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INTRODUCTION 

History 

The "basic principle of pre stressing concrete has been used, in con­

struction for many years. The purpose of the prestressing operation is to 

reduce or eliminate tensile stresses produced in the concrete. In pre-

stressed concrete beams the concrete is initially stressed by the action of 

forces applied in the end regions of the beam. The forces produce com­

pressive stresses on the beam cross-sections which counteract the tensile 

stresses produced by loads on the beam. Thus, the entire cross-section of 

the prestressed beam is effective in resisting deformation. In comparison, 

cracking on the tension side of reinforced concrete (non-prestressed) beams 

results in the loss of resistance of approximately two-thirds of the cross-

sectional area. Consequently, the proper use of prestressing permits 

extended use of concrete as a construction material. 

The principle of prestressing was first applied to concrete arches in 

1886 by P. H. Jackson, an American engineer. However, it was not until 

1928 that Eugene Freyssinet, the French structural engineer, initiated the 

modern development of prestressed concrete. Freyssinet demonstrated the 

need for high quality concrete and high strength steel reinforcement to 

counteract the prestress losses due to elastic deformation, shrinkage, 

and creep. 

Even though the principle of prestressing concrete had been demon­

strated, practical application immediately became the major problem. 

Finally, in 1939# Freyssinet developed a system, of prestressing which made 

it possible to produce prestressed beams for use in construction. Progress 

became more rapid as other systems of prestressing were developed. 
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Extended use of prestressed concrete first "became evident in Europe near 

the end of World War II. Almost all prestressing done in Europe was of 

the linear type used for "beams and slabs. In contrast, the first practical 

use of prestressed concrete in the United States began in the 1930*s with 

circular prestressing used mainly in storage tank construction. In 1951» 

the first major prestressed concrete bridge in the United States was com­

pleted in Philadelphia. Since that time, the use of prestressed concrete 

has increased to the extent that, in many states, the number of new high­

way bridges built of prestressed concrete is greater than that of any 

other type. 

In Iowa, the first prestressed concrete bridge was built in Butler 

County in 1953. It was a single span bridge, 30 feet in length, in which 

channel-shaped sections were utilized. In 1954, the first standard pre­

stressed concrete bridge designs of the Iowa Highway Commission were 

approved by the Bureau of Public Roads for use on the secondary highway 

system. The designs were for bridges having spans of 30 and 42 l/2 feet. 

The first such bridge was built in Franklin County in 1954 and was composed 

of five equal spans, kS l/2 feet in length. In 195^, prestressed concrete 

bridges were first used on the primary highway system when five bridges 

in Louisa County were widened by adding prestressed beams to the existing 

structures. In December, 1956, standard designs were approved for bridges 

on the primary system. Prestressed beams with spans of 30, 42 l/2, 55, 

and 67 l/2 feet were included in the designs. The first prestressed 

concrete bridges constructed on the primary system were completed in 

Warren County in 1957» 

Use of prestressed concrete for highway bridges in Iowa has increased 
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rapidly since 1956. In 1957, 6l of the 109 "bridges "built on the primary 

system and 31 of the 86 "built on the secondary system utilized prestressed 

concrete. As the number of producers of prestressed concrete has grown, 

this type of construction has become a valuable and much-used construction 

material in Iowa as well as in most other states. 

The development of a method of construction which minimized the need 

for labor was necessary before prestressed concrete could become an eco­

nomical construction material in the United States. One of the most common 

of the methods used in the United States is the long-line system developed 

in Germany by Ewald Hoyer. In this system, high strength wires or strands 

are stretched between two abutments, several hundred feet apart. Forms 

for the concrete are then placed around the prestressing steel. After the 

concrete has gained strength, the prestressing steel is released and the 

beams are separated by cutting the steel exposed between adjacent beam 

ends. This method, which is one of two general methods of prestressing 

concrete, is called pretensioning since the prestressing steel is stressed 

before the concrete is placed. In the pre-tensioning method, anchorage of 

the prestressing steel is completely dependent upon bond developed between 

the steel and the concrete at the ends of the beam. The other method is 

called post-tensioning because the prestressing steel is stressed after 

the concrete is placed. The prestressing steel is placed in tubes, coated 

with non-bonding material, or placed outside the concrete. After the 

concrete has gained strength, the steel is stressed and mechanically 

anchored at the ends of the beam. 

Almost «11 of the prestressed concrete construction in Iowa utilizes 
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the pre-tensioning system. But, since post-tensioning can be done at the 

site of the structure, some post-tensioned beams have been used for span 

lengths greater than the maximum length which can be transported on Iowa 

highways. 

Through the development of practical methods of prestressing 

concrete, design problems have arisen which are distinctive to this new 

method of construction. Research through the years has provided answers 

to some of the questions, but many of the problems are still unsolved. 

Some of the problems related to pre-tensioned beams are centered around 

the ends of the beam which make up the anchorage zones for the pre­

stressing steel. Since the stresses produced in this anchorage zone are 

produced by both internal and external forces, the problems involved in 

a stress analysis are complex. 

It has been common practice to provide end blocks as a method of 

eliminating critical stress conditions which might exist in the anchorage 

zone. The end block is normally a rectangular section having a length 

of from one to two times the depth of the beam. The problem of forming 

pre-tensioned beams in the long-line process is lessened measurably if 

the end blocks are not required. In 1956, Prestressed Concrete of Iowa, 

Inc., under the direction of J. H. Boéhmler, constructed some building 

beams having no end blocks. The apparent success of the design suggested 

that the end block requirement for highway bridge beams might be elimi­

nated. A design for bridge beams having no end blocks was developed by 

J. H. Boehmler and P. H. Barnard, bridge design engineer at the Iowa 

Highway Commission. This design was initially used in 1957 for 



construction of the first prestressed bridges built on the primary 

system, in Iowa. 

The shear strength of beams having no end blocks has provoked 

much thought and discussion among engineers with the result that at the 

present time some states are using beams with no end blocks while others 

are still requiring end blocks. Thus, the controversy between engineers 

has created a definite need for research concerning the anchorage zone 

in pre-tensioned beams. One area of research which must, of necessity, 

be concerned with the anchorage zone is a study of shear strength, since 

shear strength is usually critical near the ends of the beams. Such a 

study would certainly shed some light on the end-block controversy, and 

yield shear strength information which, at present, is extremely limited. 

The Problem 

It is the purpose of this paper to present a method for evaluating 

the shear strength of pre-tensioned I-beams having no end blocks. The 

term shear strength, as used in this paper, refers to the resistance of 

the beams to failure by shear. A shear failure is defined as a failure 

which is initiated by an inclined tension crack resulting from the 

combined effects of cross shear and bending moment. Some writers refer 

to shear strength as the ultimate strength of the beam when the failure 

mechanism is started by the formation of inclined cracks. But, in this 

paper, shear strength will be defined as having been reached when a 

sudden, inclined tension crack completely traverses the web of the beam, 

and ultimate strength will be defined as having been reached when the 

beam will support no more applied load. 
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As will "be shown in the literature review, the approach to the 

problem of determining shear strength has been through formulation 

of empirical equations which most nearly agree with experimental findings. 

However, it appears that "because of the great number of variables which 

might influence the shear strength, it would be very difficult to include 

all pertinent variables in one general expression which could be applied 

to any prestressed beam. In contrast, a more general approach will be 

presented, involving the determination of principal stresses produced 

in the beam and a comparison of these stresses with limiting stresses 

dictated by a theory of failure for the concrete. 

In beams, the effect of cross shear is normally the dominant factor 

in producing critical stress conditions in the end portions. Thus, shear 

strength of a beam depends mainly on its ability to withstand the- effects 

of cross shear at or near the supports. Since the prestressing steel is 

anchored at the ends of prestressed concrete beams, the anchorage zone 

is subjected to the effect of the transmission of the prestressing force 

through bond between the steel and concrete, as well as the effects of 

the dead load and the applied load. 

An element of the beam in the anchorage zone is subjected to shearing 

stress as well as normal stresses on both the vertical and horizontal 

planes. But, the exact manner in which each stress is determined has 

never been resolved. Probably the simplest effect to evaluate is the 

primary effect of cross shear and bending moment caused by the dead load 

and the applied load. But, there exists a secondary effect at or near 

points of application of concentrated loads. This secondary effect 

results mainly in compressive stresses on horizontal planes, but is also 
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responsible for normal stresses on vertical planes, and shearing stresses 

on both planes. The effects produced by the transmission of the prestress 

force are the most difficult to evaluate. Primarily, the prestress force 

produces compressive stresses on vertical planes. But, because of the 

inadequacies of completed research, the mariner in which these compressive 

stresses are built up in the anchorage zone is known only for a few cases. 

In addition to the compressive stresses on vertical planes, normal 

stresses on the horizontal planes together with shearing stresses are 

the result of the transmission of the prestress force in the anchorage 

zone. Even though the prestress force undoubtedly causes stresses in 

three directions, it will be assumed that the stress condition is two-

dimensional and that the stresses ignored are small in comparison to 

those recognized in the following analyses. 

In this study, 33 pre-tensioned I-beams were tested to failure in 

such a manner that the failure mechanism was initiated by a sudden 

inclined tension crack which completely traversed the web. All of the 

beams had the same cross-section and were prestressed with 3/8-inch, 

seven wire steel strand. None of the beams had end blocks. The variables 

introduced in the study were (l) amount of web reinforcement, (2) pre­

stress stress distribution, (3) length of shear span, (4) length of over­

hang at the supports, and (5) concrete strength at time of release of 

the prestressing steel. A method which utilizes a theory of combined 

stresses was used to evaluate the shear strength of the test beams. 
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LITERATURE REVIEW 

The literature pertinent to a study of the shear strength of 

prestressed concrete "beams can "be divided into three general areas. 

The first area concerns previous studies of the shear strength of 

reinforced concrete "beams, the second is comprised of similar studies 

of prestressed concrete "beams, and the third presents the theories of 

failure which have "been used in describing the failure of concrete. A 

comparison of the research completed on shear strength of reinforced 

"beams with comparable studies of prestressed beams will indicate a 

definite similarity regarding variables considered and general approach 

to the problem. The discussion of the theories of failure will reveal 

the wide diversity of opinion concerning the mechanism of failure of con­

crete subjected to combined stresses. 

Reinforced Concrete Beams 

Studies of the strength in shear have always been an important 

aspect of research regarding concrete beams. The early research was 

concerned with reinforced concrete beams since the use of prestressing 

for beams had not yet been developed. According to Seiss (18), the most 

significant of the early, research was done during the period between 

1903 and 1908 by Talbot at the University of Illinois and by Moritz and 

Withey at the University of Wisconsin. The results of these studies 

indicated that the ultimate shear strength of the beams was dependent 

upon (1) the compressive strength of the concrete, (2) the amount of 

longitudinal- reinforcement, and (3) the ratio of length to depth for a 

given type of loading. The effect of web reinforcement and the character 
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of the shear failure was recognized. 

Later, in the 1920*s, shear studies were aimed at determining the 

relationship "between the nominal shear stress, v = v/bjd, and the stress 

in the web reinforcement. The recommendations for an expression for 

ultimate shear strength were of the form 

v = 0.005fy + rfy 

or v = C + rf 

where f^_ = yield point of the steel 

and r = percentage of web reinforcement. 

After 1940, research on shear strength was characterized by attempts 

to evaluate the contribution of the various elements of a beam to its 

strength in shear. In 1945, Moretto (l6) tried to determine the relative 

contributions of the concrete and the web reinforcement. Tests were 

conducted in which the variables were concrete strength, amount of web 

reinforcement, inclination of web reinforcement, and amount of longi­

tudinal reinforcement. The expressions presented were of the form 

v = Krf + Cf ' + 5000p 
y c 

where a = inclination of web reinforcement 

K = a function of a 

C = a constant 

f^ = concrete strength 

and p = percentage of longitudinal reinforcement. 

Later tests of rectangular beams were reported by Clark (2) in 

1951. The variables involved were concrete strength, amount of web 
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reinforcement, amount of longitudinal reinforcement, and the ratio of 

"beam depth to shear span. The expression recommended "by dark vas of 

the form 

v = 2500r + (0.12f^)d/a + 7000p 

where d/a = ratio of "beam depth to shear span. 

It should "be noted that the d/a ratio is omitted in Moretto1s expression, 

while d and f do not appear in Clark's expression. The test "beams used 

"by "both Moretto and Clark were greatly over-reinforced against flexural 

failure. 

In 1953# Ferguson and Thompson (6) reported on a series of tests 

performed on T-heams having no ve"b reinforcement. It was pointed out 

that the effect of the end reaction was to strengthen the end portion 

of the "beam, and that the apparent effect of the depth-shear span ratio 

was due mainly to this strengthening "by the end reaction. It was further 

stated that general significance is attached to the local effect of the 

end reaction when shear strength is expressed as a continuous function 

of d/a. Hence, the T-"beams tested were designed to produce failure 

outside this locally strengthened zone. The equation representing the 

shear strength of the test "beams was 

v = 145 + 0.02f^ 

In 1955# Laupa (12) presented a paper in which the object was to 

correlate the results of previous research regarding shear strength of 

reinforced "beams, and to develop a general expression for the shear 

strength of "beams subjected to different loading conditions. An empirical 
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equation, of a different form than the expressions reported in earlier 

studies, vas derived for the shear strength of rectangular beams having 

no veb reinforcement. The test beams were simply supported and subjected 

to one or two concentrated loads. The basic equation was of the form 

M k.5£' 
-J- = (k + np')(0.57 A 
bd f ' 1er 

c 

where Mg = shear-compression moment, 

and p* = percentage of compression reinforcement. 

Methods of modifying the basic equation were provided to extend use of the 

equation to include beams with veb reinforcement, T-beams, restrained 

beams, and beams subjected to distributed loads. 

In 1955, Moody and Viest (15) reported more tests in which the 

purpose was to evaluate the shear strength of reinforced beams. The 

failure of the test beams was found to occur in two phases. The first 

phase occurred when diagonal tension cracks formed, and the second when 

the compression zone in the concrete was destroyed. The equation which 

represented the first stage of failure was of the form 

f 
v = 0.12(1 + 0.1a)^(l - Yôôôô) . . 

This equation represents the shear strength as defined in this paper. 

The second stage concerns the ultimate strength of the beams and will 

not be discussed. 

Ferguson (5) recently summarized the previous work concerning shear 

strength of reinforced beams. The failure pattern of test beams is 
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emphasized. The failure is considered to take place in steps, each of 

which is rationalized or explained in terms of the standard theory of 

combined stresses. In conclusion, the author encourages use of a theory 

of combined stresses in determination of shear strength. All of the 

earlier approaches seem to emphasize an expression for the nominal shear 

stress, v = v/bjd, in terms of dimensions of the beam, the shear span, 

the strength of the concrete, and the strength and amount of the steel 

reinforcement. But, Ferguson appears to be one of the first to men­

tion a theory of combined stresses. 

Prestressed Concrete Beams 

Research concerning the shear strength of prestressed concrete has 

been very limited to date. The scope of the problem is broad due to the 

many types of prestressing systems and the large variety of types of 

sections used. 

In 19te, Evans and Wilson (4) reported the results of tests designed 

to investigate (1) the effect of horizontal prestressing on the load 

required to produce diagonal cracking in beams having no web reinforcement, 

and (2) the effect of prestressing vertical stirrups on the load required 

to produce diagonal cracking in beams having no horizontal prestress. 

The specimens tested were I-sections having a depth of 10 inches, a clear 

span of 58 inches, and a shear span of 25 inches. Both top and bottom 

flange widths were 4 inches, and the web thickness was 1 inch. The 

horizontal prestressing steel consisted of one 1-inch diameter high 

strength steel bar located in the bottom flange. The beams had end 

blocks at each end and a rectangular cross-section at the center under 
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the applied loads. Crack patterns were predicted in consideration of 

a theory of failure for concrete. The maximum-normal.-stress theory 

was used, and it was assumed that the cracks would appear when the 

principal tensile stress reached the ultimate tensile strength of 450 

psi. The experimental results agreed closely with predicted crack 

patterns, apparently confirming the conventional theory used. 

By far the most extensive shear studies of prestressed beams have 

been conducted at the University of Illinois. A report by Sozen, Zwoyer, 

and Seiss, (20) published in 1959, describes the investigation of the 

behavior of prestressed beams with no web reinforcement, in resisting 

failure by shear. Tests of 43 rectangular beams and 56 I-beams are 

described and analyzed. The rectangular beams, some post-tensioned and 

some pre-tensioned, were 6 x 12-inches in cross-section. The overall 

measurements of the I-beams were 6 x 12-inches. Web thicknesses were 

either 3 or 1-3/4 inches. All of the I-beams were pre-tensioned and 

had end blocks. The prestressing steel consisted of single, high 

strength, steel wires. All but three of the I-beams had prestressed, 

external stirrups to prevent propagation of the cracks into the end 

block. Thus, the beam failures occurred in a zone which was relatively 

free from the effect of the end reaction. 

On the basis of test results, an expression was developed to 

represent the load required to produce the inclined tension crack. The 

expression is of the form 
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where Vc = shear force required to provide an inclined crack, 

F = the effective prestress force, 
S6 

f = the assumed tensile strength of the concrete, 
"v 

and Ac = gross area of the concrete. 

A limitation is placed on the equation because of the nature of its 

derivation. It is to represent only the loads which produce cracks 

which start in the lower portion of the cross-section near the load. 

It is also limited by the fact that the end blocks were prestressed 

vertically. 

Shear failures of the test specimens were placed in two categories, 

(1) shear-compression and (2) web distress, to describe the mode of 

ultimate failure. However, it is significant that the beams exhibited 

different characteristics of behavior only after the formation of 

inclined tension cracks. It was concluded that the useful ultimate shear 

strength of prestressed beams without web reinforcement should be limited 

to the load which produces inclined cracking, unless definite measures 

are taken to prevent web distress. 

Because of the wide range of variables which might influence the 

shear strength of prestressed beams, the tests reported to date represent 

only a tiny portion of the work required to provide a knowledge of shear 

failure. 

Theories of Failure 

Theories of failure for structural materials have been developed 

as aids in determining the load capacities of structural members in which 

biaxial and triaxial conditions exist. Each of the theories is based on 
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the assumption thai when, a specific stress, strain, or combination of 

stresses and strains is reached, a limiting condition is attained. 

The TnayjTmim-Tin-rmal theory is based on the assumption that 

the material will fail when the maximum normal stress at any point in 

the member reaches the value of the critical stress. The maximum-

normal-strain theory is based on the assumption that the material will 

fail when the maximum principal strain at any point in the member reaches 

the critical strain. Likewise the maximum-shearing-stress theory is 

based on the assumption that the material will, fail when the maximum 

shearing stress at any point in the member reaches the critical shear­

ing stress. 

The internal-friction theory advanced by Coulomb represents a 

different approach. This theory is based on the concept that failure 

occurs when a sliding action takes place within the material. The 

resistance to sliding is considered to be a combination of the shearing 

resistance and the frictional resistance of the material. It is assumed 

that failure occurs when the maximum shearing stress on any plane exceeds 

this combined resistance. The internal-friction theory is illustrated in 

in Figure lb. As indicated, the theory assumes a straight-line re­

lationship between the total shearing resistance and the normal stress. 

A generalization of the internal-friction theory was given by Mohr, 

whose concept did not limit the shape of the limiting curve to a straight 

line. The Mohr theory is illustrated in Figure la. It is assumed that 

failure occurs when a Mohr circle for stresses at any point touches or 

extends beyond the limiting curve. All circles shown represent stress 
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conditions which would "be critical. 

The other theories of failure mentioned can also he illustrated 

graphically, since each of them is a special case of the Mohr theory. 

The mmyiimim-nnrmel -gfrpgg and mflTriTmm-nnrmfll -mt/rai n theories are Shown 

in Figures lc and le. In "both theories, the limiting curves are repre­

sented by vertical straight lines, indicating that the shearing strength 

of the material is not critical. The maximum-shearing-strèss theory is 

illustrated in Figure Id. In this case the limiting curve is repre­

sented by horizontal straight lines, indicating that the normal stresses 

have no influence on the shearing resistance of the material. Therefore, 

these three theories represent the two extremes of the Mohr theory. 

There are varying opinions as to which of the theories most nearly 

represents a theory of failure for concrete. Of the theories of failure 

mentioned, the maximum-normal-stress theory appëars to give satisfactory 

results with brittle materials, while the maximum-normal-strain and 

maximum-shearing-stress theories indicate better agreement with the 

results of tests of ductile materials. 

Kesler and Seiss (11) suggest the use of the Mohr theory for the 

interpretation of results of tests of concrete. Guyon (8) also recommends 

the Mohr theory and presents a method for obtaining the limiting curve. 

A report published by the Bureau of Reclamation (22) describes tests of 

6 x 12-inch cylinders subjected to triaxial compressive stresses. A 

method of analysis is developed which leads to a curved envelope for the 

Mohr diagram. Data from these tests present evidence that a straight 

line does not define the relationship between the stresses nor accurately 
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describe the Mohr envelope in general. The experimental results support 

curvilinear analysis of this envelope. 

Bresler and Pister (1) believe that the Mohr theory is not satis­

factory when applied directly. As a result of experimental work in 

which the test specimens were plain concrete hollow cylinders, a theory 

was proposed which was similar to the Mohr theory but which included the 

effect of the third principal stress. It was stated that the maximum-

normal- stre s s theory is unsatisfactory due to a lack of agreement with 

test results, and further that the maxinrum-normal-strain theory is not 

readily applicable. 

Richart, Brandtzaeg, and Brown (IT) published results of a study 

of the failure of concrete under combined compressive stresses. Experi­

mental data indicated that the maximum-normal-stress theory was not 

representative of the failure of the specimens. But, the results of a 

number of the tests were in near agreement with the internal-friction 

theory. However, the large lateral deformations of the specimens did 

not follow the physical concept of failure which takes place through a 

sliding on plane surfaces continuous throughout the material. It was con­

cluded that no theory based on the assumption of failure by sliding on 

continuous planes of least resistance could give a correct representation 

of failure of concrete in compression. The theory which seemed to give 

a reasonable picture of the process of failure was a concept advanced 

by Brandzaeg. This theory was developed considering the material to be 

made up of a number of non-isotropic elements which yield plastically 

through a sliding action in directions which vary arbitrarily throughout 
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the. material. The concept involved consideration of the internal-

friction theory applied to individual elements of the material rather 

than to the member as a whole. However, sliding failure was not considered 

to he the only type of failure possible. A splitting failure was assumed 

to occur whenever the principal tensile stress reached a limiting value. 

Tests performed by Cowan and Armstrong (3) on a series of rec­

tangular reinforced concrete beams resulted in another contribution to 

knowledge regarding failure of concrete. The proposed theory, which was 

in close agreement with experimental results, was a combination of the 

Tmim—nfiTTrm 1 -st.rpss theory and the internal-friction theory of Coulomb. 

The combination implies that the maximum-normal-stress theory is valid 

for a given range of ratios of normal stress to shearing stress while the 

Coulomb theory is valid for another range of ratios. 

According to Cowan and Armstrong (3), Fisher performed a series of 

tests on plain concrete. The test results indicated satisfactory agreement 

with the maximum-normal-stress theory. Grassam (?) suggests use of the 

ma-iriimrm—rim-mfl.i -st.rpss theory with a modification to include the effect of 

plasticity. In tests made on plain concrete subjected to bending and 

torsion, results indicated that the material could be expected to fail 

when the mAvîmrrm normal tensile stress reached a value equal to 1.2 times 

the measured tensile strength. Thus, the modification was introduced 

simply by extending the limiting curve in the maximum-normal-stress theory 

to a value of 1.2 times the tensile strength. 

Smith (19) proposed a theory of failure in the form of a simple 

stress-ratio equation based upon the ultimate compressive strength and 
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the modulus of rupture of the material. The theory showed correlation 

with results of tests performed on plain concrete rectangular "beams. 

It appears that no further material has "been published favoring this 

approach. 

In the review of literature presented, it can "be seen that opinion 

is divided on the subject of a theory of failure for concrete. Two 

theories, the Mohr theory and the maximum-normal-stress theory, or 

modifications of these theories stand out as being favored by most 

researchers. 
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DEFINITIONS, SIGN CONVENTION, AND NOTATION 

Definitions 

Shear strength 

The shear strength of a beam is reached when a sudden, inclined 

tension crack completely traverses the web of the beam. 

Ultimate strength 

The ultimate strength is reached when the beam continues to deflect 

with no increase in applied load or when collapse occurs. 

Anchorage length 

The anchorage length is the length required for a strand to 

attain its Tnavimurn stress. 

Anchorage zone 

The anchorage zone extends from the end of the prestressed beam to 

the point where the compressive stress distribution due to the prestress 

force is essentially the same as the distribution at the center of the 

beam. 

Stress 

In this paper, stress will refer exclusively to unit stress. 

Sign Convention 

Normal stress 

Compressive stresses will be positive and tensile stresses will be 

negative. 

Shearing stress 

Shearing stresses will be positive when the direction of the 

shearing force is upward on the left face of a differential element of 
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the material. 

Notation 

Cross-sectional constants 

A Gross area of concrete section 
c 

A' Area of transformed section 
c 

A Total steel area 
s 

c.g.c. Center of gravity of the concrete section 

c.g.c.' Center of gravity of the transformed section 

c.g.s. Center of gravity of the steel area 

b Width of flanges 

bz Width of web 

d Effective depth of the section 

D Total depth of the section 

y' Distance from any fiber to c.g.c. ' 

ez Eccentricity of c.g.s. with respect to c.g.c.' 

I' Moment of inertia of transformed concrete section 
c 

with respect to c.g.c.' 

Q' First moment of an area of the section with respect 

to c.g.c.' 

Loads 

Vc Applied shear at inclined tension cracking 

Vu Applied shear at ultimate load 

Mq Applied bending moment at inclined tension cracking 

Pq Total applied load at the end of the straight-line 

portion of load-strain curves for SR-4 gages at the 
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Fi 

Stresses 

Concrete 

"PL 

E„ 

"Fi 

"B 

"Cx 

"bottom of the test "beams. 

Ototal initial près très s force "before release 

Total effective prestress force at time of load test 

Compressive strength determined from 4-1/2 x 9 

inch control cylinders 

Modulus of rupture determined from 6 x 6 x 36-inch 

flexure specimens 

Tensile strength determined from k x k x 36-inch 

tension specimens 

Tensile proportional limit of the concrete, 

measured from flexure specimens 

Modulus of elasticity of concrete 

Stress at any fiber due to initial prestressing only 

Stress at any fiber due to effective prestressing 

only 

Stress at bottom fiber at mid-span due to initial 

prestressing only 

Stress at bottom fiber at mid-span due to effective 

prestressing only 

Stress at any fiber due to bending moment caused by 

applied load 

Normal stress on a vertical plane due to local effect 

of applied load 
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tçy Normal stress on a horizontal plane due to 

local effect of applied load 

f Normal stress on a horizontal plane in the 
J?y 

anchorage zone due to effect of the prestress force 

vT Shearing stress due to cross shear caused "by the 
J-f 

applied load 

vc Shearing stress due to local effect of the 

applied load 

v_ Shearing stress due to the effect of the 
r 

prestress force 

Sx Total normal stress on a vertical plane at a point 

3^ Total normal stress on a horizontal plane at a point 

Sg Total shearing stress on horizontal and vertical 

planes at a point 

SQ Principal compressive stress 

S^ Principal tensile stress 

9 Angle "between horizontal and plane on -which one 

of the principal stresses acts 

Steel 

fgi Steel stress due to initial prestressing 

f Effective steel stress after deduction of all losses 
se 

Eg Modulus of elasticity of the steel strand 

Other quantities 

n Ratio of E to E 
s c 

L Span of the test specimen 
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Length of the shear span 

Length of overhang at the support 

Length of the anchorage zone 
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EXPERIMENTAL INVESTIGATIONS 

Test Beams 

The test "beams for this study had an I-shaped cross-section with 

proportions which would "be typical of beams commonly used in building 

and bridge structures. Certainly, many other shapes have been used, but it 

was thought that the I-shaped section would be most representative of the 

prestressed beams used in Iowa. All of the test specimens had the same 

cross-section. The section was symmetric with respect to both horizontal 

and vertical axes. The depth was 18 inches, the flange width 9 inches, 

and the web thickness 4 inches. The cross-section is shown in Figure 2a. 

The beams were prestressed with 3/8-inch, seven wire, steel strand. All 

of the strands were straight for all of the test beams. Possible locations 

of the strands in the cross-sections are shown in Figure 2b. All of the 

beams had an overall length of 9 feet 6 inches with the exception of 

specimens 27-29 which were 6 feet 6 inches in length. 

Variables 

The variables considered in the study were (1) amount of vertical 

web reinforcement, (2) prestress stress distribution, (3) length of shear 

span, (4) length of overhang at the end supports, and (5) concrete 

strength at time of release of the prestress force. 

"Web reinforcement The first ten specimens were used to determine 

the effect of vertical web reinforcement. Specimens 1, 3, 5, 7, and 9 

had vertical stirrups uniformly spaced at 12, 6, 18, 9, and 15 inches 

respectively. Specimens 2, 4, 6, 8, and 10 had no web reinforcement. 

Specimens 11-33 all had vertical stirrups. Location of stirrups for all 
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test beams is shown in Figure 3« 

Prestress stress distribution Specimens 1-10 and. 19-33 had. a 

nominal initial prestress stress distribution of 0 at the top and 2400 

psi compression at the bottom. Specimens 11 and 12 had a nominal distri­

bution of 0 at the top and l800 psi compression at the bottom, while 13 

and 14 had a distribution of 0 at the top and 1150 psi compression at 

the bottom. Further, strand patterns were used which produced tensile 

stresses normally limited to small values by design codes. In specimens 

15 and 16, the nominal stresses were 300 psi tension at the top and 2500 

psi compression at the bottom, and in 17 and 18 the stresses were 700 

psi tension and 2500 psi compression. In all, six different patterns 

of the steel strand were used to prestress the 33 test beams. The 

patterns, together with the properties of the transformed sections and 

nominal initial prestress stress distributions are shown in Figure 4. 

Length of shear span The length of shear span was varied from 

one to three feet as shown in Figure 5« 

Length of overhang The length of overhang was varied from 3 to 

27 inches. Loading arrangement for all specimens is shown in Figure 5* 

Concrete strength The compressive strength of the concrete at 

the time of release was nominally 5000 psi for specimens 1-29. The 

prestressing force was released in specimens 30 and 31 when the strength 

reached 3000 psi, and in specimens 32 and 33 when the strength reached 

4000 psi. The concrete mix was the same for all specimens. 

Construction of the test beams 

The test beams were fabricated in a prestressing bed located at 
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I .U ,-f L JL. 

BEAM Lg,INCHES L0,INCHES L,INCHES 
1 36 3 108 
2 36 3 108 
3 36 3 108 
4 36 3 108 
5 36 3 108 
6 36 3 108 
7 36 3 108 
8 36 3 108 
9 36 3 108 
10 36 3 108 
11 36 3 108 
12 36 3 108 
13 36 3 108 
14 36 3 108 
15 36 3 108 
16 36 3 108 
17 36 3 108 
18 36 3 108 
19 24 3 108 
20 24 3 108 
21 24 15 84 
22 36 15 84 
23 12 27 60 
24 36 21 72 
25 36 3 108 
26 36 15 84 
27 36 3 72 
28 12 3 72 
29 18 3 72 
30 36 3 108 
31 36 15 84 
32 ~ 36 15 84 

FIGURE 5. SPAN DIMENSIONS FOR TEST BEAMS*0® 



the Iowa Engineering Experiment Station Laboratory. The initial step 

in the fabrication process consisted of threading the steel strand first 

through the steel templates which formed the ends of the beams and then 

through the anchorage plates at the ends of the bed. The anchorage 

plate at one end was stationary, while the plate at the other end was 

movable. Next, Steelcase Strandvise grips were slipped over the ends of 

the strands to provide anchorage for fabrication. Load cells were 

inserted between the grip and the movable anchorage plate on four of the 

strands to provide a means for measuring the initial prestress force in 

the strands. A description of the prestressing bed and the load cells 

was given by Monson (14). 

Each strand was tensioned individually to a force of 500 pounds to 

set the grips and to insure that all strands would have essentially the 

same force. A hydraulic jack was then used to pull the movable head to 

the position required to tension the strands to the desired initial 

force. When the strands had reached the proper tension, movable nuts 

were tightened to secure the movable head, thus allowing removal of the 

jack. After the strands had been tensioned, the vertical web rein­

forcement and lifting hooks were wired into place. The greased side 

forms were then bolted into place and spacers were installed at the top 

of the forms. The test beams were cast in pairs, except specimens 

27-29 which, because of their shorter length, were cast at the same 

time. 

The concrete was placed in the forms and consolidated with an 

internal vibrator. At intervals during the placing procedure, samples 
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of the concrete were used to cast a total of fifteen 4-1/2 x 9-inch 

compression cylinders, five 6 x 6 x 36-inch flexure specimens, and four 

4 x 4 x 36-inch tension specimens. To cure the concrete, wet "burlap 

was kept in contact with all exposed surfaces until the time of release 

of the prestressing strands. 

After the concrete had attained the required strength, the side 

forms for the test "beams were removed and the prestressing strands were 

released slowly with the hydraulic jack. At the time of release, initial 

and final readings were taken on the load cell strain gages to measure 

the actual initial prestressing force. Also, at the time of release, 

the cylinders, flexure specimens, and tension specimens of the concrete 

were removed from the forms. The test "beams and concrete specimens were 

then set aside until the load tests were performed. 

Materials 

Concrete The concrete mix for all of the test "beams was a 

typical mix used in the production of prestressed bridge beams in Iowa. 

Quantities of materials required for one cubic yard of concrete are: 

35 gallons of water 

8-3/4 sacks of cement 

II75 pounds of fine aggregate 

1763 pounds of coarse aggregate 

The mmHmum size of aggregate was 3/4 inch. The nominal slump for each 

batch was two inches. All concrete was provided by Ames Concrete, Inc. 

Sixteen one-yard batches were required to produce the 33 test beams and 

the concrete specimens. 
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Prestressing steel strand All of the steel used for prestressing 

vas 3/8-inch, stress relieved, seven wire strand. The strand was the 

same type used in commercial "beams, and had a specified mi n1 rmmi ultimate 

strength of 250,000 psi. 

Web reinforcement and lifting hooks The vertical veb rein­

forcement vas fabricated from ordinary No. 5 structural steel deformed 

bars. The shape and general dimensions of the stirrups are shovn in 

Figure 2b. The lifting hooks were formed from short lengths of strand and 

are shown in place in Figure 3-

Testing Procedure 

Test beams 

All of the beams were loaded to ultimate failure in one load cycle 

in an hydraulic testing machine. The load was applied in 5-kip increments, 

either as two symmetrically placed vertical concentrated loads or as a 

single concentrated load at the center of the span. The beams were simply 

supported on 1 x 6-inch steel plates which extended across the entire 

width and served to distribute the reaction. A condition of no-lateral-

restraint vas provided by supporting each plate on a 2-inch diameter steel 

bar. Each load was transmitted by a 1-inch diameter steel bar acting on 

a 1 x 6-inch steel plate which served to distribute the load. A thin 

layer of plaster of Paris was placed between each of the 1 x 6-inch 

plates and the surface of the beam. The manner of supporting and loading 

the beams is shown in Figure 6. 

The primary quantities measured during the load test were (l) the 

load at which shear strength was reached and (2) the location of the 
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FIGURE 6. LOADING ARRANGEMENT FOR TEST BEAMS 
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inclined tension crack which indicated the attainment of the shear 

strength. Other measurements taken during the load test were (3) the 

load at which the first flexural cracks occurred at the "bottom of the 

"beam, (4) ultimate load, (5) the deflection of the "beam at mid-span, 

and (6) flexural strain distribution around the cross-section at mid-

span. Measuring the load at which the shear strength was reached 

consisted of recording the load on the testing machine at which the 

inclined tension crack appeared. The location of the inclined tension 

cracks were measured immediately after the cracks appeared. 

Measurement of the load at which the first flexural cracks 

occurred at the bottom of the beam was a problem of a different type. 

A line of SR-4 strain gages, A-9 type, was placed along the bottom of 

the test beams covering the region exposed to the maximum moment. The 

gages were overlapped slightly to give a continuous line. As the load 

was applied in the lower load range, the strain readings on each gage 

exhibited a uniform change in strain for each load increment. As the 

load reached higher values, the concrete at the bottom of the beam was 

subjected to high tensile stresses resulting in the formation of tiny 

cracks. "When the cracks formed, some of the strain gages exhibited 

either a larger or a smaller change in strain than the change shown for 

loads in the lower range. At the first sign of non-uniformity shown by 

the bottom gages, the cracks were too small to be detected by the 

unaided eye. But, as the loads were increased, the cracks first appeared 

under the gages which had first shown the non-uniform gain in strain. 

Measurement of the ultimate load consisted of recording the maximum 
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load that the beam would accept. Mid-span deflections were measured 

with dial gages located on each side of the beam at the end reactions, 

and on each side at mid-span. Also during the load test, strain measure­

ments were recorded from SR-4 gages, A-9 type, placed around the cross-

section at mid-span. Location of the dial gages and all of the SR-4 

gages is shown in Figure 6. 

Concrete specimens 

Cylinders The 4-1/2 x 9-inch cylinder specimens were loaded to 

failure by direct compression. During the load test of each cylinder, 

a compressometer was attached for measurement of longitudinal strain. 

The compressometer had a gage length of five inches and a multiplication 

ratio of two. A dial gage with a least count of 0.0001 inch was used to 

measure the total strain. As the load was applied in 5-kip increments, 

strain readings were taken up to the ultimate load. The rate of loading 

was approximately one kip per second. At least three cylinders were 

tested (l) at the time of release of the prestress force and (2) at the 

time the test beam was loaded to failure. 

Flexure specimens The 6 x 6 x 36-inch flexure specimens were 

used to determine (l) the modulus of rupture of the concrete and (2) the 

stress-strain characteristics of the concrete subjected to bending. The 

beams were tested with third point loading over a 30-inch span. Two 

SR-4 strain gages, A-9 type, were cemented to the bottom side of each of 

the specimens between the load points. The load was applied in 500-

pound increments until the specimen was fractured. Readings of the SR-4 

gages were taken at each load increment. The rate of loading was approxi­
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mately 200 pounds per minute. 

Tension specimens The tension specimens (10) were 4 x 4-inches 

in cross-section and had a length of 36 inches. The cross-section was 

constant over a l6-inch portion of the specimen and was enlarged into 

bulb-shaped ends for gripping. The specimens were loaded to fracture 

at a rate of approximately 100 pounds per second. The ultimate load 

was determined, but no strain measurements were taken. 
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THEORETICAL ANALYSIS 

The problem of predicting the susceptibility of a prestressed 

beam to a shear-type failure can be approached, through two methods. 

In the first method, experimentally determined empirical equations can 

be used, provided that the properties of the given beam fall within 

the restrictions imposed in the derivation of the equations. In light 

of the research work completed and the equations now available, it 

appears that the use of this method is very limited. The second method 

involves the determination of principal stresses produced in the beam 

plus a comparison of these stresses with limiting stresses dictated by 

a theory of failure for the concrete. In this study, the theoretical 

analysis will be focused on the determination of the principal stresses 

produced in the test beams. 

The test beams were loaded to determine the load at which the 

sudden inclined tension crack completely traversed the web. For each of 

the test beams, principal stresses were computed at a number of points 

in the web section, considering the applied load as the load which 

produced this sudden crack. To identify the points at which principal 

stresses were determined, a grid system vas used as shown in Figure 7-

The principal stresses at a point in a condition of plane stress 

are given by: 

(1) 

(2) 



F I G U R E  7 .  GRID SYSTEM 
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The angle between a horizontal plane and the plane on which one of 

the principal stresses acts is represented by 0. The angle 0 can be 

found from the expression: 

-28 
tan 20 = q =- (3) 

Sx " Sy 

The stresses 8^ and Sy represent the total normal stresses and 

Sg represents the total shearing stress on vertical and horizontal planes 

at a point in the beam. 

Stress Analysis 

The several factors which produce the stresses are (1) the cross 

shear and bending moment caused by the dead load and the applied load, 

(2) the direct compressive force produced by the prestressing steel, 

(3) the stress conditions in the anchorage zone caused by build-up of 

the prestressing force through bond, and (4) the local effects of the end 

reactions and applied concentrated loads. 

Stresses due to cross shear and bending moment 

Since the effect of the dead load is very small as compared to the 

effect of the applied load, dead load stresses will be ignored. Thus, 

the shearing stresses which result from the effect of cross shear are 

given by; 

V L  •  g  
c 

The normal stresses caused by the bending moment are found from: 
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Direct prestress stresses 

For cross-sections of the "beam which are in the center portion 

between the ends of the anchorage zones, the initial direct prestress 

stresses are given "by: 

^ <s> 
3. C C 

The effective direct prestress stresses are given "by: 

fr - p + ̂  <7) 
c c 

For cross-sections of the "beam which are in the anchorage zone, 

the manner in which the direct prestress stresses develop from the end 

of the "beam to the end of the anchorage zone must "be known. In Monson's 

study (14), the mariner in which the prestress stresses develop was 

determined for a "beam having the same cross-section used in this study 

and having strand pattern I. The results of Monson's study are shown 

in modified form in Figure 8a. The stresses are presented as fractions 

of the stress at the bottom fiber at mid-span, f , due to effective 
B 

prestressing only. The procedure used to determine the value of f^ for 

each beam is explained in the Results section. 

From the results presented in Figure 8a, the graph in Figure Sa. 

was developed. The graph represents the build-up of the effective 

prestress stress along horizontal grid lines 2, 3# and 4 from the end 

of the beam to mid-span. The abscissa represents the distance from the 

end of the beam, while the ordinate represents the effective prestress 
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stress, as a fraction of f^. Values of stress at grid lines 2, 3» and 4 

were plotted for the four sections shown in Figure 8a, and smooth curves 

were drawn through the plotted points. Figure $a was used to develop 

Figure 10a which shows the stress distributions for cross-sections A, B, 

C, D, and E. Thus, the stresses f^, at the grid points can be determined 

"by multiplying the coefficients in Figure 10a "by the stress f„. However, 
13 

the results of Monson's study refer only to beams prestressed with strand 

pattern I, which would include beams 1-10, 19-24, and 27-33» The follow­

ing assumptions were used to determine effective prestress stress distri­

butions for the remaining beams. Since the general shape of the prestress 

stress distribution was essentially the same for strand patterns I, II, 

and III, the results of Monson's study were assumed to apply to beams 

11-14. But, because tensile stresses were produced by patterns IV and V, 

and because pattern VI differed from pattern I, assumptions were made to 

cover beams 15-18 and 25-26. The assumptions, which were made by modifying 

the results given in Figure 8a, are presented in Figures 8b and 8c and 

represent patterns IV and VI. In assuming the distributions given in 

Figure 8b, the same general shapes of the distributions in Figure 8a were 

retained, since the majority of the cables were located in the bottom 

flange in patterns I, II, and III. But, due to the distribution of 

strands through the web in pattern VI, it was thought that straight line 

distributions given in Figure 8c would be appropriate. An assumption 

was not made for pattern V because tensile cracks which formed at the 

time of release of the prestressing force made it impossible to complete 

a theoretical analysis for beams 17 and 18. The development of 
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Figures 9b, 9c, 10b, and 10c paralleled the previous development of 

Figures 9a and 10a. 

Stresses caused by build-up of the prestressing force 

In consideration of the information presented in Figures 9a-10c, 

the length of the anchorage zone, L&z, was taken as 30 inches for all 

test beams. In Figure lib, consider the free body diagram of the 

section of the beam indicated by the dotted line in Figure 11a. On the 

right face of the free body, a pressure, f_, is exerted by the effective 
if 

prestress stress and a tensile force, F, is produced by the prestressing 

steel. To maintain equilibrium, a shear, V, and a moment, M, must exist 

on the bottom face. 

In the determination of the manner in which the shearing stress 

caused by V is developed, consider the free body diagram in Figure lid. 

The pressure distributions, (f_)^ and (f_) , can be evaluated from 
j? jj r v 

Figure 10 for any of the test beams. With reference to Irelan's study 

(9), assumptions are made regarding the anchorage length for the strands 

which appear in the free body diagrams. The strands which are located 

in the top flange are assumed to attain their effective stress uniformly 

in a 30-inch length. Likewise, for all strands located in the web, the 

length is assumed to be 21 inches.- The force, v, which is required to 

preserve equilibrium, is a part of the total force, V. The shearing 

stress, Vg,, is assumed to be uniformly distributed over the bottom 

surface of the free body diagram shown. The shearing stress was de­

termined similarly for the other free body diagrams bounded by the 

vertical grid lines and grid line 2. 
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The shearing stress distribution from the end of the beam to the 

end of the anchorage zone was then obtained by plotting the stress values 

at their respective locations. The distribution of shearing stress along 

grid lines 3 and 4 was determined in the same manner. The results of the 

determinations for beams having strand patterns I and II are shown in 

Figure 12a. Similar stress variations for patterns III, IV, and SI are 

given in Figures 12b, 12c, and 12d. Thus, from Figure 12, the shearing 

stress at each of the grid points can be expressed as: 

Tp - °lfB (8) 

Values for the constant are given in Table 1. It is emphasized, that 

the shearing stresses discussed here are due solely to the build-up of 

the prestress force in the anchorage zone. 

Magnel (13) presents an assumption regarding the distribution of 

fiber stresses produced by the moment, M, in Figure lib. The assumption 

is shown in Figure lie. Values of M, expressed in terms of fg, were 

computed for each of the strand patterns, and the stress distribution 

given by Magnel was used. Thus, the normal stresses produced at the 

grid points by the moment, M, can be expressed as: 

fp - C2fB (9) 

Values of the constant Cg are given in Table 2. 

Stresses caused by local effects of concentrated loads 

A local effect is produced in a beam at the point of application 

of a concentrated load. To evaluate the effect, consider the theory 
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Table 1. Values of G1 

V_ = CLf„ 
F IB 

Grid Patterns I Pattern III Pattern IV Pattern VI 
point and II 

A-2 +0.112 +0.155 -O.I75 +0.200 
3 +0.192 +0.230 -O.225 +0.200 
4 +0.350 +0.375 -O.I25 +0.225 

B-2 +0.010 +0.062 +0.008 +0.018 
3 +O.O85 +0.135 +0.055 -O.I3O 
4 +0.177 +0.225 +0.150 —O.268 

G-2 -0.050 0.000 +0.040 +0.005 
3 0.000 +0.050 +0.098 -O.I7O 
4 +0.055 +0.102 +0.155 -O.32O 

D-2 —0.090 -O.O38 +0.020 0.000 
3 -0.073 -O.OI8 +0.048 -0.090 
4 -0.060 0.000 +0.078 -0.200 

E-2 -O.O85 -0.048 -0.035 0.000 
3 -0.085 -0.045 -0.022 0.000 
4 -0.075 -0.040 -O.OO5 0.000 

Table 2. Values of C2 

Grid Pattern I Pattern XX Pattern III Pattern IV Pattern VI 
point 

A-2 -0.0670 -O.OI92 +0.0027 -0.0700 +0.0214 
3 -0.0660 -O.OI67 +0.0573 -0.0811 +0.0368 
4 -0.0094 +0.0400 +0.1682 -0.0386 +0.0030 

B-2 +0.0135 +0.0039 -0.0005 +0.0141 -0.0043 
3 +0.0133 +0.0034 -O.OII5 +0.0163 -0.0074 
4 +0.0019 -O.OO8I -0.0337 +0.0078 -0.0006 

C-2 +0.0344 +0.0099 -0.0014 +0.0560 -0.0110 
3 +0.0339 +0.0086 -O.O294 +0.0416 -0.0189 
4 +0.0049 -0.0205 -O.O859 +0.0199 -0.0015 

D-2 +0.0223 +0.0064 -0.0009 +0.0233 -0.0071 
3 +0.0220 +0.0056 -0.0191 +0.0270 -0.0122 
4 +0.0032 -O.OI33 -0.0557 +0.0129 -0.0010 

E-2 +0.0036 +0.0010 -0,0001 +0.0037 -0.0011 
3 +0.0035 +0.0009 -0.0030 +0.0043 -0.0020 
4 +0.0005 -0.0021 -0.0089 +0.0021 -0.0002 
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presented "by Tlmoshenko (21) concerning the effects of a concentrated 

force at a point of a straight boundary. With reference to Figure 13, 

the load, P, is distributed uniformly along the thickness of the plate. 

Since the thickness of the plate is taken as unity, P is the load per 

unit thickness. The stress function which represents the stress 

distribution is of the form: 

(j)̂  = ̂  rising (10) 

Therefore, the only stress which is produced at a point in the material 

is a radial stress given by: 

a 2P cosP (ii) 
r it r 

The circumferencial stress, <y@, and the shearing stress, 7tqj are 0. 

The stresses produced on horizontal and vertical planes are given by: 

ay = H C°S4P (12) 

<rx = §| sin2pcos2p (13) 

7xy = H sinPcos^p . (14) 

The limitations imposed by the derivation of the equations should, 

be recognized before modifications are made to permit application to the 

test beams. The derivations are made on the basis that the plate is 

infinitely large and has a constant thickness. Consider first the 

constant thickness. In an I-beam, the web normally carries the major 
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part of a shearing force. If the shearing stress distribution due to 

cross shear is considered, a rectangular part of the cross-section, 

bounded by the top and bottom surfaces of the beam and the edges of the 

web portion, carries 77.556 of the shear. Therefore, it was assumed 

that 77.5# of a concentrated load applied to the test beam would be 

effective in producing local stresses in the web in the vicinity of the 

load. Next, consider the infinite size stipulation. The bottom surface 

of the beam creates a finite boundary to the material, but since the 

stresses produced by the force diminish rapidly as the distance from the 

point of application increases, it was considered that the expressions 

apply to the rectangular section described. Thus, P is taken as: 

(V )(0.775) 
P = — = (0.193) (V) (15) 

b' c 

The modified equations are of the form: 

. (0.386)(Vc) (16) 

y «a 

f = (0-586)( c) Sin2pcOS2p (17) 

x «a 

= (o.;86)(Vc) 3lngcos36 (18) 
ita 

Since the local effect diminishes rapidly, the effect was considered 

for a distance of 18 inches on either side of a concentrated load. Thus, 

the equations 16, 17, and 18 can be applied at all load points and at all 

end reactions which act at or between cross-section C and mid-span of a 



66 

test team. Coefficients useful in solution of equations 16, 17, and 

18 can be found in Figure 14. 

For end reactions at cross-section A, another solution was required. 

Consider Figure 15. The stress function which represents the stress 

distribution for this case is: 

4>2 = l°cI^Pa [ Pgsinp + 2(^)2cosp + pcosp + |sinpj (19) 

The term Aq is given by: 

A0 = 2 [(|)2 - (|)2] (20) 

The normal and shearing stresses produced on horizontal and 

vertical planes are given by: 

fC = ^°*A^a^ [l - sinpcos5p] (21) 

fg = |jj cos2psin2p - sin̂ pcospj (22) 

vc = [f cos^psing - sin2pcos2pJ (23) 

Equations 21, 22, and 23 were used to determine the local effects 

produced by an end reaction at cross-section A. It was assumed that the 

3-inch overhang did not measurably influence the derived effect of the 

end reaction. Coefficients useful in solution of equations 21, 22, and 

23 can be found in Figure 16. 

After evaluating the various effects responsible for producing 
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B C D E F G 

fCy= K3 (0.193 VC) 

fCx= K4 (0.193 Vc) 

VC = K5 (O.I93VC) 

K3 K4 K5 

A - 2  + 0.174 0 0 
3 + 0.238 0 0 
4 + 0.372 0 0 

B - 2  + 0.078 + 0.019 + 0.038 
3 +0.066 +0.029 +0.044 
4 + 0.028 +0.031 +0.030 

C —2 +0.017 +0.016 +0.017 
3 +0.005 +0.008 +0.006 
4 -0.004 -0.018 -0.009 

D - 2  +0.016 +0.002 -0.021 
3 -0.003 -0.011 —0.005 
4 -0.003 -0.032 -0.009 

FIGURE 16. COEFFICIENTS USED TO 
DETERMINE LOCAL EFFECT DEFINED BY <t>2 
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stresses in the "beams, the stresses S^, S^., and Sg were determined at 

each grid point "by adding, algebraically, the normal and shearing 

stresses produced by each of the effects. The principal stresses, Sc 

and St, and the angle 6 were then computed from equations 1, 2, and 3. 
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RESULTS AMD DISCUSSION 

Results 

Test "beams 

The stress f and the prestress loss for each of the test "beams 

were computed in the following manner. 

1. The value of the tensile proportional limit of the 

concrete, fpL, was obtained from load-strain curves 

for SR-4 gages on the tension side of the flexure specimens. 

2. Pq was taken as the load at the end of the straight line 

portion of the load-strain curves for SR-4 gages at the 

bottom of the test beams. The stress, f]?, due to P 
«L» O 

was computed. 

3. The value of f_ was computed from 
JD 

f B = f L ~  f F L  

The determination of f is based on the assumption that 
JD 

the actual resultant tensile stress at the bottom of the 

beam loaded with PQ is equal to the tensile proportional 

limit obtained from the flexure specimens of the concrete. 

4. The initial prestress force was measured for a number of 

strands in each of the beams. The average of these 

values was then multiplied by the number of strands to 

obtain the total prestress force, F^. Measured values 

used to obtain the initial prestress force are shown in 

Table 3. 

5. The prestress stress f . was computed, using the actual 
51 
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Table 3« Determination of values of F^ 

Beams Force 
in 

load cell 

Avg. 
force 
k 

Fi 

k 

Beams Force 
in 

load cell 

Avg. 
force 
k 

Fi 

k 

1-2 14.9 
14.9 
14.8 
15.3 15.0 I65.O 

17-18 14.2 
14.4 
14.4 

14.3 114.4 

3-4 14.3 
14.1 
14.3 
14.6 14.3 157.3 

19-20 13.9 
14.2 
14.3 

14.1 155.1 

5-6 14.3 
14.0 
14.4 
14.4 14.3 157.3 

21-22 13.4 
13.6 
13.5 

13.5 148.5 

7-8 14.5 
13.9 
14.2 
14.7 14.3 157.3 

23-24 13.7 
13.7 
13.6 
13.7 13.7 150.7 

9-10 14.5 
14.2 
14.5 
14.5 14.4 158.4 

25-26 14.2 
14.2 
13.8 
14.1 14.1 155.0 

11-12 13.7 
13.1 
13.7 
13.4 13.5 108.0 

27-28-29 : 13.8 
14.0 
13.8 
14.5 14.0 154.0 

13-14 12.4 
13.2 
13.3 

13.0 65.O 

30-31 13.9 
13.7 
13.9 
14.4 14.0 154.0 

15-16 14.3 
14.0 
14.1 
14.0 14.1 141.0 

32-33 14.0 
13.6 
14.0 
13.6 13.8 151.8 
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value of the prestress force from step k. 

6. The stress loss at the "bottom of the "beam vas computed 

as 

Loss - - fB 

The loss vas expressed as a percentage of f^. 

As an example, consider the computations for test "beam 1. Four 

of the seven load-strain curves for gages at the bottom of the beam are 

shovn in Figure 17. The applied load which produced fp^ at the bottom 

of the beam vas taken from the load-strain curves as 70 kips. In the 

load-strain curves shown in Figure 17, two of the gages show a deviation 

at 70 kips while the others continue linearly to a higher load. For all 

of the test beams, it was common for several of the gages to indicate the 

same load at the end of the straight line portion. This load was normally 

the lowest load at which the straight line portion ended, and was taken 

as the applied load in computing f^. In beam 1, the stress fj? produced 

by the 70-kip load was computed to be -2$6o psi. The stress-strain 

curves for the flexure specimens for beam 1 are shown in Figure 18. The 

average of the three values of f_T was -370 psi. Therefore, f = +2190 
JrJu 

psi and the stress loss is 410 psi or 15.8%. Values of the prestressing 

force, in addition to values of f_., f_, and the prestress loss are 
J3i 

given in Table 4 for each of the test beams. 

Theoretical analyses were completed for test beams 1, 3-16, and 

19-33 • Beam 2 was fractured before the load test and will be discussed 

in a later section. Theoretical analyses were not made for beams 17 and 

18 because of cracks which were caused by high initial tensile stresses 
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produced "by the prestressing at time.of release. Stress trajectories 

which resulted from the theoretical analyses are shown in Figure 19-^8. 

The inclined tension cracks, which formed when the shear strength was 

reached, are shown, in addition to the principal tensile stresses 

computed at each of the grid points. 

In addition, the results of the load tests are presented in another 

form. Using the variables considered in Sozen,s paper (20), and taking 

are given in Table 4. 

It was found that the information obtained from the deflection data 

and the SR-4 gages located around the cross-section at mid-span was not 

necessary in evaluating shear strength of the test beams. Therefore, 

this information is not presented. 

Concrete specimens 

Compression cylinders Results of the tests used to evaluate 

f ' are given in Table 5» 
c 

Flexure specimens The results of the tests performed on the 

flexure specimens are given in Table 6. An example of the stress-strain 

curves for the SR-4 gages is shown in Figure 18. 

Tension specimens. The values of ff are given in Table 7-

(24) 

(25) 

is plotted against ir^ as shown in Figure 1*9» Values of and 
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Table 5» Test results from compression cylinders 

Beams f" Avg. f ' Age 
C ° days 

Beams f ' Avg. f ' Age 
° days 

1-2 5480 
5450 
5520 5480 7 
7150 
646o 
6560 
7510 
6850 6910 150 

3-4 614.5 
5680 
.5210 5680 7 
7500 
7230 
6610 
6380 
6760 6900 130 

5-6 5125 
5320 
4900 5120 7 
6320 
6670 
6940 
6^15 6720 215 

7-8 5180 
4875 
1*900 14980 7 
7640 
7690 
7580 
7090 
7870 
8120 7670 240 

9-10 5850 
5600 
5660 5700 8 
79 to 
7400 
7420 
6790 
7390 7380 231 

11-12 5860 
5950 
6020 
6290 6030 7 
6950 
6280 
7100 
6710 6760 169 

13-14 5200 
5950 
5320 
5400 5480 6 
7550 
7420 
7650 
7620 7560 179 

15-16 4960 
5360 
4900 
4780 5000 7 
7940 
7900 
7040 
7940 7700 219 

17-18 5710 
5440 
5730 
5410 5580 7 
7880 
7800 
8010 
8100 7960 211 

19-20 5590 
5780 
6090 5820 7 
6550 
6550 
7100 
6400 6660 256 
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Table 5. (Continued) 

Beams f Avg. £' Age 
c c days 

21-22 5920 
5830 
7060 
5350 6050 7 
7400 
8000 
7900 
7800 7780 242 

23-24 5340 
5780 

- 5690 
5670 5620 7 
8200 
8500 
8100 
8200 8250 109 

25-26 5150 
5240 
5300 
5210 5230 6 
7980 
7460 
7900 
7200 7650 136 

Beams f ' Avg. f ' Age 
days 

27-28-29 6800 
6250 
6l6o 
6010 6300 7 
8900 
9250 
9120 
9350 9150 128 

30-31 3030 
2830 
3090 2980 2 
7480 
7680 
6400 
7620 7300 116 

32-33 3760 
3920 
4250 3900 3 
6600 
6710 
7200 
648o 6750 109 
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Table 6. Test results from flexure specimens 

Beams f ' Avg. f Avg. Age 
^ aays 

Beams f ' Avg. f Avg. Age 

1-2 700 420 
695 350 
670 69O 350 370 130 

17-18 900 335 
905 350 
880 895 320 335 211 

3-4- 750 335 
775 350 
710 745 335 340 130 

19-20 860 335 
855 315 
835 850 320 325 256 

5-6 730 370 
695 330 
730 720 400 370 215 

21-22 835 265 
730 265 
805 790 310 280 242 

7-8 860 400 
805 300 
815 825 300 330 240 

23-24. 710 310 
765 280 
830 770 280 290 109 

9-10 880 300 
870 300 
785 845 300 300 231 

25-26 730 280 
765 265 
695 730 310 285 136 

11-12 800 250 
900 350 
800 835 350 315 169 

27-28-29 620 280 
695 265 
765 695 280 275 128 

13-14 835 270 
695 350 
785 770 300 310 179 

30-31 765 325 
765 325 
770 765 315 320 116 

15-16 915 280 
890 310 
895 900 310 300 219 

32-33 760 300 
720 . 265 
715 730 290 285 109 
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Table 7« Test results from tension specimens 

Beams 
S 

Avg. Age 
days 

Beams f; 
Avg. 
r; 

Age 
days 

1-2 500 
440 
450 
470 465 130 

17-18 595 
560 
570 
625 590 211 

3-4 470 
505 
480 
490 490 13C 

19-20 495 
525 
470 
485 495 256 

5-6 520 
475 
490 
550 510 215 

21-22 410 
525 
550 
535 500 242 

7-8 485 
540 
560 
500 520 240 

23-24. 530 
545 
580 
545 550 109 

9-10 555 
545 
500 
580 545 231 

25-26 545 
540 
500 
560 535 136 

11-12 560 
545 
530 
540 545 169 

27-28-29 500 
525 
505 
500 505 128 

13-14 580 
565 
520 
570 560 179 

30-31 570 
515 
500 
510 525 116 

15-16 

0
0

0
0
 

570 219 

32-33 530 
490 
505 
550 520 109 
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Discussion 

Beam failures prior to load tests 

The need for stirrups in the anchorage zone of pre-tensioned 

beams was emphasized by the performance of test beam 2. In this beam, 

in which no stirrups were used, the lifting hooks were omitted, leaving 

beam 2 with no web reinforcement of any kind. After release of the 

prestressing force, the beam was removed from the stress bed, and within 

minutes, a longitudinal crack at about mid-depth had begun to form at 

one end. Over a period of about one minute, the crack extended for 

nearly two-thirds of the length of the beam. A view of beam 2 is shown 

in Figure 50. The formation of the crack emphasizes the importance of 

stirrups at the time of release. The other test beams were inspected 

for similar cracks which might have been present but limited in size by 

web reinforcement. Such cracks were noticed only in beams 4, 6, 8, and 

10 in which the lifting hooks constituted the only web reinforcement. 

The cracks were tiny and were visible only upon close inspection. The 

length of these cracks never exceeded two inches. Later, in the load 

tests, it was noticed that these cracks closed upon application of the 

load, due to the compressive effect of the end reaction. Hence, the 

presence of the longitudinal cracks did not affect the load carrying 

capacity. But, the fact remains that the absence of web reinforcement 

was responsible for the failure of beam 2 before it could be loaded. 

In beams 17 and 18, the theoretical initial prestress stress at the 

top of the beam was -685 psi. The values of f£ and f^ were 590 and 895 

psi respectively. When the prestress force was released, cracks formed 



Figure 50. Beam 2 after release of prestress force 



114b 



115 

at the top of "both beams. Die cracks appeared at about 24-inch Intervals 

along the beams and extended downward into the web. Therefore, theoretical 

analyses could not be prepared for these two beams. However, the beams 

were loaded to failure in the same manner as were the other test beams. 
b •' 

With reference to Figure 49, the points representing the two beams are 

near the experimental curve shown. > 

Load tests 

With one exception, the value of V was not difficult to obtain. 

In the load test of beam 23, for which LG = 12 inches and Lq = 27 inches, 

the load was applied until the magnitude of the shearing force reached 

90 kips. At that point, an inclined tension crack had not formed but the 

load beam had begun to deflect excessively and the test was stopped. The 

theoretical analysis was completed considering to be 90 kips. In the 

other test beams, the formation of the inclined crack was definite. 

- Values of the ultimate shearing force, V"u, are given in Table 4. 

Observations of the ultimate failures were as follows : 

1. For all of the beams with no web reinforcement, V = V . 
u c 

For the beams with web reinforcement, V - V . ' u c 

2. For the beams with Lq = three inches, the ultimate load 

was controlled by the bond between the strands and the 

concrete. After the formation of the inclined tension 

crack, the applied load could be increased until the 

strands began to pull into the beam at the ends. When 

the strands began to slip, the beam would support no 

more load. 
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3. For the "beams with Lq greater than three inches, the 

ultimate load, as compared to the cracking load, was 

increased measurably. For these "beams, the ultimate 

load was sometimes controlled by the crushing of the 

concrete at the top of the beam at the end of the in­

clined tension crack, but no attempt was made to cata­

log the type of ultimate failure for each of the beams. 

Results of the load tests and theoretical analyses 

In all of the test beams, agreement between the direction of the 

inclined tension crack and the computed stress trajectories was excellent. 

In 22 of the 30 beams for which theoretical analyses were completed, the 

inclined tension crack passes through or very near to the grid point at 

which the maximum principal stress was computed. The 22 beams were 

numbers 1, 3-16, 19, 20, 27-30, and 33. For beams 21, 22, 24, 26, 31, 

and 32, the principal tensile stresses near the location of the inclined 

crack were less than the stresses computed at two or three of the other 

grid points. In each case, the locations of the grid points having the 

higher principal stress values were located along grid line 4 beneath the 

load point. Flexural cracks which initially formed at the bottom of the 

beam had progressed into the web at these points of maximum stress, and 

it should be emphasized that the formation of these cracks would not 

constitute a shear failure. In beam 25, which had strand pattern VI, an 

inclined crack formed where the computed principal tensile stresses were 

very low. Since the crack occurred in the anchorage zone, possibly 

the assumptions regarding build-up stresses were inaccurate. This seems 
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more probable than would the assumption that the construction procedure 

was poor or that the material was of poor quality. . As mentioned before, 

no shear crack formed in beam 23. 

As can be seen in Figures 19-48, the maximum principal tensile 

stresses along the location of the inclined tension crack fall between 

the values of f£ and f% Four of the beams, numbers 23, 25, 28, and 

29, did not conform to this observation. Beam 25 has been discussed. 

Beams 23, • 28, and 29 all had values of L - 18 inches, and the maximum 

principal stresses were much higher than the f^ values. The complexity 

of the problem of considering the local effects of concentrated loads 

is increased when the effects overlap, as was the case for these beams. 

In Figure 49, a straight line was used to represent the data from 

beams in this study. Another straight line, developed by Sozen (20), is 

also shown. It is emphasized that the data shown represents a number of 

beams in which the failure occurred in the end portions. In contrast, 

the beams represented by Sozen's line were constructed with end blocks 

and prestressed stirrups which forced the failures to occur in areas 

away from the ends of the beam. A comparison of the lines indicates that 

lower values of V are responsible for shear failures when the failures 

occur in the end portions. It appears then, that in pre-tensioned beams 

having no end blocks and no prestressed stirrups, the shear strength is 

critical in the end portions. 

Theories of failure 

As stated previously, Grassam (7) suggests that concrete might be 

expected to fail when the computed principal tensile stress reaches a 
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value of (1.2) (f^). However, the results of this study do not justify 

the use of the factor 1.2 "because, in a number of the "beams, the inclined 

tension crack formed when the max1mum principal tensile stress was nearer 

the value of f^ than (1.2)(f^). 

The use of the internal-friction theories is very cumbersome due to 

the work involved in development of the limiting curve and to the problem 

of application of the theory to members in which a number of locations 

might be critically stressed. It has already been stated that the maximum-

shearing-stress and the maximum-normal-strain theory do not accurately 

represent the failures of concrete. 

Variables introduced in the test beams 

In considering the variables introduced in the study, it was found 

that: 

1. The amount of web reinforcement had no apparent effect 

upon formation of the inclined tension cracks, but the 

ultimate load was increased measurably over the cracking 

load for beams having stirrups. The stirrups greatly 

reduce or eliminate the possibility of a horizontal 

failure at time of release. During the load tests of 

beams 1 and 3-10, the load was reduced slightly after 

formation of the inclined tension crack. For beams having 

no stirrups, the cracks remained open when the load was 

reduced. However, the cracks closed partially when the 

load was reduced on beams having stirrups. The degree 

of closure varied with the amount of web reinforcement. 
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As the amount increased, closure of the cracks was more 

complete. 

The variation of prestress stress distribution did not 

affect the evaluation of the shear strength by the combined 

stress method, but there was a change in the magnitudes 

of Vc. 

The length of shear span had no effect on the use of a 

combined stress theory except when Lg - D. And, since 

the possibility of a shear failure would be increased if 

Lg > D, the loading of beams for which Lg = D would not 

constitute a critical condition for a shear failure. 

As the length of overhang was increased, the magnitudes 

of Vc and Vu were greater for a given Lg. 

The strength of the concrete at time of release had no 

measurable effect on either the use. of the combined stress 

theory or the values of V^. 
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CONCLUSIONS AND RECOMMENDATIONS 

The following conclusions and recommendations are presented. 

1. The combined stress method can be used satisfactorily 

to evaluate the shear strength of pre-tensioned I-beams 

having no end blocks. The method gave consistent re­

sults for all beams except those in which L^=- D. There­

fore, it is recommended that the method be used when 

Lg > D. This is not a serious limitation, however, 

since smaller values of V were obtained as L was in-
c s 

creased, indicating that the critical condition for a 

shear failure occurred when L >• D. 
s 

2. The results indicate that the maximum-normal-tensile-

stress theory is a satisfactory theory of failure for 

concrete, in evaluating shear strength of prestressed 

beams. It is recommended that the limiting tensile 

stress be taken as f£. 

3. The possibility of a shear-type failure is greater in 

the end portions than in the center portion of pre-

tensioned I-beams having no end blocks. 

The importance of the previous research concerning build-up of 

the prestress stresses must be emphasized. It is obvious that knowledge 

of the development of these stresses is a necessity in using the combined 

stress method. Much more research is needed in this area before the shear 

strength of 1 types of prestressed beams can be accurately evaluated. 

Load tests of other types of prestressed beams should be made to 
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further justify the use of the combined stress method. 

Another important factor which merits consideration in future 

research is the effect of fatigue, since all, research to date concerning 

shear strength has "been based on static tests. 

It is also recommended that research be devoted to justification 

of the assumptions regarding local effects of concentrated loads, even 

though, the assumptions used in this study gave consistent results. 
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