BFL Clean (2.62), and the lowest BCR value was observed for 40 and 

50 years of service life values and worst-case scenario for 70% BFL Class A + 30% CRG Clean 

(0.01).  

Figure 101 shows the BCR values for OFD Class A and 70% BFL Class A + 30% OFD Clean 

increase when hauling materials by rail rather than truck. This increase for OFD Class A is 

higher (0.22) than for 70% BFL Class A + 30% OFD Clean (0.1).  

7.8.6 Third Group (Dust Production - Dustometer, Surface Roughness–IRI) 

7.8.6.1 Dust Production–Dustometer 

Dust production is one of the main problems with granular roadways, and it would be beneficial 

to find the best alternative section with lower dust production. Figure 102 shows the average dust 

production of all sections as a result of dustometer tests.  

 

Figure 102. Average dust production over the length of project 

Test sections were categorized into three groups, where 70% BFL Class A + 30% OFD Clean 

and 70% BFL Class A + 30% CRG Clean had high (>0.006 lb/mile); OFD Class A, 80% BFL 
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Class A + 20% BFL Clean, and 70% BFL Class A + 30% LCF Clean had medium (0.003 to 

0.006 lb/mile); and LCF Class A and BFL Class A had low (<0.003 lb/mile) average dust 

production.  

Table 88 shows the different scenarios based on the results of average dust production.  

Table 88. Scenarios for maintenance frequency based on the average dust production 

Sections Worst case Most likely Best case 

LCF Class A 3 4 5 

OFD Class A 2 3 4 

BFL Class A 3 4 5 

80% BFL Class A + 20% BFL Clean 2 3 4 

70% BFL Class A + 30% OFD Clean 1 2 3 

70% BFL Class A + 30% LCF Clean 2 3 4 

70% BFL Class A + 30% CRG Clean 1 2 3 

 

LCF Class A and BFL Class A with low average dust production could have maintenance every 

three, four, or five years. OFD Class A, 80% BFL Class A + 20% BFL Clean, and 70% BFL 

Class A + 30% LCF Clean with medium average dust production could have maintenance every 

two, three, or four years, and 70% BFL Class A + 30% OFD Clean and 70% BFL Class A + 30% 

CRG Clean with high average dust production require maintenance more often (one, two, or 

three years).  

Figure 103 shows BCA results based on the scenarios from average dust production.  

 

 

Figure 103. BCR values for average dust production 

LCF Class A always proved to be beneficial compared to the base case (BFL Class A) by having 

a BCR higher than 1 for different scenarios and service life values. The BCR values for OFD 

Class A were lower than 1 for worst-case (maintenance every two years) and higher than 1 for 
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most likely and best-case scenarios (maintenance every three or four years). The 80% BFL Class 

A + 20% BFL Clean and 70% BFL Class A + 30% LCF Clean were not beneficial to use 

compared to the base case (BFL Class A) with BCR values lower than 1 for the worst-case 

scenario (maintenance every two years). However these two sections had BCR values higher 

than 1 for the most likely and best-case scenarios (maintenance every three or four years). The 

70% BFL Class A + 30% OFD Clean, and 70% BFL Class A + 30% CRG Clean were not 

beneficial compared to the base case (BFL Class A) with BCR values lower than 1 for worst-

case and most likely scenarios (maintenance every one or two years). However, the 

aforementioned two sections had BCR values higher than 1 for the best-case scenario 

(maintenance every three years). The highest BCR value was observed for 50 years of service 

life and the best-case scenario for 70% BFL Class A + 30% LCF Clean (2.47), and the lowest 

BCR value was observed for 40 and 50 years of service life values and worst-case scenario for 

70% BFL Class A + 30% CRG Clean (0.01) when dust production was considered. 

Figure 103 shows the BCR values for OFD Class A and 70% BFL Class A + 30% OFD Clean 

increase when hauling materials by rail rather than truck. This increase for OFD Class A is 

higher (0.27) than 70% BFL Class A + 30% OFD Clean (0.07).  

7.8.6.2 Surface Roughness–IRI 

Surface roughness is one of the important factors in the serviceability of roadways. This factor 

has been investigated in this study by conducting IRI tests and reported as cIRI as mentioned 

previously. Figure 104 shows the average cIRI values of all sections.  
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Figure 104. Average surface roughness (cIRI) over the length of project 

Test sections were categorized into two groups, where 70% BFL Class A + 30% OFD Clean and 

70% BFL Class A + 30% LCF Clean had poor (>6 m/km), and the rest of the sections had fair (4 

to 6 m/km) conditions. 

Table 89 shows the different scenarios based on the results of average surface roughness.  

Table 89. Scenarios for maintenance frequency based on the average surface roughness 

Sections Worst case Most likely Best case 

LCF Class A 2 3 4 

OFD Class A 2 3 4 

BFL Class A 2 3 4 

80% BFL Class A + 20% BFL Clean 2 3 4 

70% BFL Class A + 30% OFD Clean 1 2 3 

70% BFL Class A + 30% LCF Clean 1 2 3 

70% BFL Class A + 30% CRG Clean 2 3 4 

 

The 70% BFL Class A + 30% OFD Clean A and 70% BFL Class A + 30% LCF Clean with poor 

average surface roughness conditions could have maintenance every one, two, or three years. 

LCF Class A, OFD Class A, BFL Class A, 80% BFL Class A + 20% BFL Clean, and 70% BFL 
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Class A + 30% CRG Clean with fair average surface roughness condition could have 

maintenance every two, three, or four years.  

Figure 105 shows BCA results based on the scenarios from average surface roughness 

conditions.  

 

Figure 105. BCR values for average surface roughness conditions 

The BCR values for LCF Class A, OFD Class A, 80% BFL Class A + 20% BFL Clean, and 70% 

BFL Class A + 30% CRG Clean were lower than 1 for worst-case (maintenance every two years) 

and higher than 1 for most likely and best-case scenarios (maintenance every three or four years). 

The 70% BFL Class A + 30% OFD Clean and 70% BFL Class A + 30% LCF Clean were not 

beneficial compared to the base case (BFL Class A) with BCR values lower than 1 for the worst-

case and most likely scenarios (maintenance every one or two years). However, the 

aforementioned two sections had BCR values higher than 1 for the best-case scenario 

(maintenance every three years). The highest BCR value was observed for 50 years of service 

life and the best-case scenario for 70% BFL Class A + 30% CRG Clean (2.33), and the lowest 

BCR value was observed for 30, 40, and 50 years of service life values and the worst-case 

scenario for 70% BFL Class A + 30% LCF Clean (0.06) when ride quality was considered. 

Figure 105 shows the BCR values for OFD Class A and 70% BFL Class A + 30% OFD Clean 

increase when hauling materials by rail rather than truck. This increase for OFD Class A is 

higher (0.27) than 70% BFL Class A + 30% OFD Clean (0.07). The 70% BFL Class A + 30% 

OFD Clean still will not be beneficial even if the OFD materials were hauled by train. 

Nevertheless, rail hauling resulted in the OFD Class A section being the third most beneficial 

section after 70% BFL Class A + 30% CRG Clean and 80% BFL Class A + 20% BFL Clean 

sections. 
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7.8.7 Overall Performance-Based BCR Values 

7.8.7.1 First Condition 

For this analysis, the first group (total breakage, fines content, and gravel-to-sand ratio) was 

weighted as 1, the second group (FWD and DCP) was weighted as 0.5, and the third group 

(dustometer and IRI) was weighted as 0.25 (Figure 106). 

 

Figure 106. Weighted average of the BCR values based on the mechanical properties 

Figure 107 shows the average weighted value of the BCR values for different scenarios and 

service life parameters.  

 

Figure 107. BCR values for weighted performance measures 

The BCR values for LCF Class A, 80% BFL Class A + 20% BFL Clean, 70% BFL Class A + 

30% LCF Clean, and 70% BFL Class A + 30% CRG Clean were lower than 1 for worst-case and 

higher than 1 for most likely and best-case scenarios. However, LCF Class A had a BCR higher 

than 1 (1.02) for the worst-case scenario, when the service life was 50 years. OFD Class A 

always had BCR values higher than 1 for all the scenarios and service life values except for 20 

years of service life at the worst-case scenario. The 70% BFL Class A + 30% OFD Clean was 

not beneficial compared to the base case (BFL Class A) with BCR values lower than 1 for worst-

case and most likely scenarios. However, this section had BCR values higher than 1 for the best-

case scenario. The highest BCR value was observed for 50 years of service life and the best-case 
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scenario for 70% BFL Class A + 30% LCF Clean (2.36), and the lowest BCR value was 

observed for 20 and 30 years of service life values and the worst-case scenario for 70% BFL 

Class A + 30% OFD Clean (0.31). 

Figure 107 shows the BCR values for OFD Class A and 70% BFL Class A + 30% OFD Clean 

increase when hauling materials by rail rather than truck. This increase for OFD Class A was 

higher (0.28) than 70% BFL Class A + 30% OFD Clean (0.09). Hauling OFD materials by train 

resulted in the OFD Class A section being the third most beneficial section after 70% BFL Class 

A + 30% LCF Clean and 70% BFL Class A + 30% CRG Clean with BCR values higher than 

80% BFL Class A + 20% BFL Clean. 

7.8.7.2 Second Condition 

For this analysis, the material and surface thickness loss was weighted as 1, the first group (total 

breakage, fines content, and gravel-to-sand ratio) was weighted as 0.75, the second group (FWD 

and DCP) was weighted as 0.5, and the third group (dustometer and IRI) was weighted as 0.25 

(Figure 108).  

 

Figure 108. Weighted average of the BCR values based on the mechanical properties and 

material/thickness loss 

Figure 109 shows the average weighted values of the BCR for different scenarios and service life 

values.  
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Figure 109. BCR values for weighted performance measures and material/thickness loss 

The BCR values for LCF Class A, 80% BFL Class A + 20% BFL Clean, 70% BFL Class A + 

30% LCF Clean, and 70% BFL Class A + 30% CRG Clean were lower than 1 for worst-case and 

higher than 1 for most likely and best-case scenarios. OFD Class A always had BCR values 

higher than 1 for all the scenarios and service life values except for 20 years of service life at the 

worst-case scenario. The 70% BFL Class A + 30% OFD Clean was not beneficial to construct 

compared to the base case (BFL Class A) with BCR values lower than 1 for the worst-case and 

most likely scenarios. However, this section had BCR values higher than 1 for the best-case 

scenario. The highest BCR value was observed for 50 years of service life and the best-case 

scenario for 70% BFL Class A + 30% LCF Clean (2.37), and the lowest BCR value was 

observed for 20 and 30 years of service life values and the worst-case scenario for 70% BFL 

Class A + 30% OFD Clean (0.31). 

Figure 109 shows the BCR values for OFD Class A and 70% BFL Class A + 30% OFD Clean 

increase with hauling materials with rail rather than truck. This increase for OFD Class A was 

higher (0.28) than 70% BFL Class A + 30% OFD Clean (0.09). Rail hauling of OFD materials 

resulted in the OFD Class A section being the third most beneficial section after 70% BFL Class 

A + 30% LCF Clean and 70% BFL Class A + 30% CRG Clean with BCR values higher than 

LCF Class A. 

7.8.7.3 Third Condition 

For this analysis, the gravel content change was weighted as 1, the first group (total breakage, 

fines content, and gravel-to-sand ratio) was weighted as 0.75, the second group (FWD and DCP) 

was weighted as 0.5, and the third group (dustometer and IRI) was weighted as 0.25 (Figure 

110).  
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Figure 110. Weighted average of the BCR values based on the mechanical properties and 

gravel loss 

Figure 111 shows the average weighted values of the BCR for different scenarios and service life 

values.  

 

 

Figure 111. BCR values for weighted performance measures and gravel loss 

LCF Class A and 70% BFL Class A + 30% LCF Clean always had BCR values higher than 1 

except for 20 and 30 years of service life values for the worst-case scenario. OFD Class A 

always had BCR values higher than 1 for all the scenarios and service life values except for the 

20 years of service life at the worst-case scenario. The BCR values for 80% BFL Class A + 20% 

BFL Clean and 70% BFL Class A + 30% CRG Clean were lower than 1 for the worst-case and 

higher than 1 for the most likely and best-case scenarios. The 70% BFL Class A + 30% OFD 

Clean was not beneficial to construct compared to the base case (BFL Class A) with BCR values 

lower than 1 for the worst-case and most likely scenarios. However, this section had BCR values 

higher than 1 for the best-case scenario. The highest BCR value was observed for 50 years of 

service life and the best-case scenario for 70% BFL Class A + 30% LCF Clean (2.48), and the 

lowest BCR value was observed for 20 and 30 years of service life values and the worst-case 

scenario for 70% BFL Class A + 30% OFD Clean (0.31). 

The BCR values for OFD Class A and 70% BFL Class A + 30% OFD Clean increase when 

hauling materials by rail rather than truck. This increase for OFD Class A was higher (0.28) than 
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70% BFL Class A + 30% OFD Clean (0.09). Rail hauling of OFD materials resulted in the OFD 

Class A section being the second most beneficial section after 70% BFL Class A + 30% LCF 

Clean with BCR values higher than that of 70% BFL Class A + 30% CRG Clean. 
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CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS 

This chapter briefly summarizes the results of the laboratory and field tests, temperature 

readings, and cost analysis for the test sections. In addition, recommendations for future studies 

are provided. 

The results of this study showed that mixing clean and Class A aggregates could be an efficient 

way to reduce costs, because clean aggregate materials are larger in size and lower amounts 

(tonnage) of materials are required to achieve a specific thickness. Therefore, the total amount of 

materials for the sections with the mixture of Class A and clean materials will be lower than 

sections with only Class A materials. This results in a decrease in the costs of aggregates and 

hauling.  

8.1 Field Observations 

Based on the observations throughout construction and maintenance, it was concluded that the 

two sections consisting of mixtures of 70% BFL Class A + 30% LCF Clean and 70% BFL Class 

A + 30% CRG Clean had the best overall performance. The 70% BFL Class A + 30% CRG 

Clean section was more difficult to maintain due to the high angularity of the aggregate 

materials. However, this section performed well for a long period of time and became stiff after 

each blading occurrence. Blading was more time-consuming for the OFD Class A, 80% BFL 

Class A + 20% BFL Clean, and 70% BFL Class A + 30% OFD Clean sections relative to the 

other test sections. OFD Class A required blading more often than other sections; however, the 

amount of aggregate material and thickness loss for this section was lower than the other 

sections. The OFD Class A and 70% BFL Class A + 30% OFD Clean sections had more 

potholes compared to the other sections. 

8.2 Laboratory Test Results 

Extensive laboratory testing including sieve and hydrometer analysis, Atterberg limits, 

compaction, abrasion, and C-Freeze tests were conducted on surface and subgrade materials 

from each section. Results include the following:  

 According to the USCS and AASHTO classification systems, all of the surface aggregate 

materials were classified as well-graded gravel (GW), or A-1-a, while the subgrade was 

classified as sandy lean clay (CL), or A-6. The plasticity index (PI) values of the surface 

aggregates ranged from non-plastic (OFD Class A) to 5 (80% BFL Class A + 20% BFL 

Clean). These results showed that the surface aggregates were all non-plastic to slightly 

plastic. The plasticity index of the subgrade material was 12. 

 The results of the CBR tests showed that the difference in the values of the stress on the 

piston for different surface aggregate materials increased with an increase in the penetration 

depth. OFD Class A had the maximum unsoaked CBR, and BFL Class A had the maximum 

soaked CBR value. The difference between soaked and unsoaked CBR values for the 

subgrade were negligible. 
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 Abrasion losses ranging from 11 to 49% were observed for the three Class A materials alone 

(LCF, OFD, and BFL), with BFL Class A giving the highest abrasion loss. The mixtures of 

BFL Class A with the four different clean aggregates all exhibited similar abrasion losses of 

33 to 43%. The existence of the lower quality BFL Class A, therefore, significantly decreases 

the resistance of the surface aggregate mixtures against abrasion, as the higher strength 

materials accelerate the degradation of the weaker ones in the mixture.  

 The LCF Class A and OFD Class A aggregates showed the minimum percent loss in C-

Freeze tests. These results also indicated that the presence of BFL Class A in the surface 

aggregate mixtures will increase the material losses during freeze/thaw cycles.  

8.3 Field Test Results 

In order to evaluate the performance of the different surface aggregate materials, the changes in 

the properties of the aggregate materials (fines content, gravel-to-sand ratio, and breakage 

indices), as well as the stiffness, strength, dust production, and ride quality of each section were 

monitored on several occasions throughout the project duration. The results include the 

following: 

 The BFL Class A material exhibited the highest initial fines content. In addition, the largest 

changes in the fines content were observed for the sections built with BFL Class A. Among 

them, the largest change in fines content was observed for the 80% BFL Class A + 20% BFL 

Clean section, which was consistent with the laboratory abrasion test results.  

 The 80% BFL Class A + 20% BFL Clean had the highest average gravel-to-sand ratio values, 

as well as the largest standard deviations of the gravel-to-sand ratios. OFD Class A had the 

lowest standard deviations for both gravel-to-sand ratio and fines content.  

 The 70% BFL Class A + 30% CRG Clean and 70% BFL Class A + 30% LCF Clean sections 

had the lowest breakage potentials and total breakage values, while the 80% BFL Class A + 

20% BFL Clean had the lowest breakage potential, average total breakage values, and 

variations over time.  

 All of the surface course DCP-CBR average values were rated as excellent based on the 

SUDAS classification system. All of the subgrade DCP-CBR values were rated poor to fair, 

except for the subgrade under the LCF Class A (very poor) and the 80% BFL Class A + 20% 

BFL Clean (fair to good) sections. Results of the DCP tests showed that the surface 

thicknesses for all sections were in the range of 7 to 10 in. DCP-CBR values for the subgrade 

was in a narrow range of 6 to 10% for all sections. The surface courses of the 80% BFL Class 

A + 20% BFL Clean and 70% BFL Class A + 30% CRG Clean had the highest and lowest 

DCP-CBR values, respectively. 

 The various stiffness test results did not provide any clear or consistent correlations with the 

index properties of any of the test sections.  

 The average values of IRI (ride quality) for all sections corresponded to a fair quality of 

smoothness except for 70% BFL Class A + 30% OFD Clean and 70% BFL Class A + 30% 

CRG Clean, which had poor smoothness quality. The average IRI values over time showed 

that LCF Class A and BFL Class A had the best smoothness among all sections. 

 The LWD test results showed that LCF Class A had the maximum and 70% BFL Class A + 

30% CRG Clean had the minimum composite (surface and subgrade) elastic modulus values. 
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Composite elastic modulus values of all sections were generally consistent for different 

seasons, except in December 2016 when tests were performed on frozen ground. 

 Dustometer test results showed that the 70% BFL Class A + 30% CRG Clean section had the 

maximum dust production and LCF Class A had the lowest dust production. 

 Temperature data recorded at the center and shoulder of the road showed that the maximum 

frost depths increased each year between 2016 and 2019. Results showed that the frost depth 

at the center of the road was always higher than that at the shoulder. The proposed reason for 

this trend was the existence of snow cover and vegetation on the shoulders, which insulates 

the ground somewhat against the effects of harsh weather. 

8.4 Cost Analysis Results 

A BCA was performed based on performance measures including material and thickness loss, 

gravel (>US #4 sieve, 0.19 in.) loss, fines content, gravel-to-sand ratio, total breakage, and 

results of the FWD, DCP, dustometer, and surface ride quality tests, to find the most cost-

effective materials. Service life values of 20, 30, 40, and 50 years were examined. Finally, 

overall BCR values were calculated by assigning weighting factors to the BCR values based on 

the relative importance of each of the performance measures.  

BCA results include the following:  

 OFD Class A had the highest construction costs per mile due to the greater haul distance of 

OFD materials from project site. The mixture of 80% BFL Class A + 20% BFL Clean had 

the lowest construction costs due to the proximity of the materials of this section to the site 

and the smaller amount of aggregates required to build this section.  

 OFD Class A required a smaller amount of aggregate materials for maintenance, and 

consequently was the least expensive section to maintain. The 70% BFL Class A + 30% 

OFD Clean required the most aggregate materials for maintenance and was, therefore, the 

most expensive section to maintain. 

 The 70% BFL Class A + 30% LCF Clean had the highest BCR values for material and 

thickness loss, gravel content change, total breakage, fines content, FWD modulus, and dust 

production. However, 70% BFL Class A + 30% CRG Clean had the highest BCR values for 

gravel-to-sand ratio and ride quality. After applying the weighting factors, the overall 

performance-based BCR values were highest for the 70% BFL Class A + 30% LCF Clean 

and 70% BFL Class A + 30% CRG Clean mixtures.  

 Using rail hauling over truck hauling would be beneficial, especially for OFD Class A and 

70% BFL Class A + 30% OFD Clean sections. However, the analysis showed that rail 

hauling did not increase the BCR of these sections significantly. For the hauling distances 

involved in this particular study, using local aggregates was, therefore, more cost-effective 

than using OFD aggregates from farther away. Similar rail hauling benefit-cost analyses were 

conducted for the LCF aggregates. However, rail hauling of LCF was more costly than truck 

hauling due to the routes of the specific railways owned by the quarry used in this study.  
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8.5 Recommendations 

Based on the observations and results of this research, the following future research activities 

and developments are recommended: 

 Building new test sections in different regions to examine a wider range of local quarry 

materials, traffic loads, and subgrade conditions 

 Increasing the test section lengths from 500 ft to ¼ mile (at least) and conduct BCAs on 

longer granular roadway network that has been built with Class A-clean aggregate mixtures  

 Developing a new method of back-calculation to increase accuracy of modulus values from 

FWD data 

 Performing BCA on construction and maintenance of low-volume roads with different 

materials, stabilization methods, or other conditions 

In this study, four different clean aggregates were mixed with local Class A materials. However, 

it would also be useful to investigate the effectiveness of using other aggregate options in the 

construction of longer test sections, and monitor their performance over time similar to the 

present study. Longer sections (>0.25 mile) with sufficient lengths of gaps in between would 

make maintenance of the sections easier and better represent the performance of actual roads 

constructed with the same materials. In this case, mixing of materials from adjacent sections will 

be reduced, and the number of testing points can be increased to capture clearer evaluations of 

the test section performance. 

The FWD is a relatively expensive test, and several back-calculation methods exist such as 

Modulus 7, BAKFAA, and combined Boussinesq and Odemark’s theory, to calculate the surface 

and subgrade elastic moduli. The back-calculation methods are different in their error 

minimization procedures and assumptions, which results in different non-unique results for 

elastic modulus. It would be helpful to collect a sufficient database of back-calculated elastic 

modulus values with corresponding measurements of surface thickness, temperature, density, 

and Poisson’s ratios to build a neural network model to better predict the elastic moduli. 

In performing the BCA, it was challenging to determine the benefits of using several aggregate 

options. Loss of materials and surface thickness is the most important aspect in the cost analysis 

of granular roadways, because this is the cause of several other problems such as surface 

distresses (potholes, rutting, etc.), dust production, and higher surface roughness. Moreover, the 

only consideration for performing maintenance and adding new aggregates to the sections was 

by measuring the thickness loss. Therefore, maintenance costs are directly associated with 

material and surface thickness loss of the granular roads. However, several other changes in the 

material properties were considered in the BCA model including gravel loss, fines content, 

gravel-to-sand ratio, and total breakage, along with other performance measures including 

surface stiffness and strength, dust production, and ride quality. These considerations enabled 

comparisons between the BCR values of the alternative sections and the control section. The 

results showed that mixing LCF and CRG Clean materials with BFL Class A is the most cost-

effective option. Hauling high-quality materials (such as OFD) for the longer distances used in 

this particular study would not be cost-effective due to the high hauling costs, even though the 
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aggregate prices were lower than the other aggregate options. Although rail hauling could help 

reduce hauling costs compared to truck hauling, it would not be sufficient to make OFD the most 

cost-effective option for the quarry and test site locations in this study.  
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APPENDIX A. IMAGE LOG OF GRAVEL ROAD IN DECATUR COUNTY, IOWA–

CONSTRUCTION, MAINTENANCE, AND FIELD SURVEYING 

Equipment 

 

Figure A.1. Subgrade elastic modulus of FWD test in May 2017 
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Figure A.2. Drum roller used to compact the shaped surfaces 

 

Figure A.3. Loader 
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Section 1. LCF Class A 

 

Figure A.4. First section before construction 

 

Figure A.5. Materials dumped for the first sections 
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Figure A.6. Compacted surface of the first section after construction 

Section 2. OFD Class A 

 

Figure A.7. OFD Class A materials dumped on the second section 
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Figure A.8. Second section during the construction 

 

Figure A.9. Wheel compacted OFD Class A materials in second section 
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Figure A.10. Second section during drum roller compaction 

Section 3. BFL Class A 

 

Figure A.11. BFL Class A materials on the third section 
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Figure A.12. Wheel compacted surface of the third section 

 

Figure A.13. Final compacted surface of the third section 
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Section 4. 80% BFL Class A + 20% BFL Clean 

 

Figure A.14. The mixture of the BFL Class A and Clean on the fourth section 

 

Figure A.15. Compacted surface of the fourth section 
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Section 5. 70% BFL Class A + 30% OFD Clean 

 

Figure A.16. Scraped surface of the fifth section before construction during drum roller 

compaction 

 

Figure A.17. OFD Clean 



192 

 

Figure A.18. BFL Class A 

 

Figure A.19. Compacted surface of the fifth section 
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Section 6. 70% BFL Class A + 30% LCF Clean 

 

Figure A.20. LCF Clean 

 

Figure A.21. BFL Class A and LCF Clean mixture 
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Figure A.22. 70% BFL Class A + 30% LCF Clean under compaction 

 

Figure A.23. Wheel compacted surface of 70% BFL Class A + 30% LCF Clean 
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Figure A.24. Prepared surface of 70% BFL Class A + 30% LCF Clean 

Section 7. 70% BFL Class A + 30% CRG Clean 

 

Figure A.25. Round shape CRG Clean materials 
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Figure A.26. CRG Clean materials on the surface 

 

Figure A.27. Compacted surface of 70% BFL Class A + 30% CRG Clean 



197 

 

Figure A.28. Shaped and compacted surface of 70% BFL Class A + 30% CRG Clean 

Image Log of Gravel Road in Decatur County, Iowa–December 2016 

 

Figure A.29. LCF Class A 
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Figure A.30. OFD Class A 

 

Figure A.31. BFL Class A 
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Figure A.32. 80% BFL Class A + 20% BFL Clean 

 

Figure A.33. 70% BFL Class A + 30% OFD Clean 
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Figure A.34. 70% BFL Class A + LCF Class A 

 

Figure A.35. 70% BFL Class A + CRG Clean 



201 

Image Log of Gravel Road in Decatur County, Iowa–February 2017 

 

Figure A.36. LCF Class A 

 

Figure A.37. OFD Class A 



202 

 

Figure A.38. BFL Class A 

 

Figure A.39. 80% BFL Class A + 20% BFL Clean 
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Figure A.40. 70% BFL Class A + 30% OFD Clean 

 

Figure A.41. 70% BFL Class A + 30% LCF Clean 
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Figure A.42. 70% BFL Class A + 30% CRG Clean 

Image Log of Gravel Road in Decatur County, Iowa–August 2017 

 

Figure A.43. LCF Class A 
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Figure A.44. OFD Class A 

 

Figure A.45. BFL Class A 
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Figure A.46. 80% BFL Class A + 20% BFL Clean 

 

Figure A.47. 70% BFL Class A + 30% OFD Clean 
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Figure A.48. 70% BFL Class A + 30% LCF Clean 

 

Figure A.49. 70% BFL Class A + 30% CRG Clean 
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Image Log of Gravel Road in Decatur County, Iowa–January 2018 

 

Figure A.50. LCF Class A 

 

Figure A.51. OFD Class A 
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Figure A.52. BFL Class A 

 

Figure A.53. 80% BFL Class A + 20% BFL Clean 
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Figure A.54. 70% BFL Class A + 30% OFD Clean 

 

Figure A.55. 70% BFL Class A + 30% LCF Clean 
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Figure A.56. 70% BFL Class A + 30% CRG Clean 
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Image Log of Gravel Road in Decatur County, Iowa–February 2018 

 

Figure A.57. LCF Class A 
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Figure A.58. OFD Class A 
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Figure A.59. BFL Class A 
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Figure A.60. 80% BFL Class A + 20% BFL Clean 
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Figure A.61. 70% BFL Class A + 30% OFD Clean 
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Figure A.62. 70% BFL Class A + 30% LCF Clean 
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Figure A.63. 70% BFL Class A + 30% CRG Clean 
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Image Log of Gravel Road in Decatur County, Iowa–April 2018 

 

Figure A.64. LCF Class A 
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Figure A.65. OFD Class A 
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Figure A.66. BFL Class A 
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Figure A.67. 80% BFL Class A + 20% BFL Clean 
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Figure A.68. 70% BFL Class A + 30% OFD Clean 
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Figure A.69. 70% BFL Class A + 30% LCF Clean 
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Figure A.70. 70% BFL Class A + 30% CRG Clean 
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Image Log of Gravel Road in Decatur County, Iowa–May 2018 

 

Figure A.71. LCF Class A 
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Figure A.72. OFD Class A 
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Figure A.73. BFL Class A 
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Figure A.74. 80% BFL Class A + 20% BFL Clean 
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Figure A.75. 70% BFL Class A + 30% OFD Clean 
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Figure A.76. 70% BFL Class A + 30% LCF Clean 
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Figure A.77. 70% BFL Class A + 30% CRG Clean 
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Image Log of Gravel Road in Decatur County, Iowa–April 2019 

 

Figure A.78. LCF Class A 
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Figure A.79. OFD Class A 
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Figure A.80. BFL Class A 
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Figure A.81. 80% BFL Class A + 20% BFL Clean 
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Figure A.82. 70% BFL Class A + 30% OFD Clean 
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Figure A.83. 70% BFL Class A + 30% LCF Clean 
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Figure A.84. 70% BFL Class A + 30% CRG Clean
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APPENDIX B. PARTICLE-SIZE ANALYSIS RESULTS 

 

Figure B.1. Particle-size distributions of the first section over time 
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Figure B.2. Particle-size distributions of the second section over time 
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Figure B.3. Particle-size distributions of the third section over time 
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Figure B.4. Particle-size distributions of the fourth section over time 
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Figure B.5. Particle-size distributions of the fifth section over time 
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Figure B.6. Particle-size distributions of the sixth section over time 
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Figure B.7. Particle-size distributions of the seventh section over time 

Table B.1. Percentage of change in fines content (%) 

Sections 
Apr 

2017 

May 

2017 

Jun 

2017 

Apr 

2018 

May 

2018 

Apr 

2019 

LCF Class A 21 3 4 14 49 31 

OFD Class A 29 23 23 10 24 27 

BFL Class A 33 16 62 47 61 61 

80% BFL Class A + 20% BFL Clean 109 83 113 124 170 183 

70% BFL Class A + 30% OFD Clean 109 56 44 80 79 64 

70% BFL Class A + 30% LCF Clean 33 -3 28 64 30 91 

70% BFL Class A + 30% CRG Clean 95 24 62 105 28 78 
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Table B.2. Percentage of change in gravel-to-sand ratio (%) 

Sections 
Apr 

2017 

May 

2017 

Jun 

2017 

Apr 

2018 

May 

2018 

Apr 

2019 

LCF Class A -24 -7 5 -11 -39 -36 

OFD Class A -21 -11 -11 -19 -23 -19 

BFL Class A -45 -44 -78 -62 -68 -71 

80% BFL Class A + 20% BFL Clean -65 -71 -70 -82 -83 -85 

70% BFL Class A + 30% OFD Clean -53 -58 -54 -63 -62 -53 

70% BFL Class A + 30% LCF Clean -25 -9 -56 -55 -41 -64 

70% BFL Class A + 30% CRG Clean -61 -24 -70 -68 -41 -56 

 

Table B.3. Percentage of change in breakage potential (%) 

Sections 
Apr 

2017 

May 

2017 

Jun 

2017 

Apr 

2018 

May 

2018 

Apr 

2019 

LCF Class A -8 -3 -1 -6 -15 -13 

OFD Class A -8 -6 -5 -5 -8 -8 

BFL Class A -15 -10 -31 -21 -26 -27 

80% BFL Class A + 20% BFL Clean -21 -20 -22 -30 -35 -37 

70% BFL Class A + 30% OFD Clean -20 -16 -14 -21 -20 -17 

70% BFL Class A + 30% LCF Clean -8 -2 -16 -20 -13 -26 

70% BFL Class A + 30% CRG Clean -20 -5 -21 -26 -9 -18 
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APPENDIX C. DCP TEST RESULTS 
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Figure C.1. DCP results for changes in the blows, DCPI, and DCP-CBR with cumulative 

depth for October 2016 
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Figure C.2. DCP results for changes in the blows, DCPI, and DCP-CBR with cumulative 

depth for November 2016 
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Figure C.3. DCP results for changes in the blows, DCPI, and DCP-CBR with cumulative 

depth for April 2017 
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Figure C.4. DCP results for changes in the blows, DCPI, and DCP-CBR with cumulative 

depth for June 2017 
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Figure C.5. DCP results for changes in the blows, DCPI, and DCP-CBR with cumulative 

depth for May 2018 
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Figure C.6. DCP results for changes in the blows, DCPI, and DCP-CBR with cumulative 

depth for April 2019
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APPENDIX D. AUTOMATED PLATE LOAD TEST (APLT) RESULTS 

 

Figure D.1. APLT test results for the first section 
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Figure D.2. APLT test results for the second section 
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Figure D.3. APLT test results for the third section 
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Figure D.4. APLT test results for the fourth section 
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Figure D.5. APLT test results for the fifth section 
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Figure D.6. APLT test results for the sixth section 
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Figure D.7. APLT test results for the seventh section 
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Figure D.8. APLT test results for the control section  
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APPENDIX E. THERMOCOUPLE INSTALLATION 

 

Figure E.1. Borehole digging with auger at center and shoulder of the road 
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Figure E.2. Painting the thermocouple path 
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Figure E.3. Digging the thermocouple path with auger 



274 

 

Figure E.4. Digging the surface for the thermocouple installation 
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Figure E.5. Thermocouples at PVC tubes 
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Figure E.6. Connecting the thermocouples to the data logger 
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Figure E.7. Locking the data loggers
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APPENDIX F. BENEFIT-COST ANALYSIS SPREADSHEET 

 

Figure F.1. BCR calculator Excel sheet
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