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EXECUTIVE SUMMARY 

Quality foundation layers (the natural subgrade, subbase, and embankment) are essential to 

achieving excellent pavement performance. Unfortunately, many pavements in the United States 

still fail due to inadequate foundation layers. To address this problem, a research project, 

Improving the Foundation Layers for Pavements (FHWA DTFH 61-06-H-00011 WO #18; 

FHWA TPF-5(183)), was undertaken by Iowa State University (ISU) to identify, and provide 

guidance for implementing, best practices regarding foundation layer construction methods, 

material selection, in situ testing and evaluation, and performance-related designs and 

specifications. As part of the project, field studies were conducted on several in-service concrete 

pavements across the country that represented either premature failures or successful long-term 

pavements. A key aspect of each field study was to tie performance of the foundation layers to 

key engineering properties and pavement performance. In-situ foundation layer performance 

data, as well as original construction data and maintenance/rehabilitation history data, were 

collected and geospatially and statistically analyzed to determine the effects of site-specific 

foundation layer construction methods, site evaluation, materials selection, design, treatments, 

and maintenance procedures on the performance of the foundation layers and of the related 

pavements. A technical report was prepared for each field study. 

In this report, results from selected field studies were analyzed for a more in-depth analysis of 

spatial variability and assess anisotropy in the different measurements. The following selected 

measurement parameters were assessed: a) elastic modulus determined from the light weight 

deflectometer (LWD) test (ELWD-Z3), b) dynamic cone penetration index (DCPI) of subbase layer 

and subgrade layers (DCPIsubbase, and DCPIsubgrade) using dynamic cone penetrometer (DCP) test, 

and c) dry unit weight (γd) and moisture content (w) determined from the nuclear gauge (NG) test 

method. Results were analyzed on test sections where two different sampling methods were 

followed: a) dense grid sampling with spacing less than 1 m over a relatively short area (< 10 m 

x 10 m area) and b) sparse sampling with test locations separated by 4 to 5 m and over a relative 

large area (100 to 500 m).  

Detailed geostatistical analysis procedures are presented in this report to provide a guide to study 

spatial variability of pavement foundation properties with consideration of choosing the best 

fitted semivariogram model and characterization of anisotropic behavior. Anisotropy in 

pavement foundation properties is assessed using directional semivarigrams in comparison with 

omnidirectional experimental semivariograms, rose diagrams (identifying semivarigoram range 

values in different directions), semivariogram maps, and semivariogram contour maps. 

Spatial variability analysis on dense gridded test sections showed that different anisotropic major 

directions could be expected in different test areas. One of the dense gridded test section showed 

that the transverse direction is more uniform than the longitudinal direction and another dense 

gridded test section showed the opposite. Results showed that the correlation lengths are about 

2 m to 3 m in the minor direction and the correlation length in the major direction is about 3 to 4 

times as the minor direction, which indicates more uniformity in the major direction than in the 

minor direction. The identified behaviors represented a relatively small sampling area that 

equaled the width of the foundation layer and about the same length in the longitudinal direction, 
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so they cannot be generalized for a more larger area in a given project. More data in the 

longitudinal direction in similar grid fashion is required to further analyze anisotropy.  

Comparison of three theoretical semivariogram models (i.e., spherical, exponential, Whittle or 

Matern with k=1) revealed that there was no obvious best fitted model to describe the 

experimental semivariogram of dense gridded measurements. A nested model with an anisotropy 

ratio helps in estimating the values at unsampled locations with consideration of the correlation 

of data sampled at different locations. However, for the cases analyzed in this study, the isotropic 

or omnidirectional semivariogram model can work as well as an anisotropic semivariogram 

model in estimating the values at unsampled locations. Correctly calculating the experimental 

semivariogram (i.e., selection of appropriate separation distances and bin sizes) is more 

important than looking at minor differences between the different models.  

Comparisons of directional semivariogram models from dense and sparse datasets from same 

project are also provided in this report. The summarized spatial variability characteristics showed 

range values between 2 m and 11 m for dense gridded datasets taken over a relatively small area 

versus range values between 15 m to 45 m for sparse datasets taken over relatively large areas. 

Longer ranges represent more spatially continuous data with longer correlation lengths than 

shorter ranges. The longer ranges in the sparse dataset compared to shorter ranges calculated 

using the dense grid dataset suggests that there is a nested structure in the data with both short 

and long range spatial continuity of the measured properties. 

Collecting in situ point test measurements in dense grid pattern (with < 1 m separation distance 

between test points) over long distances is a significant effort. Properly calibrated roller-

integrated intelligent compaction measurements that provide virtually 100% coverage of the 

pavement foundation layer properties can be an excellent data source to properly analyze and 

assess spatial variability and anisotropy aspects in the future.  
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CHAPTER 1. INTRODUCTION 

Non-uniform support conditions under pavements can have detrimental effects on the service life 

of pavements. According to the American Concrete Pavement Association (ACPA), uniformity 

of the subgrade and subbase layers is more important than the strength of those layers itself 

(ACPA 2008). White et al. (2004) demonstrated from site characterization and modeling, that the 

benefits of uniformity of the subgrade support for concrete pavements are evidenced by the 

reduction of the maximum deflections and principal stresses in the pavement layer. Based on 

field studies conducted as part of this project and pavement modeling, Brand et al. (2014) states 

that “non-uniform subgrade support is a complex interaction between the k-value range, the 

magnitude of k-values, the distribution of the support stiffness relative to the critical loading 

location, and the size of the predefined area”.  

Generally, pavement design considers the foundation as a layered medium with uniform material 

properties and support conditions. But in reality, soil engineering parameters generally show 

significant spatial variation. Spatial variation of pavement foundation layer support conditions 

are documented previously by Vennapusa (2004) and White et al. (2004), and also in several of 

the field studies documented in this project. Better understanding the influence of spatial 

variability on the performance of geotechnical structures is increasingly being studied for a wide 

range of geotechnical applications (e.g., Mostyn and Li 1993, Phoon et al. 2000, White et al. 

2004, Griffiths et al. 2006).  One challenge in this area has been collecting enough information to 

make use of geostatistics. 

Univariate statistical parameters such as the standard deviation and coefficient of variation are 

often used to assess variability, but they do not properly address the issue of spatial non-

uniformity. Two datasets with identical frequency distributions can have significantly different 

spatial characteristics. Geostatistical analysis tools such as semivariograms can be useful is 

assessing and modeling the spatial non-uniformity. Also, semivariograms can be used to assess 

anisotropic conditions, that define variability in longitudinal versus transverse directions relative 

to the alignment, which can provide insights into influence of the construction methods and its 

impact on the spatial non-uniformity.  

As part of this project, field testing was conducted at several pavement foundation construction 

sites in a dense grid pattern with relatively close spacing (i.e., < 1 m) over a small area and in a 

sparse sampling pattern over a large area. The goal was to collect different foundation support 

characteristics (i.e., moisture content, dry density, strength, and stiffness) and assess their spatial 

variability. Detailed results of the test measurements and their analysis are presented in the 

individual project reports prepared as part of this project. In this report, results from selected 

field studies were analyzed for a more in-depth analysis of spatial variability and assess 

anisotropy in the different measurements. The measurement parameters assessed include elastic 

modulus determined from the light weight deflectometer (LWD) test (ELWD-Z3), dynamic cone 

penetration index (DCPI) of subbase layer and subgrade layers (DCPIsubbase, and DCPIsubgrade) 

using dynamic cone penetrometer (DCP) test, and dry unit weight (γd) and moisture content (w) 

determined from the nuclear gauge (NG) test method.  
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This report contains five chapters. Chapter 2 provides an overview of the in situ testing methods 

of the results presented in this report and the statistical analysis methods used in this report. 

Chapter 3 provides an overview of the selected test sections used for analysis in this report. 

Chapter 4 presents results and analysis of the test results. Chapter 5 presents key findings and 

conclusions from this report. 

The findings from this report should be of significant interest to researchers, practitioners, and 

agencies who deal with design, construction, and maintenance aspects of PCC pavements. This 

report is one of several project reports developed as part of the TPF-5(183) and FHWA DTFH 

61-06-H-00011:WO18 studies. 
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CHAPTER 2. TESTING AND ANALYSIS METHODS 

In Situ Testing Methods 

The following in situ testing methods and procedures were used in this study: real-time 

kinematic (RTK) global positioning system (GPS); Kuab falling weight deflectometer (FWD) 

setup with 300 mm diameter plate; Zorn light weight deflectometer (LWD) setup with 

300 mm diameter plate; dynamic cone penetrometer (DCP); calibrated Humboldt nuclear gauge 

(NG). Pictures of these test devices are shown in Figure 1. 

   

   

Figure 1. Trimble SPS-881 hand-held receiver, Kuab falling weight deflectometer, and 

Zorn light weight deflectometer (top left to right); dynamic cone penetrometer, nuclear 

gauge, and nuclear gauge (bottom left to right) 
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Real-Time Kinematic Global Positioning System 

RTK-GPS system was used to obtain spatial coordinates (x, y, and z) of in situ test locations and 

tested pavement slabs. A Trimble SPS 881 receiver was used with base station correction 

provided from a Trimble SPS851 established on site. According to the manufacturer, this survey 

system is capable of horizontal accuracies of < 10 mm and vertical accuracies < 20 mm. 

Zorn Light Weight Deflectometer 

Zorn LWD tests were performed on base and subbase layers to determine elastic modulus. The 

LWD was setup with 300 mm diameter plate and 71 cm drop height. The tests were performed 

following manufacturer recommendations (Zorn 2003) and the elastic modulus values were 

determined using Equation 1:  

F
D

r
E 




0

0

2
)1( 

 (1) 

where E = elastic modulus (MPa); D0 = measured deflection under the plate (mm); η = Poisson’s 

ratio (0.4); σ0 = applied stress (MPa); r = radius of the plate (mm); and F = shape factor 

depending on stress distribution (assumed as ) (see Vennapusa and White 2009). 

The results are reported as ELWD-Z3 where Z represents Zorn LWD and 3 represents 300 mm 

diameter plate. 

Kuab Falling Weight Deflectometer 

Kuab FWD tests on this project were conducted on the CTB base layer. Tests were conducted by 

applying one seating drop using a nominal force of about 24.5 kN (5500 lb) followed by two test 

drops, each at a nominal force of about 24.5 kN (5500 lb) and 36.9 kN (8300 lb). The actual 

applied force was recorded using a load cell. Deflections were recorded using seismometers 

mounted on the device, per ASTM D4694-09 Standard Test Method for Deflections with a 

Falling-Weight-Type Impulse Load Device.  

A composite modulus value (EFWD-K3) was calculated using the measured deflection at the center 

of the plate (D0), corresponding applied contact force, and Equation 1. The plate that used the 

Kuab FWD is a four-segmented plate, and therefore, shape factor F = 2 was used in the 

calculations assuming a uniform stress distribution (see Vennapusa and White 2009). 
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Dynamic Cone Penetrometer 

DCP tests were performed in accordance with ASTM D6951-03 “Standard Test Method for Use 

of the Dynamic Cone Penetrometer in Shallow Pavement Applications” to determine dynamic 

penetration index (DPI) and calculate California bearing ratio (CBR) using Equation 2. 

12.1

292

DPI
CBR   (2) 

The DCP test results are presented in this report as CBR with depth profiles at a test location and 

as point values of DCP-CBRSubbase or DCP-CBRSubgrade. The point data values represent the 

weighted average CBR within each layer. The depths of each layer were identified using the 

DCP-CBR profiles. 

Nuclear Gauge 

A calibrated nuclear moisture-density gauge (NG) device was used to provide rapid 

measurements of soil dry unit weight (d) and moisture content (w) in the base materials. Tests 

were performed following ASTM D6938-10 “Standard Test Method for In-Place Density and 

Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth).” Measurements 

of w and d were obtained at each test location, and the average value is reported. 

Univariate Statistical Analysis Methods 

Univariate statistics are used in this study to quantify the variability of pavement foundation 

properties as determined using limited in-situ tests. Coefficient of variation (COV) values are 

used in this study as the primary way of quantifying the variability with respect to the mean of 

the sample. The ratio of standard deviation (σ) to mean (μ) in Eq. 3 is the COV where σ is 

calculated as Eq. 4 where n is the number of data values, x. 

COV=
σ

μ
 (3) 

𝜎 = √
∑(𝑥−𝜇)2

𝑛−1
       and       𝜇 =

∑𝑥

𝑛
 (4) 

Spatial Variability Analysis Methods 

Overview 

Spatial analysis of pavement foundation properties was performed using the statistical analysis 

program R (see Bivand et al. 2013; Pebesma 2001). The R program calculates the experimental 

semivariogram efficiently, fits a theoretical semivariogram model with an established statistical 
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criteria to obtain the best fit to the calculated semivariogram values, and uses ordinary kriging to 

visualize the fitted semivariogram prediction results over the studied area. The basic steps are 

summarized below: 

 Calculate the omnidirectional experimental semivariogram values with adjustment on lag 

distance (h), angle tolerance (∆θ), and the maximum distance. 

 Plot the variogram map as a preliminary study of anisotropy of the experimental 

semivariogram values of the studied variable. 

 Calculate the semivariogram values in four major directions withazimuth angle (θ) is equal to 

0°, 45°, 90°, 135° separately to identify existence and type of anisotropy (geometric, zonal, 

or both), and investigate major and minor anisotropy directions that are generally 

perpendicular to each other. 

 Fit a theoretical model to the omnidirectional experimental semivariogram if isotropic or 

directional semivariogram if anisotropy is identified, and record values of a, C0, Cs and sum 

of square errors (SSErr). 

 Perform cross-validation with the fitted semivariogram model and calculate the mean square 

of the prediction error (MSPE). 

 Use ordinary kriging with the fitted model to predict the values at unsampled locations 

among the sampled points and use contour plotting to present the results. 

Semivariogram Modeling Approach 

The calculation of an omnidirectional semivariogram is useful in starting the spatial analysis for 

investigating the distance parameters to produce a clearer structure without having insufficient 

bins or amount of data pairs in each bin. The omnidirectional semivariogram can indicate an 

erratic directional variogram when it exists. Several tolerances (Δθ) should be tried to use the 

smallest tolerance value that still provide good results (Isaaks and Srivastava 1989). The R 

program allows fitting theoretical semivariograms with a weighted least square method that can 

provide a better statistically fitted model and allow comparison between different theoretical 

models. 

The maximum cutoff length is controlled to be within 1/3 to ½ of the maximum distance of the 

studied area to exclude the effect of fewer data pairs at larger separation distances. Figure 2 

shows an example of a calculating experimental semivariogram of ELWD-Z3 calculated from LWD 

tests performed on MI I-94 TS1b. The example shows fewer data pairs were obtained with 

increasing separation distances, the variance of the semivariogram values is larger at larger 

separation distance, and semivariogram values start to decrease at about 2/3 of the maximum 

distance of the studied area when number of data pairs is smaller. 

Extreme values or outliers should be identified and removed before calculating the experimental 

semivariogram, because the semivariogram values are sensitive to these extreme values that can 

introduce errors in studying the spatial continuity. For illustration, a bubble plot of DCPI values 

is shown in Figure 3, which is helpful in locating the extreme values. In this case at test point 

with 22.6 mm/blow DCPI value is considered an outlier.  
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Figure 2. Illustration of choosing the maximum cutoff length (MI I-94 TS1b) 

 

Figure 3. Bubble plot of DCPI values of subbase layer 

Although the experimental semivariogram summarizes the mean semivariogram for each lag 

distance (h), it does not give the value of correlation length that should be obtained by fitting the 

theoretical semivariogram models. The most important characteristic for the choice of the 

variogram model is the interpretation of the behavior at the origin. The objective of fitting a 

theoretical semivariogram models to the experimental semivariogram is to capture the major 

spatial features of the studied variable (Goovaerts 1997). Webster and Oliver (2007) summarized 

several semivariogram models and there are selected model types is summarized in Table 1.  
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Table 1. Summary of different semivariogram models 

Model 

R 

code Equation 

Parameter 

note 
Nugget Nug 

γ̂(h)= {
0
C0
       

h=0
h≠0

 
 

Spherical Sph 

γ̂(h)={
Cs (

3

2

h

𝑟
-
1

2
(
h

𝑟
)
3

) 0≤h≤r

Cs h>r

 

a = r (range 

reaches 100% of 

Cs) 

Gaussian 

(Matérn, 

k=∞) 

Gau 

γ̂(h)={

0 h=0

Cs (1-e
-(
h
𝑟
)
2

) h>0
 

a′ = √3r 

(effective range 

reaches 95% of 

Cs) 

Exponential 

(Matérn, 

k=0.5) 

Exp 
γ̂(h)= {

0 h=0

Cs (1-e
-
h
r) h>0

 
a′ = 3r (effective 

range reaches 

95% of Cs) 

Whittles 

(Matérn, k=1) 

Bes 

γ̂(h)={

0 h=0

Cs (1- (
h

r
)K

1

(
h

r
)) h>0

 

a′ = 4r (effective 

range reaches 

95% of Cs) 

Matérn Mat 

γ̂(h)=

{
 

 
0 h=0

Cs (1-
1

2k-1Γ(k)
(
h

r
)

k

Kk (
h

r
)) h>0

 

k (smoothness 

parameter) 

Note: Γ(k) and Kk(h/r) are Gamma function and modified Bessel function of the second kind with order k 

respectively, r is the range parameter obtained in R program. 

Goovaerts (1997) suggested that models with parabolic behavior at the origin (i.e., Gaussian 

model) should be used for highly continuous properties (i.e., ground water levels). The Gaussian 

model is not suggested (Wackernagel 2003; Webster and Oliver 2007) for describing the spatial 

variability of general properties that are not highly continuous. Pavement foundation properties 

are not be expected to be highly continuous variable, so a Gaussian model will be not be used in 

this paper.  

In this report, application of a spherical (Sph) model, an exponential (Exp) model, and Matérn 

(Mat, k=1) models in describing spatial variability of pavement foundation properties. 

The Matérn model class has a smoothness parameter (k) to describe the behavior of the 

semivariogram at the origin. The exponential model, Whittle’s model, and Gaussian model are 

particular cases of the Matérn model with k equal to 0.5, 1, and infinity, respectively. With k=∞ 

the Gaussian model describes the most continuous origin behavior.  

An experimental semivariogram is meaningless with only a pure nugget effect model fitted that 

indicates the studied properties lack spatial continuity within the studied area (Olea 2006). 

Therefore, the nugget model is generally nested with other models. Nested models are 

combinations of different models where properties of the original models are not changed. There 

are many possible combinations of semivariogram models. A combination of basic models is 
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generally required to satisfactorily fit the directional experimental semivariogram, but overfitting 

the semivariogram with complicated a model that consists of three or more basic models usually 

will not result in more accurate estimates than using the simpler models. 

Olea (2006) reported that nested models are often a combination of two simple models and one 

pure nugget effect model as shown in Eq. 5. 

γ̂(h)=∑ C0+Ciγi
(h)k

i=0  (5) 

Equation 6 shows a nested model consisting of a nugget effect model, an exponential model, and 

a Gaussian model: 

γ̂(h)={

0 h=0

C0+Cs1 (
3

2

h

a1
-

1

2
(

h

a1
)

3

)+Cs2 (1-e
-3(

h

a2
' )
) h≠0

 (6) 

Figure 4  shows semivariogram plots of these four models with values assigned to C and a and a′ 

where sill = 1. 

 

Figure 4. Sample semivariogram plots of spherical, exponential, Gaussian, and nested 

models with values assigned to C and a and a′ where sill = 1 

Model Selection 

The theoretical model can be fit to the experimental semivariogram to describe the spatial 

variability of the data with quantified parameters. The theoretical model can be selected based on 
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one of two methods; one method chooses the model that best fits the calculated experimental 

semivariogram values, another method chooses the model that gives the best predictions. Four 

statistical criteria are discussed here. Three methods for defining the “best fit” use either the 

squared errors (SSErr), Akaike information criterion (AIC), or Cressie goodness of fit (GoF). 

The mean squares prediction error (MSPE) can be used to choose the model that give the “best” 

predictions. 

Fitting a semivariogram model by eye relies on the averaged semivariance values at each lag 

distance and ignores the number of pairs of data spaced at that lag distance. A weighted least 

squares method as Cressie (1985) suggested will be used for this study. The weighted least 

squares method gives the most weight to the early lags and less weight to those lags that have 

fewer data pairs. Therefore, the weighted least squares method allows fitting the theoretical 

model to capture the major spatial characteristics of the variable, rather than not to be the closest 

to the experimental values. 

There are several methods for calculating the weight (wi) for the weighted least squares fit, the 

weight calculation method used in this study is presented in Eq. 7 with Ni is the number of data 

pairs that are separated by a distance hi. 

wi=
Ni

h𝑖
2 (7) 

In this study, exponential, spherical, and Matérn (k=1) modelS are fitted to the experimental 

semivariogram and the nested model of more than one structure might be used to better describe 

the anisotropic experimental semivariogram. The sum of square errors (SSErr) is calculated for 

each fitted theoretical semivariogram to describe how well the model fits the experimental 

semivariogram. In calculation of SSErr (Eq. 8), γ̂(hj) is the predicted semivariogram value with 

the fitted theoretical model and γ(hi) is the average experimental semivariogram value at a set of 

lag distance hi. 

SSErr=∑ wi[γ̂(hi)-γ(hi)]
2n

i=1  (8) 

Equation 9 is used to calculate AIC (Jian et al. 1996; Webster and Oliver 2007) where n is the 

number of experimental semivariogram values and p is the number of parameters in that 

theoretical model. Since the three models (i.e., spherical, exponential, Matérn with k=1) have the 

same p is equal to three, using the AIC criteria is not different from using SSErr. 

𝐴𝐼𝐶̂ = 𝑛 ln (
𝑆𝑆𝐸𝑟𝑟

𝑛
) + 2𝑝 (9) 

Clark and Harper (2002) suggested a modified Cressie goodness of fit (GoF) criteria to measure 

how well the model fits the data. Smaller GoF indicates better fit of the theoretical 

semivariogram model to the experimental semivariogram values. GoF is calculated with Eq. 10, 
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where Nh is the number of data pairs used to calculate the average experimental semivariogram 

γ(h) at lag or separation distance h, and γ̂(h) is the fitted theoretical semivariogram at h. 

GoF=
1

∑ Nhh

∑ Nh (
γ̂(h)-γ(h)

γ(h)
)

2

h  (10) 

SSErr, AIC and GoF are used to measure how well the theoretical model fits the experimental 

semivariogram values. However, they may not measure the goodness of using the fitted model to 

describe the spatial variability of the studied variable. Therefore, the mean squared prediction 

error (MSPE) using the fitted model to predict the variable values at unsampled locations, 

calculated from cross-validation, can be used to evaluate the better semivariogram model for that 

variable. 

The objective of fitting the experimental semivariogram is to describe the spatial continuity of 

the studied variable and ultimately to estimate the variable values at the unsampled locations. 

The impacts of different models on interpolating experimental semivariogram results can be 

compared through cross-validation (Isaaks and Srivastava 1989). The cross-validation process 

involves removing the first data value Z(si) at location si (i=1 to N) and using the rest (N-1) of 

the data values sampled over the study area to fit the theoretical semivariogram model and 

predicted 𝑍̂(𝒔𝑖) and calculating the squared error for the first data value. The cross-validation 

process is repeated for all data values sampled at all N locations si, and the average squared error 

in the cross-validation process is calculated as the mean squared prediction error (MSPE) in 

Eq. 11. 

𝑀𝑆𝑃𝐸 =
1

𝑁
[𝑍(𝒔𝑖) − 𝑍̂(𝒔𝑖)]

2
 (11) 

The basic idea of cross validation is removing one data point at a time from the data set and re-

estimating this value from the remaining data using the different semivariogram models. 

Interpolated and actual values are compared, and the model that yields the most accurate 

predictions is retained. 

Anisotropy in Semivariogram Modeling 

Anisotropy is the phenomenon that the spatial variability is a function of the magnitude and the 

direction of the separation distance vector h. Two types of two-dimensional anisotropy are 

defined as geometric anisotropy and zonal anisotropy (Goovaerts 1997) and shown in Figure 4. 

Eriksson and Siska (2000) clarified the details in calculations of modelling anisotropy in spatial 

analysis with defining the types of anisotropy to be nugget anisotropy, range anisotropy, and sill 

anisotropy. Isaaks and Srivastava (1989) and Goovaerts (1997) presented the concept of 

geometric and zonal anisotropy in spatial analysis. 

Geometric anisotropy can be identified when the directional semivariograms have the same 

shape and sill values (C0 and Cs) but different range values and the rose diagram or plot of range 

values versus the azimuth θ of the direction is an ellipse (Goovaerts 1997). Azimuth angle θ is 
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counted clockwise from the north. The anisotropy ratio (λ<1) is the ratio of the minor range (aϕ) 

to the major range (aδ) of the directional semivariograms that are generally perpendicular to each 

other. Zonal anisotropy can be identified when the directional semivariograms have different 

partial sill values.  

 

Figure 5. Types of anisotropy: (a) geometric anisotropy; (b) zonal anisotropy 

Geometric anisotropic semivariogram can be modeled by rotating the coordinate system 

clockwise to make the major direction (δ) that has the longer range to be aligned with an axis and 

rescale the anisotropic range to be the minor range aϕ (Eq. 12). 

𝛾(𝒉) = 𝛾(𝒉∗)   with   𝒉∗ = [
1 0
0 𝜆

] [
𝑐𝑜𝑠𝛿 −𝑠𝑖𝑛𝛿
𝑠𝑖𝑛𝛿 𝑐𝑜𝑠𝛿

] 𝒉 (12) 

Zonal anisotropic semivariogram can be modeled by clockwise rotating the coordinate system to 

have the direction that shows the maximum continuity (lowest Cs) aligned with an axis and set 

the range (aδ) in that direction to be a very large value towards infinity (λ is very small towards 

zero) (Eq. 13). 

𝛾(𝒉) = 𝛾1(h) + 𝛾2(𝒉
∗)   with   𝒉∗ = [

1 0
0 0

] [
𝑐𝑜𝑠𝛿 −𝑠𝑖𝑛𝛿
𝑠𝑖𝑛𝛿 𝑐𝑜𝑠𝛿

] 𝒉 (13) 

Semivariogram maps (Goovaerts 1997; Isaaks and Srivastava 1989) can be used as a tool that 

can detect anisotropy directions. The computation of a semivariogram map requires considering 

many directions and lags. A semivariogram map can be a useful tool in the preliminary study of 

the major and minor spatial continuity directions. However, the spatial resolution of the 

semivariogram map will be largely reduced when sparse and irregular spaced data are collected 

(Facas et al. 2010). Figure 6 shows the process of plotting the semivariogram map and also 

shows semivariogram values are the same in the opposite direction.  
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Figure 6. Methodology of plotting a semivariogram map 

Kriging 

Kriging is a popular contouring method that is used to estimate the value at unsampled locations. 

The word kriging means optimal prediction (Cressie 1993). Kriging is used to make prediction 

on values of a continuous variable Z at unsampled locations using the observed value at sampled 

locations of the study area. Kriging makes no distributional assumptions and the variates are 

statistically correlated. Ordinary kriging and the minimum mean squared prediction error will be 

used in this study to present the fitted semivariogram model. The two assumptions in ordinary 

kriging are that the local mean is unknown but constant and the sum of the coefficients of the 

linear predictor is equal to one. The assumptions guarantee that the mean of the predicted values 

is the same as the observed values over the study area (Cressie 1993; Goovaerts 1997; Journel 

and Huijbregts 1978). The brief description of ordinary kriging is only to introduce the basics of 

understanding how the kriged contour map is created. The ordinary kriging estimator ZOK
*(s) at 

location s is written as a linear combination of the n(s) random variables Z(si) with the kriging 

weights forced to be equal to 1 (Eq. 14). 

ZOK
* (s)=∑ εi

OK(s)Z(si)
n(s)
i=1    with   ∑ εi

OK(s)n(s)
i=1 = 1 (14) 
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CHAPTER 3. TEST SECTIONS  

This chapter presents brief background information of each project discussed in this report along 

with the test section details. Detailed information of the field projects is provided in the 

respective field project reports.  

Michigan I-94 Project Test Sections 

This project is located on I-94 in St. Clair and Macomb Counties, Michigan. The project 

involved reconstruction of pavement foundation layers of the existing interstate highway 

between about mile posts 23.6 and 6.1 (about Station 794+12 to 1121+70; Michigan Project No. 

IM0877(023) and Job Number 100701A). The new PCC pavement was constructed with 

nominal 280 mm (11 in.) thickness. During the reconstruction, the existing pavements were 

removed and the foundation layers were undercut to a depth of about 690 mm (27 in.) below the 

existing pavement surface elevation for placement of the open graded drainage course (OGDC) 

base layer with a geotextile separation layer at the interface.  

Results from two test sections from this field project are presented in this report (TS1 and TS3). 

Both these sections consisted of compacted newly constructed OGDC base layer. Summary 

information from these test sections are presented in Table 2.  

Table 2. Summary of test sections and in situ testing – MI I-94 Project 

TS Date Location Material 
In situ Test 

Measurements Comments 

1a 5/27/2009 
Sta. 804+00 

to 813+00 
[I-94 EB]  

Newly 

constructed 

base 
NG, DCP, LWD  

Section tested after 

trimmed to grade.  

1b 5/28/2009 

Sta. 809+00 

[I-94 EB] 
(7 m x 7 m 

area) 

Newly 

constructed 

base 
NG, DCP, LWD 

Section tested after 

trimmed to grade. 

Testing was 

performed in 0.6 m  
x 0.6 m grid. 

3a 5/28/2009 
Sta. 839+50 

to 866+00 

Newly 

constructed 

base 

DCP, LWD, 

FWD, PLT 

Section tested prior to 

trimming. 

 

TS1 involved testing the OGDC base layer on I-94 EB lanes between Sta. 804+00 and 813+00. 

The material was placed, compacted, and trimmed in this area prior to our testing. TS1a involved 

testing every +50 station between Sta. 804+00 and 813+00 (Figure 8) along the centerline of the 

I-94 EB alignment and left and right of the centerline at about 4 m offsets, representing a sparse 

systematic sampling method. TS1b involved testing a 7 m x 7 m area near Sta. 809+00 in a dense 

grid pattern (Figure 8) with 121 test points. NG, LWD, GPT, and DCP tests were conducted on 

this test section. 
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Figure 7. MI I-94 TS1: Plan view of in situ test locations 

 

Figure 8. MI I-94 TS1b: Photograph showing testing on the 0.6 m x 0.6 m grid pattern 

TS3a involved testing the OGDC base layer between Sta. 839+50 and 890+00. The material was 

placed and compacted in this area prior to our testing, but was not trimmed to the final grade. 

TS3a involved testing using point measurements at every +50 station between Sta. 839+50 and 

866+00 (Figure 9) along the center line of the I-94 EB alignment, and left and right of the center 

line at about 4 m offsets, representing sparse systematic sampling. NG, DCP, LWD, and FWD 

point tests were conducted on TS3a. 
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Figure 9. MI I-94 TS3: Plan view of in situ test locations (left) and photograph of the 

untrimmed OGDC base layer (right) 

Michigan I-96 Project Test Sections 

This project involved reconstruction of about 5.8 miles of I-96 from just west of Wacousta Road 

(mile post 90) to south of M-43 (mile post 93) in Clinton and Eaton Counties near Lansing, 

Michigan. The pavement structure was reconstructed with a twenty-year design life jointed PCC 

pavement that was composed of a 292 mm (11.5 in.) thick PCC pavement at 4.3 m (14 ft) joint 

spacing, a 127 mm (5 in.) cement treated base (CTB) layer with recycled PCC (RPCC) material 

and a 279 mm (11 in.) existing or new sand subbase with a geotextile separator at the 

CTB/subbase interface.  

Results from three test sections from this field project are presented in this report (TS1 to TS3). 

Two of these sections consisted sand subbase layer underlain by subgrade and one of the sections 

consisted of CTB layer. Summary information from these test sections are presented in Table 3.  

TS1 and TS3 consisted of testing the final compacted and trimmed sand subbase layer along I-96 

EB lane alignment with NG, LWD, and DCP. TS3 involved testing between Sta. 458+00 and 

468+50 at every +50 station along the centerline of the alignment, representing a sparse 

systematic sampling method. In addition, tests were conducted at five test locations across the 

pavement width at Sta. 461+50. TS1 involved testing a 9 m x 9 m area near Sta. 464+40 in a 

dense grid pattern with 73 test points. A plan layout with GPS coordinates of the test locations on 

TS1 and TS3 are shown in Figure 9. 

TS2 consisted of testing the CTB layer along I-96 EB right lane just west of West Grand River 

Avenue overpass between Sta. 296+00 and 299+00 (Figure 11). NG and FWD tests were 

conducted in this section. Tests were conducted in a grid pattern with five tests across the lane 
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and at every 3 m along the alignment over a 90 m long section. NG and FWD tests were 

conducted at 119 test points. 

Table 3. Summary of test sections and in situ testing – MI I-96 Project 

TS Date Location Material 
In situ Test 

Measurements Comments 

1 5/18/10 

Between Hwy M-

43 exit ramp and 

Hwy M-43 

overpass on I-96 

east/south bound 

lane (near Sta. 

464+40) 

Sand subbase 

layer underlain 

by subgrade 
NG, DCP, LWD 

 

In situ testing at 73 

points in a dense grid 

pattern 

 

2 
5/19/10 

and 

5/23/10 

West of W Grand 

River Avenue 

overpass on I-96 

east/south bound 

lane (between Sta. 

296+00 and 

299+00) 

CTB underlain 

by sand 

subbase and 

subgrade 

FWD, NG 

 

CTB placed on 5/15/10; 

FWD and NG tests at 

119 points 

 

3 5/20/10 

Along centerline 

from Sta. 468+50 

to 458+00 near 

Hwy M-43 on I-96 

east/south bound 

lane 

Sand subbase 

layer underlain 

by subgrade 
NG, DCP, LWD 

Additional tests across 

the width of the 

pavement base at 

Sta. 461+50.  
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Figure 10. MI I-96 TS1/TS3: Plan view of in situ test locations (left), detailed plan layout 

(top right), and image showing test locations 



19 

 

Figure 11. MI I-96 TS2 CTB layer (looking east near Sta. 296+25) 

Wisconsin US10 Test Sections 

This project involved new construction of 5.44 miles of US Highway 10 from Sta. 285+50 to 

Sta. 580+50 in Portage County, Wisconsin. ISU testing was conducted on two test sections 

located on the east side of County Highway O (TS1) and west side of County Highway G (TS2). 

Summary of the test sections is provided in Table 4.   

TS1 consisted of a relatively loose sand subbase layer placed over the subgrade along US 10WB 

lane between Sta. 555+00 and 575+00. NG, LWD, and DCP tests.  

TS2 consisted of testing the final compacted subgrade layer along US10WB lane near Sta. 

495+00. A plan area of about 8 m x 28 m was selected for dense grid testing with about 70 test 

locations. In addition, tests were conducted every 3 m along the centerline of the alignment over 

65 m long stretch of the road. A plan view of the TS with GPS measurements of the test 

locations is provided in Figure 14. In situ tests on this TS involved LWD, NG, and DCP tests.  
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Table 4. Summary of test sections and in situ testing – WI US10 Project 

TS Date Location Material In Situ Tests  Comments 

1 5/25/10 

US10WB lane at 

two locations: 

TS1: Between 

Sta. 555+00 and 

565+00 

Sandy subbase 

(loose) underlain by 

subgrade. 

Note: Thick sand 

subbase (~ 600 mm)  

NG, DCP, 

LWD 

TS1: Tests performed 

every 3 m along the 

centerline of US 

10WB lane. In 

addition, seven tests 

across pavement 

width near Sta. 

560+00. 

2 
5/24 to 

5/25/10 

US10 WB lane 

West of Co Rd G 

near Sta. 495+00 

Subgrade 
NG, DCP, 

LWD 

8 m x 28 m dense 

spatial grid section 

and tests every 3 m 

along the centerline 

of US 10WB  

 

 

Figure 12. WI US10 TS1: Plan view (top) and a photo (bottom) of in situ test locations on 
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Figure 13. WI US10 TS2: Photograph of the compacted subgrade 

 

Figure 14. WI US10 TS2: Plan view of test locations 
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Iowa US30 Test Sections 

This project is located on US 30 in Boone County in Iowa between mileposts 139.0 and 147.27. 

As part of the reconstruction work that began in summer of 2011, the existing pavement was 

removed and the subgrade was undercut during the reconstruction process to place a nominal 

410 mm (16 in.) thick modified subbase over the natural existing subgrade. The modified 

subbase layer consisted of 150 mm (6 in.) thick RPCC material at the surface underlain by 

260 mm (10 in.) thick mixture of RPCC/RAP material. A nominal 254 mm (10 in.) thick JPCP 

was placed on the newly constructed foundation layer. DCP and LWD tests were conducted on 

the RPCC modified subbase layer on August 8, 2011 in 2 test sections along the left and right of 

the center lane using a sparse systematic sampling approach. Tests were conducted after 

compaction and trimming operations are completed and just prior to paving operations. All 

testing was conducted on US30 EB lane near between Sta. 1394+00 and 1396+00.  

 

Figure 15. IA US30: Field testing on finished RPCC modified subbase layer (June 8, 2011) 

Summary of All Test Sections 

A summary of all test sections showing the soil index properties of the tested materials, and a 

summary of the sampling methods used in each section is provided in Tables 4 and 5.  
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Table 5. Soil index properties and classification of materials from different test sections 

Site 

Test 

Section 

(TS) 

Layer 

Soil index properties and classification 

γdmax 

(kN/m3)a 

γdmin 

(kN/m3)b 

γdmax 

(kN/m3)c 

wopt 

(%)c 
AASHTO USCS 

MI I-94 

TS1a Base 16.23 4.05 — — A-1-a GP 

TS1b Base 16.23 4.05 — — A-1-a GP 

TS3 Base 16.23 4.05 — — A-1-a GP 

MI I-96 

TS1 
Sand 

subbase 
20.06 14.98 19.96 7.9 A-1-b SP-SM 

TS2 CTB 13.61 12.26 — — A-1-a GP 

TS3 
Sand 

subbase 
20.06 14.98 19.96 7.9 A-1-b SP-SM 

WI US-

10 

TS1 
Sandy 

Subbase 
18.19 15.07 17.37 11.8 A-3 SP 

TS2 Subgrade — — 18.67 12 A-6(8) CL 

IA US-

30 

TS1 

RPCC 

modified 

Subbase 

— — 19.3 10.3 A-1-a GP-GM 

TS2 

RPCC 

modified 

Subbase 

— — 19.3 10.3 A-1-a GP-GM 

 

Table 6. Sampling method and calculated sampling rate from different test sections 

Site 

Test Section 

(TS) 

Sampling rate 

Sample grid 

Max 

Length (m) 

N of 

Tests 

N/ unit 

length (N/m) 

MI I-94 TS1a Sparse 274.3 54 0.20 

TS1b Dense 6.3 121 19.12 

TS3 Sparse 807.9 162 0.20 

MI I-96 TS1 Dense 7.9 73 9.22 

TS2 Sparse 90.7 119 1.31 

TS3 Sparse 320.5 26 0.08 

WI US-10 TS1 Sparse 65.4 80 1.22 

TS2 Sparse 6.9 17 2.46 

IA US-30 TS1 Sparse 106.7 20 0.19 

TS2 Sparse 104.3 52 0.50 
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CHAPTER 4. RESULTS AND ANALYSIS 

Univariate Statistical Analysis Results 

Univariate statistics are calculated for data measured on each test section from all project sites. 

The results are presented in Tables 7 to 10. The statistical parameters summarized in these tables 

included mean, median, variance, standard deviation, COV, and skewness (measure of normal 

distribution).  

Results showed that the COV of moduli and DCP index values ranged between 12% and 39%, 

COV of moisture content varied between 11% and 25%, and COV of dry density values ranged 

between 2% and 6%.  

Table 7. Univariate statistics summary of ELWD-Z3 (MPa) 

Field 

site 

TS Layer Univariate Statistics 

Mean 

(μ) 

Median Variance (s2) Std Dev 

(σ) 

COV N Skewness 

MI I-

94 

TS1a Base 73.3 73.7 206.0 14.4 20 54 0.27 

TS1b Base 58.5 58.6 50.5 7.1 12 121 0.43 

TS3 Base 49.0 49.6 109.8 10.5 21 162 0.06 

MI I-

96 

TS1 Sand 

subbase 

30.9 31.3 124.1 11.1 36 73 -0.20 

TS2 CTB 214.8 216.9 7152.4 84.57 39 119 0.29 

TS3 Sand 

subbase 

33.2 35.8 108.7 10.4 31 26 -0.57 

WI 

US-

10 

TS1 Sandy 

Subbase 

12.6 12.6 10.3 3.2 25 17 0.00 

TS2 Subgrade 30.7 30.4 28.3 5.3 17 80 0.62 

IA 

US-

30 

TS2 RPCC 

modified 

Subbase 

56.6 57.5 120.6 11.0 19 40 -0.81 
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Table 8. Univariate statistics summary of other pavement foundation properties 

Field 

site 

TS Layer Properti

es 

Univariate Statistics 

Mean 

(μ) 

Media

n 

Variance 

(s2) 

Std 

Dev (σ) 

COV N Skewne

ss 

MI I-

94 

TS1a Base DCPI 6 6 3.0 1.7 27 54 1.87 

TS1b Base DCPI 7 7 1.3 1.1 17 120 0.48 

TS3 Base EFWD-k3 44.7 44.4 195.0 14.0 31 50 0.83 

DCPI 8 8 3.8 2.0 23 162 0.69 

MI I-

96 

TS1 Sand 

subbase 

DCPI 19 19 20.7 4.5 24 57 0.37 

TS3 Sand 

subbase 

DCPI 16 16 25.0 5.0 30 26 0.45 

WI 

US10 

TS1 Sandy 

Subbase 

CBR 5.6 5.7 1.4 1.2 22 17 -1.1 

TS2 Subgrade CBR 15.4 14.5 24.8 5.0 32 79 1.2 

IA 

US30 

TS1 RPCC 

Subbase 

CBR 11.0 9.6 14.9 3.9 35 20 1.08 

RPCC/ 

RAP 

Subbase 

CBR 67.0 70.6 330.8 18.2 27 20 -0.37 

Subgrade CBR 12.9 12.1 15.6 3.9 31 20 1.25 

Note: DCPI unit is mm/blow; EFWD-K3 unit is MPa; CBR unit is %. 

Table 9. Univariate statistics summary of γd (kN/m3) 

Field 

site 

TS Layer Univariate Statistics 

Mean 

(μ) 

Median Variance 

(s2) 

Std Dev 

(σ) 

COV N Skewn

ess 

MI I-94 TS1a Base 20.08 20.07 0.43 0.66 3 54 -0.37 

TS1b Base 20.00 20.00 0.38 0.61 3 121 -0.13 

TS3 Base 19.21 19.25 0.77 0.88 5 162 -0.02 

MI I-96 TS1 Sand 

subbase 

20.16 20.15 0.34 0.59 3 73 -0.03 

TS2 CTB 14.56 14.59 0.66 0.81 6 119 -0.3 

TS3 Sand 

subbase 

20.01 19.89 0.26 0.51 3 26 0.30 

WI US-

10 

TS1 Sandy 

Subbase 

16.15 16.07 0.12 0.35 2 17 -0.3 

TS2 Subgrade 19.84 19.84 0.15 0.38 2 79 0.1 
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Table 10. Univariate statistics summary of w (%) 

Field 

site 

TS Layer Univariate Statistics 

Mean 

(μ) 

Median Variance (s2) Std Dev 

(σ) 

COV N Skewness 

MI I-94 TS1a Base 1.8 1.8 0.1 0.4 22 54 0.42 

TS1b Base 2.3 2.3 0.1 0.3 14 121 -0.70 

TS3 Base 1.3 1.3 0.1 0.3 25 162 0.44 

MI I-96 TS1 Sand 

subbase 

7.8 7.7 1.0 1.0 13 73 0.47 

TS2 CTB 7.3 7.2 1.0 1.0 14 119.0 1.4 

TS3 Sand 

subbase 

6.3 6.3 0.5 0.7 11 26 0.44 

WI 

US10 

TS1 Sandy 

Subbase 

3.7 3.7 0.2 0.5 13 17.0 -0.9 

TS2 Subgrade 7.5 7.4 0.9 1.0 13 79.0 1.0 

 

Spatial Analysis Results 

Anisotropy in Foundation Layer Properties 

Detailed spatial analysis to assess anisotropy in the measured properties was conducted using the 

dense grid data set data obtained from two test sections (MI I94 TS1b, and MI I96 TS1). Both 

omnidirectional and directional semivariograms were studied to assess the anisotropy of each 

variable over the studied test sections and to examine the need of modeling the possible 

anisotropy. 

The experimental semivariogram of each property variable was calculated as omnidirectional, 

which assumes an isotropic spatial correlation. Three theoretical semivariogram models, 

spherical, exponential, and Matérn (k=1), are used to fit the experimental semivariogram using 

weighted least square methods. The model parameters are estimated and the statistical criteria of 

choosing the better fitted model that including SSErr, GoF, and MSPE are summarized in Table 

11. 

The estimated model parameters in Table 11 show that there is no single best model type that can 

better fit the experimental semivariogram than the other two models. The exponential γ̂(h) model 

estimates the largest range or effective range value, a, in most of the cases while the Matérn 

(k=1) model estimates the largest nugget effect, C0, in all cases. The better fitted model is chosen 

according the statistical criteria to present the results in characterizing and quantifying the 

isotropic or omnidirectional spatial variability. The smaller value of each of three statistical 

criteria SSErr, GoF, and MSPE is desired and indicate a better fitted model.  
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Table 11. Summary of spatial analysis with omnidirectional semivariogram 

Project Site MI I-94 TS1b MI I-96 TS1 

Properties 

γ̂(h) 
estimation 

parameters 

Model Type Model Type 

Sph Exp Mat, k=1 Sph Exp Mat, k=1 

ELWD-Z3 (MPa) 

C0 11.5 4.1 12.5 0 0 12.2 

Cs 41.5 54.6 44.0 146.6 212.2 161.4 

r 3.2 1.5 0.9 3.4 2.7 1.2 

a or aʹ 3.2 4.4 3.8 3.4 8.3 5.0 

SSErr 15829 15555 16009 159196 170814 164420 

GoF 0.0050 0.0055 0.0054 0.0412 0.0442 0.0417 

MSPE 22.84 22.77 23.08 46.25 44.74 43.72 

γd (kN/m3) 

C0 0.15 0.13 0.16 0.05901 0.03935 0.08359 

Cs 0.21 0.28 0.23 0.34 0.34 0.34 

r 3.4 1.9 1.1 6.9 2.966 2.238 

a or aʹ 3.4 5.7 4.5 6.9 8.898 8.952 

SSErr 0.1845 0.1702 0.1723 0.1156 0.189 0.1293 

GoF 0.0024 0.0022 0.0022 0.0104 0.0170 0.0117 

MSPE 0.2106 0.2107 0.2115 0.135 0.1372 0.1362 

w (%) 

C0 0.070 0.046 0.072 0.073 0.011 0.177 

Cs 0.275 0.982 0.358 1.007 1.480 1.151 

r 48.5 128.3 12.3 3.7 2.69 1.48 

a or aʹ 48.5 384.9 49.4 3.7 8.07 5.94 

SSErr 0.02271 0.9678 0.01504 5.168 5.39 5.277 

GoF 0.0031 0.0784 0.0021 0.0399 0.0427 0.0421 

MSPE 0.0807 0.08093 0.0811 0.3937 0.4124 0.4085 

DCPIsubbase 

(mm/blow) 

C0 0.53 0.30 0.51 0 0 0 

Cs 0.70 0.97 0.76 26.57 46.05 30.95 

r 2.20 0.82 0.60 3.80 3.92 1.23 

a or aʹ 2.20 2.45 2.41 3.80 11.77 4.93 

SSErr 5.364 5.565 5.31 2387 2608 2302 

GoF 0.0027 0.0025 0.0024 0.0728 0.0737 0.0702 

MSPE 0.9048 0.8679 0.8701 11.76 11.97 11.95 

DCPIsubgrade 

(mm/blow) 

C0 0 0 0 2.1 0 0 

Cs 57.6 58.8 58.6 4.0 6.0 5.6 

r 0.85 0.30 0.21 4.1 1.1 0.6 

a or aʹ 0.85 0.91 0.84 4.1 3.3 2.4 

SSErr 16893 21970 19925 179.5 170.2 169.4 

GoF 0.0022 0.0022 0.0021 0.0390 0.0424 0.0461 

MSPE 60.3 60.41 60.48 3.455 3.514 3.56 

 

MI I94 TS1b 

The omnidirectional experimental semivariograms and the kriged contour maps separately for all 

parameters obtained from the MI I-94 TS1b are shown in in Figure 16 to Figure 25. The kriged 

contours were generated using the model selected based on the smallest MSPE. Some key 

observations assessing the semivariograms and the contour plots are as follows: 

 The sill of the omnidirectional (h) of ELWD-Z3 is higher than the sample variance slightly 

which indicates a possible trend in the data or an anisotropic semivariogram (Figure 16). The 
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contour plot for ELWD-Z3 shows that there is less variability in the data in transverse direction 

than in the longitudinal direction (Figure 17). Based on these observations, further analysis 

with directional variability should be performed on this dataset to identify correlation length 

in different directions.  

 Omnidirectional γ(h) of γd showed increasing γ(h) with separation distance and close to the 

sample variance (Figure 18), and the nugget values of γ̂(h) are relatively larger compared to 

its sill value. The measurement error or insufficient sampling at smaller spacing might be the 

cause for the relatively high nugget value. The contour plot (Figure 19) shows that the upper 

left portion of the studied area had comparatively low values and the bottom left portion had 

comparatively high areas. 

 Omnidirectional γ(h) of moisture content shows a very large nugget effect compared to the 

sample variance and a trend can be observed in the fitted semivariogram with range 

estimated as about 50 m (Figure 20). The experimental omnidirectional γ(h) calculated in this 

study area is close to a straight line and there appears to be a trend in the data with moisture 

content decreasing from the top left corner to the bottom right corner (Figure 21). 

 The omnidirectional γ(h) of DCPIsubbase and DCPIsubgrade are shown in Figure 22 and Figure 

24, respectively. A longer range value was observed in DCPIsubbase than DCPIsubgrade which 

indicates that there is a higher spatial correlation in DCPIsubbase values than DCPIsubgrade 

values. The experimental semivariogram calculated for DCPIsubbase shows a nearly zero 

nugget effect, only a few γ(h) values within the first 1 m separation distance show a possible 

correlation of DCPIsubgrade with spacing distance. The zero nugget effect and short range 

value modeled in DCPIsubgrade predicted values at unsampled location around the sampled 

location with variation equal to the sill value which shows up as concentrated small circular 

areas with similar values in the kriged contour plot of DCPIsubgrade (Figure 25). The 

DCPIsubbase contour plot shows less concentrated circular areas than DCPIsubgrade, which is 

indicative of the longer range values.  

 

Figure 16. MI I94 TS1b: Omnidirectional γ(h) of ELWD-Z3 with fitted γ̂(h)  
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Figure 17. MI I94 TS1b: Ordinary kriging of ELWD-Z3 with fitted omnidirectional 

exponential γ̂(h)  

 

Figure 18. MI I94 TS1b: Omnidirectional γ(h) of γd with fitted γ̂(h)  

Exp_omni

Longitudinal Direction (m)

0 1 2 3 4 5 6 7

T
ra

n
s
v
e
rs

e
 D

ir
e
c
ti
o
n
 (

m
)

0

1

2

3

4

5

6

7

50 

55 

60 

65 

70 

75 

E
LWD-Z3

 (MPa)

rd

Seperation Distance, h (m)

0 1 2 3 4

S
e

m
iv

a
ri
o

g
ra

m
 o

f 
 d

 (
k
N

/m
3
)2

0.0

0.1

0.2

0.3

0.4

0.5

Experimental (h)

Exponential (h)

Spherical (h)

Matern, k=1 (h)

Sample Variance, s2



30 

 

Figure 19. MI I94 TS1b: Ordinary kriging of γd with fitted omnidirectional spherical γ̂(h) 

 

Figure 20. MI I94 TS1b: Omnidirectional γ(h) of w with fitted γ̂(h)  
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Figure 21. MI I94 TS1b: Ordinary kriging of w with fitted omnidirectional exponential 

γ̂(h) 

 

Figure 22. MI I94 TS1b: Omnidirectional γ(h) of DCPIsubbase with fitted γ̂(h)  
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Figure 23. MI I94 TS1b: Ordinary kriging of DCPIsubbase with fitted omnidirectional 

spherical γ̂(h)  

 

Figure 24. MI I94 TS1b: Omnidirectional γ(h) of DCPIsubgrade with fitted γ̂(h)  

 DCPI
(Subgrade)

Seperation Distance, h (m)

0 1 2 3 4

S
e
m

iv
a
ri
o
g
ra

m
 o

f 
D

C
P

I (S
u

b
g

ra
d

e
) 
(m

m
/b

lo
w

)2

0

20

40

60

80

Experimental (h)

Exponential (h)

Spherical (h)

Matern, k=1 (h)

Sample Variance, s2



33 

 

Figure 25. MI I94 TS1b: Ordinary kriging of DCPIsubgrade with fitted omnidirectional 

spherical γ̂(h)  
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values.  

 Omnidirectional γ(h) of w measurements shows a possible trend because γ(h) is larger than 

the sample variance after about 3 m separation distance (Figure 30). The contour plot (Figure 

31) also shows higher values in the bottom half than in the top half. Investigating anisotropy 

is advised for the collected w values.  
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 Omnidirectional γ(h) of DCPIsubbase also shows a possible trend with γ(h) larger than the 

sample variance after about 2 m separation distance (Figure 32). The DCPIsubbase contour plot 

(Figure 33) shows somewhat similar trends as the ELWD-Z3 contour plot.   

 Omnidirectional γ(h) of DCPIsubgrade did not show clear spatial correlation with separation 

distance.  

 

Figure 26. MI I96 TS1: Omnidirectional γ(h) of ELWD-Z3  
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Figure 27. MI I96 TS1: Ordinary kriging of ELWD-Z3 with fitted omnidirectional Matérn 

(k=1) γ̂(h)  

 

Figure 28. MI I96 TS1: Omnidirectional γ(h) of γd with fitted γ̂(h)  
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Figure 29. MI I96 TS1: Ordinary kriging of γ(h) with fitted omnidirectional spherical γ̂(h)  

 

Figure 30. MI I96 TS1: Omnidirectional γ(h) of w with fitted γ̂(h)  
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Figure 31. MI I96 TS1: Ordinary kriging of w with fitted omnidirectional spherical γ̂(h) 

 

Figure 32. MI I96 TS1: Omnidirectional γ(h) of DCPIsubbase with fitted γ̂(h) 
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Figure 33. MI I96 TS1: Ordinary kriging of DCPIsubbase with fitted omnidirectional 

spherical γ̂(h)  

 

Figure 34. MI I96 TS1: Omnidirectional γ(h) of DCPIsubgrade with fitted γ̂(h) 
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Figure 35. MI I96 TS1: Ordinary kriging of DCPIsubgrade with fitted omnidirectional 

spherical γ̂(h)  

Directional Semivariogram Anisotropy Modeling 

Directional experimental semivariograms are studied to identify anisotropic behavior of the 

measuredvariables. A rose diagram, semivariogram map, semivariogram contour map, and 

directional semivariograms helps identifying anisotropic behavior. As noted above, the kriged 

contour plots with omnidirectional experimental semivariogram of some of the pavement 

foundation properties revealed the need for directional semivariograms. The anisotropic γ(h) is 

modeled by fitting the theoretical semivariogram model with the identified anisotropy ratio (λ), 

major direction (δ) for both geometric and zonal anisotropy, and a nested model for zonal 

anisotropy. Directional γ(h) is calculated in four major directions (θ = 0°, 45°, 90°, 135°) and the 

major and minor directions are generally at θ equals to 0° and 90° which aligns with transverse 

and longitudinal directions of pavement sections. All three theoretical models (i.e., spherical, 

exponential, and Matérn with k=1) are fitted to the γ(h) in major and minor directions 

individually, and the best fitted model of the three are selected based on the smallest SSErr value 

and summarized in Table 12.  For illustration purposes, the process for constructing directional 

semivariograms is shown for ELWD-Z3 measurements obtained from MI I94 TS1b. Four types of 

plots, directional semivariograms, a rose diagram, a semivariogram map, and a semivariogram 

contour map for preliminary examination of the directional variation of sill and range 

parameters. The process is summarized as follows: 

 First, the range values are determined and recorded for each directional γ(h) plot (Figure 36). 
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 Second, a rose diagram of range values is created by identifying the range values at each 

directional γ(h) with a selected γ(h) that is not the initial value nor the constant γ(h) in all 

directions, as shown in Figure 37. An ellipse that indicates geometric anisotropy is closely 

fitted to the end points of range values along the axial directions (Figure 37). 

 Third, a semivariogram map is created by setting a lag distance and calculating the average 

value of all γ(h) falling into the area cell with the side distance the same as the lag distance. 

The lag distance should be chosen as a value not smaller than the minimum spacing that 

point pairs are apart. Figure 38 is the semivariogram map using a color scheme to represent 

the value of the average γ(h) in each area cell and Figure 39 is the semivariogram contour 

map that plots the same values in a contour line. Both these plots show zonal anisotropy with 

ELWD-Z3 being less variable in transverse direction compared to the longitudinal direction. 

 The semivariogram models fitted in transverse (y) direction and longitudinal (x) direction are 

shown in Figure 40. The fitted γ̂(h) in the longitudinal direction exceeded the sample 

variance while the fitted γ̂(h) in transverse direction reached a constant value that is below 

the sample variance at a small range value. However, the experimental semivariogram γ(h) 

tends to increase at separation distances over 3 m. 

 With the fitted γ̂(h) in both transverse and longitudinal directions, the best fitted model could 

be selected with the smaller SSErr and GoF values. The first isotropic part of zonal 

anisotropy is modeled with the selected model for the transverse direction 𝛾1(h) that has the 

lower sill than the longitudinal direction. Then the second part of zonal anisotropy 𝛾2(h) is 

modeled with the model selected for the longitudinal direction with range set to be extremely 

large (e.g., 109) and high zonal anisotropy ratio (λ) (λ ×109). Figure 41 shows the nested 

model with zonal anisotropy fitted γ̂(h) is shown as a continuous curve in comparison with 

the experimental semivariogram of ELWD-Z3 shown as black dots in different directions. The 

kriged contour plot using the zonal anisotropic model for ELWD-Z3 shown in Figure 35. 
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Table 12. Summary of theoretical model fitted to major and minor directional γ(h) 

Propert

ies 

Project Site MI I-94 TS1b MI I-96 TS1 

γ̂(h) 
estimation 

parameters 

Transverse 

Direction, y, 

θ=0° 

Longitudinal 

Direction, x, 

θ=90° 

Transverse 

Direction, y, 

θ=0° 

Longitudinal 

Direction, x, 

θ=90° 

ELWD-z3 

(MPa) 

Model Exp Sph Sph Mat, k=1 

C0 20.3 3.229 3.931 0 

Cs 38.78 59.79 161.37 203.5 

r 3.674 2.993 2.624 2.071 

a or aʹ 11.022 2.993 2.624 8.284 

SSErr 6481 6112 193699 151449 

GoF 0.0066 0.0087 0.0652 0.2323 

d 

(kN/m3) 

Model Sph Sph Sph Mat, k=1 

C0 0.1523 0.14 0 0 

Cs 0.1965 0.4844 0.674 0.1661 

r 2.328 9.86 7.482 0.558 

a or aʹ 2.328 9.86 7.482 2.232 

SSErr 0.07408 0.4511 0.3866 0.1554 

GoF 0.0014 0.0107 0.0375 0.1090 

w (%) 

Model Sph (θ=45°) 
Mat, k=1 

(θ=135°) 
Sph Exp 

C0 0.075137 0.06748 0 0 

Cs 0.006446 512.38299 1.406 0.8321 

r 1.971 604.6 3.531 1.785 

a or aʹ 1.971 2418.4 3.531 5.355 

SSErr 0.01376 0.01185 3.826 4.215 

GoF 0.0087 0.0024 0.0276 0.1813 

DCPIsub

base 

(mm/ 

blow) 

Model Sph Mat, k=1 Matern, k=1 Spherical 

C0 0.6996 0.1071 0 0.4807 

Cs 0.4956 1.189 30.21 27.5117 

r 1.732 0.5448 1.072 4.603 

a or aʹ 1.732 2.1792 4.288 4.603 

SSErr 7.769 1.201 2705 2015 

GoF 0.0094 0.0021 0.1781 0.1367 

DCPIsub

grade 

(mm/ 

blow) 

Model 

Direction semivariogram shows pure 

nugget effect, there no additional 

modeling performed.  

Spherical Spherical 

C0 0 0 

Cs 5.865 4.152 

r 1.068 2.289 

a or aʹ 1.068 2.289 

SSErr 469.8 283.2 

GoF 0.1352 0.1760 
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Figure 36. Directional γ(h) of ELWD-Z3 on MI I94 TS1b 
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Figure 37. Rose diagram of ELWD-Z3 on MI I94 TS1b 

 

Figure 38. Semivariogram map of ELWD-Z3 on MI I94 TS1b 
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Figure 39. Semivariogram contour map of ELWD-Z3 on MI I94 TS1b 

 

Figure 40. Fitted γ̂(h) for ELWD-Z3 on MI I94 TS1b, transverse direction (left) and 

longitudinal (right) 
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Figure 41. Modelling γ(h) with zonal anisotropy for ELWD-Z3 on MI I94 TS1b 

 

Figure 42. Kriged contour plot of ELWD-Z3 on MI I94 TS1b 
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A summary of sill and range values estimated by weighted least squares fitted theoretical 

semivariogram models for omnidirectional and directional semivariogram analysis are 

summarized in Table 13.  

Table 13. Summary of omnidirectional and directional variogram parameters 

In-situ 

properties 
Directions 

MI I-94 TS1b MI I-96 TS1 

Sill 

(C+C0) 

Range 

(a or a'), m 

Sill 

(C+C0) 

Range 

(a or a'), m 

ELWD-Z3 

(MPa) 

Omnidirection 58.8 4.4 173.6 5.0 

Transverse 

Direction (y) 
59.1 11.0 165.3 2.6 

Longitudinal 

Direction (x) 
63.0 3.0 203.5 8.3 

γd (kN/m3) 

Omnidirection 0.36 3.4 0.40 6.9 

Transverse 

Direction (y) 
0.35 2.3 0.67 7.5 

Longitudinal 

Direction (x) 
0.62 9.9 0.17 2.2 

w (%) 

Omnidirection 0.345 48.5 1.079 3.757 

Transverse 

Direction (y) 
— 

1.406 3.531 

Longitudinal 

Direction (x) 
0.832 5.355 

DCPIsubbase 

(mm/blow) 

Omnidirection 1.28 2.5 26.57 4.09 

Transverse 

Direction (y) 
1.20 1.7 30.21 4.30 

Longitudinal 

Direction (x) 
1.30 2.2 27.99 4.60 

DCPIsubgrade 

(mm/blow) 

Omnidirection 57.6 0.8 6.1 3.8 

Transverse 

Direction (y) 
— 

5.9 1.1 

Longitudinal 

Direction (x) 
4.2 2.3 

 

Analysis of Sparse versus Dense Grid Sampling for Anisotropy 

In this section, results of dense and sparse datasets obtained from the same project are compared 

using directional and omnidirectional experimental semivariograms. The results are compared in 

Table 14. Semivariograms for directional spatial variability are presented for ELWD-Z3, γd, and 

DCPIsubbase in Figure 43, Figure 44, and Figure 45 respectively. Semivariograms based on the 

long sparse data from MI I94 TS1a are shown in Figure 46 to Figure 48. Similar comparison of 

sparse and dense datasets is provided for MI I-96 TS1 (dense) and MI I-96 TS2 (sparse) datasets 

in Figure 49 to Figure 56.  
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The summarized spatial variability characteristics show range values between 2 m and 11 m for 

dense gridded datasets taken over a relatively small area versus range values between 15 m to 45 

m for sparse datasets taken over relatively large areas.The longer ranges in the sparse dataset 

compared to shorter ranges calculated using the dense grid dataset suggests that there is a nested 

structure in the data with both short and long range spatial continuity on the measured properties. 

Table 14. Directional spatial variability characteristics summary on four test sections 

Properties 
Sampling 

type 
Small Dense Long Sparse Small Dense Long Sparse 

Properties Direction 

MI I-94 TS1b MI I-94 TS1a MI I-96 TS1 MI I-96 TB2 

Sill 

(C+C0) 

Range 

(a or 

a'), m 

Sill 

(C+C0) 

Range 

(a or 

a'), m 

Sill 

(C+C0) 

Range 

(a or 

a'), m 

Sill 

(C+C0) 

Range 

(a or 

a'), m 

ELWD-Z3 

(MPa) 

Transverse 59.1 11.0     165.3 2.6     

Longitudinal 63.0 3.0 206.4 38.3 203.5 8.3  

EFWD-K3 

(MPa) 

Transverse 
 

 

Longitudinal  6046.3 22.5 

γd (kN/m3) 
Transverse 0.35 2.3  0.67 7.5  

Longitudinal 0.62 9.9 0.35 33.2 0.17 2.2 0.63 15.4 

w (%) 
Transverse  1.406 3.5  

Longitudinal  0.157 27.0 0.832 5.4 0.960 23.2 

DCPIsubbase 

(mm/blow) 

Transverse 1.20 1.7  30.2 4.3  

Longitudinal 1.30 2.2 288.2 45.4 28.0 4.6  

DCPIsubgrade 

(mm/blow) 

Transverse  5.9 1.1  

Longitudinal  2.1 31.7 4.2 2.3  

 

  

Figure 43. Experimental γ(h) of ELWD-Z3 on MI I-94 TS1b in transverse direction (left) and 

longitudinal direction (right) 
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Figure 44. Experimental γ(h) of γd on MI I-94 TS1b in transverse direction (left) and 

longitudinal direction (right) 

 

Figure 45. Experimental γ(h) of DCPIsubbase on MI I-94 TS1b in transverse direction (left) 

and longitudinal direction (right) 

 

Figure 46. Experimental γ(h) of ELWD-Z3 on MI I-94 TS1a in longitudinal direction 

rd_transverse

Seperation Distance, h (m)

0 1 2 3 4

S
e

m
iv

a
ri
o

g
ra

m
 o

f 
 d

 (
k
N

/m
3
)2

0.0

0.1

0.2

0.3

0.4

0.5

Experimental (h)

Exponential (h)

Spherical (h)

Matern, k=1 (h)

Sample Variance, s2

rd_longitudinal

Seperation Distance, h (m)

0 1 2 3 4

S
e

m
iv

a
ri
o

g
ra

m
 o

f 
 d

 (
k
N

/m
3
)2

0.0

0.1

0.2

0.3

0.4

0.5

Experimental (h)

Exponential (h)

Spherical (h)

Matern, k=1 (h)

Sample Variance, s2

 DCPI
(Subbase)

Seperation Distance, h (m)

0 1 2 3 4

S
e

m
iv

a
ri
o

g
ra

m
 o

f 
D

C
P

I (S
u
b

b
a

s
e
) 
(m

m
/b

lo
w

)2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Experimental (h)

Exponential (h)

Spherical (h)

Matern, k=1 (h)

Sample Variance, s2

 DCPI
(Subbase)

Seperation Distance, h (m)

0 1 2 3 4

S
e

m
iv

a
ri
o

g
ra

m
 o

f 
D

C
P

I (S
u
b

b
a

s
e
) 
(m

m
/b

lo
w

)2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Experimental (h)

Exponential (h)

Spherical (h)

Matern, k=1 (h)

Sample Variance, s2

ELWD_x

Seperation Distance, h (m)

0 20 40 60 80 100 120

S
e
m

iv
a
ri
o
g
ra

m
 o

f 
E

L
W

D
-z

3
, 
(

h
) 

(M
P

a
)2

0

50

100

150

200

250

300

350

Experimental (h)

Matern, k=1 (h)

Sample Variance, s2



49 

  

Figure 47. Experimental γ(h) of γd on MI I-94 TS1a in longitudinal direction 

 

Figure 48. Experimental γ(h) of DCPIsubbase on MI I-94 TS1a in longitudinal direction 

  

Figure 49. Experimental γ(h) of ELWD-Z3 on MI I-96 TS1 in transverse direction (left) and 

longitudinal direction (right) 
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Figure 50. Experimental γ(h) of γd on MI I-96 TS1 in transverse direction (left) and 

longitudinal direction (right) 

  

Figure 51. Experimental γ(h) of w on MI I-96 TS1 in transverse direction (left) and 

longitudinal direction (right) 

  

Figure 52. Experimental γ(h) of DCPIsubbase on MI I-96 TS1 in transverse direction (left) 

and longitudinal direction (right) 
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Figure 53. Experimental γ(h) of DCPIsubgrade on MI I-96 TS1 in transverse direction (left) 

and longitudinal direction (right) 

 

Figure 54. Experimental γ(h) of ELWD-Z3 on MI I-96 TS2 in longitudinal direction 
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Figure 55. Experimental γ(h) of γd on MI I-96 TS2 in longitudinal direction 

 

Figure 56. Experimental γ(h) of w on MI I-96 TS2 in longitudinal direction 
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CHAPTER 5. SUMMARY AND CONCLUSIONS 

In this report, results from selected field studies were analyzed for a more in-depth analysis of 

spatial variability and assess anisotropy in the different measurements. The following 

measurement parameters were assessed: a) elastic modulus determined from the light weight 

deflectometer (LWD) test (ELWD-Z3), b) dynamic cone penetration index (DCPI) of subbase layer 

and subgrade layers (DCPIsubbase, and DCPIsubgrade) using dynamic cone penetrometer (DCP) test, 

and c) dry unit weight (γd) and moisture content (w) determined from the nuclear gauge (NG) test 

method. Results were analyzed on test sections where two different sampling methods were 

followed: a) dense grid sampling with spacing less than 1 m over a relatively short area (< 10 m 

x 10 m area) and b) sparse sampling with test locations separated by 4 to 5 m and over a relative 

large area (100 to 500 m).  

Detailed geostatistical analysis procedures are presented in this report to provide a guide to study 

spatial variability of pavement foundation properties with consideration of choosing the best 

fitted semivariogram model and characterization of anisotropic behavior. Anisotropy in 

pavement foundation properties is assessed using directional semivarigrams in comparison with 

omnidirectional experimental semivariograms, rose diagrams (identifying semivarigoram range 

values in different directions), semivariogram maps, and semivariogram contour maps. 

Spatial variability analysis on dense gridded test sections showed that different anisotropic major 

directions could be expected in different test areas. The dense gridded MI I-94 TS1b showed that 

the transverse direction is more uniform than the longitudinal direction, but the dense gridded MI 

I-96 TS1 showed the opposite. Analysis on dense gridded sections showed that the correlation 

length is about 2 m to 3 m in the minor direction (less uniform) and the correlation length in the 

major direction is about 3 to 4 times as the minor direction. Different anisotropic behavior was 

identified in the dense gridded sections analyzed in this report. The identified behaviors 

represented a relatively small sampling area that equaled the width of the foundation layer and 

about the same length in the longitudinal direction. More data in the longitudinal direction in 

similar grid fashion is required to further analyze anisotropy.  

Comparison of three theoretical semivariogram models (i.e., spherical, exponential, Whittle or 

Matern with k=1) revealed that there was no obvious best fitted model to describe the 

experimental semivariogram of dense gridded measurements. A nested model with an anisotropy 

ratio helps in estimating the values at unsampled locations with consideration of the correlation 

of data sampled at different locations. However, for the cases analyzed in this study, the isotropic 

or omnidirectional semivariogram model can work as well as an anisotropic semivariogram 

model in estimating the values at unsampled locations. Correctly calculating the experimental 

semivariogram (i.e., selection of appropriate separation distances and bin sizes) is more 

important than looking at minor differences between the different models.  

Comparisons of directional semivariogram models from dense and sparse datasets from same 

project are also provided in this report. The summarized spatial variability characteristics showed 

range values between 2 m and 11 m for dense gridded datasets taken over a relatively small area 

versus range values between 15 m to 45 m for sparse datasets taken over relatively large areas. 
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Longer ranges represent more spatially continuous data with longer correlation lengths than 

shorter ranges. The longer ranges in the sparse dataset compared to shorter ranges calculated 

using the dense grid dataset suggests that there is a nested structure in the data with both short 

and long range spatial continuity of the measured properties. 

Collecting in situ point test measurements in dense grid pattern (with < 1 m separation distance 

between test points) over long distances is a significant effort. Properly calibrated roller-

integrated intelligent compaction measurements that provide virtually 100% coverage of the 

pavement foundation layer properties can be an excellent data source to properly analyze and 

assess spatial variability and anisotropy aspects in the future.  
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