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INTRODUCTION 

This study is concerned with the characterization of the 

products of the reaction between hydrated lime of several types 

and pure bentonite, cured at room temperature 23° + 2 C and 

under conditions approaching 100 per cent relative humidity. 

For correlation purposes the cured samples and other freshly 

prepared samples were also hydrothermally reacted. Hydrated 

lime added to silicious-aluminous materials often reacts to 

produce cementitious products in what is called a pozzolanic 

reaction, and such strength gains have been obtained from mix­

tures of clay and hydrated lime in the form Ca(OH)^. Addition 

of Ca(0H)2 (2% for calcium bentonite) sufficient to neutralize 

weakly acidic clay OH" groups is the minimum amount required 

for pozzolanic reaction to start, known as the "lime retention 

point" (Hilt and Davidson 29 and Ho and Handy 31, 32). 

Based on these criteria, all mixtures in this study were 

expected to yield crystalline products, probably calcium 

aluminate and silicate hydrates. 
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REVIEW OF LITERATURE 

Calcium aluminate hydrates are mostly relatively low 

temperature compounds, whereas the calcium silicate hydrates 

may be prepared at either room temperature or under hydrother­

mal conditions. Extensive study has been done on the systems 

dealing with the pure forms of these compounds, believed to be 

involved in the principal Portland cement hydration reactions. 

Pertinent portions of these studies will be reviewed with 

particular reference to the systems CaO-Al^O^-H^O (called CAH) 

and Ca0-Si02~H20 (called CSH) at ordinary or room temperature 

conditions. In addition, review of a limited number of hydro-

thermal studies in the system CSH will be presented in the 

temperature range below 175°C. 

The literature which deals with the lime-bentonite reac­

tion and products is restricted to relatively few papers. 

Lime-Bentonite Reaction 

The lime-clay reaction producing the hydrates under con­

sideration has been termed "pozzolanic". Lea's (41) definition 

of a po'zzolan as modified in the ASTM standard on hydraulic 

cement, ASTM designation C-219-55 (1) is: "Pozzolan shall be 

a siliceous or siliceous aluminous material, which in itself 
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possesses little or no cementitious value, but will, in finely 

divided form and in the presence of moisture, chemically react 

with calcium hydroxide at ordinary temperatures to form com­

pounds possessing cementitious properties". This definition 

would include natural and artificial materials. Whether clay 

meets the specifications and can be called a pozzolanic 

material is determined then on the basis of whether the 

products of the hydrated lime-clay reaction possess cementitous 

properties. It has long been known that lime added to clayey 

soils produces a beneficial reaction from the standpoint of 

workability and strength. Rapid depression of the plasticity 

index contributes to improved workability and is usually at­

tributed to cation exchange and ion adsorption phenomena. The 

reasons for the strength gain have never been fully understood. 

Long-term cementation has been attributed to the products of 

the reaction of lime and the siliceous-aluminous minerals. 

Hilt and Davidson (29) showed that montmorillonitic soils 

retain Oa(OH)^ far in excess of their cation exchange capac­

ities measured at pH 7, and that this higher requirement must 

be satisfied before any lime is available for cementitious 

reactions. Ho and Handy (30) showed that slurry viscosity 

and floe size reach a maximum at this point and termed this 
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the "lime retention point". From x-ray and differential ther­

mal analysis (DTA) studies, the Ca(0H)2 utilized in this 

reaction no longer appears as the hydroxide. In a later study 

Ho and Handy (31) postulate the physico-chemical phenomena. 

Small amounts of Ca(OH)^ added to bentonite increase the 

negative charge on the clay particles, probably by dissociation 

of OH™ groups. Further additions of Oa(OH)^ allow Ca++ ad­

sorption to gradually compensate the increased negative charge 

and cause a strong floe formation. Both a high pH and the 

presence of polyvalent cations are required for this type of 

flocculation but complete Ca++ saturation is unnecessary. The 

flocculation and partial exchange occur rapidly but complete 

interlayer cation exchange is comparatively slow and probably 

continues by diffusion. The dissociation of clay OH" groups 

and accompanying adsorption of Ca++ ions reach a maximum at 

the "lime retention point". Lime added in excess of this 

amount remains crystalline until needed to replenish the system 

as the dissolved or adsorbed lime is used up in slow pozzolanic 

reactions. 

Studies have been made on the products of lime-clay 

systems but usually under higher temperature conditions than 

expected in field situations (~40°C) (2, 3, 14, 15, 16, 42). 
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Eades and Grim (15) and Eades, Nichols and Grim (16) found 

unidentified calcium silicate hydrates in hydrothermally 

treated lime-clay mineral and lime-soil mixtures. D-spacings 

o 
found were 5.09, 3.04, 2.8 and 1.8 A. No mix containing a 

montmorillonite mineral under field conditions was shown to 

give this product. 

McCaleb (42) did x-ray diffraction and electron microscope 

studies on lime-montmorillonite clay systems but he included 

no d-spacings observed for "traces of tobermorite" in the room 

cured samples, and only two electron micrographs were used to 

compare room cured with hydrothermally treated samples. Exam­

ination of the two micrographs he shows for room-cured samples 

leaves much to be desired insofar as determination of tober­

morite. His results for hydrothermally treated samples include 

x-ray d-spacings of only the first observed basal reflection 

o 
for tobermorite with a 11.3-11.6 A spacing. In this instance, 

his electron micrographs of lime-illite mixtures are more 

convincing, as he reports the formation of a poorly crystal­

lized tobermorite. 

No record was found of electron diffraction studies having 

been performed on mixtures of lime and clay minerals. 

Products of the lime-clay mineral reaction (probably 

aluminates) under ordinary temperatures were studied by Hilt 
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and Davidson (28) and by Glenn and Handy (22). In both 

studies, single crystal x-ray techniques were used as well as 

powder methods ; DTA was used in the latter study. 

Diamond (14) shows that the reaction product of a Ca(OH)^ 

plus montmorillonite mixture at 60°C for 55 days gives peaks 

o o 
at 2.74 A and 3.06A, which he identifies as CSH. No evidence 

of C3AH5 is present. For the same mixture reacted at 45°C for 

55 daysj no x-ray pattern was shown; peaks were found at 3.02 

o o 
A, attributed to CSH, and several were attributed to the 7.6 A 

calcium aluminate. 

Diamond (14) also studied by DTA the reaction product of 

Ca(OH)^ plus montmorillonite reacted at 60°C for 55 days. The 

pattern shows a weak endotherm at 160°C and weak endothermic 

bulges at 520 and 760°C. A strong exotherm occurs at 940°C. 

Another curve for the same mixture reacted at 45° for 60 days 

shows Ca(0H)2 and CaCO^ present with a small exotherm at 890°C, 

attributed to CSH. 

Eades and Grim (15) give a DTA curve for a lime-Wyoming 

bentonite mixture, hydrothermally reacted at 45°C for 72 hours, 

with a weak very broad endotherm at 160°, a sequence of weak 

endotherms at 430, 490 and 550° with a medium broad endotherm 

at 680°C. A very strong exotherm appears at 930°C. 
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Diatomaceous earth mixtures with equal weights of hydrated 

lime were reacted by Gaze (20) hydrothermally at 165°C. 

Crinkly foils of CSH I were identified in electron micrographs ; 

little change occurred with prolonged treatment at 165°C. 

Calcium Aluminates 

X-ray analysis and electron microscopy 

The calcium aluminates crystallize more readily than the 

silicates in the hydration of Portland cement. Although much 

study has been done on the system CAH, the structure of only 

one of the aluminates has been determined exactly according to 

Taylor (56). A tentative structure has been proposed for 

another by Tilley, Megaw and Hey (59). The basic study 

initiated by Wells, Clarke and MeMurdie (64) has been supple­

mented from time to time but the powder x-ray method which has 

been employed yields cell parameters of uncertain validity. 

Roberts (51), Buttler, Classer and Taylor (10) and Aruja (4) 

have contributed in recent years to clarification of aluminate 

phases by x-ray and electron diffraction studies of single 

crystals. 

The phase equilibria of the calcium aluminates under room 

conditions are better understood than those of the silicates. 
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The principal known compounds are listed in Table 1 which 

summarizes the material presented here. 

Steinour's (53) review of the CaO-A^Og-I^O (CAH) system 

in the literature before 1952 was comprehensive. Selected 

references are given here to cover this period and others since 

that time. 

Wells, Clarke, and McMurdie (64) reported in 1943 on the 

System C-A-H at 21°C-90°C. They determined the solubility 

curves of hexagonal C^AH]^ and of the cubic form, C^AHg, and 

o 
indexed the 8.2 A d-spacing as the first order basal spacing of 

C^AH-j^. D'Ans and Eick (13) later designated it the a poly­

morph. 

More recent work (1953) by D'Ans and Eick (13) on the 

system CAH at 20° defines the solubility curves for both poly­

morphs, a and g, of C^AH^g as well as C]AH& and CgAHg. They 

found that C3AH6 is the only stable aluminate„ The a form was 

found to have a very high formation velocity, Midgley (47) 

o 
gave the three strongest d-spacings as 2.30, 2.04 and 5.14 A. 

In 1959, Buttler, Classer and Taylor (10) gave results 

of single crystal x-ray and electron diffraction studies of the 

(3 polymorph of C^AH^. They report from x-ray powder data that 

o 
the longest and strongest spacing is 7.92 A, indexed (00.1), 



Table 1. Hydrated calcium aluminates 

Composition Dimensions, A Morphology d-spacing, A (47, 51) 
a c Longest Strongest 

a C2AH3 5.7 10.7 (S)* Hexagonal 10.7 10.7 

P C2AH8 5.7 10.4 (S) with excellent 10.4 — — 

a C4AH13 5.7 8.2 (S) 0001 cleavage (56) 8.2 (6) 8.2 

@ C4AH13 5.74 7.92 (S) Hexagonal (10) 7.92 7.92 

C4AH11 — — — — Hexagonal (10) 7.4 (51) - -

C4AH7 — — — — Hexagonal (10) 7.4 (51) — — 

^4^19 5.7 10.6 (S) Hex. with 0001 10.6 (51) — •* 
^4^19 

cleavage (62) 
(4) 10.82 a^C^AH^g 5.77 64.08 (U.C. )b  Hex. (possibly 10.82 (4) 10.82 a^C^AH^g 

rhombohedral) (4) 
a2^4^19 5.77 21.37 (u.c. )  Hexagonal (4) 10.84 (4) 2.885 

CAH^o — — — — Hex* prisms (56) 14.3 14.3 

C3AH6 a 12. 576 (U.C. )  Cubic 5.14 2.300 

C4A3H3 Probably orthohombic Tablets 3.58 (6) 3.58 

aS - Structural element. 

^U.C. - unit cell. 
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o o 
followed in intensity by 3.99 A (00.2) and 2.87 A (11.). In 

the same system at 25°C, Roberts (51) reported in 1957 that a 

new hydrate C^AH^g is the only tetra-calcium aluminate that 

exists in the aqueous system at that temperature; the 13, 11, 

and 7 H^O hydrates form as dehydrated aluminate products under 

varying drying conditions. The 19 HgO hydrate is relatively 

easily dehydrated to give a mixture of the a and p forms of 

C^AH-^g, characterized by longest basal spacings of 8.2 and 7.9 

A respectively. The next two strongest spacings for the a 

form are 4.1 and 3.9 X (Bogue 6); for the (3 form, they are 3.99 

and 2.87 A (Buttler, Classer and Taylor 10). As there is little 

difference in stability between the two forms, there is no way 

to predict the relative amount of each which may be formed. 

The 11 and 7 H^O hydrates both give longest basal spacings of 

7.4 A. In the same study, Roberts (51) reported two forms of 

the dicalcium aluminate hydrate, C^AH^, which also occur in the 

aqueous system C-A-H at 25°C. The a and g forms are charac-

o 
terized by longest basal spacings of 10.7 and 10.4 A respec­

tively, with the a form the more stable of the two ; an earlier 

work by Wells, Clarke and MeMurdie (64) had reported this d-

spacing as 10.6, indexed as (001). The 7,5 HgO, 5 HgO and 4 

RgO hydrates of C^AH^ form in lower states of hydration and 
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o 
give longest basal spacings of 10.6, 8.7 and 7.4 A, respective­

ly. Aruja (4) reported in 1961 on unit cell and space group 

determinations of the and &2 polymorphs of Ĉ AH-̂ g. The a]_ 

form is hexagonal (possibly rhombohedral) with structural 

elements a = 5.77 and _c = 64.08 A; the CM form is hexagonal with 

o 
a = 5.77 and _c = 21.37 A. In a mimeographed Note No. A92 

(private communication), longest d-spacings of the and a 2 

forms are 10.82 A, indexed (00.6), and 10.84 A, indexed (00.2), 

respectively. 

Carlson and Berman (11) did recent studies on calcium 

aluminate carbonate hydrates. 

CAH]_Q and C2AH8 are relatively unstable with respect to 

each other in the aqueous phase under conditions near that of 

the present study. Jones (33) reported in 1960 that the 

transition temperature is 22°C, with the 10 H2O hydrate stable 

below and the other stable above that temperature. Solubility 

relations of CAH^Q at 21° is given by Percival and Taylor (50). 

For its three strongest spacings, Midgley (47) gives 14.3, 

7.16 and 3.57 A. 

The three strongest spacings for C4A3H3 are given by Bogue 

(6) as 3.58, 3.26 and 2.80 A. 

As noted above and in Table 1 the length of the structural 
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o 
element a tends to be the same dimension, 5.7 A, regardless of 

o 
the hydration state ; _c is found to vary between 7.9 and 10.8 A. 

For these reasons and stacking variations, determinations of 

these structural elements rather than the crystallographic 

unit cell is more meaningful. These studies cover principally 

the stable or metastable products. At room temperature the 

only thermodynamica1ly stable compound noted is C^AHg. The 

compounds C^AH^g, C^AH^ and CAH-^q, are however readily formed 

and do not change quickly to give the stable Ĉ AHg, or Ca(0H)2 

or gibbsite, which are also stable in this system. Taylor 

(56) states that before 1957, the compound now described as 

C^AH^g was considered to be C4AH13. Roberts (51) found that 

dehydration of C^AH^g to give C^AH-^ occurs very easily, as 

soon as the solid has been separated from its mother liquor. 

Differential thermal analysis 

A differential thermal analysis curve for C^AH^ by 

Kalousek, Davis and Schmertz (36) shows but one peak, a 

medium endotherm at 310°C. 

The DTA of the pure compound C^AHg by Majumdar and Roy 

(45) shows a very strong endotherm of medium breadth at 330°C 

followed by a medium endotherm at 490°C. The DTA of C4A3H3 

shows a medium endotherm of medium breadth at 730°C. 
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The only DTA of the pure compound C^AH^-ig noted in the 

literature is shown by Turriziani (61). There are very weak 

endotherms at 130° and 170°C with a strong endotherm at 230°C. 

Another weak endothermic peak at 330°C is followed by a seem­

ingly broad weak exothermic bulge at about 350°; the extent is 

not known as the chart ends there. 

Infrared spectroscopy 

An infrared spectroscopic pattern for C^AH-^ is reproduced 

by Midgley (48) and is shown in Figure 1. There is a very 

small broad hydroxy 1 band at 3. 2|_i ; no band appears for inter-

layer water at 6(j but a broad band at 6. 5-7.5(_i, resembling 

tobermorite gel. There are two bands giving a broader band at 

9.7 and 10.3^. All bands show less absorption than the CSH 

products „ Two bands at 11.2 and 11.6p. and a very broad band 

between 12.4 and I3.4(j completes the pattern. 

Majumdar and Roy (45) show infrared spectrographs obtained 

using the K Br disc method of sample preparation on a Perkin-

Elmer instrument. The patterns for C3AH5 and C^AgH^ are both 

quite complex in the 2-4\i OH region. There are three bands at 

2.75, 3 and 3.3^, interpreted as indicating a considerable 

amount of structure, apparently not anticipated. The main 

unbonded OH position remains at 2.15\i with the removal of 4.5 
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Fig. I. Infrared spectrographs of pure compounds 
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molecules of water, the others disappearing. The similarity 

between the two spectrographs ceases in the upper wave length 

region. Two distinct bands at 4.4 and 4.7p. occur on the CgAHg 

pattern with the 6. 2\x free water absorption band missing but 

present on C4A3H3. The strongest absorption band occurs at 

6.8p. but only on C4A3H3. Both compounds have 9. 3|j absorption 

bands and C4A3H3 has a band at lOp, which marks the end of the 

chart. 

Calcium Silicates 

The reviews of the literature which have been made to date 

in the Ca0-Si02-H20 (CSH) system are in themselves monumental. 

This review will present pertinent references and abstract 

relevant details. 

The compound now believed to be of greatest significance 

in Portland cement chemistry is tobermorite. It has been used 

to designate both the poorly crystallized phases, which are 

found particularly in room temperature preparations in the CSH 

system, and the well crystallized phase resembling the rare 

natural mineral by that name. Formation of hydrated calcium 

silicates at room temperature was studied comprehensively by 

Taylor (54). 
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Diamond's (14) recent thesis is perhaps the most complete 

survey in some detail and certainly the most helpful in dealing 

with the confusing terminology inferred above. His study dealt 

with all the phases of the tobermorite and tobermorite-like 

calcium silicate hydrates and is an invaluable reference in 

studies such as the present one. Kalousek has been the 

principal investigator in much experimental work (34, 35, 36, 

37, 38) in recent years in the study of tobermorite and related 

phases in the CSH system. Original synthesis of the compound 

(approximate composition C5.S5.H5) was by Flint, McMurdie and 

Wells (17) under hydrothermal conditions. A review of hydro-

thermal reactions in the CSH system is given by Taylor and 

Bessey (57). This was followed by Kalousek1s synthesis in the 

19401 s according to Diamond (14) and later synthesis and study 

in detail by Heller and Taylor (26, 27). The ranges of compo­

sition lie between CaO/SiO^ ratios of 0.8-1.33 (74). Claring-

bull and Hey (12) first examined the mineral by x-ray diffrac­

tion in 1952. Later studies were done by Gard and Taylor (19). 

The literature which deals with the poorly crystalline 

pnases of tobermorite overlap those already mentioned ; for 

example, CSH (I) is a distinct compound which may be produced 

by reaction at room temperature or as a transient phase in 
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hydrothermal reaction. However, the other two phases related 

to tobermorite and relevant here, CSH (II) and CSH (G) or Gel, 

are primarily room temperature preparations according to 

Diamond (14). CSH (II) was reported as a transient phase in 

Kalousek's (35) study, and in pure form has been very difficult 

to synthesize, whereas CSH (I) and CSH (G) or Gel have been 

relatively easy to synthesize. The ranges of composition for 

these three compounds vary. The CaO/SiO^ (C/S) ratio for CSH 

(I) is near that of tobermorite 0.8-1.33; for CSH (II) and for 

CSH Gel the ratio is near 1.5. No details of methods of syn­

thesis will be included except to say that the three most 

prominent are double decomposition, direct synthesis and 

hydration of individual cement minerals. The nearest analogy 

to the method usually employed in preparing soil-lime mixtures 

in the laboratory is known as "paste hydration" as used by 

Brunauer, Copeland and Bragg (8) for hydration at room tem­

perature. The method of synthesis by McCaleb (42), working 

with lime and montmorillonitic materials, involved reacting 

suspensions stirred mechanically and stored or treated hydro­

thermally. 

X-ray analysis 

The crystalline character of the calcium silicate hydrates 
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in relation to their composition and designations or names is 

presented in Table 2, after the work of Taylor (55). 

Table 2. Degrees of crystallinity of calcium silicate hydrates 

c/s Ratio Degree of Crystallinity 
of Product High Low Very Low 

Complete x-ray 
powder pattern 
with hkl 
reflections 

Poor x-ray pow­
der pattern with 
mainly basal and 
hk or hko re­
flections 

Very poor x-
ray powder 
patterns con­
sisting of one 
or more hk 
lines or 
bands. No 
basal 
reflections 

0.8-1.33 9.3 11.3 or 
(Near 0.83 when 14 X tober-
fully morite. Well 
crystalline) crystallized 

CSH (I) 

1.5-2.0 
(Probably 1.5-
1.75 when 
fully 
crystalline) 

"10 or 12.6 
Tobermorite" 

CSH (I) 

CSH (II) 

Plombierite 

(natural gel) 

CSH gel 

Although basal d-spacings of these hydrates vary widely, Table 

3 shows the relationship between the four principal synthetic 

compounds presenting d-spacings obtained from selected 



Table 3. X-ray diffractometer d-spacings for the principal tobermorite and tober-
morite-like calcium silicate hydrates 

Synthetic CSH (I) CSH (II)a CSH Gelb 

Tobermorite Heller and after Diamond 
Kalousek (35) Midgley (47) Diamond (14) Taylor (25) (14) 

o o o o o 
d-spa., A Int. d-spa., A Int. d-spa., A Int. d-spa., A Int. d-spa., A Int. 

11.1 
5.4 

3.62 
3.51 

3.33 

3.08 

2.97 

2 . 8 1  

10 
2 

<1 
<1 

2 

3 

3 

9-14 

3.06 

2 . 8 1  

10 

10 
3.25 

3 . 0 2  10 

9 . 8  

4.9 

3.07 

2.85 
2 . 8 0  

9 

2 

10 

5 
9 

3.03 10 
(2.90-3.07) 

^Pattern by Toropov, Borisenko agd Shirokova (60) give a similar pattern with 
additional spacings at 2.20 and 2.10 A. 

^Pattern by Brunauer (7) shows; 3.07 s vb, 2.80 w and 1.82 A w. 



Table 3. (Continued) 

Synthetic CSH CI) CSH em a CSH Gelb 
Tobermorite Heller and after Diamond 
Kalousek (35) Midgley (47) Diamond (14) Taylor (25) (14) 

o o o o o 
d-spa., A . Int. d-spa., A Int. d-spa., A . Int. d-spa., A Int. d-spa., A Int. 

2.78 4 
2.52 <1 
2.43 <1 2.40 4 
2.27 1 
2.12 1 
2.06 <1 
2.00 <1 2.00 6 
1.84 3 1.83 8 1.83 9 

-1.82 1 1.82 3-4 1.82 
(1.80-1.85) 2 

-1.75 <1 
1.65 1 1.67 4 1.66 tr. 

1.53 2 1.56 5 
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references. These data show the variable degree of crystal-

Unity to which reference is made above. 

Differential thermal analysis 

A quartz-lime mixture with a C/S ratio of 0.33 was reacted 

hydrothermally at 165°C for an undisclosed period by Gaze (20). 

The DTA showed a broad, medium exothermic bulge at 410°,a very 

weak endotherm at 570° with a strong exotherm at 818°C. A 

paste having equal quantities of lime and diatomaceous earth, 

giving a C/S ratio of 0.79, was heated at 100° then hydro-

thermal ly reacted at 165°C for an undisclosed period. DTA 

results show a distinct broad exotherm at 330° with a weak endo­

therm at 770° followed by a weak exotherm at 800°C. 

In a continuous hydrothermal study of mixtures of C/S 

0.8 at 175°C Kalousek (35) found that the reaction between 

Ca(0H)2 and quartz continued after all free Ca(OH)^ had 

reacted. At this time less than half the total quartz had 

reacted. He states that the reaction, after about 6 hours at 

175°C, was between the lime-rich phase and the residual quartz. 

The lime rich phase (C/S = 1.75) gave a very strong exotherm 

at 850°. Reaction for two hours produced well crystallized 

tobermorite with no peaks appearing on the DTA pattern. 

The differential thermal analysis pattern of pure syn­
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thetic tobermorite was shown by Kalousek (35) to be essentially 

a straight line. Diamond (14) found a noticeable endotherm at 

275° and a barely noticeable exotherm at 820°C. He also found 

that substitutions of various percentages of aluminum in the 

tobermorite lattice produced the following changes in these 

peaks : for 3 per cent Al, 810°C medium weak exotherm; for 5 

per cent Al, 265°C endotherm, 810°C medium weak exotherm; for 

10 per cent Al, 265°C medium endotherm, 630°C weak endothermic 

bulge and 825°C strong exotherm; for 15 per cent Al, 285, 380°C 

medium endotherms, about 510°C weak exotherm and 835°C very 

strong exotherm. 

Kalousek (34) noted that there was a distinguishing 

exothermic peak for CSH (I) in the 835-865°C region; the loca­

tion of this peak for both room temperature and hydrothermal 

preparations increases with increase in C/S ratio. His 

preparations at room temperature give exothermic peaks about 

7°C lower than hydrothermal preparations. Diamond's (14) 

findings for the 15 per cent aluminum substituted tobermorite 

compounds coincide with Kalousek's (34) preparation of CSH (I) 

with C/S = 0.8. 

Van Bemst (63) gives a pattern for CSH II prepared at room 

temperature. A double set of peaks occurs in the region 340-
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380°C, and a slight exothermic bulge occurs around 600°C, with 

a pair of weak exothermic peaks at 850° and 920°C. 

Brunauer and Greenberg (9) report a very strong endotherm 

near 200°C for CSH Gel preparations. Diamond's (14) results 

differ; he found that a characteristic small exotherm also 

occurs between 840 and 865°C, higher than his findings for pure 

tobermorite and CSH (I). This temperature range coincides with 

Kalousek1s (34) results due to variable C/S ratio. 

Electron microscopy 

The structures of crystalline compounds formed in the CSH 

system have been discussed in detail by Bernai (5), Steinour 

(53) and Bogue (6). Bernai's review at the Third Symposium 

on the Chemistry of Cement in 1952 emphasized that although a 

large number of crystal structures had been at least partly 

resolved for the cement compounds, it would be necessary to 

develop essentially new x-ray diffraction techniques to attack 

other compounds of great interest, especially in the CSH 

system. It was recognized and stated at the time that most of 

the compounds formed in the reaction of cement with water, 

including the hydrothermal products formed at elevated tem­

peratures, are available in very low crystalline form. Some 

results presented at the Third Symposium by Bernai (5) were 
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later expanded by Grudemo (23, 24). His studies include many 

micrographs and diffraction patterns obtained by electron 

diffraction. Diamond's (14) study included several micrographs 

of calcium silicates and aluminates of interest; however, no 

detailed analyses were made of the diffraction patterns. Gard, 

Howison and Taylor (18) examined calcium silicate hydrates 

having C/S ratios between 0.81 to 1.41. They show electron 

micrographs for products synthesized at room temperature and 

hydrothermally. Electron diffraction patterns are given for 

the latter. 

Table 4 is a compilation of d-spacings of selected calcium 

silicates obtained by electron diffraction, compared with 

results by x-ray diffraction. More complete compilations may 

be found in the works cited in the table. 

Infrared spectroscopy 

Reference is" made to Figure 1 showing spectrographs of 

crystalline tobermorite and CSH Gel compounds after Midgley 

(48). The infrared spectrum obtained by Kalousek and Roy (38) 

for synthetic tobermorite (C4S5H5) using the Potassium Bromide 

(K Br) disc procedure of sample preparation showed a broad 

SiO band with a maximum absorption at about 10.4p. and less 

absorption at 11. lp. and possibly also at 8.3 to 8.8(_i. 



Table 4. Selected calcium silicates 

1 2 3 4 5 6 7 
CSH (I) Calculated CSH (I) CSH (I) Tobermorite Unsubstituted CSH Gel 

( 2 3 )  from basal ( 2 3 )  Tobermorite (14) 
X-ray unit cella E.D.b E.D.C E.D.d ( 1 4 )  

X-ray 
X-ray 

11.2 vs 
1 2 . 6  lOd 
5.45 2d 5.47 s 
—4.15 vd 

( 3 . 6 9 )  s p  

(3.34) sp 
3.50 w 
3.30 w 

3 . 0 7 4  220 3.07 vsb 3.07 vvs 3.07 
3.062 10 

3.025 5 3.025 vs 
2.97 vs 

msb 
2 . 9  

^Orthogonal face centered : 5.63 x 3.67 A; indices shown are for a cell double 
this size, after Megaw and Kelsey (46). 

^E.D. - electron diffraction c/s ratio = 0.92 for samples used in cols. 1, 2, 
3, 4; Taylor (54) reports 11.3 ̂  instead of 12.6 A, col. 1; Grudemo (23) states 
spacings in parentheses are impurities. 

^D-spacings measured from pattern reproduced on p. 60, Grudemo (23). 

^D-spacings measured from pattern reproduced on p. 93, Diamond (14). 



Table 4. (Continued) 

1 2 3 4 5 6 7 
CSH (I) Calculated CSH (I) CSH (I) Tobermorite Unsubstituted CSH Gel 
(23) from basal (34) Tobermorite (14) 
X-ray unit cell3 E.D.b E.D.C E.D. (14) X-ray 

X-ray 

2.815 400 
2.814 4 

,2.07 vd 

1.836 5 
1.673 3 

1.536 1 
1.407 3 

1.835 
1.671 

040 
620 

1.537 440 
1.408 800 

2.78 sp 

(2.08) sp 

1.846 sp 
1.664 sp 

2.81 vs 
2.76 s 2.78 sp 

2.52 w 
2.41 wsp 2.41 w 

2.25 w 
2.14 w 

2.10 wvd 
2.08 sp 2.06 w 

2.00 w i—
l 00 I—l 

s 1.84 sp 1.84 s 
1.66 sp 1.67 m 

1.62 m 1.63 
1.57 mw 1.55 sp 1.53 

1.37 w 1.38 sp 

1.83 wb 
1 . 8 0  
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A pronounced band at around 6p was attributed to interlayer 

water, and another at slightly less than 3p. was attributed to 

bonded OH groups. Drying did not seem to affect intensities 

of these latter two bands. Diamond's (14) patterns for tober 

morite show better resolution and are more definitive. The 

main feature is a 10. 3|_i SiO absorption band, attributed to 

lattice stretching vibrations, with a smaller band at 11.25p, 

attributed to CaCOg. Another small band occurred at 10.85[_i. 

The inter-layer water band occurred at 6.18|_i, attributed to 

water deformation vibration. Absorption from the bonded OH 

groups in the hydroxyl region appeared as a broad weak band 

between 2.95 and-3.35p. A similar band was also noted in the 

6.95|i region. At the high frequency end of the spectrum, a 

relatively sharp band occurs at 8.35p, with a shoulder at 

8.55p. A pair of bands also occurs at 13.5|_i and 15.lp. 

Van Bemst (63) reports a very broad absorption band 

between 8.2 and 11. 2p with a maximum at 10 to 10. 5p for room 

temperature CSH (I) preparations by the K Br procedure. 

Kalousek and Roy (38) show infrared spectra for fibrous tober 

morites having C/S ratios between 0.8 and 1.5, the range for 

CSH (I) composition. The difference in this work and that 

described above was a broad band between 6.6 and 7p. with 
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increased absorption with increase in C/S ratio. Diamond's 

(14) study of CSH (I) shows close similarity to those of his 

synthetic tobermorites. He found one obvious feature for 

CSH (I) is the increased absorption of the band near 7p., often 

with division into two bands. Whereas his synthetic tober­

morites have generally the same absorption on both sides of the 

SiO band at about 10.3p, the CSH (I) absorption is more on the 

longer wave length end of the pattern. 

Van Bemst (63) noted that CSH (II) gave a pronounced band 

at 12.lp in addition to the common broad SiO band between 8.2 

and 11.2|_i found for CSH (I). Kalousek and Prebus (37) found 

CSH (II) absorbs infrared radiation at 2.9\i and between 6.8-

7.0|_t as well. 

More extensive study has been done recently on CSH Gel 

preparations by Diamond (14), Hunt (32) and Midgley (48). 

Midgley1 s spectrum is reproduced in this paper in Figure 1 

and shows a broad SiO band at 10.6|_i. Diamond (14), reporting 

on other studies noted this same band, attributed to partially 

linked SiO tetrahedra. The bonded OH group band shown by 

Midgley (48) is located at 3„l(_i. A weak band occurs at 4.4|_i 

and one at 6.3|_i due to interlayer water. A broad band around 

7[_i is divided into two bands of 6.8p with slightly less 
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absorption for a band at 7.2p. A division also occurs in 

Diamond's (14) findings with more absorption on CSH (I) than 

Gel. He attributes the longer band to the asymmetrical in-

plane vibration of CO3 and the shorter to water deformation 

vibration. The pronounced absorption minimum observed by him 

for CSH Gel samples at 9p is not so striking on Midgley's 

(48) curve, located between 7.5 and 9p. Whereas the main 

SiO lattice vibration band at 10.6p is about the same breadth 

for both authors, the non-symmetrical pattern is reversed. A 

distinct band at 12.4p on the pattern of Midgley (48) also 

appears, but more broadly, on Diamond's (14) pattern, which he 

associates with the silicate lattice structure. 
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MATERIALS AND METHODS 

Materials 

Table 5, shown below, is a summary and an index to the 

materials and the methods of analysis employed in this study. 

Table 5. Summary of methods and materials 

Lime-Bentonite: 
Water Mixture 

CaO 
concn. 

Theoretical 

Ca0/Si02 
(molar ratio) 

X-ray 
Analysis* 
DTA E.M. I.S. 

(weight ratio) (g/ml) 

Theoretical 

Ca0/Si02 
(molar ratio) C H C H C H C H 

A. Ca(0H)2:Bento-
nite:H^O 

0.45 : 1.00 : 1.62 0.209 0.69 V V V V y y y y 

B. Ca(0H)2 + MgO: 
Bentonite:H20 
0.45 : 1.00 : 1.62 0.136 0.45 V V V J y y y y 

C. Ca(0H)2 + 
Mg(OH) 2 '.Bentonite : 
H20 
0.45 : 1.00 : 1.62 0.117 0.39 V V y y ee M y y 

"C - mixtures cured two and one-half to three years at 
23°C. 

H - hydrothermally reacted at various temperatures up to 
170°C. 

E.M. - electron microscopy. 
I.S. - infrared spectroscopy. 
Bentonite formula (39): 

Al1.43Fe0>o3Mg0.64(Alo.01si3.99)Oio(°H)2^Na0.12 0.07) 
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When products were large enough, single crystals were 

isolated under the microscope, mounted and examined by x-ray 

diffraction and electron probe analysis when desired. 

Lime-bentonite materials 

The clay mineral used was Otay, California, bentonite, 

AAPG Reference Clay Mineral number 24 (39, 40). Lime, 

synthesized from reagent grade laboratory chemicals, was of 

three types: 

A. High calcium hydrated lime, Ca(OH)? 

B. Dolomitic monohydrated lime, Ca(OH)^ + MgO 

C. Dolomitic dihydrated lime, Ca(OH)^ + Mg(OH)^ 

Sample curing 

Separate slurries of the bentonite were made with each 

lime and water in the weight ratio 1 : 0.45 : 1.62. The 

mixtures were sealed in plastic containers to prevent loss of 

water or entry of carbon dioxide and cured at 23° + 2°C for 

two and one-half to three years. 

Specimen preparation 

Samples from which specimens were taken were allowed to 

equilibrate under vacuum over CaCl^ for twenty-four hours, 

then ground to approximately 200 mesh size before mounting on 
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the diffTactometer, DTA apparatus or spectrograph. For the 

x-ray diffraction analysis, duplicate specimens were taken 

directly from the cured or hydrothermally reacted mixtures and 

examined under conditions approaching 100 per cent r.h. Denser 

packing obtained from use of a circular brass ring mount and a 

1000 psi pressure gave better reproduceability, so this mount­

ing procedure as reported by Glenn and Handy (22) was used for 

the moist as well as the vacuum desiccated specimens. 

Synthesis of tobermorite 

Synthetic tobermorite was prepared hydrothermally at 110-

175°C in the laboratory using reagent grade chemicals with a 

C/S ratio of 0.80 by the patented method of Kalousek (62). 

Methods 

Hydrothermal reaction procedure 

Cured mixtures and some freshly prepared mixtures were 

reacted hydrothermally in a Pressure Reaction Apparatus, 

manufactured by Parr Instrument Company, Moline, Illinois, with 

a maximum range of 1000 psi. Samples were placed in semi-

sealed containers which were put in the pressure chamber and 

sealed. The chamber contained sufficient water to provide 

steam at its saturated vapor pressure for indicated 
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temperatures in excess of 100°C, for twelve hours reaction 

time. Heat was controlled by rheostat, and temperatures were 

% 
measured in a well provided inside the reaction chamber. To 

prevent disturbance after reaction, the chamber was cooled in 

a water bath, after which specimens were taken from each 

sample for the analyses described below. 

X-ray diffraction, differential thermal analysis, electron 

microscopy and infrared spectroscopy techniques were employed 

to investigate the reaction products formed. 

X-ray diffraction 

The equipment used in x-ray diffraction consisted of a 

General Electric XRD-5 diffTactometer, with copper Ka radiation 

for powder samples. Single crystal and powder preparations from 

single crystals also were mounted in a Siemens Debye-Scherrer 

camera where Chromium ka radiation was used. Use was made of 

cited references and x-ray powder data file (1) for identifica­

tion of compounds. 

Differential thermal analysis 

The DTA apparatus was equipped with an automatic tempera­

ture controller, providing for a heating rate of 10°C per 

minute to 1000°C. A vertical furnace arrangement is used. 

The sample block of 18-8 stainless steel, 3/4 in. high by 
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1 3/4 in. diameter is supported by a hollow ceramic pedestal. 

Two vertical 3/8 in. diameter by 1/2 in. deep sample holes are 

symmetrically located with centers 1 in. apart. Number 22 

platinum-platinum ten per cent rhodium differential thermo­

couples are used ; the furnace temperature couple is a separate 

chrome1-alumel junction inserted in a 3/8 in. diameter by 1/2 

in. deep hole drilled up into the bottom of the block. The 

inert sample is powdered alumina. Samples were mounted in the 

remaining hole by application of light pressures on a tamper 

to give an adequate packing tightness, from which reproduceable 

results were obtainable. The equipment was operated under 

laboratory atmospheric conditions. 

Electron microscopy 

The electron microscopic micrographs and diffraction 

patterns of these materials were made with the assistance of 

Dr. E. A. Rosauer on the staff of the Ceramic Engineering 

Department and the Engineering Experiment Station at the 

University. 

The instrument used for the electron microscopic investi­

gations of the lime-montmorillonite mixtures was a Siemens 

Elmiskop I operated at 80 kilovolts under vacuum >10"^ in. Hg. 

The sample preparation procedure employed ultra-sonic vibration 
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to assist in dispersion, following a brief mulling of the 

sample in a mortar. Nebulizing of a drop of the dispersant 

onto carbon-filmed grids was accomplished by ultrasonic means 

also. In other instances single crystals of the hexagonal 

product were crushed and placed on the grids. The purpose of • 

the examination was to obtain electron micrographs of the 

material, in conjunction with selected area electron diffrac­

tion patterns. 

The technique resulted in fair dispersion in most instances 

but with some agglomeration evident, perhaps unavoidable. 

Infrared spectroscopy 

The infrared spectrophotometer was a model 21, Perkin-

Elmer model which was scanned for absorption of wavelengths 

between two and fifteen microns. Specimen preparation tech­

nique was conventional, in which a very small amount was mixed 

thoroughly with potassium bromide powder. A disc or pellet 

was formed in a standard Beckman, 15 ton sample die, catalog 

number 5020. 

Electron probe analysis 

The electron probe microanalyzer was manufactured by 

Norelco and utilized the Norelco AMR/3 probe. Samples were 

single crystals of a hexagonal product of approximately 100 
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microns width and 5 to 15 microns thickness, glued with a 

thin film of Duco cement on a graphite base. The analyses 

were performed by Mr. Richard N. Kniseley, associate chemist in 

the Ames Laboratory. 
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RESULTS 

X-ray Diffraction 

o 
Resolution of 8 A peak 

o 
Overlapping reflections or peaks around 8 A are evident 

from the lack of symmetry which often occurs. Several samples 

were noted to give this characteristic appearance on x-ray 

charts so detailed studies were made. 

Vacuum dessicated samples of the calcitic lime-

montmorillonite mixture having the lowest water : solids ratio 

showed three peaks, and the intermediate water content samples 

showed two peaks with only a suggestion of a third peak when 

scanned at 0.4° per minute by x-ray diffraction. These samples 

showed no carbonate content when tested with IN HCl. At room 

o 
conditions, averages of the three d-spacings were 7.98 A, 

o o + o 
7.77 A and 7.58 A, with a range of approximately - 0.05 A for 

each, fhe highest and lowest d-spacings observed were 8.03 A 

and 7.54 A, respectively. 

A few samples with the intermediate water : solids ratio 

of the monohydrated lime-montmorillonite mixture were also 

examined under room conditions and scanned at 2° per minute\ 

o o 
doublet d-spacings were observed at 8.07 A and 7.85 A, about 
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o 
0.1 A higher than the calcitic lime. The same mixture at room 

temperature and humidity for a longer period equilibrated at a 

o 
single spacing of 7.77 A. 

o 
8 A peak changes with atmosphere 

It was noted in the process of the above investigation 

o 
that the 8 A peak in the monohydrated lime-montmorillonite 

o 
mixture under room conditions slowly changed to 7.77 A. Under 

CO2 free atmosphere for 30 minutes, this peak changed to 7.71 

o 
A. In order to ascertain the influence of an extreme dry 

atmosphere, a sample of the same mixture which had been 

desiccated for 6 weeks was placed in a P2O5 atmosphere for 

about ten days except for periodic examination. During this 

o 
period the lowest d-spacing decreased to about 7.69 A. Another 

sample of the same mixture, exposed to the same conditions, 

gave different results when observed at fast scan only; there 

was a division of the peak to form the doublet with one d-

o o 
spacing about 7.7 A and a lower d-spacing at 7.4 A. Apparent-

o o 
ly, the second order peak at 3.9 A decreases only about 0.02 A 

and its spacing seems to be related only to the strongest 1st 

order reflection. 

o 
Slow scan of 3 A peak 

o 
The evidence of a lack of symmetry of the 3 A peak in 
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x-ray diffTactometer patterns, plus the fact that several 

compounds have d-spacings in the vicinity, prompted this brief 

study. The non-symmetrical appearance is evident in fast scan 

patterns of both room-cured and low temperature hydrothermally 

treated mixtures, as shown, for example, in Figures 5, 6 and 7. 

Individual specimens of room-cured samples representing each 

of the three mixtures shown in Figures 5, 6 and 7 were examined 

by x-ray diffraction at a scanning rate of 0.4° per minute using 

high resolution geometry. The results of the average of five 

scans under CC^-free atmosphere is shown by dashed lines in 

Figures 2, 3 and 4. The upper drawings in the first two fig­

ures represent the same specimens left open to laboratory 

atmosphere for several hours. The heavy lines are sketched 

to represent possible peaks contributing to the observed 

pattern. The approximate d-spacings from x-ray of these 

mixtures under free atmosphere are : 

o 
d-spacing, A 

Ca(OH)2 plus bentonite 2.95 2.99 3.04 3.09 

Ca(0H)2 + MgO plus bentonite 2.95 2.99 3.04 3.08 

Ca(0H)2 + Mg(0H)2 plus bentonite 2.94 2.98 3.04 3.10 

X-ray diffraction with fast scan (2° per min„), used in 

the major part of this study often gives indications of peaks 
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2.S30A/ 

2.954A, 
X 

\a097A 

3.035 A 

2.900 A/ 

3.09! A 

Degrees, 20 

Fig. 2 CG(0H)2 4- Otcy bentonite mixture 
o 

X-rcy s lev: scan of 3 A peak 
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6.045 A 

2.937 Ay 

2.050 A /T 
v 

3.084 A 

Degrees , 29 

Fig. 3 CG(0;-!)2 V ivlçO Otcy bentonite 

X-ray slow scan of 3 A peak 
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Fig. 4 Ca (0H)2-rMg(0H}2 4-Oîay bentonite 
o 

X-ray s'oiv scan of 3 A peak 
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o 
near 3 A which are not reproduceable. Therefore only the 

major peak is reported in the data to follow unless there was 

very strong resolution. When identifying CSH compounds found 

in the room cured samples, the resolved d-spacing data for the 

particular mixture will be considered valid. 

Summary of d-spacings of mixtures 

Identification of d-spacings in the discussion which 

follows is by compound, such as CSH Gel, CSH I, CSH II or 

synthetic tobermorite, based on the references cited in Table 

3, where all spacings are listed. It will be noted that d-

o 
spacings near 3.05 and 1.82 A are represented in all CSH com­

pounds. CSH Gel has only these two d-spacings and cannot be 

positively identified if other spacings appear. 

The compound C^AH^g as reported by Buttler, Classer and 

Taylor (10) and/or a product isolated by Glenn and Handy (22)} 

is also frequently found in the mixtures. The main d-spacings 

by both investigators are nearly the same, with the former 

authors' compilation more extensive. Therefore identification 

will be based principally on their compilation. The prominent 

d-spacings are as follows : 7.92 vvs, 3.99 vs, 2.87 s, 2.70 

m b, 2.46 s b, 2.24 m, 2.05 m, 1.982 mw, 1.657 ms and 1.438 A 

mw b; twenty-four weaker spacings not listed here appear in 
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their paper and will be used in identifying C^AH-^g. Other 

references used will be cited in the usual manner. 

Otay bentonite 

An x-ray diffraction curve for an air dry specimen of 

Otay bentonite showed peaks at 14.7 vs, 4.48 s, and 2.56 s, 

1.69 w and 1.50 A m. Traces of feldspar quartz, mica and 

calcium carbonate were also present. 

Room cured mixtures of lime-bentonite 

Calcitic lime plus bentonite The x-ray diffraction 

curves for this mixture (C/S = 0.69) are shown as curves B 

and B1 in Figure 5. As indicated, curve B' is for a specimen 

which has been dessicated under vacuum for 24 hr. and curve B 

for a specimen taken directly from the curing room and x-rayed 

under conditions approaching 100% r.h. D-spacings for the 

bentonite in curve B appear at 15.7 m b, 4.48 m, 2.56 mw and 

o 
1.499 A mw. The Ca(OH)2 peaks appear at 4.92 w b, 2.62 mw, 

o 
1.92 w and 1.79 A w. The strong quartz peak appears at 3.34 

A s. CaCOg peaks appear at 3.04 s b, 2.49 w, 2.28 w and 

o 
2.09 A w. The mica peak no longer appears. A feldspar peak 

appears at 3.19 A m. 

Probable reaction product d-spacings are as follows: 

7.89 vs, 3.94 s, 3.12 vw, 3.04 s b, 2.85 tr, 2.82 tr, 2.72 tr, 
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20 Degrees 
n I i ~i i i i r I I I I i—I I i I I i i I I I I I I i I i I I I 

65 62 58 54 50 46 42 38 34 30 26 22 18 14 10 6 2 

1.50 160 1.70 1.80 1.90 2.00 2.10 2.30 2.50 300 3.50 400 5.00 6.00 800 1000 2000 

D-Spacing, Â 

Unreocted mixture = room conditions 

Cured mixture : 3yr.-23eC-IOO% R.H. 

(Vacuum dessicoted) 

Hydrotnermolly reacted cured mixtures 

40 C-5da 

(Vacuum dessicoted) 

80 0-4do. 

(Vacuum dessicoted) 

X-ray Diffraction of Mixture 
Fig. 5 Otoy bentonite = Ca(OH)z 

: H20 ( 1,00:0.45; 1.62) 
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2.45 w, 2.90 m, 2.14 ms, 2.02 vw b, 1.82 w b and 1.67 mw b, 

o o 
1.54 tr, 1.52 A tr. (2.14 A peak due to brass ring mount.) 

Eleven of the reported d-spacings for C^AH-^g correspond 

+ ° 
to within - 0.05 A, to spacings found in this mixture. Four 

of the five spacings cited in Table 3 for CSH (I) are also 

o 
present, the 1.82 and 1.67 A spacings overlapping for these 

two compounds. As indicated in Table 3, both patterns for 

o 
CSH (II) indicate the 10 A spacing. No record was found of 

this spacing being absent when CSH (II) has been synthesized. 

All other spacings are present for CSH (II) and CSH Gel. 

Dolomitic monohydrated lime plus bentonite The x-ray-

diffraction curves for this mixture (C/S = 0.45) are shown as 

curves B and B' in Figure 6. As indicated, curve B' is for a 

specimen which has been desiccated under vacuum for 24 hr. and 

curve B for a specimen taken directly from the curing room and 

x-rayed under conditions approaching 100% r.h. D-spacings for 

the bentonite appear in curve B at 16.1 mw, 4.48 m, 2.56 mw and 

o o 
1.499 A m. The main quartz peak appears at 3.34 A s. CaCOg 

o 
peaks appear at 3.04 s, 2.29 w and 2.10 A w. No Ca(OH)^ 

appears. The main peaks of 4.79 m and 2.38 A m for ^g(OH)^ 

o 
appear also. The mica peak appears as a trace at 10 A. 

Feldspar appears at 3.25 tr. 
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Probable reaction product d-spacings are as follows: 

7.89 s, 7.6 w, 4.84 m, 3.9 m, 3.04 s, 2.82 w, 2.54 mw b, 

2.50 mw, 2.38 m, 2.00 vw, 1.82 m, 1.67 mw b, 1.62 tr, 

o 
1.54 A vw. 

o 
Nine d-spacings correspond within 0.05 A to very strong 

and strong d-spacings of C^AH^g. Another probable aluminate 

phase found by Hilt and Davidson (28) is also indicated by the 

o 
7.6 A spacing and others which overlap those for C^AH^g. If 

o 
the 3.25 A spacing attributed to feldspar is included, all five 

CSH (I) spacings are observed for this mixture within - 0.04 A. 

+ o 
The d-spacings for CSH (II) are all represented within - 0.04 A 

o 
in those found for this mixture, assuming the 10 A spacing 

attributed to mica is due in part to this phase. 

Dolomitic dihydrated lime plus bentonite The x-ray 

diffraction curves for this mixture (C/S = 0.39) are shown as 

curves B and B1 in Figure 7. As indicated, curve B is for a 

specimen which has been desiccated under vacuum for 24 hr. and 

curve B1 for one which was taken directly from the curing room 

and x-rayed under conditions approaching 100% r.h. D-spacings 

for the bentonite appear in curve B at 17.3 m b, 4.48 m, 2.56 

mw b and 1.499 X m. The quartz peaks appear at 3.36 w and 

o 
4.26 A w b. The CaCOg peaks appear sharp at 3.04 s, 2.49 vw 
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and 2.09 v w. No Ca(0H)2 appears ; the strong peaks at 4.79 s 

and 2.36 A vs for Mg(0H)2 appear. The mica peak appears very 

o 
broad at 10.0 A tr. Two feldspar peaks appear at 3.18 mw and 

o 
3.27 A vs. 

Probable reaction product d-spacings are as follows: 

3.04 s b, 2.89 tr, 2.81 w b, 2.42 mw, 2.06 mw, 2.0 tr, 1.83 w, 

o 
1.82 vw, 1.70 w b, 1.67 w b and 1.54 A w. 

o 
D-spacings indicated above correspond within 0.04 A to 

o 
CSH (I), assuming the 3.25 A spacing assigned to feldspar 

belongs to this compound. Except for the two longest spacings 

for CSH (II)j other d-spacings for this compound were found. 

Hydrothermally reacted mixtures of lime-bentonite 

Freshly prepared mixtures 

Calcitic lime plus bentonite The x-ray diffrac­

tion curve for this mixture (C/S = 0.69), after hydrothermal 

treatment for 12 hr. at 170°C, is shown as curve I in Figure 

8. As indicated, the curve is for a specimen taken directly 

from the hydrothermal preparation and x-rayed under conditions 

approaching 100% r.h. D-spacings for the bentonite in curve I 

o 
appear at 15.2 w b, 4.46 w, 2.56 w b and 1.502 A w b. No 

Ca(OH)^ peaks appear. The main quartz peaks appear at 3.34 

o o 
A mw b. CaCOg peaks appear at 3.04 ms and 2.28 A w. Mica 
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o 
appears at 10 A tr. No identifiable feldspar peaks appear. 

Probable reaction product d-spacings are as follows: 

11.7 mw, 5.46 w, 3.07 s, 3.04 ms, 2.98 mw, 2.81 vw b, 2.74 m b, 

2.51 w b, 2.44 w b, 2.25 vw, 2.00 mw, 1.84 m, 1.82 w, 1.67 w, 

1.62 vw and 1.54 vw b. 

D-spacings found above correspond to synthetic tobermorite. 

The basal spacing varies due to the moist condition of the 

sample or to substitution of aluminum in the tobermorite 

lattice (14). 

o 
Except for the 3.25 A d-spacing, the other four for 

CSH (I) are present in this mixture. Seven of the nine 

spacings for CSH (II) are also indicated. 

Dolomitic monohydrated lime plus bentonite of 

variable C/S ratio The x-ray diffraction d-spacings for 

this dolomitic monohydrated lime plus bentonite mixture with a 

C/S ratio of 0.22, after hydrothermal treatment for 12 hr. at 

170°C are as follows. D-spacings for the bentonite are 18.3 s, 

o 
4.48 m, 2.56 m and 1.499 A m (overlaps weak Mg(OH)^ peak). No 

Ca(OH)^ appears. Mg(OH)^ d-spacings are 4.79 m and 2.36 A m. 

o 
The main quartz peak appears at 3.34 A s. CaCOg peaks appear 

o o 
at 3.04 s and 2.28 A vw. The mica peak at 10 A is very weak. 

o 
The feldspar peaks appear at 3.27 m and 3.20 A m. 
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Probable reaction product d-spacings are as follows: 

3.04 s, 2.24 vw, 2.42 w, 1.82 m, 1.70 w b, 1.67 w b and 

o 
1.54 A vw. 

Although principal spacings for the better crystallized 

CSH compounds listed are missing in the above list, both 

spacings for CSH Gel are present. Others suggesting a CSH (II) 

phase are unexplained in any other way. Peaks at 2.24 and 

o 
1.70 A remain unidentified. 

An x-ray diffraction pattern for dolomitic monohydrated 

lime plus bentonite with a C/S ratio of 0.45, after hydro-

thermal treatment for 12 hr. at 170°C, is shown as curve I in 

Figure 9. As indicated, the curve is for a specimen taken 

directly from the hydrothermal preparation and x-rayed under 

conditions approaching 100% r.h. D-spacings for bentonite in 

curve I appear at 15.2 w b, 4.48 w, 2.57 w and 1.499 Aw. No 

Ca(OH)^ peaks appear. The Mg(OH)^ peaks appear at 4.80 mw and 

o o 
2.37 Am. The main quartz peak appears at 3.34 A s. CaCO^ 

o 
peaks appear at 3.04 ms, 2.28 w and 2.10 A w. The mica peak 

o 
does not appear. A feldspar peak is located at 3.25 A tr. 

Probable reaction product d-spacings are as follows : 

11.47 m, 5.43 w, 3.53 w, 3.07 s, 3.04 m, 2.97 m s, 2.82 mw b, 

2.71 w, 2.51 w, 2.45 vw, 2.00 mw, 1.84 m, 1.81 w, 1.65 mw, 
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o 
1.62 vw, 1.54 A w. 

D-spacings match those for synthetic tobermorite except 

for minor variations. The basal spacing differs because of 

moisture condition and/or substitutions in the lattice (14). 

The d-spacings for CSH (I) are also noted except for the weak 

o 
3.25 A spacing attributed above to feldspar. The longest d-

o 
spacings as well as the 2.85 A spacing for CSH (II) are missing. 

X-ray diffraction d-spacings for this dolomitic monohy­

drated lime plus bentonite mixture with a C/S ratio of 1.00, 

after hydrothermal treatment for 12 hr. at 170°C, are as 

follows. D-spacings for the bentonite are 15.7 wb, 4.48 w, 

o 
2.56 w and 1.499 A w (overlaps weak Mg(OH)^ peak). The main 

Ca(OH)^ peak appears at 2.62 w. The main Mg(OH)^ d-spacings 

o o 
are 4.79 m and 2.36 A s. The main quartz peak is at 3.34 A w. 

o 
CaCOg peaks appear at 3.04 s, 2.28 A vw. The mica peak is at 

o o 
10 A tr. Feldspar peaks are at 3.29 w and 3.18 A m. 

Probable reaction product d-spacings are as follows : 

3.04 s b, 2.76 w, 2.24 m, 1.99 w, 1.829 w, 1.67 vw and 

o 
1.54 A w. 

o 
If the above spacing of 3.29 A attributed to feldspar is 

attributed to CSH (I), all spacings are present for this phase. 

Five spacings may be attributed to CSH (II), two of which would 
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otherwise be unaccounted for. 

X-ray diffraction d-spacings for this dolomitic monohy­

drated lime plus bentonite mixture with a C/S ratio of 1.3, 

after hydrothermal treatment for 12 hr. at 170°C, are as 

follows. The only apparent d-spacing for the bentonite, ex-

o o 
cept for a broad very weak hump near 14 A, appears at 1.499 A 

which may be due to MgCOH^ instead. The main Ca(0H)2 d-

o 
spacing appears at 2.62 A w. The main MgCOH)^ spacings appear 

o 
at 4.79 ms and 2.36 A s. There is only a trace of quartz 

o 
evident at 3.34 A. CaCOg peaks appear at 3.04 s b and 2.28 

o o 
A w. The mica peak appears as a trace at 10 A. A feldspar 

o 
peak appears at 3.19 A w. 

Probable reaction product d-spacings are as follows : 

3.04 s, 2.74 mw, 2.72 mw, 2.23 w,' 1.99 mw, 1.83 w, 1.70 w, 

o 
1.64 w and 1.54 A w. 

X-ray diffraction d-spacings for this dolomitic monohy­

drated lime plus bentonite mixture with a C/S ratio of 2.00, 

after hydrothermal treatment for 12 hr. at 170°C, match those 

for the mixture with a C/S of 1.33 except for considerably 

more Ca(0H)2 apparently remaining. 

None of the calcium silicate hydrates in the literature 

match the spacings observed in these two almost identical 
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patterns. The best fit occurs for CSH (I) except that the 

o 
weak 3.25 A is missing. Only five d-spacings correspond to 

CSH (II). Unidentified d-spacings are 2.72, 2.23, 1.99 and 

o 
I.54 A. 

Dolomitic dihydrated lime plus bentonite The 

x-ray diffraction pattern for this mixture (C/S = 0.39), 

after hydrothermal treatment for 12 hr. at 170°C, is shown 

as curve I in Figure 10. As indicated the curve is for a 

specimen taken directly from the hydrothermal preparation and 

x-rayed under conditions approaching 100% r.h. D-spacings 

for bentonite in curve I appear at 16.9 s, 4.48 m, 2.55 mw 

o 
and 1.495 A m (overlaps Mg(OH)^ peak). No Ca(OH)^ peaks 

appear. The main Mg(0H)g peaks appear at 4.77 ms and 

o 
2.36 A vs. The main quartz peak appears at 3.34 mw b. CaCOg 

o 
peaks appear at 3.04 ms and 2.28 A w. The mica peak appears 

o 
at 10.04 A w. Feldspar peaks are located at 3.18 m, and 

3.22 A w. 

Probable reaction product d-spacings are as follows : 

II.18 mw, 5.46 w, 3.08 s, 3.04 s, 2.98 m, 2.83 w, 2.79 w b, 

2.46 mw, 2.23 tr, 1.99 mw, 1.83 w, 1.81 w, 1.67 w b, 1.62 tr 

and 1.54 A w. 

Only minor d-spacings are absent in the pattern for this 
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mixture when compared with synthetic tobermorite. All six of 

the spacings are present for well crystallized CSH (I). 

Although most of the d-spacings for CSH (II) are present, the 

two longest ones are absent. 

Cured mixtures 

Calcitic lime plus bentonite The x-ray diffrac­

tion curves for this mixture with a C/S of 0.69 are given 

below according to the hydrothermal treatments. 

The x-ray diffraction curve for the calcitic lime plus 

bentonite mixture, reacted for five days at 40°C, is shown as 

curve C in Figure 5. As indicated, the curve is for a 

specimen taken from the treatment and vacuum desiccated for 

24 hr. before being x-rayed. D-spacings for the bentonite in 

o 
curve C are 14.7 m, 4.46 mw, 2.53 w and 1.499 A w b. Ca(OH)^ 

peaks appear at 4.93 mw, 2.61 mw, 1.92 w b, 1.79 w b and 

o 
1.69 A w b. The main quartz peaks appear at 3.34 vs and 

o 
4.26 A mw. A CaCOg peak appears at 3.04 ms but only a trace at 

o o 
2.09 A. The mica peak appears at 10 A vw. Feldspar peaks 

appear at 3.20 w. 

Probable reaction product d-spacings are as follows : 

7.87 vs, 7.6 m, 3.92 vs b, 3.04 s b, 2.98 m, 2.91 w, 2.79 tr, 

2.72 m, 2.61 w, 2.53 w, 2.45 w, 2.21 vw, 2.16 w, 1.95 w. 
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o 
1.81 w b, 1.67 m b, 1.57 tr and 1.54 A tr. 

o 
D-spacings in this pattern correspond within 0.05 A to 

very strong and strong spacings obtained for C^AH^g. Strong 

d-spacings of the product isolated by Hilt and Davidson (28) 

are also present. The presence of these compounds would 

o 
account for all the spacings observed except for 2.61 A w, 

o 
which may be partially due to Ca(OH)^ > with 2.98 A unexplained. 

CSH (I) matches the d-spacings as well, so this phase may also 

be present. 

The x-ray diffraction curve for calcitic lime plus 

bentonite mixture, reacted for four days at 80°C, is shown as 

curve D in Figure 5. As indicated, the curve is for a specimen 

taken from the treatment and vacuum desiccated for 24 hr. 

before being x-rayed. D-spacings for bentonite in curve 0 

o 
appear at 14.2 mw b, 4.48 mw, 2.59 w b and 1.499 A w b. The 

main Ca(OH)^ peaks appear displaced to 4.89 vw b and 2.59 

o o 
A w b. The main quartz peak appears at 3.34 A s. CaCOg peaks 

o 
appear at 3.04 s and 2.29 A vw. The mica peak is absent. 

o 
Feldspar peaks appear at 3.24 m and 3.18 A vw. 

Probable reaction product d-spacings are as follows: 

7.77 vs, 3.91 vvs, 3.04 s, 2.97 mw b, 2.79 tr, 2.59 w b, 

2.51 mw b, 2.45 vw b, 2.31 vw b, 1.82 w b, 1.80 vw, 1.67 w b 
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o 
and 1.54 A tr. 

o 
D-spacings of 7.77 and 3.91 A correspond closely to two 

strong spacings of the product isolated by Hilt and Davidson 

(28). Other strong spacings are missing so some modified form 

of this or of the C^AH^g product may be present. Other 

spacings indicate the presence of CSH (I) but CSH (II) is not 

indicated. Except for the two longest d-spacings of 

synthetic tobermorite, all other major spacings for this com­

pound are also present in this pattern. 

The x-ray diffraction curve for calcitic lime plus ben­

tonite mixture, after hydrothermal treatment for 12 hr. at 

105°C, is shown as curve E in Figure 11. D-spacings for 

bentonite in curve E appear at 15.7 vw b, 4.48 w b, 2.5 w b 

o 
and 1.499 A w b. The main Ca(OH)g peaks appear displaced to 

o 
positions at 2.6 vw b and 4.89 A vw b. The main quartz peaks 

o 
appear at 3.34 w b and 4.26 A tr. CaCOg peaks appear at 

° o 
3.04 ms b and 2.28 A mw. The mica peak is 10.0 A vw. A 

o 
feldspar peak appears at 3.21 A s. 

Probable reaction product d-spacings are as follows : 

7.89 s, 3.93 mw, 3.04 ms b, 2.98 mw b, 2.96 w, 2.90 vw b, 

2.81 vw b, 2.72 vw b, 2.53 mw, 2.42 ms, 2.02 vw b, 1.83 w b, 

o 
1.67 w b, 1.60 vw b, 1.57 vw and 1.54 A w. 
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Several d-spacings correspond closely to the with 

apparent change and weakening of some reflections. The longest 

d-spacings for well crystallized tobermorite are absent. Only 

o 
the 3.25 A spacing for CSH (I) is absent. Four d-spacings 

otherwise unaccounted for match CSH (II) three spacings which 

overlap those of CSH (I). 

The x-ray diffraction curve for calcitic lime plus 

bentonite mixture, after hydrothermal treatment for 12 hr. at 

156°C, is shown as curve F in Figure 11. D-spacings for 

bentonite in curve F appear at 14.7 m b, 4.48 w, 2.54 w b and 

o 
1.502 A w b. The Ca(OH)^ peaks are missing. The main quartz 

peaks are at 4.26 w and 3.34 A m w. CaCO^ peaks appear at 

o 
3.04 s b and 2.28 A w. The mica peak is absent. A feldspar 

peak appears at 3.19 w. 

Probable reaction product d-spacings are as follows : 

12.6 mw b, 5.46 tr, 3.07 s, 3.04 s, 2.98 m b, 2.79 mw b, 

2.58 m, 2.02 vw b, 1.84 mw b, 1.82 w, 1.72 tr and 1.67 A w. 

Column 1 of Table 4 lists a 12.6 R CSH (I) studied by 

o 
Grudemo (23). A similar but different pattern having 12.6 A 

as longest spacing was also observed by Taylor (56). Seven 

d-spacings in the first study mentioned also appear here. 

Well crystallized tobermorite has nine of the d-spacings 
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o 
noted, leaving only the 2.58 A spacing unaccounted for. 

The x-ray diffraction curves for two calcitic lime plus 

bentonite mixtures, after hydrothermal treatment for 12 hr. at 

164° and 170°C, are shown as curves G and H in Figures 11 and 

8, respectively. Since the curves are almost identical, the 

data is combined. D-spacings for bentonite appear at 15.0 w b, 

o 
4.46 w b, 2.55 w b and 1.50 A w b. The Ca(0H)2 peaks are ab-

o 
sent. The main quartz peak appears at 3.34 A w. CaCOg peaks 

o 
appear at 3.03 m and 2.28 A w. The mica peak appears as a 

o 
trace at 10 A. A feldspar peak appears at 3.19 w on curve G 

only and is absent on curve H. 

Probable reaction product d-spacings are as follows : 

11.7 mw b, 5.50 w b, 3.08 s, 3.03 m, 2.98 ms, 2.88 tr, 

2.81 mw b, 2.74 wb (curve G only), 2.44 w b, 2.36 w b (curve 

H only), 2.01 mw b, 1.84 mw, 1.82 w b, 1.74 tr, 1.67 m b, and 

o 
1.54 A w b. 

D-spacings found for each compound correspond to well 

crystallized synthetic tobermorite, with deviation in longest 

spacing (11.7 A) accounted for by aluminum substitutions 

noted earlier (14, 34). CSH (I) is indicated except for the 

o o 
absence of the 3.25 A d-spacing. The d-spacing at 2.88 A is 

accounted for by CSH (II), represented in the present mixture 

by seven spacings, excluding the two longest spacings which 
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are absent for this compound. 

Dolomitic monohydrate lime plus bentonite The 

x-ray diffraction curves for this mixture, with a C/S of 

0.45, are given below according to the hydrothermal treatments. 

The x-ray diffraction curve for the dolomitic monohydrated 

lime plus bentonite mixture, reacted for five days at 40°C, is 

shown as curve C in Figure 6. As indicated, the curve is for 

a specimen taken from the treatment and vacuum desiccated for 

24 hr. before being x-rayed. D-spacings for the bentonite in 

o _ 
curve C are 14.7 ms, 4.48 m, 2.56 m b and 1.499 A mw. Ca(0H)2 

o 
peaks appear at 4.89 tr and 2.62 A vw. Mg(0H)2 peaks appear 

o 
at 4.79 mw and 2.38 A m. The main quartz peak appears at 

o 
4.26 mw and 3.36 A vs. CaCOg peak appear at 3.04 s and 

o o 
2.48 A w. The mica peak appears 10.0 A w. Feldspar peaks 

o 
appear at 3.19 A s. 

Probable reaction product d-spacings are as follows : 

7.86 vs, 5.4 tr, 3.93 m, 3.04 s b, 2.98 w, 2.89 vw, 2.8 tr, 

2.32 vw, 1.99 m, 1.97 w, 1.83 vw, 1.74 vw, 1.67 w, 1.63 vw, 

o 
1.58 w and 1.54 A w b. 

o 
The longest d-spacing corresponds within 0.06 A to the 

very strong spacing of C^AH^g. The other main spacings match 

o 
within 0.02 A. Some of the lower d-spacings of this product 
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o 
are weaker, with the 2.46 A spacing absent. 

The d-spacings for CSH Gel are both present, being the 

strongest evidence for a calcium silicate hydrate with only a 

o 
trace indicated for the usually medium spacing at 2.8 A suggests 

the presence of CSH (I) but in small amount. Four of the other 

spacings are also present in this pattern. 

The x-ray diffraction curve for dolomitic monohydrated 

lime plus bentonite mixture, reacted for four days at 80°C, is 

shown as curve D in Figure 6. As indicated, the curve is for 

a specimen taken from the treatment and vacuum desiccated for 

24 hr. before being x-rayed. D-spacings for bentonite appear 

o 
in curve D at 14.7 mw, 4.48 mw, 2.56 w b and 1.497 A w b. The 

main Ca(OH)^ peaks are at 4.89 w and 2.63 A w b. The main 

o 
Mg(0H)2 peaks appear at 4.81 m b and 2.36 A m s. The main 

o 
quartz peak appears 4.26 t r and 3.34 A m. CaCO^ peaks appear 

o o 
at 3.04 s and 2.3 A tr. The mica peak appears 10 A tr. A 

o 
feldspar peak appears at 3.21 A w b. 

Probable reaction product d-spacings are as follows : 

7.80 vs, 3.93 s, 3,04 s, 2.90 tr, 2.79 vw b, 2.51 vw, 

1.99 tr, 1.82 mw b, 1.7 tr, 1.66 w b and 1.54 A t r. 

o 
The longest d-spacing observed at 7.80 A is apparently 

a diminished spacing of C^AH^g. The second strongest spacing 
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o 
is the same and the 2.9 A d-spacing appears as a trace. The 

other main spacing at 1.66 A also remains. CSH (I) is 

o 
indicated by all spacings represented, assuming the 3.21 A 

spacing attributed above to feldspar belongs to this product. 

The x-ray diffraction curve for dolomitic monohydrated 

lime plus bentonite mixture, after hydrothermal treatment 

for 12 hr. at 105°C, is shown as curve E in Figure 12. D-

spacings for bentonite appear at 15.7 w b, 4.48 m b, 2.56 w b 

o o 
and 1.501 A mw. The main Ca(OH)^ peak appears at 2.62 A vw. 

o 
The main Mg(OH)^ peaks appear at 4.79 m and 2.37 A mw. CaCO^ 

o 
peaks appear at 3.04 vs and 2.29 A w. The mica peak appears 

o o 
at 10.0 A vw. A feldspar peak appears at 3.20 A mw. 

Probable reaction product d-spacings are as follows : 

7.85 vvs, 7.6 tr, 3.93 s, 3.04 vs, 2.96 w b, 2.88 w, 2.79 w b, 

2.00 tr, 1.83 mw b, 1.81 mw, 1.75 tr, 1.71 tr, 1.67 w b, 

o 
1.62 tr and 1.54 A vw. 

The three strongest reflections are indicated for C^AH-^g. 

Others appear weaker or not at all. Four spacings are evident 

for Hilt and Davidson's (28) product while others are absent 

or considerably weakened. There are strong indications for 

CSH (I) spacings evident whenever a higher crystalline form is 

o 
present. Unexplained is a 2.96 A spacing which is normally 
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associated with well crystallized CSH. 

The x-ray diffraction curve for dolomitic monohydrated 

lime plus bentonite mixture, after hydrothermal treatment for 

12 hr. at 145°C, is shown as curve F in Figure 12. D-spacings 

for bentonite appear at 14.7 w b, 4.50 mw, 2.56 w b and 

1.502 Aw. No Ca(0H)2 peaks appear. The main MgCOH^ peaks 

o 
appear at 4.80 m and 2.39 A s. The main quartz peak appears 

o o 
at 3.34 A ms. CaCOg peaks appear at 3.04 vs and 2.28 A w. 

o 
The mica peak is at 10.0 A vw. A feldspar peak appears at 

3.24 A s. 

Probable reaction product d-spacings are as follows : 

7.89 vs, 3.93 s, 3.07 s b, 3.04 vs, 2.98 m b, 2.80 w b, 2.33 tr, 

1.98 s, 1.83 mw, 1.81 w, 1.70 tr, 1.67 w b, 1.62 tr and 

o 
1.54 A tr. 

Only the two longest d-spacings are evident for C^AH^g. 

CSH (I) is indicated by all d-spacings, reassigning the 

o 
3.24 A spacing to this product. Except for the longest 

° o 
spacings at 9-14 A, all other spacings match within 0.01 A. 

o 
Unidentified is the 1.98 A d-spacing. 

The x-ray diffraction curve for dolomitic monohydrated 

lime plus bentonite mixture, after hydrothermal treatment for 

12 hr. at 156°C, is shown as curve G in Figure 12. D-spacings 
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for bentonite appear at 15.2 m w b, 4.5 m, 2.57 w b and 

I.503 A w. The CaCOH^ peak does not appear. The main MgCQH)^ 

peak appears at 4.80 m and 2.39 A ms. The main quartz peak 

o 
appears at 4.26 tr and 3.35 A s. CaCOg peaks appear at 3.05 vs 

o o 
and 2.29 A mw b. The mica peak is at 10 A tr. A feldspar peak 

o 
appears at 3.25 A tr. 

Probable reaction product d-spacings are as follows : 

II.62 w b, 7.8 tr, 5.50 vw b, 3.91 mw, 3.08 ms b, 3.05 vs, 

2.98 m, 2.87 t r, 2.81 mw b, 2.46 w, 2.02 w, 2.00 w, 1.84 m, 

o 
1.82 w, 1.67 mw, 1.62 vw and 1.54 A w. 

Only trace indications occur for the C^AH-^g. Strong 

d-spacings for synthetic tobermorite indicate its presence in 

this mixture. Any other phase of CSH is also indicated by 

o 
these spacings, in combination with the 3.05 A spacing. 

The x-ray diffraction curve for dolomitic monohydrated 

plus bentonite mixture, after hydrothermal treatment for 12 hr. 

at 170°C is shown as curve H in Figure 12. D-spacings for 

bentonite appear at 15.7 w b, 4.48 w b, 2.58 w b and 

o 
1.499 A w b. No Ca(OH)^ appears. Mg(OH>2 peaks appear at 

o 
4.80 mw and 2.37 A m b. The mica peak does not appear. No 

o 
feldspar peaks appear. The main quartz peak is at 3.34 A vs. 

o 
CaCOg peaks appear at 3.04 m and 2.28 A w b. 
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The probable reaction product d-spacings are as follows : 

11.62 m, 5.46 w, 3.08 vs, 3.04 m, 2.98 s, 2.82 ms, 2.73 vw b, 

2.52 w b, 2.46 w b, 2.26 tr, 2.00 w b, 1.84 s b, 1.82 w, 

o 
1.67 mw b and 1.54 A w b„ 

All d-spacings for well crystallized tobermorite and 

CSH (I) are evident in this mixture. CSH (II) d-spacings appear 

o o 
with maximum deviations of 0.03 A with the 10 and 2.85 A 

o 
spacing absent. The strength and breadth of the 1.84 A peak 

suggests overlapping of the several phases which have reflec­

tion in this vicinity. 

Dolomitic dihydrate lime plus bentonite The x-ray 

diffraction curves for this mixture, with a C/S of 0.39, are 

given below according to the hydrothermal treatments. 

The x-ray diffraction curve for the dolomitic dihydrate 

lime plus bentonite mixture, reacted for five days at 40°C, is 

shown as curve C in Figure 7. As indicated, the curve is for 

a specimen taken from the treatment and vacuum dessicated for 

24 hr. before being x-rayed. D-spacings for the bentonite in 

o 
curve C are 14.7 ms, 4.45 m, 2.53 mw and 1.495 A ms. Faint 

o 
suggestions for Ca(OH)^ appear at 2.6 and 1.7 A. The main 

o 
Mg(0H)2 spacings appear at 4.77 s and 2.37 A vs. The main 

o 
quartz peak appears at 3,34 A ms. CaCOg peaks appear at 
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o o 
3.04 s and 2.29 A w. The mica peak appears very weak at 10 A. 

o 
Feldspar peaks are located at 3.25 m and 3.19 A m. 

Probable reaction product d-spacings are as follows; 

7.7 tr, 5.53 w, 3.6 vw b, 3.04 s, 2.74 w b, 2.24 tr, 1.99 w, 

o 
1.70 w, 1.67 w b and 1.54 A tr. 

Suggestions of several compounds are present in the 

+ ° 
pattern for this mixture. All d-spacings - 0.04 A are present 

o 
for CSH (I), assuming the 3.25 A peak is at least partly due 

o 
to this product. Deviations up to .04 A occur but additional 

o 
weak reflections at 1.99 and 5.53 A suggest a higher crystal­

line form. The product of Hilt and Davidson (28) is suggested 

o 
by a trace at 7.7 A and several weaker reflections. 

The x-ray diffraction curve for dolomitic dihydrated 

lime plus bentonite mixture, reacted for four days at 80°C, is 

shown as curve D in Figure 7. As indicated, the curve is for 

a specimen taken from the treatment and vacuum desiccated for 

24 hr. before being x-rayed. D-spacings for bentonite appear 

at 14.7 s b, 4.48 ms b, 2.55 mw b, 1.495 s b (overlaps 

o 
^g(OH)^). The main Ca(OH)^ peak appears at 2.62 A tr. The 

o 
main Mg(OH)^ peaks at 4.76 vs and 2.37 A vvs. The main quartz 

peaks appear 4.26 w b and 3.36 A vvs. CaCOg peaks appear at 

o 
3.04 vs b and 2.27 A w b. The mica peak appears 10.0 tr. 
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o 
Feldspar peaks appear at 3.24 w and 3.19 A s b. 

Probable reaction product d-spacings are as follows : 

11.6 tr, 7.7 w, 7.1 tr, 6.5 tr, 5.4 tr, 3.9 vw, 3.04 vs, 

2.76 vw b, 2.72 vw b, 2.05 tr, 1.99 vw b, 1.81 vw b, 1.67 w b 

o 
and 1.54 A vw. 

All d-spacings for CSH (I) appear in the pattern for this 

o 
mixture reassigning the 3.24 A spacing to this product. Strong 

d-spacings CSH (II) are present except for the longest spacing 

at 9.8 A. A lime rich phase, a C^SH, reported by Kalousek (35) 

is an intermediate phase in 175°C hydrothermal reactions would 

o 
account for all remaining d-spacings except the 7.7 A w 

spacing, suggestive of Hilt and Davidson's (28) product. 

The x-ray diffraction curve for dolomitic dihydrated 

lime plus bentonite mixture, after hydrothermal treatment for 

12 hr. at 105°C, is shown as curve E in Figure 13. D-spacings 

for bentonite appear at 16.6 m b, 4.48 m, 2.54 m b and 

o o 
1.495 A m b. The main Ca(OH)^ peak is 2.6 A tr. The main 

o 
Mg(0H)2 peaks appear at 4.76 s and 2.37 A vvs. The main quartz 

o 
peaks appear at 4.26 tr and 3.34 A s. CaCOg peaks appear at 

3.03 s b and 2.28 A vw. The mica peak is 10.0 X w. Feldspar 

o 
peaks appear at 3.24 w and 3.18 A w. 

Probable reaction product d-spacings are as follows : 
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5.5 w, 3.03 vs, 2.92 vw b, 2.85 tr, 2.8 vw b, 2.57 w, 2.46 s, 

2.24 tr, 1.99 mw, 1.83 w b, 1.82 w, 1.69 w b, 1.67 w b, 

o 
1.60 v w and 1.54 A tr. 

All d-spacings appear in this pattern for CSH (I) with 

very small deviations. Strong d-spacings for CSH (II) are 

o 
also represented except for the longest at 9.8 A. A lime rich 

phase known as a dicalcium silicate was found by Kalousek (35) 

to occur briefly in hydrothermal mixtures at higher tempera­

ture. If this phase is present, all other lines are accounted 

for. 

The x-ray diffraction curve for dolomitic dihydrated lime 

plus bentonite mixture, after hydrothermal treatment for 12 

hr. at 145°C, is shown as curve F in Figure 13. D-spacings for 

bentonite appear at 16.9 ms b, 4.48 mw b, 2.5 w b and 

o o 
I.497 A s b. The main Ca(OH)^ peak appears at 2.6 A vw. The 

o 
main Mg(OH)2 peaks appear at 4.76 s and 2.37 A vvs. 

o 
The main quartz peaks appear at 4.26 vw and 3.34 A s. 

o 
CaCOg peaks appear at 3.04 s b and 2.28 A w. The mica peak 

o 
appears at 10 A tr. Feldspar peaks appear at 3.25 w and 

o 
3.20 A mw. 

Probable reaction product d-spacings are as follows: 

II. tr, 7.2 tr, 5.5 vw, 3.86 w, 3.07 m, 2.98 w b, 2.86 vw b, 
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2.80 vw, 2.73 w, 1.98 w, 1.83 w, 1.82 s, 1.70 vw, 1.67 wb and 

1.54 A tr. 

All of the strong d-spacings for synthetic tobermorite 

appear with little deviation. The same analysis applies to 

o 
Diamond's CSH I, attributing the 3.25 A reflection as at least 

partially due to this compound. The strongest d-spacings for 

o 
CSH (II) appear except for the 9.2 A spacing. Three additional 

d-spacings at 3.86 w, 2.73 w and 1.70 vw would be accounted 

for if overlapping spacings could be partially attributed to a 

lime rich phase, a C^SH, found by Kalousek (35) to occur after 

hydrothermal treatment at 175°C for a short period. 

The x-ray diffraction curve for dolomitic dihydrated 

lime plus bentonite mixture, after hydrothermal treatment for 

12 hr, at 156°C, is shown as curve G in Figure 13. D-spacings 

for bentonite appear at 16.6 mw b, 4.48 m, 2.56 w b, 

o 
I.496 mw b. The main Ca(OH)^ peak appears at 2.6 A tr. The 

o 
main ̂ g(OH)^ peaks appear at 4.76 s and 2.36 A vvs. The main 

o 
quartz peaks appear at 4.26 vw and 3.34 A s. CaCOg peaks 

o 
appear at 3.03 s and 2.29 A vw b. The mica peak does not 

o 
appear. A feldspar peak appears at 3.195 A w b. 

Probable reaction product d-spacings are as follows : 

II.47 vw b, 5.4 tr, 3.86 w, 3.07 s, 2.98 ms b, 2.90 vw, 
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2.84 w b, 2.80 vw b, 2.72 vw b, 2.5 w b, 2.45 vw, 2.24 vw b, 

2.05 tr, 2.00 w b, 1.84 w, 1.81 vw, 1.69 w b, 1.66 w b and 

o 
1.54 A tr. 

The x-ray diffraction curve for dolomitic dihydrated lime 

plus bentonite mixture, after hydrothermal treatment for 12 

hr. at 170°C, is shown as curve H in Figure 10. D-spacings 

for bentonite appear at 16.9 s b, 4.48 m, 2.55 w b and 

o o 
I.495 A m b. The main Ca(0H)2 peak appears at 2.6 A tr. 

o 
Mg(0H)2 peaks appear at 4.76 ms and 2.36 A vvs. The mica peak 

o 
appears àt 10.0 A vw. Feldspar peaks appear at 3.22 w and 

3.18 A m. 

Probable reaction product d-spacings are as follows: 

II.47 vw b, 7.5 tr, 6.3 tr, 5.4 vw, 3.9 w s, 3.07 s, 2.97 mw, 

2.93 w, 2.84 vw, 2.79 w b, 2.71 s, 2.5 w b, 2.44 tr, 2.24 w, 

o 
2.00 w b, 1.84 mw b, 1.81 vw, 1.69 vw b, 1.66 w and 1.54 A vs. 

The patterns represented by the above data on specimens, 

hydrothermally reacted at 156°C and 170°C, are nearly identi­

cal ; therefore these analyses are combined into one. All 

strong and some weak spacings for synthetic tobermorite are 

present in these patterns for this mixture. The same analysis 

o 
applies to CSH (I) except for the missing 3.25 A peak. For 

CSH (II) only the longest spacing is not evident here. 
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Differential Thermal Analysis 

Differential thermal analysis results were compared with 

published patterns, in particular, those on the pure aluminate 

and silicate hydrate compounds. 

As Mackenzie (44) has noted regarding such comparisons 

between results obtained by DTA, reproducibility of technique 

is absolutely essential. This involves such aspects as par­

ticle size, pretreatment and packing of the specimen and equip­

ment characteristics, with the heating rate having the most 

marked effect upon the DTA pattern. Peak areas and sharpness 

are important considerations, but perhaps most significant in 

the present study is the matter of peak temperature ; all are 

affected by heating rate. No correlation procedure is indi­

cated in this reference. 

Diamond (14) performed a DTA analysis of the same material 

on two different instruments. One was used in the major part 

of his study of pure compounds and had a heating rate of 58°C 

per min. initially and then varying linearly to 5.4° per min. 

at 600°, after which it was constant. The other instrument had 

a heating rate equal to the one used in the present study which 

was 10°C per min. The 825°C exotherm used to indicate CSH 

composition in the DTA pattern read 795° on his instrument. 
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The principal reference to published patterns used in the 

present study were by Kalousek (34, 35), who apparently stand­

ardized his DTA studies and used a heating rate of 7°C per 

minute initially which varied to 12.5° per minute at 300°C 

after which this rate was constantly maintained. Van Bemst 

(63) in his study of CSH (II) used 13°C per minute. Turriziani 

(61) used 15° per minute. No correlations were found between 

these rates and the 10° per minute used in this study. Com­

parisons between data indicate that peaks occur at slightly 

higher temperatures for the faster heating rate. 

Otay bentonite 

Differential thermal analysis of Otay bentonite shows a 

strong endotherm at 160°C, indicating removal of constitutional 

water. Two medium endothermic peaks at 650° and 855° indicate 

expulsion of mineral lattice hydroxy1 water. CaCOg also has 

an endotherm in the vicinity of the second endotherm. The 990° 

exotherm is associated with the appearance of the second endo­

thermic peak for bentonite but its exact origin is unknown 

( 4 4 ) .  

Unreacted mixtures of lime-bentonite 

Figures 14, 15 and 16 are headed by DTA patterns marked 

A. These represent dry mixtures of calcitic, dolomitic 
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monohydrated and dihydrated lime plus bentonite, respectively. 

Room cured mixtures of lime-bentonite 

Calcitic lime plus bentonite The DTA of this mixture 

(C/S = 0.69) is shown as curve B in Figure 14. A very strong 

constitutional water endotherm appears at 110°C. A very weak 

broad endotherm appears at about 220° and another very broad 

endotherm appears between 350° and 430°. A weak endotherm is 

noted at 705°. The only exotherm appears at 840°, and of 

medium intensity. Laboratory CO^ level was normal so there 

was probably carbonation; however the 705° is lower than 

anticipated for CaCOg but about right for antigorite (44). 

Shifts in this peak position were noted in previous work by 

Glenn and Handy (22). The difference between peak temperatures 

may be explained on the basis of the fine particle size of the 

carbonate formed from the Ca(OH)  ̂(44). The low temperature 

endothermic effects suggest C4AH13 from patterns by Turriziani 

(61) and Kalousek (36). The exotherm at 840° is about right 

for room temperature CSH (I) by Kalousek (35) having a C/S 

ratio around 1.2. 

Dolomitic monohydrated lime plus bentonite The DTA 

of this mixture (C/S = 0.45) is shown as curve B in Figure 15. 

The strong constitutional water endotherm occurs at 130°C with 
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a small shoulder at 160°. Very weak and broad endotherms 

appear at 315° and 510°; the latter suggests Ca(0H)2« The 

medium endotherm at 740° is attributed to CaCOg. A weak 

exothermic peak appears at 630°C. A medium to strong exotherm 

occurs at 850°. CSH (I) with a C/S ratio of about 1.25 is 

indicated by this peak as found in the work of Kalousek (35). 

Diamond's (14) patterns for CSH Gel prepared at room tempera­

ture have exotherms of weak intensity in this range also. 

Dolomitic dihydrated lime plus bentonite The DTA of 

this mixture (C/S = 0.39) is shown as curve B in Figure 16. 

The strong constitutional water endotherm occurs at 120°C. 

The strong endotherm at 390° is identified as probably Mg(OH)^> 

although Mackenzie (44) reports the usual temperature for 

expulsion of its lattice water is somewhat higher. Very weak 

peaks appear at 250° and 600° with a medium weak endotherm at 

690°; the latter is attributed to the presence of carbonate. 

This curve shows double exothermic effects at 850° and 920°, 

which are near those reported by Van Bern st (63) for CSH II; 

however his low temperature exothermic effect is absent. 

Diamond's (14) CSH Gels gave an exotherm in this range, also. 
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Hvdrothermally reacted mixtures of lime-bentonite 

Freshly prepared mixtures 

Calcitic lime plus bentonite The DTA of this 

mixture (C/S = 0.69) after hydrothermal treatment for 12 hours 

at 170°C is shown as curve J in Figure 14. There is a broad 

constitutional water endotherm at 100° with broadening near 

170°. The second endothermic peak is of medium intensity at 

470° and extends between 400° and 550°. Two very weak endo-

therms at 690° and 770° are probably due to carbonates. A 

strong exotherm occurs at 280° and a medium-strong exotherm 

occurs at 870°. None of the patterns described in the litera­

ture except CSH (II) by Van Bemst (63) have intense low tem­

perature exothermic effects. Also the exotherm at 870° in the 

present pattern is intermediate to the double exothermic 

effects noted at high temperature for this compound. A some­

what weaker exothermic effect in this temperature range was 

noted by Diamond (14) in his CSH Gel study. 

Dolomitic monohydrated lime plus bentonite mixtures 

of variable C/S ratio The DTA of the mixture with a C/S 

ratio of 0.45, after hydrothermal treatment for 12 hours at 

170°C, is shown as curve J in Figure 15. The broad constitu­

tional water endotherm has a main strong peak at 100° with a 
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distinct broad shoulder around 180°. Small exotherms occur 

near 225° and 400° with a broad endothermic bulge at 500°. A 

720° endotherm appears and is probably due to carbonate. A 

strong exotherm occurs at 300° and a weak exotherm at 880°. 

The presence of MgCOH^ is probably indicated by the endo­

thermic effect at 500°. Otherwise, this pattern resembles the 

CSH (II) of Van Bemst (63), with the exotherm at 880° replacing 

the double effects in his pattern. Diamond's (14) and 

Kalousek's (34) aluminum substituted (15 to 20%) tobermorite 

have strong exotherms in this same temperature range. 

The DTA of the mixture with a C/S ratio of 1.3, after 

hydrothermal treatment for 12 hours at 170°C showed a sharp 

constitutional water endotherm at 110° with a broad shoulder 

around 150°. A strong endotherm, attributed to ^g(OH)^> 

appears at 400°, followed by a very weak endotherm at 470° and 

a medium endotherm at 760°, the last probably due to CaCOg. 

There is a weak exothermic effect between 870° and 930° and a 

strong exotherm at 280°. The DTA of the mixture with a C/S 

ratio of 2.0 has an almost identical pattern to the C/S 1.3 

mixture. This pattern suggests the presence of CSH (II), as 

prepared by Van Bemst (63). 
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Dolomitic dihydrated lime plus bentonite The DTA 

of this mixture with a C/S ratio of 0.39, after hydrothermal 

treatment for 12 hours at 170°C is shown as curve J in Figure 

16. A strong constitutional water endotherm appears at 110° 

with a broad shoulder at 180°. Weak endotherms occur at 225°, 

500° and 705° with a broad endotherm at 620°. A strong endo­

therm at 405° is attributed to MgCOH^. There is a strong 

exotherm at 300°, a weak endotherm at 800° and a medium exo­

therm at 850°. Features of this pattern resemble that obtained 

for CSH (II) by Van Bemst (63). 

Cured mixtures 

Calcitic lime plus bentonite (C/S = 0.69) The DTA 

of this mixture after treatment for five days at 40°C is shown 

as curve C in Figure 14. The strong constitutional water 

endotherm at 130° is followed by a distinct endothermic shoulder 

at 180°. Very weak broad endotherms occur at 250° and between 

380° and 540°. A medium endotherm occurs at 760° and is at­

tributed to CaCOg. A medium exothermic effect occurs at 910° 

followed by a weaker shoulder at 950°. The double effect is 

unexplained; however, the principal exotherm is near that ob­

tained from products of Kalousek (35) of high C/S ratio. 

The DTA of the calcitic lime plus bentonite mixture after 
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treatment for four days at 80°C is shown as curve D in Figure 

14. The constitutional water endotherm at 130° is of medium 

intensity and broad. It is followed by a shoulder at 240°. A 

weak exotherm occurs at 300°. A broad weak endotherm extends 

between 420° and 530°. This is followed by a weak endotherm 

at 745° and is attributed to CaCOg. Two exothermic peaks of 

weak to medium intensity occur at 870° and 920°. The features 

of this pattern resemble that for CSH II of Van Bemst (63). 

However, the possibility exists that two aluminum substituted 

synthetic tobermorites are represented instead; Kalousek (34) 

found peaks in this temperature range for 15-20% aluminum 

substitution. 

The DTA of the calcitic lime plus bentonite mixture after 

hydrothermal treatment for 12 hours at 105° is shown as curve 

E in Figure 14. The constitutional water endotherm at 130° is 

very strong. Very weak endothermic effects appear around 420° 

and 500°. A definite but weak endotherm appears at 760° and 

is attributed to CaCOg. This is followed by a strong broad 

exotherm at 930°. Although low temperature exothermic features 

are missing, CSH (II) of Van Bemst (63) and high Al^Og substi­

tuted tobermorites of Kalousek (34) give exothermic effects 

around 900°. 1.33 C/S ratio products were noted by Kalousek 
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(35) also to give similar exothermic effects. 

The DTA of the calcitic lime plus bentonite mixture after 

hydrothermal treatment for 12 hours at 145°C is shown as curve 

F in Figure 14. A strong constitutional water endotherm 

appears at 130°. Weak broad endothermic effects appear at 310° 

and between 420° and 500°. A weak endotherm appears at 740°, 

and is attributed to CaCOg. This is followed by a medium exo­

therm at 850° and a somewhat stronger exotherm at 905°. The 

high temperature exotherms suggest the presence of CSH (I), 

found by Kalousek (35) to have C/S ratios around 1.2 and 1.4, 

respectively. 

The DTA of the calcitic lime plus bentonite mixture after 

hydrothermal treatment for 12 hours at 156°C is shown as curve 

G in Figure 14. The constitutional water endotherm is of 

strong intensity at 110°. A definite endothermic peak occurs 

at 235° followed by a broader endotherm at 500° extending 

between 450° and 530°. A very weak endothermic effect is 

noted at 730°, attributed to CaCOg. This is followed by two 

medium to strong exotherms at 850° and 920°. Aluminum substi­

tuted tobermorites, which were studied by Kalousek (34) and 

Diamond (14), are suggested by this pattern. There is also 

the possibility of two CSH compounds having C/S ratios 



90 

above 1.25, as noted by Kalousek (35). 

The DTA of the calcitic lime plus bentonite mixture after 

hydrothermal treatment for 12 hours at 164°C is shown as curve 

H in Figure 14. The constitutional water endotherm appears as 

a medium broad peak at 110° with a broad shoulder near 220°. 

A definite broad endotherm appears at 500° which suggests 

Ca(0H)2• This is followed by a weak endothermic effect at 730° 

which is attributed to CaCOg. A very strong exotherm occurs 

at 900°, probably representing CSH (I) with c/S ratio near 1.3, 

prepared by Kalousek (35). 

The DTA of the calcitic lime plus bentonite mixture after 

hydrothermal treatment for 12 hours at 170°C is shown as curve 

I in Figure 14. A very strong constitutional water endotherm 

appears at 140°. A definite broad endotherm appears at 450°; 

this is followed by a weak endotherm at 700° probably due to 

CaCOg. A medium to strong exotherm occurs at 850°. The over­

all pattern resembles Diamond's (14) CSH (I) preparation, 

tested on an instrument with heating rate similar to the one 

used here. The exothermic effect appears similar to that 

found by Diamond (14) for 10% aluminum substituted tobermorite. 

Dolomitic monohydrated lime plus bentonite (C/S = 

0.45) The DTA of this mixture after treatment for five days 
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at 40°C is shown as curve C in Figure 15. The strong constitu­

tional water endotherm at 110° has a shoulder at 160°. The 

medium endotherm at 395° suggests MgCOH^ • A very weak endo­

therm around 520° is probably due to CaCOH^. These are 

followed by a weak but sharp endotherm at 740°, probably due to 

CaCOg. An exothermic effect appears with the usual sharp rise 

to 870° but this is followed by a leveling effect, giving no 

definite peak. The latter is unexplained. 

The DTA of the dolomitic monohydrated lime plus bentonite 

mixture after treatment for four days at 80°C is shown as 

curve D in Figure 15. A strong constitutional water endotherm 

appears at 110° with a shoulder at 160°. It is followed by 

broad weak endothermic effects at 250°, 520° and 730°. The 

520° endotherm is probably from Ca(0H)2 and the 730° endotherm 

is attributed to CaCOg. A medium endotherm appears at 420° 

from Mg(0H)2° A sharp strong exotherm occurs at 890° suggests 

CSH (I) prepared by Kalousek (35), having a C/S ratio near 1.3. 

The DTA of the dolomitic monohydrated lime plus bentonite 

mixture after treatment for 12 hours at 105°C is shown as 

curve E in Figure 15. A strong endotherm at 150° is followed 

by a weak endotherm at 190°, representing the expulsion of 

constitutional water. Definite medium endotherms occur at 
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410° and 760°, due to MgCOH^ and CaCOg, respectively. A weak 

broad endotherm at 510° is attributed to CaCOH^» An exotherm 

occurs as a strong broad peak with the suggestion of double 

effects at 880° and 920°. These may indicate two CSH (I) 

products of different c/S ratios, according to Kalousek (35). 

They appear similar to the high temperature exotherms of Van 

Bemst's (63) CSH (II); his low temperature exotherm is missing 

however. 

The DTA of the dolomitic monohydrated lime plus bentonite 

mixture after hydrothermal treatment for 12 hours at 145°C is 

shown as curve F in Figure 15. Expulsion of constitutional 

water is represented by a sharp endotherm at 100° followed by 

a very slowly rising curve having a shoulder at 170°. This is 

followed without much rise in the curve by an endotherm at 

380°. A broad weak endothermic effect at 470° may be from 

Ca(OH)^- The definite endothermic effect appearing at 710° 

may be attributed to carbonate. A very sharp strong exothermi 

peak at 830° with a shoulder at 860° may be indicative of two 

CSH (I) products as prepared by Kalousek (35). In combination 

with the low temperature endotherm Diamond (14) noted these 

effects for aluminum substituted tobermorite. Kalousek (35) 

indicates such an exotherm should appear on a pattern for 
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CSH (I), having a C/S ratio between 1.0 and 1.25. 

The DTA of the dolomitic monohydrated lime plus bentonite 

mixture after hydrothermal treatment for 12 hours at 156°C is 

shown as curve G in Figure 15. The constitutional water endo­

therm consists of but one broad effect noted at 170° with 

about the same shape as curve F. A definite endotherm appears 

at 360° followed by a weak broad endotherm around 450° possibly 

representing Ca(0H)2• A very weak endothermic effect is noted 

at 690°, possibly carbonate; this is followed by a very sharp 

strong exotherm at 815°. The 360° endotherm and the 815° exo­

therm in combination strongly suggest aluminum substituted 

tobermorite, as noted by Diamond (14) and Kalousek (34). 

The DTA of the dolomitic monohydrated lime plus bentonite 

mixture after hydrothermal treatment for 12 hours at 164°C is 

shown as curve H in Figure 15. The constitutional water endo­

therm is sharper than that of curve G but occurs at a lower 

temperature of 100°. Definite medium endotherms appear at 

230° and 405°, the latter due to Mg(OH)^. Weaker endothermic 

effects occur at 510° and 730° which may be attributed to 

Ca(OH)^ and CaCOg, respectively. A very sharp exothermic peak 

occurs at 870°. This pattern resembles Kalousek1s (34) and 

Diamond's (14) aluminum substituted tobermorite. Kalousek (34) 



94 

also reports such an exothermic effect from CSH compounds 

having a C/S ratio near 1.25. 

The DTA of the dolomitic monohydrated lime plus bentonite 

mixture after hydrothermal treatment for 12 hours at 170°C is 

shown as curve I in Figure 15» The constitutional water endo­

therm is medium and very broad with an effect at 120° followed 

by a broad shoulder at 190°. A definite endotherm of medium 

intensity appears sharp at 410° and is attributed to Mg(OH)^. 

A broader endothermic peak appears at 530°, suggesting Ca(0H)2« 

A sharp endotherm occurs at 800°. A very weak endothermic 

effect appears at 750° and is probably due to carbonate. A 

very sharp exothermic effect appears at 880°. The aluminum 

substituted tobermorite of Kalousek (34) is suggested by the 

effects at 800° and 880°; the 230° effect which he found does 

not appear here although one does occur at 190°. 

Dolomitic dihydrated lime plus bentonite (C/S = 0.39) 

The DTA of this mixture after treatment for five days at 4O°C 

is shown as curve C in Figure 16. The strong endotherm repre­

senting the expulsion of constitutional water occurs at 110°. 

There is a suggestion of a weak endothermic effect at 200° 

which is followed by a very strong endotherm at 410°; the 

latter is attributed to ^g(OH)^' A very weak broad endotherm 
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appears around 610°. Another definite endothermic effect at 

730° is probably due to CaCOg. The exothermic effect here is 

represented by a gently rising curve, flattening at 850°, 

similar to that occurring in the monohydrated mixture for this 

same treatment. This is followed by a weak exothermic effect 

at 970°, sometimes occurring on bentonite patterns (44), 

The DTA of the dolomitic dihydrated lime plus bentonite 

mixture after hydrothermal treatment for four days at 80°C is 

shown as curve 0 in Figure 16. A strong endotherm at 130° 

indicates expulsion of constitutional water. There is an 

equally strong endotherm at 430° followed by a definite but 

weak endothermic effect at 720°; these are attributed to 

Mg(0H)2 and CaCOg, respectively. The curve showing the exo­

thermic effects is similar to curve C with flattening at 850° 

but having a weak exothermic peak at 940°; a somewhat higher 

temperature exotherm is sometimes associated with bentonite 

(44). 

The DTA of the dolomitic dihydrated lime plus bentonite 

mixture after hydrothermal treatment for 12 hours at 105°C is 

shown as curve E in Figure 16. The strong constitutional water 

endotherm appears at 110° with a suggestion of a shoulder as 

the curve broadens at 200°. An equally strong endotherm 
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appears at 430° due to MgCOH^» This is followed by very 

weak endothermi c effects around 610° and 760°; the latter 

effect is probably due to carbonate. A strong exothermic 

effect appears resembling curve D but without definite peaks, 

being represented instead by two level stretches at 880° and 

990°. The latter phenomena may be associated with bentonite 

(44). 

The DTA of the dolomitic dihydrated lime plus bentonite 

mixture after hydrothermal treatment at 145°C is shown as 

curve F in Figure 16. A medium endotherm appears at 110° 

representing the expulsion of constitutional water. This is 

followed by a definite endothermic effect at 205° followed by 

a strong endotherm at 395°. A very broad weak endothermic 

effect is noted around 580° followed by very weak effects at 

700° and 740°. Distinct medium exothermic effects are noted 

at 830° and 940°. 

The DTA of the dolomitic dihydrated lime mixture plus 

bentonite after hydrothermal treatment for 12 hours at 156°C 

is shown as curve G in Figure 16. The constitution water 

expulsion is shown by a sharp strong endotherm at 110° fol­

lowed by a definite weak endothermic effect at 195°. Another 

sharp and strong endotherm appears at 405°, followed by very 
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weak effects around 495°, 605° and 710°. A strong exothermic 

peak occurs at 850°; this is followed by a shoulder at 1000°. 

Patterns for curves F and G are very similar and will be 

discussed together. The strong endothermic effects around 

400°C are attributed to Mg(OH)2° The weaker endotherms above 

700° are associated with the presence of carbonate. The 830-

850° exotherms are attributed to well crystallized CSH (I) or 

tobermorite, probably with some aluminum substitution in the 

lattice, as noted in studies by Kalousek (34, 35) and Diamond 

(14). 

Electron Microscopy 

As an aid in identification of data, references were con­

sulted for electron micrographs and diffraction diagrams of 

some of the products which would possibly appear in the in­

vestigation. Tobermorite, synthesized at the same temperature 

as some of the lime-bentonite mixtures were treated, was 

examined by electron microscopy for comparison. 

Synthetic tobermorite 

The synthetic tobermorite prepared in this study was 

almost identical in its x-ray diffraction pattern to that of 

Kalousek (35), shown in Table 3, except for a basal spacing of 
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o 
11.2-11.3 A for a vacuum dessicated sample. Agreement was even 

closer to that of Diamond (14), shown in column 6 of Table 4. 

Figure 17 is an electron micrograph of this preparation 

showing flexible thin plates with indications of waves and 

sometimes rolling at the edges. This compares with the micro­

graph of Kalousek (35). Better dispersion occured in some 

instances, as shown in Figure 18. This figure shows a few 

single crystals, with some tubes and lathlike formations. The 

large single crystal gave the diffraction diagram showing a 

distinct cross grating, representing a crystal lying on (001). 

When the electron beam of intermediate intensity was allowed 

to bear upon specimens, the pattern soon became too weak to be 

observed. The hk spacings may be conveniently calculated from 

a face centered orthogonal unit cell after Megaw and Kelsey 

(46), if the scale factor is known. In the present investiga­

tion, none were determined, but usually the longest d-spacing 

o 
observed in such diagrams corresponds to the 3.07 A d-spacing, 

also found by x-ray diffraction of this specimen. Although the 

220 reciprocal lattice point is not clearly indicated in Figure 

18, the 440 spot corresponding to half this d-spacing, appears 

strongly and was used for calculation of other d-spacings, 

based on measurements of the other lattice points in relation 

o 
to 440. These results (+ 0.03 A) are given first, followed by 



99 

Fig. 17. Electron micrograph of synthetic tobermorite 



100 

assigned hk values and x-ray diffractometer d-spacings for a 

o 
vacuum dessicated sample which probably correspond: (2.79 A) 

400 2.82 A, (1.87 A) 040 (1.87 A), (1.65 A) 620 (1.67 A), 

(1.54 A) 440 (1.54 A), (1.37 A) 800 —, (1.09 A) 840 —, and 

o 
(0.93 A) 080 Gard, Howison and Taylor (18) found spacings 

for a similar pattern from material having a comparable C/S 

ratio as (3.05 A) 220, (2.80 A) 400 and (1.83 A) 040. 

Figure 19 shows several overlapping flat crystals. 

Electron diffraction near the center gave three distinct pat­

terns similar to Figure 18 but with fewer spots. These pat­

terns were not persistent for very long under the beam so they 

were always taken before the micrographs. In this instance, 

three superimposed patterns are easily distinguishable; they 

are rotated with respect to each other. A similar phenomenon 

was reported for two overlapping crystals studied by Gard, 

Howison and Taylor (18). 

Materials were often found in each lime-bentonite mixture 

which gave very weak diffraction patterns if at all. However, 

it was usually possible to ascertain the morphology of the 

samples in micrographs. The scale is shown on each micrograph 

by a line representing one micron. 

Calcium silicate hydrates usually show better crystalliza-
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-"4 

Fig. 18. Electron micrograph and diffraction pattern of 
synthetic tobermorite 



Fig. 19. Electron micrograph and diffraction pattern from 
overlapping synthetic tobermorite crystals 
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tion if formed by hydrothermal treatment. Therefore, results 

from specimens having this treatment are presented first. 

Hvdrothermally reacted cured mixtures of lime-bentonite 

Electron micrographs and diffraction patterns from the 

hydrothermally (170°C-12 hours) reacted cured mixture of 

Ca(OH)2 + MgO : Otay bentonite are shown in Figures 20 to 22. 

A view of agglomerates and partially dispersed field of clay 

and interleaved plates or fibers of tobermorite is shown in 

Figure 20 with a diffraction pattern of apparently unoriented 

crystals. The materials in the field view were apparently so 

poorly crystalline that no interpretable pattern was produced ; 

many attempts resulted in no pattern at all. The morphology 

suggested in the field view resembles the spheroidal forms 

found in the ultrasonically dispersed C3S and other prepara­

tions of Bogue (6) in which CSH (I) was found. With better 

dispersion, specimens with needle-like habit and laths were 

noted, as shown in Figure 21. Several overlapping crystals 

are apparent here but not with the preferred orientation noted 

in Figure 19. In the diffraction pattern the outline of two 

distinct single crystals is shown, one of which has the ap­

pearance of possible hexagonal symmetry. The second crystal 

may be rotated out of the plane of the photograph having two 



Fig. 20. Electron micrograph and diffraction pattern from 
Ca(0H)2 + MgO: Otay bentonite mixture 
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Fig. 21. Electron micrograph and diffraction pattern from 
Ca(0H)2  + MgO: Otay bentonite mixture 
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diametrically opposite lattice points superimposed on the more 

regular pattern. This suggests that the second crystal may be 

composed of a smaller lattice in one dimension or else it may 

have non-hexagonal symmetry. The extreme brightness of the 

ring onto which both crystal patterns are superimposed suggests 

the presence of a number of such disarranged crystals super­

imposed in the same pattern. Although certainly not a well 

crystallized sample, the hexagonal pattern could, of course, 

be one of several other materials with this symmetry but 

certainly it is not as well crystallized as mica or talc or 

one of the aluminates; these tend to give sharper and more 

extended patterns. 

Figure 22 shows a diffraction pattern composed of three 

diffraction rings from the gel-like material shown in the 

micrograph. A few scattered spots appear in the vicinity of 

the inside and middle diffraction rings, indicating the pos­

sibility of material present with a higher degree of crystal-

linity. Two possibilities for interpretation exist. No 

absolute values for d-spacings can be established as was 

indicated earlier; however, relative values for the two d-

spacings anticipated for CSH Gel and two of the strong spacings 

for poorly crystallized CSH (I) are equal in absolute value 
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Fig. 22. Electron micrograph and diffraction pattern from 
Ca(0H)2 + MgO: Otay bentonite mixture 
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to the relative radii of the respective rings in the reciprocal 

space pattern. Table 4 in the Review of Literature shows 

three strong lines (col. 4). Diamond (14) in his x-ray was 

o o 
only able to get the same two lines at around 1.8 A and 3.0 A 

o 
for his CSH Gel as shown in Table 3. Assuming 3.03 A for the 

o 
inner ring on Figure 22, the second ring gives 1.78 A and the 

o 
outer ring 1.53 A. Thus identification as CSH Gel or poorly 

crystallized CSH (I) is possible. It is also of interest to 

note the appearance of a distinct single crystal diffraction 

pattern of near hexagonal symmetry superimposed on the rings. 

An exception is noted below but it may be that the material 

producing the rings is also the material producing the spots, 

as indicated by superposition of the two patterns. As a 

second possibility for interpretation, one may assume the hk 

reflections from a hexagonal aluminate (C^AH^) and index on 

this basis. This would allocate hki indices of 11* to the 

o o 
inner ring of 2.87 A, 30* to the second ring of 1.66 A and 

o 
22• to the outer ring of 1.43 A for spots actually observed. 

The spots also index the same. This assumes that long basal 

spacings are missing, as usual in this type material. 

This example suggests the possibility that CSH material 

can be intimately associated with CAH plates, as was noted in 
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an overlapping ringed and spotted electron diffraction pattern 

by Grudemo (24). In the present instance, most if not all the 

material is identified as C^AH-^. The absence of the sharp and 

extended pattern to be shown in Figure 24 was attributed to 

the effects of the hydrothermal treatment. Single crystals 

picked from this mixture showed only a few lines on a Debye-

Scherrer x-ray film using chromium radiation, as compared with 

unheated crystals. 

Room cured mixtures of lime-bentonite 

Figure 23 shows a micrograph at the top representing a 

typical view of a room cured mixture of Ca(OH)^ + MgO : Otay 

bentonite. Isolated fibers were noted, one of which is also 

shown; no diffraction pattern could be obtained. 

The edge of a crushed hexagonal single crystal is shown 

in Figure 24. The electron diffraction pattern shown was 

obtained from the lighter edge. It is the type pattern which 

a well crystallized hexagonal compound such as mica or talc 

would give. However, this is also characteristic of the 

pattern of some of the aluminates; Buttler, Classer, Dent and 

Taylor (10) found such a pattern for C^AH^g. In that this 

material was preferentially selected and mounted, this pattern 

is identified as one of the tetracalcium aluminate hydrates 
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Fig. 23. Electron micrographs from Ca(0H)2 + MgO: Otay 
bentonite mixture 
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Fig. 24. Electron micrograph and diffraction pattern from 
Ca(0H)2 + MgO: Otay bentonite mixture 
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given in Table 1. 

Another single crystal fragment from an isolated hexagonal 

compound was placed manually onto one of the grids. A micro­

graph in Figure 25 shows thin plates with some curled into 

tubes, giving the appearance of fibers. This was found to be 

characteristic of CSH (I) by Grudemo (23). Unfortunately this 

detail was not visually evident under the microscope at high 

magnification so no diffraction pattern was attempted. In a 

more recent paper, Grudemo (24) indicates a very intimate 

association between hexagonal CAH plates, with tobermorite 

adsorbed on their surfaces. 

Another single crystal fragment is shown in Figure 26; it 

resembled the one shown in Figure 24. Attached material gave 

the accompanying diffraction diagram. Two rings composed of 

very diffuse spots may be identified. The ratio of d-fpacings 

for the strongest reflections of calcium carbonate compare 

favorably with the reciprocal ratio for the diameters of these 

rings. This sample is on the same grid and is probably one 

of the same crystals observed the previous day. On that 

occasion, the edges of fragments of the hexagonal crystals 

were noted to have a growth forming visibly under 20,000 X 

magnification. This occurred after the mount had been in the 
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Fig. 25. Electron micrograph from Ca(0H)2 + MgO: Otay 
bentonite mixture 
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Fig. 26. Electron micrograph and diffraction pattern from 
Ca(0H)2 + MgO: Otay bentonite mixture 
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beam under vacuum for a total time near one hour. Since 

carbon dioxide was present in large quantities, the material 

formed was probably CaCO^, resulting from carbonation of 

released water containing calcium from the parent compound ; 

note also discussion of Figure 24. 

Hexagonal crystals similar to those discussed above were 

removed from a room cured mixture of CaCOH^ : Otay bentonite 

and crushed. They were placed manually on the grids for 

observation. Figure 27 shows the edge of a crushed hexagonal 

single crystal giving an appearance of flat plates and three 

rolled tubes near the center of the micrograph. 

Figure 28 shows an electron micrograph of the space 

between several crushed hexagonal crystals, with what appears 

to be extensions of about 0.3(i from the main body of material. 

These give the appearance of rolls or tubes but without the 

characteristic flat plates, noted in Figure 25, which usually 

accompany such formations. The electron diffraction pattern 

in the absence of a scale factor can only be interpreted by 

assigning the strongest circle of spots to the strongest d-

spacing of possible compounds as was done on other such 

diagrams. Comparisons were then made by establishing 

reciprocal ratios of radii of other spotty circles to the 
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Fig. 27. Electron micrograph of Ca(0H)2: 

mixture 

Otay bentonite 



Fig. 28. Electron micrograph and diffraction pattern from 
Ca(0H)2: Otay bentonite mixture 
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strongest, then comparing with direct ratios of the strongest 

d-spacings of the compounds. When compared with strong spac­

ings of the hexagonal crystal products, no correlation is 

evident. The data for the pattern of Figure 28, based on 

o 
assignment of the strongest line to 3.025 A, is as follows : 

3.69 vw, 3.025 s sp, 2.73 w sp, 2.46 s sp, 2.32 w sp, 2.11 

o 
s sp, 1.94 sp and 1.71 A sp. When.these spacings are compared 

with the results of Grudemo (23), two of the lines may be 

attributed to impurities in CSH (I), as shown in column 3 of 

o ° 
Table 4. Other spacings differ by 0.05 A to 0.10 A either 

side of his findings. When compared with Ca(OH)2> assigning 

o 
the strong spacing to 2.63 A, agreement is found with the next 

o 
four strongest lines but with a difference of about 0.07 A for 

the second strongest. Other compounds including Mg(0H)2 and 

CaCOg were compared ; no correlation was evident for the 

o ° 
Mg(0H)2. However, except for 0.07 A deviation from the 1.87 A 

spacing for CaCOg, every strong spacing less than and including 

o 
3.03 A is in agreement. The identification is uncertain but 

the evidence points to a CaCO^ formation, although different 

in appearance from that shown in Figure 27. 
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Infrared Spectroscopy 

Successive monochromatic bands of infrared irradiating a 

substance may be absorbed wholly or in part, depending upon 

the correspondence between the radiated frequencies and the 

intramolecular vibrational frequencies of the substance. The 

infrared spectrum is a graph showing the per cent of radiation 

absorbed by the substance plotted against the incident wave­

length (or frequency). This graph is characteristic of a 

material and can be used in its identification, as in the 

present study. 

Pure compounds 

The eight strongest absorption bands in the spectra for 

the compounds represented in Figure 1 are shown in Table 6 in 

the order of diminishing absorption. Increased absorption is 

indicated by the downward deflection in a spectrum called a 

band ; maxima are therefore indicated as the wavelengths at the 

lowest points of the bands. 

Duplications occur between bands for several of these 

compounds. The 3.08p, band appears in both CSH Gel and crystal­

line tobermorite. Near duplication occurs between the 7.Olp. 

band for C^AH^g and the 6. 96|_l band for crystalline tobermorite ; 

the 9.88 band for C^AH^g is near that for crystalline 
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Table 6. Infrared absorption spectra for pure compounds 

Compound 

Bentonite 

C4AH13 (48) 

C SH Gel (48) 

Crystalline tobermorite (48) 

Absorption bands, |_t 

9.75, 10.20, 9.00, 2.93, 10.98, 
2.76, 11.95, 6.12 

3.13, 7.01, 5.30, 13.00, 9.88, 
11.45, 15.50, 10.30 

10.64, 3.08, 2.77, 3.58, 6.77, 
7.20, 4.32, 12.40 

10.38, 9.85, 10.75, 3.07, 9.35, 
3.52, 6.96, 6.77 

tobermorite at 9.85|_i. The 10.20p. band for bentonite is near 

the 10.30|_i band for C^AH^y However, no duplications occur 

between the three strongest bands of these compounds. Patterns 

for the pure compounds CSH (I), CSH (II) and CSH Gel as well 

as tobermorite were found by other investigators to exhibit 

distinct infrared spectra. These will be used in conjunction 

with those given in Table 6 to identify the bands which appear 

in each mixture. Whenever the principal bands in a pure com­

pound coincide or overlap with distinct bands in the pattern 

of a mixture, they are assumed to be present in the mixture. 

However, if one of the principal bands is missing or doubtful, 

then the presence of the compound in the mixture is open to 
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question. 

Dry mixtures of lime-bentonite 

Curves A in Figures 29, 30 and 31 show infrared spectra 

for dry mixtures of Otay bentonite with calcitic, dolomitic 

monohydrated and dihydrated limes, respectively. The absorp­

tion bands, which remain after accounting for the bentonite 

spectrum given above, may be assumed to be associated with the 

lime in the mixture, as follows : for CaCOH^j 10.10, 6.74, 

6.95, 7.06, 11.45 and 3.43|_i; for Ca(OH)^ + MgO, 10.10, 2.70, 

6.75, 6.95, 11.45 and 3.42^; and for Ca(0H)2 + MgCOH^» 10.10, 

2.70, 6.74, 7.00, 7.06, 11.45 and 3.45^. The bands at 6.74 

and 10. lp are associated with MgO. Strong bands also occur 

for MgO near 10 and 11.6^. Bands at 6.95, 7.06 and 11.45^ 

may be associated with CaCOg, according to Midgley1 s findings 

(48). The weakest band at 3.43(j is the only one not attributed 

to other compounds which all three patterns have in common. 

The 2.70p. band is only common to the patterns for the mixtures 

containing Ca(0H)2 + MgO and Ca(0H)2 + Mg(0H)2• 

Room cured mixtures of lime-bentonite 

Calcitic lime plus bentonite The infrared spectrograph 

of this cured mixture is shown as curve B in Figure 29. Broad 

bands appear in this pattern with maximum absorption at the 
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following wavelengths: 2.74, 2.90, 5.5, 6.13, 6.74, 7.07, 9.0, 

9.80, 10.15, 11.00, 11.45, 12.00 and 12.65p. Bentonite, cal-

cite and the following new compounds are suggested by these 

bands. Identification is by comparison with published spectra 

on the pure compounds, the sources for which are given by 

author and reference following each compound : C^AH-^3, Midgley 

(48); CSH (I), Kalousek and Prebus (37) and Diamond (14); CSH 

(II), Kalousek and Prebus (37) and Van Bemst (63). A higher 

crystalline form of CSH is suggested by infrared data on tober-

morite by Diamond (14), although this is not indicated con­

clusively by Midgley1 s (48) data. 

It will be noted that wavelengths at maximum absorption 

are displaced in some instances, giving a broader band. For 

example, the contribution of the 9.88p. band for C^AH-^ in the 

vicinity of the 9.75p bentonite is accounted for by the broader 

9.80p band. Thus the principal bands for the pure compound 

may not actually coincide with but will overlap with another 

band in the pattern for the mixture. It may be noted from 

Table 6 that a number of compounds contribute more or less to 

the absorption band around 10p. The most strongly absorbed 

wavelengths for CSH Gel and tobermorite appear at 10.64p (14, 

48) and 10.3-10.4p (14, 48) respectively. In the present 

pattern neither are evident by significant absorption bands at 
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( 1:0.45:1.62 Î 



124 

their respective wavelengths. Therefore their presence in this 

mixture is uncertain. 

Dolomitic monohydrated lime plus bentonite The infrared 

spectrograph for this cured mixture is shown as curve B in 

Figure 30. Broad bands appear in this pattern with maximum 

absorption at the following wavelengths : 2.72, 2.90, 3.44, 

6.15, 6.70, 7.05, 8.55, 9.82, 10.40, 11.00, 11.56, 11.8 and 

12.65|i. Bentonite and calcite are indicated. The presence of 

the following new compounds is suggested: C^AH^, Midgley (48); 

CSH (I), Kalousek and Prebus (37) and Diamond (14); CSH (II), 

Kalousek and Prebus (37) but not by Van Bemst's (63) pattern 

for this compound. A higher crystalline form of CSH is sug­

gested from data on tobermorite by Diamond (14), although this 

is not conclusively indicated by Midgley's (48) data. The 

strongest band for CSH Gel overlaps other major absorption 

bands ; therefore, its presence is uncertain (14, 48). 

Dolomitic dihydrated lime plus bentonite The infrared 

spectrograph for this mixture is shown as curve B in Figure 31. 

Broad bands appear in this pattern with maximum absorption at 

the following wavelengths : 2.70, 2.77, 2.91, 4.33, 5.57, 

6.15, 6.84, 7.03, 8.98, 9.80, 10.10, 10.90, 11.46, 12.00, 

12.60 and I4.07(j. Bentonite and calcite are indicated. The 
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presence of the following new compounds is suggested: C^AH-^g, 

Midgley (48); CSH (I), Kalousek and Prebus (37) and Diamond 

(14); CSH (II), Kalousek and Prebus (37) and Van Bemst (63). 

A higher crystalline form of CSH is suggested from data on 

tobermorite by Diamond (14), although this is not conclusively 

indicated by Midgley's (48) data. The strongest band for CSH 

Gel overlaps other major absorption bands; therefore its 

presence is uncertain (14, 48). 

Hydrothermally reacted cured mixtures of lime-bentonite 

The spectrographs for the cured mixtures of bentonite plus 

lime, after hydrothermal treatments, are shown by the types of 

lime used and the reaction temperatures. 

Calcitic lime plus bentonite 

40°C, 5 days, as shown by curve C in Figure 29 

Broad bands appear in this pattern with maximum absorption at 

the following wavelengths : 2.74, 2.92, 3.45, 4.30, 6.15, 

6.74, 7.07, 9.15, 9.74, 10.12, 10.95, 11.47, 11.98, 12.58 and 

12.85|i. Bentonite and calcite are indicated. The presence of 

the following new compounds is suggested: C^AH-^, Midgley 

(48); CSH (I), Kalousek and Prebus (37) and Diamond (14); 

CSH (II), Kalousek and Prebus (37) and Van Bemst (63). Con­

clusive data for a higher crystalline form is not indicated by 
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the findings of Midgley (48) although pure compound studies by 

Diamond (14) strongly suggests tobermorite. Kalousek and 

Prebus (37) show only two bands, which are present here, while 

Kalousek and Roy (38) show bands near 2.9, 6.2, 8.3, 10 and 

11.2m, in good agreement with Diamond (14). The principal 

band for CSH Gel and those of other compounds overlap. Since 

no definite evidence of its contribution is noted, its presence 

is uncertain (14, 48). 

80°C. 4 days, as shown by curve 0 in Figure 29 

Broad bands appear in this pattern with maximum absorption at 

the following wavelengths; 2.77, 2.90, 3.41, 6.15, 6.74, 

7.05, 9.0, 9.86, 10.12, 10.40, 11.00 and 11.48|a. Bentonite 

and calcite are indicated. The presence of the following new 

compounds is suggested ; C^AH^g, by three of five bands shown 

by Midgley (48); CSH (I), Diamond (14) and Kalousek and Prebus 

(37); CSH (II), by Kalousek and Prebus (37) but not by Van 

Bemst1 s (63) data. Approximately the same indications for 

tobermorite and CSH Gel exist in this pattern as appeared in 

curve C and its presence is still uncertain. 

105°C. 12 hr.. as shown by curve E in Figure 29 

Broad bands appear in this pattern with maximum absorption at 

the following wavelengths : 2.77, 2.92, 3.42, 5.57, 6.15, 
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6.67, 7.05, 9.00, 9.80, 10.12, 11.48 and 12.60|_i. Bentonite 

and calcite are indicated. The presence of the following new 

compounds is suggested: C^AH^g, Midgley (48); CSH (I), Kalou­

sek and Prebus (37) and Diamond (14); CSH (II), by Kalousek 

and Prebus (37) but not by Van Bemst's (63) data. The same 

indications appear here for tobermorite and CSH Gel as 

appeared in curve C. 

156°C. 12 hr.. as shown by curve G in Figure 29 

Broad bands appear in this pattern with maximum absorption at 

the following wavelengths : 2.78, 2.93, 3.48, 6.15, 6.78, 

7.02, 8.60, 9.00, 9.85, 10.12, 10.4, 11.00 and 11.45m. 

Bentonite and calcite are indicated. The presence of the 

following new compounds is suggested: C^AH^g, Midgley (48); 

CSH (I), Kalousek and prebus (37) and Diamond (14); CSH (II), 

by Kalousek and Prebus (37) data and possibly by that of 

Van Bemst (63). Presence of tobermorite in this pattern is 

indicated by comparison with the data of Diamond (14) and 

Kalousek and Prebus (37). However, only three of the four 

strongest bands found by Midgley (48) appear here. The in­

tensity of the strongest tobermorite band, however, is 

increased slightly over that of curve E. 
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170°C, 12 hr. , as shown by curve H in Figure 29 

Broad bands appear in this pattern with maximum absorption at 

the following wavelengths : 2.90, 3.50, 6.12, 6.75, 6.90, 

8.60, 9.16, 9.75, 10.12, 10.37 and 11.43m. Bentonite and 

calcite are indicated. The presence of the following new 

compounds is suggested : C^AH^g, by three of the five strongest 

bands of Midgley1 s (48) pattern ; CSH (I), Kalousek and Prebus 

(37) and Diamond (14); CSH (II), Kalousek and Prebus (37) but 

not by data of Van Bemst (63). The increased intensity of the 

strongest tobermorite band found by Midgley (48) and Diamond 

(14) indicates the presence of this phase. Presence of CSH 

Gel remains doubtful because of overlapping of its strongest 

line with other compounds. 

Dolomitic monohydrated lime plus bentonite 

40°C, 5 days, as shown by curve C in Figure 30 

Broad bands appear in this pattern with maximum absorption at 

the following wavelengths : 2.72, 2.79, 2.90, 3.43, 6.13, 

6.70, 7.05, 9.00, 9.75, 11.00, 11.45, 11.85, 12.6, 12.70 and 

14.0m. Bentonite and calcite are indicated. The presence of 

the following new compounds is suggested : C^AH^g, Midgley 

(48); CSH (I), Kalousek and Prebus (37) and Diamond (14); 
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CSH (II), Kalousek and Prebus (37) and Van Bemst (63). Tober­

morite is indicated by comparison with data of Diamond (14) 

and Kalousek and Prebus (37). A weak band appears for the 

strongest band of CSH Gel ; however, it overlaps strong bands of 

other compounds so its presence is uncertain. 

80°C, 4 days, as shown by curve D in Figure 30 

Broad bands appear in this pattern with maximum absorption at 

the following wavelengths : 2.72, 2.77, 2.90, 5.20, 6.13, 

6.80, 7.05, 9.00, 9.80, 9.90, 10.50, 10.8, 11.0, 11.45, 11.80, 

12.75 and 14.0|u. Bentonite and calcite are indicated. The 

presence of the following new compounds is suggested : C^AH^g, 

Midgley (48); CSH (I), Diamond (14) and Kalousek and Prebus 

(37); CSH (II), Kalousek and Prebus (37) and Van Bemst (63). 

Very weak indications appear in the pattern for tobermorite. 

The strongest band for CSH Gel overlaps strong bands of other 

compounds ; therefore, its presence cannot be definitely estab­

lished. A definite change has occurred in this vicinity of 

the pattern, however, indicating changes related to one or 

more of these compounds. 

105°C, 12 hr.. as shown by curve E in Figure 32 

Broad bands appear in this pattern with maximum absorption at 

the following wavelengths : 2.71, 2.76, 2.90, 6.13, 6.77, 7.05, 
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9.10, 9.75, 9.85, 10.3, 10.95, 11.48, 12.00 and 12.75p. 

Bentonite and calcite are indicated. The presence of the 

following new compounds is suggested : C^AH-^, Midgley (48); 

CSH (I), Diamond (14) and Kalousek and Prebus (37); CSH (II), 

Kalousek and Prebus (37) and Van Bemst (63). Indications for 

CSH Gel and tobermorite are about the same here as in curve D 

in Figure 30 with some increased intensity noted around 10.4^. 

156°C. 12 hr., as shown by curve G in Figure 32 

Broad bands appear in this pattern with maximum absorption at 

the following wavelengths : 2.70, 2.92, 6.15, 6.70, 7.05, 9.1, 

9.73, 9.90, 10.4, 10.50, 11.00, 11.45, 12.00 and 12.70n. 

Bentonite and calcite are indicated. The presence of the 

following new compounds is suggested; C^AH^j, Midgley (48); 

CSH (I), Kalousek and Prebus (37) and Diamond (14); CSH (II), 

Kalousek and Prebus (37) and Van Bemst (63). The greater 

intensity in the vicinity of the 10.4^ band suggests strongly 

the presence of tobermorite. The strongest line for CSH Gel 

is not clearly indicated because of overlapping with other 

bands. 

l7O°C, 12 hr., as shown by curve H in Figure 32 

Broad bands appear in this pattern with maximum absorption 

at the following wavelengths : 2.92, 6.14, 6.75, 7.00, 8.50, 
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9.08, 9.70, 10.38, 11.00, 11.42, 12.0 and 12.6m. Bentonite 

and calcite are indicated. The presence of the following new 

compounds is suggested: C^AH-j^, by four of five strongest 

lines in Midgley1 s (48) pattern; CSH (I), Kalousek and Prebus 

(37) and Diamond (14); CSH (II), Kalousek and Prebus (37) and 

Van Bemst (63). Tobermorite is clearly indicated by the in­

creased intensity of the band near 10.4m. Presence of CSH Gel 

is doubtful for the same reasons stated for curve G. 

Dolomitic dihydrated lime plus bentonite 

40°C. 5 days, as shown by curve C in Figure 31 

Broad bands appear in this pattern with maximum absorption at 

the following wavelengths : 2.70, 2.78, 2.92, 3.43, 6.13, 

7.02, 8.96, 9.80, 10.20, 10.95, 11.46, 11.95 and 12.75m. 

Bentonite and calcite are indicated. The presence of the 

following new compounds is suggested : C^AH^g, Midgley (48); 

CSH (I), Kalousek and Prebus (37) and Diamond (14); CSH (II), 

Kalousek and Prebus (37) and Van Bemst (63). Absorption in 

this pattern near 10.5m is somewhat more intense here than in 

curve B; the relationship to CSH Gel or tobermorite is 

uncertain. 
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80°C, 4 days, as shown by curve D in Figure 33 

Broad bands appear in this pattern with maximum absorption at 

the following wavelengths : 2.71, 2.78, 2.93, 3.40, 6.13, 

7.04, 9.00, 9.80, 10.02, 10,2, 11.0, 11.45, 12.00 and 12.65m. 

Bentonite and calcite are indicated. The presence of the 

following new compounds is suggested : C^AH-j^, Midgley (48); 

CSH (I), Diamond (14) and Kalousek and Prebus (37); CSH (II), 

Kalousek and Prebus (37) and Van Bemst (63). Very weak indica­

tions appear in the pattern for tobermorite, with some reduc­

tion of the 10.4m band ; the same indications for CSH Gel 

appear here as in curve C of Figure 31. 

105°C. 12 hr.. as shown by curve E in Figure 33 

Broad bands appear in this pattern with maximum absorption at 

the following wavelengths: 2.71, 2.78, 2.90, 3.98, 5.15, 

6.15, 6.75, 6.97, 8.98, 9.80, 10.10, 11.00, 11.45, 12.00 and 

12.65m. Bentonite and calcite are indicated. The presence of 

the following new compounds is suggested : C^AH^g, Midgley 

(48); CSH (I), Diamond (14) and Kalousek and Prebus (37); 

CSH (II), Kalousek and Prebus (37) and Van Bemst (63). Hardly 

any indication remains for the strong tobermorite band at 

10.4m. The presence of CSH Gel remains uncertain as in curve 

D. 
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156°C, 12 hr.. as shown by curve G in Figure 33 

Broad bands appear in this pattern with maximum absorption at 

the following wavelengths: 2.71, 2.78, 2.93, 3.42, 6.13, 

6.82, 9.00, 9.77, 10.15, 10.90, 11.45, 11.70, 11.95 and 12.6^. 

Bentonite and calcite are indicated. The presence of the 

following new compounds is suggested: C^AH^g, Midgley (48); 

CSH (I), Kalousek and Prebus (37) and Diamond (14); CSH (II), 

Kalousek and Prebus (37) and Van Bemst (63). The greater 

intensity at 10.4(_t is apparent here somewhat moreso than 

curve E; this indicates that tobermorite is probably also 

present in this mixture. 

170°C, 12 hr., as shown by curve H in Figure 33 

Broad bands appear in this pattern with maximum absorption at 

the following wavelengths : 2.70, 2.77, 2.93, 3.50, 6.16, 

6.88, 9.16, 9.80, 10.11, 10.98, 11.45, 11.98 and 12.63m. 

Bentonite and calcite are indicated although band maxima have 

shifted somewhat. The presence of the following new compounds 

is suggested: C^AH^g, Midgley (48); CSH (I), Kalousek and 

Prebus (37) and Diamond (14); CSH (II), Kalousek and Prebus 

(37) and Van Bemst (63). Increased intensities occur for the 

tobermorite band so it, too, is probably present in this 

mixture. 
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Electron Probe Analysis 

Two typical single crystals were selected from a sample 

of the dolomitic monohydrated lime bentonite mixture which had 

been open to laboratory atmosphere about four months. These 

were hexagonal in crystal habit. A Debye-Scherrer rotating 

single crystal film was made by x-ray diffraction using 

chromium radiation. Examination of the diffraction pattern 

showed these to be the same compound isolated by Glenn and 

Handy (22). As indicated in the earlier paper, the strongest 

o 
d-spacings at 7.9, 3.9 and 2.8 A correspond closely to the p 

form of C^AH-^3 studied by Buttler, Classer and Taylor (10). 

The mounted crystals were noted to have a general back­

ground of calcium and silicon in the electron probe analysis. 

The composition and atom percentages of the crystals were as 

follows. Crystal number one indicated calcium (~40%), aluminum 

(weak) and silicon (~157=) ; crystal number two indicated calcium 

(~75-80%), aluminum (—15-20%) and silicon (weak). Relating 

these data, the approximate formula for the first crystal is 

CgSA? and for the second is C^.^AS?. 

A microscopic examination of the crystals after the 

examination revealed that crystal number one was completely 

covered by the Duco cement ; the surface of crystal number two 
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was apparently clear of foreign material. Results on the 

first crystal would necessarily be open to question because 

of contamination by the cement. The findings on the second 

crystal should be reliable ; the approximate composition is 

near that associated with the tetracalcium aluminates and it 

is therefore probably identified as C^AH^. 

Summary of Results 

The compounds formed in the lime-bentonite mixtures are 

tabulated according to three phases of treatment. Each table 

is arranged by mixture and method of analysis. Products 

formed in room cured mixtures are presented in Table 7. Table 

8 gives the products from hydrothermal treatment of freshly 

prepared mixtures. The products found in the room cured 

mixtures after hydrothermal treatment are listed in Table 9. 



Table 7. Summary of products of room cured mixtures 

Mixture 
Method 

Bentonite: 

(C/S = 0.69) 

Ca(OH)2 Bentonite: 
Ca(0H)? + MgO 
(C/S =0.45) 

Bentonite: 
Ca(OH)2 + Mg(OH)2 
(C/S = 0.39) 

X-ray diffraction C4AH13, CSH 
Gel 

I, II?! C 4 A H , C S H  I ,  
Gel 

II CSH I, II?, Gel 

DTA C^AH-^^» CSH I CSH I, Gel CSH II?, Gel 

Electron microscopy Flat plates, 
tubes 

rolled C4AH13, fibers, 
tubes, thin 
plates : CSH I 

Infrared spectroscopy C4AH13, CSH 
Gel? 

I, II, C4AH13, CSH I, 
Gel? 

II? C4AH13, CSH I, 
CSH II, Gel? 

Electron probe C4-5A 

a? - uncertain. 



Table 8. Summary of products of hydrothermal reaction of freshly prepared mixtures 

Method 
Mixture 

X-ray diffraction DTA 

Hydrothermal, 170°C 
Bentonite: Ca(OH)n 
(C/S = 0.69) 

Bentonite: Ca(OH)^ + MgO 
(C/S = 0.45) 

Bentonite: Ca(OH)^ + Mg(OH)? 
(C/S = 0.39) 

Bentonite: Ca(OH)^ + MgO 
Hydrothermal, 170°C 
C/S = 0.22 
C/S = 0.45 
C/S = 1.00 
C/S = 1.30 
C/S = 2.00 

11.7 A Toba CSH I, II? 

11.5 A Tob CSH I, II? 

11.2 A Tob CSH I. II? 

o CSH II?, Gel 
11.5 A Tob CSH I, II? 

CSH I, II? 
CSH I, II? 
CSH I, II? 

CSH II?, Gel 

CSH II? 

CSH II?, Gel 

CSH II 
CSH II 

aTob - tobermorite. 

k? - uncertain. 



Table 9. Summary of products of hydrothermal reaction of cured mixtures 

Method 
Mixture 

X-ray 
Diffraction 

DTA Infrared Spectroscopy 

Bentonite: Ca(OH)2 
(C/S = 0.69) 
Hydrothermal, °C 

40° 

80° 

105° 

145° 

156° 

164° 

170° 

C4AH13, CSH I 

CSH I 

CSH 

A1 Tob? or 
CSH II 

Tob?, CSH I, II? A1 Tob? or 
CSH I, II? 

12.6 Tob 

CSH I 

A1 Tob? or 
CSH I? 

11.7 Tob or CSH II? CSH I 

11.7 Tob or CSH A1 Tob?, 
II? CSH I 

C4AH13, Tob?a, CSH I, II, Gel? 

C4AH13?, Tob?, CSH I, II?, Gel 

C4AH13> Tob?> CSH I, II?, Gel? 

C4AH13, Tob, CSH I, II?, Gel? 

C4AH13, Tob, CSH I, II?, Gel? 

aTob - Tobermorite; ? - uncertain. 



Table 9. (Continued) 

Method X-ray 
Mixture Diffraction 

Bentonite: 
Ca(OH)2 + MgO 
(C/S = 0.45) 
Hydrothermal, °C 

40° C/AH-, o, CSH I 
Gel 

80° CSH I 

105° C4AH13, CSH I 

145° C4AH13, CSH I 

156° C / AH-, o? , 11.6 
Tob 

164° 

170° 11.6 Tob, CSH 
II? 

DTA Infrared Spectroscopy 

CSH I C4AH13> 

CSH I?, II? C4AH13, 

Al Tob? or C AH 
CSH I? 4 1J 

Al Tob C 4AH2 3 ; 

Al Tob or 
CSH I? 

Tob?, CSH I, II, Gel? 

Tob?, CSH I, II, Gel? 

Tob?, CSH I, II, Gel? 

Tob?, CSH I, II, Gel? 

Tob, CSH I, II, Gel? 

Al Tob C4AH13?, Tob, CSH I, II, Gel? 



Table 9. (Continued) 

Method X-ray DTA Infrared Spectroscopy 
Mixture Diffraction 

Bentonite: 
Ca(OH)2 + Mg(OH)2 
(C/S = 0.39) 
Hydrothermal, °C 

40 CSH I ? c4AHi3, Tob?, CSH I, II, Gel? 

80° CSH I, II?, ? C/AHq n, Tob?, CSH I, II, Gel? 
ctC2SH? 

105° CSH I, II?, ? C,AH1V Tob?, CSH I, II, Gel? 
ctC2SH 

145° 11 Tob?, CSH I, Al Tob or 
CSH II?, ctC2SH CSH I i 

156c 11.5 Tob, CSH I, Al Tob or C,AH1Tob, CSH I, II, Gel? 
CSH II? CSH I 

164° Al Tob or 

CSH I 

170° 11.5 Tob, CSH I, 
CSH II? 

C4AH13, Tob, CSH I, II, Gel? 
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DISCUSSION 

The previous chapter related detailed experimental results 

to previous work whereby the products were characterized. 

Tables 7, 8 and 9 presented summaries of the products formed 

in reactions between mixtures of bentonite and three types of 

lime. Any uncertainty indicated there for a product was, in 

most instances, with reference to the particular phase of the 

hydrate which was present. These compounds may be classified 

in two groups : the calcium silicate hydrates and the calcium 

aluminate hydrates. 

Calcium Aluminate Hydrates 

Curing under room conditions for periods up to two and 

one-half years produces the tetracalcium aluminate hydrates 

in bentonite mixtures with calcitic or dolomitic monohydrated 

lime. Identification of C^AH-^g was made using x-ray diffrac­

tion, DTA and infrared spectroscopy. Slow scan x-ray dif­

fraction techniques further indicated that another phase and 

lower hydrates of this compound were also present. Probable 

chemical composition was found by electron probe microanalysis. 

The absence of tetracalcium aluminates from the bentonite-

dolomitic dihydrated lime mixture was indicated by x-ray dif­

fraction and DTA but not by infrared spectroscopy. It is 
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extremely doubtful that the latter method, as it was employed 

in this study, gave reliable results for characterization of 

this compound in these mixtures. As indicated earlier, only 

one spectra for C/AH^g was found in the literature for compari 

son. 

No aluminate hydrates were produced in freshly prepared 

lime-bentonite mixtures, hydrothermally reacted at 170°C for 

12 hours. 

As indicated above, only two of the three room-cured 

mixtures were found to contain calcium aluminate hydrates. 

When these three mixtures were hydrothermally reacted at 

various temperatures, modifications and compositional changes 

were indicated by x-ray diffraction. The calcium aluminate 

hydrate phase was noted by x-ray diffraction to persist only 

through the 40°C reaction in the mixture containing calcitic 

lime. It was found to persist through the 156°C reaction in 

the dolomitic monohydrated lime mixture. None of these 

phenomena were indicated by DTA. However, from x-ray dif­

fraction and DTA, incidence of possible aluminum substitutions 

in the calcium silicate hydrate phase seems to be related to 

the apparent diminishing crystalline character of the 

aluminate. The C^AH^g product is indicated by infrared 

spectroscopy in all mixtures and under every hydrothermal 



147 

condition. This result is questionable, for reasons cited 

earlier. 

Calcium Silicate Hydrates 

All methods of analysis show that the calcium silicate 

hydrates, CSH (I), CSH Gel and possibly CSH (II) are produced 

by room curing of all three lime-bentonite mixtures. 

Freshly prepared mixtures of bentonite with calcitic 

lime (C/S ratio^ = 0.69), dolomitic monohydrated lime (C/S 

ratio = 0.45) or dolomitic dihydrated lime (C/S ratio = 0.39) 

after hydrothermal treatment at 170°C for 12 hrs. were found 

by x-ray diffraction to contain well crystallized tobermorite, 

CSH (I) and possibly CSH (II). Results by DTA indicated 

calcium silicate hydrates but with uncertainty of the exact 

phases present. 

Freshly prepared mixtures of variable C/S ratio (0.22-

2.00) from dolomitic monohydrated lime and bentonite were 

found to produce calcium silicate hydrates in every instance. 

CSH Gel, CSH (I) and possibly CSH (II) were produced in the 

mixture at the lowest C/S ratio of 0.22. As indicated above, 

tobermorite was only produced in the mixture at a C/S ratio 

"*"C/S ratio based on chemical composition of bentonite : 
52% SiOg (39). 
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of 0.45. CSH (I), and possibly CSH (II), are the only products 

noted in the mixtures of higher C/S ratio. The C/S ratio of 

0.45 appears to be near the optimum for producing well crystal­

lized tobermorite by this treatment. 

Cured mixtures of lime-bentonite, after hydrothermal treat 

ments at various temperatures, were found to contain several 

calcium silicate hydrate phases. CSH (I) was noted by x-ray 

diffraction in all mixtures after the 40°C treatment. The 

mixture containing calcitic lime was noted by DTA to contain 

an unidentified CSH phase after 40°C treatment ; DTA results 

were uncertain for the other two mixtures. Indications by 

infrared spectroscopy of CSH Gel, CSH (II) and tobermorite 

in the mixtures after low temperature treatments were noted 

in the previous chapter to be uncertain; however, general 

agreement by several authors on the CSH (I) spectra lend more 

credence to its use for identification. CSH (I) was indicated 

to be present in this mixture by this method. 

Mixtures of bentonite with calcitic or dolomitic mono­

hydrated lime after the 80° and 105°C treatments were found 

by x-ray diffraction, DTA and infrared spectroscopy to contain 

CSH (I). CSH (II) and a higher crystalline form are suggested 

for the mixture containing calcitic lime but not by x-ray 



149 

diffraction. DTA results for the mixture containing dolomitic 

dihydrated lime are uncertain; x-ray diffraction indicated 

CSH (I) and possibly CSH (II) and aCgSH. The 80° and 105°C 

treatments have apparently modified the cured mixtures as 

follows. The CSH Gel is no longer present ; the CSH (I) has 

persisted to an unknown extent. Conversion of one or both 

compounds or production of new phases is suggested. 

Higher temperature treatments caused more noticeable 

changes. Highly crystalline CSH (I) or tobermorite definitely 

appears in all cured mixtures after treatments at 156°C. This 

is indicated by DTA in the mixtures containing the dolomitic 

monohydrated or dihydrated lime after 145°C but only by x-ray 

diffraction for the dihydrated lime mixture. Both x-ray 

diffraction and DTA indicate that these CSH phases have inter­

mediate lime contents (~1.2-1.4). X-ray diffraction and DTA 

gave evidence for aluminum substitution in the CSH lattice ; it 

appears in all mixtures containing dolomitic lime after the 

156° treatment. After the 164°C treatment, x-ray diffraction 

indicates conclusively the presence in all mixtures of well 

crystallized tobermorite with aluminum lattice substitutions. 

Persistence of other CSH compounds is inconclusive because 

identification criteria overlap. The probability that most 
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of the CSH compounds have been modified to produce tobermorite 

and that aluminum substitution has occurred are suggested by 

x-ray diffraction and DTA; tobermorite is more clearly indi­

cated by infrared spectroscopy as well. 
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CONCLUSIONS 

Calcitic or dolomitic monohydrated lime mixed with 

bentonite and water (weight ratio of 0.45 : 1.00 : 1.62) 

produce the tetracalcium aluminate hydrates during two and 

one-half years curing at room temperature. 

Calcitic, dolomitic monohydrated or dihydrated lime 

mixed with bentonite and water (weight ratio of 0.45 : 1.00 : 

1.62) produce the lower crystalline forms of the calcium 

silicate hydrates, namely, CSH Gel, CSH (I) and possibly 

CSH (II), during two and one-half years curing at room 

temperature. 

The reaction products formed by curing at room temperature 

for periods up to two and one-half years have no apparent 

influence on the subsequent production of well crystallized 

tobermorite by hydrothermal treatment (170°C, 12 hours). 

Hydrothermal treatments at lower temperatures indicate that 

these phases may be utilized in the reactions with other 

components at intermediate and higher temperatures to produce 

the highly crystalline form of tobermorite above 155°C. 

Substitutions by aluminum in the tobermorite lattice are also 

indicated. 

X-ray diffraction was found to be the most effective and 
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versatile method for identification of the products of the 

lime-bentonite-water reaction, either from room curing condi­

tion or hydrothermal treatment. DTA provided clarification 

at certain points in the investigation. Infrared spectroscopy 

results were generally inconclusive because of limited and 

conflicting data in the literature with which to correlate. 

Electron microscopy and electron probe microanalysis were 

used only to a limited extent ; therefore, evaluations are not 

made. Whether or not these and DTA and infrared spectroscopy 

methods can be made more effective awaits the outcome from 

their use in further studies of the pure compounds found in 

these mixtures. Standardization of technique is strongly 

suggested so that the results may be used in correlation 

studies for identification. 

The schematic in Figure 34 was suggested by the results 

of this study. 
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