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EXECUTIVE SUMMARY 

With an increasing rate of bridges becoming structurally deficient or functionally obsolete, the 

need for innovative solutions to improve the service life of bridges and reduce maintenance costs 

has become paramount. Given that a significant portion of bridge cost is allocated to the 

substructure and the difficulty associated with the maintenance of underground structural 

systems, such solutions should be designed to improve foundation performance as well. In the 

current practice in Iowa, bridges are generally founded on piles made of commonly used 

materials, including precast, prestressed concrete or steel. However, such piles are susceptible to 

damage from stresses induced during driving as well as accented deterioration when exposed to 

harsh environmental conditions. 

In a previous study, ultra-high-performance concrete (UHPC) was investigated as an alternative 

material for piles. Given its strength and durability properties, UHPC has the potential to 

overcome the limitations of traditional materials. In that study, a UHPC pile cross-section was 

developed, and its performance was successfully verified through laboratory and field tests. 

The objective of the research presented in this report was to further improve the design of piles 

using UHPC by developing suitable connection details, optimizing the geotechnical pile design, 

and implementing and monitoring the performance of a UHPC production pile in an actual 

bridge foundation. To achieve this goal, a new splice detail was developed to accommodate the 

UHPC pile cross-section. The performance of the splice was then verified through tensile, shear, 

and flexural tests in the laboratory, and a lateral load test in the field. The splice performed well 

in all tests, and results showed that stresses in the splice are well below the allowable limits. 

Then, the suitability of Iowa Department of Transportation (DOT) abutment connection details 

for the UHPC was investigated in the laboratory. The pile-to-abutment connection was tested in 

weak-, strong-, and 30º skew-axis bending. A weak-axis bending test was also conducted on a 

steel H-pile-to-abutment connection for comparison. Test results showed that the current Iowa 

DOT pile-to-abutment connection details are adequate for the UHPC pile. 

Finally, an instrumented UHPC production pile was implemented in an actual bridge foundation. 

Two of the HP 10 × 57 steel piles included in the foundation were also instrumented. The 

response of the piles under cyclic lateral movements resulting from thermal effects was 

monitored over an extended period. Recorded strains indicated that the UHPC pile would not 

crack under the maximum displacement of 0.20 in. experienced by the bridge, neither would the 

steel pile experience yielding. Given that the UHPC pile and the connection details developed in 

this research performed well in all tests and field implementation, UHPC piles can be 

satisfactorily used in place of steel piles. 
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CHAPTER 1:  INTRODUCTION 

1.1. Introduction to UHPC and AASHTO Strategic Plan 

In 2005, the American Association of State Highway Transportation Officials (AASHTO) 

identified grand challenges that should be addressed through more research advancement 

(AASHTO 2005). Two of these challenges focus on extending the service life of bridges and 

optimizing structural systems. Currently, AASHTO calls for a 75-year service life for bridges 

and highway structures. In recent years, some bridges in the US have been designed with a 100- 

to 150-year service life (Freyermuth 2009). The service life of new bridge foundations may be 

increased due to the desirable qualities of the ultra-high-performance concrete (UHPC) materials. 

In 2008, a report entitled “Iowa’s Deficient Bridges” identified Iowa as having 21% of its 

bridges (i.e., 5,153) in the structurally deficient category, which is the fourth-highest percentage 

in the nation (TRIP 2008). A bridge is considered structurally deficient when there is a 

significant amount of deterioration to any of the bridge’s major components, such as the deck or 

supports. An additional 6% of Iowa’s bridges (i.e., 1,455) were classified as functionally 

obsolete (TRIP 2008), which includes any bridge that was built to standards that are not used in 

today’s design. For example, a bridge having a vertical clearance that does not adequately serve 

the current traffic demand would be considered functionally obsolete.  

To keep up with the rate of bridges becoming structurally deficient or functionally obsolete and 

to start reversing the percentage of structurally deficient bridges, the Iowa Department of 

Transportation (DOT) and other local agencies are looking for solutions to extend the service life 

of new and existing bridges as well as reduce or eliminate maintenance costs. As the service life 

of a bridge is improved, its foundation performance also should be enhanced, because a major 

portion of bridge construction costs lies in the foundation. The average cost of a bridge 

substructure is 30% of the total bridge cost (Menn 1990).  

Due to the cost and difficulty of maintaining bridge substructures, creative solutions are needed 

to extend the service life of structural systems by utilizing existing and new materials more 

efficiently. The high strength available when using UHPC allows for reduced cross-section 

design and more efficient use of the material. In addition, the durability of UHPC also indicates 

the possibility of dramatically reducing or eliminating the deterioration associated with 

commonly used piles for bridge foundations. 

1.2. Current Deep Foundation Practice and Limitations 

There are many different types of piles used to support structural loads in the US. The four main 

categories are concrete, steel, timber, and composite piles, which are then broken up into many 

subgroups as shown in Figure 1-1.  
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Hannigan et al. 2006a, modified from Naval Facilities Engineering Command 1982 

Figure 1-1. Deep foundation type options 

The most common deep foundation chosen for bridge foundations are steel H-piles and precast, 

prestressed concrete piles, which is the focus of this chapter as a comparison to UHPC piles. 

Both of these piles have certain limitations when it comes to durability and drivability, which are 

outlined in the following sections. 

1.2.1. Precast, Prestressed Concrete Piles 

Commonly, precast concrete piles are used in marine environments on the coast. One 

disadvantage associated with precast, prestressed concrete piles is the fact that the ends of the 

piles are not effectively prestressed due to the development length of the prestressing strands to 

make them fully effective, thus causing a reduced tensile capacity in these regions. Tensile 

stresses can be developed in concrete piles during diving in certain soil conditions. For example, 

driving of a concrete pile in a hard soil layer that is overlying a soft layer can induce tensile 

stresses in the pile. Once the pile breaks through the hard layer, a tension stress develops at the 
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pile toe. Another example is when driving a concrete pile in soft clay conditions. At the 

beginning of drive, the pile is susceptible to a tensile stress at the pile head as a result from the 

reflected wave of the hammer blow. 

Concrete piles can fail as a result of large compressive stresses developed during driving. This 

can be attributed to an excessively large driving hammer used during installation or when driving 

through hard soil conditions. Figure 1-2 illustrates the crushing of concrete due to hard driving 

conditions for normal concrete piles.  

 
DiMillio 1999 

Figure 1-2. Concrete piles damaged by difficult driving conditions 

It is important to perform an accurate drivability analysis to ensure that damage does not occur 

during driving of concrete piles. 

In addition to the disadvantages during installation, precast concrete piles must be handled 

carefully in order to avoid cracking when picking up the pile during loading and unloading as 

well as picking up for field installation. Improper lifting procedures can crack or even break 

precast concrete piles. 

Precast concrete piles that are subjected to sulfate ions undergo an expansive chemical reaction, 

which leads to cracking and spalling of the concrete and ultimately a reduction in available 

structural capacity (Moser et al. 2011). When concrete piles are subjected to chlorides, it is the 

steel reinforcement that will corrode instead of the concrete itself. As the reinforcement steel 

expands from corrosion, the concrete bursts. This type of corrosion leads to loss of bond between 

steel and concrete as well as a reduction in pile capacity (Moser et al. 2011). Figure 1-3 depicts 

the bursting of the concrete due to corrosion of the reinforcement steel as well as the abrasion of 

the water. 
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Moser et al. 2011 

Figure 1-3. Damage to prestressed concrete pile due to corrosion 

1.2.2. Steel H-Piles 

Steel H-piles are commonly used in Iowa for integral abutment bridges. During driving, the 

disadvantages of steel H-piles include buckling under harsh driving conditions, as well as the 

tendency to deviate from the designed location when obstructions are encountered, such as 

boulders. When driving steel H-piles through very dense gravels or soils containing boulders, the 

toe of the pile may severely deform and separation of the flanges and web may occur as shown in 

Figure 1-4.  

 
Hannigan et al. 2006b 

Figure 1-4. Damaged H-pile toe 
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Additionally, the Iowa DOT requires the top 12 in. of all steel piles to be trimmed due to the 

expected deformation of the pile head during driving (Iowa DOT 2011), which is depicted in 

Figure 1-5.  

 
Ng et al. 2011 

Figure 1-5. Typical damage to top steel H-piles due to driving 

Not only can the driving conditions influence the performance of steel H-piles but also the 

corrosion as the bridge service life is dramatically influenced when the corrosion of steel piles 

occurs. Corrosion is also a major problem for steel piles embedded in fill materials or above the 

water table. The water table fluctuation zone (Decker et al. 2008) is the zone in which the most 

corrosion occurs on steel H-piles. A summary of the maximum corrosion rate observed for 

various conditions was completed by Decker et al. (2008) and corrosion rate corresponding to 

number of years exposed, pH, resistivity, and chloride content is summarized in Table 1-1 along 

with the associated references.  

Table 1-1. Corrosion rate of steel piles with various soil conditions 

Corrosion 

rate, in./yr 

Years 

exposed pH 

Resistivity, Ω 

in. 

Chloride, 

ppm Reference 

0.0007 22 5.1–6.0 19685–27559 16–59 Wong and Law 1999 

0.0019 7 7.4–8.2 335–2756 0.3 Romanoff 1962 

0.0032 11 6.9 1693–4331 0.6 Romanoff 1962 

0.0019 11 8.1 315–508 0.5 Romanoff 1962 

0.0006 12 7.7–8.4 136–512 0.5 Romanoff 1962 

0.0007 34 8.2 118110 17.8 Decker et al. 2008 

0.0005 35 7.7 59055 256 Decker et al. 2008 

0.0006 38 7.5 59055 444 Decker et al. 2008 

 

Corrosion of steel piles does not only happen beneath the soil; Figure 1-6 indicates severe 

corrosion to the steel H-piles used in a bridge in St. Louis, Missouri located above the soil. 
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Ehsani et al. 2012, QuakeWrap, Inc. © 2012 National Council of Structural Engineers Associations, used with 

permission 

Figure 1-6. Corroded steel H-pile 

1.3. Benefits of UHPC Related to Piling 

UHPC is a cement matrix often used with steel fibers with a compressive strength ranging from 

22 ksi to 36 ksi (Resplendino 2012). UHPC has several advantages including strength, ductility, 

durability, and aesthetic design flexibility, which were achieved by eliminating the characteristic 

weaknesses of normal concrete.  

Taking advantage of the engineering and durability properties, a UHPC pile was developed in 

Phase I of this project, which can be found in the final report written by Vande Voort et al. 

(2008). A comparison between a UHPC pile section, comparable steel HP 10 × 57 pile section, 

and concrete pile section is presented in Figure 1-7.  

 

Figure 1-7. Cross-sections of (a) steel HP 10 × 57, (b) UHPC, and (c) 10 x 10 in. normal 

concrete piles  

Note that all dimensions in Figure 1-7 are in inches, and notice that the UHPC pile has similar 

outer dimensions as the HP 10 × 57 pile to allow for the same driving equipment to be used 

during installation. Additionally, the reduced cross-section when compared to the normal 

concrete pile allows for easier driving. 

 (a) (b) (c) 
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1.3.1. Durability 

The tightly packed nature of the mix design gives UHPC its excellent durability characteristics. 

As a result of the low water-binder-ratio, the capillary porosity of an uncracked UHPC specimen 

is much less than that of normal concrete (NC) or high-performance concrete (HPC), and also 

has the benefit of a greatly reduced chloride permeability (Scheydt and Müller 2012).  

Because UHPC is very durable material, the required concrete cover thickness for steel 

reinforcement is typically reduced, allowing for a further reduction in section size, thus resulting 

in an efficient use of the material. An additional benefit resulting from the durability of the 

material is its potential to extend the lifespan of bridges and lower the maintenance costs. 

1.3.2. Strength 

UHPC exhibits very high strength characteristics when compared to HPC or NC, which are 

given in Table 1-2.  

Table 1-2. Strength characteristics of UHPC vs. HPC and NC 

Property UHPC HPC 

Normal 

concrete 

Compressive strength, ksi 26–30 12–18 4–8 

Tensile strength, ksi 1.7 0.8–0.9 0.3–0.7 

Elastic modulus, ksi 8,000 4,800–6,400 3,600–5,100 

 

Due to the high strength of UHPC, the cross-section could be designed efficiently to reduce the 

amount of material needed for fabrication and to withstand both the compressive and tensile 

stresses developed during driving. From the casting of the ¾-scale test units and the full-scale 

test piles, the proposed UHPC piles with the tapered H-section can be cast successfully in a 

precasting plant and can achieve the required high strength of 26 to 29 ksi, as long as the 

recommended heat treatment procedures are employed (Vande Voort et al. 2008). 

1.4. UHPC Pile 

The UHPC pile was designed as described by Vande Voort et al. in 2008 as Phase I of the 

project. A brief summary of the research is given in this section.  

During Phase I of the project, the design of the UHPC pile cross-section was optimized and is 

reproduced in Figure 1-8a.  
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Figure 1-8. (a) Cross-section of UHPC pile and (b) top 18 in. of test pile 

There were some concerns regarding the effectiveness of the prestressing in the head and toe of 

the pile and the performance of the pile due to driving stresses. It was decided that the top 9 in. 

would be cast as a solid 10 in. by 10 in. block as shown in Figure 1-8b that was tapered into the 

designed cross-section. The moment-curvature response of the UHPC pile was predicted and 

confirmed in the laboratory flexural test. A vertical load test was performed on two test piles 

driven in the field after the laboratory testing and results were then compared to the performance 

of a steel HP 10 × 57. Additionally, a lateral load test was completed between the two UHPC test 

piles. 

1.5. Scope of Research 

The successful completion of Phase I of the UHPC project was a stepping stone toward Phase II 

of the project, in which the options to improve the drivability, installation, connection details, 

and performance verification in the field were planned. The objectives of this thesis included the 

following: 

 Predict the performance of a UHPC pile in an integral bridge abutment 

 Perform a laboratory test on typical pile-to-abutment connection by subjecting it to axial and 

cyclic lateral loading 

 Perform a lateral load test in the field on the splice connection designed to extend the length 

of UHPC piles 

 Perform a vertical load test to failure in the field 

 Instrument and install a UHPC pile as part of a bridge foundation and compare its driving 

behavior to that of a steel H-pile 

1.6. Report Layout 

This report has eight chapters describing the development of various connection details and both 

laboratory and field testing of UHPC piles. A summary of each chapter’s content is presented 

below. 

(a) (b) 
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 Chapter 1 – Introduction: A brief introduction to the limitations of traditional concrete and 

steel piles and details of the UHPC pile 

 Chapter 2 – Literature Review: A review of published studies describing the composition, 

microstructure, durability, material properties, applications, practice for splicing details and 

pile-to-abutment connections, integral abutments, and analysis procedures for drivability and 

lateral loading 

 Chapter 3 – Analysis of UHPC Piles in Integral Abutments: Description of the results 

from the analysis of the pile section in weak-axis bending comparing it to strong-axis 

bending for moment-curvature response analysis and lateral load parametric study 

 Chapter 4 – UHPC Splice Design and Testing: Description of the fabrication and casting 

of the UHPC test units and abutment cap, weak-axis bending on a short HP 10 × 57 pile and 

a short UHPC pile anchored to the abutment cap 

 Chapter 5 – Pile-to-Abutment Connection Testing: Description of the fabrication and 

casting of the UHPC test piles, driving of the UHPC test piles, vertical load test, lateral load 

test, and analysis of the weak-axis bending performance of the UHPC pile during the lateral 

load test 

 Chapter 6 – Field Testing of UHPC Test Piles: Description of the fabrication and casting 

of the UHPC test piles, driving of the UHPC test piles, vertical load test, lateral load test, and 

analysis of the weak-axis bending performance of the UHPC pile during the lateral load test 

 Chapter 7 – Field Implementation and Monitoring of a UHPC Production Pile: 
Description of the fabrication and casting process of the UHPC production pile, 

instrumentation plan, the driving of the three instrumented HP 10 × 57 piles and the UHPC 

production pile, and an analysis predicting the performance of the UHPC and HP 10 × 57 

piles 

 Chapter 8 – Summary, Conclusions, and Future Research: A summary of the results on 

UHPC piles found from casting, field testing, and long-term monitoring, and a description of 

future research potential  
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CHAPTER 2:  LITERATURE REVIEW 

2.1. Introduction 

This chapter introduces the history, background, material properties, and applications of UHPC 

in order to characterize the material being used in the pile project as well as the deep foundation 

design methods used to design the UHPC test piles and UHPC production piles. Because the 

UHPC production pile will be installed in an integral abutment for long-term monitoring, current 

design guidelines are identified, along with a summary of previous research on long-term 

monitoring of integral abutments. Finally, to predict the behavior of the test and production piles 

during driving, testing, and monitoring, two computer software packages LPILE and GRLWEAP 

were used, and they are described in detail in Section 2.7.1 and Section 2.7.2, respectively. 

2.2. History and Background 

Relatively recent advances in concrete technology have introduced UHPC. Despite efforts to 

create new concrete mixes with higher strength over the past 150 years, structural applications 

using the improved concrete have often lagged due to the high cost of material and lack of design 

guidelines for the new material (Tang 2004). Four milestones have been key to the development 

of UHPC, which includes the development of the cement matrix, the fiber, the bond at the 

interface between fiber and matrix, and the resulting composite (Naaman and Wille 2012). 

Naaman and Wille (2012) have identified the achievements of each milestone in chronological 

order as well as giving consideration to different geographical regions. 

Richard and Cheyrezy (1995) outlined the basic design principles that should be followed when 

designing UHPC materials, which are: (1) ensuring homogeneity of the material by eliminating 

coarse aggregates, (2) providing a compacted density by optimizing particle sizes, (3) achieving 

a good microstructure by subjecting the material to heat treatment, and (4) providing ductility of 

the material by adding steel fibers. 

Normal concrete is a heterogeneous material. In order to reduce the effects of the problems 

related to the non-uniformity in concrete, coarse aggregates are replaced by fine sands, the paste 

is mechanically improved by forming a more tightly packed mix design, and the aggregate ratio 

is decreased (Richard and Cheyrezy 1995). The small diameter of the aggregates used in UHPC 

causes the aggregate to behave integrally in a continuous matrix instead of as a rigid skeleton in 

a normal concrete. This quality allows UHPC to accommodate a much larger compressive force 

that is transmitted by the matrix of material (Vande Voort et al. 2008). Figure 2-1 compares the 

representation of the force transfer between normal concrete and UHPC. 
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After Walraven 2002 

Figure 2-1. Depiction of force transfer through (a) normal concrete and (b) UHPC 

There are several types of UHPC used around the world. The main difference between each is 

the type and quantity of fibers used in the mix design. A summary of the advantages and 

disadvantages of UHPC is given in Table 2-1.  

Table 2-1. Advantages and disadvantages of UHPC  

Advantages Disadvantages 

High compressive strength Short-term costs 

High tensile strength Material cost 

High shear strength Mixing time 

High impermeability Casting bed time 

High durability Heat treatment 

Self-leveling Cast-in-place construction may not 

be feasible 

Self-healing of unhydrated cement  

Long-term costs  

Eliminate labor installing 

stirrups 

 

Fewer deck replacements  

Reduced weight for shipping  

Source: Wipf et al. 2009 

The four main types of UHPC are BSI/CERACEM, compact reinforced composites (CRC), 

multi-scale cement composite (MSCC), and reactive powder concrete (RPC) (Vande Voort et al. 

2008). 

BSI/CERACEM was developed by Sika Corp. and Eiffage S.A. and includes coarse aggregates 

unlike the other three types of UHPC (Jungwirth and Muttoni 2004). Both CRC and MSCC use 

larger amounts and different sizes of fiber when compared to RPC (Vande Voorte et al. 2008). 

RPCs typically contain steel fibers that occupy 2% of the volume to gain ductility (Richard and 

Cheyrezy 1995). A form of RPC is Ductal, which is produced by the French companies 

LafargeHolcim and Bouygues S.A. A composition of UHPC is provided in Table 2-2.  
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Table 2-2. Common UHPC mix components 

Component 

Weight per 

cubic foot, lb 

Mass ratio 

/Cement 

Volume 

fraction, % 

Sand 61.9 1.430 38.8 

Cement 42.3 1.000 22.7 

Silica fume 14.0 0.325 10.6 

Crushed quartz/Fly ash 13.0 0.300 8.1 

Fibers 9.4 0.218 2.0 

Superplasticizer* 0.9 0.021 1.4 

Water 9.9 0.229 16.5 

Source: Cheyrezy and Behloul 2001 

*Superplasticizer is expressed as the weight of the solid fraction; the liquid fraction is included in the water weight. 

Because of its availability and use in several bridge research and implementation projects in the 

US, including Iowa, and abroad (e.g., Perry and Seibert 2011, Behloul et al. 2006, FHWA 2010, 

Sritharan 2015), the UHPC used in the current and previous phase of the pile project is Ductal. 

Unless otherwise noted, the UHPC in the remainder of the report refers specifically to Ductal, 

while the research outcomes are applicable to any form of UHPC with engineering properties 

comparable to those of Ductal.  

2.3. Material Properties 

An extensive literature review was completed by Vande Voort et al. (2008) on the material 

properties of UHPC. This section includes a brief summary of Vande Voort’s literature review 

with appropriate updates for the material properties of UHPC used for Phase II of the UHPC pile 

project, which include compressive strength, tensile strength, shrinkage and creep, elastic 

modulus, strain limits, and allowable driving limits. Additional information provided below was 

found with regard to standard and calculation method manuals and tolerances for prefabrication 

of structural elements using UHPC. 

2.3.1. Compressive Strength 

UHPC does not have any compressive strength for almost 1 day after pouring, and a set time of 

17 hours is recommended (Graybeal 2006). After the set time, UHPC develops its compressive 

strength very rapidly. Thus, the majority of the strength is gained in the first seven days of curing 

when heat treatment is not applied. The influence of heat treatment applied during the curing 

process of UHPC structural elements plays a large role in developing the compressive strength. 

The rate of strength gain for heat treated UHPC, from 7 to 56 days, is only 5% of the 

compressive strength (Vande Voort et al. 2008). Heat treatment allows the structural elements to 

reach their final maturity before the typical 28-day strength that is required for normal concrete 

(AFGC 2002). In addition, the final compressive strength of UHPC is typically 10% higher for 

heat-treated UHPC elements than non-heat-treated UHPC elements (Graybeal 2005). The effect 

of delaying the heat treatment only slightly decreases the compressive strength than if applied 

right after stripping the forms (Graybeal 2005). 
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In comparison, normal concrete has a compressive strength within the range of 4 to 8 ksi, and 

HPC has a compressive strength between 12 and 18 ksi. Heat-treated UHPC has a compressive 

strength approximately two times that of HPC and five times that of normal concrete (Vande 

Voort et al. 2008). 

2.3.2. Tensile Strength 

Normal concrete has a tensile strength in the range of 300 to 700 psi, and HPC has a tensile 

strength in the range of 800 to 900 psi. In comparison, UHPC develops more tensile strength 

than normal concrete and HPC, even beyond the development of micro-cracking, which is due to 

the steel fibers effectively spanning the cracks. Additionally, UHPC can also experience strain-

hardening between the first tensile crack strength and the ultimate tensile strength (Vande Voort 

et al. 2008). Heat treatment decreases the amount of time it takes to reach the tensile strength and 

typically increases the tensile capacity by about 10% (AFGC 2002). After exposing cracked 

UHPC cylinders to harsh environments, no noticeable decrease in peak tensile load-carrying 

capacity was observed (Graybeal 2005).  

The behavior of UHPC can be described based on the crack width. UHPC can be characterized 

as elastoplastic up to a crack width of around 0.012 in. (Chanvillard and Rigaud 2003). The same 

crack width of 0.012 in. corresponds to the stress associated with the basis for fiber tensile 

strength (AFGC 2002).  

2.3.3. Shrinkage and Creep 

Shrinkage is the loss of free water through evaporation, which leads to the gradual shortening of 

the element with time. Heat treatment substantially reduces the effects of delayed shrinkage and 

creep (AFGC 2002), which allows for the valid assumption that there will not be any shrinkage 

of the concrete after heat treatment. If no heat treatment is performed on the material, the 

shrinkage can be assumed to be 550 μm (AFGC 2002).  

Creep is an additional time dependent strain added to the concrete due to sustained load on the 

concrete matrix. The ultimate creep coefficient for untreated UHPC is 0.8 and drops to 0.2 for 

heat-treated UHPC (AFGC 2002). 

2.3.4. Elastic Modulus 

Normal concrete has an elastic modulus within a range of 3,500 to 5,100 ksi, and HPC has an 

elastic modulus of approximately 4,800 to 6,400 ksi (Vande Voort et al. 2008). AFGC 

recommends using a modulus of elasticity of 8,000 ksi during the design stage when 

experimental information is not available on the UHPC material, as well as an initial modulus of 

5,700 ksi. The modulus of elasticity of UHPC is linear elastic for both compression and tension 

until specific strain limits are reached. For compression, the elastic portion limit is approximately 

80 to 90% of the compressive strength of heat-treated UHPC with only a 5% deviation from the 

stress-strain linearity (Graybeal 2007). A delay in the heat treatment of the UHPC material is a 
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factor that will affect the modulus of elasticity, which causes the modulus of elasticity to be 

slightly reduced, rather than for full steam treatment (Graybeal 2005). 

Many equations have been developed to estimate the modulus of elasticity of concrete. Four 

equations were specifically developed for UHPC and are given below as equations (2-1) through 

(2-4); all based on the compressive strength, where E is the elastic modulus in psi and 𝑓𝑐
′ is the 

compressive strength in psi. Vande Voort et al. (2008) recommended the use of equation (2-2) to 

estimate the elastic modulus of UHPC based on laboratory tests completed in Phase I of the pile 

project. 

𝐸 = 50,000√𝑓𝑐
′ (Sritharan et al. 2003) (2-1) 

𝐸 = 46,000√𝑓𝑐
′ (Graybeal 2007) (2-2) 

𝐸 = 2,373,400 ln(𝑓𝑐
′) − 468,010 (Ma and Schneider 2002) (2-3) 

𝐸 = 525,000√𝑓𝑐
′3
 (Ma et al. 2004) (2-4) 

2.3.5. Strain Limits 

Compression 

Vande Voort et al. (2008) found several variations for the compression strain limit of UHPC in 

various studies. The compression limits range from 3,200 to 4,400 microstrains. The 

compression strain limit recommended by Sritharan et al. (2003) and Dugat et al. (1996) for 

elastic behavior of 3,200 microstrains is used to characterize the limits in compression of heat-

treated UHPC in this study. 

Flexural Tension 

There is a close agreement for the cracking tensile strain, which ranges from 300 to 330 

microstrains (Vande Voort et al. 2008). However, the ultimate tensile strain has some noticeable 

variation between various reported results. An ultimate tensile strain ranging from 5,000 to 7,000 

microstrains was reported by Richard and Cheyrezy (1995), while an ultimate tensile strain of 

7,500 microstrains was reported by Dugat et al. (1996). 

AFGC (2002) proposed the relationship given in Figure 2-2 for crack width versus stress.  
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After AFGC 2002 

Figure 2-2. Simplified tensile-strength law  

Vande Voort et al. (2008) reported the corresponding strains with cracking width for various 

locations on the relationship for Ductal. Micro-cracking begins at 160 microstrains, cracking 

starts at 1,350 microstrains and the limit where cracks start exceeding the 0.012 in. limit is at 

2,400 microstrains.  

2.3.6. Allowable Driving Stresses 

In many cases, a pile may experience the highest tensile stress during driving. AASHTO (2007) 

limits the compression and tension driving stresses to 0.9fy for H-piles, where fy is the yield 

strength of the steel. For concrete piles, equation (2-5) gives the limit on compression stresses, 

and equation (2-6) limits the tension driving stresses.  

𝜎𝑐 = 0.85𝑓𝑐
′ − 𝑓𝑝𝑒 (psi) (2-5) 

𝜎𝑡 = 3√𝑓𝑐
′ + 𝑓𝑝𝑒  (psi) (2-6) 

where, 

𝑓𝑐
′ = concrete compressive strength 

fpe = effective prestressing after losses 

It is important to control the driving stresses when driving the pile though a hard layer above a 

weaker soil for concrete piles. As the pile punches through the hard layer during driving, the pile 

toe experiences less resistance, resulting in large tension stresses in this region. Also, concrete 

piles are at risk from tensile stresses at the beginning of drive in soft clays due to the 

compressive stress wave that is reflected up the length of pile as a tension wave. 
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2.3.7. Standards and Calculation Methods 

Because UHPC is a fairly new material, there is no united standard design procedure or 

recommendations available. Many countries have developed their own recommendations and 

guides for the design of UHPC structural elements. A brief description of the recommendations 

from Australia, France, Japan, and the US are made for each of these countries in this section. 

Australia developed design guidelines for using Ductal in prestressed concrete beams in 1999 

based on research completed at the University of New South Wales (Gowripalan and Gilber 

2000). The intentions of these guidelines were made to relate design of members with Ductal to 

prestressed structural members. The design limits of Ductal for preventing tension and 

compression failure, as well as defining the strength in flexure, shear and torsion, crack control, 

deflections, fire resistance, fatigue, prestressing losses, and anchorage zones were provided. 

France first developed interim recommendations in 2002 and the guide is broken into three main 

parts: (1) characterize the material performance, (2) structural element design, and (3) durability 

of the material (AFGC 2002). Recommendations for how to perform checks and inspections on 

finished products are also included. The recommendations allow for designers to predict the 

behavior of UHPC members that incorporate no reinforcement, mild steel reinforcement or 

prestressing steel.  

New AFGC recommendations have been proposed based on major research and feedback to 

better characterize the characteristics of ultra-high-performance fiber-reinforced concrete 

(UHPFRC) or UHPC (Resplendino 2012). Some of the recommendations that have been 

improved regard the characterization of fire behavior of UHPC, punching resistance, abrasion, 

shear resistance, and tensile strength. 

Recommendations for high-performance fiber-reinforced cement composites (HPFRCC), which 

are essentially UHPC, were developed in Japan by the Concrete Committee in the Japan Society 

of Civil Engineers in 2004 (JSCE 2008). The recommendations satisfy the safety, serviceability, 

recoverability, and compatibility to the environmental performance requirements by proposing 

methods for uniaxial tensile tests and crack width measurements. Additionally, recommendations 

were made for the design tensile strength, design tensile strain, and design crack width. 

The Federal Highway Administration (FHWA) developed guidelines for the material property 

characterization of UHPC materials in 2006 (Graybeal 2006). Both experimental phases as well 

as an analytical phase were completed during the research. Through this research, 

recommendations were made to define the behaviors of UHPC compared to those of normal 

concrete. 

2.3.8. Tolerances 

In order to ensure the quality of UHPC when mixing and pouring, certain tolerances are required. 

When mixing UHPC at a batch plant, a tolerance of ±2% for each weighed ingredient should be 
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used and reduced to ±1% for powders (AFGC 2002). The drop height when placing the UHPC 

should not exceed more than about 1.5 ft to ensure that no segregation or clustering of fibers 

occurs (AFGC 2002). It is recommended that no delay in-between batches be allowed because a 

skin can form on the surface of the last concrete layer. If a delay does occur, the two layers must 

be joined together by raking the interface surface (AFGC 2002). 

UHPC is sensitive to temperatures, so recommended minimum and maximum temperatures are 

given for which no additional steps are required. The minimum temperature recommended is 

41ºF. If the temperature is below this minimum, additional steps, such as heating the aggregate 

or mix water, using insulated forms, or using setting or hardening accelerators should be used 

(AFGC 2002). If the temperature is above 95°F, precautions similar to those used for normal 

concrete should be taken (AFGC 2002). 

2.4. Applications 

Since UHPC was developed in the 1990s, it has been used for various applications ranging from 

designing architectural elements to structural elements. Vande Voort et al. (2008) provides a 

detailed list of applications for UHPC up until 2008. This section summarizes a few of the 

applications listed by Vande Voort relative to the control study, and some of the new project that 

have been completed since 2008.  

2.4.1. Structural Members 

Bridge Components 

Research related to completed or ongoing projects on UHPC bridge applications are as follows: 

 UHPC joint fill for precast concrete accelerated bridge construction – UHPC was used to fill 

the voids between the precast abutments and steel H-pile foundations, joints between the 

precast deck panels, and joints between the precast approach slab panels (Young et al. 2012) 

 UHPC waffle deck panel – The benefits of UHPC and precasting were combined to create 

durable deck and optimize design (Aaleti et al. 2011)  

 UHPC to normal concrete deck interface – Developing shear friction interfaces that are 

appropriate for overlaying UHPC on new and existing normal concrete bridge decks 

(Sritharan et al. 2012) 

 UHPC bridge bearings – UHPC was used to create a new generation of sliding bearing joint 

for bridge applications to replace single steel slide bearings (Hoffmann and Weiher 2012) 

 Second generation of Pi-shaped girder – The girder was developed for short- and medium-

span highway bridges similar to the prototype UHPC Pi-girder but with an increased deck 

thickness and width, increased web thickness, decreased web spacing, and rounded reentrant 

corners to improve upon the first generation of girders (Graybeal 2009) 

 Super Bridge 200 – The bridge is a cable-stayed bridge with the purpose of developing 

technologies to improve UHPC behavior, construct girders and plates, construct a UHPC 

deck, and develop a UHPC cable-stayed bridge system (Kim et al. 2012) 



 

18 

2.4.2. Field Implementation 

Bridges 

Several traffic and foot bridges have been constructed around the world using UHPC for design 

and construction of the structural components. The first of these bridges was the Sherbrooke 

pedestrian bridge shown in Figure 2-3, which was constructed in Quebec, Canada in July of 

1997.  

 
© Ductal 2012, https://www.ductal.com/en 

Figure 2-3. Sherbrooke pedestrian bridge, Quebec, Canada 

It is the world’s first pedestrian bridge to have RPC components. The deck and the top and 

bottom chord of the open-web space trusses were made with RPC, which had a 29 ksi 

compressive strength. The web of the truss contained RPC but was confined by stainless steel 

tubes (Blais and Couture 1999). To date, two other pedestrian bridges with UHPC structural 

members have been constructed in Canada (Perry and Seibert 2011). 

The first UHPC bridge in the US was a 110 ft single-span bridge built in Wapello County, Iowa 

in 2006 using UHPC bridge beams as shown in Figure 2-4.  



 

19 

 
Wipf et al. 2009 

Figure 2-4. The UHPC girder bridge in Wapello County, Iowa  

The bridge project allowed researchers to develop a shear design procedure, evaluate the 

performance of the UHPC girder, and evaluate the structural performance of the bridge (Wipf et 

al. 2009).  

In Mayenne, France, the Saint Pierre La Cour Bridge was built in 2005 with two lanes for traffic 

and one lane for pedestrians and is pictured in Figure 2-5.  

 
Behloul et al. 2006 

Figure 2-5. Saint Pierre La Cour Bridge in France after completion 

Ductal was used for the pretensioned beams and thin precast deck. The bridge was designed by 

VSL International and Bouygues Travaux Publics S.A.S. using the new recommendations for the 

use of ultra-high strength concretes reinforced with fibers (Behloul et al. 2006). 
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The Cat Point Creek Bridge was constructed in 2008 and was the first bridge involving UHPC 

structural components to be constructed in Richmond County, Virginia. One of the 10 spans of 

the bridge contains UHPC girders, as shown in Figure 2-6, which were monitored over a period 

for performance compared to the HPC girders for the other 9 spans (Ozyildirim 2011).  

 
© Ductal 2019, https://www.ductal.com/en 

Figure 2-6. Cat Point Creek Bridge with UHPC girders on one span in Virginia 

Jakway Park Bridge was built using UHPC Pi-girders in Buchanan County, Iowa. This was the 

first highway bridge using UHPC batched in a ready-mixed truck. The bridge was open to traffic 

in November 2008 (PCA 2012). A picture of the Jakway Park Bridge is shown in Figure 2-7. 

 
FHWA 2010 

Figure 2-7. Jakway Park Bridge in Iowa using Pi-girders  

Columns 

The Queen Sofia Museum in Madrid, Spain underwent an expansion by adding three new 

buildings on a support structure consisting of 24 slender steel columns in 2005. To support the 

new structures, Ductal was poured directly inside of the steel columns (Ductal 2012). Figure 2-8 

shows how the UHPC was handled for the onsite mix and pour of the tall, thin columns. 
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© Ductal 2012, https://www.ductal.com/en 

Figure 2-8. Onsite pour for UHPC columns during Queen Sofia Museum expansion 

Other Structures 

Due to the superior qualities of UHPC compared to normal concrete, many other structures have 

been designed and constructed using this material. One example of the innovative uses for 

UHPC is stairs, which are used at Roissy Airport in Paris and at the LafargeHolcim office in 

Birmingham, Alabama. Additionally, the durability of the material makes UHPC a good option 

for corrosive environments such as the Cattenom Nuclear Power Plant cooling tower in France, 

which used UHPC beams and girders to support the structure. Two other structures that have 

used UHPC are a retained earth anchorage system used in Réunion Island in France and the gold 

bar troughs at the Gold Bar Wastewater Treatment Plant in Edmonton, Alberta, Canada (Behloul 

et al. 2008). 

2.4.3. Deep Foundations 

Prefabricated Concrete Sheet Piles 

Grünewald (2004) designed prefabricated concrete sheet piles with steel fibers after developing a 

self-compacting, fiber-reinforced concrete (SCFRC) mix for precast sheet piles. Grünewald’s 

concrete sheet piles limited the length of the steel fibers as well as the maximum aggregate size 

as is typically done in UHPC. Each sheet pile segment was prestressed with eighteen ½ in. 

prestressing strands, with a flange thickness of 2.0 in. and a web thickness of 1.8 in. Three of the 

six SCFRC sheet piles that were cast were driven into the ground with a vibratory hammer, and it 

was reported that they performed as expected (Grünewald 2004). 

UHPC Pile Project - Phase I 

As introduced in Section 1.4, a UHPC pile was designed and tested in Phase I of the UHPC pile 

project at Iowa State University (ISU). The cross-section was designed, and a prediction of the 

moment-curvature response was calculated and then verified in the laboratory. After laboratory 

testing, the pile was field tested as part of Phase I (Vande Voort et al. 2008). 
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The cross-section of this pile was designed keeping in mind that solid sections would use too 

much of the expensive UHPC material and hollow sections are difficult to construct. Therefore, 

an H-shaped pile section was explored for designing the UHPC piles. Finally, a tapered H-

shaped section was decided upon, taking advantage of the several inherent benefits, as shown in 

Figure 1-8.  

Due to the high compressive strength of UHPC, ten ½ in. diameter, 270 ksi low relaxation 

prestressing strands were used to increase the tensile capacity of the pile. A ¾ in. cover thickness 

for the ½ in. prestressing strands was used in the design based on research at minimum spacing 

and cover requirements for UHPC. The minimum strand spacing used in the design of the UHPC 

pile was 2.0 in. center-to-center. 

To predict the moment-curvature response for strong-axis bending of the UHPC pile, a section 

analysis spreadsheet was developed for various axial loads using Microsoft Excel. The results 

from the analysis were used in LPILE to estimate the behavior of the UHPC pile for the soil 

conditions at the location of the field test. Seven assumptions were used for the section analysis 

calculations, which are: (1) plane sections remain plane, (2) prestress losses occur due to only 

elastic shortening and shrinkage of UHPC, (3) strands have perfect bonding to UHPC outside the 

transfer regions resulting in the change in strain in the prestressing strands and concrete being 

equal at a given location, (4) effective prestressing is applied at the centroid of the section, (5) 

bending only occurs about the major flexural axis, (6) initial prestressing does not induce any 

inelastic strains on the strands, and (7) axial loads on the pile are applied through the centroidal 

axes with no eccentricity. The effect of creep was not considered in the section analysis due to 

the loads during testing having a relatively short duration. 

A drivability analysis was conducted using GRLWEAP on the proposed cross-section. The 

analysis was completed to ensure the driving stresses under various parameters were well below 

the allowable limits for UHPC. The results for the UHPC pile were compared to the performance 

of NC, HPC, and HP 10 × 57 piles. 

To characterize moment-curvature response of the UHPC pile section and verify the analysis 

procedures, two tests on a ¾-scale UHPC test specimen were completed. The first test unit was 

tested with an axial load of 80 kips and a cyclic lateral load in a push-pull manner. Cracking in 

the welds of the test setup occurred during testing and resulted in a slight modification of the test 

setup for the second test specimen. The second specimen was tested in a similar push-pull 

protocol but had an increased axial load of 200 kips. 

The results from the first laboratory test provided a good correlation between the test results and 

the predicted moment-curvature response. No reliable curvature data was obtained from the 

instrumentation of the second specimen due to premature diagonal cracking occurring during the 

test, which is believed to be caused by the small scale used for the test specimen and lack of steel 

fibers bridging the cracks. For the design of the ¾-scale test specimen, the fibers were not scaled 

in size accordingly, which presumably did not allow the fibers to flow freely. The full-scale 

UHPC pile should allow the fibers to pass more freely to avoid this problem. 
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Driving stresses calculated using GRLWEAP for a variety of cushions, soils, and driving 

hammers were found to be well below the allowable stress limits for UHPC piles, resulting in the 

possible elimination of a pile cushion. UHPC piles exhibited an increased drivability over normal 

concrete piles due to the reduced cross-sectional area and increased strength characteristics of the 

material. Through the field testing, it was confirmed that the same driving equipment can be used 

for UHPC piles as used for steel H-piles of the same size and weight, except for the helmet used 

to drive the pile. 

To verify the potential benefits of UHPC piles for bridge substructure applications, two full-scale 

35 ft long UHPC test piles were driven next to a bridge being constructed in Oskaloosa, Iowa. 

Additionally, a steel HP 10 × 57 test pile was installed and tested to provide a performance 

comparison. The soil at the site consisted of 15 ft of a loess soil, 20 ft of Pre-Illinoian glacial till, 

and bedrock with a water table located at approximately 10 ft from the ground surface. 

The test piles and reaction frame anchor piles were driven using a DELMAG D19-42 hammer. A 

lifting hook was cast into the UHPC piles 7 ft from the pile head but could not be utilized due to 

the risk of the pile head colliding with the hammer leads. To remedy this problem, a lifting strap 

was connected to the pile head and to the hammer and helmet. The contractor suggested 

improving the lifting procedure of the UHPC pile by moving the lifting hook closer to the pile 

head. No visible damage to the UHPC pile heads were observed after driving of the test piles. 

Once the test piles were installed, a vertical load test was performed on one of the UHPC test 

piles. The predicted failure load of both test piles was between 150 kips and 179 kips depending 

on which method was used to calculate the estimated axial load capacity. A vertical load of 200 

kips was applied to the test pile but was not able to fail the pile based on Davisson’s criteria 

(1972). A second vertical load test was performed on the UHPC test pile that was loaded until 

300 kips, which was the limit for the test setup. Again, this magnitude of load was unable to fail 

the UHPC pile. Using an extrapolation of the load test results, the theoretical ultimate load was 

found to be 368 kips for the second UHPC test pile. 

The axial load capacity of the UHPC pile was 86% greater than that of the steel HP 10 × 57 pile, 

as measured from the vertical load test of the steel pile performed in the field. The increase in 

capacity of the UHPC pile was attributed to the increased cross-sectional area of the UHPC pile 

and possible increase in perimeter when compared to the steel test pile, resulting in an increased 

toe resistance and skin friction. It was determined that it may be possible to reduce the length or 

number of UHPC piles in comparison to HP 10 × 57 piles in bridges due to the increased 

capacity. 

Following the vertical load tests, the two UHPC test piles were then used for a lateral load test. A 

horizontal actuator was positioned between the two UHPC test piles so that both could be tested 

simultaneously. Each test pile was subjected to a lateral load so that the pile sections were 

subjected to bending about the strong-axis direction. LPILE was used to predict the maximum 

lateral load that the test piles would develop in the soil before experiencing structural failure or 

exceed the limitations set by the equipment used. 
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Shear failure occurred in one of the tests piles at 22.8 kips, which was much less than the 

predicted ultimate lateral load for the UHPC test piles. The reason given for the failure of the 

first test pile was thought to be that the critical section for shear was weakened by a significant 

portion of the web rendered ineffective due to the instrumentation bundle passing through the 

location. As a result of the first test pile failure, the second test pile was not pushed to failure 

because the displacement could not be increased past 2.54 in. 

2.5. Pile Design Method 

Typically, for integral bridges, a single row of piles are used to support the abutments (Iowa 

DOT 2011). Thus, the pile is designed based on the capacity of a single pile and not a group 

because there is sufficient distance between piles. 

2.5.1. Geotechnical Resistance 

There are many different static methods used to design the ultimate capacity of single piles. 

Commonly, all of the methods use the same basic equations to calculate the ultimate bearing 

capacity of a single pile, which are given in equations (2-7) through (2-9). 

𝑄𝑢 = 𝑅𝑠 + 𝑅𝑡 (Hannigan et al. 2006a) (2-7) 

𝑅𝑠 = 𝑓𝑠𝐴𝑠      (2-8) 

𝑅𝑡 = 𝑞𝑡𝐴𝑡     (2-9) 

where, 

Qu = ultimate bearing capacity 

Rs = shaft resistance 

Rt = toe bearing resistance 

fs = unit shaft resistance 

As = pile shaft surface area 

qt = unit toe resistance 

At = pile toe area 

The methods have developed different approaches to calculate fs and qt. Frequently used methods 

that have been developed for cohesionless soils are the Meyerhof method (Meyerhof 1976), 

Brown method (Brown et al. 2001), Nordlund method (Nordlund 1963), effective stress method 

(Fellenius 1991), L.P.C. method (Bustamante and Gianeselli 1983), and Nottingham and 

Schmertmann method (Nottingham and Schmertmann 1975, Schmertmann 1978). Additionally, 

methods that have been developed for cohesive soils are the total stress analysis (α-Method) 

(Tomlinson 1994), effective stress method (Fellenius 1991), and λ-Method (API 1993). A 

detailed description of the methods and how to calculate fs and qt are given by Hannigan et al. 

(2006a). The Iowa Blue Book Method (Iowa DOT 2011) was used for the design of the test and 

production piles during this portion of the research project and is outlined here.  
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Table 2-3 shows the load and resistance factor design (LRFD) recommended nominal resistance 

values for end bearing of steel H-piles, prestressed concrete piles, and steel pipe piles.  
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Table 2-3. LRFD driven pile foundation end bearing geotechnical resistance chart 

Soil description 

Blow count Estimated nominal resistance values for end bearing pile in kips [ksi] 

N-value Wood 

pile(1),(3) 

Steel “H” Grade 50 

Prestressed 

concrete(2) Steel pipe(4) 

Mean Range 10 12 14 12 14 16 10 12 14 18 

Granular material              

 <15 --- (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) 

Fine or medium 

sand 
15 --- 32 (5) (5) (5) 60 84 108 32 48 64 108 

Coarse sand 20 --- 44 (5) (5) (5) 84 116 148 44 64 88 144 

Gravelly sand 21 --- 44 (5) (5) (5) 84 116 148 44 64 88 144 

 25 --- 56 (5) (5) (5) (6),(7) (6),(7) (6),(7) (7) (7) (7) (7) 

 --- 25–50 (6) [2–4] [2–4] [2–4] (7) (7) (7) (7) (7) (7) (7) 

 --- 50–100 (6) [4–8] [4–8] [4–8] (6) (6) (6) (7) (7) (7) (7) 

 --- 100–300 (6) [8–16] [8–16] [8–16] (6) (6) (6) (7) (7) (7) (7) 

 --- >300 (6) [18] [18] [18] (6) (6) (6) (7) (7) (7) (7) 

Bedrock              

 --- 100–200 (6) [12] [12] [12] (7) (7) (7) (7) (7) (7) (7) 

 --- >200 (6) [18] [18] [18] (7) (7) (7) (7) (7) (7) (7) 

Cohesive material              

 12 10–50 16 (5) (5) (5) 28 40 52 16 24 62 52 

 20 --- 24 [1] [1] [1] 44 64 84 28 36 52 84 

 25 --- 32 [2] [2] [2] 60 84 108 32 48 64 108 

 50 --- (6) [4] [4] [4] 116(6) 164(6) 212(6) 56 96 128 212 

 100 --- (6) [7] [7] [7] (6) (6) (6) (6) (6) (6) (6) 

Source: After Iowa DOT 2011 

Table notes: (1) Wood piles shall not be driven through soils with N > 25. (2) With prestressed concrete piles the preferred N for soil at the tip ranges from 25 to 

35. Prestressed concrete piles have been proven to be difficult to drive in very firm glacial clay and very firm sandy glacial clay. Prestressed concrete piles should 

not be adjusted for a different tip area. (3) End bearing resistance values for wood piles are based on a tip area of 72 in2. Values shall be adjusted for a different 

tip area. (4) Steel pipe piles should not be driven in soils with consistent N > 40. See the 1994 soils information chart [BDM 6.2.1.5] for end bearing when a 

conical driving point is used. (5) Do not consider end bearing. (6) Use of end bearing is not recommended for timber piles when N > 25 or for prestressed 

concrete piles when N > 35 or for any condition identified with this note. (7) End bearing resistance shall be 0.0389 x N value [ksi]. 
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Based on standard penetration test (SPT) data from the site and type of pile used, the Rt value 

can be found using equation (2-9). When Table 2-3 has square brackets around the number, the 

value given is qt and should be used in conjunction with equation (2-9). To calculate Rs, Table 

2-4 and Table 2-5 are used along with equation (2-10). 
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Table 2-4. LRFD driven pile foundation friction geotechnical resistance chart for alluvium  

Soil description 

Blow count Estimated nominal resistance values for friction pile in kips/ft 

N-value Wood 

pile(1),(3) 

Steel “H” Grade 

50 

Prestressed 

concrete Steel pipe 

Mean Range 10 12 14 12 14 16 10 12 14 18 

Alluvium              

Very soft silty clay 1 0–1 0.8 0.4 0.8 0.8 0.8 0.8 0.8 0.4 0.4 0.4 0.8 

Soft silty clay 3 2–4 1.2 0.8 1.2 1.2 0.8 0.8 0.8 0.8 0.8 0.8 1.2 

Stiff silty clay 6 4–8 1.6 1.2 1.6 2.0 1.2 1.6 2.0 1.2 1.2 1.6 2.0 

Firm silty clay 11 7–15 2.4 2.0 2.4 2.8 2.4 2.8 3.2 1.6 2.0 2.4 2.8 

Stiff silt 6 3–7 1.6 1.2 1.6 1.6 1.6 1.6 1.6 1.2 1.2 1.6 1.6 

Stiff sandy silt 6 4–8 1.6 1.2 1.6 1.6 1.6 1.6 1.6 1.2 1.2 1.6 1.6 

Stiff sandy clay 6 4–8 1.6 1.2 1.6 2.0 2.0 2.0 2.4 1.2 1.6 1.6 2.0 

Silty sand 78 3–13 1.2 1.2 1.2 1.6 1.6 1.6 1.6 0.8 0.8 1.2 1.6 

Clayey sand 13 6–20 2.0 1.6 2.0 2.8 2.4 2.4 2.8 1.6 2.0 2.4 2.8 

Fine sand 15 8–22 2.4 2.0 2.4 2.8 2.4 2.8 3.2 1.6 2.0 2.4 2.8 

Coarse sand 20 12–28 3.2 2.8 3.2 3.6 3.2 3.6 4.0 2.0 2.4 2.8 3.6 

Gravely sand 21 11–31 3.2 2.8 3.2 3.6 3.6 3.6 4.0 2.0 2.4 2.8 3.6 

Granular material > 40 --- (2) 4.0 4.8 5.6 (2) (2) (2) (2) (2) (2) (2) 

Source: After Iowa DOT 2011 

Table notes: (1) For double entries, the upper value is for an embedded pile within 30 ft of the natural ground elevation, and the lower value [ ] is for depths 

more than 30 ft below the natural ground elevation. (2) Do not consider the use of this pile type for this soil condition, wood with N > 25, prestressed concrete 

with N > 35, or steel pipe with N > 40. (3) Prestressed concrete piles have proven difficult to drive in these soils. Prestressed piles should not be driven in glacial 

clay with consistent N > 30 to 35. 
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Table 2-5. LRFD driven pile foundation friction geotechnical resistance chart for glacial clay 

Soil description 

Blow count Estimated nominal resistance values for friction pile in kips/ft 

N-value Wood 

pile(1),(3) 

Steel “H” Grade 50 Prestressed concrete Steel pipe 

Mean Range 10 12 14 12 14 16 10 12 14 18 

Glacial clay              

Firm silty glacial 

clay 
11 7–15 2.8 2.4 2.8 3.2 2.8 3.2 3.6 2.0 2.4 2.4 3.2 

Firm clay 

(gumbotil) 
12 9–15 2.8 2.4 2.8 3.2 2.8 3.2 3.6 2.0 2.4 2.4 3.2 

Firm glacial 

clay(1) 
11 7–15 

2.4 

[3.2] 

2.8 

[3.2] 

3.2 

[4.0] 

3.6 

[4.4] 

3.2 

[4.0] 

3.6 

[4.4] 

4.0 

[4.8] 

2.0 

[2.4] 

2.4 

[2.8] 

2.8 

[3.2] 

3.6 

[4.4] 

Firm sandy 

glacial clay(1) 
13 9–15 

2.4 

[3.2] 

2.8 

[3.2] 

3.2 

[4.0] 

3.6 

[4.4] 

3.2 

[4.0] 

3.6 

[4.4] 

4.0 

[4.8] 

2.0 

[2.4] 

2.4 

[2.8] 

2.8 

[3.2] 

3.6 

[4.4] 

Firm –very firm 

glacial clay(1) 
14 11–17 

2.8 

[3.6] 

2.8 

[4.0] 

3.2 

[4.8] 

3.6 

[5.6] 

4.0 

[4.8] 

4.4 

[5.2] 

4.8 

[5.6] 

2.4 

[3.2] 

2.8 

[3.6] 

3.2 

[4.0] 

4.0 

[5.2] 

Very firm glacial 

clay(1) 
24 17–30 

2.8 

[3.6] 

2.8 

[4.0] 

3.2 

[4.8] 

3.6 

[5.6] 

3.2(3) 

[4.8] 

3.6(3) 

[5.6] 

4.4(3) 

[6.4] 

2.4 

[3.2] 

2.8 

[3.6] 

3.2 

[4.0] 

4.0 

[5.2] 

Very firm sandy 

glacial clay(1) 
25 15–30 

3.2 

[4.0] 

2.8 

[4.0] 

3.2 

[4.8] 

3.6 

[5.6] 

3.2(3) 

[4.8] 

3.6(3) 

[5.6] 

4.4(3) 

[6.4] 

2.4 

[3.2] 

2.8 

[3.6] 

3.2 

[4.0] 

4.0 

[5.2] 

Cohesive or 

glacial material(1) 
> 35 --- (2) 2.8 

[4.0] 

3.2 

[4.8] 

3.6 

[5.6] 
(2) (2) (2) 

2.0(4) 

[3.2] 

2.4(4) 

[4.0] 

2.8(4) 

[4.4] 

3.6(4) 

[5.6] 

Source: After Iowa DOT 2011 

Table notes: (1) For double entries the upper value is for an embedded pile within 30 ft of the natural ground elevations, and the lower value [ ] is for depths 

more than 30 ft below the natural ground elevation. (2) Do not consider the use of this pile type for this soil condition, wood with N > 25, prestressed concrete 

with N > 35, or steel pipe with N > 40. (3) Prestressed concrete piles have proven difficult to drive in these soils. Prestressed piles should not be driven in glacial 

clay with consistent N > 30 to 35. (4) Steel pipe piles should not be driven in soils with consistent N > 40. 
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𝑅𝑠 = 𝑓𝑠
∗𝑙 (2-10) 

where,  

fs
* = unit shaft resistance, kips/ft 

l = length of soil layer 

The Iowa DOT (2011) uses equation (2-11) to design the pile to satisfy the design requirements 

for a downward load.  

∑ 𝜂𝑖𝛾𝑖𝑃𝑖 ≤ 𝜑𝑐𝑄𝑢 (2-11) 

where, 
∑ 𝜂𝑖𝛾𝑖𝑃𝑖 = total factored load per pile 

γi = average load factor, γi = 1.45 

η = number of piles 

𝜑𝑐 = soil resistance factor 

The Iowa Highway Research Board recently sponsored a project to calibrate resistance factors 

for the state of Iowa. The interim soil resistance factor was taken as 0.725. AbdelSalam et al. 

(2012) made recommendations for improved resistance factors for the Iowa Blue Book Method 

that accounted for construction control and setup. Table 2-6 includes the recommended 

resistance factors based on soil type, construction control, and setup.  

Table 2-6. Resistance factors for single pile in axial compression  

Theoretical 

analysis(c) 

Construction control (a) Resistance factor (b) 

Driving criteria 

basis 

P
D

A
/C

A
P

W
A

P
 

Retap 

Test 

3-

Days 

After 

EOD 

Static 

Pile 

Load 

Test 

Cohesive Mixed 
Non-

cohesive 

Iowa 

DOT 

ENR 

formula 

WE

AP 
φ 

φEO

D 
φsetup φ φ 

Iowa Blue 

Book 

Yes - - - - 0.60 - - 0.60 0.50 

- 
Yes(

d) 

- - - 0.65 - - 0.65 0.55 

Yes 
- - 0.70(e) - - 0.70 0.60 

Yes - 0.80 - - 0.70 0.60 

- - Yes 0.80 - - 0.80 0.80 

Source: Green et al. 2012 

Table notes: (a) Determine the construction control that will be specified on the plans to achieve the target nominal 

driving resistance. (b) Resistance factors presented in Table E1 are for redundant pile groups (minimum of 5 piles). 

(c) Use BDM Article 6.2.7 to estimate the theoretical nominal pile resistance, based on the Iowa Blue Book. (d) Use 

the Iowa Blue Book Soil input procedure to complete WEAP analysis. (e) Setup effect has been included when 

WEAP is used to establish driving criteria and CAPWAP is used as a construction control. 

Table 2-7 provides guidelines to assist in classifying the soil type. 
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Table 2-7. Soil classification method  

Generalized soil 

category AASHTO USDA textural 

BDM 6.2.7 geotechnical resistance 

chart 

Cohesive 

A-4, A-5, 

A-6, and 

A-7 

Clay 

Silty clay 

Silty clay loam 

Silt 

Clay loam 

Silt loam 

Loam 

Sandy clay 

L
o

es
s 

Very soft silty clay 

Soft silty clay 

Stiff silty clay 

Firm silty clay 

Stiff silt 

Stiff sandy clay 

G
la

ci
al

 c
la

y
 

Firm silty glacial clay 

Firm clay (gumbotil) 

Firm glacial clay 

Firm sandy glacial clay 

Firm-very firm glacial clay 

Very firm glacial clay 

Very firm sandy glacial clay 

Cohesive or glacial material 

Non-Cohesive 
A-1, A-2, 

and A-3 

Sandy clay 

Loam 

Sandy loam 

Loamy sand 

Sand 

A
ll

u
v
iu

m
 o

r 
L

o
es

s Stiff sandy silt 

Silty sand 

Clayey sand 

Fine sand 

Coarse sand 

Gravelly sand 

Granular material (n > 40) 

Source: Green et al. 2012 

2.5.2. Structural Resistance 

Vande Voort et al. (2008) summarize the compressive stress limits used between 1983 and 2008 

by state DOTs, AASHTO, and American Society of Civil Engineers (ASCE) for steel H-piles 

and precast, prestressed concrete piles. Specifically, Table 2-8 outlines the current compressive 

stress limits for steel H-piles and precast, prestressed concrete piles used by the Iowa DOT, 

which still follow the AASHTO allowable stress design (ASD). 



 

32 

Table 2-8. Compressive stress limits for steel H-piles in precast, prestressed concrete piles 

in Iowa  

Steel H-pile 

Precast, prestressed 

concrete piles 

6.0 ksi – typical design 

0.33𝑓𝑐
′ − 0.27𝑓𝑝𝑒 

(For 12 in. square pile only) 

9.0 ksi – design stress allowed for end bearing piles on 

rock with SPT N-values of 100–200 or combined end 

bearing and friction piles on rock with N-values ≥ 200 

12.0 ksi – design stress is permitted for the same cases 

as above, except it may only be used for piers and with 

approval from the soil Soil Design Section and 

Assistant Bridge Engineer 

Source: Iowa DOT 2011 

2.6. Integral Abutments 

Integral bridges are bridges that have no movement joints and have foundations that 

accommodate the superstructure deformation due to temperature, creep, and shrinkage effects 

causing the bridge to expand or contract with time (Kamel et al. 1996). The changes in length 

cause the bridge to increase and decrease, which results in a push-pull effect on abutments and 

pile heads. To minimize the cost of construction and maintenance, the Iowa DOT prefers to use 

integral abutments whenever possible in design (Iowa DOT 2011). 

2.6.1. Current Integral Abutment Design Guidelines 

Many research projects were conducted to provide maximum bridge lengths for integral 

abutment bridges. One such study was completed by Dicleli and Albhaisi (2004) and gives the 

recommendations based on climate as shown in Table 2-9.  

Table 2-9. Recommendations for maximum bridge length  

Pile size 

Steel bridges Concrete bridges 

Moderate climate 

length, ft 

Cold climate 

length, ft 

Moderate climate 

length, ft 

Cold climate 

length, ft 

HP 12 × 84 722 476 1,050 869 

HP 12 × 74 673 443 984 820 

HP 10 × 57 525 461 787 640 

Source: After Dicleli and Albhaisi 2004 

Abendroth and Greimann (2005) recommended including a prebored hole filled with a material 

that has low stiffness and orienting the piles such that they are subjected to weak-axis bending 

during bridge movement. These changes are intended to improve the performance of the 

foundations in integral abutments. 
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Typically, each state DOT has developed its own design guidelines, including for integral 

abutments Table 2-10 briefly summarizes the integral abutment guidelines for eight state DOTs.  

Table 2-10. Summary of eight DOT design guidelines for integral abutments 

State 

Girder 

type 

Max 

bridge 

length 

limit, ft 

Max. 

skew, 

º 

Prebore 

hole 

length, 

ft Pile orientation Reference 

IA 

Concrete 575 

45 10 

0 to 30º skew: 

Parallel to abutment Iowa DOT  

2011 
Steel 400 

31 to 45º skew: 

weak-axis bending 

NY 
Concrete 

330 45 8 Weak-axis bending 
NYSDOT  

2011 Steel 

ME 
Concrete 330 

25 - Weak-axis bending 
Maine DOT 

2003 Steel 200 

MA 

Concrete 590 

30 10 

Web parallel to 

centerline of the 

abutment 

Mass DOT  

2009 Steel 330 

RI 
Concrete 600 

30 10 Weak-axis bending 
Rhode Island  

DOT 2007 Steel 350 

VT 
Concrete 695 

20 - Weak-axis bending 
VTrans  

2008 Steel 395 

CO 
Concrete 790 

- - - 
CDOT  

2009 Steel 640 

MN 
Concrete 

300 45 - - MnDOT 2011 
Steel 

 

When comparing the recommendations by Dicleli and Albhaisi (2004) to the maximum bridge 

length limits for HP 10 × 57 steel piles in Iowa, the maximum bridge length for steel bridges in 

Iowa is about 13% less in the study and 10% less for concrete bridges than recommended by 

Dicleli and Albhaisi (2004). The Minnesota DOT (MnDOT) uses a maximum bridge length for 

integral abutments 35% lower than the value given in the study by Dicleli and Albhaisi (2004) 

for steel bridges and 53% lower for concrete bridges.  

Minnesota does not differentiate between types of bridges and none of the DOTs appear to 

differentiate between size and type of pile used for the guidelines given in Table 2-10. 

Additionally, not all DOTs specify the maximum skew, prebored holes, or orientation of the pile 

in integral bridges. Consequently, it may be stated that the design guidelines for many DOTs, 

with regard to integral abutments, can be improved to help reduce construction and maintenance 

costs. 
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2.6.2. Long-Term Field Monitoring 

When monitoring an integral bridge, it should be noted that many factors influence the 

continuous movement of the bridge superstructure and substructure. A parametric study was 

completed by Huang et al. (2004) that looked at many variables and validated their effects on 

integral abutments through long-term monitoring of an integral abutment. Some of the key 

variables noted in this study were pile orientation, soil conditions, predrilled holes, pile head 

condition, and bridge length. Findings from this parametric study are as follows: 

 H-piles in strong-axis bending improve the piles performance but increase the concrete 

tensile stresses in the superstructure 

 Stiffer soils cause larger stresses in the superstructure and piles  

 Prebored holes are effective at reducing the stresses in the superstructure and piles 

 A hinged connection at the pile head may cause the stresses in the superstructure to decrease, 

but rotation of the pile cap may cause large pile curvatures during expansion and contraction 

of the bridge 

 Increases in bridge length increase the stresses the superstructure develops correspondingly 

Abendroth and Greimann (2005) also recommended that the abutment piles have a weak-axis 

orientation to provide the least resistance to the longitudinal expansion and contraction of the 

bridge superstructure. 

In a few studies as listed in Table 2-11, integral bridges were continuously monitored in the field 

for long periods of time to determine the performance of integral abutments.  
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Table 2-11. Summary of long-term monitoring of integral abutment bridges 

Name 

Length, 

ft 

Skew, 

º 

Girder 

type 

Prebore 

hole 

length, 

ft 

Longitudinal 

displacement, in. 

Rotation, 

º 

Pile 

orientation Reference 
Contraction Expansion 

Boone River Bridge 324.5 45 Concrete 9 1.2 0.8 - Weak-axis Girton et al. 

1991 Maple River Bridge 320 30 Steel 12 1.6 0.9  Weak-axis 

Bridge #55555 (North) 216.5 0 Concrete None 1.41 0.3 0.11 Weak-axis Huang et al. 

2004 Bridge #55555 (South) 216.5 0 Concrete None 1.98 0.3 0.095 Weak-axis 

Tama County Bridge, 

West 
110 20 Concrete None negligible - Weak-axis Abendroth et 

al. 2007 
Tama County Bridge, East 110 20 Concrete None 0.11 0.043 - Weak-axis 

Guthrie County Bridge 318 30 Concrete 10 1.25 0.5 
-0.056 to 

0.032 
Weak-axis 

Abendroth 

and 

Griemann 

2005 
Story County Bridge 201.3 15 Concrete 8 1.3 0.46 

-0.014 to 

0.061 
Weak-axis 

Mississinewa River Bridge 367 8 Concrete None 0.59 0 1.5 Weak-axis 
Frosch et al. 

2005 

Orange-Wendell Bridge, 

North 
270  Steel 10 0.5 0.18 

-0.15 to 

0.13 
Weak-axis 

Bonczar et al. 

2005 Orange-Wendell Bridge, 

South 
270  Steel 10 0.28 0.34 

-0.15 to 

0.1 
Weak-axis 

Scotch Road Bridge 298 15 Steel 0 0.5 0.55 
-0.07 to 

0.1 
Weak-axis 

Hassiotis 

2007 

Knox County Bridge 415.92 59.09 Steel 0 0.781 0.013 Strong-axis 
Oesterle and 

Lotfi 2005 
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In these investigations, long-term monitoring programs measured bridge temperatures, 

longitudinal displacement, soil pressures behind the abutments, strains in the bridge girders, 

vertical rotation of the abutments, and vertical-temperature gradients through the depth of the 

bridge girders (Abendroth and Greimann 2005). In most of these studies, an analytical model 

was validated by the performance of the monitored bridge.  

In many instances, the movement of one integral abutment in a bridge does not equal the 

movement of the integral abutment on the other side (Abendroth and Greimann 2005, Jorgenson 

1983). Abendroth et al. (2007) found the reasons for these phenomena to be due to the difference 

in soil type, compaction of backfill, moisture content of backfill, vertical alignment of the 

roadway, geometric configuration of the bridge, and the bridge pitch at the two abutments. 

Another common finding from this study is that the contraction mode of displacement for the 

bridge induces slightly higher stresses than for the expansion displacements (Duncan and Arsoy 

2003). 

The seasonal expansion and contraction of integral abutment bridges are controlled by the 

ambient temperature, solar radiation, and relative humidity (Huang et al. 2004). Expansion is 

when the bridge elongates and is generally assigned the sign convention of positive 

displacement, while contraction is when the bridge shortens and is assigned a negative 

displacement.  

Through long-term monitoring, it was discovered that longitudinal displacement due to thermal 

effects are present in a dominant cycle as a result of the seasons, but also a much smaller daily or 

weekly fluctuation can be visible (Girton et al. 1991). Typically, the abutment tends to rotate 

away from the river or road the bridge is spanning during the warmer months due to the 

expansion of the bridge superstructure (Huang et al. 2004). These movements of the bridge cause 

the bridge to rotate in the vertical direction. The vertical rotations found in integral abutments are 

responsible for shifting the moments lower into the pile, which was confirmed by Hassiotis 

(2007) by monitoring the Scotch Road Bridge. 

Typically, when modeling the integral connection between abutment and pile head, the piles are 

assumed to behave in a fully fixed manner. Arsoy et al. (2002) found that the measured stresses 

in steel H-piles and pipe piles were about half of the theoretical stresses of fully fixed head piles, 

implying that the piles might not be fully fixed at the pile-to-abutment interface.  

The skew of the bridge is also another factor that influences the behavior of the integral 

abutment. Many DOTs have maximum limits on the allowed skew for an integral abutment. 

Through long-term monitoring, it was found that if a large skew is present in a bridge, the 

designer can expect the bridge to rotate in plane about the vertical axis as the bridge expands and 

contracts with temperature (Abendroth et al. 2007). 

Duncan and Arsoy (2003) found by modeling the performance of the piles for integral 

abutments, the approach fill significantly reduces the loads on the pile. As the abutment expands 

and contracts due to the bridge movements, the approach fill is dragged across the top of the soil 
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foundation, thus inducing a displacement in the foundation soil and reducing the relative 

displacement between the pile and the foundation soil. When not considering the effect of 

approach fill for modeling, it is considered conservative. 

In many of the long-term field monitoring studies, strains were measured along the length of the 

piles in the integral abutments. Abendroth and Greimann (2005) found that the strains in the H-

piles for the Guthrie County bridge exceeded the yield strain of steel. Additionally, the Story 

County bridge had pile strains that were smaller, but adding the combination of dead, live, and 

impact loads on the superstructure of the bridge, a portion of the pile flange would exceed the 

yield strain of steel. 

2.7. Pile Analysis 

To predict the performance of UHPC piles in the field, computer software was used to measure 

the response of the pile when subjected to lateral loading and the response during driving. This 

section summarizes the basic principles used in LPILE and GRLWEAP, which were used in this 

study. 

2.7.1. LPILE 

LPILE is a computer program created by Ensoft, Inc. to analyze a pile under lateral loading 

(Reese et al. 2004). Common types of piles subjected to lateral load are transmission towers, 

offshore structures, bridge foundations, overhead sign foundations, retaining walls, wind 

generators, poles, anchorages, and marine piers. Specifically for this research, the lateral loads 

influence on piles due to the expansion and contraction of integral bridges are considered. Many 

parametric studies using LPILE have been completed in the past. One such study completed by 

Huang et al. (2004) was mentioned in Section 2.6.2. 

The way LPILE analyzes a pile under a lateral load is by using the concept of Winkler analysis. 

Figure 2-9 illustrates the model used within LPILE.  
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Reese et al. 2004, Ensoft, Inc. 

Figure 2-9. Model of a pile subjected to loading 

The pile and soil are broken up into a specified number of layers. The soil within each layer is 

modeled using springs controlled by p-y curves allowing for the simulation of nonlinear 

materials. To solve for the nonlinear response of a laterally loaded pile, a fourth-order 

differential equation was developed by Hetényi (1946) and is given in equation (2-12). 

𝐸𝐼
𝑑4𝑦

𝑑𝑥4 + 𝑄
𝑑2𝑦

𝑑𝑥2 − 𝑝 + 𝑊 = 0  (2-12) 

where, 

EI = flexural rigidity 

y = lateral deflection of the pile at a point X along the length of the pile 

Q = axial load on the pile 

p = soil reaction per unit length 

W = distributed load along the length of the pile 

Figure 2-10 illustrates the element form of a beam-column that LPILE uses to solve the 

differential equation by using the finite difference method where the moments can be positive or 

negative. 
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Reese et al. 2004, after Hetényi 1946 

Figure 2-10. Element form beam-column  

Assumptions made within LPILE by Reese et al. (2004) for a lateral load analysis are as follows: 

 The pile is straight and has a uniform cross-section 

 The pile has a longitudinal plane of symmetry with the load and reactions lying in that plane 

 The pile material is homogeneous 

 The proportional limit of the pile material is not exceeded 

 The modulus of elasticity of the pile material is the same in tension and compression 

 Transverse deflections of the pile are small 

 The pile is not subjected to dynamic loading 

 Deflections due to shearing stresses are small 

 The magnitude of the axial load is constant with depth 

The last assumption listed above is not strictly true. However, typically the maximum bending 

moment occurs close to the ground surface where the axial load is relatively unchanged. If there 

is concern about allowing this last assumption, the axial load can be varied along the length of 

the pile by including additional input values through a very lengthy iterative procedure.  

Along the length of the pile, LPILE uses equation (2-13) to calculate shear, equation (2-14) to 

calculate moment, and equation (2-15) to calculate slope for each beam-column element. 
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𝑉 = 𝐸𝐼
𝑑3𝑦

𝑑𝑥3 + 𝑄
𝑑𝑦

𝑑𝑥
 (2-13) 

𝑀 = 𝐸𝐼
𝑑2𝑦

𝑑𝑥2 (2-14) 

𝑆 =
𝑑𝑦

𝑑𝑥
 (2-15) 

where, 

V = shear in the pile 

M = bending moment in the pile 

S = slope of the elastic curve defined by the axis of the pile 

To perform a typical lateral load analysis within LPILE, the user would need to input the 

analysis type, pile properties, loading type, pile head boundary conditions, and soil conditions. 

After the analysis is run, the user can obtain the shear, bending moment, and displacement along 

the length of the pile in a text or graphical file as output.  

2.7.2. GRLWEAP 

One of the most common computer programs used by DOTs to perform a wave equation and 

drivability analysis is GRLWEAP. The current GRLWEAP program was developed from the 

WEAP program that was created in 1976 by Goble, Rausche, and Likins (PDI 2005). The 

program simulates the motions and forces attributed with driving of a foundation pile by various 

types of hammers using a numerical solution. To complete these calculations, time is divided 

into small intervals. It is assumed that all velocities, forces, and displacement will have constant 

values during each interval, and the velocities, forces, and displacements at each interval will 

differ from the previous interval by just enough to represent the change occurring between 

intervals (Smith 1960). 

Figure 2-11 illustrates the model of the hammer, pile, and soil system during driving within 

GRLWEAP.  
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Vande Voort et al. 2008, after Graff 1965 

Figure 2-11. Model of hammer, pile, and soil used in the wave equation analysis  

W1 and W2 represent the weight of the hammer and the weight of the helmet, respectively. The 

hammer cushion is represented as k1 and is assumed to have no weight. The pile is modeled by 

using a series of weights and springs representing the weight and stiffness of the pile, 

respectively. 



 

42 

The soil resistance is modeled by upward forces on each segment of the pile shown in Figure 

2-11 by the symbol, Ri. Dashpots labeled Ji represent the damping within the soil. Ji takes into 

account the increase in soil resistance as the soil experiences a rapidly applied displacement 

compared to a slower displacement. Figure 2-12 represents the resistance-displacement diagram 

for the modeled soil.  

 
Vande Voort et al. 2008, after Smith 1962 

Figure 2-12. Soil resistance-displacement relationship for wave equation analysis  

The process of developing the driving forces are represented by the hammer striking the hammer 

cushion that develops a displacement corresponding to the stiffness of the spring used to model 

it. This displacement causes a force in the spring that accelerates the weight of the helmet, 

causing a displacement of the helmet, which then displaces the spring. The process continues 

along the length of the pile. To accurately calculate the stresses in each increment of pile, a 

sufficiently small time interval must be used. Smith (1960) recommends using 0.00025 second 

time interval for steel and timber piles and increases the time interval to 0.00033 seconds for 

concrete piles.  

Input information that is required to run a wave equation analysis is hammer data, driving system 

data, pile data, and soil information. A library of hammer information is available for use within 

the program based on manufacturer specifications. If a special hammer is used, a new hammer 

can be added to the program. The driving system data includes information about the hammer 

cushion, helmet, and pile cushion. The pile data required to run the analysis is total length, cross-

sectional area, elastic modulus, and specific weight as a function of depth. Information about the 

soil that is needed is input information about each soil layer, which can include SPT N-values, 

water level, damping factors, and quake factors. Recommended input values for quake and 

damping factors are given by Smith (1960), GRL Engineers (2001), and Dirks and Kam (2003).  

The solution for the wave equation goes through a calculation process by computing the forces, 

displacements, and velocities of each segment of the driving system at each time interval. The 

force, displacement, and velocities are assumed constant for each time interval and are used to 

calculate the new values for the next time interval. The calculation process goes through 

equations (2-16) through (2-23) for each segment, m, at each time interval, n (Smith 1960). 
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𝑉𝐼𝑚𝑝𝑎𝑐𝑡 = √
2𝐸ℎ∅𝑔

𝑊1
 (2-16) 

𝐷𝑚 = 𝑑𝑚 + 𝑣𝑚(10∆𝑡) (2-17) 

𝐶𝑚 = 𝐷𝑚 − 𝐷𝑚+1  (2-18) 

𝐹𝑚 = 𝐶𝑚𝐾𝑚 (2-19) 

𝑍𝑚 = 𝐹𝑚−1 − 𝐹𝑚 − 𝑅𝑚 (2-20) 

𝑉𝑚 = 𝑣𝑚 + 𝑍𝑚
∆𝑡𝑔

𝑊𝑚
 (2-21) 

𝑅𝑚 = (𝐷𝑚 − 𝐷𝑚
′ )𝐾𝑚

′ (1 + 𝐽𝑚𝑣𝑚) (2-22) 

𝑅𝑢 = ∑ 𝑅𝑚
𝑠
𝑚=3  (2-23) 

where, 

VImpact = velocity of the driving hammer at impact 

Eh = rated energy of the driving hammer 

φ = efficiency of the driving hammer 

g = acceleration of gravity 

Wi = weight of pile segment 

Dm = displacement of soil and pile segment in time interval, n 

dm = displacement of soil and pile segment in time interval, n-1 

Vm = velocity in the time interval, n 

vm = velocity of pile segment in time interval, n-1 

Δt = time interval 

Cm = Compression in spring in time interval, n 

Fm = force exerted by spring in time interval, n 

Km = stiffness of spring in time interval, n 

Zm = accelerating force in time interval n 

Rm = soil resistance acting on the pile segment in time interval, n 

𝐷𝑚
′  = soil plastic displacement in time interval, n 

𝐾𝑚
′  = stiffness of the soil 

Jm = soil damping constant 

Ru = total ultimate soil resistance during driving 

s = total number of pile segments in model 

The available output of GRLWEAP is the blow count, axial stresses, and energy transfer. From 

these three outputs, the bearing capacity, stresses at an observed blow count, and expected blow 

count can be determined.   
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CHAPTER 3:  ANALYSIS OF UHPC PILES IN INTEGRAL ABUTMENTS 

This chapter focuses on comparing UHPC and HP 10 × 57 piles. The section behavior of the two 

piles was evaluated when subjected to different axial loads and then used as input into a lateral 

load analysis. The goal of the lateral load analysis is to determine the behavior of UHPC piles 

with respect to steel HP 10 × 57 piles for various conditions associated with integral abutments 

and assist with the experimental plan for the field testing and long-term monitoring of UHPC 

piles. This will be conducted via a moment-curvature analysis of the UHPC and HP 10 × 57 

piles, and a parametric analysis to compare the pile’s performance at five key parameters. 

3.1. Moment-Curvature Analysis 

In order to perform the moment-curvature analysis for the UHPC pile section, a Microsoft Excel 

moment-curvature program written by Vande Voort et al. (2008) from Phase I of the project was 

modified so that the UHPC pile section could be analyzed about the weak axis. To calculate the 

moment-curvature of an HP 10 × 57 steel pile section, an open-source computer program 

package known as OpenSees (McKenna et al. 2006) was used. The program has the capabilities 

of modeling and analyzing the nonlinear response of systems using a wide range of material 

models, elements, and solution algorithms. The existing script that was developed for the 

analysis of the HP 10 × 57 pile is included in Appendix A. 

3.1.1. Analysis Assumptions 

The moment-curvature response program for UHPC piles using Excel is based on the following 

assumptions, which are modeled after Vande Voort et al. (2008): 

 Plane sections remain plane 

 Prestress losses occur due only to elastic shortening and shrinkage of UHPC 

 Strands have perfectly bonded to UHPC outside of the transfer regions, so the change in 

strain in prestressing strands is equal to the change in strain in concrete at the strand location 

 Effective prestressing is applied at the centroid of the section 

 Bending only occurs about the weak flexural axis 

 Initial prestressing does not induce any inelastic strains on the strands 

 Axial loads on the pile are applied thought the centroidal axis with no eccentricity 

3.1.2. Section Analysis 

The moment-curvature program divides the cross-section into 100 small segments and calculates 

the stresses and strains for each segment at a given curvature. The stress and strains are then 

converted into forces and moments. The prestressing, prestressing losses, and axial load 

contribute to the uniform strain in the concrete, and they are referred to as the zero curvature 

strains for both UHPC and prestressing steel. The equations used in this Excel worksheet were 

developed by Vande Voort et al. (2008). 
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Two equations were used to calculate the prestressing losses. Equations (3-1) and (3-2) were 

used to obtain the prestressing losses due to elastic shortening of the UHPC member and 

shrinkage of UHPC material, respectively.  

∆𝑓𝑝𝐸𝑆 =
𝑓𝑝𝑖𝐴𝑝𝑠

2𝐴𝑝𝑠+𝐴𝑐
𝐸𝑐𝑖
𝐸𝑝

 (3-1) 

∆𝑓𝑝𝑆𝐻 =
𝜀𝑆𝐻𝐴𝑐𝐸𝑝

𝐴𝑐+𝐴𝑝𝑠
𝐸𝑝

𝐸𝑐

 (3-2) 

where, 

ΔfpES = prestress losses due to elastic shortening of UHPC 

fpi = initial prestress applied to prestressing strands 

Aps = total area of prestressing strands 

Ac = total area of UHPC 

Eci = elastic modulus of UHPC at time of transfer of prestressing 

Ep = elastic modulus of prestressing strands 

ΔfpSH = prestress losses due to shrinkage of UHPC 

εSH = total shrinkage strain of UHPC 

Ec = elastic modulus of cured UHPC 

Another factor that affects the zero curvature strain is the free shrinkage of the UHPC. The 

prestressing strands do not undergo the free shrinkage that the UHPC experiences. The result of 

this difference is a tensile strain induced in the UHPC, which can be characterized by equation 

(3-3). The final factor contributing to the zero curvature strain is the strain due to the axial load 

and can be calculated using equation (3-4). 

∆𝜀𝑐𝑆𝐻 =
𝜀𝑆𝐻𝐴𝑝𝑠

𝐴𝑝𝑠+𝐴𝑐
𝐸𝑐
𝐸𝑝

 (3-3) 

𝜀𝑝 =
𝑃

𝐴𝑐𝐸𝑐+𝐴𝑝𝑠𝐸𝑝
 (3-4) 

where,  

ΔεcSH = tensile strain in UHPC due to free shrinkage 

εp = strain in UHPC or prestressing steel caused by axial load 

P = applied axial load 

The total initial strains or zero curvature strains can be calculated using equation (3-5) and 

equation (3-6) for the prestressing strands and the UHPC, respectively. 
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𝜀𝑝𝑍𝐶 =
𝑓𝑝𝑖−∆𝑓𝑝𝐸𝑆−∆𝑓𝑝𝑆𝐻

𝐸𝑝
− 𝜀𝑝 (3-5) 

𝜀𝑐𝑍𝐶 = −
(𝑓𝑝𝑖−∆𝑓𝑝𝐸𝑆)𝐴𝑝𝑠

𝐴𝑐𝐸𝑐
+ ∆𝜀𝑐𝑆𝐻 − 𝜀𝑝 (3-6) 

where, 

εpZC = strain in prestressing steel at zero curvature 

εcZC = strain in UHPC at zero curvature 

After the zero curvature strains are calculated, the tensile and compressive strains due to 

curvature are calculated. As mentioned previously, the cross-section of the UHPC pile was 

divided into 100 evenly spaced horizontal segments. The user of the program is required to input 

the width of each section as well as the location of the prestressing strands. The strain for each of 

the horizontal segments of the UHPC and prestressing strands are calculated by using equations 

(3-7) and (3-8), respectively.  

𝜀𝑐𝑡 = 𝜑𝑦𝑐𝑔 + 𝜀𝑐𝑍𝐶 = 𝜑 (𝑦 −
𝜀𝑐𝑍𝑐

𝜑
) + 𝜀𝑐𝑍𝐶 = 𝜑𝑦 (3-7) 

𝜀𝑝𝑡 = 𝜑𝑦𝑐𝑔 + 𝜀𝑝𝑍𝐶 = 𝜑 (𝑦 −
𝜀𝑐𝑍𝐶

𝜑
) + 𝜀𝑝𝑍𝐶 = 𝜑𝑦 − 𝜀𝑐𝑍𝐶 + 𝜀𝑝𝑍𝐶 (3-8) 

where, 

εct = total strain in UHPC 

φ = curvature about horizontal axis 

ycg = distance from centroid, measured positive downward 

y = distance from neutral axis, measured positive downward 

εpt = total strain in prestressing steel 

The variables in these equations are depicted in Figure 3-1. 
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After Vande Voort et al. 2008 

Figure 3-1. Definitions of distance from centroid and distance from neutral axis 

During each step, the stresses and strains are calculated for each segment of the cross-section 

using a stress-strain relationship of UHPC and of prestressing strands that are described in Figure 

3-2 and Figure 3-3, respectively.  

 
Vande Voort et al. 2008 

Figure 3-2. Assumed UHPC monotonic stress-strain behavior  
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After PCI 2010 

Figure 3-3. Assumed stress-strain behavior for 0.5 in., 270 ksi low relaxation prestressing 

strand  

The forces and moments are then calculated for each segment of the cross-section by 

manipulating the strains. The spreadsheet solves a series of equations using the solver to 

calculate the appropriate curvature and neutral axis for each step. When the correct neutral axis is 

found for a curvature by satisfying the equilibrium condition, the sum of the moments in the 

section is equal to the total moment resistance associated with the input curvature (Vande Voort 

et al. 2008). 

3.1.3. Results 

The ultimate curvature for each axial load as defined by the Excel moment-curvature program 

was determined by using one of the four conditions described by Vande Voort et al. (2008), 

whichever occurs first, as follows: 

 The strain in the extreme compression fiber reached the assumed ultimate value of 7,000 

microstrains 

 The strain in a prestressing strand reached the assumed ultimate value of 50,000 microstrains 

 The moment resistance of the section decreased to 80% of its maximum value 

 The location of the neutral axis depth changed very suddenly, causing a large drop in 

moment resistance 

Figure 3-4 shows the moment-curvature response of the UHPC pile section in weak-axis bending 

subjected to various axial loads.  
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Figure 3-4. Moment-curvature of the UHPC pile section subjected to weak-axis bending 

with varying axial loads 

As the axial load increases, the ultimate curvature decreases. The maximum moment resistance 

increases slightly for each load, up to 200 kips and stays the same for the axial load of 300 kips. 

Figure 3-5 shows the moment-curvature of a UHPC pile in strong-axis bending.  
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After Vande Voort et al. 2008 

Figure 3-5. Moment-curvature of the UHPC pile section subjected to strong-axis bending 

with varying axial loads  

Like the weak-axis bending, the ultimate curvature for UHPC subjected to strong-axis bending 

decreases as the axial load increases, but the maximum moment increases as the axial load 

increases.  

To compare the moment-curvature response of the section behavior of a UHPC pile in strong-

axis bending and weak-axis bending, the response at 100 kip axial load for both is shown in 

Figure 3-6.  
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Figure 3-6. Comparison of moment-curvature between strong-axis and weak-axis bending 

of the UHPC pile sections subjected to a 100 kip axial load 

The results from Vande Voort et al. (2008) were used for the UHPC pile section subjected to 

strong-axis bending. It is worth noting that both the maximum moment resistance and the 

ultimate curvature are greater for the strong-axis bending. The flexural rigidity and the ultimate 

moment of a UHPC strong-axis pile are 109% greater and 56% greater than for a UHPC pile in 

weak-axis bending, respectively.  

Like the UHPC pile section, the HP 10 × 57 pile section was subjected to the same varying axial 

loads in both strong-axis and weak-axis bending. The weak-axis piles are given in Figure 3-7, 

and the strong-axis piles are shown in Figure 3-8.  
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Figure 3-7. Moment-curvature of HP 10 × 57 pile section subjected to weak-axis bending 

with the varying axial loads 

 

Figure 3-8. Moment-curvature of HP 10 × 57 pile section subjected to strong-axis bending 

with varying axial loads 
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strong-axis bending has a dramatic decrease in the maximum moment resistance for the 200 and 

300 kip axial load.  

To compare the moment-curvature response of the section behavior of an HP 10 × 57 pile in 

strong-axis bending and weak-axis bending, the response at 100 kip axial load for both is shown 

in Figure 3-9.  

 

Figure 3-9. Comparison of moment-curvature between strong-axis and weak-axis bending 

of HP 10 × 57 pile section subjected to a 100 kip axial load 

It is worth noting that both the maximum moment resistance and the ultimate curvature are 

greater for the strong-axis bending. The flexural rigidity and the ultimate moment of a steel pile 

in strong-axis bending are 191% greater and 17% less than for the steel pile in weak-axis 

bending, respectively. 
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Figure 3-10. Moment-curvature response at 100 kip axial load comparing a UHPC pile and 

an HP 10 × 57 pile in weak-axis bending 

While the two sections show comparable elastic stiffness, the steel pile exhibits higher moment 

resistance. Since the piles are primarily used for carrying axial loads in Iowa, the UHPC pile was 

designed for this purpose. The difference in moment resistance is inconsequential. If the 

serviceability limit state is defined using the yield strain for the H-pile and the crack width is 

kept to less than 0.0012 in. for UHPC piles, the H-pile section shows an increase in moment 

resistance of 39%. Finally, the inherent ductility of steel produces ultimate curvature 

significantly higher than that of the UHPC pile section. The level of ductility is not needed for 

the pile, and the level shown by the UHPC pile is adequate for piles designed primarily for axial 

load resistance. 

Like the weak-axis bending piles, the maximum moment, ultimate curvature, ultimate moment, 

and stiffness are higher for a strong-axis bending steel HP 10 × 57 pile than a strong-axis 
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Figure 3-11. Moment-curvature response at 100 kip axial load comparing a UHPC pile and 

an HP 10 × 57 pile in strong-axis bending 

The differences between UHPC and HP 10 × 57 piles are higher for strong-axis bending than for 

weak-axis bending due to the differences in stiffness between the two types of piles in strong-

axis bending, with the HP 10 × 57 pile’s stiffness being 38% higher than that of the UHPC pile. 

If the serviceability limit state is defined using the yield strain for the H-pile and the crack width 

is kept to less than 0.0012 in. for UHPC piles, the H-pile section shows an increase in moment 

resistance of 85%. 
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3.2.1. Parameters 

The first parametric study compared a UHPC pile to a steel HP 10 × 57 pile by changing various 

conditions. The key parameters used in the study were soil type, pile head boundary condition, 

axial load, pile orientation, and displacement. A total of 128 different cases were evaluated for 

UHPC and steel HP 10 × 57 piles and various combinations of key parameters. The variations 

included for each parameter are: 

 Soil type: four extreme soil conditions as shown in Table 3-1 

Table 3-1. Soil properties used for parametric analyses 

Soil type 

Density* 

γ, lb/in3 

Friction 

angle* 

φ, degree 

Cohesion* 

c, psi 

Subgrade 

modulus* 

ks, lb/in.3 

Strain at 

50%* 

ε50% 

Loose sand 0.063 30 - 25 - 

Dense sand .075 40 - 225 - 

Soft clay .063 - 3 30 0.020 

Very stiff clay .075 - 35 800 0.004 

* Reese and Matlock 1956, Wang and Reese 1993, Kamel et al. 1996, Reese et al. 1974 and 2004 

 Pile head boundary condition: fixed and pinned 

 Axial load: 0 kip, 100 kips, 200 kips, and 300 kips 

 Pile orientation: weak-axis bending and strong-axis bending 

 Lateral displacement: 1.00 in. and 1.55 in. 

In Iowa, a 10 ft deep prebored hole is required for abutment piles in integral abutments when the 

bridge exceeds 130 ft in length (Iowa DOT 2011). As a result, a second study compared the 

results from the first study to the behavior of a UHPC pile and an HP 10 × 57 pile with a 10 ft 

prebored hole for some of the conditions used in the first study. A total of eight cases were 

evaluated for UHPC and steel HP 10 × 57 piles as given in Table 3-2. 
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Table 3-2. Eight load cases investigated in the second parametric study considering a 

prebored hole 

Conditions 

Axial load, 

kips Soil type 

Lateral 

displacement, in. 

Fixed-pile 

head; 

 

Weak-axis 

bending 

100 

Soft clay 
1.00 

1.55 

Stiff clay 
1.00 

1.55 

200 

Soft clay 
1.00 

1.55 

Stiff clay 
1.00 

1.55 

 

3.2.2. Allowable Tensile Strains 

The allowable tensile stress versus crack width for UHPC was given in Figure 2-2. Based on 

components of UHPC, Vande Voort et al. (2008) reported tensile strain limits for the behavior of 

UHPC corresponding to the stresses in Figure 2-2. Accordingly, 160 microstrains represents the 

barrier when micro-cracking begins at the extreme tension fiber, and 1,350 microstrains is when 

visible cracking begins. The strain limit of the extreme tension fiber to facilitate the fiber to pull 

out of the UHPC is 2,400 microstrains. The model in Figure 2-2 was updated to include the 

values as shown in Figure 3-12.  

 

Figure 3-12. Simplified tensile strength law with tensile strain assumptions 

In comparison, a value of 1,700 microstrains was used to determine the first yield of the flanges 

in the steel HP 10 × 57 piles with an assumed modulus of elasticity of 29,000 ksi and a yield 

strength of 50 ksi. 
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3.2.3. Predicted Width and Location of Cracking along the Piles 

The flexural moment resistance at a given section of pile is the sum of the moments a pile is 

subjected to at a given location. The flexural moment resistance along the length of each pile was 

calculated using LPILE for a given lateral displacement and was used to predict the extent of 

cracking in the UHPC pile, as well as yielding the HP 10 × 57 pile would experience during 

lateral loading. For UHPC, micro-cracking is considered acceptable, the visible cracking 

corresponding to 1,350 microstrains is considered undesirable, and cracking that provides widths 

greater than 0.012 in. is deemed unacceptable. Yielding of the HP 10 × 57 pile is also considered 

undesirable; therefore, the visible cracking and yield limits are compared between the HP 10 × 

57 pile and UHPC pile throughout this section to compare the performance of each pile section. 

Potential cracking along the length of the UHPC pile was determined by finding the moment 

corresponding to the defined tensile strain limits for a given axial load. Using the moment-

curvature calculations given in Section 3.1, Table 3-3 lists the moments used to determine the 

onset of cracking for UHPC piles. 

Table 3-3. Assumed flexural cracking moments of UHPC piles in weak-axis bending 

Axial 

load 

Moments corresponding to strain limits 

given in Figure 3-12, kip-in. 

Micro-

cracking 

Visible 

cracking 

Crack width 

> 0.012 in. 

100 536 948 1,144 

200 660 1,084 1,246 

 

Similarly, Table 3-4 gives the moments where yielding begins in the flanges of steel HP 10 × 57 

piles.  

Table 3-4. Estimated yielding moments of HP 10 × 57 piles in weak-axis bending 

Pile type 

Axial 

load 

Yielding 

moment, 

kip-in. 

HP 10 × 57 
100 840 

200 711 

 

Notice that as the axial load is increased from 100 kips to 200 kips, the moments at each of the 

limits for UHPC increases, while for the steel pile the yielding moment decreases as the axial 

load increases, giving an advantage to the UHPC pile. 
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Figure 3-13 through Figure 3-16 illustrate the location and extent of flexural cracking along the 

length of a UHPC pile as well as the location of yielding for steel HP 10 × 57 piles under various 

conditions.  

Soil type Soft clay Very stiff clay 

Pile type UHPC HP 10 × 57 UHPC HP 10 × 57 

Axial load, kips 100 200 100 200 100 200 100 200 

       

Figure 3-13. Cracking or yielding along the length of piles subjected to 1.00 in. of lateral 

displacement without a prebored hole 

Soil type Soft clay Very stiff clay 

Pile type UHPC HP 10 × 57 UHPC HP 10 × 57 

Axial load, kips 100 200 100 200 100 200 100 200 

      

Figure 3-14. Cracking or yielding along the length of piles subjected to 1.55 in. of lateral 

displacement without a prebored hole 
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Soil type Soft clay Very stiff clay 

Pile type UHPC HP 10 × 57 UHPC HP 10 × 57 

Axial load, kips 100 200 100 200 100 200 100 200 

    

Figure 3-15. Cracking or yielding along the length of piles subjected to 1.00 in. of lateral 

displacement with a 10 ft deep prebored hole 

Soil type Soft clay Very stiff clay 

Pile type UHPC HP 10 × 57 UHPC HP 10 × 57 

Axial load, kips 100 200 100 200 100 200 100 200 

      

Figure 3-16. Cracking or yielding along the length of piles subjected to 1.55 in. of lateral 

displacement with a 10 ft deep prebored hole 
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The boundary conditions are supposed to reflect typical Iowa DOT integral abutment design. As 

a result, the parameters assumed here include a fixed-pile head condition and weak-axis bending. 

Figure 3-13 depicts the type and location of damage that would occur if an integral abutment 

moved 1.0 in. in the longitudinal direction without having a prebored hole around each of the 

piles. Yielding is present for the top 6 in. of the HP 10 × 57 pile for the 200 kip axial load in the 

soft clay, but no undesirable cracking occurs for the UHPC pile under the same condition. Both 

visible cracking and cracks with a width greater than 0.012 in. are present for the UHPC pile, and 

yield is present in the HP 10 × 57 pile at two different depths. 

If the lateral displacement is increased to 1.55 in. in very stiff clay, the UHPC piles are predicted 

to have unacceptable crack widths larger than 0.0012 in. It is important to note that vertical 

rotations of the abutment were not taken into account during this analysis, which would reduce 

the magnitude of flexural moments on the pile head. Additionally, two locations for yielding in 

the HP 10 × 57 pile were present for this load case, resulting in a total of 4 ft of the pile being 

susceptible to yielding within the flanges. The results of 1.55 in. of lateral displacement without 

a prebored hole are displayed in Figure 3-14. 

A more representative model of an integral abutment pile is to take into account the effects of 

prebored holes. Typically, the Iowa DOT fills the prebored hole with bentonite or polymer slurry 

and assumes no lateral resistance from such material. Figure 3-15 displays the reduced amount of 

cracking and no yielding that is predicted to occur in piles that were installed with a prebored 

hole at 1.0 in. of lateral displacement. No undesirable cracking or yielding is predicted to occur 

for either soft clays or very stiff clays. 

When piles were subjected to 1.55 in. of lateral displacement with a prebored hole condition, a 

small amount of visible cracking was found in the UHPC pile as well as yielding in the steel HP 

10 × 57 pile as shown in Figure 3-16. When comparing Figure 3-14 to Figure 3-16, it is apparent 

that the cracking of UHPC piles and yielding of steel piles are noticeably reduced when a 10 ft 

prebored hole is present.  

The point of fixity was also determined for each lateral load case, which was then compared 

between the UHPC and HP 10 × 57 piles. The point of fixity is the depth at which the pile 

behaves fixed. This location was determined by identifying the depth at which the piles’ lateral 

displacement was less than 0.01 in.  

3.2.4. Results 

The pile type, soil type, pile head boundary condition, axial load, pile orientation, and presence 

of a prebored hole were modeled during the parametric study. The findings from changing these 

parameters are described in this section. 
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When comparing the differences in performance between the UHPC pile and the HP 10 × 57 pile 

while keeping all of the parameters the same, the maximum moments and maximum shear forces 

induced in both piles are almost identical as shown in Figure 3-17.  

 

Figure 3-17. Performance difference between a UHPC pile and an HP 10 × 57 pile 

The steel pile has a slightly higher maximum moment and maximum shear as shown in Figure 

3-17, which is caused by the slight difference in flexural rigidity (EI). The HP 10 × 57 pile has a 

slightly lower EI value than the UHPC pile by 1.0%. 

As the soil becomes softer, the location of the second maximum moment for fixed-pile head 

conditions is deeper than for stiffer or denser soils. Figure 3-18 illustrates the effect the soil has 

on the pile’s bending moments. 
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Figure 3-18. Effect of soil type on UHPC pile behavior 

When varying the pile head boundary condition of UHPC and steel HP 10 × 57 piles from fixed 

to pinned condition, the results were very different as can be expected, and are illustrated in 

Figure 3-19.  

 

Figure 3-19. Effect of fixed- and pinned-pile head boundary conditions on moment profile 

for UHPC piles 
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maximum bending moments and shear forces being greater for the fixed-pile head condition as 

compared to the pinned-pile head condition, (2) the location of the second peak moment being 

much deeper for the pinned-pile head condition than that of the fixed pile, and (3) the point of 

fixity for the pile with a fixed head connection being deeper than for the pinned connection. 

Furthermore, it was found that as the axial load was increased, the maximum bending moment 

and maximum shear forces decrease for the steel HP 10 × 57 piles and the UHPC piles subjected 
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to weak-axis bending but increased for the UHPC pile subjected to strong-axis bending. For 

strong-axis, HP 10 × 57 piles, the maximum moment increased from 0 kips to 100 kips but 

decreased for 200 and 300 kips. Also, the locations of the second maximum moment remains 

relatively constant, but the magnitude increases as the axial load increases for the weak-axis 

bending case as shown in Figure 3-20.  

 

Figure 3-20. Comparison of bending moment when varying the axial load for UHPC piles 

The point of fixity stays relatively constant as the axial load increases for all the UHPC and HP 

10 × 57 piles in all soil types. 

As the orientation of the pile was changed from strong-axis to weak-axis, three main differences 

in performance were evident due to the change in stiffness and are depicted in Figure 3-21.  
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Figure 3-21. Effects of strong-axis vs. weak-axis bending for a UHPC pile 

These differences include: (1) the maximum bending moment and maximum shear force were 

lower for weak-axis bending, (2) the magnitude and location of the second maximum moment is 

smaller and closer to the pile head for weak-axis bending, and (3) the depth of fixity is closer to 

the pile head for weak-axis bending. 

The presence of a 10 ft prebored hole around the pile decreased the bending moment shear forces 

that were imposed on the pile. The depth to the second maximum moment and the depth of fixity 

are deeper than a pile without a prebored hole but not as far as would be expected, which is 

illustrated in Figure 3-22.  
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Figure 3-22. Effects of a prebored hole on the imposed performance of a UHPC pile 

Also, the maximum shear is not at the pile head for all of the cases where prebored holes were 

modeled, except for piles in soft clay with a 100 kip axial load. The prebored hole reduced the 

flexural moment the UHPC pile would be subjected to within the acceptable limits when 

installed in integral abutments. 
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A complete set of the tables from the study can be found in Appendix B, which includes tables of 

the maximum moments and maximum shear. The depth to the second maximum moments and 

the depth to the point of fixity are also included. 

3.3. Experimental Plan 

The instrumentation, testing plan, and load increments for the field testing and long-term 

monitoring were based on the results from Phase I of the UHPC project and the parametric 

analysis conducted in this study.  

Phase I of the project identified a need to improve the location and attachment of the pile driving 

analyzer (PDA) equipment to produce better results. Also, a smaller cable was used for the 

instrumentation in order to avoid making a weak zone within the UHPC pile cross-section, and 

rodding the web of the pile was performed during pouring of UHPC to avoid pocketing within 

the web of the pile. 

The parametric study supports the use of UHPC piles in integral abutments as long as prebored 

holes are specified. Additionally, the study indicates regions for potential damage and what 

depth to find it on the pile. A preliminary estimate of the location of instrumentation can be made 

for the test piles based on the location of the maximum moments. 

3.3.1. Field Testing 

Two tests were completed in the field. The first field test was a vertical load test, which was 

completed to verify the performance of the UHPC pile and the specified design length of the 

UHPC production pile since it was 9 ft shorter than the HP 10 × 57 piles used for the bridge. The 

second test performed was designed with the intention of verifying the performance of the splice 

detail during driving and lateral loading. 

3.3.2. Long-Term Monitoring 

The long-term monitoring was designed with the intention of verifying the performance of the 

UHPC pile subjected to cyclic movement due to the abutments movement caused by thermal 

effects of an integral abutment. Once completed, the performance will be compared to the steel 

HP 10 × 57 piles used for the bridge. 
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CHAPTER 4:  SPLICE DESIGN AND TESTING 

Splicing of piles is commonly done in practice due to the limitations in handling and 

transportation of the long piles and the associated costs. Also, splicing of piles is done when the 

pile lengths required are too long for driving in one piece with the available equipment. Splicing 

also alleviates the need to calculate exact lengths prior to installation, which reduces the wastage 

of piles that are too long. However, the splice must be capable of resisting stresses induced by 

driving and service loads. Splices should be effective without significantly extending the 

duration of construction, be as durable as the piles, and be inexpensive. 

There are several splicing details available in literature for precast concrete piles, especially for 

square, hexagonal, and circular piles. The splices generally can be categorized into different 

types based on the splicing procedures and load transfer mechanisms. A schematic description of 

splice types is shown in Figure 4-1. 

 
PileBuck 2013, © 2019 Pile Buck International, Inc. 

Figure 4-1. Types of pile splices  
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1. Welded splice: This type of splice consists of steel plates with attached reinforcing steel bar 

cast into the pile ends, which are field welded together. This method is used in the US for 

steel piles. However, this type of splicing for concrete piles requires field labor and handling 

equipment while the weld is performed.  

2. Dowel type splice: In this type, holes are cast or field drilled into the top of the bottom pile 

section. The top pile segment with rebar dowels protruding 3 ft to 6 ft from the end is guided 

into place and the holes are grouted with quick-set, high-strength grout or epoxy. Although 

material cost is low, this method is infrequently used in the US as it requires that the pile top 

segment be supported in place until the epoxy or grout attains necessary strength. However, 

this type of splicing can be useful for extending a driven pile to a required cut-off elevation 

with a short precast section. 

3. Mechanical splice: Steel plates or castings with attached rebar anchors are precast into the 

pile ends. Steel bars or “wedges” are inserted into the mating surfaces when the top pile 

segment is aligned on the driven section. This method is fast and has been widely used in the 

US for prestressed piles since the 1970s. Proprietary systems that utilize high-strength steel 

bars to lock machined plates together are predominant. The Sure-Lock mechanical splice is 

an example and is made for all sizes of prestressed concrete piling (including some 

cylindrical piles). This splice can equal the pile in bending and tension capacities. This splice 

is shown in Figure 4-1. 

4. Sleeve splice: A “can” of steel 2–3 m long with a stop in the middle is used for this splice. It 

slides over the driven section, and the top pile section is then lowered into it before driving 

resumes. The splice is relatively economical and easy to use but has very little bending and 

no tensile capacity. 

5. Wedge splice: This method is generally used with precast piles. An example of this is the 

Westpile, which utilizes a wedge driven on plates attached to the pile ends. This puts the 

connection at the corners to develop resistance at the extreme fibers. This is shown in Figure 

4-1. 

6. Pinned splice: These use a pinned connection to secure the splice. These are generally not 

used in North America. 

4.1. Design of UHPC Splice 

In the design of the splice, several factors were considered. The splice’s performance was 

designed for tension, compression, bending, and shear. The load path for each loading was 

considered and then designed in order to provide adequate capacity during installation and in 

service. 

Tensile stresses are expected in the piles during the driving process due to the reflection of the 

impact wave introduced by a pile driving hammer. The tensile forces developed in the pile are 

first transferred to the shear studs and corner steel angles through bond and shear transfer 

mechanisms, and then to the welds between the splices. At the splice location, all the tension 

force is taken by the welds between the splice plates. In order to design the splice for the tension 

capacity, the forces expected during the driving process should be determined. These forces will 

depend on the soil properties and hammer type used for pile driving. Tensile stresses are highest 

when resistance to driving is low and tensile waves are reflected back up the pile. These forces 



 

70 

can be estimated using the WEAP analysis. However, in this project, the pile splice was designed 

to have a minimum of 50% of the UHPC pile capacity in tension. This value was chosen based 

on the experience of the research team with the level of tensile stresses observed in piles during 

driving in Iowa soils in previous research projects. For the bridges designed to Iowa DOT 

standards, the piles are not expected to see any tension in service. So, the chosen value for the 

splice capacity in tension is conservative. The cross-section of corner steel angles, weld lengths, 

and thickness were calculated to meet this strength requirement for the splice and details are 

shown in Figure 4-2. 

 

Figure 4-2. Schematic and fabricated UHPC splice embedment details 

The moment and shear capacity of the spliced pile section was designed to reach the full moment 

and shear capacity of the unspliced UHPC H-pile section. The moment capacity of the UHPC H-

pile with zero axial load in weak- and strong-axis directions were determined to be 1,200 kip-in. 

and 1,700 kip-in., respectively. With a 200 kip axial load, the moment capacity of UHPC H-pile 

in weak- and strong-axis direction increased to 1,300 kip-in. and 2,300 kip-in. respectively. 

Accordingly, the required weld thicknesses and the lengths were determined. The compressive 

forces between the spliced pile sections were designed to be transferred via full bearing of end 

steel plates of the splice. 

There are several splicing details available in literature for precast concrete piles. However, with 

the optimized H-shape of the UHPC pile, there were no suitable splice connection details 

available for field splicing of the UHPC piles. Based on the literature on available splices, dry 

connections comprising of welding, bolting, or quick-set grout are typically preferred to extend 

the piles in the field during driving. Dry connection details for splicing help in reducing 

construction delays. It is common practice to use welding when steel piles are spliced as this is 

considered an efficient technique in the field. Consequently, a welded detail was preferred for the 

splice of the UHPC piles. Figure 4-2 shows the steel embedment used at the ends of UHPC piles, 

which facilitates welding between two H-shaped steel plates to establish the connection. The 



 

71 

steel embedment consisted of a ½ in. thick, H-shaped A50 steel plate with four ¼ in. thick corner 

steel angles with shear studs. The corner angles were welded to the H-shaped steel end plates 

with 3/16 in. thick weld along the entire length of the corner angles. Standard 3 in. long, 3/8 in. 

diameter shear studs and 1.625 in. long, ½ in. shear studs at 5 in. spacing were used along the 

long and short sides of the corner angles, respectively. The steel embedment was 24 in. long and 

the details are shown in Figure 4-2a. Edges of the H-shaped end plate were beveled for 

accommodating a 5/16 in. full penetration weld along the entire perimeter of the end plate to 

splice the UHPC piles together. Two 10 in. long, Grade 60, #3 rebar pieces were welded to the 

end plate at 3.25 in. along the web center line to help distribute the tension forces across the 

depth of the pile.  

4.2. Design of Test Units and Precast Fabrication 

Four full-scale, 4 ft long UHPC test units with the above mentioned splice embedment details 

were designed and fabricated to experimentally evaluate the performance of the splice 

connection under tension, shear, and flexural loading. The required number of splice 

embedments were fabricated by the precast producer. Welding of the corner plates and the shear 

studs were performed by a certified welding technician at the precast plant. Once the 

embedments were fabricated, steel strain gages were placed on few long and short shear studs 

and rebar embedment. One end of the splice specimens was designed to transition into a full 10 

in. by 10 in. square cross-section to accommodate four ¾ in. diameter high-strength threaded 

rods placed in a square pattern. The high-strength threaded rods were inserted in the formwork 

while specimen casting, and these rods were embedded in UHPC for 9 in. in length.  

4.2.1. Casting Process 

When casting the test units, wooden side forms were used for the UHPC test units and were 

installed by the precast producer at the precast plant. The splice embedment was placed inside 

the wooden formwork, and prestressing strands were taken through the holes in the splice 

embedment end plate. The bottom four prestressing strands were first arranged in their proper 

configuration and stressed to their initial prestress of 202.5 ksi, which is approximately 75% of 

their ultimate strength. After the bottom row of prestressing strands was stressed, Styrofoam 

inserts to create the H-shape were secured to the wood forms with double-sided tape and 

caulking. After the Styrofoam was in place, the final six prestressing strands were arranged and 

stressed to an initial prestress of 202.5 ksi. The mixing of the UHPC was done using a 4.0 yd3 

mixer at the precast producer. After completing the batching of the UHPC mix, the UHPC was 

poured into a bin and transported to the bed by the overhead crane, where it was poured into the 

forms for all of the UHPC laboratory test units while making sure to rod the web to prevent air 

pockets. Immediately after the UHPC was poured in the forms, the top surface of the test units 

was covered with plastic wrap to minimize any moisture loss. A tarp was placed over the UHPC 

test units and propane heaters were used for the initial curing at 86°F. Along with the test units, 3 

in. diameter UHPC cylinders were cast with the pour. The precaster tested cylinders periodically 

during the initial curing of UHPC to determine the compressive strength of the mix. After 

reaching a compressive strength of 14 ksi, the prestressing strands were cut at the member ends, 

and the piles were transferred to begin the steam curing. 
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4.2.2. UHPC Material Properties 

The compressive strength of the UHPC was estimated using 3 in. diameter cylinders, which were 

cast and cured with the UHPC test piles. A total of seven cylinders were tested in compression at 

the ISU Structural Engineering Research Laboratory using a universal compression machine. 

The measured strength of the cylinders is given in Table 4-1.  

Table 4-1. Measured compressive strength of UHPC used in test units 

Cylinder 

number f’c, ksi 

1 21.4 

2 19.8 

3 19.1 

4 19.4 

5 22.7 

6 22.8 

7 19.1 

Average 20.6 

 

The design strength of the UHPC mix was 26 ksi, and the results show an average strength of 

only 20.6 ksi was achieved for the UHPC material. Based on the failure mode, it was suspected 

the measured strength was not achieved due to the end surface of the test cylinders not being 

perfectly horizontal. 

4.3. Experimental Testing 

Full-scale laboratory tests have been completed to verify the expected behavior and to ensure 

adequate capacity of the UHPC splice connections. The laboratory investigation included the 

testing of the splice region under direct tension as well as critical shear and flexural stresses. A 

total of six different tests including, weak- and strong-axis bending tests, three shear load tests, 

and a direct tension test were performed. The details of the load tests conducted are summarized 

in Table 4-2.  

Table 4-2. Details of tests for splice characterization 

S.NO Test type # of tests conducted Purpose 

1 Direct tension 1 Evaluate the tension capacity 

2 Shear 3 Estimate the shear force capacity 

3 Flexure 
2 

(weak- and strong-axis) 
Estimate the flexural capacity 
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Two test units were used for these tests. In each case, two 4 ft long UHPC pile segments with 

steel splice embedment (see Figure 4-2) were cast and spliced together at the ends using a 5/16 

in. weld all around the interface at the splice.  

4.3.1. Tension Test 

Test Setup and Instrumentation 

In order to simulate the stresses encountered by the splice region during driving in the field, a 

self-reacting test frame with stiff steel end sections was constructed in the ISU structural 

laboratory. The self-reacting test frame was supported on rollers, and neoprene pads were 

provided underneath the rollers to minimize friction forces. The schematic of the self-reacting 

frame is shown in Figure 4-3a.  
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Figure 4-3. Details of the self-reacting test frame and direction tension setup 

An 8 ft long UHPC splice pile specimen was produced by welding two 4 ft long UHPC 

specimens with a splice embedment. The welding was performed by a certified welder. The test 

specimen was then subjected to direct tension force using the test setup shown in Figure 4-3b.  

The UHPC splice pile was attached to the steel end beams of the reacting frame using the 0.75 

in. diameter high-strength threaded rod embedded in the UHPC pile at the unspliced end. Two 

110 kip hydraulic jacks were used to apply the load onto the steel H-sections on the rollers, 

which in turn applied the direct tension force on the UHPC pile. The total load applied in each 

jack was monitored using the load cells mounted on each of the two steel beams of the reaction 

frame. A large number of instruments, including displacement gages and strain gages, were used 

to measure the response of the spliced UHPC pile. A total of 10 linear variable differential 
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transducers (LVDTs) and two string potentiometers were placed along the length of the spliced 

pile, across the weld splice joint to measure any gap opening between the steel splice details and 

UHPC. The external instrumentation details are shown in Figure 4-4.  

 

Figure 4-4. Details of the external instrumentation on the UHPC spliced specimen 

The corner steel angles of the splice were also instrumented with external steel strain gages (SG 

1 to SG 7 in Figure 4-4) to measure the strain demand in the steel angles during loading. The 

exact locations of these gages are presented in Table 4-3.  

Table 4-3. Location of external strain gages on the corner steel angles 

Gage 

name 

Distance 

from splice, 

in. 

Distance 

from top, 

in. 

Gage 

name 

Distance 

from splice, 

in. 

Distance 

from top, 

in. 

SG -1 18.5 1.75 SG-5 12.5 8.25 

SG- 2 12.5 1.75 SG-6 12.25 2.375 

SG-3 12.5 8.125 SG-7 12.25 8.375 

SG-4 12.5 2    

 

Also, the shear studs and the rebar in the splice embedment were instrumented with strain gages 

to measure the critical stresses under direct tension loading. The details of the strain gages on the 

shear studs are provided in Figure 4-5. 
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Figure 4-5. Locations of the strain gages on the shear studs and rebar of the UHPC splice 

Testing Sequence and Observations 

The UHPC spliced pile was subjected to direct tension load at 10 kips increments using the 

hydraulic jacks. Both hydraulic jacks were controlled using a single pump to have equal 

displacements in the hydraulic jacks and thus apply pure tension force on the specimen. During 

the test, the data from all gages and displacement devices were recorded using a computer-based 

data acquisition system at a 1 Hz frequency. At a total load of 45 kips, oil leakage from one of 

the hoses connected to loading jacks was observed. The hydraulic jacks were then unloaded to 

zero force, and the leaking hose was replaced. All the instrumentation was reinitialized before 

the loading was reapplied. During loading, at a total load of 103 kips, noises were heard and fine 

hairline cracks appeared at nearly 6 in. from the right end of the specimen (Figure 4-6b), where 

the cross-section transitioned to a 10 in. square section.  
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Figure 4-6. Crack formation in the spliced specimen end region at 100 kips of load 

Upon continued application of this loading magnitude, the crack widened significantly with the 

crack width reaching up to 0.5 in. (Figure 4-6c). The loading was stopped, and the load jacks 

were unloaded to zero force. Following the unloading, a closer inspection revealed the absence 

of steel fibers at the crack location (Figure 4-6d). The applied maximum load of 103 kips created 

1.03 ksi of tensile stress at the crack section location, which is close to the expected cracking 

strength of UHPC matrix without any fibers reported in literature. 

The maximum applied tension load of 103 kips corresponded to 27.4% of the unspliced pile 

tension capacity. In order to subject the pile splice to tension loads up to 50% of the pile 

capacity, a retrofit to load application using stiff steel angles was designed and implemented. The 

retrofit included welding four steel angles to 1 in. thick angles, which were welded to the end 

beams of the test setup (Figure 4-7a).  
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Figure 4-7. Schematic of the retrofit to setup for load application and retrofitted test setup 

The four steel angles were overlapped and welded to the corner angles of the splice embedment 

over a length of 6 in. This retrofit transferred the load directly from the load jacks to the splice 

region. 

Following the retrofit, all the displacement measuring devices (LVDT and string potentiometers) 

were reinstalled and reinitialized. The external strain gages on the corner angles of the 

embedment were damaged during the welding of retrofit angles due to excessive heat. New 

gages were not installed as the surfaces were not easily accessible for gage installation. The 

splice specimen was subjected to tension loading with increments of 10 kips. All the data from 

the instruments were recorded at 1 Hz frequency. From here onward, testing before and after the 

retrofit are referred as Phase I and Phase II testing, respectively, for the purpose of presenting the 

results. The pile specimen was subjected to a load of 226 kips, equivalent to 60% of the pile 
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tension capacity. The test was stopped as the maximum capacity of the hydraulic jacks was 

reached. There was no observed visible cracking in either the pile or the splice region at the 

maximum load. 

Results 

The measured gap/crack opening between the splice end plate and UHPC as a function of load is 

shown in Figure 4-8.  

 

Figure 4-8. Measured gap width between splice end plate and UHPC at the splice location 

The measured gap opening in the web region at 187.5 kips of load corresponding to 50% of pile 

tension capacity was around 0.012 in., whereas the measured gap opening on the flange side was 

less than 0.005 in. These crack widths are much smaller than crack widths allowed in bridge 

elements. This observation supports that the splice detail performed sufficiently and will not 

cause any durability issues. The total elongation of the pile in the splice region over a 4 ft length 

during both phases of testing is shown Figure 4-9.  
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Figure 4-9. Elongation of UHPC over the splice region 

The stiffness of the splice region is nearly the same in both phases, indicating that the retrofit 

applied the tension forces as expected in the field.  

The measured strains in the long and short shear studs along the corner angles with respect to 

applied loading is shown in Figure 4-10.  
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Figure 4-10. Measured strains in shear studs along the corner angles in splice detail 

The measured maximum strain in shear studs at the peak load of 226 kips was 330 microstrains, 

corresponding to 15% of the yield strain of the shear studs. This indicates that the number of 

shear studs or diameter of the shear studs provided are more than required and could be reduced 

in future splice details. Reducing the number of shear studs can decrease the length of the splice 

embedment by 24 in. and could minimize the total cost of the splice detail. 

The measured strain in the #3 rebar welded to the splice end plate is shown in Figure 4-11.  
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Figure 4-11. Measured strains in the #3 rebar in the splice detail 

The maximum strain measured in the rebar was 290 microstrains, 14% of the rebar yield strain. 

This indicates that the bar size could be reduced. However, it is not recommended to reduce the 

bar size or eliminate the bar as it helps to contain the gap opening between the end plate and 

UHPC in the web region (see Figure 4-8). Further, the research team believes that the gap 

opening could be reduced by using a higher diameter rebar rather than the #3 bar.  

4.3.2. Shear and Flexure Test 

Shear Test Load Frame and Test Setup 

The shear capacity of the splice connection was evaluated with a spliced UHPC pile subjected to 

a point load about strong axis in a simply supported configuration as shown in Figure 4-12a.  

 

Figure 4-12. Test setup for splice shear testing 
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The 8 ft long spliced pile was simply supported over a 3 ft span and was subjected to a three-

point bending using a 120 kip hydraulic jack. The load point was located at a distance of 8 in. 

from the splice location, subjecting the splice to a combined shear force and moment. In order to 

capture the effect of different moment to shear ratio (s) on splice performance, shear tests were 

done in three different configurations, obtained by varying the distance between the supports and 

the load point. These different configurations simulated the expected moment and shear demands 

at the various locations along the pile length in the prototype bridge. The specimen span length 

and load location points for each of the three load configurations are given in Table 4-4. 

Table 4-4. Details of load configurations 

Load 

configuration Span, in. 

Location of the 

splice from the 

right support, in. 

Load location 

from the right 

support, in. 

Configuration 1 36 10 18 

Configuration 2 30 4 12 

Configuration 3 36 15 23 

 

Several different types of instruments were used for this study, including LVDTs and string 

potentiometers to capture deflections and curvature at the splice and load locations. A total of six 

string potentiometers were used to measure vertical displacements along the span of the spliced 

specimens. Two string potentiometers were located at the load application location and one at the 

splice location. The locations and identifications used for these string potentiometers are shown 

in Figure 4-12b. Three LVDTs at each of the load application points and the splice location 

along the height of the section were used to measure the average strains and their distribution. 

During testing, data from all the instrumentation was captured at 1 Hz frequency. 

4.3.3. Testing Sequence and Observations 

The loading was applied in 5 kip increments until hairline shear cracking was observed in the 

pile web region. The maximum load applied in all the load configurations was 110 kips. The 

observed shear force versus displacement under point load for different load configurations is 

shown in Figure 4-13a.  
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Figure 4-13. Observed shear force vs. displacement behavior and shear cracking 

During all the load configurations tests, hairline shear cracks were observed in the web region at 

a shear force of 48 kips. However, the cracks closed completely upon load removal. The splice 

region was subjected to a maximum shear of 66 kips in load configuration 2, which is nearly 

200% more than the typical shear force in the UHPC pile in the prototype bridge. This value is 

also 37% more than the shear corresponding to web shear cracking capacity. 

4.3.4. Flexural Tests Load Frame and Test Setup 

The flexural capacity of the splice connection in both weak- and strong-axis directions were 

evaluated using a simply supported configuration as shown in Figure 4-14.  
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Figure 4-14. Schematic of the test setup for bending test of splice UHPC pile 

The 8 ft long spliced pile was simply supported over a 6 ft span and was subjected to a four-point 

bending using a 120 kip hydraulic jack. The load points were located 2 in. on either side of the 

splice, subjecting the splice region to pure moment. The loading was applied in 5 kip increments 

until the specimens experienced failure. 

Several different types of instruments were used for this study, including LVDTs and string 

potentiometers to capture deflections and curvature at the splice locations. A total of five string 

potentiometers were used to measure vertical displacements along the span of the spliced 

specimens. The string potentiometers were located at the quarter points (i.e., 17 in. from the 

supports), at the load points (i.e., at 2 in. from center), and at the center (i.e., splice location). The 

locations and identifications used for these string potentiometers are shown in Figure 4-14 and 

Figure 4-15.  
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Figure 4-15. Test setup used for splice bending test in the ISU structural laboratory 

Four LVDTs were used at the center of the specimen along the height of the section to measure 

the average strains and their distribution in the constant bending region. During testing, data 

from all the instrumentation were captured at 1 Hz frequency. 

Weak-Axis Bending Test Observations and Results 

The spliced UHPC pile specimen tested under direct tension loading was used to evaluate the 

performance of the splice in weak-axis bending direction. Reusing the test specimen for this 

bending test was deemed acceptable as the splice region didn’t experience any noticeable 

damage during the previous tension tests. The end crack observed in the tension pile had no 

effect on the overall response of the specimen since, as the crack falls outside the support 

locations. 

The measured force-displacement and moment-curvature responses of the splice region in the 

weak direction are shown in Figure 4-16a, and Figure 4-16b, respectively.  
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Figure 4-16. Observed force-displacement and moment-curvature response of splice region 

in weak-axis direction 

The curvature at the splice location was calculated using the LVDTs along the height of the 

splice region. The splice region experienced failure at a maximum load of 52 kips with the 

fracture of the weld between the corner angles and the ½ in. end plate (Figure 4-17).  

 

Figure 4-17. Failure of test specimen in weak-axis bending and close-up of the failed welds 

This load corresponds to a bending moment value of 918 kip-in. on the splice region. This value, 

when compared to the bending capacity of the unspliced pile section, represents 76.5% and 

70.6% of the capacities at zero kip and 200 kips axial load. On further inspection of the failure 
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surface, it was observed that the shop welding at the precast plant did not adhere to the 

requirements and resulted in the shorter weld length between the corner angles and the plate, 

leading to the failure of the splice (See close up in Figure 4-17). However, it is worth noting that 

the weld between the two pile pieces did not experience any damage, indicating that the 

connection will have sufficient strength. Based on the observed damage mode, a full penetration 

weld between edge angles and the end plate is recommended for future splice details. 

Strong-Axis Bending Test Observations and Results 

The spliced UHPC pile specimen tested under shear loading was used to evaluate the 

performance of the splice in strong-axis bending direction. Reusing the test specimen for this 

bending test was deemed acceptable as the splice region didn’t experience any noticeable 

damage during the shear loading tests. 

The measured force-displacement and moment-curvature responses of the splice region in the 

weak direction are shown in Figure 4-18a and Figure 4-18b, respectively.  

 

Figure 4-18. Observed force-displacement and moment-curvature response of splice region 

in strong-axis direction 

The curvature at the splice location was calculated using the LVDTs along the height of the 

splice region. Similar to the weak-axis bending specimen, the splice region experienced failure at 

a maximum load of 78 kips with the fracture of the weld between the corner angles and the ½ in. 

end plate (Figure 4-17). This load corresponds to a bending moment value of 1,326 kip-in. on the 

splice region. This value, when compared to the bending capacity of the unspliced pile section, 

represents 78% and 57.6% of the capacities at zero kip and 200 kips axial load, respectively. On 

further inspection of the failure surface, weld length between the corner angles was found to be 
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shorter than the required minimum similar to the weak-axis bending specimen. It is worth noting 

that the weld between the two pile pieces did not experience any damage, indicating that the 

connection will have sufficient strength. Based on the observed damage mode, a full penetration 

weld between edge angles and the end plate is recommended for future splice details. 
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CHAPTER 5:  PILE-TO-ABUTMENT CONNECTION TESTING 

The lateral load behavior of a typical pile-to-abutment connection was tested in the laboratory to 

verify the performance of the abutment, pile, and connection. The laboratory tests were designed 

and completed by using an inverted test setup in comparison to actual field conditions for ease of 

construction and testing. A total of four laboratory tests, including a reference steel HP 10 × 57 

pile testing in weak-axis bending and three UHPC piles testing in weak-, strong-, and 30º skew-

direction bending were performed. Full-scale cross-sections for the UHPC and HP 10 × 57 test 

units and a full-scale section of an abutment were used for these tests. This chapter describes the 

design, casting, testing, and results of all the test specimens: SPAC-1, UPAC-1, UPAC-2, and 

UPAC-3. 

5.1. Design of Test Units 

Three full-scale, 8 ft long UHPC test units and one 8 ft long steel HP 10 × 57 test unit were 

designed to test the piles and their connection to abutments using the typical Iowa DOT pile-to-

abutment connection detail. The UHPC test units were given the names L7, L8, and L9. The HP 

10 × 57 pile was identified as S1, which provided a comparison for the UHPC piles. The HP 10 

× 57 pile is a common bridge foundation choice used by the Iowa DOT. 

Test units L8 and L9 were cast for future laboratory testing that focused on the performance of 

precast pile-to-abutment connections when the pile is subjected to strong-axis bending and to a 

pile subjected to loading at a 30º skew. The focus of this chapter, however, is on S1 and L7, with 

each having a cast-in-place abutment cap. Both of these test units were subjected to weak-axis 

bending for the duration of the test because typical integral abutment piles are oriented to 

experience weak-axis bending in order to increase lateral flexibility of the bridge foundation.  

Typical Iowa DOT abutment details were used as the basis for building the test specimen. Figure 

5-1 shows the typical plan view of the abutment details while Figure 5-2 shows a cross-section 

view of the abutment and the reinforcement details.  

 
Iowa DOT 2011 

Figure 5-1. Plan view of a typical integral abutment  
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Iowa DOT 2011 

Figure 5-2. Elevation view of a typical integral abutment detail 

The portion of the section modeled in the laboratory is the blue dotted line box found in Figure 

5-2, and it was rotated 180º for ease of construction and testing, which is shown in Figure 5-3. 
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Figure 5-3. Outer dimensions of the abutment block for SPAC-1 and UPAC-2  

Note in Figure 5-3 that all dimensions are in inches. 

The 8 ft length of the test unit was chosen to meet the expectations of the test based on the 

LPILE analysis in Section 5.3. The test unit was embedded into the abutment cap at 24 in. as is 

commonly used for abutment design. Additionally, 18 in. was needed at the end of the pile to 

ensure that the prestressing strands were fully developed at the location where the lateral load 

was applied, thus leaving a maximum lever arm of 54 in. The cross-section of the test unit was 

uniform except along the top 18 in. There was a solid block for the first 9 in., which was tapered 

into an H-shape over the remaining 9 in. as shown in Figure 5-4. 

Steel/UHPC 

pile in weak-

axis bending

Abutment Cap 
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Figure 5-4. Change in cross-section of the top 18 in. on the UHPC test unit  

Note in Figure 5-4 that all dimensions are in inches. 

5.2. Fabrication of UHPC Pile 

5.2.1. Embedded Instrumentation and Formwork Setup 

The UHPC laboratory test pile units were instrumented with strain gages on February 8, 2011 at 

Coreslab Structures, Inc. in Bellevue, Nebraska. The instrumentation scheme for the steel and 

UHPC test units under weak-axis bending were kept identical and determined from the LPILE 

analysis results described in Sections 3.2 and 5.3, and the test setup, which is described in 

Section 5.5. The UHPC pile tests with precast abutment have slightly different instrumentation 

compared to the weak-axis bending tests. All the UHPC piles were cast with ¼ in. embedded 

threaded couplers to attach various instruments during testing, as shown in Figure 5-5.  

 

Figure 5-5. Threaded ¼ in. coupler inserts in the UHPC pile formwork to attach 

instrumentation 

Top View

Side View
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Each test specimen had three rotation meter inserts (ID-1 through 3) and 20 LVDT (ID-4 through 

23), which were used to attach instrumentation during the performance evaluation of the test 

units. A total of 12 strain gages (ID-24 through 35) were also used for instrumentation. Table 5-1 

lists all of the instrumentation used and the labels for each.  

Table 5-1. Instrumentation of UHPC laboratory test pile 

ID Label ID Label ID Label ID Label 

1 RM01 10 LV07 19 LV16 28 SGP05 

2 RM02 11 LV08 20 LV17 29 SGP06 

3 RM03 12 LV09 21 LV18 30 SGP07 

4 LV01 13 LV10 22 LV19 31 SGP08 

5 LV02 14 LV11 23 LV20 32 SGP09 

6 LV03 15 LV12 24 SGP01 33 SGP10 

7 LV04 16 LV13 25 SGP02 34 SGP11 

8 LV05 17 LV14 26 SGP03 35 SGP12 

9 LV06 18 LV15 27 SGP04   

RM – insert for rotation meter. LV – insert for LVDT. SGP – strain gage on prestressing strand 

The exact locations of the instrumentation attached to the prestressing strands and the inserts in 

concrete forms are shown in Figure 5-6.  
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Figure 5-6. Instrumentation plan used for UHPC laboratory test units 

5.2.2. Casting Process 

When casting the test units, wooden side forms were used for the UHPC test units and were 

installed before the ISU research team arrived at the precast plant. The bottom four prestressing 

strands were arranged in their proper configuration and stressed to their initial prestress of 202.5 

ksi, which is approximately 75% of their ultimate strength. The strain gages located on the 

bottom strands were installed as shown in Figure 5-7.  
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Figure 5-7. Instrumented bottom prestressing strands in the form 

After the bottom row of prestressing strands was instrumented, the Styrofoam inserts were 

secured to the wood forms with double-sided tape and caulking. 

After the Styrofoam was in place, the final six prestressing strands were arranged and stressed to 

their initial prestress of 202.5 ksi, as shown in Figure 5-8.  

 

Figure 5-8. Prestressing strands layout at the anchorage end 

The rest of the gages were installed to the prestressing strands. Initial readings of the strain gages 

were taken and the side forms were locked in place. Threaded coupler inserts for instrumentation 

were then glued to the formwork at the locations presented in Figure 5-6. The mixing of the 

UHPC ensued at the precaster’s batch plant in a 4.0 yd3 mixer. 

After completing the batching of the UHPC mix, the concrete was poured into a bin and 

transported to the bed by the overhead crane, where it was poured into the forms for all of the 

UHPC laboratory test units while making sure to rod the web to prevent air pockets. Immediately 
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after the UHPC was poured in the forms, the top surface of the test units was covered with 

plastic wrap to minimize any moisture loss. A tarp was placed over the UHPC test units and 

propane heaters were used for the initial curing at 86°F. Along with the test units, 3 in. diameter 

UHPC cylinders were cast with the pour, which were periodically tested during the initial curing 

of UHPC to determine the compressive strength of the mix. After reaching a compressive 

strength of 14 ksi, the prestressing strands were cut at the member ends and the piles were 

transferred to a location where the steam curing was completed. 

5.2.3. Details of Test Units Pour 

The UHPC laboratory test units were cast at Coreslab Structures, Inc. in Bellevue, Nebraska on 

February 10, 2011. Figure 5-9 depicts how the test piles were lined up in a single line along the 

length of the precast bed to utilize as much of the prestressing strand as possible. 

 

Figure 5-9. Layout of UHPC test units 

5.2.4. Casting Process of Abutment Cap 

The casting of the abutment specimens was done in two phases. In Phase I, abutments for steel 

pile (SPAC-1) and UHPC pile in weak-axis direction (UPAC-1) were cast. In Phase II, 

abutments for the UHPC piles in strong-axis (UPAC-2) and skew-axis bending (UPAC-3) were 

cast. Phase I abutment caps were cast on May 9, 2011 in the ISU structural laboratory along with 

two base blocks. The reinforcement cages were built as per Iowa DOT standard and are shown in 

Figure 5-10a.  
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Figure 5-10. Reinforcement and construction of abutment specimens for steel and UHPC 

piles in weak-axis bending 

The formwork for the abutments were made out of plywood and had the specified steel 

reinforcement inside as shown in Figure 5-10b. The pile specimens were attached to a steel beam 

and hung in the desired location with 2 ft of the pile head embedded in the pile cap as shown in 

Figure 5-10c. The abutment caps were constructed using standard Iowa DOT concrete mix with 

4 ksi compressive strength. The concrete was batched at Iowa State Ready Mix Concrete plant 

and transported to the structural engineering laboratory by a concrete truck. The base blocks 

were constructed on the same day using a 5 ksi concrete, early strength mix. Since the base 

blocks don’t have any influence on the performance of the pile-to-abutment connections, a 

standard mix design available at the local ready-mixed plant was used. The concrete from the 

ready-mixed truck was first poured into a concrete bucket, which was lifted with the overhead 
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crane to the location of the forms. The concrete was then poured and vibrated in a series of lifts 

to get full consolidation. Once the abutment cap forms were filled, the top surface of the concrete 

was finished. A similar finish was also completed for the base blocks. 

In Phase II of construction, two precast abutment caps with full-depth void were constructed 

following Iowa DOT design standards on February 10, 2012.  

 

Figure 5-11. Reinforcement and construction of abutment specimens for UHPC piles in 

strong- and weak-axis bending 

The full-depth void was created using a 21 in. diameter corrugated metal pile (CMP), which was 

used in several previous research projects and in the field by the Iowa DOT. The reinforcement 

details in the abutment were kept similar to previous cast-in-place abutments constructed in 

Phase I, with slight changes. The changes included the exclusion of the #2 spiral and removal of 

the 6P3 bar on one side. The intent of removing the 6P3 bar from one side was to evaluate the 

necessity of these bars in precast abutment designs. Similar to Phase I, 4 ksi ready mixed 

concrete was poured in the abutment caps. Three days after casting the abutments, UHPC piles 

were placed in the void with 2 ft of embedment. The void was filled with a 6 ksi concrete mix 

available at the local ready-mix concrete producer (see Figure 5-11). 
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5.2.5. Material Properties 

UHPC Material 

Seven 3 in. diameter cylinders were cast and cured with the UHPC test piles and were tested in 

compression at the ISU structural laboratory using a universal compression machine. The 

measured strength of the seven cylinders was presented previously in Table 4-1.  

The design strength of the UHPC mix was 26 ksi, and the results show an average strength of 

only 20.6 ksi was achieved for the UHPC material. Based on the failure mode, it was suspected 

that the measured strength was not achieved due to the end surface of the test cylinders not being 

perfectly horizontal. The elastic modulus for the test piles was calculated using equation (2-2) 

from Section 2.3 that was developed by Graybeal (2007). The resulting elastic modulus was 

6,602 ksi as opposed to an expected value of 8,000 ksi. 

Abutment Concrete 

A total of twenty-four 6 in. diameter cylinders were cast for each concrete mix design used in the 

project. The concrete cylinders were cured along with the abutment cap in the same conditions 

until testing and then were tested in compression at the ISU structural laboratory. The measured 

concrete strengths at 3, 7, 14, and 28 days for the abutment cap and base block constructed in 

Phase I are given in Table 5-2 and Table 5-3, respectively.  

Table 5-2. Measured concrete compressive strength for pile-to-abutment cap 

Cylinder 

Concrete compressive strength, psi 

3-day 7-day 14-day 28-day 

Test date 5/12/2011 5/16/2011 5/23/2011 6/6/2011 

1 3,720 4,279 4,236 3,930 

2 3,677 4,723 4,506 4,908 

3 3,757 4,780 4,473 4,542 

Average 3,118 4,594 4,405 4,460 

 

Table 5-3. Measured concrete compressive strength of the base block 

Cylinder 

Concrete compressive strength, psi 

3-day 7-day 14-day 28-day 

Test date 5/12/2011 5/16/2011 5/23/2011 6/6/2011 

1 4,051 4,939 4,439 5,491 

2 3,656 4,148 5,051 4,983 

3 3,857 4,649 4,768 5,331 

Average 3,855 4,794 4,910 5,268 
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The design strength of the abutment cap concrete was 4 ksi, and the test measurements indicate 

that the 4 ksi average strength for this abutment block and the 5 ksi average strength for the base 

blocks were achieved before the age of 28 days. The elastic modulus for the test piles was 

calculated using equation (5-1).  

𝐸 = 57,000√𝑓𝑐
′ (psi) (ACI Committee 318 2005) (5-1) 

The resulting elastic modulus for the abutment cap was 3,807 ksi, and the elastic modulus for the 

base block was 4,137 ksi at 28-day strength. The measured concrete strengths at 3, 7, 14, and 28 

days for the precast abutment cap and concrete used in the full-depth void in the abutments are 

given in Table 5-4 and Table 5-5,respectively. 

Table 5-4. Measured concrete compressive strength for pile-to-precast abutment cap 

Cylinder 

Concrete compressive strength, psi UPAC-2 

test day 

UPAC-3 

test day 3-day 7-day 14-day 28-day 

Test date 2/14/2012 2/17/2012 2/24/2012 03/09/2012 04/16/2012 05/16/2012 

1 3,640 4,130 4,255 4,680 4,463 4,334 

2 3,533 4,263 4,574 4,797 4,239 4,274 

3 3,560 4,000 4,593 4,677 4,397 4,300 

Average 3,578 4,131 4,474 4,718 4,366 4,302 

 

Table 5-5. Measured compressive strength of concrete used in the voids 

Cylinder 

Concrete compressive strength, psi UPAC-2 

test day 

UPAC-3 

test day 3-day 7-day 14-day 28-day 

Test date 2/27/2012 03/01/2012 03/08/2012 03/22/2012 04/16/2012 05/16/2012 

1 4,730 5,513 5,795 6,168 6,321 6,033 

2 4,802 5,474 5,706 6,206 6,273 6,020 

3 4,834 5,082 5,878 5,486 6,288 5,869 

Average 4,788 5,356 5,793 5,953 6,294 6,026 

 

5.3. Analysis 

Prior to testing the pile-to-abutment connection, a preliminary analysis was completed to develop 

the loading protocol for the tests. This section outlines this analysis while Section 5.4 presents 

the experimental results. 

5.3.1. LPILE 

LPILEPLUS 5.0 was used to predict the response of abutment piles in weak-axis bending as 

installed in an integral bridge. The moment-curvature response for UHPC piles and steel HP 10 × 
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57 piles calculated in Section 3.1 were used for the Type 5 analysis selected within LPILE. A 

fixed-pile head condition was assumed, which is not always the case in the field due to the 

potential vertical rotation of the abutment but was used because it would produce conservative 

results. Also, the 10 ft deep prebored hole filled with bentonite that is commonly required for 

piles in integral abutments was assumed to provide no lateral resistance to the pile. 

Predicted Pile Response for Lateral Bridge Movements 

Eight different scenarios with appropriate input were analyzed in LPILE to predict the response 

of the abutment piles for the two different pile types. Table 5-6 describes different cases, which 

uses different axial loads and lateral displacements.  

Table 5-6. Eight cases used to predict the response of integral abutment piles 

Case Pile type 

Axial load, 

kips 

Lateral 

displacement, 

in. 

1 

UHPC 

100 
1 

2 1.55 

3 
200 

1 

4 1.55 

5 

HP 10 × 57 

100 
1 

6 1.55 

7 
200 

1 

8 1.55 

 

The displacement response was calculated along the length of the pile and compared for each of 

the cases. 

Figure 5-12a and Figure 5-12b illustrates the displacement response of the abutment piles for 

each of the eight scenarios.  
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Figure 5-12. Displacement response of integral abutment piles subjected to (a) 1.00 in. and 

(b) 1.55 in. of lateral displacement 

It is important to note that the displacements are almost identical when varying the axial load or 

pile type causing the lines to be on top of one another in Figure 5-12. 

Target Laboratory Displacements 

To relate the field conditions to the laboratory setup, the maximum displacement was scaled to 

produce an equivalent laboratory displacement, which is due to the consideration of the short 

length of the test piles. This was done by subtracting the translation displacement, Δt, from the 

total displacement, Δtotal, at a distance of 54 in. from the pile-to-abutment interface. Figure 5-13a 

and Figure 5-13b illustrates this process for 1 in. and 1.55 in. of lateral displacement.  
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Figure 5-13. Displacement response of integral abutment piles subjected to (a) 1.00 in. and 

(b) 1.55 in. of lateral displacement 

Based on this procedure for each of the scenarios, Table 5-7 lists the displacements for 

laboratory testing that correspond to the 1.0 in. and 1.55 in. of field displacements.  
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Table 5-7. Calculated laboratory displacement for each of the cases 

Case 

Laboratory 

displacements, 

in. 

1 0.27 

2 0.42 

3 0.27 

4 0.41 

5 0.28 

6 0.42 

7 0.28 

8 0.42 

 

Since the target displacements are very similar, 0.28 in. was used to represent 1 in. of field 

displacement while 0.42 in. was used to represent 1.55 in. of field displacement. 

5.3.2. Cracking and Yielding Limits 

From Section 3.2, the moments associated with micro-cracking, visible cracking, and maximum 

crack width were used to calculate the corresponding magnitude of lateral force required to 

examine these limits. They were calculated by dividing the moment given in Section 3.2 by the 

54 in., where the 54 in. lever arm represented the distance from the applied lateral load to the 

pile-to-abutment interface. Additionally, the moment for yielding of the steel pile was used for a 

similar purpose. Table 5-8 lists the calculated lateral forces corresponding to these moments for 

the test setup described in Section 3.2. 

Table 5-8. Lateral load corresponding to moment limits 

Pile type 

Axial 

load, 

kips 

Corresponding strain to moment limits, kips 

Micro-

cracking 

Visible 

cracking 

> 0.012 in. 

crack width Yielding 

UHPC 
100 9.9 17.6 21.2 - 

200 12.2 20.1 23.1 - 

HP 10 × 57 
100 - - - 20.5 

200 - - - 18.4 

 

5.4. Weak-Axis Pile-to-Abutment Connection Test for Steel HP 10 × 57 Pile 

5.4.1. Load Frame and Test Setup 

Figure 5-14 shows the test set up in the laboratory.  
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Figure 5-14. Pile-to-abutment connection test setup 

The abutment cap was raised off of the strong floor by 2 in. to allow the punching of the pile 

through the cap to be evaluated during the testing. This arrangement was accomplished by using 

the two concrete base blocks on either side of the pile cap and post-tensioning them together 

through ducts that were cast into the concrete. An axial load was applied to the test unit by the 

two actuators shown at the top of Figure 5-14, and the lateral load was applied by a hydraulic 

actuator. 

LVDTs, as shown in Figure 5-15, were used to measure the rotation and displacements at 

different location along the pile.  

 

Figure 5-15. LVDTs used near the base of the test pile during laboratory testing 
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They were attached to the test unit using an epoxy. Rotation meters were also used to measure 

the rotation of the test unit at three locations on the pile and were also attached using epoxy. A 

rotation meter is shown in Figure 5-16.  

 

Figure 5-16. A rotation meter attached to the base of a test pile 

For SPAC-1, TML strain gages were also used at the same locations specified as strain gages for 

the UHPC test units as shown in Figure 5-6. 

5.4.2. Test Protocol and Observations 

The steel HP 10 × 57 test pile, SPAC-1, was tested in three phases. Phase I tested SPAC-1 with 

an axial load of 100 kips on August 8, 2011. The lateral load was initially applied in a force-

controlled cyclic manner with two cycles per load step. Immediately following Phase I, Phase II 

increased the axial load on the test pile to 200 kips. Again, the lateral load was applied in a force-

controlled cyclic manner with two cycles per load step. At the beginning of Phase III, the axial 

load was decreased to 100 kips and the lateral load was applied in a displacement controlled 

cyclic manner with three cycles at each displacement step. All three phases of testing with key 

forces and displacements are outlined in Table 5-9. 

Table 5-9. Loading protocol used for SPAC-1 

Phase 

Axial 

load, 

kips 

# cycles 

per load 

step 

Controlling 

parameters Load steps 

I 100 2 Force, kips ±4, ±8, ±12, ±16 

II 200 2 Force, kips ±3.5, ±7, ±10.5, ±12 

III 100 3 
Displacement, 

in. 

±0.5, ±0.75, ±1.0, ±1.5, 

±2.0, ±3.0, ±4.0 
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The cyclic force-displacement response of the HP 10 × 57 test unit during Phase III of SPAC-1 is 

given in Figure 5-17 along with the measured response envelope established from the first peak 

cycles.  

 

Figure 5-17. Force-displacement curve of SPAC-1 obtained from testing 

The string potentiometers located at the point of load application were averaged to give the 

displacement of the test unit at a given load step. The maximum lateral load applied to S1 was 

35.6 kips. 

During SPAC-1, yielding was visible on the flanges of the HP 10 × 57 test piles at 26 kips of 

lateral load with a corresponding lateral displacement of 0.75 in. Figure 5-18 shows the yielding 

of the test pile flanges at a lateral load of 29 kips, which has a corresponding displacement of 1.0 

in.  
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Figure 5-18. Yielding observed at the base of the steel HP 10 × 57 test pile during testing 

A visible gap adjacent to the pile started to open up at the pile-to-abutment interface at 32 kips of 

lateral load corresponding to 2.0 in. of lateral displacement. Figure 5-19 shows the gap that was 

formed during the steel pile test.  

 

Figure 5-19. HP 10 × 57 test pile rotation at the pile-to-abutment interface 

Also, at this same load step, cracking in the abutment cap was observed. 

When the lateral displacement became large, buckling of the flanges near the pile-to-abutment 

interface was visible. Additionally, concrete adjacent to the pile on the top surface started to spall 

off the abutment cap when the pile was subjected to 4.0 in. of lateral displacement. Figure 5-20 

shows the buckling and spalling of abutment cap concrete after the first cycle of 4 in. of lateral 

displacement. 
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Figure 5-20. Buckling of HP 10 × 57 steel pile and spalling at top surface of abutment cap 

5.4.3. Results 

From Table 5-8, the lateral load that was expected to cause yielding at a 100 kip axial load is 

20.5 kips. The service lateral displacement of 0.28 in. induced a lateral load of 11.3 kips in the 

push direction and 10.8 kips in the pull direction. Both of these values are well below the yield 

limit. The maximum displacement of 0.42 in. only induced a 16.9 kip lateral load in the push 

direction and a 16.4 kip lateral load in the pull direction, which were again below the expected 

yield limit of 20.5 kips for the HP 10 × 57 flanges.  

5.5. Weak-Axis Pile-to-Abutment Connection Test for UHPC Pile 

5.5.1. Load Frame and Test Setup 

The test setup used for the testing of the UHPC pile in weak-axis bending was very similar to the 

setup used for the steel HP pile. Figure 5-21 shows the test set up in the laboratory.  
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Figure 5-21. Test setup used for UHPC pile-to-abutment testing in weak-axis direction 

Similar to the steel pile, the abutment cap was raised off of the strong floor by 2 in. to allow the 

punching of the pile through the cap to be evaluated during the testing. Axial load was applied to 

the test unit using a steel load beam with two center hole hydraulic jacks as shown in Figure 

5-21b. The axial load applied during the testing was measured using two 200 kip load cells 

placed underneath the center hole jacks. The lateral load to the pile was applied using a 100 kip 

servo-controlled hydraulic actuator attached to the UHPC pile at 54 in. from the pile-to-abutment 

interface as shown in Figure 5-21. The test specimen was extensively instrumented with string 

potentiometers, LVDTs, and rotation devices as shown in Figure 5-21a. The string 

potentiometers and rotation devices were used to measure the lateral displacements and rotations 

of the pile at three different locations along the height of the pile. The LVDTs were attached on 

all four corners of the UHPC pile to capture average strains in the region close to the pile-

abutment interface and any pull out of the pile during testing. The rotation meter RT3 was placed 

at 3 in. from the pile-to abutment interface to capture possible rotation in the pile-to-abutment 

connection. All the LVDTs and rotation meters were attached to the pile specimen using high-

strength, quick-set epoxy. LVDTs were also placed at the bottom of the abutment to capture any 

horizontal and vertical movement during testing. The exact locations of the instrumentation and 

the nomenclature of the instrumentation is shown in Figure 5-21a.  
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A number of foil strain gages were placed on the shear, longitudinal and hoop reinforcement in 

the abutment to capture critical strains at different lateral displacements and axial load 

conditions. The details of the strain gages and the nomenclature are shown in Figure 5-22. 

 

Figure 5-22. Details of strain gage on different reinforcement in pile abutment 

5.5.2. Testing Sequence and Observations 

The first connection test completed for a UHPC pile was UPAC-1. UHPC test pile, L7, was 

tested in three phases similar to SPAC-1. In Phase I testing, UPAC-1 was subjected to lateral 

loading with an axial load of 100 kips on September 13, 2011. The lateral load was applied in a 

force-controlled cyclic manner with two cycles at each load step. This was followed by Phase II 

testing, in which the pile specimen was subjected to an axial load of 200 kips and force-

controlled cyclic lateral loads with two cycles in each load step. The testing was completed with 

Phase III, where the axial load on the pile was decreased to 100 kips, and the cyclic lateral load 

was applied under displacement controlled with three cycles at each displacement. The loading 

protocol used for UPAC-1 is outlined in Table 5-10, and the applied displacement history to the 

pile specimen is shown in Figure 5-23a. 
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Table 5-10. Loading protocol chosen for UHPC pile connection test, UPAC-1 

Phase 

Axial load, 

kips 

# cycles 

per step Control Load step 

I 100 2 Force, kips ±4, ±8, ±12, ±16 

II 200 2 Force, kips ±3.5, ±7, ±10.5, ±12 

III 100 3 
Displacement, 

in. 
±0.5, ±0.75, ±1.0, ±1.5 

 

 
a) Applied cyclic displacement history 

 
b) Force vs. displacement        c) Force vs. displacement             d) Force vs. displacement  

 (Phase I)              (Phase II) (Phase III) 

Figure 5-23. Loading history and measured force vs. displacement response of UPAC-1 

The measured force-displacement responses of UPAC-1 in all three phases of testing are shown 

in Figure 5-23. The string potentiometers located at the point of load application were averaged 

to calculate the displacement of the test unit at a given load. The maximum lateral load applied to 

the specimen was 22.8 kips, which was 36% lower than the lateral load applied to the steel pile, 
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SPAC-1. It is important to note that these piles were not designed for any lateral force resistance; 

instead they were designed for target vertical load resistance. Hence, the reduced lateral load of 

the UHPC pile should not be of concern when used in the abutments. 

Two hairline cracks as shown in Figure 5-24 developed on the UPAC-1 test pile near the pile-to-

abutment interface at a lateral load of 12 kips during Phase I testing with an axial load of 100 

kips.  

 

Figure 5-24. Hairline tensile cracks on UHPC pile in UPAC-1 at 12 kip lateral load step 

with 100 kip axial load 

Once Phase I testing was complete and the lateral load was returned to zero, all of the observed 

cracks were completely closed. No new cracks were developed during Phase II testing with the 

increased axial load. Also, the cracks from Phase I were not visible up to the lateral load of ±12 

kips in the Phase II testing. During the Phase III testing, minor crushing of UHPC near the base 

of the pile became visible at 1.0 in. of lateral displacement. Figure 5-25 shows the minor 

crushing of UHPC after cycling through the three 1.0 in. cycles.  
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Figure 5-25. Spalled region of the UHPC pile due to crushing during the UPAC-1 test after 

completing of the 1.0 in. load displacement cycles 

Throughout all three phases, no visible damage occurred to the abutment cap. 

5.5.3. Results 

The predicted start of micro-cracking was induced at a lateral load of 9.9 kips and the predicted 

start of visible cracking was induced at 17.6 kips. A lateral load of 10.8 kips was required to 

move the UHPC test unit 0.28 in. in the push direction and 11.5 kips in the pull direction, which 

indicated micro-cracking should be present in the pile. Additionally, to achieve a lateral 

displacement of 0.42 in., a lateral load of 15.3 kips was applied in the push direction and 16.4 

kips was applied in the pull direction, which was below the expected limit for visible cracking 

but increased the extent of micro-cracking. 

During testing, two hairline tension cracks developed at 12 kips as shown in Figure 5-24, but 

were completely closed at 0 kip lateral load and 0 in. lateral displacement, and thus they can be 

considered in the range between micro-cracking and visible cracking. The Iowa DOT deems that 

hairline cracks are acceptable for UHPC members as long as the widths are negligibly small and 

are not expected to widen due to repeated loading under the most critical service load conditions 

(Aaleti et al. 2014). With a higher axial load in the pile, formation of hairline cracks will be 

delayed. Figure 5-26 compares the force-displacement response between UHPC and steel HP 10 

× 57 piles up to ±0.5 in. of laboratory lateral displacement.  
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Figure 5-26. Comparison of UHPC and HP 10 × 57 force-displacement response up to 0.5 

in. of lateral displacement 

The correlation between the laboratory displacements and the full pile’s service and maximum 

allowed abutment displacements of an integral bridge are noted in parenthesis in Figure 5-26.  

As noted before, there was not much damage observed in the abutment. There were few hairline 

cracks observed on the abutment top face at 1 in. lateral displacement. This level of displacement 

is never expected in the field conditions. The measured strains in the spiral around the pile is 

shown in Figure 5-27.  
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a) Phase I and Phase III testing 

 
b) Phase II testing 

Figure 5-27. Measured strains in spiral around the pile in the abutment 

Measured strains were less than 25 microstrains indicating no damage in the pile-to-abutment 

joint region.  

The measured strains in the shear reinforcement, longitudinal reinforcement, and 6P3 bars in the 

abutment during Phase II and Phase III testing are shown in Figure 5-28.  
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a)  Phase I and Phase III testing 

 
b)  Phase II testing 

Figure 5-28. Measured strains in abutment reinforcement 

It can be seen from the figure that the strains in all the reinforcement are less than 50 

microstrains, which are well below the yield strain of the reinforcing steel bars. This observation 

indicates the current design and reinforcement detailing used for the abutment and pile-to-

abutment connection are more than adequate for the UHPC pile in weak-axis bending direction. 

Based on the observations, a smaller reinforcing steel bar can be used, particularly those labeled 

6P3 bars.  

5.6. Strong Axis Pile-to-Abutment Connection Test 

5.6.1. Load Frame and Test Setup 

The same test setup used for the previous tests were used for evaluating the performance of the 

UHPC pile-to-abutment connection performance under strong-axis bending. Figure 5-29 shows 

the three dimensional (3D) schematic and actual picture of the test set up used in the laboratory.  
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(a) 3D schematic of the test setup                        (b) Test setup in the laboratory 

Figure 5-29. Test setup used for UHPC pile-to-abutment testing in strong-axis direction 

Similar to previous tests, the abutment cap was raised off the strong floor by 2 in. to allow the 

punching of the pile through the cap to be evaluated during the testing. Axial load was applied to 

the test unit using a steel load beam with two center hole hydraulic jacks and was monitored 

using two 200 kip load cells during testing. The lateral load to the pile was applied using a 100 

kip servo-controlled hydraulic actuator, attached to the UHPC pile at 54 in. from the pile-to-

abutment interface as shown in Figure 5-29. The test specimen was instrumented with string 

potentiometers, LVDTs, rotation devices, and Optotrak LED sensors as shown in Figure 5-29.  

The Optotrak LED sensors are part of a 3D non-contact displacement measure system, which 

captures the 3D location of a point on the structures with time and loading. The test specimen 

was instrumented with a total of 54 LED markers placed along the height and depth of the UHPC 

pile. The displacement data was captured at 5 Hz frequency. The string potentiometers and 

rotation devices were also used to measure the lateral displacements and rotations of the pile at 

three different locations along the height of the pile. Owing to the usage of the Optotrak system, 

a total of only three LVDTs were attached on the back corners of the UHPC pile to capture 

average strains in the region close to the pile-abutment interface and any pull out of the pile 

during testing. The rotation meter RT3 was placed at 3 in. from the pile-to abutment interface to 

capture possible rotation in the pile-to-abutment connection. All the LVDTs and rotation meters 

were attached to the pile specimen using high-strength, quick-set epoxy. LVDTs were also 

placed at the bottom of the abutment to capture any horizontal and vertical movement during 

testing. The exact locations of the instrumentation and the nomenclature of the instrumentation is 

shown in Figure 5-29a. A number of foil strain gages was placed on the shear, longitudinal, and 

CMP in the abutment to capture critical strains at different lateral displacements and axial load 
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conditions. The same nomenclature for strain gages as used in previous specimens were used for 

this specimen. 

5.6.2. Testing Sequence and Observations 

Like previous pile tests, UHPC test specimen UPAC-2 was subjected to combined axial and 

lateral loading causing bending about pile strong axis. In Phase I testing, UPAC-2 was subjected 

to lateral loading with an axial load of 100 kips. The lateral load was applied in a force-

controlled cyclic manner with two cycles at each load step. This was followed by Phase II 

testing, in which the pile specimen was subjected to an axial load of 200 kips and force-

controlled cyclic lateral loads with two cycles in each load step. The testing was completed with 

Phase III, where the axial load on the pile was decreased to 100 kips and the cyclic lateral load 

was applied under displacement controlled with three cycles at each displacement. The loading 

protocol used for UPAC-2 is outlined in Table 5-11, and the applied displacement history to the 

pile specimen is shown in Figure 5-30a.  

Table 5-11. Loading protocol chosen for UHPC pile connection test, UPAC-2 

Phase 

Axial load, 

kips 

# cycles 

per step Control Load step 

I 100 2 Force, kips ±5, ±10, ±15, ±20 

II 200 2 Force, kips ±6, ±12, ±18, ±24 

III 100 3 
Displacement, 

in. 

±0.24, ±0.35, ±0.5, 

±0.75, ±1.0, ±1.5 

 

 
(a) Force vs. dispalcement (Phase I and III) 
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(b) Force vs. dispalcement (Phase II) 

Figure 5-30. Loading history and measured force vs. displacement response of UPAC-2 

The measured force-displacement responses of UPAC-2 in all three phases of testing are shown 

in Figure 5-30b and Figure 5-30c. The string potentiometers located at the point of load 

application were averaged to calculate the displacement of the test unit at a given load. The 

maximum lateral load applied to the specimen was 36.13 kips during the first 1 in. lateral 

displacement cycle. This load is 2 kips more than the maximum load of the steel pile in weak-

axis bending. It is important to note that these piles were not designed for any lateral force 

resistance; instead they were designed for target vertical load resistance and lateral displacement.  

In Phase I testing, at a lateral load of 10 kips, a hairline crack was observed at the pile-abutment 

interface, which further widened upon increase of the lateral load to 20 kips (Figure 5-31a).  

 
(a) Cracking at interface at 20 k load, Phase I    (b) Cracking at interface at 12 k load, Phase II 

Figure 5-31. Observed damage in the UHPC pile specimen and abutment during Phase I 

and Phase II testing 
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It is important to note that the interface crack was not visible upon removal of the lateral load. 

No cracking was observed in the UHPC pile. In Phase II testing, where the axial load was 

increased to 200 kips, the same interface crack was visible at a lateral load of 12 kips (Figure 

5-31b). No other cracks, either in the abutment or UHPC pile, were observed during the Phase II 

testing. In Phase III testing, during the 0.5 in. lateral displacement cycles, hairline cracking was 

observed in the UHPC pile at the base and in the concrete inside the CMP. The cracks are shown 

in Figure 5-32a.  

 
(a) Cracking at 0.5 in. lateral displacement during Phase III testing 

 
       (b) Cracking at +0.5 in.               (c) Cracking at +1.0 in.       (d) Vertical crack at +1.0 in. 
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          (e) Crushing of UHPC in flanges at 1.5 in.  (f) Widened vertical crack in web at 1.5 in. 

Figure 5-32. Observed damage in the UHPC pile and abutment during Phase III testing 

All these cracks were closed upon unloading to zero lateral load. Four new cracks were formed 

in the UHPC pile over a 13 in. height at an average spacing of 3.25 in. during the first cycle of 

+0.75 in. displacement (pull), as shown in Figure 5-32b. No new cracks were observed in the 

abutment and the cracks from the previous displacement cycle did not extend. A number of new 

hairline cracks were formed in UHPC during the first +1.0 in. displacement cycle. The cracks 

were noticed over a 22 in. height from the top of the abutment (see Figure 5-32c). The cracks in 

the abutment were extended around 4 in. beyond the CMP, and no new cracks were formed.  

During the second +1.0 in. displacement cycle, a lot of noise was heard coming from the UHPC 

pile, indicating cracking in the pile. There was a sudden drop in the load with the formation of a 

long, vertical crack in the web along the entire height of the pile. The crack was located closer to 

the web-to-tension flange interface and appeared to be at the location of a prestressing strand in 

web. The vertical crack along the height of the pile is shown in Figure 5-32d (shown by white 

arrows). The pile specimen was further subjected to 1.5 in. displacement cycles even after the 

vertical cracking was observed. The load capacity dropped by around 27% from the peak load, 

with the UHPC in the flanges near the base experiencing crushing. The crushing of the UHPC in 

the flanges is shown in Figure 5-32e. The testing was stopped after two cycles of 1.5 in. 

displacement due to significant widening of the vertical crack as shown in Figure 5-32f. 

5.6.3. Results 

The measured strains in the shear reinforcement, longitudinal reinforcement, and 6P3 bars in the 

abutment during Phase I, Phase II, and Phase III testing are shown in Figure 5-33.  
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(a) Phase I and III testing 

 
(b) Phase II testing 

Figure 5-33. Measured strains in different types of reinforcement in abutment 

It can be seen from the figure that the strains in all the shear and longitudinal reinforcement 

during Phase II testing are less than 75 microstrains, which are well below the yield strain of the 

rebars. Similarly, the measured maximum strains in the #8 longitudinal reinforcement during 

Phase III testing was around 400 microstrains, which is nearly 20% of the yield strains. The 

shear strains were around 80 microstrains, which is less than 5% of yield strains. This 

observation is consistent with the minimal cracking observed in the abutment during testing. The 

maximum strains recorded in the 6P3 bar at the abutment-to-pile interface was 250 microstrains, 

which is well below the yield strain of the bars. Based on the observations, a smaller reinforcing 

steel bar can be used, particularly those labeled as 6P3 bars. The measured strains in the CMP 

around the pile at different heights along the pile embedment depth is shown in Figure 5-34.  
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(a) Phase I and III testing 

 
(b) Phase II testing 

Figure 5-34. Measured hoop strains in CMP 

The maximum measured hoop strains in the CMP were around 250 microstrains at 1.5 in. lateral 

displacement in the laboratory, which represents 5 in. field displacement. Even though this type 

of displacement is not expected in the field, the measured strains are still well below the yield 

capacity of the CMP. To optimize the design, one can further reduce the thickness of the CMP 

without causing any adverse effects on the connection behavior. However, this might not lead to 

economical design, as the current CMP is easily available in practice. The measured strain in the 

critical reinforcement supports that the current details used for the abutment and pile-to-abutment 

connection are more than adequate for the UHPC pile in strong-axis bending direction. 

5.7. Skewed Pile-to-Abutment Connection Test 

5.7.1. Load Frame and Test Setup 

The same test setup used for the previous tests were used for evaluating the performance of the 

UHPC pile-to-abutment connection performance under bending about an axis, which is at 30º 
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skew with the weak-axis of the pile. Figure 5-35 shows the 3D schematic and actual picture of 

the test set up used in the laboratory.  

 

Figure 5-35. Test setup used for UHPC pile-to-abutment testing in skew axis direction 

Like previous tests, the abutment cap was raised off the strong floor by 2 in. to allow the 

punching of the pile through the cap to be evaluated during the testing. Axial load was applied to 

the test unit using a steel load beam with two center hole hydraulic jacks and was monitored 

using two 200 kip load cells during testing. The lateral load to the pile was applied using a 100 

kip servo-controlled hydraulic actuator attached to the UHPC pile at 54 in. from the pile-to-

abutment interface as shown in Figure 5-35. To facilitate the attachment of the actuator to the 

skewed pile, an 8 in. thick, 16 in. x 16 in. concrete loading block was poured around the UHPC 

pile at the loading location. Similar to previous tests specimens, string potentiometers, LVDTs, 

rotation devices, and Optotrak LED sensors as shown in Figure 5-35, were used along the pile 

height, to capture critical displacements and rotations. The displacement data was captured at 5 

Hz frequency. The string potentiometers and rotation devices were also used to measure the 

lateral displacements and rotations of the pile at three different locations along the height of the 

pile. Owing to the usage of the Optotrak system, a total of only three LVDTs were attached on 

the back corners of the UHPC pile to capture average strains in the region close to the pile-

abutment interface and any pullout of the pile during testing. A total of three rotation meters 
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including two rotation meters on the pile web and one on the loading block were used to capture 

rotation of the pile under lateral loading. All the LVDTs and rotation meters were attached to the 

pile specimen using high-strength, quick-set epoxy. LVDTs were also placed at the bottom of the 

abutment to capture any horizontal and vertical movement during testing. The exact locations of 

the instrumentation and the nomenclature of the instrumentation is shown in Figure 5-35a. A 

number of foil strain gages were placed on the shear, longitudinal, and CMP in the abutment to 

capture critical strains at different lateral displacements and axial load conditions. The same 

nomenclature for strain gages as used in previous specimens were used for this specimen. 

5.7.2. Testing Sequence and Observations 

Like previous pile tests, UHPC test specimen UPAC-3 was subjected to combined axial and 

lateral loading causing bending about a 30º skew axis. In Phase I testing, UPAC-3 was subjected 

to lateral loading with an axial load of 100 kips. The lateral load was applied in a force control 

manner in load increments of 4.25 kips up to a maximum load of 17 kips, with two cycles at each 

load step. This was followed by Phase II testing, in which the pile specimen was subjected to an 

axial load of 200 kips and lateral forces under force-control with two cycles in each load step. 

The load increments for this phase was 4.25 kips. The testing was completed with Phase III, 

where the axial load on the pile was decreased to 100 kips and the cyclic lateral load was applied 

under displacement controlled with three cycles at each displacement. The loading history 

applied on UPAC-3 in all three phases of testing is outlined in Table 5-12, and the applied 

displacement history of the pile specimen is shown in Figure 5-36a.  

Table 5-12. Loading protocol chosen for skew UHPC pile connection test, UPAC-3 

Phase 

Axial load, 

kips 

# cycles 

per step Control Load Step 

I 100 2 Force, kips ±4.25, ±8.5, ±12.75, ±17 

II 200 2 Force, kips ±4.25, ±8.5, ±12.75, ±17 

III 100 3 
Displacement, 

in. 

±0.27, ±0.4, ±0.5, ±0.75, 

±1.0, ±1.25 
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(a) Displacement history 

 
(b) Measured force-displacement response (Phase I, Phase III, and Phase II) 

Figure 5-36. Loading history and measured force vs. displacement response of UPAC-3 

The measured force-displacement responses of UPAC-3 in all three phases of testing are shown 

in Figure 5-36b. The string potentiometers located at the point of load application were averaged 

to calculate the displacement of the test unit at a given load.  

In Phase I testing, at a lateral load of 8.5 kips, a hairline crack was observed in the abutment 

concrete in the region inside the CMP, starting at the top corner of the pile. At 12.75 kips of 

lateral load, hairline cracks were observed in UHPC pile, 1.5 in. from the pile-to-abutment 

interface (Figure 5-37a).  
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a) Hairline crack in pile at 12.75k (Phase I) b) Hairline crack in pile at 17k (Phase I) 

 

  

c) Cracking in abutment at 1 in. 

top displacement (Phase III 

d) Cracking in pile flange at 

1.25 in. top displacement 

(Phase III) 

e) Crushing of UHPC in pile 

flange corner at 1.25 in. top 

displacement (Phase III) 

  

 

f) Cracking in abutment at 1.25 

in. top displacement (Phase III) 

g) Cracking and crushing in 

pile flange at 1.4 in. top 

displacement (Phase III) 

h) Crushing of UHPC in pile 

flange corner at 1.4 in. top 

displacement (Phase III) 

Figure 5-37. Observed damage in the UHPC pile and abutment during testing 
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Also, a hairline crack formed along the pile-to-abutment interface over the length of the flange of 

the UHPC pile. During the 17 kips of lateral load cycle, noise was heard around 16 kips of lateral 

force. Hairline cracks were observed in the UHPC pile at 3 in., 8 in., and 15 in. from the top of 

the abutment (Figure 5-37b). It is important to note that the interface crack and cracks in the pile 

were not visible upon removal of the lateral load.  

In Phase II testing, where the axial load was increased to 200 kips, no cracks were visible in the 

UHPC pile up to a lateral load of 12.75 kips. All the cracks from Phase I testing were closed at 

those loadings. At 17 kips of lateral loading, the cracks from Phase I testing became visible. Few 

new cracks formed during the 17 kips loading in the pull direction. No new cracks were observed 

in the abutment during Phase II testing. In Phase III testing, during the 0.5 in. lateral 

displacement cycles, hairline cracks from the previous phases opened and extended in length. All 

these cracks were closed upon unloading to zero lateral load. During the 0.75 in. lateral 

displacement cycles, a large number of cracks formed in the UHPC pile. A crack width in the 

UHPC pile at 6 in. from the abutment was measured to be 0.012 in. During the 0.75 in. 

displacement in the push direction, a few more new cracks were formed. The measured crack 

widths of the cracks were 0.01 in. During the 3rd cycle of this displacement, some spalling of 

UHPC was observed over a 3.5 in. height at the corner region of the flange. The maximum 

lateral load measured during this loading cycle was 19.3 kips in the pull direction and 21.3 kips 

in the push direction.  

During the 1 in. displacement cycle in both push and pull directions, crushing and spalling of 

UHPC was observed in the corner region of the flanges of the UHPC pile. A long crack in the 

middle of the abutment, extending over half the width of the abutment that propagated from one 

of the pile flange corners, was also developed (Figure 5-37c). A horizontal crack was observed in 

the concrete loading block casted around the UHPC pile for load application. New cracks and 

more crushing and spalling of UHPC in the pile was observed during the 1.25 in. displacement 

cycles (Figure 5-37d and Figure 5-37e). The crack in the abutment extended up to the mid-depth 

of the abutment (Figure 5-37f). Even though it wasn’t planned as part of the initial load protocol, 

the test specimen was subjected to one cycle of 1.4 in. displacement in each direction with the 

intent of failing the UHPC pile. A large number of cracks were formed with significant crushing 

in the flange corners (Figure 5-37g and Figure 5-37h). The pile resisted a lateral load around 16 

kips at this displacement. 

5.7.3. Results 

The measured strains in the CMP around the pile at different heights along the pile embedment 

depth is shown in Figure 5-38.  
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(a) Phase I and Phase III testing (100 kip axial load) 

 
(b) Phase II testing (200k axial load) 

Figure 5-38. Measured hoop strains in the CMP during testing 

The measured hoop strains in the CMP reached 340 microstrains at 1.4 in. lateral displacement in 

the laboratory, which represents more than 5 in. of field lateral displacement. Even though this 

level of displacement is not expected in the field, the strains measured are still well below the 

yield strain of the CMP pipe. These strains are larger than the hoop strains measured in 

specimens testing under weak-axis and strong-axis bending.  

The measured strains in the shear reinforcement, longitudinal reinforcement, and 6P3 bars in the 

abutment during Phase III testing are shown in Figure 5-39.  
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Figure 5-39. Measured strains in different types of reinforcement in abutment during 

Phase III 

It can be seen from the figure that the strains in all the shear reinforcement are less than 50 

microstrains, which are well below the yield strain of the rebars. Similarly, the measured 

maximum strains in the #8 longitudinal reinforcement were around 225 microstrains, which are 

nearly 10.7% of the yield strain of the rebar. This observation is consistent with the minimal 

cracking observed in the abutment during testing. The maximum strain recorded in the 6P3 bar at 

the abutment-to-pile interface was 210 microstrains, which is well below the yield strain of the 

bars. Based on the observations, a smaller reinforcing steel bar can be used, particularly those 

labeled as 6P3 bars.. The measured strain in the critical reinforcement supports the idea that the 

current details used for the abutment and pile-to-abutment connection are more than adequate for 

the UHPC pile in 30º skew. 
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CHAPTER 6:  FIELD TESTING OF UHPC PILES 

From the vertical load test in Phase I of the UHPC pile project, the UHPC pile was found to have 

an 86% higher capacity than HP 10 × 57 piles due to the increased toe area. The UHPC 

production pile for Phase II was designed to be 9 ft shorter than the 65 ft long HP 10 × 57 

production pile and will be described in Section 7.2. To ensure that the 9 ft reduction in length 

would result in the UHPC production pile having the same capacity as the HP 10 × 57 

production pile, a vertical load test was performed on a UHPC test pile with the estimated 

capacity of 200 kips. A second UHPC test pile was installed with a splice to confirm the 

performance of the UHPC pile splice during driving, which was followed by a lateral load test to 

verify the laboratory testing performed on the proposed splicing detail. This chapter describes the 

design, instrumentation, pouring, installation, and testing of the two UHPC test piles at the Sac 

County bridge project site.  

6.1. Design of Test Piles 

The design length of the test piles, anchor piles, and production piles was calculated by 

following the current Iowa DOT Bridge Design Manual (2011). The predicted design capacity of 

each of the piles was calculated using DRIVEN (Matthias and Cribbs 1998), CAPWAP (Pile 

Dynamics, Inc. 2000), and one vertical load test. All of the design calculations are included in 

Appendix C, and Section 6.2 describes the instrumentation of the test piles in detail. 

The vertical load test pile, P3, was designed for a 100 kip design load based on the Iowa DOT 

Blue Book. The soil profile at the location of the vertical load test is given in Section 6.4.2. The 

required length to achieve the design load of 100 kips using the Iowa DOT resistance factors 

available at the time of design is 45 ft, with 42 ft embedded in the ground. New resistance factors 

have been established for Iowa (Green et al. 2012), which would reduce the total length to 42 ft 

with 39 ft embedded into the ground. After the vertical load test was completed, P3 was then 

used for a lateral load test. 

Two 15 ft UHPC pile sections were welded together end to end (P4) at the splice and were used 

to test the field performance of the splice in both driving and lateral loading. A push-over 

analysis check was performed using LPILE to make sure that the pile toe would not rotate. The 

estimated nominal capacity of the P4 using the Blue Book Method was 128 kips and is compared 

to the other methods in Section 2.5. 

The reaction piles were given the names reaction pile south (RPS) and reaction pile north (RPN). 

The reaction piles were designed for axial tension by using the Iowa DOT Blue Book method. 

To give the load frame a capacity of 340 kips, the piles were 80 ft in length with 73 ft embedded 

into the soil. No instrumentation was installed along the length of the anchor piles, but PDA was 

run during driving and seven restrikes were performed on these piles. In axial compression, the 

current Iowa DOT design practices predicted the capacity of the anchor piles to be 331 kips. 
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6.2. Instrumentation Scheme 

The instrumentation used to measure the strains along the length of the UHPC test piles was 

chosen to be embedded concrete strain gages, as shown in Figure 6-1.  

 

Figure 6-1. Embedded concrete strain gage 

The gages were suspended between two prestressing strands at the specified gage locations by 

wires and installed using the procedure included in Appendix D. Because both P3 and P4 would 

have lateral loads applied during the lateral load test, the embedded strain gages, as shown in 

Figure 6-2, were placed on a diagonal at each level of instrumentation to measure the curvature 

of the piles. 

 

Figure 6-2. Embedded concrete strain gage location in plan view 

Additionally, steel plates were embedded into the web of the UHPC pile to provide a surface to 

weld a steel pipe that the ShapeAccelArray (SAA) could be inserted into after driving 

(Measurand Inc. 2011). A total of twelve 2 in. by 4 in. steel plates that are ¼ in. thick with shear 

studs welded in the center were embedded into the web of P4 on one side for a total length of 20 

ft with a spacing of 18 in. except over the splice where 36 in. spacing was used. The Styrofoam 

inserts were cut at the location of the steel plates so that the plate would fit inside of the 

Styrofoam so not to reduce the area of the web too much as shown in Figure 6-3.  

Embedded Concrete 

Strain Gages

E 

W 
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Figure 6-3. Locations of steel plates embedded into P4 

The shear stud was the only part of the plate and shear stud combination that would be embedded 

in the UHPC. 

During driving, the pile driving analyzer equipment was used to measure driving stresses on P3 

and P4 and to predict the capacity of the pile using wave equation theory. In Figure 6-4, the 

conduits used to accommodate the PDA instrumentation is illustrated.  

 

Figure 6-4. Illustration of PDA instrumentation in plan view 

The strain gages and accelerometers were installed by inserting a bolt through the holes in the 

web and on the flange.  

Notice that the accelerometers were located on the flanges of the pile. This was due to the limited 

space on the web of the UHPC pile resulting from the tapered flanges. In order to make sure the 

accelerometers remained flat and tight to the pile, inclined steel brackets were used between each 

accelerometer and pile. This setup worked very well, and valuable data was collected during 

Accelerometer
Strain Transducer

Bracket
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driving of the UHPC pile. The readings were wirelessly transmitted to the PDA unit provided by 

the Iowa DOT as shown in Figure 6-5. 

 

Figure 6-5. PDA unit provided by the Iowa DOT 

6.2.1. Test Pile P3 

The instrumentation for the vertical load test pile, P3, was installed on November 18, 2011 at 

Coreslab Structures, Inc. in Bellevue, Nebraska. When the forms were set up for P3, an extra 

foot was added making the total length of the pile 46 ft. Table 6-1 lists the adjusted location and 

label for each of the 20 embedded strain gages.  

Table 6-1. Strain gage labels for test pile P3 

Location 

from pile 

head, ft Gage label 

4 ISU3-48-E ISU3-48-W 

7 ISU3-84-E ISU3-84-W 

9 ISU3-108-E ISU3-108-W 

11 ISU3-132-E ISU3-132-W 

13 ISU3-180-E ISU3-180-W 

20 ISU3-240-E ISU3-240-W 

28 ISU3-335-E ISU3-335-W 

36 ISU3-432-E ISU3-432-W 

43 ISU3-516-E ISU3-516-W 

45.25 ISU3-537-E ISU3-537-W 

 

An illustration of the vertical location of the gages is shown in Figure 6-6.  
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Figure 6-6. An elevation view of test pile P3 instrumentation 

Strain gages ISU3-537-E and ISU3-537-W were included on the toe of the pile to measure the 

end bearing component of P3 during the load test. 

6.2.2. Test Pile P4 

The instrumentation for the lateral load test pile, P4, was also installed on November 18, 2011 at 

Coreslab Structures, Inc. in Bellevue, Nebraska. Table 6-2 lists the locations and labels for all six 

of the embedded strain gages.  

Pile Head

Pile Toe

ISU3-432-E
ISU3-432-W

ISU3-537-E
ISU3-537-W

Ground

ISU3-180-E
ISU3-180-W

ISU3-108-E
ISU3-108-W

ISU3-48-E
ISU3-48-W

(4' from pile head)

Normal

Strain Gauge

PDA Accelerometers
and Transducers

(9' from pile head)

(13' from pile head)

(45.25' from pile head)

(36' from pile head)

ISU3-516-E
ISU3-516-W

(43' from pile head)

ISU3-240-E
ISU3-240-W

(20' from pile head)

ISU3-132-E
ISU3-132-W

(11' from pile head)

ISU3-84-E
ISU3-84-W

(7' from pile head)

ISU3-336-E
ISU3-336-W

(28' from pile head)

Pick- Up Point 
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Table 6-2. Strain gage labels for test pile P4 

Location 

from pile 

head, ft Gage label 

4 ISU4-48-E ISU4-48-W 

9 ISU4-108-E ISU4-108-W 

12.83 ISU4-168-E ISU4-168-W 

 

Figure 6-7 illustrates the locations of the strain gages as well as the splice in an elevation view of 

the pile.  
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Figure 6-7. An elevation view of test pile P4 

6.3. Precast Fabrication 

By nature, UHPC induces much greater stresses on the concrete mixer and formwork. Therefore, 

when mixing UHPC, the mixer will be put under higher demand than that required for normal 

Pile Toe

Ground

UHPC Splice
   15ft from pile head 

ISU4-48-E
ISU4-48-W

(4' from pile head)

Pile Head

PDA Accelerometers
and Transducers

Pick- Up Point 

ISU4-108-E
ISU4-108-W

(9' from pile head)

ISU4-168-E
ISU4-168-W

(12.83' from pile head)
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concrete. The mixer must be able to accommodate higher amounts of shear, minimum blade 

clearances, and variable speeds (Wipf et al. 2009). As a result, there are limitations on the 

volume of UHPC that can be mixed at any one time using a typical concrete mixer, which is 

often only a percentage of the rated capacity. Additionally, when preparing the formwork for 

UHPC, precautions need to be taken to prevent leaking and lifting of the forms (Wipf et al. 

2009). The leaking is prevented by sealing all of the joints and prestressing holes of the 

formwork, and lifting is prevented by fastening the forms to the precast bed.  

6.3.1. Splice Fabrication 

The UHPC pile splices were fabricated by Howe Welding and Metal Fabrication in Ames, Iowa, 

by a certified welder. The ½ in. thick end plates were cut to the same dimensions as the tapered 

H-section of the UHPC pile, holes were cut into the end plates to accommodate the diameter and 

location of the prestressing strands, and the edges of the plate were chamfered to allow for 

welding in the field. Additionally, ¼ in. thick plates were bent to form the angles that were 

welded to each corner of the splice plate, and ½ in. diameter shear studs were welded to the bent 

plates at the specified locations. Figure 6-8 shows an actual splice and Figure 6-9 illustrates the 

details of the splice. 

 

Figure 6-8. Components of UHPC pile splice attachment 

Splice End Plate 

Shear Studs 

Bent Plates 

Chamfer 

Prestressing 

Strand Holes 
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Figure 6-9. Splice design details 

Note in Figure 6-9 that all units are in inches.  

6.3.2. Casting Process 

The UHPC field test piles were cast in December of 2011 at Coreslab Structures, Inc. in 

Bellevue, Nebraska. For the two field test piles, half of the steel side forms with Styrofoam 

inserts were set up before the research team arrived. While the rest of the formwork was being 

set up, inserts to accommodate the PDA equipment were installed into the Styrofoam inserts as 

depicted in Figure 6-10.  

R.500

R.250

Shear Stud
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Figure 6-10. Tube inserts for the PDA equipment installed in ISU #3, ISU #4, and UW1-1 

The two fabricated splices were installed as shown in Figure 6-11.  

 

Figure 6-11. Splice at a UHPC pile end prior to placing the formwork 

After the splices were installed, all 10 of the prestressing strands were arranged and stressed to 

their initial prestress of 202.5 ksi, which is approximately 75% of their ultimate strength. Strain 

gages were then installed on the field test piles, and the production pile is shown in Figure 6-12 

following the instrumentation plan. 

Tube Inserts for PDA 

Equipment Installation 
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Figure 6-12. Layout of UHPC piles P3, P4, and UW1-1 

The batching of the UHPC ensued at the precaster’s batch plant in a 4.0 yd3 mixer, and 

approximately 2.75 yd3 of UHPC was produced for the pour. After completing the batching 

process the UHPC mix was transferred out of the mixer into a large bin (Figure 6-13) and 

subsequently transferred to the bed by the overhead crane.  

P4 Bottom 

UW1-1 

P4 Top 

P3 
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Figure 6-13. Transfer of UHPC from mixer to bin 

The UHPC was poured into the forms for all of the field test units and production pile as 

depicted in Figure 6-14.  
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Figure 6-14. Pouring the UHPC from the bin into the forms 

Immediately after the UHPC was poured in the forms, the top surface of the test units and 

production pile were covered with plastic wraps and traps to prevent moisture loss. 

Propane heaters were used for the initial curing at 86°F. Along with the test units, twelve 3 in. 

diameter UHPC cylinders were cast with the pour. The precaster tested cylinders periodically 

during the initial curing of UHPC to determine the compressive strength of the mix. After 

reaching a compressive strength of 14 ksi, the prestressing strands were cut at the member ends. 

6.3.3. Details of Field Test Piles Pour 

Test Pile P3 

Test pile P3 was poured on November 21, 2011 at Coreslab Structures, Inc in Bellevue, 

Nebraska. The UHPC used for P3 had clumps of cement as shown Figure 6-15.  



 

146 

 

Figure 6-15. Clumps in UHPC after batching for the 11/21/2011 pour 

The clumps are thought to have been caused by the age of the Ductal material, and the clumps 

came from the bags at the bottom of the pallet used to store the UHPC mix. 

Once the concrete was batched and transported to the casting bed, the UHPC was poured into the 

forms. As the forms began to be filled with UHPC, the formwork shifted, and UHPC leaked out 

from underneath the formwork and caused the forms to start floating as shown in Figure 6-16.  

 

Figure 6-16. Steel forms beginning to tilt causing UHPC to leak 
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The concreting was paused to reposition the forms and weigh them down, so they would stop 

floating. To weigh the forms down back into position, rolls of prestressing strands and large 

concrete blocks were lifted by the crane and placed on top of the formwork. There was a waiting 

time of about 55 minutes before pouring continued. The UHPC left inside of the forms was raked 

to join the two layers together. 

After the forms were stripped, some noticeable defects were found. Figure 6-17 indicates that the 

Styrofoam portion of the form became detached and began to float for one of the form sections.  

 

Figure 6-17. Change in the flange thickness of P3 

No cracking from the prestressing was found on the top side where the flange was only 1 in. 

thick instead of the specified 1.8 in. It was decided to use P3 for field testing even with the 

identified defects. 

UHPC Pile P4 

Due to the complications that happened during the pour of P3, there was not enough UHPC to 

complete the pour of P4. Therefore, P4 was poured on November 22, 2011. The forms were 

reinforced to prevent shifting and floating.  

The amount of UHPC needed to pour P4 was 0.6 yd3 and was smaller than the minimum amount 

of concrete required for the 4 yd3 mixer. Therefore, the small 1 yd3 mixer was used at Coreslab. 

The mixer stopped due to the high demands of the UHPC on the mixer, as predicted by Wipf et 

al. (2009). To resolve the issue, 75% of the materials were removed from the mixer and stored in 

5 gallon buckets so that the mixer could be restarted. When the material within the mixer became 

fluid, the removed mix was added back to the mixer one 5 gallon bucket at a time until all of the 

material was added and mixed. 
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6.3.4. Steam Curing 

After the release of the prestressing strands in P3 and P4, the test piles were steam cured with 

UW1-1 at 194°F for 48 hours at the precasting plant. All 20 gages in P3 and 6 gages in P4 were 

working after the steam curing.  

6.3.5. Handling of UHPC Test Piles 

For the field test piles, lifting hooks were designed as shown in Figure 6-18 and Figure 6-19.  

 

Figure 6-18. Locations of pickup points 

 

Figure 6-19. Original pickup point design for field installation 

The lifting hook was placed 1.5 ft away from the pile head. Coreslab added an additional hook at 

the pile toe for easy storage and transportation out of the precast bed and to the construction site. 

Note that this pile handling detail required revision, which is presented in Section 7.4.6.  

6.3.6. Material Properties 

Prestressing Strands 

Three 5 ft sections of the 270 ksi low-relaxation prestressing strands were cut from the 

prestressing strand roll used for the test piles and the first production pile. The three strand 

sections were tested in uniaxial tension at ISU until reaching the yield stress. Figure 6-20 shows 

the stress-strain response of the specimens.  

Pile Head Pile Toe

Concrete Surface

 #3Rebar
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Figure 6-20. Stress-strain response of prestressing steel used in P3, P4, and UW1-1 

The continuous lines are where the strain was directly measured and recorded by the data 

acquisition system, and the dashed lines are where the strain was calculated by taking the change 

in length of the specimen divided by the original length. The average yield stress was found to be 

250.5 ksi, and the average modulus of elasticity is 29,449 ksi. 

UHPC 

The 3 in. diameter cylinders were cast and cured with the UHPC test piles and were tested in 

compression by Coreslab Structures, Inc. The measured strength of six of the cylinders is given 

in Table 6-3.  

Table 6-3. UHPC compressive strength at 46 days for UHPC Piles P3, P4, and UW1-1 

Cylinder # f′c, ksi 

1 26.9 

2 25.9 

3 26.9 

4 26.6 

5 27.3 

6 26.0 

Average 26.6 

 

The design strength of 26 ksi for the UHPC mix was achieved. The elastic modulus for the test 

piles was calculated using equation (2-2) from Section 2.3.4. The resulting elastic modulus was 

7,502 ksi. 
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6.4. Driving of UHPC Test Piles 

6.4.1. Test Site 

The site for testing piles P3 and P4 was located on the same side of the bridge where the 

production UHPC pile would be installed to verify the capacity of the shortened UHPC 

production pile with respect to the production steel HP 10 × 57 piles. Figure 6-21 shows the 

approximate location relative to the Sac County bridge. 

 

Figure 6-21. Location of test pile 

6.4.2. Soil Profile 

One standard penetration test (SPT) and one cone penetration test (CPT) were conducted by the 

Iowa State research team at the location of the test piles. The SPT was performed by TEAM 

Services on August 4, 2011, and the CPT was performed by Geotechnical Services, Inc. on 

August 10, 2011. 

The soil at the Sac County bridge site consisted of cohesive clay and silty clay. The water table 

was located at a depth of approximately 20.50 ft according to the Iowa DOT soil report for 

borehole F-1219 near the west abutment of the westbound bridge. Figure 6-22 presents the toe 

resistance and side resistance from the CPT test while the soil classification reported by the Iowa 

DOT based on SPT and the classification by TEAM Services based on the CPT test and key soil 

properties are presented in Table 6-4.  

Location 
US 20 over US 71 

T 86N R37W 

Section 4 

Boyer Valley Township 

Sac County 

P3 and P4 Test Site 
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Figure 6-22. CPT and SPT data at the test pile location at the Sac County bridge site 

Table 6-4. Undrained shear strengths and friction angles calculated from CPT data 

Soil classification 

Depth to bottom 

of layer, ft 

Undrained shear 

strength, psi 

Friction angle, 

degrees 

Clay 4.43 11.52 34.9 

Clayey silt to silty clay 10.66 28.02 35.8 

Clayey silt to silty clay 16.4 31.07 34.9 

Clayey silt to silty clay 17.88 41.66 35.8 

Silty clay to clay 19.03 33.07 34.6 

Sandy silt to clayey silt 55.12 31.45 32.9 

 

Table 6-4 shows the undrained shear strength and friction angle for each soil layer, which was 

calculated from the CPT test results. The undrained shear strength and friction angle for each 

layer was calculated by using an empirically based approach described by Lunne et al. (1997).  

6.4.3. Driving System 

The HP 12 × 53 anchor piles were driven first, followed by P3, and then P4 at the locations 

indicated in Figure 6-23.  
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Figure 6-23. Locations of test piles P3 and P4 in plan view 

A 4 in. thick plywood cushion with horizontal grain was used while driving P3 and P4. Even 

though the drivability analysis described in the following section indicated UHPC pile stresses 

during driving would be well within the allowable stress values with no pile cushion at the 

maximum hammer stroke, the pile cushion was used for the UHPC piles as a precautionary 

measure. 

6.4.4. Drivability Analysis 

In addition to the mentioned hammer properties in Section 6.4.3, an elastic modulus of 530 ksi 

and a coefficient of restitution of 0.8 were assumed for the hammer cushion. The elastic modulus 

and the coefficient of restitution for the plywood pile cushion used on the UHPC piles were 

assumed to be 30 ksi and 0.4, respectively, following Iowa DOT guidelines (Dirks and Kam 

2003). The percent shaft resistance on the UHPC test piles and steel anchor piles was calculated 

using the undrained shear strength and friction angles calculated for the average CPT results 

using the FHWA computer program DRIVEN (Matthias and Cribbs 1998). The drivability 

analysis was conducted using GRLWEAP, and the maximum predicted stresses during driving 

for the UHPC and steel piles are shown in Table 6-5, which shows that both the tensile and 

compressive driving stresses for the test piles were well within the limits for UHPC. 

9 6 .00' '9 6 .00' '

HP 12x53
Anchor Pile

HP 12x53
Anchor PileAxial Load Test Pile 

UHPC Pile

Total Pile Length = 45 ft

(with 42 ft driven into the ground)

Total Pile Length = 80 ft

(with 73 ft driven into the ground)

Total Pile Length = 80 ft

(with 73 ft driven into the ground)

Splice Test Pile 

UHPC Pile

Total Pile Length = 30 ft

(with 27 ft driven into the ground)

Splice Location = 12 ft from ground surface
4

8
.0

0

P3 

P4 
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Table 6-5. Predicted maximum stresses during driving of the UHPC test piles and steel 

anchor piles 

Pile 

Maximum 

stress, ksi 

Predicted 

RPS 
Compressive stress 29.4 

Tensile stress 1.7 

RPN 
Compressive stress 29.4 

Tensile stress 1.7 

P3 
Compressive stress 7.2 

Tensile stress 0.1 

P4 
Compressive stress 5.9 

Tensile stress 0.0 

 

6.4.5. Driving Process 

The first 40 ft of RPS was driven at the Sac County test site on December 6, 2011. The second 

40 ft of RPS and both sections of RPN were driven on December 7, 2011. P3 and P4 were both 

driven on December 8, 2011. PDA equipment was used to monitor the driving of the HP 12 × 53 

anchor piles, P3, and P4. Five restrikes were performed on the RPS, RPN, P3, and P4 at 5 

minutes, 1 hour, 1 day, 3 days, and 7 days after the end of drive (EOD). 

Steel Anchor Piles 

The PDA equipment was bolted to the anchor piles while the pile was lying on the ground. In 

order to bolt the PDA equipment to the pile, five 3/8 in. diameter holes had to be drilled in the 

steel. Once completed, the steel piles were lifted into position by cutting a hole in the web and 

passing a crane hook through it. The pile was lifted to a vertical position while a second crane 

had the hammer leads. The steel piles were positioned inside the hammer leads at the correct 

location, and the helmet was placed on the top of the steel pile. When the leads, hammer, and 

pile were in place, the ram of the hammer was lifted manually by the crane and dropped. 

Since the anchor piles were specified to be 80 ft in length, two 40 ft sections were spliced 

together for the anchor pile. After the first 40 ft section was installed, the second 40 ft section 

was picked up by the crane, and the two piles were spliced together by a butt-weld shown in 

Figure 6-24.  
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Figure 6-24. Steel HP 12 × 53 butt-weld splice 

Once the welding was completed, the hammer was placed back on the pile and driving was 

resumed. 

At the end of drive, both anchor piles, RPS and RPN, experienced minimal local buckling or 

bending of the flanges near the pile head. The top 12 in. were cut off as planned after the 

restrikes were performed to provide a level and even surface for the load frame to rest on.  

UHPC Test Piles 

Before P4 was installed, the two 15 ft long pieces were welded together horizontally on the 

ground as shown in Figure 6-25a.  

 

Figure 6-25. (a) Splicing of P4 horizontally on the ground and (b) after installing the steel 

pipe for the SAA equipment to P4 

Once the splice was complete, the steel pipe for the SAA equipment was welded to the web of 

P4 so that it could be driven alongside the test pile as shown in Figure 6-25b. 

a) b) 
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The lifting hook cast into the UHPC piles to allow the piles to be raised into position with a 

lifting chain, similar to steel piles, was not used. Instead, a lifting strap was used to hold the head 

of the pile and insert the UHPC pile into the hammer leads lifted with the second crane. 

The installation of the UHPC test piles was similar to that of the steel anchor piles. The low soil 

resistance at the beginning of driving required the ram to be raised manually several times before 

the hammer was able to develop enough combustion pressure to run continuously. PDA 

equipment monitored the driving of P3 and P4. During driving of P3, the bolt holding the 

accelerometer to the pile sheared off as the foot of the leads slid along the pile when the pile 

reached an embedment length of 38 ft. Driving was stopped temporarily to reattach the 

accelerometer with a new bolt. Precautions were taken from then on to ensure that the leads did 

not slide along the pile. 

A 4 in. plywood pile cushion was used for the UHPC test piles, but both P3 and P4 punched 

through the pile cushion shortly after driving had begun. Instead of replacing the cushion with a 

new cushion, the pile was driven with essentially no cushion based on the experience in Phase I 

(Vande Voort et al. 2008). There was slight damage to P3 and no visible damage to P4 as shown 

in Figure 6-26 and Figure 6-27, respectively.  

 

Figure 6-26. Slight damage observed to P3 pile head after driving the pile in place 
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Figure 6-27. No visible damage on P4 pile head after driving 

The reason for the damage to P3 was the pile head was not perfectly centered under the helmet. 

It is also important to note that P3 tilted slightly during driving. 

Strain readings were taken for each pile after driving. All of the strain gages in P3 and P4 were 

working after driving, giving an overall instrumentation success rate of 100%. Strains remained 

virtually unchanged from measurements taken shortly before driving, indicating minimal 

residual stresses in the piles. Overall, the UHPC test piles performed extremely well during 

driving. 

6.4.6. PDA Results 

Steel Anchor Piles 

The PDA confirmed that both anchor piles were not damaged during driving based on the shape 

of the force and velocity wave recorded at the pile head. The maximum compressive stress 

developed in RPS during driving was 28.5 ksi, and the maximum tensile stress was 1.2 ksi. The 

drivability analysis reported in Section 6.4.4, calculated the compressive stress with an error of 

3.2%. The tension stress was underestimated by the drivability analysis but was still well below 

the allowable tensile stresses of 45 ksi for the south anchor pile. The CAPWAP results indicated 

the total capacity of RPS to be 369.3 kips with a Case damping factor of 0.242. 

RPN had a maximum compressive stress during driving of 30.8 ksi, and the maximum tensile 

stress was 1.7 ksi. The drivability analysis reported in Section 6.4.4, calculated the compressive 

stress with an error of 4.5%. The drivability analysis predicted the maximum tensile stress with 
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0% error. The PDA results gave a total capacity of the RPN of 373 kips with a Case damping 

factor of 0.219. 

UHPC Test Piles 

P3 had a maximum measured compressive stress during driving of 5.4 ksi, and the maximum 

measured tensile stress was 0.2 ksi, which was measured by the PDA equipment attached near 

the pile head as shown in Figure 6-28.  

 

Figure 6-28. Attached PDA equipment during the installation of P3 

The drivability analysis reported in Section 6.4.4 over-predicted the compressive stress with an 

error of 33%. The tension stress was underestimated by the drivability analysis by 0.1 ksi and 

was still well below the pile’s allowable tensile stress of 5.40 ksi. The PDA results gave a total 

capacity of 278.6 kips with a Case damping factor of 0.266. 

P4 had a maximum compressive stress of 5.7 ksi, and the maximum tensile stress was 0.1 ksi 

during driving. The drivability analysis reported in Section 6.4.4, calculated the compressive 

stress with an error of 26.3%. The pile’s tension stress was underestimated again only by 0.1 ksi 

and was still well below the allowable tensile stress of 5.4 ksi. The PDA results gave a total 

capacity of 170.1 kips with a Case damping factor of 0.083. 
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6.5. Vertical Load Test 

6.5.1. Load Frame and Test Setup 

The vertical load test was performed on P3 on December 16, 2011. Top and profile views of the 

test frame are shown in Figure 6-29 and Figure 6-30, respectively.  
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Figure 6-29. Top view of vertical load test setup  

Note in the figure that all dimensions are in inches. 
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Figure 6-30. Elevation view of vertical load test reaction frame 



 

161 

After the seven-day restrike, the top 12 in. was cut off of the anchor piles and two shorter HP 10 

× 57 pieces were welded to each of the anchor piles. The main reaction beam was lifted and 

placed on the protruding flanges of the pile’s shorter side pieces. The 3 in. diameter rods were 

lowered through the holes in the height adjusters and clamping beams and through the spaces 

between each side pile piece web and each corresponding anchor pile web. Finally, sleeved rod 

nuts were tightened against the bottom plate directly underneath each side pile piece. The 

completed load frame is shown in Figure 6-31. 

 

Figure 6-31. Completed axial load test setup 

A hydraulic jack was used to apply a vertical load on P3 and imposed an equal and opposite load 

upward on the main reaction beam. The main reaction beam reacted upward against the clamping 

beams and transferred to the 3 in. diameter rods on either side of the main reaction beam. The 

rods reacted against the plates on the bottoms of each side pile piece, and the welds transferred 

the vertical load from the side pile pieces to the anchor piles and then to the soil. The anchor 

piles were subjected to axial tension throughout the test. 

The load capacity of the test frame was controlled by the friction capacity of the anchor piles. 

Using a safety factor of two on the capacity of the anchor piles, the maximum load that could be 

applied to P3 was 340 kips. If the friction capacity of the anchor piles was not exceeded first, the 

load test frame could be used to apply a load of 680 kips to P3, which would be controlled by the 

tension capacity of the 3 in. diameter rods. 

Load Cell 
Steel Spacer 

Actuator 
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A 200 ton hydraulic jack was used to apply the vertical load on P3, and a 400 kip load cell was 

used to measure the applied load as shown in Figure 6-32.  

 

Figure 6-32. Vertical load testing equipment 

Four 10 in. stroke displacement transducers were used to measure the vertical displacement at 

the top of P3 (Figure 6-33).  

Actuator 

Steel Spacer 

Load Cell 
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Figure 6-33. Displacement transducers 

These transducers were mounted on 2 x 4 in. wooden reference beams, which were supported 

approximately 6 in. away from the pile on either side by attachment to short ladders. This set-up 

allowed for the pile displacement to be measured independent of the test load frame. The 

displacement transducers were attached to the top of the pile using eye hooks screwed into 

wooden pieces and glued with epoxy to the test pile in the field. 

All embedded concrete strain gages in P3 were functioning and were zeroed before the load test 

began. The gages were used to calculate strains at various depths throughout the pile. Data from 

the load cell, deflection transducers, and strain gages were collected using a Megadac data 

acquisition system as shown in Figure 6-34. 

 

Figure 6-34. Data acquisition system 

Displacement 

Transducer 

Eye Hook 



 

164 

6.5.2. Test Procedure 

The vertical load test was completed following “Procedure A: Quick Test” as outlined in ASTM 

D1143/D1143M-07. Accordingly, the test pile was loaded in 5% increments up to the anticipated 

failure load. The load was kept relatively constant during each load step until deflection readings 

had stabilized, which was specified as a minimum of 5 to 15 minutes for each step. Deflection, 

strain, and load measurements were recorded electronically every second. To estimate when 

failure occurred, the load-displacement behavior of P3 was monitored at each load step by hand. 

The Davisson failure criterion (1972) was used to determine the ultimate capacity of the pile and 

terminate the vertical load test. P3 was unloaded in five equal steps. 

The vertical load test on P3 was performed on December 16, 2011 at the Sac County site near the 

west abutment of the westbound bridge. The calculated failure loads for P3 was approximately 

200 kips according the Iowa DOT Blue Book Method and 216 kips from the DRIVEN computer 

software. The undrained shear strengths from averaged CPT results was used as input for the soil 

conditions within DRIVEN. A maximum load of 200 kips was planned for the test. The actual 

loading sequence of P3 is given in Table 6-6. 
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Table 6-6. Vertical load test step for P3 

Approximate 

% of predicted 

failure load 

Load 

applied, kips 

Load 

duration, 

min 

5 10 15 

10 20 15 

15 30 15 

20 40 10 

25 50 5 

30 60 5 

35 70 5 

40 80 5 

45 90 5 

50 100 5 

55 110 5 

60 120 5 

65 130 5 

70 140 5 

75 150 5 

80 160 5 

85 170 5 

90 180 5 

95 190 5 

100 200 5 

Overloading 210 5 

Overloading 220 5 

Overloading 230 5 

Overloading 240 5 

Overloading 250 5 

Overloading 260 5 

Overloading 270 5 

Overloading 280 5 

Overloading 290 5 

Overloading 297 5 

Unloading 270 5 

Unloading 240 5 

Unloading 210 5 

Unloading 180 5 

Unloading 150 5 

Unloading 120 5 

Unloading 90 5 

Unloading 60 5 

Unloading 30 5 

Unloading 0 - 
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The anchor piles did not show noticeable movement at the planned maximum load of 200 kips, 

so the load on P3 was increased further using the same loading increments of 10 kips until a final 

load of 300 kips. After the final load was reached, the pile was unloaded in 30 kip increments. 

6.5.3. Observations and Test Results 

Load-Displacement 

The load-displacement behavior of P3 is given in Figure 6-35.  

 

Figure 6-35. Observed load-displacement behavior for the vertical load test of P3 

P3 was loaded to a maximum value of 297.25 kips and underwent a maximum downward 

displacement of 0.65 in. during this load step. The test pile continued its downward displacement 

for the first unloading step and reached a maximum downward displacement of 0.71 in. 

A permanent vertical displacement of 0.42 in. of the test pile was recorded 3 minutes after the 

unloading procedure was completed. The relationship between load and displacement can be 

represented by connecting the average load and average displacement for each load step as 

illustrated in Figure 6-36.  
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Figure 6-36. Load-displacement behavior established from the maximum load points and 

Davisson failure criterion for the vertical load test of P3 

The pile axial stiffness was calculated using equation (6-1) and is shown in Figure 6-36, along 

with the Davisson failure criterion line, which was calculated using equation (6-2) (Davisson 

1972). The load at the point where the Davisson failure criterion crosses the measured load-

displacement curve is the capacity of the pile. The results from the vertical load test found the 

capacity of P3 to be 297 kips.  

∆𝑘=
𝑃𝐿

𝐴𝐸
 (6-1) 

where, 

P = axial load, kips 

L = length of pile, in. 

A = cross-sectional area, in.2 

E = modulus of elasticity, ksi 

∆𝐷𝑎𝑣𝑖𝑠𝑠𝑜𝑛=
𝑃𝐿

𝐴𝐸
+ 0.15 +

𝐷

120
  (6-2) 

where, 

D = diameter of pile, in. 
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Load Transfer 

The strain gages embedded along the length of P3 provided information about the skin friction 

along the pile. Figure 6-37 shows the average calculated load transfer along the length of the pile 

from the measured strains.  

 

Figure 6-37. Measured force transfer response of P3 during the vertical load test 
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The maximum vertical load applied to P3 was 297.25 kips. In comparison, from the force 

transfer estimated from the strain gage data, a maximum load of 220 kips determined at the gage 

location 4 ft from the pile head, which is right at the ground surface.  

There are some possible reasons that the load transfer obtained at the ground surface does not 

match the measured applied load. One such reason could be due to the prefabrication process. 

The embedded strain gages were hung between two prestressing strands as shown in Figure 6-38.  

 

Figure 6-38. Suspended embedded strain gages 

When UHPC was poured, the gages could have tilted in the y-direction or shifted in the x-

direction, causing the gage to be subjected to bending. Also, when the gage shifts the distance 

from the gage to the neutral axis changes from the specified distance and could be different for 

every gage.  

As mentioned in Section 6.4.4, there were some defects in the pile from the prefabrication 

process. One of the defects is an inconsistent flange thickness near the pile head, which could 

cause a change in stiffness and an unsymmetrical cross-section. 

There was also an issue with the test set-up and installation of P3. The test pile was installed very 

close to two push-in pressure cells as shown in Figure 6-39.  
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Figure 6-39. Locations of push-in pressure cells 

To install the push-in pressure cells, 4 in. diameter holes were drilled, and the cells were pushed 

to the specified depth. The depth of one of the push-in pressure cells was 15 ft and the other was 

20 ft from the ground surface. The proximity of these cells may have led to a reduction of the 

skin resistance along the pile, resulting in some eccentricity as a result of the non-uniform forces 

resisting the vertical load. In addition to the push-in pressure cells, it is worth noting that a void 

filled with water around P3 was formed due to driving as shown in Figure 6-40.  

 

Figure 6-40. Void that formed from installation of P3 

The depth of the void was measured to be 5 ft deep from the ground surface. 

After the installation was complete, it was noticed that the pile was not installed vertically, but at 

an angle in both the x-axis and y-axis direction. Figure 6-41a and b show the tilt of P3 in the 

strong-axis and weak-axis direction, respectively.  

D = 10" W

E

3" 

Prebore Hole for Push-in 

Pressure Cells (15-ft)

Prebore Hole for Push-in 

Pressure Cells (20-ft)

N 



 

171 

   

Figure 6-41. Tilt of P3 after driving in the (a) weak-axis and (b) strong-axis direction 

The angle causes load that is measured by the load cell to be the resultant force of two force 

components, vertical (Pv) and horizontal (Ph) as illustrated in Figure 6-42a and b. When testing to 

vertical loads, a moment is induced due to horizontal force Ph. 

a) b) 
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Figure 6-42. Components of applied load during vertical load test in the (a) weak-axis and 

(b) strong-axis direction 

There was another issue during testing, which is due to the actuator being not positioned exactly 

on the center of the pile. This caused the vertical force to be applied with an eccentricity. There 

was an eccentricity in the x-axis and y-axis directions, which are also shown in Figure 6-41a and 

b, respectively. 

To ensure that the measured applied load was accurate, the load cell was tested on April 23, 2012 

with the universal compression machine in the ISU laboratory. The load cell had a 100 kip 

compression load applied to it and measured 99.9 kips, which resulted in an error of 0.1%. 

Using estimated unit skin friction values, the load transfer curve was corrected to reflect the 

actual load that was applied to the pile head. Figure 6-43 shows the measured loads along the 

length of the pile as solid lines, and the corrected portions of the load transfer are shown as a 

dashed line.  

b) a) 
Applied Load Applied Load Pv Pv 

Ph 
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Figure 6-43. Measured and corrected load-transfer curves for three load steps 

Only the 100, 200, and 300 kip load steps are shown in this figure. 

6.6. Lateral Load Test 

6.6.1. Test Setup 

The UHPC test piles, P3 and P4, underwent a lateral load test on December 19, 2011. For the 

test, P3 was in strong-axis bending while P4 was in weak-axis bending and included a splice at 

15 ft from the pile head. The elevation view of the setup for the designed lateral load test is 

shown in Figure 6-44.  
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Figure 6-44. Elevation view of lateral load test setup 

The field measurements identified that P3 had 3.83 ft exposed above the ground surface, and P4 

had 2.98 ft exposed above the ground surface after driving and the specified restrikes.  

A 100 kips actuator was used to apply the lateral load to P3 and P4 simultaneously. The actuator 

was clamped to P3 14.5 in. below the pile head and a steel spacer was clamped to P4 8 in. from 

the pile head. A 300 kips load cell was used to measure the applied load, which was positioned in 

line with the actuator and steel spacer. The actuator, load cell, and steel spacer are identified in 

Figure 6-45. 

 

Figure 6-45. Setup used for the lateral load test 

Two 10 in. displacement transducers were used to measure the lateral displacement at the top of 

each pile. The transducers were completely extended at the beginning of the test and were 

mounted to 2 x 4 in. wooden reference beams, which were supported approximately 1 ft from 

each of the piles on short ladders. The transducers were connected to the top of the pile using eye 

hooks screwed into wooden pieces glued to the pile head, as shown in Figure 6-46.  
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Figure 6-46. Displacement transducers and eye hooks mounted to P4 

Test data on the UHPC piles were measured independently from each other as illustrated in 

Figure 6-47. 

 

Figure 6-47. Illustration of eye hook and SAA Instrumentation location 

A new piece of equipment was purchased to measure the displacement along the length of P4, 

which is called the SAA. The SAA was inserted into a steel tube that was welded to the 

embedded plates. The SAA ran along the east side of P4 as illustrated in Figure 6-47 for 20 ft. 

Three dimensional displacements and rotations were read starting 34.25 in. from the pile head. 

The x-axis of the SAA was lined up with the lateral force direction. 

Throughout the length of pile P3, the top nine levels of embedded concrete gages had strain 

measurements recorded, while P4 had only three levels of gages providing strain measurements 

only along the upper portion of the P4. Data from the load cell, deflection transducers, and strain 

gages were collected using the Megadac data acquisition system, and the data from the SAA 

instrument was collected using the CR-1000 data logger. 
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6.6.2. Test Procedure 

The lateral load test was completed following “Procedure A: Standard Loading” of ASTM 

D3966-07. The procedure recommends applying a test load equal to 200% of the proposed pile 

lateral design load unless failure occurs first. Table 6-7 details the load steps used during the 

lateral load test.  

Table 6-7. Lateral load sequence 

% of design 

load 

Load duration, 

min 

0 10 

25 10 

50 15 

75 20 

100 20 

125 20 

150 20 

170 20 

180 20 

190 20 

200 60 

150 10 

100 10 

50 10 

0 - 

 

A design load of 10 kips was used for the test. 

To apply the lateral load to the UHPC test piles, a manual hydraulic jack was used for the test. 

During each load step, the load was kept relatively constant until deflection measurements had 

stabilized for a minimum duration of 10 minutes or a maximum duration of 20 minutes required 

by ASTM D3966-07. Deflection, strain, and load readings were electronically recorded once 

every second.  

6.6.3. Observations and Test Results 

The first part of the lateral load sequence used to test the UHPC piles is shown in Table 6-8, 

which consisted of force-controlled load steps.  
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Table 6-8. Force-control loading sequence during cycle 1 of the lateral load test 

Lateral 

load, kips 

Load duration, 

min 

2.5 10 

5.0 10 

7.5 15 

10.0 20 

12.5 20 

15.0 23 

17.0 23 

18.0 21 

19.0 21 

20.0 24 

15.0 10 

10.0 10 

5.0 10 

0.0 - 

 

For the remaining cycles, the piles were displacement-controlled based on the measurements 

taken from test pile, P4, and is outlined in Table 6-9.  

Table 6-9. Displacement-controlled loading sequence during load step 2 through 4 of the 

lateral load test 

Load step 

Lateral 

displacement, in. 

Lateral 

load, kips 

2 4 6.1 

3 7 9.5 

4 10 16.2 

 

Between each cycle the UHPC test piles were unloaded to 0 kips of lateral load. 

The actual applied loads varied slightly from those shown in Table 6-8. Since the manual 

hydraulic pump was used, the loads were applied very slowly. A combination of minor leakage 

in the hydraulic system and soil creep caused the applied load at each load step to drop slightly 

over the duration of each load step. The magnitude of the load reduction increased with 

increasing load step duration and applied load. 

P3 

P3 was tested in strong-axis bending during the lateral load test. The resulting force-

displacement curve is given in Figure 6-48.  
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Figure 6-48. Force-displacement response of P3 during lateral load test 

The pile was subjected to a maximum load of 20.6 kips with a lateral displacement of 1.7 in. A 

residual displacement of 0.08 in. was recorded after the pile was unloaded for the first cycle and 

a total residual displacement of 0.03 in. after all of the cycles were completed. 

The tensile strain and compressive strain measurements along the length of the pile were 

obtained from the embedded strain gages. The information from the gages was used to calculate 

the bending moment resulting from the lateral loading on the pile. Two gages on the tension side 

of the pile stopped working during the test. Figure 6-49 shows the measured tensile strain 

compared to the measured compressive strain at the top six levels of strain gages in P3.  
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Figure 6-49. Measured compression strain compared to measured tensile strain for top six 

levels of strain gages from P3 during the lateral load test 

As expected, the magnitude of strains in tension and compression are comparable, confirming 

the elastic response of the pile.  
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Table 6-10 identifies the lateral load and strain reading at which the embedded concrete gages 

stopped working.  

Table 6-10. P3 gages that stopped working during lateral load test 

Gage 

Lateral 

load, kips 

Strain, 

microstrain 

P3-108-E 17.2 511 

P3-84-E 18.7 643 

 

The broken gages were identified by a large, sudden jump of two orders of magnitude in the 

strain value. The information collected after the gages stopped working was discarded. 

P4 

The test pile, P4, was tested in weak-axis bending, and exhibited a greatly reduced stiffness 

compared to P3 as expected. Figure 6-50 shows the pile’s force-displacement curve.  

 

Figure 6-50. Force-displacement response of P4 during lateral load test 

The pile was subjected to a maximum load of 20.6 kips with a corresponding lateral 

displacement of 8.3 in. during the first cycle. The maximum displacement achieved in the pile 

was 10 in. of lateral displacement. There was noticeable heaving of the soil on one side of the 

pile during the test, as shown in Figure 6-51.  

Lateral Displacement, in. 

 L
at

er
al

 F
o

rc
e,

 k
ip

s 



 

181 

 

Figure 6-51. Heaving of soil during lateral load test of P4 

P4 had a 0.95 in. residual displacement after the first cycle and a 2.35 in. residual displacement 

after the pile was unloaded for the final time. 

The tensile strain and compressive strain measurements along the depth of the pile were obtained 

from the embedded concrete strain gages. The information from the gages was used to calculate 

the bending moment along the length of the pile resulting from the lateral loading. Figure 6-52 

shows the tensile strain compared to the compressive strain at various strain gage levels.  

Heaving 
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Figure 6-52. Measured compression strains compared to measured tension strains for all 

three levels of strain gages in P4 during the lateral load test 

The gages embedded in P4 that stopped working during the lateral load test are identified in 

Table 6-11.  

Table 6-11. P4 gages that stopped working during lateral load test 

Gage 

Lateral 

load, kips 

Strain, 

microstrain 

P4-108-E 9.8 581 

P4-168-E 16.5 566 

 

Again, the procedure to identify these gages was to identify the time when an unrealistically 

large sudden jump in strain was recorded. The range of data identified to be unreliable was 

disregarded during the analysis. 

6.6.4. Excavation of Test Pile P4 

The visual evaluation of the splice performance in P4 during the lateral load test was done by 

excavating the soil down to the location of the splice as shown in Figure 6-53.  
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Figure 6-53. Excavation of soil surrounding P4 

The contractor tried to pull the pile out of the ground using a crane but had to terminate this plan 

because the crane was starting to tip. As a result, the excavation was completed on January 5, 

2012 and only went 12 ft below the ground surface to the location of the splice. 

A fairly large crack was discovered 9 ft from the pile head on the tension side of P4, which 

corresponded to the maximum moment location predicted in LPILE as described in Section 

6.6.5. Figure 6-54 depicts the crack on the northwest corner of P4. No damage was observed in 

the splice. 

 

Figure 6-54. Flexural crack found 9 ft from the ground surface on P4 due to the lateral load 

test 

6.6.5. LPILE Analysis 

LPILEPLUS 5.0 was used to analyze the force-displacement behavior of P3 and P4 under lateral 

loading. The average undrained shear strengths calculated from the CPT test data and the 
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moment-curvature response calculated for strong-axis and weak-axis bending at 0 kips axial load 

were used as input values into LPILE. Figure 6-55 compares the measured force-displacement 

curve of P3 to the predicted and adjusted responses calculated in LPILE.  

 

Figure 6-55. Predicted, adjusted, and measured force-displacement response of P3 during 

lateral load test 

Additionally, the predicted, adjusted, and measured responses of P4 are shown in Figure 6-56.  
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Figure 6-56. Predicted, adjusted, and measured force-displacement curve for P4 subjected 

to the lateral load test 

The predicted curve was calculated using the CPT data from the test pile location as the soil 

input in LPILE. During driving, a noticeable gap was discovered around both UHPC test piles. 

An adjusted curve was calculated to take into account the changing gap as the pile displaces 

during the lateral load test. Figure 6-55 and Figure 6-56 include the gap depth for each load step 

in inches next to the force-displacement point. 

The moment corresponding to the predicted and adjusted displacements were calculated so that 

they could be compared with the average measured moments for both P3 and P4. The average 

measured moments were calculated from the tension and compression strains, which were then 

averaged. Figure 6-57 and Figure 6-58 compare the moments calculated from the predicted and 

adjusted models for the 12.5 kips load step for P3 and P4, respectively.  

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10

L
a

te
r
a

l 
F

o
rc

e,
 k

ip
s

Lateral Displacement, in.

Measured

Predicted

Adjusted

52

52

50

45

27

14

8

4

0

52

52



 

186 

 

Figure 6-57. Predicted, adjusted, and average measured moments along the length of P3 at 

the 12.5 kip load step during the lateral load test 

 

Figure 6-58. Predicted, adjusted, and average measured moments along the length of P4 at 

the 12.5 kip load step during the lateral load test 

Appendix E include figures illustrating the predicted, adjusted, and average measured moments 

along the length of, both piles for all of the load steps.  
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Due to the small strains measured at the strain gage levels located 20 ft from the pile head and 

lower, drifts at these locations were significant. Figure 6-59 shows a strain gage located 

approximately 28 ft from the pile head as an example of the drift.  

 

Figure 6-59. Drift in embedded concrete strain gage 

In this particular case, the drift was taken into consideration and the average measured moment 

was corrected. P3 was predicted to perform well for a 12.5 kips lateral load, but P4 was predicted 

to have crack widths greater than 0.012 in. based on the moment calculated in Section 3.2.2. 

For each of the load steps, the displacements measured by the SAA were compared to the 

displacements calculated in the adjusted LPILE model. Figure 6-60 compares the predicted, 

adjusted, and measured displacements during the 12.5 kip load step for P4; the figure shows that 

the adjusted LPILE model predicts the performance of P4 very well.  

 

Figure 6-60. Measured displacements compared to adjusted displacements at the 12.5 kip 

load step during the lateral load test 
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All of the other displacement comparisons can be found in Appendix E. 

6.6.6. Splice Performance 

Since the splice was located 15 ft from the pile head on P4, it was subjected to a bending 

moment of 52.4 kip-in. and a lateral displacement of 0.08 in. as shown in Figure 6-58 and Figure 

6-60, respectively. The predicted shear profile along the length of P4 for the 12.5 kip lateral load 

step is given in Figure 6-61, which indicates the splice would be subjected to a shear force of 

about 24 kips.  

 

Figure 6-61. Adjusted shear along P4 during 12.5 kip load step of lateral load test 

As mentioned in Section 6.6.4, no visible damage from driving or the lateral load test was found 

on or near the splice after excavation. The splice was subjected to compressive stresses of 5.7 ksi 

and tensile stress of 0.1 ksi during driving. Due to a mismatch between design and installation, 

the splice was driven to 12 ft below the ground surface instead of the required 9 ft embedment. 

The drawings in the chapter were changed to reflect the in-situ condition. As a result, the splice 

was only subjected to 2.6 kips of shear, 52.4 kip-in. of bending moment, and 0.1 in. of lateral 

displacement.  

At the splice, P4 was subjected to a maximum shear force of 2.6 kips during the lateral load test. 

In the laboratory, a similar splice was subjected to additional shear and bending tests. The splice 

proved very robust with a shear capacity of 45 kips, which exceeds the maximum shear demand 

from the lateral load field test of 20.6 kips by 118% (Sritharan et al. 2012). When considering the 

field test with the laboratory results, the performance of the splice in the field can be expected to 

meet the required shear and moment demands even under extreme field conditions. 
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CHAPTER 7: FIELD IMPLEMENTATION AND MONITORING OF A UHPC 

PRODUCTION PILE 

Following successful development of the UHPC pile and its connections, the evaluation of the 

performance of a UHPC production pile in a constructed bridge over a period of time was the 

next step. The overall goal of this exercise was to determine the suitability of UHPC piles in 

integral bridge foundations as well as the ability of these piles to sustain cyclic lateral 

movements resulting from time dependent movements including those due to thermal effects. 

This task was investigated as part of this project by replacing a steel HP 10 × 57 pile with an 

equivalent UHPC pile during construction of a new bridge. 

7.1. Bridge Site 

A suitable new or replacement bridge site for installing the UHPC production pile, identified as 

UW1, was selected using the following criteria: (1) the bridge must use an integral abutment, (2) 

the length should be in excess of 200 ft, and (3) the foundation soil type should be less favorable 

for pile movement. The Sac County bridge was chosen as the site for the UHPC production pile 

(UW1) because the bridge’s geometry, soil conditions, and construction timeline met the criteria 

being sought. The site is just north of Early, Iowa, at the intersection of US 20 over US 71.  

7.1.1. Bridge Geometry 

The bridge is a 223 ft long and 40 ft wide with a 24º skew. The bridge consists of three spans, 

and the span lengths are 55 ft 9 in., 106 ft 6 in., and 60 ft 9 in. from west to east. HP 10 × 57 

steel piles were designed to support the two abutments and the two bridge piers.  

7.1.2. Soil Conditions 

SPT information at the abutment with the UHPC production pile was obtained from the Iowa 

DOT. The identification (ID) number for the SPT borehole that was used for design of the HP 10 

× 57 production piles was F-1219. A CPT was performed on the west abutment of the westbound 

bridge by Geotechnical Services, Inc., on August 10, 2011 at the request of the ISU research 

team to better classify the soil profile at the location of the UHPC production pile. The soil 

consisted of cohesive clay and silty clay with the water table located at a depth of approximately 

20.50 ft according to the Iowa DOT soil report for borehole F-1219. 

The variation of blow counts with respect to depth reported by Iowa DOT is shown in Figure 7-1 

and is compared with the CPT results.  
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Figure 7-1. CPT and SPT results for the west abutment of the westbound bridge at the Sac 

County site 

Table 7-1 summarizes the undrained shear strength and friction angle for each soil layer, which 

is calculated using an empirically based approach described by Lunne et al. (1997) and taking the 

average of properties for each soil layer. 

Table 7-1. Undrained shear strengths and friction angles calculated from the CPT data for 

the west abutment 

Soil classification 

Depth to bottom 

of layer, ft 

Undrained shear 

strength, psi 

Friction angle, 

degrees 

Clay 25.75 19.27 33.0 

Silty clay to clay 28.54 8.87 27.9 

Sandy silty to clayey silt 33.46 25.23 31.8 

Clayey silt to silty clay 38.39 31.59 32.8 

Clayey silt to silty clay 48.23 33.84 32.8 

Sandy silt to clayey silt 69.72 32.18 31.9 

 

7.2. Design of Production Piles 

The steel HP 10 × 57 piles were designed for 100 kips of vertical load using the Iowa DOT Blue 

Book Method outlined in Section 2.5. The production pile, UW1, was to replace one of the HP 
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10 × 57 piles on the west abutment of the westbound bridge. As a result, UW1 was also designed 

for a 100 kip vertical load. The predicted design capacity of each of the piles was also calculated 

using DRIVEN 1.0 (Matthias and Cribbs 1998) and CAPWAP (PDI 2000). The location of all 

the instrumented piles in the bridge is given in Figure 7-2.  

 

Figure 7-2. Locations of instrumented production piles 

All design calculations based on the Blue Book Method are included in Appendix C. 

7.2.1. HP 10 × 57 Production Piles 

The HP 10 × 57 pile on the west abutment (SW2) was designed for a vertical load capacity of 

100 kips, resulting in a total length of 65 ft with 62 ft embedded below the ground surface. Using 

the new LRFD resistance factors recommended by Green et al. (2012) to achieve the same 

design load, the total length of the pile would only need to be 60 ft. The amount the new 

resistance factors shorten the pile was 7.7%.  

The two instrumented HP 10 × 57 piles on the east abutment, SE1 and SE2, had a design length 

of 85 ft with an embedment of 82 ft for the same 100 kip design load, but using the new LRFD 

resistance factors (Green et al. 2012) would shortened the piles by 5.9%, resulting in a total 

length of 80 ft. 
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7.2.2. UHPC Production Pile 

UW1 was designed with a total length of 55 ft and a 53 ft embedment below ground surface for a 

100 kip design load. Unlike steel HP 10 × 57 piles, the top 12 in. of UHPC piles does not need to 

be cut off because there is no buckling taking place, resulting in saved material. As a 

comparison, the new resistance factors calibrated by AbdelSalam et al. (2012) for H-piles were 

used to calculate the design length of UW1, which resulted in a total pile length of 52 ft with 50 

ft embedded below the ground surface. The new resistance factors would only result in 

shortening the UHPC pile by 3 ft, or 5.5%.  

To accommodate PDA equipment an extra foot was added to the design of UW1 to make the 

total length 56 ft. This resulted in an easier disassembly of the PDA equipment at the end of 

drive and reassembly for the restrikes because the PDA equipment was installed 30 in. from the 

pile head. 

7.3. Instrumentation Scheme 

The instrumentation used for the first UHPC production pile (UW1-1) was the same embedded 

concrete gages as described in Section 6.2 and shown in Figure 6-1. A second production pile 

(UW1-2) was needed because UW1-1 was dropped from the crane due to the use of inadequate 

hook and poor handling in the field and was deemed unusable as a production pile (Section 7.5). 

Due to the limited amount of time to gather instrumentation for the second production pile 

(UW1-2), two different types of concrete embedment gages were used along this pile. The two 

types of gages are shown in Figure 7-3.  

 

Figure 7-3. Embedded concrete strain gages for UW1-2 

For the steel piles, weldable strain gages were used as shown in Figure 7-4.  
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Figure 7-4. Weldable steel strain gages used to monitor steel HP 10 × 57 production piles 

All of the production piles had two gages at each level that were on the diagonal to measure the 

curvature of the pile during the expansion and contraction of the integral bridge due to thermal 

movements. 

7.3.1. First UHPC Production Pile 

The concrete gages for UW1-1 were installed November 18, 2011 at Coreslab Structures, Inc. in 

Bellevue, Nebraska using the procedure given in Appendix C for embedded concrete strain 

gages. Table 7-2 lists the gage label and locations from the pile’s head for each of the 12 gages.  

Table 7-2. Location and labels of strain gages in UHPC production pile UW1 

Location from 

pile head, ft Gage label 

4 UW1-48-E UW1-48-W 

12 UW1-144-E UW1-144-W 

18 UW1-216-E UW1-216-W 

30 UW1-360-E UW1-360-W 

43 UW1-516-E UW1-516-W 

54.25 UW1-668-E UW1-668-W 

 

The gage locations are also illustrated in an elevation view in Figure 7-5.  
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Figure 7-5. Elevation view of UW1 showing locations of instrumentation 

7.3.2. Second UHPC Production Pile 

The instrumentation for UW1-2 was also installed at Coreslab Structures, Inc. in Bellevue, 

Nebraska but on February 13, 2012 with the same instrumentation scheme used for UW1-1. The 

only difference between the two piles was that UW1-2 did not include a splice at the pile head. 

There was no need to include the splice because the UHPC production pile capacity had been 

verified by the vertical load test described in Section 6.5 at the site near the west abutment, 

which was where UW1-2 would be located. 

7.3.3. HP 10 × 57 Production Piles 

PDA was performed on all of the instrumented steel HP 10 × 57 production piles. The cross-

section view of the location of the strain gages and accelerometers is given in Figure 7-6.  
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Figure 7-6. Location of PDA instrumentation on HP 10 × 57 piles at a cross-section 18 in. 

from the pile head 

Notice that the accelerometers are on opposite sides of the web of the pile as was done by Ng et 

al. (2011). The data gathered by the PDA equipment was wirelessly transmitted to the PDA unit 

similar to the UHPC test piles.  

To instrument the steel H-piles, weldable gages were used to measure the strain in the steel along 

the length of the pile. In order to secure the gages, a tack welder, shown in Figure 7-7, was used 

for gage installation.  

 

Figure 7-7. Tack welding machine 

The procedure for installing the weldable strain gages is outlined in Appendix D. The cross-

section of the instrumented steel HP 10 × 57 piles is shown in Figure 7-8, which also shows how 

the ends of the angle welded to the pile to protect the instrumentation was closed at the end.  
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Figure 7-8. Cross-section view of HP 10 × 57 pile showing the strain gage location 

SW2 

SW2 was instrumented on January 23, 2012 using the procedure outlined in Appendix D for the 

weldable strain gages. Twelve gages were installed along the length of the pile at six levels with 

two gages at each level. Table 7-3 lists the strain gage label and location from the pile’s head and 

Figure 7-9 illustrates the location of PDA and strain gages in elevation view. 

Table 7-3. Location and labels of strain gages in steel production pile SW2 

Location from 

pile head, ft Gage label 

4 SW2-48-E SW2-48-W 

12 SW2-144-E SW2-144-W 

18 SW2-216-E SW2-216-W 

33 SW2-396-E SW2-396-W 

49 SW2-588-E SW2-588-W 

64.5 SW2-774-E SW2-774-W 

 

Fillet weld

Cables

HP10x57

Strain Gauge

L 2''x2''x 3
16''

3
16 in4in per 2ft

Gage 
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Figure 7-9. An elevation view of SW2 showing the locations of instrumentation 

SE1 and SE2 

SE1 and SE2 were instrumented on March 7, 2012 using the procedure outlined in Appendix D 

for the weldable strain gages. Six gages were installed along the length of the pile at three levels 

with two gages at each level. The reason for the reduced number of strain gages is that the piles 

on the east abutment were 85 ft in length. The east abutment piles were to be spliced at 40 ft 

from the pile’s head, and it would have been difficult to run cables from the portion of HP 10 × 

57 below the splice. Table 7-4 and Table 7-5 list the strain gage labels and locations from the 

pile’s head for SE1 and SE2, respectively.  

Table 7-4. Location and labels of strain gages in steel production pile SE1 

Location from 

pile head, ft Gage label 

4 SE1-48-E SE1-48-W 

12 SE1-144-E SE1-144-W 

16 SE1-192-E SE1-192-W 
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Pile Head
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(18' from pile head)

SW2-144-E
SW2-144-W

(12' from pile head)

PDA Accelerometers
and Transducers

3
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.0

SW2-774-E
SW2-774-W

(64.5' from pile head)

SW2-588-E
SW2-588-W

(49' from pile head)

SW2-396-E
SW2-396-W

(33' from pile head)
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Table 7-5. Location and labels of strain gages in steel production pile SE2 

Location from 

pile head, ft Gage label 

4 SE2-48-E SE2-48-W 

12 SE2-144-E SE2-144-W 

16 SE2-192-E SE2-192-W 

 

Figure 7-10 illustrates the location of PDA and strain gages in elevation view for SE1 and SE2. 

 

Figure 7-10. An elevation view of SE1 and SE2 showing the locations of instrumentation 
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Pile Head
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(12' from pile head)
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7.4. Fabrication of UHPC Piles 

7.4.1. Splice Fabrication 

The splice for UW1-1 was fabricated at Howe Welding in Ames, Iowa by a certified welder 

along with the splices for the test piles. The fabrication is outlined in Section 6.3.1. No splice 

was fabricated for UW1-2 due to the verification of capacity through the vertical load test.  

7.4.2. Casting Process 

The UHPC production piles were cast at Coreslab Structures, Inc. in Bellevue, Nebraska. UW1-1 

was cast along with the test piles P3 and P4 in December of 2011. 

UW1-1 

The casting process, steam curing, and materials properties were the same for UW1-1 as for P3 

as outlined in Section 6.3 because they were cast from the same batch. The layout of the 

production pile is shown in Figure 6-12. 

UW1-2 

The casting process and steam treatment were the same as outlined in Section 6.3 for UW1-2. 

One side of the steel forms was left off while all 10 prestressing strands were arranged and 

stressed to their initial prestress of 202.5 ksi. Because the side of the forms was left off, 12 strain 

gages could be installed along the pile’s length. No inserts were added for the PDA equipment 

since it was just as easy to drill through the UHPC with a 3/8 in. diameter concrete drill. After 

the instrumentation was complete, the forms were closed as shown in Figure 7-11 by lifting the 

steel side with the overhead crane and then locked into place. 
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Figure 7-11. Closing the side forms before casting UW1-2 

The UHPC was mixed using the precaster’s 4.0 yd3 mixer at the batch plant. A total of 1 yd3 of 

Ductal was used for the pour. After completing the batching of the UHPC mix, it was poured 

into a large bin and transported by a fork lift to the building where the UHPC forms were 

located. The UHPC was then poured into the forms. Once the pour was complete, the top surface 

of UW1-2 was covered with plastic wrap to prevent moisture loss as shown in Figure 7-12. 

 

Figure 7-12. Plastic wrap cover for UW1-2 at the end of casting 

7.4.3. Details of First UHPC Production Pile Pour 

The pour of UW1-1 was on November 21, 2011, the same day as the pour for P3 and P4. The 

same batch of UHPC was used, and therefore the UHPC was lumpy. The formwork also moved, 

and concrete leaked out of the formwork as mentioned in Section 6.3.3. Concreting paused 
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halfway and resumed after a waiting time of about 55 minutes. After the forms were stripped, 

there were a few imperfections along the length of UW1-1, but the pile was deemed acceptable.  

7.4.4. Details of Second UHPC Production Pile Pour 

The pour of UW1-2 took place on February 14, 2012. The dry ingredients of the UHPC were 

broken up in the mixer before the liquids were added. Once the clumps were broken down, the 

water and admixtures were added to the mix in the proper order. The UHPC had a good 

consistency, and everything went well for the pour. 

7.4.5. Steam Curing and Instrumentation Performance 

After the release of the prestressing strands in UW1-1, it was steam cured with P3 and P4 at 

194°F for 48 hours at the precasting plant. All 12 gages in UW1-1 were working after the steam 

curing. The same process for steam curing was used for UW1-2. All 12 gages in UW1-2 were 

also working after the steam curing was complete. 

7.4.6. Handling of UHPC Production Piles 

Due to the failure of the pickup point hook on UW1-1, a new pickup point detail was designed 

for UW1-2. A 1 in. diameter high-strength threaded rod was embedded into the web at the 

location of the previous pickup point hook by the pile head as shown in Figure 7-13.  

 

Figure 7-13. Revised pickup point design 

Coreslab also inserted bent prestressing strands 1.5 ft away from the pile head and the pile toe, to 

provide easy transportation pickup points at the precast plant.  

In order to lift the pile at the construction site, it was initially decided to slip a cable loop over 

the threaded rod and secure it in place using a washer and a nut as shown in Figure 7-14.  

1in. High Strength 
Threaded Rod

Pile Head1in. High Strength 
Threaded Rod

18.0 in. 
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Figure 7-14. Proposed pickup point 

However, this detail could not be constructed at the site because the thread size of the nut was 

much smaller than that of the threaded rod. Instead, an additional washer was welded to the 

threaded rod (Figure 7-15) to ensure that the cable loop would not slip off the threaded rod when 

picking up the pile. 

   
(a)                                                                       (b) 

Figure 7-15. (a) Welding the 2nd washer to the threaded rod and (b) pickup point after 

welding 

7.4.7. Material Properties 

Prestressing Strands 

The material properties for the prestressing strands of UW1-1 were the same as those for P3 and 

P4 because it was cast at the same time as the two test piles. As discussed in Section 6.3.6, the 

average yield strength and average modulus of elasticity of the strands were 250.5 ksi and 29,449 

ksi, respectively. 
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Three 5 ft sections of the 270 ksi low-relaxation prestressing strands used in UW1-2 were cut 

and tested in uniaxial tension at ISU. The yield strength of the ½ in. strands was 256 ksi while 

the ultimate strength strands was 295 ksi.  

UHPC 

The 3 in. diameter cylinders that were cast out of the same batch as UW1-2 were tested in 

compression by Coreslab Structures, Inc. The average compressive strength of the UW1-2 was 

28.1 ksi. The design strength of the mix was 26 ksi, and the results in Table 7-6 show that the 26 

ksi average strength was achieved.  

Table 7-6. Average compressive strength measured for the UW1-2 pile 

Cylinder # f′c, ksi 

1 27.5 

2 28.4 

3 28.5 

Average 28.1 

 

The elastic modulus for UW1-2 was calculated using equation (2-2) (Graybeal 2007) presented 

in Section 2.3.4 and was found to be 7,711 ksi. 

7.5. Driving of Instrumented Production Piles 

7.5.1. Drivability Analysis 

A drivability analysis was conducted in GRLWEAP (PDI 2005) using the same hammer, 

cushion, and soil parameters used for the UHPC test piles, which are given in Section 6.4.4. The 

percent shaft resistance that UW1-2, SW2, SE1, and SE2 are subjected to during driving was 

calculated using the undrained shear strength and friction angles calculated from the average 

CPT results in the FHWA computer program DRIVEN (Matthias and Cribbs 1998). The 

maximum predicted and measured stresses during driving for the UHPC and steel production 

piles are shown in Table 7-7.  
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Table 7-7. Predicted and measured stresses in production piles during driving 

Pile 

Maximum stress, ksi % 

difference Predicted Measured 

SW2 
Compressive stress 27.0 25.9 +4.2 

Tensile stress 1.7 1.8 –5.6 

SE1 
Compressive stress 30.8 27.3 +12.8 

Tensile stress 1.8 1.3 +38.5 

SE2 
Compressive stress 30.8 28 +10.0 

Tensile stress 1.8 0.7 +157 

UW1-2 
Compressive stress 7.6 4.8 +58.3 

Tensile stress 0.2 0 N/A 

 

The measured maximum stresses were calculated from the PDA analysis.  

All predicted maximum stresses were over-predicted when compared to the measured maximum 

stresses from the PDA, except for the maximum tensile stress of SW2. The very large maximum 

tensile stress percent difference for SE1 and SE2 is due to the fact that the tensile stress were so 

low that a small change in stress resulted in a big percent difference. All of the compressive 

stresses and tensile stresses for all the production piles were well within the allowable driving 

stress limits given in Section 2.3.6. 

7.5.2. Driving Process 

The same driving system described in Section 6.4.3 was used to drive the steel HP 10 × 57 piles 

and UW1-2. Figure 7-16 illustrates the layout of the abutment piles within the abutment.  

 

Figure 7-16. Layout of abutment piles 

The installation details for each of the instrumented production piles are described in this section. 
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SW2 was driven into the west abutment of the westbound bridge on January 26, 2012. The only 

usable restrike for SW2 was the one performed on March 19, 2012, approximately 53 days after 

the EOD. The reason for the postponed restrike was that the PDA transmitters had to be replaced 

because it was damaged when UW1-1 fell.  

Steel Production Piles 

The PDA equipment was bolted to the HP 10 × 57 piles while lying on the ground as described 

in Section 6.4.5. Once completed, the steel piles were lifted into position using the pickup point 

shown in Figure 7-17.  

 

Figure 7-17. Steel HP 10 × 57 production pile pickup point 

The pile was lifted to a vertical position and set into the 10 ft deep prebored hole. The crane was 

unhooked from the steel pile in order to pick up the hammer leads and position them on the top 

of the steel pile. When the leads, hammer, and pile were in place, the ram of the hammer was 

lifted manually by the crane and dropped. SE1 and SE2 had a design length of 85 ft, and they 

were spliced 40 ft from the pile head using a similar method as described for the spliced anchor 

piles in Section 6.4.5. 

UHPC Production Pile 

PDA was performed during the installation of UW1-2. The strain gages and accelerometers were 

attached to the pile using the same procedure used for the test piles shown in Figure 6-4. The 

data gathered by the PDA equipment was wirelessly transmitted to the PDA unit by the same 

process as for the UHPC test piles. 

The new pickup point designed for UW1-2 worked very well. To reduce the amount of stresses 

on the UHPC pile, the pile was picked up by the new pickup point at the pile head and the 

inserted prestressing strand hook at the pile toe. Once the pile was lifted off the ground, the crane 

operator rotated the pile to the vertical position in the air as shown in Figure 7-18.  
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Figure 7-18. Stages in lifting UW1-2 

The installation was very similar to a steep H-pile, except that one of the crew’s members had to 

be sent to the top of the UHPC pile to release the pile from the crane. 

A 4 in. plywood pile cushion was used to protect the UHPC pile head, but UW1-2 punched 

through the pile cushion shortly after driving had begun. Instead of replacing the cushion with a 

new one, the pile was driven with essentially no cushion. There was slight damage to the pile 

head corners of UW1-2 as shown in Figure 7-19.  

 

Figure 7-19. Damage to the pile head of UW1-2 

The reason for the damage was that the pile head was not perfectly centered under the helmet. It 

is also important to note that the UW1-2 was slightly tilted after driving and on the back side of 

the prebored hole as shown in Figure 7-20, which might have reduced the effectiveness of the 

prebored hole. 
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Figure 7-20. UW1-2 after installed in the prebored hole 

7.6. Estimated Capacity 

7.6.1. UW1-2 

As a comparison of the different methods used to design deep foundations, Table 7-8 lists the 

estimated nominal capacity of UW1-2 using the Iowa DOT current design procedures, DRIVEN 

and CAPWAP.  

Table 7-8. UW1 nominal capacity calculated by various methods 

Method 

Estimated nominal 

capacity, kips 

Iowa DOT current 200 

DRIVEN 216 

CAPWAP (3-day)* 212.9 

Source: Ng et al. 2011 

*Further gain is expected due to setup  

The predicted capacity using DRIVEN was 8% higher than for the Iowa DOT current design 

method, and 6.5% higher than the Iowa DOT current design method when using CAPWAP. The 

CAPWAP analysis was completed using a Case damping factor of 0.166. 

The vertical load test performed on P3, which was 10 ft shorter than UW1-2, produced a vertical 

capacity of 296.5 kips. P3 and UW1-2 are comparable in length, because the 10 ft reduction in 

length of P3 was to account for the prebored hole of UW1-2, which is often referred to as UW1 
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in the subsequent section. The vertical load test was performed eight days after the EOD, while 

the CAPWAP predicted capacity of UW1-2 was from a restrike three days after EOD. The 

difference in the amount of time after EOD for measuring or predicting the nominal capacity 

could account for a portion of the 39% difference in capacity due to the effect of setup in clays 

(Ng et al. 2011).  

7.6.2. SW2 

The calculated nominal capacities using the three different types of design methods are given in 

Table 7-9.  

Table 7-9. SW2 nominal capacity calculated by various methods 

Method 

Estimated nominal 

capacity, kips 

Iowa DOT current 200 

DRIVEN 212.3 

CAPWAP (53-day) 318.6 

 

DRIVEN calculates an estimated nominal capacity 6.2% higher than the current Iowa DOT 

method. Interestingly, CAPWAP estimated the nominal capacity of SW2 to be 318.6 kips by 

using a Case damping factor of 0.245, which was 59.3% higher than the current Iowa DOT 

method. One thing to note is that the final restrike, which was used to estimate the nominal 

capacity of SW2, took place 53 days after the end of drive instead of the specified 3 days. The 

reason for the delay was the two PDA transmitters were broken, and two new transmitters had to 

be ordered. 

7.6.3. SE1 and SE2 

Using the Iowa DOT current design method, the predicted capacity of SE1 was 200 kips. The 

CAPWAP analysis estimated the nominal capacity of SE1 to be 286.9 kips using a Case damping 

factor of 0.335. The CAPWAP analysis predicted a value 43.5% higher than the capacity 

estimated by the Iowa DOT’s current design method. 

Like SE1, SE2 had a predicted nominal capacity of 200 kips from the Iowa DOT current design 

method, but the CAPWAP analysis estimated the capacity to be 271.2 kips using a Case damping 

factor of 0.277. This resulted in a 35.6% increase. 
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7.7. Results 

7.7.1. Observations 

For the data collected over 32 months, the average daily strain variations of the piles at different 

depths were first examined. Figure 7-21 shows the range of daily strain variation and 

corresponding frequencies for the UHPC pile at different levels.  

 

Figure 7-21. Daily strain variation observed in the UHPC pile 

The vertical axis shows the frequency for each strain range while the horizontal stands for the 

strain ranges. For example, 5˂ x ≤10 corresponds to strain less or equal to 10 microstrains but 

greater than 5 microstrains. It can be seen that the variations are in the range of 5 to 15 

microstrains for the majority of the time. For gages located at 4, 12, 18, 30, 43, and 55.76 ft 
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below the pile head, the mean strain variations were found to be 8.8, 12.8, 9.0, 7.1, 6.2, and 3.1 

microstrains, respectively. The largest daily strain variation occurred at a 12 ft depth. The daily 

strain variations seen in Figure 7-21 were generally found to be dependent on the ambient 

temperature and gage location. A large temperature change generally led to larger strain 

variation; this effect was more prominent in the top portion of the pile. This is consistent with the 

observation that gage UW1-144 (12 ft from the pile head) exhibited the largest strain variation in 

the UHPC pile. The information regarding average daily strain variation was subsequently used 

to estimate the long-term strain variation (see Figure 7-21 and Figure 7-22).  

 

Figure 7-22. Daily strain variation frequency for steel pile 

Strain data from the steel piles showed similar trends to those observed for the UHPC pile. 

Figure 7-22 summarizes the frequency of different daily strain range at different depths for SW2, 

with mean daily strain variations at 4, 12, 18, 33, 49, and 64.5 ft depths of 28.4, 17.5, 8.2, 12.2, 
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6.5, and 9.5 microstrains, respectively. Based on the calculated values, the largest daily strain 

variation occurred at 4 ft from the top of the pile. For SE1, the mean daily variations at 4, 12, and 

16 ft depth were 26.7, 18.0, and 10.7 microstrains, respectively. For SE2, the corresponding 

average daily variation at depths of 12 and 16 ft were 15.69 and 13.52 microstrains, respectively. 

Long-term strain variations were influenced by bridge deck movement, so in addition to the 

temperature change, these variations were examined using two different methods. The first 

method used all data from the beginning to the end of the monitored period and estimated the 

largest long-term strain change and its corresponding time. In the second method, only the data 

obtained each day at 3 p.m. were used, and the largest strain values were estimated. The latter 

approach was intended to minimize the influence of daily temperature variation on the long-term 

change in strain. 

Figure 7-23 compares the two methods of measurements from gage UW1-48-E in the UHPC pile 

along with the ambient temperature over a period of more than two years.  

 

Figure 7-23. Comparison of strain using Method 1 and Method 2 

As shown in this figure, all strains, including UW1-48-E, were taken as zero at an ambient 

reference temperature of 13°C. This temperature represents the average ambient temperature for 

the month of May 2013, when the bridge construction was completed. Consequently, the positive 

strains shown in Figure 7-23 correspond to strain build-up during extension of the bridge in 

warmer temperatures, and the negative values reflected the strains corresponding to contraction 

of the bridge during winter months. It was found that the maximum long-term temperature and 

the corresponding strain changes were 34°C (i.e., from +27°C to –7°C) and 150 microstrains 

(i.e., from +50 to –100 microstrains), respectively, using the first method in Figure 7-23a. 

Similarly, variations were found to be 35°C and 150 microstrains in Figure 7-23b using the 

second method. Since these values are similar, Method 1 was used for the remainder of this 

study. In Figure 7-23, both graphs show that temperature values peaked near mid-August while 

the lowest value was recorded toward the end of January. This pattern is also reflected in the data 

obtained from the other strain gages and displacement transducers. 
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In addition to recording strains, the movements of the bridge abutments were measured from 

March 22, 2014 to March 3, 2016. Figure 7-24 compares the readings of UW 1-48-E with the 

rest of the gages for the same period.  

 

Figure 7-24. UHPC pile (UW1) long-term strain change at different depth (3/22/2015–

3/3/2016) 

Polynomial best-fit lines were added for the first two charts in Figure 7-24. Due to malfunction, 

reading from gages UW1-48-W and UW1-144-E are not shown in Figure 7-24a and b. Over this 

12-month period, during which the largest temperature change was 34°C, long-term strain 

variations at different depths of the UHPC pile were found to be 120 (i.e., from +40 to –80 

microstrains), 50 (i.e., from +15 to –35 microstrains), 20 (i.e., from +10 to –10 microstrains), 20 

(i.e., from +10 to -10 microstrains), 10 (i.e., from +5 to -5 microstrains) and 10 (i.e., from +5 to –

5 microstrains) at depth of 4, 12, 18, 30, 43, and 55.7 ft from the pile head, respectively. From 
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these values, and from reported daily strain variation (Figure 7-21), it can be concluded that the 

changes in strain at 18 ft depth and below were insignificant. This implies that the UHPC pile is 

not subjected to significant flexural actions below an 18 ft depth. 

Figure 7-25 presents the data from all the working strain gages in the SW2 pile, along with the 

ambient temperature.  

 

Figure 7-25. Steel pile (SW2) long-term strain change at different depth (3/22/2015–

3/3/2016) 

Readings from gages SW2-48-E, SW2-144-W, and SW2-216-E were not included in this figure, 

since they appeared to have been damaged during pile construction. Gages SW2-396-E, SW2-

588-W, and SW2-774-W shown in Figure 7-25 experienced significant drift and therefore were 

not used in the analysis. Using Method 1, the selected gages of SW2 were used to determine the 

maximum long-term strain variation and corresponding temperature change. Because UW1 and 
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SW2 shared the same temperature gage, the temperature readings in Figure 7-24 and Figure 7-25 

are the same. During the monitored period, the maximum long-term strain variations at 4, 12, 18, 

33, 49, and 64.5 ft below the pile head were 175 (i.e., from +60 to –115 microstrains), 125 (i.e., 

from +40 to –85 microstrains), 40 (i.e., from +15 to –25 microstrains), 20 (i.e., from +10 to –10 

microstrains), 20 (i.e., from +10 to –10 microstrains), and 20 (i.e., from +10 to –10 microstrains), 

respectively, with respect to the selected reference temperature. When the SW2 daily strain 

variations were considered (Figure 7-22), a similar conclusion could be drawn, i.e., that the 

strains at 18 ft and below from the pile head were insignificant. The long-term strain variations 

were primarily caused by daily strain variation, when the depth was equal to or greater than 18 ft. 

No significant flexural actions by the SW2 pile head were expected below 18 ft. 

To complement the strain data and analytical evaluation of the pile’s response, displacement 

transducers and rotation gages were added. The data from these devices were collected at the 

same frequency used for the strain gages, starting on October 10, 2014. 

Figure 7-26 shows the frequencies of abutment daily horizontal displacement variations over a 

12-month period, influenced primarily by temperature.  

 

Figure 7-26. Maximum daily movement of the abutment 

For both cases, the most common daily variations were in a range from 0.025 in. to 0.075 in. It 

was observed that large daily displacement variations corresponded to large daily temperature 

changes, as expected. 

Using Method 1, Figure 7-27 compares the change in abutment displacement and ambient 

temperature as a function of time over a period of about 12 months.  
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Figure 7-27. Abutments long-term displacement 

All displacement values were taken as zero at the reference ambient temperature of 13°C. 

Polynomial best-fit lines are also included in Figure 7-27, where negative values indicate 

shortening of the bridge at temperatures lower than 13°C and positive values suggest the bridge 

lengthening in warmer temperatures. As shown in Figure 7-27, the maximum long-term 

displacements from West-Abutment-Disp 1, West-Abutment-Disp 2, East-Abutment-Disp 1, and 

East-Abutment-Disp 2 were 0.28 in. (i.e., 0.08 in. to –0.2 in.), 0.32 in. (i.e., 0.11 in. to –0.21 in.), 

0.29 in. (i.e., 0.09 in. to –0.2 in.), and 0.32 in. (i.e., 0.10 in. to -0.22 in.), respectively. It was 

found that the maximum long-term temperature change and the corresponding abutment 

displacement were 35°C (i.e., from 20°C to –15°C) and 0.35 in (i.e., 0.1 in. to –0.21 in.), 

respectively. Since there is insignificant difference between Disp 1 and Disp 2 in both cases, the 

displacement value was taken as the average value from these four gages. 

Figure 7-28 compares the abutment displacement and strain as a function of time over a 12-

month period, with data from the top two gages from UW1 and SW2 chosen for this figure.  
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Figure 7-28. Displacement vs. strain for west abutment 

Overall, the strain variation follows the displacement change pattern. In Figure 7-27, it can be 

observed that the abutment displacements reached their peak values around mid-July and their 

lowest values toward the end of January, consistent with previous observation. 

7.7.2. Data Interpretation and Analysis 

The bridge deck coefficient of thermal expansion (CTE) was evaluated using data from Figure 

7-28. Given that recorded data from all four displacement gages were comparable, an average 

value was established using equation (7-1). 

C =
(Rh−Rc)

∆T
 (7-1) 

where, 

C = Coefficient of linear thermal expansion of the concrete 10^-6/°F (°C) 

Rh = Max extension at high temperatures, in. or mm 

Rc = Max contraction at lower temperatures, in. or mm 

∆T = Difference in temperature of specimens between the two length readings, °F or °C 

The calculated average CTE value for this bridge is 6.32*10^-6/°C. According to AASHTO 

LRFD Bridge Design Specification (2007), the CTE for normal concrete is 10.8*10^-6/°C 

(6*10^-6/°F), and is slightly larger than the calculated value in this report, possibly because of 

the restraints provided by bridge abutment and granular backfill placed behind the abutments. 
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The steel rebars in the bridge deck could have also played a positive role in reducing the bridge 

deck CTE value. Because of these restraints, the bridge deck exhibited a lower CTE value than 

that of unreinforced normal concrete. 

The skewness of the bridge causes its longitudinal direction not to align with the pile strong axis, 

as shown in Figure 7-29.  

 

Figure 7-29. UHPC and steel piles cross-section and corresponding bending axes 

Determination of the moment of inertia along the bridge longitudinal direction was required. The 

moments of inertia of the UHPC pile, and HP 10 × 57 sections were first determined. Then, the 

moments of inertia along the bridge’s longitudinal direction was determined using equation (7-

2).  

𝐼𝐵,𝑙𝑜𝑛𝑔 = 𝐼𝑥 ∗ 𝑆𝑖𝑛224 + 𝐼𝑦 ∗ 𝐶𝑜𝑠224 (7-2) 

M =
σ∗I

y
 (7-3) 

The following tables (Table 7-10, Table 7-11, Table 7-12, and Table 7-13) summarize the largest 

long-term strain change for the four production piles and the corresponding estimated moments 

at different levels. 

Table 7-10. UW2 strain variation and calculated moment  

Depth (ft) 4 12 18 33 49 64.5 

Strain (µstrain) 115 –35 –20 0 0 0 

Moment (kip-in.) 82.2 –46.4 –28.6 0 0 0 
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Table 7-11. UW1/UW1-2 strain variation and calculated moment  

Depth (ft) 4 12 18 30 43 55.67 

Strain (µstrain) 80 –35 –20 0 0 0 

Moment (kip-in.) 41.5 –18.2 –10.4 0 0 0 

 

Table 7-12. SE1 strain variation and calculated moment  

Depth (ft) 4 12 16 

Strain (µstrain) N/A N/A –35 

Moment (kip-in.) N/A N/A –46.4 

N/A = Not available data from strain gages 

Table 7-13. SE2 strain variation and calculated moment 

Depth (ft) 4 12 16 

Strain (µstrain) N/A –80 –45 

Moment (kip-in.) N/A –106.1 –59.7 

N/A = Not available data from strain gages 

As described in Subsection 7.7.1, the strain change was insignificant at depths equal or greater 

than 18 ft from the pile head. Given the fact that the long-term strain variation was close to the 

daily strain variation at depths of 18 ft and greater, it is reasonable to assume zero long-term 

strain change at those depths. 

Figure 7-30 presents the moment profiles along piles SW2 and UW1 obtained from LPILE 

analysis after subjecting them to 0.2 in. head lateral displacement.  

 

Figure 7-30. Model moment vs. strain moment for SW2 and UW1 
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The moments estimated from the measured strains at the corresponding depths are also included 

in this figure. For the SW2 pile, the experimental and theoretical values were in good agreement. 

For the UW1 pile, the experimental values were close to the analytical values, but the 

comparison was not as good as that observed for SW2. The deviation at a depth of 12 ft is less 

than half of the theoretical value. At a depth of 18 ft below the pile head, the experimental 

moment value is about one-third of the theoretical value. These variations are not unexpected for 

the following reasons: (1) the measured strains are relatively small and could be affected by daily 

temperature, and (2) soil profiles used for the analysis were not taken at these pile locations. 

In Figure 7-31, the experimental moment values from SE1 and SE2 are shown along with 

theoretical curves. They too provide a satisfactory comparison. 

 

Figure 7-31. Steel pile model verification 

Given that the UHPC pile experienced only a 0.2 in. head lateral displacement and the maximum 

corresponding estimated moment is 114 kip-in., it can be concluded that the performance of the 

UHPC pile meets expectations. Since no micro-cracking is expected on this pile until a moment 

of 536 kip-in., the UHPC pile in Sac County is not expected to experience any cracking during 

its service life. The performance of the steel pile also meets expectations. According to the 

analysis, the maximum estimated moment for the steel pile is 91 kip-in., only 11% of its yield 

moment. 

7.7.3. Pile Responses under Large Displacements 

Since no cracking formed in the UHPC pile and no yielding was expected in the steel pile, this 

subsection explores permissible pile head lateral displacements at different damage stages and 

the impact of prebored holes. According to the Iowa DOT, all abutment piles for bridges longer 

than 130 ft are placed in prebored holes at a 10 ft depth (Iowa DOT 2019). 
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Figure 7-32 depicts the expected UHPC pile response corresponding to various damage stages in 

two different cases: (a) with prebored holes and (b) without prebored holes. 

 

Figure 7-32. UHPC pile top displacement at different damage stage 

Table 7-14 summarizes the UHPC pile head lateral displacement values when micro-cracking, 

visible cracking, and cracking with widths more than 0.012 in. are anticipated. 

Table 7-14. UHPC pile head displacement for different damage case 

  
Acceptable range, in. 

Unacceptable 

range, in. 

Micro-

cracking 

Visible 

cracking 

Crack width > 

0.012 in. 

With prebored hole 1.05 2.20 2.85 

Without prebored hole 0.45 1.00 1.35 

 

Similarly, Figure 7-32 shows steel pile performance when the pile head reaches its maximum 

permissible displacement for two different scenarios: (a) with prebored holes and (b) without 

prebored holes. 
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Figure 7-33. Steel pile general application 

Table 7-15 summarizes the pile head lateral displacements for steel piles. 

Table 7-15. Steel pile head displacement at yielding 

 

Max permissible 

displacement, in. 

With prebored hole 2.79 

Without prebored hole 1.40 

 

With the prebored hole, the UHPC pile head lateral displacements for micro-cracking, visible-

cracking, and crack widths wider than 0.012 in. were 1.05, 2.20, and 2.85 in., respectively. These 

values were 5, 11, and 14 times greater than the largest measured displacement values found 

throughout the project. Similarly, for the steel pile with a prebored hole, the maximum 

permissible displacement is 2.79 in., almost 14 times greater than the measured largest pile head 

lateral displacement. With no prebored hole, the UHPC pile head lateral displacements for 

micro-cracking, visible-cracking, and crack widths wider than 0.012 in. were 0.45, 1.00, and 1.35 

in., equivalent to 2, 5, and 7 times greater than the largest measured values. For the steel pile, the 

maximum permissible displacement was 1.40 in., which was seven times greater than the 

measured values.  

The piles with prebored holes exhibited twice as great a lateral displacement as the 

corresponding piles without prebored holes at the same damage stage, showing that the pile’s 

flexibility was increased by the holes. For the same head lateral displacement, the piles with 

prebored holes produced a smaller bending moment at the critical sections, which is one of the 

purposes of a prebored hole. The analysis also reflects that, in the presence of a prebored hole, 

the magnitude of the second largest moment at depths below 10 ft increases by about 30% in 

both piles, although this should not cause any concern. According to the Iowa DOT, another 

purpose of the prebored hole is to reduce and/or eliminate additional load on the pile as a new 
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grade settles, which is referred to as “negative skin friction.” However, since the prebored holes 

were filled with bentonite after the completion of pile installation, the second purpose was 

insignificant in this project.  

For this project, the expected pile service displacement and maximum pile displacements were 

initially chosen to be 1.0 in. and 1.55 in. The 1.00 in. value was estimated to be the potential 

average displacement, from previous long-term monitoring of integral abutments, while the 

values of 1.55 in. was chosen based on the Iowa DOT LRFD Bridge Design Manual 

commentary, with both values designed for piles with prebored holes. Figure 7-34 summarizes 

pile performance for both UW1 and SW2 when the pile head experiences 1.0 in. and 1.55 in. 

displacement.  

 

Figure 7-34. UW1 and SW2 extreme case performance analysis 

For UW1, only the top 2 ft exhibited a micro-cracking issue when the displacement value was 

1.55 in., an acceptable result according to Iowa DOT. For the steel pile, no yielding issue is 

expected in either case. Both piles performed well under expected service displacement and 

maximum allowable displacement, and no unacceptable damage was observed. 

Given the fact that both piles performed well under both service and maximum displacements 

when there was a prebored hole, the following paragraphs will discuss how those two values are 

likely to change when there is no prebored hole. 

Figure 7-35 compares UHPC pile head displacement for the similar moment profile in two 

different cases: (a) with a prebored hole and (b) without a prebored hole.  
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Figure 7-35. UHPC pile head displacement change for difference cases 

From this figure, it can be observed that when no prebored hole exists, the service displacement 

and maximum displacement change from 1.00 and 1.55 in. to 0.53 and 0.84 in., respectively. The 

corresponding displacement ratio between the pile with prebored hole and the pile without 

prebored hole is approximately 2, matching the previous analysis results. 

Figure 7-36 depicts the service displacement and maximum displacement change for a steel pile.  

 

Figure 7-36. Steel pile head displacement change for difference cases 

Similarly, there are two cases: (a) with prebored hole and (b) without prebored hole. When there 

is no prebored hole, the service displacement and maximum displacements diminish from 1.00 

and 1.55 in. to 0.53 and 0.834 in., respectively. The corresponding displacement ratio between 
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these two different cases is also approximately 2, consistent with the values obtained for the 

UHPC pile.  

Figure 7-37 shows the shear profile for UHPC and steel when their heads are subjected to a 0.2 

in. lateral displacement.  

 

Figure 7-37. Pile shear profile under 0.2 in. displacement 

There are two reasons for small values to be chosen for the stiffness calculation. First, the piles 

fall under the category of elastic criteria under small deformation. Second, small displacements 

match the field monitoring result. Equation (7-4) is used in the stiffness calculation. 

k =
F

X
 (7-4) 

where, 

k= pile stiffness, kip/in. 

F = applied force, kips 

X = pile displacement, in. 

In Figure 7-37, the shear forces remain constant over the first 10 ft below the pile head, due to 

the presence of a prebored hole. According to the calculation, the stiffness values for the UHPC 

pile and the steel pile are 4.25 and 6.45 kip/in., respectively, indicating that the UHPC pile is 

more flexible than the steel pile. 

Based on the analysis of the pile performance in this section, the following conclusions can be 

drawn: 

 The presence of a prebored hole could improve pile flexibility and increase the displacement 

by a factor of two 
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 With a prebored hole, both UHPC pile and steel pile perform well both under full service 

displacement and at maximum allowable displacement 

 When there is no prebored hole, the allowable displacements recommended by the Iowa 

DOT should be reduced to half their original values 

 Given that the observed performance of the pile being similar to that obtained from the 

analysis, it would be possible to replace all the steel piles with UHPC piles in this project 

7.8. Estimated Initial Cost Comparison 

For the Sac County bridge replacement project, it was suggested by the Iowa DOT to use an 

average price of $35 per linear foot for the material and installation. The fabrication cost of 

UHPC piles, as recommended by industry, is $2,500 per yd3. There are 0.015 yd3 of UHPC in 

every linear foot of the pile. This would give a material and fabrication cost of $37.50 per linear 

foot. From RS Means (2009), the labor and equipment cost in Iowa for pile installation is $7.47 

per linear foot with an additional $5.50 per linear foot for overhead and profit costs for the crew 

and equipment given in Table 7-16.  

Table 7-16. Crew and equipment for labor cost estimate 

Crew Equipment 

1 pile driver foreman 1 crawler crane 

4 pile drivers 1 90 ft lead 

2 equipment operators (crane) 1 diesel hammer 

1 equipment operator (oiler)  

 

The total price per linear foot of UHPC is estimated to be approximately $50.47. 

Clearly, UHPC piles are more expensive per linear foot than the HP 10 × 57 piles used for the 

Sac County bridge project. Table 7-17 lists the number and length HP 10 × 57 piles used in both 

the westbound and eastbound bridges.  

Table 7-17. Total length of HP 10 × 57 piles needed for Sac County bridge project 

Bridge Location 

# of 

piles 

Length/Pile, 

ft 

Total 

length, ft 

Westbound 

West abutment 10 65 650 

Pier 1 27 50 1,350 

Pier 2 27 55 1,485 

East abutment 10 85 850 

Eastbound 

West abutment 10 65 650 

Pier 1 27 50 1,350 

Pier 2 27 55 1,485 

East abutment 10 85 850 

   Sum 8,670 
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Similarly, Table 7-18 lists the number and corresponding length of UHPC piles needed to 

support the two bridges based on the current Iowa DOT Blue Book Method. 

Table 7-18. Total length of UHPC piles needed for Sac County bridge project 

Bridge Location 

# of 

piles 

Length/Pile, 

ft 

Total 

length, ft 

Westbound 

West abutment 10 55 550 

Pier 1 27 40 1,080 

Pier 2 27 45 1,215 

East abutment 10 85 850 

Eastbound 

West abutment 10 55 550 

Pier 1 27 40 1,080 

Pier 2 27 45 1,215 

East abutment 10 80 800 

   Sum 7,290 

 

Based on the total length of HP 10 × 57 piles, the cost of the foundation at $35 per linear foot 

would be $303,450. The UHPC pile foundation would cost a total of $367,926. Based on the 

initial cost estimate, UHPC piles are approximately 21% more expensive. For the Sac County 

bridge project, the price for UHPC material and prefabrication costs needs to be reduced to 

$1,910 per yd3 to have the same total foundation cost as for the steel HP 10 × 57 piles, which is a 

reduction of 31%. One thing to note is that this estimate does not take into account the increased 

durability and reduced maintenance costs associated with UHPC piles. For a more accurate cost 

comparison, a total life-cycle cost analysis should be done with due consideration of the 

increased life span of the UHPC piles. 
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CHAPTER 8: SUMMARY, CONCLUSIONS, AND FUTURE RESEARCH 

8.1. Summary of Research 

The research presented herein is part of the second phase of an extensive study on the 

development and field installation of UHPC piles, which focused on the design, precast 

fabrication, installation, and performance verification in the field.  

During Phase I of the project, the design of the UHPC pile cross-section was optimized, and the 

section behavior in strong-axis bending was predicted and verified through laboratory testing, 

followed by a vertical and a lateral load test in the field. Specifically, this study (1) investigated 

the performance of a UHPC pile as part of an integral bridge using analytical models, (2) tested 

the typical pile-to-abutment connection detail in the laboratory by subjecting the connection to a 

combination of axial and lateral cyclic loading, (3) conducted a field vertical load test to failure, 

(4) performed a lateral load test in the field on a spliced UHPC pile, and (5) instrumented and 

installed a production UHPC pile as part of a bridge foundation to compare its driving behavior 

and performance to a comparable steel H-pile. 

A brief introduction to the history and background of the challenges associated with traditional 

concrete and steel piles in the US, along with an introduction to Phase I of the UHPC pile 

project, was provided in Chapter 1, which focused on the way UHPC members with enhanced 

engineering and durability properties could be used to extend bridge foundation service life.  

A review of published studies describing the composition, microstructure, durability, material 

properties, applications, practice for splicing piles in the field, pile-to-abutment connection 

details, integral abutment issues relevant to this study, and analysis procedures for evaluating 

drivability and lateral load performance of piles was given in Chapter 2.  

Chapter 3 focused on an analysis of UHPC piles in integral abutments by describing the section 

behavior of UHPC and HP 10 × 57 piles in weak-axis bending and strong-axis bending, and a 

parametric study on the lateral load behavior of UHPC piles with the appropriate axial load using 

the calculated section behavior.  

Splice design and relevant testing were presented in Chapter 4, while the fabrication and casting 

of the UHPC test units and abutment cap were described in Chapter 5. Chapter 5 also presented 

the lateral load tests of the HP 10 × 57 and UHPC test piles connected to the abutment blocks 

and the findings.  

A description of the fabrication and casting process, installation, vertical load test, and lateral 

load test for the UHPC test piles in the field is provided in Chapter 6.  

Chapter 7 describes the fabrication and casting process of the UHPC production pile, the 

installation and instrumentation of three instrumented HP 10 × 57 piles and the UHPC 

production pile, and the results from long-term monitoring of the four plies. 
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8.2. Conclusions 

This study provided a complete analysis of the design, fabrication, and installation of UHPC 

piles in comparison to steel HP 10 × 57 piles. The conclusions drawn from the pile analysis, 

production, handling, installation, feasibility, and performance of the pile in the laboratory and 

field are described in this section. 

8.2.1. Pile Analysis 

The parametric study of the UHPC pile in comparison with the HP 10 × 57 pile proved that the 

UHPC pile could be a viable option for supporting integral abutment bridges. At higher axial 

loads, such as 200 kips, it was found that the UHPC pile resisted cracking even at large target 

lateral displacements of 1.0 in. and 1.55 in. compared to a 100 kip axial load, as previously 

specified in Section 3.2 In comparison, HP 10 × 57 piles resisted yielding at the same target 

displacements. The strength benefits associated with increasing axial loads on UHPC piles 

supported their use in integral abutments.  

The lateral load analysis conducted in LPILE supported the use of prebored holes for both UHPC 

piles and HP 10 × 57 piles, which is currently required by the Iowa DOT for bridges over 130 ft 

in length. The benefit of prebored holes was that they were found to minimize or prevent 

cracking of the UHPC piles and yielding of H-piles to an acceptable level during the cyclic 

expansion and contraction of the bridge due to thermal movements.  

8.2.2. Production, Handling, and Installation of UHPC Piles 

The newly design pickup point for UHPC piles described in Section 6.4.6, which used a 1 in. 

diameter high-strength threaded rod, washers, and a nut, proved to be successful but somewhat 

labor intensive since a crew member had to be lifted by the crane to unhook the pile from the 

crane head before driving could begin. A release mechanism similar to that used for steel H-piles 

needs to be established as it will increase the efficiency during installation of UHPC piles in the 

field. After the pile was positioned to be vertical, the UHPC pile could be set in the prebored 

hole in the same way as an HP 10 × 57 pile. The benefit of the new pickup point was to have the 

pile hang in the vertical position as straight as possible to provide easy insertion into the 

prebored hole, which was successful in the field.  

During installation, a void in the soil opened up near the web on both sides of the UHPC piles. 

The void at the 46 ft long test pile had a depth of approximately 5 ft, while the void at the 30 ft 

long test pile was 3 ft deep. This possibly indicates the occurrence and depth of the void to be 

related to the embedment length of the pile. Another likely parameter that may affect the size and 

occurrence of the void could be the soil condition at the site of installation. Analysis of UHPC 

piles should take this void into account when establishing the vertical load capacity and lateral 

load performance as the void can have some limited influence on the pile performance.  
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In some cases, minimal damage to the UHPC pile head was seen in the field after driving. The 30 

ft test pile did not have any visible damage to the pile head after installation. The longer 46 ft and 

56 ft UHPC piles sustained minor damage to the corners of the pile head. This was believed to be 

due to not placing the hammer at the center of the pile head during installation, which should be 

given attention in the field.  

8.2.3. Feasibility of using UHPC Piles in Integral Abutments 

The test of the pile-to-abutment connection confirmed that the current Iowa DOT design of 

integral abutments with steel piles was robust and would accommodate UHPC piles as well. 

Even though two hairline tension cracks with negligibly small widths developed at 12 kips of 

lateral load during testing in the laboratory with an axial load of 100 kips, they were considered 

acceptable based on previous experience with testing and use of UHPC members.  

During the UHPC vertical load test in the field, the UHPC test pile reached an ultimate capacity 

of 297 kips, which was 49% greater than the estimated nominal capacity of 200 kips. The 

capacity measured during the field testing confirmed that a 16% shorter UHPC production pile 

compared to the HP 10 × 57 piles was appropriate for the Sac County bridge.  

The UHPC lateral load piles were tested to a maximum lateral load of 20.6 kips with a 

corresponding lateral displacement of 8.3 in. for the weak-axis pile. The weak-axis pile failed 3 

ft above the splice. The soil was excavated around the 30 ft long test pile where a significant 

tension crack was discovered at approximately the location of expected maximum moment. 

Within the design lateral movements of 1.55 in., the UHPC piles performed well and indicated 

no damage. 

In this project, the design of the UHPC piles followed the Iowa DOT design practice 

(summarized in Section 2.5 with sample calculations in Appendix C) with due consideration to 

the skin friction and end bearing components. In these calculations, UHPC piles were treated 

with the resistance recommended for prestressed concrete. While further refinements to the 

design procedure are possible, the study supports the notion that H-shaped tapered UHPC piles 

can be designed with the existing design provisions developed for prestressed concrete piles.  

8.2.4. Performance of Pile Splice  

The splice located on P4, 15 ft from the pile head, performed very well during installation. No 

visible damage from driving or the lateral load test was found on or near the splice after 

excavation. Based on the field testing and additional laboratory tests, the performance of the 

splice in the field can be expected to meet the required shear, moment demands, and tensile 

demands. 
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8.3. Future Research 

To ensure quality production of UHPC piles without any defects, consistent tolerances and 

procedures need to be developed. The tolerances for imperfections should include limits on 

shrinkage cracking along the pile, air voids within the web of the pile, and inconsistent 

dimensions of the flanges and other applicable quality issues that are used today for precast 

concrete piles.  

Prebored holes may not be as effective as intended during design. Future research with regard to 

lateral load tests on UHPC piles installed in prebored holes filled with bentonite may be used to 

verify their performance. For a reference, a similar pile test without a prebored hole may be used.  

It is common to have battered piles in bridge piers. To increase the broad use of the UHPC piles, 

the use of battered UHPC piles as well as their connections to pile caps and abutments should be 

investigated and their performance should be evaluated in the field. 

Additional sizes of the tapered H-section UHPC pile should be investigated to make the product 

feasible for various soil and structural conditions. Having a variety of sizes would increase the 

efficiency and frequency of use of UHPC piles. Steel piles are increasing in size to meet the 

demands for efficient, higher capacity foundations, and in order to provide a comparable 

solution, a larger sized UHPC pile might be necessary. With increased web and flange 

dimensions in larger UHPC sections, the production efficiency of UHPC piles will likely 

increase. 

To reduce the relatively high cost of UHPC piles, the UHPC material, design, fabrication, 

installation, and increased life cycle need to be investigated or improved from current 

knowledge. Integrating the life-cycle cost and expected maintenance cost reduction for the 

UHPC members into the analysis will help realize the true costs of the UHPC piles. In order to 

improve the design procedures for UHPC piles, additional vertical load tests need to be 

performed to more accurately predict the ultimate pile capacity. In doing so, the length of UHPC 

piles can be optimized, and overall foundation costs may be reduced. At the fabrication stage, it 

is essential to develop easier to use steel forms to cast multiple UHPC piles and shorten the time 

the piles need to be on the precast bed to gain strength in order to streamline the production 

process. Improved installation procedures and an improved pickup point also need to be 

developed. 
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APPENDIX A. OPENSEES SCRIPT EXAMPLES 

OpenSees script used to calculate the moment-curvature response of steel HP × 57 piles in 

strong-axis and weak-axis bending for various axial loads are given in this appendix. 

### UHPC PILE PROJECT_PHASE 2 

### ---------------------------------------------------------------------------------------------------------------------------------  

##--------- Written by Sriram Aaleti date: 26th August 2010 -------------------------------------------------------------- 

#-------------------------------------------------------------------------------------------------------------------------------------  

wipe; 

 

##--------------- Simulation Parameters-----------------------------------------------------------------------------------------  

set specimen HP10by57; 

set orientation weakaxis; # other option is weakaxis/strongaxis  

##set orientation strongaxis; # other option is weakaxis/strongaxis  

#### CHANGE ORIENTATION TO STRONGAXIS OR WEAKAXIS FOR ANALYSIS IN BOTH DIRECTIONS 

 

#--------------- unit definition----------------------------------------------------------------------------------------------------  

set in 1.; # define basic units 

set sec 1.; # define basic units 

set kip 1.; # define basic units 

set ft [expr 12.*$in]; # define engineering units 

set ksi [expr $kip/pow($in,2)]; 

set psi [expr $ksi*1000.]; 

set in2 [expr $in*$in]; # inch^2 

set in4 [expr $in*$in*$in*$in]; # inch^4 

set PI [expr 2*asin(1.0)]; # define constants 

set g [expr 32.2*$ft/pow($sec,2)]; # gravitational acceleration 

set Ubig 1.e10; # a really large number 

set Usmall [expr 1/$Ubig]; # a really small number 

set cm [expr $in/2.54]; # SI centimeter unit 

# --------- end of unit definition ------------------------------------------------------------------------------------------------  

 

#################-------------------------------------------------------------------------------------------------------------  

# ## --------------------------- Defining the procedures for the cross section (steel pile) --------------------------------- 

################---------------------------------------------------------------------------------------------------------------  

 

# input parameters  

# secID - section ID number  

# matID - material ID number  

# d = nominal depth  

# tw = web thickness  

# bf = flange width  

# tf = flange thickness  

# nfdw = number of fibers along web depth  

# nftw = number of fibers along web thickness  

# nfbf = number of fibers along flange width  

# nftf = number of fibers along flange thickness  

 

####-----------------------Weak axis bending definition---------------------------------------------------------------------- 

proc Wsection_weak {secID matID d tw bf tf nfdw nftw nfbf nftf} {  

set dw [expr $d - 2 * $tf]  

set z1 [expr -$d/2]  

set z2 [expr -$dw/2]  
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set z3 [expr $dw/2]  

set z4 [expr $d/2]  

set y1 [expr $bf/2]  

set y2 [expr $tw/2]  

set y3 [expr -$tw/2]  

set y4 [expr -$bf/2]  

#  

section Fiber $secID {   

patch quad $matID $nftf $nfbf $y1 $z3 $y1 $z4 $y4 $z4 $y4 $z3   

patch quad $matID $nfdw $nftw $y2 $z2 $y2 $z3 $y3 $z3 $y3 $z2  

patch quad $matID $nftf $nfbf $y1 $z1 $y1 $z2 $y4 $z2 $y4 $z1 

  

# # # patch quad $matID $nfbf $nftf $y1 $z3 $y4 $z3 $y4 $z4 $y1 $z4  

# # # patch quad $matID $nftw $nfdw $y2 $z2 $y3 $z2 $y3 $z3 $y2 $z3 

# # # patch quad $matID $nfbf $nftf $y1 $z1 $y4 $z1 $y4 $z2 $y1 $z2   

}  

}  

 

####-----------------------Strong axis bending definition--------------------------------------------------------------------- 

proc Wsection_strong {secID matID d tw bf tf nfdw nftw nfbf nftf} {  

set dw [expr $d - 2 * $tf]  

set y1 [expr -$d/2]  

set y2 [expr -$dw/2]  

set y3 [expr $dw/2]  

set y4 [expr $d/2]  

set z1 [expr -$bf/2]  

set z2 [expr -$tw/2]  

set z3 [expr $tw/2]  

set z4 [expr $bf/2]  

#  

section Fiber $secID {  

patch quad $matID $nftf $nfbf $y1 $z1 $y2 $z1 $y2 $z4 $y1 $z4   

patch quad $matID $nfdw $nftw $y2 $z2 $y3 $z2 $y3 $z3 $y2 $z3    

patch quad $matID $nftf $nfbf $y3 $z1 $y4 $z1 $y4 $z4 $y3 $z4    

  

# # # # patch quad $matID $nfbf $nftf $y1 $z1 $y1 $z4 $y2 $z4 $y2 $z1  

# # # # patch quad $matID $nftw $nfdw $y2 $z2 $y2 $z3 $y3 $z3 $y3 $z2  

# # # # patch quad $matID $nfbf $nftf $y3 $z1 $y3 $z4 $y4 $z4 $y4 $z1  

}  

}  

 

####----------------------------------------------------------------------------------------------------------------------------- ---- 

 

set ndm 2; # 2-D problem 

set ndf 3; 

model basic -ndm $ndm -ndf $ndf 

logFile screendump.dat 

 

########---------------------------------------------------------------------------------------------------------------------------  

###--------------------------- defining the dimensions of the section HP 10×57 ------------------------------------------- 

########---------------------------------------------------------------------------------------------------------------------------  

 

set tflange [expr 0.57*$in]; #flange thickness 

set tweb [expr 0.57*$in]; # web thickness 

set bflange [expr 10.2*$in];#flange width 

set dpile [expr 9.99*$in];#depth of the section 
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######## --------------------------------------------------------------------------------------------------------------------------  

## ------------------------------------ Defining the material properties ------------------------------------------------------- 

######## --------------------------------------------------------------------------------------------------------------------------  

set Grade50 1 

set Fy [expr 50.*$ksi]; 

set Es [expr 29000.*$ksi]; 

set bratio 0.004; 

uniaxialMaterial Steel01 $Grade50 $Fy $Es $bratio  

##uniaxialMaterial Steel02 $Grade50 $Fy $Es $bratio 15 0.925 0.15 0 5 0 5; 

 

## Defining the nodes 

node 1 0 0  

node 2 0 0  

 

## boundary conditions 

fix 1 1 1 1 

fix 2 0 1 0 

 

######------------------------------------------------------------------------------------------------------------------######## 

######--------------------------DEFINING THE FIBER SECTION-----------------------------------------------###### 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

 

set HP_10b57 1; 

 if {$orientation == "strongaxis"} { 

 puts " Strong axis cross section in section defination" 

 Wsection_strong 1 1 $dpile $tweb $bflange $tflange 80 8 24 8 

} 

 

 if {$orientation == "weakaxis"} { 

 puts " Weak axis cross section in section defination" 

 Wsection_weak 1 1 $dpile $tweb $bflange $tflange 15 8 80 8 

} 

#################### --------------------------------------------------------------------------------------------------------  

 

geomTransf PDelta 1; 

# Define element  

element zeroLengthSection 1 1 2 1; 

 

#######------------------------------------------------------------------------------------------ ---------------------------##### 

###---------------------------------- Create recorder ----------------------------------------------------------------------------  

###############---------------OUTPUT DATA --------------------------------------------------------------------------- 

 

set kword $orientation; 

recorder Node -file momcurv_$kword.out -time -node 2 -dof 3 disp 

 

if {$orientation == "strongaxis"} { 

puts " recoreders for stronf axis bending" 

recorder Element -file flangeComp_$kword.out -time -ele 1 section fiber [expr 0.5*$dpile] 0 $Grade50 

stressStrain;##strain in the compression flange 

recorder Element -file flangeTension_$kword.out -time -ele 1 section fiber -[expr 0.5*$dpile] 0 $Grade50 

stressStrain;##strain in the tension flange 

}  

 

if {$orientation == "weakaxis"} { 

puts "recorder for weak axis bending" 
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recorder Element -file flangeComp_$kword.out -time -ele 1 section fiber [expr 0.5*$bflange] [expr 0.5*$dpile] 

$Grade50 stressStrain;##strain in the compression flange 

recorder Element -file flangeTension_$kword.out -time -ele 1 section fiber -[expr 0.5*$bflange] [expr 0.5*$dpile] 

$Grade50 stressStrain;##strain in the tension flange 

}  

 

#######------------------------------------------------------------------------------------------------------------- ------------## 

#####----------------------------------------------------------------------------------------------------------------------------- -- 

# Define constant axial load 

set P 300; ##p is the axial load 

pattern Plain 1 "Constant" { 

 load 2 $P 0.0 0.0 

 } 

# Define analysis parameters 

integrator LoadControl 0 1 0 0 

set tolerence 1.0e-8; 

set nItr 1000; 

system SparseGeneral -piv 

test NormDispIncr $tolerence $nItr 1 

##test NormUnbalance $tolerence $nItr 1 

numberer Plain 

constraints Plain 

algorithm KrylovNewton 

analysis Static 

 

analyze 1 

 

### Define reference load 

pattern Plain 2 "Linear" { 

 load 2 0.0 0.0 1.0 

} 

 

# Maximum curvature from Anndrianna 

set maxK 0.15246063 

set numIncr 800 

set dK [expr $maxK/$numIncr] 

 

# Use displacement control at node 2 for section analysis 

integrator DisplacementControl 2 3 $dK 

 

# Perform the section analysis 

analyze $numIncr 
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APPENDIX B. MAXIMUM MOMENT AND SHEAR CHARTS  

The maximum moment and shear predicted along the length of a pile and the second maximum 

moment and shear along the length of the same pile are given with their corresponding locations 

in this appendix. 
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Table B-1. Maximum moment and maximum shear for trials 1a through 64a 

Parameters: (1) HP 10 × 57, (2) weak-axis bending, (3) 1.00 in. of lateral 

displacement, and (4) no prebored hole 

Axial 

load, 

kips Soil type 

Pile head 

boundary 

condition 

Maximum 

moment, kip-in. 

Maximum 

shear, kips 

0 

Loose sand 
Fixed 1215.9 27.7 

Pinned 491.5 11.7 

Dense sand 
Fixed 1579.3 45.8 

Pinned 726.6 20.4 

Soft clay 
Fixed 768.2 14.2 

Pinned 303.0 6.9 

Very firm glacial 

clay 

Fixed 1902.5 80.3 

Pinned 973.4 44.9 

100 

Loose sand 
Fixed 1211.0 26.8 

Pinned 502.8 10.6 

Dense sand 
Fixed 1569.7 44.5 

Pinned 736.0 19.0 

Soft clay 
Fixed 767.3 13.6 

Pinned 317.8 6.1 

Very firm glacial 

clay 

Fixed 1889.6 78.8 

Pinned 984.0 43.2 

200 

Loose sand 
Fixed 1201.4 25.8 

Pinned 514.8 9.5 

Dense sand 
Fixed 1548.0 43.1 

Pinned 744.4 17.6 

Soft clay 
Fixed 766.0 13.0 

Pinned 333.3 5.2 

Very firm glacial 

clay 

Fixed 1860.1 77.1 

Pinned 989.8 41.3 

300 

Loose sand 
Fixed 1186.3 24.7 

Pinned 527.3 8.4 

Dense sand 
Fixed 1513.3 41.4 

Pinned 751.6 16.2 

Soft clay 
Fixed 764.8 12.3 

Pinned 349.4 4.3 

Very firm glacial 

clay 

Fixed 1815.0 75.0 

Pinned 993.5 39.4 
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Table B-2. Maximum moment and maximum shear for trials 65a through 128a 

Parameters: (1) HP 10 × 57, (2) weak-axis bending, (3) 1.55 in. of lateral 

displacement, and (4) no prebored hole 

Axial 

load, 

kips Soil type 

Pile head 

boundary 

condition 

Maximum 

moment, kip-in. 

Maximum 

shear, kips 

0 

Loose sand 
Fixed 1515.5 33.7 

Pinned 700.5 15.1 

Dense sand 
Fixed 1772.4 52.2 

Pinned 965.7 25.1 

Soft clay 
Fixed 997.0 17.6 

Pinned 410.6 8.8 

Very firm glacial 

clay 

Fixed 2000.4 89.7 

Pinned 1199.3 52.9 

100 

Loose sand 
Fixed 1505.7 32.2 

Pinned 715.8 13.4 

Dense sand 
Fixed 1758.3 50.3 

Pinned 978.7 23.0 

Soft clay 
Fixed 995.5 16.7 

Pinned 433.7 7.6 

Very firm glacial 

clay 

Fixed 1988.1 87.5 

Pinned 1215.6 50.3 

200 

Loose sand 
Fixed 1484.9 30.7 

Pinned 730.2 11.7 

Dense sand 
Fixed 1731.3 48.1 

Pinned 987.9 20.8 

Soft clay 
Fixed 991.7 15.8 

Pinned 457.9 6.3 

Very firm glacial 

clay 

Fixed 1966.4 85.1 

Pinned 1227.1 47.5 

300 

Loose sand 
Fixed 1452.3 28.9 

Pinned 743.9 9.9 

Dense sand 
Fixed 1691.1 45.7 

Pinned 993.1 18.4 

Soft clay 
Fixed 984.6 14.8 

Pinned 483.2 5.0 

Very firm glacial 

clay 

Fixed 1934.0 82.4 

Pinned 1227.8 44.4 
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Table B-3. Maximum moment and maximum shear for trials 129a through 192a 

Parameters: (1) HP 10 × 57, (2) strong-axis bending, (3) 1.00 in. of lateral 

displacement, and (4) no prebored hole 

Axial 

load, 

kips 

Soil type 

Pile head 

boundary 

condition 

Maximum 

moment, kip-in. 

Maximum 

shear, kips 

0 

Loose sand 
Fixed 2490.7 45.4 

Pinned 953.0 18.6 

Dense sand 
Fixed 3240.9 76.4 

Pinned 1496.1 33.6 

Soft clay 
Fixed 1376.5 19.7 

Pinned 533.9 9.7 

Very firm glacial 

clay 

Fixed 3663.7 115.7 

Pinned 1862.0 64.0 

100 

Loose sand 
Fixed 2507.0 44.8 

Pinned 963.6 17.7 

Dense sand 
Fixed 3301.6 76.2 

Pinned 1506.6 32.5 

Soft clay 
Fixed 1385.3 19.2 

Pinned 566.9 9.1 

Very firm glacial 

clay 

Fixed 3728.1 115.5 

Pinned 1877.3 62.8 

200 

Loose sand 
Fixed 2478.2 43.8 

Pinned 974.4 16.8 

Dense sand 
Fixed 3216.4 74.3 

Pinned 1517.3 31.4 

Soft clay 
Fixed 1375.9 18.8 

Pinned 563.3 8.4 

Very firm glacial 

clay 

Fixed 3502.6 111.8 

Pinned 1885.4 61.5 

300 

Loose sand 
Fixed 2356.2 41.9 

Pinned 985.7 15.8 

Dense sand 
Fixed 2830.9 68.7 

Pinned 1528.1 30.3 

Soft clay 
Fixed 1376.0 18.3 

Pinned 579.3 7.7 

Very firm glacial 

clay 

Fixed 3083.7 105.5 

Pinned 1870.6 59.6 
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Table B-4. Maximum moment and maximum shear for trials 193a through 256a 

Parameters: (1) HP 10 × 57, (2) strong-axis bending, (3) 1.55 in. of lateral 

displacement, and (4) no prebored hole 

Axial 

load, 

kips 

Soil type 

Pile head 

boundary 

condition 

Maximum 

moment, kip-in. 

Maximum 

shear, kips 

0 

Loose sand 
Fixed 3095.9 55.7 

Pinned 1395.0 24.5 

Dense sand 
Fixed 3802.9 89.8 

Pinned 2041.1 42.3 

Soft clay 
Fixed 1842.6 24.8 

Pinned 720.2 12.2 

Very firm glacial 

clay 

Fixed 4072.1 132.0 

Pinned 2322.6 75.9 

100 

Loose sand 
Fixed 3144.6 55.0 

Pinned 1411.7 23.1 

Dense sand 
Fixed 3730.1 87.7 

Pinned 2060.8 40.7 

Soft clay 
Fixed 1825.3 23.4 

Pinned 754.9 11.1 

Very firm glacial 

clay 

Fixed 3980.4 129.6 

Pinned 2354.5 74.3 

200 

Loose sand 
Fixed 3076.9 53.3 

Pinned 1429.6 21.8 

Dense sand 
Fixed 3435.9 82.7 

Pinned 2063.0 38.8 

Soft clay 
Fixed 1842.2 23.5 

Pinned 766.4 10.3 

Very firm glacial 

clay 

Fixed 3701.6 124.6 

Pinned 2350.3 72.0 

300 

Loose sand 
Fixed 2718.7 48.8 

Pinned 1448.1 20.4 

Dense sand 
Fixed 2985.3 75.3 

Pinned 2010.2 36.0 

Soft clay 
Fixed 1832.9 22.7 

Pinned 790.8 9.3 

Very firm glacial 

clay 

Fixed 3240.8 116.3 

Pinned 2241.0 67.5 
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Table B-5. Maximum moment and maximum shear for trials 1b through 64b 

Parameters: (1) UHPC, (2) weak-axis bending, (3) 1.00 in. of lateral displacement, 

and (4) no prebored hole 

Axial 

load, 

kips Soil type 

Pile head 

boundary 

condition 

Maximum 

moment, kip-in. 

Maximum 

shear, kips 

0 

Loose sand 
Fixed 1140.8 26.6 

Pinned 475.5 11.4 

Dense sand 
Fixed 1418.8 42.9 

Pinned 690.3 19.7 

Soft clay 
Fixed 738.0 13.9 

Pinned 294.8 6.8 

Very firm glacial 

clay 

Fixed 1575.2 74.2 

Pinned 919.1 43.5 

100 

Loose sand 
Fixed 1212.5 26.6 

Pinned 488.1 10.4 

Dense sand 
Fixed 1509 43.5 

Pinned 728.2 18.9 

Soft clay 
Fixed 757.3 13.4 

Pinned 309.4 6.0 

Very firm glacial 

clay 

Fixed 1526.9 72.9 

Pinned 986.6 43.3 

200 

Loose sand 
Fixed 1258.6 26.3 

Pinned 500.1 9.2 

Dense sand 
Fixed 1530.8 42.9 

Pinned 749.1 17.7 

Soft clay 
Fixed 762.1 12.9 

Pinned 324.5 5.1 

Very firm glacial 

clay 

Fixed 1430.7 70.5 

Pinned 1034.8 42.5 

300 

Loose sand 
Fixed 1279.9 25.7 

Pinned 512.6 8.1 

Dense sand 
Fixed 1448.4 40.6 

Pinned 762.4 16.4 

Soft clay 
Fixed 761.9 12.2 

Pinned 340.3 4.2 

Very firm glacial 

clay 

Fixed 1416.5 69.2 

Pinned 1065.9 41.4 
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Table B-6. Maximum moment and maximum shear for trials 65b through 128b 

Parameters: (1) UHPC, (2) weak-axis bending, (3) 1.55 in. of lateral displacement, 

and (4) no prebored hole 

Axial 

load, 

kips Soil type 

Pile head 

boundary 

condition 

Maximum 

moment, kip-in. 

Maximum 

shear, kips 

0 

Loose sand 
Fixed 1359.2 31.6 

Pinned 668.6 14.6 

Dense sand 
Fixed 1247.4 44.1 

Pinned 907.7 24.0 

Soft clay 
Fixed 947.0 17.2 

Pinned 400.0 8.7 

Very firm glacial 

clay 

Fixed 1440.7 79.5 

Pinned 1123.6 51.0 

100 

Loose sand 
Fixed 1438.8 31.4 

Pinned 706.8 13.3 

Dense sand 
Fixed 1270.4 43.6 

Pinned 976.4 23.1 

Soft clay 
Fixed 991.1 16.6 

Pinned 423.0 7.4 

Very firm glacial 

clay 

Fixed 1466.5 79.2 

Pinned 1093.8 46.7 

200 

Loose sand 
Fixed 1442.8 30.1 

Pinned 731.1 11.7 

Dense sand 
Fixed 1280.9 42.6 

Pinned 1037.4 21.8 

Soft clay 
Fixed 1015.6 15.9 

Pinned 446.3 6.2 

Very firm glacial 

clay 

Fixed 1478.7 78.2 

Pinned 1020.0 41.3 

300 

Loose sand 
Fixed 1169.4 25.6 

Pinned 750.3 10.0 

Dense sand 
Fixed 1264.9 40.9 

Pinned 1075.1 20.1 

Soft clay 
Fixed 1026.8 15.1 

Pinned 471.7 4.8 

Very firm glacial 

clay 

Fixed 1447.8 73.6 

Pinned 1010.4 36.9 
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Table B-7. Maximum moment and maximum shear for trials 129b through 192b 

Parameters: (1) UHPC, (2) strong-axis bending, (3) 1.00 in. of lateral displacement, 

and (4) no prebored hole 

Axial 

load, 

kips Soil type 

Pile head 

boundary 

condition 

Maximum 

moment, kip-in. 

Maximum 

shear, kips 

0 

Loose sand 
Fixed 1767.6 36.4 

Pinned 761.2 15.9 

Dense sand 
Fixed 2080.4 57.8 

Pinned 1135.0 27.8 

Soft clay 
Fixed 1119.7 17.6 

Pinned 440.1 8.6 

Very firm glacial 

clay 

Fixed 2329.7 93.1 

Pinned 1400.3 54.7 

100 

Loose sand 
Fixed 2003.9 38.3 

Pinned 798.7 15.3 

Dense sand 
Fixed 2434.8 62.4 

Pinned 1226.4 28.0 

Soft clay 
Fixed 1169.0 17.5 

Pinned 467.7 8.1 

Very firm glacial 

clay 

Fixed 2677.4 98.4 

Pinned 1566.8 56.7 

200 

Loose sand 
Fixed 2141.8 39.0 

Pinned 809.7 14.3 

Dense sand 
Fixed 2702.8 64.9 

Pinned 1243.3 26.9 

Soft clay 
Fixed 1168.9 17.0 

Pinned 482.6 7.4 

Very firm glacial 

clay 

Fixed 2978.7 101.6 

Pinned 1624.2 56.3 

300 

Loose sand 
Fixed 2205.1 39.0 

Pinned 820.9 13.3 

Dense sand 
Fixed 2856.4 65.9 

Pinned 1254.8 25.7 

Soft clay 
Fixed 1168.6 16.5 

Pinned 499.0 6.6 

Very firm glacial 

clay 

Fixed 29327 100 

Pinned 1645.8 55.2 
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Table B-8. Maximum moment and maximum shear for trials 193b through 256b 

Parameters: (1) UHPC, (2) strong-axis bending, (3) 1.55 in. of lateral displacement, 

and (4) no prebored hole 

Axial 

load, 

kips Soil type 

Pile head 

boundary 

condition 

Maximum 

moment, kip-in. 

Maximum 

shear, kips 

0 

Loose sand 
Fixed 2000.2 42.5 

Pinned 1083.1 20.4 

Dense sand 
Fixed 2205.0 64.1 

Pinned 1452.8 33.3 

Soft clay 
Fixed 1434.1 21.7 

Pinned 594.4 10.9 

Very firm glacial 

clay 

Fixed 2434.6 103.3 

Pinned 1661.7 63.2 

100 

Loose sand 
Fixed 2339.4 45.2 

Pinned 116.3 19.9 

Dense sand 
Fixed 2513.5 68.9 

Pinned 1670.2 34.7 

Soft clay 
Fixed 1557.5 21.9 

Pinned 635.1 10.1 

Very firm glacial 

clay 

Fixed 2722.6 108.6 

Pinned 1916.7 65.8 

200 

Loose sand 
Fixed 2593.9 46.6 

Pinned 1185.7 18.5 

Dense sand 
Fixed 2815.1 72.1 

Pinned 1770.2 34.3 

Soft clay 
Fixed 1577.2 21.3 

Pinned 659.0 9.1 

Very firm glacial 

clay 

Fixed 2973.1 111.8 

Pinned 2073.0 66.6 

300 

Loose sand 
Fixed 2735.0 46.9 

Pinned 1202.8 17.1 

Dense sand 
Fixed 2774.5 70.5 

Pinned 1812.0 33.0 

Soft clay 
Fixed 1577.8 20.5 

Pinned 684.1 8.0 

Very firm glacial 

clay 

Fixed 3001.5 111.1 

Pinned 2169.5 66.2 
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Table B-9. Maximum moment and maximum shear for trials 257 through 264 

Parameters: (1) weak-axis bending, (2) 1.00 in. of lateral displacement, (3) fixed-pile 

head, and (4) 10 ft prebored hole 

Pile type Axial load, kips Soil type 

Maximum 

moment, kip-in. 

Maximum 

shear, kips 

UHPC 

100 
Soft clay 363.6 3.1 

Very stiff clay 686.9 13.2 

200 
Soft clay 358.2 2.9 

Very stiff clay 682.7 13.3 

HP10 x 57 

100 
Soft clay 377.6 3.2 

Very stiff clay 705.6 13.5 

200 
Soft clay 371.9 2.9 

Very stiff clay 698.1 13.7 

 

Table B-10. Maximum moment and maximum shear for trials 265 through 272 

Parameters: (1) weak-axis bending, (2) 1.55 in. of lateral displacement, (3) fixed-pile 

head, and (4) 10 ft prebored hole 

Pile type Axial load, kips Soil type 

Maximum 

moment, kip-in. 

Maximum 

shear, kips 

UHPC 

100 
Soft clay 520.2 4.3 

Very stiff clay 956.8 17.1 

200 
Soft clay 511.9 3.8 

Very stiff clay 979.2 10.7 

HP10 x 57 

100 
Soft clay 539.6 4.4 

Very stiff clay 963.7 17.3 

200 
Soft clay 531.5 3.9 

Very stiff clay 950.8 17.5 
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Table B-11. Depth to 2nd maximum bending moment and shear forces and depth of fixity 

for trials 1a through 64a 

Parameters: (1) HP 10 × 57 pile, (2) weak-axis bending, (3) 1.00 in. of lateral displacement, 

and (4) no prebored hole 

Axial 

load, 

kips 

Boundary 

condition Soil type 

Location from GS of 2nd 

maximum, ft Depth of 

fixity, ft Bending moment Shear 

0 

Pinned 

Loose sand 17.0 9.0 17.5 

Dense sand 12.5 7.5 12.0 

Soft clay 20.0 11.5 19.5 

Very stiff clay 9.5 6.0 9.0 

Fixed 

Loose sand 7.5 11.0 19.0 

Dense sand 6.5 8.5 13.5 

Soft clay 11.0 15.5 22.5 

Very stiff clay 5.5 8.0 10.0 

100 

Pinned 

Loose sand 16.5 8.5 17.5 

Dense sand 12.5 7.5 12.0 

Soft clay 20.0 11.0 19.5 

Very stiff clay 9.5 6.0 9.0 

Fixed 

Loose sand 7.5 10.5 19.0 

Dense sand 6.5 8.5 13.5 

Soft clay 11.0 15.5 22.5 

Very stiff clay 5.5 8.0 10.0 

200 

Pinned 

Loose sand 16.5 8.5 17.5 

Dense sand 12.0 7.5 12.0 

Soft clay 19.5 10.5 19.5 

Very stiff clay 9.5 6.0 9.0 

Fixed 

Loose sand 7.5 10.5 19.0 

Dense sand 6.5 8.5 13.5 

Soft clay 11.0 15.0 23.0 

Very stiff clay 5.5 7.5 10.0 

300 

Pinned 

Loose sand 16.5 8.0 17.0 

Dense sand 12.0 7.0 12.0 

Soft clay 19.5 10.0 20.0 

Very stiff clay 9.5 6.0 9.0 

Fixed 

Loose sand 7.5 10.5 19.0 

Dense sand 6.0 8.5 13.0 

Soft clay 11.0 14.5 23.0 

Very stiff clay 5.5 7.5 10.0 
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Table B12. Depth to 2nd maximum bending moment and shear forces and depth of fixity 

for trials 65a through 128a 

Parameters: (1) HP 10 × 57 pile, (2) weak-axis bending, (3) 1.55 in. of lateral displacement, 

and (4) no prebored hole 

Axial 

load, kips 

Boundary 

condition Soil type 

Location from GS of 2nd 

maximum, ft Depth of 

fixity, ft Bending moment Shear 

0 

Pinned 

Loose sand 17.0 9.0 18.0 

Dense sand 12.5 7.5 12.5 

Soft clay 21.5 12.5 21.5 

Very stiff clay 10.0 6.5 9.5 

Fixed 

Loose sand 8.0 11.0 19.5 

Dense sand 6.5 9.0 13.5 

Soft clay 12.0 16.5 25.0 

Very stiff clay 5.5 8.0 11.0 

100 

Pinned 

Loose sand 17.0 9.0 18.0 

Dense sand 12.5 7.5 12.5 

Soft clay 21.5 11.5 21.5 

Very stiff clay 10.0 6.5 9.5 

Fixed 

Loose sand 8.0 11.0 19.5 

Dense sand 6.5 8.5 13.5 

Soft clay 11.5 16.5 25.0 

Very stiff clay 5.5 8.0 10.5 

200 

Pinned 

Loose sand 16.5 8.5 18.0 

Dense sand 12.5 7.5 12.5 

Soft clay 21.0 11.0 22.0 

Very stiff clay 10.0 6.0 9.5 

Fixed 

Loose sand 7.5 10.5 19.5 

Dense sand 6.5 8.5 13.5 

Soft clay 11.5 16.0 25.0 

Very stiff clay 5.5 8.0 10.5 

300 

Pinned 

Loose sand 16.5 8.5 18.0 

Dense sand 12.0 7.0 12.5 

Soft clay 21.0 10.5 22.0 

Very stiff clay 10.0 6.0 9.5 

Fixed 

Loose sand 7.5 10.5 19.5 

Dense sand 6.0 8.5 13.5 

Soft clay 11.5 15.5 25.0 

Very stiff clay 5.5 7.5 10.5 
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Table B-13. Depth to 2nd maximum bending moment and shear forces and depth of fixity 

for trials 129a through 192a 

Parameters: (1) HP 10 × 57 pile, (2) strong-axis bending, (3) 1.00 in. of lateral 

displacement, and (4) no prebored hole 

Axial 

load, 

kips 

Boundary 

condition Soil type 

Location from GS of 2nd 

maximum, ft 

Depth of 

fixity, ft 

Bending 

moment Shear 

0 

Pinned 

Loose sand 20.5 11.0 21.5 

Dense sand 15.0 9.0 15.0 

Soft clay 26.0 14.5 25.5 

Very stiff clay 12.5 8.0 11.5 

Fixed 

Loose sand 9.5 13.5 23.0 

Dense sand 7.5 10.5 16.5 

Soft clay 14.5 20.5 29.5 

Very stiff clay 7.0 10.0 13.5 

100 

Pinned 

Loose sand 20.5 10.5 21.5 

Dense sand 15.0 9.0 15.0 

Soft clay 24.5 14.5 23.5 

Very stiff clay 12.5 8.0 11.5 

Fixed 

Loose sand 9.5 13.5 23.5 

Dense sand 7.5 10.5 16.5 

Soft clay 14.5 20.0 27.5 

Very stiff clay 7.0 10.0 13.5 

200 

Pinned 

Loose sand 20.5 10.5 21.5 

Dense sand 15.0 9.0 15.0 

Soft clay 25.5 14.0 25.5 

Very stiff clay 12.5 8.0 11.5 

Fixed 

Loose sand 9.5 13.0 23.5 

Dense sand 7.5 10.5 16.0 

Soft clay 14.5 20.0 29.5 

Very stiff clay 7.0 10.5 13.5 

300 

Pinned 

Loose sand 20.5 10.5 21.5 

Dense sand 15.0 8.5 15.0 

Soft clay 25.5 13.5 25.5 

Very stiff clay 12.5 8.0 11.5 

Fixed 

Loose sand 9.0 13.0 23.5 

Dense sand 7.5 9.5 16.0 

Soft clay 14.5 19.5 29.5 

Very stiff clay 7.0 9.5 13.0 
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Table B-14. Depth to 2nd maximum bending moment and shear forces and depth of fixity 

for trials 193a through 256a 

Parameters: (1) HP 10 × 57 pile, (2) strong-axis bending, (3) 1.55 in. of lateral 

displacement, and (4) no prebored hole 

Axial 

load, 

kips 

Boundary 

condition Soil type 

Location from GS of 2nd 

maximum, ft 

Depth of 

fixity, ft 

Bending 

moment 
Shear 

0 

Pinned 

Loose sand 21.0 11.0 22.5 

Dense sand 15.5 8.5 15.5 

Soft clay 28.0 16.0 28.5 

Very stiff clay 13.0 8.5 12.5 

Fixed 

Loose sand 9.5 13.5 24.5 

Dense sand 7.5 10.5 17.0 

Soft clay 15.5 22.0 32.5 

Very stiff clay 7.5 10.5 14.5 

100 

Pinned 

Loose sand 21.0 11.0 22.5 

Dense sand 15.5 9.0 15.5 

Soft clay 26.5 15.5 26.5 

Very stiff clay 13.0 8.5 12.5 

Fixed 

Loose sand 9.5 13.5 24.5 

Dense sand 7.5 10.5 17.0 

Soft clay 15.5 21.5 31.0 

Very stiff clay 7.5 10.5 14.5 

200 

Pinned 

Loose sand 21.0 11.0 22.0 

Dense sand 15.0 9.0 15.5 

Soft clay 27.5 15.0 28.0 

Very stiff clay 13.0 8.5 12.5 

Fixed 

Loose sand 9.5 13.0 24.5 

Dense sand 7.5 10.5 16.5 

Soft clay 15.5 21.0 32.5 

Very stiff clay 7.0 10.0 14.5 

300 

Pinned 

Loose sand 20.5 10.5 22.0 

Dense sand 15.0 8.5 15.5 

Soft clay 27.5 14.5 28.0 

Very stiff clay 13.0 8.0 12.5 

Fixed 

Loose sand 9.5 13.0 24.0 

Dense sand 7.5 10.0 16.5 

Soft clay 15.5 21.0 32.5 

Very stiff clay 7.0 10.0 14.0 
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Table B-15. Depth to 2nd maximum bending moment and shear forces and depth of fixity 

for trials 1b through 64b 

Parameters: (1) UHPC pile, (2) weak-axis bending, (3) 1.00 in. of lateral 

displacement, and (4) no prebored hole 

Axial 

load, 

kips 

Boundary 

condition Soil type 

Location from GS of 2nd 

maximum, ft 

Depth of 

fixity, ft 

Bending 

moment Shear 

0 

Pinned 

Loose sand 16.5 8.5 17.5 

Dense sand 12.0 7.5 12.0 

Soft clay 20.0 11.5 19.5 

Very stiff clay 9.5 6.0 8.5 

Fixed 

Loose sand 7.5 10.5 19.0 

Dense sand 6.0 8.5 13.0 

Soft clay 11.0 15.5 22.5 

Very stiff clay 5.0 7.5 9.5 

100 

Pinned 

Loose sand 16.5 8.5 17.0 

Dense sand 12.0 7.5 12.0 

Soft clay 19.5 11.0 19.5 

Very stiff clay 6.0 9.5 9.0 

Fixed 

Loose sand 7.5 10.5 19.0 

Dense sand 6.0 8.5 13.0 

Soft clay 11.0 15.0 22.5 

Very stiff clay 5.0 7.5 10.0 

200 

Pinned 

Loose sand 16.5 8.5 17.0 

Dense sand 12.0 7.0 12.0 

Soft clay 19.5 10.5 19.5 

Very stiff clay 9.5 6.0 9.0 

Fixed 

Loose sand 7.5 10.5 19.0 

Dense sand 6.0 8.5 13.5 

Soft clay 11.0 15.0 22.5 

Very stiff clay 5.0 7.5 10.0 

300 

Pinned 

Loose sand 16.0 8.0 17.0 

Dense sand 12.0 7.0 12.0 

Soft clay 19.0 10.0 19.5 

Very stiff clay 9.5 6.0 9.0 

Fixed 

Loose sand 7.5 10.5 19.0 

Dense sand 6.0 8.5 13.0 

Soft clay 11.0 14.5 22.5 

Very stiff clay 5.0 7.5 10.0 
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Table B-16. Depth to 2nd maximum bending moment and shear forces and depth of fixity 

for trials 65b through 128b 

Parameters: (1) UHPC pile, (2) weak-axis bending, (3) 1.55 in. of lateral displacement, and 

(4) no prebored hole 

Axial 

load, kips 

Boundary 

condition Soil type 

Location from GS of 2nd 

maximum, ft 

Depth of 

fixity, ft 

Bending 

moment Shear 

0 

Pinned 

Loose sand 17.0 9.5 18.0 

Dense sand 12.5 7.5 12.5 

Soft clay 21.5 12.0 21.5 

Very stiff clay 10.0 6.5 9.5 

Fixed 

Loose sand 7.5 11.0 19.5 

Dense sand 6.0 8.5 13.5 

Soft clay 11.5 16.5 24.5 

Very stiff clay 5.0 7.5 10.5 

100 

Pinned 

Loose sand 17.0 9.0 18.0 

Dense sand 12.5 7.5 12.5 

Soft clay 21.0 11.5 21.5 

Very stiff clay 9.5 6.0 9.0 

Fixed 

Loose sand 7.5 11.0 19.5 

Dense sand 6.0 8.5 13.5 

Soft clay 11.5 16.0 25.0 

Very stiff clay 5.0 7.5 10.5 

200 

Pinned 

Loose sand 16.5 8.5 18.0 

Dense sand 12.5 7.5 12.5 

Soft clay 21.0 11.0 21.5 

Very stiff clay 9.5 6.0 9.5 

Fixed 

Loose sand 7.5 10.5 19.5 

Dense sand 6.0 8.5 13.5 

Soft clay 11.5 15.5 25.0 

Very stiff clay 5.0 7.5 11.0 

300 

Pinned 

Loose sand 16.5 8.5 17.5 

Dense sand 12.5 7.5 12.5 

Soft clay 20.5 10.5 21.5 

Very stiff clay 9.0 5.5 8.5 

Fixed 

Loose sand 7.5 10.0 19.0 

Dense sand 6.0 8.5 13.5 

Soft clay 11.5 15.5 25.0 

Very stiff clay 5.0 7.5 10.5 
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Table B-17. Depth to 2nd maximum bending moment and shear forces and depth of fixity 

for trials 129b through 192b 

Parameters: (1) UHPC pile, (2) strong-axis bending, (3) 1.00 in. of lateral displacement, and (4) 

no prebored hole 

Axial 

load, kips 

Boundary 

condition Soil type 

Location from GS of 2nd 

maximum, ft 

Depth of 

fixity, ft 

Bending 

moment 
Shear 

0 

Pinned 

Loose sand 19.5 10.0 20.0 

Dense sand 14.0 8.5 14.0 

Soft clay 23.5 13.5 23.0 

Very stiff clay 11.0 7.0 10.5 

Fixed 

Loose sand 8.5 12.5 21.5 

Dense sand 7.0 9.5 15.0 

Soft clay 13.0 18.5 27.0 

Very stiff clay 6.0 9.0 11.5 

100 

Pinned 

Loose sand 19.5 10.0 20.0 

Dense sand 14.0 8.5 14.0 

Soft clay 24.0 13.5 23.5 

Very stiff clay 11.5 7.5 10.5 

Fixed 

Loose sand 9.0 12.5 22.0 

Dense sand 7.0 9.5 15.0 

Soft clay 13.5 18.5 27.5 

Very stiff clay 6.5 9.0 12.5 

200 

Pinned 

Loose sand 19.5 10.0 20.0 

Dense sand 14.0 8.5 14.0 

Soft clay 23.5 13.0 23.5 

Very stiff clay 11.5 7.5 11.0 

Fixed 

Loose sand 9.0 12.5 22.0 

Dense sand 7.0 10.0 15.5 

Soft clay 13.5 18.5 27.5 

Very stiff clay 6.5 9.5 12.5 

300 

Pinned 

Loose sand 19.0 9.5 20.0 

Dense sand 14.0 8.5 14.0 

Soft clay 23.5 12.5 23.5 

Very stiff clay 11.5 7.5 11.0 

Fixed 

Loose sand 9.0 12.5 22.0 

Dense sand 7.5 10.0 15.5 

Soft clay 13.5 18.0 27.5 

Very stiff clay 6.5 9.5 12.5 
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Table B-18. Depth to 2nd maximum bending moment and shear forces and depth of fixity 

for trials 193b through 256b 

Parameters: (1) UHPC pile, (2) strong-axis bending, (3) 1.55 in. of lateral displacement, 

and (4) no prebored hole 

Axial 

load, 

kips 

Boundary 

condition Soil type 

Location from GS of 2nd 

maximum, ft 

Depth of 

fixity, ft 

Bending 

moment Shear 

0 

Pinned 

Loose sand 19.5 10.5 21.0 

Dense sand 14.0 8.5 14.5 

Soft clay 25.5 14.5 25.5 

Very stiff clay 11.5 7.5 11.0 

Fixed 

Loose sand 8.5 12.5 22.5 

Dense sand 7.0 9.5 15.5 

Soft clay 14.0 20.0 29.5 

Very stiff clay 6.0 9.0 12.5 

100 

Pinned 

Loose sand 19.5 10.5 21.0 

Dense sand 14.5 8.5 14.5 

Soft clay 25.5 14.0 26.0 

Very stiff clay 12.0 7.5 11.5 

Fixed 

Loose sand 9.0 12.5 22.5 

Dense sand 7.0 10.0 15.5 

Soft clay 14.5 20.0 30.0 

Very stiff clay 6.5 9.5 13.0 

200 

Pinned 

Loose sand 19.5 10.0 21.0 

Dense sand 14.5 8.5 14.5 

Soft clay 25.5 13.5 26.0 

Very stiff clay 12.5 8.0 12.0 

Fixed 

Loose sand 9.0 12.5 23.0 

Dense sand 7.0 10.0 16.0 

Soft clay 14.5 19.5 30.5 

Very stiff clay 6.5 9.5 13.5 

300 

Pinned 

Loose sand 19.5 10.0 21.0 

Dense sand 14.5 8.5 14.5 

Soft clay 25.0 13.0 26.0 

Very stiff clay 12.5 8.0 12.0 

Fixed 

Loose sand 9.0 12.5 23.0 

Dense sand 7.0 10.0 16.0 

Soft clay 14.5 19.0 30.5 

Very stiff clay 6.5 9.5 13.5 
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Table B-19. Depth to 2nd maximum bending moment and shear forces and depth of fixity 

for trials 257 through 264 

Parameters: (1) weak-axis bending, (2) 1.00 in. of lateral displacement, (3) fixed-pile 

head, and (4) no prebored hole 

Pile type 

Axial 

load, kips Soil type 

Location from GS of 2nd 

maximum, ft 

Depth of 

fixity, ft 

Bending 

moment Shear 

UHPC 

100 
Soft clay 15.0 19.0 25.0 

Very soft clay 11.0 13.5* 13.5 

200 
Soft clay 15.0 18.5* 25.0 

Very soft clay 11.0 13.5* 13.0 

HP 10 × 57 

100 
Soft clay 15.0 19.0 25.5 

Very soft clay 11.0 13.5* 13.5 

200 
Soft clay 15.0 19.0* 25.5 

Very soft clay 11.0 13.5* 13.5 

*The depth of the maximum shear force 

Table B-20. Depth to 2nd maximum bending moment and shear forces and depth of fixity 

for trials 265 through 272 

Parameters: (1) weak-axis bending, (2) 1.55 in. of lateral displacement, (3) fixed-pile 

head, and (4) no prebored hole 

Axial load, 

kips 

Boundary 

condition Soil type 

Location from GS of 2nd 

maximum, ft 

Depth of 

fixity, ft 

Bending 

moment Shear 

UHPC 

100 
Soft clay 15.5 20.0 28.0 

Very soft clay 11.5 14.0* 15.5 

200 
Soft clay 15.5 19.5* 27.5 

Very soft clay 11.0 14.0* 16.0 

HP 10 × 57 

100 
Soft clay 15.5 20.0 27.5 

Very soft clay 11.5 14.0* 15.5 

200 
Ls 15.5 19.5* 27.5 

Ds 11.5 17.0* 16.0 

*The depth of the maximum shear force 
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APPENDIX C. TEST PILE CALCULATIONS 

Test pile and production pile design calculations are included in this appendix using the 

procedures from Section 2.5.Pile Design Method. 

C.1. Design Calculations for UHPC Test Pile P3 

C.1.1. Current Iowa DOT Practice to Determine Pile Design Length 

Step 1: Idealize the Soil Layers 

Table C-1. Idealized soil layers for P3 

Layer N-Value Thickness 

fs, kip/ft 

(Iowa DOT 2011) 

Above ground - 3 0 

Firm glacial clay 9 6 3.2 

Very firm glacial clay 24 24 3.2 

Very firm glacial clay 34 L 4.8 

 

Step 2: Calculate the Nominal Capacity 

A nominal capacity of 200 kips is used to calculate the design length of P3 to verify the 

piles design for the integral abutments. 

 

Step 3: Calculate End Bearing 

𝑄𝑝 = 60𝑘𝑖𝑝 ×
100𝑖𝑛2

144𝑖𝑛2
= 41.7𝑘𝑖𝑝𝑠 

 

Step 4: Calculate Side Friction 

𝑄𝑠 = 6𝑓𝑡 × 3.2
𝑘𝑖𝑝

𝑓𝑡
+ 24𝑓𝑡 × 3.2

𝑘𝑖𝑝

𝑓𝑡
+ 𝐿 × 4.8

𝑘𝑖𝑝

𝑓𝑡
= 96 + 4.8𝐿 

 

Step 5: Calculate L 

200𝑘𝑖𝑝𝑠 = 41.7 + 96 + 4.8𝐿 

𝐿 = 13𝑓𝑡 
 

Step 6: Calculated Required Depth of Pile 

𝐷𝑒𝑠𝑖𝑔𝑛 𝐿𝑒𝑛𝑔𝑡ℎ = 3𝑓𝑡 + 6𝑓𝑡 + 24𝑓𝑡 + 13𝑓𝑡 = 46 ≈ 45𝑓𝑡 

C.1.2. New Resistance Factors to Predict Nominal Capacity 

Step 1: Idealize the Soil Layers 

Use Table B-1 for the idealized soil layers. 
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Step 2: Calculate the Nominal Capacity 

𝑃𝑛 =
1.45 × 100𝑘𝑖𝑝

0.8
= 183 𝑘𝑖𝑝𝑠 

 

Step 3: Calculate End Bearing 

𝑄𝑝 = 60𝑘𝑖𝑝 ×
100𝑖𝑛2

144𝑖𝑛2
= 41.7𝑘𝑖𝑝𝑠 

 

Step 4: Calculate Side Friction 

𝑄𝑠 = 6𝑓𝑡 × 3.2
𝑘𝑖𝑝

𝑓𝑡
+ 24𝑓𝑡 × 3.2

𝑘𝑖𝑝

𝑓𝑡
+ 𝐿 × 4.8

𝑘𝑖𝑝

𝑓𝑡
= 96 + 4.8𝐿 

 

Step 5: Calculate L 

183𝑘𝑖𝑝𝑠 = 41.7 + 96 + 4.8𝐿 

𝐿 = 9.4𝑓𝑡 

 

Step 6: Calculated Required Depth of Pile 

𝐷𝑒𝑠𝑖𝑔𝑛 𝐿𝑒𝑛𝑔𝑡ℎ = 3𝑓𝑡 + 6𝑓𝑡 + 24𝑓𝑡 + 9.4𝑓𝑡 = 42𝑓𝑡 

C.2. Design Calculations for UHPC Test Pile P4 

C.2.1. Current Iowa DOT Practice 

Step 1: Idealize the Soil Layers 

Table C-2. Idealized soil layers for P4 

Layer N-Value Thickness 

fs, kip/ft 

(Iowa DOT 2011) 

Above ground - 3 0 

Firm glacial clay 9 6 3.2 

Very firm glacial clay 24 21 3.2 

 

Step 2: Calculate End Bearing 

𝑄𝑝 = 60𝑘𝑖𝑝 ×
100𝑖𝑛2

144𝑖𝑛2
= 41.7𝑘𝑖𝑝𝑠 

 

Step 3: Calculate Side Friction 

𝑄𝑠 = 6𝑓𝑡 × 3.2
𝑘𝑖𝑝

𝑓𝑡
+ 21𝑓𝑡 × 3.2

𝑘𝑖𝑝

𝑓𝑡
= 86.4𝑘𝑖𝑝𝑠 

 

Step 4: Calculate Nominal Capacity 

𝑃𝑛 = 41.7𝑘𝑖𝑝𝑠 + 86.4𝑘𝑖𝑝𝑠 = 128𝑘𝑖𝑝𝑠 
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C.3. Design Calculations for Steel HP 12 × 53 Anchor Piles RPS and RPN 

C.3.1. Current Iowa DOT Practice for Uplift 

Step 1: Idealize the Soil Layers 

Table C-3. Idealized soil layers for RPS and RPN 

Layer N-Value Thickness 

fs, kip/ft 

(Iowa DOT 2011) 

Cutoff - 1 0 

Above ground - 6 0 

Fill - 0.4 0 

Firm glacial clay 9 6 3.2 

Very firm glacial clay 24 24 3.2 

Very firm glacial clay 34 L 4.8 

 

Step 2: Calculate Factored Uplift 

𝑈𝑝𝑙𝑖𝑓𝑡 =
1.7 × 100𝑘𝑖𝑝𝑠

0.6
= 283𝑘𝑖𝑝𝑠 

 

Step 3: Calculated Side Friction 

𝑄𝑠 = 6𝑓𝑡 × 3.2
𝑘𝑖𝑝

𝑓𝑡
+ 24𝑓𝑡 × 3.2

𝑘𝑖𝑝

𝑓𝑡
+ 𝐿 × 4.8

𝑘𝑖𝑝

𝑓𝑡
= 96 + 4.8𝐿 

 

Step 5: Calculate L 

283𝑘𝑖𝑝𝑠 = 96 + 4.8𝐿 

𝐿 = 40𝑓𝑡 
 

Step 6: Calculated Required Depth of Pile 

𝐷𝑒𝑠𝑖𝑔𝑛 𝐿𝑒𝑛𝑔𝑡ℎ = 1𝑓𝑡 + 6𝑓𝑡 + 0.4𝑓𝑡 + 6𝑓𝑡 + 24𝑓𝑡 + 40𝑓𝑡 = 77 = 80𝑓𝑡 

C.3.2. Current Iowa DOT Practice for Downward Load 

Step 1: Idealize the Soil Layers 

Table B-3 is used to idealize the soil layers. 

 

Step 2: Calculate End Bearing 

𝑄𝑝 = 2𝑘𝑠𝑖 × 15.5𝑖𝑛2 = 31𝑘𝑖𝑝𝑠 

 

Step 3: Calculate Side Friction 

𝑄𝑠 = 6𝑓𝑡 × 3.2
𝑘𝑖𝑝

𝑓𝑡
+ 24𝑓𝑡 × 3.2

𝑘𝑖𝑝

𝑓𝑡
+ 42.6 × 4.8

𝑘𝑖𝑝

𝑓𝑡
= 300𝑘𝑖𝑝𝑠 
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Step 4: Calculate Nominal Capacity 

𝑃𝑛 = 31𝑘𝑖𝑝𝑠 + 300𝑘𝑖𝑝𝑠 = 331𝑘𝑖𝑝𝑠 

C.4. Design of UHPC Production Pile UW1 

C.4.1. Current Iowa DOT Practice 

Step 1: Idealize the Soil Layers 

Table C-4. Idealized soil layers for UW1 

Layer N-Value Thickness 

fs, kip/ft 

(Iowa DOT 2011) 

Abutment - 2 0 

Prebored hole - 10 0 

Fill - 0.4 0 

Firm glacial clay 9 6 3.2 

Very firm glacial clay 24 24 3.2 

Very firm glacial clay 34 L 4.8 

 

Step 2: Calculate the Nominal Capacity 

A nominal capacity of 200 kips is used to calculate the design length of P3 to verify the 

piles design for the integral abutments. 

 

Step 3: Calculate End Bearing 

𝑄𝑝 = 60𝑘𝑖𝑝 ×
100𝑖𝑛2

144𝑖𝑛2
= 41.7𝑘𝑖𝑝𝑠 

 

Step 4: Calculate Side Friction 

𝑄𝑠 = 7𝑓𝑡 × 3.2
𝑘𝑖𝑝

𝑓𝑡
+ 22𝑓𝑡 × 3.2

𝑘𝑖𝑝

𝑓𝑡
+ 𝐿 × 4.8

𝑘𝑖𝑝

𝑓𝑡
= 92.8 + 4.8𝐿 

 

Step 5: Calculate L 

200𝑘𝑖𝑝𝑠 = 41.7 + 92.8 + 4.8𝐿 

𝐿 = 13.6𝑓𝑡 
 

Step 6: Calculated Required Depth of Pile 

𝐷𝑒𝑠𝑖𝑔𝑛 𝐿𝑒𝑛𝑔𝑡ℎ = 2𝑓𝑡 + 10𝑓𝑡 + 0.4𝑓𝑡 + 7𝑓𝑡 + 22𝑓𝑡 + 13.6𝑓𝑡 = 55𝑓𝑡 

C.4.2. New Resistance Factors 

Step 1: Idealize the Soil Layers 

Use Table B-4 for the idealized soil layers. 

 

Step 2: Calculate the Nominal Capacity 
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𝑃𝑛 =
1.45 × 100𝑘𝑖𝑝𝑠

0.8
= 183 𝑘𝑖𝑝𝑠 

 

Step 3: Calculate End Bearing 

𝑄𝑝 = 60𝑘𝑖𝑝 ×
100𝑖𝑛2

144𝑖𝑛2
= 41.7𝑘𝑖𝑝𝑠 

 

Step 4: Calculate Side Friction 

𝑄𝑠 = 6𝑓𝑡 × 3.2
𝑘𝑖𝑝

𝑓𝑡
+ 24𝑓𝑡 × 3.2

𝑘𝑖𝑝

𝑓𝑡
+ 𝐿 × 4.8

𝑘𝑖𝑝

𝑓𝑡
= 96 + 4.8𝐿 

 

Step 5: Calculate L 

183𝑘𝑖𝑝𝑠 = 41.7 + 96 + 4.8𝐿 

𝐿 = 9.4𝑓𝑡 

 

Step 6: Calculated Required Depth of Pile 

𝐷𝑒𝑠𝑖𝑔𝑛 𝐿𝑒𝑛𝑔𝑡ℎ = 2𝑓𝑡 + 10 + 0.4𝑓𝑡 + 6𝑓𝑡 + 24𝑓𝑡 + 9.4𝑓𝑡 = 52𝑓𝑡 

C.5. Design of Steel HP 10 × 57 Production Pile SW2 

C.5.1. Current Iowa DOT Practice 

Step 1: Idealize the Soil Layers 

Table C-5. Idealized soil layers for SW2 

Layer N-Value Thickness 

fs, kip/ft 

(Iowa DOT 2011) 

Cutoff - 1 0 

Abutment - 2 0 

Prebored hole - 10 0 

Fill - 0.4 0 

Firm glacial clay 9 6 2.8 

Very firm glacial clay 24 24 2.8 

Very firm glacial clay 34 L 4.0 

 

Step 2: Calculate the Nominal Capacity 

𝑃𝑛 =
1.45 × 6𝑘𝑠𝑖 × 16.8𝑖𝑛2

0.725
= 201.6 = 200𝑘𝑖𝑝𝑠 

 

Step 3: Calculate End Bearing 

𝑄𝑝 = 2𝑘𝑠𝑖 × 16.8𝑖𝑛2 = 33.6𝑘𝑖𝑝𝑠 

 

Step 4: Calculate Side Friction 
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𝑄𝑠 = 7𝑓𝑡 × 2.8
𝑘𝑖𝑝

𝑓𝑡
+ 22𝑓𝑡 × 2.8

𝑘𝑖𝑝

𝑓𝑡
+ 𝐿 × 4.0

𝑘𝑖𝑝

𝑓𝑡
= 81.2 + 4.0𝐿 

 

Step 5: Calculate L 

200𝑘𝑖𝑝𝑠 = 33.6 + 81.2 + 4.0𝐿 

𝐿 = 21.3𝑓𝑡 
 

Step 6: Calculated Required Depth of Pile 

𝐷𝑒𝑠𝑖𝑔𝑛 𝐿𝑒𝑛𝑔𝑡ℎ = 1𝑓𝑡 + 2𝑓𝑡 + 10𝑓𝑡 + 0.4𝑓𝑡 + 7𝑓𝑡 + 22𝑓𝑡 + 21.3𝑓𝑡 = 63.7 

𝐷𝑒𝑠𝑖𝑔𝑛 𝐿𝑒𝑛𝑔𝑡ℎ = 65𝑓𝑡 

C.5.2. New Resistance Factors 

Step 1: Idealize the Soil Layers 

Use Table B-5 for the idealized soil layers. 

 

Step 2: Calculate the Nominal Capacity 

𝑃𝑛 =
1.45 × 6𝑘𝑠𝑖 × 16.8𝑖𝑛2

0.8
= 183 𝑘𝑖𝑝𝑠 

 

Step 3: Calculate End Bearing 

𝑄𝑝 = 2𝑘𝑠𝑖 × 16.8𝑖𝑛2 = 33.6𝑘𝑖𝑝𝑠 

 

Step 4: Calculate Side Friction 

𝑄𝑠 = 6𝑓𝑡 × 2.8
𝑘𝑖𝑝

𝑓𝑡
+ 24𝑓𝑡 × 2.8

𝑘𝑖𝑝

𝑓𝑡
+ 𝐿 × 4.0

𝑘𝑖𝑝

𝑓𝑡
= 84 + 4.0𝐿 

 

Step 5: Calculate L 

183𝑘𝑖𝑝𝑠 = 33.6 + 84 + 4.0𝐿 

𝐿 = 16.4𝑓𝑡 
 

Step 6: Calculated Required Depth of Pile 

𝐷𝑒𝑠𝑖𝑔𝑛 𝐿𝑒𝑛𝑔𝑡ℎ = 1𝑓𝑡 + 2𝑓𝑡 + 10𝑓𝑡 + 0.4𝑓𝑡 + 6𝑓𝑡 + 24𝑓𝑡 + 16.4𝑓𝑡 = 60𝑓𝑡 

C.6. Design of Steel HP 10 × 57 Production Pile SE1 and SE2 

C.6.1. Current Iowa DOT Practice 

Step 1: Idealize the Soil Layers 
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Table C-6. Idealized Soil Layers for SE1 and SE2 

Layer N-Value Thickness 

fs, kip/ft 

(Iowa DOT 2011) 

Cutoff - 1 0 

Abutment - 2 0 

Prebored hole - 10 0 

Fill - 17 0 

Soft sand silty clay 4 7 0.8 

Firm glacial clay 17 23 2.8 

Firm glacial clay 24 L 4.0 

 

Step 2: Calculate the Nominal Capacity 

𝑃𝑛 =
1.45 × 6𝑘𝑠𝑖 × 16.8𝑖𝑛2

0.725
= 201.6 = 200𝑘𝑖𝑝𝑠 

 

Step 3: Calculate End Bearing 

𝑄𝑝 = 2𝑘𝑠𝑖 × 16.8𝑖𝑛2 = 33.6𝑘𝑖𝑝𝑠 

 

Step 4: Calculate Side Friction 

𝑄𝑠 = 7𝑓𝑡 × 0.8
𝑘𝑖𝑝

𝑓𝑡
+ 23𝑓𝑡 × 2.8

𝑘𝑖𝑝

𝑓𝑡
+ 𝐿 × 4.0

𝑘𝑖𝑝

𝑓𝑡
= 70 + 4.0𝐿 

 

Step 5: Calculate L 

200𝑘𝑖𝑝𝑠 = 33.6 + 70 + 4.0𝐿 

𝐿 = 24.1𝑓𝑡 
 

Step 6: Calculated Required Depth of Pile 

𝐷𝑒𝑠𝑖𝑔𝑛 𝐿𝑒𝑛𝑔𝑡ℎ = 1𝑓𝑡 + 2𝑓𝑡 + 10𝑓𝑡 + 17𝑓𝑡 + 7𝑓𝑡 + 23𝑓𝑡 + 24.1𝑓𝑡 = 84.1 

𝐷𝑒𝑠𝑖𝑔𝑛 𝐿𝑒𝑛𝑔𝑡ℎ = 85𝑓𝑡 

C.6.2. New Resistance Factors 

Step 1: Idealize the Soil Layers 

Use Table B-6 for the idealized soil layers. 

 

Step 2: Calculate the Nominal Capacity 

𝑃𝑛 =
1.45 × 6𝑘𝑠𝑖 × 16.8𝑖𝑛2

0.8
= 183 𝑘𝑖𝑝𝑠 

 

Step 3: Calculate End Bearing 

𝑄𝑝 = 2𝑘𝑠𝑖 × 16.8𝑖𝑛2 = 33.6𝑘𝑖𝑝𝑠 

 

Step 4: Calculate Side Friction 
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𝑄𝑠 = 7𝑓𝑡 × 0.8
𝑘𝑖𝑝

𝑓𝑡
+ 23𝑓𝑡 × 2.8

𝑘𝑖𝑝

𝑓𝑡
+ 𝐿 × 4.0

𝑘𝑖𝑝

𝑓𝑡
= 70 + 4.0𝐿 

 

Step 5: Calculate L 

183𝑘𝑖𝑝𝑠 = 33.6 + 70 + 4.0𝐿 

𝐿 = 19.9𝑓𝑡 
 

Step 6: Calculated Required Depth of Pile 

𝐷𝑒𝑠𝑖𝑔𝑛 𝐿𝑒𝑛𝑔𝑡ℎ = 1𝑓𝑡 + 2𝑓𝑡 + 10𝑓𝑡 + 17𝑓𝑡 + 7𝑓𝑡 + 23𝑓𝑡 + 20𝑓𝑡 = 80𝑓𝑡 
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APPENDIX D. INSTRUMENTATION INSTALLATION PROCEDURES 

The instrumentation installation procedure are given for the test units, test piles, and production 

piles in this appendix. 

D.1. Procedure for Installing TML Strain Gages 

1. Grind down the surface of the prestressing strand at the desired location of installation with 

sand paper 

2. Clean the bonding surface with a clean cloth and acetone 

3. Apply the bonding adhesive to the back of the gage base. Place the gage on the guide mark 

and then place on the polyethylene sheet. Press down on the gage constantly 

4. After curing is complete, remove the polyethylene sheet, and raise the gage leads with a pair 

of tweezers 

5. Protect the gage by covering it with a water proofing agent, followed by Butyl rubber, and 

finally aluminum tape (See Figure D-1) 

6. Attach the cable to the prestressing strand close to the gage making sure to leave some slack 

in case the cable is pulled 

7. Continue to attach the cable periodically along the prestressing strand until the point where 

the cable will exit. Make sure to spread the cables throughout the cross-section to ensure no 

weak points such as bonding problems between the UHPC and prestressing strands 

 

Figure D-1. TML strain gage after aluminum foil was applied  
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D.2. Procedure for Installing Weldable Strain Gages 

1. Grind down the surface of the H-pile at the specified gage locations 

2. Align the strain gage with the transition end pointing toward the pile head 

3. Tack the gage with 1 weld at each side of the align marks on the strain gage 

4. Continue welding the gage in place. The first line of welds should be adjacent to the hermetic 

sealant 1/6 in. on center. The sequence of welds should be: 

5. Vertically down from the right side alignment mark looking at the gage from transition end 

6. Vertically up from the right side alignment mark 

7. Vertically down from the left side alignment mark 

8. Vertically up from the left side alignment mark 

9. Horizontally across the top of the gage 

10. Complete the tack welding by adding a second row of tack welds between and 1/32 in. 

outboard of the first row 

11. Cover with butyl rubber 

12. Cover with aluminum tape 

13. Weld 3/8 in. nuts at various locations along the pile 

14. Tie the strain gage cables together 

15. Wrap the cable with aluminum foil to protect the cables during welding of the protective 

angle (See Figure D-2) 

16. Secure the cables to the nuts welded onto the pile with zip ties 

17. Weld the steel angle over the cables 4 in. every 24 in., but adjusting the location of the weld 

when near the location of a gage 

 

Figure D-2. Installed weldable strain gage  
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D.3. Procedure for Installing Embedded Concrete Strain Gages 

1. Twist wire around the bottom of the strain gage, which is nearest to the attached cable, 

leaving excess wire on both sides 

2. Twist wire around the top of the strain gages, leaving excess wire on both sides 

3. Align the strain gages with the transition end pointing toward the head of the pile 

4. Twist the excess wire from steps 1 and 2 around the adjacent prestressing strands (see Figure 

D-3) 

5. String the cables along the prestressing strands using zip ties, until at the pile head. Make 

sure to spread the cables out so a weak point does not develop in the cross-section of the pile 

 

Figure D-3. Strung embedded concrete strain gage
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APPENDIX E. LATERAL TEST LOAD RESULTS 

The comprehensive results from the lateral load tests are given in this appendix, which includes: 

1) the predicted, adjusted and average measured moments along P3 and P4; 2) the adjusted and 

measured displacements along the length of P4; and 3) the adjusted shear force along the length 

of P4.  

E.1. Predicted, Adjusted, and Average Measured Moments along the Length of P3 

 

Figure E-1. Moments along length of P3 at 2.5 kip load step during lateral load test 
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Figure E-2. Moments along length of P3 at 5.0 kip load step during lateral load test 

 

Figure E-3. Moments along length of P3 at 7.5 kip load step during lateral load test 
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Figure E-4. Moments along length of P3 at 10.0 kip load step during lateral load test 

 

Figure E-5. Moments along length of P3 at 12.5 kip load step during lateral load test 
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Figure E-6. Moments along length of P3 at 15.0 kip load step during lateral load test 

 

Figure E-7. Moments along length of P3 at 17.0 kip load step during lateral load test 
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Figure E-8. Moments along length of P3 at 18.0 kip load step during lateral load test 

 

Figure E-9. Moments along length of P3 at 19.0 kip load step during lateral load test 
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E.2. Predicted, Adjusted, and Average Measured Moments along the Length of P4 

 

Figure E-10. Moments along length of P4 at 2.5 kip load step during lateral load test 

 

Figure E-11. Moments along length of P4 at 5.0 kip load step during lateral load test 
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Figure E-12. Moments along length of P4 at 7.5 kip load step during lateral load test 

 

Figure E-13. Moments along length of P4 at 10.0 kip load step during lateral load test 
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Figure E-14. Moments along length of P4 at 12.5 kip load step during lateral load test 

 

Figure E-15. Moments along length of P4 at 15.0 kip load step during lateral load test 
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Figure E-16. Moments along length of P4 at 17.0 kip load step during lateral load test 

 

Figure E-17. Moments along length of P4 at 18.0 kip load step during lateral load test 
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E.3. Adjusted and Measured Displacement along the Length of P4 

 

Figure E-18. Displacements along length of P4 at 2.5 kip load step during lateral load test 

 

Figure E-19. Displacements along length of P4 at 5.0 kip load step during lateral load test 
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Figure E-20. Displacements along length of P4 at 7.5 kip load step during lateral load test 

 

Figure E-21. Displacements along length of P4 at 10.0 kip load step during lateral load test 
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Figure E-22. Displacements along length of P4 at 12.5 kip load step during lateral load test 

 

Figure E-23. Displacements along length of P4 at 15.0 kip load step during lateral load test 
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Figure E-24. Displacements along length of P4 at 17.0 kip load step during lateral load test 

 

Figure E-25. Displacements along length of P4 at 18.0 kip load step during lateral load test 
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E.4. Adjusted Shear Force along the Length of P4 

 

Figure E-26. Adjusted shear force along length of P4 at 2.5 kip load step during lateral load 

test 

 

Figure E-27. Adjusted shear force along length of P4 at 5.0 kip load step during lateral load 

test 

0

5

10

15

20

25

30

-8 -6 -4 -2 0 2 4 6

D
ep

th
, 

ft

Shear, kip

0

5

10

15

20

25

30

-14 -12 -10 -8 -6 -4 -2 0 2 4 6

D
ep

th
, 

ft

Shear, kip



 

289 

 

Figure E-28. Adjusted shear force along length of P4 at 7.5 kip load step during lateral load 

test 

 

Figure E-29. Adjusted shear force along length of P4 at 10.1 kip load step during lateral 

load test 
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Figure E-30. Adjusted shear force along length of P4 at 12.5 kip load step during lateral 

load test 

 

Figure E-31. Adjusted shear force along length of P4 at 15.0 kip load step during lateral 

load test 
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Figure E-32. Adjusted shear force along length of P4 at 17.0 kip load step during lateral 

load test 

 

Figure E-33. Adjusted shear force along length of P4 at 18.0 kip load step during lateral 

load test
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